PRODUCT FOCUS
Enhanced EGA/VGA Boards

IN DEPTH
The New Coprocessors
The fastest-ever PC number crunching

Compaq's Weltek Math Coprocessor System

REVIEWS
Mac II Color Monitors
Zenith Z-386
Mac SE Accelerator Boards
Microsoft Works
Excel 2.0
PowerMate 2 and Vectra ES/12
Tandy 1400 LT
Paradox is once again the top-rated program, with the latest version scoring even higher than last year's top score." (Software Digest's July 1987 Ratings Report—an independent comparative ratings report for selecting IBM PC Business software).

All tests for the Ratings Report were done by the prestigious National Software Testing Laboratory, Philadelphia, PA, and the message is crystal clear: there is no better relational database manager than Paradox.

NSTL tested 12 different programs and amongst other results, discovered that Paradox is 3 times faster than dBASE; 6 times faster than R:BASE on a two-file join with subtotals test.

Paradox does the impossible: combines ease-of-use with power and sophistication

Even if you're a beginner, Paradox is the only relational database manager that you can take out of the box and begin using right away.

Because Paradox employs state-of-the-art artificial intelligence technology, it does almost everything for you—except take itself out of the box.

If you've ever used 1-2-3* or dBASE*, you already know how to use Paradox. It has Lotus-like menus, and Paradox documentation includes "A Quick Guide to Paradox for Lotus users," and "A Quick Guide to Paradox for dBASE users."

Paradox responds instantly to "Query-by-Example"

The method you use to ask questions is called Query-by-Example. Instead of spending time figuring out how to do the query, you simply give Paradox an example of the results you're looking for. Paradox picks up the example and automatically seeks the fastest way of getting the answer. Paradox, unlike other databases, makes it just as easy to query multiple tables simultaneously as it is to query one.
Paradox saves you from future shock
Trends for the future with Paradox

Paradox 386 allows users to take advantage of 16 Megabytes of Memory on a 386 machine. This allows Paradox users to work with databases that could in the past only be handled by minicomputers and mainframes.

Your investment today in Paradox applications is protected as new hardware and operating systems are used in your company. Paradox 2.0 applications will run unchanged on Paradox 386. Paradox OS/2, Paradox Unix and Paradox SQL! All versions of Paradox will be completely application and menu compatible. Paradox SQL will allow access to remote databases via SQL. Users will just type in a query as they normally would, and Paradox will translate that Query to SQL.

Paradox 2.0 will do for the LAN what the spreadsheet did for the PC

David Schulman, Bendix Aerospace

Paradox makes your network run like clockwork

Paradox is just as valuable to multi and network users as it is to single users. It runs smoothly, intelligently and so transparently that multiusers can access the same data at the same time—without either being aware of each other or getting in each other's way. It works exactly the same way whether you're flying solo or as part of the crew.

Anyone who hasn't seen the network version of Paradox should take a look. Ansa has dramatically advanced the state of the art in multiuser network databases

Phil Lemmons, BYTE

Paradox was a delight to use, both as a stand-alone product and from a local area network server.

Don Crabbe, InfoWorld

Paradox was a delight to use, both as a stand-alone product and from a local area network server.
Paradox: the top-rated relational database manager in the world...
Paradox: the new corporate standard

Paradox automatically updates your data and lets you control access to information.

In “Co-Edit” mode, changes made by anyone are automatically updated to everyone. You can pre-set a “Screen-Refresh” interval to occur anywhere from 1-second to 1-hour intervals. (If you don't make a pre-set choice, Paradox automatically updates every 3 seconds so that your screen always shows you updated data).

While Paradox 2.0 lets everyone share and update information simultaneously, you can configure it to keep secrets secret. You can restrict others’ rights in a variety of ways with safeguards protecting confidential files and/or giving someone “Read Only” rights which is to allow “View,” but prevent “Change.” The Paradox technique—automatic file and record locking—ensures data accuracy and integrity in any multiuser environment.

For a brochure or the dealer nearest you call (800) 543-7543

With Version 2.0, Paradox becomes a sophisticated multiuser product that boasts an impressive selection of data-protection features and password-security levels.

Rusel DeMaria.
PC Week

Get serious support for serious Paradox application programming

When you subscribe to the Paradox Developer's Resource Program (PDRP), you get all the resources and support you need for sophisticated Paradox application development: unlimited access to our toll-free PAL programmers support line; the Paradox Developer’s Toolkit; a subscription to Turbo Technix, Borland’s bi-monthly technical magazine; and a 20% discount on the Paradox User’s Journal published by the Cobb Group.

Call our Customer Service Department at (408) 438-8400 for your free PDRP information kit with all the details.
Contents

65 PRODUCTS IN PERSPECTIVE
67 What's New
89 Short Takes
 SideKick Plus, a major upgrade of Borland's TSR Manuscript 2.0, Lotus's word processor enhanced Friendly Finder, a dBASE file-retrieval program Focal Point, a Mac HyperCard application PC WeatherPro, a weather monitor for your PC

REVIEWS
102 Product Focus: Enhanced EGA and VGA Boards by Curtis Franklin Jr. Should you buy a VGA or will an enhanced EGA suffice for less money?

115 The Zenith Z-386 by Ed McNierney Zenith's powerful desktop provides outstanding performance and flawless compatibility.

121 NEC PowerMate 2 and HP Vectra ES/12 by John Unger Two 80286-based AT compatibles that offer high performance and excellent expansion capability.

127 The Tandy 1400 LT by David Satz A low-cost, lightweight laptop with good performance.

134 Screening Macintosh II Color Monitors by Joel West and Neil Rhodes Three monitors that take advantage of the Mac II's flexible display capabilities.

139 Pushing the Mac SE by Laurence H. Loeb A look at two accelerator boards: Do they really double the Mac SE's processing power?

145 Trilogy: A New Approach to Logic Programming by Alex Lane An alternative to Prolog with windows and other interesting twists.

154 Excel Extraordinaire by Rich Malloy Microsoft's successful Macintosh spreadsheet shines on the IBM PC AT.

157 Microsoft Works by Nicholas M. Baran The flexible exchange of data is this package's real strength.

162 Reflex Plus for the Macintosh by Charles Speziano Reflex has evolved into this faster and easier relational database manager.

COLUMNS

187 Applications Only: Annual Revelations by Ezra Shapiro Ezra's yearly look at the products he uses.

195 IN DEPTH: Floating-Point Processing
196 Introduction

197 Avoiding Coprocessor Bottlenecks by Mauro Bosomi Memory mapping helps overcome bandwidth problems between the CPU and floating-point coprocessor.

205 The Intel 80387 vs. The Weitek 1167 by Tom Thompson

207 Programming the 80387 Coprocessor by Prakash Chandra A look at the key differences between this floating-point unit and the earlier 8087 and 80287.
217 Floating-Point Survival Kit
by Pete Wilson
An overview of floating-point arithmetic, standards, benchmarks, and high-performance designs.

229 How to Get Better Floating-Point Results
by Carl Byington
A look at the trade-offs involved in emulating floating-point hardware, and the implications for programmers.

238 Resource Guide

241 FEATURES

243 Ciarcia’s Circuit Cellar:
The BCC180 Multitasking Controller
Part 3: Memory Management and Windowing
by Steve Ciarcia
The BCC180’s multitasking BASIC compiler can operate on a variety of hardware.

249 Better Bit-Mapped Lines
by Jerry R. Van Aken and Carrell R. Killebrew Jr.
Bresenham’s line algorithm provides a quick way for your computer to draw a straight line.

255 Focus on Algorithms:
Multicolumn Paged Text
by Dick Pountain
This program will help you to explore desktop-publishing software technology.

265 It’s All in the Symbols
by Merrill Cornish
We are beginning to suspect that the “things” that can be represented by numbers might be in the minority.

273 System Calls in Modula-2
by Richard Rankin
Pascal’s successor gives you easy control over your PC’s BIOS and DOS functions.

DEPARTMENTS

6 Editorial: Not Just for the Macfaithful
11 Microbytes
22 Letters
34 Chaos Manor Mail
38 Ask BYTE
42 Circuit Cellar Feedback
51 Book Reviews
323 Coming Up in BYTE

READER SERVICE

322 Editorial Index by Company
325 Alphabetic Index to Advertisers
327 Index to Advertisers by Product Category
Inquiry Reply Cards: after page 328

PROGRAM LISTINGS

From BIX: see page 278
From BYTEnet: call (617) 861-9764
On disk or in print: see card after page 296

BYTE (ISSN 0364-5664) is published monthly with an additional issue in October by McGraw-Hill, Inc., 1221 Avenue of the Americas, New York, NY 10020. Copyright © 1988 by McGraw-Hill, Inc. All rights reserved. Trademark registered in the United States Patent and Trademark Office. Where necessary, permission is granted to libraries and others registered with the Copyright Clearance Center (CCC) to photocopy any article herein for the flat rate fee of $1.50 per copy of the article or any part thereof. Correspondence and payments should be sent directly to the CCC, 22 Congress St., Salem, MA 01970. Specify ISSN 0364-5664(R). $1.50. Copying done for other than personal or internal reference use without the permission of McGraw-Hill, Inc., is prohibited. Requests for special permission or bulk orders should be addressed to the publishers. BYTE is available to subscribers from University Microfilms International, 300 North Zeeb Rd., Dept. PR, Ann Arbor, MI 48106 or 18 Bedford Row, Dept. PR, London EC1R 3JH, England.

Subscription permits or problems should be addressed to BYTE Subscriber Services, P.O. Box 1763, Travail, NJ 07666-0763.
Introducing HIWIRE™

Wintek's smARTWORK® is used by thousands of engineers to design printed-circuit boards. Now Wintek introduces HIWIRE, an electronic-schematic program that is easy to learn and use.

With a click of the mouse button, you can extract symbols from our library of over 700 common components and connect them with wires and buses. You can also easily modify the library's symbols or create your own by combining labels, lines, and arcs.

HIWIRE Advantages

- Easy-to-learn mouse/menu-driven operation
- Complete documentation and tutorial
- Extensive TTL, CMOS, microprocessor, and discrete-component libraries
- Rubberbanding
- Moving, copying, mirroring, and rotating of symbols
- Text-string searching
- Multiple display windows
- High-quality schematics from printers and plotters
- Hierarchical-design support; netlist and bill-of-materials utilities
- Schematic/layout cross checking
- 800 number for free technical support

System Requirements

- IBM Personal Computer, PC XT, or PC AT with 320K RAM, parallel printer port, 2 disk drives, and DOS V2.0 or later
- IBM Color/Graphics Adapter or EGA with RGB color monitor
- Microsoft Mouse
- IBM Graphics Printer or Epson FX/MX/RX-series dot-matrix printer, and/or:
- Houston Instrument DMP-40, 41, 42, 51, 52 or Hewlett-Packard 7470, 7475, 7550, 7580, 7585, 7586 plotter

High Performance at Low Cost

At $895, HIWIRE delivers quality schematics quickly and easily. You don't need to guess whether or not HIWIRE is right for you. Our money-back guarantee lets you try it for 30 days at absolutely no risk. Call (800) 742-6809 toll free today and put HIWIRE to work tomorrow.

Wintek Corporation
1801 South Street
Lafayette, IN 47904-2993
Telephone: (800) 742-6809
or in Indiana (317) 742-8428
Telex: 70-9079 WINTEK CORP UD

“HIWIRE” is a trademark, and “smARTWORK”, “Wintek”, and the Wintek logo are registered trademarks of Wintek Corporation.
Not Just for the MacFaithful

"Gridlock surrounds S.F. computer show" screamed the headline in the San Francisco Chronicle. "More than 20,000 people turned up for the first day of the three-day computer show, compared with 30,000 for all three days of the show last year. Hundreds...were unable to get into a packed keynote address... There was almost complete gridlock from Market to Howard streets... and traffic backed up onto the Bay Bridge... Some drivers complained that it took a half hour to go one block."

I'm writing this on the flight back from this winter's MacWorld Expo and can attest that it's all true—and perhaps even a little understated. It was a great show. In some ways reminiscent of the early days of microcomputing, with an electric atmosphere, a spirit of innovation and excitement, and a profusion of new hardware and software.

It may be remembered as the show of the expandable Macintosh—a show where there finally were enough innovative products for the full Macintosh line (not just for the Mac II) to satisfy all but the most fanatical criticisms about limited RAM, small and monochromatic screens, inadequate expansion, and unfulfilled visual potential.

My briefcase barely fits under the seat in front of me. It's crammed full of literature and sample software for everything from accelerators and expansion products for the Plus and SE to 68030-based accelerators, professional-quality animation, and digitized video products for the Mac II; and back to software that lets you accurately and flexibly drive color printers from monochrome Macs. The list goes on and on.

It was a great show. And not just for the MacFaithful.

Cross-Pollination

It's axiomatic that many of the concepts and technologies that had their first widespread commercial appearance on the Mac already have influenced and improved the IBM world. But, until recently, little has gone the other way. It's left the Mac world essentially isolated from the mainstream—a fertile but foreign land to the overwhelming majority of microcomputer users.

Some Mac users like it that way. They regard the "purity" of the Mac as an almost religious issue. At several of the show's panel discussions, members of the audience actually castigated some manufacturers for "selling out" because they adapted Mac products for PCs, or vice versa.

Some PC users like it that way, too. These are the folks who made up their minds about Apple's "little beige toaster" when it first appeared and don't realize that the current crop of Macs and third-party hardware and software embody the most desirable traits of the IBM side (e.g., expandability and adaptability).

It's silly—dangerous, even—to put on blinkers and track only one class of machine, or worse, only one brand of machine: Good ideas know no boundaries, except artificial ones, such as closed minds and closed architectures.

And that's why BYTE (which is sometimes incorrectly perceived as an MSDOS publication) attends Mac shows. Because no matter whether you're a Mac user or a PC user, you need to know what's going on in the other camp: Sooner or later, you must deal with and choose among the best ideas that emerge there.

This cross-pollination benefits every computer user, and it's a fact of life of microcomputing today: The best features of hardware and software—wherever they originate—will eventually show up everywhere. Keeping you informed of these developments, keeping your options open—that's what BYTE is all about.

Some Specifics

At MacWorld, we covered all the best product and technology news virtually live for the Microbytes Daily area of BIX. We then produced a Show Report (see below) immediately after the show closed. I've already mentioned some of the most interesting products—many of which we'll soon be reviewing.

But if you've missed our earlier coverage of MacWorld, here's a sampling of some of the show's other interesting items. As you read them, you'll see many examples of cross-pollination.

• Apple rolls out three new laser printers: from a $6599 model on the high end to a $2799 PostScriptless model on the low end, with a $4599 PostScripted model in the middle.
• Sculley talks of twenty-first century "knowledge navigator."
• Mainstay announces "Agenda-like" program for Mac.
• New Apple product lets MS-DOS PCs be AppleTalk nodes.
• Apple and DEC share technology.
• Activation program lets HyperCard users generate reports.
• WINGZ "integrated spreadsheet" puts graphs, text on one page.
• Truevision, maker of the Targa and Vista graphics cards for the IBM PC, announced a similar card for the Mac II.
• SuperMac's 24-bit color card for the Mac II.
• MacNeal-Schwendler introduces engineering software for Macs.
• Lotus introduces Modern Jazz.
• Mac CAD package has modular design.
• Kodak's first Mac projection pad.
• Program lets you map "information."
• Summagraphics announces digitizer for the Mac.
• Deutsch Research introduces a simulation program for analog and digital circuits.
• SuperMac/Levco brought out programming environments for its TransLink accelerator card.
• Apple Programmers Group offers new versions of MPW Pascal and MPW C.
• Digital film recorder does slides from Mac graphics.
• Two faxes for the Mac.
• Apple resists display PostScript.
• Cricket presents "Cricket Presents."
• Cricket shows beta paint program.
• Radius accelerator runs at 25 MHz.
• WordPerfect for the Mac: The "look and feel" of the Mac with all the keyboard functions of the IBM version.

And much more.

We'll also be producing a Show Report after this month's West Coast Computer Faire. We'll be glad to send you a copy for just the price of the paper, printing, and postage. Just drop us a note (send it to WCCF Show Report, BYTE, One Phoenix Mill Lane, Peterborough, NH 03458); please enclose a check or money order for $3 and be sure to include your name and mailing address.

—Fred Langa
Editor In Chief
(BIX name: flanga)
The loneliest feeling on earth is the feeling that comes right after losing the data you’ve worked so hard on for so long.

The solution?

Maxell Advanced System ¼” Data Cartridges. They’re fully compatible with all standard and mini ¼” data tape systems. Perfect for file-by-file backup or mirror-image streaming, creating archival tapes or off-loading data.

And best of all, they bring you the peace of mind which can only come from seeing the Maxell name on your computer products.

Talk to your Maxell distributor about backup for even the most sophisticated computer today. Before it slips your mind.

Backup for even the most advanced hard disk.
The Maxell ¼” data cartridge.

The Gold Standard
MAXELL CORPORATION
Maxell Corp. of America, 12-08 Route 208, Fair Lawn, N.J. 07410
The small printer on the left seems positively unexciting next to the new ALPS ALQ300. And it’s not just because of our colorful personality.

You see, the ALQ300 is a lot faster. It handles bidirectional graphics with flying colors. And for black and white work—spreadsheets, letters, you name it—the ALQ300 zips along as fast as 240 cps. It can do more things. It has snap in/out 24- or 18-pin print heads. Multiple font cartridges. Paper handling extras like automatic single sheet feed and bottom feed. And of course, it runs with all the most popular PCs and software.

It’s much easier to use, too. Because you do everything.
on the front panel. Change type styles and print modes. Load paper. Even override your software. All without software commands or DIP switches.

You may have also noticed that the ALQ300 looks more substantial. It is. Treat it right and it'll run over five years without a breakdown.

You may also expect that the ALQ300 is more expensive. It isn't. Our 24-pin version has a suggested retail price of just $995.

And our 18-pin model is $100 less.

Now it's time to make your own comparison. Call us for a free demo or more information at (800) 828-ALPS. In California, (800) 257-7872.

And you'll find there really isn't any comparison to make.

ALPS AMERICA

IT'S TIME YOU SAW THE ALPS.
LM-301 with PG-1600

- 1600 x 1200 Resolution
- 150 DPI, 15" Diagonal
- Price—$839.00 – LM-301
 $750.00 – PG-1600

LM-300 with Laserpage

- 1200 x 1664 Resolution
- 150 DPI, 15" Diagonal
- Price—$839.00 – LM-300
 $750.00 – Laserpage

CGA/MDA Hardware Emulation

PageMaker
 1.0A

THE OFFICE PUBLISHER
 1.0

AUTOCAD
 2.1

PUBLISHERS PAINTBRUSH
 1.03

WORDSTAR

1-2-3
 1.A/2

WORKS WITH

Dr. HALO II

VENTURA PUBLISHER
 1.1

WordPerfect
 4.2

PC PAINTBRUSH
 plus 1.0

WINDOWS
 1.04/2.03

GEM
 Design 2.1

VENTURA PUBLISHER
 1.1

WORDSTAR PRO 4.0

WordPerfect
 4.2

PC PAINTBRUSH
 plus 1.0

WINDOWS
 1.04/2.03

PUBLISHERS PAINTBRUSH
 1.03

GEM
 Design 2.1

PageMaker
 1.0A

1-2-3
 1.A

PRINCETON

GRAPHIC SYSTEMS

THE VISIBLE EDGE

801 Sweng St., Building A, Princeton, NJ 08540

For information concerning software compatibility call 609-983-1980.
Circle 205 on Reader Service Card

Dr: Dave

From: John

Re: Monitor Analysis

For high resolution and compatibility, the handwriting on the wall. Please the order with Princeton.
Staff-written highlights of developments in technology and the microcomputer industry.

SQL Promises Portability, but It's Not Easy Becoming a Standard

Incompatible database formats have long been a problem for computer users. It's not uncommon to find several different database programs being used within a single organization, all generating incompatible data. If we're to believe industry watchers and prognosticators, however, this problem will be solved by making Structured Query Language (SQL) the standard.

Although SQL is just a language for querying and communicating with databases, it requires a standard SQL "engine," or data format, to be used effectively. "The real promise of SQL is the portability of files and indexes," pioneering computer designer George Morrow told Microbytes. "If you follow the rules of SQL, everyone can use the data." The problem, however, is that very little data is currently in SQL format. "Unfortunately," said Ansa Software's cofounder Rob Shostak, "most of the world's data resides in flat files accessed by COBOL programs."

SQL may indeed be the next standard. But how long will this standardization take? And how will it affect database developers? With Oracle's recent announcement of an SQL add-in program for Lotus 1-2-3, SQL products for the PC are becoming a reality. Microcorim also has announced SQL support, but the new version of R:base implements only some SQL commands and has no provisions for transferring files between R:base and SQL. According to Morrow, R:base users "will be greatly disappointed" when they discover that their files are still incompatible.

Shostak told Microbytes that Ansa is working on a version of Paradox that will accept data from SQL databases by providing a "seamless" translation of Paradox queries into SQL. "What users really want to do is access SQL data with commands they already know," Shostak said. But do MIS managers want microcomputer users to be able to modify or update mainframe databases? In a survey of Fortune 500 companies, "many executives said they don't want micro users to be able to update the mainframe," said Shostak. Ansa is debating whether to provide a mechanism for exporting data from Paradox back into SQL databases.

Another problem is performance. According to Morrow, the main bottleneck in current PC database products is I/O. "SQL will be even slower, because the bottleneck is the CPU. SQL is highly interpretive. SQL gives you a nice language, but the price you pay is that it's CPU-bound," said Morrow. Morrow's company, Intelligent Access, has been developing SQL interfaces that are built into the hardware of disk controllers.

Of course, Ashton-Tate is also working on SQL products and has hired several experts in the field. Industry speculation has A-T acquiring a company with SQL expertise. But according to Oracle's marketing director, Gene Shklar, the first player to drop out of the SQL game will be A-T. "They simply don't have the technology to compete with us," he claimed. Shklar said that products like dBASE III, R:base, and Paradox are not based on the SQL model and therefore can offer only partial support of SQL.

In any case, no standardization takes place overnight. In the meantime, we'll have to thrash away at incompatible data files and put up with converting to ASCII format.

New Approach Will Make Scanners Smaller

Scanners will begin to change over the next 2 years as manufacturers adopt alternative technologies. The approach that looks to be the scanner technology of the future is called "contact image sensor." It should enable manufacturers to design scanners that are much more compact, much less expensive, and have much less image falloff than anything on the market today. One thing that makes today's charge-coupled device teams take? And how will it affect database developers? With Oracle's recent announcement of an SQL add-in program for Lotus 1-2-3, SQL products for the PC are becoming a reality. Microcorim also has announced SQL support, but the new version of R:base implements only some SQL commands and has no provisions for transferring files between R:base and SQL. According to Morrow, R:base users "will be greatly disappointed" when they discover that their files are still incompatible.

Shostak told Microbytes that Ansa is working on a version of Paradox that will accept data from SQL databases by providing a "seamless" translation of Paradox queries into SQL. "What users really want to do is access SQL data with commands they already know," Shostak said. But do MIS managers want microcomputer users to be able to modify or update mainframe databases? In a survey of Fortune 500 companies, "many executives said they don't want micro users to be able to update the mainframe," said Shostak. Ansa is debating whether to provide a mechanism for exporting data from Paradox back into SQL databases.

Another problem is performance. According to Morrow, the main bottleneck in current PC database products is I/O. "SQL will be even slower, because the bottleneck is the CPU. SQL is highly interpretive. SQL gives you a nice language, but the price you pay is that it's CPU-bound," said Morrow. Morrow's company, Intelligent Access, has been developing SQL interfaces that are built into the hardware of disk controllers.

Of course, Ashton-Tate is also working on SQL products and has hired several experts in the field. Industry speculation has A-T acquiring a company with SQL expertise. But according to Oracle's marketing director, Gene Shklar, the first player to drop out of the SQL game will be A-T. "They simply don't have the technology to compete with us," he claimed. Shklar said that products like dBASE III, R:base, and Paradox are not based on the SQL model and therefore can offer only partial support of SQL.

In any case, no standardization takes place overnight. In the meantime, we'll have to thrash away at incompatible data files and put up with converting to ASCII format.

Nanobytes

We'll resist unfair comparisons to glasses, but IBM opened its doors a bit following published reports regarding PS/2 Model 50s showing up DOA. The company invited writers from several computer publications to its offices in White Plains, NY, to correct what it says are "misstatements" in the press. One person was quoted in a prominent news weekly as saying that 40 percent of the Model 50s he had ordered arrived defective; but IBM officials said that the quoted person never ordered even one Model 50. We've heard about some minor problems with the machines but have yet to find the rumored graveyard.

Speech Systems Inc. (Tarzana, CA) is investigating the use of a phonetics-based speech-recognition system to help improve the language abilities of people with hearing disabilities. The study is underwritten by the U.S. Department of Education. SSI's Phonetic Engine converts speech to phonetic codes; the approach is based on phonemes (basic elements of speech) rather than on whole words. ... Quintus Computer Systems (Mountain View, CA) is testing a version of its Prolog compiler for 80386-based computers. Quintus Prolog adheres to Edinburgh syntax and provides a complete split-screen development environment with full-screen editor, incremental compiler, debugger, on-line help, and interfaces to C, FORTRAN, and Pascal. The split screen puts source code in the upper window, while Prolog executes in the lower window. Teknowledge (Palo Alto, CA) is bringing its Copernicus expert system environment to the MS-DOS world. The "knowledge engineering tool" runs under Microsoft Windows on 286- or 386-based computers and uses a **continued**
DOS extender to allow execution in protected mode. A company official told us that this version is aimed at programmers who want to do the development work on an IBM PC and port it to a mainframe or use the micro as an "intelligent terminal."... The new 24-bit Mac II display card from Jasmine Technologies (San Francisco, CA) uses "extensions" to the Mac QuickDraw routines to make it possible for existing programs to be compatible with the device. The software for the Rembrandt II and III cards employs the PICT2 format used by QuickDraw, enabling you to paste an image to the Clipboard and then copy it into any application. The card is designed around custom gate arrays but makes use of the Texas Instruments 34010 graphics processor. Having shipped its Pegasys I CAD program for the Macintosh, IGC Technology (Walnut Creek, CA) plans two more Mac CAD packages. Pegasys Expert, slated for this quarter, will add "true 3-D, macros, more menus," and more, said an IGC official. Pegasys II will run on the Mac II in full color and take advantage of that box's 68881 numeric coprocessor. Hewlett-Packard (Palo Alto, CA) plans to release its workstation based on Motorola's 68030 in mid-1988. The new members of the HP 9000 Series 300 line will be object-code-compatible with HP-UX. An 8030 upgrade board will be available for the older, 68020-based models 330 and 350, HP said.... This WORM does not crawl. Micro Design (Winter Park, FL) said it has speeded up its LaserBank 800 WORM drive by replacing its 8-bit host adapter with a 16-bit device. Claimed DOS throughput is now 90K bytes per second. The $1995 unit can hold 800 megabytes of data.... Now there are mondo characters. Worthington Data Solutions (Santa Cruz, CA) has released a package that lets an HP LaserJet Plus-compatrable printer print characters 2 inches tall, or what type-shop types would call 153 points. License cost for BIGfont is $159.... Researchers at the California Institute of Technology plan to announce a 300-line per second high-speed contact image sensor. Contact image scanners, however, have a maximum optical path of not more than 50 mm and replace a bulky lamp with a strip LED array. In a typical contact image scanner, the paper original travels beneath two sets of LED arrays positioned roughly at 45-degree angles above the paper. The light that shines down on the paper is reflected up at 90 degrees through a rod lens array before reaching the photosensor array. Contact image technology is generally viable right now, but scanner makers say it currently costs about 3 times more than the more commonly used CCD approach. Contact image has its limitations as well. The dynamic range, for instance, is restricted to 6 bits (64 levels) of gray, while it's possible to push CCD to 8 bits, and even to 10 bits in some cases.

How long before contact image sensor technology makes its presence felt? A representative of one scanner company predicted that within 12 months, contact image sensors will be just as cost-effective as CCD, and within 18 to 24 months, it will be more cost-effective. Most major scanner manufacturers, including Datacopy and Desl, admit that they are tracking the technology and say they will have contact image-based products, perhaps in the form of 8½-inch hand-held page scanners, ready when the market wants them.

You, Too, Can Build a VGA Board
Want to enter the fast-growing graphics-board business? Two companies want to help you by offering a "manufacturer's kit" that they say will provide everything you need to build a VGA-compatible graphics board for the IBM PC. Award Software (Los Gatos, CA) is supplying the BIOS and the design for the card, while Cirrus Logic (Milpitas, CA) brings the VGA-compatible chips. Cirrus, which provides chips to companies such as Video Seven, claims that its two-part chip set is the only VGA-compatible set currently available. Like many announced VGA cards, the Award/Cirrus board design features VGA, EGA, CGA, and Hercules compatibility, plus support for both the new analog monitors and the older digital TTL monitors. The board also features autoswitching between the graphics modes. Other enhancements include an 800- by 600-pixel by 16-color mode, support for a mouse in hardware, and performance that Cirrus claims is 4 times that of the IBM EGA.

According to Award, people who purchase the $5000 manufacturer's kit will be able to begin selling the board in 30 days. The kit includes an evaluation board, schematics, film for making the boards, manufacturing instructions, the text for an owner's manual, and two color photographs for marketing literature. According to Award, even FCC certification has been taken care of; the board design has passed the certification requirements, and getting a new version of it certified is a mere "paper formality," the firm said.

Award and Cirrus said that several manufacturers, including some monitor makers, should have versions of the board ready to ship by now for retail prices of $400 to $500. One manufacturer is even trying with the idea of bundling the board with a new desktop-publishing package; the board would provide high-resolution text.

Air Force Takes Tip from PC Industry
In a radical departure, Air Force planners have decided to base the next generation of USAF fighters and bombers around open-architecture hardware, an approach that they admit has proven successful in the personal computer industry. According to Lt. General Bill Thurman, commander of the Air Force's Aeronautical Systems Division (Wright-Patterson Air Force Base, OH), future aircraft will incorporate interchangeable printed circuit cards, like those in an IBM PC, instead of dedicated "black boxes" that have been used for the past few decades.

"Instead of contracting for a company to build an entire specialized radar set," Thurman said, "we'll contract for common cards." The approach, which the Air Force refers to as "modular avionics," is not new, although the continued
From real-time embedded applications to comprehensive commercial applications on Macintosh, IBM PC, Amiga, Atari, and others, Aztec C has earned a well-deserved reputation as an innovative, tough to beat, rock-solid C development system.

But don't just take our word for it—try it yourself. We know that the best way to understand what puts you ahead with Aztec C is to use it. That's why Aztec C systems purchased directly from Manx come with a 30-day, no questions asked, satisfaction guarantee. Call for yours today.

We can also send you information that details the special features and options of Aztec C. Plus information on support software, extended technical support options, and all of the services and specialized support that you may need when you're pushing your software to the limits and beyond.

MS-DOS Hosted ROM Development Systems

<table>
<thead>
<tr>
<th>Targets:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$6502 family</td>
</tr>
<tr>
<td>8080-8085-Z80-Z180-64180</td>
</tr>
<tr>
<td>8086-8088-80186-80286-80387</td>
</tr>
<tr>
<td>68000-68030-68020-68861</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Components:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C compiler for host and target</td>
</tr>
<tr>
<td>Assembler for host and target</td>
</tr>
<tr>
<td>linker and librarian</td>
</tr>
<tr>
<td>Unix utilities make, diff, grep</td>
</tr>
<tr>
<td>Unix vi editor</td>
</tr>
<tr>
<td>debugger</td>
</tr>
<tr>
<td>download support</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Features:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete development system</td>
</tr>
<tr>
<td>Fast development times</td>
</tr>
<tr>
<td>Prototype and debug non-specific code under MS-DOS</td>
</tr>
<tr>
<td>Compilers produce modifiable assembler output, support inline assembly, and will link with assembly modules</td>
</tr>
<tr>
<td>Support for INTEL hex, S record, and other formats</td>
</tr>
<tr>
<td>source for UNIX run time library</td>
</tr>
<tr>
<td>processor dependent features</td>
</tr>
<tr>
<td>source for startup</td>
</tr>
</tbody>
</table>

Aztec C is available on a thirty-day money back guarantee. Call now and find out why over 50,000 users give Aztec C one of the highest user satisfaction ratings in the industry.

Call 1-800-221-0440

In NJ or outside the USA,
call 201-542-2121
Telex: 4995612 Fax 201-542-8386

Manx Software Systems
One Industrial Way
Eatontown, NJ 07724

MARCH 1988 • BYTE 13
Valdocs Lives, New Owner Says

Veteran microcomputer users may recall TPM, the Valdocs text management and operating system that runs on the old Z80-based Epson QX-10 and QX-16. Rising Star Industries, the developer of Valdocs, went bankrupt about 2 years ago, leaving Valdocs at version 3 Plus. However, a small company called Interface Solutions (Yuba City, CA) has acquired the assets of Rising Star and plans to eventually release new products based on Valdocs.

Don Soegaard, president of Interface Solutions, told Microbytes Daily that the company’s first project is porting Valdocs 3 Plus to a single-board Z280 computer, which will plug into the QX-10 or QX-16. The Z280 is a 16-bit version of the 8-bit Z80 and has performance characteristics comparable to an 80286, according to Soegaard. The Z280 board will have up to 3 Mbytes of on-board RAM, a SCSI port, serial and parallel ports, and an internal bus to allow additional card-to-card interfaces for a floating-point processor or more.

The next step will be to rewrite Valdocs in C and port it to MS-DOS and OS/2, said Soegaard. Valdocs is written in Z80 assembly language and in Forth. Soegaard said the rewritten version will include a relational database, an expanded indexing system, and a new editor, which will be a “stand-alone desktop-publishing system.”

Soegaard emphasized that Valdocs will be a starting point for a greatly expanded software system. “Unfortunately, the concept of Valdocs was totally lost, because it was too slow on the Z80 and was released with a lot of bugs.” Soegaard said he believes that there is still a place for the Valdocs interface, and he estimates that there are some 50,000 QX-10 users. Interface Solutions welcomes inquiries from OEMs and software developers.

Ethernet Inventor Speculates on Future LANscape

By the year 2000, the local-area network (LAN) scene will consist of four standards, Ethernet inventor Bob Metcalfe told an audience recently. Metcalfe, who is a vice president at 3Com, said the surviving quartet will consist of AppleTalk, IBM’s Token Ring, Ethernet, and FDDI (Fiber Data Distributed Interconnects).

“...you might have believed that I would say that Ethernet should be the only LAN, and I admit that that argument does have a certain charm,” he said, “but that won’t be the case.”

Metcalfe predicted that Ethernet will remain the predominant LAN standard, since 500,000 Ethernet connections are currently in use today, and, he said, 3Com is shipping about 30,000 connections per month.

AppleTalk’s advantages, said Metcalfe, are that it is the easiest LAN to install and it is built into the Macintosh. Its biggest drawback, he added, is its slow speed, especially when the LAN consists of more than four Macs; nevertheless, it will be around for the next 12 years.

Metcalfe characterized Token Ring technology as old (about 5 years behind Ethernet, he said) and slow (with data-transfer specifications of 4 megabits per second, as compared to Ethernet’s 10 megabits per second). IBM has been hurt by the comparison, Metcalfe said,

continued
Some of the world's biggest problems are being solved with a touch of Smalltalk.

The world is made of objects. So naturally, the world is turning to Object-Oriented Programming (OOPS). And the fastest, easiest OOPS language and environment is Smalltalk/V.

With OOPS you program by defining objects, their interrelationships and their behavior. Objects can represent both real-world entities — people, places, things — as well as useful abstractions such as stacks, sets and rectangles. Smalltalk/V provides everything you need to solve problems big and small, including a comprehensive tutorial to get you started.

Who needs Smalltalk?

Because Smalltalk models the way people really think, it is perfect for scientists, engineers and professionals who have to solve tough problems in a short amount of time. Perfect for programmers who are looking for a fast, efficient prototyping environment. And anyone who wants to quickly and easily learn OOPS.

Introducing Smalltalk/V286.

Our newest version of Smalltalk offers faster and more powerful OOPS capabilities. We've gone from 16 to 32-bit architecture. From 640K to 16 MB capacity for 25 times the memory. And designed it to run on the next generation OS/2 operating system as well as DOS.

Get Smalltalk for a small price.

Smalltalk/V sells for just $99.95. Smalltalk/V286 is $199.95. The following optional applications packs are available for $49.95 each: Communications; EGA/VGA Color; Goodies #1, Goodies #2, Carleton Tools and Goodies #3, Carleton Projects.

And everything comes with a 60-day money-back guarantee.

So visit your nearest dealer. Or call toll-free, 800-922-8255 and order direct with MasterCard or Visa. Or write to Digitalk, Inc., 9841 Airport Blvd., Los Angeles, CA 90045.

And let us help you put Smalltalk into action.

Teaching students to think economically.

With Smalltalk, even non-programmers can create exciting applications. Economics Professor Arnold Katz of the University of Pittsburgh developed an intelligent tutoring system for beginning microeconomics students. Using a mouse to access windows and manipulate data, a student can call up a set of markets and commodities for an imaginary community. By changing the scenario, the student can not only study a variety of market behaviors, but also test the validity of his or her own reasoning. A process that provides a lot of food for thought.

Smalltalk/V

digitalk inc.
Transputer Board Boosts Sun to 640 MIPS

A new Transputer-based board from Topologix (Denver, CO) converts Sun workstations to parallel processing supercomputers. The Topology 1000 board features four 32-bit INMOS T800 Transputers, each with its own memory array, which gives each board a peak performance of 80 reduced-instruction-set computer (RISC) MIPS (million instructions per second).

A maximum of 64 megabytes of high-speed dynamic RAM can be used per board. You can connect up to eight boards to a standard Sun workstation (via a simple wiring harness), yielding a peak performance of 640 RISC MIPS, the equivalent processing power of 40 or 50 68020s, Topologix claims.

"The Topology 1000 is basically an accelerator board for the Sun," Topologix president Jack Harper told Microbytes Daily. "But it gives you a lot more horsepower than an average accelerator board." To illustrate the board's capabilities, Topologix ran the standard programming problem that determines the most efficient (in terms of time and money) travel plans for sales representatives traveling 12 cities. According to Harper, a standard Sun-3 takes 15 hours to solve the problem, while the same workstation with one Topology board takes 20 hours to solve.

WordPerfect®...without the Template!!!
This $1595 frame grabber price won’t surprise you, once you know our history.

1626: Chief Fred Sold Manhattan for $24 worth of beads.
1803: Fred “Napoleon” Bonaparte
Sold the Louisiana territory for
less than 3 cents an acre.

Nobody gets something for nothing. But throughout history, anyone dealing with our family has come awfully close.

Take, for instance, our new DT2853 512x512x8-bit frame grabber that performs real-time image processing on the IBM PC AT. It has advanced features like built-in real-time math and logic operations; square pixel display (for perfect display without geometric distortions); and external trigger inputs (for machine vision inspection applications). And it’s supported by a wealth of software.

You get all that, and it’s sold for the next-to-nothing price of $1595—well below the nearest competing board! Give us a call today. We don’t offer prices like this very often, but when we do, they make history.

Call (617) 481-3700

To learn more, see us in Gold Book 1987, or call to receive our first-ever 1987 Catalog, Product Summary Price List, and Applications Handbook.
minutes. When the workstation has four Topology boards, the problem is solved in 5 minutes, he said.

The system has parallel Common Lisp software (which supports parallel processing applications) and an extended C compiler (for parallel numeric applications). It also provides a Unix interface that permits Lisp and C access to Unix system calls.

A non-bus-oriented architecture, in which all elements are linked, permits construction of computer networks of arbitrary size and topology. The resulting flexibility is one of the board’s strong points. On one hand, Harper said, you can overlay a grid onto an image, making each Transputer responsible for processing in individual grid areas. However, he said, the system can also be turned into a tree machine for other applications.

Topologix will be targeting the Topology 1000 at “general-purpose” markets—simulation, image processing, and so on, Harper said. The board is available for “about $500 per MIP.”

Some Mac Developers Not Following Rules, Apple Says

Software developers who take shortcuts when writing programs for the Macintosh may be getting by with it for the time being, but those shortcuts are short-sighted, Apple software engineers told Microbytes Daily.

“If a programmer has adhered to Inside Macintosh rules,” one Apple spokesperson said, “the software can very easily be ported to run under future versions of the Mac operating system.”

Apple has said to developers “that if they follow the rules of Inside Mac, they won’t have any problems, and we mean it,” he said. “But not all of them have listened to us, and they are going to have to recode in the future.”

How serious is the problem? According to another engineer, only about 15 percent of all Mac programs tested followed the Inside Mac rules. With about 50 percent of the programs, only slight edits and recompiles will be required to operate properly in the future. The remaining 35 percent will need significant work, however.

The Apple engineer pointed to Microsoft’s Excel as an example of one program that hasn’t adhered to the Mac rules. “The version of Excel you buy today won’t run under the Mac operating system 2 years from now,” he claimed.
Upgrade Your Technology

We're Programmer's Connection, the leading independent dealer of quality programmer's development tools for IBM personal computers and compatibles. We can help you upgrade your programming technology with some of the best software tools available.

Comprehensive Buyer's Guide. The CONNECTION, our new Buyer's Guide, contains prices and up-to-date descriptions of over 600 programmer's development tools by over 200 manufacturers. Each description covers major product features as well as special requirements, version numbers, diskette sizes, and guarantees.

How to Get Your FREE Copy: 1) Use the reader service card provided by this journal, 2) Mail us a card or letter with your name and address, or 3) Call one of our convenient toll-free telephone numbers.

If you haven't yet received your copy of the Programmer's Connection Buyer's Guide, act now. Upgrading your programming technology could be one of the wisest and most profitable decisions you'll ever make.

USA........ 800-336-1166
Canada........ 800-225-1166
Ohio & Alaska (Collect)........ 216-494-3716
International........ 216-494-3716

ORDERING INFORMATION

FREE SHIPPING. Orders within the USA (excluding Alaska & Hawaii) are shipped FREE via UPS. Call for express shipping rates.

NO CREDIT CARD CHARGE. Visa, MasterCard and Discover Card are accepted at no extra cost. Your card is charged when your order is shipped. Mail orders please include expiring date and authorized signature.

NO COD OR FP Fee. CODs and Purchase Orders are accepted at no extra cost. No personal checks accepted for COD orders. Connections with 30-day terms (with initial minimum order of $100) are available to qualified US accounts only.

NO SALES TAX. Orders outside of Ohio are not charged sales tax. Ohio customers please add 5% Ohio tax or provide proof of tax-exemption.

30-DAY GUARANTEE. Most of our products come with a 30-day demonstration evaluation period plus a 30-day return guarantee. Please note that some manufacturers restrict us from offering guarantees on our products. Call for more information.

SHIPPING CHARGES. All international and Canadian orders are based on the shipping carrier's standard rate. Since rates vary between carriers, please call or write for the exact rate. International orders (except Canada) will include an additional $10 for export preparation. All payments must be made with US funds drawn on a US bank. Please include your telephone number when ordering by mail. Due to government regulations, we cannot ship to all countries.

MAIL ORDERS. Please include your telephone number on all mail orders. Be sure to specify computer, operating system, disk drive size, and any applicable compiler or hardware interface(s). Send mail orders to:

Programmer's Connection
Order Processing Department
7249 Whipple Ave NW
North Canton, OH 44720

386 products
List Ours
386 ASM/386 LINK Cross Asm by Rear End........ 495 369
386 DEBUG Cross Debugger by Rear End........ 159 129
NCP C-386 by Rear End........ 596 459
NDF For 386 by Incident........ 596 459
PC-MOS/386 Single User by The Software Link........ 195 155
PC-MOS/386 Single User by SoftLink........ 195 155
PC-MOS/386 Single User by The Software Link........ 195 155

ASIC products
List Ours
ASIC A0183 by Mentor........ 175 135
C Tool PLUS by Mentor........ 129 99
PASCAL TOOLKIT 2 by Mentor........ 175 135
Turbo ASYM PLUS/4.0 by Mentor........ 129 99
Turbo C 61.0 by Mentor........ 129 99
Turbo POWER TOOLS PLUS/4.0 by Mentor........ 129 99
VIEW MANAGER by Mentor........ 375 299

broadband products
List Ours
EUREQA Equation Solver........ 145 109
Paracomp Inc. by Incend........ 725 559
Paracomp 2.0 by Incend........ 725 559
Paracomp Network Pack by Incend........ 965 729
PC-MOS/386 Single User by SoftLink........ 195 155
PC-MOS/386 Single User by The Software Link........ 195 155

logitech products
List Ours
LOGICOM All products........ CALL CALL
LOGITECH Module 2 Development System........ 246 196
Module 2 Development System........ 246 196
Module 2 Toolkit........ 129 99

microport products
List Ours
DOSMerge256 Specify 2 Users or Unlimited........ 129 99
DOSMerge356 Specify 2 Users or Unlimited........ 139 109
DOSMerge356 Unlimited Users........ 495 399
System V/386 Complete Package........ 799 699
System V/386 Complete Package........ 799 699
Other Microproducts........ CALL CALL

miscellaneous products
List Ours
Flash memory with FREE Mouse from Software Bottling of NY........ $89 $79
Flash is a memory-resident macro, menu, and note maker complete with most languages. Easy-to-use features include a full-screen interface and on-line help. And until 03/31/88, you'll also get a Microsoft compatible mouse FREE!

Microsoft products
List Ours
Microsoft C Compiler........ 495 399
Microsoft 68010 Compiler........ 495 399
Microsoft COBOL Compilers........ 495 399
Microsoft FastC........ 495 399
Microsoft Fortran Compiler........ 495 399
Microsoft Interbase for MS-DOS........ 495 399
Microsoft QuickC........ 495 399
Microsoft QuickC........ 495 399
Microsoft Windows........ 495 399
Microsoft Windows........ 495 399
Microsoft Windows........ 495 399
Microsoft Windows........ 495 399
Microsoft Word........ 495 399
Microsoft Works........ 495 399

CALL for Additional Products
Everex — the #1

Everex, one of the leaders in graphics technology, offers a complete line of advanced graphics adapters for IBM PC/XT/AT® and compatibles. Application-Specific Integrated Circuits (ASIC) designed by Everex, have led to the quality, features, price and performance of these products. Choose the graphics adapter to suit your needs and start enjoying the Everex difference today!

- True VGA on PC/XT/AT and compatibles
- 256 simultaneous colors from over 256,000
- All 17 VGA modes implemented in hardware
- Runs VGA, EGA, CGA, MDA and Hercules® software
- Supports PS/2, multifrequency, EGA, CGA, and monochrome monitors
- 512 x 480 with 256 colors for true color video applications
- Special 1280 x 600, and 800 x 600 modes
- 132 column text modes

ASIC Technology

EVGA™

Micro Enhancer™

- High resolution EGA
- Compatible with IBM® EGA
- Supports automatic mode switching
- Extended EGA modes 752 x 410 and 640 x 480
- 132 x 44 and 132 x 25 text modes
- Supports multifrequency, EGA, CGA and monochrome monitors
- Can run Hercules software on an EGA monitor
- Includes feature adapter and RCA jacks
- Very attractively priced
Choice in Graphics

Ultra Graphics™
- Very high resolution monochrome graphics adapter
- 1664 x 1200 resolution
- Ideal for desktop publishing
- Microsoft® Windows driver included
- Perfect for CAD applications
- AutoCad driver included
- Non-interlaced display
- Supports PGS 15” and Moniterm 19” high resolution monitors
- Co-exists with standard video adapters
- ROM BIOS to allow single display operation

Evergraphics Deluxe™
- Supports standard monochrome monitors
- High resolution 1024 x 794 and 1024 x 352 graphics modes
- AutoCad drivers included
- Compatible with Hercules RamFont™ modes
- Displays foreign language, scientific, math characters instantly
- Powerful, easy-to-use font editor
- Over 3,000 characters in RAM simultaneously
- Runs standard monochrome software without modification
- 132 x 44 and 132 x 25 text modes

Evergraphics Plus™
- Low-cost monochrome graphics adapter
- Compatible with Hercules graphics
- Fast scrolling
- 132 x 44 and 132 x 25 text modes
- Configurable parallel port
- MDA text compatible
- Works with standard monochrome monitors

For more information or for the name of your nearest Everex dealer please call:

<table>
<thead>
<tr>
<th>Country</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>1-800-821-0806</td>
</tr>
<tr>
<td>Other</td>
<td>1-800-821-0807</td>
</tr>
</tbody>
</table>

Circle 93 on Reader Service Card (DEALERS: 94)
FEA Concerns
Nicholas M. Baran's article, "ANSYS-PC/Linear and MSC/pal 2" (November 1987), failed to focus appropriately on the critical issues in the evaluation of a professional-level IBM PC finite-element analysis (FEA) system. The report was highly subjective and unjustifiably biased toward MSC/pal 2.

Let me begin by stating that I am not without my own biases. I work for a mechanical engineering consulting firm that provides training and technical support to users of the ANSYS program. Although Mr. Baran did note several of MSC/pal 2's deficiencies—limited program size capacity, lack of an adequate element library, and so on—he tended to dismiss these critical factors as unimportant. On the other hand, he took every opportunity to minimize ANSYS-PC/Linear's superior features (e.g., interactive modeling capability, advanced analysis options, and upward compatibility with the mainframe version).

Mr. Baran stated that ANSYS-PC/Linear is a more expensive program than MSC/pal 2. This is true. However, in PC FEA, you do indeed get what you pay for. The degree of sophistication and complexity of professional-level FEA code is at least an order of magnitude above common PC-based applications. The absence of an element as basic as a three-dimensional solid in MSC/pal 2 is a serious liability. We live in a world composed of three-dimensional solid objects; to model them effectively often requires a continuum element of this type.

Mr. Baran claimed that time-to-solution on similar analysis problems was equivalent for both programs. He did not elaborate on the type of problem he solved; he stated only that the model contained 2000 degrees of freedom. ANSYS-PC/Linear uses a wave-front solution method, influenced by element rather than node order. If you don't know the value of the maximum wave front in the model, the number of degrees of freedom is largely irrelevant. Numerous benchmark studies have shown that ANSYS-PC/Linear has the fastest time-to-solution of any MS-DOS finite-element program.

Mr. Baran raised the issue of ease of use and learning. It seems he based his entire evaluation upon the single user's manual in his possession. Each ANSYS-PC/Linear lease or purchase includes training credits for an introductory seminar on using the program. Apparently Mr. Baran did not avail himself of this opportunity. He stated that ANSYS-PC/Linear is difficult to learn. I have to ask, relative to what—a spreadsheet? a word processor? We are talking about learning to effectively use a powerful engineering analysis tool; to use it properly requires an investment in time and effort.

One of the most serious deficiencies in Mr. Baran's review is his dismissal of ANSYS-PC/Linear's interactive model-generation capability (which MSC/pal 2 lacks). He states, "The Interactive mode is most suitable for issuing a few on-line commands to obtain a plot or a small listing. For creating a moderate-size model, I found it much easier to prepare the input file using a text editor and then to run PREP7 in batch mode using my input file." To prefer working in batch mode when an excellent interactive capability exists (with on-line help, immediate plotting, and error correction) is insane. I wonder if Mr. Baran prefers shaving in the dark—that's what it feels like to create an FEA model in batch mode.

Now that I've gotten all that off my chest, let me say that Mr. Baran's criticism regarding difficulty in obtaining a hard copy in ANSYS-PC/Linear was entirely valid. However, Version 4.3 of ANSYS-PC/Linear is now available, and its new vector display mode option completely corrects this problem.

Victor R. Urbach
Westbury, NY

I stated in the article that ANSYS-PC/Linear is the more capable and flexible product. On the other hand, I think it's a bit presumptuous to claim that the "degree of sophistication and complexity of a professional-level FEA code is at least an order of magnitude above common PC-based applications." It all depends on what you plan to do with the program. And though we do live in a three-dimensional world, a great many problems can be solved in two dimensions with beam or plate elements.

In the years I worked as an engineer performing stress analyses of mechanical and structural components, I would say 80 percent of the problems involved beam and plate elements rather than solid elements. Many of these types of problems can be solved accurately using MSC/pal 2 as well as ANSYS-PC/Linear.

Since MSC/pal 2 does not use a wavefront equation solver, the value of the maximum wave front does not help us compare performance. I intentionally avoided attempting a formal benchmark because of the different solution methods. My own experience in running identical problems on both programs was that their performance is roughly equivalent. And let's face it, whether it takes 40 minutes on one or 48 minutes on the other, both programs are pretty slow on an IBM PC.

Let's not confuse a program's ease of use with the process of learning and applying the concepts of finite-element analysis. While a great deal of training and education are involved in applying FEA competently, there is no reason why the user interface of a program like ANSYS-PC/Linear should be so complex. There is no reason that a beginning user should have to spend hours leafing through the manual trying to figure out how to generate a mesh pattern.

I'm sorry, but all the finite-element programs I've seen, including MSC/pal 2, could benefit from improved user interfaces. There is no reason why engineers should have to continue to put up with terse command languages and forbidding documentation.

Finally, I stand by my evaluation of ANSYS-PC/Linear's interactive modeling. No, I don't like shaving in the dark, but I also don't like shaving with a dull blade. I still maintain that the interactive modeler is extremely difficult to use. Perhaps with a training course, my attitude would change, but I was evaluating the program continued

LETTERS POLICY: When submitting a letter for publication, double-space it on one side of the paper and include your name and address. Express your comments and ideas as clearly and concisely as possible. We can print listings and tables along with a letter if they are short and legible.

Because we receive hundreds of letters each month, we cannot publish all of them. We cannot return letters to authors. Generally, it takes four months from the time we receive a letter until we publish it.
Announcing - the database development system that you designed.

 db.VISTA III is the database development system for programmers who want powerful, high performance DBMS capabilities ... and in any environment. Based on the network database model and the B-tree indexing method, db.VISTA III gives you the most powerful and efficient system for data organization and access. From simple file management to complex database structures with millions of records, db.VISTA III runs on most computers and operating systems like MS-DOS, UNIX, VAX/VMS and OS/2. It's written in C and the complete source code is available, so your application performance and portability are guaranteed! With db_VISTA III you can build applications for single-user microcomputers to multi-user LANs, up to minis and even mainframes.

RAIMA'S COMMITMENT TO YOU: No Royalties, Source Code Availability. 60 days FREE Technical Support and our 30-day Money-Back Guarantee. Extended services available include: Application Development, Product Development, Professional Consulting, Training Classes and Extended Application Development Support.

HOW TO ORDER: Purchase only those components you need. Start out with Single-user for MS-DOS then add components, upgrade ... or purchase Multi-user with Source for the entire db_VISTA III System. It's easy... call toll-free today!
Attention all FX80, FX100, JX, RX, & MX owners:

You already own half of a great printer

Now Only $79.95

Now for $79.95 you can own the rest. You see, today's new dot matrix printers offer a lot more. Like an NLQ mode that makes their letters print almost as sharp as a daisy wheel. And mode switching at the touch of a button in over 160 styles. But now, a Dots-Perfect upgrade kit will make your printer work like the new models in minutes— at a fraction of their cost.

And FX, JX and MX models will print the IBM character set, too. So, call now and use your Visa, MasterCard, or AmerEx. Don’t replace your printer, upgrade it!

1-800-368-7737

(Anywhere in the United States or Canada)

An upgrade kit for EPSON FX, JX, RX, & MX printers

Now there's a smart way to connect more than one printer

 Forget those dumb A/B boxes and those expensive switching devices. Now you can connect up to six parallel printers to your computer and let your programs do the switching intelligently for only $119.

SmartPorts automatically sends your output to the correct printer. You just add a simple code to your program or printer setup string. Or, select a printer from a pop-up window utility that’s included.

SmartPorts recognizes the code and makes the switch. So, call now and use your Visa, MasterCard or AmerEx. It’s smart!

1-800-368-7737

(Anywhere in the United States or Canada)

SmartPorts

Now Only $119

A software-controlled printer switch for IBM PCs and compatibles

LETTERS

from the point of view of users who might be trying to learn the program on their own.—Nicholas M. Baran

Sign Language vs. Finger Talk
Ohio State University’s program, SpeechSign (Microbytes, December 1987, page 14), does not “help teach sign language.” It teaches the manual alphabet, commonly known as “finger talk.” Finger talk is excruciatingly slow. Sign language positions the whole body, in the context of the surrounding environment, in symbols that transmit information.

Fluent signers routinely transmit information at 100 times aural speed.

There are three widely used sign languages. The oldest is American Indian Sign (AIS), used by the Boy Scouts. Next came American Sign Language (ASL), used by the hearing-impaired and for cross-cultural communications. Last came Gorilla Sign Language (GSL). ASL restructured for the Great Apes.

True sign language uses syntax and grammar radically different from aural language. NATO and the UN unofficially recognize ASL as a universal language. The Boy Scouts use AIS to conduct business and personal conversations during International Jamborees. GSL is the only language routinely used for two-way transmission of sophisticated abstract concepts between animals and humans.

None of this is possible with language-bound finger talk. To reach the Dick-and-Jane kindergarten level of sign, the hardware would have to have at least 500 megabytes of RAM, with a clock speed of at least 50 megacycles and a graphics screen the size of a barn door. Then comes the program, which will, while under development, spin off sign language translators centuries beyond what we have today.

Eugene Austin
Tilden, NB

“Information,” Please

I congratulate BYTE for printing “Information Theory” by Ramachandran Bharath (December 1987). An open discussion in the computer field about defining the term “information” is long overdue, and maybe this article will lead the way. For too long, the term has been picked up and used without regard to its precise meaning.

Mr. Bharath provided us with a comprehensive introduction to information theory, and he made the technical nature of the theory crystal clear. The reader could easily see that the theory is based on mathematical proofs and, as such, could not be used to deal with the issues relating to the value of the contents of the continued
HOMELINE

SMAFLO MILL

PRINTER

<table>
<thead>
<tr>
<th>Printer Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epson SC-150</td>
<td>$344</td>
</tr>
<tr>
<td>Canon 1000</td>
<td>$319</td>
</tr>
<tr>
<td>Nikon Super</td>
<td>$319</td>
</tr>
<tr>
<td>IBM 1100</td>
<td>$319</td>
</tr>
</tbody>
</table>

DISKETTES

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maxell MD2 (50,000)</td>
<td>$82.50</td>
</tr>
<tr>
<td>Sony DS-50/00 (50,000)</td>
<td>$84.00</td>
</tr>
<tr>
<td>Maxell 10</td>
<td>$8.00</td>
</tr>
</tbody>
</table>

MONITORS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitsubishi Diamond Scan</td>
<td>$494</td>
</tr>
<tr>
<td>Sanyo</td>
<td>$485</td>
</tr>
<tr>
<td>NEC Multisync 1900</td>
<td>$584</td>
</tr>
</tbody>
</table>

MODEMS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hayes Turbo 1600</td>
<td>$1519</td>
</tr>
<tr>
<td>Hayes Promodem 2400/2400</td>
<td>$120</td>
</tr>
<tr>
<td>Hayes PCX/2400</td>
<td>$149</td>
</tr>
</tbody>
</table>

GRAPHICS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logitech Mouse</td>
<td>$39.95</td>
</tr>
<tr>
<td>IBM Proprinter Writer</td>
<td>$859</td>
</tr>
<tr>
<td>LSI Medical</td>
<td>$649</td>
</tr>
<tr>
<td>Tandy 1000</td>
<td>$599</td>
</tr>
<tr>
<td>Epson</td>
<td>$599</td>
</tr>
</tbody>
</table>

COMPUTERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM PC XT/XT</td>
<td>$169</td>
</tr>
<tr>
<td>IBM PC/AT</td>
<td>$389</td>
</tr>
<tr>
<td>Compaq</td>
<td>$295</td>
</tr>
<tr>
<td>Apple II</td>
<td>$295</td>
</tr>
</tbody>
</table>

SOFTWARE

<table>
<thead>
<tr>
<th>Software</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS Windows 2.0</td>
<td>$299</td>
</tr>
<tr>
<td>Microsoft Word</td>
<td>$299</td>
</tr>
<tr>
<td>Turbo Pascal 3.0</td>
<td>$299</td>
</tr>
</tbody>
</table>

UTILITIES

<table>
<thead>
<tr>
<th>Utility</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbo Pascal Compiler</td>
<td>$103</td>
</tr>
<tr>
<td>Microsoft Word</td>
<td>$199</td>
</tr>
<tr>
<td>Turbo C</td>
<td>$199</td>
</tr>
</tbody>
</table>

BYTE PROCESSORS

<table>
<thead>
<tr>
<th>Processor</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel 286</td>
<td>$129</td>
</tr>
<tr>
<td>Intel 386</td>
<td>$299</td>
</tr>
<tr>
<td>AMD 286</td>
<td>$199</td>
</tr>
</tbody>
</table>

MOUSE TERMINALS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM</td>
<td>$315</td>
</tr>
<tr>
<td>Compaq</td>
<td>$315</td>
</tr>
</tbody>
</table>

IBM PC and 100% Compatible Hardware

<table>
<thead>
<tr>
<th>Hardware</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM PC XT</td>
<td>$389</td>
</tr>
<tr>
<td>IBM PC/AT</td>
<td>$389</td>
</tr>
</tbody>
</table>

SHOPIFICATION

<table>
<thead>
<tr>
<th>Product</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00 a.m.-3:00 p.m. Mon-Fri</td>
<td></td>
</tr>
</tbody>
</table>
messages being measured. Perhaps Mr. Bharath's warning and clarification of this fact at the end of the article was not strong enough. I would like to reinforce the warning.

Information can be explained simply as data that is prepared into a form that makes it easier for someone else to use. Information theory provides us with mathematical tools to evaluate the reliability of information, not with a methodology to evaluate its relative value.

We tend to be too technical in our collective quest for systems solutions. We would be better off clarifying what information is and how it is processed, in the broadest sense of the word, so that we can provide more reliable, more effective, more acceptable systems solutions.

Information is a dynamic and personal, yet powerful, thing. It changes everything with which it comes into contact. That is part of the nature of information. Information scientists and librarians have obviously given attention to this topic, as have economists, political scientists, and behavioral scientists. Now is a great time to learn from these discussions. We need more dialogue to discover just what information is.

Kevin Stumpf
The Infotiorium
Kitchei, Ontario, Canada

Karmarkar Kudos
Ever since I saw "Karmarkar's Algorithm" by Andrew M. Rockett and John C. Stevenson (September 1987), I have found more and more reasons to thank you for including material at this level of mathematics.

The article is proving to be a most useful adjunct to lecture material in a course on linear programming that I am teaching— even the errors in the BASIC listing made me think things through.

Since I have found the spreadsheet a good self-instructional tool, I have constructed a Lotus 1-2-3 worksheet that steps through the iterations of the example given. This worksheet provides a useful look at what is actually happening at each stage.

I would be glad to provide BYTE readers with a listing of the formulas and a description. If readers would send along a disk, I would copy the worksheet onto it and mail it back to them.

H. J. Hunter
P. O. Box 13398
Kanan, Ontario, Canada K2K 1X5

Semantic Accuracy
In "Modeling the Brain" (December 1987), Matthew Zeidenberg asserts that the system makes "accurate role assignments" in such sentences as "The man hit the boy with the mallet." It's best not to say "accurate" in setting a default semantic value for an ambiguous sentence without context validation. The article deals with semantics at sentence level only, so matters of context are not considered. Given that approach, ambiguous sentences are best left with semantics not fully resolved. The pleasure many people derive out of ambiguous sentences, similar to that of enjoying optical illusions, argues that an isolated sentence does have a flip-flop semantic value.

For a system to analyze syntactic ambiguity, other input should be considered before making a semantic decision. Each relevant piece of data adds weight to an interpretation, and some particular (even externally set) weight of certainty sets the meaning, at least until contradictory information is received. Since ambiguity can be resolved before or after its occurrence, the system needs to look back as well as forward. Consider the 4-year-old who hit his brother with a new mallet when a car veered around the corner. They ran for safety, but the man hit the boy with the mallet. Or "The man hit the boy with the mallet, then the girl, but the man missed the baby, before he regained control of his car and rounded the corner." Not to mention "The man hit the boy with the mallet with his car." The fact that people do not stop at the end of each sentence for an inextricable period of interpretation makes clear that once we think we know what we're talking about, we suspend analysis (right or wrong). A computational model should likewise go to the heights and depths, at need only.

Cathy Miller
Salt Lake City, UT

A Vote for Tweaking
With regard to Fred Lange's December 1987 editorial on benchmarks, it was a shame that benchmark optimization (referred to as "tweaking") came off so badly. On the contrary, I assert that unless each benchmark is optimized, the results will have little meaning in the IBM PC marketplace.

When compilers are benchmarked without "tweaking," we are verifying their ability to handle a particular source code. Source code compatibility is essential in an environment that requires the continued use of many different machines and compilers. In the big-business management information-systems environment, programs can be distributed as source code, or perhaps a publisher will produce different versions of a program for the various target machines. In any case, source code compatibility is an ab-

continued
THE WORLD'S BEST-SELLING DRIVE

Field-proven
30,000 hour
MTBF

THE ST225

Proven reliability. That's the reason Seagate's 20 MB half-height hard disc drive is so popular, with over 3 million sold in less than three years.

Who proved it? Millions of computer users around the world. They've benefited from our continued design and manufacturing improvements. And they've proved that the ST225 has an MTBF of 30,000 hours.

Which means years of uninterrupted performance. And a disc drive you can rely on.

Reliability has helped make Seagate the world's leading independent manufacturer of 5¼" and 3½" hard disc drives.

If you're looking for a proven 20 megabyte drive, ask for the ST225. Call Seagate at 800-468-DISC. Put the best seller to work for you.

Seagate
The first name in disc drives.

Circle 237 on Reader Service Card (DEALERS: 238)
The basis for the IBM PC software market is not source code but compatibility at the machine level. PC programs are distributed as object code, and only object code compatibility is required. Users do not care whether the program source code is “compatible” with some standard, but they do care whether the object code program is compatible with their hardware and how fast it runs. If “incompatible” source code features would improve performance (and produce the same results), this is a topic of real interest to programmers serving the PC marketplace. Performance optimizations for particular languages and compilers are useful news.

The thing that is constant about a PC marketplace is a “standard interface” between hardware and software; that interface is where applications object code meets the operating system, BIOS, or other hardware interface code. When rating new hardware or software, the only thing that matters is performance while using the standard interface. Applications can be rated directly. Compilers can be rated as applications that produce applications, and by the performance of the resulting applications. Hardware can be rated by the performance of known applications that use the standard interface.

Of course, “performance” is always relative to something: it is useful to investigate software performance on some “standard hardware.” Perhaps the standard hardware in the 8086 environment would be both a classical IBM PC and a PC AT; in this way, programs that take advantage of the 286 could be identified. Different but similar hardware standards would apply to the various 68000 environments. To investigate hardware improvements, there would be a suite of “standard software,” and the comparative performance (between the “standard hardware” and the “improved version”) would indicate the effectiveness of the new hardware.

In summary, the failure to “tweak” a benchmark for a particular compiler emphasizes source code compatibility over object code performance, an emphasis that is misplaced in the PC marketplace. Optimizing each benchmark for each compiler (to produce the fastest and tightest code to perform the desired function) should be a normal course of business—unless, of course, you’re addressing a big-computer environment.

Terry Ritter
Austin, TX

Fantastic

I have one basic comment regarding the planned revision of your benchmark programs (December 1987 editorial): Fantastic! There is a definite need for the revision, as the erratic results obtained by the current benchmarks demonstrate.

I have a few thoughts regarding the revisions:
- Retain the Sieve, Sort, Savage, Whetstone, and Dhrystone tests for historical reasons, if no other; they’re not all bad. The Float test should be discarded, since it doesn’t represent any real-world processing and is susceptible to being reduced to the trivial by better compilers. The Fibonacci test should be discarded for lack of interest; the algorithm used in the current form is terrible, and the Sieve and Sort tests do a better job of testing integer operations.
- Provide for both higher-level and assembly language forms of the tests. In the higher-language form, the programs test how well compilers make use of processors’ features, and they can serve to compare a compiler’s quality for a particular processor. In the assembly language form, a better comparison of processors’
We call it Modular Systems Architecture™: a building block approach that protects your PC investment against obsolescence. It makes upgrading Wyse PCs a snap—literally. Because we've put all computing functions, even the CPU and its microprocessor, on plug-in boards. So as your needs grow, you can easily upgrade our 8 MHz AT compatible to a 12.5 MHz high performance 286, or even a 16 MHz 386. When more powerful microprocessors are available, you'll even be able to upgrade our top-of-the-line 16 MHz WYSEpc 386.

The WYSEpc 386: exceptional memory speed plus processing speed make it one of the most powerful PCs made.

Introducing SystemWyse™ Wyse PCs are themselves building blocks in a comprehensive system for creating solutions. They link effortlessly with our terminals, monitors, and expansion boards in integrated solutions of exceptional quality and value, using industry standard software. And SystemWyse is backed by the company that sells more terminals than anyone but IBM.

The big idea, above all, is to adapt more readily to change than any other PC system. Because survival belongs not merely to the fittest, but to those who remain fittest, longest. Call for more information. 1-800-GET-WYSE

Wyse is a registered trademark of Wyse Technology. SystemWyse, WYSEpc 386, and Modular Systems Architecture are trademarks of Wyse Technology. IBM is a trademark of International Business Machines. Screen: Boeing Graph.

Circle 287 on Reader Service Card
effects on performance can be made, since the variation introduced by compilers is eliminated, thus allowing more meaningful comparisons across processor families.

- Verify that the benchmarks' algorithms have been correctly transformed. The Savage program is relatively easy to verify, since the result should be very close to the number of times the loop is executed. The number of primes found is a reasonable verification of the Sieve program. A visual inspection of the Sort program's results could suffice, but I would prefer something more automated, perhaps sorting randomly rearranged successive integers and then testing for successive integers. The Whetstone program produces some intermediate numerical results that can be verified.

- Extend the Sieve and Sort tests such that 32-bit arithmetic and more than 65K-byte data referencing are required. In the case of the Sort test, make the record size greater than 64 bytes so as to make the test more realistic, and remove opportunities for playing silly games with the 68000 family of processors.

- Devise one or more benchmark programs to test character string manipulations. A large percentage of most computers' time is spent processing textual information, yet there is no well-known benchmark for this type of processing. Devising such a test will be difficult due to such things as character string representation and limits, providing standard text to process, higher-level languages' treatment of (or lack of) character string data types, and so on. Possibly, the character can be combined with some sort of file-accessing benchmark. In any event, there should be more than 65K bytes or characters to process.

- When publishing the benchmark results, the length of time to generate the program, the amount of code generated (both with and without run-time library code), and the size of the translators (compiler, assembler, and linker) are useful data. This data, of course, applies only to the tools needed to produce the executable benchmark programs, but the numbers are of some value in their own right and are sometimes helpful in interpreting the benchmark results.

Everett M. Greene
Ridgecrest, CA

Fixes

Photo Swap
Snow Software informed us of a photo error in the What's New section of the January issue. The photo that appears on page 94 is the Snow Report Writer Screen, rather than Silverado, as it is labeled. The Silverado screen appears on page 96.

Copy Protection and Drawbase
In the What's New section of the January issue, on page 78, some new programs from Skok Systems Inc. are described as not copy-protected. Drawbase HLR is not copy-protected. However, Drawbase 2000, Drawbase 3000, and Drawbase 4000 are copy-protected.

Data-Acquisition System Not Micro Channel-Compatible
In the What's New section of the January issue, on page 86, we incorrectly stated that The Automation Group's MDL-16 data-acquisition system is a Micro Channel-compatible product. It is not. The MDL-16 is a stand-alone RS-232 and RS-244 data-acquisition board. It operates as an independent serial peripheral and does not require any slot space in your computer.
Imagine the speed and power of a $100,000 minicomputer in a desktop PC costing under $7,000. Now imagine all that power going to waste because the operating system you chose was never meant to take advantage of a computer this powerful. It will take more than just a "window environment" or an outdated operating system to unlock the 80386.

It will take PC-MOS/386!™
The First 80386 Operating System. Specifically designed for the 80386 computer, PC-MOS/386™ opens doors. Doors to more memory and multi-tasking. Doors to thousands of DOS programs as well as upcoming 80386-specific software. It's the gateway to the latest technology...and your networking future.

Memory Management Without Boards. PC-MOS exploits the memory management capabilities built into the 80386. So, up to four GIGABYTES of memory are accessible to multiple users and to future 80386-specific applications requiring megabytes of memory.

Multi-Tasking. Multi-User Support for One, Five or 25 Users. PC-MOS/386™ allows up to 25 inexpensive terminals to be driven by a single 80386 machine. So the features of the 80386 can be utilized at every terminal. And it comes in three versions so you can upgrade your system as your company grows...without having to learn new commands or install new hardware.

UP TO
25 USERS.
MADE FOR
THE 80386.
RUNS DOS
PROGRAMS.
MULTI-TASKING

Software Support for Thousands of DOS Programs. Although PC-MOS/386™ totally replaces DOS, it doesn't make you replace your favorite DOS programs. So you can run programs like Lotus 1-2-3, WordStar, dBASE III, and WordPerfect on the 80386. Best of all, it uses familiar commands like DIR and COPY-so you'll feel comfortable with our system.

The Gateway to Endless Features. Distinctive characteristics like file/system security; remote access; file/record locking; and built-in color graphics support for EACH user set PC-MOS/386™ apart from all previous operating systems.

Open the Doors to Your Future TODAY! Call The Software Link TODAY for more information and the authorized dealer nearest you. PC-MOS/386™ comes in single, five & 25-user versions starting at $195.

PC-MOS/386™ MODULAR OPERATING SYSTEM

THE SOFTWARE LINK
Developers of LANLink & Multilink Advanced
3577 Parkway Lane, Atlanta, GA 30092
Telex 493417 SWLINK
FAX 404/263-6171

For the dealer nearest you,
CALL: 800/151-LINK
In Georgia: 404/418-LINK
OEM/Int'l Sales: 404/263-1006
Resellers/VARs: 404/418-5465

THE SOFTWARE LINK/CANADA CALL 514-683-0818

More Than Just Windows, We've Opened Doors.

Circle 245 on Reader Service Card (DEALERS: 246)

TM TRADEMARK ACKNOWLEDGMENTS: MultiLink™ is a registered trademark of The Software Link. PC-MOS/386™, MultiLink™ Advanced, and LANLink™ are trademarks of The Software Link. Lotus 1-2-3, WordStar, dBASE III, & WordPerfect are trademarks of Lotus Development Corp., MicroPro, Ashton-Tate, & WordPerfect Corp., respectively. Prices and technical specifications subject to change.
Now Taking Applications.

Take a look at the specs on VISTA™, a good look. Notice the processing, programming, and video capabilities? Now think real hard about what you could do with the power of VISTA and a microcomputer. Incorporate it with your system to create a digital pre-press proofing station for publishing. Design a graphics workstation which outputs both colorful hi-resolution slides and broadcast-quality animated images. Construct a CAD system which merges computer generated images with real-life backdrops for architecture, packaging or other industries. And, after you've brainstormed your way to new horizons of videographics possibilities, get your own VISTA and start working.
Introducing TrueVista Videographics.

Let's Get Specific.
We knew you couldn't resist seeing the facts, and frankly, our engineers wouldn't have it any other way. Here is an overview of VISTA's key features.

FEATURES:
- 4Mbytes of Video RAM on-board
- Texas Instruments' TMS 34010 GSP
- Flexible, programmable resolutions
- NTSC and PAL compatible
- Four 8-bit channels for real-time capture
- Fully integrated genlock
- Processor memory expandable in 2Mbyte increments to 12Mbytes
- Four 2K x 8-bit CMOS static RAM LUTs
- Display can be color-mapped, RGB, or a versatile combination of both
- Interlaced and non-interlaced display
- Binary and fractional programmable zoom capability, creates horizontal and vertical magnify or minify
- Smooth horizontal and vertical programmable panning, includes wrap-around and split screen
- Suggested Retail Price: $5995.

ADDRESSABLE RESOLUTIONS:

<table>
<thead>
<tr>
<th>Bits/pixel</th>
<th>32 bits/pixel</th>
<th>16 bits/pixel</th>
<th>8 bits/pixel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolutions</td>
<td>1024x1024</td>
<td>2048x1024</td>
<td>4096x1024</td>
</tr>
<tr>
<td></td>
<td>512x2048</td>
<td>1024x2048</td>
<td>2048x2048</td>
</tr>
<tr>
<td></td>
<td>256x4096</td>
<td>512x4096</td>
<td>1024x4096</td>
</tr>
</tbody>
</table>

CAPTURE RESOLUTIONS:

<table>
<thead>
<tr>
<th>Format</th>
<th>NTSC</th>
<th>PAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-170A</td>
<td>(CCIR-624)</td>
<td></td>
</tr>
<tr>
<td>756x486</td>
<td>738x576</td>
<td>738x576</td>
</tr>
<tr>
<td>640x486</td>
<td>590x576</td>
<td>590x576</td>
</tr>
<tr>
<td>504x486</td>
<td>492x576</td>
<td>492x576</td>
</tr>
<tr>
<td>432x486</td>
<td>422x576</td>
<td>422x576</td>
</tr>
</tbody>
</table>

*Resolutions are programmable; these are nominal ones for interlaced NTSC and PAL compatible.

DISPLAY RESOLUTIONS:

<table>
<thead>
<tr>
<th>Format</th>
<th>NTSC</th>
<th>PAL</th>
<th>Interlaced</th>
<th>Non-Interlaced</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-170A</td>
<td>(CCIR-624)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1512x968</td>
<td>1476x576</td>
<td>1024x768</td>
<td>768x576</td>
<td></td>
</tr>
<tr>
<td>1008x968</td>
<td>984x576</td>
<td>(50 Hz)</td>
<td>(60 Hz)</td>
<td></td>
</tr>
<tr>
<td>756x486</td>
<td>738x576</td>
<td>(50 Hz)</td>
<td>(60 Hz)</td>
<td></td>
</tr>
<tr>
<td>604x486</td>
<td>590x576</td>
<td>768x768</td>
<td>756x486</td>
<td></td>
</tr>
<tr>
<td>504x486</td>
<td>492x576</td>
<td>(80 Hz)</td>
<td>(60 Hz)</td>
<td></td>
</tr>
</tbody>
</table>

*Resolutions are programmable; these are nominal ones.

COMPUTER REQUIREMENTS:

Host Type	IBM PC AT and 100% Compatibles, Compaq 386, Apollo DN 3000 single-slot board
Data Bus	16-bit or 8-bit (self-configuring)
Bus Clock	6MHz to 12MHz
Power	Consumption: 15 Watts
Power	Consumption: 15 Watts

It's So Flexible,
We've Added Support.
With its Texas Instruments TMS 34010 graphics processor, large quantity of video memory, and proprietary video cross-point, VISTA can be programmed for an array of powerful market-specific videographic applications. To help you maximize VISTA's potential, Truevision offers a range of C-language programming tools for developers. And when your system is market-ready, we'll support your marketing efforts with our TrueVision Software Catalog, TrueVision News, and The Pulse.

We're For Higher
Resolution...Power...Flexibility...Quality. Join the many key manufacturers and developers already working with the state of the videographics art, VISTA. Call us at 800/858-TRUE for more information on the VISTA Developer's Program. We're ready to take your application today.

TrueVision Inc.
7351 Shadeland Station, Suite 100
Indianapolis, IN 46256
800/858-TRUE

Announcing NuVISTA for the Macintosh
It's available soon, so call for more information.
More on SpeedStor
Dear Jerry,
I'm totally baffled as to why anyone would use SpeedStor to split a 42-megabyte hard disk into two 21-megabyte partitions, making the big disk look like two small disks. If you're going to do that, why not just have two 21-megabyte hard disks to start with? Storage Dimensions' advertising would seem to imply that the raison d'être of SpeedStor is to bypass the asinine 32-megabyte disk volume limitation of MS-DOS. When I finally get around to buying a 130-megabyte drive, I'll want to have it set up as one 130-megabyte volume, not four 32-megabyte partitions that look to MS-DOS like four separate physical drives.

SpeedStor gives you a choice of three kinds of partitions: bootable, DOS-compatible, and DOS-extended. The first two are bound by the 32-megabyte limitation; the third is not. That means if you set up the entire drive as an extended DOS partition, you have to boot off another drive, probably a floppy disk drive. There is, however, a better way. Partition the disk into a 1-megabyte bootable partition (C:) and the remainder as a DOS-extended partition with 1K-byte sectors and 2K-byte clusters (D:). Put your boot-up files in the first partition, and make the last line of the AUTOEXEC.BAT read D:. The system should boot up exactly as before, except that you'll wind up with a D: prompt instead of C:, and the volume size (if the drive is like mine) will be around 41.5 megabytes.

When you choose the sector and cluster size, SpeedStor will warn you that CHKDSK.COM will not operate. That's true, but when you get Golden Bow's Vopt, you also get CHKDSK.EXE (on the distribution disk), which works just fine on the bigger volume and nonstandard cluster, as does Vopt itself.

Incidentally, what do you think of the new enhanced keyboard? I love it—with one exception. Having two Control and Alt keys is great—if only IBM (and, of course, everyone else) hadn't put the Control keys directly below the Alt keys. Because of that, I'm continually pressing the wrong one while typing. The solution would be simple: Reduce the keys to standard size and put them alongside each other next to the space bar, getting them out from under Shift. Do you agree? If so, you probably have the clout to suggest that to someone (say, Key Tronic) with some chance of getting it implemented.

Ron J. Goodman
Warrsville, OH

Well, I could say I like having two logical disk drives, but in fact I was just too lazy to figure out the proper installation the first time, and after that it was a bit late with stuff stored on both disks. I expect I'd have done it differently another time.

DataDesk keyboards come with a switch and replacement key caps; you can put the Control key to the left of the A key, where it belongs, and relegate the CapsLock down to below the Shift. I love DataDesk keyboards. I'm typing this on one.—Jerry

Mouseless Microsoft Word
Dear Jerry,
Regarding the Delete Word command in Microsoft Word (Computing at Chaos Manor, October 1987): You can create a macro to delete a single word in Word, using SuperKey. Try this:
<LEFT><F8>
(using SuperKey terminology). The left arrow command is to account for the case when the cursor is on the last character of a word that is followed by a punctuation mark, when pressing F8 would send the cursor to the punctuation mark.

I wonder if PC-Write would get rave reviews if users had to pay the same for it as they pay for the "big" programs ($450 list, $229 street price). I've tried PC-Write, and I find its interminable dot commands and myriad special keystrokes for every little function illogical and confusing. Give me Microsoft Word's pop-up mnemonic menus (automated by a few SuperKey macros) any time.

Robert Hawkins
Greenville, MS

Jerry Pournelle holds a doctorate in psychology and is a science fiction writer who also earns a comfortable living writing about computers present and future. He can be reached c/o BYTE. One Phoenix Mill Lane, Peterborough, NH 03458.
When the eagerly awaited PC first hit the desks of the public, everyone figured it was there to stay. It was, after all, powerful and functional. And considering it weighed about 40 lbs., it would take a lot to unseat it.

Introducing a lot. The new Toshiba T3200. In a sleek 18.7 lb. package, the T3200 acts like no other portable, or overweight desktop PC AT, for that matter.

With its two internal expansion slots, you can connect to a LAN, a mainframe, or add peripherals.

It also has a 12 MHz 80286 microprocessor, a 40MB hard disk, and a 720KB 3½" diskette drive.

And when it comes to memory, the T3200 rivals your clunky desktop. With its 1MB RAM that expands to 4MB. We even gave it a built-in, gas plasma EGA display and monitor port. Which, by the way, are optional on your old desktop.

All of which means you should call 1-800-457-7777 for your nearest Toshiba computer and printer dealer.

And ask to see the first portable PC powerful enough to push the desktop right into the history books.

The T3200 is backed by the Exceptional Care program. No cost enrollment required. See your dealer for details. PC AT is a registered trademark of Internatiional Business Machines Corporation.
Yeah, I know you can do almost anything with macros in Microsoft Word 4.0. WordStar 4.0 is pretty good, too. I understand they’re adding macros to Word Perfect as well. Every time one of the editing programs improves, the others do. Makes for an embarrassment of riches, but I’d rather have that problem than not enough choices.—Jerry

Floatable Computer?
Dear Jerry,
I have a problem. I am lusting for a computer, and I live on a boat. Living on a boat means that I have only 12-volt electricity, very little space, no proper lighting, and so on.
I would like to get an MS-DOS computer. It must run on 12 V DC, be very sturdy, and not drain too much electricity, and I must be able to buy (rather than transfer) software for it.
You have written several times about the Zenith Z-181, but the problems you mention with regard to null modem cables and so forth seem too great for me. I live the boat in the Caribbean now, and I have enough problems getting things like lightbulbs.
Could you please comment on the Toshiba T1100 Plus and the NEC Multi-Speed in relation to the Zenith Z-181? Can you think of any other portables that might be in this class?
Bren Jacobson
Northville, NY

I may have made the difficulties of transferring software to the Z-181 sound greater than they were; anyway, given Traveling Software’s wonderful Laplink (which comes with cables), that’s all history.
I am told that Zenith makes a 12-V power adapter. I find my Z-183 (which has a hard disk drive) nearly perfect except for its weight. Whether it will stand up to a corrosive salt water atmosphere is another story.
The Toshiba and NEC portables are also very nice. I prefer the Zenith, largely on the basis of the keyboard and backlit screen. Again, I’d be awfully concerned about corrosion.
I used to have the smallest legal midget ocean racer (a 20-foot Weber-designed slopeskier) on the Pacific coast. That was before computers. I miss her.—Jerry

In Defense of DP Departments
Dear Jerry,
You’ve come down rather critically regarding data processing departments having much control over the purchase/setup/use of personal computers. My experience in relatively small corporations having from 10 to 30 or so PCs at any one time leads me to the following conclusions:
Early in 1988 there are still many, many more totally new and completely naive PC users than there are even very moderately experienced users. Of every 10 users I’ve dealt with, only 2 had learned after 6 months how to use a utility program like PC Tools other than by rote while referring to written notes. For them, if it isn’t on a menu, it isn’t possible to do without help. Only 1 in 10 had moved on to their own level of competence more than minimally acceptable within the one or two applications (word processing or Lotus 1-2-3) necessary to do their jobs. Fully 8 of every 10, if asked to do something that required learning a significant new area of an application that they had worked with for some time, demanded training and hand-holding before they would even begin to approach the problem.
For the large majority of users, there is no willingness to take a manual home or

Introducing the OpenEnder Intelligent Multi-Channel Communications Board for PS/2.

And your choice of I/O Mates.

Now, with DigiBoard OpenEnder™ Intelligent Communications Boards, you can channel the power of IBM Personal System/2 to up to 32 users. 100% faster than the boards you’re probably using now.

But what really sets DigiBoard OpenEnders apart is that you only have to pay for the expensive intelligent part once. Because your I/O modules are handled by affordable I/O Mate™ modules that simply plug in.

So, for the first time in the history of intelligent communications boards, your I/O options are wide open. And they always will be.

Call 1-800-344-4273. In Minnesota, (612) 922-8055.
dBASE Users!
Independent Reviewers Say:

Nobody Beats The Fox ...Nobody’s Even Close

FoxBASE+/386

QuickSilver
Clipper

dBASE III PLUS

Data Based Advisor

FoxBASE+ Fastest By Far
BYTE's benchmarks show that FoxBASE+ takes only 14 minutes to do what dBASE III PLUS needs an hour to do. The others are even slower. Clipper needs an hour and 17 minutes. QuickSilver needs an hour and 40 minutes.

Nobody beat FoxBASE+ in even one of the 27 BYTE benchmarks.

FoxBASE+ zipped through the exhaustive Data Based Advisor** benchmarks in just 15.5 minutes. New FoxBASE+/386 ran them in only 7 minutes! By contrast Clipper took 53 minutes. Quicksilver took 59 minutes, and dBASE III PLUS took an hour and 18 minutes.

Why Waste Your Time?
BYTE's data shows FoxBASE+ is up to 7 times faster. DBA's benchmarks show FoxBASE+ is over 5 times faster. You can run with Fox... or you can crawl with them.

FoxBASE+ Delivers Now... The Others Only Promise
We're totally committed to insuring that FoxBASE+ will always be fastest... now and in the future. You can't buy a faster product.

But that's not all...

FoxBASE+ offers other great features like: true compatibility... familiar interactive commands like BROWSE and EDIT... "dot-prompt" programming... major language extensions... ideal development environment... and a money-back guarantee.

So call us for the details. After all...

Nothing Runs Like a Fox.

FoxBASE

FoxBASE, FoxBASE+, and FoxBASE+/386 are trademarks of Fox Software.
dBASE III PLUS is a trademark of Ashton-Tate. Clipper is a trademark of Nantucket.
Quicksilver is a trademark of WordTech Systems.
**Using the suite of benchmarks published in Data Based Advisor, March 1987.
dBASE Deletions

Dear Steve,

At the office, I work on an IBM PC using various software packages, including dBASE II Plus. I discovered that, while using one database and executing an APPEND from another database, all the characters like the Hebrew letter “M’em” (on a Hebrew keyboard) are totally deleted. This ruins the whole display of the data that I’ve just added to the database with APPEND. (Every occurrence of the letter M’em is deleted, and the rest of the letters are carried back one space for each deletion.)

The IBM guide (IBM Personal Computer—National Supplement—Israel) regards the M’em character as decimal 13 (hexadecimal 0D). SideKick regards the character as decimal 141 (hexadecimal 8D).

I am not a professional programmer; I’m working as a secretary while studying for my second degree in education, and most of my knowledge is self-taught. Therefore, I don’t have the tools to solve this problem on my own. What could be the reason for the malfunction of dBASE that I described above, and what can I do to correct it and avoid the problem in the future?

Dalia Hasson
Huifa, Israel

I never cease to be amazed at the awful consequences of even simple changes to programs. In your case, dBASE is eating the disappearing M’em in the mistaken belief that it’s a carriage return instead of a printable character.

In the ASCII character set, a carriage return is represented by a decimal 13 (hexadecimal 0D), and that’s what most programs expect to see. Some programs ignore the high-order bit when looking for control codes, so both hexadecimal 0D and 8D are often treated as carriage returns because they differ only in that bit position.

You can write a small dBASE program to see what ASCII code dBASE uses for M’em:

```
CLEAR
SET TALK OFF
STORE 0 TO keyval
DO WHILE keyval = 0
   @5,5 SAY "Press a key to display the ASCII value"
   keyval = InKey()
ENDDO
?
?
"The ASCII value is"?
keyval
```

If M’em turns out to be OD, then there’s no simple fix. What you’ll need to do is write programs that convert M’em into some other (unused) character before storing it in the database, then convert it back before displaying it. This is barely acceptable if you’re using programs to control all the database operations, but it’s unworkable if you’re doing it by hand.

Perhaps a variant of that idea might be useful. You could write a program to scan a database file and replace all occurrences of M’em with another character. You could write another program to convert them back after you’ve done the APPEND. This might work, but the scanning that the program will have to do might fail if dBASE filters out the hexadecimal 0D and 8D characters. You’ll have to try it to see.

I’d also expect that you’d have problems with Hebrew characters that map to other ASCII control codes, such as hexadecimal 0A (linefeed), 0C (formfeed), and 07 (bell). I wish I had a clean solution for you, but I suspect that there just isn’t one. It’s a shame that dBASE isn’t more international, but it’s also a shame that there isn’t a solid standard that would allow programmers to handle multiple character sets.—Steve

A 360K-byte Apple Drive

Dear Steve,

I have an Apple II Plus, and I was wondering why I couldn’t rewrite the disk drive card so that it could control a 360K-byte floppy disk drive (say, a Remex 480—cost around $35). If I could patch the card to do this, I could write software to control the drive appropriately. I know the Apple disk drive was done this way when Apple converted from DOS 3.2 to DOS 3.3.

Leo Kratz
Fairgrove, MI

With the current availability of industry-standard disk drives at bargain prices, many Apple computer owners would like to make a switch. Actually doing so, however, is a major problem. When Apple introduced it 10 years ago, the Apple disk drive was an elegantly engineered solution to the need for a minimum-standard disk system for Apple’s entry into the rapidly growing personal computer market.

The Apple disk system uses a group coding (GCR) data format that uses software to perform tasks that are commonly done in hardware with industry-standard systems. The Apple disk drive/controller hardware remained essentially unchanged in the transition from DOS 3.2 to 3.3; a coding change in the PROMs enabled the system to discriminate two consecutive zero bits when reading the disk. This permitted an increase from 13 to 16 data sectors per track because of greater data density permitted by the larger number of usable code groups. DOS 3.3 thus uses a single-sided, 35-track, 16-sector GCR format. The only change required for the transition from 3.2 to 3.3 was a new disk controller PROM and the new master disk drive; the drive itself was unchanged.

When IBM established the de facto industry standard as a double-sided, double-density 40-track 360K-byte disk drive, modified frequency modulation (MFM) encoding, using an NEC p7D65 series controller chip, Apple’s elegant solution became something of a millstone. Because of control signal and other differences, the Apple drives can’t be

IN ASK BYTE. Steve Ciarcia, a computer consultant and electronics engineer, answers questions on any area of microcomputing. The most representative questions will be answered and published. Send your inquiry to Ask BYTE to Steve Ciarcia P.O. Box 382 Glastonbury, CT 06033

Due to the high volume of inquiries, we cannot guarantee a personal reply. All letters and photographs become the property of Steve Ciarcia and cannot be returned.

The success story of Peachtree Complete (now with over 300,000 users) continues with the newest member of the Peachtree family, Peachtree Complete II. Much more than just an update, Complete II builds upon the comprehensive features that have made Peachtree the leader in small business accounting software for nearly ten years. We've added many exciting new features and designed state-of-the-art methods for using the packages. The result—all eight modules are even more powerful and easy to use, yet still priced at just $199—a 96% price reduction from the original $4,800.

Easiest Installation Ever. Enter your company's information once and it is reflected throughout the system. Complete II includes a separate Installation Guide, basic Accounting Primer, eight-volume Reference Library and extensive Tutorials on each package—all at no extra charge!

Ideal for Service Businesses. Enter information free form on service invoices or store pre-defined paragraphs of up to 160 characters. Enjoy full editing capabilities at time of invoice entry.

Eight Integrated Software Modules
- General Ledger
- Accounts Receivable
- Invoicing
- Accounts Payable

Complete II includes eight software modules that may be integrated or installed individually and can be distributed among separate computers. Install the most critical modules initially, add others later.

COMPARISON OF SOFTWARE FEATURES

Windows and Pop-Up Menus
Complete II is designed for user convenience. Use the cursor throughout the system to make easy "point-and-shoot" selections. If you can't remember a customer or account number while using a program, simply open a window and scroll through your customer list or chart of accounts. Select the information you're looking for directly from the table!

Short-Cut Keys
We speed you from one function to another without the time-consuming task of manually passing through multiple menus.

Smart HELP
If you get stuck, the same function key will always bring HELP to your rescue with pop-up windows of information that relate to your individual trouble spot at both program and field levels.

Quick-and-Easy Error Handling
Complete II traps errors and gives a plain-English description of the problem along with suggested solutions.

Range Printing
Print all information on a report or select a specific range of information for print out. A great feature for restating long reports or partial printing of certain sections.

Money-Back Guarantee
When you purchase Peachtree Complete II directly from Peachtree Software, you're protected with a 30-Day Money Back Guarantee. If you're not satisfied, simply return the product in saleable condition within 30 days and your purchase price will be promptly refunded. (A $20 restocking fee will be charged if disk box is opened.)

Buy Form Direct from Peachtree
Enjoy the convenience and economy of buying your forms directly from Peachtree Software with guaranteed compatibility. Call 1-800-553-6485 in order forms. In Ohio, call 1-513-973-0110.

Comparing PDQ II
Transfer your valuable Peachtree accounting information to Lotus 1-2-3, dbASE™ and other programs for further analysis, plus create custom reports, invoices and statements with Peachtree Data Query II. Updated to take full advantage of the increased capabilities of Peachtree Complete II, PDQ II is priced at just $199. Call today to order!

Hardware Specifications
Requires PC/XT/PS/PS/PS/PS/PS version 2.0 or higher with 384K of usable memory with a minimum 10 MB hard disk. For use with the IBM® PC, PC XT, PC AT, Personal System/2™ and compatibles. 3½" media optionally available. IBM is a registered trademark and Personal System/2 is a trademark of International Business Machines. Not copy protected.

To Order by Mail, Send $199
Plus $12.50 Shipping and Handling to Peachtree Software
A Member of the Intelligentsiasystems Family
4351 Shackleford Road, Dept. BYT, Norcross, GA 30093

Call Now to Order
or for a Dealer Near You
1-800-247-3224
In Georgia, call 1-404-564-5800

Circle 196 on Reader Service Card
not be used with other controllers, and non-Apple-type drives cannot be used with an Apple controller.

The Apple drive hardware and software is discussed in considerable detail in the following books: Understanding the Apple II by James Sather, Understanding the Apple III by James Sather, Beneath Apple DOS by Don Worth and Peter Lechner, and Beneath Apple ProDOS by Don Worth and Peter Lechner.

Four books are available from Quality Software, Computer Book Division, 21601 Marilla St., Chatsworth, CA 91311.

At one time, there were several sources for kits to convert industry-standard drives made by Shugart and MPT to work with the Apple controller. You might be able to use one of them to adapt drives such as the Remex 480 you mentioned. I know of only one source now: W.M. Enterprises, 266 Hillsmere Dr., Annapolis, MD 21403. —Steve

An Apple Coxsalarm
Dear Steve,

I have a rowing exercise machine hooked up to my Apple II using the game I/O connector SW2. It keeps track of the number of strokes I do, and, using the 96 second interrupt on my mouse card, I can display the time, strokes per minute, required strokes per minute, and other calculations that I want.

I would also like to monitor my heartbeat and increase or decrease my required strokes per minute based on my pulse rate. I’ve seen several units that monitor your pulse using infrared sensors on either the finger or earlobe. (not good for rowing) or the earlobe.

I picked up an infrared phototransistor (TTL414) from Radio Shack and hooked it up to one of the paddle connectors. It works with a light source, giving different values as the distance from the light varies, but it’s not going to work on the earlobe or the finger the way it is. Can you help me with this?

Dave Partyka
Lorain, OH

Your desire to keep your ImageWriter understandable — it’s an excellent printer that’s worth holding onto. You can use it with an IBM-type computer with minimal effort. There is one potential problem that you may encounter, however, which leads us to the RS-232C follies. As many people have discovered, “RS-232C standard” is an oxymoron, like “harmonious discord.”

The ImageWriter is configured for DTE operation. If the serial port on your IBM PC is also configured for DTE, the result will be a conflict between the two devices. The simplest solution is to configure your serial port for DCE operation (if possible). Some microcomputers come with two serial ports — a printer port wired for DTE and a modem port wired for DCE. Usually, you can alter configurations with shorting blocks or switch settings. Consult the documentation of whatever PC you obtain to determine the procedure for making the change. If you can configure the ports suitably, you could use a null modem cable or adapter.

As with RS-232C, there is no such thing as a standard null modem cable. To simplify the confusion, let’s assume you’re using a cable with a DB-25 connector at each end. In all common variations, pin 2 at each end is tied to pin 3 at the other, and pin 7 connects straight through. The rest of the connections vary considerably. Some of the possibilities are as follows:

continued
Western Union EasyLink lets you send and receive data and documents between computers. Without a detour onto paper or the inconvenience of a courier. And you can be sure what you send is exactly what's received.

You can use EasyLink to move the information that moves your business in seconds. You can move orders and text files. Receive reports and graphics. Even send product specs and spreadsheets.

Fast revisions—without rekeying

EasyLink connects the computers you use, regardless of type or location. Files on one computer can be sent to other computers, eliminating the need to rekey data.

More than just computer communications

EasyLink even lets you send messages to fax machines. Reach your company's mainframe. And communicate between offices or businesses.

Best of all, the cost of sending a message is comparable to a postage stamp. And unlike telephone, the distance makes no difference.

Western Union—a leader in electronic communication

With EasyLink, we're bringing proven reliability to today's technology. And you'll get added value with EasyLink services like InfoMaster, the largest electronic library with more than 800 databases.

Let EasyLink take your PCs from creation to communication. To learn how your business can benefit, return the coupon. Or call: 1-800-247-1373, ext. 7181

YES, tell me more

Show me how EasyLink can turn my company's PCs into an efficient, economical new way to communicate.

- **Name:** []
- **Title:** (please print)
- **Company:**
- **Bus. Address:**
- **City/State/Zip:**
- **Bus. Phone:**

Mail to: Western Union EasyLink
PO. Box 37472
Omaha, Nebraska 68137

Or call: 1-800-247-1373, ext. 7181
Battery holder. It's important to match the battery's voltage, amperage, and charge/discharge rate if you make a substitution. You may also have to make slight circuit modifications to permit substitution of a nonrechargeable type (such as a lithium cell). The major component in such a circuit change is the addition of a diode such as a 1N914, to prevent charging (you may also need a resistor).

The IC designation you've given—TTLD-M-100—doesn't match anything I've been able to find in my references. Perhaps it is a manufacturer's internal component.

—Steve

CIRCUIT CELLAR FEEDBACK

Remember the S-100?

Dear Steve,

Several of my friends and projects are on hold for lack of information. For the most part, I've exhausted local sources, so my roommate, Alex Pourmelle, suggested I write and ask you.

At the moment, my main home computer is a CP/M Jade "Big Z" CPU card with a Z80 and one serial port, a Jade "Double D" 8-inch floppy disk controller and four 8-inch drives, a 64K-byte CMOS memory board (with the address range F000-FFFF hexadecimal locked out for the monitor/boot ROM and disk window), and a CCS 2830 six-port RS-232C card. All these boards are supposedly IEEE-696 compatible, and I have mangled the BIOS to support them. This system runs in an old 12-slot Problem Solver Systems cabinet with two internal 8-inch drives.

Over the years, I have reconfigured the system many times, but I always run into either power supply or slot-count limits. I have a number of S-100 peripheral boards on the shelf, and I have recently been given another complete CP/M system consisting of an IC/M dual floppy disk drive system, a Soroc terminal, and an IMSAI 8080 S-100 frame holding even more S-100 boards. I'd like to convert the IMSAI itself to IEEE-696, so that I can move my existing system into the IMSAI frame (which has a much larger power supply and 22 slots). My problem is that I have not been able to locate any information about updating old S-100 bus equipment.

I'm sure there are thousands of Altairs, IMSAs, Vectors, and North Stars out there gathering dust. They only need updating to the IEEE-696 standard and adding some modern components such as a Godbout, Teletek, Lomax, or Advanced Digital S-100 boards such as a LaserWriter, a LaserWriter, or a LaserWriter.

—Jim

WORTHINGTON

For DOT MATRIX and Laser Printers

(Epson/IBM/Okidata/LaserJet)

- Labels for shelves, bins, inventory
- Text readable up to 50 ft.
- Bar Codes: 12 of 5, UPC/EAN MIL-STD, AIA, Code 39
- Any size label • Flexible format • Bar Codes: I
- Text • Other bar code programs from $49.
- Color options • Reversals • Fast
- Attaches as 2nd Keyboard
- Labels for shelves, bins, inventory
- No software changes to add bar code
- Upgrade from PC to PS/2—only $30
- External or Internal to PC, XT, AT
- External attaches to all PS/2 models
- Optional Magnetic Stripe Reader
- Reads 2 of 5, UPC/EAN, Code 39
- Attaches as 2nd Keyboard
- No software changes to add bar code to any program
- Rugged stainless steel wand
- Optional Magnetic Stripe Reader
- Upgrade from PC to PS/2 only $30
- PC, XT, AT model $385
- PS/2 model $399
- Also RS-232 model $399
- 30 Day Money Back Guarantee!

WORTHINGTON

DATA SOLUTIONS

417-A Ingalls Street, Santa Cruz, California 95060
408/458-9938

Bar Code Readers

for PC, XT, AT, PS/2

- Tie pins 5, 6, and 8 together at each end, then connect them as a group to pin 20 at the other end.
- Tie pins 4 and 5 together at each end; tie pins 6 and 8 together at each end, then connect to pin 20 at the other end.
- Tie pin 4 at each end to pin 5 at the other; tie pin 20 at each end to pin 6 at the other.

You can ignore pins that I haven't mentioned above. You may need a breakout box, and you'll certainly need a lot of patience to get things working. You can simplify the situation somewhat by using a straight-through connecting cable together with a prewired null modem adapter (both available from sources such as JDR Microdevices and Jameco Electronics—see the back of BYTE for their ads). It is usually easier to alter the connections inside an adapter than to rewind the cable itself.—Steve

30 Day Money Back Guarantee!
If you program in C, take a few moments to learn how Windows for Data can help you build a state-of-the-art user interface.

- Create and manage menus, data-entry forms, context-sensitive help, and text displays — all within windows.
- Develop window-based OS/2 programs right now, without the headaches of learning OS/2 screen management. Run the same source code in PCDOS and OS/2 protected mode.
- Build a better front end for any DBMS that has a C-language interface (most popular ones do).

FROM END TO BEGINNING

Windows for Data begins where other screen packages end, with special features like nested pop-up forms and menus, field entry from lists of choices, scrollable regions for the entry of variable numbers of line items, and an exclusive built-in debugging system.

YOU ARE ALWAYS IN CHARGE

Control functions that you write and attach to fields and/or keys can read, compare, validate, and change the data values in all fields of the form. Upon entry or exit from any field, control functions can call up subsidiary forms and menus, change the active field, exit or abort the form, perform almost any task you can imagine.

OUR WINDOWS WILL OPEN DOORS

Our windows will open doors to new markets for your software. High-performance, source-code-compatible versions of Windows for Data are now available for PCDOS, OS/2, XENIX, UNIX, and VMS. PCDOS versions are fully compatible with Microsoft Windows. No royalties.

MONEY BACK GUARANTEE

You owe it to yourself and your programs to try Windows for Data. If not satisfied, you can return it for a full refund.

Prices: PCDOS $295, Source $295. OS/2 $495. XENIX $795. UNIX, VMS, please call.

Call: (802) 848-7731 ext. 51
Telex: 510-601 4160 VCOSOFT
FAX 802-848-3502

Vermont Creative Software
21 Elm Ave.
Richford,
VT 05476

NO WALLS

If you've been frustrated by the limitations of other screen utilities, don't be discouraged. You won't run into walls with Windows for Data. Our customers repeatedly tell us how they've used our system in ways we never imagined — but which we anticipated by designing Windows for Data for unprecedented adaptability. You will be amazed at what you can do with Windows for Data.
UNIX is a trademark of AT & T Bell Laboratories.

SORD Wins Hands Down

M680UX Series
- Operable with UNIX™
- Astonishing speed: use of 32-bit Motorola 68020 CPU
- Easy expansion: VME bus architecture
Also available on OEM basis.

UTAH COBOL™

NEW VERSION 4.0
$69.95

For IBM®PCs, XT's, AT's and other DOS machines. This is the one you've heard so much about— with fast compile times, small object code modules, no royalties, and clear error messages. Version 4.0 is based upon ANSI-74 standards with new features including:
- Multi-key Indexed files with up to 24 keys. This advanced feature requires the software package Btrieve™ which is optionally available.
- Windowing, pop-up's, color and overlays. This advanced feature requires the software package Saywhat?™ which is optionally available.
- ACCEPT numerics with decimal point alignment, numeric checking, AUTO-SKIP, SECURITY, LENGTH-CHECK, EMPTY-CHECK.
- Fast memory mapped DISPLAY's (1,5) ERASE, BEEP, ATTRIBUTE.
- Level 88's - READ INTO - WRITE/REWRITE FROM - and DELETE.
- An easy to use, COBOL source code EDITOR with auto line numbering, A-margin, B-margin tabbing with full screen cursor control.

Current customers can receive the new version by sending in their original diskette and $30.00. This offer expires Dec 31, 1987.

Also available: Utah FORTRAN, Utah BASIC. Utah PASCAL. Utah PILOT. Btrieve and Saywhat?. Used by 50,000 professionals, students and teachers in 40 countries.

To order call:
(702) 827-3030

SINCE 1977
ELLIS COMPUTING™
5655 Riggins Court, Suite 10
Reno, Nevada 89502

CIARCIA FEEDBACK

to turn those computers back into contributing members of a computing society. Upgrading old S-100 equipment to IEEE-696 might make a good topic for an article.

I will probably buy an SB180 (September 1985 Circuit Cellar) if I can modify it two ways: adding 512K bytes for an expanded RAM disk, and interfacing an ST-506 drive to it (sacrificing the SCSI port if need be). My application is a process control system that must be able to survive a very dusty environment, will be 30 miles from the nearest road (i.e., infrequent service calls), and will be able to receive remote uploads via modem.

I plan to buy your Home Run Control System (April 1985 Circuit Cellar) or build my own. However, I'd like to add a receiver for X-10 codes so I can continue using my telephone responder and ultrasonic console (on different house codes to avoid undesired interaction). Have you considered this option?

My house was built in the late 1930s, and it's extremely difficult to run any kind of wiring inside the walls or the attic. (The current Heathkit catalog has an X-10 module designed to connect to dry contacts on a household alarm system to output an "all lamps on" command or "all lamps on" plus "one appliance module on" command. This transmitter, modified for only the "appliance module on" code, would be ideal, if I could set up the Home Run Control System so it would receive the signal and then respond accordingly.)

This is an idea for a future Circuit Cellar project: Many people (including myself) are still using daisy-wheel printers on printer buffers. Often, when I'm printing a large piece of correspondence, I use several different print wheels, depending on what symbol I want. I might use one wheel for text, another for italics, and another for mathematical symbols. I have not yet seen a printer buffer on the market that accepts a "pause code" (i.e., a series of bytes that I could send to the buffer, commanding it to pause so I can change print wheels, then push a Continue button on the box so that printing resumes).

Also, only one manufacturer that I have seen offers a buffer that allows you to select serial or parallel in and serial or parallel out, so that you can still use the buffer box even if you change your printer, your computer, or both.

Mike Morris
Arcadia, CA

Let me get this straight: Alex Pournelle's roommate is asking me for information? This sounds like Dear Abby get...
The best decision for millions of businesses, educators and home users.

Quality.
Reliable performance is our design objective. Our engineering team takes pride in the exceptional quality they can produce utilizing our proprietary test equipment. The result: a 33,000-hour mean time between failure.

Compatibility.
Our MS-DOS® based computers are the best-selling PC compatibles in America. Tandy 286- and 386-based business systems are Microsoft® OS/2 ready as well.

Why Tandy Computers?
Because there is no better value.

Technology.
Innovative design, custom circuitry and distinguishing features make our computers more than just clones. Plus, every Tandy desktop computer is designed and built in our own USA manufacturing plants.

Connectivity.
Tandy PC compatibles can be linked into a workgroup for communications with other PCs and mainframe computers alike.

Longevity.
Technology has been our business for sixty-six years. In 1977, we became the first company to successfully manufacture and market a personal computer—nobody's been in the business longer.

High performance, great prices and the best service and support in the industry.

Tandy Computers:
Because there is no better value.

Radio Shack
COMPUTER CENTERS
A DIVISION OF TANDY CORPORATION

MARCH 1988 • BYTE 45
CIARCA FEEDBACK

I've got to admit that all my S-100 and CP/M knowledge is rather dated by now—and not having done anything with it for a while, the gritty details are fading fast. The current repository of such knowledge may be the S-100 Journal, which you can reach at P.O. Box 1914, Orem, UT 84057. It's $14 for a year's worth of quarterly issues, $27 for 2 years. A letter to the editor of S-100 Journal might well turn up someone who knows the answers to your IEEE-696 questions.

For the original SB180 design, 256K bytes is the upper limit on the RAM. The boot EPROM shows up in the lower 256K bytes of the total 128K bytes of address space and is not fully decoded. You could hack the board to "shadow" the EPROM and add more RAM on the expansion port, but it might be a little messier than you'd like, because we didn't really intend to expand the SB180's RAM. The newer SB180FX, which uses the same HD64180 as the SB180, allows up to 4 megabytes of RAM.

As far as hitching an ST-506 hard disk drive directly to the SB180 goes, I think you're wasting your time. Admittedly, the drive is cheap, but if you're figuring in any nonzero value for your time, the total cost is going to be a lot higher, particularly because this sounds like a one-time project.

If you're looking for reliability, you want a stock solution without little yellow wires hanging off the boards. It's always fun to mess around with (read "improve") someone else's circuitry, but is that really what your client wants? Remember, he's paying for results, not "clever" design.

Back to the SB180FX. It has a SCSI port on-board, so it's easy to add an external hard disk drive with an onboard SCSI controller, such as the XEBEC 1410A. You can usually find someone advertising the XEBEC controller in the back of BYTE. This device allows a SCSI port to control an ST-506 hard disk drive.

Concerning your remarks about an X-10 receiver, stay tuned for a few upcoming Circuit Cellar power-line projects. These projects should provide you with the X-10 control you appear to be longing for.

Another upcoming project is the Circuit Cellar SmartSpooler, which functions as a rather bright print spooler with all combinations of parallel and serial inputs and outputs. I'm setting it up to allow downloading custom software through the standard printer port, so you can tinker with this project to add a "pause" code.—Steve
...ABOUT ANALYZING YOUR DATA. You might be spreading your spreadsheet a little too thin. Or maybe you're starting from scratch. But if you're serious about data analysis, you're ready for SPSS/PC+ — a full software family that brings you eight high-powered ways to complete any data analysis task.

Enter it. SPSS Data Entry II™ is a fully integrated data entry, cleaning and editing tool.

Analyze it. The SPSS/PC+ base package provides a powerful array of statistical and reporting procedures.

Picture it. SPSS/PC+ Graph-in-the-Box™ featuring New England Software's Graph-in-the-Box™ offers full color "snapshot" graphics.

Examine it. SPSS/PC+ Advanced Statistics™ lets you get more serious with your data.

Predict it. SPSS/PC+ Trends™—our latest option—is the complete time series analysis/forecasting tool.

Table it. SPSS/PC+ Tables* produces presentation-ready tables instantly.

Chart it. SPSS/PC+ Graphics™ featuring Microsoft* Chart creates show-stopping graphs and charts.

Map it. SPSS/PC+ Mapping™ featuring MAP-MASTER™ creates maps where vast amounts of data can be summarized and presented in one, simple picture.

SPSS/PC+ products are being put to productive use by serious fact finders in business, government and education. For countless purposes such as market research, wage and salary studies, survey analysis, and quality control. Plus each product is superbly documented and supported by SPSS Inc., a leader in statistical software for nearly 20 years. While specially tailored customer support is available through the VALUE PLUS™ plan. And SPSS now offers a SPSS/PC+ version for Novell LANs.

So if you're serious about data analysis, step up to SPSS/PC+. For details, contact our Marketing Department.

CALL 1/312/329-3315

SPSS Inc. • 444 North Michigan Avenue, Suite 3000 • Chicago, Illinois 60611

In Europe: SPSS Europe BV • PO Box 115 • 4200 AC Geldermalsen, The Netherlands • Telephone: +31183036711 • TWX: 21019

SPSS/PC+ runs on IBM PC/XT/AT's with hard disk. Contact SPSS Inc. for compatible microcomputers. SPSS/PC+ • SPSS Data Entry II • SPSS/PC+ Graph-in-the-Box • SPSS/PC+ Advanced Statistics, SPSS/PC+ Trends, SPSS/PC+ Tables, SPSS/PC+ Graphics and SPSS/PC+ Mapping are trademarks of SPSS Inc. VALUE PLUS is a trademark of SPSS Inc. Chart and Microsoft are trademarks of Microsoft Corporation. MAP-MASTER is a trademark of Ashton-Tate. Graph-in-the-Box is a trademark of New England Software, Inc.

© 1987 SPSS Inc.

Circle 252 on Reader Service Card

MARCH 1988 • BYTE 47
Introducing the two on earth

The world now has two new benchmarks from the leader in high-performance personal computing. The new 20-MHz COMPAQ DESKPRO 386/20 and the 20-lb., 20-MHz COMPAQ PORTABLE 386 deliver system performance that can rival minicomputers. Plus they introduce advanced capabilities without sacrificing compatibility with the software and hardware you already own.

Both employ an industry-standard Intel 80386 microprocessor and sophisticated 32-bit architecture. Our newest portable is up to 25% faster and our desktop is actually up to 50% faster than 16-MHz 386 PCs. But we did much more than simply increase the clock speed.

For instance, the COMPAQ DESKPRO 386/20 uses a cache memory controller. It complements the speed of the microprocessor, providing an increase in system performance up to 25% over other 20-MHz 386 PCs. It's also the first PC to offer an optional Weitek™ Coprocessor Board, which can give it the performance of a dedicated engineering workstation at a fraction of the cost.

They both provide the most storage and memory within their classes. Up to 300 MB of storage in our latest desktop and up to 100 MB in our new portable.

The new COMPAQ DESKPRO 386/20
most powerful PC's and off.

and the new 20-MHz COMPAQ PORTABLE 386™

Both use disk caching to inject more speed into disk-intensive applications and both will run MS® OS/2.

As for memory, get up to 16 MB of high-speed 32-bit RAM with the COMPAQ DESKPRO 386/20 and up to 10 MB with the COMPAQ PORTABLE 386. Both computers feature the COMPAQ' Expanded Memory Manager, which supports the Lotus®/Intel®/Microsoft® Expanded Memory Specification to break the 640-Kbyte barrier imposed by DOS.

With these new computers plus the original COMPAQ DESKPRO 386™, we now offer the broadest line of high-performance 386 solutions. They all let you run software being written to take advantage of 386 technology, including Microsoft Windows/386 Presentation Manager. It provides multitasking capabilities with today's DOS applications to make you considerably more productive. But that's just the beginning. For more information, call 1-800-231-0900, Operator 43. In Canada, call 416-733-7876, Operator 43.

Intel, Lotus, Microsoft, and Weitek are trademarks of their respective companies. ©1987 Compaq Computer Corporation. All rights reserved.
You Never Regret A **WYSE** Decision

WYSEPc 286 SYSTEM

- Intel 80286 Running AT 8 and 22.5 MHz
- Phoenix Bios • 1.2 Meg Floppy Drive
- 102 - Key Enhanced PC · Style Key Board
- 1 Meg of Parity Checked RAM
- Clock/Calendar with Battery Backup
- WYSEwindow system status display
- 190 W Power Supply • GW-Basic 3.21
- 1 Serial and 1 Parallel Port
- MS-DOS 3.21 and Users Guide
- 20 Meg 28ms Hard Disk Drive

HERCULES COMPATIBLE MONO SYSTEM

$1,795

EGA COLOR SYSTEM

$2,295

WYSEPc 386 SYSTEM

- Intel 80386 Running AT 8 and 16 MHz
- Phoenix Bios • 1.2 Meg Floppy Drive
- 102-Key Enhanced PC · Style Keyboard
- 1 Meg of 0 wait state static ram
- Clock/Calendar with Battery Backup
- WYSEwindow system status display
- 1 Serial and 1 Parallel Port
- GW-Basic 3.21 • 220 W Power Supply
- MS-DOS 3.21 • FREE PC - MOS/86
- 41 Meg 28ms Hard Disk Drive

HERCULES COMPATIBLE MONO SYSTEM

$3,750

EGA COLOR SYSTEM

$4,250

OPTIONS

- 2nd Floppy Drive 5 1/4" 360K $99
- 2nd Floppy Drive 3 1/2" 720K $155
- 41Meg 28ms Hard Disk Drive $210
- 1200 Baud Internal Modem w/Software $99
- 2400 Baud Internal Modem w/Software $199
- 12.5 MHz Speed Option $450
- NEC Multysys EGA Monitor $99
- 71 Meg 28ms Hard Disk Drive $450
- Math Co-Processor
- Extended Service Contract Available
- Other Options Available

THIRTY-DAY MONEY BACK GUARANTEE

You can return any B & W SYSTEMS, INC. computer system within thirty days of the date of shipment. Return the items like new with complete documentation, warranty cards and packing material. Return product cards and packing material. Return product must be labeled with a Return Merchandise Authorization (RMA) number and shipped prepaid and insured.

ONE YEAR LIMITED WARRANTY

We warrant our products to be free of defects in material and workmanship for a period of one year from the date of shipment. The Warranty covers the cost of all materials and labor.

- **WORLDWIDE SERVICE AND SUPPORT**
- **QUANTITY DISCOUNTS AVAILABLE**
- **No Extra Charge for Visa or Mastercard**

TO ORDER TOLL FREE

1-800-638-9628

For Information Call — (301) 963-5800

Visa • Master Card

7877 Cessna Ave
Gaithersburg, MD
20879

B & W SYSTEMS, INC.

