THEME

Printer Technologies

Ciarcia's
ZyMOS AT-on-a-board
Turbo C, Turbo Basic, Turbo Pascal and Turbo Prolog: technical excellence

Borland International's Turbo Pascal, Turbo Basic and Turbo Prolog automatically identify themselves, by virtue of their 'Turbo' forenames, as superior language products with a common programming environment. The appellation also means to many PC users a 'must have' language. To us Turbo C looks like a coup for Borland.

Garry Ray, PC Week
Whether you’re a first-time programmer or an experienced one, Turbo Prolog’s natural implementation of Artificial Intelligence soon shows you how to build expert systems, natural language interfaces, customized knowledge bases and smart information management systems.

Turbo Prolog and Turbo C work hand-in-hand

Turbo Prolog\textregistered interfaces perfectly with Turbo C\textregistered because they’re both designed to work with each other.

The Turbo Prolog/Turbo C combination means that you can now build powerful commercial applications using two of the most powerful languages available.

How Turbo Prolog’s new Toolbox adds 80 powerful tools and 8000 lines of source code

In keeping with Borland tradition, we’ve quickly added the new Turbo Prolog Toolbox\textregistered to Turbo Prolog.

With 80 tools and 8000 lines of source code that can easily be incorporated into your own programs—and 40 sample programs that show you how to put these AI tools to work—the Turbo Prolog Toolbox is a highly intelligent, high-performance addition.

Only $99.95!

Turbo Prolog Toolbox features include:

\begin{itemize}
\item Business graphics generation: boxes, circles, ellipses, bar charts, pie charts, scaled graphics
\item Complete communications package: supports XMODEM protocol
\item File transfers from Reflex, dBASE III, *1-2-3,*Symphony*
\item A unique parser generator: construct your own compiler or query language
\item Sophisticated user-interface design tools
\item Contains 40 example programs
\item Easy-to-use screen editor: design your screen layout and I/O
\item Calculated fields definition
\item Over 8,000 lines of source code you can incorporate into your own programs
\end{itemize}

Turbo Prolog: The Natural Language of Artificial Intelligence

Turbo C does look like What We’ve All Been Waiting For: a full-featured compiler that produces excellent code in an unbelievable hurry . . . moves into a class all its own among full-featured C compilers . . . Turbo C is indeed for the serious developer . . . One heck of a buy—at any price.

Michael Abrash,
Programmer’s Journal
Turbo C: Powerful optimizing compiler ever

Sieve benchmark

<table>
<thead>
<tr>
<th>Turbo C</th>
<th>Microsoft C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compile time</td>
<td>2.4</td>
</tr>
<tr>
<td>Compile and link time</td>
<td>4.1</td>
</tr>
<tr>
<td>Execution time</td>
<td>3.95</td>
</tr>
<tr>
<td>Object code size</td>
<td>239</td>
</tr>
<tr>
<td>Execution size</td>
<td>5748</td>
</tr>
<tr>
<td>Price</td>
<td>$99.95</td>
</tr>
</tbody>
</table>

Technical Specifications

✓ Compiler: One-pass optimizing compiler generating linkable object modules. Included is Borland’s high-performance Turbo Linker. The object module is compatible with the PC-DOS linker. Supports tiny, small, compact, medium, large, and huge memory model libraries. Can mix models with near and far pointers. Includes floating point emulator (utilizes 8087/80287 if installed).

✓ Interactive Editor: The system includes a powerful, interactive full-screen text editor. If the compiler detects an error, the editor automatically positions the cursor appropriately in the source code.

✓ Development Environment: A powerful “Make” is included so that managing Turbo C program development is highly efficient. Also includes pull-down menus and windows.

✓ Links with relocatable object modules created using Borland’s Turbo Prolog into a single program.

✓ Inline assembly code.

✓ Loop optimizations.

✓ Register variables.

✓ ANSI C compatible.

✓ Start-up routine source code included.

✓ Both command line and integrated environment versions included.

✓ License to the source code for Runtime Library available.

Why more than 600,000 programmers worldwide are using Turbo Pascal today

The irresistible force behind Turbo Pascal’s worldwide success is Borland’s advanced technology. We created a compiler so fast, that Turbo Pascal® is now the worldwide standard. And there are more tools for Turbo Pascal than for any other development environment in the world.

You’ll get everything you need from Turbo Pascal and its 5 Toolboxes

Turbo Pascal and Family are all you’ll ever need to perfect programming in Pascal.

If you’ve never programmed in Pascal, you’ll probably want to start with Turbo Pascal Tutor® 2.0, and as your expertise quickly grows, add Toolboxes like our

- Database Toolbox®
- Editor Toolbox®
- Graphix Toolbox®
- GameWorks®
- Numerical Methods Toolbox®

Join more than 100,000 Turbo C enthusiasts. Get your copy of Turbo C today!

Minimum system requirements: All products run on IBM PC XT AT PS/2, portable and true compatibles: PC-DO F (68000), 2.0 or later. 286/386 compatible BASIC scanners and Editor Toolboxes require 640K

Borland International
4565 Scotts Valley Drive, Scotts Valley, CA 95066
Telephone: (408) 438-8400 Telex: 172373

And because Turbo Pascal is the established worldwide standard, 3rd party, independent non-Borland developers also offer an incredible array of programs for Turbo Pascal. Only $99.95!

For Scientists and Engineers: Turbo Pascal Numerical Methods Toolbox

The Numerical Methods Toolbox is a complete collection of Turbo Pascal routines and programs. Add it to your development system and you have the most comprehensive and powerful numerical analysis capabilities—at your fingertips!

The Numerical Methods Toolbox is a state-of-the-art mathematical toolbox with these ten powerful features:

✓ Zeros of a function
✓ Interpolation
✓ Differentiation
✓ Integration
✓ Matrix Inversion
✓ Matrix Eigenvalues
✓ Differential Equations
✓ Least Squares
✓ Fourier Transforms
✓ Graphics

Each module comes with procedures that can be easily adapted to your own program. The Toolbox also comes complete with source code. So you have total control of your application.

Only $99.95!
Turbo Basic introduces its powerful new Telecom, Editor and Database Toolboxes

Turbo Basic* is the breakthrough you've been waiting for. The same power we brought to Pascal with Turbo Pascal has now been applied to BASIC with Turbo Basic.

Compatible with BASICA, Turbo Basic is the high-performance, high-speed BASIC you'd expect from Borland.

Basically, Turbo Basic is all you need

It's a complete development environment which includes an incredibly fast compiler, an interactive editor and a trace debugging system. It outperforms all its rivals, and because it's compatible with BASICA, you probably already know how to use it.

Includes a free MicroCalc™ spreadsheet complete with source code. Only $99.95!

A technical look at Turbo Basic

- Full recursion supported
- Standard IEEE floating-point format
- Floating-point support, with full 8087 (math co-processor) integration. Software emulation if no 8087 present
- Program size limited only by available memory (no 64K limitation)
- VGA, CGA, and EGA support
- Access to local, static, and global variables
- Full integration of the compiler, editor, and executable program, with separate windows for editing, messages, tracing, and execution
- Compile, run-time, and I/O errors place you in the source code where error occurred
- New long integer (32-bit) data type
- Full 80-bit precision
- Pull-down menus
- Full window management

Database Toolbox means that you don't have to reinvent the wheel each time you write new Turbo Basic database programs.

- "Trainer" shows you how B+ trees work. (Simply key in sample records and you'll see your index being built.)
- Turbo Access instantly locates, inserts or deletes records in a database—using B+ trees.
- Turbo Sort sorts data on single items or on multiple keys and features virtual memory management for sorting large data files.

Source code included. Only $99.95!

For the dealer nearest you or to order by phone call

(800) 255-8008
in CA (800) 742-1133 in Canada (800) 237-1136

Editor Toolbox is all you need to build your own text editor or word processor. Includes source code for two sample editors.

First Editor is a complete editor ready to include in your programs, complete with windows, block commands and memory-mapped screen routines.

MicroStar™ is a full-blown text editor with a complete pull-down menu user interface, and gives you

- Wordwrap
- Undo last change
- Auto-Indent
- Find and Find/Replace with options
- Set left/right margins
- Block mark, move and copy
- Tab, insert, overstrike modes, line center etc.

Includes source code. Only $99.95!

Inquiry 29 for End-Users.
Inquiry 30 for DEALERS ONLY.
Contents

FEATURES 99

A Programmer's Introduction to OS/2 101
by Ray Duncan
Writing your first OS/2 application.

The New Generation:
A Closer Look 110
by Richard Grehan
Some surprises about the relative speeds of 80386 and 68020 machines.

Ciarcia's Circuit Cellar:
Build the Circuit Cellar AT Computer,
Part 1: AT Basics 115
by Steve Ciarcia
A faster, smaller, and more efficient 100 percent compatible AT CPU board.

Programming Project:
Crafting Reusable Software in Modula-2 123
by Hanna Oktaha and Rene Berber
Careful program design results in safe, reusable program libraries.

Programming Insight:
Teaching Old Screens New Tricks 129
by Michael J. Sorens
Create fancy screen displays for your homegrown programs.

Constructing an Associative Memory 137
by Bart Kosko
This nonlinear neural network runs on your PC.

Karmarkar's Algorithm 146
by Andrew M. Rockett and John C. Stevenson
A method for solving large linear programming problems.

THEME: Printer Technologies 161

Introduction 162
by Naomi M. Luft
If the growth of color printing has been slower than expected, it isn't for lack of technologies.

Vector-to-Raster Algorithms 177
by Dick Pountain
Disguising vector information as raster data.

Page Printers 187
by Rick Cook
New developments will help reduce cost and improve resolution.

Print Quality 199
by Lars Jansson
Rating printer technologies requires a set of objective definitions for print quality.

Engineering Close-Ups:
Taming the Hot Heads 209
by Keith B. Davenport
Using CAD to design more efficient print heads.

Matrix-Line Printing 215
by Mark Hohneker
This alternative to a serial moving-head design uses an eight-inch-wide bank of print hammers.

Color Thermal-Transfer Printing 221
by Julio Guardado
This process is simple in principle but challenging in its implementation.

Designing a High-Speed Page Printer Controller 225
by Phil Ellison
This design proves that the controller doesn't have to bottleneck the printing system.

Strip-Buffer vs. Full-Page Bit-Map Imaging 229
by Bert Douglas
This approach minimizes memory requirements.

REVIEWS 235

Reviewer's Notebook 236
by Cathryn Baskin
The Kaypro 386 239
by Ray Duncan
This machine delivers two to three times the performance of the IBM PC AT.
Mail-Order Performance ... 245
by Frederick D. Davis
The Proteus-286GT from Proteus Technology and the GV-286 from PC Designs.

The NEC MultiSpeed ... 253
by David Satz
An inexpensive portable with a fast microprocessor.

The Micro Clipper Graphics Subsystem 257
by Charles Weston
This two-board subsystem provides enhanced graphics for PC-based CAD systems.

PC-MOS/386 ... 263
by Richard Grehan
An 80386 operating system that combines multitasking, advanced task communications, and PC-DOS compatibility.

Actor 1.0 ... 266
by Leonard Moskowitz
A fast, memory-efficient alternative to Smalltalk.

ALS Prolog .. 269
by Alex Lane
A Prolog compiler that acts like an interpreter.

Benchmarking dBASE III Compilers 277
by Malcolm C. Rubel
Offerings from Nantucket, Wordtech Systems, and Fox Software.

DESQview 2.0 ... 281
by John McCormick
Windows, concurrent processing, virtual memory, and more.

KERNEL

Computing at Chaos Manor: In the Chips 289
by Jerry Pournelle
Fast Kat becomes even faster.

Applications Only: Potpourri 307
by Ezra Shapiro
Ezra looks at a database, a telecommunications package, and more.

LISTINGS

From BIX ... 285
From BYTEnet .. (617) 861-9764
On disk or in print .. see card after 256

DEPARTMENTS

Editorial: ... 6
Mere Conservatism—or Fear, Uncertainty, and Doubt?
Letters and Review Feedback 12
Chaos Manor Mail ... 28
Microbytes .. 37
What’s New ... 45
Events .. 65

BEST OF BIX

Apple ... 317
Macintosh ... 318
IBM PC .. 324

BYTE (ISSN 0360-5280) is published monthly with additional issues in June and October by McGraw-Hill Inc. Founder: James H. McGraw (1850-1948). Executive, editorial, circulation, and advertising offices: One Phoenix Mill Lane, Peterborough, NH 03458. Phone: 603-924-9200. Office hours: Monday through Thursday 8:30 AM-4:30 PM, Friday 8:30 AM-1:00 PM. Eastern Time. Address subscriptions to BYTE Subscriptions, 262 Old New Brunswick Rd., Piscataway, NJ 08854. Second-class postage paid at Peterborough, NH 03458 and additional mailing offices. Postage paid at Winston, Manitoba. Manitoba Registration number 4921. Subscriptions are $3.50 for one year, $6.90 for two years, and $11 for three years in the U.S. and its possessions. In Canada and Mexico, $25 for one year, $47 for two years, and $78 for three years. No charge for one year air delivery to Japan, $15.60 for one year surface delivery to Japan, $37 surface delivery elsewhere. Air delivery to selected areas at additional rates upon request. Single copy price is $3.50 in the U.S. and its possessions. $4.25 in Canada and Mexico, $4.50 in Europe, and $65 for three years. Subscriptions and sales should be remitted in U.S. funds drawn on a U.S. bank. Please allow six to eight weeks for delivery of first issue. Printed in the United States of America.

Address editorial correspondence to: Editor, BYTE, One Phoenix Mill Lane, Peterborough, NH 03458. Unsolicited manuscripts will be returned if accompanied by sufficient postage. Not responsible for lost manuscripts or photos. Opinions expressed by the authors are not necessarily those of BYTE.

Copyright © 1987 by McGraw-Hill Inc. All rights reserved. Trademark registered in the United States Patent and Trademark Office. Where necessary, permission is granted by the copyright owner for libraries and others registered with the Copyright Clearance Center (CCC) to photocopy any article herein for the fee of $1.30 per copy of the article or any part thereof. Correspondence and payments should be sent directly to the CCC, 22 Congress St., Salem, MA 01970. Specify ISSN 0360-5280/87 $1.30. Copying done for other than personal or internal reference unless the permission of McGraw-Hill Inc. is prohibited. Requests for special permission or bulk orders should be addressed to the publisher. BYTE is available in microfilm from University Microfilms International, 300 North Zeeb Rd., Dept. PK, Ann Arbor, MI 48106 or in 16 mm microfilm from North Adams, MA 01247. Copyright Office: 1. Subscriptions and sales should be remitted in U.S. funds drawn on a U.S. bank. Please allow six to eight weeks for delivery of first issue. Printed in the United States of America.

McGraw-Hill Inc. All rights reserved. Trademark registered in the United States Patent and Trademark Office. Where necessary, permission is granted by the copyright owner for libraries and others registered with the Copyright Clearance Center (CCC) to photocopy any article herein for the fee of $1.30 per copy of the article or any part thereof. Correspondence and payments should be sent directly to the CCC, 22 Congress St., Salem, MA 01970. Specify ISSN 0360-5280/87 $1.30. Copying done for other than personal or internal reference unless the permission of McGraw-Hill Inc. is prohibited. Requests for special permission or bulk orders should be addressed to the publisher. BYTE is available in microfilm from University Microfilms International, 300 North Zeeb Rd., Dept. PK, Ann Arbor, MI 48106 or in 16 mm microfilm from North Adams, MA 01247. Copyright Office: 1. Subscriptions and sales should be remitted in U.S. funds drawn on a U.S. bank. Please allow six to eight weeks for delivery of first issue. Printed in the United States of America.

Subscription questions or problems should be addressed to: BYTE Subscriber Service, 262 Old New Brunswick Rd., Piscataway, NJ 08854.
HiWIRE™ Starts the Job that smARTWORK® Finishes

Introducing HIWIRE™

Wintek's smARTWORK® is used by thousands of engineers to design printed-circuit boards. Now Wintek introduces HIWIRE, an electronic-schematic program that is easy to learn and use.

With a click of the mouse button, you can extract symbols from our library of over 700 common components and connect them with wires and buses. You can also easily modify the library's symbols or create your own by combining labels, lines, and arcs.

HIWIRE Advantages

- Easy-to-learn mouse/menu-driven operation
- Complete documentation and tutorial
- Extensive TTL, CMOS, microprocessor, and discrete-component libraries
- Rubberbanding

- Moving, copying, mirroring, and rotating of symbols
- Text-string searching
- Multiple display windows
- High-quality schematics from printers and plotters
- Hierarchical-design support; netlist and bill-of-materials utilities
- Schematic/layout cross checking
- 800 number for free technical support

System Requirements

- IBM Personal Computer, PC XT, or PC AT with 320K RAM, parallel printer port, 2 disk drives, and DOS V2.0 or later
- IBM Color/Graphics Adapter or EGA with RGB color monitor
- Microsoft Mouse
- IBM Graphics Printer or Epson FX/MX/RX-series dot-matrix printer, and/or:
- Houston Instrument DMP-40, 41, 42, 51, 52 or Hewlett-Packard 7470, 7475, 7550, 7580, 7585, 7586 plotter

High Performance at Low Cost

At $895, HIWIRE delivers quality schematics quickly and easily. You don't need to guess whether or not HIWIRE is right for you. Our money-back guarantee lets you try it for 30 days at absolutely no risk. Call (800) 742-6809 toll free today and put HIWIRE to work tomorrow.

Wintek Corporation
1801 South Street
Lafayette, IN 47904-2993
Telephone: (800) 742-6809 or in Indiana (317) 742-8428
Telex: 70-9079 WINTEK CORP UD

"HIWIRE" is a trademark, and "smARTWORK", "Wintek", and the Wintek logo are registered trademarks of Wintek Corporation.
Mere Conservatism—or Fear, Uncertainty, and Doubt?
During COMDEX last June in Atlanta, we conducted a Microcomputer Opinion Poll in the BYTE booth. We asked voters to tell us which machine they considered the best general-purpose microcomputer and which machine they thought would have the biggest market penetration. We asked voters to choose among the IBM PC AT, IBM PS/2 Model 50/60, the IBM PS/2 Model 80, the Compaq 386, the Macintosh II, or "other." (It has to be noted that Apple and many Apple developers pulled out of COMDEX some time ago and that interest in Apple products at COMDEX may be less than among the country's whole population of Apple users and developers.) We also asked about preference for operating systems. A lively group of 9154 people came to our booth and voted in the poll. We asked them to identify themselves as end users, consultants, software developers, or hardware developers, and people identified themselves as follows:

<table>
<thead>
<tr>
<th>Category</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>End users</td>
<td>42 percent</td>
</tr>
<tr>
<td>Consultants</td>
<td>37 percent</td>
</tr>
<tr>
<td>Software developers</td>
<td>37 percent</td>
</tr>
<tr>
<td>Hardware developers</td>
<td>17 percent</td>
</tr>
</tbody>
</table>

Clearly, many people belonged in more than one category.

Best General-Purpose Microcomputer
The results of the vote on best general-purpose microcomputer were surprising:

<table>
<thead>
<tr>
<th>Machine</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM PC AT</td>
<td>46 percent</td>
</tr>
<tr>
<td>Compaq 386</td>
<td>20 percent</td>
</tr>
<tr>
<td>IBM PS/2 Model 50/60</td>
<td>9 percent</td>
</tr>
<tr>
<td>Macintosh II</td>
<td>8 percent</td>
</tr>
<tr>
<td>IBM PS/2 Model 80</td>
<td>6 percent</td>
</tr>
<tr>
<td>All other machines</td>
<td>12 percent</td>
</tr>
</tbody>
</table>

Since our question asked nothing about the prices of machines, we expected most votes to be divided among the three most powerful machines: the Compaq 386, the IBM PS/2 Model 80, and the Apple Macintosh II. Nevertheless, almost half the voters went for the IBM PC AT. Among them, the three most powerful machines got 34 percent of the vote, with the bulk of that going to the Compaq 386—the 32-bit machine that is most familiar and has been on the market longest.

As expected, MS-DOS got the lion's share of the vote. It beat the combined vote for versions of OS/2 by 52 percent to 32 percent. Surprisingly, the extended version of OS/2—IBM's own version with mainframe-compatible database and communications facilities built in—topped the standard version of OS/2. Unix did well also, getting 17 percent of the vote, more than the extended version of OS/2 and more than twice as much as the standard version of OS/2. It looks as if some Macintosh II proponents are planning to use Unix.

MS-DOS had fewer supporters among software developers and consultants than across the whole population. Only 45 percent of the software developers and 48 percent of the consultants went for MS-DOS, but 54 percent of the end users voted for it.

Not surprisingly, Unix got 22 percent of the vote from software developers and only 14 percent from end users. The OS/2 standard version was equally popular among the different types of voters, while the OS/2 extended version did a little better among software developers and consultants.

Conclusions, Anyone?
Although computer people often want the best and the latest and the most powerful, most people at COMDEX were reluctant to embrace the new generation of microcomputer hardware and software. True, neither the Macintosh II nor the PS/2 Model 80 was available when COMDEX took place, and that may account for their surprisingly weak showings.