Trademark: WYSE — trademark of WYSE Technology • MS-DOS & OS/2 — trademark of Microsoft Corporation • Hercules — trademark of Hercules Computer Technology • NEC — trademark of NEC Corporation • PC-MOS/386 — trademark of Software Link. Specifications, configurations, and prices subject to change without notice. Copyright 1987 B & W SYSTEMS, INC.

50 BY T E • MARCH 1988

Circle 35 on Reader Service Card
BOOK REVIEWS

THE MS-DOS ENCYCLOPEDIA
Ray Duncan, editor

IBM PERSONAL SYSTEM/2 AND PERSONAL COMPUTER BIOS INTERFACE TECHNICAL REFERENCE

MEMORY RESIDENT PROGRAMMING ON THE IBM PC
Thomas Wadlow

THE MS-DOS ENCYCLOPEDIA
Reviewed by Bill Bourn

What do you call a single volume containing over 1500 pages, 15 appendixes, and 5 sections, one of which contains 20 distinct articles? Suppose that material came from 14 contributors and 64 technical advisers. Microsoft Press calls this massive collection The MS-DOS Encyclopedia. With its multitude of distinctively presented examples, written in both assembly language and C code, the book is closer to being a handbook, although you'd need Schwarzenegger's wrists to manage it with only one hand. I guess "encyclopedia" has become an unwelcome synonym for "comprehensive treatise" since Jiminy Cricket first defined the word.

In addition to the 20 articles written by such MS-DOS experts as Ray Duncan, Charles Petzold, and Van Wolverton, the book contains 240 pages detailing individual descriptions of MS-DOS user commands, 200 pages of usage descriptions for programming utilities, and 250 pages devoted to the description of DOS system calls via the INT instruction. Much of that material is already available in the respective user guides for the various software. Why repeat it all here?

There is, I suppose, a good reason, depending on your need: The descriptions in the book span all the versions and OEM suppliers of MS-DOS—pretty handy if, as a programmer, you don't have all the versions of all the DOS manuals from Compaq to Zenith at your disposal. Even though this material has been covered elsewhere, including it all in one volume (along with the possible error messages that you might get when using any command) turns that volume into the one to fetch for nearly all DOS-related questions.

The Articles
The most unique part of The MS-DOS Encyclopedia is the first section, whose 20 articles delve into those mysteries that have tantalized the intellectual DOS user. I was disappointed that the internal control structures are so lightly covered in the article on the components of MS-DOS; it's rather like describing a car as a chassis, engine, wheels, fenders, and passenger compartment. I want to know about the pistons, crankshaft, and oil pump inside the MS-DOS engine. That level of detail is denied us here.

Other articles deal with the structure of an application program; managing files, records, directories, and volumes; memory management; and several other topics—merely scanning the table of contents gives evidence of the breadth of coverage in this section. Nothing I read here (or elsewhere in the book) struck any discord with what I already knew about MS-DOS.

I depend on the high caliber of the contributors for having checked the factual accuracy of the contents.

A few articles deserve specific mention. In his article "Terminate-and-Stay-Resident Utilities," Richard Wilton does a creditable job of classifying the kinds of trouble you could have trying to write a TSR routine for MS-DOS. After the "rules of the residency-road," he presents two TSR routines in complete form, with accompanying explanatory text. The first routine is a simple, passive TSR that merely says "Hello." The second TSR is a more useful routine that attempts to cover all the conditions under which a TSR might be invoked. This sample TSR is invoked from the keyboard, writes to disk, recognizes the status of pending hardware interrupts, and generally addresses all the other nitty-gritty details that appear to be required for a successful TSR.

Microsoft has yet to publish an official method or set of guidelines for using this DOS function, which has been in place since release 2.0. A myriad of useful routines have been published in that vacuum; all take advantage of the TSR capability but have widely varying degrees of compatibility with each continued
Profuse examples and minute details make The MS-DOS Encyclopedia's coverage of debugging a must for any programmer who knows that even the purest of heart are visited by gremlins.
TOLL-FREE ORDER LINE 1-800-421-3135

FREE SOFTWARE! FREE SOFTWARE! FREE SOFTWARE!

Purchase over $100 and receive one of these disks absolutely FREE! Purchases over $250 get two free disks, over $400 get three, or get all four disks when your purchase is over $500! 1) MIXED BAG—A great assortment of utilities and games all packed on one disk. 2) PC-WRITE—Try this famous feature packed word processor. It's a winner! 3) FONT-SET—Leaves you at popular fonts like bold, underline, etc. on most latest model printers from Citizen, Epson, NEC, Okidata, Panasonic, Star, Toshiba, etc. You can even use your printer like a typewriter! 4) ABC-LIST—Great mailing list program! Sort on any field, do qualified searches, print reports and mailing labels, and more!

SOFTWARE - accounting
Cyma Call
Dec Easy Acct. 534 Call
Dec Easy Payroll 954 Call
Dollars & Sense 94 Call
In House Acct. 112 Call
Managing Your Money 3.0 117 Call

COMMUNICATION PROGRAMS
Carbon Copy Plus 108 Call
CrossTalk Xl 89 Call
CrossTalk MK.4 1Q1 Call
Remote 89 Call
Smartcom II 79 Call

DATA BASE MANAGERS
Clipper T375 Call
Condor 3 325 Call
DBase III Plus 60 Call
DB-XL 80 Call
Fox Base Plus 195 Call
Genius 189 Call
Paradox 2.0 Premium 435 Call
Lotus Pro File 81 Call
Lotus Powerbase 169 Call
QLA 18 Call
QuickSilver 295 Call
Revelation 484 Call
R Base System V Call
Reflex 91 Call
Relate & Report 112 Call
VP Info 65 Call

DESKTOP PUBLISHING
Pagemaker 479 Call
PFS: First Publisher 59 Call
Ventura Publisher 475 Call

GRAPHICS
Charmaster 199 Call
Design CAD 2 148 Call
Diagram Master Call
Easy CAD 109 Call
Enhanced 2.01 294 Call
Generic CAD Call
In-A-Vision 270 Call
Microsoft Chart 3.0 Call
Newsroom Pro 65 Call
Printshop 33 Call

INTEGRATED
Ability 58 Call
Ability Plus 36 Call
Enable Call
Framework II Call
Smart System 429 Call
Symphony Call

LANGUAGE
Lattice C Compiler 242 Call
Microsoft C Compiler 139 Call
Microsoft Fortran 185 Call

SOFTWARE - accounting
Microsoft Call
Word Perfect Call
Macro Assembler Call
Microsoft Pascal Call
Microsoft Quick Basic Call
Microsoft Quick C Call
Ryan McFarlan Call
Fortran Call
Ry an McFarlan Call
Cobol Call
Turbo Basic Call
Turbo C Call
Turbo Pascal Call
Turbo Prolog Call

MULTI-USER SOFTWARE
Fox Base Call
Word Perfect Call
Word Perfect Call
Modules Call
Microsoft Word Call

PROJECT MANAGER
Microsoft Project Call
Super Project Call
Timetable 2.0 Call
Total Han d Man. 2 Call

SPREADSHEET
Lotus 1-2-3 82 Call
Microsoft Excel Call
Spreadsheet Auditor 329 Call
SuperCalc Call
Surpass Call

UTILITIES
Copy II PC Call
Copywrite Call
Cubit Call
Deskview 2.0 72 Call
Direct Access Call
Eureka Call
Fastback Plus 92 Call
FormTool Call
Graph in the Box 55 Call
Mace Call
Microsoft Windows Call
Norton Advanced Call
Norton Utilities Call
PC Tools Deluxe 37 Call
Protocol 4.0 Call
Q DOS II Call
RightWriter Call
Sidekick 55 Call
SideShow 30 Call
Sor Call
Superway Call
Turbo Lightning 55 Call
Xtime Call

WORD PROCESSING
Microsoft Word 4.0 195 Call
Microsoft Word Call
Multimate Call
Advantage II Call
Volkswagen 3 139 Call
Webster Spellcheck 37 Call
Word Perfect 185 Call

SOFTWARE - accounting
Microsoft Call
Macro Assembler Call
Microsoft Pascal Call
Microsoft Quick Basic Call
Microsoft Quick C Call
Ryan McFarlan Call
Fortran Call
Ry an McFarlan Call
Cobol Call
Turbo Basic Call
Turbo C Call
Turbo Pascal Call
Turbo Prolog Call

MULTI-USER SOFTWARE
Fox Base Call
Word Perfect Call
Word Perfect Call
Modules Call
Microsoft Word Call

PROJECT MANAGER
Microsoft Project Call
Super Project Call
Timetable 2.0 Call
Total Han d Man. 2 Call

SPREADSHEET
Lotus 1-2-3 82 Call
Microsoft Excel Call
Spreadsheet Auditor 329 Call
SuperCalc Call
Surpass Call

UTILITIES
Copy II PC Call
Copywrite Call
Cubit Call
Deskview 2.0 72 Call
Direct Access Call
Eureka Call
Fastback Plus 92 Call
FormTool Call
Graph in the Box 55 Call
Mace Call
Microsoft Windows Call
Norton Advanced Call
Norton Utilities Call
PC Tools Deluxe 37 Call
Protocol 4.0 Call
Q DOS II Call
RightWriter Call
Sidekick 55 Call
SideShow 30 Call
Sor Call
Superway Call
Turbo Lightning 55 Call
Xtime Call

WORD PROCESSING
Microsoft Word 4.0 195 Call
Microsoft Word Call
Multimate Call
Advantage II Call
Volkswagen 3 139 Call
Webster Spellcheck 37 Call
Word Perfect 185 Call

SOFTWARE - accounting
Microsoft Call
Macro Assembler Call
Microsoft Pascal Call
Microsoft Quick Basic Call
Microsoft Quick C Call
Ryan McFarlan Call
Fortran Call
Ry an McFarlan Call
Cobol Call
Turbo Basic Call
Turbo C Call
Turbo Pascal Call
Turbo Prolog Call

MULTI-USER SOFTWARE
Fox Base Call
Word Perfect Call
Word Perfect Call
Modules Call
Microsoft Word Call

PROJECT MANAGER
Microsoft Project Call
Super Project Call
Timetable 2.0 Call
Total Han d Man. 2 Call

SPREADSHEET
Lotus 1-2-3 82 Call
Microsoft Excel Call
Spreadsheet Auditor 329 Call
SuperCalc Call
Surpass Call

UTILITIES
Copy II PC Call
Copywrite Call
Cubit Call
Deskview 2.0 72 Call
Direct Access Call
Eureka Call
Fastback Plus 92 Call
FormTool Call
Graph in the Box 55 Call
Mace Call
Microsoft Windows Call
Norton Advanced Call
Norton Utilities Call
PC Tools Deluxe 37 Call
Protocol 4.0 Call
Q DOS II Call
RightWriter Call
Sidekick 55 Call
SideShow 30 Call
Sor Call
Superway Call
Turbo Lightning 55 Call
Xtime Call

WORD PROCESSING
Microsoft Word 4.0 195 Call
Microsoft Word Call
Multimate Call
Advantage II Call
Volkswagen 3 139 Call
Webster Spellcheck 37 Call
Word Perfect 185 Call
BOOK REVIEWS

these days of copyright cupidity, I’d prefer to have a definite statement one way or the other.

The code examples are set off by both typeface and color to good effect. As a rule, the typography is clean and uncluttered throughout the book. However, the tables are labeled inconsistently; many identical typographic structures face each other on opposite pages, one with a table designation and the other without.

Similarly, the information about MS-DOS control structures is diagramed in two apparently arbitrary formats. One structure might appear in a table that lists field length and usage, while another is consigned to a more visual series of stacked rectangles, with descriptions inside.

The cross-references to other articles are sometimes awkward. Whereas references to an appendix title include the letter designation, references to articles don’t carry the corresponding article number, so the page headings (which appear on odd pages and which carry both the number and title) are less helpful than they could be.

Do You Need It?

Why publish so extensive a book about MS-DOS now, on the verge of OS/2 ascendency? Perhaps Microsoft thought that MS-DOS is now mature enough that The MS-DOS Encyclopedia won’t soon go out of date. The preface claims 10 million copies of MS-DOS are working now. Does this book belong next to all of those systems? Emphatically not! The book’s general editor, Ray Duncan, tags the book’s audience as “the community of working programmers,” but I have to wonder how many programmers are currently engaged in new MS-DOS application development with OS/2 just around the corner.

Is this book for you? Look at your shelf of software manuals. Do you have a version of an 8086 assembler there? If so, you may be able to use this book. Doubly so if that assembler is dusty. I bet the examples and lucid explanations here will catalyze you to use both the book and your assembler to overcome your previous frustrations with the quirks and mores of the world’s most popular operating system.

Bill Bourne is moderator of the ms.dos conference on BIX and president of the Central Connecticut PC User’s Group. You can reach him at P.O. Box 964, Glastonbury, CT 06033, or on BIX as “billbourn.”

IBM PERSONAL SYSTEM/2 AND PERSONAL COMPUTER BIOS INTERFACE TECHNICAL REFERENCE

Reviewed by Ben Myers

IBM Corp., Racine, WI: 1987, Publication 68X2260, Form S6S-X-2260, 214 pages, $75

For some time now, when I’ve had to refer to some detail about an IBM PC BIOS, I’ve found myself looking at various sources, none of them complete. Peter Norton’s Programmer’s Guide to the IBM PC has become somewhat dated by the author’s original vision to produce a work that emphasized the IBM PC and PC XT, then predominant. Norton’s book contains sketchy information about the EGA specification and few specifics about the AT BIOS. Until the PS/2 computers came along, Ray Duncan’s Advanced MS-DOS was a well-organized reference for some BIOS calls, but it curiously omitted most of the information about disk BIOS services, and it included nothing about the system services (interrupt 15H) on the AT. Finally, descriptions of BIOS calling sequences are embedded continued
Keep your mainframe in touch: Send your remote PCs a card!

If a telephone line goes to wherever your remote PCs are, Sync-Up™ from UDS can now link them directly to your mainframe!

Sync-Up fits a complete synchronous modem and a protocol converter onto a single card; no other modules are required. Add appropriate UDS-supplied software, and you'll have a fast, reliable micro-to-mainframe link. If your system is already supporting 201C, 212A, 208A/B and/or 9600B modems, no modifications are required at the mainframe end.

Sync-Up boards may be specified with software to support 2780/3780 or 3270 BSC, and 3270, 3770 or 5251 SNA or a variety of other protocols. For complete technical data and quantity prices, contact Universal Data Systems, 5000 Bradford Dr., Huntsville, AL 35805. Telephone 205/721-8000; Telex 752602 UDS HTV.

Universal Data Systems

Circle 271 on Reader Service Card
The American Success Story Continues..

CLUB 286 (12MHz Zero Wait State) (16MHz Throughput) Mono System $1695

- 12MHz, Zero Wait State 80286 / 16MHz Throughput / Small Footprint Chassis / Secured Hardware Reset / 12" Monochrome Monitor (800x350) / Hercules Compatible 132 Column Video Card
- Speaker On/Off / Standard 1MB Memory / Norton SI 15.3
- Keyboard Selectable Between 8/12 and Zero/1 Wait State
- Plus Basic System Features / Made In U.S.A.

12MHz EGA System $2065

Basic System Features:
- 80286 16-bit CPU / 412K Motherboard Expandable to 1MB
- Clock Calendar with Battery Backup / 195Watt Power Supply / 320/110V (UL, CSA) / Fully Compatible AMI BIOS (Written In USA)
- 200 Page Documentation and User's Guide / Limited One Year Warranty
- Optional Add On: 360KB Floppy Drives/ Enhanced Keyboard/ "220KB Floppy Drives 3/1/2"

CLUB 286 (10MHz Zero Wait State) (12MHz Throughput) Mono System $1529

- 80286 10MHz Zero Wait State / 8/10 Keyboard Switch
- 12" Monochrome Monitor (800x350) / Hercules Compatible 132 Column Video Card / Wait State Insertable Slots
- 12MHz Throughput / 2 Serial, 1 Parallel Port Built In
- Norton SI/V(3.0) 11.5 / Plus Basic System Features / Made In U.S.A.

10MHz EGA System $1895

286 System Options
- 20MB 65ms Full Height $380
- 30MB 35ms Full Height $500
- 44MB 28ms Full Height $575
- 72MB 23ms Full Height $920
- 71MB 28ms Full Height $870
- 130MB 18ms Full Height $1800
- NEC Multisync
- CALL

14" Flat Screen Evershine Monitor CALL

Policy and Terms: All prices are subject to change and quantities must be limited. We reserve the right to substitute equivalent items. Unauthorized returns are subject to a 15% restocking fee. All returns must be attached to all original terms and must be sent shipping prepaid to customers. The limited warranty is 1 year on parts and 6 months on labor.

ORDER BY MAIL: Check and Money Order California add 7% Sales Tax ORDER BY PHONE: COD: MasterCard, Visa, American Express (4%) or Approved Computer P.O.'s

All 14" Flat Screen monitors shown above are optional.

BYTE • MARCH 1988
And now, the most powerful line up of machines from the leading manufacturing, design and engineering company in America.....

Introducing the 12MHz Pulse

The CLUB 286 Series of computers is ready for OS/2™ and OS/3™.
The CLUB 286 Series will run Xenix, Unix, DBase III+, Lotus
Framework, WordStar, Symphony and a host of all the popular
software you can think of.

Call for our 386 Machine

CLUB 286 (8MHz 1 Wait State)
8MHz Monochrome System
• Includes Basic System □ 12" Monochrome
Monitor (800x350) □ Hercules Compatible
152 Column Video Card □ Made in U.S.A.

8MHz EGA System $1399

CLUB Turbo 4.77/8.0MHz
Monochrome System
• 8088-2 Keyboard Selectable □ 256K Standard □ 12" Monochrome
Monitor (800x350) □ Hercules Compatible 152 Column Video Card
• 135 Watt Power Supply

4.77/8MHz EGA System $1150 20MB System Add $300

American Technologies, Inc.
3401 W. Warren Ave., Fremont, CA 94539
Tech Support (415) 683-6580
FAX (415) 490-2687 (24 hrs.)

(415) 490-2201

Circle 52 on Reader Service Card

MARCH 1988 • BYTE 57
Quaid Analyzer
the tool that created CopyWrite

Now you can debug your own programs with a professional quality debugger— the one that unraveled every form of copy-protection used on the PC.

With the Quaid Analyzer, you can:
- See occurrences of any interrupt, with its meaning shown on the screen.
- View memory as text or instructions, scrolling as easily as you do with an editor.
- Run until a memory location or I/O port is changed.
- Protect your hard disk from accidental destruction.
- Analyze software without the source, even when it uses countermeasures to thwart tracing.
- See all stages of the boot load.

We kept the Quaid Analyzer off the market to avoid helping publishers with copy-protection. Now that copy-protection is gone, we can sell it to you.

The Quaid Analyzer is a software tool occupying 100K bytes. It runs on any IBM PC and most MS-DOS systems without hardware modification.

Call (416) 961-8243
Quaid Analyzer $99 U.S.

All orders shipped at our expense within a day. All major credit cards accepted
Payment method MC-VISA-Amex-Diners-Check
Card No ____________________
Expiry Date ________________
Name ______________________
Address ____________________
City/State __________________
Phone No. __________________
Signature __________________

Ask about Disk Explorer—the program that takes over where Quaid Analyzer leaves off.

BOOK REVIEWS

within the assembly listings contained in the older PC and AT technical references published by IBM. All in all, this is a very haphazard collection of reference materials, but it was the best available until recently.

The IBM Personal System/2 and Personal Computer BIOS Interface Technical Reference gives the software developer a complete set of materials that describe how the various versions of the IBM PC BIOS work. IBM has not published assembly listings of the PS/2 BIOS; this reference documents the externally visible features of the BIOS as a programmer doing clean BIOS-level programming would see and use them.

The book covers the original IBM PC, PC XT, PC AT, PCjr, PC Convertible, and all announced models in the PS/2 product line. At $75, the BIOS Interface Technical Reference seems pricey at first, but no other single document today can match it for completeness in treating its subject. It comes with a hard three-ring slipcase binder, like most other IBM reference publications. The typeface is a small but very readable Helvetica, so a lot of information is crammed into its 214 pages. There are few typographical errors.

The meat of the book is the section that has detailed descriptions of all calls to BIOS services. If different models of the PC do not respond identically, the book lists exact differences by PC model and relevant BIOS date. For example, the printer BIOS (17H) section has six notes describing the actions taken by various models of PCs. The pages covering video BIOS (10H) describe the three VGA modes, as well as the other video modes. The system services interrupt 15H receives extensive treatment, including the multitasking services that are used by other parts of BIOS on the PC AT, PC XT Model 286, and PS/2. If another interrupt uses system services to relinquish control while waiting for completion of an external event, this information is also noted. The BIOS services are arranged in order by interrupt number, then by major function designation passed in the AH register value within interrupt, so everything is quite easy to find. For the money, it would have been nice if IBM had thrown in half a dozen blank thumb-index tabs, beyond the two labeled “BIOS” and “Supplement.” Then, I could have set up tabs to get quickly to the sections I use most often.

In the section on data areas and ROM tables, the BIOS data area, extended BIOS data area, and disk drive parameter tables are laid out, byte by byte and bit by bit. The last section of the book, entitled “Additional Information,” describes interrupt sharing, adapter ROM, video function compatibility, multitasking provisions, system identification, application guidelines, and scan code/character code combinations. I found the information on video function compatibility particularly useful, because it told me, step by step, how to test which video functions are present. Using the procedure described, I can determine which video adapter—VGA, EGA, MCGA, CGA, or MDA—is present. The text also describes video mode-switching procedures. There is a vacant section for future supplements to be issued. The book has a standard glossary and index at the end.

If you are an experienced software developer designing software that must interface with any version of BIOS, the IBM PS/2 and PC BIOS Interface Technical Reference is one of a kind and indispensable. It is not for the novice PC programmer, however, because it is almost entirely bereft of examples. In the personal computer industry, where it is fashionable to take potshots at IBM, the company is often overlooked as a source for complete, well-organized materials describing its products and, by logical extension, compatible products.

Ben Myers has more than 25 years of varied experience in the computer industry. He can be reached at 73 Westcott Rd., Harvard, MA 01451.
95% of the Top U.S. Companies Solve Their Complex Numeric Problems with APL...
Shouldn't You?

In businesses where complex numeric problems are a daily challenge, professionals from all walks of life rely on the APL®PLUS® System.

The APL®PLUS System
Thousands of professionals in a wide range of fields—investment research, insurance, corporate finance, engineering, and science—find the APL®PLUS System the perfect software for complex problem solving. That's because its natural mathematical orientation and conciseness of code provide the ideal environment for model building, array handling, system prototyping, and matrix manipulation. And for your connectivity needs, the APL®PLUS System runs on a wide range of machines and operating environments.

Why not give yourself the analytical edge, for only $695* Call 800-592-0050 and we'll show you how to put the APL®PLUS System to work in your specific application.

A PLUS®WARE® PRODUCT

The APL®PLUS System is available for the mainframe, IBM PC and compatibles, Macintosh, and machines running UNIX and VAX/VMS. The APL®PLUS System may be purchased through dealers and distributors worldwide.

APL®PLUS and PLUS®WARE are registered trademarks of STSC, Inc., UNIX, Macintosh, and IBM are registered trademarks of AT&T Bell Laboratories, Apple Computer, and International Business Machines Corporation, respectively.

Top companies according to the April 17, 1987 issue of Business Week.

*U.S. suggested retail for DOS version. International prices slightly higher.

Circle 253 on Reader Service Card

APL is indispensable in developing mathematical models for pricing financial securities such as options, futures, and bonds. Complex mathematical algorithms are programmed quickly and concisely. And, empirical research is facilitated by APL's unmatched capabilities in manipulating and analyzing arrays of data.

Mark Schroder
Option Research Specialist
Prudential Bache

When you need to consider three classes of service, numerous fare types, and multiple connections, fare pricing analysis without APL is a Herculean task. APL's ability to manipulate tables of data with a single command enables us to explore a wider range of scenarios at fast as we can think of them.

Mike Fisher
Manager, Systems Development
Pan American World Airways

Each quarter we consolidate and analyze historical data, current data, and forecasts from over 800 entities within GE and then quickly compile it into a comprehensive series of reports. With APL, we get it done in a third of the time it would take us using other methods.

Eric Baelen
Manager, Business Systems Development
General Electric Company
Convert .DXF files to Gerber® with SoftWest™ GPI.

Plot anything you can draw with SoftWest GPI, the DXF-to-Gerber conversion program.

It is bidirectional (it also converts Gerber back into AutoCAD®), and supports all popular Gerber photoplotters, including the new laser plotters using Gerber printheads.

Price in U.S.A.: $500.00.

The Great SoftWestern Company® is also the creator of Auto-Board System®, SoftWest™ D2D, and SoftWest™ PPI.

1-800-231-6680
INFORMATION & ORDERS
1-817-383-4434
TECHNICAL ASSISTANCE

THE 3.5” CONNECTION!

This internal 720K 3.5” disk drive is a “drop-in” replacement for 5.25” drives! It’s the ideal solution for exchanging data between your PC/XT/AT and the new generation of laptops.

Disk format is compatible with IBM, Toshiba and Zenith portables. The Model 853W drive kit carries everything you need, including interface adapters, premium SONY drive, and complete documentation. Uses your existing disk controller (no additional slots required). Requires DOS 3.2 for maximum performance. Ask about our Model 873W (44MB).

NOW Available

SYNCRONIZED DISK DRIVES

MEMORY RESIDENT PROGRAMMING
ON THE IBM PC
Reviewed by Ben Myers

413 pages. $24.95

The subtitle of Memory Resident Programming on the IBM PC is “The Essential Guide to Developing Memory Resident Programs.” The introductory chapters of the book cover programming in general, assembly language programming for the Intel 8086/8088 family, and writing an 8086 assembler program to display the interrupt vectors. Author Thomas Wadlow then defines a basic TSR program skeleton and provides several sample TSRs by way of explaining TSR writing. These include a keystroke expander, a clock, an instruction pointer (CS:IP) display, and TSR programs that display communications port values, set communications port parameters, list a directory, and browse through a file. The last four programs serve only as examples of TSR writing. Normal DOS programs would accomplish the same results with less effort.

Interrupts and Omissions

Unfortunately, Wadlow’s book omits information that is necessary to write many important kinds of TSR programs. For example, if you have to read or write files while other programs are running, you need to know what to do to the current active PSP (program segment prefix) via DOS functions 50h and 51h. The interrupt multiplexer vector, interrupt 28h, is used to synchronize DOS operations among TSRs and other programs. Interrupt 22h (program termination), interrupt 23h (Control-C/Control-Break handler), and interrupt 24h (critical error handler) are essential to any well-written application, and doubly so for a TSR program. DOS treats functions 01h through 0Ch differently from the other function calls. None of these are explained in the book.

Similarly, if you write a TSR program that pops up on the screen, you need to be able to save and restore the screen area in which the pop-up occurs. That information is missing, as is any explanation of how a TSR program de-installs itself.

The concluding chapter, “The Roads Not Taken,” is an often misleading explanation of TSR design trade-offs. Fully one-third of the book contains appendices intended as reference material, though these, too, have some omissions. The first appendix, “IBM ROM BIOS Services,” explains the BIOS calls for the IBM PC XT but excludes the ones for the IBM AT, EGA, VGA, MCGA, and PS/2. (Granted, omission of the last three is understandable, since they are fairly recent developments.) A “Hardware Interrupts” appendix covers only interrupts through 01h. It includes some interrupts that are not for hardware, like the disk parameter table and high-order graphics table pointers. “IBM DOS Services” describes only the DOS functions for DOS 2.x, neglecting the DOS 3.x functions entirely. The final appendix, “Useful Books,” gives a (very short) list of references used by the author in writing the book. These appendices also have quite a few typos.

Useful, But Not Essential

The assembly language examples in Memory Resident Programming on the IBM PC are clear, and the accompanying explanations of programs are lucid and well written. If you want to get your feet wet writing simple TSRs, this book is an introduction to the subject, but you can find more complete examples of robust TSR programs elsewhere. The book does not meet its stated objective of being essential. You can write the bulletproof TSR programs that today’s IBM PC marketplace demands without it.
Dot, Daisy and Laser.

The new family of Olympia printers with a prestigious technological heritage.

Olympia is first in making lasting impressions for a good reason. For over 80 years we've been a leading innovator in typing technology for the office. Now everything has changed. And nothing has changed. Our technology is as new as the dew. Our commitment to reliability, efficiency and service is as solid as ever. The Olympia dot matrix printers produce clean, crisp printing at speeds from 130 CPS to 240 CPS for a wide range of applications. And our daisy wheels are unsurpassed in printing quality. Our new Laserstar 6 is compact, versatile, compatible and offers the latest in desktop printing technology.

In short, whatever you need we've got. So don't go shopping without the big new name in printers on your list. Olympia. We'll make a good impression on you.

Get acquainted with our family. And a gift for you: The fabulous Fisher Space Pen!

See all the Olympia models in our brochure "Printers That Make Quality Impressions." Along with our brochure we'll tell you how to get a Fisher Space Pen—free! The pen that went to the moon—from the finest printers on earth. Call 1-800-999-6872 or send this coupon to: (USA) Olympia, P.O. Box 22, Dept. Adv., Somerville, N.J. 08876 (or Canada) Olympia, 58 Prince Andrew Place, Don Mills, Ontario, Canada M3C 3A2

Mr Mrs Ms (Please Print)

Name First Last Title Phone
Company Address
City State Zip

Printer make(s) used now (plan to make a printer purchase in month/year)
800 X 560
Twice the resolution of EGA on your Multisync.

NEW
FROM THE MANUFACTURER OF THE EGA WONDER

EGA WONDER 800™

Any Software
- 800x560 (1)
- 752x410 (1)
- 640x480 VGA (1)
- 640x350 EGA
- 320x200 CGA
- 720x350 MDA
- 720x350 Hercules
- 132 Columns

Any Monitor
- Multisync
- EGA Color
- RGB Color
- 25 kHz Color
- TTL Monochrome
- Composite Mono
- PC Portable
- Compaq Portable (2)
- Polaroid Palette

Any Time
- Windows
- GEM
- AutoCAD
- 1-2-3
- Symphony
- PageMaker
- Ventura
- VTerm
- SmartTerm
- WordPerfect
- WordStar & more

Now available from all major computer stores
Call us Today at (416) 756-0711 for more information

Circle 25 on Reader Service Card

ATI Technologies Inc.
3535 Victoria Park Ave.
Scarborough, Ontario, Canada
M1N 3J2
Tel: (416) 756-0711
Telex: 06-96640 Fax: (416) 756-0720

(1) Multisync monitors only. (2) Requires Optional Compaq Expansion Module.
Trademarks: ATI, EGA WONDER — ATI Technologies Inc. IBM, VGA, EGA, CGA — International Business Machines Corp.
THE IMPROVED VGA

Extending across barriers of graphics incompatibilities, ATI introduces a VGA improved performance card – VIP.

VIP delivers the IBM PS/2 VGA standard to IBM PC/XT/AT and Model/30 users, providing an upgrade path to the outstanding world of VGA graphics.

Totally compatible with the ATI EGA WONDER, users have the unique ability to display EGA, Color/Graphics and Hercules software on monochrome, RGB and EGA monitors.

- Compatible to IBM Video Graphics Array (VGA). All 17 modes.
- Runs EGA/CGA/Hercules & 132 column software on IBM PS/2 Analog¹, Multisync, EGA, RGB, TTL monochrome, PC Portable, Compaq Portable® monitors.
- Softsense automatic mode switching.
- Automatic analog monitor detection.
- High resolution 800 × 600 graphics for Multisync monitors with drivers supplied for Windows, Gem, Ventura, Autocad.

Call today at (416) 756-0711 for more information.

¹ 132 Column not available on IBM PS / 2 Analog Monitors
² Only Compaq via optional Compaq Expansion Module

Circle 26 on Reader Service Card
Reliability. The attribute that has made Silicon Valley Computer the world’s leading manufacturer of ruggedized IBM™ compatible equipment. Reliability proven by the successful installation of thousands of disk and tape systems monthly. Superior engineering and meticulous care in manufacturing and testing have been the foundation of this reliability since 1982. We offer a full selection of ruggedized hard-disk cards and high-quality commercial-grade disk-drive kits ranging in capacity from 21 to 512 megabytes. Also available are tape subsystems, 8- and 16-bit SCSI/ESDI/MFM/RLL disk controllers, Token Ring Ethernet controllers (Novell compatible), 3.5-inch floppies, 360 KB, 720 KB, 1200 KB, and 1440 KB floppies. Ten thousands of units are currently being used by the U.S. Navy, NASA, Pentagon R&D, major banking institutions, and numerous small businesses. All products meet or exceed stringent performance criteria. SVC established these standards to satisfy the needs of our growing list of sophisticated customers.

Compatibility. Silicon Valley Computer drives have been interfaced with most IBM PC, XT, XT286, ATs and compatibles. Over 50 clones have been tested as 100% compatible with our drives using IBM PC-DOS 3.1/3.2/3.3.

We are also the first company in the industry to supply hard disk add-on units for the new IBM Personal System 2 Model 30, Model 60, and Model 80 machines.

Service. Quality customer service is as important to us as the quality of our product. Ninety percent of all orders are shipped within 24 hours of receipt. Each order is accompanied by complete documentation, software, cables and mounting hardware. All products are available with our industry-leading two-year swap-out warranty. When you want the best product, service and reliability, at very competitive prices, call Silicon Valley Computer.

Safety in Numbers

2 year warranty
100+ G shock rating
30,000+ hours, MTBF

The Gold Card (hard-disk-card)
Silicon Valley Computer has the widest selection available.

RUGGEDIZED
21R MB 80G shock * 65 ms w/auto head lifters * 30,000 hr MTBF (MFM)
32R 80G shock * 65 ms w/auto head lifters * 30,000 hr MTBF (RLL)
40R 100G shock * 29 ms w/auto head lifters * 30,000 hr MTBF (SCSI)
40AT 100G shock * 26 ms/hd lifters * 100% AT compatible * 30,000 hr MTBF

SILENT RUNNING
21L MB 65 ms * Oxide media * 5,000,000 BPS * 10 W, 30,000 hr MTBF (MFM)
32F 65 ms * Plated media * 30 db * 5,000,000 BPS * 25,000 hr MTBF (MFM)
32F 65 ms * Plated media * 30 db * 7,500,000 BPS * 25,000 hr MTBF (RLL)
50F 62 ms * Plated media * 30 db * 7,500,000 BPS * 25,000 hr MTBF (RLL)

Hard-Disk PC Kits (half height)
21L MB 65 ms * Oxide media * 5,000,000 BPS * 10 W * 28,000 hr MTBF (MFM)
32F 65 ms * 30 db * Plated media * 7,500,000 BPS * 20,000 hr MTBF (RLL)
40R 29 ms * Plated media * 8,000,000 BPS * 10 W * 30,000 hr MTBF (SCSI)
40R 26 ms * World’s fastest 40 MB drive * 30,000 hr MTBF (MFM)
50F 62 ms * 30 db * Plated media * 7,500,000 BPS * 20,000 hr MTBF (RLL)

Hard-Disk PC Kits (full height)
30 MB 40 ms * 30,000 hr MTBF * 5,000,000 BPS (MFM)
72 26 ms * 30,000 hr MTBF * 5,000,000 BPS (MFM)
120 28 ms * 30,000 hr MTBF * Novell compatible (MFM)
150 28 ms * 30,000 hr MTBF * 10,000,000 BPS (SCSI/ESDI)
234 28 ms * 30,000 hr MTBF * 7,500,000 BPS (SCSI)
317 28 ms * 30,000 hr MTBF * 10,000,000 BPS (SCSI/ESDI)
800 100 ms * Removable WORM • Optical/laser (SCSI)

IBM Compatible Devices
60 MB Tape systems • Internal mounting, half-height DC 600 A cartridge
60 MB Tape systems • External mounting power cabinet included
40 MB Tape systems • Floppy interface DC2000 cartridge
Token Ring compatible Ethernet boards • 10 MPBS
SCSI Hard-disk tape controller • 8/16-bit switchable w/floppy
MFM Hard-disk controller • 8/16-bit • 2 W • 2K buffer
RLL Hard-disk controller • 8/16-bit • 2 W • 2K buffer
ESDI Hard-disk/floppy/IBM controller • 8/16-bit • 10 MBPS

IBM is a registered trademark of International Business Machines Corp.

PRICES TOO LOW TO ADVERTISE!
(Reader consideration • resellers, call 408 238-8838.)
Products in Perspective

What's New

89 Short Takes
SideKick Plus
Manuscript 2.0
Friendly Finder
Focal Point
PC WeatherPro
Tech*Graph*Pad 2.1

Reviews

102 Enhanced EGA and VGA Boards
115 The Zenith Z-386
121 NEC PowerMate 2
 and HP Vectra ES/12
127 The Tandy 1400 LT
134 Macintosh II Color Monitors
139 Mac SE Accelerator Boards
145 Trilogy Programming Language
155 Excel Extraordinaire
157 Microsoft Works
162 Reflex Plus for the Macintosh
169 Computing at Chaos Manor
 by Jerry Pournelle
187 Applications Only
 by Ezra Shapiro
WELCOME TO YOUR NIGHTMARE. YOUR COMPANY HAS BET THE FARM ON YOUR PRODUCT. YOUR DEMONSTRATION WOURED THE OPERATING COMMITTEE, AND BETA SHIPMENTS WERE OUT ON TIME. THEN WHAM!

ALL YOUR BETA CUSTOMERS SEEMED TO CALL ON THE SAME DAY. "YOUR SOFTWARE IS DOING SOME REALLY BIZARRE THINGS," THEY SAY. YOUR CREDIBILITY IS AT STAKE. YOUR PROFITS ARE AT STAKE. YOUR SANITY IS AT STAKE.

THIS BUG'S FOR YOU

YOU RACK YOUR BRAIN, TRYING TO FIGURE SOMETHING OUT. IS IT A RANDOM MEMORY OVERWRITE? OR WORSE, AN OVERWRITE TO A STACK-BASED LOCAL VARIABLE? IS IT SEQUENCE DEPENDENT? OR WORSE, RANDOMLY CAUSED BY INTERRUPTS? OVERWRITTEN CODE? UNDOCUMENTED "FEATURES" IN THE SOFTWARE YOU'RE LINKING TO? AND TO TOP IT OFF, YOUR PROGRAM IS TOO BIG. THE SOFTWARE DEBUGGER, YOUR PROGRAM AND IT'S SYMBOL TABLE CAN'T FIT INTO MEMORY AT THE SAME TIME. OPENING A BICYCLE SHOP SUDDENLY ISN'T SUCH A BAD IDEA.

THIS DEBUGGER'S FOR YOU

ANNOUNCING THE 386 PROBE™ BUGBUSTERS, FROM ATRON. NINE OF THE TOP-TEN SOFTWARE DEVELOPERS SLEEP BETTER AT NIGHT BECAUSE OF ATRON HARDWARE-ASSISTED DEBUGGERS. BECAUSE THEY CAN SET REAL-TIME BREAKPOINTS WHICH INSTANTLY DETECT MEMORY READS AND WRITES.

NOW, WITH THE 386 PROBE, YOU HAVE THE CAPABILITY TO SET A QUALIFIED BREAKPOINT, SO THE BREAKPOINT TRIGGERS ONLY IF THE EVENTS ARE COMING FROM THE WRONG PROCEDURES. SO YOU DON'T HAVE TO BE HALTED BY BREAKPOINTS FROM LEGITIMATE AREAS. YOU CAN EVEN DETECT OBSCURE, SEQUENCE-DEPENDENT PROBLEMS BY STOPPING A BREAKPOINT ONLY AFTER A SPECIFIC CHAIN OF EVENTS HAS OCCURRED IN A SPECIFIC ORDER.

THEN, SO YOU CAN LOOK AT THE CAUSE OF THE PROBLEM, THE 386 PROBE AUTOMATICALLY STORES THE LAST 2K CYCLES OF PROGRAM EXECUTION. ALTHOUGH OTHER DEBUGGERS MAY TRY TO DO THE SAME THING, ATRON IS THE ONLY COMPANY IN THE WORLD TO DEQUEUE THE PIPELINED TRACE DATA SO YOU CAN EASILY UNDERSTAND IT.

FINALLY, 386 PROBE'S MEGABYTE OF HIDDEN, WRITE-PROTECTED MEMORY STORES YOUR SYMBOL TABLE AND DEBUGGER. SO YOUR BUG CAN'T REACH THE DEBUGGER. AND SO YOU HAVE ROOM ENOUGH TO DEBUG A REALLY BIG PROGRAM.
A Loaded 68020 System

Designed and built in England, the Omega is a full-featured 68020-based workstation that includes a 68881 math coprocessor and 1 megabyte of zero-wait-state nonvolatile static RAM. Also included is the OS9/68K real-time, multitasking operating system from Microware Systems.

With a processor running at 12.5 MHz, other standard features of the Omega include a fully buffered 16-bit data bus with 24 address lines, a 25.5-megabyte hard disk drive, a 1.2-megabyte floppy disk drive, four RS-232 serial ports, a parallel printer port, a bidirectional high-speed 16-bit parallel interface, and an RS-485 network node.

Hardware options for the Omega include higher clock speeds of 16.67, 20, or 25 MHz. There's also a 640-by-480-pixel display controller, a 1- or 4-megabyte memory-expansion board, an intelligent network node controller, a prototyping board, an EPROM programmer, a 100-megabyte hard disk drive, and a tape backup unit.

On the software side, there's a variety of language compilers, an applications generator, a cross assembler and debuggers, and several business applications.

Contact: Lloyd I/O Inc., Omega Sales Dept., 19535 Northeast Glisan St., P.O. Box 30945, Portland, OR 97230, (800) 227-3719. Inquiry 754.

NEC's Desktop-Publishing System

If you have an urge to get into desktop publishing but feel constrained by your current display and controller, you can add NEC's Monograph System to your IBM PC or compatible and be ready to roll. A complete full-page display system, the Monograph System has a square-screen monitor; a controller board for the monitor's 1024-by-1024-pixel maximum resolution; a cable to connect the two; and driver, font, and diagnostic software.

The system's square-screen analog monitor has a 16-inch CRT with 100-dor-per-inch dot density, an aspect ratio of 1 to 1, and a flicker-free display. The monitor measures 14 by 14 by 17 inches and includes a tilt-and-swivel base.

The video-controller board requires a full-length 5-bit slot and features an Intel 82786 graphics processor running at 10 MHz. It has a CGA emulator that displays CGA-compatible software in double-scan mode, with twice the standard resolution and double the pixels per dot.

On the software side, the Monograph System comes with 15 fonts for both Aldus PageMaker and Ventura Publisher. Software drivers for Microsoft Windows and Ventura Publisher are also included, as is a full set of diagnostics.

Upgrade Your Zenith

A new upgrade kit from Zenith Data Systems (ZDS) lets you upgrade any Zenith Z-248 PC or AT-compatible system to a 16-MHz, zero-wait-state, 80386-based computer with a 32-bit bus.

The ZDS SuperSet upgrade kit contains three 32-bit system boards (I/O, 1 megabyte of RAM, and the 80386 CPU board). ZDS claims it takes less than 30 minutes to install and that it works with any Z-248 system, including those supplied to the U.S. Department of Defense.

After you install the SuperSet upgrade, your system will become a Z-386 with five open bus slots, 1 megabyte of RAM (expandable to 16 megabytes), serial and parallel ports, and sockets for both 80287 and 80387 coprocessors. The Z-386 will support dual hard disk drives, dual floppy disk drives, and a tape backup unit.

Price: $2699.

Contact: Zenith Data Systems, 1000 Milwaukee Ave., Glenview, IL 60025, (800) 842-9000, ext. 1. Inquiry 756.
Laser-Quality Printing for Under $1000

Using drop-on-demand thermal ink-jet printing technology, Hewlett-Packard claims its new HP DeskJet printer gives laser-printer-quality output at a significantly lower price. The DeskJet prints high-resolution text in multiple fonts and full-page graphics, all at 300 by 300 dots per inch. There's also a draft mode that prints at a resolution of 300 by 150 dpi. It prints standard letter-quality text at 120 characters per second, and draft quality at 240 cps.

The DeskJet has an automatic cut-sheet feeder that holds up to 100 sheets and has Courier, Courier Bold, and Courier Compressed fonts built-in. There are two accessory-cartridge ports that let you add additional fonts, expand the memory (up to 256K bytes), and provide Epson FX-80 printer emulation. Because the DeskJet uses HP's own PCL printer language, it's compatible with most software packages that support the HP LaserJet printer. The unit comes with both parallel ports and a 16K-byte printer buffer. It measures 17.3 by 8 by 14.8 inches and weighs 14.3 pounds.

Price: $995.

Contact: Inquiries Manager, Hewlett-Packard, 1820 Embarcadero Rd., Palo Alto, CA 94303, or call the Hewlett-Packard Company sales office listed in your telephone directory's white pages.

Inquiry 757.

POSTSCRIPT-COMPATIBLE LASER PRINTER

According to QMS, its QMS-PS 810 laser printer is the first Canon SX-engine-based laser printer that supports Adobe's PostScript page-description language.

The printer's built-in controller includes 2 megabytes of RAM (expandable to 3 megabytes) and 1 megabyte of ROM, and is built around a 68000 processor running at 16 MHz. The controller supports the 35 standard Adobe PostScript typefaces and also emulates the HP LaserJet Plus, HP 7475A plotter, and the Diablo 630.

The QMS-PS 810 outputs final copy at 8 pages per minute with 300- by 300-dpi resolution. It has a duty cycle of 5000 copies per month and a toner cartridge life of 4000 copies. There are two output trays: one for face-up copies; one for face-down. RS-232C, RS-422/AppleTalk, and parallel interfaces are standard.

Price: $5495.

Contact: QMS Inc., 13545 Diagonal Pkwy, Mobile, AL 36618, (205) 633-4500.

Inquiry 762.

An Ocular Mouse for the New Macs

If your new Mac's standard mechanical mouse is wearing out or wearing you out, MSC Technologies (formerly Mouse Systems) is offering an alternative. The A+ Mouse ADB optical mouse is fully compatible with the Macintosh II and Macintosh SE, as well as the Apple IIGS.

The mouse's LED reflects off a special grid pad and is read by an optical sensor. It then converts the grid-line count to movement on your screen.

According to the company, an optical mouse avoids the problems of slippage, wear, and dirt that can eventually cause problems with mechanical mice. At the same time it introduced the new mouse, MSC also dropped the price of its optical mouse for other models of the Apple from $119 to $99. All models come with a lifetime warranty.

Price: $129.

Contact: MSC Technologies Inc., 2600 San Tomas Expressway, Santa Clara, CA 95051, (408) 988-0211.

Inquiry 802.

A Duo of Drives for the PS/2

The comparatively high price and lack of availability of 3/4-inch drives for the IBM PS/2 has encouraged manufacturers other than Big Blue to enter the fray. Here are two.

The PRS-2 from Pacific Rim Systems is a 5/4-inch floppy disk drive that attaches directly to the drive B connector on the IBM PS/2 Models 50, 50, 60, and 80. It weighs a mere 3/4 pounds and consumes just 4 watts of power without having to use any external AC connections. The company claims you can install the PRS-2 in about 5 minutes, and says the unit's rated time before failure is 11,000 hours.

Price: $300.

Contact: Pacific Rim Systems Inc., 2570 Barrington Court, Hayward, CA 94545, (415) 782-1013.

Inquiry 759.

Micro Channel Modem

If you own an IBM PS/2 Model 50, 50, or 80, you can now telecommunicate at 2400 bps with an internal modem for the Micro Channel bus. The Ven-Tel 24/2 internal modem comes with a configuration file that automatically sets it up for PS/2 operation. You don't need to set any option switches, and it supports communications ports 1 through 8.

Ven-Tel says the 24/2 is fully compatible with the AT command set and includes automatic fallback to 1200 or 300 bps, as well as extensive self-test capabilities. It has a jack for an external telephone, is covered by a 5-year warranty, and is available with Crosstalk XVI software.

Price: $549.

Contact: Ven-Tel Inc., 2121 Zanker Rd., San Jose, CA 95131-2177, (408) 538-5121; in California, (408) 436-7400.

Inquiry 761.

WHAT'S NEW
For problems involving engineering calculations or scientific analysis,
the answer is MathCAD.

Transporting an iceberg to Southern California is a formidable task. Calculating the variables is just as demanding. How many tugboats would be needed to tow the ice mass? At what cost? How much fresh water would be lost?

Innovative solutions require extraordinary tools. For problems involving calculations or what-if analysis, the answer is MathCAD.

MathCAD is the only PC-based software package specifically designed to give technical professionals the freedom to follow their own scientific intuition.

Requirements: IBM or compatible

HOW MANY GLASSES OF WATER

You decide how to solve the problem – MathCAD does the "grunt work."

- Ends programming and debugging.
- Recalculates as variables change.
- Generates quick plots.

Easy to learn and use, MathCAD operates interactively in standard math notation. And its built-in functions provide all the power you need to solve real-world problems. MathCAD handles matrix operations, solves simultaneous equations, works with real and complex numbers, does automatic unit conversion, displays Greek characters and other math symbols, performs FFTs and much more.

There's never been a better way to get fast, accurate solutions to analytical problems. That's why 20,000 engineers and researchers are using MathCAD daily in applications as diverse as fluid mechanics, signal processing and molecular modeling.

MathSoft
Software Tools for Calculating Minds

CAN THIS ICEBERG SUPPLY TO L.A.?
What's New

Peripheral

Numbers for Your Portable

Portables or desktop computers without dedicated numeric keypads can be a real pain if you need to enter large amounts of numeric data into your programs. Numerikeys, an auxiliary numeric keypad from Genest Technologies, solves the problem by connecting between your computer’s parallel printer port and printer cable.

Numerikeys has all the keys you need for most spreadsheet applications, including separate numeric, cursor-control, symbol, and function keys. The unit doesn’t interfere with your parallel port, and it works full-time, even while your computer is printing. **Price:** $129.

Contact: Genest Technologies Inc., 1331 East Edinger Ave., Santa Ana, CA 92705, (800) 826-9641; in California, (714) 547-0880. Inquiry 763.

Run PC Bus Card with the Micro Channel

A product called the TransFormer 2 is a converter board that lets you connect PC bus add-in cards into IBM’s Micro Channel bus in PS/2 Models 50, 60, and 80. The board plugs into your PS/2, and you connect it via cable to your PC expansion bus.

The TransFormer 2 package includes the TransFormer board, a cable, and the ADC XI Card, a PC expansion interface board. You can also use the unit with Advanced Digital Communication’s current bus expansion box. The company says you can also use it with all ADC Personal Network software, including Novell NetWare, and that it will be compatible with OS/2. **Price:** $695.

Contact: Advanced Digital Corp., 5432 Production Dr., Huntington Beach, CA 92649, (714) 891-4004. Inquiry 765.

Economical Portable Modem

Tiny transportable modems have recently become popular, but with an often considerable price difference over conventional modems. Now Delta Gold Computer Corp. has, at this writing, the lowest-cost full-featured portable modem.

The DM-1200 is a 300-bps Hayes-compatible modem that measures 2 1/4 by 1 by 3 1/2 inches—about the size of a pack of cigarettes—and weighs just eight ounces. The modem has 28 characters of nonvolatile configurable memory, remote ring, tone sensing, busy- and dial-tone monitoring, and a low-battery light. You can power the DM-1200 off a 9-volt battery, an automobile lighter adapter, or standard AC power. **Price:** $99.

Contact: Delta Gold Computer Corp., 260 Forbes Blvd., P.O. Box 809, Mansfield, MA 02048, (800) 255-3358; in Massachusetts, (617) 339-5575. Inquiry 768.

A Hard Drive for the Amiga 500

Supra Corp., which has been making hard disk systems for Amigas since their introduction, now has a version of its SupraDrive hard disk system for the newest Amiga—the 500.

The SupraDrives are available in capacities of 20, 30, 60, and 250 megabytes, and are ready to be plugged in and used immediately. The drives plug into the Amiga 500’s expansion connector and use Supra’s own proprietary interface for high-speed data transfer. The data channel is capable of burst data transfers of over 250K bytes per second.

Each SupraDrive has an SCSI expansion port, and you can add plug-in RAM modules with either 1- or 2-megabyte capacities. Both the hard disk drives and any expansion RAM are powered by SupraDrive’s internal power supply. **Price:** $995 to $3995.

Shades of Gray For Your Mac II

If you’re using your Macintosh II for desktop publishing or other applications that require photo-realistic black-and-white images, the Viking Analog gray-scale monochrome monitor from Monitron may be your ticket.

The 19-inch monochrome monitor uses square pixels that let it precisely match screen and laser-printed output at a screen resolution of 72 dpi. It comes with a controller that plugs into the Mac II’s NuBus slot. A PC-compatible controller is also available. **Price:** $2695.

Contact: Monitron Corp., 5740 Green Circle Dr., Minnetonka, MN 55343, (612) 935-4151. Inquiry 766.

Touch Your Keyboard

Honeywell’s new TCE434 Series Touch Panel Keyboard is a flat-panel unit that’s sealed so it’s completely protected in environments where dust, grime, moisture, or liquid spills could create problems.

The 84-key keyboard uses membrane switches with metal snap disks and an embossed touch surface for tactile feedback. It’s compatible with the IBM PC, AT, and compatibles, and automatically selects the correct interface. The TCE434 includes its own dedicated 8-bit processor, ROM, RAM, I/O lines, timer/event counter, and electronic shift. To keep the throughput moving, the electronics include a 16-character FIFO buffer. **Price:** $275.

Contact: Honeywell Inc., Keyboard Division, 4171 North Mesa St., Building D, El Paso, TX 79902, (915) 543-5503. Inquiry 764.

continued
New! Introducing Turbo C 1.5—the best optimizing compiler gets even better!

The professional optimizing compiler for less than $100

Turbo C is a technically superior production-quality compiler. (Borland's equation solver, Eureka, is written in Turbo C.) And our Turbo C 1.5 offers a new library of the highest presentation-quality graphics in the industry—the kind you'll see in Quattro, our new professional spreadsheet.

And spectacular graphics are just part of the brand-new features. Turbo C 1.5 enhancements also include:

- A professional-quality graphics library of over 70 functions
- A librarian that allows you to build your own object module libraries
- Context-sensitive help for the language and the library routines
- Text/video functions, including windows
- 43- and 50-line mode support
- VGA, CGA, EGA, Hercules, and IBM 8514 support
- File search utility (GREP)

Turbo C 1.5 enhances:

- Sample graphics applications
- More than 100 new functions

For professional-quality C at an affordable price, no one else comes close to Turbo C. Because no one can deliver technical superiority like Borland.

60-Day Money-back Guarantee**

For the dealer nearest you or to order, call

(800) 543-7543

It's easy to upgrade to Turbo C 1.5!

Just complete this coupon and mail it with payment before June 30, 1988 or, call us at (800) 543-7543 and be ready to give our operators your name, credit card number, and the serial number on your Turbo C master disk.

Turbo C 1.5 Upgrade Price

CA and MA residents add sales tax:$33.50
Shipping and handling:
In US $5.00 (Outside US add $10)
Total amount enclosed:

Mail include your Turbo C serial # Return this coupon and the Turbo C RTL source code registration form from your Turbo C manual along with your payment by March 31, 1988 and receive your Turbo C 1.5 upgrade for free (No phone orders please.)

Turbo C 1.5 Runtime Library

CA & MA residents and sales tax
Shipping includes shipping to all US cities:
Price includes shipping to all US cities:

$150.00

$____

Please specify delivery size: □ 5W □ 3W
Method of Payment: □ Visa □ MC □ Check □ Bank Draft
Credit card expiration date
Card # _____
Name
Address
City State Zip
Phone

Mail coupon to: Turbo C 1.5 Upgrade Dept., Borland International
4545 S. Oak Canyon Drive, Scotts Valley, CA 95066

This offer is limited to one upgrade per valid product serial number. Not good with any other offer from Borland. U.S. residents may pay for the Turbo C 1.5 upgrade in U.S. dollars drawn on a U.S. bank. CODs and purchase orders will not be accepted. Use Visa or MasterCard. CA & MA residents add sales tax.
Process Color Images In Real Time

The DT2871 from Data Translation is a PC AT-compatible plug-in board that captures color images from standard video sources for image processing. In addition to handling real-time color capture and display, the DT2871 performs real-time conversions between RGB and hue-saturation-intensity (HSI) images. According to the company, HSI representations are preferable to RGB because they allow high-speed image processing of color images.

Examples of hue-saturation processing made possible by the DT2871 include color identification, edge enhancement, desaturation/saturation, colorimetric analysis, automatic coloring of monochrome images, object definition, tinting, retouch, and other special effects. Intensity-processing capabilities include noise reduction, arithmetic and logic operations, frequency-domain analysis, and compression/decompression.

The DT2871 handles 30 frames per second at 512-by-512-pixel resolution with over 16 million displayable colors. You can connect it directly to other Data Translation boards, such as the DT2858 Auxiliary Frame Processor or DT7020 Floating Point Array Processor, to speed up computation-intensive operations.

The DT2871 has 1 megabyte of frame store memory—enough to store a single color image in three 256K-byte buffers; the fourth 256K-byte buffer supports overlaying of text and graphics on color images. Data Translation also provides a software library package called Aurora for controlling the DT2871. The library is callable from Microsoft Pascal, C, and FORTRAN.

Price: $2995; Aurora software, $995.

Contact: Data Translation Inc., 100 Locke Dr., Marlborough, MA 01752, (617) 481-3700.

Inquiry 769.

Supercharge Your Printers

The Printer Performance Card is an intelligent printer interface that fits into any IBM PC or compatible and lets you to up to three computers share up to seven printers. The card also has its own 256K-byte internal buffer (expandable to 512K bytes) that can store and feed documents to the printer you want to use from a pop-up menu.

Equipped with its own dedicated microprocessor, the Printer Performance Card has six standard parallel and two RS-232C serial ports. You can use the card in a network server, and it’s shipped with memory-resident software that lets you pick the printer you want to use from a pop-up menu. Price: $399.

Contact: Dresselhaus Computer Products, 8560 Vineyard Ave., Suite 405, Rancho Cucamonga, CA 91730, (800) 368-7737.

Inquiry 770.

Tape Interface for the AT

You can use industry-standard 9-track computer tape drives with your IBM PC, AT, or compatible with Catamount's interface cards. The cards are available in two different models: one for the IBM PC or compatible, the other for the IBM AT or compatible.

For the PC, the ATC-8 is an 8-bit FIFO interface on a half-slot card. For the AT, the ATC-16 is a full-length card with 16-bit I/O and 128K-byte buffering.

Price: ATC-8, $1095; ATC-16, $1295.

Contact: Catamount Corp., 2243 Agate Court, Simi Valley, CA 93065-1898, (805) 584-2233.

Inquiry 771.

Digital Sound From Your PC

Using the VP620E add-in board in your IBM PC or compatible, you can convert any audio signal in the 20-Hz to 7-kHz range into a digital signal for real-time recording and playback using your computer’s disk. The ¾-length board uses ADPCM (Adaptive Differential Pulse Code Modulation) and takes its input via an RCA jack.

Using software, you can select a sampling rate of either 8 or 16 kHz. You can then manipulate or randomly access the digitized audio. Since the board operates in the background, it works at a maximum throughput rate of less than 20 percent. Since it has selectable interrupts, you can use multiple boards for applications such as stereo or simultaneous record/playback.

Price: $395.

Contact: Antex Electronics Corp., 16100 South Figueroa St., Gardena, CA 90248, (800) 621-0849, ext. 350; in California, (213) 532-3092.

Inquiry 772.

LOW-COST HI-RES

CADcontroller is a new multifunction graphics card from GTCO that’s designed especially for CAD applications on the IBM AT and compatibles. It displays color graphics in resolutions of up to 1024 by 768 pixels.

Although it’s at its best when used with wide-bandwidth high-resolution monitors, you can configure CADcontroller to work with lower-cost (lower-bandwidth) monitors at either 1024- by 768-pixel interlaced or 800- by 600-pixel noninterlaced resolutions.

CADcontroller has a standard RS-232C serial port. An 8-megabyte RAM expansion board is also available.

Price: $777; RAM expansion, $495.

Contact: GTCO Corp., 7125 Riverwood Dr., Columbia, MD 21046, (301) 381-6688.

Inquiry 773.

continued
The LOGITECH HiREZ Mouse—
the only mouse expressly designed for
high-resolution screens.
With a resolution of 320 dots-per-inch (as compared with 200 dpi or less for
ordinary mice), it covers the same area
on your high-res screen, but needs less of
your desk to do it. More than 50% less.
Saving you valuable desk space, and
effort mouse maneuvers that used to
require a sweep of the hand are now
reduced to a flick of the wrist.

Which makes this new mouse a
hand's best friend. And a more reliable,
long-lasting companion—fully compatible
with all popular software, and equipped
with a Lifetime Guarantee.
Equipped, too, with other advantages
exclusive to all Logitech mice: A unique
lightweight ergonomic design. Low-
angled buttons for maximum comfort
and minimum fatigue. An exclusive tech-
nology that guarantees a much greater life
span. An exceptionally smooth-moving,
dirt-resistant roller ball. And natural
compatibility with all PCs, look-a-likes,
and virtually any software.
So if you've got your eyes on a
high-res screen, get your hands on the
one mouse that's agile enough to keep
up with it.
The LOGITECH HiREZ Mouse.
For the dealer nearest you, call 800-
231-7717 (800-552-8885 in California),
or write Logitech, Inc., 6505 Kaiser Drive,
Fremont, CA 94555. In Europe, call or
write: Logitech Switzerland, European
Headquarters, CH-1111 Romanel/Morges,
Switzerland (+41-21-869-9656).
Though most mice out there look pretty much alike, they're not all equal in performance. It pays to be just a little choosy to make sure you end up with the right mouse for your needs.

Starting with software. If you want full compatibility with all of your software, all you have to do is look for a mouse with the Logitech name. There are four in all, each one designed for different hardware needs.

THE HiREZ MOUSE

If you've got your eyes on a high-resolution screen, the mouse to get your hand on is the new LOGITECH HiREZ Mouse.

With a resolution of 320 dots-per-inch (as compared with 200 dpi or less for ordinary mice), it covers the same area on your high-res screen but needs less of your desk to do it. More than 50% less. Saving you valuable desk space, and effort: mouse maneuvers that used to require sweeps of the hand are now reduced to a flick of the wrist.

Which makes this new mouse a hand's best friend. And a more reliable, long-lasting companion. And, like all Logitech mice, it's fully compatible with all popular software, and equipped with a Lifetime Guarantee.

THE SERIES 2 MOUSE

For those who've chosen the Personal System/2, the most logical choice is the LOGITECH Series 2 Mouse. It's 100% compatible with PS/2, and plugs right into the mouse port, leaving the serial port free to accommodate other peripherals.
THE ALL-PURPOSE MOUSE: SERIAL OR BUS

Most people find our standard mouse is still the best choice for their systems. It's available in both bus and serial versions, one of which is sure to fit perfectly with your hardware. And with all your favorite software—whether mouse-based or not.

It's hardly an accident that only Logitech offers you such a complete selection—we're the only mouse company to design and manufacture our own products. We make more mice, in fact, than anyone else. Including custom-designed models for OEMs like AT&T, DEC, and Hewlett-Packard.

The three mice pictured to the left come with all this expertise built right in. Which explains an interesting paradox: while you may pay less for a Logitech mouse, you'll surely get more in performance.

And in comfort. With a unique lightweight ergonomic design. Low-angled buttons for maximum comfort and minimum fatigue. An exclusive technology that guarantees a much greater life span. An exceptionally smooth-moving, dirt-resistant roller ball. And natural compatibility with all PCs, look-a-likes, and virtually any software.

All of which leads to an inescapable conclusion: if you want to end up with the right mouse, start with the right mouse company.

Logitech. We've got a mouse for whatever the task at hand.

For the dealer nearest you, call 800-231-7717

Logitech, Inc., 6505 Kaiser Drive, Fremont, CA 94555.
Logitech Switzerland, European Headquarters,
CH-1111 Romanel/Morges, Switzerland
(800-552-8885 in California). Or fill out and mail the coupon below to: Logitech, Inc., 6505 Kaiser Drive, Fremont, CA 94555. In Europe, call or write: Logitech Switzerland, European Headquarters, CH-1111 Romanel/Morges, Switzerland (+41-21-869-9656).
Analyze Those Waveforms

The MacSpeech Lab II is a complete system for speech, music, and waveform analysis using Apple's Macintosh II. According to GW Instruments, typical applications for the lab include development and testing of audio equipment, voice and sound analysis by crime laboratories, speech disorder analysis, speech therapy, speech-recognition and speech-synthesis technology development, and other assorted acoustic studies.

The heart of MacSpeech Lab II is the MacADIOS data acquisition board, along with the MacADIOS II antialiasing filter daughterboard. Also included are a microphone, speaker, record and play amplifiers, and MacSpeech Lab II software.

The system can digitize complex waveforms up to 4 1/2 minutes long at sample rates of from 5 to 80 kHz. You can then view, play, analyze, edit, or print them. MacSpeech Lab II is available either solo or complete with a Macintosh II and Apple LaserWriter Plus, or with the Macintosh II without the printer.

Price: $6999; with Mac II and printer, $16,350.

Contact: GW Instruments Inc., P.O. Box 2145, Cambridge, MA 02141, (617) 625-4096.

Inquiry 774.

Companionship for Your Computer

Cyber Corp. stresses that it's not a network or multitasking device, but what its product—named Companion—can do is add an extra keyboard and monitor to your system up to 250 feet away from your system unit.

Companion uses a connector box and special circuitry to use a single 24-inch cable for both keyboard and monitor. It can be switched from "shared," which allows both local and remote keyboards and screens to be active, to "private," for when you don't want the remote screen visible.

According to its maker, Companion works with all IBM PCs and compatibles. If you're using monochrome or color monitors, you can get Companion in cable lengths of 25, 50, 100, and 150 feet.

Price: $199 and up.

Contact: Cyber Corp., 1860-B Sparkman Dr., Huntsville, AL 35816, (205) 830-1100.

Inquiry 775.

Serious Joy(stick)

The "ultimate control for flight-simulation software" is what CH Products calls its FlightStick joystick for the Apple II and IBM PC and compatible families. The FlightStick has a contour pistol grip, with both trigger and fire buttons. The IBM version also has a thumbwheel control for throttle control on both Microsoft's Flight Simulator and Electronic Art's Advanced Flight Trainer.

The FlightStick also has dual-axis trim controls, and a 5-foot cable with thumb-screws. CH Products says the internal potentiometers are rated at 4 million life cycles, and that its return-to-center accuracy is ±.5 percent.

The Apple model of the FlightStick works with the Ile. IIfc, and IIGS. The IBM model is compatible with the PC, XT, AT, and compatibles, as well as the PS/2 series. On the IBM, you'll need a game port, and CH Products just happens to have its new Gamecard III Plus available. The board has a three-position switch that adjusts the gameport interface to three different values.

The company claims the board also lets you use joy-sticks and computer games with AT compatibles at up to 16 MHz.

Price: Apple version, $74.95; IBM version, $79.95; Gamecard III Plus, $59.95.

Contact: CH Products, 1225 Stone Dr., San Marcos, CA 92069, (619) 744-8546.

Inquiry 776.

Coprocessor Speedup

Due to the variation in speed rating of 80287 arithmetic coprocessor chips, most computer systems run these chips at only 66 percent of the speed of the 80286 processor. But a company called Semiconductor Physics has a solution. Its Co-Clock is an 80287 speedup board that's sold without the coprocessor chip.

Available in rated frequencies of 10 and 12 MHz, the Co-Clock operates at the precise rated frequency of the 80287. Installation is a simple matter of inserting the 80287 into the Co-Clock, and inserting the Co-Clock into your system's 80287 socket.

Price: $60.

Contact: Semiconductor Physics Inc., 639 Meadow Grove Place, Escondido, CA 92027, (619) 741-3360.

Inquiry 777.

FRIENDLIER THAN THE AVERAGE MOUSE

Mouse-Trak looks like a trackball, and it is. But it's compatible with a mouse. According to Its Systems, Mouse-Trak is more accurate and requires less effort to use than your garden-variety mouse.

The essence of Mouse-Trak is a 2-inch polished phenolic ball. Using a DIP switch, you can set the on-board buttons for either momentary contact or toggle on/off. There's also a speed-control button that gives you a 4-to-1 change in cursor velocity.

Five versions of Mouse-Trak are available. The two standard RS-232C versions (two or three buttons) emulate both the Microsoft Mouse and the Mouse Systems PC Mouse, respectively. The three quadrature versions are replacements for mice that operate with systems ranging from Atari to Apple, to more powerful systems such as Sun, Apollo, VAX, and Tektronics.

Price: $119 to $179.

Inquiry 778.
Spreadsheet growing too big and complex? You need a database. No time to learn a database? You need the ORACLE database add-in for Lotus 1-2-3.

If you have Lotus 1-2-3 and $199, you can now solve the six biggest spreadsheet problems:

1. Has your spreadsheet grown so complex you can't keep track of the formulas any more?
2. Have you had to break down your large spreadsheet into many smaller ones?
3. Do you have to manually re-enter data that's duplicated in several spreadsheets?
4. Do you have to manually manipulate rows into meaningful groups?
5. Is recalculating time for seldom-used reference variables eating you alive?
6. Do you wish you could simultaneously share spreadsheet data with other PCs, as well as with minis and mainframes?

Now, ORACLE for 1-2-3 turns your spreadsheet into the world-class database you already know how to use. And without learning a new database language, you can use the very same ORACLE that's the most requested DBMS by minicomputers and mainframe users. All for only $199.

ORACLE for 1-2-3 lets data relationships replace ever more complex spreadsheet formulas. No more time is wasted recalculating seldom-used reference cells. In short, ORACLE puts data back where it belongs. In a database.

With simple extensions to existing Lotus menus, ORACLE for 1-2-3 lets you create new database tables right from rows and columns in your spreadsheet. When you query the database from a cell, you immediately see current database information. Update a spreadsheet cell, and the database is simultaneously updated. A range of cells in your 1-2-3 spreadsheet could really be a window into an online micro, mini or mainframe database anywhere in the world. It's network ready, from LAN to WAN. All as easy as... 1-2-3.

ORACLE FOR 1-2-3: THE NEW STANDARD

ORACLE is the number one database for mainframes, minicomputers and workstations. Software Digest recently rated ORACLE the most powerful and versatile relational DBMS for the PC. And ORACLE is based on SQL, the data management standard endorsed by IBM, ANSI, ISO and the federal government. Now, there is a new standard: ORACLE for 1-2-3. It has the simplicity you’ve always had, with the power you’ve always wanted.

THE ADVANTAGES OF DATABASE TECHNOLOGY

If your data is in a database, your spreadsheet only has to deal with the data you’re interested in. Which means spreadsheet performance is dramatically improved. But this is just the beginning.

Multiple users can share the same data. Different users can have different levels of security. Mainframe-class data integrity and error recovery mean never having to say “Oopps!”

- **CREATE YOUR DATABASE FROM SPREADSHEET COLUMNS AND ROWS.** Familiar menus and context-sensitive help guide you through the process.
- **QUERY YOUR DATABASE AS EASY AS 1-2-3.** Have the query built for you, or write SQL yourself.
- Learn why SQL is the industry data management standard.

- **UPDATE, YOUR DATABASE, AS YOU UPDATE SPREADSHEET CELLS.** In update mode, changes in your spreadsheet become changes in your database. And if you make a mistake, you can...
- **COMMIT OR UNDO CHANGES.** Finally, an “UNDO” command for 1-2-3. When your database changes are complete, you can COMMIT them, or ROLLBACK your database and your spreadsheet.

- **AROUND YOUR OFFICE OR AROUND THE WORLD, ORACLE for 1-2-3 is network ready for data distribution on LANs and WANS.** So data on PCs, workstations, minis and even on mainframes appears as if it’s on your local hard disk.

HEARD ENOUGH?

WE’LL PAY SALES TAX AND SHIPPING IF YOU FILL OUT AND MAIL THE ATTACHED COUPON, OR CALL TODAY. YOU CAN ALSO SEE A DEMONSTRATION AT YOUR FAVORITE COMPUTER STORE.

Dear Oracle,

ORACLE for 1-2-3, Oracle Corporation, 20 Davis Drive, Belmont, CA 94002.

Yes, send me an ORACLE/DBMS/1-2-3 software package (DOS, V2.0). In addition, I’d like to receive:

- [] Personal 1-2-3 training
- [] ORACLE/DBMS/1-2-3 training
- [] ORACLE/DBMS/1-2-3 and 1-2-3: The Complete Training Guide
- [] Additional Getting Started Guide

Call 1-800-ORACLE! Ext. 149 Today.

MARCH 1988 • BYTE

Oracle is a registered trademark of Oracle Corporation. The following are also trademarks: Lotus and 1-2-3 of Lotus Development Corporation; IBM of International Business Machines.

TR8A
BASIC with the CALL screens, and you can access over 60 functions through saves the program automatically help windows, and data-entry below. When you close the Q Windows Management Under QuickBASIC

When you open a window, the program automatically saves the screen contents below. When you close the window, it restores the screen. You have control over the style, size, and attributes of each window. Each window also has its own cursor, so you can write text to a window, and the window scrolls when it becomes full.

QuickWindows is written in assembly language. It runs on the IBM PC, XT, AT, or compatible with a hard disk drive or two floppy disk drives and MS-DOS or PC-DOS 2.0 or higher. You need at least 320K bytes of available memory, and 512K bytes is recommended. You also need Microsoft’s QuickBASIC and anEGA or CGA video board. The program also supports the Microsoft Mouse.

Price: $79; $99 with source code.
Contact: Software Interphase Inc., 5 Bradley St., Suite 10, Providence, RI 02908-2304, (401) 274-5465.
Inquiry 779.

HP’s Icon-Based Application Environment

The NewWave environment combines object-management technology, artificial intelligence, and a graphical user interface. It lets you integrate data from multiple applications including text, graphics, voice, and scanned images. Hewlett-Packard reports that the data is linked seamlessly. “Hot connects” between applications make sure that when you modify one object, all others are updated as needed.

NewWave can run any MS-DOS application, but you need to write code to make it appear as a seamless object in the NewWave environment. You can run the MS-DOS application from within NewWave, represent the data from the application as an icon, or fully integrate the application into NewWave by hot connects.

A task manager (the Agent) is like a macro processor but can record comments applying to different MS-DOS applications. The Agent uses scripts written in the NewWave Task Language, and you can use it to automatically execute repetitive tasks at a particular date and time.

NewWave runs on the IBM PC, XT, AT, and compatibles with Microsoft Windows 2.0.

Price: $895.
Contact: Hewlett-Packard, P.O. Box 10301, Palo Alto, CA 94303-0890, (800) 367-4772; in California, (415) 857-1501.
Inquiry 780.

Application Modeling

Model-S lets you develop a working model of process-related applications. To create a model, you break the application into frames, such as menus, data-entry panels, and reports, which may include both text and data. You then link the frames into a working model, test it during development, and display the flow diagram; then you can export it to a database.

You can develop models with up to 200 frames, and for longer models you connect them to form super-frames. Frame size is 60 rows by 160 columns, and you can have up to 200 titles and data fields. You can link it to as many as 60 other frames.

The program runs on the IBM PC and compatibles with a hard disk drive, one or more floppy disk drives, PC-DOS or MS-DOS 2.0 or higher, and at least 256K bytes of RAM. Color is supported.

Price: $149.
Inquiry 781.
Perfect matches to DEC user needs. Hip. Hip. And Hooray.

One-size-fits-all is an attribute best reserved for inexpensive socks. In the realm of PC-based emulation and communications software for DEC mainframe users, it's important to match specific user needs with specific product attributes. We have.

SmarTerm® 240 features exact four-color emulation of a DEC® VT241 terminal. Along with delivering full-screen ReGIS® and Tektronix® 4010/4014 graphics, SmarTerm 240 offers precise VT220, VT102, VT100, and VT52 text emulation.

For non-graphics applications, SmarTerm® 220 duplicates virtually every SmarTerm 240 text, communication, and ease-of-use feature. Three error-free file transfer protocols, including Kermit and Xmodem, are provided. Downloading minimizes on-line time requirements to boost overall system efficiency. And an optional network package allows direct LAN access to shared modems, printers, as well as host mainframes.

As SmarTerm 240 and 220 focus on graphics and text, new SmartMOVE® makes PC-to-the-rest-of-the-World communications sharper than ever. Speed connect, auto redial, and background file transfer features make this VT100 emulator a loud and clear choice for advanced communications requirements.

Graphics, text, and communications. If you're looking for a perfect fit, seek the software sized and priced to match your needs. Persoft has it. Period.

See us at DEXPO West Booth 1024, visit your dealer, phone us at 608-273-6000, or use inquiry code 50.

© 1987 Persoft Inc. All rights reserved. Persoft, SmarTerm, and SmartMOVE are registered trademarks of Persoft Inc. DEC, VT and ReGIS are trademarks of Digital Equipment Corporation. Tektronix is a registered trademark of Tektronix Inc.
Ansys-PC for the Mac

Swanson Analysis has ported Ansys-PC/Linear 4.3 to the Macintosh II. PC/Linear is a finite-element analysis (FEA) program for static, modal, and dynamic response, and random vibration in one, two, and three dimensions. The analyses are performed on models built with a library that contains shell, solid, beam, pipe, gap, and other elements.

Other Ansys programs to be ported to the Mac include Ansys-PC/Thermal 4.3, a stand-alone program for steady-state and transient thermal analyses; Ansys-PC/Solid 4.3, an interactive preprocessor for building solid FEA models; and Ansys-PC/Opt 4.3, for design optimization.

Ansys programs require 2 megabytes of RAM, a 40-megabyte hard disk drive, and a 640- by 480-pixel 256-color monitor.

Price: $5400; $300 per month to rent.

Contact: Swanson Analysis Systems Inc., Johnson Rd., P.O. Box 65, Houston, PA 15342-0065, (412) 746-3304.

Inquiry 783.

Viewing Computer-Aided Waveforms

CompView lets you view computer-aided waveforms using fast-Fourier-transform-based digital-signal analysis. The program is menu-driven and has built-in functions of sine, pulse, triangular, and modulated waveforms for plotting graphics in time and frequency domains.

CompView also has several ideal first- and second-order filters for plotting impulse and amplitude responses. You can edit data in ASCII format and save it to disk.

CompView is not copy-protected. It runs on the IBM PC, AT, XT, and compatibles with PC-DOS or MS-DOS 2.0 or higher with 256K bytes of RAM and a CGA.

Price: $49.

Contact: Bsoft Software, 444 Colton Rd., Columbus, OH 43207, (614) 491-0832.

Inquiry 784.

Scientific Data Processing

Spectra Calc, a program for processing scientific data, displays up to 20 data files simultaneously and lets you expand data in real time with full axis labeling, according to Galactic Industries. A WYSIWYG mode lets you produce presentation-quality plots, the company reports. The plots can contain numerous font types, colors, axis labels, and other annotation tools.

The program has an optional arithmetic module that provides preprogrammed applications including smoothing, curve fitting, and Fourier domain filtering.

The program also includes an application language, which is designed to process arrays and is optimized for the 80x87 coprocessor. With expanded memory, the program can handle arrays as large as 2.4 megabytes.

A communication program within Spectra Calc lets you transfer data between it and any remote computer or instrument that supports a serial port. It supports standard ASCII file transfers, as well as Kermit and XMODEM protocols.

Price: $695; arithmetic module, $395.

Contact: Galactic Industries Corp., 417 Amherst St., Nashua, NH 03063, (800) 862-6004; in New Hampshire, (603) 881-7877.

Inquiry 785.

Ray Tracing

Tracer PC offers you ray-tracing capabilities with modeling and rendering features. Imagery includes reflections, refractions, spectral absorption, an unlimited number of multiple colored light sources, shadows, and variable levels of antialiasing. You can have the following features available: arbitrary viewer location, arbitrary center of view, variable lens length, and variable output resolution; you can also simulate water equations.

The program's modeling capability lets you do surfaces of revolution, extrusion, and curved surfaces for complex parts, as well as quick primitives such as cones, spheres, cubes, cylinders, and arrows. You can also generate quick multiple views with hidden-line removal.

To run Tracer PC, you need an IBM PC with at least 640K bytes of RAM, a math coprocessor, a 40-megabyte hard disk drive, a mouse or digitizing tablet, and a Targa 24- or 32-bit graphics card or a Number Nine Revolution 32-bit graphics board.

Price: $3000.

Contact: Ray Tracing Corp., 2516 Via Tejon, Suite 316, Palos Verdes Estates, CA 90274, (213) 373-0520.

Inquiry 786.

Linear Design Tool

Unlike Spice-based linear-circuit-analysis programs, LCAS uses a single program with analysis, graphing, printing, file-management functions, and an integrated circuit editor. LCAS is command-driven from a spreadsheet-like menu, and the circuit editor is cell-based. Basic circuit components include delay lines, transmission lines, microstrip, and phase-locked loop components. Graphics functions let you plot, overlay, add, and subtract the magnitude, phase, and group delay responses of circuits. You can output graphs to disk files or to Epson or IBM graphics-compatible dot-matrix printers.

LCAS runs on the IBM PC, XT, AT, and compatibles with at least 640K bytes of RAM and a CGA or EGA video adapter. It will also use an 8087 or 80287, if available. **Price:** $149.95.

Contact: Datum Systems, P.O. Box 4720, Santa Clara, CA 95054-0720, (408) 988-0858.

Inquiry 787.
What you see above isn't the late-night vision of an overworked design engineer.

Rather, it's blood—ready to be computer assayed at the touch of a button in a hospital operating room—on a new blood gas analyzer that works twice as fast as ever before. All to save time, money, error—and lives.

This breakthrough for anesthesiologists was created by NOVA Biomedical. And made possible by AVOCET, acclaimed as the best source for professional-quality assemblers, simulator/debuggers and cross-compilers for microprocessor and microcontroller software development.

Let AVOCET turn your PC or VAX into a fast, powerful, integrated development system in 48 hours, even overnight.

AVOCET can help you turn more good ideas into real products in less time.

Just call us now and we'll get you up and running with what EDN calls "the most flexible, easy-to-use, high-speed development tools"—everything you need to turn your computer into a sophisticated personal development system.

All at a modest price. From a single source. Backed by the reassurance of a technical hotline. So friendly, knowledgeable, immediate-response support is always as close as your phone.

Start with the industry standard:

AVOCET AVMAC® Assemblers.

Multiply your productivity with NEW Avocet C®.

Introducing Avocet C®—professional-quality optimizing cross compilers for the Z80, 6840, 8086, 8051 and more.

Avocet C gives you quick compilation and compact, fast-running object code. And yes, it supports the full C language, including many ANSI extensions.

Of course, Avocet C is also compatible with our AVMAC assemblers. So you can drop into assembly language when you need to work magic at the bits-and-bytes level.

Test with the best: AVSIM® Simulator/Debuggers.

NOVA Biomedical design engineers rate AVSIM "Number One" for checking programs—quickly and reliably.

AVSIM test target µP/µC code right on your PC, with no special hardware. It can't be crushed by program bugs. And the full-screen display gives you instant visual access to the entire CPU: flags, registers, memory, I/O ports and on-chip peripherals. Highly-rated by EDN, "only AVSIM is sophisticated enough to let you set unlimited breakpoints and traps."

AVOCET SYSTEMS, INC.
THE SOURCE FOR QUALITY PERSONAL µP DEVELOPMENT TOOLS.
POSTSCRIPT® from Adobe Systems started a revolution in business communications. That's why you'll find POSTSCRIPT in virtually every popular laser printer sold today.

POSTSCRIPT, the page description language, is the unanimous choice for some very good reasons. POSTSCRIPT gives you the option of printing from an IBM® PC, Macintosh®, or mini/mainframe.

With so many printers to choose from, you won't be tied to a single vendor. And that gives you the flexibility to buy what's best for your company's needs. Since POSTSCRIPT is device independent, you can design a document, then professionally print it later at a higher resolution.

You can also choose from hundreds of software programs supporting POSTSCRIPT. And POSTSCRIPT lets you combine text, line art, and even digitized photographs on the same page.

POSTSCRIPT from Adobe Systems. The only two names you need to know to join the communication revolution.

Ask for a demonstration on the POSTSCRIPT printer of your choice. With so many to choose from, the hardest decision you may face is which POSTSCRIPT printer to buy.

POSTSCRIPT from Adobe. The Magic Behind Desktop Publishing.
Modeling, Animating on the Amiga

Sculpt 3-D is a solids-modeling and ray-tracing program. Animate 3-D is an animation program. You can link the two together to produce animated designs and productions.

Sculpt 3-D is a stand-alone program that can use all 4096 colors of the Amiga palette. It offers mouse control, pull-down menus, and keyboard macros. Three windows show you standard architectural views of a three-dimensional space. A library of shapes includes spheres, cubes, and prisms. Tools such as spin, magnet, and extrude enable you to modify the object's shape.

You can change your point of observation, and, just as if you were using a 35mm camera, you can choose the lens view from wide angle to telephoto. You can also change the placement of light sources.

In quick check mode, which lasts for less than 1 second, you can create a wireframe model image. Painting mode is for generating a solid model image quickly.

Snapshot mode renders a fast ray-traced image without the shadows, and photo mode gives you a detailed 4096-color ray-traced image with shadows.

Sculpt 3-D supports overscan and all the Amiga graphics modes, as well as NTSC and PAL video displays. Output is in the form of standard IFF files.

Animate 3-D requires Sculpt 3-D as its object editor. It lets you manipulate and control the motion of the objects you create with Sculpt 3-D. You can use segmented and cubic spline paths for objects, observer, and light sources. Animate also lets you preview character animation in real time.

You can also compress and expand images in real time.

A three-dimensional model created with Sculpt 3-D.

Animate lets you interface with single-frame controllers and film recorders.

Price: Sculpt 3-D, $99.95; Animate 3-D, $149.95.

Contact: Byte by Byte Corp., Arborum Plaza II, 9442 Capital of Texas Highway N, Suite 150, Austin, TX 78759, (512) 343-4357.

Inquiry 788.

Modeling with DataCAD

DC Modeler works with DataCAD 3.5, adding three-dimensional design, editing, and modeling capabilities to the CAD program. The modeler includes an edit menu, which lets you edit drawings from any perspective. An entities menu gives you a variety of three-dimensional shapes such as cones, domes, cylinders, and slabs.

You can access DC Modeler from within the DataCAD menu. All changes you make are automatically made to the drawing file.

To run DC Modeler you need an IBM PC or compatible with 640K bytes of RAM, MS-DOS or PC-DOS 3.0 or higher, and DataCAD 3.5.

Price: $495.

Contact: Microtecture Corp., 617 West Main St., Charlottesville, VA 22903, (804) 295-2600.

Inquiry 789.

Numerical Analysis, Signal Processing, and Graphics

MATHLAB (matrix laboratory) and 386/Weitek-MATLAB run in protected mode on 386 systems, breaking the 640K-byte memory barrier. The programs, which integrate numerical analysis, matrix computation, signal processing, and graphics, don't require dimensioning. A matrix interpreter accepts commands in standard mathematical notation.

The Weitek version of MATLAB offers floating-point support using the Weitek 1167 on the Compaq Deskpro 386/20.

386-MATLAB runs on 386-based personal computers with an 80287 or 80387 math coprocessor and MS-DOS or PC-DOS 3.1 or higher; 1 megabyte of RAM; and an EGA, CGA, or Hercules Monochrome card. The Weitek version requires the Weitek 1167 coprocessor option.

Contact: Math Works Inc., 20 North Main St., Suite 250, Sherborn, MA 01770, (617) 633-1415.

Inquiry 790.

Mechanical Drafting with AutoCAD

Encadraft/Mechanical works with AutoCAD to automate a variety of mechanical drafting tasks. Encadraft/Mechanical has a setup feature that helps you create layers, establish standard drawing sizes, and select layer names and colors. The program can shift the drawing origin to any location automatically.

According to Encadraft, rules-based construction techniques facilitate geometric construction and ensure that the drawings will meet CAD industry standards. Encadraft reports that tangencies and other intersections are accurate to 16 significant digits.

A bill of materials extraction routine extracts data captured, and the information is exported to external databases.

The program runs on the IBM AT or PS/2 with AutoCAD 2.5 or higher.

Price: $500.

Contact: Encadraft, Inc., 12 Cotton Rd., Nashua, NH 03063, (603) 882-4666.

Inquiry 791.

HyperCard Statistical Calculator

C LR StatCalc simulates a statistical calculator with a display, 7 standard functions, 12 statistical functions, and 3 memories. Functions provided include mean, standard deviation, standard error of the mean, correlation, regression, and probabilities. You can enter data in scrollable text fields, or you can read it from text files.

The program runs on the Macintosh Plus and requires HyperCard.

Price: $22.50; 1-year site licenses for schools, $125.

Contact: Clear Lake Research, 5615 Morningside, Suite 127, Houston, TX 77005, (713) 523-7842.

Inquiry 792.

continued
Will The Real VGA Please Stand Up

It's easy to identify the leader in VGA resolution—just look to the company that brought you the first 800 x 600 EGA card.

800 x 600 VGA with 256 Colors
1024 x 768, too. Either way, Genoa's SuperVGA HiRes™ is the best way to see VGA. And your spreadsheets will look great, with 132 columns and 60 rows for your viewing pleasure.

Crash-free Windows
Yes, we do Windows—no problem. And SuperVGA HiRes is compatible with both the VGA PS/2 monitors and the EGA Multisync monitors, in VGA and EGA modes. So don't settle for inadequate imitations. Get the highest VGA performance at the best price, in true Genoa tradition.

For the dealer nearest you, contact: Genoa Systems Corporation, 73 E. Trimble Road, San Jose, CA 95131
FAX: 408-434-0997 Telex: 172319
Telephone: 408-432-9090

Genoa SYSTEMS CORPORATION

Genoa Systems Limited (U.K.) Tel: 01-720-5064
Memory-Resident Spreadsheet

Data calls TurboTax the only memory-resident spreadsheet program for MS-DOS computers. The spreadsheet features a SideKick-like pop-up menu, 17 movable windows, cut-and-paste capability, and math functions.

With the cut-and-paste feature, you can export an area of the spreadsheet to other programs. The 28 built-in math functions and operators let you build worksheets. QuickPlan works with cells ranges, letting you construct formulas containing absolute, relative, or mixed-cell references. You can customize the format of any cell in the spreadsheet, and also change the number of decimals and cell width. QuickPlan's worksheet contains 588 cells in 14 columns by 42 rows.

QuickPlan is not copy-protected and runs on the IBM PC with at least 150K bytes of available RAM. It comes with TurboCalc, a 24-function calculator, and FileMaster, a DOS shell and macro processor.

Price: $79.

Contact: Datax, 470 12th Ave, N. St. Petersburg, FL 33701, (813) 894-7472.

Inquiry 793.

Two on Taxes

ChipSoft's TurboTax and J. K. Lasser's Your Income Tax both take the 1986 tax reform act into account. They feature on-screen calculators and pin-feed 1040 forms (and don't require preprinted 1040s).

TurboTax offers pop-up instructions from the IRS booklets. A forms finder helps you locate the form you need by subject. TurboTax's data examiner checks over your return when you're done to see if you've missed anything.

Also included with Turbo-

Tappan, NJ 07675, (800) 624-0023; in New Jersey, (800) 624-0024.

Inquiry 795.

Tracking Sales Accounts

Maximizer is a general-purpose program for salespeople. It lets you keep track of information on your clients, write letters, track your own records, schedule appointments, and more.

Maximizer imposes no limit on the number of clients and no system limit on the number of contacts within a company.

You can define the number of attributes associated with each client, and the terms you use to describe the attributes are up to you. You can write notes and letters with the program's built-in editor.

A day-at-a-glance facility lets you record appointments and other scheduled activities. A telephone directory is created automatically from your records.

To run Maximizer you need an IBM PC with at least 128K bytes of RAM and MS-DOS or PC-DOS 3.0 or higher. It also runs on PS/2.

Price: $495.

Contact: Pinetree Software Inc., 8100 Granville Ave., 9th Floor, Richmond, BC V6Y 1P3, Canada, (604) 270-3311.

Inquiry 796.

Al and Hypertext Application

Stock Expert is Knowledge Garden's first application that combines hypertext with an expert system. Based on guidelines set by the National Association of Investment Clubs, the program offers assistance in investment decision-making.

Hypertext explains industry jargon, and artificial intelligence is used in the expert system that makes investment recommendations. You can instruct the expert system to think in various ranges so you can adjust its recommendations to reflect your own experience, expertise, and preferences.

The system includes a stock checklist, selection guide, comparison guide, and company database. The checklist helps you analyze past stock growth. The selection guide includes information from Standard and Poor's or Value Line to help you predict stock price fluctuations over the next five years. The comparison guide compares and analyzes the performance of companies and makes predictions on gains. And, finally, the database lets you store historical information on companies. The database lets you search for sales growth, relative value, earnings-per-share growth, retained earnings, and payout.

Stock Expert is written in the KnowledgePro knowledge-processing environment. It runs on the IBM PC, XT, AT and compatibles with 512K bytes of RAM. It also runs on PS/2s.

Price: $249.

Contact: Knowledge Garden Inc., 473A Malden Bridge Rd., Nassau, NY 12123, (518) 766-3000.

Inquiry 797.
Free Software from Genoa! For a limited time only, every SuperEGA HiRes+ card comes with a FREE copy of GEM Graph™—the popular business graphics package that normally retails for $249!

What a combination—a quick, easy way to turn your spreadsheets and database files into stunning graphs, and SuperEGA HiRes+, the only Multisync-compatible 16-color EGA card with 800 x 600 resolution!

What can you do with the graphics card that brings you a full-page, readable display for Desktop Publishing? Run your spreadsheets in 132 x 60 columns. Run most VGA applications. Run Ventura™, PageMaker™, AutoCAD™, Windows™, and more—all in dazzling 800 x 600 resolution!

Get in on Genoa's GEM of a deal! For the dealer nearest you, contact: Genoa Systems Corporation, 73 E. Trimble Road, San Jose, CA 95131
FAX: 408-434-0997 Telex: 172319
Telephone: 408-432-9090

©1987 Genoa Systems Corporation
GEM Graph is a trademark of Digital Research, Inc. Multisync® is a trademark of NEC Home Electronics, Ventura—Acro Corporation, PageMaker—Adobe Corporation, AutoCAD—AutoDesk, Inc., Windows—Microsoft Corporation.

Free GEM Graph Software with every purchase of a Super EGA HiRes+ card from Genoa! But hurry—offer expires March 31st!
Resident Expert offers information on a variety of programming languages.

Programmer's Reference Guides

Resident Expert contains a memory-resident shell and reference modules that you can pop up as windows to get more information on commands, a summary of syntax, examples, or a cross-indexed list of related topics.

For example, if you forget the syntax for a command such as BACKUP, you activate the shell and press F for Resident Expert's FIND command to pull up a window showing a synopsis and overview.

There's also a Related Topic feature and a Snapshot capability, which lets you freeze a window of information and continue typing.

Reference guides are available for Borland's Turbo C 1.0, Turbo Pascal 3.0, and Turbo Prolog 1.1; the Lattice C Compiler 3.2; Logitech's Modula-2 version 3.0, Mark Williams' Let's C 4.0, and Microsoft C. A PC Programmer's Guide is also available.

The program is a terminate-and-stay-resident utility that runs on the IBM PC, XT, AT, and compatibles. It uses 49K bytes of RAM and is compatible with other TSRs, according to Santa Rita. Each reference database uses 110 to 500K bytes of RAM.

Price: $19 for the shell, which includes MS-DOS and PC-DOS guides; prices of other guides range from $19.95 to $39.95.

Contact: Santa Rita Software, 1000 East 14th St., Suite 365, Plano, TX 75074, (214) 727-9217.

Inquiry 798.

Freehand Drawing on the Mac

Altsys Corp. acquired the rights to FreeHand from Altays Corp. in August 1987 and plans to release the product early this year.

FreeHand is a drawing program that lets you create or trace graphics with basic drawing tools or advanced line- and Bezier-curve tools. You can manipulate objects and text using special-effects features such as graduated fills of text and objects, the ability to scale, rotate, reflect, and skew objects and text; and the ability to define beginning and ending colors for graduated fills. Drawing tools include lines, rectangles, rounded rectangles, and ellipses. PostScript line and curve tools are also included.

Text-handling capabilities include the ability to bend or shape a line of text along a baseline that you define. Automatic or manual kerning is available, as well as variable letter and word spacing and variable line spacing.

When you're in preview mode, FreeHand lets you edit. You have nine levels of magnification for viewing work on the screen. There are undo and redo options for the last eight actions you've performed. Other editing features include group/ungroup and lock/unlock commands, automatic alignment of objects and text, snap-to grids, rulers with measurements in increments you define, an on-screen information bar that shows you changes in mathematical increments, and the ability to break up rectangles and ellipses into separate paths.

FreeHand allows you to display up to 256 colors on your Mac II color monitor. The program also has a color-separation capability for the four process colors, spot color separations, or a combination of the two. You can also specify color screen percentages for printing color tints.

FreeHand can import and export files saved in Encapsulated PostScript, and you can also open and edit graphics files created in Adobe Illustrator. The program also supports Clipboard images, which you can import in as traceable background elements.

FreeHand runs on the Mac Plus, SE, or II with two 800K-byte floppy disk drives or a hard disk drive, and any PostScript-compatible output device.

Price: $495.

Inquiry 799.

Quips and Quotes

S alison's quipster, called Off-The-Wall, generates one-liners from a library of over 70 patterns and a dictionary. You can add your own phrases to the library and control the placement of nouns, adjectives, adverbs, and verbs.

Off-The-Wall runs on the IBM PC and compatibles with at least 256K bytes of RAM and MS-DOS or PC-DOS 2.0 or higher.

Price: $29.

Contact: Salison Corp., 7430 Greenville Ave., Dallas, TX 75231, (214) 692-5901.

Inquiry 800.

A Print Spooler with Sideways Capabilities

D uet is a memory-resident print spooler that performs standard functions such as queuing and background printing of jobs. It also prints sideways and can print 1-2-3 or Symphony spreadsheet files.

Duet can intercept all output sent to the printer by other programs and put it on its print queue. You can reorder, delete, and schedule print jobs for a certain time of day, or put them on indefinite hold. Duet can automatically write the print queue and the spooled files out to disk, so if the power goes down, you won't lose your print jobs.

With sideways printing you have the choice of 12 pre-defined font sizes, ranging from 19 by 10 pixels to 9 by 6 pixels. A font generator is included that lets you customize the sideprint fonts or build your own fonts. Duet comes in four configurations: The largest version has both sideways printing and spreadsheet decoding; another version has sidepinning only; a third version has spreadsheet decoding only; and the last version is without sidepinning or spreadsheet decoding. All four have normal spooling operations.

Duet runs on the IBM PC, XT, AT, and compatibles with at least 256K bytes of RAM.

Price: $89.95.

Contact: Consumers Software Inc., 736 Chestnut St., Santa Cruz, CA 95060, (408) 426-7311.

Inquiry 801.

WHAT'S NEW

SOFTWARE • OTHER

BY T E • MARCH 1988
Basic System Features:
80286 18 bit CPU, 512K RAM expandable to 1MB, clock/calendar with battery backup, 196 watt power supply, MaxiSwitch keyboard (101 key optional), 1.2MB floppy drive, floppy/hard disk controller, 60287 socket, 8 expansion slots, AMI BIOS, full manual, 48 hour burn-in testing and a one year limited warranty.

Complete System Packages

<table>
<thead>
<tr>
<th>SF-286</th>
<th>Monographics System</th>
<th>Super EGA System</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 MHz</td>
<td>$995</td>
<td>$1499</td>
</tr>
<tr>
<td>10 MHz</td>
<td>$1199</td>
<td>$1649</td>
</tr>
<tr>
<td>10 MHz (0 wait)</td>
<td>$1349</td>
<td>$1799</td>
</tr>
<tr>
<td>12 MHz (0 wait)</td>
<td>$1499</td>
<td>$1950</td>
</tr>
<tr>
<td>16 MHz (80386)</td>
<td>$1850</td>
<td>$2450</td>
</tr>
</tbody>
</table>

Monographics System:
Basic System features plus monographics card with printer port and 12" amber monochrome monitor with tilt/swivel base.

Super EGA System:
Basic System features plus EGA deluxe graphics card (640 x 480 and 762 x 410) and Mitsubishi Diamond Scan Multisync monitor with tilt/swivel base.

*Other system packages are available, call for prices

SF-286-8 MHz Super VGA Special $1649
Basic System features plus: Everex EVGA graphics board (640 x 480, up to 256 colors) and Mitsubishi Diamond Scan Multisync monitor with tilt/swivel.

Super EGA Bundle $599
Everex EGA Deluxe autowith switch graphics board, 640 x 480 and 762 x 410, 132 columns PLUS Mitsubishi Diamond Scan with tilt/swivel.

Super VGA Bundle $749
Everex VGA Graphics board, 640 x 480 and 800 x 600, 132 columns PLUS Mitsubishi Diamond scan with tilt/swivel.

Monographics Bundle $139
Monographics board with printer port PLUS Samsung amber monochrome monitor with tilt/swivel.

Hard Disk Drives
Seagate ST225 20MB + Controller	$275
Seagate ST238 30MB + Controller	$309
Miniscrite 3600 40MB + Controller	$399
Seagate ST251 40MB + Controller	$499
Seagate 4036 30MB (39 ma)	$499
Miniscrite 3600 40MB (65 ma)	$359
Seagate ST251 40MB (40 ma)	$449
MicroPro 1335 71MB (28 ma)	$865
Seagate 4066 80MB (28 ma)	$899

Everex Mods
Everex Evercom half card modem, 300/1200 baud, fully Hayes compatible and Bitcom software. External Pocket Modem $139

Special
Mini I/O	$65
Serial Mouse	$65
150 Watt Power Supply	$55
Monographics board	$79
2MB EMS board w/DIY	$80
3.5" 1.4MB floppy	$119/$159
EGA Deluxe Graphics board	$139
Evercom 2400 int. modem for P$2	$199
Memory board for P$2	$269
Everex EVGA Graphics board	$299

Don’t Just Buy a Computer
Invest in a SF-286

Micro
1825 Lombard Street
San Francisco, CA 94123
California Orders, Information
(415) 929-1505

National Order Desk
(800) 237-5631

Technical Support
(415) 929-1607

University P.O.'s and Dealer inquiries are Welcome

Notice: We accept MasterCard, Visa (no surcharges), American Express, Diners Club, your local bank card, and approved company P.O. & Checks. 12% is added for California residents please add sales tax. No cash or personal checks. All sales are final. No returns accepted. No unauthorized reselling permitted. No trade-in or exchange for modified, repaired or altered systems. This offer is not transferable. This offer is not valid in conjunction with other offers. All prices subject to change without notice due to manufacturer's price changes or other factors. All sales are in full, final, and non-refundable.

Everex, Mitsubishi, Samsung, Minolta, Monochrome, Hayes, P$2, Bitcom and Micropro are trademarks or registered trademarks of their respective companies.
Stand-Alone Modem

Merge—System A combines a Hayes-compatible modem with a telephone and includes up to 264K bytes of RAM. It allows you to communicate by both voice and data over the same line, send data unattended, and upload and download information without being connected to a microcomputer.

When hooked up to an IBM PC or compatible, Merge—System A supports communication at 300 or 1200 bps. You can store information from your computer in the modem’s memory, and transfer data from the modem’s memory to your computer. A two-line 80-character LCD screen is provided.

Merge—System A features a programmable alphanumeric keyboard with macros, a phone directory that can store 200 numbers, and auto-dial capabilities. Terminal emulation is also provided.

Price: With 40K bytes of RAM, $399; with 264K bytes of RAM, $499.

Norton’s OS/2 Reference Guides

The Norton On-Line Programmer’s Guides to OS/2 Kernel API include about 800K bytes of information about DOSx (system and file functions), KBDx (keyboard functions), MOUx (mouse functions) and VIDx (video screen functions).

The memory-resident program provides both short and long entries, including calling sequences and programming examples. A reference section continues.

PS/2 Compatible Data Acquisition:

Planned Non-Obsolescence

Design a custom new data acquisition system or upgrade your existing one—the Keithley Series 500 is the one system that is never out of date. All Keithley data acquisition and control modules are fully compatible with the powerful new IBM PS/2 computers.

Because Keithley offers the widest selection of modules, you can configure the exact setup your application requires. And when your requirements change, don’t redesign your entire system—upgrade it with new modules from a selection of almost 30, including:

- 12- AND 14-BIT A/D CONVERTERS
- STRAIN GAGE WITH BRIDGE COMPLETION
- LVDT/RVDT CARRIER AMPLIFIER
- DIGITAL INPUT AND OUTPUT
- THERMOCOUPLE WITH ISOTHERMAL BLOCK
- 12- AND 16-BIT D/A CONVERTERS
- ISOLATED ANALOG INPUTS
- FREQUENCY AND EVENT COUNTING
- GPIB CONTROL

Find out more about the Series 500, or discuss your particular application with one of our engineers. Just call our Product Information Group today at 1-800-552-1115.

KEITHLEY
Quality, others promise, we deliver. The fact we've already delivered over 3,000,000 color monitors is the best proof. Tatung also makes a full line of computers and peripherals. Our reputation for superb quality is well known around the world. And we deliver complete after sales service to you.

TCS 8000
- 5 MHZ
- 0 WAIT STATE
- 2 BIT, EXPANDABLE 16MB

TCS 7000
- 6, 8, 10, 12 MHZ

TCS 4000 (6/10 MHZ)
- EQUIVALENT OF 5 EXPANSION SLOTS

<table>
<thead>
<tr>
<th>COLOR MONITOR</th>
<th>MONO MONITOR</th>
<th>TERMINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODEL</td>
<td>RES.</td>
<td>MODEL</td>
</tr>
<tr>
<td>CM 1322N</td>
<td>640 x 200</td>
<td>MM 1222</td>
</tr>
<tr>
<td>CM 1370A</td>
<td>720 x 400</td>
<td>MM 1422</td>
</tr>
<tr>
<td>CM 1380F</td>
<td>640 x 350</td>
<td>MM 1295</td>
</tr>
<tr>
<td>CM 1495</td>
<td>800 x 560</td>
<td></td>
</tr>
</tbody>
</table>

Circle 485 on Reader Service Card
understand dat.i

WHA T' S NEW

PACIFIC COAST

includes an introduction to OS/2 and examples of programming techniques like pipe creation and using protected mode for running multiple processes. It also provides information on OS/2 data structures, ANSI escape sequences, and I/O control functions.

You invoke the program by pressing a hot key. It then presents you with a menu that provides expand and search functions; and kernel, tables, and reference areas. Each category includes a list of short entry descriptions. Once you find the appropriate short entry, you can open its corresponding long entry.

With the options menu, you can set screen colors, change the hot key, de-install the instant-access program from memory, and invoke the auto-lookup function, which enables you to automatically search for what your cursor is on when you invoke the program.

The Norton On-Line Programmer's Guides to OS/2 Kernel API enable you to create your own cross-referenced databases with menus and expandable entries.

The program runs on the IBM PC and compatibles with MS-DOS or PC-DOS 2.0 or higher or OS/2 (in the DOS compatibility box). A version that runs in OS/2 native mode is also available. The program takes up 72K bytes of RAM. It comes on both 3½- and 5¼-inch floppy disks. You can purchase it with or without the Norton Guides Engine instant-access program.

Price: $100 without Norton Guides Engine; $150 with Engine.

Contact: Peter Norton Computing, 2210 Wilshire Blvd., Suite 186, Santa Monica, CA 90403-5784, (800) 451-0303, ext. 40; in California, (213) 453-2361.

Inquiry 824.

Stackware Provides Videodisk Links

The Voyager Company's Laserstacks are among the first to take advantage of HyperCard's capabilities as a front end to large databases. A Laserstack turns the still photographs and motion pictures on existing videodisks into visual databases.

The hub of the series is VideoStack, which enables you to develop interactive videodisk applications with HyperCard. It provides more than 35 buttons controlling different functions. It allows you to automatically install video drivers into any HyperCard stack, define video events, and automatically activate the events.

The National Gallery of Art Laserguide is designed to work with The Voyager Company's National Gallery of Art disk that contains still photographs of the permanent collection on display at the National Gallery of Art in Washington, DC. You can organize works of art and present them according to artist, nationality, school, and other categories.

Laserguides are also available for Voyager's Vincent Van Gogh and Bio-Sci disks. The Laserguides series runs on the Macintosh Plus, SE, and II with HyperCard and a videodisk player.

Price: VideoStack, $49.95; National Gallery of Art Laserguide, $49.95; Vincent Van Gogh Laserguide, $39.95; Bio-Sci Laserguide, $99.95.

Contact: The Voyager Company, 2139 Manning Ave., Los Angeles, CA 90025, (213) 475-3524.

Inquiry 825.

a square peg does fit a roundhole

Converts Incompatible Formats To Standard IBM-PC And PS/2 Compatibility

Now anyone can move important data and costly software from 5¼''IBM-PC format to 3½'' PS/2 format without any hardware connections.

You don't have to wire anything, program anything or understand anything about either type of computer. Just install your 5¼'' data diskette and a blank 3½'' diskette in the Copi•Riter and press two buttons. It's that easy!

The Copi•Riter can also collect data from non-IBM systems with RS-232C or Parallel interfaces and save it in IBM compatible format. Write or phone MEC A today for specifications on the Copi•Riter and our other versatile storage devices.
MICROMINT’S Gold Standard in Single Board Computers & Controllers

MICROMINT 386 $299.00

BCC180 — $395.00

MICROMINT’s Gold Standard in Single Board Computers & Controllers

BCC180 — $395.00

SERIAL DIGITAL INPUT SYSTEM

MICROMINT’s Gold Standard in Single Board Computers & Controllers

BCC52 — $199.00

BCC11 — $139.00

MICROMINT’s Gold Standard in Single Board Computers & Controllers

BCC22 — $249.00

GT180 — $395.00

MICROMINT’s Gold Standard in Single Board Computers & Controllers

GT180 — $395.00

MICROMINT’s Gold Standard in Single Board Computers & Controllers

GT180 — $395.00

MICROMINT’s Gold Standard in Single Board Computers & Controllers

GT180 — $395.00

MICROMINT’s Gold Standard in Single Board Computers & Controllers

GT180 — $395.00

MICROMINT’s Gold Standard in Single Board Computers & Controllers
“INCREDIBLY FAST”
— PC RESOURCE Nov. 1987

$L1995
(List $2829)

LTI BEATS TOP ATs IN PERFORMANCE TEST!

"The LTI is ideal for running large spreadsheets and maintaining large databases. The LTI is also well suited for running computer-aided design (CAD) programs. Not only is it one of the fastest ATs we’ve reviewed, IT IS ALSO ONE OF THE MOST AFFORDABLE."
— PC RESOURCE Nov. 1987 AT Comparison Tests

Upgrade your present PC, XT or AT with our
0-wait-state 7.2, 8, 10 or 12½ MHz motherboards
GAIN 820% TO 1530% SPEED INCREASE.
Prices start as low as $259!

Call for your nearest dealer

Circle 468 on Reader Service Card

CTXT Systems, Inc.

9205 Alabama Avenue • Chatsworth, CA 91311 • (818) 341-4227 • ORDERS ONLY, call 1-800-872-2898, In California 1-800-438-2898

• 30 Day Money-Back Guarantee
• 1 Year Warranty on Systems
• 2 Years on Motherboards

PC, XT, AT are trademarks of International Business Machines Corp
With MapInfo, All These Ways To Map Your Data... For $750*

Pin Map. MapInfo can find addresses and plot your entire database on maps with detailed street information.

Database. For any point, call to the screen all the data behind the point. You specify the fields. Or use dBASE III files.

Label Points. Pick any field in your database to label points.

Boundaries. Town, county, zip available. Or draw your own - e.g., sales territories - and display the data within the boundaries.

Label Points. Pick any field in your database to label points.

Pin Map. MapInfo can find addresses and plot your entire database on maps with detailed street information.

Database. For any point, call to the screen all the data behind the point. You specify the fields. Or use dBASE III files.

Label Points. Pick any field in your database to label points.

Boundaries. Town, county, zip available. Or draw your own - e.g., sales territories - and display the data within the boundaries.

Thematic. Shade boundaries - ours or yours - based on fields you select from your database, or the number of points found inside the boundaries.

Magnify. As close as 52 ft. across the screen. For dense databases or to see details.

Ultra Dense. For multiple occurrences at a single point, display a count of all the records behind the point.

Zoom Out. As far as 5,000 miles! See your data across your city or the entire U.S.

The U.S. Assign data to state boundaries. States may be automatically shaded based on data within.

Counties By State. The boundaries are already available. Simply load your existing data.

Highways. Overlay on local, state, or national maps all state, national or interstate highways.

By Town. Display your data by town or boundary. Ideal for charting territories and analyzing sales data.

Highlighted Streets. Gives a nice, clean appearance to your maps for formal display.

Customized Graphics. Add your own titles, legends, and text.

Draw Your Own. From floor plans to organization charts, use MapInfo for visual database applications.

No matter what your application, if you need to display information on a map, MapInfo can do it. In more ways than you've imagined possible on a PC.

Runs on IBM PC or 100% compatibles, with 640K memory, a hard disk, and graphics capability.

*MapInfo costs $750 for the software system. Maps for hundreds of metropolitan areas across the U.S., complete with street names and addresses are also available starting from $295. Maps of individual states with county lines, highways, or every town also available, starting from $95.

IBM is a trademark of International Business Machines Corp. dBASE is a trademark of Ashton-Tate.

MapInfo Corp.
200 Broadway, Troy, NY 12180

To order, call 1-800-FASTMAP (that's 1-800-327-8627)
In New York State, call 1-518-274-8673 (Telex 371-5584)

Circle 471 on Reader Service Card
Those fantastic 6yte covers—and boy, do they look great on this stylish, ¾ sleeve T-shirt from Robert Tinney Graphics! The colored sleeves and neckline vividly complement the full-color design.

And don't mistake this for a rubbery patch that cracks and peels off after a few washings. This is true four-color process: the permanent inks are silk-screened into the fabric, resulting in a beautiful, full-color image that lasts!

You'll also appreciate the shirt itself: a heavyweight cotton/polyester blend which combines tough washability with the cool, soft comfort of cotton. Each Byte T-shirt is priced at only $12.50 ($11.50 each for 3 or more). Be sure to include shirt size: C—(child 10-12), S—(34-36), M—(38-40), L—(42-44), and XL—(46-48). Most orders shipped within a week.

Send the following T-shirts at $12.50 each, or $11.50 each for 3 or more. I have included $2 for shipping & handling ($5 overseas).

<table>
<thead>
<tr>
<th>QTY.</th>
<th>#</th>
<th>TITLE</th>
<th>SIZE</th>
<th>AMOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please send your COLOR brochure

TOTAL $

I have enclosed U.S. check or money order
C.O.D. (via UPS—stateide orders only)
VISA
MasterCard
American Express

Card #: ____________________________
Expires: __________
Signature: ________________________

Ship my shirt(s) to:
Name: ____________________________
(Business): ________________________

Address: __
City: ____________________________
State: ____________________________
Zip: ____________________________

$

Please send your COLOR brochure

TOTAL $

Call 1-504-267-7266

Robert Tinney Graphics
1864 North Pamela Dr.
Baton Rouge, Louisiana 70815

For VISA, MasterCard or American Express orders, or for more information
One Picture Is Worth A Thousand Words!

Step up to state-of-the-art in EGA graphics generation technology. Our 2005 version is not just another paint program or another version of the "same old thing." EGA PAINT 2005 is a complete restructuring of our 2001 program (itself the recipient of the PC TECH JOURNAL award for excellence in program design). We believe the end-user comes first and instead of merely patching on more features (as all the others do) we went to a whole new (much easier and faster) way to create truly startling business presentations & EGA color illustrations. Take another look at some of our features (some of which are available only on programs costing hundreds more) and decide for yourself.

Also available from RIX:

EGA SCREEN ENHANCER

This easy to install device enables older EGA cards to utilize EGA PAINT 2005 in 640x480 & 752x410 resolution modes. Our ESE comes complete with a special test pattern diskette for only $49.95 (+ $5.00 for shipping and handling).

All this and more for just:

$99.00

ORDER NOW!
in CA - (800) 233-5983 out CA (800) 345-9059

RIX SoftWorks, Inc.
18552 MacArthur Bl. Suite 375, Irvine, CA 92715

Circle 479 on Reader Service Card (DEALERS: 480)
LaserJet font Nirvana.
Or your $99.95 back.

Glyphix generates a dazzling variety of downloadable fonts from a set of four flexible typeface outlines.

Microsoft Word, WordPerfect, Glyphix and our font managers: a match made in heaven.
Let our font managers free you from the Purgatory of using fonts with Microsoft Word® and WordPerfect®. Sorting through PRD files and printer drivers is a thing of the past.
Our managers build fonts right into Word and WordPerfect, giving you the freedom to change font as often as you like. Best of all, the font managers use Glyphix to create and download your fonts automatically, liberating megabytes of disk space from font storage. With a Glyphix font set and a font manager, you have an army of fonts at your fingertips.
If you’re using Aldus Pagemaker® or Ventura Publisher®, you’re ready to use Glyphix. (Any package that can read HP soft fonts can manage Glyphix fonts.)

GLYPHIX

<table>
<thead>
<tr>
<th>HP</th>
<th>Bitstream</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FONTS TO 60 POINT</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>FONT SCALING</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>DEGREES OF BOLD</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>PATTERNED FONTS</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>300 x 300 DOT QUALITY</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>TIME TO CREATE 30 POINT FONT</td>
<td>1:34</td>
<td>-</td>
</tr>
<tr>
<td>PRICE</td>
<td>$195.00</td>
<td>$20.00</td>
</tr>
</tbody>
</table>

Let the Glyphix Basics lead you through the pearly gates.
The Basics is a collection of four typeface outlines, each representing one of the major lettering styles. Roman, our version of Times Roman®, is a classical serif face that has become a standard for body copy. Helvetica, our version of Helvetica®, is a modern sans serif face designed for presentations and headlines.

Take me to Heaven!

- Send me the Glyphix Basics for $99.95.
- Send me your MS Word Font Manager for $79.95.
- Send me your WordPerfect Manager for $79.95.
- Send me a catalog of all the Glyphix type collections.

Name ____________________ Telephone ____________________
Address ____________________ State ______ Zip ________

ORDER TOLL FREE:
(800) 237-9383

IN DELAWARE CALL (302) 733-0956
Include $5.00 shipping and handling for one item, $2.50 each additional item. Mail orders to SWFTE International, Box 5773, Wilmington, DE 19808.

Money back guarantee is extended for 30 days from the date of sale.

Software with capability. And credibility.

Circle 484 on Reader Service Card
A Totally New Concept in Digitizers
That Offers You
3 Unprecedented Benefits!

DIGI-PAD PC™

1. Lowers The Cost Of Digitizers,
2. Eliminates The Power Supply & RS232 Cable And
3. Features A New, Lightweight Tablet Design.

Unbeatable Prices*
(*Includes tablet, controller, and stylus or 4 button cursor.)

\[
\begin{align*}
11 \times 11 & \quad \ldots \quad $599. \\
11 \times 17 & \quad \ldots \quad $839. \\
17 \times 24 & \quad \ldots \quad $1999. \\
20 \times 20 & \quad \ldots \quad $1999. \\
24 \times 36 & \quad \ldots \quad $2899. \\
36 \times 48 & \quad \ldots \quad $3499. \\
\end{align*}
\]
All sizes available from stock.

The New DIGI-PAD PC Controller goes inside your computer, replacing the RS232 cable and the external power supply.

SAVE Up To 33%

GTCO's new PC compatible digitizers are as little as \(\frac{2}{3} \) the cost of competitor's tablets. And they're available in 6 popular sizes, from 11 x 1 to 36 x 48.

Their lightweight design allows mounting to a variety of pedestals, tilt stands and wall mounted brackets.

Call us to enhance your system with DIGI-PAD PC.

Circle 469 on Reader Service Card

GTCO Corporation
7125 Riverwood Drive, Columbia, Maryland 21046
Phone: 301/381-9868 Telex: 898471 Fax: 301/290-9083

DIGI-PAD PC brings high performance and low cost, without the clutter, to your CAD workstation.
Complete and Easy... and only $16!

Complete and Easy... and only $16!