But a larger factor is the unsettled character of the market as everyone waits to see whether IBM will permit PS/2 compatibles to be made under any conditions. There is a bit more receptiveness to OS/2 than to IBM's PS/2 machines: 32 percent of the voters were willing to go with OS/2, while only 15 percent thought a PS/2 machine is the best microcomputer. On the other hand, 29 percent thought the PS/2 machines would have the greatest market penetration.

We'll conduct this poll again in our booth this fall at the COMDEX in Las Vegas and let you know how preferences have changed.

—Phil Lemmons
Editor in Chief
When computers get down to business, they move up to Maxell.

Maxell was first to provide you with a 5 1/4" high density floppy disk. Just another example of how we keep you a step ahead.

Maxell Corporation of America, 60 Oxford Drive, Moonachie, NJ 07074
If you're looking for a high-speed laser printer that can easily handle as many as 25,000 pages a month, the new Toshiba PageLaser12 is the machine for you.

It thrives in any high-volume office environment. Whether it consists of a productive single user, or a network of multiple users sharing the workload. PageLaser12's extended product life might help to explain its hard-work mentality. At up to 1.2 million pages, it's three times more durable than other laser printers.

You'll also have an equal appreciation for its advanced paper handling options. Our Toshiba-made dual-bin paper feeders, combined with PageLaser12's standard cassette feeder, give you a paper capacity of 750 sheets.

That's 500 sheets more than most other laser printers.

But here's the best part. With three paper feeders, you can now print multiple paper types and sizes automatically. Letter, legal, letterhead, even labels can be accessed with no physical change.

What's more, our optional proprietary envelope feeder lets you print large quantities of envelopes without constantly banging away on your office typewriter.

You can also use the same font style that appears on your letters to create a
more professional, unified look.

But don't think for a second all these bells and whistles slow down performance. At 12 pages per minute, PageLaser12 is up to 50% faster than many other laser printers.

As for multiple emulations, HP LaserJet 500 Plus®, Diablo®, IBM® Graphics, Qume® and Toshiba P351 all come standard, as do parallel/serial interfaces. There's also a 1.5MB memory option for full-page 300 dpi graphics. And our optional output jogger/collator ensures easy separation of multiple copy output. All of which means PageLaser12 can meet the needs of any office worker.

A complete library of Toshiba font cartridges is available with multiple HP LaserJet-compatible fonts on each cartridge. And PageLaser12's high-volume capability and low-priced supplies produce one of the lowest desktop laser costs per page in existence.

To top it off, you get all this high-volume ingenuity, speed and flexibility for what you'd expect to pay for a less equipped low-volume laser printer.

So if your business prospers on high volume, get the laser printer that does the same. The PageLaser12.

For more details, call 1-800-457-7777 for the name of the Toshiba printer and computer dealer nearest you.

Then see how well PageLaser12 performs in your surroundings.
"The Ada programming language shall be the single, common, high order programming language for...

"...all computers that are integral to, physically a part of, dedicated to, or essential in real time to a performance of the mission of weapon systems...used for specialized training, diagnostic testing and maintenance, simulation, or calibration of weapon systems...used for research and development of weapon systems...Use of validated compilers is required...this directive is effective immediately."

"...Defense computer resources used in intelligence systems, for the command and control of military forces...all major software upgrades...all other applications (some exceptions) in keeping with the long range goal of establishing Ada as the primary DoD higher order language...waivers to the policy...shall be strictly controlled and closely reviewed...this directive is effective immediately."
Introducing PC AT Version 3

The Serious Ada Compiler
For Serious Ada Programmers

If you're a serious Ada programmer today, or expect to be one—if you're serious about DoD business and those new DoD directives—you look for a lot more in your Ada compiler than just validation. And the new fourth-generation Alsys Ada compiler Version 3 for the PC AT and compatibles gives it to you.

Take code quality, for example. Version 3 generates the highest quality code of any Ada compiler on any machine! Check the PIWG benchmarks, and those of U-Michigan. Compare the quality with code from the mature C and Pascal compilers you're used to. Check especially where you might need quality most, and where Version 3 shines—in the implementation of procedure calls and exceptions. The elimination of code associated with unused subprograms gives you large reductions in code size in many applications.

Consider the Runtime Executive. True production quality. No exception-handling overhead is incurred unless an exception is actually raised. The Runtime is optimized for programs running in limited memory, or running for a long time. That's serious.

Consider the Ada-specific high level optimizer technology (not derived from Fortran or C) that removes redundant constraints checks and does so much more for code quality.

Consider robustness and reliability. Version 3 is written in Ada and bootstrapped through itself. That's proof right there that it will compile 400,000 lines of Ada code. Beyond validation, we test our compilers on hundreds of thousands of lines of extra code—from the ACEC tests, and from Ada Repository programs, and from our own specially designed code that breaks most other compilers.

There's a lot more that's serious about Version 3. The new Multi-Library environment, for example, that maximizes the efficiency of programming teams; error messages that correct, instruct, and speed the programming process; human engineering; superb documentation and customer support.

Send for our free brochure
The Many Facets of Quality.
Lyrix Flaws
It was with some concern that I read George R. Allen's review of the Lyrix word processor in the May BYTE. Why would anyone compare a word processor with a text editor? That's like saying that it's easier to use Lotus 1-2-3 than to program each application in BASIC. Lyrix calls itself a word processor, and it should have been compared with word processors.

I use Lyrix 4.0.5 under Xenix 03.01.01 on a Tandy 6000 HD system, so in the following comments I am guilty of comparing oranges with, say, tangerines. But with that admission, I'll proceed.

First, Mr. Allen claims that Lyrix "takes advantage of the file-security capabilities of the Unix environment." Lyrix does no more than acknowledge whether a file is writable or readable. Permission assignments must be made from Unix/Xenix, not from Lyrix.

Second, the spelling checker I have is painfully slow. It also fails to allow on-line additions to the dictionary and does not permit global passing of a correctly spelled nondictionary word. Furthermore, the hyphenation feature does not syllabification, and Lyrix removes any hyphens the writer puts in manually.

Other problems include an inability to send special characters to the printer in mid-line and the lack of an index, table of contents, and footnotes or endnotes.

One serious defect is that Lyrix takes over the function keys and the keypad when you enter the Edit mode. These function-key assignments are useful and contribute much to Lyrix's ease of use; however, when you leave Lyrix, you're left with the function keys unassigned.

Lyrix handles long documents well. Although page-oriented, it flows like a document-oriented word processor, and page breaks are indicated by a dashed line that also gives the page number.

But all in all, Lyrix is not comparable to any of the serious word-processing packages like Microsoft Word or WordPerfect. It doesn't even compare favorably with text editors originating in the TTY age.

David D. Farris
Huntsville, TX

When reviewing a product such as Lyrix, it is convenient to compare it to a heavily used product of a similar nature that operates in the same environment. In my full-time work, I use one of about eight mainframe Unix systems or one of several Xenix-based PC systems. All these systems use vi as a word processor, even though it is a text editor. At the time that I wrote the review (Fall 1986), none of my associates had any form of word- or text-processing systems other than vi running on their Xenix PCs. For these reasons, I chose to compare Lyrix to vi, if only to show that there is a better way.

I use version 5.0 of Lyrix, and I cannot duplicate your problems with the spelling checker. It is reasonably fast, and I can make on-line additions to the dictionary without any difficulties. I can also perform global passing of words without problems, using the & command.

I am not sure if you realize that you have an older version of Lyrix. Version 5.0 does have, for example, footnote and table-of-contents capability. I've experienced none of the problems that you have experienced, and I suggest that you contact SCO for assistance.

—George R. Allen

Lyrix Features
George R. Allen's review of Lyrix in the May BYTE failed to adequately address the program's primary strengths and weaknesses. Mr. Allen says that Lyrix has almost all the capabilities of vi. Since vi has regular expressions and Lyrix does not, Lyrix has almost none of the capabilities of vi. But since vi is a text editor and Lyrix is a word processor, that's as it should be.

However, Lyrix has some amazing features. The primary one is that Lyrix is almost totally customizable; you can add or delete menu options at your discretion. Best of all, the help screens are configurable. This, in addition to the customizable editing commands, means that you can configure Lyrix to look like any word processor you like, and the help screens can reflect the changes. I use Perfect Writer at home, so I configured the editing commands of my copy of Lyrix to reflect Perfect Writer commands.

With all these delights, the Lyrix designers made some strange decisions about the program's functions and capabilities. One of Lyrix's drawbacks is its slow editing speed. Mr. Allen touched on it a little, but he failed to give it the importance it deserved. For sheer editing speed, probably nothing could beat vi, and Lyrix doesn't even come close.

Other drawbacks have to do with Lyrix's use of rulers to control the various formatting decisions and its lack of defaults (that I could find) in text-spacing for a page. Also, you can use the Delete key for one line only; you must use the arrow keys to get back to the previous line. More discouraging is Lyrix's tendency to insert new text in the middle of old text when wrapping a line in a paragraph. (These last two flaws are probably defects in my Lyrix terminal-configuration file and not a defect in Lyrix.)

Finally, Lyrix uses dot commands at the beginning of a line to specify options like line spacing. WordStar fans may like this, but it's annoying to the rest of us.

The only major bugs I found have to do with the way Lyrix reformats paragraphs. Lyrix assumes that anything with a period, colon, or semicolon is a sentence and puts two spaces after it. Also, when formatting paragraphs, Lyrix leaves the cursor at the bottom of the paragraph instead of leaving it where it started.

On balance, Lyrix does an adequate job as a word processor. It isn't as fancy as Microsoft Word, for instance, but its flexibility redeems it. Lyrix hasn't seriously challenged the "power" word processors, like WordPerfect 4.2, because its formatting isn't as powerful yet. But due to its modularity, I wouldn't take any bets on how long it will be before Lyrix gives the best DOS-based word processors a run for their money in printer control, if only because of its simplicity.

Darrel W. Riley
Seattle, WA

LETTERS POLICY: To be considered for publication, a letter must be typed double-spaced and include your name and address. Comments and ideas should be expressed as clearly and concisely as possible. Listings and tables may be printed along with a letter if they are short and legible.

Because BYTE receives hundreds of letters each month, not all of them can be published. Letters cannot be returned to authors. Generally, it takes four months from the time BYTE receives a letter until it is published.
We invented the modem that makes fewer demands on your PC.

The Ven-Tel Half Card™ modem. All the power and speed of our regular modems, but with some major advantages for people who demand versatility from their PC.

Regular modems plug into one of your computer's full-size slots. Just like expansion boards-color boards, graphics cards and memory expanders.

The Ven-Tel Half Card modem is different. It plugs into a short slot, freeing up a long slot so your PC can handle an additional function. And while other modems have about 300 components, ours has 70. So it not only demands less space from your computer—it also demands less power and generates less heat. Your PC stays cool and stress-free.

Competitively priced, the Half Card modem is available in both 1200 baud and 2400 baud speeds. And it's backed by Ven-Tel's free five-year warranty. No other major manufacturer even comes close.

If you make a lot of demands on your PC... demand the less-demanding modem: The Ven-Tel PC Modem Half Card.

Ven-Tel Modems

Inquiry 304
Supports up to 150 lbs.
All steel frame construction
59 square foot footprint

The AnthroCart is designed for tight spaces. Designed so your workspace is as slick as your hardware.

Call us: 800-325-3841

On the issue of whether Lyrix has most of the capabilities of vi, I think you and I differ on the semantics of the word capabilities. Lyrix does have most of the capabilities of vi, even though vi is a text editor.

Your comments on the customization features of Lyrix are correct. I have used the customization features to a much greater extent than I mentioned in the review. This feature is one of Lyrix's greatest selling points.

I did verify several of the problems that you pointed out, which I had not picked up in my usage. In regard to Lyrix's speed on my IBM PC, the occasional response problems also appear with vi on my PC, so I don't think that Lyrix itself has a significant speed problem. I may be a little biased, because the time-sharing systems that I use in my work are extremely slow due to the large number of users. Lyrix on my PC is faster than my systems at work by a large factor.

--George R. Allen

C, More

In the June C interpreter review, Mr. Unger didn't point out the most obvious advantage to using the C-terp interpreter. When you set up C-terp with your current compiler, C-terp offers exactly the same functions and features as the compiler. This means that you don't have to create two versions of a program, one for C-terp and one for the compiler.

By using C-terp, I can write a 10,000-line program using all the functions of the Microsoft compiler and still run it under the interpreter to find a bug or error. When you're dealing with large programs with long compile times, C-terp is a godsend. If I had to take my 10,000-line program (in 20 to 30 files) and, for example, change all occurrences of get() to getline(), I could never get a program developed.

C-terp is too expensive if you are only trying to learn C, but it is well worth the money for professional programmers. If you develop serious C programs, once you try C-terp you will never go back.

--P. Lyle Mariam

St. Louis, MO

I pointed out in my review that if you have a copy of one of the five C compilers supported by C-terp, you can create a version of the interpreter that uses all the functions that are available with that compiler.

In fact, you can add other library functions to the interpreter using a simple but somewhat tedious procedure; I added the entire Essential Graphics graphics functions to a version of C-terp. It increases the size of the interpreter program and...
"The A★Star's CPU performance is substantially above that of the IBM PS/2 Model 60."

- InfoWorld

WHO CARES!

For about $5300, you could own an IBM PS/2 Model 60. But for as little as $1100, you could own a Wells American A★Star® that can outperform it. Of course, for nearly the same money as an A★Star, you could also own any number of Asian built no-name clones.

But then you wouldn't be getting the exclusive ownership advantages that only the A★Star offers. Advantages like an 80286 CPU that runs the new MS OS/2 operating system and can also run at 6, 8, 10, 12, 14 and now...16 MHz! And you wouldn't be getting schematics. (Ours are free!) Or GE/RCA on-site maintenance. Or a no questions asked money-back guarantee. Oh, and there's one more little item you wouldn't get...peace of mind. Wells American has been making microcomputers longer than IBM!

In fact, we've probably been making microcomputers longer than anybody!

But hey, who are we kidding? Not everyone cares about quality, reputation, support or serviceability. That's why there are mail-order houses. And, as hard as it is to believe, not everyone cares about money or performance. Maybe that's why there's IBM (and Compaq®...and all the others). But, for computer users who do care, there is, fortunately, a vendor who also cares...Wells American. And, we'd like to prove it to you. Call us with the page number of this ad. It's worth a big discount on your next A★Star computer system. Call today. 803/796-7800. This offer is limited.

Wells American.

Corporate Headquarters: 3243 Sunset Boulevard • West Columbia, South Carolina 29169 • 803/796-7800 • TWX 510-601-2645

IBM, OS/2 and PS/2 are trademarks of International Business Machines Corporation.
1. **db_VISTA** is written in C.
2. It's fast, combining B-tree indexing with "network" or direct "set" relationships between records.
3. It's flexible. Use **db_VISTA** as a file manager or a complex database; single-user PC to multi-user VAX with millions of records. Upgrade easily with full compatibility!
4. It's portable. MS-DOS, UNIX, VMS . . . see list below.
5. It uses space efficiently. Non-RAM resident; only operative functions are in your run-time program.

And there's more . . .

6. Royalty-free run-time.
7. Complete source code available.
8. SQL-based **db_QUERY**!
9. Add fast, C-linkable **db_QUERY** for ad-hoc queries and reports. Build an end-user interface; provide an relational view of the database.
10. **FREE tech support hotline!** 60 days free; for product or application development help. Extended support, consulting, training classes — all available.

That's just the beginning! Want more details? Call today!

Order Now. It's easy — simply call toll-free. We'll answer your technical questions and get you started . . . fast delivery.

db_VISTA

<table>
<thead>
<tr>
<th>Royalty Free Prices</th>
<th>Object</th>
<th>w/Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-User</td>
<td>$195</td>
<td>$495</td>
</tr>
<tr>
<td>Multi-User</td>
<td>$495</td>
<td>$990</td>
</tr>
<tr>
<td>VAX Multi-User</td>
<td>$990</td>
<td>$1,980</td>
</tr>
</tbody>
</table>

db_QUERY prices are the same as above

Operating systems: MS-DOS, UNIX, XENIX, ULTRIX, VMS; more . . .

Compilers: Microsoft, Lattice, IBM, Computer Innovations, Aztec, Turbo C, UNIX, XENIX; more to come . . . also works with most C libraries!

C PROGRAMMER!

10 Important Reasons to Use db_VISTA for File Management

1. **db_VISTA** is written in C.
2. It's fast, combining B-tree indexing with "network" or direct "set" relationships between records.
3. It's flexible. Use **db_VISTA** as a file manager or a complex database; single-user PC to multi-user VAX with millions of records. Upgrade easily with full compatibility!
4. It's portable. MS-DOS, UNIX, VMS . . . see list below.
5. It uses space efficiently. Non-RAM resident; only operative functions are in your run-time program.

And there's more . . .

6. Royalty-free run-time.
7. Complete source code available.
8. SQL-based **db_QUERY**!
9. Add fast, C-linkable **db_QUERY** for ad-hoc queries and reports. Build an end-user interface; provide an relational view of the database.
10. **FREE tech support hotline!** 60 days free; for product or application development help. Extended support, consulting, training classes — all available.

That's just the beginning! Want more details? Call today!

Order Now. It's easy — simply call toll-free. We'll answer your technical questions and get you started . . . fast delivery.

db_VISTA

<table>
<thead>
<tr>
<th>Royalty Free Prices</th>
<th>Object</th>
<th>w/Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-User</td>
<td>$195</td>
<td>$495</td>
</tr>
<tr>
<td>Multi-User</td>
<td>$495</td>
<td>$990</td>
</tr>
<tr>
<td>VAX Multi-User</td>
<td>$990</td>
<td>$1,980</td>
</tr>
</tbody>
</table>

db_QUERY prices are the same as above

Operating systems: MS-DOS, UNIX, XENIX, ULTRIX, VMS; more . . .

Compilers: Microsoft, Lattice, IBM, Computer Innovations, Aztec, Turbo C, UNIX, XENIX; more to come . . . also works with most C libraries!
A TRIBUTE TO THE 24-PIN PRINTER.

You're looking at all the printer you'll ever need. For any application you'll ever have.

The Citizen™ Tribute™ 224. A 24-pin dot matrix solution offering superb word processing, spreadsheet, graphics and data processing applications. At a price you'll find surprisingly affordable.

The Tribute 224 delivers true letter-quality printing at 66 cps, correspondence-quality at 132 cps, and drafts at 200 cps (at 10 cpi). In standard or proportional spacing. And optional IC cards enable fonts and emulations to be easily expanded.

You also get high-resolution graphics. A built-in, push-feed, variable-width tractor and automatic paper loading system. Both serial and parallel interfaces for flexible hardware compatibility. Front panel access to most print functions. And compatibility with virtually every major software package.

All this, and it's backed by our nationwide service, excellent documentation, and 12-month warranty.

For more information, call 1-800-556-1234, Extension 34.
In California, call 1-800-441-2345, Extension 34.
The Citizen Tribute 224.

There is no higher tribute to 24-pin printing.

CITIZEN

Printers that run like clockwork.

Inquiry 47
Understanding C

In the review of C interpreters in the June BYTE ("Four C Language Interpreters" by John Unger), Mr. Unger lists a single "major shortcoming" of C-terp as "its lack of a built-in library." What is horrifying about this statement is that it shows a fundamental failure to understand the reason for the product's existence.

C-terp is for those who need to develop code for their compilers. It requires you to use the compiler's libraries, because it is trying to limit the degree to which the same source causes different results when run under the interpreter and when compiled by the compiler. In short, C-terp is designed to be a development environment. Indeed, you cannot order C-terp without specifying which compiler you will be using. To fail to understand that you must use your own compiler's library of routines with C-terp is to fail to understand the nature of the product. It's much like complaining that a calculator is a flawed product because it's too mathematical.

There also seems to be a notion that C interpreters are a great way to learn C. Certainly Gimpel Software is not perpetuating that misconception, but the idea exists nonetheless. BASIC is an ideal learner's interpreted language, because the significant unit in BASIC is the line. It is not idiotic to sit down at a computer keyboard and start writing BASIC to learn it. However, to produce code in a modular language you must understand the structure of the language, the scope of variables, and so on. In C, the words of the language are less important than the structure. Avoiding syntax errors is not the heart of learning C.

At the Eye Research Institute, we recently purchased a site license for C-terp because it is so useful. In particular, it has a good line editor, lets you run quick checks to make sure you didn't leave off a semicolon, and lets you quickly test what actually comes out of a function before developing too much code for easy debugging. Furthermore, C-terp is a dream for, say, graphics-routine development. With C-terp, you can interactively develop what you want to see. In such an application, it's a minor miracle to have your first compiled output the only compiled output.

Tom Clune
Boston, MA

First, let me add the next three words of the sentence that you quoted from my re-

view. The entire phrase is, "its lack of a built-in library of mathematical func-
tions." C-terp comes with a complete built-in library of extremely useful func-
tions and is lacking only in this one specific area—support for math functions. Because both Run/C and Instant-C include mathematical functions in their built-in libraries, I thought it was fair to point out the omission of such functions in C-terp's.