MONEY COUNTS
VERSION 4.0

Complete Money Management
Accounting System...
- CPA-designed for home & business
- Manages cash, checking, savings & credit cards
- Smart checkbook balancer — makes short work of the toughest bank statement
- Handles up to 999 accounts & 24000 transactions per year

Prepares & Prints
a Wealth of Reports...
- Financial statements (4 types including net worth)
- Inquiry reports (3 types)
- General ledger & accountant's trial balance

Now Including...
- Automatic transactions
- Financial calculator — computes interest rates, loan payments, prints amortization schedules
- Journal entries
- And more

Plus These Important Additional Features...
- Budgeting
- Fast financial data base with 3-way look-up
- Pop-up calculator
- Graphics
- Works great with monochrome & color monitors
- Not copy-protected

VISA, MasterCard & COD orders call:
1-800-223-6925
(In Canada 319/395-7300)

Here it is. You won't find software that's easier to use:
- Requires no accounting knowledge
- Completely menu-driven with on-line help
- 93-page fully indexed tutorial manual (on disk)

A Proven Track Record. Hard to believe the $16 price? Don't worry. MoneyCounts® has been marketed for three years and is continually receiving rave reviews. There's no catch. This is a fully functional system that compares with products selling for $99 and more.

Same-Day Shipping. Order today and own MoneyCounts® for only $16! Add $3 shipping and handling (outside North America add $7). Iowa residents please add 4% sales tax. Send check or money order payable to Parsons Technology. VISA and MasterCard orders welcome.

Circle 476 on Reader Service Card

MARCH 1988 • BY T E 88PC-13
SURAH a computer company...Where Quality Counts...SURAH
WHOLESALE outlet direct from factory LOCATED in the Silicon Valley SERVES thousands of Satisfied Customers

SPECIAL EGA Upgrade MONITOR+EGA Card $500

286 AT IBM AT Compatible
810 MHz - 16 Bits - 80286CPU
512K RAM on 1024K Mother Board
1.2MB Floppy Drive with Controller
TURBO & RESET Push Buttons
CLICK AT Style Keyboard

$842
6/8/10/12 MHz
SYSTEMS also AVAILABLE

OTHER OPTIONS:
- 386 12MHz AT System installed (5/10 MHz) $125
- 6/8/10/12 MHz (4 Spread) AT System (5/10 MHz) $185
- 2MB Hard Drive (ST25) installation XT/5.25 $1295
- 2MB Hard Drive (ST25) installation AT 60ms $1295
- 4MB Hard Drive (ST 64) installation AT 40ms $1745
- 3.4 MB RAM Upgrade to 8MB RAM 130s $1295
- 128K RAM Upgrade to 1024K RAM 120s $1295
- 1.2MB and Word Fluppy Drive $79
- 386 10/12 MHz AT Desktop $842

COMPAQ

286 Premium Model 80
$1350
286 Premium Model 80 + 40Mb HD $1799
286 Premium 20MHz CALL for other MODELS/upgrade options

AST. Premium

286 Deskpro 12MHz Model 1
$1825
286 Portable Model 40
$4360
286 Deskpro 20MHz CALL for other MODELS/upgrade options

EVEREX

286 AT 10MHz Model 1800
$995
Microenhancer/Video Card
3125
40Mb TAPE BACKUP CALL
for other MODELS/upgrade options

HEWLETT PACKARD

HP Laserjet Printer Series II
$1679
HP Scanjet Desktop Scanner
$1152
HP Graphic Plotter 7475A $1515
for other MODELS/upgrade options

SPECIAL EGA Upgrade
MONITOR+EGA Card $500

SURAH 786
IBM XT Compatible
4.77/10 MHz - 8 Bits - 8088CPU
256K RAM on 512K Mother Board
One 720K Floppy Drive with Controller
Baby AT Case with Lock & LEDs
Standard 84 Keys AT Style Keyboard

$390

IBM

P/52 Model 50
with 20Mb Hard Drive $2690
P/52 Model 202 Floppy Drives $1270
P/52 Model 20-20Mb Hard Drive $1721
P/52 Model AT-40Mb Hard Drive $1580
for other MODELS/upgrade options

SURAH INC.
45461 Fremont Blvd., Suite #9, Fremont, CA 94538
Telex 510617247 (ab) SURAH UQ

OPEN MON. - FRI. 9 AM - 6 PM
SATURDAY 11 AM - 4 PM
PHONE TOLL FREE 800-543-1001
NOW IN CALIFORNIA 415/651-5101

Circle 483 on Reader Service Card
EXCLUSIVE COMPUTERS HEADQUARTERS

THE VALUE LEADER IN COMPUTERS

SELECTION: We stock and sell products made by the world's largest and most trusted names in Computers, Printers and Software Manufacturers.

VOLUME: Since we have multiple locations and our overhead is low, we buy and sell an incredible volume.

EXPERTISE: Since we deal exclusively with EPSON, TOSHIBA, COMPAQ, IBM, we get special factory training giving us the know how nobody else has.

ATTENTION: Our job is not finished unless you are satisfied. You must be happy.

- Free Radio Watch $19.95 Value - Buy 2 boxes of Janus diskettes at $14.95 and get a digital watch and radio free

PREMIUM/286
- 80286 Processor
- 1.2 MB Disk Drive
- 40 MB HD
- Enhanced Keyboard
- Monochrome System

$2249

MONTHLY LAPTOP SPECIALS
NEC Multispeed EL/20 MB ... $1599/2450
Toshiba 1000/1200/3120 w/2 MB HD $875/2450/3199

Hard Cards
IBM Mono Adapter ... 109
AST Six Pack 64K + Sidekick ... 149
AST Advantage Expansion Board for AT w/128K 349
Vega Board by Video 7 Deluxe ... 275
Heracles Graphics Plus .. 190
Hayes 1200/2400 w/SW .. 349/399
NEC EGA ... 430
Migent Pocket Modem ... 159
Everex Evercom 1/2 card 1200B 90
Everex Evercom III 2400B ... 200

Hard Disks
20MB/30MB/40MB .. $259/369/599
40/80MB Hard Disk for AT .. 699/1099
20MB/60MB Tape Back-Up .. 599/799
120MB Hard Disk ... 2800

MONTHLY PRINTER SPECIALS
IBM PROPRINTERS ... TOSHIBA
IBM 386/486 X24/XL24 .. 599/840

Software
Lotus 1-2-3/Hal/Metro .. $309/120/85
Symphony ... 410
Framework 2 .. 365
D Base III+ ... 395
Microsoft Works .. 69
Microsoft Excel .. CALL
Xerox Ventura Publisher ... 499

Computers
IBM AT 339K .. $3399
IBM Sys 2 Model 25 ... 945/1190
IBM Sys 2 Model 30 .. 1275/CALL
IBM Sys 2 Model 50 10 MHz, 20 MB 2624
IBM Sys 2 Model 60 10 MHz, 44 MB 3499
IBM Sys 2 Model 80 40/70 ... CALL
COMPAQ Port II Dr ... 1545
COMPAQ Port III 40/20 ... CALL
COMPAQ 286 Desk Pro 12 MHz 1949
COMPAQ 386 Mod 40/70 .. 4499/5499

IBM Premium All Models Available Best Price

Apple Laser Writer .. In Stock

OS/2 / Unix Systems
IBM Color Monitor 8513 PS/2 ... $512
IBM Mono Monitor 5035 PS/2 .. $200
IBM Color Monitor 1512/5119 .. 485/1196
Princeton SR12P .. CALL
NEC Multiscan II ... 575
Sony Multiscan .. 629
Amdek 410A/422 ... 155/489
Samsung RGB/EGA .. 299/369

Now Here-in Stock
COMPAQ 386
20 MHz SYSTEM

Lmt. Quantities Available

MARCH 1988 • BYTE 88PC-15
SAVING 15% on these new computer books and software from McGraw-Hill
CALL TOLL-FREE 1-800-2-MCGRAW

INTRODUCING PC-DOS AND MS-DOS

INTRODUCING UNIX™ SYSTEM V
By R. Morgan & H. McGilton. 480 pp., illus., softbound. Guides you step by step through the facilities, commands, utilities, and applications of System V. AT&T's new version of the UNIX operating system. 043152-3. Regular Price: $19.95. Your Price: $16.95.

UNIX™ UTILITIES: A Programmer's Guide
By R. S. Tare. 640 pp., illus., softbound. Save time and effort with popular UNIX utilities! Helps you write efficient, bug-free programs and significantly reduce turnaround time. 062884-X. Regular Price: $24.95. Your Price: $21.20.

HOW TO BE A SUCCESSFUL COMPUTER CONSULTANT
By A. R. Simon. 256 pp., illus., softbound. Everything you have to know to set up and run your own computer consultant (or software development) business, full- or part-time. No business experience required! 057296-8. Regular Price: $18.50. Your Price: $15.70.

dBASE DEMYSTIFIED: dBase II/III/III Plus™ Applications and Solutions to Real Problems
By L. Barnes. 288 pp., 120 illus., softbound. Covers the full range of dBase features and shows how to apply the various releases of dBase to real-world problems. 003844-9. Regular Price: $19.95. Your Price: $16.95.

BUILDING YOUR FIRST EXPERT SYSTEM

GETTING THE MOST OUT OF YOUR EPSON PRINTER

For fast service call TOLL-FREE 1-800-2-MCGRAW or use coupon below. 15-day examination period.
<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
</table>
| EQUITY I+ | • 360K Floppy
• 30 Meg Hard Disk
• 640K Ram
• Serial/Parallel Port
• Monochrome Card
• Monochrome Monitor
• MS DOS
• GW Basic | $1295 |
| EQUITY II PLUS | • 1.2 Meg Floppy
• 40 Meg Hard Disk
• 640K Ram
• Serial/Parallel/GIC
• 68020 CPU
• Monochrome Monitor
• Graphic Card
• MS DOS
• GW Basic | $1295 |
| EQUITY III+ | • 68020 CPU
• 60 Meg Hard Disk
• 1.2 MEG Floppy
• 30 Meg Hard Disk
• DOS 3.2 Mono Monitor
• Graphic Card
• MS DOS
• GW Basic | $2595 |

WE ACCEPT LC, CASHIER CHECKS, MONEY ORDERS, VISA, MC, AmEx
3% charge on VISA, MC & American Express

CALL FOR VOLUME DISCOUNTS Prices subject to change without notice
Leprercard disk cards from $339

FAST As low as 28ms, average access times.
Big Up to 9 megabytes formatted storage.
LOW POWER Just 10 watts total power consumption. This means lower operation temperatures and longer component life.
QUALITY Leprercard feature controllers & drives made by the biggest names in the business — Western Digital, Seagate & Miniscite. 1 year warranty & 30 day money back guarantee assure your satisfaction.
FREE SOFTWARE including TakeTwo, the backup utility named PC MAGAZINE Editor's Choice two years in a row!
GET IT FAST — FEDERAL EXPRESS standard delivery.

MINISCRIBE & SEAGATE
20MB/68ms $59 16MB/68ms $59 20MB/38ms $59 28MB/28ms $59
Tandy 1000 Leprercard add $20

768K mini ems $179
168k of 120ms RAM
Internet compatible
Can be added to 64k, remainder as RAM
Short slot card
1 MB mouseboard board $1599
Pop-up window print spooler, and RAM disk software

1200 internal modem $69
Short Slot size
500 or 1200 bps speed
Hardware Smartcom 4 compatible
Line-busy detect and auto redial
Multilingual, and a 51/2 inch tape
Made in USA by Franklin Telecom
1 Year warranty
1200 External with mirror 2 $99

768K mini ems $179
168k of 120ms RAM
Internet compatible
Can be added to 64k, remainder as RAM
Short slot card
1 MB mouseboard board $1599
Pop-up window print spooler, and RAM disk software

3½" floppy kit TakeTwo
Instant Laptop & PS/2 compatibility. All kits include bracket to mount in 5 1/4" drive bay, black & grey face plates and mounting rails.
144MB XT kits include replacement floppy controller that doubles the data transfer rate.
Now included: TakeTwo the backup utility PC MAGAZINE named as their Editor’s Choice. Now you have a fast, affordable backup solution that brings you media compatibility with the latest IBM PS/2 systems.
720K internal for PCXTAT, $119
• Requires DOS 3.2 or optional $15 driver software
1.44MB internal for AT only, $149
• Includes driver software
1.44MB internal for PCXT, $249
• Floppy Controller & cables with 500,000 bit per second data transfer rate. Supports two drives.
External Case for XT kits add $99

PC/XT hard disks
• Drive & Controller pretested & formatted
• Genuine Western Digital Short slot controller
• 30 page installation guide & reference manual
• Cables, mounting screw, full size half-height Bezel
• TakeTwo Backup Software, PC MAGAZINE Editor’s Choice
• 1 year parts and labor warranty
• 30 Day Money-Back Satisfaction Guarantee
• Optional 150 watt, UL/CE approved power supply $69

Tandy 1000 kits add $20

2400 MNP modems $259
• Hayes Compatible
• 500/1200/2400 Speeds
• Multi level error correction increases throughput up to 20%
• Automatic Adaptive Equalization
• Nonvolatile memory retains configuration
• MIRROR I Software, a 599 value
• Internal fits in short slot
• PCXT/PS/2 Modern Cable $15 (specify model)

30MB filecard $399
• MIRRORS XFER, and $99 speedread disk cache software
• Requires 15 slots
• TakeTwo backup software

FAX Modem $499
• Hayes Compatible
• 9600 bps Operation
• CCITT Group 3 Compatible
• Send ASCII or word processing files
• Background receiving
• Unattended sending & receiving
• Prints on Epson or LaserJet compatible printers
• Use at 9600 bps synchronous modem with other FAX440 models
• Requires STCR, Hard Disk, DOS 3.x & Hercules monochrome or color graphics adapter

30MB filecard $399
• MIRRORS XFER, and $99 speedread disk cache software
• Requires 15 slots
• TakeTwo backup software

20MB kits $289
• Seagate ST225—214 MB65 min/half-height/16 Watts

30MB kits $329
• Seagate ST230—515 MB65 min/half-height/16 Watts

40MB kits $487
• Seagate ST251—428 MBHalf-height/11 Watts
• Pre-formatted into pairs of 21MB partitions, 28ms.

40MB kits $599
• Miniscite 950—424MB/half-height/16 Watts
• Pre-formatted into pairs of 21MB partitions, 42ms.

65MB kits $599
• Seagate ST277R—655 MB Half-height/11 Watts
• Pre-formatted into pair of 52MB partitions, 28ms.

40MB kits $599
• Miniscite 950—424MB/half-height/16 Watts
• Pre-formatted into pairs of 21MB partitions, 42ms.

20MB kits $289
• Seagate ST225—214 MB65 min/half-height/16 Watts

30MB kits $329
• Seagate ST230—515 MB65 min/half-height/16 Watts

40MB kits $487
• Seagate ST251—428 MBHalf-height/11 Watts
• Pre-formatted into pairs of 21MB partitions, 28ms.

40MB kits $599
• Miniscite 950—424MB/half-height/16 Watts
• Pre-formatted into pairs of 21MB partitions, 42ms.

65MB kits $599
• Seagate ST277R—655 MB Half-height/11 Watts
• Pre-formatted into pair of 52MB partitions, 28ms.

PARADISE AUTOSWITCH 480
$99

WESTERN DIGITAL

2ks MNP compatible
• Short Card, 5.25" long
• 2 year warranty
• 640x480, or 640x400
• 128x128, Symmetry, etc
• EGA, CGA & Hercules compatible

1.44MB internal $199
• Includes driver software

1.44MB internal for PS/2 $249
• Floppy Controller & cables with 500,000 bit per second data transfer rate. Supports two drives.

External Case for XT kits add $99

AT hard disk drives
• Includes AT mounting rails, & data cable
• SpeedStor or Ontrack large drive software
• Formatted, Partitioned, & Tested

Size Model Speed Capacity Price
HH Seagate ST251 40ms 42.8MB $439
FH Seagate ST4083 28ms 44.5MB $899
FH Seagate ST4096 28ms 80.2MB $888
FH Micropro 1335 28ms 71MB $849
FM Maxtor 1140 27ms 117MB $1849
FM Maxtor 2190 50ms 150MB $2099
Now You Have A Friend In The Computer Business

Authorized Autocad and Novell Dealer

6 Good Reasons To Buy

1. **COMPAQ 286-12**
 - 640K, 1.2 floppy, 40 MB HD monochrome system
 - IN STOCK
 - $2895

2. **AST PREMIUM 286**
 - 512K RAM, 1.2 floppy, 40 MB Fast HD, hi-res mono card, mono monitor, DOS 3.2, GW Base
 - IN STOCK
 - $2195

3. **Wyse 286 System**
 - 512K RAM, 1.2 floppy, 40 MB HD full monochrome system
 - IN STOCK!
 - $2179

4. **LAPTOP SPECIALS**
 - **NEW TOSHIBA T-1000**
 - NEC Multispeed EL $1695
 - NEW! ZENITH 181/183-20 $1649/2490

5. **LEADING EDGE COMPUTERS**
 - Model D Full Mono System $1295
 - Authorized Leading Edge Dealer

6. **ACER 710/910 SYSTEMS**
 - Acer 386 machine
 - Call for Best Price

We carry a full line of HP, IBM, Intel, Diconix products at best prices in town.

SOFTWARE SPECIAL
- WordPerfect $194
- Microsoft Word 209
- Lotus 305
- Call for any software— we deliver it to you in 24 hours!

PRINTER SPECIAL
- Epson LX800 $190
- Epson EX800/1000 $169/189
- Epson LQ-800-1000 $499/569
- Epson LQ350 $899
- Epson LQ550/570 $1199/1299
- Toshiba PIS10/PIS15 $1199/1499
- HP Laser Jet Series 2 CALL

AUTHORIZED DEALER FOR
- Novell Systems
- Epson Computers & Printers
- M/A
- Samsung
- Novell
- Zenith
- Toshiba
- Wyse Computers
- AT&T
- Wyse
- Avocent
- Business Mori
- Lenovo
- Keil
- Computown Pleasant Hill
 - 527 Central Costa Blvd., Pleasant Hill, CA 94523
 - (415) 634-TOWN
 - (415) 634-8696
 - NEW LOCATION!

Computown-Mountain View
- 2455 M Old Middlefield Way
 - Mountain View, CA 94043
 - (415) 962-TOWN
 - (415) 962-8696

Computown-San Francisco
- 760 Market Street, Suite 219
 - San Francisco, CA 94102
 - (415) 956-TOWN
 - (415) 956-8696
 - FAX (415) 989-TOWN

We Sell, Deliver, Install, & Repair

We carry a full line of HP, IBM, Intel, Diconix products at best prices in town.

SOFTWARE SPECIAL
- WordPerfect $194
- Microsoft Word 209
- Lotus 305
- Call for any software—we deliver it to you in 24 hours!

PRINTER SPECIAL
- Epson LX800 $190
- Epson EX800/1000 $169/189
- Epson LQ-800-1000 $499/569
- Epson LQ350 $899
- Epson LQ550/570 $1199/1299
- Toshiba PIS10/PIS15 $1199/1499
- HP Laser Jet Series 2 CALL

AUTHORIZED DEALER FOR
- Novell Systems
- Epson Computers & Printers
- M/A
- Samsung
- Novell
- Zenith
- Toshiba
- Wyse Computers
- AT&T
- Wyse
- Avocent
- Business Mori
- Lenovo
- Keil
- Computown Pleasant Hill
 - 527 Central Costa Blvd., Pleasant Hill, CA 94523
 - (415) 634-TOWN
 - (415) 634-8696
 - NEW LOCATION!

Computown-Mountain View
- 2455 M Old Middlefield Way
 - Mountain View, CA 94043
 - (415) 962-TOWN
 - (415) 962-8696

Computown-San Francisco
- 760 Market Street, Suite 219
 - San Francisco, CA 94102
 - (415) 956-TOWN
 - (415) 956-8696
 - FAX (415) 989-TOWN
That's because 27 million American adults can't read a child's bedtime story, can't read a street sign, can't read...period.

Functional illiteracy has become an epidemic, an epidemic that has reached 1 out of 5 American adults. It robs them of a decent living, it robs them of self-respect, it robs them of the simplest of human pleasures...like reading a letter from a friend or a fairy-tale to their children.

Tragic as that is, it's not the worst part. Because people like this could be taught to read, if we had more tutors to teach them. Sadly, we don't. Today, the waiting period for a tutor can be up to a year.

You can change that by joining the fight against illiteracy yourself. It takes no special qualifications. If you can read, you can tutor or help us in countless other ways. You'll be trained to work in programs right in your own community. And you'll experience the greatest satisfaction of all...the satisfaction of helping people discover whole new lives.

So join the effort. Call the Coalition for Literacy at toll-free 1-800-228-8813. Helping takes so little. And illiteracy robs people of so much.

Volunteer Against Illiteracy. The only degree you need is a degree of caring.
A New SideKick

Experienced SideKick users will feel like kids in a candy store when they begin using SideKick Plus. The program is so packed with features that Borland's biggest problem may well be convincing current SideKick customers that the program is in fact a completely new program, not simply an upgrade of an existing product. Comparing the nearly 400-page SideKick Plus manual needed to document the program with the original 86-page SideKick manual underscores this.

SideKick Plus (SK+) has a memory-resident Notepad (text editor), a Calculator, and an ASCII table. Although greatly expanded in capabilities, these modules, and many other SK+ features, should be familiar to current SideKick users. However, SK+ also includes a disk organizer (File Manager), an outline processor (Outlook), a calendar (Time Planner), and a full communications package (Phonebook). The program is modular in that you can customize SK+.

To save on memory and enhance performance, I set up my version to include only the applications I thought I'd use the most—File Manager, Notepad, Phonebook, and Calculator. Using a standard IBM PC with a Plus Hardcard 20, I focused $199 on those features that I frequently use—the text editor and communications module.

There were two things that I particularly liked about the SK+ Notepad: the ability to have up to nine windows open at a time, and the size of the files that you can have in each window (up to 54K bytes). I loaded nine chapters of a project (408) I'm currently working on (the largest chapter was 49K bytes), switched from one chapter to another (by pressing F6), continued...
edited them, and copied and pasted text without any problem. At the same time, I loaded the same 49K-byte file into WordStar 3.3, and I found that I could move around the file faster with Notepad than with WordStar. (Executing a Control-Q-C to get from the top to the end of the file took SK- about 2 seconds; with WordStar, it took about 9 seconds.)

The system Clipboard made it easy to cut, copy, and paste information between SK+ applications. A feature called Quick Paste, which bypasses the Clipboard, let me paste text directly to the current cursor position in the WordStar file. The Notepad also uses WordStar-like dot commands and Control-key sequences to support almost all standard word-processing features.

The Phonebook is a powerful communications program that supports background communication, auto-log-on, scripts, and other advanced features. Its Learn feature was nice; I easily created a BIX log-on script by turning Learn on, going through the standard dial-up and log-on sequence, and turning Learn off. Then I edited the script to delete everything but prompt and response statements before finally activating it. It worked fine the first time. To test background communication, I logged onto a remote bulletin board system, and, using XMODEM CRC protocol, downloaded a 7K-byte file. During the download, I switched back to DOS, loaded WordStar, created and edited a document, then switched back to my background downloading. It worked great, and the complete file was received with no errors. Although background communication capability uses about 20K extra bytes of RAM, I know I'll use it a lot.

One SK+ feature that users may find troublesome is that the program is complex and has a confusing array of features that you can reach from Control-key sequences, function keys, and menus. You'll have to decide for yourself if the complexity of the program is worth the effort; I think it is.

Another feature I found bothersome was the length of time it takes SK+ to appear on the screen—about 4 seconds to load and another 4 seconds to unload. The reason for the time delay is the method used to swap resident applications and data on and off the disk. There are ways to speed up the loading process, including an installation option that eliminates disk swapping, the use of a RAM disk or an Above Board, or the creation of an abbreviated customized version of the program (my option). Borland also indicated that speed optimization will continue to be a prime objective.

Overall, I think I'll be one of many dedicated SideKick users who give up the simplicity of the original program for the power of SideKick Plus.

—Jonathan Erickson

Lotus's Outliner/Word Processor

The Facts:

Manuscript 2.0

$495

(Pre-2.0 copies purchased on or after December 1, 1987 can be upgraded to 2.0 for free. Copies purchased before that date can be upgraded for $75.)

Lotus Development Corp.
55 Cambridge Parkway
Cambridge, MA 02142

(617) 577-8500

Inquiry 854.

Requirements:

Runs on MS-DOS computers (version 2.0 or higher) with at least 512K bytes of RAM, a hard disk drive, and a 5 1/4-inch or 3 1/2-inch (1.44-megabyte) floppy disk drive; works with CGA, EGA, VGA, Hercules Monochrome, InColor, Toshiba T3100, and Compaq Portable III displays. Includes software drivers for most popular dot-matrix and laser printers.

Lotus’s Outliner/Word Processor

Manuscript 2.0 is easier to use, more powerful, and faster than version 1.0.

Word-processing additions include macros; named text libraries for rapid insertion of boilerplate copy; multinline headers and footers; inclusion of Microlytics’ Word Finder thesaurus, with definitions as well as synonyms; a new spelling checker from SoftArt, and integration of a spell-checking with the editor rather than as an external utility; the ability to see page breaks while in the editor; sorting of tables, using any column as the sort key; and automatic saving of an edit document at predefined time intervals. You can include Lotus 1-2-3 worksheets in a document by file reference and update them by command (the latest numbers from a worksheet are read into the document).

Formatting and printing the six-page sample document, which contained three graphs, two equations, and two tables, took 59 seconds with version 1.0, while a prerelease version of 2.0 took 47 seconds. The final version will be still faster, according to Lotus. (Lotus reports it plans to ship Manuscript 2.0 in the first quarter of this year.)

Previewing is also faster in version 2.0, thanks to an intermediate storage format for graphics images and changes in the product’s overall memory management scheme. The edit document now remains in memory while the editor, print formatter, and previewer are swapped in and out. Manuscript 2.0 also includes some major enhancements and new features in the area of page layout and format: winding columns of text (one to nine columns); financial tabs, so numbers are properly aligned even when followed by symbols such as percent and minus signs; named blocks; full user control of parameters for hyphenation and microjustification; and logic for page and column breaks.

I think Manuscript 2.0 should have broad appeal as a complete editing and layout system for large documents. It looks like a workable alternative to the traditional approach of using typesetting and layout services to create printable documents.

—George A. Stewart continued
OCR SCANNING

Our "SCANNING CONNECTION" system can be used to read your paper documents into a PC. Pictures and graphs can be scanned and saved in various file formats for use by many word processing and desktop publishing systems. Text images can be converted to character text for use with most word processing and typesetting systems. Images can be sent over telephone lines to another PC or a facsimile machine.

We have developed a special controller card for high speed compression of images and for character recognition. Books, magazines, newspapers, reports and typed documents can be read by our OCR software. The software can be trained to recognize almost any font style. System prices including scanner and software start at $1795.

Circle 313

"JOIN" FLAGENG for vendor support on BIXI!

9-TRACK TAPE

With our "TAPE CONNECTION" system you can read and write most 1/2" 9-Track magnetic tapes using your PC. Tapes can be 800, 1600, or 6250. Our file transfer software can process ANSI labeled tapes from most computer systems including DEC, HP, HONEYWELL, and IBM. Large files from multivolume tape reels can be transferred to a disk at rates up to 5 MB/min. Software is provided to use the system for backup of the hard disk on your PC.

With more than twenty years experience in working with tape drive systems, we can solve most PC tape conversion problems. We can supply more than ten different tape drive models. System prices including tape drive, controller card, and software start at $3495.

Circle 314

DISKETTE CONVERSION

We specialize in conversion systems and can transport your documents or images to almost any computer, word processing, or typesetting system. With our "DISKETTE CONNECTION" system you can read and write most 8", 5¼", or 3½" diskettes using your PC. We support systems from DEC, CPT, WANG, NBI, LANIER, HONEYWELL, and XEROX. We support most IBM systems including 3741, 5/36, PC/36, 4300, and Displaywriter.

Since 1981 we have developed hundreds of software programs and designed many specialized diskette hardware products. With thousands of installations worldwide, we are probably the world leader in manufacturing diskette conversion systems. System prices including diskette drive, controller card, and software start at $1195.

Circle 315

Circle 316 on Reader Service Card for Dentists.
Memo 1
To: All persons who missed last month’s advertisement on the same subject. Also, to those who read it and ought to have done something about it, but didn’t.
Subject: GUIS
Data:
1. Scanner Model 321
--- specially designed for FAX USE
Easy to write software for
--- also suitable for DTP (high cost-
relief at under US$1K)
2. Fax Card --- to use w/Scanner 321 or
alone (under US$0.8K)
3. Also, TellerFax 207 --- Stand-alone G3,
inkible with PC for max. fax.
y
* TellerFax now has desktop
no conv. cap'y

Data + OEM appl all welcome.

Memo 2
To: All those of Memo 1, plus all others
Subject: GUIS - New product
Data:
1. LaserFax (9600 bps, G2/G3)
2. Linkable with PC for max. flex. (incl.
DTP)
3. Plain paper laser printer
4. Rotating at under US$4.5K
Suggested Action: Contact GUIS below
P.S.: CeBit’88, Hannover, March 16-23, 1988
booth B45 (Hall 11)
WCC, Chicago, March 28-31, 1988
booth 6419

GUlS
A Little Giant in Telecommunications
Glorious Union Information Systems Inc.
14th Floor, 207 Tun-Hwa North Rd.,
Taipei, Taiwan, R.O.C.
TEL: 2-7133356 2-7160395
FAX: 22651 GUIS FAX: 27134512
Agent in the Netherlands:
Hy-Test Europe B.V.
Editionsgracht 15 b
2723 RS Zonhoven
Netherlands
TEL: (31) 79-410841 FAX: (31) 79-423973

SHORT TAKES

Search and Cut/Paste Facility for dBASE Files

The Facts:
Friendly Finder
$99
Proximity Technology Inc.
3511 Northeast 22nd Ave.
Fort Lauderdale, FL 33308
(305) 566-3511
Inquiry 856.

Requirements:
IBM PC, XT, AT, or
compatibles with DOS 2.0 or
higher (DOS 3.0 required
with the IBM PC AT); 75K
bytes of free memory; hard
disk drive (recommended).

If you’ve ever needed information from a database while
working in another application, you know that exiting the
application, opening the database, and then finding the
record can be frustrating.

Using the patented search algorithm Proximity-Scan,
Friendly Finder lets you search and retrieve information from
dBASE files while working in other applications. Friendly
Finder also works with fixed-length ASCII files, but it’s
primarily for use with files in dBASE format (DBF). You can
use Friendly Finder with other database programs, such as
Paradox or R-base, by first converting the data to DBF
format, but then you have to reconvert your data every time
you update the database.

You can run Friendly Finder from the DOS prompt, but
you would probably want to operate it in memory-resident
mode (it takes up 75K bytes); this is really more useful
because you can then access databases from within other
applications.

To invoke Friendly Finder in memory-resident mode, you
press the default key combination Control-Right-Shift, or any
other combination that you specify. Friendly Finder appears
in a small window at the top of your screen with a list of
available databases. You select the database you wish to
search and enter your query. Friendly Finder finds all records
that match the string in your query. Once you’ve found the
record (or records) you’re looking for, you can paste the data
into your application, one field at a time.

I tested Friendly Finder on an XT with an Orchid Turbo-
EGA card and an Intel Above Board. With the Above Board, I
was able to copy my database files to a RAM disk in
expanded memory. While Friendly Finder is pretty fast on a
hard disk, its performance is virtually instantaneous on a
RAM disk. A search for a unique record in a 1000-record

continued
Today's new generation of personal computers provides unprecedented power and capability. That's the good news.

Now the bad news. Your diskette media is stretched to the limit every time it's taken for a spin. And, as diskette densities increase, so does the chance of failure.

That's why Kao (pronounced cow) Corporation re-thought the diskette. And applied its 100 years of expertise in surface science technology to developing the first diskettes designed for today's high performance computers.

Kao diskettes employ patented, wear-resistant resins and surface-treated magnetic particles for better head-to-surface contact, the key to diskette durability and performance. And unique surface lubricants actually extend the life of your drive's read/write heads. Our new Canadian microdisk plant—the world's largest and most modern—ensures that Kao diskettes exceed every industry standard worldwide.

More than 12 million high performance Kao diskettes have been sold under many well-known brand names in the U.S.A. Now they're available from leading computer specialty and office products dealers under the Kao name. In a complete selection of sizes, densities, and colors—all the way to 2MB bytes in 3.5: We even offer custom slitscreen designs—an innovative way to enhance marketing programs, improve security, and simplify diskette identification.

For the name of your nearest Kao dealer, call (800) 541-3475. In CA: (800) 548-3475.

And get the first diskettes designed for the Fortune 500. Or companies that wish to join them.
IBM PC® Compatible Single Board Computer

Quark/PC

4" x 6"

Compatible with other small boards!

$325. quantity one

- Low Power — Less than 3 Watts
- Optional on-board Video LCD Driver
- Ideal for any PC compatible OEM product which is not a personal computer

Includes:
1. Powerful V40® CPU (Faster than a PC)
2. Math Co-Processor Socket
3. 5 Volt Only Operation (3 watts)
4. Speaker Port
5. Keyboard Port
6. Parallel Printer Port
7. PC Bus
8. PC Compatible BIOS ROM
9. 1 Serial Port

On board Options Include:
1. 5 Mode Video Controller Option (Monochrome, Hercules® Graphics, CGA, High Res CGA, LCD Driver)
2. Floppy Disk Controller (3.5"/5.25", 360K/720K/1.2 MB)
3. SCSI Bus Interface (Hard Disk etc.)
4. Up to 768K RAM
5. Battery-Backed-up Real-Time-Clock
6. Additional RS232C Serial Ports

To order or enquire call us today.

Megatel Computer Corporation
(416) 745-7214 FAX (416) 745-6792
174 Turbine Drive, Weston, Ontario M9T 2S2
U.S. Address: 1051 Clinton St., Buffalo, N.Y. 14206

Distributors:
- Northern Europe: Mecom GMBH (Germany) (06071) 5495
- Southern Europe: NCS Electronics (Italy) (0331) 256-524
- U.K.: Denatron (0959) 71011 or (0959) 71015
- Australia: Asp Microcomputers (02) 500-0628

Quad 1 is a registered trademark of Megatel Computer Corp. Quark is a registered trademark of Megatel Computer Corp. Hercules is a registered trademark of Hercules Corporation. VLSI is a registered trademark of IHC Corp. IBM PC is a registered trademark of IBM Corporation.

SHORT TAKES

Database took a few seconds on the hard disk but completed almost instantly on the RAM disk.

To customize Friendly Finder using its special customization program, you add submenus that appear when you invoke Friendly Finder. The customization program also lets you set up fixed-length ASCII files for use with Friendly Finder. You have to specify a field width and field name for each field in the fixed-length record. The fixed-length file can then be queried just like a DBF file.

Friendly Finder is an extremely useful utility for database users. I hope that Proximité Technology will eventually make Friendly Finder available for other database formats.

—Nick Baron

Recordkeeping Software Shows Potential of Macintosh HyperCard

The Facts:
- Focal Point: $99.95
- Activision Inc.: P.O. Box 7286, Mountain View, CA 94039
- Inquiry 857.

One of the most alluring promises of Apple's HyperCard is the possibility of quickly storing, retrieving, changing, and cross-referencing "stacks" of whatever information you use regularly. Focal Point is a collection of 18 interrelated stacks that help you organize job-related phone, project, and billing data.

The most valuable thing about Focal Point is that information needed in multiple places shows up automatically after you have entered it once. For example, when you dial a number from the Directory and Dialer stack, Focal Point creates a new record in the Outgoing Phone Log, filling in the fields for the date, time, person called, and phone number.

The scheduling stacks include the Appointment Book, To Do List, Monthly Calendar, and Deadlines. In the To Do List, you can sort entries by priority; at the end of the day, pressing one button copies all pending items to the next day. The Deadlines stack shows all the project-related deadlines you've set, sorted by date.

There are also project stacks that you can use to interrelate clients, vendors, and projects. The phone-support stacks include the Directory and Dialer stack, and the Incoming and Outgoing Phone Log stacks. For billing purposes, you can record the length of a call in both Phone Log stacks just by clicking on a call-finished button. And finally, there are expense accounting stacks.

Focal Point is an excellent product, but as stackware, which sits "on top of" HyperCard rather than a directly executable file, it has advantages and disadvantages. For example, if you don't like the way it works, you can modify it (with some difficulty) by changing the underlying HyperTalk scripts. On the other hand, it executes some actions slowly and has odd conventions, like wanting you to hit Tab or Enter but not Return when you finish a data item (this is an idiosyncrasy of HyperCard).

You really need a hard disk drive, MultiFinder, and at least 2 megabytes of memory (Focal Point is most useful when it is already in memory and can be called up in several...
Discover Parallel Processing!

Monoputer™
The Most Cost Effective Transputer Development System

MicroWay's Monoputer is the best selling Transputer-based PC coprocessor in the world. It was the first board available to run the 20 MHz T414 or T800. As a result, it received many rave reviews in the UK (available on request) and became the standard Transputer software development tool. Parallel code can be executed on a single Monoputer or an array of Monuputers wired together by their external link lines. The Monoputer includes 2 megabytes of 100 ns DRAM, a 20 MHz T414 or T800 and the MicroWay stand alone Occam Compiler, which generates Transputer code that runs under MS-DOS. Optional tools include our licensed version of the TDS and a Pascal, Fortran, C, and Prolog.

Quadputer™
Mainframe Power For Your PC!

MicroWay's Quadputer is the most versatile multiple Transputer coprocessor on the market today. It can be purchased with 2, 3, or 4 Transputers, each of which has 1 or 4 megabytes of local memory. Two or more Quadputers can be easily cabled together to build larger parallel processor systems. A single Quadputer using four T800s provides 40 MIPS of CPU and 6 megaflops of NDP throughput at one third the cost of a comparably performing mainframe.

Attend MicroWay's Seminar on Parallel Processing, April 6th in Plymouth, Massachusetts!
For more information please call (617) 746-7341. After July, 1988, call (508) 746-7341.

The World Leader in PC Numerics
P.O. Box 79, Kingston, Mass. 02364 USA (617) 746-7341
32 High St., Kingston-Upon-Thames, UK 01-541-5466
St. Leonards, NSW, Australia 02-439-8400

Circle 174 on Reader Service Card
A full-fledged weather monitoring system, PC WeatherPro is based on a half-length plug-in card with a spiffy 80-pin custom IC developed specifically to process weather data. Packed into the chip is an A/D converter, a processor, memory, a real-time clock, a custom solid-state barometric pressure transducer, and the microcode that ties it all together.

Since keeping the board powered up at all times is critical, a separate plug-in power supply keeps PC WeatherPro running even when your computer is powered down. But the board is only the beginning. It's what you hook up to it that counts, and that includes both internal and external temperature sensors, an electronic rain gauge, an anemometer, and a wind vane. Obviously, installing and hooking up all this stuff requires a certain amount of skill, time, and patience. You'll need to plan wire runs and crawl around on your roof to mount the wind sensors and rain gauge. And you'll need both boiling and freezing water to calibrate the temperature sensors, as well as access to accurate barometric pressure to calibrate the on-board sensor.

The software that keeps PC WeatherPro happily keeping track of conditions runs in the background, as you'd expect. You can call up the master Weather Bulletin screen at any time by pressing a hot key. The real power in PC WeatherPro, however, is its ability to log and plot all that weather data. At regular intervals, all the weather parameters that the system measures are written to a disk file. You can call them up at any time, and, with the press of a couple of keys, either display...

Continued
BREATHE NEW FIRE INTO YOUR GRAPHICS.

Introducing The OmniScan™ multifrequency monitor...AND...the Advanced EGA 900 OmniCard™
Together they breathe new fire and life into charts, graphs, documents, spreadsheets, CAD/CAM applications and desktop publishing.

OmniScan...the high resolution monitor compatible with virtually all computers, software and graphics packages; VGA™ to EGA...Personal System/2™ to Macintosh II™

The Advanced EGA 900 OmniCard...the most versatile graphics card available. Supports virtually all monitors and software; EGA, CGA, Hercules™ MDA, 132 columns, VGA modes 11 and 12...and 800 x 560 high resolution graphics.

OmniScan and OmniCard are a powerful and profitable sales combination. Each is engineered for outstanding quality and value. Together, they're a real fire breather. Call today for complete specifications.

* 1988 is the year of the Dragon; a year of power and good fortune.

TATUNG
We monitor the world.

Western Region-2850 El Presidio Street, Long Beach, CA 90810 (213) 979-7055
Mid-West Region-3320 Dalworth St., Arlington, TX 76011 (817) 640-3175
Eastern Region-1075 Cranbury South River Road, Building A, Suite 6, Jamesburg, NJ 08831 (609) 365-6770

OmniScan and 900 OmniCard are sales marks of TATUNG Co. of America, Inc. All trademarks are property of their respective manufacturers.
Want to save time, money, and headaches?

GET SUPER SOFT'S
SERVICE DIAGNOSTICS

All the software, alignment diskettes, parallel/serial wrap-around plugs, ROM POSTs and extensive, professional documentation to provide the most comprehensive testing available for IBM PCs, XTs, ATs and all compatibles under DOS or Stand Alone. No other diagnostic offers such in-depth testing on as many different types of equipment by isolating the problems to the board and chip level.

NEW: SuperSoft's ROM POST performs the most advanced Power-on-Self-Test available for system boards that are compatible with the IBM ROM BIOS. It works even in circumstances when the Service Diagnostics diskette cannot be loaded.

NEW: 366 diagnostics for hybrids and PS/2s!

For over nine years, major manufacturers have been relying on SuperSoft's diagnostic software to help them and their customers repair microcomputers. End users have been relying on SuperSoft's Diagnostics II for the most thorough hardware error isolation available. New versions of Service Diagnostics are available to save everyone (including every serious repair technician) time, money, and headaches in fixing their computers, even non-IBM equipment.

All CPUs & Numeric Co-processors
System Expansion & Extended Memory
Floppy, Fixed & Non-standard Disk Drives
Standard & Non-standard Printers
System Board: DMA, Timers, Interrupts, Real-time Clock & CMOS config.
All Keyboards & the 8042 Controller

Join the ranks of XEROX, NCR, CDC, SONY, PRIME, ... who have been relying on SuperSoft's Service Diagnostics to help them and their customers repair microcomputers. End users have been relying on SuperSoft's Diagnostics II for the most thorough hardware error isolation available. New versions of Service Diagnostics are available to save everyone (including every serious repair technician) time, money, and headaches in fixing their computers, even non-IBM equipment.

Service Diagnostics for PC, PC/XT, and compatibles only
Alignment Diskette for PC, PC/XT and compatibles (40 pt driver)
Wrap-around Plug for PC, PC/XT and compatibles (parallel and serial)
Service Diagnostics for AT and compatibles only
Alignment Diskette for AT and compatibles (90 pt driver)
Wrap-around Plug for AT (serial)
ROM POST for PC, PC/XT, and compatibles only
ROM POST for AT and compatibles only
Service Diagnostics: The KIT (includes all of the above—save $50)
Service Diagnostics for all other CPUs (386, V20, V30, Hams, etc.)
Diagnostic II is the solution to the service problems of users of all CP/M-80.
CPM-66 and MS-DOS computers
ROM POST for PS/2 and compatibles only
Alignment Diskette for PS/2 and compatibles (3 1/2 inch)

To order, call 800-762-6629 (in Illinois 217-339-2112), write to SuperSoft, or FAX 217-398-5923.

SHORT TAKES

Technical Graphing for Lotus 1-2-3

The Facts:

Tech*Graph*Pad 2.1

$275

Binary Engineering Inc.

100 Fifth Ave.

Walton, MA 02154

(617) 890-1812

Inquiry 858.

Tech*Graph*Pad is a stand-alone technical graphing program that can read directly from Lotus 1-2-3 or WKS-format files. The version that I tested (2.1) had several serious bugs and an extremely clumsy interface for such an expensive piece of software. The program does, however, have many features that engineers and scientists need in a graphing program. It supports log-log and log-linear plot types, as well as polar coordinates. You can use up to eight data sets of 500 points each, which you can generate in ASCII format or WKS files. In addition, Tech*Graph*Pad supports a set of curve-fitting algorithms, including polynomial, power, spline, logarithmic, Bezier, and Savitsky-Golay. A host of other features for scaling, labeling, and customizing your graphs are also included. You can also convert data from Tech*Graph*Pad into multiple or merged PIF files if you need to use the Lotus PrintGraph facility.

In the bugs department, Tech*Graph*Pad printed the x-axis coordinates incorrectly when I changed an integer format (it printed one coordinate twice and put a minus sign in front of the 0 coordinate). Also, the built-in line editor for editing data files did not work properly, introducing extraneous characters when I attempted to move the cursor or use the PageUp or PageDown keys.

While bugs can be corrected, Tech*Graph*Pad suffers from more basic design problems in its user interface. Tech*Graph*Pad uses a series of pop-up menus, some of which have selections in columns. Unfortunately, you can't move the cursor horizontally from one column to the next. You have to scroll vertically to the bottom of one column and then start at the top of the next, even if you only want to enter commands in a single row. In addition to the menu problems, Tech*Graph*Pad does not support the Extended ASCII character set, so you can't label your plots with standard Greek mathematical symbols such as θ or Σ, for example.

Tech*Graph*Pad's most important feature is its ability to read WKS files. However, you can't view the data from the WKS file when you are prompted to enter cell ranges for each data set. This means that you have to write them down on paper while in Lotus 1-2-3 before you load Tech*Graph*Pad.

There is a need for a program with Tech*Graph*Pad's features. However, I think that the implementation of these features in Tech*Graph*Pad version 2.1 is seriously flawed.

—Stan Miaskowski

Tech*Graph*Pad

Requirements:

IBM PC, XT, or AT with 440K bytes of free memory, DOS 2.0 or higher, and CGA or EGA.

Technical Graphing for Lotus 1-2-3

Tech*Graph*Pad uses a series of pop-up menus, some of which have selections in columns. Unfortunately, you can't move the cursor horizontally from one column to the next. You have to scroll vertically to the bottom of one column and then start at the top of the next, even if you only want to enter commands in a single row. In addition to the menu problems, Tech*Graph*Pad does not support the Extended ASCII character set, so you can't label your plots with standard Greek mathematical symbols such as θ or Σ, for example.

Tech*Graph*Pad's most important feature is its ability to read WKS files. However, you can't view the data from the WKS file when you are prompted to enter cell ranges for each data set. This means that you have to write them down on paper while in Lotus 1-2-3 before you load Tech*Graph*Pad.

There is a need for a program with Tech*Graph*Pad's features. However, I think that the implementation of these features in Tech*Graph*Pad version 2.1 is seriously flawed.

—Nick Baran
Now you can find a needle in the haystack in three seconds flat.
With MemoryMate.

Imagine tossing all your notes and files into a huge desk drawer. Then magically discovering that every time you want something, it's right there on top.

We call it MemoryMate. A new breed of data manager that reduces your paper clutter and takes the mess off your desk.

Unlike structured data bases, MemoryMate is free-form and works intuitively. Once you enter a record (up to 60 lines each) every single word, phrase, and date is automatically indexed. And cross-indexed.

Which means that MemoryMate can find that record later by using any word, date, or phrase in it. And MemoryMate does it fast. You can search 180K on a PC XT in three seconds!

And since MemoryMate is memory-resident, it's always there. You can access it while other programs are running. You can even cut and paste between MemoryMate and other programs. And vice versa.

Just enter your memos, notes, tables — anything — using the built-in word processor. You can forget designating "keywords." Just like you can forget where you stashed that important scrap of paper or yellow Post-it.

You can even forget all your to-do lists and deadlines. Because MemoryMate reminds you. Tickler messages pop-up on screen automatically on the days you select.

So how complex is all this to operate? MemoryMate has only 15 simple commands and they're always on screen. So you can access all that power easily — without having to remember a thing.

Find what you need using a single word.
Or a sentence.

Let's say you want to call an attorney you met playing tennis last May. But you can't remember his name. All you remember is that you put a note about him in MemoryMate. So you type in the word "tennis" and hit the search key. In seconds, all records containing "tennis" begin to appear. But let's say you also manage a tennis league. You've got tons of "tennis" entries. To narrow your search, you type "tennis and May and attorney". Bingo! You've got his name and phone number.

Is a better memory worth $69.95?

With all this praise and all these incredible features, you'd expect MemoryMate to cost a lot more than $69.95. But it doesn't.
And, right now you can get a demo disk for less than six bucks — which can be rebated when you buy MemoryMate. So fill in the coupon below and send it in. And be sure to do it now, before you forget.

After all, you don't have MemoryMate to remind you. Yet.

Send me the MemoryMate demo disk for just $5.95, tax and shipping included.

I'M SOLD. Send me the MemoryMate program for $69.95 plus $3.50 shipping. CA res. add 6% sales tax.

Name
Address
City State Zip

Order Toll-Free. 24 Hours.
1-800-527-6263

Order by Mail: P.O. Box 12947, San Rafael, CA 94913-2947 33BY2

Allow 4 weeks for delivery. Demo disk offer good while supplies last.
Above Board 2 is the first memory board for the PS/2™ that comes with the new expanded memory specification—LIM 4.0.

Because only Above Board 2 comes from Intel, the company that developed LIM 4.0.

So now your users can access more memory. And run the very latest DOS application software well beyond 640K. Which will give everyone powerful, new capabilities they never thought possible.

Above Board 2 also promises 100% compatibility with OS/2™ application software.

Along with guaranteeing compatibility with the PS/2's microchannel technology.

Add to that Intel's technical support, award-winning documentation and five-year warranty, and Above Board 2 is clearly your one and only choice.

Of course you could always wait for the competition to catch up. But, where would that leave you?
PETITION OUT ON A LIM.
Enhanced EGA and VGA Boards

Curtis Franklin Jr.

The joy of a good video standard is that you want to use the available graphics. EGA graphics have become the standard for business applications, offering 640- by 350-pixel by 16-color resolution and text that is readable for extended periods of time. During the last year, companies pushed that standard higher by offering enhanced EGA boards with 640 by 480 or higher resolutions.

IBM has since given the world a new graphics standard, the VGA, and early indications are that it is a good standard indeed. People who make graphics boards recognize this, and so the rush is on to get VGA-compatible graphics adapters to market. In this mad rush, unfortunately, the word "compatible" takes on several shades of meaning. I looked at 22 boards and found that, in many cases, compatibility is in the eye of the marketing chief.

In broad terms, the boards in this review fall into two categories: VGA-compatible boards and enhanced EGA boards that happen to have modes that coincide with one or more of the new VGA modes. Table 1 lists characteristics for the 14 enhanced EGA boards. I looked at, and photo 1 shows a sampling of these boards. Table 2 lists the 8 VGA boards, and photos 2 and 3 show what these boards look like. In both groups of cards, I found that performance and features varied widely from board to board.

Sorting Out Standards

The original EGA boards used a 16.257-MHz timing crystal to drive the display at the 640 by 350 resolution. This satisfied users until multiple-scan-rate monitors, like the NEC MultiSync, appeared. These monitors allow a much higher resolution, and people soon realized that simply adding a faster crystal would give them an EGA display with 640 by 480 resolution (now the standard for enhanced EGA). Some manufacturers are going beyond the new standard to 800 by 560 and higher resolutions.

VGA arrived on the scene with the IBM PS/2 computers in April 1987. It brought five new BIOS display modes (two text and three graphics) and a new requirement for monitors. EGA (and earlier) graphics use TTL monitors for their display. The increased bandwidth of the VGA signals would require a TTL cable roughly the diameter of your thumb, so IBM engineers decided to switch to analog display technology.

With an analog display, fewer wires are required to carry the signal from the display adapter to the monitor. Most multiple-scan-rate monitors allow switching between analog and TTL input, so upgrading from EGA to VGA will not, for many users, require buying a new monitor, as did the switch from CGA to EGA.

Most of the interest in VGA has centered on the graphics modes. The three new ones are mode 11H, 640 by 480 by 2-color; mode 12H, 640 by 480 by 16-color; and mode 13H, 320 by 200 by 256-color. Modes 12H and 13H display their colors from a palette of more than 256,000 colors.

You may have noticed that the resolution of modes 11H and 12H matches the resolution of many enhanced EGA boards. This does not mean that all boards with 640 by 480 resolution are VGA-compatible. The BIOS entry locations are different for EGA and VGA, even at the same resolution. Some manufacturers solve this problem by offering software that switches the board between EGA BIOS and VGA BIOS.

If you have specific needs for a particular mode or resolution, you should read the specifications of the board and its attendant software carefully. Photos 4 and 5 show the difference between EGA and VGA resolution. (For a detailed discussion of the VGA standard, see "PS/2 Video Programming" by Richard Wilton in BYTE's Fall 1987 Inside the IBM PCs.)

Wrangling Them Out

I used nine tests to check the features and compare the performance of the boards. The machine I used was an 8-MHz IBM PC AT with 2.5 megabytes of RAM, a 40-megabyte hard disk drive, and an NEC MultiSync XL monitor. The tests I used were the following:

1. TORUS.BAS: A QuickBASIC 4.0 program that draws a torus (doughnut) on the screen at the highest available color/resolution, then cycles the colors.
2 and 3. Two QuickBASIC programs that checked for support of VGA mode 13H.
4. VGAByte: This program comes with the Sigma VGA board and checks for support of all VGA modes, enhanced EGA (640 by 480), and all VGA modes.
5. Windows Draw: I measured the time to redraw the USA.PIC file that was supplied with Microsoft Windows Draw.
6. Windows Write: I measured the time needed to scroll from the top to the bottom of a file that measured approximately 40K bytes. For both Windows tests, I used Microsoft Windows version 1.03 (which was the latest version available at the time of this writing) and the Windows driver supplied with the individual board unless otherwise stated.

7. DOS DIR: The time needed to display a 53-entry directory using the DIR command of DOS 3.2.
8. AutoCAD: I timed a regeneration (REGEN) of the STPAULS file supplied with AutoCAD version 2.52 with ADE 3 extensions. I used the AutoCAD driver supplied with each board to perform this test.

continued
EGA
Boca Research MultiEGA
Genoa SuperEGA HiRes +
IGC EGAcard
Logitech EGA
Mitac SEGA
NSI Smart EGA Plus
Paradise Autoswitch EGA480
Quadram Quad ProSync!
SCOA Star PGA
SMT Pro-EGA
Tatung 900 OmniCard
Tecmar EGA Master 800
Thomson EGA Ultra Version
Tseng EVA480

VGA
ATI VIP VGA
Tatung Platinum Card
Compaq VGC Board
IBM PS/2 Display Adapter
Sigma VGA
STB VGA Extra
Video Seven VEGA VGA
Zenith Z449

Photo 1: The NSI Smart EGA Plus, Thomson Enhanced Graphics Adapter Ultra Version, Paradise Autoswitch EGA480, and Quadram Quad ProSync! are typical of the half-slot enhanced EGA boards.

Photo 2: IBM's Personal System/2 Display Adapter, the standard by which most other VGA boards are judged.

Photo 3: The first crop of VGA boards include the ATI VIP VGA, Compaq Video Graphics Controller Board, Sigma VGA, STB VGA Extra, VEGA VGA, Tatung Platinum Card, and Zenith Z449.
EGA AND VGA BOARDS

Table 1: Enhanced EGA boards.

<table>
<thead>
<tr>
<th>Product</th>
<th>Boca Research MultiEGA</th>
<th>Genoa SuperEGA HiRes</th>
<th>IGC EGAcad</th>
<th>Logitech EGA</th>
<th>Micron SEGA</th>
<th>NSI Logic Smart EGA Plus</th>
<th>Paradise Autoswitch EGA480</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum resolution</td>
<td>640 x 480 x 16 colors</td>
</tr>
<tr>
<td>VGA modes supported</td>
<td>None</td>
<td>Modes 0, 1, 2, and 3</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Size</td>
<td>5½ x 4”</td>
</tr>
<tr>
<td>Special features</td>
<td>TTL and 9-pin analog output; cable</td>
<td>Comes with three-button mouse and mouse driver software</td>
<td>Compatible with drivers for other EGA boards</td>
</tr>
<tr>
<td>Price</td>
<td>$299</td>
<td>$499</td>
<td>$450</td>
<td>$399</td>
<td>$199</td>
<td>$499</td>
<td>$349</td>
</tr>
</tbody>
</table>

All drivers supplied used the ADI driver hooks available in AutoCAD.

9. Lotus 1-2-3: I timed the drawing of a graph within the spreadsheet. The graph was a stacked bar chart of 48 data points in 1-2-3 version 2. I used the 1-2-3 graphics driver supplied with the board or the Lotus EGA driver if no graphics driver was supplied.

The applications (Windows, AutoCAD, and Lotus 1-2-3) test the performance and features of a graphics board/driver combination. I used the highest-resolution driver available in each case. The performance of the board with a lower-resolution driver might be much different. Figure 1 shows the benchmark results for the enhanced EGA boards; figure 2, the results for the VGA boards.

Boards Beyond EGA

All boards in this category support at least 640 by 480 by 16-color graphics, driving them on a TTL monitor. Some of the boards provide BIOS hooks for VGA software in certain modes, but most simply list themselves as enhanced EGA boards. In addition to the drivers and software listed with each product, the boards generally include software to display the version and date of the motherboard ROM, a program to change video modes in software, and a program to allow games that auto-boot to run. The boards are listed in alphabetical order.

The Boca Research MultiEGA ($299) is a PC-bus half card. The MultiEGA uses the Chips and Technologies EGA chip set and the Boca Research BIOS, and it contains one switchblock and three jumpers for setting mode and monitor type. It includes drivers for AutoCAD and Windows and a screensaver.

Its performance places the MultiEGA solidly in the top tier of the enhanced EGA boards, taking 22.77 seconds to regenerate the STPAUS file in AutoCAD, the fifth fastest time, and 95.98 seconds to scroll through the Windows Write text file, the second fastest time. Boca does not claim that the MultiEGA emulates any VGA video modes.

The Genoa SuperEGA HiRes + ($489) is a half-length board that uses a Genoa EGA chip set and EGA BIOS to provide enhanced EGA functions and compatibility with VGA text modes 0, 1, 2, and 3 through a TTL video port. The board provides VGA BIOS entry points, but the tests I ran showed that the VGA emulation is not perfect. For example, the TORUS program gave an initial display of EGA-type colors, but it would not cycle the colors. In addition, a large green band ran down the right side of the screen.

Genoa includes drivers for AutoCAD, GEM, Lotus, and Lotus 1-2-3, Ventura Publisher, and Volkswriter 3. With each test program, the SuperEGA HiRes + brought up the display on the far left side of the screen and then shifted it to the center after about 1½ second. The jumping display was disconcerting but did not seem to have any effect on the performance of the programs. This board had the worst performance in Lotus 1-2-3, taking more than twice the time of the next slowest board. In other programs, it scored in the middle.

The Intelligent Graphics Corp. EGAcad ($450), based on the Chips and Technologies chip set and Phoenix BIOS, has a number of features that make it stand out from the rest of the boards in this group. The EGAcad does not include VGA BIOS hooks or emulation, but it does have (9-pin) analog output in addition to the standard EGA TTL. IGC even included a 9-pin to 9-pin cable with the
<table>
<thead>
<tr>
<th>Quadram Quad ProSync</th>
<th>SCOA Star PGA</th>
<th>SMT Pro-EGA</th>
<th>Tatung 900 OmniCard</th>
<th>Tecmar EGA Master 800</th>
<th>Thomson EGA Ultra Version</th>
<th>Tseng Labs EVA480</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>640 x 480 x 16 colors</td>
<td>640 x 480 x 16 colors</td>
<td>800 x 640 x 16 colors</td>
<td>640 x 480 x 16 colors</td>
<td>640 x 480 x 16 colors</td>
<td>640 x 480 x 16 colors</td>
</tr>
<tr>
<td>Modes 11H and 12H</td>
<td>None</td>
<td>None</td>
<td>Modes 11H and 12H</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>5½ x 4" Driver upgrade for VGA: $10</td>
<td>5½ x 4"</td>
<td>5½ x 4"</td>
<td>5½ x 4"</td>
<td>5½ x 4"</td>
<td>13½ x 4"</td>
<td></td>
</tr>
<tr>
<td>$395</td>
<td>$399</td>
<td>$249</td>
<td>$399</td>
<td>$595</td>
<td>$395</td>
<td>$480</td>
</tr>
<tr>
<td>Inquiry 931</td>
<td>Inquiry 975</td>
<td>Inquiry 976</td>
<td>Inquiry 977</td>
<td>Inquiry 978</td>
<td>Inquiry 978</td>
<td>Inquiry 980</td>
</tr>
</tbody>
</table>

While other boards in this review concentrated on the VGA standard, IGC designed this board to work "in series" with its PGC (Professional Graphics Controller) compatible adapter. According to the manual, connecting the two boards allows the EGACard to provide PGC colors at EGA resolution.

A driver for AutoCAD was included with the board but, unlike the drivers for the other boards I looked at, this one didn't work. When I tried to install it, I got an Unknown Hardware error. The AutoCAD timing test was run using the AutoCAD EGA driver.

The Logitech EGA ($399) comes with a three-button Logitech mouse and a mouse port. The Logitech EGA is based on the Chips and Technologies chip set and Logitech BIOS, and it uses one switchblock and two jumpers to set video mode and monitor type. The board comes with drivers for Windows, GEM, and AutoCAD and drives all three at 640 by 480 resolution. I did not test the mouse or its drivers. The Logitech EGA board continued

Photos 4 and 5: Microsoft's Windows 1.03 running under EGA (left) and VGA (right) modes illustrates the increased resolution that VGA offers.
work flawlessly and turned in a better-than-average performance.

The Mitac SEGA ($199) is built around the same Chips and Technologies chip set and Phoenix BIOS as many of the other boards, but it deserves special note as the least-expensive board I looked at. The SEGA performed as a standard enhanced EGA, with one exception: In the VGA-Diag test, where all other boards gave a full-size screen for both the 320 by 200 by 16-color and 640 by 200 by 16-color tests, the SEGA gave split screens, with identical half-size images appearing in the top and bottom halves of the screen. In all, the Mitac board looks like a good bet if your needs are confined to the capabilities of an enhanced EGA.

The NSI Logic Smart EGA Plus ($499) supports VGA modes 11H and 12H through its TTL video port. The documentation also lists other boards that this NSI chip-set- and BIOS-based board is compatible with. According to the documentation, this board is compatible with, and can use the drivers from, the Paradise AutoSwitch EGA480, Video Seven VGA Deluxe, QuadraQuad ProSync, and PCG Photon Mega. In addition to this bounty of drivers, the Smart EGA Plus comes with drivers for Windows, 1-2-3, Symphony, and AutoCAD.

The major flaw of this board was the noticeable and very annoying flicker in the Windows and AutoCAD displays. The Smart EGA Plus was the only board to have a problem with severe flickering.

The Paradise AutoSwitch EGA480 ($349) is a half-length card that uses the Paradise single-chip EGA and Paradise BIOS to provide enhanced EGA capability. This board offers the same basic functionality as the other boards in this group, and it provides software drivers for Windows, GEM, AutoCAD, Ventura Publisher, 1-2-3, Symphony, Framework II, WordStar, and WordPerfect.

The most outstanding feature of the AutoSwitch EGA480 is its documentation, which is well written, professionally presented, and clearer than any other board's documentation on how the installation procedure for each driver works, including the response shown on the screen at each step. The quality of the documentation make this board good for users who do not have a lot of experience installing boards and drivers.

The Quadram Quad ProSync! ($395) supports VGA modes 11H and 12H, as well as enhanced EGA modes. When I tested the board, which uses a Chips and Technologies chip set and the Phoenix BIOS, I found that on TORUS I got VGA colors, but no color cycling, indicating limits to the completeness of the emulation. The Quad ProSync! comes with drivers for 1-2-3, Windows, AutoCAD, GEM, WordPerfect, and WordStar.

My only problem with the board came in using AutoCAD. When STPAULS first appeared, the colors were dramatically different than those of other boards, with red replacing blue, and green replacing white. When I regenerated, the colors corrected themselves, but throughout the AutoCAD session, random characters would occasionally appear at the top of the menu section.

The SCA Star PGA ($399) confused my poor little brain. First, the box said "Intelligent EGA." Next, while I would assume that "PGA" related to the IBM PGC board, this is simply another enhanced EGA board that uses the Chips and Technologies chip set and the Phoenix BIOS. There was nothing unusual in the operation of the board, but it was the only product I looked at that had no switches set at the factory. Most of the boards came set up for EGA graphics on a standard EGA monitor, but this board simply came with all switches on.

The SMT Pro-EGA ($249) is a half-length card that uses the Paradise chip set...
CTX
THE BEST 14" MONITORS IN BOTH WORLDS

CGA
EGA
VGA (PS-2)
MULTI-SCAN/ANALOG

DUAL SCAN
GREEN/AMBER/WHITE
132 COLUMN

ALL WITH TWO-YEAR WARRANTY

U.S. HEADQUARTERS: CTX INTERNATIONAL, INC.
260 PASO TESORO/WALNUT, CA 91789
TEL: (714) 595-6146 FAX: (714) 595-6293

EASTERN REGIONAL OFFICE
CONTINENTAL TECHNOLOGY, INC.
300 McGAW DRIVE
EDISON, NEW JERSEY 08837
TEL: (201) 225-7377 FAX: (201) 225-6355

SOUTHERN CALIFORNIA
AUTHORIZED DISTRIBUTOR
ELCO COMPUTERS
218 S. RAYMOND ST.
ALHAMBRA, CA 91803
TEL: (818) 284-3261 FAX: (818) 284-4871

FACTORY
CHUNETEX ELECTRONIC CO., LTD.
ROOM 401, NO. 50 SEC.1,
HSIN-SHENG S. RD.
TAIPEI, TAIWAN, R.O.C.
TEL: (02) 3921171 FAX: (02) 3918780

PS-2 is a trademark of International Business Machine Corp.

Circle 70 on Reader Service Card (Dealers: 71)
and BIOS. The Pro-EGA has one switchblock and three jumpers on the board, and it comes with drivers for Windows, GEM, AutoCAD, CAVVance, Ventura Publisher, Symphony, 1-2-3, and WordStar. This board is one of the few that warranted a word about color; the driver for AutoCAD produced a weak red, while the Windows driver gave one of the richest of reds of any board in the review.

The Pro-EGA has one switchblock and three jumpers on the board, and it comes with drivers for Windows, GEM, AutoCAD, CAVVance, Ventura Publisher, Symphony, 1-2-3, and WordStar. This board is one of the few that warranted a word about color; the driver for AutoCAD produced a weak red, while the Windows driver gave one of the richest of reds of any board in the review.

The Tecmar EGA Master 800 ($595) is an enhanced EGA half-length card that has software for enabling BIOS hooks for VGA modes 11H and 12H. The Tecmar board has a Genoa chip set and Tecmar BIOS, and it comes with drivers for Windows 1.03, GEM, 1-2-3, AutoCAD, and Ventura Publisher. I was surprised to find that, in addition to the 70-page manual for the board, Tecmar includes a 38-page Guide to Cover Removal and Replacement, showing how to take the cover off scores of personal computers.

The Thomson Enhanced Graphics Adapter Ultra Version ($395) is a half-length card that comes with a driver for AutoCAD and a mouse driver for the Microsoft InPort Mouse adapter on the card. Because of the presence of the InPort, the EGA Ultra Version has more switches than most of the boards, with three switchblocks and four jumpers. The board is built around the Renaissance BIOS and chip set.

The Tseng Labs EVA480 ($480) has a number of unusual features that set it apart from the other boards. Tseng offers a piggyback board to allow complete Hercules emulation and includes a 25-pin serial port with the EVA480. This is a full-length board that uses a Tseng proprietary chip set and BIOS.

There are drivers for 1-2-3 and AutoCAD with the board, and I found files that appear to be Windows drivers. There were, however, no instructions for installing the Windows drivers, so I used the enhanced EGA driver supplied with Windows 1.03. The AutoCAD driver had the interesting feature of changing the menu characters to double size whenever they were accessed. The sudden leap in size was a bit jarring.

And on to VGA

The eight boards reviewed that fall into the true VGA category are the first ones...
EGA AND VGA BOARDS

available. I found that the levels of performance and features among this group varied far more than did the features and performance of the enhanced EGA boards. As before, the boards are (with one exception) listed in alphabetical order.

The ATI VIP VGA ($449) and Tatung Platinum Card ($445) are listed together because they are one board sold by two different companies. ATI manufactures the boards using a Chips and Technologies chip set and AT! BIOS. Both supply drivers for GEM, Ventura Publisher 1.0, 1-2-3, AutoCAD, and Windows.

Both boards support all VGA modes, and both had the same problems with drivers. In AutoCAD and Windows, the display was drawn much too large (vertically) for the monitor to display. In AutoCAD, both the coordinates at the top of the screen and the current command at the bottom of the screen were invisible. In Windows, the blue bar with the working filename at the top of the screen and the green icon bar at the bottom were both drawn out of the display area.

The Compaq Video Graphics Controller Board ($599) emulates the IBM VGA to the extent of including precisely as many drivers as the IBM; none. Once I got past that, the Paradise chip-set-based board worked well, but with a lot of noise—not the video noise that causes "snow" on the screen, but real audio noise over the computer speaker. There was a definite hum throughout the operation of the board. The hum's pitch would change as different items were drawn on the screen. It was kind of fun to close my eyes and guess what was happening on the screen by the sound it made, but I think that the hum would get on my nerves in a big way over time.

The IBM Personal System/2 Display Adapter ($595) is, of course, the standard against which all other VGA boards are judged. In most ways, it's not a hard standard to meet. It comes on a Micro Channel form-factor with a PC-bus connector. The board includes no drivers. Its documentation is complete, but not exhaustive. In order to get VGA graphics, I used the drivers from the SigmaVGA board, which worked with every package but AutoCAD. I ran the AutoCAD test using the EGA driver that was packaged with AutoCAD.

The SigmaVGA from Sigma Designs ($499) is a full-length board that packs a lot of graphics compatibility into a single slot. Not only does the SigmaVGA support all VGA modes, it emulates EGA, CGA, Monochrome Display Adapter (MDA), and Hercules as well. With one of these and a multiple-scan-rate monitor, graphics-incompatible software would be few and far between. Drivers for AutoCAD, 1-2-3, Windows, GEM, and WordStar are included with the board. I've tried to think of some criticism of the board, but frankly, I can't.

The STB VGA Extra ($395) is the least-expensive VGA board, but it's also the board with the most problems. The full-length Chips and Technologies chip-set-based board includes drivers for 1-2-3, Symphony, Windows, and AutoCAD. It also has a 57-page photocopied user's manual.

The problems arose in Windows and 1-2-3. The screen display in Windows was drawn too large for the monitor, with areas of the screen getting shoved off the top and bottom. In 1-2-3, the problem arose when I exited the package. After leaving 1-2-3, the screen stopped redrawning. In other words, a DOS CLS command would take the cursor to the top left corner of the screen but would not blank the old image. It took rebooting to get redrawing back.

The VEGA VGA from Video Seven ($499) came very close to getting a no-buy recommendation. The first VEGA VGA board that I looked at had some serious problems. In AutoCAD, large vertical white lines would flash across the screen any time the mouse was in motion. No amount of regenerating, redrawing, or rebooting solved this problem.

Fortunately for Video Seven, I had received three of the boards, and I decided to look at another, to see if the problems were endemic to the VEGA VGA or particular to one board. I'm glad I did, because the problems seem to have been with one board, and the VEGA VGA does a couple of nice things. First, Video Seven has put VGA graphics into a half-length card format, which makes it the smallest board of the VGA group. Next, the company provides software that can automatically load the ROM code into faster RAM for better performance.

continued
Company Information

American Mitac Corp.
410 East Plumeria Dr.
San Jose, CA 95134
(415) 432-1160

ATI Technologies
3761 Victoria Park Ave.
Scarborough, Ontario
Canada M1W 3S2
(416) 756-0711

Boca Research Inc.
6401 Congress Ave.
Boca Raton, FL 33434
(305) 432-9090

Compaq Computer Corp.
20555 FM 149
Houston, TX 77070
(713) 370-0670

Genoa Systems
6401 Congress Ave.
Boca Raton, FL 33434
(305) 997-6227

Quadram
One Quad Way
Norcross, GA 30093
(404) 923-6666

SCOA Systems
210 Golf Rd., Suite 100
Rolling Meadows, IL 60008
(312) 640-8782

Sigma Designs
46501 Landing Pkwy.
Fremont, CA 94538
(415) 770-0100

STB Systems Inc.
1651 North Glanville
Richardson, TX 75081
(214) 234-8750

Tatung Co. of America Inc.
2850 El Presidio Dr.
Long Beach, CA 90810
(213) 979-7055

W.P. Electronics, Inc.
555 S Palm Canyon Dr #A 110-342
Palm Springs, CA 92264
619-320-6500

$1799 For 386 POWER!!
ADVANCED LOGIC RESEARCH
386/2 Model 10
* 80386-16mhz (20mhz Optional)
* 1MB of 32-bit RAM (80ns)
* Expandable to 2MB on board
* 1 Serial / 1 Parallel Ports
* Floppy Controller
* 1.2MB Floppy Drive
* 101 Professional Keyboard
* Phoenix Bios
* 80387 and 80287 sockets
* 8 Slots
386/2 Model 40 $2999
386/2 Model 80 $2749
Other Models Too!! 20mhz versions now available!
COMING SOON: "Flex Cache" Models From ALR!!
Time is of the essence. The essence of the HP DraftMaster Plotter. The fastest A to E size drafting plotter made by Hewlett-Packard. A plotter so fast, any designer can create big ideas at blinding speeds.

How did we do it? With unsurpassed acceleration. And features like a new pen-sorting algorithm. Bi-directional plotting. And a very fast resident micro-processor. We even offer a model with roll-feed for non-stop plotting.

But the HP DraftMaster doesn't sacrifice output quality for its blinding speed. Every plotter is thoroughly tested to ensure the highest reliability and precision. So you get smooth arcs, straight lines and perfectly-formed characters, time after time. Furthermore, it handles a variety of pens on drafting film, vellum or paper—all at optimal speeds.

Naturally, it works with just about any computer. Like the HP Vectra PC and IBM PC's. As well as popular PC-CAD software like AutoCAD and VersaCAD. And the DraftMaster brings with it HP's worldwide reputation for quality. Prices start at just $9,900.*

Why wait? For a brochure and a sample plot, call us at 1 800 367-4772, Ext. 901A.

The drawing shown below was produced on the HP DraftMaster with AutoCAD software.

AutoCAD is a registered trademark of AutoDesk Inc. VersaCAD is a registered trademark of T&W Systems. ©1987 Hewlett-Packard Co.

Circle 113 on Reader Service Card
Video Seven includes drivers for AutoCAD, Windows, and 1-2-3 with the board. The experience with the first board left me a bit leery of the VEGA VGA, but based on the performance and features of the second board, this product's a winner.

The Zenith Z449 ($499) is a full-length VGA board that supports all but one of the VGA modes. Unfortunately, the mode left out (mode 13H) is the 256-color mode that makes the VGA standard so nice. The Z449, based on the Chips and Technologies chip set, tries to make up for the missing mode by providing lots of backward compatibility, offering EGA, CGA, MDA, and Hercules support. It almost succeeds. In addition to the hardware features, Zenith shows nice attention to detail by being the only manufacturer to provide its drivers for AutoCAD, GEM, 1-2-3, Symphony, and Windows on both 5¼- and 3½-inch disks. If it weren't for the missing mode, this would be the top board of the group.

The Best of a Big Bunch
If an enhanced EGA board with no pretensions to VGA is all you need, the Mitac SEGA board is the clear winner on the basis of price. If you feel that high-quality, detailed documentation is important, by all means check out the Paradise board. Other than these two, the enhanced EGA boards offer a lot of similarities across a wide range of prices and secondary features. There were none that I would warn against. And given the current lack of software that supports VGA, these boards may be more than adequate for most applications.

On the VGA side of things, one fact became quite clear: If you need VGA, buy VGA, not an enhanced EGA board that happens to have a mode or two that coincides with VGA. For one thing, you really need an analog display to take advantage of VGA, and with the exception of the Intelligent Graphics EGACard, none of the enhanced EGA boards offer analog. For another, the quality of the "VGA emulation" provided by the enhanced EGA boards simply wasn't up to the standards of the "real" VGA boards.

Finally, most of the VGA boards reviewed here claim BIOS-level versus register-level compatibility with VGA. Since I began this review, many companies, including Paradise, Sigma, and others mentioned above, have announced boards that claim to be hardware-compatible with VGA and so able to more fully support future VGA software and offer faster performance.

But if I were in the market today for a VGA board, the Sigma VGA would be my choice. It offers complete VGA implementation and a nice variety of drivers in a well-documented package. The VEGA VGA from Video Seven is also a top-notch board, with good features and performance. If you need VGA and have only a half-length slot open, the VEGA VGA is the way to go.
Ah, the big idea. Everyone has one. But not everyone can afford a plotter to plot one on. Which got us thinking. What if there was an HP quality plotter so reasonably priced you could afford to hook one up to every PC CAD workstation in the office?

Presenting the HP DraftPro Plotter. For only $4900 any architect, engineer or designer can create perfect plots time after time. Consider what the DraftPro can do:

- It can draw straight lines, smooth arcs and perfectly-formed characters. All on C and D-size drafting film, paper or vellum, using eight different pen colors.
- Furthermore, it works with just about any PC, such as the HP Vectra PC and IBM PCs. As well as popular PC CAD programs like VersaCAD and AutoCAD.

If the idea of having HP reliability with a low price tag makes sense to you, call us now for a brochure and sample plot, call 1 800 752-0900, Ext. 901A.

The HP DraftPro Plotter: high-quality drafting for only $4900.*

The drawing shown below was produced on the HP DraftPro with VersaCAD software.

* Suggested U.S. list price

We never stop asking "What if..."

How to pull off a fantastic HP plot for only $4900.
Insist on a Sysgen 5 1/4" drive for your PS/2.

Here's why:

A Sysgen" Bridge-File" gives you full access to your current data and software, with unparalleled disk drive performance and reliability. You get:

- A larger capacity drive. Two modes — a 360Kb and a powerful 1.2 Mb — assure you comprehensive transfer capabilities and convenience for total office needs. Others, like IBM's, offer only 360Kb. Proven reliability. In fact, Sysgen is the choice of over 100,000 satisfied Bridge-File and tape back-up users. No slot loss. The Sysgen 5 1/4" drive adapter card doesn’t take any additional slot space. IBM’s does. Built-in flexibility of an external connector. You can add another Bridge-File drive or Sysgen's high-performance tape back-up system, Bridge-Tape? (As a Bridge-File owner, you receive a total savings of $135 on Bridge-Tape!) What’s more, Sysgen's footprint is smaller. A full 50% smaller than IBM’s. For the best PS/2 access to 5 1/4" disks, and the best value at only $325, insist on Sysgen Bridge-File.

Sysgen offers the only complete family of data transfer products: Including the 3 1/2" Bridge-File floppy disk drive, for transferring information from any PS/2 to any PC. And the Bridge-Tape subsystem that's PC and PS/2 compatible, giving you total tape back-up and data transfer flexibility.

Call for Sysgen literature or for the location of the Sysgen dealer nearest you.

INFO HOTLINE 1-800-821-2151

SYSGEN INCORPORATED
The Zenith Z-386

Ed McNierney

Faster than the PS/2
Model 80 and fully compatible
with the IBM PC AT

The Z-386 backplane design features an unusual approach to high-speed bus expansion. In this design, the backplane, or system board, serves as a power and bus connection system into which you plug other circuit boards. One advantage to this is that if a part fails, it is likely to be on a removable circuit board. The Z-386's backplane has two 8-bit slots, two AT-compatible 16-bit slots, and six 32-bit slots.

The Z-386, at the high end of Zenith's MS-DOS desktop computers, combines the speed of a 32-bit 80386 processor with IBM PC AT compatibility.

The basic system comes in two models, differentiated by the amount of hard disk space: The Model 40 ($6499) contains a 40-megabyte hard disk drive, and the Model 80 ($7499) has an 80-megabyte hard disk drive. Both models include a 16-MHz 80386 processor, which requires one 32-bit slot and has a socket for either an 80287 or 80387 math coprocessor; a Z-505 memory board containing 1 megabyte of two-wait-state 100-nanosecond RAM (it requires one 32-bit slot); a 1.2-megabyte floppy disk drive and one of the hard disk drives (the disk controller requires one 16-bit slot); an I/O board containing one serial port and one parallel port (the board requires one 32-bit slot); a 31.5-kHz video display board, which occupies one 8-bit slot and includes EGA, CGA, and Hercules hardware and software support; and five additional expansion slots—one 8-bit, one 16-bit, and three 32-bit slots.

The basic system also includes MS-DOS 3.2 and Microsoft Windows/386.

You can expand memory in either 1-megabyte increments with the Z-505 memory card ($699) or 4-megabyte increments with the Z-515 memory card ($2199); each card of either kind requires one 32-bit slot. You can provide the Z-386 with a maximum of 16 megabytes of RAM by filling the three remaining 32-bit slots with Z-515s and substituting another Z-515 for the Z-505 that comes with the basic system.

You can add Zenith's optional Z-525 64K-byte, zero-wait-state, 40-ns cache-memory board ($599), which requires a 32-bit slot, and you can add another 1.2-megabyte or 360K-byte floppy disk drive, as well as another hard disk drive. The Z-386's 195-watt power supply and disk controller provide all the power and cabling necessary to support two floppy disk drives and two hard disk drives without upgrading or requiring additional expansion slots.

The system I reviewed was a Z-386 Model 80 with a 1.2-megabyte 5¼-inch floppy disk drive, an 80-megabyte hard disk drive, the Z-449 video display board, and Zenith's excellent ZVM-1380-C 13-inch EGA color monitor ($7999). The review system also came with the optional 64K-byte cache memory board to cache the entire address space. Adding this optional board boosts system performance, as the benchmarks will show.

The Hard Facts
The Z-386 has a modular design based on Zenith's familiar "backplane," with plug-in components including the CPU, system memory, disk controllers, and standard I/O services. Most 80386 microcomputers feature at least one 32-bit expansion slot into which you can add fast peripherals such as memory. However, many slot designs are proprietary, and 32-bit hardware designed for one system can't be used with another. Each of the time, you can use these 32-bit slots only with special 32-bit circuit boards; if you are running out of slots, you may not be able to use a standard IBM PC or AT peripheral device in an unused slot.

While the 32-bit bus layout for the Z-386 is also proprietary, it is designed to be an extension of the AT's 98-pin connector. The 16-MHz, 32-bit, 160-pin slots can accept Zenith peripheral boards as well as AT-compatible boards. Those AT boards containing descenders—that is, portions of the board that drop down beyond the edge connector to gain more board space—won't fit, because the descenders hit the connector on the Z-386.

--

Ed McNierney is a principal engineer at Lotus Development Corp. You can contact him at 54 Pleasant St., Groton, MA 01450, or on BIX as "meed."
ZENITH Z-386 MODEL 80

Company
Zenith Data Systems
1000 Milwaukee Ave.
Glenview, IL 60025
(312) 699-4800

Components
Processor: 16-MHz Intel 80386; socket for optional 80287 or 80387 math coprocessor
Memory: 1 megabyte of two-wait-state RAM, expandable to 16 megabytes; 64K bytes of cache memory optional
Mass storage: One 1.2-megabyte 5½-inch floppy disk drive; one 80-megabyte hard disk drive; expandable to one more floppy disk drive and one more hard disk drive
Display: MDA, CGA, Hercules, EGA, Enhanced EGA, and VGA
Keyboard: Modified 101-key enhanced keyboard layout
I/O Interfaces: One serial port; one parallel port; five free slots: one 8-bit slot, one 16-bit slot, and three 32-bit slots
Other: Real-time clock/calendar with battery, 195 watts: 110-1220-volt switchable power supply; one year carry-in warranty

Size
6½ by 21 by 16½ inches; 36 pounds

Software
MS-DOS version 3.2; Microsoft Windows/386, Video Drivers software support

Options
80287 math coprocessor: $525
80387 math coprocessor: $1199
Z-505 1-megabyte RAM expansion: $699
Z-515 4-megabyte RAM expansion: $2199
Z-527 64K-byte cache memory: $599
40-megabyte hard disk drive: $1699
80-megabyte hard disk drive: $1999

Documentation

Price
Model 40: $6499
Model 80: $7499

Inquiry 885.

The table contains the results of C language benchmarks (see "A Closer Look" by Richard Grehan in the September 1987 BYTE). All times are in seconds, except for the Dhrystone, which is in Dhrystones per second. The Disk Access benchmarks write and then read a 64K-byte sequential text file to a hard disk. Sieve runs one iteration of the Sieve of Eratosthenes. Calculations performs 10,000 multiplication and division operations. The Spreadsheet tests load and recalculate a 100-row by 25-column Multiplan (1.06) spreadsheet. The 40K File Copy benchmark copies a 40K-byte file to the hard disk. All BASIC benchmark programs were run with MS-DOS 3.20 and GWBASIC 3.20 on the Zenith Z-386 Model 80; PC-DOS 3.3 and BASICA 3.3 on the PS/2 Model 80 and PC AT; and Compaq DOS 3.11 and Compaq BASIC 3.11 on the Deskpro 386.

116 BYTE • MARCH 1988
However, most AT boards will fit, and the added flexibility is convenient.

The Z-386 features standard EGA-compatible graphics that can send video output to a variety of different monitors. In addition to supporting MDA, CGA, Hercules, and EGA monitors, the Z-449 video adapter can drive a 31.5-kHz analog monochrome or color monitor, such as those supported by IBM's PS/2 computers. The Z-449 directly supports a special EGA-like 480-line display on VGA analog monitors, and Zenith provides a disk of video drivers to support the 480-line mode in Lotus 1-2-3, Lotus Symphony, AutoCAD, GEM, and Microsoft Windows. [Editor's note: For further discussion of the Z-449, see “Enhanced EGA and VGA Boards” by Curtis Franklin Jr. on page 102 of this issue.]

On the rear of the system unit are two sockets for monitors: one for a VGA or compatible monitor and one for the other supported monitors. The sockets are easy to differentiate, however: The VGA monitor socket has 15 pins in three rows, and the other has 9 pins in two rows. In other words, the plug on your monitor will fit only in the appropriate socket, so there's no chance of mixing them up.

When I connected the monitor to the system unit, it displayed only a solid white screen. Even though the review system came with an EGA monitor, Zenith configured the system at the factory to support an analog VGA monitor. I solved the display problem by setting off video DIP switch 6 (accessible from the outside of the unit)—but only after searching the documentation for the solution and finally finding it in Chapter 4 of the owner's manual. I think Zenith should include information addressing common setup problems in the "Getting Started" chapter at the front.

The on/off switch for the monitor is on the front; it is a push button labeled "1/0." The monitor also has a feature I haven't seen before: On the front is a three-position dial that lets you choose either the standard color output (black and white for text at the default settings) or monochrome output in amber or green.

Zenith's enhanced 101-key keyboard closely emulates the 101-key layout used on IBM's PS/2 and AT computers, and it has a soft touch with an audible clicking feedback system in the keyboard unit itself. Zenith has made one change to the IBM layout: Instead of placing the backslash (\) key to the left of the single-width Backspace key, as IBM does, Zenith has enlarged the Backspace key to double-width and placed the backslash key to the right of a truncated right Shift key. It's a small change, but I find it difficult to switch between layouts.

On the positive side, the Z-386's keyboard features a well-designed accelerated key-repeat feature. When you press a key and hold it down, it begins to repeat at a standard rate; but the longer you hold it down, the faster it repeats, making long cursor movements convenient and rapid.

You can use the keyboard with either AT- or XT-compatible computers; there is an AT/XT switch under the nameplate on the upper left. The keyboard comes set up for AT compatibility, and if you wish to use XT compatibility, you need to add appropriate firmware and change the switch setting.

The Software Scene

In addition to MS-DOS 3.2 and Microsoft Windows/386, the Z-386 comes with a ROM-based Monitor program that provides access to: a Setup/Configuration program that lets you configure your system from the keyboard; a Test program that has extensive disk-read, keyboard, base-memory, expansion-memory, and power-up diagnostic tests; a series of debugging tools, including Edd (examine memory), Iport (input from port), R (register) (examine register), T (trace program), and U (range) (unassemble program), where brackets denote an optional parameter. To activate the Monitor program, you press Ctrl-Alt-Insert.

The Z-386 provides a flexible disk-boot mechanism. The Setup/Configuration program lets you tell the system where to look for its bootstrap record; you can choose to boot automatically from the floppy disk or the hard disk, or from the floppy disk when it is mounted and from the hard disk when it isn't. You can also choose to boot the system automatically. The Monitor program's prompt, at which time you can boot from whatever drive you wish with the boot command B [parameters].

Although the Z-386 comes with Zenith's version of MS-DOS 3.2, the operating system is not preinstalled on the hard disk. When I first powered up the review system (after setting the DIP switch), the screen displayed the error message Not a bootable partition. The "Getting Started" section of the owner's manual explained that at this point you reset the computer with the Ctrl-Alt-Insert combination to go to the Monitor program. From there, you mount the first MS-DOS disk and enter B F (which stands for "boot from floppy"). The boot sequence on the floppy disk initializes the MS-DOS SETUP utility.

This reveals a couple of problems that Zenith could easily have avoided. First, SETUP is not the same as the Setup/Configuration program, but Zenith doesn't tell you that there are two different programs involved. This is confusing; you think you're going to enter the Setup/Configuration program, but you aren't. So, any attempt to jump ahead can easily put you in the wrong place. For instance, if at the monitor prompt you select the option for the Setup/Configuration program, you have actually bypassed the SETUP utility, and your hard disk has not been formatted. Thus, you can find yourself in quite a mess. A different name for one of the programs would have avoided this confusion.

Second, Zenith has set the system to automatically try to boot up on the hard disk. This doesn't make much sense when you consider that the hard disk doesn't contain an operating system; in fact, it isn't even formatted. It would make more sense to set the initial system default to boot from the floppy disk.

The SETUP utility formats your hard disk and transfers your system to it, if you wish, through a user-friendly conversational interaction. The hard disk comes unformatted with one partition. If you want more than one, you can use the MS-DOS PART utility to set them up. SETUP tells you when to exit and execute PART, and the two utilities give you instructions on all the procedures you need.

You can also use some other MS-DOS utilities if you need to modify the hard disk organization and protections. You can use DISKETUP and ASGNPART to create more than one MS-DOS partition and assign disk drive letters to those partitions. Then you can format the partitions with the MS-DOS FORMAT command to make them usable and bootable.

The DISKETUP utility adds a convenient feature to make it easy to format your disk. With DISKETUP, you can protect each partition on the hard disk from accidental reformating; only another DISKETUP command can release the protection and allow the disk to be reformated. ASGNPART lets you assign the connections between MS-DOS disk drive letters and the logical disk partitions created by DISKETUP. Partitions can all receive flexible name assignments.

Zenith's version of MS-DOS includes a number of custom software utilities, including APPLY (to execute a command repeatedly while varying a specific parameter); CONFIG (to tell the system the correct protocol to use for a serial or parallel device and display the system configuration); FC (to compare two files and list any differences it finds in the first or to another file); RTCLOCK (to read the real-time clock and set the MS-DOS clock to that date and time, and then set the real-time clock); SEARCH (to scan a disk continued
and display all files that match the input specification: ZCOM (to use a modem or direct serial communications to transfer files between two computers); and ZSPOOL (to create a print buffer in either conventional or expanded memory).

In addition, the Expanded Memory Specification device driver, EMM.SYS, comes on the MS-DOS distribution disk. You can set up as much of your memory as you wish to be EMS memory, as long as your first memory card reserves at least 640K bytes as system memory.

The Z-386 is completely AT compatible, running all the tested software and hardware without any problems, including Microsoft Windows version 1.03, Lotus 1-2-3 version 2.01, SideKick version 1.56A, the Microsoft bus Mouse version 6.10, the Everex Evercom 1200-bit-per-second modem, and Lotus Manuscript version 1.0. As is common with 80386 systems, the Z-386, via the Setup/Configuration program, lets you select one of three operating speeds: Slow, which is a constant 8-MHz operation; Fast, a constant 16-MHz operation; or Smart, in which the CPU runs at 16 MHz for processing and slows to 8 MHz for disk I/O operations. The default mode, Smart, lets you install (and deinstall) copy-protected software, such as Lotus 1-2-3 version 2.01, on the hard disk without difficulty.

[Editor's note: While we were working with the Z-386, the system hung on two separate and unrelated occasions. We could enter nothing, and we got no response; we couldn't even reboot. We had to turn the machine off and then on again to free it. We also couldn't re-create the situations. Thus, we have no idea whether this is a recurring problem or a fluke.]

On the Bench

Zenith's literature claims a 40-millisecond average access time for the 80-megabyte hard disk drive, but Core International's Coretest utility measured a much more respectable 27-ms average seek time, with track-to-track seeks requiring only 4.3 ms. The drive also performed well on the disk-transfer-rate test, with a transfer rate of 205.5K bytes per second.

The EGA display system ran all tested graphics software, including Microsoft Windows versions 1.03 and 2.0 and PC Paintbrush Plus version 1.0, with no problems. Video memory required 30 wait states for each access, but this is not unusual for an EGA board running in a 16-MHz 80386 machine. As 32-bit machines become more common and users become more demanding of graphical interfaces, EGA-compatible hardware will need to be redesigned for higher speed, so that it fits more appropriately with the performance of the rest of the system.

BYTE's BASIC benchmarks show that the Z-386 without its optional cache memory is generally comparable to other 80386 machines; its performance is slightly slower in some tests and slightly faster in others.

The Z-386 becomes more impressive in the C benchmarks, which are more indicative of computing power and ability among the 80386 machines. Without its optional cache, the Z-386 exceeds the performance of the IBM PS/2 Model 80 by 5 percent on the Dhrystone test, and it beats that of the 16-MHz Compaq Deskpro 386 by 2 percent. With the cache memory, these figures jump to 14 percent over the PS/2 and 10 percent over the Compaq (and an 8 percent increase over the Z-386 without the cache).

On the Fibonacci test, the Z-386 shows a slight edge over the Model 80 and a speed equal to the Compaq's. Adding the cache boosts performance by about 8 percent.

The review system didn't use a floating-point coprocessor, so the Float and Savage benchmarks indicate only that if you do many floating-point or transcendental calculations, you will want one.

On the Sieve test, the Z-386 shows a 10 percent improvement over the Model 80 and a small (2 percent) improvement over the Compaq. The Sort benchmark is the only one in which the Z-386 falls behind the others. It lags behind the Model 80 by 4 percent, and behind the Compaq Deskpro by a whopping 44 percent. The cache memory boosts the Z-386's Sort time by 16 percent, however.

Coupled with Zenith's reputation for service and reliability, the benchmarks overall indicate that the Z-386 is an excellent machine to use as an 80386 computing platform. They also indicate that the additional expense of the Z-525 64K-byte cache memory board is well worth the performance boost it provides.

An Outstanding Machine

The Zenith Z-386 is a powerful machine and a sound value for your computing dollar. Its compatibility with the PC AT is flawless, and its performance is among the best in its class. Its raw computing horsepower is made even more useful by Zenith's unusually helpful assortment of ROM and MS-DOS utility software.

The manual could be better organized and some of the setup choices more logical. However, these things bothered me only partly because the Z-386 is such an outstanding machine: It's frustrating to have a terrific machine at your fingertips and then have a struggle setting it up. Take the instructions slowly and carefully, and don't try to jump ahead, and I think you'll avoid the troubles I had.
An Incredible Display Of Power And Versatility.

For just $599,* the new 965 gives you ASCII, ANSI and IBM* PC compatibility in one terminal.

The new 965's versatility is unparalleled. It supports 23 terminal emulations, more than any other model in its class. You even get your choice of ASCII, ANSI or IBM Enhanced PC keyboard styles.

There's a 14" flat display in green or page-white with crisp, clear characters in a high-resolution 16x16 matrix. A 2-position keyboard with a true accounting keypad, 20 user-programmable editing keys, and 128 programmable function keys.

The 965 can display up to 49 data lines, enough to show large spreadsheets or two normal display pages of text at the same time. No other terminal this affordable can do that.

The 965's state-of-the-art single board design uses a 16-bit CPU and sophisticated gate array to give you a high-performance, very reliable terminal with a full one-year end-user limited warranty.

An Incredible Display Of Power And Versatility.

The 965 is a whole new look in terminals from TeleVideo. Call us toll-free or write today for more information.

TeleVideo Systems, Inc.,
1170 Morse Ave., Sunnyvale, CA
94088-3568.

Call 1-800-835-3228
Introducing UniLab 8620 analyzer-emulator with InSight.

- There's nothing like InSight. A feature of the new 8620 that lets you actually watch your program go through its paces. So you can debug faster. And speed up microprocessor development. For demanding applications like the automotive controller shown.

- An exciting industry first, InSight blends analyzer/emulator techniques to give you continuous, real time monitoring of key processor functions. See changing register contents, I/O lines, ports, user-defined memory windows with your own labels. And all at once. Interactively. Without stopping your program.

- InSight is made possible by the 8620’s advanced bus state analyzer, its 2730-bus cycle trace buffer, and a new high-speed parallel interface that eliminates RS-232 bottlenecks.

- The fast interface also speeds data throughput. From your hard drive, you can load a 64K program into emulation memory in five seconds.

- On top of that, you get a new, crystal-controlled 1 µsec clock for super precise event timing.

- Computer integrated instruments from Orion prove debugging needn't be costly or tedious. For more than 150 processors. Like all our analyzer-emulators, the 8620 debugs by symptom. Via advanced truth table triggering. Always included is enough breakpointing and single stepping (now faster than ever) to assure optimum efficiency. We even provide a stimulus generator and built-in EPROM programmer to help finish the job.

- Get serious about price/performance. Save big on design, test, and support costs. UniLab 8620 analyzer-emulator.

- Look into it.

ORION INSTRUMENTS

Computer Integrated Instrumentation
702 Marshall Street, Redwood City, CA 94063
Telex: 530942

*InSight is a trademark of Orion Instruments, Inc.
The NEC APC IV PowerMate 2 and the Hewlett-Packard Vectra ES/12 represent two of the best of a generation of microcomputers that are based on IBM PC AT compatibility and the 80286 CPU. Both NEC and HP apparently believe that computers based on the 80286 have not reached the end of their development. The companies offer the PowerMate 2 and the Vectra ES/12 as the best price/performance solution for many business and personal needs.

The Vectra and the PowerMate both have dual-speed 80286 processors: The PowerMate can be switched between 10 MHz and 8 MHz, and the Vectra runs at 12 MHz or 8 MHz. The machines are more than adequate for nearly all the needs of the average microcomputer user. Furthermore, they are compatible with the multitude of software and hardware developed for the IBM PC AT.

The PowerMate 2 reviewed had 1 megabyte of 120-nano-second and 150-ns RAM; the Vectra had 640K bytes of 120-ns and 100-ns RAM. They both came with EGAs and monitors and high-performance hard disk drives: The PowerMate had a 67-megabyte drive, and the Vectra had a 40-megabyte unit. The PowerMate also came with an optional 1 megabyte of extended RAM. In these enhanced configurations, the PowerMate costs $5595, and the Vectra $5535.

The basic version of each computer comes with one 1.2-megabyte 5 1/4-inch floppy disk drive, a floppy disk/hard disk drive controller card, and 640K bytes of RAM. In these versions, the PowerMate costs $2595 and the Vectra is $2995.

Internal Circuitry

Both computers use very-large-scale integration (VLSI) chips from Chips and Technologies (C&T). The Vectra uses five of these surface-mounted packages on its motherboard, and the PowerMate uses six. The optional EGAs that were part of my review systems each used two of these C&T packages. VLSI packages reduce the total chip count in the computers and allow a cleaner design. Like many other AT clones, both use Phoenix Technologies' ROM BIOS—firmware well known for its compatibility with the IBM operating-system ROM.

In addition to five 16-bit and two 8-bit expansion slots (the disk controller occupies one of the 16-bit slots, and the EGA card fills one of the 8-bit slots), the Vectra's motherboard holds a special expanded memory slot, which can only be used for an optional Vectra ES expanded memory card. This slot looks like an 8-bit slot, but the board connector has been moved forward on the motherboard. The slot can't be used for standard PC expansion boards. You can populate the expanded memory board with up to 8 megabytes. The slot runs at 12 MHz, rather than 8 MHz like the other slots on the expansion bus; this factor gives the Vectra faster memory I/O for those applications that use expanded memory.

The PowerMate has six 16-bit expansion slots and two 8-bit slots on its motherboard. The PowerMate's disk controller card occupies one of the 16-bit slots, and the EGA card fills one of the 8-bit slots. The optional NEC memory board that I installed in my review machine fits in one of the 16-bit slots. This board comes with 18 256K-bit by 8-bit 120-ns RAM chips soldered to it, for a total of 512K bytes of additional memory. Three more memory kits consisting of 18 256K-bit RAM chips may be added for a total of 2 megabytes of RAM for each board. You can add a total of five fully populated boards to each PowerMate.

The PowerMate features a zero-insertion-force (ZIP) socket for its 80286 pin-grid-array CPU. This makes removing or replacing the chip very easy.

Both systems let you switch speeds either from the keyboard or with simple software commands. I had no difficulty switching speeds on either computer, even in the middle of a program. The continued

John Unger is a geophysicist for the U.S. government. He writes graphics software and uses computers to study the earth's crust. You can reach him at P.O. Box 95, Hamilton, VA 22068.
PowerMate has a convenient LED indicator on the front panel that lights when the computer is running in the high-speed or 10-MHz mode. The Vectra gives one beep when you shift to 8 MHz, and two beeps when you go to 12 MHz. Each computer's motherboard has a socket for an optional 80287 numeric coprocessor.

Storage
The PowerMate's larger size provides room for five half-height storage devices. The Vectra has a more conventional layout, with space for three half-height storage devices.

The hard disk drive that came with my PowerMate was NEC's D5452, a high-performance 67-megabyte model with a data transfer rate of 247.4K bytes per second, an average seek time of 25.3 milliseconds, and a track-to-track time of 6.3 ms, according to the Corete test program. Vectra's 40-megabyte Seagate ST-251 hard disk drive is only slightly slower: It has a data transfer rate of 244.7K bytes per second, an average seek time of 25.3 ms, according to the Corete test program. The Vectra's hard disk throughput is 10.5 ms.

Because MS-DOS 3.2 does not support a logical disk drive larger than 32 megabytes, I partitioned the 67-megabyte drive into two 32-megabyte drives and one 3-megabyte drive. The utility setup and formatting programs that came with the Vectra and the PowerMate were easy to follow, and getting the hard disks set up properly was not difficult.

The Vectra comes with HPCACHE, a disk-caching utility program for the computer's hard disk. This versatile program lets you set aside either normal or EMS memory as a cache. Disk-cache routines such as HPCACHE can improve the overall performance of your system, particularly if you use software that frequently accesses the hard disk—such as a program that uses overlays or a compiler that stores and retrieves intermediate temporary files as it compiles source code. In use, the cache provided a 10 percent to 40 percent improvement in the benchmark results.

PowerMate has a disk-caching utility program for the computer's hard disk. This versatile program lets you set aside either normal or EMS memory as a cache. Disk-cache routines such as HPCACHE can improve the overall performance of your system, particularly if you use software that frequently accesses the hard disk—such as a program that uses overlays or a compiler that stores and retrieves intermediate temporary files as it compiles source code. In use, the cache provided a 10 percent to 40 percent improvement in the benchmark results.

The Vectra and PowerMate disk controller cards come with cabling and connectors for a total of two floppy disk drives and two hard disk drives. This setup gives you a variety of possible combinations of hard and floppy disk drives for the systems. Both systems' software and hardware support the addition of 3½-inch floppy disk drives; the Vectra can handle either 720K-byte or 1.4-megabyte drives, while the PowerMate only has the option of adding a 720K-byte drive. The Vectra's disk controller card also contains the logic for the serial and parallel ports.

On the PowerMate, the two DB-9 serial

NEC PowerMate 2, Model APC-HS03C

Company
NEC Information Systems Inc.
1414 Massachusetts Ave.
Boxborough, MA 01719
(617) 284-9000

Components

- Processor: 10-MHz Intel 80286; socket for optional 80287 math coprocessor
- Memory: 1 megabyte, expandable with 2-megabyte expansion boards to 16 megabytes
- Mass storage: One 1.2-megabyte 5¼-inch floppy disk drive; 67-megabyte hard disk drive
- Display: MultiSync monitor and EGA card
- Keyboard: 101 full-size keys with 12 function keys and separate editing keys and numeric keypad
- I/O interfaces: Two 8-bit and six 16-bit expansion slots; two RS-232C ports (DB-9); one parallel printer port (DB-25)

Size

6½ by 21½ by 17 inches; 41 pounds

Software

- MS-DOS 3.2: GWBASIC 3.2

Options

- Color graphics adapter board: $225
- Advanced Graphics Board plus PowerMate MultiSync monitor: $3350
- Memory expansion board with 512K bytes of RAM: $395

Documentation

- 68-page PowerMate 2 Owner's Guide
- 107-page GWBASIC User's Guide
- 48-page MS-DOS User's Guide

Price

- Model APC-HS03C (unit reviewed): $555
- Model APC-HS00K (no hard disk drive or monitor): $2895
- Model APC-HS01D (40-megabyte hard disk drive and EGA monitor): $3435

Inquiry 884.

Hewlett-Packard Vectra ES/12, Model 42

Company
Hewlett-Packard Corp.
3000 Hanover St.
Palo Alto, CA 94304
(415) 527-1501

Components

- Processor: 12-MHz Intel 80286; socket for optional 80287 math coprocessor
- Memory: 640K bytes of RAM on motherboard standard; up to 8 megabytes on optional Vectra ES expanded memory card
- Mass storage: One 1.2-megabyte 5¼-inch floppy disk drive; 40-megabyte hard disk drive
- Display: EGA card standard; 13-inch enhanced color display
- Keyboard: 101 full-size keys with 12 function keys and separate editing keys and keypad
- I/O interfaces: Two 8-bit and five 16-bit expansion slots; one expanded memory slot; one RS-232C port (DB-9); one parallel printer port (DB-25)

Size

6½ by 16¼ by 15½ inches; 34 pounds

Software

- MS-DOS 3.2: HP utilities and system diagnostics, including Personal Applications Manager, DOS shell, terminal-emulation program, disk-cache program

Options

- 3½-inch 1.44-megabyte floppy disk drive: $325
- 5½-inch 560K-byte floppy disk drive: $225
- 60287-8 math coprocessor: $450
- Monochrome monitor: $325
- Enhanced graphics monitor: $845
- Expanded memory card with 2 megabytes of RAM: $1695

Documentation

Price

- Model 42 (unit reviewed): $5535
- Model 10 (640K bytes of RAM and one 1.2-megabyte 5¼-inch floppy disk drive): $2995
- Model 20 (same as Model 10, plus a 20-megabyte hard disk drive): $3195
- Model 40 (same as Model 10, plus a 40-megabyte hard disk drive): $4195

Inquiry 883.
The Disk Access benchmarks write and then read a 64K-byte sequential text file to a hard disk. Sieve runs one iteration of the Sieve of Eratosthenes. Calculations performs 10,000 multiplication and division operations. The 40K File Copy benchmark copies a 40K-byte file on the hard disk. The Spreadsheet tests load and recalculate a 100-row by 25-column Multiplan (1.06) spreadsheet. The BASIC benchmarks were run with MS-DOS 3.2 and GWBASIC 3.2 on the NEC PowerMate and HP Vectra; tests on the IBM PC and PC AT were run with PC-DOS 3.3 and BASICA 3.3.

The most obvious difference between the two computers is their size. The PowerMate is about 4 inches wider than the Vectra and uses this extra space to provide two more half-height slots for storage devices.

Both computers have keyboards patterned after the IBM enhanced keyboard. The feel of both keyboards is good, even though they are rather different. I fell in love with the PowerMate’s the first time I used it. It has a rather light touch, with a mechanical click built into the keys, and it is good for fast typing. The Vectra’s keyboard is a bit stiffer, but it has a similar feel, with a definite break before the key actually enters its character. I just can’t seem to type as fast on it as I can on the PowerMate’s. The key click on the Vectra comes from software rather than from the keyboard, and you can easily change its amplitude or remove it altogether by using the Control, Alt, and Plus (+) keys.

The EGA boards and monitors on both computers performed flawlessly, and the colors and resolution of the displays were good. You might expect this from the PowerMate; the “Advanced Color Display” sold with this system is the popular NEC MultiSync, which has received well-deserved praise in many reviews. Mitsubishi manufactures HP’s enhanced graphics display. It has a fine screen and great color, and it automatically selects scan frequencies between 15.75 and 21.85 kHz. I give the edge to the PowerMate’s display; it is crisper, and the character set used by NEC is easier on the eyes. Because of its 35-kHz maximum scan frequency, the MultiSync monitor also has the advantage of upward compatibility with VGA cards’ higher-resolution graphics modes.

Performance and Compatibility

There are no mysteries when comparing these two computers. As the benchmark results show, the Vectra’s 12-MHz mode gives it a 3 percent to 27 percent performance edge over the PowerMate running at 10 MHz. The Vectra’s performance edge increases when it is run with the disk-caching program in place.

Although it is not explicit from their specifications, both of these machines operate with one wait state and therefore give up a slight speed advantage. Both computers are probably in the top 10 percent of all AT clones in terms of calculating speed; the only 80286 machines that outperform them are those few that run at...
Most young people have one answer to this problem. They avoid it until they're out of college. But they could be getting solid work experience while they're still in college. With your company's help. And ours.

We're Co-op Education. A nationwide program that helps college students get real jobs for real pay, while they're getting an education.

But we can't do it without you. Those real jobs have to come from real companies. Like yours.

For more information on how you can participate in this valuable program, write Co-op Education, Box 775E, Boston, MA 02115.

Not only will you be giving students a chance to earn money and pick up the most valuable kind of knowledge, you'll be giving yourselves a chance to pick up the most valuable kind of employee.

Co-op Education.
You earn a future when you earn a degree.
Mix Software presents Power C . . . Our new cost-efficient alternative to high-priced C compilers. Now you can create high-performance programs without spending all your hard-earned money. But price isn't the only reason to choose Power C over the competition.

Compare the performance. Power C's integrated Make saves you time and effort by automatically managing your large programming projects. And with Power C, your programs can be as large as available memory. As for speed, the performance chart speaks for itself. Power C executes most of the benchmarks faster. And Power C creates smaller EXE files, out-performing the competition.

Performance Chart

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Power C</th>
<th>MS C</th>
<th>Turbo C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) fib*</td>
<td>23.8</td>
<td>47.0</td>
<td>26.4</td>
</tr>
<tr>
<td>2) sieve*</td>
<td>278</td>
<td>40.2</td>
<td>25.5</td>
</tr>
<tr>
<td>3) tdi*</td>
<td>3.5</td>
<td>9.0</td>
<td>9.6</td>
</tr>
<tr>
<td>4) diskio*</td>
<td>13.5</td>
<td>14.2</td>
<td>14.3</td>
</tr>
<tr>
<td>5) report**</td>
<td>11.0</td>
<td>86.3</td>
<td>60.7</td>
</tr>
<tr>
<td>6) drystone**</td>
<td>36.8</td>
<td>38.2</td>
<td>31.8</td>
</tr>
<tr>
<td>Compile/Link</td>
<td>73.9</td>
<td>187.6</td>
<td>81.4</td>
</tr>
<tr>
<td>EXE File Size</td>
<td>25120</td>
<td>29008</td>
<td>27184</td>
</tr>
</tbody>
</table>

Compare the functions. With over 400 functions, the Power C library is vastly superior. Our library is a superset of Microsoft C and Turbo C. Plus, we've added an extensive set of graphics functions for drawing lines, boxes circles, pie charts, and more.

Compare the portability. Power C supports the latest features of the proposed ANSI C standard. Plus, Power C is compatible with both Microsoft C and Turbo C. All of which makes it easier to move programs to and from Power C.

Compare the documentation. Our competition assumes that you're already a C wizard. We don't. Power C includes a step-by-step tutorial and sample programs with every function. With our complete documentation, programming in C couldn't be easier.

Price Chart

<table>
<thead>
<tr>
<th>Component</th>
<th>Power C</th>
<th>MS C</th>
<th>Turbo C</th>
</tr>
</thead>
<tbody>
<tr>
<td>C Compiler</td>
<td>$19.95</td>
<td>$450.00</td>
<td>$99.95</td>
</tr>
<tr>
<td>Library Source Code</td>
<td>$10.00</td>
<td>N/A</td>
<td>$150.00</td>
</tr>
<tr>
<td>Total Cost with Source</td>
<td>$29.95</td>
<td>N/A</td>
<td>$249.95</td>
</tr>
</tbody>
</table>

Benchmarks from Dr. Dobb's Journal* & Computer Language**. First four programs test 1) function calling, 2) loop/integer math 3) floating point math, & 4) disk I/O. Programs 5 & 6 simulate typical applications. Tests compiled from command line using Make supplied with each compiler. Tests run on 8 MHz AT with medium model of Power C 1.0, MS (Microsoft) C 4.0, & Turbo C 1.0.

Order Power C now by calling our toll free number or mail the coupon to Mix Software, 1132 Commerce Drive, Richardson, TX 75081.

1-800-523-9520

For technical support and for orders inside Texas call: 1-214-783-6001

Minimum System Requirements:
- MSDOS or PC DOS 2.0 or later, 256K memory, 2 floppy drives or hard drive recommended. Runs on IBM PC, XT, AT, and compatibles, and IBM PS2 model 25, 30, 50, 60, or 80.

60 day money back guarantee.

*Micosal C is a registered trademark of Microsoft Corporation. Turbo C is a registered trademark of Borland International B.

Circle 180 on Reader Service Card

Technical Specifications

 - ANSI standard
 - IEEE floating point
 - 8087/80287 coprocessor
 - auto-sensing of 8087/80287 automatic register variables
 - mixed model (near & far pointers)
 - CGA, EGA, & Hercules graphics

- Options are:
 - Library source code
 - BCD business math

- **Ordering Information**
 - Name:
 - Street:
 - City:
 - State:
 - Zip:
 - Telephone:
 - Paying by:
 - Check
 - Money Order
 - MC/Visa
 - Exp.
 - Computer Name:
 - Disk Size: \(5\frac{1}{2}\) " or \(3\frac{3}{4}\) "
 - Product(s) (Not Copy Protected):
 - Power C ($19.95)
 - Library Source Code ($10)
 - Business Math ($10)
 - Texas Residents add 8% Sales Tax
 - Add Shipping ($5 USA - $20 Foreign)
 - Total amount of your order:

-MARCH 1988 • BYTE 125
Remote Sites Communication

Whatever your industry, your remote computers need to share information with your mainframe. Or, they need to exchange data with other remotes. In either case, you need a total solution at the remote sites. You need software, hardware interfaces and modems that all work together smoothly. You need CLEO!

CLEO software products allow micro-computers to communicate with minicomputers and mainframes, and to emulate their workstations. Since 1981, CLEO has provided remote communications between micros and mainframes for the automotive, insurance, medical and banking industries. Today over 60,000 CLEO users worldwide are running on all major brands of microprocessors. The greatest number of these users run CLEO software on IBM Personal Computers and NETBIOS LANs.

Complete Software/Hardware Package

Every CLEO package contains all the software and hardware accessories needed at the remote site. Your selected CLEO SNA or BSC software is packaged with 1) an internal modem card for dial-up applications, or 2) an interface card and cable for use with your existing modem. There's no waiting for non-CLEO add-ons. And, you get prompt, single-source service.

Package prices range from $795.00 for most stand-alone packages, up to $1,995.00 for the 32-user SNA gateway.

Call us today to discuss your application.

CLEO Software
1639 North Alpine Rd.
Rockford, IL 61107
Telex 703639
FAX 815/397-6535

Headquarters:
USA: 1-800/233-2536
Illinois: 1-800/422-2536
International: 815/397-8110

Sales and Distribution:
Benelux: 31 (71) 215281
Canada, East: 800/361-3185
Canada, West: 800/361-1210
Canada, Montreal: 514/737-3631
Colombia, S.A.: 12177266
Denmark: 3628300
England: 0908667737
France: 146861156
Italy: (0331) 634 562
Mexico City: 596-5539
Sweden: 8 740 5070

CLEO now delivers 3278 coax cards at $795.00!
The Tandy 1400 LT

David Satz

At $1599, the Tandy 1400 LT is less expensive than most other portables and laptops. It enters the field of IBM PC-compatible laptop computers in the middle in terms of processor power and portability, and near the bottom in terms of price. The speed of its 8088-compatible NEC V20 is software-switchable between 7.16 MHz and 4.77 MHz, placing its top speed between those of the 4.77-MHz IBM PC and the 8-MHz IBM PC AT. At 13½ pounds, it is lighter than some portables (the Compaq Portable 386, for example, weighs in at 20 pounds) and heavier than others (the Toshiba T1100 weighs only 6½ pounds).

The Tandy 1400 LT has 768K bytes of RAM, two 720K-byte 3½-inch floppy disk drives, and a backlit supertwist LCD screen. As configured by Tandy, the 128K bytes of memory beyond the 640K-byte DOS limit is set up as a RAM disk. Unfortunately, however, its contents are not maintained when you shut the power off. The Tandy's user-replaceable and rechargeable internal nickel-cadmium battery pack gives 4 to 5 hours of service per 13-hour charge cycle. An AC adapter also comes with the machine. An optional internal 300-1200-bit-per-second (bps) Hayes-compatible modem card is available for $199.95.

To the Rear
The rear access panel contains all external power and data connectors, including one serial port and one parallel port, RGB-intensity (RGBI) and composite video outputs, a keyboard input, and a socket for an external floppy disk drive. Also, the rear panel has a slot for an internal modem and an unlabeled access panel. The motherboard has a socket for an optional 8087-2 numeric coprocessor.

The system ROM contains the Phoenix BIOS, and the system software includes MS-DOS 3.2 and Tandy's version of GWBASIC 3.2. The system also contains a setup mode from which you can alter system parameters at any time. For example, the F7 option lets you change the system clock speed from the default 7.16 MHz to 4.77 MHz, if you should need to for program compatibility.

The rear panel is protected by both a plastic door flap and two sets of protruding ridges that let you stand the computer safely on end. You can connect an IBM PC-compatible external keyboard, as well as an external RGBI monitor; a tiny slide switch on the back panel allows you to specify either the LCD screen or an external monitor as the default display. In addition, you can also connect an external 5¼-inch floppy disk drive; there is another tiny slide switch on the right side of the case that lets you select the internal or external disk drive as the default boot device.

Stand By
Standby mode in the Tandy 1400 LT is the timed, automatic shutdown of the screen electronics, including the battery-eating fluorescent backlighting. It is triggered when the computer has been waiting for keyboard input for a specified length of time—10 minutes as configured by Tandy, but you can set this interval to any number of hours and minutes up to 3:59 with the setup mode.

The computer most often waits for keyboard input at the DOS prompt. However, keyboard-driven applications programs such as word processors can also be left suspended while waiting for the next command; their execution then resumes along with screen illumination as soon as you press any key to continue operation.

The value of this feature is in preserving battery-charge life and sometimes (especially in cases of user oversight) important program data. The normal battery charge lasts only about 4 hours in active mode, while the standby mode, which uses less than half as much current, can preserve the contents of memory and the status of a running program for up to 11 hours on a fully charged battery, provided that you don’t turn off the power switch in the meantime. A green LED in front of the B drive lights up when you are in standby mode.

continued

David Satz (118 State St., Apt. C, Brooklyn Heights, NY 11201) is a classical musician and recording engineer. You can reach him on BIX as “dsatz.”
REVIEW: THE TANDY 1400 LT

Tandy 1400 LT

Company
Tandy Corp /Radio Shack
1800 One Tandy Center
Fort Worth, Texas 76102
(817) 390-3011

Components
Processor: 4.77-7.16-MHz NEC V20:
socket for Intel 8087/2 math coprocessor
Memory: 768K bytes of RAM; 16K
bytes of ROM (Phoenix BIOS)
Mass storage: Two 720K-byte 3½-inch
floppy disk drives, optional 5¼-inch
external floppy disk drive can be used
Display: Backlit supertwist LCD, 25
lines by 80 columns, 640-by 200-pixel
color graphics (partially simulated by
shading); 4½-by 9⅞-inch screen; optional
external RGBI monitor can be used
Keyboard: 78 keys, including 12
function keys; special editing-key cluster;
embedded numeric keypad in ASCII
keyboard; optional external keyboard can
be used
I/O interfaces: RS-232C serial port:
Centronics-compatible parallel port:
external floppy disk drive port; RGBI
video output (IBM PC-compatible);
composite video output; external
keyboard port; telephone line and
instrument
Other: Built-in clock/calendar; internal
nickel-cadmium battery pack; AJC
adapter; carrying handle

Size
14½ by 12½ by 3½ inches;
13½ pounds

Software
MS-DOS 3.2; GWBASIC 3.2

Options
300-1200-bps Hayes-compatible
CMOS internal modem: $199.95
Additional nickel-cadmium battery
pack: $79.95
Carrying case: $39.95
Intel 8087-2 math coprocessor, $250
MS-DOS/GWBASIC Reference Guides.
$29.95

Documentation
77-page A Practical Guide to the Tandy
1400 LT

Price
$1599

Inquiry 895.