C-terp is designed primarily for use in a development environment as a companion program to a specific C language compiler; this makes its own lack of math functions not as crucial. But C-terp can also be used alone, as a tool to learn C, to test concepts of the language, and to produce useful programs that can run within the confines of its interpreter environment. It is wrong to imply that C-terp must be used with a specific compiler. I agree, however, that any C language interpreter is most useful when it can work with source code that can be seamlessly ported between the interpreter and compiler environments.

I wholeheartedly support your opinion that trying to learn C using a mindset de-
veloped in BASIC is a serious mistake. continued
Everex ASIC Does It Again

4MB EMS/Extended Memory for PS/2 Micro Channel™

Single Custom Chip
The new Application Specific Integrated Circuit (ASIC) from Everex performs the memory management on the RAM 4000™. The functions of many chips are combined into a single 84 pin chip. This has reduced the total number of components to increase the reliability and create more room for memory. Boost your memory with the RAM 4000 all the way to 4 megabytes!

Flexible for your advantage
There are two banks of memory on RAM 4000. Each bank (18 chips) gives you 2MB. Load either 2MB or 4MB as you need for your application. It is fast, easy and economical.

Configure to your needs
The ASIC chip frees you from restrictions. Allocate a part of the 4MB as EMS memory and the rest as extended. Or you can also dedicate the entire 4MB as either EMS or extended.

More memory for more software
The RAM 4000 lets you run larger spreadsheets with Lotus® 1-2-3®, bigger databases with dBase III Plus™ or run more applications in Microsoft® Windows.

Easy installation
The I/O addressing and memory configuration are done by software so there are no jumpers or switches to set. Just plug the board into the machine and run the computer’s setup utility.

Software Partners
RAM 4000 is accompanied by Expanded Memory Manager which manages the operation of all EMS memory, while EDISK lets you use RAM to simulate an extra fast drive. There is also a print spooler that lets you print files while you edit others.

Why wait? For the name of the Everex dealer nearest you call:

(800) 821-0806
in USA

(800) 821-0807
in Calif.

Inquiry 91 for End-Users. Inquiry 92 for DEALERS ONLY.

In September 1987 • Byte 19
PRESENTING THE DIFFERENCE BETWEEN FAST COMPILING AND FAST PROGRAMMING.

For compiling speed, you can't do better than Let's C. But to really speed up programming you can't do without the powerful source level debugger, csd.

If you want the power, portability and flexibility of C, start with the complete compiler, Let's C. For utilities, editor, compiling speed and fast, dense code, Let's C has it all.

But to get your programs up and running you need more. Because even the fastest compiler can't outrun bugs. You need the revolutionary C Source Debugger, csd.

LIMITED TIME OFFER
FREE csd WITH LET'S C!

Let's C and csd let you bypass the time consuming frustrations of debugging—like long dumps and clunky assembler. With csd, you actually debug in C. You learn faster because you watch your program run in C. You finish faster because csd combines the speed of a compiler with the interactive advantages of an interpreter. The end result? Development time is sliced in half.

LET'S C AND csd FEATURES

Let's C
- Now compiles twice as fast
- Integrated edit-compile cycle editing automatically points to errors
- Includes both small and large memory model
- Integrated environment or command line interface
- 8087 sensing and support
- Documentation features new lexicon format
- MS-DOS object compatible
- New make utility
- Fast compact code plus register variables
- Full Kernighan & Ritchie C and extensions
- Full UNIX compatibility and complete libraries
- Many powerful utilities including make, assembler, archiver, cc, one-step compiling, egrep, pr, tail, wc
- MicroEMACS full screen editor with source included
- Supported by dozens of third party libraries

csd
- For the IBM-PC and Compatibles
- Not copy protected
- Large and small memory model
- Debug in C source code, not assembler
- Monitor variables while tracing program
- Does not change program speed or size
- Provides separate source, evaluation, program and history windows
- On-line help screens
- Can interactively evaluate any C expression
- Can execute any C function in your program
- Trace back function
- Ability to set trace points
- Not copy protected

REVIEWERS ARE RAVING ABOUT LET'S C AND csd.

“Let's C is an inexpensive, high-quality programming package... with all the tools you will need to create applications.”

“The performance and documentation of the $75 Let's C compiler rival those of C compilers for the PC currently being sold for $500... highly recommended...”

“csd is close to the ideal debugging environment... a definite aid to learning C and an indispensable tool for program development.”

“This is a powerful and sophisticated debugger built on a well-designed, ‘serious’ compiler.”

START TO FINISH, THERE’S NO BETTER ENVIRONMENT.

Get started with the right C compiler and you’ll have everything you need for development—including source level debugging. On top of it all, Let’s C and csd are today’s best values in professional C programming tools. And most reliable: Mark Williams C compilers have been sold with DEC, Intel and Wang computers since 1981.

60 DAY MONEY BACK GUARANTEE

Mark Williams gives you a full 60 days to find out just how good Let's C and csd really are—or your money back.

So if you want more than a fast compiler—if you want your programs up and running fast, ask for Let’s C and csd. You’ll find them at your software dealer’s, in the software department of your favorite bookstore, through the Express Program at over 5500 Radio Shacks or you can order now by calling 1-800-MWC-1700.*

*In Illinois call 1-312-472-6659.
However, an interpreter’s ability to catch syntax errors quickly, which you yourself mention, does make it a useful learning tool for beginning C programmers.

—John Unger

Alternate Approach to DTP
The theme of the May issue of BYTE was desktop publishing; however, nowhere in the articles or charts was there any mention of the PowerText Formatter, an $89.95 desktop-publishing product announced and shown at PC-Expo in July 1986.

John W. Seybold’s view of desktop publishing is but one approach; he dismisses all approaches other than WYSIWYG. But current Macintosh and IBM WYSIWYG software leaves a lot to be desired and suffers from some fundamental problems, and the alternatives may be more cost-effective, both in initial cost and in day-to-day operation in a production environment.

WYSIWYG is really only approximately what you get. The fonts differ from screen to page, and interletter and word spacing differ. What looks nice kerned on the screen can often end up as what seems to be centered on the screen may not be when it’s printed.

Scalable fonts, such as those of PostScript, do not map onto dots very well. In addition, a good typographer will often change the shapes of letters in different sizes simply because they look better. Mathematics can’t do this. As a result, scaled fonts are not as crisp and clear as fonts discretely designed for each point size.

WYSIWYG systems don’t function very well in environments where several people supply the copy and where external artwork and halftones have to be factored in. And, at least on the IBM PC and the Macintosh, using WYSIWYG screens to lay out metro-size newspapers is somewhat what like painting through a keyhole.

WYSIWYG requires a lot of hardware. In the PC arena, one really needs a PC AT-class machine, an EGA card, a hard disk drive, and a mouse, not to mention the laser printer. Can everyone who needs desktop publishing really afford all this hardware?

WYSIWYG is ideal for flyers and short newsletters. But is it really practical for books of 200 or more pages?

When you strip away the hype from desktop publishing, what you really find is a problem of economics. Typesetting costs a lot of money. That problem can be addressed by 300-dot-per-inch (dpi) laser printers, at least in typesetting textual material. Page-layout and composition programs have their place, but they are only a part of the typesetting and publishing problem. When the visual aspects of each individual page are as important as the textual aspects, then page-layout programs may be the ultimate solution.

However, advertising material, flyers, and newsletters represent only a very small percentage of the printed material produced in this world. Are you to believe that the economic solution to the high cost of typesetting for each and every page printed is to sit in front of a screen with a mouse?

Your theme articles indicated that desktop-publishing hardware costs between $10,000 and $15,000, with software running between $200 and $800. But consider this: The street price of an HP LaserJet Series II printer is about $1700, a good set of times roman and Helvetica fonts costs about $155, and the PowerText Formatter costs $89.95. Inset 2, a graphics-capturing and editing program from American Programmers Guild Ltd., costs $99, and a clone costs continued
INTRODUCING FAST FORWARD:
NOW ANY SOFTWARE CAN RUN UP TO 10 TIMES FASTER.

No more doodling while your database goes digging. Or lollygagging while your spreadsheet loads. Or taking five while your word processing program takes forever.

With Fast Forward, any software runs 2 to 10 times faster.

CAN SOFTWARE REALLY DO THAT TO SOFTWARE?

Fast Forward can. Normally, your computer is constantly going to your disk and wading through massive amounts of data. But with Fast Forward, data is retained in your computer's internal memory. Which is incredibly fast. Much faster than hard disks. Hundreds of times faster than floppies.

FAST FORWARD PERFORMANCE

<table>
<thead>
<tr>
<th>With Fast Forward</th>
<th>Without Fast Forward</th>
</tr>
</thead>
<tbody>
<tr>
<td>dBase Ill</td>
<td>29.6 minutes</td>
</tr>
<tr>
<td></td>
<td>(Test: Add and delete 225 records)</td>
</tr>
<tr>
<td>WordStar 3.3</td>
<td>40 seconds</td>
</tr>
<tr>
<td></td>
<td>(Test: Move cursor to end of 46 page document)</td>
</tr>
<tr>
<td></td>
<td>51 seconds</td>
</tr>
<tr>
<td></td>
<td>(Test: Load spreadsheet, 8 columns by 962 rows)</td>
</tr>
</tbody>
</table>

All tests done on 640K IBM PC, 20 megabyte hard disk and floppy drive. 320K RAM allocated to Fast Forward.

THE MORE YOU USE IT, THE FASTER YOU GO.

Once installed, Fast Forward works invisibly. As you use data, it's automatically stored in your computer's memory—and instantly available the next time you need it. Programs requiring frequent disk access (like dBase III) will show amazing improvements. And adding extended memory gives Fast Forward more room to work. So software runs even faster.

PERFORMANCE HAS A NEW PRICE: $69.95.

You can buy a faster computer. Or an expensive accelerator board. But if you're ready to turn on the speed without turning over a bundle of money, ask for Fast Forward. It's from the Mark Williams Company, makers of quality software tools since 1976. And it's available at your software dealer. In the software department of your favorite bookstore. Or by calling 1-800-MWC-1700.*

And hurry. Because it'll be going fast. *In Illinois: (312) 472-6659

Mark Williams Company
1430 West Wrightwood
Chicago, Illinois 60614

Fast Forward runs on IBM-PCs and 100% compatibles. Not copy protected. © 1987, Mark Williams Company

Inquiry 169

SEPTEMBER 1987 • BYTE 23
less than $1000. The total is under $3050—substantially less than $10,000 to $15,000. Yet you can do everything with that configuration that a user can do with PageMaker or Ventura. And you can do it faster, with better-looking results. David P. Guest
Beaman Porter Inc.
Harrison, NY

I stated in the first paragraph of my article that "desktop publishing is a slippery product without a clearcut definition." To explain how it emerged, I traced its history, uncovering the differences between desktop publishing and computer-aided typesetting. The latter is both narrower (in that it doesn't embrace publishing per se) and also much broader, in that it includes programs and systems that are, at least currently, much more sophisticated in terms of the inclusion of typographic niceties.