Screen and Keyboard
The lid containing the 4½-by 9⅞-inch
LCD screen hinges from the center of the
main chassis and is adjustable to any
viewing angle from upright to nearly flat.
Be careful, however, not to let it fall shut
on your fingers or on disks that you
haven’t fully inserted into the drives.

The 80-column by 25-line screen is
only half as tall as it is wide, and there is
no margin at all between the descenders
of one line of characters and the ascend-
ers of the next. But the font is a well-
chosen mixture of double- and single-dot
thicknesses, and it has sufficient contrast
to be easily legible under all normal ambi-
te conditions—or even in total
darkness. A contrast control on the right
side of the case sets the shading for the
royal-blue characters and the silver-gray
background, a combination I found ex-
tremely readable and easy on the eyes.

The plastic-film surface coating over
the screen tends to reflect some glare, but

The Disk Access benchmarks write and then read a 64K-byte sequential text file to a
blank, formatted floppy disk. Sieve runs one iteration of the Sieve of Eratosthenes.
Calculations performs 10,000 multiplication and division operations. The 40K
Format/Disk Copy formats and copies a 40K-byte file with the system utilities. This test
was not performed on the PC AT because the computer had only one floppy disk drive.
The 40K File Copy benchmark copies a 40K-byte file from one floppy disk to the other.
The Spreadsheet tests load and recalculate a 25-row by 25-column Multiplan (1.06)
spreadsheet. All benchmark programs on the Tandy 1400 LT were run with MS-DOS
3.20 and Tandy’s version of GWBASIC 3.20; tests on the IBM PC and PC AT were run
with PC-DOS 3.2 and GWBASIC 2.02.

Screen and Keyboard
The lid containing the 4½-by 9⅞-inch
LCD screen hinges from the center of the
main chassis and is adjustable to any
viewing angle from upright to nearly flat.
Be careful, however, not to let it fall shut
on your fingers or on disks that you
haven’t fully inserted into the drives.

The 80-column by 25-line screen is
only half as tall as it is wide, and there is
no margin at all between the descenders
of one line of characters and the ascend-
ers of the next. But the font is a well-
chosen mixture of double- and single-dot
thicknesses, and it has sufficient contrast
to be easily legible under all normal ambi-
te conditions—or even in total
darkness. A contrast control on the right
side of the case sets the shading for the
royal-blue characters and the silver-gray
background, a combination I found ex-
tremely readable and easy on the eyes.

The plastic-film surface coating over
the screen tends to reflect some glare, but
you can usually adjust the screen tint to avoid any problems. The fluorescent backlighting also "sings" noticeably at about 660 Hz when energized, but this sound is disturbing only in quiet surroundings. The fluorescent panels have an estimated life of 3 years; Tandy computer-service personnel can replace them.

The Tandy 1400 LT simulates the CGA 640-by-200-pixel graphics mode. By varying the refresh cycle of the LCD pixels, you can obtain four degrees of shading: the basic silver-gray background, royal blue for fully darkened pixels, a dull brownish foreground shade, and a lighter background shade.

The slow darkening characteristic of supertrist LCD pixels is observable here just as it is on the NEC MultiSpeed (see review "The NEC MultiSpeed" in the September 1987 BYTE). But due to the Tandy's slower processor, the smearing effect that you get when you scroll text (e.g., disk directory listings) is less pronounced. You can also see a slight downward ripple effect, particularly when the background setting is on the dark side. This ripple is not a product of interference from other lighting; it is visible in total darkness as well.

Keyboard preferences are even more intensely subjective to personal tastes and acquired habits than screens are. The Tandy 1400 LT's keyboard arrangement features 12 function keys in three groups across the top, the Escape key to the left of the numbers row, and minor punctuation character keys to the left and right of the space bar. The cursor-control cluster is at the extreme bottom right, and you must combine cursor keys with a left-hand Function key to produce commands such as PageUp, PageDown, Home, and End. This arrangement conserves space on the keyboard, but not in the mind. It results in four different shift-type keys: Shift, Control, Alt, and Function. It also makes you use three fingers, as well as extra eye motions, to generate several of the most common word processor commands, such as PageUp (Ctrl-Fn-PgUp) or End (Ctrl-Fn-End). Even CapsLock, the purpose of which is to free your hands, ironically requires both hands to set or reset (Ctrl-Fn-CapsLock).

The keyboard action provides some resistance and requires a firm touch—a slight punching action. Getting used to the touch required to depress the keys is easier than getting accustomed to the keys popping up when you release them. They make a hollow popping sound both when you depress them and when you let them go. The keyboard is not conducive to quiet typing or to an extremely light typing touch. On the other hand, you're not likely to enter extraneous characters by mistake; these keys require a definite keystroke to produce a character.

You can use an alternative keyboard, if you wish, by plugging it into the keyboard socket provided on the rear panel.

Modem, Size, and Battery

I installed the optional 300-/1200-bps Hayes-compatible modem card with very little difficulty. To use it, you must select the F4 option in the setup menu and switch from the default RS232C to MODEM. The modem functioned flawlessly on both local and coast-to-coast connections. It lets you use acoustic cues at both 300- and 1200-bps speeds, making it useful in hotels and pay phones where direct access to modular phone sockets may not be available. The modem's implementation of the AT command set includes all the normal S register controls and the extended verbal/numeric result codes.

Overall, the computer is neither as small as the Toshiba T1100 Plus (or any of the Toshiba laptops, for that matter) nor as large as the NEC MultiSpeed. The Tandy 1400 LT is light enough to carry across a large airport terminal, but it is heavy enough to cause eventual discomfort, rather like an early-model portable electric typewriter. The weight is mostly at the rear of the computer. This is understandable: The keyboard is in the front, and the boards and disk drives are in the rear. However, taking the Tandy 1400 LT at its name, I tried it as a laptop, balanced on my knees. Its rear weight and slightly longer footprint (14½ inches versus 12 inches for the Toshiba T1100 Plus and 13½ inches for the NEC MultiSpeed) gave it a tendency to slip off my lap.

The nickel-cadmium battery pack comes in its own externally accessible compartment, so you can easily replace it with an optional extra battery pack. This will be good news for travelers and those of us who never quite seem to get the long-life performance that modern, properly cared-for nickel-cadmium batteries are supposed to offer. The battery power supply takes over automatically if it contains an adequate operating charge and the AC power supply is removed or interrupted. However, you can't change the battery safely while the computer is active or in standby mode. The manual instructs you to turn off the power and disconnect all peripherals and accessories first.

Checking Out the Software

A single 3½-inch floppy disk contains a complete implementation of MS-DOS 3.2, including the hard disk drive-oriented utilities such as BACKUP, RESTORE, JOIN, and SUBST (although no hard disk drive is available). GWBASIC 3.2 comes on the disk as well.

Up-to-date versions of MOUSE.COM and MOUSE.SYS are included to support a Microsoft serial Mouse if you wish to add one. The DOS disk also has the program-oriented utilities LINK, LIB, and EXE2BIN, and a bunch of lesser-known DOS utilities. These would have sent me running to the DOS manual to see what they're good for if the Tandy 1400 LT had come with one. But it didn't; the manual is an optional extra.

The Tandy 1400 LT showed no software- or hardware-compatibility problems with Flight Simulator 2.13, Turbo Pascal 3.01a, SideKick 1.56a, MEX-PC 1.65a, Microsoft Word 3.1, or QuickBASIC 2.01. However, I did have trouble with version 4.0 of Microsoft Word. Earlier versions of Word worked perfectly well; however, due to the increased default key-repetition rate in version 4.0, you get a runaway-keyboard condition that you can stop only by rebooting. To prevent this problem, you must use the DOS DEBUG utility to patch a single location in the .INI file in the Word directory. (Microsoft's customer service is aware of this problem and can advise you of the precise patch.) The Microsoft serial Mouse (original style) worked perfectly well with the supplied version of MOUSE.COM.

The softcover manual, *A Practical Guide to the Tandy 1400 LT*, devotes 28 pages to DOS concepts and functions, but the explanations are so concise that I wonder whether any non-technical readers could really profit from them. An- other strange aside: The manual contains two indexes—one at the end of the hardware section (48 pages into the manual), and another at the end of the DOS section, which is at the end of the book. So, if you're looking for something to do with the hardware, you won't find it in the index at the end of the book, where you'd normally look.

Testing the Tandy

I tested the 720K-byte floppy disk drives with the Coretest, which showed an average access time of about 225 milliseconds; this is typical of the drives on current-model laptops. The operating noise level of the disk drives is higher than average, although, like the noise of the screen, it should be disturbing only in quiet environments, such as libraries or classrooms.

I also ran BYTE's BASIC benchmarks with Tandy's version of GWBASIC 3.2 and MS-DOS 3.20. Disk Read and Write, Sieve, Calculations, and Spreadsheet Load and Recalculate all give the Tandy true

REVIEW: THE TANDY 1400 LT

MARCH 1988 • BYTE 129
LAHEY SETS NEW FORTRAN STANDARDS

LAHEY PERSONAL FORTRAN 77 - Full ANSI Standard	$95
F77L - The benchmark for the competition.	$477
"EDITOR'S CHOICE"	*PC Magazine*
"...the most robust compiler tested."	*Micro/Systems Journal*
"...the ultimate fully-blow ANSI FORTRAN 77... a fantastic product."	*PC Australia*
F77L-EM/16 - Breaks the DOS 640K barrier with extended memory. The most powerful PC FORTRAN available.	$695

FORTRAN TOOLS: Profiler, Mathematical Functions Library, Overlay Linker, Utility Libraries, Windows Library, Toolkit.

The difficult decision is not from whom you should buy your PC FORTRAN, but which Lahey compiler you should purchase.

Call us today to discuss your PC FORTRAN needs.

FOR INFORMATION OR TO ORDER:

1-800-549-4778

30-Day Money-Back Satisfaction Guarantee
Lahey Computer Systems, Inc., Box 8091, Windtree Village, NY 86040
Tel. 707-551-2500 TLX 5105401256

REVIEW: THE TANDY 1400 LT

1400 LT at 4.77 MHz the edge over the 4.77-MHz IBM PC. The formatting and copying tests, however, are a different story. On the 40K Format/Disk Copy, the IBM PC is more than 5 percent faster than the Tandy 1400 LT (9.6 seconds for the PC and 13.5 for the 1400 LT); and on the 40K File Copy, the IBM leaves the Tandy in the dust with more than a 98 percent advantage (5.8 seconds for the IBM versus 11.5 for the Tandy).

When you compare the Tandy 1400 LT at 7.16 MHz with the 4.77-MHz IBM PC, the results change, as you would expect. The Tandy shows a significant advantage on the Disk Write and Read, the Sieve, and the Calculations tests. Then the advantage dissolves. The 4.77-MHz IBM PC outperforms the 7.16-MHz Tandy 1400 LT on the 40K Format/Disk Copy by more than 20 percent (9.6 seconds for the IBM and 11.6 for the Tandy). And the IBM continues to blow the Tandy away on the 40K File Copy by 83 percent (5.8 seconds versus the Tandy's 10.9). On the Spreadsheet Load, the 1400 LT at 7.16 MHz performs at almost exactly the same speed as the 4.77-MHz IBM PC, although the megahertz advantage does show up in the Recalculate figures (the Tandy outperforms the IBM by 64 percent: 6.7 seconds versus 11 seconds). Needless to say, the 8-MHz IBM PC AT steals the speed awards by a healthy margin.

Little New Ground

Tandy, with its massive distribution network of Radio Shack stores, has the power to make waves with any serious computer product it introduces. The Tandy 1400 LT is a solidly designed laptop that breaks little new ground, but—if you accept its keyboard feel and layout and slow disk drives—it avoids any serious design flaws. Its hardware capability will be particularly noteworthy if a reasonably priced expansion chassis and a hard disk drive become available in the future.

The Tandy 1400 LT's processor power and backlit LCD screen make it a low-cost alternative to the successful Zenith Z-181 ($2399). The Z-181 screen is taller but is hinged from the back of the case, making it harder to use on most airplane or train seat backs. If you need compactness, processor power, and battery life, you may prefer the somewhat higher-priced Toshiba T1100 Plus ($1999)—or the NEC MultiSpeed ($2195), a backlit LCD machine that is more powerful than either the Tandy 1400 LT or the Toshiba T1100 Plus. However, at $1599, the Tandy 1400 LT achieves a sensible and moderate balance between good basic performance and economy.
Software developers, Microport knows your job is difficult. That's why they've created the best 80386 development environment on the market, giving you the tools you need to do your job successfully. Microport System V/386 is the powerful UNIX® V operating system that delivers almost unlimited speed and power and provides true multi-tasking and multi-user capabilities. It can be used in virtually all computer environments, from software development to office automation to true desktop publishing.

System V/386 — the best and most complete development environment. And here's why. It's the only operating environment with:

- The real UNIX developed by AT&T, which gives you complete compatibility up and down.
- The latest version of AT&T UNIX System V, Release 3.
- The highly acclaimed Green Hills C-386 C compiler, well-known for its ability to generate fast, compact code, gives you full UNIX symbolic debugging and support for the 80387 and Weitek 1167 math co-processors.

Make your job easier and get the Microport 80386 software development advantage.

RunTime System

One of the most comprehensive UNIX V operating systems available on the market today, it includes the screen editor "vi" and contains over 180 utility programs.

| List: RunTime System (2-user): $199 | Our: $169 |
| List: RunTime System (unlimited users): $448 | Our: Call |

Software Development System

The Software Development System includes both the Green Hills C-386 compiler and the AT&T 386 pcc C compiler. Also available are Green Hills Fortran 386 and Pascal 386. A family of compilers with call sequence compatibility. Each compiler conforms to relevant standards, generates small, condensed code, and features global optimization for fast execution.

| List: $499 | Our: $429 |

UNIX is a registered trademark of AT&T. System V/386 is a trademark of Microport Systems.

Put Microport's System V/386 or System V/AT Software Development Environment to work for you. Call PROGRAMMER'S PARADISE!

1-800-445-7899
In NY: 914-332-4548

Programmer's Paradise
A Division of Hudson Technologies, Inc.
42 River Street, Tarrytown, NY 10591

MARCH 1988 • BYTE 131
Discover Paradise

Programmer's Paradise Gives You superb Selection, Personal Service and Unbeatable Prices!

Welcome to Paradise. The microcomputer software source that caters to your programming needs.

- Lowest price guaranteed
- Huge inventory, immediate shipment
- Special orders
- Knowledgeable sales staff
- 30-day money-back guarantee

We'll Match Any Nationally Advertised Price.

<table>
<thead>
<tr>
<th>Product</th>
<th>List Price</th>
<th>Ours</th>
<th>Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASIC</td>
<td>120</td>
<td>75</td>
<td>45</td>
</tr>
<tr>
<td>FORMAT</td>
<td>150</td>
<td>90</td>
<td>60</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>200</td>
<td>130</td>
<td>70</td>
</tr>
<tr>
<td>PASCAL</td>
<td>250</td>
<td>165</td>
<td>85</td>
</tr>
<tr>
<td>C</td>
<td>300</td>
<td>195</td>
<td>105</td>
</tr>
<tr>
<td>C++</td>
<td>350</td>
<td>245</td>
<td>105</td>
</tr>
<tr>
<td>COBOL</td>
<td>400</td>
<td>275</td>
<td>125</td>
</tr>
<tr>
<td>SQL</td>
<td>450</td>
<td>315</td>
<td>135</td>
</tr>
<tr>
<td>DATABASE</td>
<td>500</td>
<td>375</td>
<td>125</td>
</tr>
<tr>
<td>GRAPHICS</td>
<td>550</td>
<td>415</td>
<td>135</td>
</tr>
<tr>
<td>HARDWARE</td>
<td>600</td>
<td>475</td>
<td>125</td>
</tr>
</tbody>
</table>

FEATURED PRODUCTS

OPTIMA - High-speed workstation is software compatible with most popular software. Over-size screen, four-line display, and built-in modem makes it unbeatable. Special Price: $1100.

SEQUEL VERSION MANAGER - SVX source manager for the most popular microcomputer systems, with an easy-to-use interface. Features include file management and version control. The SVX version control system can generate hardcopy audit trail reports with detailed data. Special Price: $975.

TURBO PASCAL - Complete development system for the most popular microcomputer systems. Special Price: $2500.

ACO'S TRASCendent TOOLKIT - Powerful and easy-to-use development systems for the most popular microcomputer systems. Special Price: $1999.

PLASMA - Complete development system for the most popular microcomputer systems. Special Price: $2500.

REACT - Complete development system for the most popular microcomputer systems. Special Price: $1999.

TURBO PASCAL - Complete development system for the most popular microcomputer systems. Special Price: $2500.

VIGA-DELUXE - Complete development system for the most popular microcomputer systems. Special Price: $1999.

TURBO PASCAL - Complete development system for the most popular microcomputer systems. Special Price: $2500.
Microsoft Windows/386

Windows/386 gives you the look and feel of OS/2, by IBM and Microsoft — the standard for tomorrow. Turn your personal computer into a multi-tasking, virtual machine, where the number of DOS and Windows applications can run at the same time. Each DOS application runs in its own 640K — even memory resident programs. Copying and passing of selected data between DOS and Windows applications is supported. Features greatly enhanced support for DOS applications, they can run in a window or use the full screen.

QuickC

QuickC gives you the features that you need to learn C quickly. It's the best for fast and easy compilation and prototyping, compiling programs at 10,000 lines per minute. Features a built-in editor with selectable insert or overwrite mode, automatically make file creation, context-sensitive help for easy learning and an integrated debugger that lets you set breakpoints, animate through your program and add watch variables. QuickC is completely source code and object compatible with Microsoft C 5.0.

QuickBASIC/4.0

QuickBASIC 4.0 eliminates the time-consuming compile step. Run your program, stop to edit and debug, then continue running without recompiling. When you edit your code, QuickBASIC automatically incorporates your changes usually at 150,000 lines per minute. Includes a built-in, full-screen editor with automatic syntax checking and formatting, advanced threaded p-code interpreter, support for 8087/287 math co-processors, a subset of the Code View debugger, plus other new features.

PI Editor

Turbocharge your productivity with PI, the only editor that automatically highlights your compilation errors and displays error messages. Slash development time instantly with PI's intuitive mouse commands, enhanced pop-up menus, contextual help and on-line manual. Bring out your best with PI's blazing speed, undo, macros, 'Find All,' regular expressions, language support, and full DOS access. The ultimate editing environment with built-in speed.

WENDIN-DOS

WENDIN-DOS is the new multi-tasking, multi-user MS-DOS replacement operating system for IBM compatible PCs. WENDIN-DOS uses the MS-DOS file system, and adds drag-and-drop, multi-program, file protection, and command language extension and enables you to access your files with DOS, UNIX, or VAX/VMS style file names — whichever you prefer. Provides pass words and run privileges for system security. WENDIN-DOS supports several users on the same computer. To add new users, the computer operator just adds communications ports and describes them in his configuration file. Minimum 512K memory.

Advance C++

Add Advance C++ to your C compiler and enhance your existing C tools with new object-oriented capabilities. Now available with MS Windows Support this super set of C gives you the speed, support and reliability you need to develop large and complex programs with greater performance and fewer bugs. The latest version supports MS C 4.0/5.0, and QuickC.

Special Savings from Paradise

Special Price: $125

QuickC

Special Price: $65

QuickBASIC/4.0

Special Price: $65

PI Editor

Special Price: $155

WENDIN-DOS

Special Price: $79

Advance C++

Special Price: $49
Screening Macintosh II Color Monitors

Joel West and Neil Rhodes

The Macintosh II (unlike its predecessor, the Mac Plus) was designed without a built-in video display device. This means that you can select display hardware (monitors or video cards) that are suitable for the specific demands of your work—color or gray scale, or larger monitors with more pixels.

Apple's Mac II video board gives you a 640- by 480-pixel display with 16 colors or gray scales for $499, and up to 256 colors or grays if you add extra video memory to the board (for an additional $149). For displays, Apple offers a choice of a 12-inch gray-scale monitor for $399 or a 13-inch color monitor (which was in short supply last year) for $999.

Since the Mac II's introduction, third-party vendors have brought out alternative monitors for it, including larger monitors displaying more pixels to meet the needs of those doing extensive CAD/CAM or graphics work. We evaluated some of the first available Mac II displays: two large-screen monitors from Personal Computer Peripherals Corp. (PCPC) and SuperMac Technology, and a standard-size monitor from 4Site Technologies.

The Mac II architecture supports display formats of arbitrary resolution; the video card's configuration ROM supplies the screen dimensions and pixel depth to the operating system when the computer starts up. Both SuperMac and PCPC take advantage of this flexibility by supplying video boards that provide more pixels than the standard Apple display.

The PCPC II (Trinitron) uses a 19-inch color Trinitron monitor and a video board that displays 1027 by 768 pixels. This combination costs $2295. SuperMac Technology offers a 19-inch color Trinitron monitor and the Spectrum 1000/8 video board, which provides a 1024- by 768-pixel display. This monitor and video board combination costs $1900. Both companies offer alternative lower-cost 19-inch displays (discussed later), 4Site Technologies' Machroma C2D is a 14-inch color monitor that can display 926 by 580 pixels and costs $895. It does not use its own video board; you can use Apple's Mac II video board or another third-party video board. (For a look at IBM-compatible multiscan-type monitors that can be used on Mac IIs, such as the Sony Multiscan and NEC MultiSync, see "Multisync Color Monitors" by George A. Stewart in the February BYTE.)

We noted qualitative impressions of the monitor/video card combinations during normal use, including testing with various Macintosh software packages. We used our own Colorizer software package, several MacApp demonstration programs from Apple's Advanced Technology Group, and Spinnaker, a Palette Manager test program by Art Cahral of Apple. In addition, quantitative results were obtained at the laboratories of Microvision, which used its SuperSpot 100 CRT analysis system on the three monitors. For reference purposes, we compared these systems with Apple's AppleColor color monitor and the Mac II video board.

The Monitors
The PCPC and SuperMac monitors are based on the 19-inch Trinitron manufactured by Sony, the GDM 1950 monitor (termed the GDM 1952 when equipped with a tilt/swivel base). The PCPC is available only with the tilt/swivel base. The two monitors appeared to function identically during normal use, although testing showed a few subtle differences.

These monitors are very bulky and heavy; in fact, under Federal Occupational Safety and Health Administration employee guidelines, they require two people to move them. Due to their weight, you can't place them directly on top of a Mac II, as you can with smaller monitors. Thus, you need either more desk space or a stand that's sturdy enough to support 84 pounds of monitor (the tilt/swivel base increases this load to 90 pounds). SuperMac offers a tilt/swivel stand to support its monitor; it costs $250.

According to the manufacturer, the Trinitron can display 1280 by 1024 pixels, but the nominal resolution with both of the supplied video boards is 1024 by 768 pixels. This provides approximately 250 percent of the screen pixels of the standard 640- by 480-pixel Apple Mac II monitor, and 450 percent of the Macintosh Plus and SE's 512- by 342-pixel displays. The pixel density is approximately that of the standard displays, so the net effect is a lot more screen area to work with when positioning application windows. This is particularly useful when working with MultiFinder, where the windows of all running programs must share the screen. A larger screen area lets you place application windows where you can bring them to the foreground at a mouse click instead of needing to pull down the desk accessory menu.

The 4Site Machroma C2D monitor is based on the Magnavox Professional 8CM873 monitor. It has a 14-inch screen with a 13-inch viewing area. Combined with Apple's video card, it offers a display of 640 by 480 pixels. It is slightly taller than the Apple monitor and is 5 pounds lighter.

The Machroma is the only one of the
four monitors to include a 3-inch speaker and an audio input jack. It also has a Text switch that turns off the red and blue inputs, producing a black-on-green display with the Mac II.

The AppleColor High-Resolution RGB Monitor, which we used for reference, uses a 13-inch Trinitron tube with Apple electronics.

All the monitors except the AppleColor have a nonreflective coating, which is an advantage in normal and bright office lighting. Both of the large screens are switch-selectable for 220/240 volts AC, although different fuses are required for the different voltages. The AppleColor monitor automatically adjusts to higher voltages, while the Machroma was supplied in the 120-V version only.

PCPC and SuperMac each offer another 19-inch model, made by Mitsubishi and Ikegami, respectively. The PCPC II [Mitsubishi] costs $4995; the SuperMac Standard Color Monitor costs $2995. SuperMac also sells a 16-inch Trinitron that displays the same number of pixels at a higher density and costs $2495, and a 19-inch gray-scale monitor that costs $1695.

Video Cards
To use one of these monitors, you must install a NuBus-compatible video card in the Mac II chassis. Opening up the Macintosh and installing the card may seem foreign to owners of earlier Macs, but it's a simple task, accomplished in less than 5 minutes. No DIP switches are present on any of the boards: Following the NuBus standard, it's up to the board's configuration ROM to provide the computer with the necessary information and driver code.

The output device for all the video cards is a RAMDAC by Brooktree Corp. This IC passes a digital value retrieved from video RAM to three built-in D/A converters that drive the RGB analog signals supplied to the monitor.

Neither PCPC's nor SuperMac's video cards supported exactly the 1024-by-768-pixel display their manufacturers claimed. The PCPC board provided QuickDraw with 1024 by 767 pixels, while the SuperMac board supplied 1016 by 768 pixels. Neither variation was significant in actual use.

The PCPC video board is the smallest, at 10 inches long. The board is designed around the 75-MHz Brooktree 458 and the Texas Instruments TMS 34061 video system controller. It has 768K bytes of video RAM, allowing it to display 256 colors; however, it supports only the 256-color mode and not the 2-, 4-, and 16-color modes available on the other boards. The lack of a 2-color mode is a serious limitation, since a number of programs (e.g., MacPaint 1.5, SuperPaint 0.0, and TMON) expect a 1-bit deep (2-color) display; otherwise, they garble the screen image. With other video boards, the easiest fix for this problem is to set the display to the 2-color mode. Since the PCPC board doesn't have a 2-color mode, you're stuck until a new generation of programs arrives that can properly handle a 256-color display. PCPC is aware of the situation and says it will have a video board that supports a 2- and 256-color mode by the time you read this.

The SuperMac is the longest of the three boards at 13 inches. It uses the same TMS 34061 and a 66-MHz Brooktree 453. It also uses 768K bytes of video RAM to provide 256 colors. The tested board included version D11 of the SuperMac ROMs—the third revision offered, correcting problems with the 4- and 16-color display modes. This version was made available to all customers late last year, according to the company.

The SuperMac board demonstrated a minor (but annoying) display defect. When we changed the standard QuickDraw color table, the top display line noticeably flashes to black before showing continued
the proper color. However, before this article went to press, SuperMac sent us a new version (1.0B1) of the configuration ROM that corrects this problem.

For comparison, the 12-inch Apple Macintosh Video Card uses a 40-MHz modified version of the Brooktree 453. The board is built around a custom frame-buffer chip instead of the Texas Instruments controller. It supports 2-, 4-, and 16-color modes standard, while the optional expansion kit (or its third-party equivalent) is needed for a 256-color mode. As shipped, the board comes with eight video RAMs and sockets for eight more. The additional RAM (sold by Apple as the Mac II Video Card Expansion Kit) is required for a 256-color display.

Monitor Tests and Results

A series of 10 tests was performed at the offices of Microvision in Campbell, California. The tests were run using the firm's SuperSpot 100 CRT analysis system. The standard SuperSpot test patterns are available only for MS-DOS machines, so we wrote a comparable program for the Mac II using Color QuickDraw calls and MacApp.

The tested hardware included the AppleColor High-Resolution RGB Monitor; video cards from PCPC and SuperMac and their monitors; and two Mac II Video Cards, with the optional video expansion kits, to drive Apple's monitor and the Machroma monitor.

The monitors were allowed to warm to operating temperature (about 30 minutes), and the brightness level was adjusted for best definition. The entire screen was flooded with green, since the sensor was most sensitive to this color, and the intensity was measured. The light levels in foot-lamberts for each monitor were as follows: PCPC, 19; SuperMac, 16.7; Machroma, 17; and AppleColor, 15. The tests measured the spot size; time variance effects such as jitter, swim, and drift; misconvergence; and voltage regulation.

Spot size is the minimum size that can be illuminated by the electron beam. The tests provide separate readings for horizontal and vertical dimensions. Measurements were made in the center and the corner of the screens. The square root of the sum of the squares of the horizontal and vertical measurements provides a single number that corresponds to the length of a diagonal line across a spot. Spot size shows the fineness of the display beyond the nominal dot-pitch specification. The spot sizes are shown in figure 1; they have been normalized for a screen size of 13 inches.

The two 19-inch Trinitron monitors did not perform identically. The spot size for the PCPC monitor was measurably smaller than that of the SuperMac monitor—in fact, it was the smallest for the monitors tested. This result was repeated when testing the PCPC monitor with the
SuperMac card. Other measurements, such as line variation, were better for the SuperMac; this suggests sample-to-sample variations in factory adjustments. The Machroma monitor had the largest spot size and the largest variation between the center and the corner of the screen.

Time variance measures undesirable fluctuations in the beam position. *Jitter* is high-frequency movement (measurements were made over half-second intervals), *swim* is medium-frequency movement (measurements were made over 10-second intervals), and *drift* is low-frequency movement (measurements were made over 60-second intervals). Jitter can cause eyestrain; large amounts of drift can make precision graphics or CAD work difficult.

Microvision measured horizontal and vertical variance separately. Maximum variance and average variance for jitter, swim, and drift were recorded. Measurements were made only in the center of the screen. Again, linear measurements have been adjusted for a 13-inch screen. Figures 2a, 2b, and 2c present the results for average variance of the three measurements. The SuperMac and Apple monitors had the lowest time variance, and the Machroma monitor had the highest.

Misconvergence measures errors in the electron beam/phosphor dot alignment; these errors cause color fringing. Misconvergence was measured at the center of the screen (usually best case) and the upper left corner (usually worst case). The amount of error in the red-green, blue-green, and red-blue convergence in horizontal and vertical directions was measured separately. Linear measurements were adjusted for screen size. (See figures 3a and 3b.) There were no clear winners here, but the SuperMac had the best horizontal convergence, and the Machroma had the best vertical convergence.

You can gauge the quality of a monitor's voltage regulation by how much a line's position is displaced when the screen is black versus when the rest of the screen is filled with white. Ideally, the line shouldn't move. We compared a horizontal line's position on the screen when the rest of the screen was black, and then when the screen was white; a vertical line was similarly compared. Again, the results were normalized for screen size. Figure 4 shows the voltage regulation test results presented as horizontal and vertical displacements. The AppleColor monitor showed exceptionally good voltage regulation. The Machroma monitor was the only one of the four to show poor high-voltage regulation; the test pattern moved noticeably as the number of displayed pixels changed.

The Price of a Large Screen

None of the three rival monitors was quite as good subjectively as the AppleColor

Key to Charts

1. PCPC II
2. SuperMac
3. Machroma
4. AppleColor

All measurements are normalized for a 13-inch screen.

Figure 3a: Horizontal misconvergence at center, in millimeters.

Figure 3b: Vertical misconvergence at center, in millimeters.

Figure 4: Line displacement in millimeters.
REVIEW: MACINTOSH II COLOR MONITORS

<table>
<thead>
<tr>
<th>Monitor</th>
<th>PCPC II [Trinitron]</th>
<th>SuperMac Color Trinitron</th>
<th>4Site Machroma C2D</th>
<th>Apple Color High-Resolution RGB Monitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screen size</td>
<td>19 inch</td>
<td>19 inch</td>
<td>14 inch</td>
<td>13 inch</td>
</tr>
<tr>
<td>Resolution¹</td>
<td>1024 by 768</td>
<td>1024 by 768</td>
<td>926 by 580</td>
<td>640 by 480</td>
</tr>
<tr>
<td>Display area (in mm)</td>
<td>360 by 270</td>
<td>360 by 270</td>
<td>250 by 180</td>
<td>235 by 176</td>
</tr>
<tr>
<td>Aspect ratio</td>
<td>1.33</td>
<td>1.33</td>
<td>1.39</td>
<td>1.33</td>
</tr>
<tr>
<td>Dot pitch (mm)</td>
<td>0.31</td>
<td>0.31</td>
<td>0.31</td>
<td>0.25</td>
</tr>
<tr>
<td>Scanning frequencies¹</td>
<td>49 by 60 kHz</td>
<td>63 by 60 kHz</td>
<td>35 by 60 Hz</td>
<td>35 by 60 Hz</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>100 MHz</td>
<td>100 MHz</td>
<td>25 MHz</td>
<td>23 MHz</td>
</tr>
<tr>
<td>Power consumption</td>
<td>220 W</td>
<td>300 W</td>
<td>132 W</td>
<td>160 W</td>
</tr>
<tr>
<td>Power Input</td>
<td>100/120 V 220/240 V</td>
<td>100/120 V 220/240 V</td>
<td>120 V 85/270 V</td>
<td></td>
</tr>
<tr>
<td>Antiglare</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Signal connector type</td>
<td>Video 3 BNC male</td>
<td>3 BNC male</td>
<td>DB-9 female</td>
<td>DA-15 female</td>
</tr>
<tr>
<td></td>
<td>Audio N/A</td>
<td>N/A</td>
<td>RCA jack</td>
<td>N/A</td>
</tr>
<tr>
<td>Dimensions</td>
<td>19 by 21 by 19</td>
<td>18 by 21 by 19</td>
<td>13 by 14 by 15</td>
<td>12 by 14 by 15</td>
</tr>
<tr>
<td>Weight</td>
<td>90 pounds</td>
<td>84 pounds</td>
<td>29 pounds</td>
<td>34 pounds</td>
</tr>
<tr>
<td>Tilt and swivel</td>
<td>Standard $250</td>
<td>$35</td>
<td>$995</td>
<td>$999</td>
</tr>
<tr>
<td>Warranty</td>
<td>1 year</td>
<td>90 days</td>
<td>1 year</td>
<td>90 days</td>
</tr>
<tr>
<td>Price</td>
<td>$5295</td>
<td>$5190</td>
<td>$1595</td>
<td>$1495</td>
</tr>
</tbody>
</table>

Notes:
1. Horizontal by vertical.
2. Price includes 256K-byte video RAM upgrade for 256 colors (without upgrade, price is $499, and card displays only 16 colors).

BOARD SPECIFICATIONS

<table>
<thead>
<tr>
<th>Board</th>
<th>PCPC CGC/1</th>
<th>SuperMac Spectrum 1000/8</th>
<th>Apple Macintosh II Video Card</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution¹</td>
<td>1016 by 768</td>
<td>1024 by 768</td>
<td>640 by 480</td>
</tr>
<tr>
<td>Scanning frequencies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontal</td>
<td>49 kHz</td>
<td>48.2 kHz</td>
<td>35 kHz</td>
</tr>
<tr>
<td>Vertical</td>
<td>60 Hz</td>
<td>59.3 Hz</td>
<td>66.7 Hz</td>
</tr>
<tr>
<td>Connector</td>
<td>DB-9 male</td>
<td>DA-15 female</td>
<td>DA-15 female</td>
</tr>
<tr>
<td>Board length</td>
<td>10 inches</td>
<td>13 inches</td>
<td>12 inches</td>
</tr>
<tr>
<td>Warranty</td>
<td>1 year</td>
<td>1 year</td>
<td>90 days</td>
</tr>
<tr>
<td>Price</td>
<td>$1595</td>
<td>$1495</td>
<td>$648²</td>
</tr>
</tbody>
</table>

Notes:
1. As measured: horizontal by vertical.
2. Price includes 256K-byte video RAM upgrade for 256 colors (without upgrade, price is $499, and card displays only 16 colors).
monitor. The tests indicate that although the AppleColor’s convergence and spot size is not as good as that of the larger monitors, the low-time-variability measurements and the superior voltage regulation probably contribute to the favorable impression.

From the standpoint of display quality, the two 19-inch monitors were very good. The colors were as good as the AppleColor’s, although the display did not appear to be quite as sharp. The much larger display area is a decided advantage for many applications. Remember, however, that since there are more pixels to update, the two 1024- by 768-pixel monitors are considerably slower than the 640- by 480-pixel screen. Of course, whether the bulk, weight, and price of these monitors is likely to rule them out must be up to you.

The Machroma C2D was disappointing in comparison to the other three monitors. The display did not appear to be as sharp as the others, and the contrast was low. This observation was confirmed objectively by the test results. In addition, the white had a marked greenish tint. The saturation of pure colors was poor, particularly for red. We found little reason to recommend the Machroma monitor. If you’re looking for a medium-size monitor other than the Apple, then you should consider one of the better multiscan monitors reviewed in the February BYTE, such as the Sony CPD 1302 or the Taxan 770 Plus.

Among video cards, the Apple board again set the standard: It worked flawlessly, and it supported the 2-, 4-, 16-, and 256-color modes without any problems. The PCPC video board showed no real problems, but the lack of a 2-color mode made it incompatible with the TMON debugger and SuperPaint. Also, all software works considerably faster when updating 87 percent fewer video bits in a 2-color mode (1 bit instead of 8).

We run our Mac II monitors in the 2-color mode for development work a significant portion of the time, and a board like the PCPC that does not support this mode would be unacceptable for our own purchase. The 4-color mode is rarely used, but the 16-color mode frequently proves to be an acceptable compromise between speed and color fidelity.

The SuperMac video board performed capably, but only after the problems with the configuration ROM were corrected. If you decide to buy the SuperMac board, we recommend that you check to see that it has the latest version of the configuration ROM.

ACKNOWLEDGMENTS
David Buckstad of Microvision performed the quantitative tests on the four monitors at his company’s facilities. David Gelpman of Adobe Systems lent his Mac II and Apple monitor for use during those tests.

Pushing the Mac SE

Laurence H. Loeb

Macintosh SE accelerator boards plug into the SE’s single expansion slot to let SE owners upgrade their computers to near-Macintosh II power without buying a new and more expensive machine. The two accelerator boards examined here, the Radius Accelerator ($995) and MacMemory’s Turbo SE ($599), claim to more than double the Mac SE’s processing power.

The idea of a plug-in board that bypasses the Mac SE’s processor is not a new one. In a previous review (November 1987 BYTE), I looked at two of the first accelerator boards for the SE: the Prodigy SE from Leuco and the HyperCharger 020 from General Computer Corp. (GCC). These two boards boost the Mac SE’s computing power by supplying a 16-MHz 68020 processor and 1 megabyte of 32-bit memory that replaces the computer’s original 8-MHz 68000 processor and 1 megabyte of 16-bit memory.

The Radius Accelerator and Turbo SE, however, use different approaches to enhance the Mac SE’s performance. While the Radius accelerator has an on-board 16-MHz 68020, it uses 32K bytes of zero-wait-state 32-bit-wide cache memory. The MacMemory board uses a 16-MHz 68000, clocked at twice the speed of the SE’s processor, but it still uses the Mac SE’s 16-bit memory for program storage. Like the Prodigy SE and HyperCharger, both of these boards have a socket for an optional 68881 floating-point unit (FPU).

The Radius Accelerator

The first board I examined was the Radius Accelerator. I looked forward to evaluating this product because it offered a reasonably priced board with a 68020 processor and the 68881 FPU socket (the review unit contained the 68881).

The installation documentation that came with the board was abysmal: It consisted of a single sheet of paper with text printed on each side. The documentation cautions that only a Radius authorized dealer should install the board. There’s good reason for this: Its design results in an installation procedure that, with some bad luck, could damage your Mac SE motherboard.

The SE motherboard is hinged on one side. To remove it, you shift the motherboard along its axis, then swivel it out of its locked position (much like pulling up on a door before swinging it open). The Radius daughterboard contains a connector that coincides with a hole in an internal metal strut when the board is installed on the Mac SE motherboard. The con-

The MacMemory Turbo SE board (left), and the Radius Accelerator board (right).
dealer install the board, even if you are technically competent. Once installed, the accelerator board doesn’t require any further adjustments via the Control Panel or a desk accessory. A 12-page user’s manual provides tips on using the board. It shows you simple things such as how to tell when the accelerator is active (it displays a start-up screen) and how to turn the accelerator off (hold down the mouse button after you power up the computer—you can turn it off from a preferences panel that appears). If you use MacWrite 4.5, you don’t have to add a special compatibility file, as some accelerator boards require, because the Radius board patches the offending TRAP vectors automatically. This feature is of limited value if you’re using MacWrite 4.6, which works correctly with all Macintoshs.

A yellow insert in the package advises you to back up your hard disk before installing the Accelerator because some formatting software “has exhibited incompatibility problems with the Accelerator, destroying data on start-up.” Radius also provides a list of tested hard disk drives. Backing up the hard disk drive is a good idea before doing any major hardware change.

The Radius board requires that you power down the Mac SE to switch between the 68020 mode and the 68000 compatibility mode. Some users may find fault with the need to power down the Mac to change modes, but I never found this procedure necessary because I encountered no software incompatibilities.

The latest versions of all the software I normally use worked with the Radius’ 68020 mode. Several programs that use the 68881 floating-point processor also worked just fine, including beta versions of Borland’s Eureka for the Mac and Super-3D by Silicon Beach Software. Red Ryder 10.3 worked well with the board, too, although version 9.4 of the program had caused problems with the Prodigy SE and HyperCharger boards. This indicates that software vendors have tried to make their code 68020- and 68881-compatible since the Mac II’s introduction.

Fast Cache Memory

The problems with installation should not blind you to the immediate benefits of using the Radius Accelerator: Programs run noticeably faster, and the screen refreshes itself faster. One example is returning to Finder from an application. With a hard disk, Finder can take a few seconds to redraw all the icons on a crowded desktop. Maybe it’s my Type A personality, but waiting for this redraw annoys me. With the Radius board installed, this redraw time is decreased to acceptable levels.

A significant factor in the Radius’s performance is its one unique feature: cache memory. Unlike the Prodigy SE or HyperCharger boards, the Accelerator doesn’t have a megabyte of 32-bit memory to store the executing program. It has 32K bytes of zero-wait-state 32-bit cache memory, of which 22K bytes is used to store the memory-mapped screen (one of the reasons the board appears to work fast is the quick screen-refresh time). 8K bytes is for program data, and 2K bytes is for “housekeeping” information. When a cache miss occurs, the program code (which is in 16-bit memory) is simultaneously executed and copied into the cache, avoiding a separate copy operation that would slow the processor down.

As a result, the computer stores the most recently used parts of the program (whether executing code or Macintosh ROM calls) in cache memory. This minimizes the Mac SE’s number of slower 16-bit memory accesses and allows the 68020 to do fetches from cache memory at the maximum data transfer rate. Radius’s 32K bytes of cache memory is faster than the HyperCharger’s and Prodigy’s 1 megabyte of memory because these boards’ memories always run at one wait state, while Radius’s always runs at zero wait states.

The Turbo SE

MacMemory takes a completely different approach in its Turbo SE board. It uses a 16-MHz 68000 processor clocked at 15.8 MHz (from the C16M signal present in the SE) to speed things up. The company says it took this approach (which none of the other boards uses) to offer compatibility with all existing Mac software. (However, as I stated earlier, I didn’t find software incompatibility with the 68020 to be a problem.)

continued
To get any job done, you need the right tools. Ideally, they should be extensions of your talents, freeing you to do what you do best. And speed, precision, flexibility, and consistency are always top priorities, no matter what the job. If communicating with drawings is part of your job, AutoSketch should be one of your resources.

AutoSketch from Autodesk, the developers of AutoCAD® is the precision drawing tool for professional use. It's fast, powerful, and simple to learn. The price is right, too.

With AutoSketch and your personal computer, you'll enter the world of computer-aided drawing with ease. You may never have designed with a PC before, and you may think it's bound to be complicated and time-consuming. Surprise! With AutoSketch, you'll probably be up and running in about an hour.

Despite its ease of use, AutoSketch is a full-function, object-oriented CAD program. Pull-down menus and dialog boxes help you each step of the way. With a click of the mouse, you can draw, then copy, mirror, or move objects, even create symbol libraries. AutoSketch automatically updates measurements whenever you stretch, scale, or rotate dimensioned objects. It even keeps track of everything you do, so that you can delete and restore parts of your drawing as easily as you change your mind, using successive undo or redo commands.

We know you'll be impressed with the professional results. So will your clients and colleagues.

AutoSketch runs on the IBM PC/XT/AT and 100% compatible systems with a minimum of 512K RAM and either color or monochrome display. If your PC has an 8087 or 80287 math coprocessor, the standard version operates about three times faster. The speed-enhanced version, requiring the coprocessor, is three times faster still.

Call 800-445-5415 for the name of the AutoSketch Dealer nearest you or more information on supported peripherals. To order direct with MasterCard or Visa, call 800-223-2521, or 415-331-0356.
Table 1: As these benchmarks show, the Radius board outperforms the Turbo SE and boosts the Mac SE's performance to close to that of the Mac II. All times are in seconds, except for the Dhrystone, which is in Dhrystones per second.

<table>
<thead>
<tr>
<th></th>
<th>Prodigy SE</th>
<th>Hyper-Charger 020</th>
<th>Standard Mac II</th>
<th>Radius Accelerator</th>
<th>MacMemory Turbo SE</th>
<th>Standard Mac SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dhrystone*</td>
<td>3125</td>
<td>3125</td>
<td>2631</td>
<td>2941</td>
<td>1470</td>
<td>887</td>
</tr>
<tr>
<td>Fibonacci</td>
<td>51.81</td>
<td>52.08</td>
<td>58.83</td>
<td>59.78</td>
<td>126.7</td>
<td>203.1</td>
</tr>
<tr>
<td>Float</td>
<td>17.98</td>
<td>27.54</td>
<td>14.4</td>
<td>32.57</td>
<td>24.32</td>
<td>123.0</td>
</tr>
<tr>
<td>Savage</td>
<td>52.06</td>
<td>52.69</td>
<td>226.2</td>
<td>457.2</td>
<td>43.79</td>
<td>1927</td>
</tr>
<tr>
<td>Sieve</td>
<td>10.59</td>
<td>10.83</td>
<td>11.9</td>
<td>9.87</td>
<td>26.88</td>
<td>46.22</td>
</tr>
<tr>
<td>Sort</td>
<td>18.56</td>
<td>18.60</td>
<td>19.6</td>
<td>18.35</td>
<td>41.67</td>
<td>15.10</td>
</tr>
<tr>
<td>Open spreadsheet</td>
<td>N/A</td>
<td>N/A</td>
<td>8.59</td>
<td>11.24</td>
<td>14.36</td>
<td>21.9</td>
</tr>
<tr>
<td>Recalculate spreadsheet</td>
<td>N/A</td>
<td>N/A</td>
<td>1.99</td>
<td>1.99</td>
<td>2.67</td>
<td>4.90</td>
</tr>
<tr>
<td>Scroll</td>
<td>N/A</td>
<td>N/A</td>
<td>111</td>
<td>100</td>
<td>149</td>
<td>273</td>
</tr>
<tr>
<td>Price, with 68881 FPU (for boards only)</td>
<td>$1499</td>
<td>$1699</td>
<td>N/A</td>
<td>$1390</td>
<td>$2796 with 4 meg of 120-ns RAM</td>
<td>N/A</td>
</tr>
</tbody>
</table>

*For the Dhrystone test only, higher numbers denote faster performance.

Notes:
1. The Radius tested had 1 megabyte of memory and 32K bytes of fast hardware cache memory. The Turbo SE had 4 megabytes of 120-ns memory. The HyperCharger used the SE memory as a 1-megabyte RAM disk and had an additional 1 megabyte of 32-bit memory. The Prodigy had 1 megabyte of SE memory and 1 megabyte of 32-bit memory. The Mac SE and Mac II had 1 megabyte of memory each.
2. For details on the C language benchmarks, see "A Closer Look" by Richard Grehan in the September 1987 BYTE.
3. The Spreadsheet tests open and recalculate a 25-by-100-cell Excel 1.04 spreadsheet. Scroll shows how long it takes to scroll through a 40K-byte MacWrite 4.6 text file from beginning to end.

The Turbo SE also installs differently from the others. One of the ways that MacMemory achieves its low price is to use the 16-bit memory of the Mac SE—which makes sense because its 68000 processor can't use 32-bit-wide memory. But you must take the SIMMs (single inline memory modules) from the motherboard and put them into the accelerator card. This is not beyond what a technically competent user can do, especially with the 21-page well-illustrated installation section in the Turbo SE manual (which is the best such manual I have seen so far).

MacMemory also recommends that you take the two Mac ROMs and place them in sockets on the Turbo SE daughterboard. They work faster that way, but jumper blocks on the board let you leave the ROMs on the motherboard if you don't want to move them.

MacMemory supplies two 64K-byte SIMMs that you plug into the now-vacant SIMM3 and SIMM4 motherboard memory sockets. The Mac then uses this memory for the video display, leaving the remaining memory for other uses. According to the company, these changes "increase screen drawing speed by almost 50 percent above the speed gained by doubling the Mac SE's clock speed."

Once you have installed the ROMs and SIMMs, the board inserts into the SE expansion connector without problems. The two plastic retainers that connect the accelerator and motherboard are the best way of providing mechanical support that I have seen in all the boards I have reviewed. They are much easier to install and remove than the plastic post and metal-screw-with-nonremovable-lock-washer system that Radius uses.

The last step of the installation process is to set the on-board jumpers to the correct positions for the RAM/ROM configuration installed. The board can accept up to 4 megabytes of 120-nanosecond (ns) memory, although the Mac SE's memory (which will go on the Turbo SE board unless you buy new SIMMs) is 1 megabyte of 150-ns memory.

The Turbo SE's manual is clearly designed to assist the technically competent user in installing the board. But, like Radius, MacMemory insists that only certified technicians should do the installation, to keep from voiding AppleCare coverage and any Apple warranties.

The Turbo SE's options include E-Machine's Big Picture video display (which connects to a socket on the board) and the 68881 floating-point coprocessor, which was installed on the board I reviewed. MacMemory provides a software INIT file to patch the calls from the Apple SANE (Standard Apple Numerics Environment) to use the 68881. This allows Excel, for instance, to recognize that the 68881 is present even though a 68020 isn't. To install INIT, drop it into the System Folder of your start-up disk (whether a hard or floppy disk), then restart your Mac using this disk.

Ranking Performance
Once installed, how do these boards stack up? To get an objective measurement, I ran BYTE's set of C benchmarks with both boards, using Lightspeed C 2.01. I also checked the boards' performance on a couple of applications-oriented tests with Excel 1.04 and MacWrite 4.6. For the Excel and MacWrite tests, the System Folder had no unnecessary INIT and cdev files, and there was no caching from the Control Panel. To measure its maximum performance, I tested the Turbo SE with 4 megabytes of 120-ns (one-wait-continued
DesignCAD 3-D is a complete 3-Dimensional CAD system. It compares favorably with systems costing more than $3,000! But, in the great American tradition, we said “Au... What the Heck Let’s see the other guys beat that!” DesignCAD 3-D is $299. Complete.

Once again, American Small Business Computers has proved that you don’t always have to spend a lot of money to get quality software. DesignCAD 3-D provides features such as Shading, Hidden Line Removal, Printer and Plotter support, and extensive file transfer capability, all for $299! No other 3-Dimensional CAD system can come close to providing the price/performance of DesignCAD 3-D.

There is a very important reason to buy DesignCAD 3-D other than price: PERFORMANCE. DesignCAD 3-D provides complete 3-Dimensional drawing capabilities. It’s not a “watered over” 2-D program. DesignCAD 3-D allows you to draw any entity in 3-D space: This means, for example, that you can draw a curve in the shape of a spring. You can draw a circle or arc at ANY angle on ANY plane in DesignCAD 3-D allows up to 4 simultaneous views: any angle or perspective on the screen. DesignCAD 3-D also provides complex extrusions: linear, scalar, and circular. Extensive 3-D text capabilities and auto dimensioning are provided at no extra charge, of course.

DesignCAD 3-D provides capabilities to read drawings from most other CAD systems (DesignCAD, ProDesign B, AutoCAD’s DXP, and many others). You can also send a view of a 3-D drawing to other CAD systems. These features are included at no extra charge, of course.

DesignCAD 3-D almost certainly is compatible with the computer system you now own. DesignCAD 3-D supports more than 200 dot matrix printers, at high resolution. DesignCAD 3-D supports more than 80 plotters, and most digitizers and graphics adapters available for “PC Compatible” systems. Shaded and wireframe models can be output to the printer or plotter YOU own.

DesignCAD 3-D does not require expensive graphics adapters and monitors: even shading can be done on ordinary displays such as the Enhanced Graphics Adapter (EGA), Color Graphics Adapter, or Hercules monochrome adapter.

However, the best reason to buy DesignCAD 3-D is not the low price. It’s not the outstanding performance. It’s not the extensive hardware compatibility. The best reason to buy DesignCAD 3-D is for its amazing ease of use.

DesignCAD 3-D provides powerful commands you can use to produce professional 3-Dimensional drawings in less time than you thought possible! DesignCAD 3-D commands can be selected from the menu or entered as fast, single keystroke commands. We have found DesignCAD 3-D to be easier to learn and easier to use than any 3 Dimensional CAD system for the IBM PC, at any price!

What else do you need to know about DesignCAD 3-D? Only this: “Included at No Extra Charge.” What is included at no extra charge? EVERYTHING! $299 BUYS IT ALL!

How do you get one?
See your local dealer, or contact:
American Small Business Computers, Inc.
118 South Mill Street
Poteau, OK 74953
(918) 855-4848
Telex 9102400392
state) memory. All four accelerator boards had a 68881 installed.

In all the tests except the Float and the Savage, the Radius board outperformed the Turbo SE, turning in times from 50 percent to almost 300 percent faster (see table 1). The Turbo SE outranked the Radius board in both the Float and the Savage; the Turbo SE's performance on the Savage benchmark was more than 10 times better than the Radius's.

True to the company claims, both accelerator boards significantly outperformed the Mac SE. In all but the Float and Savage benchmarks, the Radius board matched or topped the Mac II. The Turbo SE beat the Mac II in the Savage only, falling short on the other tests.

Neither the Radius Accelerator nor the Turbo SE matched the Dhrystone performances of the Prodigy SE and the HyperCharger 020. However, the Radius Accelerator approached their performances in several of the tests. The Turbo SE came close to or beat their performances in the Float and Savage benchmarks only.

The times for the Savage benchmark deserve some interpretation and qualification. The Radius board does poorly (457.2 seconds) because it uses the SANE routines to calculate the transcendental functions that the Savage benchmark emphasizes. The HyperCharger's time of 52.69 seconds is achieved with the use of GCC's numerics package, which is less accurate than Apple's SANE, but much faster. (The SANE package, based on an IEEE floating-point arithmetic standard, is much more precise than most applications require—the GCC numerics package has an error of 6×10^{-14} compared to the SANE's result.) Note that when the HyperCharger uses the SANE package, it achieves a time of 458.91 seconds—virtually identical to the Radius's result.

A spokesperson at Radius said that the company is now testing its own faster math package, which may be available by the time you read this. Like the HyperCharger, the Levco Prodigy uses a numerics package that's less accurate but faster than SANE; it offers no option for using SANE, however.

Most Bang for the Buck?

Although the Radius Accelerator has a risky installation procedure, I prefer this board to the Turbo SE. Its increase in performance is worth the extra $400 (or less, depending on street prices) over the base price of the Turbo SE.

If you're really on a tight budget, the Turbo SE with 1 megabyte of 150-ns memory offers an improvement over an unenhanced Mac SE. However, if you buy 4 megabytes of 120-ns SIMMs from MacMemory for maximum performance, the price of the Turbo SE jumps to about $2796—about $1400 more than the cost of the Radius board. Keep in mind, though, that MacMemory's SIMMs are pricey; you can buy less expensive ones from other vendors.

Overall, though, the performances of the Levco Prodigy SE and the GCC HyperCharger 020 make them still better choices—even over a Mac II—if you can afford them.

ACKNOWLEDGMENT

I would like to thank Rich Siegel, customer support representative of Think Technologies, whose help with 68881-related matters contributed to the background of this review.

Laurence H. Loeb is an electrical-engineer-turned-dental-surgeon and is co-moderator of the macintosh conference on BIX. He can be reached at PBC Enterprises, P.O. Box 925, Wallingford, CT 06492, or on BIX as "lloeb."

How a software engineer got to captain the lunar landing module.

The Computer Museum is everything you'd expect, and a lot of things you wouldn't.

Of course, the museum contains a collection of the most significant accomplishments in the history of information processing. But it's not just a great place to see things, it's also a great place to do things.

There are over twenty interactive exhibits at The Computer Museum. You can design a car, create your own fractal landscape, or even captain the lunar landing module on the Apollo flight simulator.

So, the next time you're in Boston, stop by The Computer Museum. You'll discover it's more than a lot of machines, it's also a lot of fun.

For more information, or to become a Museum Member, write The Computer Museum, or call (617) 423-6758.

The Computer Museum

BOSTON

300 Congress Street, Boston, MA 02210

144 BYTE • MARCH 1988
ALL CLONES ARE CREATED EQUAL....BUT CMO MAKES THE DIFFERENCE
GREAT PRICING • EXPERT CONSULTATION • ONE YEAR WARRANTY

BASIC SYSTEM CONFIGURATION:

• NEC V-20 CPU, 12 MHz Speed
• 640K Mother Board Memory
• 8 I/O Expansion Slots
• 360K Floppy Disk Drive
• Floppy Disk Drive Controller
• Clock Calendar with Battery Backup
• 150 Watt Power Supply
• IBM Compatible BIOS
• 4 Half Height Front Storage Slots
• 100-Key AT-XT Switchable Keyboard
• 24 Hour Burn-In

BASE SYSTEM PRICE: No Cam12-01
Monitor Optional

$579

BASIC SYSTEM CONFIGURATION:

• 8 MHz 80286 16-Bit Microprocessor
• 512K Motherboard Memory Expandable to 1 MB
• 12 I/O Expansion Slots (6 16-Bit & 6 8-Bit)
• Clock Calendar with Battery Backup
• 1.2 MB Floppy Disk Drive
• Hard Disk/Floppy Controller Card
• 238 Watt Power Supply
• Fully Compatible High Speed BIOS
• 84 Key 5151-Type Style Keyboard
• Microsoft MS-DOS with GW Basic
• 5 Half-Height Front Storage Slots (4 exposed)
• 24 Hour Burn-In
• DOS with GW Basic

BASE SYSTEM PRICE: No Cam170-01
Monitor Optional

$999

BASIC SYSTEM CONFIGURATION:

• 10 MHz 80286 16-Bit Microprocessor
• 512K Motherboard Expandable to 1 MB
• 12 I/O Expansion Slots (6 16-Bit & 6 8-Bit)
• Battery Backed-up/Real-Time Clock
• 1.2 MB Floppy Disk Drive
• Dual Hard Disk/Dual Floppy Controller Card
• 238 Watt Power Supply
• Fully Compatible High Speed BIOS
• 5 Half-Height Front Storage Slots (4 exposed)
• 101-Key Enhanced Keyboard
• 24-Hour Burn-in

BASE SYSTEM PRICE: No Cam191-01
Monitor Optional

$1199

COMPUTER MAIL ORDER
477 East Third Street, Dept. A1, Williamsport, PA 17701
All Major Credit Cards Accepted

JOIN OVER 350,000 SATISFIED CUSTOMERS
CALL 1-800-238-9950
Outside the U.S.A. 717-327-9575
FAX 717-327-1217
<table>
<thead>
<tr>
<th>Product</th>
<th>Details</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM PS/2 Model 30</td>
<td>720KB 3½” Disk Drive, 640K RAM, 8MHz, 20 MB Hard Drive, 101 Enhanced Keyboard</td>
<td>$1699</td>
</tr>
<tr>
<td>IBM PS/2 Model 50</td>
<td>80286, 10 MHz, 128K ROM, 1 MB RAM, 20 MB Hard Drive, 1.44 MB 3.5” Disk Drive</td>
<td>$2799</td>
</tr>
<tr>
<td>IBM PS/2 Model 80</td>
<td>80386, 16 MHz Micro Processor, 1 MB RAM, VGA Display, 40 MB Fixed Disk Drive, 1.44 MB 3.5” Disk Drive</td>
<td>$5299</td>
</tr>
<tr>
<td>AST Premium Model 140</td>
<td>1.2 MB Floppy, 101 Keyboard, FastRAM 1MB, 80286, 10MHz, Zero Wait, AST 3 G Plus Board</td>
<td>$2499</td>
</tr>
<tr>
<td>COMPAQ DeskPro 386/20 Model 60</td>
<td>80386 Processor, 20 MHz, 1 MB RAM, 1.2 Floppy, 60 MB Hard Drive, Parallel and Serial Ports</td>
<td>$5899</td>
</tr>
<tr>
<td>NEC PowerMate II</td>
<td>1.2 MB Floppy Drive, 640K RAM, 16 MHz, 40 MB Fixed Disk Drive, MS-DOS 3.2 & GW-Basic</td>
<td>$2399</td>
</tr>
<tr>
<td>TOSHIBA T-1000 Lap Top</td>
<td>Fully IBM compatible, 512K RAM, 720K 3½” Disk Drive, 640 x 200 Pixels</td>
<td>$799</td>
</tr>
<tr>
<td>NEC Multispeed EL</td>
<td>Dual 3½” 720K Floppies, 640K RAM, 612K ROM, Backlit LCD Screen, 9.54 MHz CMOS V-30</td>
<td>$1599</td>
</tr>
<tr>
<td>COMPAQ Portable 386 Model 40</td>
<td>80386 Processor, 1 Megabyte RAM, 40 MB Fixed Drive, 1.3 MB Diskette Drive</td>
<td>$6199</td>
</tr>
</tbody>
</table>
SELECT FROM OVER 3000 PRODUCTS

CALL CMO 1-800-233-8950

BOCA

BOCA G4A
640 x 350 Resolution
16 Color 64 Palette
256K of Video Memory

$149

BOCA

BocaRam AT
- 16 Bit Runs to 16 MHz
- 1 MB - 4 MB Memory
- Expanded, Extended, LIM

$299

VIDEO SEVEN

VEGA Deluxe
- 752 x 410 Display
- EGA, CGA, MGA, HGC
- 256K-DRAM Screen Buffer

$229

VIDEO SEVEN

VEGA V•G•A
- 800 x 600 Resolution
- 256 Simultaneous Colors
- Supports Both Analog & Digital

$329

SENG LABS

EVA/480
640 x 480 Resolution
CGA, MDA and Hercules Compait
Parallel Port Standard

$229

EVEREX

Autoswitch Enhancer
- Autoswitch EGA
- 132 Column Operation
- Parallel Printer Port

$149

EVEREX

RAM 3000 Deluxe
- 0K-3MB Memory
- EMS, Extended, BASE for AT
- Utility Software

$99.99

QUADRAM

XT386 Board
- PC Upgrade to 80386 Processor
- 1 MB of Onboard Memory
- Quadmaster Software Included

$799

INTEL

In Board/286
512K Expandable to 2 MB
Conventional, Expanded & Extended Memory
AT&XT to 12.5MHz

$349

INTEL

In Board/386/PC
- Converts PC to 16MHz
- 80386 Microprocessor
- 1MB On Board Memory

$799

INTEL Math Co-Processors
No. IN8087 PC

$129

HERCULES

Graphics Card Plus
- 720 x 348 Bit Mapped Graphics
- RAM Font Software Included
- Parallel Port

$169

IDEO 5251

Terminal Emulation
- Local Twinem Communication
- IBM 34/34238 Compatible
- Printer Support, Hot Key

$579

DCA

IRMA Board 2.2
- Native Mode Coaxial Link
- IBM 3270 Controller Compatible
- SNA/SLDC or BSC

$799

FIFTH GENERATION
The Logical Connection
- 4 Serial, 2 Parallel In, 2 Parallel Out
- Daisy-chainable up to 313 devices

$289

$369

IDEA 5251

Terminal Emulation
- Local Twinem Communication
- IBM 34/34238 Compatible
- Printer Support, Hot Key

$579

No. 1E5251

No. IRMA2

No. ICFl02 256K
No. ICFl03 512K
EPSON LX-800
- 150 cps Draft/30 cps NLQ
- 9 Pin Dot Matrix, 80 Column
- Built-in Tractor Feed
No. EPLX800
$179

EPSON EX-800
- 9 Pin Dot Matrix
- 300 CPS Draft/50 CPS NLQ
- 80 Column, 8K Buffer
No. EPEX800
$429

EPSON EX-1000
- 9 Pin Dot Matrix
- 300 CPS Draft/50 CPS NLQ
- 132 Column, 8K Buffer
No. EPEX1000
$489

EPSON FX-286E
- 240 cps Draft/40 cps NLQ
- 132 Column, 8K Buffer
- Friction/Tractor Feed
No. EPFX286E
$479

EPSON LQ-500
- 24 Pin Dot Matrix
- 180 CPS Draft/60 CPS NLQ
- 8K Input Buffer
No. EPLQ500
$339

EPSON LQ-850
- 330 cps Draft/60 cps NLQ
- 24 Print Head
- Parallel/Serial with 8K Buffer
No. EPLQ850
$529

DICONIX INKJET 150P
- AC/DC Powered Portable
- Centronics Parallel 8 Bit
- 150 cps Draft/50 cps NLQ
No. KD150
$319

SHARP FO-210 Facsimile
- Half-tone Transmission
- Automatic Contrast Adjustment
- Automatic dialing for 87 #’s
No. SHF0210
$1499

OKIDATA ML-193 Plus
- 200 CPS Draft, 40 CPS NLQ
- 8K Print Buffer
- 9 Wire, 132 Column
No. OK193I
$469

OKIDATA ML-293
- Dual 9 Pin Dot-Matrix
- 240 cps Draft/100 cps NLQ
- 136 column, 8K Buffer
No. OK293
$539

OKIDATA ML-393 Plus
- 450 cps Draft/180 cps NLQ
- 24 Wire Dot Matrix
- Personality Module Concept
No. OK393
$989
<table>
<thead>
<tr>
<th>Model</th>
<th>Type</th>
<th>Specifications</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>BROTHER M-1509 Dot Matrix</td>
<td>180 CPS Draft/55 CPS NLO, Auto Paper Loading, Friction and Pin Feed</td>
<td>No. BRM1509</td>
<td>$389</td>
</tr>
<tr>
<td>BROTHER HR-40 Daisywheel</td>
<td>40 CPS, 136 Columns, 2 Color Printing, Friction and Forms Tractor</td>
<td>No. BRHR40</td>
<td>$599</td>
</tr>
<tr>
<td>BROTHER HR-60 Daisywheel</td>
<td>60 CPS, 136 Columns, Diablo 635 compatible, Standard Parallel Interface</td>
<td>No. BRHR60</td>
<td>$739</td>
</tr>
<tr>
<td>NEC 2200</td>
<td>24-Wire Dot Matrix, 170 cps Draft/55 cps NLO, 360x360 Dots per inch</td>
<td>No. NIP2200</td>
<td>$379</td>
</tr>
<tr>
<td>NEC P760 Pinwriter</td>
<td>24-Wire Print Head, 216 cps Draft/65 cps NLO, 136 Column Carriage</td>
<td>No. NIP760</td>
<td>$659</td>
</tr>
<tr>
<td>C.ITOH 315XP</td>
<td>300 cps Draft/50 cps NLO, 15" Carriage Width, IBM/Epson compatible</td>
<td>No. TE315XP</td>
<td>$559</td>
</tr>
<tr>
<td>PANASONIC KX-P1091-II</td>
<td>194 CPS Dot Matrix, 9-Pin Print Head, IBM Pro Printer Emulation</td>
<td>No. PA1091</td>
<td>$199</td>
</tr>
<tr>
<td>STAR MICRONICS NX-1000</td>
<td>144 cps Draft/35 cps NLO, 4K Buffer, 80 column, Auto feed, Friction and Tractor Feed</td>
<td>No. SGNX1000</td>
<td>$179</td>
</tr>
<tr>
<td>STAR MICRONICS NX-15</td>
<td>120 CPS Draft, 50 CPS NLO, 5K Buffer, 132 Column, Friction & Tractor Feed</td>
<td>No. SGNX15</td>
<td>$319</td>
</tr>
<tr>
<td>TOSHIBA P321SL</td>
<td>24 Wire Print Head, 216/180/72 cps, Character font cartridges</td>
<td>No. TB321SL</td>
<td>$529</td>
</tr>
<tr>
<td>TOSHIBA P351-SX</td>
<td>24 Wire Print Head, 360 cps Draft/120 cps NLO, 136 column, Parallel/Serial</td>
<td>No. TB351SX</td>
<td>$999</td>
</tr>
<tr>
<td>CITIZEN Premier 35</td>
<td>35 cps Daisywheel, Built-in clock/calendar display, Error messages in English</td>
<td>No. CZMSP35</td>
<td>$479</td>
</tr>
</tbody>
</table>
WE WILL MEET OR BEAT ANY COMPETITIVE PRICE.

CALL CMO 1-800-233-8950

MAGNAVOX

Monochrome Monitor
- 12" Amber or Green Display
- 1000 Lines
- Dark Glass CRT

RGB/Composite
- 13" Dark Bulb Screen
- 600 x 240 Pixel Resolution
- Green Text Display Switch

Enhanced Display
- Up to 690 x 350 Resolution
- 94 Colors in EGA Mode
- Text Display Function

Multimode Display
- Digital and Analog
- 925 x 580 display
- 15 KHz to 34KHz

MONOCHROME
- 1000 Lines
- Dark Glass CRT
- 720 x 350 Resolution
- Digital and Analog

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAP613 Green</td>
<td>$89.99</td>
</tr>
<tr>
<td>NAP6562</td>
<td>$269</td>
</tr>
<tr>
<td>NAP063</td>
<td>$369</td>
</tr>
<tr>
<td>NAP873</td>
<td>$489</td>
</tr>
</tbody>
</table>

AMDEK

Video 410 Series
- 12" TTL Amber, Green, White
- Up to 960 Lines
- Flat non-glare screen

Color 722
- 13" In-Line etched screen
- Supports 64 Colors
- 720 x 350 Display

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM410A, G, or W</td>
<td>$159</td>
</tr>
<tr>
<td>AMC722</td>
<td>$429</td>
</tr>
<tr>
<td>AM432</td>
<td>$179</td>
</tr>
<tr>
<td>AMC732</td>
<td>$499</td>
</tr>
</tbody>
</table>

PRINCETON

MAX-12
- 12" Amber TTL
- 720 x 350 Display
- 16 Shades

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNM12</td>
<td>$139</td>
</tr>
<tr>
<td>PN12U</td>
<td>$549</td>
</tr>
</tbody>
</table>

THOMPSON

Model 4120
- 14" RGB/Comp/Analog
- 880 x 240 Pixel Resolution
- 51 Dot Pitch, 12 MHz

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPC4120</td>
<td>$239</td>
</tr>
<tr>
<td>TPC4375M</td>
<td>$499</td>
</tr>
<tr>
<td>NEC1402</td>
<td>$589</td>
</tr>
</tbody>
</table>

NEC

Model 4120
- 14" RGB/Comp/Analog
- 880 x 240 Pixel Resolution
- 51 Dot Pitch, 12 MHz

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPC4120</td>
<td>$239</td>
</tr>
<tr>
<td>TPC4375M</td>
<td>$499</td>
</tr>
<tr>
<td>NEC1402</td>
<td>$589</td>
</tr>
</tbody>
</table>

NEC

Multisync II
- Multisync RGB
- 800 x 560 Display
- 6 Text Switchable

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPC4120</td>
<td>$239</td>
</tr>
<tr>
<td>TPC4375M</td>
<td>$499</td>
</tr>
<tr>
<td>NEC1402</td>
<td>$589</td>
</tr>
</tbody>
</table>

ZENITH

ZMM-149 VGA
- IBM VGA Monochrome
- 14" High Resolution
- 31.48 KHz Scan Frequency

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZVA149 Amber</td>
<td>$239</td>
</tr>
<tr>
<td>ZVW149 White</td>
<td>$239</td>
</tr>
</tbody>
</table>

ZCM-1490 VGA
- 14" Analog/TTL, 31 Dot Pitch
- 64 Available Colors
- 25 MHz, 640 x 480 Resolution

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEC1490</td>
<td>$749</td>
</tr>
</tbody>
</table>
OUR STAFF PROVIDES UNEQUALLED TECHNICAL SUPPORT CALL 1-800-233-8950

MOUNTAIN Drivecard
- 20 Meg, No MB20 $469
- 30 Meg, No. MB30 $519
- 50 Meg, No. MB50 $699

MOUNTAIN Dual 20 Bernoulli
- Bernoulli Technology
- Dual 20 MB Cartridges
- Requires PC2 Controller
No. MBB4174 $1799

PC-TOO Datasave 4000
- 40 MB Formatted capacity
- 3½" Pocket Size Cartridges
- Uses existing floppy controller
No. MBPC1206 $479

POLAROID Palette Plus
- Computer Image Recorder
- 35mm and 3x4 Film Unit
- 8 Palette Software included
No. PC001P $2399

SEAGATE Hard Drives
- 20MB ½ Ht No ST-225 $249
- 30MB ½ Ht No ST-238 $399
- 40MB ½ Ht No. ST-251 $439

EVEREX Excel-Stream 60-8
- 60 MB Cassette Back-up
- Backs up 5 MB per minute
- Built-in Formatter
No. EV60E $729

IRWIN 10 MB Tape Drive
- 10 MB Formatted Capacity
- 8 Minute Back-up Time
- Half-height Internal
No. IW110D $219

CMS Drive Plus 21
- 21 MB Expansion Card
- 3½" Rigid Disks
- 5 MB/sec Transfer Rate
No. CH20DP $319

HAYES Smartmodem 1200
- 300/1200 Baud External
- Automatic Speed Selection
- Voice/Data Transmissions
No. HY1200 $279

HAYES Smartmodem 2400
- 300/1200/2400 Baud External
- Non-Volatile Memory
- Stored Number Dial
No. HY2400 $429

NOVATION Parrott 1200
- Compact 300/1200 BPS
- "AT" (Hayes) Command Compatible
- No Batteries or AC Required
No. NV700 $99.99

U.S. ROBOTICS Direct 2400 PC
- 300/1200/2400 Baud Internal
- Carrier detect override
- Audio phone line monitor
No. UR2400 $179

ZUCKERBOARD The Nude Modem
- 1200 Baud Half Card
- Fully Hayes Compatible
- PC Talk III Software
No HX12 $79.99

ANCHOR 1200E
- 300/1200 BPS, AA/AD
- 100% Hayes Compatible
- 5 Year Limited Warranty
No. ANA1200E $129

EVEREX Evercom 920
- 300/1200 Baud Half-Size
- Bell 103/212A Compatible
- Auto Answer/Auto Dial
No. EV920 $89.99

EVEREX Evercom 945
- 300/1200/2400 Baud External
- "AT" (Hayes) Command Compatible
- Status Indicator LED's
No EV924E $239
LOTUS 1-2-3 $299
No. ICL001

d-Base III+ $399
No. ICAH03

Word Perfect 4.2 $209
No. ICSS01

Symphony $439
No. ICL02

Copy II Option Board $84.99
No. ICCP02

Fast Back Plus $89.99
No. ICFI04

Microsoft Mouse w/ Paintbrush $119
No. ICMI02

IMSI Optimouse w/Dr. Halo $89.99
No. ICIM04

Micropro Professional 4.0 $239
w/GL, No. ICMPP03

Multimate Advantage II $299
No. ICMW02

R:Base System V $449
No. ICMH04

Logitech Mouse $79.99
No. ICLG03

PFS: Professional Write $129
No. ICPF11

Crosstalk XVI $899.99
No. ICMF01

Xerox Ventura $499
No. ICXE01

Norton Utilities $54.99
No. ICNO01

CMO POLICIES

- Next Day Shipping on all in-stock items.
- No Surcharge on Visa or Mastercard orders.
- Credit Cards are NOT Charged until order is shipped.
- Add 3% (minimum $7.00) shipping/handling on all orders.
- All items subject to availability and price change.
- Returned items may be subject to a restocking fee.
- PA residents add 6% Sales Tax.
Trilogy: A New Approach to Logic Programming

Alex Lane

Trilogy version 1.15 ($99.95) from Complete Logic Systems (CLS) is a new logic programming language that combines the best features of logic, procedural, and database programming. Trilogy is an example of the current trend in logic programming languages, which centers on the introduction of types (domains), constraints, I/O annotations, arrays, and reassignable variables. (For a discussion of this trend, see the Prolog-related articles in the August 1987 BYTE.)

As a logic programming language, Trilogy most resembles Prolog. Both languages are based in mathematical logic, support lists, and are capable of manipulating symbolic variables. Running programs in either language consists of asking questions (called executing a query). The programming language can use backtracking to find alternative ways to satisfy a query. Trilogy improves upon the blind backtracking approach of Prolog, however, by incorporating constraint logic.

Program source code reads a lot more like Pascal than Prolog: Trilogy supports arrays, enumerated types, and subrange declarations, and provides if...then...else and case control structures. You can express and compile procedures straightforwardly into nonbacktracking modules. While Trilogy provides no explicit control structures for iteration or looping, it conserves stack and heap space by performing tail recursion optimization (a technique for saving space and time in recursive programs) on nonbacktracking modules (procedures and subroutines).

Finally, Trilogy provides a set of relational database operations for creating, updating, and querying database files. Database files may have variable record sizes, and you can place these records anywhere within a file or insert them in order. You can store anything (e.g., a list, a tree, or an array) as a field. You can insert, delete, and update records anywhere in a file. The database predicates work with both Trilogy database files and ASCII DOS files.

The package requires an IBM PC, XT, AT or compatible with 512K bytes of RAM running DOS 2.0 or higher. You can run Trilogy from dual floppy disk drives, but a hard disk drive is highly recommended. I used a 4.77-MHz IBM PC XT with 640K bytes of RAM, a hard disk drive, and an 8087 coprocessor. The operating system I used was PC-DOS 3.1.

The Trilogy package consists of a spiral-bound user's manual and two 5 1/4-inch floppy disks that contain an installation program, the Trilogy compiler, source and object files for system modules, a number of sample programs, and a supplemental documentation file.

Language Features

Trilogy is a fairly compact language, having only 22 reserved words and 12 reserved names. The standard system modules math.l, files.l, strings.l, and windows.l add support for, respectively, mathematical functions, file-access functions, functions for manipulating strings, dates and times, and windowing functions. Unlike Pascal or C, Trilogy is case-sensitive. In a reversal of the Prolog naming convention, Trilogy variables and symbols start with lowercase letters, while the names of procedures start with uppercase letters.

Trilogy is a strongly typed language. Its four fundamental types are long (32-bit) and short (16-bit) integers; real numbers; and strings denoted by L, I, R, and S, respectively. Typed variables buy you faster execution and source code that's easier to read. However, the greatest benefit of using typed variables lies with Trilogy's ability to use decision procedures that modify constraints associated with the variables. Constraints are pieces of information that Trilogy places in the environment as it computes a solution.

The programming language associates different constraints with different data types. For example, the constraint conditions put on a short integer variable x are

\[x \text{ op } n \]
\[x \text{ op } \text{var} + n \]

where op is a relational operator (i.e., =, <, and >), n is a short integer, and var is a short integer variable. Whenever Trilogy encounters an expression with short integers and a relational operator, it attempts to transform the expression into one of the short integer constraints by using algebraic rules. If Trilogy cannot get the expression into one of these forms, it will backtrack in an attempt to calculate a value for one of the variables, and if this fails, it will flag the error with a message such as too many backtracks.

Consider the query all \[x : 1 \text{ and } y : 1 \text{ and } x \neq 0 \text{ and } y \neq 0 \text{ and } x \times y = 9 \text{.} \] Translated, this says: "Find all values of x and y when both are short integers, both are greater than zero, and \(x = y + 9 \)." This query will fail because the system cannot transform the expression \(x = y + 9 \) into one of the constraint forms for short integers; nor can Trilogy find a finite number of values for either x or y. If, however, we add the condition that \(y = 2 \), then the query has a solution.

Constraints for long integers are more complex than those for short integers;

\[t1xv1 + t2xv2 + \ldots + tnxv \text{ op } n \]

Alex Lane is a knowledge engineer for Technology Applications Inc. and moderator of the prolog conference on BIX. He can be reached at 6621 Southpoint Dr. N, Suite 310, Jacksonville, FL 32216, or on BIX as 'a.lane.'
declaring a variable anniversary to be of type Date.t and using the terms anniversary.year, anniversary.month, and anniversary.day.

Advocates of typeless programming need not feel left out of Trilogy. Every data type in what is called the Trilogy universe belongs to a universal data type (denoted by U). Using the U data type in predicates (denoted as pred) lets you write predicates that take terms of any type as parameters. Having a universal type also makes possible conversions from one data type to another via coercion (which is an automatically occurring mechanism) and casts (which the programmer specifies).

Predicate Classes

Trilogy provides three classes of predicates: true predicates, procedures, and subroutines. Like predicates in Prolog, a true predicate in Trilogy expresses a quality, property, or relationship possessed by a term or a group of terms. In Trilogy, only true predicates exhibit backtracking (i.e., nondeterministic) behavior. The system does not perform tail recursion optimization for pred because of the uncertainty involved in satisfying constraints. Unlike Prolog, there are no extralogical operations (i.e., predicates that lie outside the logic programming model). Some examples of extralogical predicates are predicates for user I/O, for interaction with the operating system, and for program manipulation such as the cut, assert, and retract predicates.

While backtracking is a powerful resource in logic programming, it becomes a handicap when executing once-through procedural code. To permit efficient procedural programming, Trilogy provides the procedure (proc) predicate. Because there can be no possibility of backtracking inside a procedure, the manual specifies several rules for coding a procedure. For example, you can't use a logical or, symbolic parameters, or symbolic local variables in the procedure body, and the procedure cannot call any true predicates without using the all construct.

Like true predicates in Trilogy, proc predicates can fail. Prolog veterans will recognize this behavior as that of "deterministic predicates." You can view a procedure, whose last parameter is an output mode parameter, as a function, and you can (using functional notation) use it as a term in an expression.

The third and most important class of Trilogy predicate is the subroutine (subr). Subroutines are special procedures that access data external to the Trilogy environment (e.g., system time and user input). It is this access that distinguishes subr predicates from proc predicates in Trilogy. Were it not for this distinction, Trilogy would fail to maintain its logical integrity. Since the behavior of subroutines is unpredictable, you cannot call them from either proc or pred predicates, but only from other subr predicates or directly from a query.

Variable Modes

Unlike traditional Pascal-like programming languages, where only a variable's type is declared up front, variables in Trilogy are declared in terms of both type and mode. The mode tells the Trilogy compiler what, if anything, is known about a variable's value upon entry to a predicate. Trilogy has four variable modes: symbolic, input, output, and I/O.

Symbolic mode (denoted by :: in the variable declaration) is used exclusively in predicates, where little or nothing is known about the value of a variable passed as a parameter to a nondeterministic predicate. You use input and output modes in proc and subr predicates to denote whether to expect a value upon entry to or exit from such predicates.

For example, the expression x::L declares x to be a long integer whose value the system will know upon entry to a predicate. Analogously, the expression x::L says that you will know x upon successful exit from a predicate.

The major difference between symbolic-, input-, output-, and I/O-mode variables is that you cannot reassign the first three types. You can, on the other hand, reassign I/O variables, which conserves memory use.

Trilogy's Windows

Trilogy provides a window-oriented interface that lets you edit, compile, and run programs and build, query, and update databases. Available functions are listed at the top of the screen: Options, Query, Modules, Files, Library, and DOS. Context-sensitive help is available for both general information and errors encountered when running programs.

From the Options menu you can choose your screen colors and activate or deactivate the error-bell tone. You can also enable or disable the generation of .MOD files when compiling queries and determine whether these .MOD files will generate code that makes direct calls to the 8087 or only emulate it. In addition, you can choose to back up or restore libraries, or call the editor to edit a non-Trilogy file.

As with Prolog, a prior familiarity with the code you're going to run is necessary. You run programs by entering a query using the name of a predicate statement like ZebraAnsw(a, b) into a one-line query window near the top of the
REVIEW: TRILOGY

screen and pressing the F2 key to compile the query. If the compiler detects an error, the machine beeps and places the cursor at the spot where the compiler detected the error. Here, pressing F1 accesses a context-sensitive help window that attempts to explain the problem.

In general, I found Trilogy’s help screens to be an invaluable aid in learning the language. Sometimes, however, the displayed message made no apparent sense. For example, when I executed the mistaken query

```
all Append ((1,1,N11)<:1,(2,3),
N11).a)
```

the system gave me an error message that a right parenthesis was missing.

Trilogy comes complete with a library that keeps track of what modules rely upon which others. You can add, modify, or delete modules from the library.

The editor included with Trilogy is modeled after the IBM PE editor. To use the editor, I had to learn an entirely new set of editing commands. I would like to see the next release offer the option of using your own programming editor with Trilogy.

By selecting the DOS function from the top of the screen, you exit from the Trilogy environment. This version of Trilogy does not provide a means of getting a directory from inside Trilogy.

Documentati

Because Trilogy is a new language, the quality of the documentation is very important. The 229-page manual is divided into three sections: a tutorial, a system manual, and a programmer's manual. The tutorial provides a step-by-step introduction to the Trilogy programming language. It assumes you have some experience with programming languages like BASIC or Pascal, but you don’t need to have background in logic or database programming.

The system manual describes the Trilogy system and environment, including the use of the windows, function keys, and editor. The bulk of this part explains how to edit, compile, and query.

The programmer’s manual resembles a collection of appendixes that cover the formal language definition. Short supplemental chapters are devoted to topics such as mode coercion, type conversion, and constraints.

All the examples presented in the manual are included in two source code files. I like this touch, since it saves much time getting acquainted with the language. Of the other sample programs included with the package, including a pattern matcher for ASCII files and several examples in a demonstration program, the file that interested me most was the so-called “zebra puzzle.” This classic logic problem involves five men of different nationalities who own different pets, drink different drinks, smoke different brands of cigarettes, and live in different-colored houses. The goal is to find out who owns the zebra. I used this program as one of the benchmark tests.

A supplemental READ.ME file on the distribution disk gives a terse description of the assembly and C language interfaces. The file LINKMOD.EXE is a utility that links .OBJ files generated by assemblers and C compilers into .MOD object files that Trilogy can use. The LINKMOD utility does not work as described. Instead of the command line `LINKMOD MODNAME OBJFILE`, I found I had to type `LINKMOD MODNAME` and then wait for the prompt to enter the object filename.

The supplemental file also covers other topics, such as a discussion of tail recursion optimization, heap management, and some partially implemented Trilogy features.

Benchmarks

Because Trilogy and Prolog appear to be “competitors” in the logic programming arena, I compared Trilogy to Turbo Prolog version 1.1 (see table 1). Of interest is the ability to manipulate lists, perform recursion and garbage collection (reclamation of memory that has been allocated to now-abandoned structures), and solve logic problems. Here, Turbo Prolog and Trilogy run approximately even, except for the solution of logic problems, where Trilogy has a decided advantage that is attributable to injection types and relation variables.

Although neither package performs garbage collection, Turbo Prolog appears to perform better because it considers free memory to be one large heap. Trilogy, on the other hand, has a disadvantage in that modules must confine their activities to a 64-K-byte segment. This problem affected performance in the Tower of Hanoi and Disk Read benchmarks.

Table 1: Trilogy and Turbo Prolog are fairly evenly matched in their ability to manipulate lists, perform recursion, and read and write files, except for Trilogy’s problem with running out of stack or heap. The Zebra Puzzle shows how use of constraints gives Trilogy a decided advantage in solving logic problems. The 8087 emulation in the Floating Point test is essentially the same for both products; however, Turbo Prolog outperforms Trilogy in the 8087 emulation of the Transcendental tests. Trilogy provides 8087 support, whereas Turbo Prolog does not. All times are in seconds.

<table>
<thead>
<tr>
<th>Trilogy 1.15</th>
<th>Turbo Prolog 1.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floating Point</td>
<td>32.19(368)</td>
</tr>
<tr>
<td>Sieve</td>
<td>0.11</td>
</tr>
<tr>
<td>Disk Write (64K)</td>
<td>16.98</td>
</tr>
<tr>
<td>Disk Read (64K)</td>
<td>-</td>
</tr>
<tr>
<td>Transcendental:</td>
<td></td>
</tr>
<tr>
<td>Sort</td>
<td>142 (0.7)</td>
</tr>
<tr>
<td>Logs</td>
<td>87 (0.5)</td>
</tr>
<tr>
<td>Exp</td>
<td>166 (1.3)</td>
</tr>
<tr>
<td>Alain</td>
<td>368 (1.5)</td>
</tr>
<tr>
<td>Sin</td>
<td>156 (0.9)</td>
</tr>
<tr>
<td>Factorial</td>
<td>2.26</td>
</tr>
<tr>
<td>List Reversal</td>
<td>11.92</td>
</tr>
<tr>
<td>Tower of Hanoi</td>
<td>5 rings</td>
</tr>
<tr>
<td>7 rings</td>
<td>14.29</td>
</tr>
<tr>
<td>10 rings</td>
<td>-3</td>
</tr>
<tr>
<td>Zebra Puzzle</td>
<td>2.19</td>
</tr>
</tbody>
</table>

1 Time using the 8087 coprocessor chip
2 Time for reading a 32K-byte file was 9.2 seconds
3 Insufficient stack/heap

Note: Tests were conducted on an IBM PC XT with 640K bytes of memory and an 8087 coprocessor and a 20-megabyte hard disk drive.
This Software Won't Run.

Without This.

And that's the way Sea-Land wants it. And a host of other big and not-so-big software developers who use our Software Sentinel. To make sure their successful software is protected. So it stays successful.

We've become used to being seen with top-notch software. A lot of the reason is how our engineers designed the Software Sentinel family. For the developer and the user. To make it the most technologically foolproof yet easiest to use software protection key you or Sea-Land can get.

For users of SEA-TRAC and the thousands of other programs we're protecting, it's a cinch to get up and running. They simply plug the Software Sentinel into the PC's parallel printer port. That's it. How much easier can it get? Users can even make unlimited backup copies. And run them wherever and whenever they need to—as long as they have the Software Sentinel key.

As long as we're talking success, there's something else you should know. Right now, our engineers are putting the finishing touches on a new microprocessor that we'll use in a whole new generation of software and data protection products. With the same high-performance and high-reliability of our past successes but with many new features. Which no doubt is going to make life even easier for you and Sea-Land.

The Software Sentinel. Making sure software developers stay successful with the successful software they've developed.

For more information on the Software Sentinel family, contact Rainbow Technologies, 18011-A Mitchell South, Irvine, California 92714; or call (714) 261-0228.

Software Sentinel Features:
- Runs under DOS and Xenix
- Uses algorithm technique, never a fixed response
- Minimal implementation
- Higher level language interfaces included
- Transparent operation
times, while the factorial benchmark determines how fast 10 factorial (10!) can be calculated 1000 times. Benchmarks that exercise a logic programming language's capabilities for finding prime numbers and calculating transcendental functions are of limited interest. It is clear from the results for Trilogy that you can obtain dramatic improvements by installing an 8087.

As far as disk I/O is concerned, although Trilogy could write a 64K-byte data file, I got an insufficient stack error message when trying to read this file. Because the stack and heap share the same 64K-byte segment, recursively reading a 64K-byte file blew the segment. I modified the test program to write and read a 32K-byte file, and this worked fine. (While writing the initial version of the Disk Read test, I neglected to put in a check for end-of-file. Instead of giving a run-time error and halting execution, the machine froze and required a cold boot.)

The stack/heap problem reared its ugly head again when I was writing the program for reversing a 50-element list. The system blew the segment again after 11 iterations, regardless of how much free memory was available prior to loading the Trilogy compiler. However, I was able to write a predicate that would assemble a 50-element list and perform the reversal 10 times. In turn, I wrote the query to run this predicate to backtrack three times, so that 30 reversals were performed overall. Despite the additional overhead of having to assemble a 50-element list from a 10-element "building-block" three times (Trilogy balks if a 50-element list is presented in one chunk), Trilogy is nearly as fast as Turbo Prolog.

The Tower of Hanoi is a classic example of recursive programming. At the five-ring level, both Trilogy and Turbo Prolog are about neck and neck. However, at the seven-ring level, Trilogy begins to lag seriously. One explanation is that Trilogy spends much time churning out text to the screen. This is borne out by removing the Print() statement from the code—the performance increase is dramatic. I ran across the stack/heap problem trying to run the Tower of Hanoi benchmark with 10 disks.

Recalling the Zebra Puzzle from the previous discussion, it turns out there are nearly 25 billion ways of combining nationality, pet, drink, smoke, and house. A generic Prolog program will, if necessary, test all combinations of them to find an answer. Inherent in Prolog's backtracking mechanism is the " uninstantiation" of previously bound variables whenever it encounters a failure. In effect, Prolog "forgets" anything it learns previously.

"During the next 10 years, millions of programmers and users will utilize OS/2 ... The best way for them to understand the overall philosophy of the system will be to read this book." Bill Gates

INSIDE OS/2. Here — from Microsoft's Chief Architect of Systems Software — is a candid and exciting technical examination of OS/2. In unprecedented detail, Gordon Levent explores the philosophy, key development issues, programming implications, and future of OS/2. And he provides the first in-depth look at each of OS/2's design elements — how they work alone and their roles in the system. INSIDE OS/2 is a valuable programmer-to-programmer discussion of the graphical user interface, multitasking, protection, encapsulation, interprocess communication, and more. You can't get a more inside view. $19.95.

Microsoft Press
Quality Computer Books

Available wherever books and software are sold.
Or call in your credit card order. 800-638-3030 (In MD 824-7300). Refer to ad BM38.

Circle 171 on Reader Service Card

MARCH 1988 • BYTE 149
4th DIMENSION™ is a multi-user relational database for Macintosh™ that provides more power than any other database for a personal computer.

- Records: Up to 16 million
- Files: 99 at a time
- Fields: 511 per file
- Links: Unlimited
- Subfields: 511 per file
- Subfiles: 511 per file
- Layouts: Up to 32,000
- Passwords: 32,000 levels
- Variables: Up to 32,000
- Multi-user
- Import/Export Data
- MultiFinder™
- Search/Sort
- Quick Reports
- Business Graphics
- Programming
- External Routines
- Customization

- Fully compatible with AppleShare™ and other HFS file servers
- SYLK, DIF, and text with serial port and file communication control
- Fully supports background processing under MultiFinder™
- Multiple conditions, ad hoc queries, wildcard, programmable searches
- Instant report generation
- 8 kinds of graphs (pie, bar, column, etc., plus custom pictures)
- Over 200 built-in commands and operators
- Add external routines written in Pascal, C, and other languages
- Custom menus, check boxes, radio buttons, and dialog boxes

To receive a demo version, call (800) 538-8157 x 840 outside California, (800) 672 - 3470 x 840 inside California.

Circle 3 on Reader Service Card

ACUS 20300 Stevens Creek Blvd. Suite 495 Cupertino, CA 95014 (408) 252-4444

4th DIMENSION is a trademark of ACUS, Inc and ACI Macintosh. AppleShare and MultiFinder are trademarks of Apple Computer, Inc.
REVIEW: TRILOGY

every time it backtracks. Progress toward finding a solution occurs in one quantum leap when all variables happen to satisfy all the declared facts. On the other hand, Trilogy uses relation variables and injection types in conjunction with its built-in constraints to carry forward increments of the final solution. Relation variables express some relation that exists between objects, and injection types never have the same value for different sets of arguments. The result of this approach is that the Trilogy program to solve the Zebra Puzzle backtracks only 17 times before obtaining a solution. [Editor's note: The Trilogy source code (BMARKS.L) for the benchmarks is available on BIX, on BYTEnet, on disk, and in the Quarterly Listings Supplement. See "Program Listings" in the table of contents. To "find" source code in the Listings areas on BIX and BYTEnet, search by article title, author, or issue date.]

Worth Taking a Look
As an experienced Prolog programmer, I have found one of the practical problems of writing procedural code in that language is the awkward mind-set that must be adopted to tame the language's tendency to backtrack. Trilogy addresses this by offering programmers the flexibility to write both logic and procedural code. I am generally impressed with this package, although minor things about it bother me. For example, I wish I could exit to DOS to view a directory or file without having to exit Trilogy completely. (According to the company, a toolkit containing a graphics module and a DOS module along with utilities will be available for $50.) I would like more detail in the user's manual concerning the nuts and bolts of the language.

In terms of hands-on use, the editor was not the best I've used. Also, having to learn a new set of editing commands was inconvenient. (Of course, those people familiar with the IBM PE editor will not have this problem.) When running a query, it shouldn't be so easy to run out of stack or heap—and it would be nice to have a subroutine that could report on the status of those resources, too.

Trilogy is a unique product. It's the only product I have seen that combines logic programming with procedural and database concepts. The Pascal-like syntax makes it easier for people familiar with Pascal and C to learn Trilogy than Prolog. The stack/heap problem shows that the product perhaps isn't mature, yet new languages often have a few initial kinks. I cannot see Trilogy taking the microcomputer world by storm, but for $99.95, it's worth taking a look at if you are interested in logic programming.

MS-DOS — the starting place for the development of over 20,000 software applications. THE MS-DOS ENCYCLOPEDIA — the starting place for data, advice, and insight that will make your MS-DOS programs reliable, robust, and efficient. THE MS-DOS ENCYCLOPEDIA is a programmer's dream. 1600 pages packed with version-specific data. Annotations of more than 100 system function calls, 90 user commands, and a host of utilities. Hundreds of hands-on examples and thousands of lines of code. Plus articles on debugging, installable device drivers, TSRs, Windows, memory management, the future of MS-DOS, and much more. Researched and written by a team of MS-DOS experts — many involved in the creation and development of MS-DOS. Covers MS-DOS through version 3.2, with a special section on version 3.3. $134.95.

Microsoft Press
Quality Computer Books

Available wherever books and software are sold.
Or call in your credit card order. 800-638-3030 (In MD 824-7000). Refer to ad BM38.
The philosophy of getting more for your money has become an unbroken tradition with ALR. A tradition that has been recognized by all the major trade journals with excellent reviews.

ALR 386/220, PC magazine's choice as "The Best of 1987" based on the ALR 386/220, PC magazine's choice as "The Best of 1987", ALR extends its product line and introduces the FlexCache 386 series. Now the fastest PCs available, the FlexCache 386 series approach minicomputer proportions and offer two new ways to get the most for your money:

- FlexCache 16386 - a 16MHz, 0-wait-state, 80386/82385 based system.
- FlexCache 20386 - a 20MHz, 0-wait-state, 80386/82385 based system.

Both systems have ALR's advanced FlexCache architecture. The flexible dual bus design provides a wide open, high-speed data channel for up to 60% faster CPU/memory throughput than the IBM PS/2 model 80-071 with the much touted microchannel architecture.

The cache memory controller can eliminate wait-states 95% of the time.

"Spending more money doesn't guarantee that you'll end up with the system you need. Make some serious comparisons of features and prices and then get the most for our money."
by keeping frequently used data close at hand, eliminating the need for the CPU to address main memory. This powerful blend of enhancements allows a FlexCache 16MHz CPU to move data along as fast as many 20MHz CPUs and a FlexCache 20MHz CPU to move data even faster than a Compaq DESKPRO 386/20*.

The FlexCache 386 series comes equipped with the most fixed disk capacity for your money. The FlexCache 16386 has a 66 or 100 megabyte fixed disk.

The FlexCache 20386 will give you an extra 45,000 pages of document disk storage for free.

The FlexCache 20386 comes with either a 100, 150, or 300 megabyte fixed disk. The FlexCache 20386 will give you an extra 45,000 pages of document disk storage for free when you compare it to the performance and price of Compaq's DESKPRO 386 and 386/20 model 60.

Advanced Logic Research offers the FlexCache 386 series as a powerful solution for today's business growth and performance needs. The FlexCache series offers power and expansion possibilities not easily exhausted. The minicomputer-style chassis of FlexCache 20386 offers spaces for five internal peripheral devices, allowing more data storage devices than any other PC available. With the money you save on a FlexCache system you can afford additional data storage options.

FlexCache hard disk controllers transfer a full track of data in one disk revolution (1:1 interleave) instead of several disk revolutions as with (2:1 interleave) most current systems. Full track data transferring plus ESDI (Enhanced Small Device Interface) look-ahead buffering, turns what used to be a data traffic bottleneck into a super high-speed corridor.

So, FlexCache 386 systems achieve transfer rates twice that of Compaq's DESKPRO 386 and 386/20 model 60.

The FlexCache 20386 is built to accommodate growth.

To make some serious feature and cost comparisons give ALR a call at (800) 366-2574 for the name of the dealer nearest you.
With a LaserPro on your desk, your software won't sit on the shelf.

Instead, your software will stay on the job. Working better than ever. Because now it’s linked to LaserPro—the laser printer line with a range of emulations unmatched in the industry.

The emulation advantage.

Put your software to work with LaserPro’s wide selection of emulations. Our laser printers are compatible with all software programs that support the HP LaserJet Plus™ Diablo® 630, Epson® FX-80™ Qume Sprint™ 11, and NEC Spinwriter® printers. Which means that the money you’ve already invested in software is still well-spent. Even today's newest software packages will leap into action with LaserPro. Printing everything from business presentations to bar codes, graphics to CAD/CAM drawings.

No hidden costs.

With LaserPro the compatibility is built right in. Our entire selection of emulations is standard. No extra cartridges. No optional cards. No extra costs. Just push-button access and hassle-free operation.

And there’s more.

Prices for our full line of printers are amazingly low. Each model brings you versatile performance that over-powers the competition, but not your budget. So hang on to your software—and hook up with LaserPro. The full-featured printer line that’s truly “top shelf.”

For more information, contact Office Automation Systems, Inc. (OASYS), 8352 Clairemont Mesa Blvd., San Diego, CA 92111. (619) 576-9500.

Circle 187 on Reader Service Card (DEALERS: 188)
Excel Extraordinaire

Rich Malloy

In two words, Excel does. Microsoft has moved its popular Macintosh spreadsheet over to the IBM PC AT with all features, such as windows, pull-down menus, dialog boxes, and multiple fonts, still present. The new version also has features that were not present on the Macintosh version. These include better keyboard, font, and auditing support. Speed is the only remaining question. Is the 80286 architecture overtaxed by the superb graphics, and is the program overly slow as a result? Common sense and conventional wisdom suggest that the program’s performance will suffer for its graphical largesse. But a detailed look at benchmark results yields some dramatic surprises.

The new Excel for IBM systems, officially called Excel 2.0 ($495), follows the original Macintosh version by about 2 years. On either the Macintosh or the AT, Excel is the paragon of bells and whistles. It does so many things, in so many different ways, that it tempts you to spend countless hours merely exploring.

You might quickly conclude that the program is huge. It comes on five 1.2-megabyte 5 1/4-inch floppy disks or seven 720K-byte 3 1/2-inch floppy disks (you can order a set of 360K-byte floppy disks by a special card). By the time you finish loading the program, you gobble up 3.6 megabytes of hard disk space. When the program is executed, it takes up the lion’s share of the 640K bytes of memory that it nominally requires, yet even that is not enough. The program must frequently swap overlays into and out of memory from the hard disk. The frequency of the overlays increases as the size of your spreadsheet increases.

Although the package is popularly called Excel for the PC, Microsoft specifically states that the software requires an IBM PC AT or compatible. Several non-AT compatible machines, such as the AT&T PC 6300, are supported, however. The program can use a CGA graphics card, but an EGA, VGA, or Hercules adapter is highly recommended. In the same way, a mouse is not required but is well worth the additional investment. (Excel supports any mouse compatible with Windows version 2.0.) Since Excel uses such a large amount of memory, an expanded memory card (Expanded Memory Specification version 4.0) is also recommended.

As for software, Excel comes with its own run-time version of Windows 2.0. If you have a full copy of Windows 2.0, however, you can have Excel interact with other Windows applications.

The Mac Interface on an AT

The most dramatic distinction between Excel and a horde of other spreadsheet programs for the IBM PC is its user interface. Thanks to the run-time version of Windows 2.0 that comes packaged with the spreadsheet, Excel functions almost exactly like its cousin on the Macintosh. In some ways (e.g., keyboard and font support), it is actually better than the Macintosh version.

Excel’s keyboard support lets you access every one of Excel’s multitudinous commands and functions without ever touching a mouse. In most cases, the keyboard is fairly efficient—in some cases more efficient than the mouse.

Each menu or dialog box you choose contains an underlined letter. You can quickly choose an option by pressing that letter, or by pressing the letter in concert with the Alt key. The alternative is to press the Tab or Down Arrow key to cycle through the selections.

One problem with this technique occurs in cases where several choices begin with the same letter. The designers did, however, provide a number of shortcuts for keyboard users, and generally, the keyboard support is very good for a mouse-based product. You don’t really need a mouse, but if you get one, you’ll find it icing on a very rich cake.

Ironically, the one major fault with the interface is not with the keyboard but with the mouse support. I asked a very experienced Macintosh user to try Excel on the IBM to see his reaction. He faulted the general “feel” of the mouse, saying it was too sensitive. (He was using the most recent Microsoft Mouse.) Excel apparently bypasses the Control program that comes with the mouse and offers only limited control over the mouse sensitivity: normal, high, or very high. The program defaults to the high selection. But even at the normal selection, the mouse seemed too sensitive; it was easy to overshoot a target area. Microsoft claims the problem is the sensitivity of the mouse and that you can adapt to the new mouse in about a week. Maybe so, but I hope they can fix this problem soon.

Excel for the IBM also has better font support than its Macintosh cousin. The Macintosh version allows only one font in a document at a time, with three variations on it: plain, bold, and italic. The IBM version allows four different fonts.

Dyed-in-the-wool Lotus 1-2-3 users could adapt to Excel fairly quickly. One possible problem might be the general command style of Excel. In 1-2-3, you use a verb-object command structure (e.g., Copy A1..B5 to C4). Excel uses an object-verb structure (e.g., A1:B5 Copy to C4). This takes some getting used to.

Macros Do Menus

At Excel’s introduction, Microsoft officials said that they were using Excel to

continued

Rich Malloy is a BYTE senior technical editor. He can be contacted at BYTE/ McGraw-Hill, 1221 Avenue of the Americas, New York, NY 10020, or on BIX as "malloy."
Excel 2.0

Type
Spreadsheet program with graphics and database support

Company
Microsoft Corp.
16011 Northeast 36th Way
P.O. Box 97017
Redmond, WA 98073-9717
(206) 882-8060

Format
Five 1.2-megabyte 5¹/4-inch floppy disks or seven 720K-byte 3¹/2-inch floppy disks

Language
C

Hardware Required
IBM PC AT or compatible with 640K bytes of RAM, graphics support, and a hard disk drive. Hercules, EGA, or VGA graphics card and mouse are recommended.

Software Required
MS-DOS 2.1 or higher; Windows 2.0 is recommended.

Documentation
175-page Reference Manual; 395-page Functions and Macros Manual; 38-page Getting Started booklet; 82-page Sampler

Price
$495
($250 for network user packs)

Inquiry 898.

build prototypes of new applications software. What makes this possible is Excel's extensive support for macros. With the program's exhaustive list of macro commands, you can set up a whole new system of menus and dialog boxes and even control other Windows applications.

Excel boasts many macro commands. However, most of these commands are merely other ways for you to execute Excel menu commands. But even if you only look at true macro commands (i.e., commands that perform a function that could not be performed by any other means) you would still find that Excel has an impressive number of commands.

One of the reasons that Excel has so many macro commands is that it processes macros in a unique way. Most other spreadsheets treat macros as strings of keystrokes. For example, a 1-2-3 macro to copy a cell to the right and move to the next row might have seven keystrokes:

\[/c\rightarrow / 1eft /\rightarrow / down \]

where \(- \) represents the Return key, and \([\rightarrow] \) the right arrow key. Excel, however, converts the keystrokes into a series of commands. The copy operation would require six keystrokes (Alt-E, Alt-C, right, Enter, left, down) but would be represented by six commands:

\[
\begin{align*}
&=\text{COPY}() \\
&=\text{SELECT}(\text{RC}[1]) \\
&=\text{PASTE}() \\
&=\text{CANCEL.COPY}() \\
&=\text{SELECT}(\text{R}[1][C][-1]) \\
&=\text{RETURN}()
\end{align*}
\]

Were it not for the equal signs (which differentiate a macro command from a comment), the macro would look like some odd variation of BASIC.

Excel's approach leads to large macro, but the macros are easy to understand. And in cases where you may just want to play back some keystrokes, there is a \text{SEND. KEYS} command.

It would be very difficult to describe the power of Excel's macros in this small space. Like a programming language, it would fill a book. Instead, let me provide a few examples.

The ADD. BAR command lets you replace the main menu bar of the program with your own. If you are so disposed, you can probably replace the menu bar with a 1-2-3-style menu bar.

The ADD. MENU command lets you add pull-down menus to the preexisting menu bars or to your new menu bars. These menus can have commands that are grouped out or checked, just like Excel's menus.

The DIALOG. BOX command lets you construct a dialog box containing scrolling lists, radio buttons (a menu of choices that lets you have only one choice active at one time), and other Macintosh goodies.

The EXEC command can execute Excel itself, or another Windows application. Once open, Excel can communicate in various ways with another application. If the application supports DDE (the Dynamic Data Exchange message-passing protocol), you can use an \text{INITIATE} command to open a DDE channel to it. If DDE is not supported, you can use the clipboard or the \text{SEND. KEYS} command to send keystrokes to that application.

Two commands, \text{CALL} and \text{REGISTER}, let you access all functions in Windows' dynamic libraries. Microsoft has very little detailed information on this but hopes to have more information available for developers soon.

Excel has FOR... NEXT and WHILE... NEXT loops, too. You can set up auto-

start and auto-close macros that execute each time you open or close a particular worksheet. You can also have macros execute at a particular time of day, or when you choose a particular command.

As in most programming languages, you can insert comments anywhere and single-step through the execution of the macros. And unlike most programming languages, you can highlight areas of the macro with various fonts and shading. Your code may look as impressive as it performs.

Mac-Style Data-Entry Forms
Excel has a good complement of database features that are similar to those of 1-2-3. Excel also has a good data-entry-form feature. Data-entry forms greatly ease the process of getting information into a database. With Excel you can create not just a database form, but a Macintosh-style database form. That is, you can use radio buttons and scrolling lists just like Excel itself does. These forms are a little difficult to set up, and they run a little slower than Excel's normal dialog boxes, but they are impressive nonetheless.

Excel supports data tables in much the same way as 1-2-3 does, which is to say it does not make the job excessively easy. However, once a data table is set up, Excel lets you set up recalculation for everything but the table, thereby greatly speeding up operation.

Finding Your Mistakes
In any worksheet larger than a single screen, auditing becomes very important. Excel lets you give cells meaningful names that you can use in formulas and lets you attach notes to particular cells. It also lets you highlight all cells that are dependents or precedents of a particular cell.

One of the most interesting features of Excel is its Info window. You can set up this window to sit in the background and report various pieces of information about any cell you select. It will tell you the formatting, the precedent or dependent cells, and any notes that attach to the cell. With the Info window set up, you can easily scroll around a worksheet and check this information.

No Three-Dimensional Graphics
Excel can generate a good selection of graphs. These include the obligatory bar, area, line, and scatter graphs, as well as the old favorite pie chart. One advantage of Excel is its ability to do several variations on each of these common themes. The program also features high-quality text fonts and the ability to paste the graphs into Windows Write, the word
Excel still has some catching up to do when it comes to simple recalculations. But it is interesting to note that, as you might expect, you can make Excel go faster by decreasing the size of its viewing windows. When I decreased the size of the benchmark window to 2 by 2 cells, the Recalculate speed increased by 48 percent. Also, I was very amused and intrigued when I found that Excel’s results on the AT clone matched pretty closely with those measured on the Macintosh last year. For each test, the difference is less than 10 percent.

Documentation Goes Electronic

The most exciting thing about Excel’s documentation is a program called the Feature Guide. This is a Windows application that runs in conjunction with Excel and communicates with it by DDE. The Guide functions sometimes as a slide show, showing graphics and displaying various worksheets and charts. In certain practice sessions, it lets you try out a particular feature and advises you when you make a wrong keystroke. This is an impressive program and a necessary introduction to a feature-rich product such as Excel. It also is a good example of what can be done with the DDE channel of Windows.

The rest of the documentation includes a fairly conventional three-ring binders: one is a general reference, and the second is on functions and macros. A small booklet shows a short introduction and has instructions on how to get started. A fourth, thin book (with disk) is a “Sampler” of very interesting applications. Included, for example, is a worksheet for finding a business plan and a set of macros for solving simultaneous equations.

I might suggest that the company add more examples to the Functions and Macros Manual. Several of the macro commands are intricate, and examples of each command would be helpful.

A Rare Product

The only things I might fault in Excel are the less-than-stunning recalculation speeds and the mouse support. But in view of the power and flexibility provided by the program, these criticisms seem empty.

This rare product combines extreme ease of use and exceptional power. It is one of the first products to establish a common interface across the AT and the Mac. I heartily recommend it—for both novice and expert—on both machines.

Microsoft Works

Nicholas M. Baran

An integrated program for the IBM PC and compatibles, Microsoft Works 1.00 ($195) offers word-processing, spreadsheet, database, and communications modules. The package also includes a chart facility for creating graphs from spreadsheet data and a separate memory-resident macro-command processor.

Though sufficient for most tasks, Works’s modules do not quite measure up to full-featured, stand-alone applications packages. The word processor module includes all the text-handling functions required for basic text processing, but it does not have the sophisticated graphics or document management capabilities of Microsoft Word. The spreadsheet module is a basic Lotus-compatible spreadsheet without the Lotus macro language, and the database module is a nonprogrammable, single-table file manager or “flat file” system. The communications module is fine for dialing bulletin boards or conferencing systems and downloading and uploading files, but it does not include a programming or command language.

While Works is primarily intended for novice users, it has adequate capabilities continued
Microsoft Works 1.00

Type
Integrated software package with word processor, spreadsheet, database manager, telecommunications program, and separate macro-command processor.

Company
Microsoft Corp
16011 Northeast 36th Way
P. O. Box 97017
Redmond, WA 98073-9717
(206) 882-8080

Language
C and assembly

Hardware Required
IBM PC XT, AT, PS/2, or compatible with at least 384K bytes of RAM, two 360K-byte floppy disk drives, and a CGA, EGA, VGA, or Hercules graphics adapter card. A mouse and printers are optional.

Format
Eight 5¼-inch floppy disks and four 3½-inch floppy disks.

Documentation

Price
$195

Inquiry 897.

REVIEW: MICROSOFT WORKS

with the tutorial, the program requires 1.8 megabytes.

You can configure Works to operate with the mouse or keyboard. With the mouse option installed, you can still use all available keyboard commands and functions. However, the mouse processor cannot incorporate mouse actions into recorded macros. Works also supports a wide range of printers and, by default, supports Hayes-compatible moderns for communications. You can, however, configure Works for use with other types of moderns.

Works uses a pull-down menu interface that is consistent throughout the four modules. You access the menus by pressing the Alt key and then selecting the command or simply pressing Alt followed by the first letter of the command. A description of the command you select appears at the bottom of the screen, and, in most cases, a dialog box appears for making additional selection or entering parameters. With a mouse, you can point to and click on menu options and dialog boxes, and you can block off text or scroll through files.

I often pressed the Enter key at the wrong time in dialog boxes and discovered through trial and error that the Tab key was required to move to the next command parameter.

Works truly qualifies as an integrated package. You can access any of the four main application modules at any time. It assigns default file extensions to different file types so that it automatically knows which application to load with an existing file. For example, if you save a script file for a communications session, Works automatically assigns it a WCM file extension. The next time you load the file, Works will automatically invoke the communications module. Similarly, special file extensions are assigned to spreadsheet, word-processing, and database files. You can override the assigned file extensions if you wish. Works also lets you temporarily exit to DOS.

Works lets you open up to eight files at a time. Even though you can work only on one file (i.e., the active file) at a time, you can switch from one file to the next with a single command. You can cut and paste data interchangeably between text documents, spreadsheets, graphs, and database files. The ease with which you can move data from one application to another is one of Works's most impressive features.

For example, to copy data from a spreadsheet into a word-processing file, you define the block of data in the spreadsheet, copy the data into a buffer, open the word-processing document, move the cursor to the desired location for the spreadsheet data, and press the Enter key. You can do the same between databases and text documents and also between spreadsheets and databases. Provided the data formats are consistent.

Word Processor
The Works word processor is the closest of the four modules to what I would expect of a stand-alone word-processing program and is really the best part of Works. I used the BYTE standard tests to get a feel for the performance of the word processor and was impressed with the results. [Editor's note: See "Word Processors" by Phillip Robinson in BYTE's Applications Software Today, Summer 1987.] The BYTE 4000-word benchmark file loaded very quickly. A global search and replace of a word that was found 400 times throughout the document took only 5 seconds to complete. Resettling the margin and subsequent document reformatting occurred almost instantaneously. Converting the file to ASCII format took about 20 seconds, and saving it as a Works document took about 8 seconds.

I also worked with a 20-page document converted from WordPerfect. The Works word processor handled all editing functions admirably within the large document. You can convert Works's text documents to straight ASCII format with linefeeds at the end of each line (e.g., suitable for transfer via modem), or into a text format with carriage returns at the end of each line, which other word processors can read. You cannot load Works documents directly into Microsoft Word; you have to save the document as a text file first.

The Works word processor includes automatic pagination and reformatting. I found the reformatting function a bit distracting when I was inserting text into an existing document. From the corner of my eye, I could see the lower text constantly repositioning itself; however, this is a characteristic I could get used to.

The formatting commands for page layout, headers and footers, italics and underlining, and so on, are all easily accessible from the pull-down menu bar on the top line of the screen. You can also switch between windows and work on different open documents.

Works shows page numbers but does not provide line numbers or cursor position and also has no facility for obtaining a word count. The spelling checker includes 80,000 words and is similar to other word processor spelling checkers, such as the one used with WordPerfect.

Perhaps the best feature of the word processor is the ease with which you can merge text from the database module for continued
If you've got better things to do than debug pages and pages of code, you need ASYST. It's the programming environment developed specifically for scientific and engineering applications.

ASYST simplifies data analysis and graphic display, and integrates them with data acquisition. Using ASYST, you can replace pages of low-level code with a few specialized commands. And it's easy to tailor to your changing applications. ASYST's simple configuration menus and our technical support will get you up and running quickly—and keep you there.

Call and discuss your application with one of our technical specialists. Or request more information.

Just make the next line of code you enter 1-800-348-0033. It'll put you on-line with ASYST, the scientific way to program.

Features:
- Analog-to-Digital, Digital-to-Analog, and Digital I/O Support
- GPIB/IEEE-488 Interface
- RS-232 Interface
- Sophisticated Analysis and Graphics

System requires IBM PC, XT, AT, or 100% compatible.

100 Corporate Woods
Rochester, NY 14623
716-272-0070

System Developers: Ask about our new ASYST Run-time License.
The Works spreadsheet does the job, but it is the weakest module. It takes almost 1 minute to load a 1000-row by 5-column spreadsheet.

form letters and printing mailing labels. You simply select the Insert Field command from the Edit menu and select and locate the appropriate field names from your database. When you print the document, Works automatically inserts the database data, one record at a time, generating as many documents as there are records in the database. You use the Print Labels command to generate the labels from the database.

The word processor is more than adequate for most straightforward writing tasks. I would not hesitate to use it for most of my writing requirements. The mail-merge facility is actually quite a bit easier to use than comparable mail-merge utilities in some of the high-end word processors, such as Microsoft Word or WordPerfect. The word processor is also the easiest to learn of the four modules. I'll discuss ease of use in greater detail at the end of this article.

Database
The Works database is a simple flat-file system and is adequate for maintaining straightforward databases, such as mailing or contact lists or simple financial and statistical tables. A single Works database table can contain up to 4,096 records and 256 fields. You can work with a database in form or list mode. In list mode, records are displayed in rows on the screen. In form mode, one record at a time is displayed on a screen form, which you design when you define the database.

To define a database, you simply set up a form on the screen, similar to the procedure in PFS:File or Symantec's Q&A. However, I did find Works's use of the Enter key confusing. Pressing the Enter key defines the form rather than a single field. I kept losing defined fields by pressing the Enter key at the wrong time. Once I got the hang of it, however, it was simple to define fields and also to customize the form. Works provides functions for moving fields around the form and performing modifications to the data structure. The Works database supports text and numeric formats, as well as date, time, and logical data types.

In spite of its simplicity, the Works database includes a good query facility and options for embedding formulas in fields. Field formulas can reference other field values in the database. The database uses the same library of functions as the spreadsheet module. The report generator includes options for specifying breakpoints and formatting and selecting specific data values. As mentioned in the section on the word processor, it is very simple to transfer database field values to the word processor for form letters.

As with the word processor, I ran some of BYTE's standard tests and found the performance of the database to be better than I expected for such a low-priced product. While the Works database does not include an indexing or key-field scheme, sorting a 1,000-record file took only about 4 seconds. Searching the same file for a value in the last record took about 5 seconds.

My main complaint about the database is that you cannot change the field delimiters if you want to save the database in ASCII format. This means that quotes surround all field values when saved in ASCII delimited format. There should be a facility for changing the delimiter to a blank or a space. On the positive side, the Works database provides a range of operations for formatting database fields and forms.

The database is quite easy to learn, though it takes a bit more effort than the word processor.

Spreadsheet
The Works spreadsheet does the job, but it is the weakest of the four modules when it comes to performance. It takes almost 1 minute to load a 1,000-row by 5-column spreadsheet, and then the screen hangs temporarily (i.e., keystrokes are not recognized) until Works gets its bearings again. Another quirk is that the spreadsheet status line reports that recalculation is completed about 30 seconds before it really is. It was disconcerting to try to move on to another task and then realize the spreadsheet was still recalculating.

Actual performance of the BYTE standard tests [Editor's note: See "Spreadsheets" by Rich Malloy in BYTE's Applications Software Today, Summer 1987] was comparable to other spreadsheet programs. A compounded calculation involving the 1,000-row by 5-column matrix and using a formula in which each cell multiplies the value of the immediately previous cell by 1.001 produced an insignificant error of 2.14° over the total calculation. This result is a good indicator of the accuracy of the spreadsheet compiler. The compounded calculation took about 60 seconds, while a recalculation of a 100-by-25-cell spreadsheet took only 12 seconds. Cursor speed is also comparable to other spreadsheets, requiring about 24 seconds to traverse 100 columns.

The spreadsheet includes a standard library of arithmetic, financial, and logical functions and produces files in Lotus WKS file format. While files are interchangeable with Lotus 1-2-3, the Works spreadsheet does not support Lotus macros or the Lotus database functions (understandably, since Works has its own database).

The spreadsheet's charting function produces the basic graph types (e.g., line, pie, bar, area). You first select spreadsheet ranges and then assign them to the axes of the chart. The chart module provides the normal formatting and labeling functions found in most business graph utilities.

The spreadsheet seems fine for modest-size applications, but the false completion signal with the 1,000-by-5-cell spreadsheet makes me hesitate to recommend Works for large spreadsheet applications.

Communications
I tested the communications module by logging onto the BYTE Information Exchange (BIX) and uploading and downloading files. The communications module includes a handy script-file recorder for saving sign-on or log-on sequences. It recorded my log-on sequence to BIX, and from then on, I just opened the Works window and called up the BIX communications file: Works then dialed BIX and logged on.

The Works communications program supports both text and XMODEM file-transfer protocols. File transfers and captures worked without a hitch. Documents from Works' word processor saved in plain-text format transferred perfectly.

While the communications package does not include a command language, it is perfectly adequate for most users logging onto bulletin boards or conferencing systems. However, it took trial and error to get the communications system to work properly. At first, I couldn't figure out what should go in the "Modem Type" field of the dialog box. As it turned out, if you have a Hayes-compatible modem, nothing should be entered in that field. I found this out by trying various alternative values for about half an hour. Selecting different modem types is covered in the appendix to the Microsoft and MS-DOS Key macros reference, a separate manual included in the package.

As with the other functions of Works, once I got the hang of it, the communications...
How to look good from start...

to finish.

The HP LaserJet Series II Printer.

Nothing brings your ideas to life like the HP LaserJet Series II Printer—from office memos to forms to newsletters. As the leading laser printer, it works with all popular PCs and PC software packages. And, with a wide range of fonts, you get more options to create superior looking documents.

With additional memory you can even print sophisticated 300 DPI full-page graphics. And with HP's ScanJet scanner, you can also easily add photographs, illustrations and text.

No wonder more people choose the original over all other laser printers combined.

So call 1 800 752-0900, Ext. 9001 for your nearest HP dealer.
Macro Processor
I worked with the macro processor only briefly. Called MS-Key, the macro processor is a separate module invoked from the DOS prompt. It can run from a disk or as a memory-resident program. You can adjust the amount of RAM used by MS-Key, and you can deactivate it. I had WordPerfect’s Repeat Performance keyboard enhancer (version 2.0) already loaded when I first tried MS-Key and hung up the system. So, you may have to experiment a bit if you want to run MS-Key with other memory-resident programs.

MS-Key can record any sequence of keystrokes used in Works. It includes a special macro editor for modifying previously recorded key sequences. As mentioned earlier, it does not recognize operations that the mouse performs.

The MS-Key macro processor is definitely useful for executing repetitive tasks. I tested it by recording a sequence of commands for loading a particular document and performing some search functions. With MS-Key loaded, an additional macro menu appears in the Works menu bar for executing, editing, and recording macros. Since MS-Key is really a separate program, instructions on its use are provided in a separate appendix to the Works user manual.

Ease of Use
Microsoft’s sales pitch is that Works is an absolute snap for first-time users to learn and that in no time at all, novice users will be blazing through form letters, invoices, and mailing lists and downloading stock quotes from Dow Jones. I would dispute these ease-of-use claims.

The package does include a good on-line tutorial that lets you work through all the capabilities of Works. You can even start up the tutorial from within an application that you are working on. Works also includes a large on-line help facility with a topic index, explaining the various functions and commands in Works.

In contrast to the impressive on-line tutorial, the Microsoft Works Reference Manual is mediocre. I spent almost an hour trying to figure out how to log onto BIX or to find some information on the “Modem Type” field. There is no mention whatsoever of field delimiters in the database section. The index does not include a topic on data types. There is no direct information on how to obtain a directory of files that don’t have Works file extensions. I figured out that you use MS-Key for that purpose. I don’t think a novice user would necessarily figure that out.

Many of the technical details not covered in the reference manual are in the appendices manual.

While this criticism may seem a bit heavy-handed, it is important not to mislead new users into thinking that Works represents a revolutionary breakthrough in ease of use. This is simply not the case. While it is easier to learn than WordPerfect, Word, or Paradox, Works requires considerable effort from the novice in understanding its concepts and capabilities.

Working Opinion
In spite of the criticisms regarding its ease of use, Works is overall an excellent package for the money. The mail-merge facility alone may be worth the money to many users who don’t want to struggle with the control codes and other confusing mail-merge commands found in most word processors. The Works word processor is competitive with many stand-alone word processors, as long as you don’t need document summaries or WYSIWYG (what you see is what you get) text formats on the screen. The communications and database modules do the job, and, in spite of its quirks with large spreadsheet files, the spreadsheet does the job, too. I recommend Microsoft Works.

Nicholas M. Baran is an associate technical editor for BYTE. He can be reached at 425 Battery St., San Francisco, CA 94111, or on BIX as “nickbaran.”

Reflex Plus for the Macintosh
Charles Spezzano

When it comes to relational database managers for the Macintosh, Reflex Plus is the fastest and easiest to use that I have seen. It lets you create relational databases from which you can link files to allow cross-accessing of information. Although it does not let you create custom menus and dialog boxes to shield the end user from the underlying structure of the program and create the illusion of a custom-designed program, it has few other shortcomings. Reflex Plus version 1.0 runs on any Macintosh with at least 512K bytes of RAM and 800K bytes of floppy disk or hard disk storage.

Reflex has evolved in three stages. It began as a program called Interface, which was a good program from the start. Then Borland bought it, renamed it Reflex for the Macintosh, and removed the copy protection while also improving the highly visual interface. The company upgraded Reflex further and called it Reflex Plus: The Database Manager. The changes are far more than nominal.

The entry forms now allow default fields, calculated fields, and display-only fields. The calculated fields automatically perform a variety of calculations during data entry. You can also create multiple entry forms for each database. One entry form might display data one record at a time, while another displays all records at once in a tabular format. Report design has also been improved with new functions such as GROUPBY, which shows records grouped by common values in fields.

Reflex for the Macintosh could have records with a maximum size of only 1000 characters. That is the default maximum record size in Reflex Plus, but if you need more space for each record in a file, you can select Configuration from the Apple menu and then select a new maximum size of 2000 or 4000 characters. The number of characters you can enter in a single text field is limited only by the 1000-, 2000-, or 4000-character record limit minus the number of characters in other fields in the record. The program’s other structural aspects are unchanged: 254 fields per record, as many records in a file as your disk can hold, and up to 15 files open simultaneously.

The new Paste Choice function serves a dual role. It lets you quickly define formulas by pointing and clicking with a mouse; and it can be used to copy a formula or field, with its attributes, from a database into another entry or report form. When defining a formula, you can create an entire path name by selecting a database file, expanding the file to see its fields and links, clicking on a linked file

continued
If you can see the difference, you must be looking at the price.

Dear Reader:

This letter was printed on two of the finest printers available today. One half on a laser printer, the other on the new HP DeskJet Printer. But which one printed which half? Hard to tell, isn't it?

Small and quiet enough for your own desk, our HP DeskJet Printer gives you clean, crisp text and graphics. Just like a laser. You get perfect printing from A to Z. Look for yourself.

So which half is from the laser printer and which from the HP DeskJet Printer for under $1,000? Not sure? That's the point. To see the difference you've got to look at the price. So call for the name of your local dealer and a free brochure on the new HP DeskJet Printer at 1 800 752-0900 Ext. 908A.

Sincerely,

Greg Wallace

HEWLETT-PACKARD COMPANY

REVIEW: REFLEX PLUS

Reflex Plus: The Database Manager 1.0

Type
Relational database manager

Company
Borland International
4585 Scotts Valley Dr
Scotts Valley, CA 95066-9987
(408) 438-8400

Format
Three 3½-inch floppy disks

Language
Assembly

Hardware Required
Any Macintosh with at least 512K bytes of RAM and 800K bytes of floppy disk or hard disk storage

Documentation
576-page Reflex Plus User’s Guide
190-page Learning Reflex Plus

Price
$279; upgrade for Reflex owners, $95

Inquiry 896.

and expanding it to see its fields and links, and clicking on a field in a file.

Other changes in the program take care of annoying features in the previous version. In Reflex, for example, if you selected Show Header but did not put anything in the header, space was still reserved for that header. To remove the blank header, it was necessary to select the header and choose Clear from the edit menu. In Reflex Plus, by contrast, if you don’t create a header, the command displayed is New Header. If you don’t place anything in the header, it does not officially exist, and the command remains New Header. Only after you actually place something in the header does the command become Show Header. The two-step process is identical for footers.

You pay a lot for those improvements. Reflex used to be the greatest bargain in the Macintosh database market, retailing for $99.95. The suggested retail price for Reflex Plus is $279. Reflex owners can upgrade for $95. In comparison with the competition—most of which sell for just under $500—Reflex Plus is still a good buy, if not a great bargain.

Easy and Flexible
Reflex Plus is the easiest to use of the top five fully relational Macintosh databases (including Omni 3 Plus, dBASE Mac, 4th Dimension, and Double Helix II). Many users could probably meddle their way through setting up a simple name and address database without reading the new improved reference manual or the tutorial learning guide. That’s because much of the program is self-evident, and its overall design fits well into the Macintosh environment.

Typing and use of a command language is minimal. For example, when you want to use one of the 55 built-in functions that give Reflex Plus many of the capabilities of a spreadsheet, you click on the field to write the formula that will incorporate the function. Then you click in the formula panel in the place that you want to paste the function name. When you choose Paste Function Name, a dialog box appears, listing the available functions. You then click on the function name you would like to paste into the formula. The program not only pastes the name, but also a generic template showing the correct syntax of the arguments of the function. At this point, you have to replace the generic syntax with actual field names and values before the formula is functional, but that’s about all Reflex Plus asks of you in this ordinarily complicated process.

Building a database is just as easy. You name the database, and a screen appears displaying the database name and a blank space under it for the first field name. You type the field name, press Return, and then type the next field name. In a simple name and address database, nothing else would be required before data entry. Reflex Plus automatically sets all new fields to contain text. But if you want to specify other types of fields, six others are available: number, integer, date, logical, time, and sequence. Reflex automatically checks for data of the correct type for each field, and you can further define more specialized data checks for each field.

A number field provides up to 15 decimal places of precision and accepts exponential notation in the range of E308 to E324. An integer field can contain whole numbers from -2,147,483,647 through 2,147,84,647. If you specify a field as a sequence field, Reflex Plus automatically assigns consecutive numbers to the records you enter in a database. A file can contain only one sequence field.

Every database file must include at least one key field or you cannot save the design. There can, however, be multiple key fields in a record. Taken together, the key fields of a record constitute the key of that record. This is an important concept in Reflex Plus, since there are no in-
Every presenter wants to make a compelling, persuasive case. And color, you’ll agree, makes all the difference. It’s more eye-catching. More readily understood. More memorable. In short, color makes any desktop presentation more effective. And research proves it.

All you need is a Hewlett-Packard ColorPro Plotter like we used here, or the HP PaintJet Color Graphics Printer. Together with a PC—IBM compatible or Apple Macintosh—you can use all the popular graphics software like Lotus Freelance Plus, Cricket Presents, HP’s Graphics Gallery (used below), Microsoft Chart and Harvard Graphics.

At under $1,300, the HP ColorPro Plotter may be just where you want to start. It will turn your ideas into colorful, easy-to-grasp visuals. Or, if you need to combine near-letter quality text with color graphics, you can rely on the HP PaintJet Color Graphics Printer for under $1,400. Whichever you choose, you’ll create desktop presentations with startling color and greater impact.

For a colorful sample overhead and the name of your nearest dealer, call 1-800-752-0900, Ext. 903A.

Freelance Plus® and Lotus® are U.S. registered trademarks of Lotus Development Corporation. Microsoft® is a U.S. registered trademark of Microsoft Corporation.

© Hewlett-Packard 1988

Guess which presentation made the sale.
Table 1: In the benchmark tests, Reflex Plus was much faster than Double Helix II. (All times are in minutes:seconds.)

<table>
<thead>
<tr>
<th></th>
<th>Reflex Plus 1.0</th>
<th>Double Helix II 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search for last record</td>
<td>.05</td>
<td>1:13</td>
</tr>
<tr>
<td>Search for nonexistent record</td>
<td>.05</td>
<td>1:14</td>
</tr>
<tr>
<td>Index a field</td>
<td><01</td>
<td>2:09</td>
</tr>
</tbody>
</table>

*Time does not include updating the disk, which took 1 minute upon exiting from the program.

Review: Reflex Plus

Table 1: In the benchmark tests, Reflex Plus was much faster than Double Helix II. (All times are in minutes:seconds.)

<table>
<thead>
<tr>
<th></th>
<th>Reflex Plus 1.0</th>
<th>Double Helix II 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search for last record</td>
<td>.05</td>
<td>1:13</td>
</tr>
<tr>
<td>Search for nonexistent record</td>
<td>.05</td>
<td>1:14</td>
</tr>
<tr>
<td>Index a field</td>
<td><01</td>
<td>2:09</td>
</tr>
</tbody>
</table>

*Time does not include updating the disk, which took 1 minute upon exiting from the program.

Capabilities. You can use the "FormulaBuild" dialog box to easily retrieve records based on qualifications of values in fields combined with AND or OR. By pointing and clicking, you can paste the operators Equal, Not Equal, Less, Less or Equal, Greater, Greater or Equal, Starts With, and Includes into the query formula. As with constructing calculation formulas, the FormulaBuild feature lets you set up complex searches without having to memorize search formula syntax.

Unlike some relational databases, Reflex can also serve as a text-oriented database. The 4000-character maximum field size is large enough for comments on a client or the abstract of a journal article. The Starts With and Include operators can handle key word or phrase searches adequately. Even with these capabilities, text entry could be cumbersome, because you move from one field to the next by pressing the Return key. That could preclude creating separate paragraphs within a field, but Reflex Plus gets around this potential problem by letting you insert line breaks in a text field by pressing Shift-Return.

Formulating Reports

The Reflex Plus report generator is as simple and sophisticated as the rest of the program. There are two ways to create a report. The quickest is to use the built-in table-style report that shows one record per row. Customized reports let you place fields wherever you like on the report form. You can create free-form reports that combine data from several different databases.

Finally, you can also use custom report forms to create spreadsheet-style reports where you use calculated fields to automatically perform operations on the values you enter. You might, for example, set up a tax form in which you enter values into some fields, and Reflex plus automatically calculates the value of other fields from those values you enter.

Formulas allow the inclusion of summary fields in reports for such statistics as counts, sums, averages, minimums, maximums, and standard deviations. Nesting lets you create sophisticated reports that show hierarchies of records and that can use data-file links and the contents of other reports. Unlike Reflex, Reflex Plus lets you sort on as many fields as you want, in any way you want.

When Borland transformed Interlace into Reflex, one of the improvements was to build in support for nonstandard sizes of paper. When you use the Apple ImageWriter—not the LaserWriter—you can
REVIEW: REFLEX PLUS

change the width and height of the paper on which Reflex Plus prints your documents. This capability lets you use a broad variety of different sizes of paper, envelopes, and labels. Reflex Plus improves further on Reflex's report-printing capability by letting you select several fonts from those you have available, whereas Reflex lets you select only the first 16 fonts that appear in your fonts menu.

Fast Performance
I ran some benchmark tests comparing Reflex Plus version 1.0 to Double Helix II version 1.0, a well-known relational database manager for the Macintosh (see table 1). I ran the tests on a Macintosh 512E that had been upgraded to 1 megabyte of RAM with a Dove 524S MacSnap memory board and SCSI port upgrade. Attached to the SCSI port was a SuperMac DataFrame 20 hard disk drive.

The test file I used consisted of approximately 900 records with 10 fields of data. This file, originally created with Double Helix II, was tested first on Helix and then exported from that program as an ASCII text file and imported into Reflex Plus. The importing process was straightforward and flawless.

With the first test, I searched for the last record in the database on a nonkey (Reflex Plus) or nonindexed (Double Helix II) field. Then I ran a search on that same field for a nonexistent record—one that, if it did exist, would be at the end of the file. Double Helix II took about 14 times as long as Reflex Plus to perform both tests.

Finally, I indexed that field (Double Helix II), or turned it from a nonkey into a keyed field (Reflex Plus). Here, Reflex Plus had a built-in advantage. Helix indexed the records permanently on disk, while Reflex Plus, which loaded all 900 records into memory, only had to manipulate the order of records in RAM. However, it took only a few seconds to save the reindexed Helix database. By contrast, when I tried to quit Reflex Plus, it asked if I wanted to save the changes. The only change was that I made a field into a key field. It took 1 minute to make that change on disk. At first Reflex Plus seemed slow, but it is still faster than Helix with a database this size.

What doesn't Reflex Plus do? Besides custom menus and dialog boxes, Reflex Plus still doesn't have graphic fields, macros, or a programming language.

Besides custom menus, Reflex Plus still doesn't have graphic fields, macros, or a programming language.

for that reason, does not offer password security. However, if you can get by without these features, Reflex Plus is a fast, easy-to-use, highly visual, fully relational Macintosh database program that retails for about $200 less than its competition.

ACKNOWLEDGMENT
The author gratefully acknowledges the help of Rick Larson of North American Services Software Division in Denver for his help in obtaining the benchmarks.

Charles Spezzano is the author of "Database Managers" in BYTE's Applications Software Today (Summer 1987). He can be reached at 950 East Harvard Ave., Denver, CO 80210.
It has been quite a month, what with getting Prince of Mercenaries finished, going off to New York to make speeches and confer with my editors about Wrath of God, keeping up with the columns, and so forth. Meanwhile, it's time for my annual purely subjective awards for last year's most useful products.

The New York trip was fun. Ed Yourdon hosts an annual gathering for authors who write books for the Yourdon imprint at Prentice-Hall, and he wanted someone to talk about modern technology, writing, and the future. The neat part was that he had some other speakers, so I learned a lot about publishing.

I'd meant to have this column written by now. I even set aside the whole weekend to get it done. Alas, the fates intervened. For my sins, I decided to translate a GWBASIC program into both Microsoft QuickBASIC 4.0 and Borland Turbo BASIC before I started. That shouldn't have been hard, right? I mean, the program ran fine in interpreted BASIC; how hard could it be to compile it?

Hah. I soon learned, and if I never see another GOTO statement, it will be too soon.

A Simple Job

What happened was that a couple of years ago we decided to turn Mrs. Pournelle's reading instruction system, which then existed as a series of paper workbooks, into a program for the IBM PC and compatibles.

This was long enough ago that I was still very much a BASIC enthusiast. I had the notion that it ought to be a fairly simple job, and that BASIC was the obvious choice of language. After all, once it was written, Roberta could learn enough BASIC to modify and maintain it, and I wouldn't be wired into the loop. We did an analysis of the program requirements, and it didn't look complicated; indeed, it all seemed pretty simple.

Alas, time went by, and I never got a chance to do the program, but people kept asking us about it. Clearly, something had to be done.

That was when we asked Bruce Tonkin of T.N.T. Software to help us. Bruce writes all his software in BASIC and has done some amazing things with it. He's got a wide variety of products, all at low cost. His My Word! text editor competes in features and ease of use with some of the expensive ones, but it sells for less than $50. You can even buy the source code (in BASIC). It's always worth having Bruce's latest catalog. Anyway, Bruce took Roberta's notions and her paper worksheets and turned them into a GWBASIC program that presented the lesson elements quite well.

Just about then we got interested in the Atari ST, and Alex Leavens—"alexl," on BIX—did a C version that makes use of the GEM interface on that machine. No one had time to work on the IBM PC version until the Atari ST version was done; but just this month the Atari version was finished.

The PC version hadn't been completely neglected. Our friend Joyce Jumper plugged away at it. In particular, she added a bunch of visuals clipped from the various Fantasy libraries. The Fantasy art folders have a wide variety of interesting sketches and drawings, ranging from people working to bundles of firecrackers going off. The visuals are mostly intended for printing by desktop publishers, but they look fine on a PC screen.

Joyce set things up so the program can use the illustrations as rewards when the students get things right. She also added a number of tunes that the machine will play. (Naturally, we set it up so nothing interesting happens if the pupils get things wrong; after all, you don't want them to make mistakes just to see the error messages...)

Meanwhile, Roberta had learned a lot from finishing off the Atari ST version of her program. No matter how much planning you do, when you actually get a program out there in testing, you'll find you've left out a number of things, and some of them, particularly in the user interface, will be important.

Naturally, Roberta wanted to incorporate her new features into the PC version. Unfortunately, interpretive BASIC isn't really ideal for as large and complex a program as this had become. Roberta is pretty new to programming, and this was just too much.

There was also the problem of marketing a program written in GWBASIC. Not everyone has BASIC. If your program is in interpreted BASIC, you have no choice but to distribute the source code. This may be no tragedy, but publishers don't see it that way. Also, GWBASIC can be pretty slow. It was clearly time to do something about it.

At this point, I must have taken leave of my senses. "I'll take care of it," I said. "I'll just translate the program into a compiled BASIC. Shouldn't take long." Hah.

Conversions

I suppose I should have known better, but after all, the program was running fine on Atilla the Honey, Roberta's AT&T PC 6300 Plus. It takes scads of files: as it's set up at present, there are some 65 lessons, and each lesson has a lesson-text file, a banner file that contains an illustration used to begin the lesson, and a reward file with more illustrations.

Jerry Pournelle holds a doctorate in psychology and is a science fiction writer who also earns a comfortable living writing about computers present and future.
Clearly, the files should be consolidated, but that's no great trick. Transferring all those files took time, but that wasn't a problem either. Eventually, everything, including the ASCII GWBASIC source code, was on one high-density floppy disk, and I was ready to get started.

The next step went well, too. I copied all those files onto Fast Kat, the Kaypro 386, brought up Turbo BASIC, imported the GWBASIC source code, and told Turbo BASIC to begin compiling. There was one error, a missing REMARK symbol. Turbo BASIC's integrated editor dropped me out precisely where the error was. In seconds that was fixed, and in less than a minute, the program had compiled just fine. Turbo BASIC compiles fast.

Running it was a different matter. The program started fine, but then it left out great hunks of the lessons. There weren't any reward illustrations, nor any tunes played. When the first lesson was done, it told me I'd completed the entire reading program. Clearly, there were a few more problems than I'd anticipated. Still, this couldn't take long. After all, I started with a working program.

Terminate the GOTO

The first thing was to get inside the program. It couldn't be too hard to understand, because the program itself is simple: it puts up text on the screen to be read by the instructor who can be any literate person; then it puts up simple exercises for the student who's trying to learn to read; and, depending on the student's answers, it gives more instructions and more exercises. That shouldn't be too hard to follow.

Alas, I'd reckoned without the GOTO statement.

Back when I first began writing this book, we had a considerable debate about GOTO: should the statement exist in modern computer languages? I took the view that it wasn't inherently bad and sometimes was the easiest way out of a complex nest of conditionals and loops. These were times not so long after Edsger Dijkstra wrote his now famous piece, "GOTO Seen Harmful," and the craze for structured programming began. I believed in top-down structure, but I wasn't ready to give up GOTO.

I am now. Bruce Tonkin is probably as good a BASIC programmer as there is today, and the code he wrote works flawlessly in interpreted BASIC. He provides plenty of comments. Even so, I found it nearly impossible to follow the program flow without making extensive flowcharts and diagrams. Every time I thought I'd found a program thread, I'd come across something like the code in listing 1.

Incidentally, line 10070 was the one that caused the only compiler glitch: it needed a ; after the last colon and before TEACHER'S TEXT. Anyway, there were dozens of statements terminating in GOTO. It was clear they were part of the lesson parsing system, and if I looked at the code long enough, I could sort of see what was going on; but it wasn't easy.

It was also clear that this was the block where the program was going wrong. For some reason, Turbo BASIC was taking those instructions and doing something entirely different from what interpreted GWBASIC was doing.

There were also statements like 54140!

```
Listing 1: The section of the GWBASIC code where the conversion problem was discovered.

10800 IF FLAG=1 THEN GOSUB 54000: BOX=7: GOSUB 52000: GOTO 11000: SCREEN COMMAND
10806 IF FLAG=0 OR FLAG=9 THEN GOSUB 54100: GOTO 11088
10870 IF FLAG=4 THEN BOX=2: LSET SMALLS(): LINE.COUNT): GOSUB 54000:
11088 IF FLAG=4 THEN X:=1: WHILE X<LINE.COUNT): GOSUB 51000: GOTO 11088
```

```
Listing 2: An example of an IF...THEN...ELSE statement rewritten for Turbo BASIC.

54140 IF ANSWERS = CHR$(0) + CHR$(88) THEN
      RETURN
   ELSE
      BOX = 7
      GOSUB 52000
   END IF
```

QuickBASIC 4.0

Microsoft QuickBASIC 4.0 (which I'll call QB4 from here on) comes with a lot of files and libraries and such, and the program needs access to all of them. Putting all that stuff in one subdirectory makes intolerable clutter; it's better to break things up into a number of subdirectories.

Turbo BASIC has a configuration option that makes it easy to tell the program where to find the auxiliary files it needs. Alas, QB4 doesn't have that feature. You have to put the locations of your libraries and such in the PATH, and changing the PATH requires editing AUTOEXEC.BAT. When I did that, I discovered that my PATH command was now longer than a logical line, so I had to find things to eliminate from it. There were more annoyances like that, but eventually I had QB4 installed.
FREE Programmer's Update Magazine

"Keeping Professional Programmers Current with Developer's Technology." Programmer's Update lives up to its motto with a viewpoint unique to this industry. We use our experience and contacts to bring you articles about intriguing software trends and innovative ideas, interviews with users, features, news about products, surveys, insightful commentary and predictions, valuable resource listings. You can get a FREE sample copy today by calling our toll-free number. Mention "FY188." Our subscription is just $25 a year.

386 Development Tools

- **MIMCO - Prolog Compiler** MS $179
- **OS/286**
- **386/DOS Extender** MS $199
- **DESView PS/2** MS $100
- **FT77L-EM** by Labey MS Call
- **High C** by MetaWare PC Call
- **OS/286 & 386 by AI Architects** PC Call
- **Paradox 386** MS $799

Al Languages

- **APT - Active Prolog Tutor** build applications interactively PC $49
- **ARTY Prolog - full, 4 Meg**
- **Interpreter - debug, C, ASM** MS $229
- **COMPILER/Interpreter-EXE** MS $569
- **Cogent Prolog Compiler** MS $179
- **MicroProlog Prof. Comp./Interp.** MS $609
- **PC Scheme LISP - by TI** MS $85
- **Star Sapphire** MS $429
- **TranLISP - learn fast** MS $79
- **TranLISP PLUS** MS $149
- **TURBO PROLOG by Borland** MS $69
- **Others: IQ LISP ($239), IQC LISP ($269)**

Basic

- **BAS.C - economy** MS $179
- **BAS.PAS - economy** MS $135
- **Basic Development Tools** MS $89
- **db/Lib** MS $119
- **Exim Toolkit - full** MS $45
- **Finally - by Komputerwiz** MS $85
- **Inside Track** MS $49
- **Match 2 by MicroHelp** MS $49
- **Networks by Exim** MS $89
- **QBace - screens** MS $79
- **Quick BASIC** PC Call
- **Quick Pak-by Crescent Software** MS $59
- **QuickTools by BC Associates** MS $109
- **Stay-Res** MS $79
- **True BASIC** MS $99
- **Turbo BASIC - by Borland** MS $69
- **Turbo BASIC Database Toolbox** MS $69

FEATURES

- **SoftTRAN**, the Translation and Text Language by Transilp - full procedural language like C plus pattern and nonprocedural constructs cut development effort by up to 16 times, MS $349
- **FORCE III**, DBase Compiler by Sophocomsmall. EXEs, user-defined functions, I/O directives through BIOS/DOS/ANSI/ FORCE/user-defined, extensions include FOR...NEXT loops, soundex, 1D arrays. Maverick MS $109

Recent Discovery

Program Objectively — for Less

- **HOOPS** by Libra Software lets you assign attributes to objects for more realistic applications. See inside for attribute removal, multiple light source rendering, and more. MS $399. Call for details.
- **HYPER** by 8388. A personal subscription is just $25 a year.

RECENT DISCOVERY

- **CLARION DBMS by Barrington Fast**
- **c* platforms prototyping and development. Language, compiler, screen/report generators, editor, call all other languages, read/write**
- **dBASE III + files.** List: $695

Language-Compilers

- **AZTEC C86 - Commercial** MS $499
- **C86 PLUS - by CI** MS $359
- **Datalink Osmium - C** MS $99
- **Instant-16M** MS $99
- **Lattice C - from Lattice** MS $259
- **Microsoft C S.0. - Codeview** MS $695
- **Microsoft Quick C** MS $695
- **Turbo C** by Borland MS $67

Libraries-Files

- **Btree by Soft Focus** MS $69
- **CBTREE - Source, no royalties** MS $99
- **cbtree by Faircom - no royalties** MS $315
- **exec - report generation** MS $249
- **dbQUERY - ad hoc, SQL-based** MS $249
- **dbVISTA - Object only** MS $69
- **Source - Single user** MS $299
- **dbX - translator** MS $299

C-Screens, Windows, Graphics

- **C Worthy Interface Library** MS $249
- **Curses by Aspen Scientific** MS $109
- **dbASE Graphics for C** MS $69
- **ESSENTIAL GRAPHICS - fast** MS $185
- **FontWIN/PLUS** MS $229
- **Graphic - new color version** MS $279
- **Greenleaf Data Windows** MS $155
- **GUI/Window** MS $259
- **Terminal Mapping System** MS $279
- **TurboWINDOW/C - for Turbo C** MS $75
- **View Manager - by Blaise** MS $159
- **VRR** MS $79
- **Windows for C - fast** MS $79
- **Windows for Data validation** MS $149
- **ZView - screen validation** MS $149

Atari ST & Amiga

We carry full lines of Manx & Lattice.

Clipper Language

- **Clipper compiler** MS $399
- **dbase III Plus** MS $429

Database

- **Call for a catalog, literature, and solid value** 800-421-8006

RECENT DISCOVERY

- **CO/SESSION - Remotely access PC and peripherals, train or touch-shoot from off-site, 2 users on one program. Session record/playback, file transfer, terminal emulation, keyboard and voice modes.** MS $229

DBASE Support

- **dAnaylst** MS $99
- **dBASE Tools** MS $65
- **brief with Brief** Call
- **dBASE III by Lattice** MS $169
- **dBASE IV** MS $499
- **Documentor - dFlow superfast** MS $229
- **Genier by Bytecode generator** MS $279
- **QuickCode Ill Plus** MS $189
- **R&R Report Writer** MS $139
- **Seek-It - Query-by-example** MS $139
- **Silver Comm Library** MS $139
- **TurboC/F Removal** MS $249
- **UI Programmer - user interfaces** MS $249

DataBase & File Management

- **CQL** MS $359
- **DataFlex by Data Access** MS $899
- **DataFlex multiuser** MS $1149
- **Magic PC** MS $699
- **Paradox - original** MS $369
- **Paradox V.0.2** MS $479
- **Revelation by Cosmos** MS $779

Multilingual Support

- **BRIEVE ISAM** MS $185
- **BRIEVE/N-multiuser** MS $455
- **GSS Graphics Dev's Toolkit** MS $375
- **HAL Development Package** MS $389
- **Graphics** MS $209
- **Help/Control - on line help** MS $99
- **HI-SCREEN XL** MS $129
- **HOOPS Graphics Library** MS $469
- **Infinix 4GL-application builder** MS Call
- **Infinix SQL - ANSI standard** MS Call
- **Instant Programmer's Help** MS $79
- **NET-TOOLS - NET-BIOS** MS $129
- **Opt Tech Sort - sort, merge** MS $99
- **Norton Guides** MS $75
- **Panel Plus** MS $395
- **Plinkish - by Phoenix** MS $209
- **Report Option - for Xtrieve** MS $109
- **Screen Sculptor** MS $89
- **SPSS/PC Plus** MS $749
- **Synctex - create user interfaces** MS $329
- **XQL - SQL for Xtrieve** MS $649
- **Xtrieve - organize database** MS $179
- **ZAP Communications - VT 100** MS $89

Software

- **All software is guaranteed to work on all systems.** Ask about COO and PC's. Priced. MS $500, 800-421-8006. MS $500.
- **386 surface selection all items.** MS $500. 800-421-8006. MS $500.

Circle 211 on Reader Service Card
First thing, then, was to feed in the original program that ran under GW-BASIC. It wouldn't compile. QB4 kept telling me I had a duplicate definition of a variable named TEACHER. This made so little sense I wanted to sit down and cry. The program doesn't have a variable named TEACHER. There was a TEACHER, but...

Then I remembered something. Turbo BASIC wouldn't compile the program because it expected a remark delimitier; suppose QB4 saw things differently? Looking up variables in the QB4 documents index, I discovered that the $ at the end of the variable isn't part of its name; in other words, QB4 won't permit you to have both TEACHER and TEACHER$ as two different variables, and it was interpreting that TEACHER in 10070 (listing 1) as some kind of variable reference, probably a function call. Putting the REM delimiter in the appropriate place cured that problem, and the program compiled just fine.

When I ran the program under QB4, I got exactly the same errors I'd gotten with Turbo BASIC. The same parts of the lessons were omitted, no tunes were ever played, and the same garble appeared in the same place on the screen.

Since the two programs were reacting in the same way, it seemed reasonable to feed QB4 the new source code as I'd modified it for Turbo BASIC. Not only did that compile without a glitch, proving that Turbo BASIC and QB4 use pretty much the same syntax, but when I ran it, I got the same result: the cleaned-up code ran better, but there were still plenty of errors.

By then, two things had happened: I'd used up a whole day, and I had the suspicion that both Turbo BASIC and QB4 were interpreting single-line IF statements one way, and Microsoft BASIC was interpreting them in another. The way to prove that was with Trace. When Trace is on, QB4 swallows the program screen and flickers to the edit screen, where it highlights the statement now being executed. If there's new output to the program screen, it toggles back there.

The whole thing goes slow motion, so that if you've got big loops, it can take forever, but the simple answer to that is to put TROFF (Trace Off) and TRON (Trace On) statements around places that you're sure work properly. Alas, in my case, there were so many GOTO statements scattered throughout the code that this was nearly impossible, so I was forced to sit there and watch the program draw lines and boxes a character at a time. The effort was worthwhile, though; in an hour, I had figured out what was wrong.

It was indeed those IF statements. There was no quick fix: I'd have to do some editing. A couple of hours later, it was done. All the IF statements had been broken up to look like those in listing 3, which, if nothing else, are a lot easier for humans to read. It seemed to be easier for the compiler, too; once I'd done that, the program ran fine.

There were a couple of bugs I didn't much care for, but when I told Roberta about them, she said they were in the interpreted version, too. I spent a couple of hours cleaning them up. When I was done, the program ran better than it ever had; and now that it's all laid out in pretty print, it won't be so hard to change. There are still blocks of GOTO spaghetti, but I was able to convert some of those blocks into subroutines and replace others with functions. After a while, the code looked pretty clean.

Once I got the program running in QB4, I fed the code back to Turbo BASIC. QB4 and Turbo BASIC use the same syntax for subroutines, so those were not a problem. Functions are handled in about the same way, but the syntax used to define them is different; it took a few minutes to make the conversions. After that, the program ran fine in both Turbo BASIC and QB4.

The moral of the story is simple: it may be efficient to pack lots of statements on each line, and certainly that saves memory; but it's not good practice. Neither is extensive use of GOTO statements, even when you're using them to structure the code. Edsger Dijkstra was right: GOTO is harmful.

The Great Compiler War

Competition is a wonderful thing. For years, Microsoft didn't have a BASIC compiler. The only real competition was CBASIC, which "compiled" to a kind of p-code and interpreted that. Then Gordon Eubanks began developing a true compiler for CBASIC, and shortly thereafter Microsoft announced BASCOM.

BASCOM went through a couple of improvement cycles, none spectacular, and emerged as QuickBASIC 2.0. QB2 wasn't as good as compiled CBASIC, but it wasn't bad, and it did have the merit of letting you develop programs in interpreted BASIC before compiling them. Compiled CBASIC could have given BASCOM/QB2 some real competition, but it was about then that Digital Research went into a funk and let all its languages languish, suffer, and died near die.

Then Borland began development of Turbo BASIC. The word was that it would have an integral editor (as all Borland language products do) and a lot of other features that QB2 didn't have.

Microsoft's response was interesting: The company put not one, but two teams of first-class programmers on the job. Team One was told to develop the best BASIC compiler they knew how to write.

Team Two had an unenviable assignment: come up with enough kudges to QB2 to let Microsoft hold some kind of defensive position when Turbo BASIC came out. It seems clear to me that Microsoft was afraid Turbo BASIC would do to BASCOM what Turbo Pascal has done to Pascal: dominate the market so thoroughly that the BASIC compiler Team One was developing wouldn't have a chance.

Team Two finished QB3 just about the same time that Borland was able to ship Turbo BASIC, and while QB3 was, at bottom, a kludge, it wasn't all that bad a kludge. It didn't have all the features of Turbo BASIC, but it did have an integral editor, and overall it was good enough to keep Microsoft in the ball game.

As it happens, Team One finished sooner than anyone had expected, so that QB4 followed close on the heels of QB3, close enough that it looked like it might be no more than an improved QB3; but that wasn't the case. Microsoft QB4 is an entirely new and different product, written by a different team, and has very little to do with QB3.

It does fix most of QB3's mistakes. As continued
Complete customer satisfaction...superior service...friendly, knowledgeable personnel...quality merchandise...providing the best values in leading edge technology.

BEAT THE PRICE INCREASE!

349.95

20 MHz OSCILLOSCOPE

Save $40 if you buy before April 1st when our price goes up to 389 95. This model makes frequency calculation and phase measurement quick and easy. Service technicians appreciate the TV Sync circuits for viewing TV-V and TV-H and accurate synchronization of the video signal. Blanking, VIT, and VH sync pulses. A component tester for fast troubleshooting.

MODEL 3500

$499.95

35 MHz DUAL TRACE OSCILLOSCOPE

Wide bandwidth and exceptional 1mV/DIV sensitivity make this a powerful tool for engineers or technicians at a remarkable price. Delayed triggering allows any portion of a waveform to be selected and expanded for closer inspection. Variable Hold-off allows stable viewing of complex waveforms.

DMM-300

$79.95

3.5 DIGIT DMM/MULTITESTER

This full function 3.5 digit DMM offers highly accurate performance and a host of added features like audible continuity, capacitance, transistor, temperature, and conductance to help you do the job—fast. Temperature probe, test leads and battery included.

- Basic DC accuracy: plus or minus 0.25%
- DC voltage: 200mV–1000V, 5 ranges
- AC voltage: 200mV–750V, 5 ranges
- Resistance: 200 ohms–20M ohms, 6 ranges
- Capacitance: 200pF–20µF, 3 ranges
- Transistor Tester: 0°–3000°
- Conductance: 200ms
- Fully overload protected
- Input impedance: 10M ohm.

DMM-100

$29.95

3.5 DIGIT POCKET SIZE DMM

Perfect for the field service technician. Shirt pocket size without compromising features or accuracy. Large, easy to read 1" LCD display. Fully overload protected for safety. 2000 hour battery life with standard 9V cell. Probes and battery included.

- Basic DC accuracy: plus or minus 0.5%
- DC voltage: 2V–1000V, 4 ranges
- AC voltage: 2V–750V, 2 ranges
- Resistance: 2k ohms–2M ohms, 4 ranges
- DC current: 2mA–2A, 4 ranges
- Input impedance: 10M ohm.
- Fully overload protected
- Approx. 5" x 3" x 1". Under 7 ozs.

DMM-200

$49.95

3.5 DIGIT FULL FUNCTION DMM

Get highly accurate performance at a very affordable price. Rugged construction. 20 amp current capability and 22 ranges make it a perfect choice for serious field or bench work. Low battery indicator and lithium stand. Batteries and 2000 hour battery included.

- Basic DC accuracy: plus or minus 0.25%
- DC voltage: 200mV–1000V, 5 ranges
- AC voltage: 200mV–750V, 5 ranges
- Resistance: 200 ohms–20M ohms, 6 ranges
- AC DC current: 200mA–20A, 6 ranges
- Input impedance: 10M ohm.
- Fully overload protected
- Approx. 7" x 3½" x 1½". With 11 ozs.

DPM-1000

$54.95

3.5 DIGIT PROBE TYPE DMM

Custom built for the field technician. Precision probes provide accuracy and reliability in such a compact size. Auto-ranging, audible continuity and data hold feature help you pinpoint the problem quickly. Case and batteries included.

- Basic DC accuracy: plus or minus 1%
- DC voltage: 2V–500V, auto-ranging
- AC voltage: 2V–500V, auto-ranging
- Resistance: 2k ohms–2M ohms, auto-ranging
- Fully overload protected
- Input impedance: 11M ohm
- Approx. 6½" x 1½" x 4". Under 3 ozs.

* 2 YEAR REPLACEMENT WARRANTY
* 30 DAY MONEY BACK GUARANTEE
* TOLL FREE TECHNICAL SUPPORT
* NEXT DAY AIRSHIP AVAILABLE

JDR INSTRUMENTS, 110 KNOWLES DRIVE, LOS GATOS, CA 95030
RETAIL STORE: 1256 SOUTH BASCOM AVE, SAN JOSE, CA (408) 947-8881
ORDER TOLL FREE 800 538 5000
an example, whereas QB3 had an entirely different version to compile programs for systems with math chips, QB4 simply uses the math chip if it’s available and otherwise does without.

More importantly, QB4 has many features QB3 didn’t attempt. QB4 supports recursion. It can handle modular compilation: you don’t have to recompile everything every time. It has good data structures, including records.

Probably the most spectacular new features are the debugging routines. QB4’s Trace is enormously powerful. You can stop the program, make minor changes, and resume it. If you try to make too many changes, the program warns you that you’ll have to recompile and start over, but it gives you a chance to abort the changes.

You can set multiple breakpoints to temporarily stop the program. There’s a History routine that preserves information about where the program had been before it was stopped. There’s a Watch Window, where you can observe the changing values of specified variables. All told, the QB4 debugging tools are the most powerful I’ve ever seen for any BASIC.

The other fundamental difference is that QB4 “compiles” the code as you write it. Of course, you have to write it within the QB4 editor to get that feature, but that’s no great hardship: the editor is well-designed and, unlike the Borland editor, works with a mouse (my Logitech Mouse worked fine).

If you really want to use your own programming editor, QB4 will compile the program as it reads it—although if my experience with the “duplicate definition” is any indication, it isn’t all that good at locating syntax errors. If you use the QB4 environment to write your code, you won’t get any syntax errors. QB4 parses each line before “compiling” it.

This isn’t true compilation: what QB4 is doing is translating your code into a Fort-like threaded code, not assembly language. The resulting threaded code isn’t as fast as true compiled code, but it has the great merit of being easily traced. When you’re finished with the program, you do an entirely different operation that produces real assembly language code, so that you end up with a stand-alone program.

QB4 really is a new product, written from scratch. There are inevitable bugs, which I have no doubt that Microsoft will correct. I expect QB4 to be a step back. If so far, I haven’t encountered any serious bugs, but I’ve heard of some.

It mildly bothers me that the compiler that produces memory code isn’t the same as the compiler that produces the final product you’ll eventually run, and I wonder if there are any hidden traps there. After all, I have good reason to know that just because a program will compile, that’s no proof that it will do what you want it to. On the other hand, it doesn’t bother me enough to keep me from using QB4.

I haven’t done any tests on the final output of QB4 versus Turbo BASIC. The fact is that I have both compilers, and once I’ve developed Roberta’s program, I’ll try it with both; their syntaxes are sufficiently close to make that simple. Then I’ll test them and see which is fastest, has the smallest code, and so forth. Which ever produces the best final code, though, there’s no contest about which is the best programming environment. Microsoft wins that hands down because of the debugging tools. QB4 is a serious language, quite good enough to develop any program you like.

At the moment, then, Microsoft is winning the BASIC battle in the Compiler War. I’d recommend that serious BASIC programmers get both compilers.
10 REASONS WHY YOUR ADA COMPILER SHOULD BE A JANUS/ADA COMPILER
(Besides the Price!)

1. We're fast
Compilation and development speed mean a lot when you're working on a large program; every minute you have to wait is time and money wasted. A Janus/Ada compiler has an average compilation speed of 400 lines per minute with a 6 MHZ 8086; over 500 lines per minute with an 80186; 1100+ lines per minute on an 8 MHZ 80286, and nearly 1900 lines per minute on PC Limited's 386.

2. We work on any XXX86 machine.
Not everybody can afford the newest technology and some of us can't afford the name brands... but with Janus/Ada, that doesn't matter. It doesn't need protected mode, 8087's, or PC-DOS. As long as you have an intel 80X86 chip at the heart of your computer and some way to run or emulate MS-DOS 2.1 or higher, you can use Janus/Ada.

3. Our product has been in use for over six years.
We released our first compiler in 1981 and got our first review in 1982. The products we sell have had the scrutiny of customers and reviewers for over six years, changing to meet the increased sophistication of the technology and the user. Our customers come from every segment of the computing community; the government, Fortune 500, and academia. Users like yourself are able to benefit from the wide range of uses we respond to every day, as well as the built-in network of people working with Ada just like you.

4. No copy protection.
Our products come to you free of any form of copy protection and with a warranty insuring media replacement for defective media. We know you don't need the hassle of locking devices and other protective devices. We know you want to use Janus/Ada on your hard disk and network, and we make it easy to install, easy to maintain, and easy to use.

5. Application programs written in Ada for as low as $12.00.
We offer IBM graphic routines, window handlers, scientific libraries and many other application programs written in Ada. These programs come with complete source code and documentation and are user tested.

6. We offer embedded systems capability, like rommable, reentrant code and licensing of our source code.
Janus/Ada is designed to make your embedded processing easy... with features especially created for that environment. Our code is rommable, allowing you to "burn in" the applications you create. We make our source code available in our Systems Package ("S" Pak), so you don't have to guess at the answer. If you would prefer to have us design and implement your code, we'll be more than happy to accommodate.

7. Superior error handling.
Nothing is more frustrating than an error in coding... except a bad error message which does nothing except confuse you. Our error messages tell you vital information, such as line location, cause of error and a full walkback including subprogram names. If you do a lot of development, or you just appreciate being fully informed, our error messages are sure to please!

8. Support that won't let you down.
Superior support services, such as the Janus/Ada bulletin board, the Janus/Ada BIX conference, a quarterly newsletter, as well as customized support services.

9. Our compiler was developed on a micro, for a micro, in Ada.
We have "bootstrapped" our compiler, version by version, so that we know it really works! Our compiler was developed on multiple XXX86 machines, from different manufacturers, so that it would be a true microcomputer compiler. Our products are developed in Ada, demonstrating our commitment to the language and the capabilities it can bring to you.

10. Self paced, low cost educational tutorials.
The Janus/Ada Extended Tutorial offers a programmer's perspective on learning Ada. This tutorial was written expressly for novices in the Ada language, by a programmer, and includes a complete set of disk based quizzes to compliment the 150 page tutorial. You can determine how quickly you pace yourself, and you won't believe you did it for $99.95.

JANUS/ADA PASSED VALIDATION 12/11/87... AND IS STILL ONLY $99

SOFTWARE, INC. specialists in state of the art programming
P.O. Box 1512 Madison, Wisconsin 53701
(608) 244-6436 TELEX 4998168
1-800-722-3248 Circle 230 on Reader Service Card
Zenith's FTM monitor can be tuned so that the screen is absolutely black.

Borland Turbo BASIC is neat, a solid product well worth the price. Microsoft QB4 is that and more. It's a spectacular improvement not only on QB3, but also on BASIC in general. Highly recommended.

It's Flat!
I don't suppose anyone is happy with CGA. Everyone wants higher resolution and better graphics. Now we have several ways to get them.

The opening move was made by NEC when that company brought out the MultiSync, a monitor that works on anything from simple monochrome to the Professional Graphics Controller (PGC). I've had one of those devices attached to the Golem, the huge CompuPro system that practically runs Chaos Manor, for several years now, and it has given me a lot of service. It's also the test monitor when we get new video boards.

After the MultiSync came others, and for a while it looked as if multiple-sweep-frequency monitors were the wave of the future. More and more programs were written for the EGA standard.

Then Orchid, and later Zenith, came up with a new philosophy: instead of putting the smart in the monitor, put them in the video board. That way you can get the best monitor you can afford, add a multiple-choice video board, and run programs that output monochrome, CGA, EGA, and PGC all on the same system without hassles.

Orchid chose to let its TurboPGA board run with any multiple-sweep-frequency monitor. Zenith, long one of the industry leaders in monitor technology, had another approach. The company designed a board that ran at 31.5-kHz analog signals, while the board can digest anything from monochrome through VGA.

The result is pretty spectacular. The FTM monitor can be tuned so that the screen is absolutely black. Colors are just gorgeous; they really stand out against that black background.

Everyone who's come upstairs since I set up the FTM monitor with the Z-449 video board has been impressed. The colors are really striking. Oddly enough, though, most think the screen is concave. It's an illusion: it really is flat, but we're so used to convex screens that bulge out at us that at first the ZCM-1490 FTM monitor really does appear concave. The illusion vanishes after you work with it awhile.

The ZCM-1490 has a 14-inch screen, but the images are so crisp that it appears bigger. It is certainly good enough to sit and work at all day. Larry Niven is about to buy a new computer system—‘I've recommended the new Zenith Z-386—and he very much likes my Electromate Color Display ECM 19 (19-inch multisync monitor). Before I let him spend the money, though, I'm going to have him look at the ZCM-1490. He may get the Electromate monitor anyway, but then, he can afford it.

The highest resolution from the Zenith Z-449 video board isn't as sharp as the best from the Orchid TurboPGA, but it's close.

I had the traditional problems with the Zenith manuals, trying to figure out the switch settings; the board didn't come with the right defaults, and when I first powered things up, it wouldn't automatically switch from EGA to CGA, so that CGA was squashed into two images on the screen. Fifteen minutes spelunking the Z-449 manual fixed that, and now everything works fine.

There is one problem with the ZCM-1490 monitor: it doesn't have a degaussing button. Both my Electromate and Intecolor high-resolution monitors have that feature, and the ZCM-1490 needs it.

If you leave the monitor on too long, especially in an electronically noisy environment (such as next to the Z-248 with its cover off), ugly patches in inappropriate colors appear on-screen. They're easily removed by turning the monitor (but not the computer) off for 30 seconds to a minute. This won't happen more than once a day. Degaussing takes about 10 seconds on my other monitors, so the time loss isn't significant, but I do wish Zenith had put the degaussing feature into the monitor.

Other than that, I love it. So will you, when you get used to having a screen that looks concave.

The Year's Most Useful
It's time for my annual awards. Do understand: these are purely subjective, and they're from Pournelle, not from BYTE. The ground rules are simple: something I acquired this year (no matter when it first came out), used a lot, and found to be the most useful thing in its class.

First, the Year's Most Useful Computer: the Kaypro 386 wins by a land-
How to get a top quality, U.S. made IBM compatible without spending a bundle...

Choose a Proteus.

When you choose a Proteus, you get a lot more than just high performance at a low price. You get personal service that helps you custom tailor a system which is just right for your specific applications from our large stock of brand name hard disks, graphics boards and other add-ons.

Easy Setup
When you get your new Proteus system you can have it up and running in no time. No need to spend hours, or even days, to get it to work. It comes with clearly written, easy to follow manuals, and on some models you even get built-in, ROM based, menu driven set-up, diagnostic, and utility software.

Money Back Guarantee
We're determined that you will be fully satisfied with your purchase. Use the system for a while, and if you don't like it, or any part, simply return it for a full refund - any time during the first thirty days.

15 Month Warranty
Everything you buy from us is backed by a full fifteen month warranty.

Service Wherever and Whenever You Need It.
In the rare case that something goes wrong with your Proteus system while it is still under warranty, we provide free repair at your location during the crucial first two months. No need ever to pack it up and ship it anywhere. If the unit has exceeded the warranty period, you can still get factory authorized service, on site, at reasonable rates.

Problems at 3 a.m.?
You may be able to solve them yourself with our unique 24-hour on-line interactive support system, which is always free of charge.

There are many reasons for owning a Proteus. The experts think so too.

In a recent AT compatible product comparison, InfoWorld (4/87) stated "...for overall best machine in price, the Proteus 286e is the clear winner. It offered the best CPU and disk hard disk random read/write performance of any machines tested, is remarkably easy to set up, and boasts the best support around. We recommend it."

EDITOR'S CHOICE
"...There are so many nice aspects to Proteus and the company that makes it, there isn't room to cover them all."

Business Computer Digest (3/87)

PROTEUS SYSTEMS

<table>
<thead>
<tr>
<th>MODELS</th>
<th>286E</th>
<th>286</th>
<th>286TX</th>
<th>386</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTEL CPU</td>
<td>80286</td>
<td>80286</td>
<td>80386</td>
<td>80486</td>
</tr>
<tr>
<td>CLOCK SPEED</td>
<td>6 MHz</td>
<td>8 MHz</td>
<td>9 MHz</td>
<td>12 MHz</td>
</tr>
<tr>
<td>PROCESSORS</td>
<td>6 MHz</td>
<td>8 MHz</td>
<td>9 MHz</td>
<td>12 MHz</td>
</tr>
<tr>
<td>BASE MEMORY</td>
<td>16 KB</td>
<td>32 KB</td>
<td>64 KB</td>
<td>128 KB</td>
</tr>
<tr>
<td>MMR STCKS</td>
<td>ON</td>
<td>32 KB</td>
<td>64 KB</td>
<td>128 KB</td>
</tr>
<tr>
<td>END SELECT SPRES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>CLOCK CAL / BATTERY LOCK</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>BUS ACCESS PORT</td>
<td>16KB</td>
<td>32KB</td>
<td>64KB</td>
<td>128KB</td>
</tr>
<tr>
<td>PARALLEL PORT</td>
<td>ONE</td>
<td>ONE</td>
<td>ONE</td>
<td>ONE</td>
</tr>
<tr>
<td>DIO SLOTS</td>
<td>EIGHT</td>
<td>EIGHT</td>
<td>EIGHT</td>
<td>EIGHT</td>
</tr>
<tr>
<td>HARD DISK CONTROLLER</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>FLOPPY DISK</td>
<td>TWO</td>
<td>TWO</td>
<td>TWO</td>
<td>TWO</td>
</tr>
<tr>
<td>SIC OR LSI TD CHOICE</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>KEYBOARD TYPE</td>
<td>84 KEY</td>
<td>101 KEY</td>
<td>101 KEY</td>
<td>101 KEY</td>
</tr>
<tr>
<td>FREE CUSTOMER SITE SERVICES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>SYSTEM PRICE</td>
<td>$299</td>
<td>$599</td>
<td>$799</td>
<td>$1199</td>
</tr>
<tr>
<td>HARD DRIVES</td>
<td>Scorpion, Minitake, Prince storage $799</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MONITOR</td>
<td>HD Monitor, Monitor X, Color, VGA from $100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADAPTERS</td>
<td>EGA / CGA Color Cards from $50</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quantitative data accurate at the time of printing. Specifications may change without notice. All prices, conditions, taxes are subject to change. All trademarks registered.

TO ORDER OR FOR INFORMATION CALL TOLL FREE 1-800-782-8387.

Electronic Catalog Dial 281-288-8577 (1200B/8/N.)

*IN NJ 011 (201) 288-8577 1-800-782-8387
All other calls 201-288-8577

Info World 11/87

"Proteus 386A is an excellent value by a country mile..."
Even More Power & Flexibility

BRIEF 2.0

BRIEF easily conforms to your editing preferences and style, ensuring you are truly comfortable and productive. Straight from the box, BRIEF is as much editor as most people will ever need—thanks to features like the real Undo, flexible windowing, and unlimited file size.

But BRIEF's hidden power is in its exclusive macro language. Customize BRIEF to include the commands and features you desire. It's fast and easy.

Users and industry press alike unanimously praise BRIEF. "Recommended." — Jerry Pournelle, Byte 12/86.

Now BRIEF 2.0 adds:

- Setup Program for easy installation and configuration. (Requires no macro knowledge.)
- Increased speed for sophisticated operations like Undo and Regular Expression Search.
- All new documentation WITH tutorial on the Macro Language.
- Command line editing (move cursor, add & delete characters, specify parameters).
- Expanded Regular Expressions, with matching over line boundaries.
- More block types, with marking by character, line or column.
- Reconfigurable indicating for C files (supports most indenting styles).
- Enhanced large display support, including wider display.
- Optional borderless windows.

Try BRIEF ($195) for 30 days—if not satisfied get a full refund.

If you already own BRIEF, call for update info.

CALL 800-821-2492

In MA 617-337-6963

541 Main Street, Suite 410B
So. Weymouth, MA 02190

New! Hire a Pro for Your New Turbo 4.0

Turbo PROFESSIONAL 4.0 includes complete source code, comprehensive documentation and demo programs that are powerful and useful. The routines include:

- Pop-up resident routines
- BCD arithmetic
- Virtual windows and menus
- EMS and extended memory access
- Long strings, large arrays, macros, and much more.

Turbo PROFESSIONAL is only $99. Call toll free for credit card orders.

1-800-538-8157 extension 830
1-800-672-3470 extension 830 in CA

Satisfaction Guaranteed or your money back within 30 days.

Turbo Pascal 4.0 is required. Registered owners of Turbo Pascal by Sunray 1.08 Software may upgrade for $30. Include your serial number for other information call 415-838-3668, 9 AM to 5 PM PST. Shipping & taxes prepaid for US and Canadian customers. Others please add $6 per item.

TurboPower Software 3109 Scotts Valley Dr., Suite 122 Scotts Valley, CA 95066

178 BYTE • MARCH 1988

CHAOS MANOR

slide. It isn't that the Kaypro is all that much better than other 386 machines; indeed, Kaypro has completely upgraded its 386 line so that the Kaypro 386 you can buy now is much better than the one I have. The important thing, though, is the 386, which is to the 286 what the 286 is to a CP/M 64K-byte system. I'm very fond of my Zenith Z-248, which is as good an AT system as I know of, but it can't match a 386 for utility. Fortunately for Z-248 owners, Zenith recently announced a 386 upgrade kit.

One reason 386s are so superior is DESQview 2.01, which wins my award for the Most Useful Software of the Year. DESQview will greatly improve a 286 machine provided that you have an AST RAMpage AT board; but the real improvement comes when you run DESQview with a 386. DESQview and the Kaypro 386 haven't quite solved all my problems—I still want more memory—resident programs than the system will handle—but it beats everything else I've tried, and I've tried a lot of things. Learning DESQview is no trivial task, but it has been a lot more than worth it to me. It doesn't hurt that the people at Quarterdeck pay a lot of attention to bug reports and fix things fast.

The Most Useful Portable is the Zenith Z-183 with hard disk drive, and although at 15½ pounds it's too heavy by half, I wouldn't be without it. The super-twist backlit screen is readable in any light, the machine is rugged as all get-out, and the keyboard is wonderful; I've written a couple of hundred thousand words on that machine this year. I showed the machine to my friend Norman Spinrad, and he decided to get one to serve as his only computer. The Z-183 has EGA video output he's feeding into a Zenith EGA monitor, and he got a DataDesk Turbo-101 (101-key) keyboard; there's an input jack for that on the Z-183.

I don't know what the category is, but DataDesk keyboards have been about as useful as anything I've gotten this year. I now have Turbo-101 keyboards on just about every machine in the house—including the Macintosh Plus. The Mac version of the Turbo-101 comes with some nifty software to define function keys and the like. I've had several people do double takes when they see what looks like an AT keyboard attached to my Mac, and the notion of function keys on a Mac startles just about everyone.

The Most Useful Software for Portables is LapLink, which transfers programs from desktop to portables and back. It's painless and extremely fast, and if you have a PC compatible portable, you simply can't afford to be without it.
Great ideas should look great on paper. And the translation is easy with PC\TeX®: the best-selling full implementation of Prof. D. Knuth's revolutionary \TeX\ formatting/typesetting program. It offers PC users the capabilities & advantages—and looks—of professional typesetting.

In a word, PC\TeX gives you ‘control’. Control—of design format, type & symbols, quality—for complex mathematical & engineering material, statistical tables or straight matter. You get camera/publisher-ready manuscripts to be proud of, quick & simple.

So whether you're writing the next starshot manual, a thesis on relativity or the great American novel, for a professional presentation that doesn't lose your ideas in the translation, depend on PC\TeX.

From Personal \TeX, Inc., starting at $249; VISA/MC welcome. Satisfaction guaranteed.

PC\TeX FORMATTING/TYPESETTING SYSTEM:

FINE TYPESET QUALITY from dot matrix or laser printers, or phototypesetters

A COMPLETE PRODUCT. Includes • our specially written \TeX\ Manual that lets you use \TeX\ immediately • custom macro package formats for letters, manuals, technical documents, etc. • the LATEX™ document preparation system (with user’s manual) macro package for article, book report preparation • AMS-\TeX\ developed by the American Mathematical Society for professional mathematical typesetting

OUTPUT DEVICE DRIVERS for • Epson FX, LQ • Toshiba • Cordata LP-300 Series • HP LaserJet Series • Apple LaserWriter • APS-5 phototypesetter • Linotronic • Compassograph • Screen preview, with EGA or Hercules card

REQUIRES: IBM PC/XT, AT or compatible, DOS 2.0 or higher & 512K RAM, hard disk for printer drivers & fonts

(Also available Printer drivers, interfaces to Bistream Fontware, Metafont, to design-your-own-type, PC Paintbrush, PC Palatte ColorFont & Fontex. Complete packages, including laser printer, printer driver, \TeX\ and screen previewer from $7950. Site licenses and volume discounts available.)

To order or for information, call: 415/388-8853 or write: Personal \TeX, Inc. 12 Madrona Avenue Mill Valley, CA 94941 USA

Distributed in 14 countries; distributor inquiries welcome.

\TeX\ is a registered TM of Personal \TeX, Inc. \TeX\ is an American Mathematical Society TM Manufacturers' product names are their TM.

The ad is typeset & composed using \TeX, Bistream® fonts & laser printer, Letratype & black backgrounds done photographically.
Items Discussed

- **Color Display ECM 1910**... $2795
 - Electrohome Ltd.
 - 809 Wellington St. N
 - Kitchener, Ontario
 - Canada N2G 416
 - (519) 744-7111
 - Inquiry 901.

- **Fontasy**... $69.95
 - Prosoft
 - 7248 Bellaire Ave.
 - P.O. Box 560
 - North Hollywood, CA 91603-0560
 - (800) 824-7888
 - (818) 765-4444
 - Inquiry 902.

- **Megatrend**
 - EGA version... $1895
 - Intecolor Corp.
 - 225 Technology Park
 - Norcross, GA 30092
 - (404) 449-5961
 - Inquiry 903.

- **MultiSync**
 - II... $899
 - Plus... $1395
 - XL... $2195
 - NEC Home Electronics (U.S.A.) Inc.
 - Computer Products Division
 - 1255 Michael Dr.
 - Wood Dale, IL 60191
 - (800) 332-1728
 - (312) 699-4800
 - Inquiry 904.

- **QuickBASIC 4.0**... $99
 - Microsoft Corp.
 - 16011 Northeast 36th Way
 - P.O. Box 97017
 - Redmond, WA 98073-9717
 - (800) 426-9400
 - (206) 882-8080
 - Inquiry 905.

- **Turbo BASIC**... $99.95
 - Borland International
 - 4585 Scotts Valley Dr.
 - Scotts Valley, CA 95066
 - (408) 438-8400
 - Inquiry 906.

- **Turbo PGA**... $1599
 - Orchid Technology
 - 45365 Northport Loop W
 - Fremont, CA 94538
 - (415) 490-8586
 - Inquiry 907.

- **ZCM-1490**... $999
 - Z-449... $499
 - Z-386... $6499
 - Z-Cnet Data Systems
 - 1000 Milwaukee Ave.
 - Glenview, IL 60025
 - (312) 699-4800
 - Inquiry 909.

The Most Useful Writer's Tool is the Amdek Laserdrive/Microsoft Bookshelf CD-ROM package. Putting all those reference works on a single CD-ROM was a stroke of genius. I predict that within 5 years, professional writers will find Microsoft Bookshelf—or a similar CD-ROM reference library—as indispensable as we now find word processors.

Probably the most subjective award of the lot is the Text Editor of the Year. Writers don't just use editor programs, they have relationships with them. I've certainly had my ups and downs with mine; but the winner this year is Q&A Write, which, despite its faults, is the most transparent editor for text creation I've tried. XyWrite III Plus, WordPerfect 4.2, and Microsoft Word 4.0 are close competitors, and each has features that put it ahead of Q&A Write in some areas; but on balance I found Q&A Write clearly ahead in the critical particulars.

Fair warning: Gordon Eubanks and Brett Walters of Symantec have been extremely responsive to my suggestions, so that in part Q&A Write has been modified to suit my fancies. They've added a splendid word/line/paragraph count command, they're changing some of the print features, and they're doing some other stuff I wanted, including making it work well with Microsoft Bookshelf. It would be surprising if I didn't consider this my favorite text editor.

Any serious computer user needs not only a text-creation editor, but a programming and general-purpose editor: something to use to alter CONFIG.SYS and AUTOEXEC.BAT and that sort of thing. The General-Purpose Editor of the Year is Logitech's Point. This comes with the Plus Package, as well as with the Publisher Package, both of which include the Logitech Mouse. I'm fond of the Logi-
They Won't Run Right On The Wrong Fuel.

Low grade or dirty fuel reduces performance cars to bucking, knocking clunkers. Computers are no different. The fact is, both machines have very specific fuel requirements. But when running right, they perform like the wind.

Refined Electricity Increases Computer Performance.

Think of an Emerson power system as your computer's own private fuel refinery. Crude electricity goes in one end; premium comes out the other. Like good car fuel, Emerson premium electricity burns clean. No spikes, surges, sags, glitches or outages. Just refined power that puts system performance and throughput back where it was promised.

Emerson power keeps your computers and your people on the job working— even when power is completely cut off.

How To Lower Shocking Downtime Costs.

Computer components aren't designed to last forever. But their cause of death is far more likely to be poisoning than old age. Everyday short-burst electrical fluctuations assault delicate computer circuits right under your nose. They leave no trace. Not even the flicker of a light bulb to warn you.

With each assault, a computer failure comes that much closer. But your real costs are in idled people and lost productivity. Emerson's premium electric power not only solves this, it protects the work your employees have already done. If this work is important to you, it alone can pay for your Emerson system in a single day.

You Need A Powerhouse Of A Company.

Emerson Electric is a major Fortune 500 corporation with more computer power protection systems installed worldwide than anybody.

Our systems are more reliable, simpler, and easier to operate and maintain because each year we put more in R&D than much of our competition has in assets. It pays off for you in failure-free operation that actual experience shows can exceed one million hours on the job. So your Emerson system will keep providing power on the next computers you buy. And the next.

Our products cover the gamut. Uninterruptible Power Supplies (UPS) for large mainframes to handsome, compact, inexpensive ones for your minis and PCs. We also have a full line of power conditioning and distribution systems. Even simple surge protectors. Whatever level of protection you need, Emerson has it.

Increase the productivity of your system. Simply call 1-800-BACK-UPS for our free introductory brochure and the name of your local representative.

EMERSON Computer Power
3300 S. Standard St.
Santa Ana, CA 92702

Circle 90 on Reader Service Card (DEALERS: 91)
Tech 3-button mouse anyway; the neat part is that when you buy the mouse, you get some really useful software as well.

The Game of the Year is Wizard's Crown from Strategic Simulations. It's certainly the one I've spent the most time with. A close runner-up is Strategic Conquest Plus for the Macintosh. They're both pleasant ways to waste more time than I have available.

No More Eyestrain

The problem with naming the "thing of the year" is that a lot of good stuff doesn't fall into neat categories, and sometimes you can't pick just one. For example: 1987 was the year I finally solved my eye problems. First, I got an EGA board and the Intecolor Megatrend 19-inch EGA color monitor. That was more than good enough; indeed, when Larry Niven buys his new computer, he's going to get a 386 system, an EGA card, and either the Intecolor Megatrend or the Electrohome monitor.

Next, I installed the Orchid TurboPGA board and the Electrohome 19-inch multiple-sync color monitor. The Electrohome is perhaps not quite as crisp in EGA mode as the Megatrend, but it's hard to tell the difference; and, of course, this combination will perform with software that outputs monochrome, Hercules, CGA, EGA, and PGC, all more or less automatically. The PGC graphics are amazingly good.

Now we have the Zenith Z-449 board and Zenith's 14-inch ZCM-1490 FTM monitor. For years, I've been saying that 19 inches is just a tad large and 13-inch monitors are too small. My first monitor was a 15-inch Hitachi monochrome for my CPM system; I'd have thought a 14-inch monitor would be too small, but the Zenith 14-inch isn't. Combined with my
new computer glasses—focal length 28 inches—I can see that screen fine.
I'll stick with the 19-inch because when Niven and I work together, it's handy if we can both see the screen from a distance; but the 14-inch Zenith would really be good enough. So how do I pick a "year's best" out of that group? I'm not going to try. I'll just say that if you do much writing with computers, any one of these will help you a lot. You can't be too kind to your eyes.

Fair Warning
Every now and again I see computers—usually offshore-constructed clones—run at amazing speeds, but when I look inside, the critical parts are ordinary chips. "We select the good ones," one exhibitor told me at COMDEX. "Try a lot until we find parts that work."
That sounds right, but it isn't, at least not in the case of Intel chips. I've been talking to a former Intel designer, and he tells me that Intel has very elaborate test equipment.
When Intel makes a batch of expensive parts—say, 386 or 387 chips—they're put into the automated test setup and run at the highest possible speed. Most of them fail those tests; the few that pass are then certified for that speed and sold at a premium.
The rest of the parts are tested again at lower speeds. Those that pass get certified; the others are tested at still lower speeds and become the "ordinary" stock. A few don't pass tests at even the minimum speed and are discarded.
The point is, every "ordinary" chip Intel sells has failed a test at higher speeds. That's guaranteed. The failure the part experienced may not be critical. Intel has excellent test equipment and can find failures that may never show up in ordinary use—but how could you know what the failure was? It might be in a little-used area, but even little-used features can be critical. So while it's fun to crank up the speed on your system, it's guaranteed that if you run Intel parts much above their certified speed, you'll get failures. Murphy's law will take care of the rest.

Winding Down
As usual, I'm out of space long before I have run out of material. I spent the day installing an AST RAMPage board in the Zenith Z-248 so I could run DESQview. It all works, but I sure learned a lot. Then too, from here I can see Paradox and Condor, two relational databases; Quattro, Borland's new spreadsheet; a bunch of communications programs; stacks of stuff for the Macintosh; Turbo Tax for the IBM PC; and a partridge in a pear tree. There are also two large Federal Express boxes from BYTE in New Hampshire.
The most important package, though, is a new Unix system for the AT&T PC 6300 Plus. I want to compare it to OS/2. I've never been a great Unix fan because Unix is big and slow and takes up so much room on a hard disk—18 megabytes for the on-line manuals alone—but OS/2 seems smaller or faster, while hard disk capacity per dollar has grown so fast that 100-megabyte systems will soon cost less than OS/2.
With luck, I'll know more about that next time.

Jerry Pournelle welcomes readers' comments and opinions. Send a self-addressed, stamped envelope to Jerry Pournelle, c/o BYTE, One Phoenix Mill Lane, Peterborough, NH 03458. Please put your address on the letter as well as on the envelope. Due to the high volume of letters, Jerry cannot guarantee a personal reply. You can also contact him on BIX as "jerryp."

Travel Companions.
The WorldPort 2400™ and the WorldPort 1200™ modems are the perfect travel companions for your portable computer. They work virtually anywhere in the world, including hotel rooms and phone booths, allowing you to connect in a few million more locations than other modems.
With features superior to internal units, the WorldPort line of modems is the smart choice for all your communication needs. WorldPort modems operate from their own internal battery, drawing no power from your laptop. Cutting edge technology brings you features such as Bell and CCITT standards, direct connect and acoustic interface (300 and 1200 bps), tiny size and a tiny price. The WorldPort 1200™ can be easily upgraded to 2400 bps and both the WorldPort 2400™ and the upgrade come with Carbon Copy PLUS™ communications software.
Find out more about the travel companions that won't tie down your portable computer.

Call us today for more information about the WorldPort line of modems, or the name of your nearest dealer, at 800-541-0345.

Circle 367 on Reader Service Card
MARCH 1988 • BYTE 183
It's 6:33 pm. The lines are down. And she's the closest thing I've got to a technician.

Meanwhile, I've got a sales guy here waiting to close a half-million-dollar deal, and he's screaming 'why didn't my order go through.' I have no clue. My technical staff is home watching the game. And all I keep thinking is whatever happened to that word reliability? If I could have anticipated the problem, at least I would have had a chance. As far as I'm concerned, somebody at headquarters better start talking to AT&T about getting a network management system. Or they can find themselves a new whipping boy.

AT&T comes through.

AT&T DATAPHONE® II
Network Management System

There's no great mystery to improving your operating efficiencies. You just have to start with fail-proof data communications equipment. As follows.

AT&T's DATAPHONE II System Controller manages a fully integrated network of modems (analog, private line, switched network), multiplexers (statistical, T-1), and digital service units (switched, private line).

Networks of any size can be managed from a single point, so problems can be readily pinpointed and corrected. Real-time diagnostics and re-routing help anticipate system failures and reduce downtime. Complete monitoring includes customized reports, menus and graphic displays that let you fine-tune your network.

To learn more, contact your AT&T Account Executive. Or call 1 800 247-1212 for the number of our office nearest you.

From equipment to networking, from computers to communications, AT&T is the right choice.
According to Bill Gates "Ed Iacobucci was a key architect... and made very important contributions. Ed is one of the few individuals who can explain the foundation that OS/2 will provide for the industry... what you will read here represents the real ideas behind the operating system and what can be done with it."

From the Foreword of OS/2™ Programmer’s Guide

OS/2™ Programmer’s Guide

by Ed Iacobucci,
Leader of the IBM® OS/2 Design Team
Foreword by Bill Gates

Here are the techniques and insights on OS/2 version 1.0 that serious programmers need. Learn how and why the system works. Iacobucci discusses
- Dynamic linking and the system API
- Memory management in a protected environment
- OS/2 multi-tasking
- Advanced inter-process communications facilities
- The system I/O capabilities
- Session management, user interface, utilities, and more.

$24.95, ISBN: 0-07-881300-X, 650 pages

Available at Fine Book Stores and Computer Stores Everywhere

Or Call Our Toll-Free Number 800-227-0900 (Outside California) 800-772-2531 (Inside California)
(Use Your Visa or MasterCard)

Available in Canada through McGraw-Hill Ryerson Ltd. Phone 416-293-1911
Annual Revelations

Ezra Shapiro

In some ways, owning computers is like being a parent. I often find myself wishing my "children" had more memory, did their chores faster, and required less nagging. And I upgrade my system with add-ins, add-ons, and accessories with the same sinking feeling in the pit of my wallet that a parent experiences buying clothing for a rapidly growing infant.

I can't push this analogy too much further; I don't know a single family that sells off its kids every couple of years to buy new ones (though I've heard more than a few parents mutter wistfully that they'd like the opportunity to do so).

The frustration of computer ownership, however, is worse in one respect. There are at least some certainties to raising children; you know that in a predictable number of years, they'll grow out of infancy, out of adolescence, move away, and probably start cleaning up their own rooms. In contrast, I keep waiting for my machines to show signs of increasing maturity, but nothing seems to happen.

Once a year, I write a column that catalogs my own extremely personal choices in software and hardware, and this is the month for it. I strongly believe that confessing my prejudices provides a necessary foundation to the column; if you know I use WordStar, for example, you'll be able to take my dislike of some other word processors with a grain of salt.

As I began compiling my list, I noticed that although there have been major changes in my computing environment, the nature of the tools has changed very little in the past few years. Sure, everything has gotten faster and more powerful, but the systems have not gotten perceptibly smarter. I'm still telling my electronic children what to do in words of one syllable, and I'm still picking up after them.

So I offer the following challenge to the computer industry: You've proved that you can design systems that follow orders perfectly. Now give us systems that can anticipate them.

Software that senses the presence of video boards and numeric coprocessors is a step in the right direction. So are natural-English query languages. But I want more:

I want a computer to say to me, "Ah, I see from the filename that you're writing your BYTE column. I'll just go ahead and load all the desk accessories you normally use for that." Or, "You seem to make typos involving transposed characters more frequently than other spelling mistakes, so I'll look for the transpositions first." Or, "When you set margins for your letterhead, the document almost always gets sent to the laser printer. Articles usually get sent as ASCII files via the modem. I'll just load the appropriate drivers for you."

To do this sort of thing today, I have to spend hours with installation and macro programs. I want my computers to be able to figure it out for themselves. I don't want to have to say a thing.

Right now, everyone is excited about adding graphics interfaces and programming languages to the environment, be it HyperCard or SQL. To me, that's just another way of phrasing the orders. Why not provide tools with some smarts? It's time to help the kids grow up.

The Soft Set

On the MS-DOS side of my computer table, I'm now using three word processors, so help me. For short documents, I'm back to WordStar, my old favorite. The upgrade to 4.0 convinced me to start using it again, and it's more than adequate for my basic needs. For longer pieces, or ones where I need computational or database operations, I'm still using Framework II. After 2 years of Framework, it's comfortable—and as Mac-like as I need.

When I've got arcane manipulations to perform, I switch over to XYWrite III Plus. I was reluctant to try it, but it's the quickest of the three editors, extremely adept at block operations, and marvelously programmable. Even if I have to haul out the manuals. I find it easier to program XYWrite than to program Framework.

My set of memory-resident programs hasn't changed at all in the past 12 months. Aside from device drivers, I use Cruise Control, Revolution Software's magnificent program to optimize cursor speed and action depending on the foreground task; MemoryMate, Michael Fremont's free-form text database with a reminder tickler; and Ready!, the outlier from Living Videotext.

For big-league database functions, I like Borland's Reflex and Paradox. Reflex is great for analytical jobs, but it's limited to database files that fit in RAM. Paradox is the big guy for large projects. I've changed spreadsheets from Framework II to VP-Planner Plus. Now that VP-Planner is macro-compatible with Lotus 1-2-3 and features simplified menus, I'm satisfied with it. For telecommunications, I'm using Mirror II.

Over on the Mac, Microsoft Works is my primary writing tool, equipped with Lundeen & Associates' WorksPlus Spell and WorksPlus Command. WorksPlus Spell adds the best spelling checker I've ever used, and WorksPlus Command is a full macro environment—not only does it record and play back keystrokes and mouse movements, it also generates editable Pascal-like code.

Ezra Shapiro is a consulting editor for BYTE. Contact him at P.O. Box 146069, San Francisco, CA 94114, or on BIX as "ezra." Because of the volume of mail he receives, Ezra, regretfully, cannot respond to each inquiry.

MARCH 1988 • BYTE 187
Items Discussed

Cruise Control $29.95
Revolution Software Inc.
715 Route 10 E
Randolph, NJ 07869
(201) 366-4445
Inquiry 934.

Desktop Express $149
Dow Jones & Co. Inc.
P.O. Box 300
Princeton, NJ 08540
(609) 452-2000
Inquiry 935.

Mirror II $89.95
SoftKlone Distributing Corp.
1210 East Park Ave.
Tallahassee, FL 32301
(904) 878-8564
Inquiry 942.

Ready! $99
Living Videotext Inc.
2432 Charleston Rd.
Mountain View, CA 94043
(415) 964-6300
In California: (800) 443-4310
orders: (800) 822-3700
Inquiry 944.

Excel (Mac) $395
Microsoft Works (Mac) $295
Microsoft Corp.
16011 Northeast 36th Way
P.O. Box 97017
Redmond, WA 98073-9717
(206) 882-8080
Inquiry 936.

Paradox 1.1 $495
Borland International
4585 Scotts Valley Dr.
Scotts Valley, CA 95066
(408) 438-8400
Inquiry 946.

PowerStation $59.95
Software Supply Inc.
599 North Mathilda Ave.
Suite 210
Sunnyvale, CA 94086
(408) 749-9311
Inquiry 947.

QuickKey $99.95
CE Software
801 73rd St.
Des Moines, IA 50312-1051
(515) 224-1995
Inquiry 949.

SuperGlue $89.95
SmartScrap and
The Clipper $59.95
Solutions
29 Main St.
Montpelier, VT 05602
(802) 229-0368
Inquiry 950.

TOPS/DOS (MS-DOS) $189
TOPS for the Macintosh .. $189
TOPS FlashCard (PC AppleTalk card) .. $239
TOPS
2560 Ninth St., Suite 220
Berkeley, CA 94710
(415) 549-5900
Inquiry 952.

VP-Planner Plus $179.95
Paperback Software International
2830 Ninth St.
Berkeley, CA 94710
(415) 644-2116
Inquiry 953.

WordStar Professional 4.0 $395
MicroPro International Corp.
33 San Pablo Ave.
San Rafael, CA 94903
(415) 499-1200
Inquiry 954.

WorkPlus Command $99.95
WorkPlus Spell $59.95
Lundeen & Associates
P.O. Box 30038
Oakland, CA 94604
(415) 893-7587
Inquiry 851.

XyWrite III Plus $395
XyQuest Inc.
44 Manning Rd.
Billerica, MA 01821
(617) 671-0888
Inquiry 852.
Occasionally, when I'm working with ASCII files, I'll shift over to QUED/M from Paragon Concepts, a nifty programmers' editor that implements the full Unix wild-card search system. I keep Microsoft Write around on the hard disk merely to convert MacWrite files into something usable.

My databases are in Reflex Plus, though I'm building an accounting system in 4th Dimension. Excel is the spreadsheet of choice. For graphics, I usually use SuperPaint, but I occasionally play with both MacCalligraphy and GraphicWorks. My favorite layout program is PageMaker 2.0a.

Communications are handled with Software Venture's Microphone 1.1; I use Desktop Express from Dow Jones to communicate with MCI Mail. Is an outline conceivable without More from Living Videotext? Of course not. I'm also high on SuperGlue (the print-to-disk driver from Solutions), and I use SmartScrap and The Clipper, desk accessories from Solutions that simplify using graphics fragments in other programs.

In the past few months, I've picked up a number of new utilities for the Mac. Suitcase lets me cram my menus with far more desk accessories and fonts than Apple allows. PowerStation is a Finder replacement that I find extremely useful in the confusing maze of windows generated by MultiFinder. Both are from Software Supply.

I've just purchased QuickKey, from CE Software, which lets me assign mouse movements, menu selections, and text to keyboard commands of my own choosing. I haven't worked with it long enough yet to tell if I really like it.

The Hard Set
There's been a lot of hardware activity in the past 12 months; 1987 was a year for replacements. My old Compaq portable made way for a Tandon PCA-40, a 286/EGA box with a 40-megabyte hard disk drive and a single high-density floppy disk drive. I've added a Logitech Bus Mouse and MicroSpeed's FastTRAP trackball device, and I switch between the two depending on mood. I'm being won over by the trackball, but since it uses my one lonely serial connector, I switch to the Bus Mouse when I know I'm going to need the port.

One of the Tandon's slots has an AST Premium RAMpage board, and another holds a TOPS FlashCard AppleTalk board. The Compaq lives on, by the way. Since I haven't gotten around to installing a 360K-byte drive in the Tandon, I use the Compaq to format disks—a lonely fate for a machine that provided flawless performance for 2½ years of nearly continuous use, including 15 months spent running a bulletin board system.

The real excitement has occurred on the Macintosh side of my worktable. The Mac Plus and DataFrame 20 combo has been lent to a rabid computerphobe who was once forced to use MultiMate on an IBM PC XT. The Mac seems to be healing those deep scars; she's now sitting down at the computer voluntarily.

I'm using a new Macintosh SE with Apple's stock hard disk drive and an external Jasmine 160 drive. Less than a month after I purchased the computer, I ripped out the factory-installed memory and dropped in 4 megabytes of 120-nS Lightning single-in-line memory modules. I also bought myself a Radius Accelerator 16 card, and it's wonderful. I chose the Radius for two major reasons: price and convenience. At $995, it's half the price of many other boards. And since I test software, it's often necessary for me to shut off the accelerator and deal with a stock SE. By holding off

The Complete 68000 C Compiler

The UniWare™ 68000 C Cross Compiler generates fully optimized code for your ROMable applications. It supports:

- *68000*
- *68008*
- *68010*
- *68012*
- *68020*
- *68881*

You won't find a more complete package — the UniWare 68000 C Compiler comes with a relocating macro assembler, type-checking linker, librarian, and all the utilities you need to put your program into ROM. And it's just $995 under MS-DOS. Also available under UNIX.

CALL TODAY

(312) 971-8170

SOFTWARE DEVELOPMENT SYSTEMS, INC.
3110 Woodcreek Drive
Downers Grove, IL 60515

The Complete Z80 C Compiler

The UniWare™ Z80 C Cross Compiler generates fully optimized code for your ROMable applications. It supports:

- *Zilog Z80*
- *Zilog Z180*
- *Hitachi HD64180*

You won't find a more complete package — the UniWare Z80 C Compiler comes with a relocating macro assembler, type-checking linker, librarian, and all the utilities you need to put your program into ROM. And it's just $995 under MS-DOS. Also available under UNIX.

CALL TODAY

(312) 971-8170

SOFTWARE DEVELOPMENT SYSTEMS, INC.
3110 Woodcreek Drive
Downers Grove, IL 60515
The QMS has sold me on laser printers as the greatest thing since sliced bread.

down the mouse button on start-up, the Radius gives me the option of shutting off either the code cache, the data cache, or the whole thing.

Since the Mac itself is becoming a memory hog with MultiFinder and HyperCard, I also appreciate the fact that the card uses motherboard RAM. While it might not be as blazingly fast as accelerators with on-board memory, I didn’t have to buy 4 megabytes of chips for both

For printers, I have an Okidata Microline 192, an Apple Imagewriter II, and a QMS-PS 800 laser printer. The Okidata is hooked to the Tandon, the Imagewriter II plugs into the Mac, and the QMS is on the TOPS network so both computers can have access. The Okidata has performed well for 2½ years. The Imagewriter II is a recent addition, but a glance at the guts has convinced me it’s the most solidly built printer I’ve ever owned. The QMS handles the bulk of the printing around here, and it’s sold me on laser printers as the greatest thing since sliced bread.

The whole system is cabled together using TOPS networking software, the TOPS FlashCard in the Tandon, and PhoneNet connectors and wiring from Farallon.

Apology to Microsoft
In January, I attacked Microsoft for the inability of both Word 3.0 and Works 1.1 on the Macintosh to eliminate blank lines during a mail merge. I was half right. Word has problems, but Works does kill a blank line if it contains nothing but a null field. However, this feature is undocumented in both the original Works 1.0 manual and the pamphlet that accompanies the 1.1 update. According to Tim Lundeon, one of the authors of Works, the documentation was frozen before the software was finished. Silly me to trust the manual! Sorry, Microsoft.

On the Right Track
My December column, in which I mentioned a digital control system for Märklin model trains, prompted a brief note from Richard F. Dermody, coordinator of the Computers in Model Railroad special interest group of the National Model Railroad Association. He writes, “I thought you might be interested in knowing that there are more than a few people with a passion for model railroading and computers out there, as the hundreds of members in this special-interest group would indicate. 1988 will mark our seventh year of publishing a bi-monthly newsletter devoted to these two subjects... There are also alternatives to the Märklin system, which unfortunately controls only Märklin trains of mostly European prototype, rather than the North American prototypes more commonly modeled in the U.S. and Canada.”

If you send a stamped, self-addressed envelope, you can get further information about the group. Its address is NMRA CMR-SIG, 8431 Timber Glen, San Antonio, TX 78250-4416.

HOW TO ORDER BY MAIL:
SEND MONEY ORDER, CERTIFIED OR CASHIER’S CHECK, MASTERCARD, VISA or AMEX (include card number, expiration date and signature) TO JBM MUSIC WORLD, 59-50 QUEENS-MIDTOWN EXPRESSWAY, DEPARTMENT SMOSSER, MASPETH, NY 11378 DO NOT SEND CASH. Personal and business checks must clear our Authorization Center before processing. $3.95 MINIMUM ORDER. No CODS. Orders $10 or less are subject to handling & insurance charge is $5% of Total Order with a $3.95 minimum. (Canadian Orders Add $15 Shipping, with a $39.95 minimum charge.) For shipments by air, please double these charges. SORRY, NO C.O.D.’S. NEW YORK RESIDENTS PLEASE ADD SALES TAX. ALL MERCHANDISE SHIPPED BRAND NEW, FACTORY FRESH, AND 100% GUARANTEED. WE ARE NOT RESPONSIBLE FOR ANY TIPOGRAPHICAL ERRORS.
Enrich your writing style

At last! A program that enhances your writing style

READABILITY (from Scandinavian PC Systems, Inc.) analyzes your writing style and shows you how to improve it. Some twenty displays show you just how readable your writing is.

READABILITY IN A NUTSHELL

The main READABILITY diagram presents a simple graph. By comparing its dispersion and focal point with nine analytical templates, you can grade your writing on a scale ranging from children's books to bureaucratic gobbledegook.

Easy as A B C

A Write your letter, report, article or whatever it is you're working on using your regular word processor. Then convert to an ASCII file.

B Load READABILITY and ask it to analyze your text. The results are ready in a jiffy.

C Browse through the READABILITY displays to find out how readable your writing really is. READABILITY provides you with clear-cut advice on how to improve your writing style. Compare your results with those of your colleagues, or with a few paragraphs written by your favorite author or newspaper columnist.

What's more, you can see which sentences deviate from the norm, and then decide whether to rewrite them or not. Included with the program are finished analyses of a number of samples of good writing (by famous authors etc.). They help you to learn quickly how good writing should appear on the different diagrams.

The sentence diagram presents the readability characteristics of your sentences, and tells you what percentages of your sentences are EASY, NORMAL and DIFFICULT.

The word selection diagram presents your ratio of everyday words to unusual words and tells you how much word-variety your writing incorporates.

The word selection comments pinpoint poorly selected words that you'll want to avoid in the future.

READABILITY also presents an overall evaluation of your writing by grading it on a 0-to-5 scale based on six highly relevant factors. Finally, READABILITY summarizes the analysis by presenting and overall review with proposals for specific steps you can take to make your writing more readable.

Textbook-style manual

An attractive, hard-cover textbook-style manual is included with READABILITY. This well-organized and easy-to-use manual tells you how to use READABILITY and explains how it functions.

PRICE

only $ 59.95

Scandinavian PC Systems, Inc. specializes in low-price programs that include carefully written textbook-style manuals which are in a class apart when it comes to user-friendliness. We believe that a manual is every bit as important as the program it supports. More than 50,000 copies of our programs have been sold in Europe.

Our other programs include:

WORD PROCESSING, SPREADSHEET and DATABASE, each of which costs only $ 49.95.

YES! Send me the best!

copies of READABILITY AT $ 59.95 each.
copies of WORD PROCESSING at $ 49.95 each.
copies of SPREADSHEET at $ 49.95 each.
copies of DATABASE at $ 49.95 each.
copies of all four (special offer) at $ 179.80

Name: ____________________________
Company: __________________________
Address: ____________________________
City: ____________________________ State: __ Zip __
Country: ____________________________

□ Check enclosed □ MC □ VISA
Exp. Date: ____________________________
Signature: ____________________________
Date: ____________________________
As your introduction to The Library of Computer and Information Sciences

Take Any 3 Books

(Publishers' prices shown)

DATABASE

COMPUTER SCIENCE

AI & ROBOTICS

DATA COMMUNICATIONS

MICROS

PROFESSIONAL TOOLS

GRAPHICS
IBM ENVIRONMENT

<table>
<thead>
<tr>
<th>Title</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS Programming Techniques</td>
<td>$25.95</td>
</tr>
<tr>
<td>Application Debugging</td>
<td>$39.95</td>
</tr>
<tr>
<td>Using IBM's EDIF</td>
<td>$32.95</td>
</tr>
<tr>
<td>VMS Handbook</td>
<td>$32.95</td>
</tr>
<tr>
<td>UNIX System User's Manual</td>
<td>$32.95</td>
</tr>
</tbody>
</table>

SOFTWARE DEVELOPMENT

<table>
<thead>
<tr>
<th>Title</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handbook of Linear Algebra</td>
<td>$25.00</td>
</tr>
<tr>
<td>Crunch Mode</td>
<td>$34.50</td>
</tr>
<tr>
<td>Programmer's Guide to Ada</td>
<td>$58.05</td>
</tr>
<tr>
<td>The C Programming Language</td>
<td>$26.60</td>
</tr>
<tr>
<td>Assembler's Guide to UNIX</td>
<td>$29.95</td>
</tr>
</tbody>
</table>

PROGRAMMING

<table>
<thead>
<tr>
<th>Title</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning to Program in C</td>
<td>$35.00</td>
</tr>
<tr>
<td>VLSI Design</td>
<td>$37.00</td>
</tr>
<tr>
<td>Reliable Data Structures in C</td>
<td>$36.95</td>
</tr>
<tr>
<td>Operating Systems</td>
<td>$25.00</td>
</tr>
<tr>
<td>The Art of Finding Bugs</td>
<td>$35.00</td>
</tr>
</tbody>
</table>

4 Good Reasons to Join

1. **The Finest Books.** Of the hundreds of books submitted to us each year, only the very finest are selected and offered. Moreover, our books are always of equal quality to publishers' editions. **never** economy editions.

2. **Big Savings.** In addition to getting 3 books for only $1.00 each when you join, you keep saving substantially up to 30% and occasionally even more. (For example, your total savings as a trial member—including this introductory offer—can easily be over 50%. That's like getting every other book free!)

3. **Bonus Books.** Also, you will immediately become eligible to participate in our Bonus Book Plan, with savings of 65% off the publishers' prices.

4. **Convenient Service.** At 3-4 week intervals (16 times per year), you will receive the Library of Computer and Information Sciences News, describing the Main Selection and Alternate Selections, together with a dated reply card. If you want the Main Selection, do nothing, and it will be sent to you automatically. If you prefer another selection, or no book at all, simply indicate your choice on the card and return it by the date specified. You will have at least 10 days to decide. If, because of late mail delivery of the News, you should receive a book you do not want, we guarantee return postage.

If reply card is missing, please write to The Library of Computer and Information Sciences, Dept. 7-E85, Riverside, NJ 08075, for membership information and an application.

Byte 3/88

For only **$1.00 Each**

You simply agree to buy 3 more books—at handsome discounts—within the next 12 months.
Spectrum Software's MICRO-CAP II® is fast, powerful, and feature rich. This fully interactive, advanced electronic circuit analysis program helps engineers speed through analog problems right at their own PCs.

MICRO-CAP II, which is based on our original MICRO-CAP software, is a field-proven, second-generation program. But it's dramatically improved.

MICRO-CAP II has faster analysis routines. Better resolution and color. Larger libraries. All add up to a powerful, cost-effective CAE tool for your PC.

The program has a sophisticated integrated schematic editor with a pan capability. Just sketch and analyze. You can step component values, and run worst-case scenarios—all interactively. And a 500-type* library of standard parts is at your fingertips for added flexibility.

MICRO-CAP II is available for IBM® PCs and Macintosh.” The IBM version is CGA, EGA, and Hercules® compatible and costs only $895 complete. An evaluation version is available for $100. Call or write today for our free brochure and demo disk. We'd like to tell you more about analog solutions in the fast lane.

- Integrated schematic editor
- Fast analysis routines
- High-resolution graphic output
- Standard parts library of 500* types
- IBM versions only.

• Transient, AC, DC, and FFT routines
• Op-amp and switch models
• Spec-sheet-to-model converter*
• Printer and plotter* hard copy

Spectrum

1021 S. Wolfe Road, Dept. E
Sunnyvale, CA 94087
(408) 738-4387

MICRO-CAP II is a registered trademark of Spectrum Software.
Macintosh is a trademark of Apple Computer, Inc and is being used with express permission of its owner.
Hercules is a registered trademark of Hercules Graphics Technology.
IBM is a registered trademark of International Business Machines, Inc.
Floating-Point Processing
Introduction
Floating-Point Processing

Numbers don't float, of course (although the wrong number can certainly sink a calculation), but our microcomputers perform arithmetic on numbers stored with a floating-point representation all the time. Efficient computing requires floating-point processing. Fixed-point arithmetic limits the range of the numbers being manipulated. It also adds to the complexity of the operation by demanding a great deal of scaling among numbers with different "implicit" radix points. So, floating-point arithmetic has become a modern-computing necessity.

Given that necessity, finding better ways to perform such math gains significance, particularly as microcomputers take on more demanding applications in real-time processing, CAD, and scientific computing. In the era of graphics-intensive applications, high-quality hardware and software assistance for floating point is paramount. For example, the number of floating-point operations (FLOPs) needed to display a single graphics image can add up as follows: Compute 12,000 image points, 120,000 FLOPs; rotate and scale the image to complete its nonviewable side, 28 4-by-4 matrix transformations, 300,000 FLOPs; clip the image (to display only the viewable surfaces), 72,000 FLOPs; convert coordinates to integers for pixel mapping, 130,000 FLOPs; shading and light source calculations, 360,000 FLOPs; interpolation of unplotted points, 300,000 FLOPs. The final tally—1.5 million FLOPs to display a single high-resolution image. The reason behind the primitive graphics of early-generation microcomputers suddenly becomes clear.

The examination of floating-point processing we offer in the following pages assesses where we stand today and speculates on where we might go tomorrow. By looking at the dynamics of floating-point processing, and some of the hardware and software issues involved in doing it, we can begin to understand how important this technology has become in personal computing.

We did not look at array processors—specialized engines for doing image-processing applications—but this class of hardware will undoubtedly become more prevalent in the future and will warrant our attention in a future issue.

Our coverage starts with "Avoiding Coprocessor Bottlenecks," in which Mauro Bonomi explains the Weitek 1167 architecture and shows where that floating-point unit (FPU) gets its performance. He explores the limitations imposed on performance by the bandwidth of the bus connecting the CPU and FPU. And in a text box to this article, BYTE's Tom Thompson assesses the performance of two Intel 80386-class floating-point accelerators—the Intel 80387 and the Weitek 1167. He put both accelerators through their paces with a series of common test programs to show how they perform.

Next, Prakash Chandra, in "Programming the 80387 Coprocessor," explains the additional functions that the newest Intel FPU provides. Not only is it a faster-clock-rate FPU, the 80387 adds new transcendental functions. Chandra explains the important differences between the 80387 and the earlier-generation Intel floating-point processors.

In his "Floating-Point Survival Kit," computer engineer Pete Wilson reviews the floating-point fundamentals, gives some insights into techniques for measuring floating-point speed, and evaluates some of the newest computer designs for speeding floating-point operations.

Finally, Carl Byington talks about doing IEEE 754-compatible math in software without major performance sacrifices. His article, "How to Get Better Floating-Point Results," also gives some tips on designing programs that give good answers regardless of whether the floating-point operations are executed in hardware or via software emulation.

—G. Michael Vose, Senior Technical Editor
George A. Stewart, Technical Editor

Illustration by Robert Tinney
Avoiding Coprocessor Bottlenecks

Overcoming bandwidth problems between the CPU and the floating-point math coprocessor

Mauro Bonomi

NUMERICS PERFORMANCE IN the millions of floating-point operations per second (MFLOPS) is vital to workstation tasks such as high-quality graphics, stress analysis, CAD, and electrical or mechanical simulations. With the increasing sophistication of business software, MFLOPS are fast becoming a necessity in many office applications as well. Linear programming, used to solve complex optimization problems in business and industrial planning, relies largely on floating-point computation. So does statistical analysis employed in market research, product quality analysis, capacity planning, and stock portfolio analysis. The high-resolution graphics found in computer-aided drafting and desktop publishing make copious use of floating-point arithmetic (see the text box "Graphic’s Prodigious Need for FLOPS" on page 198).

While high-end microprocessors such as the Intel 80386 provide general-purpose horsepower in the 3- to 4-MIPS range, their arithmetic performance lags far behind, delivering only thousands of floating-point operations per second—far too slow for compute-intensive personal workstation applications.

For higher numerics performance, system designers must turn to coprocessors and numerics accelerators. By relieving the CPU of floating-point math, these arithmetic engines can increase system performance markedly. A range of numerics accelerators are available, from conventional coprocessor chips, like Intel’s 80387 and Motorola’s 68882, to very fast bit-slice array processors. Conventional coprocessors are relatively inexpensive and run standard software but offer performance levels suitable only for low-intensity numerics applications, such as spreadsheet recomputation and two-dimensional graphics. Array processors, on the other hand, are often expensive and difficult to program. They execute special operations, such as matrix multiplications and vector calculations, very rapidly. But because of their complex architectures, often featuring multiple memory banks, pipelined stages, and multiple address generators, they are not supported by standard compilers. Simple recompilation of existing software is not possible.

A variation on the conventional coprocessor is the memory-mapped coprocessor. These coprocessors reach a middle ground between conventional coprocessors and array processors; they provide standard software support like the conventional coprocessors but move up the performance curve toward array processors. Memory-mapped coprocessors vary from conventional coprocessors in one vital respect: Memory mapping attempts to deal with the bus bandwidth bottleneck.

Sun, Apollo, and Masscomp all make proprietary memory-mapped floating-point accelerators for workstations; in the personal computer world, the Weitek 1167 is the only example of a memory-mapped coprocessor.

Bottlenecks Limit Performance

The vast majority of arithmetic calculations performed by any computer employ real numbers and so require floating-point processing. Such processing is, however, a good deal more complex than integer math. The computer must keep track of a mantissa and an exponent for every operand and perform scaling after each arithmetic operation to reduce the result to a normalized format.

Owing to silicon space limitations, microprocessors, such as the 80386 and the 68020, feature integer-only ALUs. Floating-point operations are accomplished through software subroutines. Each such operation is carried out by the integer hardware as a lengthy series of ALU steps (adds, subtracts, and shifts).

This type of software implementation places a significant drag on performance in numerics-intensive tasks. Numerics coprocessors provide dramatic gains in speed by implementing floating-point functions in specialized hardware. Co-processors work in close conjunction with the microprocessor.

Assuming, for example, that two single-precision numbers, A and B, stored in two 80386 registers must be added and the result C stored back in the 80386, the following actions must be carried out: The microprocessor must instruct the coprocessor to execute an addition, pass the two operands, and then store the result after the completed operation. Clearly, the resulting system performance depends on two main factors: the raw speed of coprocessor arithmetic operations and the speed of the coprocessor-to-CPU interface.

Avoiding Coprocessor Bottlenecks

Overcoming bandwidth problems between the CPU and the floating-point math coprocessor

Mauro Bonomi is a product manager at Weitek. He can be reached at 1090 East Arques, Sunnyvale, CA 94086.
COPROCESSOR BOTTLENECKS

Graphic’s Prodigious Need for FLOPS

One of the most math-hungry applications is three-dimensional graphics, used extensively in CAD, computer animation, and a variety of scientific problems. Generating even the simplest image of a three-dimensional solid, for example, can consume prodigious numbers of floating-point operations. Beginning from a simple geometrical description of an object, the computer must derive a model of the object’s entire surface and its relationship to the viewing screen, reflected light, and perspective attributes.

Consider the goblet in photo A. The first step in rendering a realistic image is to create a mathematical model of the object. The goblet is defined in terms of quadratic functions representing simple geometric shapes: a sphere, cylinder, and two hyperbolic surfaces, each truncated by one or more planes. For example, the quadratic function for the sphere is \(X^2 + Y^2 + Z^2 = K^2 \).

The equations are next solved for various values of X and Y. The result is a set of coordinate points, representing points on the surface of the goblet. In a process known as tessellation, each point is treated as the vertex of a triangle. The surface as a whole is represented by a large number of adjacent triangles, much like a faceted gem, that approximate the smoothly curving surface of an actual goblet (see figure A). The greater the number of surface points computed, the higher the quality of the final picture. For this image, 12,000 points were computed with a total of about 120,000 floating-point calculations.

The generalized surface image must next be rotated, translated, and scaled. That is, it must be assigned exact orientation, position, and size. The coordinates of each triangle vertex are multiplied by a 4-by-4 transformation matrix.

Twenty-eight floating-point operations are needed to transform each point; transforming the entire picture takes 330,000 calculations.

Once the image has been transformed, it must be determined which points fall within the viewing space (i.e., which points lie inside the picture frame). Clipping, as this process is called, involves six calculations per point for a total of 72,000 calculations. Perspective transformation comes next. The internal, three-dimensional model of the goblet is projected onto the two-dimensional coordinates of the computer screen. Screen coordinates must be converted into integer values representing pixel locations. Roughly 130,000 operations are required.

A shading model must then be used to compute the colors and intensities associated with each point on the screen. Such models take into account the properties of both the surface of the object and the light source. Light source calculations entail more than 360,000 operations for the vertex points projected onto the screen. Shading for pixels not corresponding to vertices of the tessellated image is derived via interpolation. Assuming the goblet takes up 30 percent of the screen, interpolation requires close to 300,000 calculations.

At this point, the information is complete and is ready to be displayed. All told, the image has required approximately 1.5 million floating-point operations. Many more operations are required every time the image is rotated, translated, or rescaled.
processor acquire data and instructions by using both the address and the data bus simultaneously.

For example, consider the simplified block diagram of the Weitek 1167 memory-mapped coprocessor and its interface to the Intel 80386 (figure 1). The multiplier and ALU data paths execute such operations as single-precision adds, subtracts, and multiplies in a single pass through the silicon. The 80386 multiplier and ALU flow-through time is under 200 nanoseconds for a single-precision operation. In contrast, conventional coprocessors usually require over 1.5 microseconds (7 to 8 times slower) to carry out the same operation.

The coprocessor is connected to the 80386 via the control, data, and address buses. Instructions (op codes) are sent to the coprocessor using the system address bus, while data (operands) are sent over the data bus. As the address bus specifies the instruction to be performed, the data bus can pass a 32-bit operand simultaneously. This parallelism reduces bus bottlenecks that otherwise significantly limit system performance.

View of the System Address Bus

The microprocessor treats a memory-mapped coprocessor as a distinct region of physical memory. Data-moves to and from this memory region select the coprocessor and specify both the floating-point op code, the location of the two operands, and the destination of the computational result. At the same time, the data on the data bus can provide any operand not already present in the coprocessor register file. This means that one of the two operands always resides in the coprocessor register file.

Generating Instructions

Coprocessor instructions for the Weitek 1167 are specified via simple 80386 memory moves. Assuming that the two single-precision operands in the 80386 registers EAX and EBX need to be added and the result is to be stored back in register EAX, the following three memory move instructions will execute the operation:

1) mov ADDR1, eax ; load content of EAX (A) into the Weitek 1167 register file.
2) mov ADDR2, ebx ; load content of EBX (B) into Weitek register file and add it to A.
3) mov EAX, ADDR3 ; store result C back into 80386 register EAX.

Addresses ADDR1, ADDR2, and ADDR3 are derived by filling the address fields, shown in figure 2, with the proper values. The most significant 16 bits of all the addresses are set to C000h in order to select the coprocessor. The next 6 bits are filled with the op code for LOAD, ADD, and STORE, respectively. Finally, the least significant 10 bits will be filled with the operand addresses.

As all the above operations involve one operand coming from the bus, Source1 will always be set to 0. Source2 can instead specify any of the remaining 31 registers (1 to 31) in the Weitek 1167 register file. With the move to ADDR2, the 80386 passes a 32-bit operand (B) to the coprocessor on the data bus and specifies the floating-point instruction that needs to be executed (ADD). This is an example of the parallelism provided by the memory-mapped interface.

To hide the details of the memory-mapped interface from the programmer, memory-mapped coprocessors feature macros, one for each coprocessor instruction. Using Weitek 1167 macro notation, for example, the addition sequence above becomes

1) wld ws 1, EAX ; load EAX (A) into Weitek register 1.
2) wadd ws 1, EBX ; add Weitek register 1 (A) to EBX (B).
3) w fst EAX, ws 1 ; store result from Weitek register 1 to EAX.

The instruction stream assumes that reg

Figure 1: A block diagram of the 80386/Weitek 1167 interface.

Figure 2: The Weitek 1167 view of the 80386 address bus.
COPROCESSOR BOTTLENECKS

Large Register Sets
Memory-mapped coprocessors commonly offer large internal register sets that can be used to store constants and to accumulate partial results. The accumulation of partial results in internal registers lets the coprocessor minimize the number of loads and stores between the microprocessor and the FPU.

When performing a three-dimensional graphics transformation, for example, requiring the multiplication of a large number of vectors of four elements each by a 4-by-4 transformation matrix, the programmer can store all 16 matrix coefficients in the coprocessor register file and then use them to transform all the vectors.

C programmers can define all variables processed by the coprocessor as temporary variables. The compiler will then allocate such variables to coprocessor internal registers, thus holding the number of store and load operations between microprocessor and coprocessor to a minimum.

To appreciate the performance differences between conventional and memory-mapped coprocessors, see “The Intel 80387 vs. the Weitek 1167” by Tom Thompson, on page 205.

Compiling: An Example
The beach ball picture shown in photo 1 was generated on a 20-MHz Compaq Deskpro 386/20 with an EGA graphics card. The C code for this simple graphics example is presented in listing 1. The program uses the Phong shading technique to compute the intensities and colors of the surface of the ball. The idea behind this technique is to compute normal (perpendicular) vectors to each point on the surface using an interpolation scheme and then apply the shading model at each pixel displayed.

The program involves a large number of floating-point computations on single-precision numbers, including the four basic instructions (add, subtract, multiply, and divide), as well as special functions (sine, cosine, and square root). The C program was compiled with a MetaWare High C compiler that supports both the Weitek 1167 and the 80387 coprocessor. The compiler generates either 80387 or Weitek 1167 object code. Users choose the desired coprocessor by setting a special switch on the command line when giving the compile command.

Running without a floating-point coprocessor, with the 80386 emulating

Listing 1: The C code to generate the beach ball. (Code written by Bruce Holloway of Weitek.)

```c
#include <math.h>
#include <stdio.h>
#include <time.h>

clock_t start, stop;
float pi;
int colors[] = {3, 6, 10, 13, 6, 3, 10, 13, 6, 3, 13, 10, 13, 6, 3, 10, 13};
float palette[] = {0.0, 0.3, 0.6, 0.9, 0.3, 0.6, 0.9, 0.6, 0.9, 0.6, 0.9, 0.6, 0.9, 0.6, 0.9, 0.6};
x, y, x_min, x_max, y_min, y_max;
unsigned short random;
main()
```

continued
CHECK THE SPECS

- The Data Exchange System, Model 24, allows high speed exchange of data between computers, printers and other peripherals.
- Powerful 16-bit CPU plus multiple high performance I/O processors allow super high speed transfer of data demanded by new faster computers and software.
- Optimum flexibility: Select the right combination of serial and parallel ports, and set any of these ports as a peripheral port or as a computer port.
- Basic unit expandable to 24 ports by 4-port modules offered in serial/parallel combinations.
- Standard 512KB buffer expandable to 4½ megabytes, to handle big print/plot jobs and many small ones.
- Buffer memory dynamically allocated to maximize buffer utilization.
- Simultaneous data input and output on all ports, so no devices are kept waiting.
- Computer-to-computer communication concurrent with all other operations.
- Full duplex communication allows file transfer capability with many communications software packages.
- Compatible with virtually all computers, printers, plotters, modems and other peripherals.
- Pop-up RAM resident PC support software allows peripheral selection via hot key.
- Super fast throughput allows data to pass through with no apparent processing delays.
- Many user-definable parameters including separate baud rates, flow control and parity for each port.
- Internal serial-to-parallel and parallel-to-serial conversion.
- Cascading capability to increase available number of ports.
- Unlimited hotline tech support.
- Designed and manufactured in the U.S.A.

Engineered for speed, flexibility and expandability.
LABTECH®
NOTEBOOK
Now
with Real Time
Data Reduction

LABTECH NOTEBOOK has been the accepted standard for data acquisition and control software for some time. It is a remarkable package that lets you perform real-time data acquisition and process control on your PC without programming.

Now, NOTEBOOK can also do real-time analysis and data reduction, so you can see meaningful data on the screen, and adjust the experiment automatically based on those calculations. For example, you can see the mean or standard deviation of a signal, calculate an FFT, compare several signals, or use FIR filters—all in real-time! We call this intelligent data acquisition and control.

And if you need to do post acquisition analysis, you can replay your data back through NOTEBOOK for further reduction, use LABTECH's FFT or Curve Fitting programs, or you can call your favorite analysis program. With our Real Time Access option, you can move the data to your favorite analysis software or a custom-written program while it is being collected.

For information on where to buy and a list of interface hardware supported by LABTECH NOTEBOOK, write Laboratory Technologies today or call (617) 657-5400.

LABTECH NOTEBOOK is compatible with Hardware IBM PC XT AT or compatibles and most instrumentation interfaces.

Laboratory Technologies Corporation
400 Research Drive, Wilmington, MA 01887
(617) 657-5400

COPROCESSOR BOTTLENECKS

```c
float a, b, c, 10, 11, 12, ln, lnl, n0, n1, n2, p, q, r = 1, st, v[12][3];
int n;

/* Put EGA in hi-res graphics mode & initialize palette. */
video_int(8x10);
for (n=0; n<16; n++)
  video_int(8x1000, n+ (palette[n]<<8));

/* Print title & start timing. */
#ifdef Intel
  printf("SOFTWARE Phong Shading Demonstration\n");
#else
  printf("SOFTWARE Softimage Phong Shading
");
#endif
  printf("SOFTWARE Phong Shading Demonstration\n");
  start=clock();

/* Pixel aspect ratio. */
a=1.3;
/* Screen center coordinates. */
b=5*(d[0]-1);
c=5*(d[1]-1);
/* Unit length light source vector. */
10=1/sqrt(3);
11=10;
12=10;
/* Ratio of circumference to diameter of a circle. */
p=4*atan(1);
/* A dozen vertices evenly spread over a unit sphere. */
v[0][0]=0;
v[0][1]=0;
v[0][2]=1;
s=sqrt(5);
for (1=0; i<11; i++)
  p=pi*i/5;
  v[i][0]=2*cos(p)/s;
  v[i][1]=2*sin(p)/s;
  v[i][2]=(1-2*2)/s;
}

v[11][0]=0;
v[11][1]=0;
v[11][2]=-1;
/* Loop to Phong shade each pixel. */

```
Microsoft QuickBASIC 4.0 is no longer your basic BASIC. Now, because of a revolutionary breakthrough, you can run, test, debug, then continue running your program and see the results instantly. Which is why we call it "instant programming."

Other compilers make you wait while they compile your program at an unimpressive rate of 12,000 lines per minute. But Microsoft QuickBASIC 4.0 translates your program into executable code at a breathtaking 150,000 lines per minute. You get all the speed you can possibly use right when you need it. While you're developing your program.

And for the first time in BASIC, you'll find the most sophisticated debugging tools around. Like the freedom to change a running program on the fly. Without restarting. And you also get instant syntax checking, watch expressions, even runtime type checking.

Besides all these advances in the environment, Microsoft QuickBASIC 4.0 gives you a sophisticated collection of language extensions: records, recursion, huge arrays and true functions. There's even interlanguage calling that lets you call subroutines from other Microsoft languages.

And if you think all this means you might have to give up phenomenal execution speed, think again. Microsoft QuickBASIC 4.0 gives high performance executable code that's the fastest anywhere.

About the only thing that isn't more advanced in Microsoft QuickBASIC 4.0 is the price.

It's still just $99. And it's still backed with a 30-day money back guarantee. Microsoft QuickBASIC 4.0.

To make a quantum leap in your programming, you need a quantum leap in your language.

Microsoft QuickBASIC 4.0
COPROCESSOR BOTTLENECKS

80387 instructions, the program takes 8 minutes to complete. Adding a 20-MHz 80387 reduces the execution time to a little more than 28 seconds. Finally, the Weitek memory-mapped coprocessor reduces execution time by about 3 times, down to only 10 seconds. The 200 percent performance improvement was achieved by simply recompiling the source code with no hand-coded optimizations.

Samples of the compiler output for both the 80387 and the Weitek 1167 are provided in listings 2 and 3. When compiled for the 80387, the code line

s=r*r-s*s is translated into the code stream in listing 2.

The same equation is translated into 1167 memory moves by the compiler when the Weitek coprocessor is selected. The Weitek object code shown in listing 3 makes efficient use of coprocessor registers. The equation result s = r*r - s*s, for example, is not stored back into the 80386 but is left in the coprocessor register file and is then used by the instruction (x_max = b + a * sqrt(s)), thus minimizing the data transfers between the microprocessor and the coprocessor and freeing up the system bus.

Programming for Performance

When writing high-level language code for a memory-mapped coprocessor, some simple techniques can lead to significant performance improvements in the compiled code. First, variables used only in specific subroutines can be defined as local variables. The compiler then allocates such variables to coprocessor registers and will not store them back to main memory at the end of each instruction.

In the case of the 1167, the assembly language programmer has access to special instructions not otherwise available to compiler users. The multiply-accumulate (vmac) instruction is an example. This instruction, useful in implementing matrix multiplications, specifies the multiplication of the two input operands, followed by the addition to a previously calculated partial result. A single memory move can then specify two floating-point instructions (multiply and add), further decreasing the burden on the system bus.

Additional assembly-level instructions that can improve the system performance are block moves—that is, moves of blocks of data to or from adjacent memory locations. A block move effectively encodes a stream of floating-point instructions. It is useful in loading and unloading the entire contents of the coprocessor register file, as well as in implementing vector adds and multiplies.

Boiling Down

Accelerating floating-point performance boils down to more than just clock rates and the size of machine words. We need the hardware assistance of dedicated ALUs and multipliers. But equally important is the need for efficient ways to move data and instructions between the main processor and the math coprocessor.

Removing the coprocessor instruction stream from the data bus—using the address bus to transmit tip codes—leaves more room for passing operands. This strategy is one way to increase data bus bandwidth and improve processor/coprocessor interaction.
The Intel 80387 vs. The Weitek 1167

Tom Thompson

AS THE OTHER articles in this section explain, the new generation 80386 floating-point hardware improves upon the math coprocessors previously available. To find out if they really deliver on their collective promise to enhance floating-point performance, I ran several tests to determine how the 80387 and Weitek WTL 1167 stacked up.