It should be clear that desktop publishing currently offers more limited (although very exciting) capabilities. I believe, however, that users at the desktop level will soon be able to command virtually all the resources of more traditional computer-aided composition capabilities. The much less intimidating interfaces of more traditional approaches are being profoundly modified. WYSIWYG is one such adaptation.

I was not involved with the preparation of Thom Holmes's article, which followed mine in the May BYTE. I did not select, include, or exclude any particular software packages listed there.

But I disagree with your assumption that PostScript, or any other page descriptor language, produces inferior type. The final product depends on the output device.

Nowadays, virtually all new output devices operate in a raster-imaging mode and therefore must deal with the laying down of pixels. It is the responsibility of such languages to output at a resolution within the capabilities of the selected imaging device. (At the desktop level, we are already moving from 300 dpi to much more, and, of course, those who can afford to are using recorders that write their output to photosensitive films or papers.) It is generally not the task of the publishing program to rasterize the output, unless a graphics editing or manipulation package is also included—and even in these cases, final output differs from what you see on the screen. It is true that scaled or even bit-mapped fonts on a video screen do not provide a meticulously faithful representation of final output. However, for review and formatting purposes, they are usually a lot more helpful than monospaced fonts.

The issue that you fail to address is how code-intensive a composition program is or must be. WYSIWYG, by providing a window that permits an interactive preview of the intended output, greatly simplifies the formatting process.

But I do agree that specific features of many WYSIWYG programs may be inadequate for the production of large, relatively standard documents. In such cases, WYSIWYG in and of itself will not provide the hoped-for benefits.

—John W. Seybold

Response to Bonus Issue
I am writing in response to your request for comments on your Summer Applications Software Today special edition. I enjoyed the edition very much.

I use my computers for both productivity and enjoyment. I own an 8-bit and a 16-bit MS-DOS machine, each with hard disk drives. I am more experienced in hardware, as I service computers on a full-time basis for one of the large small-computer retailers. In my spare time, I develop and sell personal robot hardware...
Imagine the speed and power of a $100,000 minicomputer in a desktop PC costing under $7,000. Now imagine all that power going to waste because the operating system you chose was never meant to take advantage of a computer this powerful. It will take more than just a "window environment" or an outdated operating system to unlock the 80386.

It will take PC-MOS/386.

The First 80386 Operating System. Specifically designed for the 80386 computer, PC-MOS/386 opens doors. Doors to more memory and multi-tasking. Doors to thousands of DOS programs as well as upcoming 80386-specific software. It's the gateway to the latest technology... and your networking future.

Memory Management Without Boards. PC-MOS exploits memory management capabilities built into the 80386. So, up to four gigabytes of memory are accessible to multiple users and to future 80386-specific applications requiring megabytes of memory.

Multi-Tasking. Multi-User Support for One, Five or 25 Users. PC-MOS/386 allows up to 25 inexpensive terminals to be driven by a single 80386 machine.

So the features of the 80386 can be utilized at every terminal. And it comes in three versions so you can upgrade your system as your company grows... without having to learn new commands or install new hardware.

Software Support for Thousands of DOS Programs. Although PC-MOS/386 totally replaces DOS, it doesn't make you replace your favorite DOS programs. So you can run programs like Lotus 1-2-3, WordStar, dBASE III, and WordPerfect on the 80386.

Best of all, it uses familiar commands like DIR and COPY—so you'll feel comfortable with our system.

The Gateway to Endless Features. Distinctive characteristics like file/system security, remote access, file/record locking, and built-in color graphics support for each user set PC-MOS/386 apart from all previous operating systems.

Open the Doors to Your Future TODAY! Call The Software Link TODAY for more information and the authorized dealer nearest you. PC-MOS/386 comes in single, five & 25-user versions starting at $195.

PC-MOS/386
MODULAR OPERATING SYSTEM
THE SOFTWARE LINK
Developers of LANLink™ & MultiLink™ Advanced
3577 Parkway Lane, Atlanta, GA 30302
Telex 4996174 SWLINK
FAX 404-263-6474

For the dealer nearest you,
CALL: 800/451-LINK
In Georgia: 404/418-LINK

OEM/Intl Sales: 404/263-1006
Reseller/VARs: 404/448-5465

OEM/Dealer Inquiries Invited

THE SOFTWARE LINK/Canada CALL: 800-367-1133

More Than Just Windows, We've Opened Doors.

Inquiry 325 for End-Users. Inquiry 326 for DEALERS ONLY.

TRADEMARK ACKNOWLEDGEMENTS: MultiLink™ is a registered trademark of The Software Link. PC-MOS/386™ MultiLink™ Advanced, and LANLink™ are trademarks of The Software Link. Lotus 1-2-3, WordStar, dBASE III, & WordPerfect are trademarks of Lotus Development Corp., MicroPro, Ashton-Tate, & WordPerfect Corp., respectively. Prices and technical specifications subject to change.
and software. In my full-time work, I handle a lot of software belonging to service customers, so I base my views on that as well as on the software I use for myself.

I was disappointed at your exclusion of FilePro 16 from your database software review. It is much easier to learn and use than the famous dBASE. One of my most important measures of a database program is how easy and inexpensive it is to convert data files from other software and operating systems to the one I use. Although all database software developers sell conversion programs, I don’t like to pay for something I can do myself. I’ve found that I can write simple BASIC programs (about 10 lines long) to convert anything (including dBASE II and III, TRS-DOS, and Timex-Sinclair) for File-Pro 16 use.

Next, a general comment on RAM-resident utilities. These utilities cause almost half of the customer software problems I encounter in my work with MS-DOS machines. The problem is a conflict between the utilities and the primary software. (I have all but stopped using the utilities myself.) The popular SideKick is a prime offender. The software developers always claim it is a hardware problem. In many cases, it may be a hardware design problem, but who cares—if it causes a problem, you can’t use it.

In future issues, I would like to see coverage of CAD packages, including math and circuit packages, that most of us can afford (under $300). I would also like to see continued coverage of desktop publishing, and, again, I’d like to include the inexpensive products. (I know you recently covered this area, but it’s probably the hottest applications area today, and it’s changing all the time.)

Just so you know my prejudices, the packages I use most often are WordPerfect, Crosstalk, FilePro 16, PrintMaster, and ClickArt, as well as graph packages and accounting packages. I have never found a need for spreadsheets.

Bruce C. Taylor
Tucson, AZ

OS-9 over Unix
What is the fuss over Apple supporting Unix on the Macintosh II? Both “The Apple Macintosh II,” by Gregg Williams and Tom Thompson (April BYTE) and Bruce Webster’s “Processor Wars” (According to Webster, June BYTE) mention the coming Unix.

I believe that OS-9/68000 would be a better choice. Also, OS-9/68000 is here today, not just promised like A/UX (or like OS-2 for the IBM PS/2 machines). Perhaps one of your columnists should do a simple comparison of OS-9/68000 and A/UX.

Ramer W. Streed
Mankato, MN

CAD Appreciation
I enjoyed the article “IGES,” by Ralph J. Mayer, in the June BYTE. It was well-written and gave more than just an overview of the intent of IGES and database-exchange problems.

Paul D. Watson
Plano, TX

FIXES

Soft PC
In the May What’s New section, on page 44, we incorrectly stated the hardware requirements for Soft PC from Insignia Solutions. Soft PC is a simulated 8088 IBM PC XT and runs on Motorola-based hardware. It does not require a PC XT, nor does it require an Intel coprocessor.
Whether you’re a newcomer to CAD or just looking for a reliable, low-cost plotter for your PC CAD system—start here. With the popular Houston Instrument™ DMP-41/42 series plotters.

Priced at $3,295*, these single-pen plotters give you the features you need for a sensible start—field-tested reliability, C and D size plots, good resolution, a wide selection of plotting media and pens, and compatibility with hundreds of software packages.

Enter the PC CAD world with the DMP-41/42 series—the plotters that offer superb reliability and excellent performance at a very affordable price. Learn about the advantages of Houston Instrument’s Priority Response Programs featuring a competitive leasing plan and an express service agreement that can replace your plotter overnight.

Begin by calling 1-800-531-5205 (512-835-0900 if in Texas) or writing Houston Instrument, 8500 Cameron Road, Austin, Texas 78753. In Europe, contact Houston Instrument, Belgium NV., Rochesterlaan 6, 8240 Gistel, Belgium. Tel.: 32-(0)59-277445. Fx.: 846-81399.

Inquiry 127
Mousing Around

Dear Jerry,

I am writing in response to your frequent comment that a mouse-oriented word processor seems ill-suited to its basic task. Having just finished writing two books using WordPerfect (now your word processor of choice, I read), I cannot imagine doing any serious editing without a mouse. To be sure, my hands do not seek the company of my keyboard’s fuzzy little companion when I am entering large blocks of text, but for rewriting—a deletion here, a rearrangement there—nothing is more helpful than a mouse.

I use Logitech’s mouse, finding it vastly superior to Microsoft’s. I run MousePerfect as the mouse-interface program. MousePerfect is my own creation—not yet available for sale, although I hope to change that someday. It provides cursor movement, easy deletion, and menu-oriented commands, so you don’t have to figure out whether to use the Control key or the Shift key with F6 to get text centered, for example. Of course, the keyboard remains fully available. I would be happy to send you a copy.

Howard E. Abrams
Atlanta, GA

I’d love to see a copy of MousePerfect. I agree completely: For editing, a mouse is essential, and neither WordPerfect nor Q&A’s writer (the other word processor I use a lot on big machines) supports mice. I can’t use mice for writing, but it’s good to be able to run the cursor around fast when you’re trying to rewrite.

Logitech certainly makes the best mice for the money. I tend to use its Bus Mouse addressed to LP12: , since I’m strapped for ports.

-Jerry

Whither the Orb?

Dear Jerry,

In the April 1984 BYTE, you described with great enthusiasm the Omnisphere by Orb Inc. By the time I tried to order one, the company no longer had a telephone number. Edmund Scientific’s catalog has a picture of something similar, but they don’t have any in stock. Can you direct me to the manufacturer?

Michael Showe
Wayne, PA

Ken Weybright
Cincinnati, OH

The one in the catalog sure looks like the one I have. I have heard these globes are called Star Sculpture, and I will ask on BIX for sources; I bet that I find one.