The Compaq 386/20 lets you use this new generation of math coprocessor. While the 80387 is a single chip, the Weitek 1167 is a set of three chips designed to work in parallel with the Intel 80386 and provide floating-point performance superior to the 80387. Compaq supplies this coprocessor on a cleverly designed Weitek Coprocessor Board that also has an 80387 socket. This unique ability to use both coprocessors within the same computer gave BYTE the opportunity to compare the floating-point performances of both.

Compaq’s Weitek Coprocessor Board comes in a kit costing $1999 that contains the coprocessor board, a special interconnection board, a 38-page installation guide, and a tool for removing the 80387 from its socket. The board has a PC-form factor with a standard PC-card edge connector for mounting it in the computer. The interconnection board plugs into the 80387 socket on the Deskpro’s motherboard and attaches to two male connectors on the coprocessor board, opposite the PC edge connector. This second pair of connectors lets the computer communicate with the 80387 when it’s placed on the coprocessor board. Because of the location of the motherboard’s 80387 socket, you must install the Coprocessor Board in slot 2.

The installation guide uses photos and detailed text to guide you step by step through the board installation. However, the disassembly procedure used is complex: You are required to remove the Deskpro’s entire motherboard just to remove the 80387 and install the interconnection board on its socket. I used a shortcut by removing the reinforcement bracket, the RF shield, and the 32-bit memory board in slot 1. This saved me a lot of disassembly work and having to run SETUP to reconfigure the system. (My guess is that Compaq wants you to go through the elaborate disassembly process to avoid stressing the motherboard when the interconnection board is attached.)

When you have removed the 80387 from the computer, you then place it in the 80387 socket on the coprocessor board. Once the 80387 is in place, you mount the coprocessor board by very carefully sliding it (since you have three connectors to mate instead of one) into slot 2.

The Tests

I ran a number of benchmarks (compiled with MetaWare’s High C version 1.4) to test both the Weitek coprocessor and 80387’s handling of floating-point operations, transcendental functions, and a mix of the two. A compiler switch directed High C to generate either Weitek coprocessor- or 80387-specific instructions. The transcendental run-time libraries are from Weitek and licensed to MetaWare for use with its compiler. I used Phar Lap’s version 1.1 Linker and DOS Extender to run the benchmarks in the 80386 protected mode.

The Float and Calcpi benchmarks are floating-point intensive. Calcpi computes the value of π from a Taylor series expansion. Although the arctangent is used in Calcpi, it is used only once, so that benchmark can safely be said to be floating-point intensive. The Whetstone and John Walker’s Fbenc benchmarks are representative of a mix of floating-point and transcendental functions. The Whetstone has few transcendental function calls, while the ray-tracing algorithms in Fbenc make heavy use of them. Finally, Dr. Dobbs’ Savage benchmark uses only transcendental functions.

The results are shown in Table 1. As you can see, the Weitek coprocessor easily outperforms the 80387 in floating-point operations. However, only a modest gain in performance is seen with the transcendental functions, notably with the Savage benchmark. This is because the WTL 1167 supports these functions as run-time libraries, not in silicon. The mixed-instruction benchmarks (Fbenc and Whetstone) are probably more representative of real-world applications.

Since the benchmark programs are coded in C, all floating-point values are processed as double-precision. You can obtain better performance using single-precision values.

Tom Thompson is a BYTE technical editor with a BSEE degree from Memphis State University. He can be contacted at BYTE, One Phoenix Mill Lane, Peterborough, NH 03458, or on BIX as “tom_thompson.”

Table 1: The Weitek Coprocessor Board ran 7 percent to 68 percent faster than the 80387 processing double-precision numbers in our benchmarks.

<table>
<thead>
<tr>
<th></th>
<th>Weitek 1167</th>
<th>Intel 80387</th>
<th>% Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fbenc</td>
<td>3.35</td>
<td>4.01</td>
<td>16</td>
</tr>
<tr>
<td>Float</td>
<td>0.35</td>
<td>1.03</td>
<td>66</td>
</tr>
<tr>
<td>Savage</td>
<td>2.63</td>
<td>2.84</td>
<td>7</td>
</tr>
<tr>
<td>Calcpi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loopsine</td>
<td>0.14</td>
<td>1.37</td>
<td></td>
</tr>
<tr>
<td>Benchtime</td>
<td>0.99</td>
<td>3.11</td>
<td>68</td>
</tr>
<tr>
<td>KiloFLOPs per sec.</td>
<td>590.99</td>
<td>287.40</td>
<td></td>
</tr>
<tr>
<td>Whetstone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Execution time</td>
<td>0.35</td>
<td>0.57</td>
<td>38</td>
</tr>
<tr>
<td>Whets per sec.</td>
<td>2906469</td>
<td>1759199</td>
<td></td>
</tr>
</tbody>
</table>

A Compaq 386/20 with 20-MHz 80386/80387 was used with Compaq’s Weitek Coprocessor Board. One thousand iterations were run for the Fbenc test, and 125,000 iterations were executed for Calcpi. All times are in seconds.

“Improvement” indicates the improvement in execution speed compared to the 80387.
Who can explain the mysteries of nature? Such as why lightning always seems to black out the power and your PC, just as you're putting the finishing keystrokes on an 87-page report?

That's where Deja View™ flashback software comes in.

Deja View runs on your IBM PC, PS/2 or compatible, automatically protecting your work in progress from power failures and surges. Accidentally pulled plugs. Frozen keyboards. System crashes. Unintentional reboots. Inadvertently deleted information on your screen. And a thousand other potential disasters.

Even after your PC goes down, Deja View will flash you right back to where you were before the problem. And you can continue as if the mishap never occurred.

Deja View is a non-copy-protected, memory-resident utility that runs along with your application program. It automatically copies all of your PC's RAM and video memory onto your hard disk, saving your work in progress. You decide the frequency of the Auto-Save function, by number of keystrokes or specified time intervals. Or use the Save-Now key as needed.

Deja View also lets you flip back and forth between two different applications by depressing just three keys. You don't need to save work files, exit one application, and then load the new application and work files.

Now there's no need to buy an expensive battery back-up system. With a price of only $95, can you really afford to be without Deja View?

So call Meridian Technology today, or see your local dealer. And if disaster should strike, you'll know your work in progress is safe. And you'll be glad you've experienced Deja View.

Deja View and Use it or lose it are trademarks of Meridian Technology, Inc. Other products are trademarks of their manufacturers.

DEJA VIEW™
Use it or lose it.
Programming the 80387 Coprocessor

A look at the differences between this FPU and its older cousins

Prakash Chandra

THE 80387 CHIP is a math coprocessor for the 32-bit 80386 microprocessor. The 80387—actually called a Numerics Processor Extension (NPE) by its maker, Intel Corp.—implements the IEEE 754-1985 Standard for Binary Floating-Point Arithmetic and provides numeric capabilities that include support for floating-point, extended-integer, and binary-coded-decimal (BCD) data types. The 68-pin 80387 operates independently of the real, protected, and virtual-8086 modes of the 80386.

While maintaining upward object-code compatibility with the 8087 and the 80287, the 80387 contains a variety of new instructions, including instructions to compute sine and cosine functions, and it extends the capabilities of many existing instructions. Object-code compatibility ensures that any program running on the 8087 or the 80287 will run on the 80387 without recompilation.

Let’s look at the key differences between the 80387 and the earlier 8087/80287 floating-point units (FPUs). For a description of the performance characteristics of the 80387, see the text box “80387 Performance” on page 212.

Architectural Overview

The 80287 was designed before the final IEEE-754 standard was approved. The 80387, on the other hand, fully conforms to the standard, including automatic normalization of nonzero operands, support of only the affine interpretation of infinity (the 80287 supports both affine and projective interpretations), and IEEE 754-compatible unordered and partial remainder instructions.

The programmer of an 80386/80387 computer system can view the 80387 as a means to add extra registers, new data types, and trigonometric, exponential, and arithmetic instructions to those of the 80386.

* Register set: As figure 1 shows, an 80387 contains a set of eight 80-bit general-purpose registers that are individually addressable, plus three 16-bit registers and two 48-bit registers. The general-purpose registers are organized in the form of a stack. The top of the stack is designated by the TOP field of the 80387 status-word register (described later). Numeric instructions address the eight general-purpose registers relative to the top of the stack. In the rest of this article, I’ll use ST to indicate the top of the stack and ST(0) (with i = 0, . . . , 7) to represent the ith register from the top of the stack.

The three 16-bit registers in the 80387 are known as status-word, control-word, and tag-word registers. The overall state of the 80387 is stored in the status word. The control-word register is used to control processing options in the 80387. The tag word indicates the contents of each register in the general-purpose register stack.

The function of the tag word is to optimize the 80387’s performance and stack handling by making it possible to distinguish between empty and non-empty register locations. It also allows programmers of exception-handlers to check the contents of a stack location without the need to perform complex decoding of actual data.

The 48-bit instruction and data-pointer registers provide for user-written exception handlers. These registers, which are actually located in the 80386, can be referenced only by a subset of 80387 instructions and are used by the 80386 to save the instruction address, the operand address (if any), and the instruction op code whenever the 80386 decodes an 80387 instruction.

* Data types: As figure 2 shows, the 80387 supports seven data types in three different formats—binary integer, BCD integer, and binary real. Internally, all numbers are stored in the extended-precision real format.

* Special numeric values: A real number in the 80387 has three parts—sign, significant, and exponent. The 1-bit sign indicates whether the number is positive or negative. The number’s significant digits are held in the significand field. The exponent field determines the location of the “decimal” point within the significant digits.

The data format of the 80387 also permits representation of special numeric values. A significant of 00. . . . 00B (B = binary) and a biased exponent of 00. . . . 00B represent the value 0. A 0 can be positive or negative. Infinity is another special numeric value, represented by a significant of 1.00. . . . 00B and a biased exponent of 11. . . . 11B.

Prakash Chandra is a technical marketing engineer at Intel Corp. He can be reached at 3065 Bowers Ave., Santa Clara, CA 95051.
80387 allows both positive and negative infinities. A third special case represents
denormal numeric values that occur in computations involving extremely small
numbers. Use of denormal values allows
the gradual loss of precision in computations on small numbers.

The class of real numbers represented
by an exponent of 11...11B and a significan
c of anything except 1.00...00B is
ted a NaN (not a number). The 80387
uses two classes of NaNs—signaling
NaNs (SNaNs) and quiet NaNs (QNaNs).
The 80287, on the other hand, employs
only one type of NaN—the equivalent of
QNaN in the 80387.

A signaling NaN has a 0 in the most
significant bit of its significant. Al-
though the 80387 never generates a sig-
aling NaN itself, it recognizes signaling
NaN operands and causes an invalid-o-
per operation exception whenever an arithmetic
operation is performed on a signaling
NaN operand.

For example, a compiler could use the
signaling NaN to detect the use of a var-
iable in a program before the variable has
been initialized. This can be done by ini-
tializing all variables declared in a pro-
gram to be a signaling NaN. If a variable

80387 Data registers

R0	Sign	Exponent	Significand
R1 | | | |
R2 | | | |
R3 | | | |
R4 | | | |
R5 | | | |
R6 | | | |
R7 | | | |

Control register
Status register
Tag word
Instruction pointer
Data pointer

Figure 1: The register model of the 80387.

<table>
<thead>
<tr>
<th>Data formats</th>
<th>Range</th>
<th>Precision</th>
<th>Most significant byte</th>
<th>Highest addressed byte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word integer</td>
<td>10^4</td>
<td>16 bits</td>
<td>(Two's complement)</td>
<td></td>
</tr>
<tr>
<td>Short integer</td>
<td>10^2</td>
<td>32 bits</td>
<td>(Two's complement)</td>
<td></td>
</tr>
<tr>
<td>Long integer</td>
<td>10^9</td>
<td>64 bits</td>
<td>(Two's complement)</td>
<td></td>
</tr>
<tr>
<td>Packed BCD</td>
<td>10^8</td>
<td>18 digits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single precision</td>
<td>10^m</td>
<td>24 bits</td>
<td>Significand</td>
<td></td>
</tr>
<tr>
<td>Double precision</td>
<td>10^{x8}</td>
<td>53 bits</td>
<td>Significand</td>
<td></td>
</tr>
<tr>
<td>Extended precision</td>
<td>10^{e32}</td>
<td>64 bits</td>
<td>Significand</td>
<td></td>
</tr>
</tbody>
</table>

(1) S = Sign bit (0 = positive, 1 = negative)
(2) d_i = Decimal digit (two per type)
(3) X = Bits have no significance; 80387 ignores when loading, zeros when storing
(4) Δ = Position of implicit binary point
(5) t = Integer bit of significant; stored in temporary real, implicit in single and double precision
(6) Exponent bias (normalized values): single: 127 (7FH); double: 1023 (3FFH)
(7) Packed BCD: $(-1)^t(D_{17}...D_0)$
(8) Real: $(-1)^t(2^{e\text{-bias}})(F_0F_1...)$

Figure 2: The data types supported by the 80387.
is used in an arithmetic operation before it has been initialized, it will cause the operation to be performed on a signaling NaN. If the invalid operation exception were unmasked, an exception would occur to identify the offending variable.

A quiet NaN in the 80387, which contains a 1 in the most significant bit of its significand, behaves the same way as a NaN in the 80287.

New Instructions in the 80387
The 80387 contains seven new instructions not in the 80287. Of these, three are transcendental instructions, three are unordered compare instructions, and one is an IEEE-754 partial-remainder instruction. Table 1 summarizes these new instructions. The box “Processor Initialization and Control” on page 210 explains another key difference between the 80387 and 80287.

* Trigonometric instructions: The trigonometric functions accept a practically unrestricted range of operands. The instruction FCOS computes the cosine of the contents of ST and replaces it with COS(ST). The value contained in ST must be in radians, and its absolute value must be less than 2π. If the operand is within this range, the C2 bit (the eleventh bit) of the status word is cleared. The C2 bit is set to 1 if the operand of FCOS is outside the range and ST remains unchanged. The instructions FPREM and FPREM1 can be used to reduce the operand to a specified range.

The FSIN instruction works the same way as the FCOS instruction. It replaces the contents of ST, which must be expressed in radians, with SIN(ST). The operand range restriction for FCOS also applies for FSIN. The FSINCOS instruction computes both the sine and the cosine of the contents of ST. First, the contents of ST are replaced by SIN(ST), and then COS(ST) is pushed onto the stack. The operand range requirements for FCOS apply to FSINCOS as well.

* Unordered compare instructions: In addition to all the compare, test, and examine operations of the 80287, the 80387 offers three new instructions—FUCOM, FUCOMP, and FUCOMPP—to perform unordered comparisons. The FUCOM instruction operates like the FCOM (compare real) instruction in that it compares the value on the top of the stack to the source operand, where the source operand can be in a register or on the stack, or a single- or double-real memory operand. This instruction will not, however, generate an invalid-operation exception if one of the operands is a NaN. Table 2 shows the values of the condition code bits in the status word (bits 9, 10, 11, and 15) for various situations. If either oper-

and is a NaN, the condition bits of the status word are set to unordered.

FUCOMP and FUCOMPP behave like FUCOM and also pop the stack once and twice, respectively.

* IEEE 754-compatible remainder instruction: The IEEE 754-compatible partial-remainder instruction in the 80387, FPREM1, computes the remainder of the division of ST by ST(1). The result is stored in ST. The instruction finds a remainder r and a quotient q such that

\[r = ST - ST(1) \times q. \]

where q is the integer nearest to the exact value of ST/ST(1). FPREM1 always produces exact results, and therefore the 80387's rounding control mode has no effect on the result.

If the FPREM instruction is used on operands that differ greatly in magnitude, it can consume large amounts of time and will also increase the computer's interrupt latency, since the 80387 can be interrupted only between instructions. The instruction, therefore, may terminate before the calculation has been completed. If this happens, the C2 bit of the status word is set, indicating incomplete calculation. The contents of ST in this case contain only the partial remainder. FPREM1 can reduce the exponent of ST by up to (but not including) 64 in one execution. If the reduction is complete, the C2 bit of the status bit is set to 0, and C3, C1, and C0 contain the least-three significant bits of the quotient generated. The FPREM1 instruction differs from the 8087/287 instruction FPREM in two ways:

1. Remainder r produced by the instruction FPREM in the range 0 ≤ r <

The 80387 provides the system designer with significant enhancements in features and speed over the 80287.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPTAN</td>
<td>Partial tangent</td>
</tr>
<tr>
<td>FPTAN</td>
<td>Arctangent</td>
</tr>
<tr>
<td>F2XM1</td>
<td>2 \times ST</td>
</tr>
<tr>
<td>FSCALE</td>
<td>Scale</td>
</tr>
</tbody>
</table>

Table 1: The new instructions added to the 80387 instruction set.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCOS</td>
<td>Cosine</td>
</tr>
<tr>
<td>FSIN</td>
<td>Sine</td>
</tr>
<tr>
<td>FSINCOS</td>
<td>Sine and cosine</td>
</tr>
<tr>
<td>FUCOM</td>
<td>Unordered compare real</td>
</tr>
<tr>
<td>FUCOMP</td>
<td>Unordered compare real and pop</td>
</tr>
<tr>
<td>FUCOMPP</td>
<td>Unordered compare real and pop (twice)</td>
</tr>
<tr>
<td>FPREM1</td>
<td>IEEE Standard partial remainder</td>
</tr>
</tbody>
</table>

Table 2: The values of the condition code bits in the 80387 status word for various conditions.

<table>
<thead>
<tr>
<th>Order</th>
<th>C3 (ZF) (Bit 15)</th>
<th>C2 (PF) (Bit 11)</th>
<th>C0 (CF) (Bit 9)</th>
<th>80387 Conditional branch</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST > operand</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>JA</td>
</tr>
<tr>
<td>ST < operand</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>JB</td>
</tr>
<tr>
<td>ST = operand</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>JE</td>
</tr>
<tr>
<td>Unordered</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>JP</td>
</tr>
</tbody>
</table>

Table 3: The operand ranges for the 80387 compared to the 80287.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Function</th>
<th>80387 Operand range</th>
<th>80287 Operand range</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPTAN</td>
<td>Partial tangent</td>
<td>ST(0) < 2^29</td>
<td>ST(0) < \pi/4</td>
</tr>
<tr>
<td>FPTAN</td>
<td>Arctangent</td>
<td>Unrestricted</td>
<td>(ST(0) < 1)</td>
</tr>
<tr>
<td>F2XM1</td>
<td>2 \times ST</td>
<td>-1 ≤ ST(0) ≤ 1</td>
<td>0 ≤ ST(0) ≤ 0.5</td>
</tr>
<tr>
<td>FSCALE</td>
<td>Scale</td>
<td>Unrestricted</td>
<td>Undefined in 0 ≤ ST(0) ≤ 1</td>
</tr>
</tbody>
</table>
80387 COPROCESSOR

Extended Operand Range
The 80387 has extended the operand ranges of four instructions: FPTAN, FPATAN, F2XM1, and FSQRT. Table 3 compares the operand ranges for the 80387 with those for the 80287.

The allowed operand range for the FPTAN (partial tangent) instruction in the 80387, which computes the function \(y = \tan^{-1}(x) \) (ST in radians), is \(|ST(0)| < \frac{\pi}{4} \). The corresponding range for the 80287 is \(|ST(0)| < \pi \). The FPTAN instruction reduces the operand internally using an internal \(\pi/4 \) constant, which is more accurate than the value obtained using a constant instruction like FLDPT.

The F2XM1 instruction in the 80387 computes the function \(y = 2^x \). This represents an increase in the range from \(0 < x < 0.5 \) in the 80287.

Instructions FPATAN (arc tangent) and FSQRT in the 80387 have unrestricted operand ranges. The arc tangent instruction FPATAN computes the function \(\theta = \arctan(y/x) \), where \(x \) and \(y \) indicate the contents of ST(0) and ST(1), respectively. Although the range of the operands is unrestricted, the range of the result depends on the relationships between the operands, as shown in table 4.

FSQRT, which scales the top of the stack by the power of 2 given in ST(1), has no restriction on the range of value in ST(1) as the 80287 did. If \(0 < |ST(1)| < 1 \), the scaling factor is taken to be 0 in the 80387. This contrasts with the 80287, which produces an undefined result.

Rounding Control
Constants 0, 1, \(\pi \), \(\log_{10} 10 \), \(\log_{10} e \), \(\log_{10} 2 \), and \(\ln 2 \) can be loaded onto the 80387 stack using FLDZ, FLD1, FLDPI, FLDL2T, FLDL2E, FLDL2G, and FLDLN2 instructions, respectively. These constants have full extended-real precision (64 bits) and are accurate to approximately 19 decimal digits. The 80387 allows rounding of these internal constants according to the rounding control (RC) bits (bits 11 and 12) of the control word. If the RC bit is set to the Nearest rounding mode, the 80387 produces the same constant as produced by the 80287.

Denormal Operations
The 80387 allows the use of denormal operands with FBSF (packed decimal BCD store and pop), FDBL (divide real), FIST (integer store), FISTP (integer store and pop), FRM1 (partial remainder), and FSQRT (square root) instructions. This differs from the 80287, which raises an invalid-operation exception when denormal operands are passed to these instructions.

Exceptions occur whenever the 80387 receives an invalid operand or produces a

Processor Initialization and Control

During initialization of an 80386 system, system software must recognize the presence or absence of an FPU and set flags in the 80386 machine status word to reflect the state of the numerical environment. If an 80387 is present, it must also be initialized.

Recognizing the 80387
Listing A shows a routine to determine the presence of a coprocessor (8087, 80287, or 80387). The algorithm first tries to determine if a coprocessor is present by examining the status and control words. An affirmative test confirms the presence of a coprocessor. To test for the presence of an 80387, both positive and negative infinities are generated and their values compared. Since the 80387 differentiates between positive and negative infinities, this comparison indicates that the two infinities are different. The 80287, however, does not differentiate between the two infinities.

This program sets the word at SS:FFFEH to 0 if no FPU is present, to 1 if an 8087 or 80287 is present, and to 2 if an 80387 is present. Once this test has been performed and the word at SS:FFFEH appropriately set, a program

Listing A: A routine to check for the presence of a math coprocessor.

dgroup group data
cgroup group code

code segment public 'code'
assume cs:cgrou,p,ds:dgrou,p
c.code segment public 'code'
assume cs:cgrou,p,ds:dgrou,p

; Look for an 8087, 80287, or 80387 NPX.
; Note that we cannot execute WAIT on 8086/88 if no 8087 is present.
; Set word at SS:FFFEH to 0 for no NPX, 1 for 8087 or 80287, 2 for 80387

test_npx:
 fninit ; Init NPX, must use non-wait form!
 mov si,0fffeh ; Set offset of status variable
 sub si,bp ; (BP+SI) points at SS:FFFEH
 xor dx,dx ; Clear NPX status flag
 mov word ptr [bp+si],SASAH ; Initialize temp to non-zero value
 fnstsw [bp+si] ; Must use non-wait form of fnstsw
 cmp [bp+si],dl
 jne set_flags ; Jump if not a valid status word, meaning no NPX
 ; Now see if ones can be correctly written from the control word.
 fstatus [bp+si]; Look at the control word do not use WAIT form
 ; Do not use a WAIT instruction here!
needs to just examine the value at SS:FFEH to determine which FPU is present. This can also be used to execute different code, depending on whether an 80287 or an 80387 is present.

80387 Initialization

There is a difference in FPU initialization between the 80287 and the 80387. Either the FINIT or FINIT instruction initializes the 80387 to a state compatible with the state of the 80287 after FINIT or a hardware RESET. A hardware RESET of the 80387, however, leaves it in a state that is not the same as its state after a FINIT or FNINIT instruction. The two states have these differences:

1. The mask bit for the invalid-operation exception is reset.
2. The invalid-operation exception flag of the status word is reset.
3. The exception-summary bit of the status word is set.

These settings cause the FPU to assert the ERROR output to indicate that an exception occurs. The 80387 is present. It is, therefore, necessary to execute an FNINIT instruction after a hardware reset of the 80387.

```assembly
mov ax,[bp+si] ; See if ones can be written by NPX and ax,183fh ; See if selected parts of control word look OK cmp ax,3fh ; Check that ones and zeros were correctly read jne set_flags ; Jump if no npx is installed ; Some numerics chip is installed. NPX instructions and WAIT are now safe. ; See if the NPX is an 8087/287 or 80387. ; This code is necessary if a denormal exception handler is used or the ; new 80387 instructions will be used. ; inc dx ; Indicate 87/287 by default status=1 fldl ; Must use default control word from FNINIT fldb ; Form infinity fdiv ; 8087/287 says +inf = -inf fld st ; Form negative infinity fchs ; 8087 says -inf <> -inf fcompp ; See if they are the same and remove them fatsw [bp+si] ; Look at status from FCOMPP mov ax,[bp+si] ; see if the infinities matched jne set_flags ; Jump if 8087/287 is present ; An 80387 is present. If denormal exceptions are used for an 8087/287, ; they must be masked. The 80387 will automatically normalize denormal ; operands faster than an exception handler can. ; inc dx ; Set status variable to 2 set_flags: mov [bp+si],dx
```

result that cannot be represented. When an exception occurs, the 80387 does one of the following:

1. Handles the exception itself by invoking the default exception handler. This happens when the exception is masked (i.e., the corresponding mask bit in the control word is set to 1).
2. Signals the host (80386) that an exception has occurred and invokes a user-supplied exception handler. This is the case when the exception is unmasked—that is, the mask bit in the control word is set to 0.

Types of Exceptions

The 80387 recognizes six types of exceptions: (1) invalid operation; (2) divide-by-zero; (3) denormal operand; (4) numeric overflow; (5) numeric underflow; and (6) inexact result. These six types are described in detail below.

- **Invalid operation**: An invalid-operation exception occurs in two situations: An arithmetic instruction encounters an invalid operand, or a stack operation results in a stack overflow or underflow. As described earlier, the 80387 recognizes two kinds of NaNs—signaling and quiet. An invalid-operation exception is usually raised only upon encountering a signaling NaN. The instructions FCOM, FIST, and FBSTP, however, flag an invalid-operation exception on quiet NaNs. The 80287, on the other hand, signals an invalid-operation exception upon encountering any kind of NaN, since it does not differentiate between two NaNs.

While the 80287 defines and supports special handling for pseudozero, pseudo-NaNaN, pseudo-infinity, and unnormal formats, the 80387 neither generates nor supports these formats and raises an invalid-operation exception whenever it encounters them in an arithmetic operation.

- **Divide-by-zero**: A zero-divide exception is reported whenever an attempt is made to divide a finite number by 0. This can happen in instructions like FDIV, FIDIV, FIDIV, FDIIVR, and FIDIV that do explicit divides or in instructions that do divides internally, such as FYL2X (y=log(x)) or FXTRACT (extract exponent and significand). If the zero-divide exception is masked, the 80387 responds by returning infinity signed with the exclusive-OR of the signs of the operands in the case of divide (FDIV, etc.) and FYL2X instructions. For FXTRACT, ST(1) is set to negative infinity and ST is set to 0 with the same sign as the original operand. In the event of an unmasked divide-by-zero exception, the operands remain unchanged.

- **Denormal operand**: The 80387 reports a denormal-operand exception whenever an attempt is made to operate an arithmetic instruction on a denormal operand. The masked response for the instruction is to set the DE-bit (bit 2) of the status word and to then proceed with the instruction. The 80387 does not raise an invalid-operation exception when it encounters a...
The 80387 provides a considerable speed improvement over its predecessor, the 80287. This has been accomplished by using a higher clock speed, an optimized core that takes fewer clocks per instruction than the 80287, and new transcendental instructions. Benchmark results on a system using a 20-MHz 80386 and 80387 show that the Double-Precision Whetstone Performance Index for the 80387 is 1.8 megawhethstones. Whetstone is a measure of the number of floating-point computations that can be computed by the processor per unit time.

Using an 80387 in a Compaq Deskpro 386/20 Model 30 reduces the time to remove hidden lines from a sample drawing of the space shuttle using the AutoCAD version 2.62 BIDE command by a factor of 2.6 over the 80287 used in a Compaq Deskpro 286 Model 40. (Source: Compaq Deskpro 386/20 Personal Computer Features/Specifications).

For results of performance tests performed at BYTE on the 80387, see table 1 in "The Intel 80387 vs. the Weitek 1167" by Tom Thompson on page 205.

Compilers available for the 80386 from Green Hills, MetaWare, Silicon Valley Software, Language Processors, and Austec provide a switch for the 80387 that allows the compiler to generate in-line 80387 instructions.

Table 4: The result range of operands depends on the relationship between the operands.

<table>
<thead>
<tr>
<th>Sign(y)</th>
<th>Sign(x)</th>
<th></th>
<th>y</th>
<th>x</th>
<th>Final result</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>Yes</td>
<td>0 < atan(y/x) < π/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>No</td>
<td>π/4 < atan(y/x) < π/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>No</td>
<td>π/2 < atan(y/x) < 3π/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>Yes</td>
<td>3π/4 < atan(y/x) < π</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>No</td>
<td>π < atan(y/x) < 5π/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>No</td>
<td>-π < atan(y/x) < -3π/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>-3π/4 < atan(y/x) < -π/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>No</td>
<td>-π/4 < atan(y/x) < 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>Yes</td>
<td>-π/4 < atan(y/x) < 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5: The rounding modes of the 80387.

<table>
<thead>
<tr>
<th>Rounding mode</th>
<th>Sign of true result</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>To nearest</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Toward -∞</td>
<td>+</td>
<td>Largest finite positive number</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-∞</td>
</tr>
<tr>
<td>Toward +∞</td>
<td>+</td>
<td>Largest finite negative number</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>+∞</td>
</tr>
<tr>
<td>Toward 0</td>
<td>+</td>
<td>Largest finite positive number</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>Largest finite negative number</td>
</tr>
</tbody>
</table>

- Numeric overflow and underflow: Numeric overflow and underflow exceptions occur when the exponent of a numeric result is too large or too small, respectively, to be represented in the destination format.

The masked response to the numeric overflow exception depends on the denormal operand in FSQRT, FDIV, or FPREM, or upon conversion to BCD or to integer. The operation proceeds by first normalizing the value. The 80287 will raise an invalid operation in such cases. Furthermore, the 80387, in contrast with the 80287, reports a denormal exception if a denormal operand is found in transcendental instructions and in FXTRACT.
INTRODUCING THE AD-VENTURES OF

OUR HERO IN THE WAR
AGAINST THE COSTLIEST
PROBLEM IN BUSINESS
COMPUTING TODAY!!!
SWITCHING POWER SUPPLY

- For PC-AT 220W
- For PC-XT 135W, 155W
- For BABY AT 200W
- For TV GAME
 a. 5V/7A, 12V/1A, 6V/1A
 b. 5V/10A, 12V/1A, 6V/1A

CHUNG YU ELECTRONICS CO., LTD.
PO. BOX 30-535 TAIPEI, TAIWAN, R.O.C.
FAX, 002-886-02-3971988
TLX, 24451 CYELEC
TEL, 002-886-02-3918100, 3414596

POWER TOOL.

Introducing 4x488™

You get intelligent IEEE-488 and RS232 ports to make instrument programming fast and easy.

You can have up to 4 Mbytes of memory on the same board for your largest programs, RAM disks, and data acquisition tasks.

Compatibility is built-in so you can run your favorite programs or create new ones with our advanced programming tools.

To get your FREE demo disk—call 617-273-1818.
Capital Equipment Corp.
Burlington, MA 01803

The bottom line—IEEE-488, RS232, par. port, 4MB EEM1 LIM, runs DOS and OS/2.

80387 COPROCESSOR

Rounding modes. Table 5 shows the results of the computation for various rounding modes. The masked response in the case of rounding mode set to chop (i.e., toward 0) is to produce the most positive or the most negative number. The 80287 will not report an overflow exception in a similar situation. It will, in fact, signal overflow only when the rounding control mode is not set to round to 0.

If the overflow exception is not masked in the 80387, it raises the precision exception (inexact result). When the result is stored on the stack, the significand is rounded according to the precision control (PC) bits (bits 9 and 10) of the control word, or according to the opcode. In the 80287, on the other hand, the precision exception is not reported, nor is the significand rounded.

The underflow exception is flagged by the 80387 if the true result is so small that it cannot be represented in the destination format. When the underflow exception is masked, it is signaled when there is a loss of accuracy in the result. The 80287 will report the underflow exception on underflow if rounding is toward 0, regardless of loss of accuracy.

If the underflow exception is unmasked and the result is to be stored on the stack, the significand is rounded according to the precision control bit of the control word in the 80387. The 80287 does not round the significand on the stack.

* Inexact result: If an operation produces a result that cannot be represented exactly in the destination format, the inexact-result exception is reported. The inexact exception is also raised in the event of an underflow exception with a loss of accuracy.

The 80387 does not give precedence to the denormalized exception, whether it is masked or not. In the 80287, the unmasked denormal exception takes precedence over all other exceptions.

Programming Examples
Listing 1 shows an example of 80387 code to compute \(y = e^x \). Note that \(e^x = 2^{x \log_2 e} \). The program first checks to find out whether an 80387 or an 80287 is present. This is done by examining the value stored at SA:FFFFH. If an 80387 is present, the code takes advantage of the fact that the instruction FXM1 accepts operands in the range \(-1 < x < = 1\). First, the largest integer \(X \) that satisfies the condition \(x \times \log_2 e = x + y \) is found. Note that all values of \(y \) satisfying the above condition must lie in the range \(-1 < y < = 1\). The expression \(x \times \log_2 e \) is computed by computing the expression \(2^{x \times \log_2 e} \). Slightly different code is used to compute \(e^x \) if an 80287 is pre-
Listing 1: A code sample illustrating the use of 80387 instructions.

; compute ez, assume Z is in ST
FLDI
CMP SS:BYTE PTR @FFFEH+1 ; 80287 or 80387?
JE USE_287 ; 80287 found
FLDL2E ; load log2e
FMUL ST, ST(2) ; ST = 2 * log2e
FST ST(2)
FPREM ; reduce ST between -1 and 1 F2XM1
FADD
FSCALE
FSTP ST(1)
RET
USE_287: ; 80287 found
FCHS
FLDL2E
FMUL ST, ST(2)
FST ST(2)
FTST
JA NEG_VAL
FPREM
FSCALE ; positive value
F2XM1
FSUBR
FMUL ST, ST(0)
FSCALE
FSTP ST(1)
RET
NEG_VAL: ; negative value
FPREM
FCHS
FSCALE
F2XM1
FSUB ST, ST(1)
FMUL ST, ST(0)
FDIV
FCHS
FSCALE
FSTP ST(1)
RET

Listing 2: Sample code illustrating the use of built-in transcendental functions.

; compute ARCSIN(Z), assume Z in ST
FST ST(1) ; ST(1) = ST = Z
FMUL ST, ST(0) ; ST = Z2
FLD1
FSUBR ; ST = 1-Z2
FSQRT ; ST = SQRT(1-Z2)
FPATAN ; ST = ARCTAN(Z/SQRT(1-Z2))
RET

sent, since the F2XM1 instruction in the 80287 supports only operands in the range 0 < \(z < 0.5 \).

An example of how to compute the function ARCSIN(Z) is illustrated in listing 2. It makes use of the relationship ARCSIN(Z) = ARCTAN(Z/SQRT(1-Z2)).

New Look

The 80387 provides the system designer with significant enhancement in features and speed over the 80287. It fully conforms to the IEEE 754-1985 Standard for Binary Floating-Point Arithmetic. While maintaining object-level compatibility with the 80287 and the 80287, it provides the 80287 set of floating-point instructions with additional trigonometric, unordered comparison, and partial-remainder instructions. The operand ranges for some 80287 instructions have been expanded in the 80387.
"THE A ★ STAR’S CPU PERFORMANCE IS SUBSTANTIALLY ABOVE THAT OF THE IBM PS/2 MODEL 60."

INFOWORLD

WHO CARES!

For about $5300, you could own an IBM PS/2 Model 60. But for as little as $1100, you could own a Wells American A ★ Star® that can outperform it. Of course, for nearly the same money as an A ★ Star, you could also own any number of Asian built no-name clones.

But then you wouldn't be getting the exclusive ownership advantages that only the A ★ Star offers. Advantages like an 80286 CPU that runs the new MS OS/2 operating system and can also run at 6, 8, 10, 12, 14 and now...16 MHz! And you wouldn't be getting schematics. (Ours are free!) Or GE/RCA on-site maintenance. Or a no questions asked money-back guarantee. Oh, and there's one more little item you wouldn't get... peace of mind. Wells American has been making microcomputers longer than IBM!

In fact, we've probably been making microcomputers longer than anybody!

But hey, who are we kidding? Not everyone cares about quality, reputation, support or serviceability. That's why there are mail-order houses. And, as hard as it is to believe, not everyone cares about money or performance. Maybe that's why there's IBM (and Compaq®, and all the others). But, for computer users who do care, there is, fortunately, a vendor who also cares...Wells American. And, we'd like to prove it to you. Call us with the page number of this ad. It's worth a big discount on your next A ★ Star computer system. Call today. 803/796-7800. This offer is limited.
FLOATING-POINT PROCESSING

Floating-Point Survival Kit

An insider's look at number-crunching fundamentals, standards, benchmarks, and high-performance designs

Pete Wilson

MICROCOMPUTERS HAVE NEVER been better at number crunching. In computation-bound applications, high-end microprocessors actually can outstrip some minicomputers. And they're getting better.

The performance of the new 32-bit machines is an order of magnitude greater than the old 8086-family devices. Now every vendor (of microprocessors, personal computers, and workstations) is increasingly claiming magnificent performance levels on sundry benchmarks.

While this is fun for the vendors, it can be confusing to purchasers. How can you judge how good a design might be for number crunching? What, if anything, do the various benchmarks mean? To help provide some answers, I'll review the fundamentals of floating-point arithmetic, examine some issues in building floating-point systems, skim over some benchmarks, look at how machine designers get high-performance floating point, and then wrap it all up with some words of advice.

What Is Floating Point?

Integer arithmetic is useful for many applications. However, when an application needs to deal with a very wide dynamic range of values, integers fall short. A 32-bit processor, doing integer arithmetic, can deal simply with a range of values where the largest value is no more than 2^{31} (about 4,000 million) larger than the smallest, while a 16-bit machine can handle—with the same ease—a range of just 65,536 to 1.

The need for wider ranges arises in situations as disparate as quantum cosmology (mixing subatomic dimensions with astronomical distances in the same program) and CAD (where the smallest components have tolerances in microns but the complete project covers some city blocks).

We could deal with these situations by doing multilword (e.g., 96-bit) integer arithmetic with our processors, but it is usually more convenient to use floating-point arithmetic. Floating point buys—for a given bit budget—a vastly wider dynamic range in values. The price paid is that the answers have less resolution and the execution time or hardware cost is greater than if we had been able to stick with word-length integer arithmetic.

A 32-bit processor doing integer work represents each integer as a word; all 32 bits of the word are used to represent the size of the variable. A 32-bit processor doing floating-point work breaks each 32-bit word up into two separate fields; one field is a number, while the other is a scaling factor for that number. Many choices are possible for the meanings of these two fields: For example, the value field could represent an amount in the range 0.25 to 0.5, while the scaling factor represents the number of places to shift the value field left (positive factor) or right (negative factor) to compute the value of the number.

Doing arithmetic in floating point has a number of pitfalls: things don't always work the way you might expect. To illustrate some of these issues, I will work through some simple examples. First, let's adopt a floating-point format which packs an unsigned 24-bit value field (the mantissa, also known as the significand) and a signed 8-bit scale field (the exponent) into a 32-bit value. The mantissa represents numbers in the range 0.25 to (nearly) 0.5 (so the most significant bit of the mantissa means 0.25, and the least significant bit means 2^{-8}) and is unsigned to keep the examples simple. This format can deal with numbers in the range of about 0.25×2^{-127} to 0.5×2^{127}, or about 10^{-46} to 10^{46}.

Using this representation, let's look at converting the values from fixed-point binary to floating point. Fixed-point binary represents numbers as integer. Fraction, where integer is a (possibly multiword) bit pattern representing the integer portion of a number, and fraction is a (possibly multiword) bit pattern representing the fractional part; the most significant bit of the fractional part has value 0.5, and the least significant bit of integer has value 1. We shift the binary point in integer, fraction until its value lies in the range 0.25 to 0.5; that value becomes the mantissa. The number of shifts required becomes the exponent of the floating-point number. If the original number was larger than 0.5, we shifted it down, so the exponent is a negative number; if the value was smaller than 0.25, we shifted the binary point up, and

Pete Wilson, a computer architecture engineer at Prisma Inc., can be reached at 5465A Mark Dabling Rd., Colorado Springs, CO 80918. When this article was written, he worked for INMOS Corp.
Implementing Floating Point

Implementing IEEE floating point in hardware or software is not easy. First, the standard itself calls for some complex operations. Second, it matters to some customers that the results are correct. (You wouldn’t want an air traffic control system to have errors in the floating-point hardware used in the radar systems to track the planes.) The combination is a nuisance because it is too complex to test—there are too many possible combinations to look at (suppose you wanted to test the double-length operations; then there are four operations (+, −, ×, ÷) to be done on pairs of 64-bit numbers; this corresponds to 2^{128} or about 10^{38}. At a nanosecond per operation, this takes about 10^6 seconds, which is too long to wait to bring something to market, even if we had some means of getting the correct answers fast enough to do the comparisons.)

Because of this, when INMOS decided to build the T800—a microprocessor combining a 32-bit integer CPU, an IEEE floating-point unit (FPU), 4 kilobytes of memory, an eight-channel direct memory access (DMA) driving interprocessor communications channels plus other facilities—it was necessary to take a different approach.

The approach was simple; if it’s impossible to show by testing that the design is correct, then it is necessary to create a design which is provably correct. The situation is much the same—but noticeably more complex—as the exercises we did at school in geometry to prove relationships (e.g., the Pythagorean theorem). The basis is to have a language of some form (Pythagoras used the language of geometry) in which you can describe the situation and which has appropriate rules that allow you to demonstrate that two statements in the language either do or don’t mean the same thing. Then you write a description of IEEE arithmetic and a description of your design and show that they are equivalent. Then your design is correct.

In practice, more than one language was needed. It was done like this: First, a description of IEEE arithmetic was written in a language called Z, which was created by Jean-Raymond Abrial and has been developed and used extensively by members of the Oxford University Programming Research Group (PRG), with whom INMOS worked very closely in this project. Z was designed to tackle the problems of specifying real systems. You specify things in Z quite straightforwardly; the example in figure A shows a Z specification of the range checking that needs to be done inside IEEE arithmetic.

The specification is labeled with its name and consists of a box with an upper and a lower portion. The upper portion is equivalent to the declaration section of a programming language; here it says that there is something called Areg that is a Floating_Point_Register, and something called Error_Flag that is a Boolean. Both have values associated with them; the names are the values prior to the operation, and the primed names are the values after the operation.

The lower portion of the box contains constraints on the values that the things

Figure A: Example of the specification language Z and its equivalents in Occam and microcode.

a) Floating check integer range module

```
Areg, Areg': Floating_Point_Register
Error_Flag, Error_Flag': bool
```

```
∀ a Z
Areg' = Areg
∀ Areg ∈ [[MinInt, MaxInt]] → Error_Flag' = Error_Flag
∀ Areg ∈ [[MinInt, MaxInt]] → Error_Flag' = true
```

b) High-level Occam representation

```
IF Areg.Exp < LargestINTExp
    SKIP
    (Areg.Sign = NEGATIVE) AND (Areg.Exp = LargestINTExp) AND
    (Areg.Frac = MSBit)
    SKIP
    THEN
    SetError(ErrorFlag)
```

c) Low-level Occam representation

```
SEQ
    AregSignNEGATIVE := (Areg.Sign = NEGATIVE)
    ExpBus := (Areg.Exp - LargestINTExp)
    ExpBus := ExpBus < 0
    IF
        AregSignNEGATIVE
      /* ... do the negative case */
        NOT AregSignNEGATIVE
      IF
        ExpBusNeg
      SKIP
      NOT ExpBusNeg
      SetError(ErrorFlag)
```

in the upper portion can have. Here \(f_y \) is a function that returns the value of a floating-point register (\(Z \) is the set of floating-point values). We see that the values of \(A \) before and after the operation are the same; and we see that whenever the value in \(A \) (looked upon as a floating-point number) is in the range \([\text{MinInt} \text{ to } \text{MaxInt}]\), the value of the Error_Flag after the operation is whatever it was before, and that if the value in \(A \) isn’t in that range, then Error_Flag contains the value true after the operation.

The first step in the exercise was to create specifications for all the operations needed for IEEE arithmetic in this form to provide a formal specification of just what IEEE arithmetic is. The next step is to create an equivalent description in another language—one that will be more useful in describing an implementation with its microcode, registers, and other detailed nasties—and to prove that the \(Z \) description and the new description are the same.

The language Occam was chosen for this; Occam has a formal semantics (i.e., every legal Occam statement has an unambiguous meaning) and so it is possible to demonstrate the equivalence of an Occam program to a \(Z \) specification. The Occam specification of the range-checking operation is shown; it is as close as practical to the \(Z \) specification. Proving that this is correct means proving two assertions—first, that there is an exponent (\(\text{LargestIntExp} \)) such that every register with a smaller exponent has a value in the range \([\text{MinInt} \text{ to } \text{MaxInt}]\); second, that a register with a negative exponent sign bit, an exponent of \(\text{LargestIntExp} \), and a mantissa with only the implied most significant bit set has a value of \(\text{MinInt} \).

The Occam description is then moved a step closer to a real implementation by involving facilities and operations that are available from the microcode. This description is then itself taken and transformed yet again to use a microcode instruction pointer. Finally, this last Occam representation is taken and converted into real microcode.

To ensure that these successive transformations are all correct, two methods are used. One is to use the formal semantics of Occam; you can demonstrate that two programs in Occam do or do not have the same effect (if they have the same effect, one is correct then the other one must be). The other is to use automatic translators—for example, getting microcode from Occam text can be done by a program which is analogous to a C compiler’s preprocessor: It is a pattern-matching and textual-substitution program.

Being able to do something “in principle” isn’t quite good enough in practice, and the design work wasn’t done in the sequence outlined here. Rather, what happened was that the \(Z \) specification of the arithmetic was done first, and then an Occam implementation of the IEEE package that already existed (it implemented the floating point for the INMOS T414) was shown to be equivalent; this involved two transformations.

d) Microcode-like Occam

```plaintext
INT NextInst:
SEQ
   NextInst := FloatingPointCheckIntegerRange
   WHILE NextInst <> NOWHERE
   IF
      NextInst = FloatingPointCheckIntegerRange
   SEQ
      AregSignNEGATIVE := (Areg.Sign = NEGATIVE)
      Exp2bus := (Areg.Exp - LargestIntExp)
      Exp2bus := Exp2bus < 0
      IF
         AregSignNEGATIVE
         /*... do the negative case */
         NOT AregSignNEGATIVE
      IF
      Exp2busNeg
      NextInst := NOWHERE
      NOT Exp2busNeg
      NextInst := OutOfRange
      NextInst = OutOfRange /* now setting error has its own microinstruction */
   SEQ
      SetError(Errorflag)
      NextInst := NOWHERE
      /*... other microinstructions */
```

e) Microcode version

```plaintext
FloatingPointCheckIntegerRange:
Constant LargestIntExp
ExpXbusFromAreg ExpYbusFromConstant
Exp2busFromXbusMinusYbus
GOTO Cond1FromAregSign -> (Cond0FromExp2busNeg ->
   (Cond0FromExp2busNeg ->
   (NOWHERE, OutOfRange)
```

continued
To do this, an Occam source transformation system (written in the ML programming language and implemented by the PRG) was used. The transformation of the (now demonstrably correct) Occam into microcode was then done semiautomatically using the textual-translation programs mentioned above.

Because the translation programs weren't themselves proven correct, it is possible that the transformations they did were not correct, and so the aim of having a formally proven correct implementation as itself not met. Nonetheless, using the formal methods paid off: the other half of correctness is performance; doing the design in this style didn't damage the T800's performance at all. To indicate how well it has succeeded, here's the set of benchmark results obtained using a Logical Systems C compiler on a CSA PART.1 board. (Logical Systems offers a transputer C compiler/assembly/linker package; it is in written in C, and the price includes the source to the complete compiler: CSA is one of a number of companies making add-in cards; the PART.1 provides four T800's each with a megabyte to plug into an IBM PC or compatible.)

Since the compiler is a beta release and the people doing the measurements are the people who built the boards, this doesn't count as an official BYTE benchmark: nonetheless, the source code of the programs as used and the generated transputer assembler are available on BIX, in print, and on disk.

Table A: Standard BYTE benchmark results, showing different compilers produce significant differences on the same T800-based PART.1 machine (the PC AT results are included for comparison purposes only).

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>LS C</th>
<th>PART.1</th>
<th>3L C</th>
<th>IBM PC AT 8MHz 6027</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whetstone (single)</td>
<td>4,002</td>
<td>N/A*</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Whetstone (double)</td>
<td>N/A</td>
<td>2,016,810</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Dhrystone</td>
<td>863.4</td>
<td>563.34</td>
<td>1,590</td>
<td>0.00</td>
</tr>
<tr>
<td>Fibonacci (sec.)</td>
<td>15.07</td>
<td>22.54</td>
<td>126.22</td>
<td></td>
</tr>
<tr>
<td>Float (sec.)</td>
<td>0.16*</td>
<td>0.27</td>
<td>10.98</td>
<td></td>
</tr>
<tr>
<td>Savage (sec.)</td>
<td>0.96*</td>
<td>5.88</td>
<td>37.30</td>
<td></td>
</tr>
<tr>
<td>Save (sec.)</td>
<td>6.39</td>
<td>6.14</td>
<td>24.60</td>
<td></td>
</tr>
<tr>
<td>Sort (sec.)</td>
<td>4.55</td>
<td>6.64</td>
<td>43.17</td>
<td></td>
</tr>
</tbody>
</table>

*IEEE single-precision. The version of the Logical Systems C compiler tested supports single-precision arithmetic only.

Table B: Complex FFT benchmark results (not available for PC AT).

<table>
<thead>
<tr>
<th>Points</th>
<th>Forward (ms)</th>
<th>Inverse (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>3.072</td>
<td>3.392</td>
</tr>
<tr>
<td>128</td>
<td>6.592</td>
<td>7.168</td>
</tr>
<tr>
<td>256</td>
<td>14.338</td>
<td>15.552</td>
</tr>
<tr>
<td>512</td>
<td>31.104</td>
<td>33.600</td>
</tr>
<tr>
<td>1024</td>
<td>67.520</td>
<td>72.512</td>
</tr>
</tbody>
</table>

Table C: Results of the FLOPS test. Long-expression times are faster because FPU/CPU overlapping is possible.

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>(LS C) single-precision</th>
<th>(3L C) double-precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short expression</td>
<td>1,995,415</td>
<td>733,602</td>
</tr>
<tr>
<td>Long expression</td>
<td>1,552,872</td>
<td>1,038,551</td>
</tr>
</tbody>
</table>

Both C compilers show a dramatic increase in FLOPS when executing (b) as compared to (a). Given the long expression, the compiler makes use of the transputer's ability to overlap FPU and CPU processing time.
so the exponent is positive.

Shifting occurs a great deal in floating-point work; any processor that wants to get reasonable performance without a co-processor will normally provide a specialized instruction set for the operation. The instruction—normalize—examines the number to be converted, starting at the most significant bit. It moves the word until it finds two adjacent bits of different value; suppose bit n and n + 1 are found to be 0 and 1. The mantissa is then simply obtained by shifting the whole word left by (word length − n) bits and setting the exponent to n.

Grainy Numbers

Given this picture, a number of facets of doing arithmetic in floating-point can now be illuminated. First, note that it is not possible to represent exactly all numbers using floating-point format. For our 32-bit format, for example, it is possible to represent every integer between 0 and 2^{22} (8,388,608). But we cannot exactly represent all the fractions, nor can we represent all the integers larger than 2^{22}; 2^{23} is represented as 0.5×2^{22}; the smallest value we can add to that is $2^{22} \times$ the least significant bit of the mantissa, which is 0.5×2^{22}, with a value of 0.5×2^2. This is 2. So the "next" number after 8,388,608 is 8,388,610. This example shows that there are gaps in the numbers that can be exactly represented. This phenomenon is often referred to as the "graininess" of floating-point numbers; just as high-speed photographic film can obscure fine detail by its large grain size, so can each floating-point number represent a range of numbers in the real world up to a certain limit on detail.

This graininess has two important side effects; first, if you try to add a very small number to a very large number, the result can be that the large number is unchanged. So don't try to write program loops that say FOR i = 0 to 1000000000 STEP 1 unless you're sure that adding the step size actually changes the number. And if you subtract two large values, the result can be inexact, so be careful when using the results of such subtractions. A related problem is that since the numbers aren't exact, it is not unusual to find that the program that says IF a = b THEN ... doesn't work reliably.

How is the number 0 to be represented? Looking at the situation simply, any floating-point number with a 0 mantissa has a value of 0. But the rules say that mantissae have to be in the range 0.5...0.25, so properly speaking we cannot have a floating-point 0 in the number scheme. Instead, most schemes have a special representation for 0. This might be mantissa = 0, exponent = -127, for example. Such "special case" representation is useful because it gives us access to lots of bit patterns that are not legal floating-point numbers that we can use to indicate special circumstances. Now, for example, we can choose another of the bit patterns to mean infinity, so rather than just complaining "overflow" when we divide the largest possible number by the smallest, we can set the result to infinity.

Sometimes it is useful to relax the rule that says the mantissa must be in the normalized range. For example, try dividing 0.25 by the largest possible number. The result is a quarter of the smallest possible number, which we could represent simply enough if we allow the mantissa to have a value outside the 0.25...0.5 range.

Numbers like this, whose mantissae are too small, are called "denormalized." Their only real problem is that they are even less accurate than the normalized numbers. Nevertheless, they are still useful—provided the programmer has been careful with the organization of the arithmetic—because they provide some indication of the answer even when the exact value is unrepresentable.

The Need for Standards

Suppose we change our floating-point format from 24-bit mantissa and 8-bit exponent to have a wider dynamic range—say 22 bits of mantissa and 10 bits of exponent. Then we'll find that running exactly the same program with this scheme will, in general, give us quite different answers from our initial scheme.

This is what used to happen when people moved programs from one computer to another. The various computers all had slightly different floating-point schemes, and programmers had to be highly competent numerical analysts to design programs that were robust enough to provide useful answers when they were moved between floating-point schemes. This was a real nuisance; it was a situation crying out for a standard.

Such a standard now exists: the IEEE standard 754-1985. The document specifies a standard for the representation of binary floating-point numbers and for rules governing rounding, truncating, and accuracy. All the major manufacturers of microprocessors support the standard (e.g., Intel's 8087, 80287, and 80387; Motorola's 68881 and 68882; INMOS T800 and T414).

The standard specifies three formats—for single length, double length, and extended format floating-point values. Single length fits in 32 bits and comprises 24 bits of mantissa and 8 bits of exponent; double length puts 53 bits of mantissa and 11 bits of exponent into 64 bits, and extended uses 80 bits for a 64-bit mantissa and 16-bit exponent.

Accuracy and Loops

Why use the double format instead of the single? Often, single-length operations go faster (especially multiply and divide) and need less memory. The problem is that, loosely speaking, every time you combine a pair of numbers you lose up to a bit of accuracy. Suppose you multiply two single-length floating-point numbers. The result should have 48 bits of mantissa, but it only has 24 bits; if renormalization was necessary, some bits that mattered will have been lost. The same things happen—even worse—with division.

So if you write a program that does lots of operations repeatedly on a set of numbers, they slowly lose accuracy as lower-order bits slip off the bottom. The simple cure is to use as many bits of mantissa as possible—thus the attraction of double-length and extended formats.

The effects of this accumulating round-off error arc worst in programs that keep crunching on numbers; big loops that compute stuff on one iteration and use the results in the next, which produces results for the next iteration (and so on), are obvious dangers.

Measuring Performance

Now suppose that you have a numerically demanding application and you need to choose a system on which to run it. With the more or less universal adoption of the IEEE standard, you can be reasonably sure (barring implementation errors—see the text box "Implementing Floating Point" on page 218) that all the alternatives will give you the same (hopefully correct) answer. But they'll take varying amounts of time to do it. If you need very high performance, then it can matter which machine you buy.

There are two classical answers to the problem. One is the not very helpful suggestion that you try your application out on every machine and then buy the fastest; the problem with this is that the cost can be very high (even if you can find a machine nearby) and that, in any case, your application is likely to change. So then you'd have to do the whole exercise over again. What's needed is some program whose performance on a range of machines is a good predictor of how well other programs will run on those machines. All you need to do is to find a good predictor program, run it on the candidate machines, and choose the fastest.

This is the second classical answer; the predictor programs are called benchmark continued
what a benchmark is trying to measure as well as knowing how well it does it, and it is unlikely that comparing even nominally equivalent programs in different languages can be relied upon.

Floating-Point Benchmarks

The usual floating-point benchmarks are the Whetstone, Linpack, Savage, and the Livermore Loops. Each takes a different view of what is interesting.

The Whetstone originated in England at the National Physical Laboratory (NPL) in the 1960s. Originally written in Algol 60, it was intended to represent a typical medium-size scientific computation mix. The idea was that if you were a scientist or an engineer, the performance of a computer with the Whetstone benchmark would be a reasonable indicator of how well the machine would do with a wide range of programs of interest to you. Such programs do a lot of floating-point, array, and trigonometric work. The benchmark consists of a set of little tasks: the time for each task is noted, and the machine's performance is measured as a weighted sum of the individual times.

As an aside, today's compilers can totally destroy the usefulness of a benchmark program if it isn't written properly (by noticing, for example, that a result computed inside a loop is never used, a compiler can decide not to generate code for that piece of program; then it will notice that the loop isn't controlling any code, and remove that. Pretty soon you have a null program). The Whetstone was carefully written, and seems to be proof against optimizing compilers. The Dhrystone, whose whimsical name is a pun on Whetstone, regrettably is not proof against optimizing compilers.

Linpack is a different kettle of fish. Owners of supercomputers tend to have them spend much of their time solving partial differential equations numerically, and the Linpack benchmark is simply a standard program with a standard set of data that does just that. Unlike the Whetstone—which is a contrived program intended to exhibit balanced behavior—Linpack is a real program used for real work. However, it does have the major weakness (as a benchmark) of being a very poor predictor of general performance for the very reason that it does just one job.

Further, a computer's performance on the Linpack benchmark is mostly an indicator of how quickly the machine can run a single inner loop of the program. This loop can be vectorized quite nicely, so machines like the Cray run it very quickly. The Savage benchmark isn't about speed at all. It was designed to indicate how reliable—in the sense of accurate—the trigonometric routines in a floating-point implementation are.

At first glance, this seems strange; surely all IEEE-standard packages will produce exactly the same accuracy? Not so: even standards have "gotchas." The IEEE standard specifies three ways of doing sums—the single length (32 bits; 24 mantissa, 8 exponent), double length (64 bits; 53 mantissa, 16 exponent), and extended (80 bits; 64 mantissa, 16 exponent). Implementations have some freedom about just how they use these.

For example, assume that you're a floating-point coprocessor and have been given three single-length numbers and asked to do some sums with them. Because you're feeling kind toward the world, you convert the numbers to extended format, work on them in that format, and convert back to single length. This use of extended format provides extra precision to the answer, surely something that the world will be grateful for.

This approach is used by the Intel family of floating-point processors, and on the surface it sounds like a good idea; since the FPU's always work in 80-bit floating-point.
Capture your wildest imaginings

Common-Sense Graphics in Atlanta where common-sense graphics will take you on a great adventure. Explore the endless ways graphics are used to science, academia, industry and the arts. Listen to computer graphics professionals describe bold new advances. Learn how to give life to your imagination into the era of electronic visualization.

ACM SIGGRAPH '88
First Annual Conference
Computer Graphics
August 15-19, 1988
Sponsored by the ACM Solid Modeling Committee and the Conference Graphics Committee with the IEEE Technical Committee on Computer Graphics.
mat, you get the best possible answers (without any speed penalty, since the processors are built around an 80-bit ALU), and the approach is allowed by the standard.

But the approach can lead to some bizarre side effects. Suppose you've written a program that needs to compute the value of $\frac{a}{b} \times c$. Being a little unsure of yourself, you do it step by step as a sequence of operations: First you calculate a/b (store the result somewhere, say, x), and then you multiply the result by c. So your program might say

```c
float sum(a, b, c)
float a, b, c;

float x;
return x \times c;
```

Testing it, you find that the steady approach has paid off and that it works. So now—flush with success—you get rid of the temporary variable x.

```c
float sum(a, b, c)
float a, b, c;

return (a \times b) \times c;
```

Running it again, you get a different answer. Of course, what happened was that in the first example, the program computed a/b in extended precision, shrunk the result down to single length, and used that for the division. In the second case, the sum was done in extended precision all the way through, and so the answer could be different since the rounding done could be different.

The same sort of thing can happen if your compiler-writer wasn't too careful about the code generated. If you wrote $x = c \times (a/b) - d \times (a/b)$, the compiler should notice that a/b is used twice, work it out just once, and reuse the result. Optimizing compilers will also note reuse of an expression across several lines of program and try to do the same thing (this is called common subexpression elimination) to speed up execution.

If the compiler generates code that causes the FPU to save the result of evaluating a subexpression in memory, then it is important that the result be saved as an extended-precision number: this takes up 10 bytes of memory and lots of store cycles. Sloppy coding might save it as a single-length result, so that if you compiled with optimization off you'd get no subexpression elimination and one answer, while compiling with optimization on would give the elimination and yield a different answer.

To return to the Savage benchmark: As indicated, it is intended to provide you with an indication of the accuracy of the trigonometric routines in your implementation, and it does that by computing the value of an expression whose value is known exactly (from trig identities, rather than by doing the calculation to exact accuracy).

Finally, the Livermore Loops are, in a sense, an up-to-date version of the Whetstone. Like the Whetstone, they attempt to indicate how well a machine will work on a range of scientific applications by providing a sequence of subtests. Unlike the Whetstone, though, the performance figure isn't a single figure formed as a weighted average of the individual times. Rather, the "official" benchmark results indicate performance in MFLOPS (million floating-point operations per second) in terms like the average, the fastest, the slowest, and the standard deviation.

So you get an idea of the spread of capability of your machine rather than just a single-point figure; immediately, this makes the Loops a better predictor than the other benchmarks for scientifically oriented work.

The Loops themselves (so-called because they consist of a number of program loops representing the vital portions of many interesting problems in physics and math) only have one drawback (for our purposes); they're written in FORTRAN while most personal computer system analysts and testers use C.

High-Performance Floating Point

Next we look at how to design a computer to get it to do a high floating-point performance. As with everything, we need first to identify what the problem is before trying to fix it; from the earlier discussions, it seems that the Livermore Loops give a useful indicator of what needs to be done in number crunching, so we'll use that as a guide. Looking at the Loops, we quickly come to these conclusions: Most floating-point sums involve complex expressions and array access.

As an example, here is the code for Livermore Loop 7:

```c
DO 7 k = 1, n
    X(k) = U(k) + R \times (U(k+2) + R \times U(k+3) + R \times U(k+1) + R \times U(k+6) + R \times U(k+5) + R \times U(k+4))
7    CONTINUE
```

This is FORTRAN for "execute that loop n times with k going from 1 to $n." Look at what the code is doing; for example, look at what needs to be done to do some of the work, like computing $R \times U(k+4)$.

First, we need to compute the address of the array element. This involves getting the address of the base of the array (this is FORTRAN, and COMMON at that, so it's in a fixed location in memory), adding $(k+4)$ times the word-length of a floating-point number to that address, reading that location from memory, then reading the value of R (in a register, say, since it's going to be used a lot) and multiplying them together. And that's if our compiler-writer had been naive: really, we should check that the element we're accessing actually is inside the array.

The first thing that's obvious is that having a processor with an infinitely fast floating-point multiply isn't a complete cure: all that accessing takes time, instructions, and memory accesses. In fact, it looks like the highest floating-point problem is getting data to the FPU. So two routes are taken to minimize the loading times.

First, clever compilers can look at the code and save some time. In this example, we look at quite closely bunched elements in an array; the elements we look at next time around are close to the previous time's elements. So a compiler would take advantage of this by using a pointer (and store the pointer in a register, if the machine has registers); accessing $U(k + 4)$ comes down to reading the contents of memory at location $4 \times 8 +$ (register 4)—that is, 32 bytes beyond where register 4 is pointing (assuming 64-bit values). Then the register is incremented at the bottom of the loop by 4 bytes, and around we go again. This also lets the bound-checking be done once per loop iteration, rather than on every access.

The result of this transformation is that each array access is now just an indexed load, which is a lot quicker. But it will still take the machine at least 10 (one for each read plus a write) memory cycles to compute the value for $X(k)$, plus the time for an add (to increment the pointer), plus whatever code is needed to check the loop end conditions; typically, this will total at least 25 integer instructions. The program runs faster, but even with infinitely fast floating-point work, it still takes 25 integer-instruction times per loop iteration. And it's pretty difficult to get infinitely fast FPUs.

Or is it? Look at the code again. It is a sequence of fetching things from memory. operated on them, fetching other things from memory, operating on those, and then combining the results. To do $R \times (U(k+2) + R \times U(k+3))$, we need to get $U(k+2)$, multiply it by R, then get $U(k+3)$, multiply it by R, add them together, and then multiply by R. If we design the FPU/processor interface properly, we can get $U(k+1)$ from memory, give it to the FPU, give it R continued
NOW THERE'S AN EASIER WAY TO CATCH UP ON YOUR PAPER WORK.

If keeping up has you falling behind, try CompuServe's exclusive Executive News Service—an electronic clipping service that puts the power and scope of the world's most respected news sources at your fingertips.

The Executive News Service can provide you with all types of important information. Keep an eye on financial and economic situations. Follow national and international market fluctuations, economic conditions, and the business, political or economic events that affect specific companies.

Keep informed of specialized areas of technology or the expanding health care industry. Stay on top of the upcoming elections. Or follow your favorite sports team on and off the field. Travel with the Olympics from Calgary and Seoul.

CompuServe's Executive News Service does all the work for you. Just enter the words and phrases that define your interests. Executive News Service screens the sources around the clock, then electronically files the stories for you to read at your convenience.

CompuServe's standard usage rate is the same any time of day. So you can go online as inexpensively during the day as you can at night.

CompuServe delivers it all, plus a variety of other information, entertainment and communications options. You can access CompuServe with almost any computer and modem. To buy a Subscription Kit, see your nearest computer dealer. To receive our informative brochure, or to order direct, call 800-848-8199. In Ohio and Canada, call 614-857-0802.

Circle 60 on Reader Service Card
to the FPU, and tell it to multiply them together. While it's doing that, we go on and read \(U(k+2) \) from memory, hand it to the FPU, and tell it to add it in. By the time we tell the FPU to do the addition, we'll have had several instruction times for the FPU to have finished the multiply.

This approach of letting the FPU and the CPU run in parallel is the other half of getting floating-point performance out of normal machines, and has been adopted by all the microprocessor vendors. The effect, given a sufficiently fast FPU (one that can do a floating-point add in about the time the CPU can do a memory read and an instruction or so), is to get the computational power of an infinitely fast FPU for a wide range of real programs.

The Supercomputer Advantage

That sort of approach, with computers typical of today's workstations and high-end personal computers, can result in systems which can do a sustained 1 or 2 MFLOPS; you can get this from a T800, or from an Intel/Weitek 80386/1167 combination, for example. The limit is the variable accessing and control, rather than the FPU times. How does a Cray go so much faster?

Well, there are some obvious differences. First, the memory is quicker (and so is the machine that fetches operands). But, perhaps surprisingly, for many computations, the Cray isn't so very much faster. For example, a T800-20 can hit 2.5 million (64-bit) Whetstones per second, while a Cray X-MP-1 hits 26.6 million. Then supercomputers are only 10 times as fast as a microprocessor. But on Linpack, where the T800 will offer perhaps a little below 1 MFLOP, the X-MP-1 will be a hundred times faster. Why the difference?

Consider doing a vector multiplication. To do this, you take each element in a row of a matrix, each element in a column, multiply the corresponding elements pairwise, and add up the answers. Then you repeat the operation lots of times.

Now assume you have an FPU with two inputs, and that you have a clever block-move instruction in your CPU. You could move the row elements one by one into one input, and the column elements one by one into the other. Then you tell the FPU to multiply together its inputs, and you'll get a sequence of outputs. If you then attach another FPU to the output of the first FPU, and tell it to add what it sees on its input to what it's already got, you can get the complete \((\text{row} \times \text{column})\) computation done in no more time than it takes to blast the values from memory.

The block moves have to be clever (the elements are not side by side), so successive values are some distance apart. This sort of extra hardware resources lets Crays go faster than normal processors, but only on the right sort of problem.

Suppose that 100 MFLOPS or so isn't enough. How do we go much faster? Brute strength helps; faster technologies squeeze down the cycle times of machines so that they go ever faster. Today's limit for traditional supercomputers seems to be around 1000 MFLOPS; if we want to go faster, another approach is needed.

The only approach that seems to have the right sort of promise is the obvious one—do more things at once. There are a couple of different approaches to this: one connects up fairly small numbers of horribly quick computers, and the other—more relevant here—connects up large numbers of microprocessors.

Typical examples of the latter are Intel's iPSC Hypercubes (which use bucketloads of 80386s), Floating Point Systems T-Series and Meiko's Computing Surface (which both use INMOS transputers), systems from Amitek and BBN (which use 68000-family machines), plus NCube (which uses a custom microprocessor). These machines all offer the promise of going faster as you add processors to them; being microprocessor-based gives them excellent price/performance.

But unlike Crays, which have compilers that can take care of the clever hardware efficiently, these machines don't have compilers which can take a "normal" program and massage it automatically so that the awesome power of a collection of 1024 T800s can be brought to bear. But with the price/performance offered by the approach (Floating Point Systems' top machine is quoted at 18 giga-FLOPS, for example), it is becoming increasingly attractive to rewrite code especially for these machines. This has relevance, since you can buy microprocessor add-in cards for personal computers, so this extra performance is there for many personal computer owners (for instance, the CSA PC add-in described on page 220).

Not Written in Stone

We've seen some of floating point's quirks and pitfalls, had a look at benchmarks, seen how supercomputers do even better, and finished by seeing how the ordinary microprocessor is turning the tables on the supercomputers.

In the course of the discussion, I hit on the Livermore Loops as the best all-around benchmark, spoiled only by the fact that they're in FORTRAN; this leaves the Whetstone benchmark as the most widely useful microprocessor benchmark for the moment. Do bear in mind, though, that benchmark results should not be written in stone. A better compiler, a faster clock speed, a bigger cache, and faster memory can all over-turn the league tables. Remember that the final choice of a machine should be made by using knowledge of the complete needs, not by simply referring to some published tables.

PC voice mail, now only $199.

Watson®, hailed by one reviewer as the premier voice mail station at $498, is an even better value at $199. Watson eliminates telephone tag and gives you big-system features like auto speed-dial, auto answer, message forwarding, and built-in 300/1200 bps modem. For an ear-opening business applications demo, call 1 (800) 6-WATSON (in Mass., (617) 651-2186). To order, call 1 (800) 533-6120 (in Mass., (617) 655-6066). Credit Cards Accepted.

Watson
Natural MicroSystems Corporation

226 BYTE • MARCH 1988
Seek and Correct
You already know that fast compilation does not mean fast program development. Backing up for bogus error messages and removing the bugs takes time. Eco-C88's "Seek and Correct" three-way error checking finds even the most elusive bugs, clearing the path for swift program development.

Double Barrel Error Checking
Eco-C88 nails syntax errors cold and tells you about the error in plain English. And there's no avalanche of false error messages, either. Other compilers can generate up to four times the number of error messages actually present; they leave it up to you to guess which ones are real. You'll be more productive with Eco-C88 because there is no guess work.

Eco-C88 provides ten levels of semantic error checking. You can select from almost no checking to the fussiest you've ever seen. Eco-C88's "picky flag" finds subtle errors that slip by other compilers.

Eco-C88 also features:
- All data types, plus ANSI Enhancements
- Robust library, including many new ANSI functions
- CED editor with online function help, split windows, compile-edit-link capability
- New, expanded manual with sample programs for the library functions

C-more Source Code Debugger
Finally, if a really nasty bug persists, put C-more, our source code debugger, to work. With C-more you can watch your program as it executes, single-step it, set simple or conditional breakpoints, test complex expressions, use variables as indexes into other variables, initialize and trace variables, examine CPU registers, display results with printf()-type options and much more. C-more can help you track down bugs in minutes rather than days.

The price for Eco-C88 is $99.95. And, for a limited time, we'll give you our C-more debugger at no extra charge.

Ecosoft Inc.
6413 N. College Ave.
Indianapolis, IN 46220
(317) 255-6476 (Tech Info)
(800) 952-0472 (Orders)

Circle 294 on Reader Service Card
LODEST CPM.
LEAST
Duplicated Readers.
SMALLEST
Rate Increase.

Other computer magazines have been raising their rates way out of proportion to their circulation growth (costs up 30 or 40 percent). We've raised ours a modest 7%.

While other magazines are breaking the $30, $40, $50, and even $100 B&W CPM barriers, ours remains an attractive $25.28.

While other PC books are scrambling to figure out how to juggle the PC and Mac, we're already delivering. With a combined 95% PC, and 38% Mac penetration.

While other magazines fight head to head for the same readership, 45% of our paid readers do not read any other major PC-specific books.

And, when they're not reading BYTE, they're busy buying product. In fact, 90% of our subscribers directly influence their company's microcomputer purchasing decisions.

You'd like to find a way to keep your media budget in line. We're it. Call Dennis Riley at (603) 924-9281 for more facts.

Sources: Fall 1987 MRI Study; 1987 Subscriber Profile Study

BYTE
IT'S INDISPENSABLE.
How to Get Better Floating-Point Results

With or without an FPU, careful program design is the only sure way to guarantee the validity of floating-point computations.

Carl Byington

FLOATING-POINT COPROCESSOR units (FPUs) are the key to getting good number-crunching performance out of personal computers. And yet they are usually extra-cost options. To be fair to users who haven’t added one to their computers, a software designer has to write software that will use an FPU if one is present or perform the necessary operations using the main processor otherwise.

In a compiler system, the component that takes care of this is called a floating-point emulator.

Unfortunately, all emulators are not alike. They do not behave identically nor always emulate the hardware exactly. This means that a given program may produce different results, depending on whether an FPU is present and, if not, depending on which emulator is used.

But you can solve or at least control the problem by designing the high-level algorithm carefully, based on a few principles that derive from an elementary understanding of the emulation process and floating-point representation systems.

This article discusses some of the trade-offs involved in emulating floating-point hardware and explains the implications for programmers. All the specific examples in this article apply to the Ryan-McFarland RM/FORTRAN version 2.4 8087 emulator, which I helped design and implement. Previous versions of the compiler had used the emulator provided by Intel. We (the compiler design team) knew we could significantly speed up the emulation by writing a new emulator with a different set of design goals. The Intel emulator was designed to produce an exact emulation of the 8087 chip. It calculates results more precisely (and therefore more slowly) than is required by the RM/FORTRAN compiler. The Intel emulator also fails to take full advantage of the 8086 instruction set. For instance, many internal variables are maintained in memory, rather than in registers.

The 8087 chip can work with numbers in three basic formats: the 32-bit (24-bit significand) single precision; 64-bit (53-bit significand) double precision; and 80-bit (64-bit significand) temporary. I will refer to these various formats by the number of significand bits (24, 53, and 64).

The version 2.4 emulator was designed to produce results accurate to 60 bits. The primary design goal was to increase the speed of floating-point computations subject to the 60-bit precision requirement. A secondary goal was to increase the precision beyond 60 bits whenever possible so long as the speed was not reduced. A third goal was to make the emulator as small as possible, but this was not allowed to interfere with the first two goals. The speed objective is easily understandable, but why choose 60-bit precision when both the 8087 hardware and the Intel emulator calculate results to 64-bit precision? We did this because it doesn’t affect the precision of the results produced by a FORTRAN program.

Precision and How to Keep It

Three factors control the precision of the results produced by a FORTRAN program: the algorithm (sequence of operations) and input data the program uses, the order of those operations after the compiler has optimized and rearranged the code, and the precision of individual operations within the FPU or emulator.

The entire FORTRAN system (compiler and emulator) has no control over the first factor: that is left up to the programmer. The second and third factors are related in that the choice of precision in the emulator needs only to match the precision requirements of the compiler.

RM/FORTRAN assumes that intermediate results need to be calculated to only 24 (REAL) or 53 (DOUBLE PRECISION) bits. Intermediate results will be calculated to a greater precision if there is no performance penalty. The emulator calculates the standard add, subtract, multiply, and divide functions to 64-bit precision; and it calculates the square root, tangent, arctangent, exponential, and logarithm functions to 60-bit precision.

Only two things can be done with the result of an arithmetic operation: It can be stored in a FORTRAN variable or used as an operand of another arithmetic operation. In the former case, the result’s precision will be reduced to 53 bits. In the latter case, two further possibilities apply. The result may be used directly with its full precision, or the compiler optimizer may choose to store it in a compiler-generated temporary variable for later reuse, in which case the temporary

Carl Byington (1909 Avenida Feliciana, Rancho Palos Verdes, CA 90273) is the founder of 510 Software Group, which specializes in language run-time support systems and database applications.
variable will have a maximum precision of 53 bits.

Consider the FORTRAN statements

```fortran
DOUBLE PRECISION A, B, C, X, Y

A = X + Y
```

One possible 80x87 FPU code sequence to calculate A is

1. `FLD X`; load floating point value X
2. `FADD Y`; add Y to X
3. `FADD Z`; add Z to the result
4. `FSTP A`; store the result in A

The register operand for the second FADD can have up to 64 significant bits, since it was calculated by the first FADD.

Now consider a second code sequence that might be generated if the subexpression \(Y + Z \) appeared in more than one expression in the FORTRAN program:

1. `FLD Y`; load floating point value Y
2. `FADD Z`; add Z to Y
3. `FST T`; save the result in temporary T
4. `FLD X`; load floating point value X
5. `FADD T`; add X to T
6. `FSTP A`; store the result in A

Here the precision of T is only 53 bits (a double-precision temporary generated by the compiler), and the results may not be identical to those produced by the first code sequence.

The compiler and emulator guarantee that each elementary arithmetic operation is accurate to at least 53 bits. You can still write FORTRAN code that is exact in the mathematical sense and yet produces very imprecise results. Two common causes for this loss of precision are subtraction of two numbers that are almost identical and addition of two numbers of widely different magnitudes. As an example of the first situation, consider the problem of finding the roots of the quadratic equation \(x^2 + 2bx + c = 0 \).

The standard formula gives us:

\[
x_1 = -b + \sqrt{b^2 - c}, \quad x_2 = -b - \sqrt{b^2 - c}.
\]

If these were implemented with infinitely precise arithmetic and the coefficients \(b \) and \(c \) were known exactly, they would produce the exact roots of the quadratic equation. But when they are used in a FORTRAN program, several things happen. Here are the FORTRAN statements:

\[
x_1 = -b + \sqrt{b^2 - c}, \quad x_2 = -b - \sqrt{b^2 - c}.
\]

First, the coefficients can be known exactly but represented only imprecisely in FORTRAN variables with 53-bit precision. Second, the individual arithmetic operations are implemented with only 53-bit precision. Let us see which effect this has on the precision of the result when \(b \) is approximately \(-2^{23}\) and \(c \) is approximately 1. The result \(x_1 \) will have 53 bits of precision; \(x_2 \) will have only a few bits of precision (note that we're now using FORTRAN rather than algebraic variables). Why did this happen?

Consider the computation of \(x_2 \). The expression \(b^2 + c \) will be calculated to 53 bits and is approximately \(2^{23} \). The value of \(b^2 - c \) is calculated to 53 bits, but only a few high-order bits of \(c \) take part in this calculation. The expression \(\sqrt{b^2 - c} \) is calculated to 53 bits and is almost exactly the same as \(-b\). The final step in the calculation of \(x_2 \) is a subtraction involving operands that are almost identical; the result of this subtraction has only a few bits of precision.

Look at the FORTRAN numbers \(A \), \(B \), \(C \), and \(D \) in table 1a. \(A \) and \(B \) share 50 high-order bits. \(A - B \) is \(C \), which has 50 high-order bits. \(D \) is the result of normalizing \(C \), so the high-order bit of \(D \) is 1. But the low-order 50 bits in \(D \) are an artifact of the floating-point arithmetic, and they have no significance. \(D \) is really known to only three bits of precision, even though its representation in a FORTRAN variable will have 53 significant bits.

This is essentially what has happened in the final subtraction in the calculation of \(x_2 \) above. An alternate formula is \(x_2 = -c/x_1 \), which can be calculated to 53 bits of true precision. The quad program in listing 1 demonstrates the different results obtained using these two approaches. Note that the computation of the error in \(x_1 \) is itself an ill-posed computation with no significant bits. The compiler has calculated that error (variable \(x_3 \)) twice with two different results.

Now we'll look at an example where you lose precision by adding numbers that are very far apart. Consider the numbers in table 1b. The magnitude of \(A \) is very different from the magnitude of \(B \). \(C \) is \(B \) modified so that the exponent will match the exponent of \(A \). Note that in order to make the exponents match, all the bits of \(B \) have been lost. \(D \) is \(A + C \), which is the same as \(A \). In this case, you have not lost any precision, since the sum is still correct to 53 bits.

Now consider the problem of calculating the sum of the power series \(1 + r + r^2 + r^3 + \ldots \) where \(r \) is in the interval \((0, 1)\). If \(r \) is \(0.99 \), then the sum of the infinite series is \(100 \). If the first 2000 elements are added in the order indicated, starting with the first and largest element, the partial sum will eventually become much larger than subsequent series elements, producing a problem similar to that illustrated in table 1b.

This problem can be partially solved by summing the series starting with the smallest elements first. The loss of precision is then not so severe, although it still occurs. The only way to eliminate this problem is to use an array of accumulators and add the next series element into the appropriate accumulator. A far better algorithm in this case is to throw away the series expansion and calculate the mathematically equivalent expression \(1/(1-r) \).

The series program in listing 2 demonstrates these techniques. The do 15 loop initializes the sumx array. The index statement function calculates a subscript for the sumx array. The array element at that position should either be 0 or have a value close to the value of the series element \(r^{**1} \). The do 16 loop checks for array elements that have become too large and effectively propagates the carry. The do 25 loop finally adds the

Table 1: Results of computations involving (a) subtraction of nearly equal numbers and (b) addition of numbers of widely different magnitudes.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>(A = B - C) (normalized).</td>
</tr>
<tr>
<td>(A = 0) (normalized)</td>
<td>(0 \times 00 \times 2^0)</td>
</tr>
<tr>
<td>(B = 0) (normalized)</td>
<td>(0 \times 00 \times 2^0)</td>
</tr>
<tr>
<td>(C = 0) (normalized)</td>
<td>(0 \times 00 \times 2^0)</td>
</tr>
<tr>
<td>(D = 0) (normalized)</td>
<td>(0 \times 00 \times 2^0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>b</th>
<th>(A = B + C) (normalized).</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A = 0) (normalized)</td>
<td>(0 \times 00 \times 2^0)</td>
</tr>
<tr>
<td>(B = 0) (normalized)</td>
<td>(0 \times 00 \times 2^0)</td>
</tr>
<tr>
<td>(C = 0) (normalized)</td>
<td>(0 \times 00 \times 2^0)</td>
</tr>
<tr>
<td>(D = 0) (normalized)</td>
<td>(0 \times 00 \times 2^0)</td>
</tr>
</tbody>
</table>

230 BYTE • MARCH 1988
New Club Class. It changes the face of business travel with amenities like gourmet cuisine, fine wine and a supremely comfortable seat, in addition to the full complement of courtesies you see above. So that you emerge from your flight not only feeling refreshed, but looking that way. Club Class. It's a most attractive way to fly.

Circle 297 on Reader Service Card
A MESSAGE TO OUR SUBSCRIBERS

FROM TIME TO TIME we make the BYTE subscriber list available to other companies who wish to send our subscribers material about their products. We take great care to screen these companies, choosing only those who are reputable, and whose products, services, or information we feel would be of interest to you. Direct mail is an efficient medium for presenting the latest personal computer goods and services to our subscribers.

Many BYTE subscribers appreciate this controlled use of our mailing list, and look forward to finding information of interest to them in the mail. Used are our subscribers' names and addresses only (no other information we may have is ever given).

While we believe the distribution of this information is of benefit to our subscribers, we firmly respect the wishes of any subscriber who does not want to receive such promotional literature. Should you wish to restrict the use of your name, simply send your request to the following address:

BYTE MAGAZINE
ATTN: Subscriber Service
P.O. Box 7643
TEANECK, NJ 07666-9866

Listing 1: (a) A FORTRAN program illustrating ill-formed and well-formed calculations of the quadratic formula, followed by (b) a sample run of the program.

(a)

program quad
 double precision b, c, x1, x2, x3, x4
 write (6, 1) 'Enter coefficients b and c separated by spaces: '
 read (5, *) b, c
 if (c .eq. 0.0) stop
 write (6, 1) b, c
 write (6, 2) x1, x2, x3, x4
 write (6, 3) x1, x2, x3, x4
 goto 10
1 format (lx)
2 format (x1 solution, D25.18 / x2 solution, D25.18 / error in x1, D25.18 / error in x2, D25.18)
3 format (b, D25.18 / c, D25.18)
 end

(b)

Enter coefficients b and c separated by spaces: -3e7 1
b -0.300000000000000000D+09
 c 8.100000000000000000D+08
Method one.
x1 solution 0.500000000000000000D+09
 x2 solution 0.000000000000000000D+00
error in x1 -9.0000244140625E-06
error in x2 -1.794069671638571550D-01
Method two.
x1 solution 0.500000000000000000D+09
 x2 solution 0.000000000000000000D+00
error in x1 -9.0000244140625E-06
error in x2 -1.794069671638571550D-01

Enter coefficients b and c separated by spaces: -3e8 1
b -0.300000000000000000D+09
 c 8.100000000000000000D+08
Method one.
x1 solution 0.600000000000000000D+09
 x2 solution 0.000000000000000000D+00
error in x1 -9.794069671638571550D-01
error in x2 -1.20050009319921750770D-14

continued
FUJITSU'S DX2000 SERIES PRINTERS

Switching from computer paper to letterhead is as simple as 1...2...3.

Instructions:

1. Push
2. Pull
3. Push

Push a button. Pull a lever. Push a button.

It's that easy to switch from computer paper to letterhead using a Fujitsu DX2000 Series 9-wire dot matrix printer.

There's no wrestling with continuous forms or optional tractors. No wasting time loading and unloading paper. And automatic feeding of cut-sheet paper is faster with the optional, single-bin sheet feeder.

The DX2000 Series printers are available in either 80- or 136-character column widths and both produce up to 135 lines of copy per minute. Or an average-size memo in draft quality in just 11 seconds.

Print speeds range from 54 characters per second in near-letter-quality mode to 324 cps in draft quality.

Each printer can create letters, spreadsheets, descriptive charts and professional graphs. For brilliant 7-color printing, you can get an optional easy-to-install color kit.

Quiet, Reliable, Compatible.

Listen. The DX2000 printers are quiet.

What's more, they can give you years of trouble-free printing without taking time off.

And that's not all. Each printer is compatible with the most popular software packages, using Epson* FX80, JX80, IBM* Graphics Printer® or IBM Proprinter® commands.

For pricing and more information on the DX2000 series or any of our complete line of daisywheel, dot matrix, band or laser printers, call 800-626-4686. Make the easy switch to Fujitsu printers.

A COMPANY WITH CHARACTER AND DRIVE

FUJITSU

FUJITSU AMERICA
Computer Products Group

FOR MORE INFORMATION ON THE DX2000 SERIES PRINTERS, CALL 800-626-4686

© 1988 Fujitsu America, Inc. Epson FX80 and Epson JX80 are registered trademarks of Seiko Epson Corporation. IBM, Graphics Printer and Proprinter are registered trademarks of International Business Machines Corporation.

Circle 101 on Reader Service Card (DEALERS: 102)
BYTE's Subscriber Benefits Program

Your BYTE subscription brings you a complete menu of the latest in microcomputer technology every 30 days. The kind of broad-based objective coverage you read in every issue. In addition, your subscription carries a wealth of other benefits. Check the check list:

BONUSES

✓ Annual Separate Issues: In addition to BYTE’s 12 monthly issues, subscribers also receive our annual IBM PC issue free of charge, as well as any other annual issues BYTE may produce.

✓ BYTE Deck: Subscribers receive five BYTE postcard deck mailings each year—a direct response system for you to obtain information on advertised products through return mail.

✓ Reader Service: For information on products advertised in BYTE, circle the numbers on the Reader Service card enclosed in each issue that correspond to the numbers for the advertisers you select. Drop the post-paid card in the mail and we’ll get your inquiries to the advertisers.

✓ TIPS: BYTE’s Telephone Inquiry System is available to subscribers who need fast response from advertisers. After obtaining your Subscriber I.D. Card, dial TIPS and enter your inquiries. You’ll save as much as ten days over the response to Reader Service cards.

✓ Free Programs Via BYTEnet: You get access to the BYTEnet Bulletin Board Service, which allows you to download, via modem, valuable program listings. There is no connect charge for this service.

✓ Subscription Service: If you have a problem with, or a question about your subscription, you may call our service department toll-free at 800-423-8272 (in New Jersey call 800-367-0218) during regular business hours (Eastern Time). You can also use Subscription Service to obtain back issues. Should you care to correspond, use the following address: P.O. Box 6821, Piscataway, N.J. 08855.

✓ Editorial Indices: Available through our customer service department P.O. Box 328, Hancock, New Hampshire 03449.

DISCOUNTS

✓ One-year subscription at $22.95
✓ Two-year subscription at $39.95
✓ Three-year subscription at $55.95

✓ One-year group subscription for ten or more at $18.95 each. (Call or write for details.)

TOLL-FREE NUMBERS FOR YOUR CONVENIENCE:

Subscriptions & Back Issues: 1-800-423-8272
(in N.J., 1-800-367-0218)

BIX: 1-800-227-BYTE

Program Listings Orders: 1-800-258-5485

PAID SERVICES

✓ BIX: BYTE’s Information Exchange puts you on-line 24 hours a day with your peers via computer conferencing and electronic mail. All you need to sign up is a microcomputer, a modem, and telecomm software. For further information and cost, call 1-800-227-BYTE.

✓ Program Listings: Listings of programs that accompany BYTE articles are now available on BIX, on disks or in quarterly printed supplements (see reply cards in this issue for cost information), or call 1-800-258-5485.

✓ Microform: BYTE is available in microform from University Microfilm International in the U.S. and Europe. See Contents page for cost information.

BYTE
It's indispensable.
Method two.
x1 solution 0.6000000000000000000 + 01
x2 solution 0.1666666666666666600 -09
error in x1 0.1000000000000000000 + 01
error in x2 0.281892564846231153D-17

Enter coefficients b and c separated by spaces: -3e9 1

Method one.
x1 solution 0.6000000000000000000 + 10
x2 solution 0.1000000000000000000 + 01
error in x1 0.1000000000000000000 + 01
error in x2 0.1000000000000000000 + 01

Enter coefficients b and c separated by spaces: 1 0

Listing 2: (a) A FORTRAN program illustrating various approaches to the calculation of a power series, followed by (b) a sample run of the program.

(a)

```fortran
program series
double precision r, sum, sumup, sumdown, x
double precision sumx(30), sumw
index(x) = 4 + int(-log10(x))
c sum(l) < 10**(4-1)
c km = 30
c
10 write (6, 1) write (6, *) 'Enter r and n separated by spaces: '
read (5, *) r, n
if (r .eq. 0) stop
c sum = (1-r**n) / (1-r)
sumup = 0
sumdown = 0
do 15 j = 1, km
   sumx(j) = 0
15 continue
c do 20 i = 0, n-1
   sumup = sumup + r**i
   sumdown = sumdown + r**(i-1)
j = index(r**i)
sumx(j) = sumx(j) + r**j
   do 16 k = j, 2, -1
      if (sumx(k) < 10**(4-k)) goto 20
      sumx(k-1) = sumx(k-1) + sumx(k)
      sumx(k) = 0
16 continue
20 continue
c sumw = 0
   do 25 j = km, 1, -1
      sumw = sumw + sumx(j)
25 continue
```

(b)

```fortran
Listing 2: (b) A FORTRAN program illustrating various approaches to the calculation of a power series, followed by (b) a sample run of the program.

```
BETTER FLOATING-POINT RESULTS

```
c write (6, 2) r, sum, sumw, sumup, sumdown
10 goto 10
1
2 format (1x)
$ correct partial sum , d25.18 /
$ calculated with array , d25.18 /
$ added from largest , d25.18 /
$ added from smallest , d25.18 /
2 format (lx)
$ end
```

sum array elements to arrive at sum. Note that this algorithm works only when all the series elements have the same sign. For an alternating series, you need separate arrays for the positive and negative elements; merging the two arrays produces the final answer.

Note that the calculation using the array of accumulators matches the accuracy of the exact solution. If an exact solution is not known, then this method can be used to avoid loss of precision, although it is very slow.

The design goals for an emulator are influenced by the data types available in the language, the code sequences generated by the compiler, and the compiler and run-time system's assumptions regarding precision. The 80x87 emulator we designed for RM/FORTRAN achieved our design goals of dramatic speed improvement (approximately a factor of 5) with no loss of precision at the FORTRAN level. Although the emulator produces results different from those produced by the 8087 hardware, they are not less precise.

To analyze a FORTRAN program to determine the precision of its output, you need to know the size of the input numbers. As the quadratic-roots problem demonstrated, the standard formula works fine for some argument ranges but is terrible for others. You must then analyze each subtraction operation (or addition of numbers with opposite signs) to determine if the operands of that subtraction might ever be almost identical; if so, you should find another way to solve the problem, or at least be aware of the resulting loss of precision. In general, the addition of two numbers that are far apart doesn't result in precision loss, unless you calculate a series of such additions.

If your FORTRAN program produces significantly different results on the 8087 hardware versus the emulator, then you are using an algorithm that depends on 64-bit precision arithmetic. Any small change to that program may cause the compiler optimizer to reorder the object code such that the precision will drop to 53 bits, even on the 8087 hardware. This is a simple though incomplete test for imprecise results.

As the quadratic-root and series-sum problems showed, changing the numerical algorithm at the FORTRAN level can have a larger effect on the precision than any compiler or emulator change. There is no substitute for analyzing the numerical accuracy of the FORTRAN code.

UNIVERSAL E(E)PROM PROGRAMMERS

- IBM PC Software Package included or RS232 drivers to any computer (Apple, CPM, etc).
- Programs 27xx to 1MBit, 25xx, 68xx, CMOS, EEProms, 874s, 871(C)5x, ZPrams & more.
- Reads & Writes Intel-, Motorola-, Straight- Hex & Binary files. Splits files (odd/even).
- Technical Support by phone: 8am-9pm voice, 9am-1pm Bulletin Board (PT).
- Built-in Eraser/Timer option. Full documentation. Firmware upgrades available.
- 1 year warranty. Money back guarantee. Must units same day shipment.

Call today for datasheets!

B&CMICROSYSTEMS
355 West Olive Ave. Sunnyvale, CA 94086
PH: (408) 730-5511 FAX: (408) 730-5521 TLX: 985185

$495
$395
$95
$295

Kits from

$59
$295

Circle 47 on Reader Service Card
80386 compilers that run in protected mode and numeric coprocessor cards that utilize the Weitek technology.

The benefits of our new technologies include:
- An increase in addressable memory from 640K to 4 gigabytes using MS-DOS or Unix.
- A 12 fold increase in the speed of 32 bit arithmetic.
- A 4 to 16 fold increase in floating point speed over the 80387/80287 numeric coprocessors.

Equally important, whichever MicroWay product you choose, you can be assured of the same excellent pre- and post-sales support that has made MicroWay the world leader in PC numerics and high performance PC upgrades. For more information, please call the Technical Support Department at 617-746-7341 after July 1988 call 508-746-7341.

MicroWay 80386 Support

MicroWay 80386 Compilers
NDP Fortran-386 and NDP C-386 are globally optimizing 80386 native code compilers that support a number of Numeric Data Processors, including the 80287, 80387 and mW1167. They generate mainframe quality optimized code and are syntactically and operationally compatible to the Berkeley 4.2 Unix and PCC compilers. MS-DOS specific extensions have been added where necessary to make it easy to port programs written with Microsoft C or Fortran and R/M Fortran.

The compilers are presently available in two formats: Microport Unix 5.3 or MS-DOS as extended by the Phar Lap Tools. MicroWay will port them to other 80386 operating systems such as OS/2 as the need arises and as 80386 versions become available.

The key to addressing more than 640 kbytes is the use of 32-bit integers to address arrays. NDP Fortran-386 generates 32-bit code which executes 3 to 8 times faster than the current generation of 16-bit compilers. There are three elements of which contribute to a factor of 2 to 4 speed increase: very efficient use of 80386 registers to store 32-bit entities, the use of inline 32-bit arithmetic instead of library calls, and a doubling in the effective utilization of the system data bus.

An example of the benefits of excellent code is a 32-bit matrix multiply. In this benchmark an NDP Fortran-386 program is run against the same program compiled with a 16-bit Fortran. Both programs were run on the same 80386 system. However, the 32-bit code ran 7.5 times faster than the 16-bit code, and 58.5 times faster than the 16-bit code executing on an IBM PC.

NDP FORTRAN-386 $595
NDP C-386 $595

MicroWay Numerics
The mW1167™ is a MicroWay designed high speed numeric coprocessor that works with the 80386. It plugs into a 121 pin "Weitek" socket that is actually a super set of the 80387. This socket is available on a number of motherboards and accelerators including the ASCII, Tandy 4000, Compaq 386/20, Hewlett Packard RS/20 and MicroWay Number Smasher 386. It combines the 64-bit Weitek 1163/84 floating point multiplier/adder with a Weitek/Intel designed "glue chip". The mW1167™ runs at 3.6 MegaWattstones (compiled with NDP Fortran-386) which is a factor of 16 faster than an AT and 2 to 4 times faster than an 80387.

801167 16 MHz $1295
801167 20 MHz $1695

Monoputer™ - The INMOS T800-20 Transputer is a 32-bit computer on a chip that features a built-in floating point coprocessor. The T800 can be used to build arbitrarily large parallel processing machines. The Monoputer comes with either the 20 MHz T800 or the T414 (a T800 without the NDP) and includes 2 megabytes of processor memory. Transputer language support from MicroWay includes Occam, C, Fortran, Pascal and Prolog.

Monoputer T414-20 with 2 meg $1495
Monoputer T800-20 with 2 meg $1995

Quadputer™ can be purchased with 2, 3 or 4 transputers each of which has 1 or 4 megabytes of memory. Quadputers can be cabled together to build arbitrarily fast parallel processing systems that are as fast or faster than today's mainframes. A single T800 is as fast as an 80386/mW1167 combination!

Biputer™ T800/T414 with 2 meg $3495
Quadputer 4 T414-20 with 4 meg $6000

Includes Occam

80386 Multi-User Solutions
ATB™ - This intelligent serial controller series is designed to handle 4 to 16 users in a Xenix or Unix environment with as little as 3% degradation in speed. It has been tested and approved by Compaq, Intel, NCR, Zelben, and the Department of Defense for use in high performance 80286 and 80386 Xenix and Unix based multi-user systems.

AT4 - 4 users $795
AT5 - 8 users $995
AT16 - 16 users $1295

Phar Lap™ created the first tools that make it possible to develop 80386 applications which run under MS-DOS yet take advantage of the full power of the 80386. These include an 80386 monitor/booter that runs the 80386 in protected linear address mode, an assembler, linker and debugger. These tools are required for the MS-DOS version of the MicroWay NDP Compilers. Phar Lap Tools $495

PC/AT ACCELERATORS
287Turbo-10 10 MHz .. $450
287Turbo-12 12 MHz .. $550
287TurboPlus-12 12 MHz .. $629
FASTCACHE-286 9 MHz .. $299
FASTCACHE-286 12 MHz .. $399
SUPERCACHE-286 .. $499

MATH COPROCESSORS
80387-20 20 MHz .. $895
80387-16 16 MHz .. $895
80287-10 10 MHz .. $539
80287-8 8 MHz .. $259
80287-6 6 MHz .. $179
8086-7 2 MHz .. $154
8086 5 MHz .. $99

The World Leader in PC Numerics
P.O. Box 78, Kingston, Mass. 02364 USA (617) 746-7341
32 High St., Kingston-Upon-Thames, U.K., 01-541-5466
St. Leonards, NSW, Australia 02-439-8400

MARCH 1988 • BYTE 237
The new Diconix 300 desktop plain paper printer. So quiet, so small, so fast, you could mistake it for the Diconix 150. Before you decide on a PC printer, reflect on this.
2/4 Megabyte EMS for the IBM AT and Compatibles

- The first and only hardware board that fully supports EMS, EMS 4.0 and EEMS
- Fully populated with 2 or 4 MB of Micron's own dynamic RAM memory components
- Purchase 2 MB mothercard and 2 MB daughter-card separately or together to fit in a single slot!
- Designed to work with 80286 and 80386 based systems
- Provides expanded and/or extended memory operation
- Automatically configures around bad memory
- Compatible with DOS, OS/2, UNIX and XENIX operating systems
- Operating speeds up to 8 MHz zero wait-state and 12 MHz with one wait-state
- Backfills conventional memory to 640KB
- Data is parity protected
- Easy-to-use installation and configuration software—no switches to set!
- RAM diagnostics, RAM disk and print spooler software included
- Warranted for 2 years to registered users
- Each board is tested under a wide range of environmental conditions to insure high reliability and quality
- Made in the USA

<table>
<thead>
<tr>
<th>Operating Speeds</th>
<th>2MB</th>
<th>4MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 6 MHz with zero wait-state</td>
<td>MB-26-DH</td>
<td>MB-46-DH</td>
</tr>
<tr>
<td>Up to 10 MHz with 1 wait-state</td>
<td>MB-26-DD</td>
<td></td>
</tr>
<tr>
<td>Daughtercard for MB-26-DH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Up to 8 MHz with zero wait-state</td>
<td>MB-28-DH</td>
<td>MB-48-DH</td>
</tr>
<tr>
<td>Up to 12 MHz with 1 wait-state</td>
<td>MB-28-DD</td>
<td></td>
</tr>
<tr>
<td>Daughtercard for MB-28-DH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Features

243 Ciarcia’s Circuit Cellar:
The BCC180 Multitasking
Controller
Part 2: Memory Management
and Windowing
by Steve Ciarcia

249 Better Bit-Mapped Lines
by Jerry R. Van Aken and
Carrell R. Killebrew Jr.

255 Focus on Algorithms:
Multicolumn Paged Text
by Dick Fountain

265 It’s All in the Symbols
by Merrill Cornish

273 System Calls in Modula-2
by Richard P. Rankin
Hypertext lets you link related concepts, logic or procedures. It adds a whole new dimension to written material like training manuals, help systems and reference works. Hypertext allows users to access information in a non-linear fashion by following a train of thought. Hypertext lets the reader control the level of detail and the type of information displayed. But that’s just one side of the coin.

Expert systems are the other key ingredient to real exchange of knowledge via the computer is control by the author. That’s why integration of hypertext and expert systems is such a breakthrough—it lets communication take place between teacher and pupil, author and reader, expert and novice. It lets each side react to what the other says.

Announcing KnowledgePro, a new development environment, from Knowledge Garden. It integrates hypertext with expert systems to create the world’s first knowledge processor. KnowledgePro is unlike anything you have seen before.

KnowledgePro is for experts because it provides a wide variety of structures to work with. It has many advanced features, like inference, list processing, topics, procedural control and inheritance. You can write new procedures in other languages and interface to other programs. You can read DBASE III and LOTUS 123 data directly into the knowledge base.

KnowledgePro is a totally new development environment created by Bev and Bill Thompson. It costs $495 plus $5 shipping and handling and runs on IBM PC, XT, AT or PS/2 with 512k memory. KnowledgePro is not copy-protected and there are no run-time fees. A working demonstration disk is available for $30 with full credit towards purchase of KnowledgePro. Call today to order your copy.

KnowledgePro is a totally new development environment created by Bev and Bill Thompson. It costs $495 plus $5 shipping and handling and runs on IBM PC, XT, AT or PS/2 with 512k memory. KnowledgePro is not copy-protected and there are no run-time fees. A working demonstration disk is available for $30 with full credit towards purchase of KnowledgePro. Call today to order your copy.

A TOOl FOR BEGINNERS

KnowledgePro lets you communicate knowledge, easily and without spending weeks on the details. KnowledgePro handles the details for you. It provides easy access to colors, windows and mouse control. It’s been called the BASIC of the 80's because anyone can get results quickly—and then grow into more sophisticated features at their own pace.

Knowledge Garden Inc.
473A Malden Bridge Rd.
Nassau, NY 11213

The run-time version of KnowledgePro is free on the electronic networks or $15 from Knowledge Garden complete with useful example applications.

TO ORDER
Call 518-766-3000 (American Express, Visa, M/C accepted) or mail your check today.

Knowledge Garden Inc.
473A Malden Bridge Rd.
Nassau, NY 11213

The run-time version of KnowledgePro is free on the electronic networks or $15 from Knowledge Garden complete with useful example applications.

Published by

Another intelligent tool in the Knowledge Garden family of products.

IBM is a registered trademark of International Business Machines Inc. KnowledgePro is a trademark of Knowledge Garden Inc.

DBASE III is a trademark of Ashton Tate. LOTUS 123 is a registered trademark of Lotus Development Corp.

Photo: Tomerelli ©
Part 3: Memory Management and Windowing

The BCC180
Multitasking Controller

The BCC180's multitasking BASIC compiler can operate on a variety of hardware—even on an IBM PC.

For the past two months, I've been discussing a 64180-based multitasking computer, the BCC180 (see photo 1). In common with most of my projects, it is hardware, but because of its unique multitasking capabilities, I have made much of the presentation a tutorial on multitasking. This month, I'll conclude with a discussion of the memory management and windowing capabilities of BASIC-180.

Memory and the 64180

The 64180 processor has two great advantages over the Z80. First, it contains a wide variety of on-board peripherals, including timers and universal asynchronous receiver/transmitters (UARTs). Second—and more important—it has an onboard memory management unit (MMU).

The MMU lets the 64180 directly address up to 1 megabyte of memory. The memory connected to the 64180 is called physical memory; it is the entire “universe” of memory available to the processor. The memory that can be addressed with any one map, or configuration, of the MMU is called the logical address space. Every address generated by a user's program is a logical address.

The MMU's role is to translate logical addresses into physical addresses. If, for example, a program tries to reference location 0, this is a reference to logical address 0. The actual physical address will be a function of the mapping of the MMU. It may indeed use physical address 0 (on power-up, the MMU translates every logical address to exactly the same physical address). Or, if the program had set the MMU, it could use physical address 10000 hexadecimal. (For the remainder of the article, all addresses will be in hexadecimal unless otherwise specified.)

The 64180's MMU lets programs segment the memory on any one map into three different areas. For instance, references to logical addresses 0 to 3FFF could access physical addresses 0 to 3FFF; references to logical addresses 4000 to 7FFF could access physical addresses 10000 to 13FFF; and the last half of the logical space could access physical addresses 40000 to 47FFF. Virtually any combination is possible.

Using All Available Memory

Although the MMU provides a fairly convenient way to handle large amounts of memory while still maintaining Z80 compatibility, it is not magic. The MMU is useless unless applications programs are specifically written to use it. None of the thousands of existing CP/M programs can take advantage of the power of the MMU; even running on a 64180, they are still limited to 64K bytes of memory. Handling the MMU is not trivial. Only a handful of programs have been written to take advantage of this powerful feature. Fortunately, BASIC-180 is one of these.

Writing a compiler that generates code to automatically remap the MMU is a continued...
occurs only at the program's start.) This ensures that BASIC addresses between the run-time and RAM areas. Every task is the top of logical memory (64K) down for as far as is required. Around 3FFF. The compiler maps these logical addresses to the same logical memory and physical memory.

Interestingly enough, the IBM PC's famous lack of performance is partially due to this. Although the PC does not use a conventional MMU, addresses are pretty much limited to 16 bits. Address references outside a 64K-byte region must involve manipulation of the 8088's segment registers, hampering the machine's performance.

BASIC-180 takes a unique approach. In all operational modes except MAPCOMPILE (which I'll describe later), when a BASIC-180 program is running, it ignores the MMU. (Of course, BASIC-180 does initially configure the MMU, but this occurs only at the program's start.) This ensures that BASIC-180 is compatible with all Z80 systems. You can compile programs of any size to disk, even though the compiler uses only around 48K bytes. If you compile a program using the MAPCOMPILE command, BASIC-180 uses the memory map shown in figure 1.

BASIC-180 compiles the "run-time package"—or library of support code required by a program—at logical address 0 to 3FFF. The compiler maps these logical addresses to the same physical addresses (0 to 3FFF).

The variable area consists of both variables defined in the program and temporaries required by the run-time routines. This area must reside in RAM, whereas all the compiled code typically is in EPROM. The temporary area is compiled from the top of logical memory (64K) down for as far as is required. If 16K bytes of RAM is needed, it is compiled to logical address C000 to FFFF. This area is mapped to physical addresses starting at 7FFF and down.

Finally, BASIC-180 compiles the user's program into logical addresses between the run-time and RAM areas. Every task is compiled to the same range of logical addresses. Thus, the lead task starts at address 4000, as does task 1, task 2, and so on. Although these tasks have the same logical address, they reside in memory at different physical addresses. The upshot is that, since a given task "sees" only its own logical space, multiple tasks executing on the same system are largely unaware of one another.

Context Switching

The trick to the success of this approach is context switching. In a multitasking environment, only one task can be executing at any specific moment. BASIC-180 takes advantage of this fact by having the context switcher remap the MMU whenever a tick interrupt is received. The currently executing task's context is saved, and this task is mapped out ("into the ozone," as the experts say) and the next task mapped in. Now, the new task is at the same logical address space as the last one was and can start running.

On the BCC180, a hardware interrupt drives the software context switcher to sequence multitasking. The interrupt is provided by the 64180's internal timer number 0, which BASIC-180 configures to generate 60 interrupts per second. The interrupts from the timer invoke BASIC-180's context switcher, which must then suspend execution of the current task and decide which task to execute next.

The context switcher is structured around a table called the task control block (TCB). Each TCB entry includes the task's current state (e.g., active and suspended), its reschedule interval (specified on the task's RUN statement), how many ticks are left until the interval elapses, the task's priority, the task's memory management map (so the context switcher knows where the task exists in physical memory), and the task's current stack pointer.

Each time the context switcher is invoked, it examines every entry in the table to determine which task must run next, searching in order of priority. The switcher checks tasks' states to find those that are either suspended (whose execution was stopped in midstream by an interrupt) or ready (they've never been executed but are now ready for execution). It examines tasks of equal priority in a round-robin fashion, giving them all an equal chance to execute.

The switcher starts a ready task at that task's first executable location, and a suspended task at the location it left off when last interrupted. If no task currently requires processor time, the context switcher idles, waiting for the next interrupt. (See table 1 for a further breakdown of task states.)

Context switching is a complex procedure, requiring a substantial number of instructions. The TCB is arranged in a doubly sorted order (by round-robin and by task priority) to speed TCB searches. At 60 ticks per second, less than 5 percent of the processor's time is consumed by context switching.

The process of remapping the MMU occupies a tiny percentage of the context-switching time, so little processing overhead is added. The system can therefore manage large multitasking programs with numerous tasks that sprawl across a megabyte of memory at little expense of processor time.

The 64180's MMU has a minimum mapping resolution of 4K bytes. Therefore, each task compiled by BASIC-180 will take at least 4K bytes, since each task must reside in a separate map.

The revision 1 mask of the 64180 in a plastic leadless chip carrier (PLCC) package supports 20-bit address spaces or 1 megabyte of RAM. BASIC-180 has a somewhat arbitrary limit of 32 tasks per program. In a 1-megabyte address space, each task can therefore take up to 32K bytes (since 32K bytes = 1 megabyte). This is quite reasonable, since the runtime package uses 16K bytes. If 16K bytes of RAM is required for variables and temporaries, 32K bytes is left for tasks in the

Figure 1: Memory map for programs compiled using the MAPCOMPILE command, showing the relationship between logical memory and physical memory.

244 BYTE • MARCH 1988
logical address space (16K run time + 16K variables/temporaries + 32K program = 64K, the logical address space of the 64180).

As you can see, in BASIC-180 large programs are intrinsically tied to multitasking. Nonmultitasking programs are restricted to 64K bytes of total memory use. This encourages programmers to think in terms of segmenting a program into separate, asynchronous activities. A Future Circuit Cellar will cover a multiprocessor system, in which this programming style becomes very important.

Interactive Compilation

I don’t have the patience to use most high-level languages. The scenario usually goes like this: You invoke an editor, enter the program, call up the compiler, which inevitably points out a few misplaced semicolons (I thought the computer was supposed to relieve me of trivia . . .), so you have to go back to the editor, fix the code, and recompile, by now hoping desperately that some other silly syntactical mistake isn’t still lurking.

After the compiler is finally happy, you repeat the same process with the linker. (Oh, no! The linker looks at only seven characters of a symbol, but my language recognizes eight! Back to the editor, boys.) Finally, you’re ready to test the program. If it doesn’t work, you’ll often edit lots of print statements into the code to try and localize the problem. No wonder programmers get only 10 lines of good code a day.

BASIC-180 supports two very different development environments. You can write and test code on the BCC180 itself, or you can write at least partially test code on a host computer like the SB180. This kind of cross-development environment is nice because you can use all the resources of the operating system.

The most important of these is the disk system. (I’m seriously considering adding a floppy drive and small computer system interface [SCSI] hard disk interface board to the BCC bus very soon. Circuit Cellar Ink will contain news of that construction project.) You can save various versions of the source and compiled code, adapt portions of old programs for use in a new one, and take advantage of operating-system utilities to ease the development process.

The downside of developing code on a host system is the lack of compatibility I/O. In any process-control system, the BCC180 will no doubt be connected to unusual I/O devices not available to the host development system (e.g., parallel I/O lines connected to contact closures, relays, and so forth). For the present, this involves a trade-off.

Most systems use limited access to I/O. If speed is not the overriding consideration, you should use well-designed modular code to segment the I/O drivers into driver routines. When operating in a cross-development mode, you can replace these drivers with code that simulates the behavior of the physical devices. Perhaps only limited simulation is practical, but you can still test much of the code.

BASIC-180 will run on the SB180 just as it does on the BCC180. The BASIC source code is 100 percent compatible. BASIC-180 will even run on an IBM PC under a CP/M simulator like ZSIM from Z-World.

On a cross-development system, you can compile and test BASIC code in one of three ways: interactively, using the DISKCOMPILE command, or using the MAPCOMPILE command.

When compiling interactively, BASIC-180 appears to operate just like an interpreter. You sign on to the BASIC and edit, run, test, and modify programs, all under the control of BASIC-180. BASIC-180 includes a line editor for easy entry and alteration of programs. Using the SAVE and LOAD commands, you can save code to and load it from disk.

The RUN command starts a BASIC program executing, as in an interpreter. However, when you issue RUN, BASIC-180 compiles the program into true native machine code, then executes it. The program—being compiled instead of interpreted—runs faster. Furthermore, the RUN command causes BASIC-180 to compile the program to RAM—not disk—so compilation is also speedy. (On the SB180, compilation is over 150 BASIC statements per second.) Best of all, you can test, modify, and retest the program in seconds, just as in an interpreter. As far as I’m concerned, this is the only way to develop code. Only a few other languages now use this approach.

Once you have your program working the way you want it to, you can compile it to an efficient disk file using the DISKCOMPILE command. BASIC-180 reads the BASIC source code from a disk file, converts it to native 64180 object code, and saves it to a stand-alone executable file, just like any other CP/M program.

You can use MAPCOMPILE to create program files that you ultimately convert to Intel hexadecimal format and burn into EPROMs for stand-alone execution on the BCC180. BASIC-180 always generates ROMable code. This means that programs created with BASIC-180 require only limited operating-system support, if any, and the code and data areas of a BASIC-180 program are kept separate. BASIC-180 lets you define where RAM should be, so you can support the segmented memory typical of ROM-based systems.

To create large multitasking programs, you use BASIC-180’s MAPCOMPILE command. MAPCOMPILE produces a root.COM file that contains a loader and the run-time routines. It then generates a file for each task. These files have the extension .TXT, where xx is the task number. When you invoke the root program (by typing its name, just as you would for any other.COM file), the built-in loader reads each of the task files from disk into the proper area of physical memory, remapping the MMU as required.

Plug and Go

A truly unique feature of the BCC180 version of BASIC-180 is that the compiler itself, and not just the compiled code, can operate from ROM on the BCC180. Most languages need a great deal of operating-system support. A few interpreted BASICs operate from ROM (like the ROM BASIC for the IBM PC), but you’ll find few ROM-resident BASIC compilers.

BASIC-180 supports its interactive development environment even in ROM. You’ll find nearly all the features available on disk-based systems in the ROM version, including a line editor.
The ROM version of BASIC-180 requires just the BCC180 board, a terminal, and a power supply (you'll need the optional BCC180 EPROM programmer board to generate ROM-based programs). When powered up, the BASIC or a system monitor is available immediately. You can enter, edit, and test programs, just as if you were using an interpreter.

The great advantage of developing code on the BCC180 is that you have all the BCC180's resources available. There is no need to write I/O simulation routines; you can develop critical I/O handlers interactively. Without disks, however, there would seem to be no way to save BASIC source or compiled code. Fortunately, past experience suggested a solution to this problem.

One of the better features of my 8052-based BCC52 is its onboard EPROM programmer that functions like write-once mass storage. I can't stand to rekey programs, so when Softaid's people designed this BASIC-180, I had them add the ability to save programs directly to EPROM in the same manner as the BCC52. When you connect the BCC180's auxiliary EPROM burner, you can use ROMSAVE and ROMLOAD to save and retrieve programs to and from an EPROM (27256). BASIC-180 burns a tokenized (compressed) form of the BASIC source program into the EPROM.

Of course, BASIC-180 doesn't create any sort of file structure on the EPROM. ROMSAVE simply burns each program into the next unused spot in the EPROM, assigning that program a sequential number that ranges from 1 to the number of programs in the EPROM. You load a program from an EPROM using ROMLOAD, which requires as an input argument the ROMSAVE-generated number of the program.

You can also use MAPCOMPILE to compile programs into the EPROM. In this case, MAPCOMPILE burns the programs into the EPROM at the compiled physical addresses, so that you can create a program that executes on power-up by placing the EPROM in the appropriate BCC180 ROM socket(s).

Windowing
When I first ran into multitasking, I was confused as to how different tasks would handle terminal display I/O. What happens when I program three tasks to simultaneously display results? Do I end up with a jumbled mess of asynchronous PRINT statements going to a common display? Of course not.

BASIC-180 gives you a complete set of window control statements. A window is a subsection of the CRT display terminal with a definable size and position. A window can be any size (up to 24 lines by 80 characters), and you can have up to 10 windows in use at once. When your program selects a window, all output will go to that window until the program selects another. The window's borders act as barriers to PRINT statements (see photos 2a and 2b).

BASIC-180 lets you assign windows to tasks, so that you might assign window 1 to task 4 and window 2 to task 12. All output from task 4 will then go to window 1, and all output from task 12 will go to window 2.

The following BASIC-180 statements control windowing:

```plaintext
WINDOW defines a window's size and location.
WSELECT selects a window for output.
WFRAME draws an outline around a window.
WCLEAR erases a window.
WSAVE saves the contents of a window to an array.
WUPDATE restores to the screen a window that has been saved with WSAVE.

The following program defines a square window 10 characters wide and high, whose upper left corner is at column 10, row 10, on the CRT. It is defined as window number 1. A box is drawn around it using the "-" and "|" characters:
```

```
10 WSELECT 1
20 WINDOW 10,10,20,20
30 WFRAME "-", "|
All subsequent PRINT statements will send their output to this window.

The WSFSAVE and WUPDATE statements let you write programs with pop-up or pop-down windows, so you can create programs with a Macintosh-like user interface. WSFSAVE saves on-screen data located behind the pop-up/pop-down window, and WUPDATE restores the screen after the window has been removed.

The following program draws three windows side by side on the screen and assigns a task to each one. All three tasks then run concurrently, each one writing to the window assigned to it:
```

```plaintext
5 INTEGER T1,T2,T3,A,B,C,D,T
10 ERASE
100 DATA 1,1,10,10
105 DATA 1,12,10,22
110 DATA 1,10,10,25
200 FOR T=0 TO 15 STEP 4
210 WSELECT I/4
220 READ A,B,C,D
```
Select the points you want to remove from your regression model. Then press F6 to refit the model and recalculate the statistics.

Because "Statistical Graphics" Is Better Than Just Statistics and Graphics

Most of today's PC statistical packages give you all the statistics you'll ever need. Some even give you a few graphics. But only STATGRAPHICS from STSC gives you integrated statistical graphics in an environment you control.

Unique "What If" Interactivity

STATGRAPHICS lets you explore data relationships fully, producing higher quality, more timely solutions. Define your data and assumptions, run the procedure and review the results, modify data and assumptions repeatedly and take another look—and another. All without leaving the procedure or making permanent changes to your data.

Integrated Statistical Graphics

Coupled with STATGRAPHICS' interactive environment are over 50 types of graphs—traditional pie and bar charts, histograms, 3-D line and surface plots, quality control charts, and more. All are integrated with the procedures so that they can be displayed instantly and modified repeatedly.

Query data points, do on-screen forecasting and model fitting, overlay graphs, or zoom-in on any area for a closer look. With flexibility like that, you can spot and investigate visual trends in your data—trends you may have missed if you looked only at the numbers.

Over 250 Statistical Procedures

- Direct Lotus® and dBASE® interfaces
- ANOVA and regression analysis
- Experimental design
- Quality control procedures
- Multivariate techniques
- Nonparametric methods
- Exploratory data analysis
- Forecasting, time series analysis, and more.

STATGRAPHICS—The Best Way to Do Statistics!

Put the power of STATGRAPHICS to work for you today—all for only $895*. For our free convincer kit or the name of a dealer near you, call (800) 592-0050 ext. 400. In Maryland, (301) 984-5123; Internationally, (301) 984-5412. Telex 898085 STSC ROVE

A wide variety of graphs supported on over 100 displays, printers and plotters, including the new IBM PS/2™ Series.

STSC

STSC, Inc.
2115 East Jefferson Street
Rockville, Maryland 20852

*Suggested retail price in U.S. and Canada. International prices vary. Available through dealers and distributors worldwide. STATGRAPHICS, PLUSWare®, Lotus, and dBASE are registered trademarks of Statistical Graphics Corporation, STSC, Inc., Lotus Development Corporation, and Ashton-Tate, respectively.
It's virtually impossible to provide all the pertinent details of a project or cover all the designs I'd like to in the pages of BYTE. For that reason, I have started a newsletter called Circuit Cellar Ink, which provides additional information on projects published in BYTE, new projects, and supplemental materials. For a one-year subscription (6 issues), send $14.95 to Circuit Cellar Ink, P.O. Box 3378, Wallingford, CT 06494. Credit card orders can call (203) 875-2199.

For more information on MTBASIC for Z80, 64180, or MS-DOS machines, contact Softaid Inc., 8930 Route 108, Columbia, MD 21045, (301) 964-8455.

The following items are available from

Macromint Inc.
4 Park St.
Vernon, CT 06066
For orders: (800) 635-3355
For information: (203) 871-6170
Telex: 643333, Fax: 2038722204

Inquiry 932.

1. A 9-MHz assembled and fully socketed BCC180 computer/contoller board with 32K bytes of static RAM, ROM monitor, BASIC-180 development software trade as item 3, and user's manuals.

BCC180-120
BASIC-180 EPROM evaluation system.
Contains both BASIC-180 EPROM for direct use on BCC180 and BASIC-180 disk for direct or software development on SB180. Includes 100-page user's manual. Compiled code may be freely used without further license. BASIC-180 DEV

BCC180-PAK

For either source above, all payments should be made in U.S. dollars by check, money order, MasterCard, Visa, or American Express. Surface delivery (U.S. and Canada only): add $5 for U.S., $8 for Canada. For delivery to Europe via U.S. airmail, add $14. Three-day air freight delivery: add $10 for U.S. (UPS Blue), $25 for Canada (Pelican overnight), $45 for Europe (Federal Express), or $60 for Asia and elsewhere in the world (Federal Express). Shipping costs are the same for one or two units.

Notice that a multi-line Circuit Cellar bulletin board system (running TBBS 2.01) that supports past and present projects in BYTE and Ink. You are invited to call and exchange ideas and comments with other Circuit Cellar supporters. The 300/1200/2400-bps BBS is on-line 24 hours a day at (203) 871-1988.

To receive information about the Circuit Cellar Ink publication for hardware designers and developers, please circle 100 on the Reader Service inquiry card at the back of the magazine.
Better Bit-Mapped Lines

Bresenham’s Line Algorithm provides a quick way to approximate lines on a bit-mapped display

Drawing a line is a fundamental operation in a computer graphics system, but representing a line on a bit-mapped display is not as simple as it seems. The problem is that computers cannot represent a straight line exactly. Since few pixels are likely to lie exactly on the line, a line algorithm must choose a connected set of pixels that follows the path of the line as closely as possible.

Early computer graphics systems used a digital differential analyzer (DDA) algorithm to choose the pixels for drawing a line. DDA line generation suffers because the algorithm uses floating-point arithmetic, which is slow in a typical computer system. A line algorithm using simple integer arithmetic would be much faster.

In 1965, Jack Bresenham of IBM published a fast line-drawing algorithm that uses only integer addition and subtraction. This article derives Bresenham’s Line Algorithm from basic principles and provides source program listings in Pascal. [Editor’s note: Source code listings for this article are available on BIX, on BYTEnet, on disk, and in the Quarterly Listings Supplement. See “Program Listings” in the table of contents.]

Drawing a Line Faster

Figure 1 illustrates the basic principle of Bresenham’s algorithm. A line segment extends from the origin to a point \((a,b)\), and the equation that must be satisfied by all points on this line is

\[
f(x,y) = b \times x - a \times y = 0.
\]

Points that do not satisfy this equation lie to one side or the other of the line. As Bresenham’s algorithm tracks the line from beginning to end, it measures the value of \(f(x,y)\) at regular intervals in order to choose pixels along the way to represent the line. At a point \((x,y)\) located below the line, \(f(x,y)\) is positive (i.e., \(b \times x - a \times y > 0\)). Above the line, \(f(x,y)\) is negative. By monitoring the sign of the function at or near the current pixel, the algorithm can tell whether it is moving too far above or below the line, and make a course correction when choosing the next pixel. This is a powerful technique that has been extended to computer drawing of more complex curves such as circles, ellipses, and other conic sections.

Figure 2 is a line drawn by the algorithm. The line segment starts at \((0,0)\), ends at \((10,4)\), and is defined by the equation

\[
f(x,y) = 4 \times x - 10 \times y = 0.
\]

The algorithm selects the pixels in figure 2 that lie as close as possible to the actual line. As the line is drawn from left to right, each new pixel is selected to be either the pixel directly to the right of the previous pixel (a horizontal move), or the pixel above and to the right of the previous pixel (a diagonal move).

The algorithm chooses between these two pixels by determining

Jerry R. Van Aken is a member of the development team for the TMS34010 graphics system processor. Carrell R. Killebrew Jr. is responsible for engineering and marketing for the TMS34010 in personal computers and commercial applications. Both can be contacted at Texas Instruments, P. O. Box 1443, Mail Station 712, Stafford, TX 77251.
Figure 3: Examples of the decision process.

Listing 1: A line algorithm restricted to the first octant.

```pascal
procedure draw_line(a, b: integer);
    { a is the endpoint x coordinate. }
    { b is the endpoint y coordinate. }
var x, y, d, i:
    { current x coordinate } { current y coordinate } { decision variable } { loop index }
begin (draw_line)
    x := 0; { line starts at (0,0) }
y := 0;
for i := 0 to a do begin (draw the a+1 pixels in the line.)
    begin (draw_pixel)
        d := b * (x + x + 2) { Evaluate line formula at midpoint. }
            - a * (y + y + 1);
        if d < 0 then begin { Is midpoint above the line? } 
            x := x + 1; { Yes, step horizontally. }
            y := y + 1;
        end else begin
            x := x + 1; { Midpoint is below the line. }
            y := y + 1;
        end (else)
    end; (for)
end; (for)
end; (draw_line)
```

which is closer to the actual line. It does so by checking whether the point exactly halfway between the two pixels lies above or below the line. If the line passes below the midpoint, it chooses the lower pixel; otherwise, it chooses the upper pixel.

Figure 3a shows where the algorithm chooses the upper pixel. It illustrates the decision process performed by Bresenham's algorithm in selecting the pixel at (4,2) in figure 2. The pixel at (3,1) is already turned on, having been selected in the previous step. The problem now is to choose between the pixels at (4,1) and (4,2). To make this decision, the algorithm evaluates the function \(f(x,y) = 4 \times (x-10) \times y \) at a point lying at (4,1.5), halfway between the two pixels under consideration. At the midpoint, the function evaluates to \(4 \times 4 - 10 \times 1.5 = -1 \). Since this is a negative value, the midpoint must lie below the line. The pixel at (4,2) therefore lies closer to the line, and is selected.

Figure 3b is an example where the algorithm selects the lower of the two pixels it considered. This figure illustrates the selection of the pixel at (8,3) in figure 2. The algorithm chooses the pixel at (8,3) over the one at (8,4) by observing that the function \(f(x,y) \) evaluated at the midpoint (8,3.5) is \(4 \times 8 - 10 \times 3.5 = 1 \). The positive value indicates that the midpoint is located above the line. The pixel at (8,3) therefore is closer to the line than the one at (8,4) and is selected.

The Basic Algorithm

Listing 1 is a rudimentary form of the algorithm capable of drawing the line shown in figure 2. It takes as its input arguments the endpoint coordinates \(a \) and \(b \). For the sake of simplicity, assume that the starting point is always \((0,0)\) and that the endpoint coordinates \((a,b)\) satisfy the relation \(0 \leq b \leq a\), where \(a\) and \(b\) are integers. (In other words, point \((a,b)\) lies in the first octant of Cartesian coordinate space.) The algorithm is easily extended to overcome these restrictions, as we will show later.

A drawback to this form of the algorithm is that each iteration of the inner loop requires two multiplications, which are more time-consuming than simple operations such as addition. A later version of the algorithm will replace the multiplications with simpler operations in order to speed up line drawing. The line drawn by the algorithm in listing 1 is described by the equation \(f(x,y) = b \times x - a \times y = 0 \). At the start of iteration \(i \) of the for loop, a single pixel is drawn at the current location \((x[i], y[i])\) by the function `draw_pixel`. As illustrated in the examples of figure 2, the two candidate pixels for the next point to be drawn are located at \((x[i]+1,y[i])\) and \((x[i]+1,y[i]+1)\), and the midpoint of these two pixels is at \((x[i]+1,y[i]+1/2)\). The algorithm chooses between the two candidate pixels based on the sign of \(f() \) evaluated at the midpoint, which is \(b \times (x[i]+1) - a \times (y[i]+1/2) \). The algorithm in listing 1, in fact, assigns twice this value to variable \(d \), called the decision variable:

\[
\begin{align*}
d[i] &= 2 \times f(x[i]+1,y[i]+1/2) \\
 &= b \times (2 \times x[i]+2) - a \times (2 \times y[i]+1).
\end{align*}
\]

Multiplying \(f() \) by 2 ensures that \(d \) is an integer for all values of
BEITER BIT-MAPPED LINES

the factor of 2 has no other effect, since the sign of \(d \) will always be the same as that of \(f(t) \) evaluated at the midpoint.

Speeding Up the Algorithm

You can make the algorithm in listing 1 faster by reducing the calculations required to evaluate \(d \) during each iteration of the loop. In general, \(d \) increases by \(2 \times b - 2 \times a \) for a diagonal step, and by \(2 \times b \) for a horizontal step. A little algebra shows that this is always true. In stepping diagonally from a point

\[(x[i], y[i])\]

to

\[(x[i] + 1, y[i] + 1),\]

the value of \(d \) changes from

\[d[i] = 2 \times b \times x[i] + 2 \times b - 2 \times a \times y[i] - a\]

to

\[d[i + 1] = 2 \times b \times x[i] + 4 \times b - 2 \times a \times y[i] - a\]

(a change of \(2 \times b \)). By calculating these two values prior to entering the drawing loop, you can improve line-drawing performance. This way, you reduce updating \(d \) during each iteration to simply incrementing \(d \) by the appropriate loop constant.

Listing 2 is an improved version of the algorithm in listing 1. It eliminates the two multiplies per loop, and updates decision variable \(d \) incrementally. It calculates the initial value of \(d \) in terms of the initial values of \(x \) and \(y \) as follows:

\[d[0] = b \times (2 \times x[0] + 2) - a \times (2 \times y[0] + 1) = 2 \times b - a\]

where \(x[0] = y[0] = 0 \). Two new variables, nondiag_inc (which equals \(2 \times b \)) and diag_inc (which equals \(2 \times b - 2 \times a \)) are created to increment \(d \) during each iteration.

A Fast Unrestricted Algorithm

The algorithm in listing 2 is still subject to the restrictions that the starting point must lie at \((0,0)\) (the origin), and the endpoint coordinates must satisfy \(0 \leq b \leq a \) (which restricts the ending point to the first octant of Cartesian coordinate space). In listing 3, both restrictions have been removed by using symmetry and translation. This is the final form of Bresenham’s algorithm.

Figure 4 illustrates how you can use symmetry to draw lines in any of the eight octants. Although each of the eight lines is in a different octant, the lines all have the same shape because they follow identical sequences of diagonal and nondiagonal steps in moving from the starting point to the ending point. The symmetry of the eight lines in figure 4 results from the fact that the algorithm...
Listing 2: A faster line algorithm, but still restricted to the first octant.

```
procedure draw_line (a, b: integer);
  { a is the endpoint x coordinate. }
  { b is the endpoint y coordinate. }
var x, y, { current x and y coordinate }
d, { decision variable }
diag_inc, { d's increment for diagonal steps }
nondiag_inc; { d's incr. for nondiagonal steps }
integer;
begin { draw_line }
x := 0; y := 0; { start at (0,0) }
d := b + b - a; { initial value for d }
nondiag inc := b + b; { Evaluate the d increment values. } 
diag inc := b + b - a - a; { for diagonal steps }
for i := 0 to a do { Draw the a+1 pixels in the line. }
begin draw_pixel(x,y);
  if d < 0 then { Is midpoint above the line? }
    begin { Yes, step horizontally. } 
      x := x + 1; 
      d := d + nondiag inc { Update the decision variable. }
    end { if-then }
  else { Midpoint is below the line, so step diagonally. } 
    begin { Draw the a pixels in the line. }
      y := y + 1; 
      d := d + diag inc { Update the decision variable. }
    end { else }
  end; { for }
end; { draw_line }
```

Listing 3: Final form of Bresenham’s Line Algorithm.

```
procedure draw_line (xstart, ystart, xend, yend: integer);
var x, y, { current x and y coordinates }
d, { decision variable }
a, b, { line displacements in x and y }
dx_diag, { (diagonal x step for next pixel) }
dy_diag, { (diagonal y step for next pixel) }
dx_nondiag, { (nondiagonal x step for next pixel) }
dy_nondiag, { (nondiagonal y step for next pixel) }
diag_inc, { d's incr. for diagonal steps }
nondiag_inc, { d's incr. for nondiagonal steps }
swap: { temporary variable for swaps }
integer;
begin { draw_line }
  x := xstart; { Line starting point } 
y := ystart; { (Determine drawing direction and step to the next pixel. }
  a := xend - xstart; { Calculate difference in x } 
b := yend - ystart; { Calculate difference in y }
{ Determine whether ending point lies to right or left of start point. }
  if a < 0 then { Drawing towards smaller x-values? }
    begin { Yes, because a is negative. } 
      a := -a; { Make a positive } 
      dx_diag := -1; { and set x-movement accordingly. } 
    end { if-then }
  else { Draw is towards larger x-values. } 
    dx_diag := 1; { Set x-movement towards larger x. }
{ Determine whether ending point lies above or below starting point. }
  if b < 0 then { Drawing towards smaller y-values? }
    begin { Yes, because b is negative. } 
      b := -b; { Make b positive } 
      dy_diag := -1; { Set y-movement accordingly. } 
    end { if-then }
  else { Draw is towards larger y-values. } 
    dy_diag := 1; { Set y-movement towards larger y. }
{ Identify octant containing ending point. }
  if a < b then { Is y-diff. larger than x-diff.? }
    begin { Yes, so swap a and b } 
      swap := a; 
      a := b; 
      b := swap; { Since y difference is larger, x } 
      dy_nondiag := dy_diag { doesn't change on nondiagonal } 
      end { if-then } { steps, but y changes } 
      dx_nondiag := dx_diag; { and y changes } 
      dy_nondiag := 0 { only on the diagonal steps. } 
    else { When x-diff. is larger than y-diff., } 
      begin { (y-diff., x changes every step, } 
        dx_nondiag := dx_diag; { and y changes } 
        dy_nondiag := dy_diag { only on the } 
        end { else } { diagonal steps. } 
    { Set initial d increment values } 
    diag inc := b + b - a - a; 
    for i := 0 to a do { Draw the a+1 pixels. } 
    begin draw_pixel(x,y);
      if d < 0 then { Is midpoint above the line? }
        begin { Yes, step nondiagonally. } 
          x := x + dx_nondiag; 
          y := y + dy_nondiag; 
          d := d + nondiag inc { Update the decision variable. } 
        end { if-then }
      else { Midpoint is below the line, } 
        begin { so step diagonally. } 
          x := x + dx_diag; 
          y := y + dy_diag; 
          d := d + diag inc { Update the decision variable. } 
        end { else }
      end { for }
end { draw_line }
```
BEITER BIT-MAPPED LINES

Octant 3:
\[dx_{\text{nondiag}} = 0 \quad dy_{\text{nondiag}} = +1 \]
\[dx_{\text{diag}} = -1 \quad dy_{\text{diag}} = +1 \]

Octant 2:
\[dx_{\text{nondiag}} = 0 \quad dy_{\text{nondiag}} = +1 \]
\[dx_{\text{diag}} = +1 \quad dy_{\text{diag}} = +1 \]

Octant 4:
\[dx_{\text{nondiag}} = -1 \quad dy_{\text{nondiag}} = 0 \]
\[dx_{\text{diag}} = +1 \quad dy_{\text{diag}} = -1 \]

Octant 1:
\[dx_{\text{nondiag}} = +1 \quad dy_{\text{nondiag}} = 0 \]
\[dx_{\text{diag}} = +1 \quad dy_{\text{diag}} = +1 \]

Octant 5:
\[dx_{\text{nondiag}} = -1 \quad dy_{\text{nondiag}} = 0 \]
\[dx_{\text{diag}} = -1 \quad dy_{\text{diag}} = -1 \]

Octant 8:
\[dx_{\text{nondiag}} = +1 \quad dy_{\text{nondiag}} = 0 \]
\[dx_{\text{diag}} = +1 \quad dy_{\text{diag}} = -1 \]

Octant 6:
\[dx_{\text{nondiag}} = 0 \quad dy_{\text{nondiag}} = -1 \]
\[dx_{\text{diag}} = -1 \quad dy_{\text{diag}} = -1 \]

Octant 7:
\[dx_{\text{nondiag}} = 0 \quad dy_{\text{nondiag}} = -1 \]
\[dx_{\text{diag}} = +1 \quad dy_{\text{diag}} = -1 \]

Figure 4: Eight-way symmetry used for the general algorithm.

Algorithm uses the same values of \(a \) and \(b \) (for this example, \(a = 10, b = 4 \)) for each of the lines. The only difference between drawing in one octant and another is the direction of diagonal and nondiagonal steps. The algorithm in listing 3 tests the endpoints to determine in which octant the line lies. After the target octant is determined, the \(x \) and \(y \) increments for diagonal and nondiagonal steps are adjusted to draw the line in the proper direction.

In listing 3, nondiagonal steps cause \(x \) and \(y \) to increment by \(dx_{\text{nondiag}} \) and \(dy_{\text{nondiag}} \); diagonal steps cause \(x \) and \(y \) to increment by \(dx_{\text{diag}} \) and \(dy_{\text{diag}} \). Figure 4 shows the values of these increments in each of the eight octants.

The final step in achieving the general form of the algorithm in listing 3 is to allow the line to begin at points other than the origin. Whereas variables \(a \) and \(b \) represented the coordinates of the endpoint in listings 1 and 2, in listing 3 they represent the distances in \(x \) and \(y \) from the starting point to the ending point; \(a \) is set to the larger of these distances, and \(b \) to the smaller.

Described in geometric terms, when the algorithm initially assigns values to parameters \(a \) and \(b \), it effectively translates the starting point of the line to the origin.

At this point in the algorithm, the ending point of the translated line is at \((a, b)\), and variables \(a \) and \(b \) contain information regarding both the shape of the line and the octant of the translated ending point. In the three subsequent tests of the values of \(a \) and \(b \) (Is \(a < 0 \)? Is \(b < 0 \)? Is \(a < b \?) the octant information is stripped away from \(a \) and \(b \), leaving only the shape information. Meanwhile, all information regarding the octant of the ending point is transferred to the \(x \) and \(y \) increments \(dx_{\text{diag}}, dy_{\text{diag}}, dx_{\text{nondiag}} \) and \(dy_{\text{nondiag}} \). All this takes place prior to entering the for loop in listing 3.

Practical Implementations

In a real graphics system, you should encode the algorithm in listing 3 in assembly language to make it run as fast as possible. For instance, a typical CAD diagram might contain hundreds of lines, and the user waits while the computer draws the diagram on the screen. The programmer should put the most effort into speeding up the for loop, since this is executed once for each pixel drawn, and one line may contain hundreds of pixels.

By comparison, the code that precedes the for loop executes only once per line. The call to the draw_pixel procedure should be replaced by in-line code for the draw_pixel operation in order to remove the subroutine call overhead from the inner loop.
Screen stars with The Visible Edge.

What gives Princeton's new generation of screen stars the Visible Edge is a screen image of incomparable clarity and resolution. Where brilliant colors and infinite shades of gray, with striking contrast and dimension, are commonplace.

The versatility of the Princeton family of monitors gives the new generation (and present generation) of computers, the greatest autosynchronous horizontal/vertical scan range combination available (ULTRASYNC and MAX-15). The clarity of .28mm dot pitch (ULTRASYNC and PSC-28). 1024x750 display resolution (MAX-15). And the entire spectrum of color, with the ease and comfort that can only accompany an ergonomically designed monitor.

Experience a world of unlimited vision. And the technology that's made our high level of quality, service, value and performance, second nature. Experience the Visible Edge. And see what we do best. For more information call (609) 683-1660 x 100.
Multicolumn Paged Text

Use this program to lay out text in columns and to explore desktop-publishing software technology

Until recently, multiple-column text was something you found on newspaper and magazine pages, but not on the output from computers. The two main output devices used by computers—the CRT monitor and the line printer—were physically designed to produce single columns of text.

Then, graphic displays and desktop publishing arrived, and the market is now flooded with programs that organize text into pages, using multiple columns, typefaces, and type sizes. Increasingly, personal computer word-processing software is beginning to offer multiple columns for printed output (e.g., Microsoft Word), on the screen, or for both (e.g., WordPerfect).

The reason for wanting multiple columns is largely one of readability. The small point sizes used to cram more words into newspapers and magazines make for far too many words across a whole page width for comfortable reading. This would be particularly true in the case of broadside-size newspapers, where a line would hold more than 50 words; the human eye has a tendency to lose its horizontal tracking accuracy if asked to scan across too many words on a single line.

Breaking the text up into multiple columns ensures that each line contains a more readable number of words—typically, 6 to 12. Using multiple narrow columns also allows the layout designer greater flexibility in fitting several articles on the same page, particularly important in newspaper work. Books tend to employ larger point sizes and wide margins, yielding around 12 words across the page, and are rarely set in columns.

In the good old days of 9-pin dot-matrix printers with cobby typefaces, multiple-column output from a personal computer was neither necessary nor particularly desirable. A low-cost printer gets only about 13 words on an 80-column line anyway, and those are composed of fixed-width characters, possibly justified by crude insertion of full character spaces. Now that laser printers are common—and even dot-matrix printers can manage proportional spacing and near-letter-quality (NLQ) typefaces—columns start to make sense.

Apart from page layout and readability, another valuable use for multiple columns is the economical generation of lists. If you have to print 2000 short items, it is both wasteful and unsightly to print them in a single spindly column on 32 sheets when they will fit in four columns on 8 sheets. It was precisely this application that prompted me to write a utility for arranging text into multiple columns. I use a text editor that lacks this facility, but I have no intention of learning a new editor just to get it.

Before writing such a utility, it’s important to decide exactly what you hope to achieve. Multiple-column-text programming covers a broad spectrum of difficulties. At the most difficult end of the spectrum is the provision of multiple columns on the screen, interactively, with automatic reformatting, word wrap, and line wrap. This means that text can be inserted at any point on any line, excess words will wrap over onto the next line, and excess lines will wrap up to the top of the next column.

This is the sort of facility the next generation of word processors will offer as a matter of course. To achieve it requires storing the text in a dynamic data structure, something like an array of circular lists of circular lists. This can make screen updating a strenuous chore, especially if you’re using a bit-mapped graphic display. It is not something you can retrofit to a text editor like

Figure 1: The process of writing a two-dimensional array of characters up and down, then reading the same array across, yields the desired transformation to three-column text.

Dick Pountain is a technical author and software consultant living in London, England. He can be contacted c/o BYTE, One Phoenix Mill Lane, Peterborough, NH 03458, or on BIX as "dickp."
(WITH REVIEWS LIKE THESE, WHO NEEDS CLEVER HEADLINES?)

Find out why magazines like DEC Professional and PC Week and over 60,000 PC users appreciate the convenient yet powerful features of VTERM/220, VTERM III and VTERM/4010.

Send in this coupon to see for yourself the most functionally complete emulation of DEC VT220, VT100, VT52 or Tektronix 4010 terminals.

I would like to find out why magazines like DEC Professional, PC Week and others rate VTERM/220 so highly.

☐ Please send me the DEC Professional and PC Week reviews.
☐ Please send me information on your free 30-day evaluation of VTERM/220, VTERM III and VTERM/4010.

NAME ________________________ TITLE ________________________
COMPANY __
ADDRESS ___
CITY __________________________ STATE __ ZIP ________________
PHONE NUMBER ________________________

Write: Coefficient Systems Corporation
611 Broadway, New York, N.Y. 10012

or call (212) 777-6707 ext 414
FAX: (212) 228-3137 TELEX: 6503156498

FOCUS ON ALGORITHMS

...mine, unless you have the source code and a lot of spare time on your hands.

At the opposite end of the difficulty spectrum we have a simple DOS utility that takes a plain ASCII text file and outputs another file with the text paged in a specified number of columns with a specified number of lines per page. This was my own coward's preference.

The root principle in implementing multiple-column output is delay. Both video display units and printers are physically capable of printing only single lines of text, ended by a carriage return. But if we are printing in, say, three columns, each physical output line will actually consist of three short logical lines from different places in the text.

The first two logical lines, therefore, need to be held back until the third one is reached before printing them all. If we regard output as a continuous data flow, we need a data structure that acts as a delay line, holding back logical text segments until the structure collects a full physical line.

However, in the case of my simple program, there is no need to regard output as a continuous data flow. Instead, you can think of output as a batch process, in which whole pages are collated and then output as units. In this case, we can build a data structure to act as a mold or template for the desired page: words “pour” into the mold until it is full, and then the “casting” is sent to the output file, complete with a page number.

Since this is a batch process whose dimensions are fixed from the start, a two-dimensional array of strings will be a perfectly good data structure to represent the page. This would not be a good choice if we were trying to implement interactive word wrap and line wrap, as we would have to move along many array

Listing 1: Pseudocode for the word-wrap algorithm.

Program Pager
PageNumber <- 1
WHILE not at end of input text

FOR Column FROM 1 TO ColumnsPerPage
-- Fill the page template

FOR Line FROM 1 TO PageLength
IF not at end of input text
THEN read a line from input -> Page[Column, Line]
ELSE fill with blanks -> Page[Column, Line]
END IF
ENDFOR
ENDFOR

PhysicalLine <- empty string
-- Write physical lines to output file
FOR Line FROM 1 TO PageLength
FOR Column FROM 1 TO ColumnsPerPage
APPEND Page[Column, Line] TO PhysicalLine
ENDFOR
APPEND (enough blanks to pad out to column width) TO PhysicalLine
WRITE PhysicalLine -> output file
ENDFOR
WRITE PageNumber -> output file
PageNumber <- PageNumber + 1
ENDWHILE
Now from NRI comes the first course of its kind... anywhere!

Learn to use, program, and service today's digital electronic music equipment as you build your own computer-controlled music center

Now NRI puts you at the heart of the most exciting application of digital technology to date! With NRI's new at-home training in Electronic Music Technology, you get hands-on experience with the equipment that's revolutionizing the music industry—Atari ST Series computer with built-in MIDI ports, Casio CZ101 digital synthesizer with advanced MIDI capabilities, and ingenious MIDI software that links computer keyboard to synthesizer keyboard—all yours to train with and keep.

This year, over $1.5 billion worth of digital electronic music instruments—keyboards, guitars, drum machines, and related equipment—will be sold in the U.S. alone. Who's buying this new-tech equipment? Not just progressive musicians and professional recording technicians, but also thousands of people who have never touched a musical instrument before. And there's good reason why.

Something called MIDI (Musical Instrument Digital Interface) has suddenly transformed musical instruments into the ultimate computer peripherals... and opened up a whole new world of opportunity for the person who knows how to use, program, and service this extraordinary new digital equipment.

Now NRI's breakthrough Electronic Music Technology course puts you at the forefront of this booming new technology with exclusive hands-on training built around a MIDI-equipped computer, MIDI synthesizer, and MIDI software you keep.

Dynamic New Technology Opens Up New Career Opportunities for You

The opportunities are unlimited for the person who's trained to take advantage of today's electronic music phenomenon. Now you can prepare for a high-paying career as a studio technician, sound engineer, recording engineer, or music technician... even start your own new-age business providing one-stop sales and service for musicians, technicians, and general consumers alike. Or simply unleash your own musical creativity with the breakthrough training and equipment only NRI gives you.

Only NRI Gives You an Atari ST Computer, Casio Synthesizer, and Innovative MIDI Software You Train With and Keep

The Atari ST Series computer included in your course becomes the heart of your own computer-controlled music center. With its tremendous computing power, superior graphics capabilities, and built-in MIDI interface, the 16/32-bit Atari ST has almost overnight become the computer of choice for today's most knowledgeable electronic musicians.

The Casio CZ101 digital synthesizer, also included in your training, is the perfect complement to your Atari ST. The polyphonic, multimbral CZ101—which stores up to 32 voices internally—communicates with your ST computer through MIDI, bringing life to virtually any sound you can imagine.

Plus, you get ingeniously designed MIDI software that opens up amazing new creative and technical possibilities... you actually build your own 4-input audio mixer/amplifier... and you test the electronic circuits at the core of today's new-tech equipment with the hand-held digital multi-meter included in your course.

No previous experience necessary—in electronics or music!

No matter what your background, NRI gives you the skills you need to take advantage of today's opportunities in electronic music technology.

With your experienced NRI instructor always available to help, you master the basics of electronic theory step by step, gaining the full understanding of electronics that's now so essential for technicians and musicians alike. You move on to analyze sound generation techniques, digital logic, microprocessor fundamentals, and sampling and recording techniques... ultimately getting first-hand experience with today's explosive new technology as you explore MIDI, waveshaping, patching, sequencing, mixing, special effects, and much more.

Plus, even if you've never been involved with music before, NRI gives you enough basic training in music theory and musical notation to appreciate the creative potential and far-reaching applications of today's electronic music equipment.

Send Today for Your FREE Catalog

For all the details about NRI's innovative new training, send the coupon today. You'll receive a complete catalog describing NRI's Electronic Music Technology course plus NRI courses in other high-tech in-demand electronics fields.

If the coupon is missing, write to NRI School of Electronics, McGraw-Hill Continuing Education Center, 3939 Wisconsin Avenue, Washington, DC 20016.
Implementing this algorithm is quite straightforward in an interpreted language like BASICA because such languages allow the dimensioning of arrays at run time.

Elements every time a new word was inserted.

A crude outline algorithm for the paging process is this: First, fill the template with words from the input by writing up and down the columns; second, write an output file by reading the template across all the columns at once.

For three columns, we could represent the process in a diagram like the one found in figure 1. We achieve the required transformation by looking at the same data structure from two different viewpoints.

We need to refine one aspect of the problem before we can proceed. I have talked lightly of words “pouring” into an array, but we actually have more to consider here. If we have prepared the input text with a text editor, it will already be formatted into lines of some length, according to the margin settings of the text editor.

When we page the text into multiple columns, they will be much narrower than the typical margins for a single-column document. Hence, the routine that fills the array needs to word-wrap the input text to this narrower column width. If we are talking about a sophisticated paging utility, it should also be able to justify the wrapped text and intelligently hyphenate it. But this means that the Fill routine needs to incorporate much of the capability of a good text editor.

It seemed silly to me to reinvent the wheel, when I already had a tool (my text editor) to hand that could handle these formatting chores superbly. The paging program I wrote therefore takes text files that have already been formatted to the correct column width using the text editor. At the same time as you reduce the margins, you can justify the text, if required, and arrange features like column headings to fit properly into the paged format, using all the facilities of the text editor.

The only inconvenience lies in having to write an extra intermediate file of this “galley” text, formatted to column width. But even on my slow computer, this takes only seconds. On the other hand, the construction of the paging utility itself is greatly simplified (it needs to know only how to wrap columns), and consequently the program goes very fast.

The algorithm can now be presented more formally in pseudocode (see listing 1). Implementing this algorithm is quite straightforward in an interpreted language like BASIC because such languages allow the dimensioning of arrays at run time.

The program can decide on the dimensions of the Page array after it has asked the user for the number of columns and lines per page required.

Compiled languages like Pascal, C, or compiled BASIC impose a slight complication in that arrays can be dimensioned only at the time the program is compiled; obviously, it is unacceptable to have a different version of the program for every conceivable page layout. Fortunately, some calculation shows continued
World Wide Agents:

U. S. A.
PMD
(713) 488-8830
MicroAge
(206) 746-8045

CANADA
BUDGETRON INC.
(416) 673-7800

NORWAY
PROFESSIONAL
SYSTEM A/S
(02) 253350

BENELUX
COMPUDATA BV
(01) 73-422045

ITALY
DATATEC
(06) 8321-213

W. G.
RVS
(089) 35-10-071

FINLAND
MIKROMERIY
(90) 550-155

ICELAND
TAEKNIVAL
(1) 68 16 65

SWEDEN
PROFESSIONAL
SYSTEMS A/S
(08) 7 33 00 95

H.K.
ONFLO
(5) 7224195

SINGAPORE
PET
292-9155

SAUDIARABI
AL-JASSIM
(3) 832-2148

PHILIPPINE
RANK
(2) 40-2391

SmarTEAM The Smart Choice

SmarTEAM 2400
- Bell 103/212A, CCITT V.22/22 bis
- Auto dial, auto answer, auto speed selection
- ASYN/SYN operation
- Fully compatible with Hayes.

SmarTEAM 2400 MNP
- Sophisticated error checking and error correcting
- Provided MNP mode and NON-MNP mode.
- Compatible with Hayes AT command.
- ASYN/SYN operation.

SmarTEAM 9600 PLUS
- Utilizes the latest MNP class 6 to give error free data transfer.
- Cheaper telephone bills with the MNP data compression provides throughput of up to 19200 bps with 9600 bps link.
- Battery-backed CMOS RAM preserves configuration against power failures for up to 30 days.
- Communicates with any MNP or NON-MNP modem which supporting Bell 103/212A, CCITT V.22/22bis/V.27V.29 modulation standards.

MNP is trade mark of MICROMON Inc. HAYES is trade mark of Hayes Microcomputer Product, Inc.

TEAM TECHNOLOGY INC.
10 Fl., No. 270, NanLinE Rd.,
Sec. 3, Taipei, Taiwan. R.O.C.
Tel: (02)741-4270 (5 Lines)
Fax: 886-2-7712985
Telex: 19725 TEAMTECH

U.S.A. SALES AND SERVICE CENTER
SmarTEAM INC.
19205 Parnthanic St., Suite #J, Northridge, Ca. 91324
Tel: (818)886-9736 Service No: (818)886-9729
Fax: (818)886-6731

Circle 261 on Reader Service Card
Adding Diagrams

It's easy to adapt the multicolumn-paged-text algorithm to run text around diagrams. You can define a "window" area—a space to be left blank for the later addition of a diagram—by the column and line numbers of its top left and bottom right corners. If we call these window coordinates X_1, Y_1 and X_2, Y_2, for $X_1=1, Y_1=4$ and $X_2=2, Y_2=7$, we have the window area shown in figure A.

To modify the program to produce window areas, we need to change the test on line 6 of procedure ReadInPage in listing 2 so that it checks whether the line currently under consideration falls outside the window. If so, the program reads input into that line; otherwise, the program should pad the line with blanks (in the same way that lines are padded on the last page, after the program reads end of file):

```plaintext
if not eof(inputFile)
    and not ((Column in [X1..X2]) and
             (Line in [Y1..Y2]))
```

The only other change to the program text required is some way of reading in $X_1, X_2, Y_1,$ and Y_2. For the purpose of experiment, you can add them as four extra command-line parameters to be read in by SetPageParms.

This crude mechanism will of course make a window in the same place on every page, which is seldom what we want. However, it is no more difficult conceptually, and takes only a little more programming effort, to have a different window on every page. You need to store the window coordinates for each page in an array Window[], which is indexed by PageNumber and the four coordinate types. For pages with no window, set all coordinates to 0. The extra declarations needed are:

```plaintext
type WindowCoord = (Left, Right, Top, Bottom);
var Window: array [1..MaxPages, WindowCoord] of Integer;
```

The format for a document now consists of a sequence of records of the following form:

```
<pagenumber> ,<X1>,<Y1>,<X2>,<Y2>
```

This information is kept in a separate ASCII file that gets read into the Window array when the program starts.

The next logical refinement is to include the contents of another file to fill the window so created. These files can contain diagrams, bar charts, and tables drawn using block graphics characters. Bit-mapped graphics present enormous problems, but the truly dedicated (or crazy) could achieve even this on Epson-style printers using bit-image mode.

The principle is quite simple. Rather than filling the window area with blank lines, the program fills the area with slices from the diagram file. A function called DiagramSlice reads lines from the included diagram file and adjusts them to the proper length. The procedure ReadInPage now looks like this:

```plaintext
procedure ReadInPage;
    var Column, Line: Integer;
    begin
        Window[PageNumber, Left] := Window[PageNumber, Top];
        Window[PageNumber, Right] := Window[PageNumber, Bottom];
        for Column := 1 to CharsPerPage do
            for Line := 1 to LinesPerPage do
                if not eof(inputFile)
                    and not ((Column in [X1..X2])
                             and (Line in [Y1..Y2]))
                    then readln(inputFile, Page[Column, Line])
                    else Page[Column, Line] := DiagramSlice;
    end;
```

Now the format of a document has an extra element: the name of a diagram file. The record structure is `<pagenumber> ,<X1>,<Y1>,<X2>,<Y2>,<diagramfile name>`. Alternatively, you might now prefer to put the X,Y coordinates into the diagram file itself.

I've shown a simple version of DiagramSlice in listing A. I've left the gruesome details of reading in the format from a file and opening the appropriate diagram files to you. All of a sudden, PageMaker and Ventura Publisher start to look quite cheap at the price. Don't they?

Listing A: A simple version of the function to read lines from the diagram file and adjust them to the proper length.

```plaintext
function DiagramSlice: Stringtype;
    var TempSlice: Stringtype;
    WindowWidth: integer;
    begin
        if eof(inputFile)
            then DiagramSlice := Blankline
            else begin
                WindowWidth := CharsPerPage * (X2 - X1 + 1);
                readln(diagramFile, TempSlice);
                (Crop if long...pad if short)
                TempSlice := Copy(TempSlice, 1, WindowWidth) + Space(WindowWidth-
                                        length(TempSlice));
                if Column = X1
                    then DiagramSlice := TempSlice
                else DiagramSlice := ' ';
            end;
    end;
```

Figure A: Defining a window area for multicolumn text.
Listing 2: The column-wrap program in Turbo Pascal code.

```
program Page;

const
  MaxColsPerPage = 6;
  MaxPageLength = 60;
  MaxCharsPerLine = 40;
  PageWidth = 80;
  Blanks = ' ';

type
  Linetype = string[MaxCharsPerLine];

var
  Page: array[1..MaxColsPerPage, 1..MaxPageLength] of Linetype;
  BlankLine: Linetype;
  ColsPerPage, PageLength, PageNumber, CharsPerLine: integer;
  InputFile, OutputFile: text;
  InputFileName, OutputFileName: string[127];

Procedure InitFiles;
begin
  if paramCount = 0
    then begin
    writeln('Must specify an input file');
    halt
    end;
  InputFileName := paramStr(1);
  if (pos('.PAG', paramStr(1)) <> 0) or
     (pos('.pag', paramStr(1)) <> 0)
    then begin
    writeln('Must''t PAGE a PAGEd file!!');
    halt
    end;
  if pos('.', paramStr(1)) <> 0
    then OutputFileName := copy(paramStr(1), 1, pos('.', paramStr(1))) + '.pag';
    else OutputFileName := paramStr(1) + '.pag';
  Assign(OutputFile, OutputFileName);
  Assign(InputFile, InputFileName);
  Rewrite(OutputFile);
  if ioeresult <> 0
    then begin
    writeln('File ', InputFileName, ' not found');
    halt
    end;
Procedure GetPageParms;
var
  error: integer;
begin
  val(paramStr(2), ColsPerPage, error);
  if (error <> 0) or (ColsPerPage > MaxColsPerPage)
    then begin
    writeln('Bad column parameter');
    halt
    end;
  val(paramStr(3), PageLength, error);
  if (error <> 0) or (PageLength > MaxPageLength)
    then begin
    writeln('Bad line parameter');
    halt
    end;

procedure ReadInPage;
var
  Column, Line: integer;
begin
  for Column := 1 to ColsPerPage do
    for Line := 1 to PageLength do
      if not eof(InputFile)
        then readln(InputFile, Page[Column, Line])
      else Page[Column, Line] := BlankLine
  end;

function Spaces(Num: integer): Linetype;
begin
  Spaces := Copy(Blanks, 1, Num)
end;

procedure WriteOutPage;
var
  Column, Line: integer;
begin
  for Line := 1 to PageLength do
    for Column := 1 to ColsPerPage do
      write(OutputFile, Page[Column, Line +
        Spaces(CharsPerLine -
        Lenqth(Page[Column, Line]))]);
    writeln(OutputFile);
  writeln(Outputfile,
    Spaces(38) + '<'.PageNumber,'>'
    +
    ' ');
  writeln(Outputfile)
end;

begin
  InitFiles;
  GetPageParms;
  PageNumber := 1;
  CharsPerLine := PageWidth div
  ColsPerPage;
  BlankLine := Spaces(CharsPerLine);
  while not eof(InputFile) do
    begin
      ReadInPage;
      writeln('.');
      WriteOutPage;
      PageNumber := PageNumber + 1;
    end;
  Close(InputFile);
end.
```
that the size of the problem is such that a fudge is possible.

My printer (as is the case with most printers) uses A4 paper, which holds 60 lines of text with 80 characters per line. The largest number of columns I would ever want on such paper is six. The smallest number of columns I would ever want is two (otherwise, why use the program at all?), and two columns on my paper means at most a 40-character column width.

Six columns of 60 lines with 40 characters comes to around 15K bytes of storage. An array of this size will hold the most columns I will ever need, at the most characters per line I could ever need, and it's well within the memory limits of even modest computers. So to hell with elegance, let's waste bytes. We declare an array of this size and use as many columns and lines of it as are needed.

The program's source code in Turbo Pascal 3.0 is shown in Listing 3. In this simple version, the name of the input file, the number of columns, and the number of lines per page must be given on the command line from which the program is invoked. For space reasons, I've kept the error checking quite rudimentary. A sample command line could be

```
C: > page byte40.doc 60
```

Before you can use this line, though, you'll need to format byte40.doc to a right margin of 26 (80/3), and justify it if desired, using your regular text editor. The program automatically renames the output file, in this case to byte40.pag.

In the version of the program I use in real life, I've added a system of template files, like a very poor man's Ventura Publisher. A template file specifies a page style, including the number of columns, page length, left- and right-page margins, header text, and rules. I keep a separate template file for each format I use regularly, and the template filename is given as the second parameter to Page in place of the numeric parameters used here.

To make Page into a stand-alone program (i.e., one that can accept an input file in any format and perform its own word wrapping), it's necessary only to write one new procedure—let's call it GetLine—and substitute a call to it for the statement

```
Readln(Inf@le, Page[Column, Line])
```

at line 7 of ReadInPage.

The snag, as I've already suggested, is that GetLine will need to be quite a large procedure if you want it to be as smart as your average text editor; for example, doing intelligent hyphenation is in itself a suitable subject for several articles. To get you started, listing 3 contains a very slow, dumb version of GetLine, which can wrap only whole words. You could improve the speed by buffering more text in memory rather than reading single characters, as I have done here. The call in ReadInPage now takes the form

```
GetLine(Inf@le, CharsPerLine, Page[Column, Line])
```

When you get as far as writing a GetLine procedure that word-wraps, hyphenates, and can perform justification with proportionally spaced fonts, you are well on your way to having a real desktop-publishing program. The next logical step is to deal with running columns around holes for pictures.

Batch methods of page layout like the one I have described here are far from ideal in applications where text runs around complex picture layouts. In such cases, it's more appropriate to use an interactive or WYSIWYG (what you see is what you get) design program that shows you the layout on the screen so that you can position the pictures. However, the program can be adapted, as described in the text box "Adding Diagrams" on page 260, to serve in the simple case of one diagram per page, where the diagrams are character-based (e.g., using IBM block graphics characters).
Buy The One On The Left And You’ll Have To Put It Where The Sun Don’t Shine.

The monitor on the right, however, can be placed anywhere you like. Even in direct sunlight. It's the new Flat Technology Monitor from Zenith Data Systems—winner of PC Magazine's coveted “Technical Excellence Award” in the hardware category for 1987.

You Have To See Zenith To Believe It

So clear. So precise. So lifelike. It's the only monitor with a completely flat screen. A breakthrough that has redefined monitor quality forever. Industry experts are already convinced. And once you see it in person, you'll be a believer, too.

Bigger, Brighter, Glare-Free

Our Flat Technology Monitor has an impressive 14-inch display. And even though it's bigger, it's 50% brighter than conventional CRT's and it has 70% greater contrast. So you get colors with greater depth and definition that make your reports, charts and graphs come alive like never before.

The Flat Technology Monitor is virtually glare-free. So you can work longer without the usual headaches and eyestrain. And that means greater productivity. But to get the whole picture, you have to see it with your own eyes.

Backward And Forward Compatibility

You also get full compatibility with the high resolution VGA Video generated by IBM's new PS/2 computers. And with Zenith's Z-449 or other VGA-class video cards, you can enjoy CGA, MDA, Hercules and EGA graphics as well.

Experience Zenith's Latest Technology Breakthrough

Obviously, a mere picture can't do justice to our new Flat Technology Monitor. It demands a face-to-face evaluation. For a hands-on demonstration, call today for the name of your nearest authorized Zenith Data Systems dealer—the Flat Technology Monitor is available in quantities right now.

1-800-553-0305

© 1988, Zenith Data Systems

Circle 290 on Reader Service Card
There's simply no other magazine like Electronics! It brings to your desk the comprehensive coverage and perspective you need, no matter what your job or responsibilities are. Electronics provides you with technical information on computers, data processors, peripheral equipment, office and business machines, communications equipment and semiconductors. Information that keeps you abreast of industry breakthroughs, trends and business directions. It gives you the savvy needed to compete.

Each issue focuses in on the meaningful technological developments and concerns driving the electronics industry.

Why Is Electronics Free to Professionals Like You?

By controlling circulation, we make our readership fit our editorial. Editorial for important people, like you, who need the important information only Electronics provides.

And it's yours, FREE...if you qualify. Simply fill out and return the adjacent card. If you qualify, we'll start your subscription with the very next issue of Electronics.
It's All in the Symbols

Numbers aren't everything; in fact, the "things" that they can represent might be in the minority.

We've always had symbols as names; now we're investigating symbols as numbers. We tend to relate what we hear to what we already know. Numbers are what we already know, so we tend to think of symbols as numbers, or as representing numbers; but symbols aren't numbers. And symbolic processing is not just another way of saying numeric processing.

Symbols are not truly symbols when they are used as variable names. Conventional programming languages use the term symbol to mean the name of a program variable. Lisp has variables named by symbols, but they aren't the same as the symbols we are discussing.

What makes symbolic processing symbolic is that the values a variable is allowed to assume include other symbols as well as the traditional numbers. For example,

\[
\begin{align*}
\text{setf a 1} & : \text{assignment of a number value} \\
\text{setf b 'a} & : \text{assignment of a symbol value} \\
a & = 1 & : \text{value of a is the number 1} \\
b & = a & : \text{value of b is the symbol a}
\end{align*}
\]

One common misconception is that symbolic processing is artificial intelligence. While AI would probably be impossible without it, symbolic processing is also useful for things unrelated to AI. Another misconception is that you use symbolic processing so you don't have to explicitly declare the types of your numbers. If you need type checking for your numbers, you might want to use Lisp, but you don't necessarily need symbolic processing.

A third misconception is that symbolic processing means you do garbage collection. Not true; garbage collection can benefit any language—numeric or symbolic—that allows you to allocate run-time data. Its usefulness is not restricted to symbolic processing.

Now you know what symbolic processing is not, but what is it? In reality, symbolic processing means processing nonnumeric "things" that we can't reasonably represent as numbers. Thus, we represent these things as symbols. Symbolic processing is the natural complement of numeric processing. First, however, we must accept that there is something other than numbers.

With COBOL, FORTRAN, Pascal, C, and so on, we've been quietly indoctrinated to believe that data is numbers. While there's nothing wrong with that premise in context—that is, within the limits of procedural languages—the power of computing extends a lot further. This article describes how symbols differ from numbers, why we can't use numbers where we need symbols, and how the things we need symbols for are unique and valuable.

What Is Numeric Processing?

Venerable FORTRAN II supported only numeric data types. FORTRAN IV added logical data types. COBOL added more numeric types, such as packed decimal and an almost nonnumeric data type, characters. Characters were invented to record nonnumeric things, but we all knew that they were really small integers that always fit into 8 bits.

Since FORTRAN, most language designers have accepted the implied dictum: Data is numbers. And yet, the question "Are numbers enough?" always existed. As a partial response, Pascal's designers included sets, and C's developers recently added enumeration types.

But these two concessions to nonnumeric processing still have conveniently numeric internal representations. A set is really a one-dimensional array of 1-bit integers, while an enumeration resembles the assembly language practice of equating names to successive integers.

Nonnumeric processing is a definite success story. The problem lies in our assumption that since it has been used for everything we've thought of so far, it should be used for everything we can think of.

It's All in the Data Types

If, as an experienced programmer, you are given a choice of any implementation language you wish to use for an application, your choice would probably be fairly predictable. For vector-number-crunching applications, you would probably use FORTRAN; for text pattern matching, SNOBOL; for systems programming, C; and so on.

These choices have nothing to do with which language is best; they are purely pragmatic. Each particular language offers the data types and data structures needed to clearly and concisely describe a specific type of problem, plus the library functions to manipulate those structures.

For example, let's suppose you need to read a text file and produce a sorted list of words, the number of times each word occurs, their average length, and so on. How would you implement this program in FORTRAN 66, which has neither a character data type nor a string data structure?

Nothing's impossible. You could use FORTRAN's A1 format to read characters into an array. You could mimic string continued
Storage by maintaining pairs of start/end indexes into that array, one pair per string. You could make the dimensions of the various fixed-size arrays larger than you’ll ever need. You could write FORTRAN functions to access these pseudostrings, compare them for equality, order them, print them, and so on. You could make it work, but would you want to? You would have already written a significant amount of FORTRAN code before you even considered the original application.

However, there is a better solution. Consider the relative ease with which you could implement this application in C. C already understands that characters are characters and not stunted integers. C already knows how to store characters in strings. The standard C libraries already contain the necessary character-manipulation functions, such as strlen, strcmp, strcpy, and so on.

In short, C has the data types and data structures to support the application, and FORTRAN 66 doesn’t. With C, you start programming the application immediately. With FORTRAN, you start by creating a virtual language within which you can then implement the application. When you do finally get to coding the application itself, the in-line FORTRAN housekeeping needed to make arrays of integers look like strings of characters constantly intrudes on the logic of the application. FORTRAN doesn’t provide the abstraction we need for this problem; C does.

Symbol Data Types
In high-school English, many of us had to diagram sentences by breaking them into clauses, phrases, subjects, verbs, and so on. What if you had to implement such an analysis in a program? Remember, we aren’t talking about understanding; we don’t care what the sentences mean—we just want to classify the words in them.

While C has excellent string-handling capabilities, this is not a string problem; it’s a symbol problem. C’s string-handling facility is mainly interested in the physical aspects of string representation. Given the words is, was, and were, C’s strlen function could tell you that they are 2, 3, and 4 characters long, respectively. But we need to know that they are all verbs, not nouns, adjectives, or adverbs; that is and was are singular while were is plural; and that is is present tense while was and were are past tense. Also, given the words are and ARE, C’s strcmp function would tell you that they are different, although they are the same word.

C is doing what it is supposed to do. C is interested in the characters in a string, but we are interested in the word represented by the string and in its grammatical properties. C sees the word as a collection of individual characters and is unaware of any higher meaning to that collection. In other words, this time C doesn’t provide the particular abstraction that we need.

Why Strings Won’t Do
So far, we’ve seen how a true symbol data type would simplify our implementation. But, even if a string-based implementation isn’t our first choice, shouldn’t it still be an acceptable second choice?

The real question is: How acceptable is the extra code you have to write to get C to see the big picture and stop dealing with words as bags of characters?

For example, C programmers sometimes use strings as symbolic mnemonics, such as the string argument telling fopen to open a file for reading. It’s not always appropriate, however, to try to distinguish symbols by their printed representation. Consider the sentence: “BILL PAID HIS REPAIR BILL.” Is the first BILL equal to the second BILL? C’s strcmp function would think so.

Once your analysis determines that the subject is BILL and the object is BILL, then a C program would claim the sentence’s subject and object are the same. But they aren’t. The subject is a man, and the object is a piece of paper. The fact that this particular subject and object happen to have the same printed representation is merely coincidence.

The notion of symbolic data types introduces distinctions that never seemed important with numeric data types. For example, the Lisp predicate eq compares two symbols to see if they represent the same object, the same piece of memory. Therefore, (eq subject object) would return false since BILL, the subject string, is physically a different data structure from BILL, the object string. They are two different objects that just happen to be represented by the same characters.

The Lisp predicate equal compares the contents of two objects rather than the objects themselves. As a rule, if two objects print the same, equal will say they are the same. So in Lisp,

(eq subject object) => false
(eq subject subject) => true
(equal subject object) => true

The point is that when you deal with symbolic data types, you need more than the plain bit-pattern comparisons that number crunchers use.

The Power in Abstraction
Programmers have a vested interest in abstraction. Alan Turing showed us that even a very rudimentary machine can compute almost anything imaginable. But the process of programming a Turing Machine is tedious (see “The Turing Machine” by Isaac Malitz in the November 1987 BYTE). Abstraction is one of the
thing. what makes programming bearable.

At the binary level, underneath the abstraction, the code breaks down to all ones and zeros. But the point of a programming language is to provide an abstraction that suppresses the things we don't care about while leaving the features we consider important out in the open and available. Furthermore, as we go from one application to another, our notion of what's important can shift radically.

FORTRAN provided us with at least three major abstractions that have appeared in virtually all languages since: DO loops, floating-point numbers, and I/O statements. While there are many ways of writing a loop, FORTRAN programmers are more interested in what's inside the DO loop than in the mechanics of indexing; so FORTRAN included a DO loop abstraction. Floating-point representations are a whole field of study, but FORTRAN programmers needed to use floating-point numbers, not study them; so FORTRAN included a floating-point abstraction.

And everyone needs to do I/O, but few want to write yet another ASCII-to-integer conversion. So FORTRAN included a FORMAT statement. (You might well argue that a FORTRAN FORMAT statement is nor the best of all possible worlds, but that's not the point. Even FORMAT's arcane syntax still lets you think more in terms of what you want printed than how output each character.)

Despite FORTRAN's successes, its array abstraction doesn't do too well on the word-counting application. The meaning of any number in a FORTRAN array is independent of any other number in that array. In contrast, a character in a C string has little meaning by itself. Instead, all the characters in the string taken together have a meaning. This distinction of individual meaning versus group meaning isn't just a pedantic nicety. It underlies why C does better than FORTRAN at itemizing words in a file.

However, when we try to parse a sentence, C's abstraction of strings as a collection of related characters doesn't help much. We don't want to spell the words; we don't even care what the words are; we just want to identify their respective parts of speech. C's abstraction isn't wrong; it just isn't the one we need.

Verbosity and Fragility

Working without the abstractions you need exists a definite cost in verbosity and fragility. The verbosity is due to the additional source code you must add to do the things that a language with a more appropriate abstraction would have done for you. You can hide much of this source code inside function calls, but too much of it usually ends up in the form of manual programming conventions.

For example, a complex number is made up of a pair of ordinary numbers called its real and imaginary parts. Since FORTRAN was designed with abstractions for numerical analysis, it had complex numbers from the start. If you have declared A, B, and C as complex numbers, then the simple statement A = B x C is sufficient to cause the real and imaginary parts of A and C to be multiplied, recombined, and stored into the real and imaginary parts of A.

However, if FORTRAN didn't have complex numbers, we would have to handle the process ourselves. First, to represent a complex number, we could use a one-dimensional array of two elements for its real and imaginary parts. What would a complex

continued
multiplication of two complex numbers, $A = B \times C$, look like?

$$A(1) = B(1)\times C(1) - B(2)\times C(2)$$
$$A(2) = B(1)\times C(2) + B(2)\times C(1)$$

The best abstraction that we could devise in FORTRAN would probably be a complex multiply function, such as CMUL (A,B,C), which is an improvement, but the fact that you don't have a true complex-number data type still shows.

Given the statement $A = B \times C$ in FORTRAN IV, where variable names beginning with A have been declared to be implicit complex numbers, the language's automatic memory-allocation abstraction would have allocated A for you. But before you used the CMUL(A,B,C) function above, you would have had to declare A yourself as DIMENSION A(2). Custom functions (and macros) can make do-it-yourself abstraction-building less painful, but the pretend still isn't as good as the real thing.

The actual load/add/store sequences executed by the hardware in these examples are identical. The difference is the level of abstraction available to the programmer. The lack of an appropriate abstraction is a definite programming liability.

In addition to being more verbose, your code also becomes more fragile, because the verbosity exposes more of the language's housekeeping as source code. The extra code provides more opportunity for errors, which can be introduced by anything from typographical errors to overlooking a special program convention (i.e., when you did this, you forgot to do that). The code is also subject to errors due to its lack of intuitiveness. You could mistake it for a fragment of matrix multiplication; if you can't fathom its purpose, you can't be sure if it needs fixing.

The Next Step
This discussion of abstractions leads us to three real points:

- Each problem has its own preferred set of abstractions. If the programming language you are using doesn't provide the relevant abstractions, you will have to code them yourself.
- Conventional languages almost universally provide abstractions of numeric things and can perform numeric processing. Languages that provide abstractions of nonnumeric things can perform symbolic processing.
- The historical progress of computing is closely tied to the available abstractions—that is, the available programming languages. Symbolic processing is the next evolutionary step.

Of all the things that exist in the world and in our minds, we need to be able to abstract them before we can represent them in the ones and zeros of a computer. At present, abstractions have not wandered too far from the concept that data is numbers. Now, we are beginning to suspect that the things in this universe that numbers can represent may be in the minority.

Our progress beyond the bounds of numbers has come in stages. First, we found that symbolic operands couldn't always be represented in a 32-bit memory word, so we set up pointers as a general data representation. Next, we found that there were relationships too complicated to be described in a multidimensional array, so we devised trees. Then, we found that memory usage was too sophisticated for static allocation, so we created dynamic run-time allocation and de-allocation. Now, we are finding a need to process symbols that don't represent numbers. The idea of symbolic processing began when we first realized that data needn't be numbers: we have yet to see all the possibilities of that idea.
to stay late or work over lunch to learn something for their own sake—and the corollary is that management somehow can only rarely spare anyone long enough to send them to school or do training on company time.

There is a vicious cycle of ignorance and excuses for not learning and for not training at work in companies where management still perceives that the company is too small to support an active training program, in-house or out.

The company buys hardware and software because they are tools to use in processing data that is relevant to the company’s business. That data is the property of the company, even when people move on or are replaced or promoted.

From personal experience, I know how hard it is to have the personnel department call the week after the director leaves, asking if anyone can help the new guy with this Visifile application that is running on a PC that had an oddball accelerator card, and what does “General Failure reading drive C” mean, anyway? And no, no one can find any backups or program disks or manuals, but we have to use it to get the time cards out, so since you’re a programmer, why don’t you fix it right now?

The now ex-director was a fairly knowledgeable PC user who had available the Lotus 1-2-3, dBASE, and WordStar that we could support, and he had gotten an IBM PC XT despite a request for an AT because he couldn’t justify the more expensive machine. So, since he wanted to save himself the trouble of learning programs new to him, he brought from home (or bought without telling anyone) Visifile, PFS:Professional Write, Multiplan, ProKey, and several truly off-the-wall programs and some hardware to make himself feel that even though he didn’t get an AT, he is still better equipped than the average guy who don’t know how to work the angles and get what they want. Time cards, reports, and sensitive personnel records are now tied up in files and formats that are accessible only through programs no one else knows anything about. It appears that the hard disk drive is failing sporadically, with no backups in sight.

Your arguments boil down to encouraging personal creativity and initiative; mine boil down to being able to pick up and go on, even when that creative person has picked up and moved on, leaving someone else to clean up behind him. As in so many other things, there is a balance to be struck. In my mind, the critical factor in determining that balance is the degree to which disruption of company business will take place if a customized and personalized hardware/software setup is left for a new person to take over.

Standards serve the interests of the company mostly from a standpoint of continuity, and I have grown to appreciate the level of quality and product, as absolutely key ingredients in the success of any business.

At the very least, I will forever more make one demand: No matter what else goes on, no matter what hardware or software is used, I set a minimum standard and procedures for at least a weekly backup. This includes all users backing up all data files and turning those backups over to the DP department for off-site or fire-safe storage.

The DP mentality has more than tradition and bureaucratic mindset as its motive force. There are real concerns that can be addressed only by the implementation of standards at some level.

Charles Hahn
Orange, CA

Thank you. You do a good job of telling the MIS side of the story.—Jerry

Devloping my application in C would have taken 6 months to a year, but in Actor it took 2 months.”
—Brian Fenske, Boeing Commercial Airplane Company

To C or not to C...

Actor is the first interactive object-oriented language made for commercial development. Its powerful browsers, inspectors and debuggers give you more insight into a windowing environment than C ever will. But your C work is not lost. C libraries can be linked to Actor. Plus, its procedural syntax is easy for C programmers to learn.

Actor comes with windowing classes built in. Customize Actor’s classes to create standalone windowing applications. And objects give you another layer of independence for a smooth transition to OS/2 and Presentation Manager. It’s the quickest and easiest way to write a windowing program.

“You can write Windows programs much faster with Actor than with C or assembly language.”
—PC Magazine, June 9, 1987

<table>
<thead>
<tr>
<th>Tech Specs</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Runs with Microsoft Windows 1.04, 2.0 and 3.16. Extended memory under 2.0 and 3.16.</td>
</tr>
<tr>
<td>• Pure, single-inheritance object-oriented language, incrementally compiled.</td>
</tr>
<tr>
<td>• Dynamic linking to C, Pascal, Assembler, or Fortran libraries. Pass data in C structures.</td>
</tr>
<tr>
<td>• Pascal and C-like syntax.</td>
</tr>
<tr>
<td>• Programming tools: Browser, Inspector, Debugger, File Editor.</td>
</tr>
<tr>
<td>• Full access to MS-Windows systems calls, multithreading, and DDE.</td>
</tr>
<tr>
<td>• Fast device-independent graphics: lines, shapes, images, cursors, bitmaps, text, Turtle graphics, sample control language using YACC.</td>
</tr>
<tr>
<td>• 150 classes, 1500 functions, fully extensible.</td>
</tr>
<tr>
<td>• Window styles: tiled, overlapping, popup, child, edit, dialog, controls: list boxes, scroll bars, buttons, check boxes.</td>
</tr>
<tr>
<td>• Data structures: stacks, arrays, queues, lists, dictionaries, sets, sorting, hashing, intervals.</td>
</tr>
<tr>
<td>• AI support: frames, symbols, dictionaries, lists, symbolic programming, functional arguments. Parsing and lexical analysis YACC compatible.</td>
</tr>
<tr>
<td>• String manipulation: substring, concat, append, insert, remove, search.</td>
</tr>
<tr>
<td>• 643-page manual includes tutorial and reference.</td>
</tr>
<tr>
<td>• No license fees. Generates standalone applications.</td>
</tr>
<tr>
<td>• Fasts Interactive OOL available.</td>
</tr>
<tr>
<td>• Fast incremental garbage collector.</td>
</tr>
</tbody>
</table>

Actor $495 • Academic price $99 • Academic site license $99 • Manuals for site license $35 • New! Language Extension $99 • Shipping $5 US, $25 Int'l

The Whitewater Group
Technology Innovation Center
906 University Place, Evanston, Illinois 60201
(312) 491-2370

Actor is a registered trademark of The Whitewater Group, Inc.

Circle 283 on Reader Service Card

MARCH 1988 • BYTE 269
"Unlimited."

un•lim'•i•ted, a. [L. limitus]: The ability to expand your personal computer's storage capacity beyond your wildest imagination.

Up until now, the concept of unlimited PC storage capacity was about as practical as cramming all your office files into your briefcase. Storage capacity could only be stretched as far as the fixed capacity of your hard disk. Or to the limit of your patience for shuffling through stacks of floppies.

But imagine instead that you could insert and remove hard disks as easily as a VCR cassette—your PC's storage capacity would then be virtually limitless.

That's exactly the idea behind the Tandon Personal Data Pac, the world's first and only portable, Winchester hard disk. Just attach a low-cost Ad-PAC drive receptacle to your PC, and its powers of memory are totally transformed. You can choose from a number of self-contained, portable Personal Data Pacs that can be inserted and removed as easy as a floppy.

Now a whole business worth of software and data can fit neatly into your briefcase. Ready to go anywhere your business will take you.

And when you are done for the day, your entire information base can be simply locked away where only you can get at it.

If you want to share your software and data with others, the Tandon Personal Data Pac offers you the cheapest and most reliable “network” possible. Simply transfer what you need from one Pac to another, and turn a shared PC into a dedicated workstation, just for you.

If your travels with the Data Pac take you on a bumpy road, don't worry. Your software and files will be safe and secure inside the Pac’s rugged housing. It can even take a trip in the mail or an occasional fall off your desk.

See your Tandon Dealer today or call us at 1-800-556-1234, ext. 171 (in California 1-800-441-2345, ext. 171) and learn the new definition for personal computing.

The possibilities are limitless.

Tandon

We're redefining personal computing.
The Quantus Turbo AT
- Monochrome monitor
- Half-height 40Mb hard drive
- 80286 running at 6-10MHz
- 1Mb RAM
- 8 expansion slots
- Text/graphics card
- Speaker
- 1.2Mb floppy drive
- 101-key enhanced keyboard
- 200 watt power supply
- 3 year limited warranty

$1495 COMPLETE

The Quantus Turbo XT
- Monochrome monitor
- Half-height 20Mb hard drive
- 8088 running at 4.77-8MHz
- 640K RAM
- 8 expansion slots
- Text/graphics card
- Speaker
- 360K floppy drive
- 84-key keyboard
- 150 watt power supply
- 2 year limited warranty

$795 COMPLETE

The Quantus MT386
- Monochrome monitor
- Full-height 80Mb hard drive
- 80386 running at 4.77/6/8/10/16MHz
- 2Mb RAM
- 8 expansion slots
- Text/graphics card
- Speaker
- 1.2Mb floppy drive
- 101-key enhanced keyboard
- 200 watt power supply
- 3 year limited warranty

$2995 COMPLETE

Specifications and prices subject to change.

Circle 222 on Reader Service Card

Quantus Microsystems
One Butterfield Park
Spofford, NH 03462
(800) 255-0125 (603) 363-4564
(800) 356-9001 (603) 886-3220
System Calls in Modula-2

Here's how to use Modula-2 to interact with your computer at the BIOS and DOS level

Niklaus Wirth created Pascal to help teach programming, but people discovered that they had problems using it in real-world situations. For example, Pascal cannot access the computer’s hardware at a low level. Wirth resolved this problem when he designed Modula-2, a successor to Pascal that was meant to be used in the real world.

It's easy to use Modula-2 to program an IBM PC or PS/2 at a lower level than you might normally use in another high-level language. The source code listing accompanying this article illustrates programming at the ROM BIOS level and the DOS level through Modula-2. I've tried to annotate it as much as possible for easy reading. [Editor's note: The program MODDOS.MOD is available on BIX, on BYTEnet, on disk, and in the Quarterly Listings Supplement. See "Program Listings" in the table of contents. To 'find' source code in the Listings areas on BIX and BYTEnet, search by article title, author, or issue date. Some archived files may contain numerous listings for a single article. A description of the file also accompanies each entry.]

MODDOS.MOD gets, sorts, and prints directory entries matching a filename pattern; gets and prints the amount of available space on a specified disk; renames files; clears the screen; and locates the cursor in a specific place on the screen. I compiled and linked the source code with the Modula-2/86 package from Logitech. Because other Modula-2 implementations may provide a slightly different set of library modules from those of Logitech, you may need to change some of the identifiers in the source code listing.

You should watch out for several identifiers. SWI generates a software interrupt and is used for ROM BIOS calls. DOSCALL is used to call DOS routines and functions. ADDRESS is a data type for variables that can simultaneously be considered a pointer to a word or a record containing the segment and offset addresses of a variable. ADR is a function that returns the address of a variable.

FROM ... IMPORT <module names>: If the names of the modules to be imported are different from Logitech’s, you will have to change the references to them here. The implementation and definition modules for both the Yes and VId'serv files are available at the tail end of MODDOS.MOD. You should extract these files, compile them separately, and import them as shown in the IMPORT section. Each IMPORT declaration names the module to be referenced and must also include the names of each variable, type, or procedure to be included in the final product. The ones used here, except as mentioned above, are supplied with the Modula-2/86 package as parts of the standard library.

In practice, MODDOS.MOD could have been written in distinct modules, compiled, and then merely called by a main driver program. To make the program more readable, however, I have combined the necessary parts into one module.

Getting the Directory

To use DOS to get the directory entries, I use the Modula-2 procedure DOSCALL to perform various DOS functions. If your Modula doesn't have a similar procedure, you can accomplish the same thing by issuing interrupt 21H with the DOS function number in the AH register (more on how to do that later).

The procedure FindMatch (see listing 1) locates the disk transfer area (DTA) and finds the first file that matches the wildcard pattern given in the global variable filename. The procedure gets the address of the current DTA by executing DOS call 2F hexadecimal (decimal 47); the DOS call returns the address in the variable DiskTransferArea, which was earlier declared as an ADDRESS. We will use the value of DiskTransferArea in this and other procedures to locate other useful information.

When we call DOS with the value 4E hexadecimal (decimal 78) to start searching, we must provide it with the address of the pattern we want to match (FilenamePattern) and a CARDINAL number describing which files to look for (attribute, a global variable). The value of attribute is the sum of any or all of the following values:

- 1 read-only files
- 2 hidden files
- 4 regular files
- 16 subdirectories

For example, if you wanted to find all the regular and hidden files matching the pattern, you would set attribute to 6. There are also attribute values for getting the volume label (value of 8), and only files marked for archiving (value of 32), but these files types are of limited use.

When you execute DOS call 4E hexadecimal, DOS returns the first filename that matches the given wildcard pattern and attribute type. The name is an ASCII string (an ASCII filename ended by a zero or null character), and it is located 30 bytes past the beginning of the DTA. Both AsciiFilename and CharacterPointer point to this location, and they are both incremented in the process of filling the character array directory with the filename to which both pointers point.

The beauty of Modula-2 over Pascal in this instance is that the use of pointers (CharacterPointer) is defined as being of type continued

Richard Rankin is finishing his M.S. in computer science at the University of Arkansas. You can reach him at P.O. Box 3036, Fayetteville, AR 72702.
byteptr, which is a POINTER TO CHAR) allows us to circumvent Modula-2's type checking. This means that Character-Pointer or any other variable of type byteptr can be used to locate integers, characters, or any other basic type, although characters are the only byte-size information we would probably need to access. Variables declared as POINTER TO WORD are also useful for transferring 16-bit words into program variables. If you're familiar with Pascal, notice that there is no need to declare an ARRAY as PACKED. All characters are stored in a byte, instead of a word, so packing is effectively done all the time.

The next step is to determine the file's size, a 4-byte quantity that starts at DiskTransferArea+26. The variable cardinal points to this word, which is the low-word portion of the file size returned by DOS. (The high-word portion is located 28 bytes into the DTA.) If you were programming in 8086 assembly language, you would have to remember that the 8086 (and other members of its family) saves words as low byte/high byte. In Modula-2, however, since cardinal is a POINTER TO CARDINAL, assigning the dereferenced pointer to a variable of type CARDINAL (the statement Cardinalse: := cardinal;) causes the language to convert the memory locations properly.

The final result for this value has to be in a variable of type REAL, since the file size may take on values larger than the 65,535-byte limit of a CARDINAL variable. I first convert it to a string, then to a real because both these procedures already exist (and no such cardinal-to-real procedure does); the end result is the REAL variable size low.

When a program calls DOS function 4E hexadecimal, DOS also saves the information needed to find the rest of the matching files that meet my criteria. The FindNext procedure (not listed here, but part of file MODDOS.MOD) will cycle through the directory until no more matches are found, using this information DOS has stored. You also have access to an error code and other file-related data; the attribute byte is at DiskTransferArea+21, a 2-byte time stamp is at DiskTransferArea+22, and a 2-byte date stamp is at DiskTransferArea+24.

The final procedure, GetDir, uses FindMatch, FindNext, and several other procedures to prompt the user for a wild-card pattern; then it gets, formats, and prints the files that match it.

Overall, this solution has the best of both worlds—the speed and simplicity of predefined DOS functions and the formatting and arithmetic conveniences of a high-level language. Note that the code to read in a filename and get its size involves duplication in the FindFirst and FindNext procedures. These blocks of code could have been modularized into shorter, more efficient procedures.

Free Space on a Disk
My next example uses DOS to help locate and print the available free space on a disk. A simple DOS call to function 36 hexadecimal (54 decimal) in procedure FreeSpace returns the number of available disk clusters, the total number of clusters, and the bytes per sector. If an error occurs, the DOS function returns FFFF hexadecimal or 65535 decimal in the variable error. If there is no error, it returns the number of sectors per cluster. As before, we convert certain cardinal numbers to strings, then to real variables so that the variable real free bytes is big enough to hold any values given to it.

Renaming Files
The procedure for renaming a file, RenameFiles (see listing 2), is even simpler. The two input parameters to this procedure are

Mountain's FileSafe keeps your data

Mountain's FileSafe delivers the broadest range of reliable and affordable tape backup systems for users of IBM PS/2, XT, AT and most compatible computers.

A MOUNTAIN OF BACKUP FROM 40-500MB.

Now you can have 40, 60, 150 or 300 megabytes of tape cartridge backup in one internal or two zero-print external versions.

Need higher capacity? Daisy-chain two 300-megabyte systems and get a whopping 600 megabytes of tape backup!

Which is just what you need for

those big storage-intensive applications like desktop publishing, file servers, and data base management.

Every FileSafe system includes:

- Mountain's newest generation of powerful, automatic and menu-driven tape backup software that tens of thousands of professional, business and government systems users rely on daily.

- to protect their irreplaceable data.

What's more, Mountain supports the most popular single and multi-user operating systems. Plus local area networks like Novell, PCnet, TOKEN RING and many more.

FileSafe60 (60MB, high-speed tape backup system using the popular DCR80 cartridge)

FileSafe40 (40MB, high-speed tape backup system using the popular DCR80 cartridge)
the current filename (oldname) and the desired new filename (newname). This procedure uses the ADR function to get the filenames' addresses to pass to DOS, then calls on DOS function 56 hexadecimal (86 decimal) to do the work of renaming the file. Since this DOS function actually changes the file's directory entry, you can use it to move a file among subdirectories on the same disk, but you can't use it to rename a file from one drive to another.

Using ROM BIOS Calls
For examples of using the IBM PC or PS/2 ROM BIOS calls in Modula-2, I've added two functions to the library, Cls (clear the video screen) and GotoXY (go to a specified row and column); see listing 3. The ROM BIOS calls in this Logitech version are done through a Modula-2 procedure called SWI, which stands for software interrupt.

Logitech recommends that you push the 8086 base pointer before an SWI call and pop it immediately after. You can use the CODE procedure, which merely inserts its parameters directly into the final program, to create short assembly language sequences. CODE(55h) means to push the base pointer onto the stack, and CODE(5Dh) means to pop it. The SETREG procedure does exactly what it sounds like—it lets you set the value of a register directly.

Both ROM BIOS procedures use the interrupt value of 10 hexadecimal (16 decimal) to request video services. The call format is SWI(1Oh, parameter). By changing the parameter, this interrupt can activate such items as disk services, printer services, time and date services, and communications-port services. In general, anything that is available to an assembly language program is available to Modula-2 through the DOSCALL, SWI, and CODE procedures.

The DOSCALL and SWI procedures differ in that the former takes place at a much higher language level. The DOSCALL functions are similar to any Modula-2 procedure in that they use parameters specified in the heading of the procedure being called. The DOSCALL procedures then set the proper register values, generate the interrupt, and return the proper values.

When you use the SWI procedure, on the other hand, you must set the register values yourself. These values are passed "as is" when the software interrupt occurs. The values returned, if any, are placed in the proper return registers, and you use the GETREG procedure to return the value to your program variables.

If you don't like dealing with system interrupts, Modula-2 makes it simple to write your own library procedures to do the low-level work you want to hide. This means that you can write a series of library procedures to handle SWI calls, returning the values to your program in variables. From that point on, you can call your software-interrupt procedures with the same format as the DOSCALL procedures instead of recoding them each time and worrying about which parameter goes in what register. Modula-2's modularity is perfect for that sort of thing.

Clearing the Screen
You can clear the video display in several different ways. One quick way is to reset the screen mode to the mode it's already in; this effectively clears the screen on the IBM PC and many compatibles. A second way is to write blanks through the screen locations yourself. Since screen accesses wrap around if you write past the end of the screen (because you specify the screen page
Listing 1: The FindMatch procedure finds the first file that matches the wild-card string in the variable filename. This procedure is part of a larger file, MODDOS.MOD (see main text for details), and some of the variables listed here are declared elsewhere in MODDOS.MOD.

PROCEDURE FindMatch (VAR error :CARDINAL;
VAR NumberFound :CARDINAL);
(*) This procedure uses DOS call 2fhex to locate the disk transfer area, and DOS call 4Ehex to find the first file that matches our directory path and wild-card pattern. When this routine is called, DOS also provides the information required to find additional files matching the specifications.*)

VAR size1ow, size1ogh :REAL;
CardinalSize :CARDINAL;
cardinal :cardinalptr;
StringOfCardinal :string;
okay :BOOLEAN;
BEGIN
 FileNamePattern:=ADR(filename);
 DOSCALL(2fh,DiskTransferArea);
 DOSCALL(4eh,FileNamePattern,
 attribute, error);
 AsciizFileName:=
 DiskTransferArea+30; (* filename
 starts 30 bytes into the
 Disk Transfer Area *)
 CharacterPointer:=AsciizFileName;
 NumberFound:=1; (* increment the
 counter for number of
 matching files found *)
 counter:=1;
 WHILE CharacterPointer<>null DO
 (* ASCII string, so it will
 have a 0 byte at end *)
 directory(NumberFound,counter):=
 CharacterPointer`;
 AsciizFileName:=AsciizFileName+1;
 counter:=counter+1;
 END;
 cardinal:=DiskTransferArea+26;
 (* set pointer to
 low order word of size *)
 CardinalSize:=cardinal;
 CardToString(CardinalSize,
 StringOfCardinal,12);
 StringToReal(StringOfCardinal,
 sizelow,okay);
 cardinal:=DiskTransferArea+28;
 (* high order word of size
 located 28 bytes into
 Disk Transfer Area *)
 CardinalSize:=cardinal;
 CardToString(CardinalSize,
 StringOfCardinal,12);
 StringToReal(StringOfCardinal,
 sizehigh,okay);
 sizelow:=sizelow+(sizehigh*65536.0);
 RealToString(sizelow,0,12,
 [NumberFound],okay);
END FindMatch;

Listing 2: The RenameFiles procedure changes the directory entry of a given file, or it returns an error message.

PROCEDURE RenameFiles(VAR newname, oldname :filearray);
VAR newfile, oldfile :ADDRESS;
error :CARDINAL;
BEGIN
 oldfile:=ADR(oldname); (* the DOS calls
 require the
 ADDRESSes of *)
 newfile:=ADR(newname); (* the filenames *)
 error:=0;
 DOSCALL(56h,oldfile,newfile,error);
 CASE error OF
 3:
 WriteString('PATH NOT FOUND');
 WriteLn
 5:
 WriteString('ACCESS DENIED');
 WriteLn
 17:
 WriteString('PATH NOT FOUND');
 WriteLn
 ELSE;
 END; {* CASE *}
END RenameFiles;

Listing 3: The GoToXY and Cls procedures. This listing contains a complete module, Vidserv, which should be compiled separately and brought into another program through the IMPORT statement. GoToXY moves the cursor on the video display to a given row and column. Cls clears the screen by scrolling it up 24 lines.

DEFINITION MODULE Vidserv;
FROM SYSTEM IMPORT AX, BX, CX, DX, CODE,
 SETREG, SIU;
FROM InOut IMPORT Write;
EXPORT QUALIFIED
 GoToXY, Cls, Tab;
PROCEDURE GoToXY(col, row :CARDINAL);
PROCEDURE Cls ();
PROCEDURE Tab(spaces :CARDINAL);
END 	 Vidserv.

IMPLEMENTATION MODULE Vidserv;
FROM SYSTEM IMPORT AX, BX, CX, DX, CODE,
 WORD, BYTE, DOSCALL,
 SETREG, SIU;
FROM InOut IMPORT Write;
PROCEDURE GoToXY(col, row :CARDINAL);
VAR rowl, col1 :CARDINAL;
 dx :WORD;
BEGIN
 rowl:=row-1; (* adjust row, col back to
 0, 0 *)
 col1:=col+1;
 dx:=WORD(col+rowl*256));
 continued
being affected, and the wrap occurs within that page), it doesn’t really matter whether you start from the first screen location or not. If you don’t start from the first screen location, though, your cursor will return to the position from which it started. If you want the cursor to end up in a certain position (upper left corner, for example) after the screen is cleared, you can use the GotoXY procedure to move it.

The procedure Cls clears the screen by scrolling up 24 lines. I chose to do it this way to provide a base procedure for you to change and make more useful. The call to Cls, which appears in listing 3, has no parameters. Notice, though, that the CX register contains the upper left coordinates of the window to be scrolled, and the DX register contains the lower right coordinates. This information makes it simple to change the procedure to a generic window-clearing procedure that clears a specified rectangle of text. All you need to do is add parameters to Cls, like this:

\[
\text{Cls(upperX, upperY, lowerX, lowerY)}
\]

and correctly insert the parameters into the CX and DX registers. If you separately compile this as a module, you can use it in all your programs to clear either the whole screen or some portion of it.

Moving the Cursor
The GotoXY procedure (see listing 3) uses the requested row and column screen coordinates as its parameters. GotoXY subtracts 1 from each coordinate (allowing users to think of rows and columns that start numbering at 1, not 0), places the proper values into the correct registers, generates a software interrupt, and violà!, your cursor is where you want it to be. This is another simple procedure that can be written once, compiled separately, and used by any program you write in the future.

Access and Control
Modula-2 is not a perfect programming language, but it offers the best features of Pascal (block structure and strong type checking) and C (low-level access to hardware). It also has several advantages over Pascal itself, most notably its separate compilation of modules, its cleaner syntax, additional programming constructs, and an improved I/O interface. Now that affordable Modula-2 implementations exist for most 16-bit microcomputers, you should consider getting to know it.
With a 10 Day Trial Membership

If you've thought about joining BIX before but weren't sure it was what you needed, now is the time to try it. Because now for a limited time, we're inviting you to try BIX for 10 days. If at any time during this 10 day trial period you don't feel BIX has made you a more knowledgeable microcomputer user, we'll refund your entire registration fee. You pay only for time spent on the system. *(See log-on instructions for hourly rates.)*

Explore BIX in your home or office. Put its power to work for you and unleash your full microcomputer potential — programming, designing, specifying, researching — and more.

Try BIX for 10 full days and see what it can do for you. Explore more than 160 conferences. Access vendor support. Speak to expert consultants. Research new products and systems, and download public domain software.

Prepare yourself for success

It takes a sharp mind and hard work to stay ahead, and having the right tools means:

- Learn about new products before they hit the market.
- Get quality marketplace feedback on the products you're thinking of purchasing before you invest.
- Research problems and find the solutions that no one else has been able to render.
- Access some of the most advanced public domain software available in the industry.
- Increase your working knowledge of micros to make more confident purchasing decisions and recommendations.

Join BIX and arm yourself with the latest in microcomputer-related information

BIX's exclusive Microbytes newswire gives you complete, daily, up-to-date computer industry information. You'll gain insight from BYTE editors and writers who analyze new products and their potential impact, inform you of the latest mergers and acquisitions, and report late-breaking news from important seminars and conferences.

Talk to colleagues worldwide

You'll stay on top of your company's business with BIX's electronic mail service.

"Talk" to your cast coast, west coast — even European — contacts all in the same day.

Or, simply communicate with other BIX users worldwide. Share information and ideas privately, or in conference.

Choose any option for online access with a one time $39 membership fee

- Use MasterCard, Visa or American Express and begin your 10 day trial use of BIX right now.
- The 10 day trial also applies if you open an individual pre-paid account on BIX. Trial commences once we open your account and notify you.
- Other billing options including qualified corporate accounts are available. (Sorry, our 10 day trial is not available for these accounts.) Call or write BIX for details.

Use credit cards for immediate access or call the BIX Help Line for information on any other payment option at, 1-800-227-2983 (from U.S. and Canada) 603-924-7681 (in New Hampshire and elsewhere).

Act now! Our 10 day trial offer is subject to cancellation at any time.

*To notify BIX that you wish to discontinue service at any time during the trial period, call the BIX Help Line, and your entire membership fee will be refunded.

**BIX can be accessed via Tymnet throughout the U.S. and Canada. For the Tymnet number nearest you, call the BIX Help Line or Tymnet at 1-800-336-0149.

†If your local Tymnet number is a toll call you will receive additional charges from your local phone company at their prevailing rate.

‡Continental U.S. Tymnet rates. Rates from other areas are available from BIX.

Circle 450 on Reader Service Card
BIX is easy to join

To log-on to BIX, simply:

Set your computer's telecommunications program for full duplex, 8-bit characters, no parity, 1 stop bit OR 7-bit characters, even parity, 1 stop bit. Use 300 or 1200 baud.

Call your Tymnet number ** and respond as follows:

<table>
<thead>
<tr>
<th>Tymnet Prompt</th>
<th>You Enter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garble or request for "terminal identifier"</td>
<td>a</td>
</tr>
<tr>
<td>login:</td>
<td>bix<CR></td>
</tr>
<tr>
<td>BIX logo-name:</td>
<td>bix.038<CR></td>
</tr>
</tbody>
</table>

Callers outside the U.S. who have a communicating computer or terminal and a packet switching account with their host country phone system can reach BIX by entering 310690157800. To commence registration, enter the code listed at the BIX logo name; prompt.

After you register, you'll automatically be taken to the BIX Learn Conference, an online tutorial that will show you how to begin using the system immediately. Time spent in the Learn Conference is FREE. Complete system documentation will be sent to you within a few days.

Access time will be billed at the following hourly rates:

- **Off-Peak Time $11/hr. (3 PM - 6 AM weekdays, all day weekends and holidays)**
- **Peak Time $20/hr. (6 AM - 3 PM weekdays)**

BIX

BY THE INFORMATION EXCHANGE

One Phoenix Mill Lane
Peterborough, NH 03458
ACCESSORIES

PROTECT YOURSELF!!!

Ergo-Vision® Plus 2 Radiation Filter with patented nickel mesh protects you from radiation, static, and glare. Reduces electromagnetic radiation by 90%*, electrostatic charge to 0 and eliminates glare.

Abelson Communications
Dept. B, POB 1031, Rockville Centre, NY 11570
516-786-7762

Inquiry 551.

FREE CATALOG

Thousands of parts and new surplus electronic parts.

FAST ORDER PROCESSING

AND SHIPPING (95% of orders shipped within 48 hours)

CALLED OR WRITE FOR A FREE CATALOG.

ALL ELECTRONICS CORPORATION

P.O. Box 567, Van Nuys, CA 91408-0567

1-800-826-5432

Inquiry 552.

SOFTWARE PACKAGING, DISKS

Fast service. Call or write for FREE CATALOG.

Anthropomorphic Systems Limited

376-6 East St. Charles Road

Lombard, IL 60148

1-800-DEAL-NOW (312) 629-5160

Inquiry 553.

RE-INK FABRIC RIBBONS

Call for the new BOSS Ribbons to know all color inks and to order. Compare the old BOSS Ribbons with our BOSS colors. Same ink, better quality.

BOSS INDUSTRIES

525 MAIN ST., JANESVILLE, IA 50647

1-800-832-2404

Inquiry 555.

IBM PC ACCESSORIES!

Our FREE Catalog includes hundreds of Switches, Cables, Buffers, Data Converters, Signal Boosters, Print Spoolers, PC Tools, Surge Protectors & More for your IBM PC. LOW-DIRECT PRICES. SAME DAY SHIP & Satisfaction GUARANTEED!

Write or Call for a FREE CATALOG Today!

TIPZ Computer Accessories

P. O. Box 89, San Francisco, CA 94109-0890

600-387-0474 or 415-626-4333

Inquiry 556.

BARR CODE

PRINT BAR CODES AND BIG TEXT

Input Design label on 1 screen 250 bars. Other simple bar codes from $49. 30 day 10% back guarantee.

Washington Data Solutions

11140 Tygle St. Suite C, Caney, CA 92320

(800) 343-4230

In CA: (408) 658-5338

Please see our ad on page 42.
Cross Assemblers

Macros, PC Compatible, Reloatable, Conditional, Fast, Reliable...

MARCH 1988 • BYTE 281
The Buyer's Mart

DATA/DISK CONVERSION

DISK CONVERSIONS
Media transfer to or from: IBM, Xerox, DEC, Wang, Lanier, CPC, Macintosh, NBI, CT, also WP, WS, MS/DOS, DMS, MM, San diego, DEC DX, MAS 11, Xerox Writer, ASCII
FREE TEST CONVERSION CONVERSION SPECIALISTS
551 Main St., Box 835, El Segundo, CA 90243
(213) 545-6551 (213) 322-8319
Inquiry 581.

dBASE GRAPHICS

EASY dBASE GRAPHICS
Wary of complicated graphing programs? Announcing dPICT.

- dPICT is expressly designed to be easy to use
- Type two words, in three minutes you see four presentations of your dBASE data
Pick one. Try all. 449.95
Requires IBM PC or compatible
Paragon Tech
1801 Cadillac Ave., Lorton, VA 22079
Inquiry 586.

DEMOS/TUTORIALS

INSTANT REPLAY III
Build Demos, Tutorials, Prototypes, Presentations, Music, Time Keyboard Macros, and Menu Systems. Includes Screen Maker, Keyboard Timer, Program Memorizer, and Animator. Read's Great Reviewed Simply the BEST Not copy protected. No royalties. 60 day satisfaction money back over IBM and Compaq. $149.95 U.S. C/O Cr. Demo Diskette $5.00
NOSTRADAMUS, INC.
3191 S. Highland Ave., Suite 252
Salt Lake City, Utah 84103 (801) 467-0682
Inquiry 587.

DESKTOP PUBLISHING

Professional Type Composition
MPX-XL-High-cord typewriting and Typepaks for the HP LaserJet II, OkiData LaserJet I II, 6 or 8 M C P 6000 Laser Printer, H & J, I denters, Tabs, Graphs, pt. lead, PICA points of size & face 6-72 pt. fonts. MPX Complete with 22 fonts, Pt. + 6-8 M C VISA Many additional type faces available 6-30 pt.
Micro Print-X, Inc.
P.O. Box 681, Atwater, CA 95301 (916) 365-2342
Inquiry 588.

DISK DRIVES

PS/2 DRIVES FOR PC's AT's
Compatibility/PC's: 2999
IBM Compatible Models: 2999
Built-in floppy controllers-no problem
Supports multiple drives and formats. (Let your computer use IBM PS/2 I 1A. benefits plus more)
Call for further information or to place an order.
1-800-403-1259

Micro Solutions Computer Products
123 W. Lincoln Hwy., DeKalb, IL 60115 610-5/6-3411
Inquiry 589.

DISKETTES

DISeKETTES ALL BRANDS
Xidex D/D/D Bulk 5¼" Write
3M DISC/D/R Disk Boxed 5¼" 50$.70
Compact Disk Boxed 5¼" $40
Ashman Tape Degausse 5¼" .25
Fujis D/D/D/D Disk 5¼" 1.00
Xidex HD Boxed 5¼" 1.00
We carry Sony & Maxell
1-800-844-0141
Computech Products Inc.
10088-B Serramonty Ave., Philadelphia, PA 19118
Inquiry 590.

SOFTWARE DUPLICATION

SOFTWARE DUPLICATION
• One Stop Shopping • Technical Support
• Custom Packaging • Drop Shipping
• Copy Protection • Fast Turnaround
• Competitive Pricing
SATISFACTION GUARANTEED
800-222-0490 NJ 201-482-7628
MEGAsoft
P.O. Box 712, Freshkills, NJ 07759
See us at all pages 280
Inquiry 592.

SOFTWARE PRODUCTION

SOFTWARE PRODUCTION
• Disk duplication • Warehousing
• All formats • Drop shipping
• EverLock copy • Fulfillment
• Label/sleeves printing • 48-hour delivery
• Full packaging services
Star-Byte, Inc.
715 W. Main St., Lancaster, PA 17601
215-348-5158
Inquiry 593.

FRAMEWORK II USERS

FRAMEWORK II FRED DICTIONARY
Electronic dictionary that knows just what you mean. Immediate access to a full screen function reference. Development tools, menus, FFD type, text editor, more
Programs disk + manual booklet $29.95 inc. s/h
3.5" side add 2.00, req. "FRAMEWORK II" Not FFD format. Program disk is a money in order to
M. FRANKEL
189 FRANKLIN ST., NY, NY 10013
Inquiry 594.

FLOWCHARTS

FLOWCHARTING II+ HELPS YOU!
As you flowchart, you can create a chart with FLOWCHART's Easiest. Build and edit perfect charts bold and normal fonts, 24 shapes -95 chart symbols, frame boxes, connectors, Fast Insert Line, Shrink screen display 80-column chart, 60 columns chart, much more
PATTON & PATTON
81 Great Circle Blvd., San Jose, CA 95119
1-800-672-3497, ext. 897 (CA residents) 1-800-634-8117, ext. 897 (Outside CA)
409-629-5044 (Outside the U.S.A.)
Inquiry 595.

HARDWARE

DISCOUNT CLONES
• XT Turbo—$495
• AT 80U HZ- $995
• IBM, 80286 clones hard drive with computer—$399
• 386 16Mhz—$299
• IBM compatible clones 120Mb hard drive—$399
• Exteon 16M—$199
• 80U '16' S-I D—$199
Automated Business Solutions
516-379-3995
60-day money-back guarantee 1-yr parts & labor warranty
Dealers inquiries invited. Please call for complete price list
Inquiry 596.

FREE dBASE III + COMPILER DEMO DISK
Don't buy Clipper™ until you see our FREE dBASE Compiler Evaluation Kit. Includes DEMO DISK with 6 PrOgs. and results of comparing Clipper, Quickfier, and FREE BASE. Also 15 benchmark tests, complete magazine reviews, and detailed brochures about all 3 compilers. FREE. No obligation. Call 24 hours, 7 days.
dataBASE Specialties (415) 652-2700
P.O. Box 2879, Oakland, CA 94608
Inquiry 597.
The Buyer's Mart

HARDWARE

CHIP CHECKER

- 74/44 TTL | CMOS | 8000 Mat | Signetics
- 164400 CMOS | 9000 TTL
- 14-24 Pin Chips
Test/identifies over 550 digital chips with ANY type of output in seconds. Also tests parallel RAM chips. SIM compatible version $2.59. C128 or C64 version $159.

DUNE SYSTEMS

2903 Wila Dr. S., Joseph, MI 49064

(618) 883-2352

Inquiry 598.

SANYO 550/555 USERS

3.87/26MHz TURBO WD. $194.62

IBM STYLE CS5 VIDEO BD. $189.95

IBM STYLE RS-232. $76.90

SANYO RS-232. $85.40

760K MEMICL/KEXPANSION BD. $249.85

20 30 WELL HARD DRIVES $258.65

COMPOSITE MONO MONITOR $159.85

500 COMMUNICATION SOFTWARE $49.35

TAMPA BAY DAILY

1760 Drew St., Clearwater, Fl 34015

- FREE CATALOG -

$13-443-7049

Inquiry 604.

GREAT PRICES!

Brand new Lase Sere (formerly Encore) Color Graphics Terminals at blow-out prices. Includes 50-day warranty

- 18 colors from 4500 palettes
- 640 x 480 resolution
- DEC VT100/ANSI X84 compatible
- Tablet/1040 1024 x 10 compatible

$695 (Model 7107)

Inquiry 605.

FREE CATALOG

Protect your computer power from black-outs, brownouts, audio/video hash and surge! Complete line of low cost Emergency Power Supply units. Line Conditioners and Surge Suppressors prevent damage and loss of valuable data. Prevent errors, malfunctions and false printouts! Send for more catalog today.

INDUS-TOOL

720 W. Lake St., Chicago, IL 60605

Phone 312-648-2191

Inquiry 600.

875CGI PROG. $125.00

The LPA 875CGI Programming Adapter lets you use your computer's microprocessor to program the 875CGI, 8751H, AMD6751H, 8752H, and 8752BI. Also lets you program the 8753CGI/8753H security bit, and the 8751CGI encryption array. It's very simple and very cost effective.

LOGICAL SYSTEMS CORPORATION

8184 Test Station, Syracuse NY 13217

(315) 478-0722

Toles 5781877 LOGIS

Inquiry 601.

NorthStar

NorthTech Support Services, Inc.

Oberlin, Ohio & Arlington, Virginia

1-800-426-7888

210-775-0529

Inquiry 602.

NEW/USED APPLES & STUFF

MACINTOSH — Call
Apple Parts — Call
Mac accessories—hard drives Call
We buy, sell & consign — Apple, IBM.

SHREVE SYSTEMS

2421 Malcom St., Shreveport, LA 71108

318-485-7473 4-9 p.m. • FAX-318-865-2008

International inquiries welcome C.S.T.-HR$AM

Inquiry 603.

Inquiry 604.

HARDWARE

GREAT PRICES!

Brand new Laser Sere (formerly Encore) Color Graphics Terminals at blow-out prices. Includes 50-day warranty

- 18 colors from 4500 palettes
- 640 x 480 resolution
- DEC VT100/ANSI X104 compatible
- Tablet/1040 1024 x 10 compatible

$695 (Model 7107)

Inquiry 605.

AT/FORCE RISC SYSTEM

Replace Bit-Slice Technology

5 chip set provides configurable RISC system with new Force Core from Harris Semiconductor. Forth Optimized to use Force RISC. Incl.M8803, 5 MCMOS standard cell chips: Core, Interrupt Controller, 1-cycle Multiplier, and 2 block controllers. Forth development language included. 64905

SILICON COMPOSERS (415) 322-8763

210 California Ave., Suite K, Palo Alto, CA 94306

Inquiry 607.

Inquiry 608.

HPD4180 CO/PROCESSORS

Plug-in co-processors for PC, PCAT, Blue Thunder 280 co-processors

6 MHz $249.85

10 MHz $399.85

12.5 MHz $699.85

HD64180 co-processors

$295 and up

All co-processors with CP/M software. Solder only 58IM1 only $95.85

Z-WORLD

916-753-3722

1772 Picasso Ave., San Jose, CA 95118

See our ad on page 299.

Inquiry 609.

RT-LINK

The ultimate solution for linking laptop computer with any IBM compatible desktop PC: 110, 200 baud transfer rate—faster than any other software interface necessary, easy to use split screen design. Includes incredible "Universal CAD" that connects any two computers. Transfer entire drives faster than a DOS copy command! Only $129.85 including several drives and both IBM's and Apple's drives. Software owner can trade in for only $99.95 w/o cable.

Traveling Software, Inc.

11031 North Creek Parkway, Bothell, WA 98011

1-800-343-8080

(206) 483-8088

Inquiry 612.

DESIGNED FOR LEGAL WORK

The Software's Substantive System. "This could save a law office 30%—45% of the time to process pleadings." Brief. "9/87.

Version 3.3 $159 IBM 1st CP/M—$255.95

Inquiry 614.

ACCOUNTING MESS

Inquiry 615.

HUMOR

BIT O' HUMOR

JOKEs ON DISKETTE

Over a thousand great jokes, limericks, puns and fortune cookies on cassette for your MS-DOS computer.

LAPTOP COMPUTERS

Zarath 181 & 183 & Toshiba + NEC Multiplus EL + Dataview Sharp + AFFORDABLE 3" or 3 1/2" DRIVE UNITS FOR LAPTOPS & DESKTOPS + DOWNSY SYSTEMS + COMPANIES + Fast delivery & reliable friendly service Can't beat prices

COMPUTER OPTIONS UNLIMITED

201-469-7878 (7 Days. 9AM-9PM Eastern time)

Inquiry 611.

Inquiry 610.

LEGAL

Inquiry 613.

MAILING LIST PROGRAMS

COMPUTERIZED ZIPCODE DIRECTORY

ZIPCAT Data list of USPS zip codes includes city, state, and country names. Two issues. $1,000. update $195. 95,000 records. $295.00 update every year. 100% codes in database. On disk or tape. Humans answer any zip code questions. Excellent service. "ZIPCAT is the one-stop shop for getting your zip code information." G.D. Bennett, Bennett & Bennett, 703-459-0545.

DCI DATA SERVICE

1200 IBM St. Guil, MA 01534

(202) 452-1149

1-900-431-3577

Washington, DC 20036

MARCH 1988 • BYTE 283
MEMORY CHIPS

<table>
<thead>
<tr>
<th>Inq.</th>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>16K</td>
<td>4040</td>
<td>$3.50</td>
</tr>
<tr>
<td>32K</td>
<td>4046</td>
<td>$6.00</td>
</tr>
<tr>
<td>64K</td>
<td>4048</td>
<td>$12.00</td>
</tr>
</tbody>
</table>

PROGAMMER’S TOOLS

- **TLIB™ 4.0 Version Control**
 - The best gets better! They loved TLIB S.O. "packaged with Nurtures ...: incredibly fast ... excellence”—PC Tech Journal Sept 87. Has "his highest recommendation"—A. Richardson, Computer Shopper Aug 87. Now TLIB 4.0 has: branching, more keywords, subtitles & file lists, revision merge,ランス と WORM disk support, more. MSPC-Does 2.3 & 3.x $99.95 = $3.9x. Visa/MC.

PUBLIC DOMAIN

FREE SOFTWARE

The PUBLIC DOMAIN USERS GROUP provides public domain software for IBM, CPM, C64 & C-128 computers. PDUG is one of the oldest (est. 1979) and largest (over 10,000 members worldwide) users groups.

special offer—send $10 and receive not only our 1 year membership but also our new member disk free (contains 26 programs) Or for more info. send a SASE (Self Addressed Stamped Envelope) to:

PUBLIC DOMAIN USERS GROUP

SECURITY

- **BIT-L0CK® SECURITY**
 - Piracy SURVIVAL 5 YEARS proves effectiveness of powerful multilayered security. Rapid decryption algorithms. Reliable/malware protection device. PARALLEL or SERIAL port. Countdown and timeout options also available. KEYLOCK® security at about 1/2 BIT-L0CK cost.

SOFTWARE/ACCOUNTING

- **DATABAS™**
 - General Ledger • Payroll • Accounts Receivable • Accounts Payable • Order Entry • Sales Analysis • Job Estimating $99 EA. + 19% state & local sales tax for 3 or more SOURCE CODE datamark.com or Crd/Cb

SOFTWARE/ARCHITECTURE

- **NATURAL 3-D NAVIGATION**
 - 3 Vanishing Points Navigator: Great for art & architecture. Navigator provides rapid moving natural views and the capability for unusual angled rotation. The perspective can also be suppressed or enhanced. $499.95 + $4.00 S&H (may change with notice).
 - Requires IBM PC or compatible (286/386). $599.00 + $3.00 S&H (Version 2.5)

SOFTWARE/BASIC

- **XGRAF DRAWS IN BASIC!**
 - Works on home computers, micros, etc. Happy sailor? Drink the latest XGRAF! It’s a complete software package for the Commodore 64, Apple, Atari, and many others. It can create a variety of graphics illustrations, including charts, graphs, and more. It also includes a comprehensive tutorial and reference manual.

SOFTWARE/BYTE

- **PUBLIC LIBRARY**
 - The best gets better! They loved TLIB S.O. "packaged with Nurtures ...: incredibly fast ... excellence”—PC Tech Journal Sept 87. Has "his highest recommendation"—A. Richardson, Computer Shopper Aug 87. Now TLIB 4.0 has: branching, more keywords, subtitles & file lists, revision merge,ランス と WORM disk support, more. MSPC-Does 2.3 & 3.x $99.95 = $3.9x. Visa/MC.
SOFTWARE/GRAPHICS

PC TECHNICAL GRAPHICS
TEXMARK is a graphics library for the EGA or Technical Graphics Master. Similar to PLOT-IT, includes WIN-}

DOW, VIEWPLOT, AXIS. Support for HP, Hi graphics. Curve fitting, complete plotting program. Log, semilog, mult\-}

axis, 3D, contours. Jerre Formlae (Aug 8th 86) "As good as it all I have ever seen. ... Demo disks, literature available.

3D3 Systems Consultants
2115 Devonshire St. #326, Chatsworth, CA 91311
(213) 407-1059

SOFTWARE/LANGUAGES

SERIES 32000 MODULA-2 COMPILER
National Semiconductor's 32000 family of microprocessors and Modula-2 here make the latter compilation for or-

tedly any embedded microcontroller system. Both are well designed and easy to use. The Modula-2 compiler also develops and maintains your source code. Modula-2 for the 32000 family includes the Modula-2 Development system and the Modula-2 Debugger. The Modula-2 Development System includes: Modula-2 Compiler, Macro Expander, Editor, Assembler, Destructor, and Make Utilities. It compiles MODULA-2 source files into object modules; links object modules into executable programs; reads Input files from disk or tape; creates Output files and directories for object files and executables; executes object modules as programs. Modula-2 for the 32000 family is available as a collection of four utilities:

ALOIS SCHONBACHLER
Fischbach 18, CH-9301, Switzerland
41-1-241-0914

SOFTWARE/LOANS

EXECAMONT* Amalgator +
Loan-Amalgator requires—simple or complex, extra payments, penalties, APR's, grace Regulation 7, balances, sides for underwater years, multiple payments, holidays, variables, placeholders, interest, charges, more. IBM/PC/XT/XP52 compatible. Simple yet complete—great for client services. Acalmed nationwide to Bankers/CPC/AutoFinanceGroup/E.S. 510-989-80-20

Electrosonics
36360 Garfield #1, Fraser, MI 48032
900/858 8449, 313/791-0770

SOFTWARE/MAPS

PC MAPPING SOFTWARE
MapInfo software can: *Display color maps from $25 k miles across the screen. *Find addresses you type in. *Overlay data directly from DBASE III. *Color or shade boundaries. *Cost only $79.95 available.

MapInfo Corp.
200 Broadway, Troy, NY 12180
1-800-10331MAP
In New York, (315) 274-6873

SOFTWARE/MATHEMATICS

What? You've never seen a complex function? Try 60° - The Complex Variables Graphing Program for PC's with CDA/EGA

"Let our animated screens show you what the printed page cannot."

Lascaux Graphics
(212) 654-7428

SOFTWARE/MUSIC

MUSIC SOFTWARE CATALOG!
Just published! Our new Musician's Music Software Catalog and it's better than ever! Over 80 pages of detailed information on 77 software packages, programs, interfaces, and accessories—everything for the modern musician. Save $3 for a 2-year subscription including BAI! updates.

Digital Arts & Technologies
Dept 571, 105 Hudson St., New York, NY 10013
212-324-0028

SOFTWARE/PRINTER

PRINTER GENIUS
Powerful memory resident printer management—Gain full control over your printer, share resources, format your files, control the print quality, and much more. Just install the software. It's that easy. Start printing faster, more reliably, and more efficiently. This software is a "must have" for anyone /who uses a printer. Ask your dealer about PRINTER GENIUS. For more information call: 1-800-655-2265

SOFTWARE/SCIENTIFIC

Data Acquisition & Analysis on PCs
- Multichannel entry and analysis
- Data input from files and other programs
- Error propagation and uncertainty analysis
- Easy to use and powerful software
- Fast analysis of data
- High speed data acquisition
- High speed data analysis
- Data storage
- Data analysis
- Data management
- Data presentation
- Data visualization
- Data archiving
- Data retrieval
- Data compression
- Data encryption
- Data security
- Data transmission
- Data backup
- Data recovery
- Data processing
- Data communication
- Data storage
- Data analysis
- Data presentation
- Data visualization
- Data archiving
- Data retrieval
- Data compression
- Data encryption
- Data security
- Data transmission
- Data backup
- Data recovery
- Data processing
- Data communication
- Data storage
- Data analysis
- Data presentation
- Data visualization
- Data archiving
- Data retrieval
- Data compression
- Data encryption
- Data security
- Data transmission
- Data backup
- Data recovery
- Data processing
- Data communication
SOFTWARE/SCIENTIFIC

NONLINEAR DYNAMICS
Tools for Studying Mathematical and Experimental Systems
- Ordinary and Delay Differential Equation Solvers
- Solution of Ordinary Differential Equations
- Boundary Value Problem Solvers
- Phase Plane Plots
- Multiple Initial Conditions
- Spectral Analysis, Fractal Dimensions, Lyapunov Exponents

OS: $215.00
OS II $350.00

DYNA MICAL SYSTEMS, INC.
P.O. Box 3941, Tucson, Az 85740

Inquiry 669.

SOFTWARE/SPORTS

VARIETY BATTING STATS
VARSTATS/Softball/Baseball batting statistics program is a very convenient coaches’ tool—gams data entry from book in 6 mins. Tracks teams up to 18 players x 60 games. Easy to use. VARSTATS refined by coach/programmer over many seasons. PC’s, Jr.’s, & compatibles (DOS 2.10+. 25K). $250.00 paid by expiry.

JWM Software Associates
3124 Davis Ave. Palo Alto, CA 94303

Inquiry 675.

SOFTWARE/TAX PREP.

TAX PAX
Sch A B C D E F R Sm's 1040, 1040A, 2109, 2119, 2411, 4414, 4524, 4880, 4959, 4979, 6971, 6921, 6225, 6102, 8539, 8809, 8611, IRA apprn for IBM PC CP/M, 200 CP/M Kaypro 4 Monitor M2 Professionals include Basic Processing & Tax Organizer $1552 (two) 55% Personal has added lot of forms & features $175: Up $252: GA CA NY UT $299.

Candelaria Works
3955 Club Drive, Atlanta, GA 30319

Inquiry 676.

ORDINARY/PARTIAL DIFFERENTIAL EQUATION SOLVER
FOR THE IBM PC & COMPATIBLES
MICROCOMPATIBLES INC.
301 Prelude Dr., Silver Spring, MD 20901

(301) 593-0683

Inquiry 670.

SCI-GRAF and SCI-DATA
SCI-GRAF produces huge free graphs thru easy menus or interactive C libraries. Supports log scales, error bars, bar, strip, and pie coordinate transformations.

Prices start at $59.95

Microcomputer Systems Consultants
Box T1, 3401 Old Santa Ana, CA 91702

(626) 963-3412

Inquiry 671.

CONVERT UNITS
Memory resident QuikUnit™ for IBM converts engineering units quickly, easily. Looks up from any program. Numbers can be imported/exported to applications. Includes tables of physical constants. User may customize units/tables.

Prices start at $4.95

Piles Development
2112 Crystal Hills, Houston, TX 77077
(713) 493-3679

Inquiry 672.

Scientific/Engineering/Graphics Libraries
Turbo & Lightpascal Pascal, Module-2, C
Send for FREE database of software tools for Scientists and Engineers. Includes: Scientific subroutine libraries, device independent graphics libraries (including EPA, HP plotter and Laserjet support), scientific charting libraries, 3-D plotting library, data acquisition libraries, menu-driven process control software. Vendors available for a variety of popular languages.

Quinn-Curtis
49 Highland Ave., Needham, MA 02194

Inquiry 673.

SOFTWARE/SORT

OPT-TECH SORT/MERGE
Extremely fast Sort/Merge/Select utility. Run as an MS-DOS command or CALL as a subroutine. Supports multiple languages and Netcens including Btrieve and dBASE. Unlimited Records, multiple keys and much more. MS-DOS $149, XENIX $249.

(702) 568-3737

Opt-Tech Data Processing
P.O. Box 670 - Zephyr Cove, NV 89448

Inquiry 674.

SOFTWARE/TOOLS

DISK CACHE
Accelerates XT or AT PERFORMANCE with FLASHBACK Data CACHE. FLASHBACK automatically retains recently accessed disk data and neighboring data in memory for immediate access. Programs are instantly retrieved and run up to 10 times faster ($19.95. $25.95, 30 day free trial. Contact: ADA/Visa/AMC.

aeq designs inc.
1461 N. Welch St. Phoenix, AZ 85022

(602) 653-2601

Inquiry 678.

SCREEN MANAGER
MENU, WINDOW, and DATA ENTRY Support for the Professional Programmer! Interfaces to most languages. BASIC, C, FORTRAN, COBOL, PASCAL, ASSEMBLER. 100 Page Manual. Trusty day money back guarantee. No Royalties.

The Westchester Group
P.O. Box 1304, West Chester, PA 19380

(215) 844-2246

CALL FOR FREE DEMO

Inquiry 679.

STATISTIX II
Comprehensive, powerful and incredibly easy-to-use. Full screen editor, transformations, linear models (ANCOVA, regression, logit, PCA, etc.), ARIMA, most standard statistical procedures. Clear, well organized documentation. Satisfaction guaranteed. $195 PC DOS, $99 Apple II.

NH ANALYTICAL SOFTWARE
P.O. Box 13204, Roseville, MN 55113

(612) 631-2552

Inquiry 683.

RATSI Version 2.1
Best selling econometrics program over 4000 copies sold. OLS, 2SLS, logit, probit and much more Forecasting with ARIMA. VAR. Exponential smoothing. Model simulations. Support for daily/weekly data. High quality graphics to screen, printer, printer. $200-$300. VISAMC. Demo available.

VAR Econometrics, Inc.
P.O. Box 1618, Evanston, IL 60204-1618

(312) 864-8772; (800) 822-8038

Inquiry 684.

StatPac Gold™
Voted World’s Best Statistical & Forecasting Package in 1987 by PC World Magazine readers 4 times more votes than the next closest competitor. More comprehensive & easier to use than all others. Get the facts. Call now for your FREE brochure.

1-800-329-4907
Walonick Associates, Inc.
6900 Nicollet Ave. S., Minneapolis, MN 55423

(612) 866-0022

Inquiry 685.

ADVERTISE YOUR COMPUTER PRODUCTS HERE
for as little as $375 in THE BUYER’S MART
For more information call Mark Stone at BYTE

603-924-3754

MARCH 1988 • BYTE 287

STATISTICALS

STATISTICALS

DISK & TAPE CONVERSIONS AUTOMATICALLY
SAVE TIME AND MONEY
Over 1000 formats from Mini, Mainframe, Word Process., & Teletype.

TAPE Conversions as low as $23.00 MB Data conversion per Disc.
Call or write TODAY for a cost saving evaluation.

CREATIVE DATA SERVICES
1716 W. Lathrop Ave. Campbell, CA 95008

(408) 265-5020

Inquiry 681.

NUMBER CRUNCHER STAT SYS

NCSS-B
865 East 400 North, Kayville, UT 84037

(306) 546-4445

Inquiry 682.

Inquiry 661.
Subscription Problems?
We want to help!
If you have a problem with your BYTE subscription, write us with the details. We’ll do our best to set it right. But we must have the name, address, and zip of the subscription (new and old address, if it’s a change of address). If the problem involves a payment, be sure to include copies of the credit card statement, or front and back of cancelled checks. Include a “business hours” phone number if possible.

BYTE
Subscriber Service, P.O. Box 7643, Teaneck, NJ 07666-9866
Everyone loves a bargain, and a 26c 5.25 DDS diskette sure looks like a good one. But after five years in the business of selling disks, we know that it isn’t.

All diskettes are not created equal

U.S. Diskette manufacturers test their diskettes to assure they meet certain quality specifications. Three types of disks emerge from this process: those that are unsuitable, those that meet ANSI standards (40% or more of the disk is usable), and those that are “high-clip” (65% or more of the disk is usable.) Only the latter disks become brand names. And only the latter type of disk can become a Super Star™ disk.

No gimmicks, no hidden charges, and no insult to your intelligence

Super Star diskettes come with a lifetime guarantee and packed in polybags, with Type IV™ (no paper) sleeves, write-protected tabs, and user-ID labels. We don’t think these are “luxuries” and we don’t charge more for them. We don’t tack on a “small order” surcharge or the like. We don’t add a surcharge if you pay with a credit card. The price is the price we advertise whether you order 50 disks or 500. And our shipping charges are approximately our shipping costs. We profit by selling lots of disks not by selling lots of disks. It’s those little extra charges that can turn a 26c ANSI disk into a 36c ANSI disk before you can say “I’ve been had.”

We believe in service, not lip service

Over 90 percent of our business comes from referred or reorder customers. That says a lot about our disks and our service. Our order takers are trained to know whether we stock the disks for your computer. They have current information on what is and isn’t in stock. When an item is available, it ships within 48 hours, barring snowstorms, hurricanes, or plagues. When something is not available, we tell you when you can realistically expect it. We don’t keep our customers by making empty promises. Most important of all, our order takers are trained to say things like “thank you.”

We know some people are motivated to buy based purely on price. And all, if you’re in the market for a really cheap diskette, that’s what you’ll get. But if you’re data is worth more than the price of the disk, give us a try. With our quality, our lifetime guarantee, and our prices, we’re the best value going.

Before you spend less (or more) than 39¢ on a diskette, read this.