-Jerry

[Editor’s note: According to Microbytes Daily (in the BIX news conference “microbytes”), two exhibitors at the recent CES show had low-cost versions of such “plasma spheres,” globes that generate miniature lightning when you touch them. The two companies are: Rabbit Systems Inc., 100 Wilshire Blvd., Santa Monica, CA 90401, (213) 393-9830; and Imaginarium, 3530 North 16th St., Phoenix, AZ 85016, (602) 230-2880.]

The Perfect Word Processor?

Dear Jerry,

I am surprised that you have not used WordStar 2000 Plus. The features that you seem to appreciate most, judging from your reviews of other word-processing software, are available in WordStar 2000 Plus. If you haven’t reviewed it because you only review software sent to you by its manufacturer, then I think Micro Pro is doing itself a great disservice by not having you try it.

I know several people who once were strong advocates of programs such as Perfect Writer, Microsoft Word, and WordPerfect, but switched after trying WordStar 2000 Plus for a few weeks. Incidentally, it doesn’t use the same commands as WordStar; WordStar 2000 Plus uses commands that make more sense, and the screen is WYSIWYG.

One caution: It runs as slow as molasses, especially from floppydisks. An 80286-based machine is almost a necessity.

Ken Weybright
Cincinnati, OH

I think the problem was that I got WordStar 2000 Plus too early; it seemed interminably slow. I expect that on a Z-248 it would zoom along. Perhaps I should try it, although WordStar 4.0 seems good enough for most purposes and prints rings around most of its competition.

Thanks for the tip. —Jerry

Dear Jerry,

I am baffled by your love affair with WordPerfect. I’m well acquainted with
ASYSTANT+™ ... Menu Driven Engineering And Scientific Software Brings New Power To Your PC!

Data acquisition, analysis, statistics and astounding graphics in one easy to use, integrated and affordable package.

ASYSTANT+ is a software package designed exclusively for engineers and scientists who use a PC as a personal productivity tool. It offers fully integrated data acquisition, data analysis and astounding graphic capabilities.

This powerful software is menu driven to get you up and running immediately and provides an interactive and very clear help menu.

Here are just a few of the powerful features:

• A/D, D/A, Data Acquisition and Control
• Full integration to eliminate program shuffling
• Outstanding presentation quality graphics which easily outputs to plotters
• Built-in, ready-to-run functions include FFT, smoothing, curvefitting, statistics, matrix and polynomial operations...and more

ASYSTANT+ has no equal, either in power or functionality. With this software you can unlock your engineering and scientific potential while expanding your productivity.

ASYSTANT+ is what engineering and scientific software is supposed to be...productive, powerful and capable of handling your toughest assignments.

Best of all, it's easy to install, easy to use and very affordable.

Call us today for more detailed information.

1-800-348-0033 NY-212-702-3241

ASYSTANT+ Ready-to-Run Scientific Software is a trademark of Macmillan Software Co.
ASYSTANT+ was developed by Adaptable Laboratory Software, PO. Box 18448, Rochester, NY 14618

A division of Macmillan Publishing Company
630 Third Avenue, New York, NY 10017

I nquir y 1 64

SEPTEMBER 1987 • BYTE 29
PC-Write lets you customize your command codes; you can choose any key combination you like to control the functions of the program. It scrolls faster, it searches and replaces faster, and it's infinitely more versatile than the big programs. You mentioned it once in passing; have you ever had time to explore its potential? I think you'd like its design. But everyone has fierce brand loyalties in this business, and I don't suppose mine are any more logical than average.

Over the past few years, I have had the impression that your column focuses more and more on the time spent trying to make hardware items work with one another. I certainly find this myself. Each new purchase provides a whole new series of quirks and bugs to iron out. Things that should be simple often turn out to be ludicrously complicated.

For instance, I wanted to send text from the serial port of an IBM PC to the serial port of a Macintosh. I had the plugs, the cable, and the pinouts for both computers, but it still didn't work. Finally I spent $39 for a cable from a company that specializes in custom-made cables. It worked on the first try. I opened up the plugs and found the company had shorted pins 5 and 6 together at the IBM end.

How did they know that would work? It's not the sort of trick that you never find in a book, and seldom on a bulletin board; and it seems you can't deal with equipment without knowing these little fixes.

Even on the consumer level, systems still cause endless grief. I'm sure you receive plaintive calls for help, as I do, from users who get into trouble and lose a week's worth of text.

I love gadgets, computers especially, but sometimes I wonder if the slow growth in U.S. productivity over the past three or four years is partly due to business people getting diverted from their work and spending hours fiddling around with microcomputer systems, trying to get them to work properly.

I still use a word processor to write fiction, but I use a typewriter for correspondence. It's quicker.

Charles Platt
New York, NY

You're right: It's very hard to do a decent job of evaluating word processors. You have to get used to using them, and that takes some doing.

My problem with Microsoft Word is the lack of commands that do things I want continued...
XQL is a dramatic step forward in the history of SQL. It's the one unique SQL solution that helps programmers break through to even higher levels of productivity. Powerful yet easy to use, XQL minimizes your coding time and lets you focus on building better applications.

XQL extends the power of Btrieve, SoftCraft's high-performance file manager, by allowing access to multiple records at a time. It frees your application from physical file characteristics by providing true relational capabilities with data independence, data descriptions, data integrity and security.

XQL's three interface levels are a major advance in SQL technology. The first two levels, XQL primitives for maximum efficiency or full SQL statements for maximum convenience, are callable subroutines from BASIC, Pascal and C. The third level lets you enter SQL statements interactively without ever having to write a program.

XQL's extensive DBMS features let you access data by name. Field order is independent of physical location within the Btrieve record. Only records that pass your restrictions are returned—in the sort order you specify. Fields can be computed from other fields or constants. And you can manipulate composite records built from multiple, joined Btrieve files.

XQL offers all the performance and reliability you've come to expect from Btrieve, including LAN support, fault tolerance, comprehensive documentation and expert technical support for trouble-free software development.

Plus, you never pay royalties on your XQL applications.

Put the latest innovation in SQL technology to work for you. Contact SoftCraft.

SoftCraft
A NOVELL COMPANY
P.O. Box 9802, #917
Austin, Texas 78766
(512) 346-8380 Telex 358 200

XQL, $595; Btrieve, $245; multiuser Btrieve, $595. XQL requires Btrieve and PC-DOS or MS-DOS 2.X or 3.X. XQL is a trademark and Brieve is a registered trademark of SoftCraft, Inc.

Inquiry 264 SEPTEMBER 1987 • BYTE 31
done fast. There's no "delete word" command, and it's pretty hard to devise a macro to do that. By contrast, WordPerfect has most of the commands I want, and since I run it in DESQview, it's easy to set up a bunch of DESQview macros.

PC-Write is indeed about the best thing PC and XT users can get, and the price is right. What it lacks is some of the built-in conveniences of WordPerfect. I agree, though, that I haven't said enough about PC-Write lately. Everyone ought to have a copy.

In the old days, we used to spend 25 percent above the cost of the computer and peripherals to hire someone for system integration. It's a bit easier and considerably cheaper now than it was in the late 1970s, but we agree that it's not easy enough.

As for correspondence, I find that WRITE on the CP/M 2-80 works quite well, but I'm probably going to change over to the Q&A editor. Running Q&A under DESQview on an 80386 gives some awesome power. —Jerry

Amiga Debate Continues

Dear Jerry,

In the March Chaos Manor Mail, you ended your reply to Warren Block’s letter with, "It's still harder to port to Amiga than Atari."

That claim is not true when you are talking about programs written for high-level operating systems, such as Unix. Any program that runs under Unix can run on the Amiga with almost no changes. The operating system provides primitives that are similar to those found on Unix, and Intuition provides a user interface at least as powerful as the windowing facilities found on most Unix systems. As a result, languages on the Amiga can easily provide the same system constructs found on higher level machines, making it easy to port code from these machines to the Amiga.

If you’re talking about porting programs written for machines like the Apple II or the Commodore 64, then yes, you are right. After all, the Atari ST is no different from these computers, except for the replacement of the 6502 with the 68020 with 64K bytes of memory with a megabyte or more.

The ST hardware is truly wonderful—iits got a 68000 with who knows how many thousand transistors. Unfortunately, the ST is equipped with an operating system as primitive as the vacuum tube. The Atari ST is the only 68000 machine to limit the number of folders in the system to 40, and the only machine that will not warn the user when such a limit is exceeded.

Keeping all this in mind, it should be clear why it is easier to port programs from an 8-bit microcomputer to an Atari ST than to an Amiga. Take a program written for your favorite 8-bit microcomputer, apply some mechanical translation into 68000 code, and voila—you have a program ready to run on the ST. The translation doesn't have to be super-efficient. After all, most programs written for the 8-bit microcomputers of the late 1970s and early 1980s are no longer than 64K bytes, and even if the translation expands it by 400 percent, it will still fit within 256K bytes.

What sets the Amiga apart from these 8-bit micros and the ST computers is the multitasking operating system that befits 16-bit 8-megabyte multiprocessor hardware. Why should multitasking make a difference in how easy it is to port to a machine? When you are porting for a multitasking environment, you have to be polite and follow a few rules. Instead of "busy-waiting" (i.e., running in a loop to see if a key is pressed), you

going on page 314
"Finally, a Powerful, Easy to Use, Versatile Sales & Marketing Program!"

ONLY $99.95

SALES GENERATOR PLUS
A revolution in automating sales & marketing

SALES GENERATOR PLUS is so easy to use the beginner can amazingly have it running in minutes. The advanced user may be exploring new applications for this complete and powerful program several years from now. It features all the software tools necessary to conduct an effective sales campaign.

Right at your fingertips without complicated commands, Sales Generator Plus can automate: Employment & Real Estate Agents • Service Organizations • Legal & Other Professionals • Educational Institutions • Medical & Dental • Leasing • Insurance & other services • Consumer and Industrial Product Sales • And many many more.

FEATURES:
- Menu driven
- record capacity limited only by disk space
- support contract available
- not copy protected
- color and monochrome
- works with any standard (MS-DOS) word processor or Sidekick on demand
- a customer-by-customer communication history
- automatic sales follow-up
- telephone follow-up management
- appointment management & lists
- automated telephone followup
- import/export interfaces
- selection of sort criteria
- follow-up lists
- name & address lists
- phone lists
- runs on any IBM PC or compatible
- its versatility and features will amaze you.

FOR IMMEDIATE SHIPMENT
In US and Canada
1-800-268-8588
In Hawaii & Alaska: 1-(416)-862-0017

SALES GENERATOR PLUS
Supersell Software Inc. 316 California Avenue, #950 Reno, Nevada 89509

Inquiry 281

(Telestatic: IG International
Science • World International

MASTERCARD
VISA
AMERICAN EXPRESS
DINERS CLUB

ONLY $99.95
The CLUB 286 is manufactured and serviced in the U.S.A. As a proof of our commitment to quality and performance, we are offering same day shipping, high performance integration. 48 hour burn-in with the most up-to-date Intel parts.