DISK DRIVES

CompuSave®

PLOTTERS

CompuSave®

PRINTERS

CompuSave®
<table>
<thead>
<tr>
<th>PARTIAL LISTING • OVER 4000 COMPONENTS AND ACCESSORIES IN STOCK! • CALL FOR QUANTITY DISCOUNTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MICROPROCESSOR SALE!</td>
</tr>
<tr>
<td>8052A BASIC CPU w/BASIC Interpreter</td>
</tr>
<tr>
<td>MC68008L8 32-Bit MPU (8-Bit Data Bus)</td>
</tr>
<tr>
<td>MC68050S3 8-Bit EPROM Microcontroller</td>
</tr>
<tr>
<td>MC68070S3 8-Bit EPROM Microcontroller</td>
</tr>
<tr>
<td>8228-10 16-Bit Hi Performance MPU</td>
</tr>
<tr>
<td>8228-20 Math Coprocessor (1MHz)</td>
</tr>
<tr>
<td>80387-10 Math Coprocessor (16MHz)</td>
</tr>
<tr>
<td>80387-20 Math Coprocessor (20MHz)</td>
</tr>
</tbody>
</table>

| **DATA ACQUISITION** |
AD000 2.5V to 5V Level Converters	**$4.25**
AD001 5V to 2.5V Level Converters	**$4.25**
AD002 5V to 3.3V Level Converters	**$4.25**
AD003 3.3V to 5V Level Converters	**$4.25**
AD004 2.5V to 3.3V Level Converters	**$4.25**
AD005 5V to 3.3V Level Converters	**$4.25**
AD006 3.3V to 2.5V Level Converters	**$4.25**
AD007 2.5V to 3.3V Level Converters	**$4.25**

<table>
<thead>
<tr>
<th>PARTIAL LISTING • OVER 4000 COMPONENTS AND ACCESSORIES IN STOCK! • CALL FOR QUANTITY DISCOUNTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PART</td>
</tr>
<tr>
<td>U8129 0.15µF 50V</td>
</tr>
<tr>
<td>U8129C 0.1µF 50V</td>
</tr>
<tr>
<td>U8129D 0.01µF 50V</td>
</tr>
<tr>
<td>U8129E 0.001µF 50V</td>
</tr>
<tr>
<td>U8129F 0.0001µF 50V</td>
</tr>
<tr>
<td>U8129G 0.00001µF 50V</td>
</tr>
<tr>
<td>U8129H 0.000001µF 50V</td>
</tr>
<tr>
<td>U8129I 0.0000001µF 50V</td>
</tr>
<tr>
<td>U8129J 0.00000001µF 50V</td>
</tr>
</tbody>
</table>

PART	**Price**
U8139 10µF 50V	**$1.00**
U8139C 1µF 50V	**$2.00**
U8139D 0.1µF 50V	**$5.00**
U8139E 0.01µF 50V	**$10.00**
U8139F 0.001µF 50V	**$25.00**
U8139G 0.0001µF 50V	**$50.00**
U8139H 0.00001µF 50V	**$100.00**
U8139I 0.000001µF 50V	**$200.00**
U8139J 0.0000001µF 50V	**$400.00**

PART	**Price**
U8149 100µF 50V	**$1.00**
U8149C 10µF 50V	**$2.00**
U8149D 1µF 50V	**$5.00**
U8149E 0.1µF 50V	**$10.00**
U8149F 0.01µF 50V	**$25.00**
U8149G 0.001µF 50V	**$50.00**
U8149H 0.0001µF 50V	**$100.00**
U8149I 0.00001µF 50V	**$200.00**
U8149J 0.000001µF 50V	**$400.00**

PART	**Price**
U8159 1000µF 50V	**$1.00**
U8159C 100µF 50V	**$2.00**
U8159D 10µF 50V	**$5.00**
U8159E 1µF 50V	**$10.00**
U8159F 0.1µF 50V	**$25.00**
U8159G 0.01µF 50V	**$50.00**
U8159H 0.001µF 50V	**$100.00**
U8159I 0.0001µF 50V	**$200.00**
U8159J 0.00001µF 50V	**$400.00**

PART	**Price**
U8169 10000µF 50V	**$1.00**
U8169C 1000µF 50V	**$2.00**
U8169D 100µF 50V	**$5.00**
U8169E 10µF 50V	**$10.00**
U8169F 1µF 50V	**$25.00**
U8169G 0.1µF 50V	**$50.00**
U8169H 0.01µF 50V	**$100.00**
U8169I 0.001µF 50V	**$200.00**
U8169J 0.0001µF 50V	**$400.00**
Jameco Solderless Breadboard Sockets

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Qty</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>JE1001</td>
<td>1000 Piece Breadboard (Unsoldered)</td>
<td>1</td>
<td>$39.99</td>
</tr>
</tbody>
</table>

Jameco's IBM PC/XT/AT Compatible Motherboards

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM PC/XT</td>
<td>512K/1MB/2MB/3MB</td>
<td>$119.95</td>
</tr>
<tr>
<td>IBM PC/XT</td>
<td>640K/1MB/2MB/3MB</td>
<td>$119.95</td>
</tr>
</tbody>
</table>

Jameco's Power Supply Protection

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>JE1190</td>
<td>IBM AT Power Supply</td>
<td>$26.95</td>
</tr>
</tbody>
</table>

Zuckerboard TANDY 1000 Expansion Memory Half Card

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>JE1200</td>
<td>Expansion Memory Half Card</td>
<td>$29.99</td>
</tr>
</tbody>
</table>

12" Amber Monochrome - TTL Input, High Resolution (PC/XT/AT)

AMBER | $99.99 | $99.95

14" RGB Color - CGA Compatible

EQA | $27.95 | $27.95

14" Ultrasonic Color - CGA/EGA/PCC/VGA Compatible, 600 x 600 Max Resolution (PC/XT/AT)

EQA | $479.95 | $479.95

Graphic Display Cards

| JE1059 | Monitor Graphics Card w/Printer Port (PC/XT/AT) | $27.95 | $27.95
| JE1062 | Color Graphics Card w/Printer Port (PC/XT/AT) | $48.95 | $48.95
| JE1065 | EGA Card w/printer port (PC/XT/AT) | $149.95 | $149.95
| JE1071 | Multi I/O w/Driver Controller and Monitor Graphics Card | $119.95 | $119.95

Multifunction, I/O and Expansion Cards

| JE1060 | I/O Card w/Serial, Game, Parallel Printer Port and Real Time Clock (PC/XT/AT) | $59.95 | $59.95
| JE1061 | RS232 Serial He Card (PC/XT/AT) | $29.95 | $29.95
| JE1068 | I/O Card w/Serial, Game, and Parallel Printer Port (AT) | $59.95 | $59.95

Floppy and Hard Disk Controller Cards

| JE1040 | 360KB Floppy Disk Drive Controller Card (PC/XT/AT) | $29.95 | $29.95
| JE1041 | 2040MB Hard Disk Controller Card (PC/XT/AT) | $79.95 | $79.95
| JE1043 | 360KB/720KB/1.2MB Floppy Disk Cont. Card (PC/XT/AT) | $49.95 | $49.95

Additional Add-Ons Available

$20 Minimum Order

Reg List | **$559.98** | **SAVE $70.03!**

U.S. Funds Only

Shipping: Add 5% plus $1.50 Insurance (May vary according to weight)

California Residents: Add 6% to 7% Sales Tax

MasterCard/Visa

Mail Order Electronics - Worldwide

Phone: 415-592-2503

FAX: 415-592-2503

1355 Shoreway Rd., Belmont, CA 94002

MARCH 1988

Jeameco Electronics

Seagate 20, 30, 40 and 60MB Half Height Hard Disk Drives

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST22S</td>
<td>350MB Drive only (PC/XT/AT)</td>
<td>$259.95</td>
</tr>
<tr>
<td>ST225K</td>
<td>40MB Drive only (PC/XT/AT)</td>
<td>$259.95</td>
</tr>
</tbody>
</table>

Digital Multimeters

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1001</td>
<td>Digital Multimeter</td>
<td>$439.95</td>
</tr>
</tbody>
</table>

Seagate 40MB Drive only (PC/XT/AT)

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST1006</td>
<td>40MB Drive only (PC/XT/AT)</td>
<td>$59.95</td>
</tr>
<tr>
<td>ST1020</td>
<td>40MB Drive only (PC/XT/AT)</td>
<td>$59.95</td>
</tr>
</tbody>
</table>

Prometheus 1200B Internal Modem

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM1200B-2S</td>
<td>$440.00</td>
<td>$440.00</td>
</tr>
</tbody>
</table>

Jameco Extended 80-Column Card for Apple

- 80 Col/485 RAM - Doubles Available! 512K or 1MB Apple Add on displays as well as its memory. Featured in Apple 80-Column display card for Macintosh. Apple 80-Column card for Macintosh.

- JE2084 | $39.95 | $39.95

TEST EQUIPMENT

Kingdom and Metax Digital Multimeters

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEO01</td>
<td>2000 Multimeter</td>
<td>$99.95</td>
</tr>
</tbody>
</table>

Data Sheets — 50% off for a FREE 1988 CATALOG

MasterCard/Visa

Send $1.00 Postage for a FREE 1988 CATALOG

Telex: 176043

©1988 Jameco Electronics
ZEAL Electronic Interface Products

Why waste your time formatting disks?

Preformatted disks save you time and money!

Memorex - Nashua - 3M

- 5¼" (from 486) - 5¼" HD - 3½" - 3½" HD - 5½" HD - 5¼" HC

Call toll-free TODAY!

1-800-321-4668

In Colorado (303) 234-8071. Open 8:00 to 5:30 Mountain Time. Monday-Friday.

ALF

ALF Products, 1115 Nelson St.

Denver, CO 80215

Circle 159 on Reader Service Card

Dealers!

Network-O8 LAN Systems - Includes Boards, Cabling, Terminators and Software. Two-user software and software for under $2,000 list!

- Contact Sensitive Help for DataFlex, RM/COMOL, Clipper and dBase III - It puts your application's documentation on line.
- DataFlex Database Management - True Multi-User databases for MS/PC-DOS, Unix and Xerix. Site Scanning available.
- Dump/Restore-XT - Seven utilities for the MS/PC-DOS user.

Call or write today for our catalog and pricing!

Circle 150 on Reader Service Card

MAXELL 100% CERTIFIED 5½" BULK DISKS

- 5½" DS/DD 59¢
- 5½" DS/DD 1.09

Price based on quantity of 300 includes sleeves, labels and tabs.

800-222-0490

24 Hour Shipment

MegaSoft

P.O. Box 710, Freehold, NJ 07728

Circle 8 on Reader Service Card

Circle 142 on Reader Service Card
InfoQuest has announced the first reasonably priced professional Bulletin Board/E-Mail System that instantly transforms any IBM or compatible computer into a secure, reliable Information Host System.

Multi-User On-Line Database

A flexible database feature provides the virtually unlimited organization of either structured or unstructured databases, each with its own “Key-Word Search” capabilities. Features like these, combined with a fully integrated Electronic Mail System, make this complete and comprehensive package the only choice for any serious business application.

9600 Baud & Beyond Modern Support

There’s no reason to limit yourself to “snail’s paced speeds.” Now a simple software setup allows you to configure various modems at different baud rates on up to 16 dial-up telephone lines at speeds from 300 to 19,200 BPS. A list of hundreds of systems presently on-line include several major corporations along with many successful new start-up firms. Each report their complete satisfaction with this unique product.

Extensive upload options allow the organization and presentation of data, graphics, text and program files into an easy-to-use download library available to users so authorized.

Priced at Only $395.

This revolutionary software system installs in minutes out of its professionally documented package and is available with a money-back guarantee. To order, or for additional information, contact InfoQuest, (818) 991-5112.

Solving your scientific and engineering problems just got simpler.

Science & Engineering Software Co. is the only source where all the software you need to solve your specialized problems: Statistical data analysis, program design, data acquisition and signal analysis, solving complex equations, 3D CAD/CAM, high-tech graphics, telecommunications, etc.

SCIENCE & ENGINEERING SOFTWARE CO.

55 South Broadway, Tarrytown, NY 10591

MARCH 1988 • BYTE • 293
<table>
<thead>
<tr>
<th>Model</th>
<th>Features</th>
<th>Price</th>
</tr>
</thead>
</table>
| **PcPRIME 88** | $650
640k 3 MHz
10 MHz Optional
30-day money back
30-day return privileges
286 EX ... | $650 |

<table>
<thead>
<tr>
<th>Model</th>
<th>Features</th>
<th>Price</th>
</tr>
</thead>
</table>
| **PcPRIME 286** | **ONE MEGABYTE 10 MHz**
12 MHz/"G" Wait Optional
Window/386 EX ... | $1,100 |

<table>
<thead>
<tr>
<th>Model</th>
<th>Features</th>
<th>Price</th>
</tr>
</thead>
</table>
| **PcPRIME 386** | **ONE MEGABYTE 16 MHz**
"O" Wait
Window/386 EX ... | $2,300 |

Network/Multi-User Installations

- Operating Manual (en-US)
- Modem Cable Kit
- Fully tests and diagnosed in America
- 72 hour Money-Back Guarantee
- One Year Warranty Labor & Parts
- Shopping bag for LFS and UPS
- No shop Aberdeen, WA. For immediate delivery

PcPRIME 286 Systems...

- One 286 4 MB Seagate ST-225, 65 MS
- One 286 40 MB Seagate ST-236, 65 MS

PcPRIME 386 Systems...

- One 386 8 MB Seagate ST-225, 40 MS
- One 386 80 MB Seagate ST-236, 40 MS

PcPRIME 80 Portable...

- One 80 Portable
- One 80 Portable
- One 80 Portable

PcPRIME 280 Portable...

- One 280 Portable
- One 280 Portable
- One 280 Portable

PcPRIME 380 Portable...

- One 380 Portable
- One 380 Portable
- One 380 Portable

Circle 195 on Reader Service Card
The program also provides useful mathematical tools. It was a life saver...

Statistics Professor.

enter equations easily, edit, and solve it's that simple.

Equations readable from any ASCII text file.

Symbolic manipulation.

Up to 1000 non-linear equations.

Requires IBM PC, 256K or more.

440 academic, $90 commercial.

See Nov. '87 ENE "WHAT'S NEW" page 94

University of Wisconsin-Madison
1025 West Johnson Street
Madison, WI 53706
800/262-8243, WI 800/362-3020

117 AC POWER-RS-232 CONNECT
• 6 Baud rates - hamshakes to host
• Allows read, write, verify & copy

Comes complete with IBM-PC Apple IIe, or CPI portable terminal on disc.

Programs the following 8 Volt 24 or 26 pin devices: 2716 through 27512, 260 series, 80786 plus others. Places Specify Personal Module desired with order. Additional Personality Modules only $15.00 ea. Full 1 year warranty.

To order call: 301-992-6820 or write
APROTEK
1011 A AVENIDA ACACIA
And
cambridge CA 91604
213-267-2454
We Accept Visa & MC Add 2

1025 W Meadow Rd. Westerville, OH 43081

Set up a complete graphics workstation on your PC for under $100!

PC PLOT III graphics terminal emulator software package emulates IBM PC's and compatibles to appear to a mainframe as DEC VT-100/200, VT-52, Tektronix 4105, or Teleprinter 4010-4014 and 402L terminals. The program also provides valuable communication commands and more.

An enhanced version, PC PLOT IV, further allows complete teletype 4105 terminal emulation. For more information call 614/862-4786

CONTINUOUS FORM LABELS

Size
Bro Box
Per/1000

24 x 7/16
1 across
10,000
$1.95

24 x 7/16
4 across
20,000
$1.95

24 x 15/16
1 across
5,000
$2.18

24 x 15/16
3 across
15,000
$1.90

3 x 15/16
4 across
20,000
$2.00

3 x 15/16
4 across
20,000
$2.05

5 x 15/16
1 across
5,000
$1.90

5 x 15/16
2 across
10,000
$1.90

5 x 15/16
3 across
15,000
$1.90

5 x 15/16
4 across
20,000
$2.10

4 x 15/16
1 across
5,000
$3.21

4 x 15/16
3 across
15,000
$3.21

4 x 15/16
5 across
15,000
$3.21

4 x 7/16
1 across
5,000
$3.25

4 x 7/16
3 across
15,000
$3.25

4 x 7/16
5 across
15,000
$3.25

Prices quoted for full boxes only. All orders F.O.B. Westville, NJ. COD orders add $1.90. Visa & MC accepted. All orders shipped same day.

FAX# 609-456-6996

609-456-7172

All orders F.O.B. Westville, NJ. COD orders add $1.90. Visa & MC accepted. All orders shipped same day.

PC + MIDI = MUSIC

It's a simple equation. To plug your PC or PC-compatible into the modern world of music-making, use the complete line of MIDI software and hardware from VOYETRA TECHNOLOGIES.

SEQUENCER PLUS: 64-track total MIDI programmability

CONVERSION PLUS: MIDI interface card. "This is a wonderful program."

Telling us why.

B&G MICROSYSTEMS
355 West Drive Ave. Sayreville, CA 90866
(800)734-5511 FAX (609)527-5511 TELELEX 90481
Visa & MC accepted.

Circle 33 on Reader Service Card

Circle 34 on Reader Service Card

Circle 33 on Reader Service Card

Circle 276 on Reader Service Card

Circle 176 on Reader Service Card

Circle 67 on Reader Service Card

Circle 84 on Reader Service Card
RS-422/232 CURRENT LOOP

- Single channel async communication board for IBM PC/XT/AT
- Software selectable to be RS/422/485, 232 or Current Loop
- Selectable Address & Interrupt

1-800-553-1170

478 E. Exchange St., Akron, OH 44304
(216) 434-3154 TLX: 5101012726

Power Control

110/220 AC by your IBM-PC

The boards allow you to Control/Monitor high voltage AC/DC power lines with your IBM-PC/XT/AT or compatible while providing optical isolation.

1-800-553-1170

IEEE-488

- GPIB controller board for IBM PC/XT/AT
- Control up to 16 Devices
- User friendly Software Commands
- DMA Transfer to 200k byte/sec.
- $345.00 including software

RS-422 Communications Board

- For IBM PC/XT/AT/PS/2
- Dual channel RS-422/RS-485
- Selectable/shareable interrupts
- Differential drivers to 4000 ft.
- Immediate delivery

1-800-553-1170

MODULAR DATA ACQUISITION

- For IBM & Compilables
- Flexible and Inexpensive
- Money Back Guarantee
- Free Technical Support

Fast Delivery

1-800-553-1170

WAVEFORM SYNTHESIZER

- For IBM PC/XT/AT and compatibles
- Generates user-definable signal
- Up to 2000 points per envelope

$795.00

1-800-553-1170

RS-422 Communications Board FOR PS/2 MODELS 50, 60, 80

- Dual Channel
- Address Selectable
- Baud Rate to 256 K
- Interrupt Selectable

1-800-553-1170

72 Digital I/O

- For IBM-PC & Compilables
- 72 Digital I/O Lines
- Simple Programming
- Uses One Expansion Slot
- Fast Delivery

$195

1-800-553-1170

RS-232 Communications Board

- For IBM-PC/XT/AT & comp.
- Dual RS-232C Interface
- Optional software supports COM1, COM2, COM3, COM4
- jumper selectable interrupts

Fast Delivery

1-800-553-1170

RS-225 Single channel async communication board for IBM PC/XT/AT

- Software selectable to be RS/422/485, 232 or Current Loop
- Selectable Address & Interrupt

PXB-721 Parallel Expansion Board

- For IBM-PC & Compilables
- 72 Digital I/O Lines
- Simple Programming
- Uses One Expansion Slot
- Fast Delivery

IEEE-488

- GPIB controller board for IBM PC/XT/AT
- Control up to 14 Devices
- User friendly Software Commands
- DMA Transfer to 200k byte/sec.
- $345.00 including software

IEEE-488

- GPIB controller board for IBM PC/XT/AT
- Control up to 16 Devices
- User friendly Software Commands
- DMA Transfer to 200k byte/sec.
- $345.00 including software

IEEE-488

- GPIB controller board for IBM PC/XT/AT
- Control up to 16 Devices
- User friendly Software Commands
- DMA Transfer to 200k byte/sec.
- $345.00 including software

IEEE-488

- GPIB controller board for IBM PC/XT/AT
- Control up to 16 Devices
- User friendly Software Commands
- DMA Transfer to 200k byte/sec.
- $345.00 including software

IEEE-488

- GPIB controller board for IBM PC/XT/AT
- Control up to 16 Devices
- User friendly Software Commands
- DMA Transfer to 200k byte/sec.
- $345.00 including software
MASTER THE "NEW ELECTRONICS" WITH McGRAW-HILL’S
Contemporary Electronics Series

The fast, easy and low cost way to meet the challenges of today’s electronic innovations. A unique learning series that’s as innovative as the circuitry it explains, as fascinating as the experiments you build and explore!

From digital logic to the latest 32-bit microprocessor, you master one subject at a time with the McGraw-Hill Contemporary Electronics Series. Fifteen unique Concept Modules, sent to you one every 4-6 weeks, give you a handle on subjects like optoelectronics, transistors, integrated circuits, logic circuits, and more.

Each Concept Module goes right to the heart of the matter. You waste no time on extraneous material or outdated history. It’s a fast, efficient, and lively learning experience...a non-traditional approach to the most modern of subject matter.

Unique Interactive Instruction
Your learning experience is reinforced through the integration of vividly illustrated text with actual electronic experiments.

With each module, you also receive a McGraw-Hill Action Audio Cassette. Each tape is a dynamic discussion that drives home the key facts about the subject. Indexed binders preserve backup material, notes and tapes for convenient referral.

Understand digital logic... microprocessors...and more.
McGraw-Hill’s Contemporary Electronics Series is an extraordinary opportunity to update your understanding of today’s most important technological changes in electronics. Use the Series to start from scratch or update your knowledge.

Perform experiments in contemporary electronics.
Throughout your series, laboratory experiments reinforce every significant point. This essential experience...dynamic, hands-on demonstrations of theory in practice...will help you master principles that apply all the way up to tomorrow’s latest VLSI (very large scale integrated) circuitry.

See other side for more details...
Your adventure begins with Module 1

With your first module, you’ll use the latest digital integrated circuits to build an oscillator circuit that demonstrates digital signals—verified visually by the flash of light emitting diodes (LEDs).

You’ll learn concepts applicable to all electronic circuits. With the first module, you will be able to identify the major passive components like resistors, capacitors, inductors, diodes and transformers, and active components such as transistors and integrated circuits.

Each module adds more to your expanding knowledge of the new electronics. You’ll cover every important subject in contemporary electronics:

- Digital logic
- Digital gates (TTL, CMOS, ECL, NMOS)
- Flip-flops, counters, and registers
- Op-amps and applications
- Power supplies (plus IC and switching regulations)

or supervisor...a doctor, an engineer, a chemist, or anyone who finds electronics playing an increasingly important role in their work. It’s even for electronics engineers, technicians and scientists who feel their training needs freshening up. It’s the quickest, most convenient, and probably the least expensive way to do it. And the only one that gives you hands-on experience.

15 day no-risk trial

We invite you to prove to yourself that the Contemporary Electronics Series is all we say it is... without risk and without committing yourself in any way. Return the reply card and we’ll send you the first module for a free, 15-day examination. If you’re not absolutely certain that this is an enjoyable as well as highly effective way to learn, simply return the module to us.

If you want to continue, we’ll ship the remaining modules automatically, about once a month, for only $19.95 plus $2.25 for shipping and handling.

Return the postage-paid reply card today! And let McGraw-Hill guide you into the fascinating world of Contemporary Electronics. If the card has been used, write us for ordering information.

SEND CARD TODAY FOR YOUR FIRST MODULE!
BYTE LISTINGS YOUR WAY!

It's easy. Now there are three ways to get source-code listings that go with BYTE articles — on disk, in print or on line.

LISTINGS ON DISK BYTE listings on disk are right for you if you want to compile or run programs quickly. Disks are now available by annual subscription as well as individual orders. BYTE offers listings in 11 popular disk formats.

LISTINGS IN PRINT This print supplement contains source-code listings described in the issues of BYTE.

LISTINGS FROM BIX (BYTE Information Exchange) By joining BIX, you can download BYTE source-code listings at standard BIX rates. See BIX informational ad listed in Reader Service index in this issue.

FOR DIRECT ORDERING CALL TOLL FREE: 800-258-5485

Call: M-F, 8:30 a.m. to 4:30 p.m. Eastern Time
(603-924-9281 for New Hampshire residents)

For credit card orders only.

ON DISK

Please send me single disks in the format checked for the following 1987 issues:

☐ January ☐ August
☐ February ☐ September
☐ March ☐ October
☐ April ☐ November
☐ May ☐ December
☐ June ☐ IBM PC issue
☐ July

Disks of listings for December 1985 and all 1986 issues are available at the prices stated at the right. Please mark the appropriate format and note the issue date below.

Month Year

5 1/4 Inch:
☐ IBM PC
☐ Apple II
☐ Kaypro 2 CP/M
☐ Tandy Mod 4
☐ MS-DOS 8 Sector
☐ TI Professional

3 1/2 Inch:
☐ Apple Macintosh
☐ Atari ST
☐ Amiga
☐ HP 150
☐ IBM PS/2

8 Inch:
☐ CP/M

IN PRINT

1987 Supplement Issues

1986 Supplement Issues

IN USA:
1987 Annual Supplement
only $18.00
(Include $9.80)

IN USA:
1986 Annual Supplement
only $18.00
(Include $9.80)

OUTSIDE USA:
1987 Annual Supplement
only $21.00
(Include $11.80)

OUTSIDE USA:
1986 Annual Supplement
only $21.00
(Include $11.80)

5 1/4 Inch:
☐ IBM PC
☐ Apple II
☐ Kaypro 2 CP/M
☐ Tandy Mod 4
☐ MS-DOS 8 Sector
☐ TI Professional

3 1/2 Inch:
☐ Apple Macintosh
☐ Atari ST
☐ Amiga
☐ HP 150
☐ IBM PS/2

8 Inch:
☐ CP/M

COMBINED DISK AND PRINT SUBSCRIPTION

Bundled together, giving you the convenience of disk-based source-code plus the ease of reference of print.

IN USA:
(13 disks & 4 issues)

OUTSIDE USA:
(13 disks & 4 issues)

5 1/4 Inch:
☐ IBM PC
☐ Apple II
☐ Kaypro 2 CP/M
☐ Tandy Mod 4
☐ MS-DOS 8 Sector
☐ TI Professional

3 1/2 Inch:
☐ Apple Macintosh
☐ Atari ST
☐ Amiga
☐ HP 150
☐ IBM PS/2

8 Inch:
☐ CP/M

Name
Address
City State Zip
County or Parish Country
Credit Card #
Exp Date
Signature Date

Please allow 4-8 weeks for delivery.

MARCH

☐ Check enclosed
☐ MasterCard
☐ VISA

☐ U.S. Funds enclosed (if ordering from outside the U.S. please remit in U.S. funds drawn on a U.S. bank.

Thank you!
BYTE Listings
One Phoenix Mill Lane
Peterborough, NH 03458-9990
EPROM PROGRAMMER

From $250.00

PC BASED OR STAND-ALONE / RS-232
From A Name You Can Trust
LOGICAL DEVICES INC.
1201 N.W. 65th Place
Ft. Lauderdale, FL 33309
1-800-331-7766 (305) 974-0967
Telex 383142 Fax (305) 974-8531

PAL®/EPLD PROGRAMMER

From $689.00

Stand Alone/RS-232 Programs and Verifies
20/24 pin PLDs from MMI, TI, National Cypress, Lattice, AMD, Altera
PAL as a registered trademark of MMI
From A Name You Can Trust
LOGICAL DEVICES INC.
1201 N.W. 65th Place
Ft. Lauderdale, FL 33309
1-800-331-7766 (305) 974-0967
Telex 383142 Fax (305) 974-8531

INTERNAL COMPUTER TELEPHONE MODEM

Your Telecommunications Link! Use this intelligent 300/1200 bps Card Modem for a wealth of information. Access large data banks on topics from finance to agriculture. Check the stock market and more. It incorporates LSI microprocessors designed for the IBM PC, AT, PC-XT and compatibles. Plugs into any card slot! Expand your applications, order this closeout item now:

- Hayes Command Set Compatibility
- Auto-Answer and Auto Dial
- Programmable Dialing, Auto Redial
- Bell 212A/103 Compatible
- Accessible Time Base, Help Commands
- Touch Tone/Pulse Dialing, Access Long Distance Services
- On-Board Speaker with Volume Control
- Diagnostics help identify problems

One-Year Limited Factory Warranty on Parts and Labor.

List $199.99
Liquidation Price $79
Item H-3159-7340-953 S/H: $5.00 ea.
IBM PC, AT, PC-XT are registered trademarks of International Business Machines Corp.

Credit card customers can order by phone, 24 hours a day, 7 days a week.
Toll-Free: 1-800-328-0609

MUST LIQUIDATE AT HUGE SAVINGS TO YOU!

INTERNAL COMPUTER TELEPHONE MODEM

This Buffered Automatic Print-Controller has 4 Parallel Inputs, and 2 Parallel Outputs! PC and Laser Compatible! Simultaneous Data Path, Multi-Copy and Numeric Display! 8K Buffer is Expandable to 256K! Automatic or Manual Operation! The Best 4 to 2 Printer-Sharing Choice®! 8K Model Only $279!

MaxTech Computer Products
Call (918) 437-2600

Call for Best Price Cables + Switches

MARCH 1988 • BYTE 297
PC-LabCard SERIES
Lab, Industrial and Engineering I/O Cards for IBM PC/XTAT

- PCL-704 14 bit A/D + D/A + DI + DO + Timer/Counter Card $495
- PCL-712 12 bit A/D + D/A + DI + DO + Timer/Counter Card $295
- PCL-720 Digital I/O + Counter Card $160
- PCL-725 Relay & Opto-Isolated DI Card $240
- PCL-738 Stepping Motor Control Card $395
- PCL-742 RS-422 Interface Card $130
- PCL-748 IEEE-488 Interface Card $395
- PCL-750 Prototype Development Card $70
- PCL-754 PC Slot Extension Kit $50
- PCL-700 Data Acquisition & Control Software $195
- PCL-705 Waveform/Oscilloscope Software $125

Developer and OEM inquiries welcome
Call for free catalog!

Circle 19 on Reader Service Card

AVPROM $295
For IBM PCs & compatibles, menu-driven
AVPROM programs EPROM upload and
applicable

Circle 20 on Reader Service Card

BIMG UTH

Circle 21 on Reader Service Card

6800/6809 Micro Modules

Circle 285 on Reader Service Card

Circle 22 on Reader Service Card
See how well you can program for
Z80 or HD64180

This professional, IBM-PC based, compiler is a complete implementation of the "C" language for the Z80 or HD64180 microprocessor. Includes features such as: use of precompilation, 31-character names, single precision floating point, full library source, M60-L00 and SLA Systems compatibility, etc. Hi-Tech™ "C" has been established for years in Australia. Pricing starts from $195.00. We also have Z80/HD64180 co-processor cards for IBM and PC/AT. Call for a full catalog of Microprocessor development tools.

Z-World
1772A Picasso Ave
Davis, CA 95616
(916) 753-3722
In Germany, system Tel: 08131-1687

Circle 292 on Reader Service Card

8080
Z80
HD64180
CP/M-80

Develop code for embedded microprocessors on your IBM-PC using our software tools and coprocessor cards. Test your software on our Z80 and HD64180 coprocessors. Execute your CP/M-80 development tools at clock speeds up to 12.5 MHZ! Use our remote debugger to debug in your target system. Complete development systems for less than $1000.

Z-World
1772A Picasso Ave
Davis, CA 95616
(916) 753-3722
In Germany: iSystem Tel: 08131-1687

Circle 293 on Reader Service Card

LOWEST PRICE

TURBO XT BASIC SYSTEM $299.00
* 4.7718 MHZ WPHOENIX BIOS
* 256K RAM EXPANDABLE TO 540K
* 10 MHZ OPTIONAL
* 1 YEAR LIMITED WARRANTY

TURBO AT BASIC SYSTEM $849.00
* 8000-600 BIOS
* 512K RAM EXPANDABLE TO 1MB
* AT CASE WITH WATT PS
* 1.2 MB FLOPPY DRIVE
* HD/GD CONTROLLER
* 1 YEAR LIMITED WARRANTY

SEAGATE 20MB HD W/CONTROLLER $285.00

1-800-848-3469

Circle 270 on Reader Service Card

Qume RIBBONS

Multistrike I_ _ 1.99
Multistrike II_ _ 2.05
Multistrike III_ _ 2.55
Multistrike IV_ _ 4.29

SuperStrike_ _ 4.39

Printwheels_ _ 3.35

Circle 33 on Reader Service Card

SCR

Cash Register/Point of Sale/Inventory
100% dBASE III data files
Import into 1-2-3, Accounting, and most other programs
Interface to Bar Code, Receipt Printer, Cash Drawer, Register

We Carry All Hardware, Too!!!

Order Now
(915) 837-7180
SCR — Box 714
Alpine, TX 79831

Circle 233 on Reader Service Card
Byte Limited Editions

Striking 16" × 20" Limited Edition Prints from the pages of Byte. Each print is signed and numbered by the artist, Robert Tinney.

Limited Edition Classics

You've seen them on the cover of Byte — now enjoy these delightful images as stunning limited edition prints! Each print pictured here is published in an edition strictly limited to only 1000 signed and numbered prints, and each is accompanied by its own Certificate of Authenticity.

These gorgeous reproductions are printed on select 100% cotton fiber stock, this is a museum grade acid-free paper, highly resistant to yellowing and cracking. You will be assured of a print which will retain its color and beauty for generations.

Price and Shipping

The price of Byte Limited Editions, which depends on the number of unsold prints in each edition, is shown above each print pictured here. In addition, a 15% discount is available if you order two or more prints.

Your prints will be shipped flat, usually within a week of our receipt of the order. Shipping is via UPS Blue Label Guarantee

Ship your prints back to us within 30 days of your order, and you will be given a complete, no-questions-asked refund.

Card Information

For VISA, MasterCard or American Express orders, or for more information, call 1-504-272-7266

<table>
<thead>
<tr>
<th>QTY</th>
<th>#</th>
<th>TITLE</th>
<th>AMOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#A</td>
<td>Intelligent Reflections</td>
<td>$80</td>
</tr>
<tr>
<td></td>
<td>#B</td>
<td>Storage Space</td>
<td>$55</td>
</tr>
<tr>
<td></td>
<td>#C</td>
<td>Technological Breakthrough</td>
<td>$55</td>
</tr>
<tr>
<td></td>
<td>#D</td>
<td>Number Crunching</td>
<td>$55</td>
</tr>
</tbody>
</table>

Yes! Send me the following Byte Limited Editions.

- I have enclosed U.S. check or money order.
- 0 C.O.D. (via UPS—state and orders only)
- 0 VISA 0 MasterCard 0 American Express

Card #: ____________________________ Signature: ____________________________

Expires: __________________________

Ship my Print(s) to:

Name: ____________________________

Address: __________________________

City: ____________________________ State: ____________________________ Zip: ____________________________

Deduct 15% off ordering two or more prints.

Shipping: $4 ($20 overseas)

TOTAL $ ______

Please send your COLOR brochure.

Mail this coupon to: Robert Tinney Graphics

1864 North Pamela Dr.
Baton Rouge, Louisiana 70815

For VISA, MasterCard or American Express orders, or for more information, call 1-504-272-7266

[BYTE MARCH 1988]
Your query is not clear. Could you please provide more context or clarify your request?
HAPPY NEW YEAR!

INCREdiBLE PRiCE

$25 ← BLOWOUTS! → $99

188 WATT SWITCHING POWER SUPPLY

What a DEAL at $25.00!

On/off switch in the front. Built in filter for easy power cord plug-in. Two 4-pin power plugs for floppy and/or hard disk drives. Large quantity in stock, but ORDER NOW: WHILE THEY LAST!

Output: +5.05V at 22A
+12.02V at 4A
-12.0V at 1A
+12.59 Reg., 1.5A D.C.

Dim: 13½ L X 5½W X 2¾H

NIPPON PERIPHERALS

FULL HEIGHT HARD DISK DRIVE

$7500

WOW! 10 Mb Unformatted
8.2 Mb Formatted
75 ms average access time

WITH WESTERN DIGITAL ½ CARD

$149.00

SCSI CONTROLLER ADAPTEC 4070A

$99.00

I/O for the ST412-506 interface using RLL encoding

NEED A COLOR MONITOR FOR YOUR MAC II™?

THE SPY IN THE SKY

NEC UPD791D
(Charge Coupled Device)

$99.00

LINEAR IMAGE SENSOR

S99.00

FULCRUM TRACK BALL

$89

“Makes all other Color Monitors look like faded curtains against this professional graphics display”

1 YEAR WARRANTY

ASK ABOUT OUR COLOR MONITORS FOR IBM PS/2

1490 W. ARTESIA BLVD, GARDENA, CA 90247

15% Restocking fee for returned orders.
Plug into the future

With the A-BUS you can plug your PC (IBM, Apple, TRS-80) into a future of exciting new applications in the fields of control, monitoring, automation, sensing, robotics, etc.

Alpha's modular A-BUS offers a proven method to build your "custom" system today. Tomorrow, when you are ready to take another step, you will be able to add more functions. This is ideal for first time experimenting and teaching.

A-BUS control can be entirely done in simple BASIC or Pascal, and no knowledge of electronics is required!

An A-BUS system consists of the A-BUS adapter plugged into your computer and a cable to connect the Adapter to 1 or 2 A-BUS cards. The same cable will also fit an A-BUS Motherboard for expansion up to 25 cards in any combination.

The A-BUS is backed by Alpha's continuing support (for our 11th year, 50,000 customers in over 60 countries).

The complete set of A-BUS User's Manuals is available for $10.

About the A-BUS:
- All the A-BUS cards are very easy to use with any language that can read or write to a Port or Memory in BASIC, use INP and OUT (or PEK and POKE with Apples and Tandy Color Computers)
- They are all compatible with each other. You can mix and match up to 25 cards to fit your application. Card addresses are easily set with jumpers.
- A-BUS cards are shipped with power supplies (except PD-123) and detailed manuals (including schematics and programming examples).

Relay Card
RE-140: $129
Includes eight industrial relays. (3 amp contacts SPST) individually controlled and latched. 8 LED's show status. Easy to use (OUT or POKE in BASIC). Card address is jumper selectable.

Reed Relay Card
RE-156: $99
Same features as above, but uses 8 reed relays to switch low level signals (20mA max) Use as a channel selector, solid state relay driver, etc.

Analog Input Card
AD-142: $129
Eight analog inputs 0 to +5V range can be expanded to 100V by adding a resistor 8 bit resolution (20mA max). Conversion time 120us. Perfect to measure voltage, temperature, light levels, pressure, etc Very easy to use.

12Bit A/D Converter
AN-146: $130
This analog to digital converter is accurate to 0.25% input range is -4V to +4V Resolution 1 millivolt. On board amplifier boosts signals up to 50 times to read microvolts. Conversion time is 130ms Ideal for thermocouple, strain gauge, etc 1 channel (Expand to 8 channels using the RE-156 card)

Digital Input Card
IN-141: $59
The eight inputs are optically isolated. So it's safe and easy to connect any "unfree devices such as switches, thermostats, alarm loops, etc to your computer. To read the eight inputs, simply use BASIC INP (or PEK).

24 Line TTL I/O
DG-148: $65
Connect 24 input or output signals (switches or any TTL devices) to your computer. The card can be set for input, latched output, strobed output, strobed input, and or bidirectional strobed I/O. Uses the B255A chip.

Clock with Alarm
CL-144: $59
Powerful clock/calender with battery backup for Time, Date and Alarm setting (time and date); built-in alarm relay, led and buzzer, timing to 1/100 second. Easy to use and compact format. Lithium battery included.

Touch Tone® Decoder
PH-145: $79
Each tone is converted into a number which is stored on the board. Simply read the number with INP or POKE. Use for remote control, battery, etc.

A-BUS Prototyping Card
PR-152: $15
3½ by 4½ in with power and ground bus. Fits up to 10 I/O's.

Smart Stepper Controller SC-149: $299
World's finest stepper controller. On board microprocessor controls 4 motors simultaneously. Incredibly, it accepts plain English commands like "Move arm 10.2 inches left". Many complex sequences can be defined as "macro's" and stored on the on board memory. For each axis, you can control coordinate relative or absolute, ramping, speed step type (full step, half, wave), scale factors, units, holding power, etc. Many inputs 8 input & 8 "wait until" switches, panic button, etc. On the fly reporting of position speed etc. On board drivers (350mA) for small stepper motors (MO-103). Seed for SC-149 flyer.

Remote Control Keypad Option
RC-121: $49
To use the 4 motors directly or "teach" sequences of motions.

Power Driver Board Option
PD-123: $89
Boost controller drive to 5 amps per phase. For two motors (8 drivers)

Breakout Board Option
BB-122: $19
For easy connection of 2 motors. 3 ft. cable ends with screw terminal board.

Stepmotor Motor Driver
ST-143: $89
Step motors are the ultimate in motion control. The special package (below) includes everything you need to get familiar with them. Each card drives two stepper motors (12V bi directionial) 4 phase 350mA per phase.

Special Package: 2 motors (MO-103) + ST-143: PA-181: $199

Stepper Motors
MO-103: $15 or 4 for $59
Pancake type . 2 V.10" diam. 7.5" shaft . 4 phase bi directional . 300 steps/rev. 12V driven booster. 5 or more torque. Same as Arpax 82700-P2

Current Developments
Intelligent Voice Synthesizer 14 Bit Analog to Digital converter 4 Channel Digital to Analog converter Counter Timer Voice Recognition

A-BUS Adapters for:
- IBM PC, XT, AT and compatibles Uses one slot slot
- Tandy 1000, 1000EX, 1200, 3000 Uses one slot slot
- Apple II, II+, III, III+, III, Plus, etc.
- TRS-80 Model 102. 200 Plugs into 40 pin "system bus"
- TRS-80 Model 100 Uses 40 pin socket (Socket is shipped with adapters)
- TRS-80 Model 40 Includes a 40 pin bus in recessed socket
- TRS-80 Model 102 Plugs into 40 pin bus on KB or E11
- CDC Adapters (Tandy) Fits NIMA type or Multibus type Y-Cable

A-BUS Cable (3 ft, 50 cond.)
CA-163: $24
Connects the A-BUS adapter to one A-BUS card or the first Motherboard. Special cable for two A-BUS cards.

A-BUS Motherboards
MB-120: $99
Each Motherboard holds five A-BUS cards. A 6th connector allows a second Motherboard to be added to the first (with connecting cable CA-161 $12). Up to 5 Motherboards can be joined this way to a single A-BUS adapter sturdy aluminum frame and card guides included.

Alpha Products
242-B West Avenue, Darien, CT 06820
(203) 658-1808
800 221-0916
Connect orders: (203) 348-9436
All lines open weekdays 9 to 5 Eastern time

Add 8.00 per order for shipping. Visa, MC, checks, M.O. welcome. CT & NY residents add sales tax. Canada: shipping is $5 Overseas add 10%
Circle 63 on Reader Service Card

Circle 64 on Reader Service Card

Circle 65 on Reader Service Card

Circle 66 on Reader Service Card

Circle 67 on Reader Service Card

Circle 68 on Reader Service Card

Circle 69 on Reader Service Card

Circle 70 on Reader Service Card

Circle 71 on Reader Service Card

Circle 72 on Reader Service Card

Circle 73 on Reader Service Card

Circle 74 on Reader Service Card

Circle 75 on Reader Service Card

Circle 76 on Reader Service Card

Circle 77 on Reader Service Card

Circle 78 on Reader Service Card

Circle 79 on Reader Service Card

Circle 80 on Reader Service Card

Circle 81 on Reader Service Card

Circle 82 on Reader Service Card

Circle 83 on Reader Service Card

Circle 84 on Reader Service Card

Circle 85 on Reader Service Card

Circle 86 on Reader Service Card

Circle 87 on Reader Service Card

Circle 88 on Reader Service Card

Circle 89 on Reader Service Card

Circle 90 on Reader Service Card

Circle 91 on Reader Service Card

Circle 92 on Reader Service Card

Circle 93 on Reader Service Card

Circle 94 on Reader Service Card

Circle 95 on Reader Service Card

Circle 96 on Reader Service Card

Circle 97 on Reader Service Card

Circle 98 on Reader Service Card

Circle 99 on Reader Service Card

Circle 100 on Reader Service Card
Now you can increase the productivity of your software by using the new...

RAPICAD buffer/decoder. Two buffers in one unit with parallel and serial in/out. Up to 1 Meg total.

Two buffers in one unit with parallel and serial in/out. Up to 1 Meg total memory.

NO EXTERNAL DECODER needed any more... because RAPICAD is fully pcad compatible and software transparent, allowing the use of pcad and any other software with any printer, scanner, laser, etc.

Prices as low as $995.00

INTEGRA Inc. 2629 Terminal Blvd. Mtn. View, CA 94043 (415) 964-5018

ATMENN p-cad USERS

Now you can increase the productivity of your software by using the new.

RAPICAD buffer/decoder. Two buffers in one unit with parallel and serial in/out. Up to 1 Meg total memory.

NO EXTERNAL DECODER needed any more... because RAPICAD is fully pcad compatible and software transparent, allowing the use of pcad and any other software with any printer, scanner, laser, etc.

Prices as low as $995.00

INTEGRA Inc. 2629 Terminal Blvd. Mtn. View, CA 94043 (415) 964-5018

Serial Data $495

Analyzer

DataScout™ turns your PC into a tool for solving RS-232 interfacing problems.

Features:
- Monitor full duplex async data
- Log Monitored Data to Disk
- Post Acquisition Analysis
- Inject Data in Either Direction
- Integrated Breakout Box
- 9 LEDs Monitor Signal Levels
- Simple menu driven interface

HiTech Equipment Corp. 9721 Irene Ave., Chatsworth, CA 91311 Phone: (818) 882-5822

Circle 99 on Reader Service Card

Circle 118 on Reader Service Card

Circle 137 on Reader Service Card

Circle 221 on Reader Service Card

Circle 141 on Reader Service Card

ATTENTION p-cad USERS

Now you can increase the productivity of your software by using the new.

RAPICAD buffer/decoder. Two buffers in one unit with parallel and serial in/out. Up to 1 Meg total memory.

NO EXTERNAL DECODER needed any more... because RAPICAD is fully pcad compatible and software transparent, allowing the use of pcad and any other software with any printer, scanner, laser, etc.

Prices as low as $995.00

INTEGRA Inc. 2629 Terminal Blvd. Mtn. View, CA 94043 (415) 964-5018

Circle 99 on Reader Service Card

Circle 118 on Reader Service Card

Circle 137 on Reader Service Card

Circle 221 on Reader Service Card

Circle 141 on Reader Service Card

9-Track Tape Subsystem for the IBM PC/XT/AT

Now you can exchange data files between your IBM PC and any mainframe or mini-computer using IBM compatible 1600 BPI 9-Track tape. Unit can also be used for disk backup. Transfer rate is up to 4 megabytes per minute on PCs and compatible subsystems. Subsystems include 7" or 10" streaming tape drive, tape coupler card and DOS or XENIX compatible software. Prices start at $2,995.

QUALSTAR

9621 Irene Ave., Chatsworth, CA 91311 Phone: (818) 882-5822

Circle 221 on Reader Service Card

Circle 141 on Reader Service Card

16-BIT RESOLUTION ANALOG-TO-DIGITAL CONVERTER

12,000 SAMPLES/SEC for IBM PC, XT & AT

SINGLE PIECE PRICE $475

We manufacture a broad line of data acquisition and control hardware and software for Apple and IBM computers. Call for quotes on custom hardware or complete systems.

LAWSON LABS, INC.

5700 RAMIREZ ROAD

COLUMBIA FALLS, MT 59912

(406) 327-5355

Circle 221 on Reader Service Card

Circle 141 on Reader Service Card

Circle 81 on Reader Service Card

WHY DISK? NOW WORLDWIDE SALE!

Now you can exchange data files between your IBM PC and any mainframe or mini-computer using IBM compatible 1600 BPI 9-Track tape. Unit can also be used for disk backup. Transfer rate is up to 4 megabytes per minute on PCs and compatible subsystems. Subsystems include 7" or 10" streaming tape drive, tape coupler card and DOS or XENIX compatible software. Prices start at $2,995.

QUALSTAR

9621 Irene Ave., Chatsworth, CA 91311 Phone: (818) 882-5822

Circle 221 on Reader Service Card

Circle 141 on Reader Service Card

ATTENTION p-cad USERS

Now you can increase the productivity of your software by using the new.

RAPICAD buffer/decoder. Two buffers in one unit with parallel and serial in/out. Up to 1 Meg total memory.

NO EXTERNAL DECODER needed any more... because RAPICAD is fully pcad compatible and software transparent, allowing the use of pcad and any other software with any printer, scanner, laser, etc.

Prices as low as $995.00

INTEGRA Inc. 2629 Terminal Blvd. Mtn. View, CA 94043 (415) 964-5018

Circle 99 on Reader Service Card

Circle 118 on Reader Service Card

Circle 137 on Reader Service Card

Circle 221 on Reader Service Card

Circle 141 on Reader Service Card

ATTENTION p-cad USERS

Now you can increase the productivity of your software by using the new.

RAPICAD buffer/decoder. Two buffers in one unit with parallel and serial in/out. Up to 1 Meg total memory.

NO EXTERNAL DECODER needed any more... because RAPICAD is fully pcad compatible and software transparent, allowing the use of pcad and any other software with any printer, scanner, laser, etc.

Prices as low as $995.00

INTEGRA Inc. 2629 Terminal Blvd. Mtn. View, CA 94043 (415) 964-5018

Circle 99 on Reader Service Card

Circle 118 on Reader Service Card

Circle 137 on Reader Service Card

Circle 221 on Reader Service Card

Circle 141 on Reader Service Card

ATTENTION p-cad USERS

Now you can increase the productivity of your software by using the new.

RAPICAD buffer/decoder. Two buffers in one unit with parallel and serial in/out. Up to 1 Meg total memory.

NO EXTERNAL DECODER needed any more... because RAPICAD is fully pcad compatible and software transparent, allowing the use of pcad and any other software with any printer, scanner, laser, etc.

Prices as low as $995.00

INTEGRA Inc. 2629 Terminal Blvd. Mtn. View, CA 94043 (415) 964-5018

Circle 99 on Reader Service Card

Circle 118 on Reader Service Card

Circle 137 on Reader Service Card

Circle 221 on Reader Service Card

Circle 141 on Reader Service Card
MICROMINT'S Gold Standard in Single Board Computers & Controllers

BCC180 $395.00
- **Multitasking Controller**
- For Micromint and all SBCs with 100 pin sockets. Can be used as a main computer or an expansion board. Supports multitasking, multiuser, and expandable microcomputer systems. Includes a 128K RAM board, a 16K ROM board, and a power supply. Compatible with all Micromint SBCs.

ImageWise™ Serial Digital Imaging System
- 49% Off List Price
- For use with popular Desktop and Print Programs
- Features a high-speed, high-resolution image capture device. Suitable for industrial and scientific applications.

BCC52 $199.00
- **Basic Computer**
- Suitable for use with ImageWise™ and other expansion boards. Includes a 32K RAM board, a 16K ROM board, and a power supply. Fully compatible with all Micromint SBCs.

BCC22 $249.00
- **Term-Wise Smart Terminal**
- Offers a full-featured terminal in a compact package. Includes a 16K RAM board, a 16K ROM board, and a power supply. Fully compatible with all Micromint SBCs.

SMB0FX $409.00
- **Single Board Computer**
- Suitable for use with ImageWise™ and other expansion boards. Includes a 128K RAM board, a 16K ROM board, and a power supply. Fully compatible with all Micromint SBCs.

GT180 $395.00
- **Single Board Computer**
- Suitable for use with ImageWise™ and other expansion boards. Includes a 128K RAM board, a 16K ROM board, and a power supply. Fully compatible with all Micromint SBCs.

BCC10 $159.00
- **Basic Controller**
- For use with ImageWise™ and other expansion boards. Includes a 16K RAM board, a 16K ROM board, and a power supply. Fully compatible with all Micromint SBCs.

BCC35 $299.00
- **Advanced Expansion Board**
- Suitable for use with ImageWise™ and other expansion boards. Includes a 128K RAM board, a 16K ROM board, and a power supply. Fully compatible with all Micromint SBCs.

European Distributor:
- **J.B. Designs**
 - Cirencester, Glos. England
 - Tel: 0825-66822

Manufacturer Representatives:
- **Access Technology**
 - Placentia, CA 92670
 - Tel: (714) 596-3917

Microfuture
- Fremont, CA 94538
 - Tel: (415) 577-0264

To order call 1-800-635-3355 for technical information (408) 871-6170

Micromint, Inc.
- 4 Park Street
 - Vernon, CT 06066
CAT ™
8MHZ BASE SYSTEM
- 256K (Optional 640K)
- 150 Watt Power Supply
- AT Style Keyboard
- 4.77 or 8 MHz Keyboard Selectable
- FDC Control 4 Disk Drives
- 8007 Socket
- 380K Floppy Drive

$369.00

OPTION A
12" Mono Monitor Graphica Card
$49.99

OPTION B
$404200 Color Monitor Graphica Card
$739.00

OPTION C
12" Mono Monitor Graphica Card
$79.99

OPTION D AT
$604200 Color Monitor Graphica Card
$1099.00

OPTION D AT
$1265.00

OPTION D AT
$1325.00

ATI VISION
8087 Socket
$269.00

Power Supplies
- 150 Watt
- UL Approved
- Direct PC Replacement
- 3-Year Warranty

CAT ™
286-10 BASE SYSTEM
- 512K (120 NS)
- 200 Watt Power Supply
- AT Style Keyboard
- Western Digital Controller
- Tesa 1.2 Meg Floppy
- Legal Biue winumals
- Systen Documentation
- 1 Year Warranty
- Clock Calendar
- 10 MHz - 0 Watt State w/100 NS

$898.00

HARD DRIVES
Seagate
- Complete Kits

ST25
20Meg wicnt. & Cables
299.00

ST25
30Meg wicnt. & Cables
299.00

ST25
40Meg 1/2 HT 40 Mi wicnt. & Cables
429.00

ST4051
40Meg Full HT wicnt. & Cables
459.00

ST25 & ST238 come with Western Digital Controllers

TAPE BACKUPS
EVEREX
- 40Meg Internal XT or AT

499.00

- 60Meg Internal w/Ext. 02

599.00

- 60Meg External w/Ext. 02

669.00

LOGITECH Mouses
Logitech C-7 Bus or serial
$99.00

Logi cadd Mouse & Cadd
$99.00

Logi Publisher Mouse & Publisher
$129.00

Logi Paint
$199.00

MODEMS
EVEREX
- EV920 Evercom 12 300/1200 bps

$84.00

- EV945 Internal 300/1200/2400

$239.00

- EV Pocket Modem

$139.00

- US Robotics - Complus - AddA

$149.00

- MCT-12900

$119.00

10MB WORM DRIVE
$499.00

- 30Meg w/mount & Cables

$240.00

- 20Meg w/mount & Cables

$120.00

- 10Meg w/mount & Cables

$59.00

COPROCESSORS
Intel 8087 5MHz
$129.00

Intel 8087 8MHz
$199.00

Intel 80287 8MHz
$259.00

Intel 80387 16MHz
$499.00

Intel 80387 20MHz
$799.00

MEMORY UPGRADES
- 1.5 VS Warranty

$129.00

- 286K (120 NS)

$89.00

- 512K (20 NS)

$189.00

- 840K (100 NS)

$239.00

- 1.2 Meg

$339.00

- 2.2 Meg

$639.00

- 3.5 Meg

$899.00

- 7.0 Meg

$1599.00

- 14.0 Meg

$2599.00

ALL TRADEMARKS ARE REGISTERED with their respective companies.

FAX
702-294-1168

VISIT OUR SHOWROOM
30 Minutes from Las Vegas

1000 Nevada Highway • Unit 101
Boulder City, Nevada 89005

CDR
MARCH 1988 • BY YE 307
COMPLETE 12 MHz
ZERO-WAIT 286 SYSTEM
WITH 32MB HARD DRIVE!

Can you believe it? Yes you can!

32 MB hard drive. 12 MHz ZERO Wait State. Fully AT compatible. Our complete '286 system ready to plug in and fly right out of the box! At the amazing price of only $1,295!

How is it possible? By buying direct from the manufacturer that's how. ZEOS International offers you the finest, best-backed fully AT compatible systems available... at factory direct prices.

We think you'll agree, this is the very best value you'll find anywhere.

ZEOS® Customer Assurance Program
Compare not only our features but the ZEOS® Customer Assurance Program as well; 1. Full refund within 30 days of shipment if you are not absolutely satisfied. 2. One full year limited warranty on parts and labor. 3. Federal Express replacement of any failed parts for your first year of ownership.

STANDARD FEATURES INCLUDE:
- 12" High Resolution Amber Screen TTL Monitor with Tilt & Swivel base. Easy on the eyes!
- 8088 CPU Zero-Wait State Motherboard with 8 I/O slots and socket for 8087 Math Co-processor.
- 6/12 MHz Dual Speed, Keyboard Selectable, Zero Wait-State Phoenix BIOS!
- Deluxe AT-style Case, Security Keylock, Reset Button, LEDs.
- Full 101 key AT-style Keyboard, Mechanical Tactile with Pleasant "Click" Feel.

And every ZEOS® system is fully assembled, burned-in and tested in our own laboratories. We would like to build one for you. Give us a call today!

OTHER ZEOS OPTIONS:
- Basic System Only: Everything except a hard drive. $995
- Complete 77MB hard drive system! Only $1,595
- EGA Upgrade. 14" EGA color monitor with ZEOS EGA card. Fully tested. Add $495
- Many other drives and options available. Call Toll Free for details, 800-423-5891.

NEW ZEOS® 386 Motherboards!
ZEOS® 80386 motherboards, 16 or 20 MHz, Zero-Wait state. Up to 16MB of 32-bit memory on board. Plus on board options include Weitek 1167 Math Co-processor, 80387, 80287, FOC and SCSI HD: Ideal for upgrades and OEM systems. Only $1395.00

- Heavy Duty 200W Power Supply.
- Real Time Clock/Calendar with Battery Backup.
- 512K, 80ns Memory expandable to 1MB on the Motherboard.
- Hard and Floppy Drive Controller.
- 1.2 MB High Capacity Floppy Drive.
- Serial and Parallel/Printer Ports.
- 32MB hard drive.
- High Resolution Monochrome Graphic Card.
- FCC approved.
- And More!

ORDER NOW TOLL FREE
800-423-5891

ZEOS
INTERNATIONAL, LTD.
530 5th Avenue NW Suite 1000
St. Paul, MN 55112

Circle 302 on Reader Service Card
IBM PC/XT Compatible Package

- IBM XT Hard Disk Drive
- IBM Personal System 2 Model 50
- IBM Keyboard
- 800288 80 MHz Processor
- 512KB RAM
- 40MB Disk Drive
- 1024KB Hard Drive
- 12" Color Monitor
- Personal System II Model 25
- Personal System II Model 50

Prices

- IBM XT Package: $1,129
- IBM Personal System II: $1,299
- IBM Model 50: $1,599

NEC PowerMate I Package

- NEC PC/XT/AT Compatible
- Hard Drives & Cards

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Drive</td>
<td>$1,104</td>
</tr>
<tr>
<td>Enhanced Keyboard</td>
<td></td>
</tr>
<tr>
<td>Serial & Parallel Ports</td>
<td></td>
</tr>
<tr>
<td>Monitors</td>
<td></td>
</tr>
<tr>
<td>All Packages</td>
<td>$1,879</td>
</tr>
</tbody>
</table>

IBM PC/XT AT Compatible

- Commodore 128 Package
- Commodore 128 Computer + Commodore 1571 Disk Drive + Commodore 1572 Color Monitor + Commodore 1515 80 Column Printer
- Commodore 128/1571/1572/1515 Accessories

Laptops

- Toshiba 1000
- Toshiba 1200
- Zenith 1116
- Spark by Datafile
- Sparc by VODAK

- NEC Multispeed EL
- NEC Multispeed SR
- NEC Multispeed X

- Commodore 1002 RGB
- Commodore 1541 Disk Drive + Commodore 1541 Printer + Commodore Computer Monitor

Monitors

- Commodore 64/65/68/69 Color Monitor
- Commodore 1541 Color Monitor
- Commodore 1570 Color Monitor
- Commodore 1571 Color Monitor
- Commodore 1572 Color Monitor

Printers

- EPSON FX-80 Printer
- EPSON FX-850 Printer

Hard Drives

- Seagate 20MB 1/2 HD w/Controller
- Seagate 20MB 1/2 HD w/Controller
- Seagate 20MB 1/2 HD w/Controller

Price List

- $769
- $849
- $1,049
- $1,279
- $1,129
- $1,299
- $1,599
- $799
- $899
- $1,049
- $1,129
- $1,279
- $1,599
- $579
- $1,379
- $679
- $799
- $729
- $799
- $399
- $769
- $979

Low Price!

- Commodore AMIGA 500
- Commodore AMIGA 2000
- Now in Stock!
SATISFACTION GUARANTEED OR YOUR MONEY BACK!

8 MHz TURBO-XT
- 840K of RAM
- 360K Disk Drive
- 150 Watt Power Supply
- Disc Controller
- 8 Slots
- Deluxe Keyboard
- 4.77 & 8 MHz

$398

OPTION A
- High Resolution Amber Flat Screen
- High Resolution Graphics Card
- Parallel Printer Port

ADD $148

OPTION B
- Hi-Res RGB Color Monitor
- High Resolution Graphics Card
- Parallel Printer Port

ADD $298

Turbo-AT
- 640K of RAM
- Expands to 1 MB
- 200 Watt Power Supply
- AT-Style Keyboard
- One Year Warranty
- Clock/Calendar

$798

360K DISK DRIVE
Half Height, IBM Compatible

$298

30 MB HARD DISK
Complete Kit with Controller for Your PC/XT

$995*

AT DRIVES
40 Megabyte
33 MS $398
20 MB PC/XT Kit $248

360K DISK DRIVE
Half Height, IBM Compatible

$198

Hi-Res RGB Monitor

$258

3 1/2" DISK DRIVE
FOR YOUR PC/XT/AT

$128

PLACE ORDERS TOLL FREE!
Continental U.S.A. (800)421-5500
Inside California (800)262-1710
All Others (213) 975-7707
Fax Machine (213) 675-2522

Ca & Tx residents add sales tax. Prices & availability subject to change without notice. Shipping & handling charges via UPS Ground 50¢/lb UPS Air $1.00/lb Minimum charge $3.00.

Prices at our six store locations will be higher. We accept cash, checks, credit cards or purchase orders from qualified firms and institutions. Minimum prepaid order $15.00.

JADE COMPUTER
4901 W. Rosecrans Ave. Box 5046
Hawthorne, CA 90251-5046
PC COMATIBLE SYSTEMS

FastData Mini-AT - 80286-10 ruin 11.5 Norton Sl, 512K-1M8 RAM, SBC, only 16" wide, 8 slots, room for 3 half-hi drives. Speed, drive, power LED's, key, reset & turbo switch on front panel. AT-Style Keyboard, 300V, 110/220V P/S, FCC app., 1 yr war. ...$725

SUPERturob XT - AT-Style Case & Keyboard. 10 MHz, 8086, 1-120SEC RAM 640K, 150W P/S, 360K Floppy, FCC app., 1 yr war & labor warranty...$425

AST Premium 286TM $55,mo.*

Model 140 with 448Mb DR, 1Mb RAM, SBC Ports, CLI/Cal, RT-Style Keyboard. 3-9 Pin Plus Card with EGA, CGA, HGC, MD-S/DS 2.3, GW-Classic

AST Premium Workstation - CALL

AST Premium 386 - 20 MHz, 0 Wall * 1 to 3 year serves available to qualified businesses.

FORTRON
5191 Basic System - 80386-16 MHz, 2Mb RAM, 0 wall, 1 para, 2 sec. ports on MB, 3 AT-Style, 4 XT slots, 230W, maxwidth enhanced keyup, up to 48H drive, 200% socket, WD-WA2Ct, 1.2Mb Fppy Dr, Keyboard, MD-S/DS 3.3 & GW-Classic. Manual & Set-Up. Will Run Novell Non-Ded 1280 x 960 $1,275

TATUNG
CM-1365 AGB 13" 5-Color Text Switch $299

Samsung
CM-1459 OmniScan 14"PAGA,EGA,HEG,CGA $349

Monter V10-T CLS, 10" 512K-3Mb $99

Monitor V10-T CLS, 10" 512K-3Mb $99

Monitor V10-T CLS, 10" 512K-3Mb $99

IBM
IBM 3151 ASCI terminal... $429

3 year on-site warranty!

WYSE
WYSE 50 $379

WYSE 60 $419

WYSE WY700 1280 x 800 ...$759

CONNECTIVITY

4-User Network Special

M NOVELL

Server/Work Station:

INDTECH 4/6 MHz AT-Fileserver - 12 slots. 230W Power Supply, Auto Parallel Ports, Monitor, 1.2 Mb Floppy, 1 Mb RAM, 72 Mb Hard Drive, 60Mbps Tape.

450 Watt UPS St.

NOVELL ELS NetWare 286 Level 1 (4-users) Network set-up in Menu Driven!

ArcNet Cards, Cables & 1 FREE Hub

2-Yr Warranty, 32.768K, 56K EIA, Inc. 640K, 477/10MHz 8086-1 CPU, AT-Style Keyboard & Amber Trim 'N Swivel Monitor FCC Approved

** A COMPLETE NETWORK **

RETAIL $9,258 NOW ONLY $5,995

“THE PC PEOPLE”

Circle 258 on Reader Service Card

DEALERS: 259

LASER PRINTERS

H.P. LaserJet Series II

NEC Model 890 PS

AST Turbo Lser/EL 512K, 3Mch Engr, Upgradeable to PostScript...$7,687

Turbo Lser/PS color, postscript, Apple/MacPC IF, 3Mb, 35 fonts, 300dpi, Fast Graphics! $2,995

PRINTERS & PLOTTERS

Call

MONITORS & TERMINALS

Samsung

Samsung EGA TR 'n' Swivel, 14" Moni...$399

Samsung 14" TR 'n' Swivel Color + Res...$349

Samsung 12" "TT" TR 'n' Swivel Amber... $79

TATUNG

CM-1365 RGB 15" S-Color Text Switch...$299

CM-1459 OmniScan 14"PGA,EGA,HEG,CGA $349

NM-1422 DUAL Freq, T 'n' 14" GmAmb...$119

Monitor V10-T CLS, 10" 512K-3Mb $99

Monitor V10-T CLS, 10" 512K-3Mb $99

Monitor V10-T CLS, 10" 512K-3Mb $99

IBM

IBM 3151 ASCI terminal...$429

3 year on-site warranty!

WYSE

WYSE 50 $379

WYSE 60 $419

WYSE WY700 1280 x 800 ...$759

MDEMS & BOARDS

ANCHOR

1200 External...$119 / 1200 Internal...$79

2400 External...$140 / 2400 Internal...$129

CTS 2424 DASH ADNSCH/SYNCH (Hayes)...$229

CTS 2424 ARMS, CPU System, Error Correct...$299

MultiTech

Prometheus ProModems - Close Out...CALL

U.S. Robotics Personal Modems...CALL

AST

RAPHAGE-528-512K $119

RAPHAGE-828-512K $179

Hot Shot 286-10XT Accel. Bo...$369

VARIANT AT-828-512K $275

Intel Above Board/286-512K $402...$339

Microsoft Mach 10 / Window / Mouse...$324

COMPUTER ACCESSORIES

Data Display for overhead projectors...$999

** FREE Carrying Case ** White Utility Leather

Power Savers 400-1000W Models...FROM...$495
Get the whole story on graphics terminal emulation.

To find out more about software that lets your PC emulate TERTRONIX™ 4105/6/7/9 and DEC VT100 terminals, call or write:

GRAFOPOINT

440 Sonoma Circle Blvd. Suite 280
San Jose, CA 95131 (408) 366-7460

Circle 108 on Reader Service Card

"D" SIZE PLOTTER

$22950 RETAIL

Make your C language programs memory resident

256K (32K:0-15K) $11950

Make your assembler programs memory resident with

DMS RESIDENT-ASM

NOT KEY enable

$149.95 w/source

American Software International
P.O. Box 363
Washington, D.C. 20036
(202) 686-9054

Circle 17 on Reader Service Card

Circle 291 on Reader Service Card

Circle 189 on Reader Service Card

Circle 301 on Reader Service Card

Circle 289 on Reader Service Card

BUILD YOUR NETWORK WITH EASYUSE LAN COMPONENTS

* Network Software (per user) $399
* Server Cards $349
* Workstation Cards $199

Easily ready to run servers. They start at 40 meg and 4 users for only $1,799 or Your 266/386 AT with our server card(s).

Circle 106 on Reader Service Card

Back, by popular demand.

Just a few years ago, illegal hunting and encroaching civilization had all but destroyed the alligator population in the south. They were added to the official list of endangered species in the United States. Now alligators have made a comeback.

Conservationists intent on preserving this legendary reptile helped the alligator get back on its feet. Once again some southern swamps and marshes are teeming with alligators. With wise conservation policies, other endangered species have also made comebacks...the coyote, gray whale, Pacific walrus, wood duck, to name a few.

If you want to help save our endangered species, join the National Wildlife Federation, Department 106, 1412 16th Street, NW, Washington, DC 20036.

Circle 106 on Reader Service Card

EPROM/PAL Programmer

* PAL MODULE
 PAL MODULE $299
 Commodore 20 & 24 pin MIDI
 Atari 1010/1012
 Read Jasco BIOS format
 Security, 32K, CLAMP, Boundary
 User friendly menu driven

* EPROM MODULE (1, 4, 8 sockets)
 8K to 1024 EPROM, CMOS EPROM
 Read Intel, Motorola, TExE R
 Very fast (micro second), reliable, easy to use

* BI POLAR ROM MODULE
 AMI, 10, 16, 64, 128, 256, 512 bytes
 Read Intel, Motorola, TExE R
 8K module available
 32K, 64K, 128K, 256K, 512K available

* TTL & MEMORY TESTING MODULE
 Test almost TTL, CMOS, Dynamic Static IC's
 Auto-search for unknown IC past leo
 User can make his own test program

* INTERFACE CARD & CABLE
 This card is common to all above modules
 Fits in any PC/XT or compatibles
 Space saving half size

473 Sappo St., #24
Santa Clara, CA 95054
(408) 727-4996

Circle 106 on Reader Service Card

Circle 289 on Reader Service Card

MARCH 1988
California Digital

17700 Figueroa Street • Carson, California 90248

Color Monitor
Better Than EGA

$129

PLOTTERS

The Sweet "P" brand was private labeled for the Computer division of the

Computer. This model made front and back of the

Computer. Many readers were pleased with it.

Audio/CD and Lota 1-3 already support this plotter.

The Sweet "P" 19" models plot to a maximum of 8 by 120

pages, 6 inch per second, and 200 page size.

Easy to implement

Compatible interface allows the Sweet "P" 19" models to

work with all personal computers.

This is your opportunity to purchase a printer which was originally priced at

$398 for only $129.

Western Graphics Model 2000 operates under the Hewlett Packard graphics

language and has both parallel and serial interface. Size: 6" paper, 11"

by 17" plotter with eight page format plotter. Maximum plotting speed

10 pages per minute.

To order the remaining inventory, California Digital has established the price of

$199 for only 100 orders.

TELETEYPE MODEL 40

The Teletype Model 40 CRT is a continuous duty communication device which has recently been taken off the United States Navy. It is seldom that California Digital becomes involved in the

marketing of used products but we felt that this terminal rep

duced such an excellent product that we had to offer this
to our customers.

The Model 40 CRT terminal has a RS-232 and control panel

accessory as well as a parallel port. The terminal is designed

to work with Apple and IBM systems.

Quick Link

$59

The Quick Link 350 gives you all the roads to any drive at a

cost of only $59.

California residents add 6% sales tax. COD's are discouraged. Open

accounts extended to state supported educational institutions and

companies with a strong "Dun & Bradstreet" rating.

Telephone (213) 217-1951

68" DRIVE DISKS

9600 BPS Modem

$379

The Amiga synchronous modem is compatible and operates 9600 bps on a four-wire dial-up phone line.

Accessory supplied $149. Limited quantities available at $379

Also available: 15 VAC unit. Please phone for additional information.

Smartteam 2400

$239

The Smartteam 2400 offers full features of the Hayes Smartmodem 2400 for a fraction of the cost. Now you have the opportunity to purchase a 440 baud modem for only $299. Also available: The Maritime 1200 at only $129.

21 Megabyte Gold Card

$399

The Gold Card from Secon Valley Computer provides automatic drop-in service. 15 watt drive coupled with a 250 watt source buffer and enhanced Smartmodem 2400 for maximum operation up to 1300 baud. Also a 2 year warranty on all parts. Mail order service also available. Mail order service also available.

21 Megabyte Hard Disk Kit

$269

The INSIDEKIT is a disk mounted 21 Megabyte hard drive complete with a standard control card, and includes a SASI interface that allows tape backups and other peripherals to be used.

Five Inch Winchester Drive

Price does not include controller, work fees.

Shipping: First five pounds $3.00, each additional pound $0.50

For California residents add 6% sales tax. COD's are discouraged. Open accounts extended to state supported educational institutions and companies with a strong "Dun and Bradstreet" rating.

Telephone (213) 217-1951
ACP's Break thru Prices!!

Since 1976...The Nation's TOP Computer Supplier

IBM COMPATIBLE CARDS

WESTERN DIGITAL

IBM COMPATIBLE CARDS

MONITORS

COMPATIBLES

IBM PC/XT or AT

IBM PC/AT

AT or XT w/ Serial

extension card

extension box

NEW IBM XT/AT Mouse

IBM PC/XT or AT

IBM PC/AT

Atari

IBM PC

IBM PC Jr

IBM 5150

IBM 5155

IBM 755

IBM 3200

IBM 3270

Hercules

Hercules EGA

Hercules Color Card

DOS OR 2 - Tr Warranty

Intell OR 5 - Tr Warranty

Full Warranty

Full Warranty

Full Warranty

Full Warranty

DOS UPGRADE

TERMINALS

BARE BONES - OMRN 3.5" HD TURBO

BARE BONES - OMRN 3.5" HD TURBO

DISKETTES

BULK DISKETTES

39C

OEM'd 100

SOFTWARE DEALS!

SOFTWARE DEALS!

ACP's Computer Software Department...You Save!!

SOFTWARE DEALS!

SOFTWARE DEALS!

PRINTERS

ADVANCED COMPUTER PRODUCTS, INC.
P.O. Box 17329
Irvine, CA 92713

316 BYTE • MARCH 1988

FOR FAST SERVICE ORDER BY PHONE!

NEW PHONE FOR ALL USA

800-FONE ACP

800-366-3227 • 714-558-8613

Circle 5 on Reader Service Card

CALL FOR 803861!

CALL FOR 803861!

NEW PHONE FOR ALL USA

800-FONE ACP

800-366-3227 • 714-558-8613

Circle 5 on Reader Service Card

CALL FOR 803861!

CALL FOR 803861!

NEW PHONE FOR ALL USA

800-FONE ACP

800-366-3227 • 714-558-8613

Circle 5 on Reader Service Card

CALL FOR 803861!

CALL FOR 803861!

NEW PHONE FOR ALL USA

800-FONE ACP

800-366-3227 • 714-558-8613

Circle 5 on Reader Service Card

CALL FOR 803861!

CALL FOR 803861!

NEW PHONE FOR ALL USA

800-FONE ACP

800-366-3227 • 714-558-8613

Circle 5 on Reader Service Card

CALL FOR 803861!

CALL FOR 803861!

NEW PHONE FOR ALL USA

800-FONE ACP

800-366-3227 • 714-558-8613

Circle 5 on Reader Service Card

CALL FOR 803861!

CALL FOR 803861!

NEW PHONE FOR ALL USA

800-FONE ACP

800-366-3227 • 714-558-8613

Circle 5 on Reader Service Card

CALL FOR 803861!

CALL FOR 803861!

NEW PHONE FOR ALL USA

800-FONE ACP

800-366-3227 • 714-558-8613

Circle 5 on Reader Service Card

CALL FOR 803861!

CALL FOR 803861!

NEW PHONE FOR ALL USA

800-FONE ACP

800-366-3227 • 714-558-8613

Circle 5 on Reader Service Card

CALL FOR 803861!

CALL FOR 803861!

NEW PHONE FOR ALL USA

800-FONE ACP

800-366-3227 • 714-558-8613

Circle 5 on Reader Service Card

CALL FOR 803861!

CALL FOR 803861!

NEW PHONE FOR ALL USA

800-FONE ACP

800-366-3227 • 714-558-8613

Circle 5 on Reader Service Card

CALL FOR 803861!

CALL FOR 803861!

NEW PHONE FOR ALL USA

800-FONE ACP

800-366-3227 • 714-558-8613

Circle 5 on Reader Service Card

CALL FOR 803861!

CALL FOR 803861!

NEW PHONE FOR ALL USA

800-FONE ACP

800-366-3227 • 714-558-8613

Circle 5 on Reader Service Card

CALL FOR 803861!

CALL FOR 803861!

NEW PHONE FOR ALL USA

800-FONE ACP

800-366-3227 • 714-558-8613

Circle 5 on Reader Service Card

CALL FOR 803861!

CALL FOR 803861!
IC's...IC's...IC's...IC's...IC's
IC's. Parts Components...Shipped Fast! West Coast's Largest Selection...Call for More

RAM Upgrades!
...priced in sets of 9
- 64K/120ns... $18.95
- 64K/150ns... $16.95
- 256K/100ns... $48.95
- 256K/120ns... $39.95
- 256K/150ns... $34.95

DYNAMIC RAMS
- 4160/250ns... $1.25 4640/150ns... $5.45
- 4540/250ns... $5.25 4640/150ns... $4.57
- 6140/250ns... $2.15 6426/150ns... $11.57
- 4160/250ns... $3.75 4618/150ns... $5.25
- 4640/250ns... $4.45 4658/150ns... $6.57

STATIC RAMS
- 2160/450ns... $9.95 2160/350ns... $9.25
- 2160/450ns... $1.95 2160/350ns... $1.55
- 2160/450ns... $2.95 2160/350ns... $2.65
- 2160/450ns... $3.95 2160/350ns... $3.45

74 HCT SERIES
- 74HC100... $2.95 74HC101... $1.95 74HC102... $1.95
- 74HC103... $2.95 74HC104... $2.95 74HC105... $2.95
- 74HC106... $2.95 74HC107... $2.95 74HC108... $2.95
- 74HC109... $2.95 74HC110... $2.95 74HC111... $2.95
- 74HC112... $2.95 74HC113... $2.95 74HC114... $2.95
- 74HC115... $2.95 74HC116... $2.95 74HC117... $2.95
- 74HC118... $2.95 74HC119... $2.95 74HC120... $2.95

74C SERIES
- 74C00... $1.99 74C01... $1.99 74C02... $1.99
- 74C03... $1.99 74C04... $1.99 74C05... $1.99
- 74C06... $1.99 74C07... $1.99 74C08... $1.99
- 74C09... $1.99 74C10... $1.99 74C11... $1.99
- 74C12... $1.99 74C13... $1.99 74C14... $1.99
- 74C15... $1.99 74C16... $1.99 74C17... $1.99

LINEAR
- 78L00... $1.99 78L01... $1.99 78L02... $1.99
- 78L03... $1.99 78L04... $1.99 78L05... $1.99
- 78L06... $1.99 78L07... $1.99 78L08... $1.99
- 78L09... $1.99 78L10... $1.99 78L11... $1.99
- 78L12... $1.99 78L13... $1.99 78L14... $1.99
- 78L15... $1.99 78L16... $1.99 78L17... $1.99

MOS Eeproms
- 71200... $25 71201... $25 71202... $25
- 71203... $25 71204... $25 71205... $25
- 71206... $25 71207... $25 71208... $25
- 71209... $25 71210... $25 71211... $25
- 71212... $25 71213... $25 71214... $25

Bipolar Proms/Pals
- 74P10... $1.99 74P11... $1.99 74P12... $1.99
- 74P13... $1.99 74P14... $1.99 74P15... $1.99
- 74P16... $1.99 74P17... $1.99 74P18... $1.99
- 74P19... $1.99 74P20... $1.99 74P21... $1.99
- 74P22... $1.99 74P23... $1.99 74P24... $1.99
- 74P25... $1.99 74P26... $1.99 74P27... $1.99

IC sockets
- SO160... $0.95 28P916W... $1.95
- SO161... $0.95 28P916W... $1.95
- SO162... $0.95 28P916W... $1.95
- SO163... $0.95 28P916W... $1.95
- SO164... $0.95 28P916W... $1.95
- SO165... $0.95 28P916W... $1.95
- SO166... $0.95 28P916W... $1.95
- SO167... $0.95 28P916W... $1.95
- SO168... $0.95 28P916W... $1.95

Special function
- Voice Recognition... $14.95
- Panel... $14.95
- Speech Chip... $14.95
- TMS 15200 Speech Chip... $9.95
Static RAMs

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2K x 8</td>
<td>$1295</td>
</tr>
<tr>
<td>4K x 16</td>
<td></td>
</tr>
<tr>
<td>8K x 32</td>
<td></td>
</tr>
</tbody>
</table>

Dynamic RAMs

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>16K x 1</td>
<td></td>
</tr>
<tr>
<td>32K x 2</td>
<td></td>
</tr>
<tr>
<td>64K x 4</td>
<td></td>
</tr>
</tbody>
</table>

PROMs

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4049</td>
<td>$2.95</td>
</tr>
<tr>
<td>4050</td>
<td></td>
</tr>
<tr>
<td>4051</td>
<td></td>
</tr>
</tbody>
</table>

Eproms

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2708</td>
<td>$4.95</td>
</tr>
<tr>
<td>2716</td>
<td></td>
</tr>
<tr>
<td>2722</td>
<td></td>
</tr>
</tbody>
</table>

Clock Circuits

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC14580</td>
<td>$1.99</td>
</tr>
<tr>
<td>MC14581</td>
<td></td>
</tr>
<tr>
<td>MC14582</td>
<td></td>
</tr>
</tbody>
</table>

Other

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>8550</td>
<td>$2.25</td>
</tr>
<tr>
<td>256K DRAM</td>
<td>$1295</td>
</tr>
<tr>
<td>41256</td>
<td></td>
</tr>
</tbody>
</table>

Visit our retail store located at 1256 S. Bascom Ave, in San Jose, (408) 947-8881

JDR Microdevices
110 Knowles Drive, Los Gatos, CA 95030
Toll Free 800-538-5000 • (408) 866-6200
FAX (408) 378-8927 • Telex 171-110

Circuit 132 on Reader Service Card
MONITOR STANDS
MODEL MS-100 $12.95
- TILTS & SWIVELS
- STURDY PLASTIC CONSTRUCTION
MODEL MS-200 $39.95
- TILTS & SWIVELS
- BUILT-IN SURGE PROTECTOR
- BUILT-IN POWER STATION INDEPENDENTLY CONTROLS UP TO 5 120 VOLT AC OUTLETS
- UL APPROVED

SAMSUNG MONOCHROME
MONITOR COMPATIBLE TTL INPUT
15 PIN, 15-25 KHZ SCANNING FREQUENCY
RES. 640 X 200-250
- 31mm DOT PITCH
- 14" BLACK MATRIX SCREEN
- 15 COLORS FROM O - 9

RITEMAN II PRINTER
- 150 CPS DRAFT, 32 CPS NG M/O
- SUPPORTS IBM GRAPHICS
- 80 COLUMN POWER SYSTEMS
- CABLE TO IBM COMP.

MOUNTING HARDWARE FOR IBM AT
- MONITOR MOUNTS FOR IBM AT
- "Y" POWER CABLE FOR 5V/12V
- 4" FDD POWER CONNECTORS

EASYDATA MODEMS
All models feature auto-dial, answer, and time-out. IBM power up self test, touchscreen or push dialing, built-in speaker, Hayes and Bell Systems 103, plus 128 compatible, full or half duplex, PC Talk III Communications software with internal models and more

COMPUTER CASES
Attractive, sturdy steel cases fit the popular size motherboards and include features, capacitors, expansion slots and other necessary hardware.

120 BAUD 1/2 CARD $69.95
120 BAUD FULL CARD $119.95
240 BAUD $199.95

JOIN US TO ADVERTISE IN THE LAYOU BUSINESS DIRECTORY
JDR Microdevices
110 Knowles Drive, Los Gatos, CA 95030
Toll Free 800-538-5000 • (408) 866-6200
FAX (408) 378-8327 • Telex 1711-110

COPYRIGHT 1978 JDR MICRODEVICES
JDR MICRODEVICES AND THE JDR MICRODEVICES LOGO ARE REGISTRATION TRADEMARKS OF JDR MICRODEVICES. JDR INSTRUMENTS IS A TRADEMARK OF JDR MICRODEVICES.
IBM IS A TRADEMARK OF INTERNATIONAL BUSINESS MACHINES CORPORATION.

Circle 133 on Reader Service Card
IBM COMPATIBLE MOTHERBOARDS
FROM MODULAR CIRCUIT TECHNOLOGY

MCT-TURBO
Turbo 477/8 MHz $99.95
- IBM Enhanced Style Layout
- Software AutoSense for XT or AT Compatible
- LED Indicators
- Auto Repeat Feature
- Separate Cursor Pad

MCT-ATMB
Mini 60266 6/8 MHz $379.50
- 4 Slot (2 Eight-bit, 2 Sixteen-bit) At Motherboard
- Memory Zero K Installed
- Socket for 1MB Ram and 80287
- Battery Backed Clock

MCT-ATMB
Mini 60286 $389.50
- 4 Slot (2 Eight-bit, 2 Sixteen-bit) At Motherboard
- Memory Zero K Installed
- Socket for 1MB Ram and 80287
- Battery Backed Clock

MCT-AMF
At Multifunction $139.95
- 32 Pin AT Bus for a Minimum of Slots Used
- Internal Parallel, Serial, and Game Ports
- Uses Standard 14650 Support Chips for High Speed Operation

MCT-ATIO
At Multi IO $59.95
- Uses MCT-ATM for a Minimum of Slots Used
- Parallel, Serial, and Game Ports
- Uses 14650 Support Chips for High Speed Operation

MCT-RAM
576K Ram Card $59.95
- Continuous Memory Solution in a Short Slot
- User Selectable Configuration Amounts Up to 576K Using 64K and 256K Ram Chips (Zero K Installed)

MCT-EMS
Expanded Memory Card $129.95
- 2 Mb Up Lotus Intel Microchip Boost Memory for 8086/8088/286/386 CPUs
- User Expandable to 2 Mb
- Expanded, Conventional Memory, Hard Disk and Spooler

MCT-ATM
At Multi-Turbo $139.95
- Plug in and Run on Any IBM PC or Compatible
- Supports Both DS/DD and DS/DD/DS with Dos 3.2

DRIVE CONTROLLERS

MCT-FDC
Floppy Disk Controller $29.95
- Quality Design Offers a Floppy Control in a Single Slot
- Interfaces Up to 2 FDD's to an IBM PC or compatible
- Supports Both 80/154 and 1.2 MB
- Allows Data Flow to Free Drive from XT to ATs

MCT-HDC
Hard Disk Controller $79.95
- No Control for What Others Charge for Floppy Control
- Supports Both 360K/540K/1.2MB in DOS 3.2
- Divides 1 Large Drive into 2 Smaller, Logical Drives

MCT-FDC-1.2
1.2 MB Floppy Controller $89.95
- Adds Versatility and Capacity to Your XT
- Supports 2 Drives, Both May Be 360K or 1.2 MB
- Allows Data Flow to Free Drive from XT to ATs

MCT-FH
Floppy/Hard Controller $139.95
- System Saved for SLG/135/80/135/7H/1 With This Timely Design
- Supports Up to 2 FDD's in Including DOS 13.2, 16, 360K and 540K
- Supports Both DS/DD and DS/DD/DS with Dos 3.2

MCT-ATFH
At Floppy/Hard Controller $149.95
- Floppy Hard Disk Control, in a True at Design
- Supports Up to 2 FDD's as Well as 2 Hdds Using Standard Control Tables

DEVELOPMENT TOOLS
FROM MODULAR CIRCUIT TECHNOLOGY

MCT-EPROM
Programmer $129.95
- Programs 27C64 & 27C128 Eeproms Up to 27512
- Supports Various Programming Formats and Votages
- Can Program or Combine Content of Several Eeproms of Different Sices
- Read, Write, Copy, Erase Check and Verify
- Software for Hex and Intel Hex Formats

MCT-EPROM-4
4 Port Programmer $179.95

MCT-EPROM-10
10 Port Programmer $289.95

MCT-PAL
PAL Programmer $269.95

MCT-MP
Processor Prog. $199.95

WHY BUY A SYSTEM FROM JDR?
- Build It Yourself and Save!
- Most Orders Shipped in 24 Hours
- Quality Components and Competitive Prices
- Learn About the Inner Workings of a Computer
- You Can Assemble a System in About 2 Hours With a Screwdriver and Our Easy-To-Follow Instructions!

BUILD YOUR OWN 265K XT COMPATIBLE
- Motherboard
- 265K of Memory
- 135 Watt Power Supply
- Flip-Top Case
- XT Style Keyboard
- 360K Floppy Drive
- Drive Controller
- Monochrome Monitor
- Graphics Adapter
- For Only $498.15

Anyone Can Build a System in About 2 Hours Using a Screwdriver and Our Easy-To-Follow Instructions!

PARTIAL LISTING ONLY-CALL FOR A FREE CATALOG!

CIRCLE 133 ON READER SERVICE CARD
<table>
<thead>
<tr>
<th>INQUIRY #</th>
<th>COMPANY</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>937</td>
<td>ACIUS</td>
<td>187</td>
</tr>
<tr>
<td>857</td>
<td>ACTIVISION</td>
<td>89</td>
</tr>
<tr>
<td>765</td>
<td>ADVANCED DIGITAL</td>
<td>67</td>
</tr>
<tr>
<td>799</td>
<td>ALDUS</td>
<td>67, 187</td>
</tr>
<tr>
<td>945</td>
<td></td>
<td></td>
</tr>
<tr>
<td>928</td>
<td>AMERICAN MITAC</td>
<td>102</td>
</tr>
<tr>
<td>772</td>
<td>ANSA SOFTWARE</td>
<td>11</td>
</tr>
<tr>
<td>984</td>
<td>ANTEX ELECTRONICS</td>
<td>67</td>
</tr>
<tr>
<td>891</td>
<td>APPLE COMPUTER</td>
<td>11, 134</td>
</tr>
<tr>
<td>894</td>
<td>ASHTON-TATE</td>
<td>11, 187</td>
</tr>
<tr>
<td>981</td>
<td>ATT TECHNOLOGIES</td>
<td>102</td>
</tr>
<tr>
<td>955</td>
<td>AUSTEC</td>
<td>207</td>
</tr>
<tr>
<td>858</td>
<td>BINARY ENGINEERING</td>
<td>89</td>
</tr>
<tr>
<td>782</td>
<td>BLAISE COMPUTING</td>
<td>67</td>
</tr>
<tr>
<td>924</td>
<td>BOCA RESEARCH</td>
<td>102</td>
</tr>
<tr>
<td>859</td>
<td>BORLAND INTERNATIONAL</td>
<td>89, 155, 169, 187</td>
</tr>
<tr>
<td>896</td>
<td>BORRO SOFTWARE</td>
<td></td>
</tr>
<tr>
<td>987</td>
<td>BOSF SOFTWARE</td>
<td>67</td>
</tr>
<tr>
<td>946</td>
<td>BRODRERBUND SOFTWARE</td>
<td>187</td>
</tr>
<tr>
<td>941</td>
<td>BROOKTREE</td>
<td>134</td>
</tr>
<tr>
<td>784</td>
<td>BSOFT SOFTWARE</td>
<td>67</td>
</tr>
<tr>
<td>888</td>
<td>BYTE BY BYTE</td>
<td>67</td>
</tr>
<tr>
<td>771</td>
<td>CATAMOUNT</td>
<td>67</td>
</tr>
<tr>
<td>933</td>
<td>CCl</td>
<td>243</td>
</tr>
<tr>
<td>949</td>
<td>CE SOFTWARE</td>
<td>187</td>
</tr>
<tr>
<td>776</td>
<td>CH PRODUCTS</td>
<td>67</td>
</tr>
<tr>
<td>794</td>
<td>CHIPSOF</td>
<td>67</td>
</tr>
<tr>
<td>982</td>
<td>CIRRUS LOGIC</td>
<td>17</td>
</tr>
<tr>
<td>983</td>
<td>CLEAR LAKE RESEARCH</td>
<td>851</td>
</tr>
<tr>
<td>887</td>
<td>COMPQ</td>
<td>102, 115, 197, 205</td>
</tr>
<tr>
<td>899</td>
<td>COMPLETE LOGIC SYSTEMS</td>
<td>145</td>
</tr>
<tr>
<td>985</td>
<td>COMPUTER SYSTEMS</td>
<td></td>
</tr>
<tr>
<td>881</td>
<td>CONSUMERS SOFTWARE</td>
<td>67</td>
</tr>
<tr>
<td>775</td>
<td>CYBEX</td>
<td></td>
</tr>
<tr>
<td>769</td>
<td>DATA TRANSLATION</td>
<td>67, 238</td>
</tr>
<tr>
<td>957</td>
<td>Datalog</td>
<td>11</td>
</tr>
<tr>
<td>793</td>
<td>DATAX</td>
<td>67</td>
</tr>
<tr>
<td>787</td>
<td>DATUM SYSTEMS</td>
<td>67</td>
</tr>
<tr>
<td>768</td>
<td>DELTA GOLD COMPUTER</td>
<td>67</td>
</tr>
<tr>
<td>936</td>
<td>DEST</td>
<td></td>
</tr>
<tr>
<td>935</td>
<td>DOW JONES & COMPANY</td>
<td>187</td>
</tr>
<tr>
<td>770</td>
<td>DRESSELHAUS COMPUTER PRODUCTS</td>
<td>67</td>
</tr>
<tr>
<td>901</td>
<td>ELECTROHOME</td>
<td>169</td>
</tr>
<tr>
<td>791</td>
<td>ENCODE</td>
<td>67</td>
</tr>
<tr>
<td>940</td>
<td>ENZAN-HOSHIUMI (U.S.A.)</td>
<td>187</td>
</tr>
<tr>
<td>890</td>
<td>FAIRCHILD</td>
<td>217</td>
</tr>
<tr>
<td>785</td>
<td>GALACTIC INDUSTRIES</td>
<td>67</td>
</tr>
<tr>
<td>763</td>
<td>GENERAL COMPUTER</td>
<td>137</td>
</tr>
<tr>
<td>925</td>
<td>GENOA SYSTEMS</td>
<td>102</td>
</tr>
<tr>
<td>908</td>
<td>GENOC SYSTEMS</td>
<td></td>
</tr>
<tr>
<td>773</td>
<td>GICCO</td>
<td>67</td>
</tr>
<tr>
<td>774</td>
<td>GW INSTRUMENTS</td>
<td>67</td>
</tr>
<tr>
<td>757</td>
<td>HECHT-NIELSEN</td>
<td>11</td>
</tr>
<tr>
<td>762</td>
<td>HONEYWELL</td>
<td>67</td>
</tr>
<tr>
<td>984</td>
<td>IBM</td>
<td>11, 51, 102, 115</td>
</tr>
<tr>
<td>926</td>
<td>INTELLIGENT ACCESS</td>
<td>11</td>
</tr>
<tr>
<td>956</td>
<td>INTELLIGENT GRAPHICS</td>
<td>102</td>
</tr>
<tr>
<td>934</td>
<td>INTRODUCTION SYSTEMS</td>
<td>11</td>
</tr>
<tr>
<td>778</td>
<td>ITAC SYSTEMS</td>
<td>67, 934</td>
</tr>
<tr>
<td>888</td>
<td>JASMINE TECHNOLOGIES</td>
<td>11</td>
</tr>
<tr>
<td>799</td>
<td>KNOWLEDGE GARDEN</td>
<td>67</td>
</tr>
<tr>
<td>887</td>
<td>LANGUAGE PROCESSORS</td>
<td>207</td>
</tr>
<tr>
<td>757</td>
<td>LEAVO</td>
<td>137</td>
</tr>
<tr>
<td>954</td>
<td>LIVING VIDEO TEXT</td>
<td>187</td>
</tr>
<tr>
<td>956</td>
<td>LLOYD I/O</td>
<td>217, 238</td>
</tr>
<tr>
<td>795</td>
<td>LOGICAL SYSTEMS</td>
<td>217, 238</td>
</tr>
<tr>
<td>957</td>
<td>LOGITECH</td>
<td>102</td>
</tr>
<tr>
<td>766</td>
<td>LOTUS DEVELOPMENT</td>
<td>89, 155, 976</td>
</tr>
<tr>
<td>932</td>
<td>LUNDEEN & ASSOCIATES</td>
<td>187</td>
</tr>
<tr>
<td>933</td>
<td>MACMEMORY</td>
<td>137</td>
</tr>
<tr>
<td>982</td>
<td>MASSCOMP</td>
<td>197</td>
</tr>
<tr>
<td>943</td>
<td>MATHEWS</td>
<td>67</td>
</tr>
<tr>
<td>950</td>
<td>METWARE</td>
<td>197, 205, 207</td>
</tr>
<tr>
<td>986</td>
<td>MICRO DESIGN</td>
<td>11</td>
</tr>
<tr>
<td>984</td>
<td>MICROCHIP</td>
<td>243</td>
</tr>
<tr>
<td>880</td>
<td>MICROPROCESSOR</td>
<td>187</td>
</tr>
<tr>
<td>983</td>
<td>MICROSOFT</td>
<td>127, 155, 169, 187</td>
</tr>
<tr>
<td>870</td>
<td>MICROTECH</td>
<td>67</td>
</tr>
<tr>
<td>936</td>
<td>MINDSCAPE</td>
<td>187</td>
</tr>
<tr>
<td>966</td>
<td>MOTOROLA SEMICONDUCTOR</td>
<td>238</td>
</tr>
<tr>
<td>908</td>
<td>NEC ELECTRONICS (U.S.A.) INC</td>
<td>67, 169</td>
</tr>
<tr>
<td>884</td>
<td>NEC INFORMATION SYSTEMS</td>
<td>102, 121, 127</td>
</tr>
<tr>
<td>979</td>
<td>NSI LOGIC</td>
<td>11</td>
</tr>
<tr>
<td>929</td>
<td>ODLUVAI</td>
<td>11</td>
</tr>
<tr>
<td>922</td>
<td>ORACLE</td>
<td>11</td>
</tr>
<tr>
<td>952</td>
<td>ORCHID TECHNOLOGY</td>
<td>155, 169</td>
</tr>
<tr>
<td>855</td>
<td>PAPERBACK SOFTWARE</td>
<td>67</td>
</tr>
<tr>
<td>930</td>
<td>PARADISE SYSTEMS</td>
<td>102</td>
</tr>
<tr>
<td>948</td>
<td>PARAGON CONCEPTS</td>
<td>187</td>
</tr>
<tr>
<td>781</td>
<td>PC SYSTEMS</td>
<td>67</td>
</tr>
<tr>
<td>888</td>
<td>PERSONAL COMPUTER PERIPHERALS</td>
<td>134</td>
</tr>
<tr>
<td>892</td>
<td>PENTTREE SOFTWARE</td>
<td>67</td>
</tr>
<tr>
<td>902</td>
<td>PROSOFT</td>
<td>169</td>
</tr>
<tr>
<td>856</td>
<td>PROXIMITY TECHNOLOGY</td>
<td>49</td>
</tr>
<tr>
<td>762</td>
<td>QMS</td>
<td>67</td>
</tr>
<tr>
<td>934</td>
<td>QUADRUM</td>
<td>102</td>
</tr>
<tr>
<td>935</td>
<td>QUINTUS COMPUTER SYSTEMS</td>
<td>11</td>
</tr>
<tr>
<td>886</td>
<td>RADUS</td>
<td>139</td>
</tr>
<tr>
<td>887</td>
<td>RAY TRACING</td>
<td>67</td>
</tr>
<tr>
<td>876</td>
<td>REVOLUTION SOFTWARE</td>
<td>187</td>
</tr>
<tr>
<td>893</td>
<td>RISING STAR INDUSTRIES</td>
<td>11</td>
</tr>
<tr>
<td>938</td>
<td>SALINON</td>
<td>67</td>
</tr>
<tr>
<td>888</td>
<td>SANTA RITA SOFTWARE</td>
<td>67</td>
</tr>
<tr>
<td>975</td>
<td>SCO A SYSTEMS</td>
<td>102</td>
</tr>
<tr>
<td>979</td>
<td>SEMICONDUCTOR PHYSICS</td>
<td>67</td>
</tr>
<tr>
<td>985</td>
<td>SIGNAL DESIGN</td>
<td>102</td>
</tr>
<tr>
<td>951</td>
<td>SILICON BEACH SOFTWARE</td>
<td>187</td>
</tr>
<tr>
<td>887</td>
<td>SILICON VALLEY SOFTWARE</td>
<td>207</td>
</tr>
<tr>
<td>978</td>
<td>SIMON & SCHUSTER SOFTWARE</td>
<td>67</td>
</tr>
<tr>
<td>985</td>
<td>SMS</td>
<td>102</td>
</tr>
<tr>
<td>889</td>
<td>SOFTAID</td>
<td>243</td>
</tr>
<tr>
<td>886</td>
<td>SOFTKLONE DISTRIBUTING</td>
<td>187</td>
</tr>
<tr>
<td>957</td>
<td>SOFTWARE INTERFACE</td>
<td>67</td>
</tr>
<tr>
<td>982</td>
<td>SOFTWARE SUPPLY</td>
<td>187</td>
</tr>
<tr>
<td>956</td>
<td>SOFTWARE VENTURES</td>
<td>187</td>
</tr>
<tr>
<td>957</td>
<td>SOLUTIONS</td>
<td>187</td>
</tr>
<tr>
<td>879</td>
<td>SPEECH SYSTEMS</td>
<td>11</td>
</tr>
<tr>
<td>985</td>
<td>STB SYSTEMS</td>
<td>102</td>
</tr>
<tr>
<td>997</td>
<td>SUN</td>
<td>197</td>
</tr>
<tr>
<td>985</td>
<td>SUPERA</td>
<td>67</td>
</tr>
<tr>
<td>977</td>
<td>SWANSON ANALYSIS SYSTEMS</td>
<td>67</td>
</tr>
<tr>
<td>978</td>
<td>SYSTEMS MANUFACTURING</td>
<td>67</td>
</tr>
<tr>
<td>896</td>
<td>T. N. T. SOFTWARE</td>
<td>169</td>
</tr>
<tr>
<td>127</td>
<td>TANDY/RADIO SHACK</td>
<td>127</td>
</tr>
<tr>
<td>102</td>
<td>TATUNG OF AMERICA</td>
<td>102</td>
</tr>
<tr>
<td>89</td>
<td>TECHNOLOGY MARKETING GROUP</td>
<td>89</td>
</tr>
<tr>
<td>102</td>
<td>TECMAR</td>
<td>102</td>
</tr>
<tr>
<td>11</td>
<td>TEXKNOWLEDGE</td>
<td>87</td>
</tr>
<tr>
<td>11</td>
<td>TEXAS INSTRUMENTS</td>
<td>11</td>
</tr>
<tr>
<td>102</td>
<td>THOMSON</td>
<td>102</td>
</tr>
<tr>
<td>11</td>
<td>TOS</td>
<td>187</td>
</tr>
</tbody>
</table>
COMING UP IN BYTE

Products in Perspective:

We begin this section with brief discussions of many new products in What's New. Short Takes will consider the following: Windows 2.0, Deskjet, Extra, Zenith Flat Screen, Sharp 4521, Oracle, and Sprint.

The Product Focus for April looks at 37 dot-matrix printers. If you're looking for a printer, check this out.

System reviews include the WYSE 386 and the Amiga 2000.

Hardware reviews cover liquid-crystal-shutter printers and two hardware debuggers, AT Probe and Periscope III.

Products up for discussion in software reviews are Microsoft C 5.0, FORTRAN 386, and Wendin DOS.

Application reviews feature Interleaf for the Macintosh and Byline.

Rounding out this section are the unique viewpoints of columnists Jerry Pournelle and Ezra Shapiro.

In Depth:

Our highlighted subject will be memory management, and the following topics will be covered: a memory management primer, OS/2 virtual memory management, implementing Unix on the 80386, and memory management on the Macintosh.

Features:

In Ciarcia's Circuit Cellar, Steve will present his SmartSpooler. Another article will look at Gordon Letwin's new book on OS/2, and we'll also provide information on a program called Fuzzy Prolog.
Important TIPS* for BYTE Subscribers:
Receive Product Information 10 Days Earlier!

All you need is a touch-tone telephone and your subscriber I.D. number.
See instructions facing the Reader Service Index in the back of this issue for outrageous time-saving opportunities!

*BYTE’s Telephone Inquiry Processing Service

BYTE ADVERTISING SALES STAFF:
Dennis J. Riley, Advertising Sales Manager, One Phoenix Mill Lane, Peterborough, NH 03458, tel. (603) 924-9281

NEW ENGLAND
ME, NH, VT, MA, RI, CT
Paul McPherson Jr. (603) 353-1760
McGraw-Hill Publications
757 Bayview Street
Boston, MA 02116

ATLANTIC
NY, CT, NJ (NORTH)
Lois G. Rahnamnia (212) 371-2096
McGraw-Hill Publications
1221 Avenue of the Americas
39th Floor
New York, NY 10020

DIET McGOW R GI 96-7111
McGraw-Hill Publications
Building A, 3rd Floor
777 Long Ridge Road
Stamford, CT 06902

EAST
PA, NJ (SOUTH), MD, VA, WV, DE, DC
David Frosa (215) 596-9833
McGraw-Hill Publications
Three Parkway
Philadelphia, PA 19102

SOUTHEAST
NC, SC, GA, FL, AL, TN
Carolyn F. Lovett (404) 252-8686
McGraw-Hill Publications
4170 Ashland Darwood Road
Suite 420
Atlanta, GA 30319

MIDWEST
IL, MO, KS, IA, ND, SD, MN, KY, OH, WI, MI, IN, IA, MI
Bob Desmond (312) 781-3740
McGraw-Hill Publications
Bever Building
645 North Michigan Ave
Chicago, IL 60611

SOUTHWEST
ROCKY MOUNTAIN
CO, WY, UT, TX, AR, LA
Karl Heinrich (718) 462-0757
McGraw-Hill Publications
7600 W. Tidwell Rd. Suite 500
Houston, TX 77040

SOUTHPACIFIC
SOUTHERN CA, AZ, NM,
LAS VEGAS
Jack Allison (714) 571-5363
McGraw-Hill Publications
3001 Red Hill Ave
Building #1 Suite 222
Costa Mesa, CA 92626

Tom Harvey (714) 480-3943
McGraw-Hill Publications
3333 Wilshire Boulevard
Los Angeles, CA 90010

NORTH PACIFIC
HI, WA, OR, ID, MT, WY, MT, WY, CA
Mike Kuebler (415) 361-4600
McGraw-Hill Publications
425 Battery Street
San Francisco, CA 94111

Bill McAlon (415) 349-4190
McGraw-Hill Publications
951 Martin’s Island Blvd.
3rd Floor
San Mateo, CA 94404

BYTE BITS (2x2)
Dan Harper (603) 924-6830
BYTE Publications
One Phoenix Mill Lane
Peterborough, NH 03458

The Buyer’s Mart (3x3)
Mark Evans (603) 924-3754
BYTE Publications
One Phoenix Mill Lane
Peterborough, NH 03458

BYTE Deck Mailings
National
Ed Ward (603) 924-6144
BYTE Publications
One Phoenix Mill Lane
Peterborough, NH 03458

A/R/C Computing Deck
Computing for Engineers
Mary Ann Gooding
(603) 924-9281
BYTE Publications
One Phoenix Mill Lane
Peterborough, NH 03458

International Advertising Sales Staff:

Mr. Hans Cooker
Publicis
Reinholdsasse 61
A-1037 Vienna, Austria
1 222 75 76 84

Mr. Guri Gupher
PO Box 3150
Bat Yam (591)-13 Israel
1 001 561 521 39

Mr. Fritz Knaackbeker
Lutherstrasse 19
D 6000 Frankfurt/Main 1
West Germany
1 069 72 01 81

Mrs. Maria Kamats
Pedro Texera R. Off 120
Pilar Mont 1
Madrid J Spain
1 45 52 961

Mr. Gart McKinley
Andrew Kam & Associates
Pindalawagen
S-17 31 Malmo, Sweden
1 44 0015

Mr. Alain Fournier
126 Leahsburg St. Honore
75008 Paris
France
1 62-80-03-81

Karen Lamore
34 Dover St
London W1X 9RA
England 01 493 1451

Manuela Caputo
Via Flavio Baracchi 1
20135 Milan, Italy
1 980103

Severts Ltd.
400 Orchard Road, #10-01
Singapore 0723
Republic of Singapore
Tel. 734-9701

Severts Ltd.
503 Wilson House
18-37 Wandaan St
Central, Hong Kong
Tel. 5 260146
Telex: 40954 SEVEK HK

Hiro Morita
Oversas Corp.
Room 1528
Kamagasaki Bldg.
3-2-4 Konanmachi,
Chiyoda-Ku
Tokyo 100, Japan
1 351 0811

Mr. Ernest McCravy
Empresa Internacional de Comunicaciones Ltda.
Ria de Consolacion, 222
C Moffitt 103
11922 Sao Paulo, S.P., Brazil
Tel. (11) 259-3611
Telex: (010) 3222 EMBR

BYTE * MARCH 1988

324
Alphabetical Index to Advertisers

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>100</td>
<td>100</td>
<td>199</td>
<td>199</td>
<td>298</td>
<td>298</td>
<td>397</td>
<td>397</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>101</td>
<td>101</td>
<td>199</td>
<td>199</td>
<td>397</td>
<td>397</td>
<td>397</td>
<td>397</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>102</td>
<td>102</td>
<td>200</td>
<td>200</td>
<td>398</td>
<td>398</td>
<td>398</td>
<td>398</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>103</td>
<td>103</td>
<td>201</td>
<td>201</td>
<td>399</td>
<td>399</td>
<td>399</td>
<td>399</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>104</td>
<td>104</td>
<td>202</td>
<td>202</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>105</td>
<td>105</td>
<td>203</td>
<td>203</td>
<td>401</td>
<td>401</td>
<td>401</td>
<td>401</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>106</td>
<td>106</td>
<td>204</td>
<td>204</td>
<td>402</td>
<td>402</td>
<td>402</td>
<td>402</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>107</td>
<td>107</td>
<td>205</td>
<td>205</td>
<td>403</td>
<td>403</td>
<td>403</td>
<td>403</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>108</td>
<td>108</td>
<td>206</td>
<td>206</td>
<td>404</td>
<td>404</td>
<td>404</td>
<td>404</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>109</td>
<td>109</td>
<td>207</td>
<td>207</td>
<td>405</td>
<td>405</td>
<td>405</td>
<td>405</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>110</td>
<td>110</td>
<td>208</td>
<td>208</td>
<td>406</td>
<td>406</td>
<td>406</td>
<td>406</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>111</td>
<td>111</td>
<td>209</td>
<td>209</td>
<td>407</td>
<td>407</td>
<td>407</td>
<td>407</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>112</td>
<td>112</td>
<td>210</td>
<td>210</td>
<td>408</td>
<td>408</td>
<td>408</td>
<td>408</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>113</td>
<td>113</td>
<td>211</td>
<td>211</td>
<td>409</td>
<td>409</td>
<td>409</td>
<td>409</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>114</td>
<td>114</td>
<td>212</td>
<td>212</td>
<td>410</td>
<td>410</td>
<td>410</td>
<td>410</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>115</td>
<td>115</td>
<td>213</td>
<td>213</td>
<td>411</td>
<td>411</td>
<td>411</td>
<td>411</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>116</td>
<td>116</td>
<td>214</td>
<td>214</td>
<td>412</td>
<td>412</td>
<td>412</td>
<td>412</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>117</td>
<td>117</td>
<td>215</td>
<td>215</td>
<td>413</td>
<td>413</td>
<td>413</td>
<td>413</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>118</td>
<td>118</td>
<td>216</td>
<td>216</td>
<td>414</td>
<td>414</td>
<td>414</td>
<td>414</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>119</td>
<td>119</td>
<td>217</td>
<td>217</td>
<td>415</td>
<td>415</td>
<td>415</td>
<td>415</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>120</td>
<td>120</td>
<td>218</td>
<td>218</td>
<td>416</td>
<td>416</td>
<td>416</td>
<td>416</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>121</td>
<td>121</td>
<td>219</td>
<td>219</td>
<td>417</td>
<td>417</td>
<td>417</td>
<td>417</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>122</td>
<td>122</td>
<td>220</td>
<td>220</td>
<td>418</td>
<td>418</td>
<td>418</td>
<td>418</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>123</td>
<td>123</td>
<td>221</td>
<td>221</td>
<td>419</td>
<td>419</td>
<td>419</td>
<td>419</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>124</td>
<td>124</td>
<td>222</td>
<td>222</td>
<td>420</td>
<td>420</td>
<td>420</td>
<td>420</td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td>125</td>
<td>125</td>
<td>223</td>
<td>223</td>
<td>421</td>
<td>421</td>
<td>421</td>
<td>421</td>
</tr>
<tr>
<td>27</td>
<td>27</td>
<td>126</td>
<td>126</td>
<td>224</td>
<td>224</td>
<td>422</td>
<td>422</td>
<td>422</td>
<td>422</td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td>127</td>
<td>127</td>
<td>225</td>
<td>225</td>
<td>423</td>
<td>423</td>
<td>423</td>
<td>423</td>
</tr>
<tr>
<td>29</td>
<td>29</td>
<td>128</td>
<td>128</td>
<td>226</td>
<td>226</td>
<td>424</td>
<td>424</td>
<td>424</td>
<td>424</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>129</td>
<td>129</td>
<td>227</td>
<td>227</td>
<td>425</td>
<td>425</td>
<td>425</td>
<td>425</td>
</tr>
<tr>
<td>31</td>
<td>31</td>
<td>130</td>
<td>130</td>
<td>228</td>
<td>228</td>
<td>426</td>
<td>426</td>
<td>426</td>
<td>426</td>
</tr>
<tr>
<td>32</td>
<td>32</td>
<td>131</td>
<td>131</td>
<td>229</td>
<td>229</td>
<td>427</td>
<td>427</td>
<td>427</td>
<td>427</td>
</tr>
<tr>
<td>33</td>
<td>33</td>
<td>132</td>
<td>132</td>
<td>230</td>
<td>230</td>
<td>428</td>
<td>428</td>
<td>428</td>
<td>428</td>
</tr>
<tr>
<td>34</td>
<td>34</td>
<td>133</td>
<td>133</td>
<td>231</td>
<td>231</td>
<td>429</td>
<td>429</td>
<td>429</td>
<td>429</td>
</tr>
<tr>
<td>35</td>
<td>35</td>
<td>134</td>
<td>134</td>
<td>232</td>
<td>232</td>
<td>430</td>
<td>430</td>
<td>430</td>
<td>430</td>
</tr>
</tbody>
</table>

To get further information on the products advertised in BYTE, fill out the reader service card by circling the numbers on the card that correspond to the inquiry number listed with the advertiser. This index is provided as an additional service by the publisher, who assumes no liability for errors or omissions.

* Correspond directly with company.
TIPS SUBSCRIBERS ONLY!*
Use BYTE's Telephone Inquiry Processing System
Using TIPS can bring product information as much as 10 days earlier.

SEND FOR YOUR SUBSCRIBER I.D. CARD:
1) If you are a new subscriber or have lost your I.D. card, circle #1 on the Reader Service Card; attach mailing label. We will immediately send your personal TIPS subscriber card.

GET PREPARED:
2) Write your Subscriber Number, as printed on your Subscriber I.D. Card, in boxes in Step 5 below. (Do not add 0's to fill in blank boxes)
3) Write numbers for information desired in boxes in Step 7 below. (Do not add 0's to fill in blank boxes)

CALL TIPS:
4) Now, on a Touch-Tone telephone dial: (413) 426-2688 and wait for voice commands.

ENTER YOUR SUBSCRIBER AND ISSUE NUMBERS:
5) When TIPS says: "Enter Subscriber Number" (Enter by pushing the numbers and symbols [as shown in the boxes] on telephone pad ignoring blank boxes) Enter:
6) When TIPS says "Enter magazine code & issue code" Enter:

ENTER YOUR INQUIRIES:
7a) When TIPS says "Enter (next) Inquiry Number" Enter one inquiry selection from below (ignore blank boxes)
7b) Repeat 7a as needed (maximum 17 inquiry numbers)

END SESSION:
8) End session by entering 0
9) Hang up after hearing final message

If you are not a subscriber fill out the subscription card found in this issue or, call BYTE Circulation 800-426-8912.

*Domatic and Canadian Subscribers Only!
Index to Advertisers by Product Category

To get further information on the products advertised in BYTE, fill out the reader service card by circling the numbers on the card that correspond to the inquiry number listed with the advertiser. This index is provided as an additional service by the publisher, who assumes no liability for errors or omissions.

* Correspond directly with company
FREE Information Retrieval Service

To assist you in making your evaluations, purchasing decisions, or recommendations, you can request further information directly from the manufacturer or service company on products and services advertised in this issue. There is no charge, no obligation. Just complete and mail the attached post-paid, self-addressed reply card, and we'll do the rest.

1. Circle numbers on reply card which correspond to numbers assigned to items of interest to you.
2. Check all the appropriate answers to questions "A" through "F".
3. Print your name and address and mail.

Fill out this coupon carefully. PLEASE PRINT. Requests cannot be honored unless the zip code is included. This card is valid for 6 months from date.

<table>
<thead>
<tr>
<th>A. What is your primary job function? (Check one only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Business Owner, General Management, Administrative</td>
</tr>
<tr>
<td>☐ MIS/DP, Programming</td>
</tr>
<tr>
<td>☐ Engineering/Scientific, R&D</td>
</tr>
<tr>
<td>☐ Professional (law, medicine, accounting)</td>
</tr>
<tr>
<td>☐ Other</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B. How many people does your company employ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ 0-24</td>
</tr>
<tr>
<td>☐ 25-99</td>
</tr>
<tr>
<td>☐ 100-499</td>
</tr>
<tr>
<td>☐ 500-999</td>
</tr>
<tr>
<td>☐ 1000 or more</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C. Reason for request: (Check all that apply)</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Business use for yourself</td>
</tr>
<tr>
<td>☐ Business use for your company</td>
</tr>
<tr>
<td>☐ Personal use</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D. Your next step after information is received:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Purchase order</td>
</tr>
<tr>
<td>☐ Evaluation</td>
</tr>
<tr>
<td>☐ Specification/Recommendation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E. Please indicate the product categories for which you influence the selection or purchase at your or your client's company or organization. (Check all that apply).</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Microcomputers</td>
</tr>
<tr>
<td>☐ Peripherals</td>
</tr>
<tr>
<td>☐ Software</td>
</tr>
<tr>
<td>☐ Accessories and supplies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F. For how many microcomputers do you influence the purchase of products at your or your client's company or organization?</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ 1</td>
</tr>
<tr>
<td>☐ 2-5</td>
</tr>
<tr>
<td>☐ 6-10</td>
</tr>
<tr>
<td>☐ 11 or more</td>
</tr>
</tbody>
</table>

CIRCLE FOR FREE INFORMATION

<table>
<thead>
<tr>
<th>Address</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>City</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Zip</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Name</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Title</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Company</th>
</tr>
</thead>
</table>

| Telephone |

CIRCLE FOR FREE INFORMATION

<table>
<thead>
<tr>
<th>Address</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>City</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Zip</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Name</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Title</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Company</th>
</tr>
</thead>
</table>

| Telephone |
Our Silentwriter™ LC890 is the first desktop publishing printer that gives you both popular standards for creating graphics and type: true Adobe PostScript® and LaserJet Plus emulation. That alone would be enough to cause headlines. But we also added many more features to simplify desktop publishing. Like both Apple and IBM compatibility. PC Week stated, “the LC890 is actually better than having both an Apple LaserWriter Plus and an HP LaserJet Plus on your desk.” Equally impressed, PC Magazine awarded it an “Editor’s Choice.” And cited it in their “Best of 1987” issue.

And because the Silentwriter has a simple, trouble-free printing mechanism, it will be creating headlines for years to come. In fact, it’s twice as reliable as ordinary lasers, with an average life of 600,000 pages.

If you don’t require the power of our LC890, consider the rest of the family. The LC850 for text applications and the LC860 Plus for text and less complex graphics.

To start producing your own headlines, call 1-800-343-4418 (in MA 617-264-8635). We'll send you reprints of all the great reviews and the name of the NECIS dealer nearest you.

NEC Printers. They only stop when you want them to.
Tandy Computers: Because there is no better value.™

TandyLink™ and Professional DeskMate™ put your PCs on speaking terms.

Now there's a simple, affordable approach to PC communications.

Introducing a workgroup designed specifically for small offices. Professional DeskMate software and TandyLink will give your department an enormous boost in production and efficiency—without a heavy investment.

Professional DeskMate combines the most valuable office applications in an easy-to-use integrated format. You get text processing, spreadsheet analysis, filing, telecommunications and business graphics.

And when you use this program in the TandyLink workgroup, every employee can share information and work together.

Each user can transmit Professional DeskMate files to or from other PCs in the workgroup. Exchange messages. Keep a department phone list. Share appointment calendars and even a printer.

No dedicated file server is needed. A TandyLink workgroup is user installable and operates easily on Tandy and other IBM® PC compatibles. For two stations, all you need is a simple RS-232 connection. For larger workgroups, just add an inexpensive TandyLink card to each computer.

The Professional DeskMate-TandyLink connection turns individual productivity into real teamwork power. Come to a Radio Shack Computer Center today for a demonstration.