Basic System Features:
- 80286 16-Bit Intel CPU / AT Style Keyboard
- 512K Motherboard Expandable to 1MB
- 8 Slots (2 8 Bit, 6 16 Bit)
- Clock Calendar with Battery Backup
- 195 Watt Power Supply 110/220V Switchable
- Fully Compatible High Speed AMI BIOS (Written in U.S.A.)
- Full 200 Page Users Guide in a Glossy Binder
- Limited One Year Warranty
- Fully Open Front Face Panel

Option:
- 1.2MB Floppy Drive / 360KB Floppy Drive
- 2 Hard Disk/2 Floppy Disk Controller / Enhanced Keyboard
- 1.44MB 3 1/2" and 720K 3 1/2" Drive

Dealers and Corporate inquiries are welcome

(415) 490-2201 FAX 490 2687 (24 HRS)

CLUB AT, INC. was founded with the intention to provide the customer with a high quality made in U.S.A. system that suits American tastes at import prices. Try our systems and find out why we have shipped more than 20,000 of them already. Our guarantee stands by you!

To Order a CLUB 286 SYSTEM
Call Our Computer Division from 7:30 AM to 6:30 PM P.S.T.
Or 10 AM to 3 PM P.S.T. on Saturday. Our staff is standing by.

American Technologies, Inc.
3401 W. Warren Avenue, Fremont California 94539
Once upon a time, American led the world in innovation, quality, engineering, and manufacturing with names like Edison, Ford, and Bell...
Once Again America returns:

"If imitation is the sincerest form of flattery, the CLUB AT pays the IBM AT a heartfelt compliment. The only failing of the (CLUB AT) is that it imitates the IBM too accurately: ...and you can't beat that..."

Karl Koessel PC World
December 1986

Software Compatibility
Xenix, AutoCad, MSDOS, PC DOS, Novell Network, dBASE, Lotus, Sidekick, Symphony and others...

Monitors Optional

CLUB 286 8MHz Mono System $995
- Basic System Features Plus
- Fully Configured and Tested
- High Resolution 800 x 350, Hercules Compatible 132 Columns
- Monographics Card, Printer Port
- High Resolution 800 x 350 IBM Quality Monitor

With a 20MB 1/2 HT 65ms Drive $1295
With a 30MB Full HT 39ms Drive $1495

CLUB 286 8MHz EGA System $1399
- Basic System Features Plus
- Fully Configured and Tested
- High Resolution Micro EGA Card
- Capable of Mono, Color and EGA
- IBM Quality Monitor (EGA/CGA), 14" Nonglare Screen

With a 20MB 1/2 HT 65ms Hard Drive $1699
With a 30MB Full HT 39ms Hard Drive $1899

CLUB 286 (12MHz Thruput) Mono System $1629
- Basic System Features Plus / A 80286-10 CPU
- Fully Configured and Tested / Hercules Compatible Graphics 132 Columns
- Video Adapter with Printer Port
- A High Resolution IBM Quality 800 x 350 Monochrome Monitor
- 2 Serials, 1 Parallel Port / Wait State Insertible Slots
- 8/10 Keyboard Selectability / 12MHz Thruput

With a 30MB Full HT 39ms Hard Disk $2129

With a 40MB 1/2 HT 39ms Hard Disk $2200
With a 80MB Full HT 23ms Hard Disk $2499

CLUB 286 (12MHz Thruput) EGA System $1995
- Basic System Features Plus / 80286-10 CPU
- High Resolution 16 Color EGA Card with Mono and RGB Output
- High Resolution EGA Monitor, 14" Nonglare IBM Quality
- Wait State Insertible Slots / 2 Serials/1 Parallel Port
- 8/10 Keyboard Selectibility / 12MHz Thruput

With a 30MB Full HT 39ms Hard Disk $2490

With a 40MB 1/2 HT 39ms Hard Disk $2540
With a 80MB Full HT 23ms Hard Disk $2870
ONLY ORCHID GIVES YOU SO MANY WAYS TO TURBOCHARGE PC ENGINES.

With Orchid's family of turbos, you can get the performance you bought a computer for in the first place. Lightning spreadsheet recalculations. CAD screens that regenerate in a flash. And large data bases that sort without putting you to sleep.

ORCHID'S TURBO FAMILY

<table>
<thead>
<tr>
<th>Model</th>
<th>Processor</th>
<th>Clock Speed</th>
<th>Chip</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiny Turbo 286</td>
<td>8086</td>
<td>286 MHz</td>
<td>286i</td>
<td>Co-processor</td>
</tr>
<tr>
<td>PC Turbo 2B</td>
<td>80386</td>
<td>2B MHz</td>
<td>2B</td>
<td>Cache, Networking</td>
</tr>
<tr>
<td>Jet 386</td>
<td>80386</td>
<td>3B MHz</td>
<td>3B</td>
<td>Network, Framebuffer</td>
</tr>
<tr>
<td>PC Turbo 286e</td>
<td>80386</td>
<td>286e MHz</td>
<td>286e</td>
<td>Memory, Networking</td>
</tr>
</tbody>
</table>

GET THE EDITOR'S CHOICE:
Tiny Turbo 286™

The Tiny Turbo 286™ supercharges your XT to run three times faster. Yet it's so small it takes up only half a slot in your computer. Just two reasons why PC Magazine named it the Editor's Choice.

Tiny Turbo 286 gives you a high level of compatibility. So you can run software like Lotus and Windows—with EGA graphics, EMS memory, or networking cards—at AT speed. You can even go back to your PC's regular 8088 chip, which remains in the system, giving you 100% hardware compatibility.

ADD AWESOME PERFORMANCE:
PC Turbo 286e™

For power users, the front runner today in accelerators is clearly the PC Turbo 286e™. It revs up to 6.5 times faster than an XT, or up to 2 times AT speed—giving you the world's fastest screen I/O. Plus the PC Turbo 286e comes factory equipped with 1 Megabyte of fast RAM, expandable to 2.

The PC Turbo 286e is also a powerful tool for developers and systems integrators. With features like an optional 10-MHz 80287 math chip, and coprocessing software for concurrent foreground/background tasks, the PC Turbo 286e lets you build minicomputer-like performance into standard PCs.

MOVE YOUR AT UP TO 386 HORSEPOWER NOW:
Jet 386™

Take a look today at the price/performance leader in desktop computing: the Jet 386™. Depending on the application, it's up to three times faster than an AT. And twice as fast as some high-performance minicomputers. Yet you don't have to buy an expensive 386-based computer to get this kind of horsepower.

More importantly, the Jet 386 uses next generation technology, the 80386 microprocessor. So you can run all of the current software for the AT now, and 386 software too. Add a Jet 386 to your AT today, and you can extend the life of your investment—for a fraction of the cost.

FROM THE COMPANY THAT STARTED IT ALL.

Orchid introduced the first turbo for PCs, and has since become the number one supplier of PC accelerators. For details on our full line of accelerators, graphics, networks and multi-function cards, call (415) 683-0300 today. Or contact your local dealer.

Tiny Turbo 286: 3 Times XT Speed

Jet 386: 3 Times AT Speed
Chip Makers Criticized for Bad Attitude

The U.S. semiconductor industry has lots of problems, Intel Fellow Gene Meieran told attendees at a recent conference on electronic materials and processes. But those problems are less the result of lagging technology and more the fault of manufacturers' poor attitudes, primarily toward vendors, customers, and, to some degree, their own products. "Manufacturers are going to have to change," Meieran said, "but that change is not one of technology; it is a change of attitude."

"We are way ahead [of the Japanese] in technology," Meieran said, "but we go around shooting ourselves in the foot." He pointed to one example after another of how U.S. chip makers are self-destructive, paying particular attention to the traditional adversarial relationship between manufacturers and customers. "Anybody who looks at the vendor or customer as an adversary will not make it," he said.

Meieran used as an example the different attitudes of U.S. and Japanese vendors that Intel encountered when looking for a specific semiconductor. "The U.S. vendor asked us what we wanted, why we wanted it, and tried to tell us we didn't know what we were doing," he said. "The Japanese vendors didn't say anything, but went back to their engineers and worked on them instead. Six months later we had sources from two Japanese companies."

As part of their attitude adjustment, U.S. manufacturers have to begin sharing information with suppliers and customers. Meieran said, even secret and proprietary information, no matter how painful it is. "However, sharing plans and information goes both ways," Meieran said. "If a customer wants more control, the customer must be willing to pass certain information back to the manufacturer."

An outgrowth of these attitudinal shifts will be greater partnerships between manufacturers and customers, partnerships like the agreements between Intel and IBM. "We [Intel] look at partnerships as being very important," he said. However, such partnerships will be made at a cost to manufacturers who supply second sources. "The really big change [in the semiconductor industry] will be in the reliance upon sole sources," he said. "Many companies are moving to single-source vendors, and many suppliers will disappear off the face of the earth."

A Look at Apple's Cray Simulation Engine

Apple Computer (Cupertino, CA) has been using its Cray XMP-48 supercomputer, part of a $20 million installation operated by its Advanced Technology Group, primarily as a simulation engine for designing new visual interfaces. Microbytes Daily reporters Nick Baran and Jon Erickson recently got a tour of the facility and filed this report.

The Cray consists of four CPUs operating at 9.5 nanoseconds per cycle, 8 million 64-bit words of program memory, and 8 million words of I/O buffer memory. The I/O system supports multiple 50-megabit-per-second channels (called Hyperchannels) and one high-speed channel operating at 850 megabits per second (called the HSX channel). For storage, the system includes eight 1.25-gigabyte drives, for a total of 10 gigabytes, and several tape-backup systems.

The HSX channel is connected directly to a high-performance frame-buffer system from a young company named Ultra Corp. (San Jose, CA). The Ultra frame buffer allows graphics images from the Cray to be displayed directly on a CRT. According to Sam Holland, manager of advanced technical projects, Apple is the first company that Cray has allowed to access the HSX channel directly. In fact, Apple is the only company to use the Cray in an actual application.
Neural Computing Not Just for the Very Rich

If you want to learn more about neurocomputers—computers designed according to models of how the brain handles information—and parallel processing, but are winicing at the $10,000-and-up price tags, here are some relatively inexpensive products that you might want to investigate. These products were all shown recently at the International Conference on Neural Networking in San Diego, California.

MacBrain is a Macintosh program from Neuronics (Cambridge, MA) for simulating neural networks. Matt Jensen, who developed the software, claims it's the only neural net simulation environment to sell for less than $10,000; in fact, it sells for $250. It's aimed at people beginning to explore neural networking, as well as those who already have a grasp on the technology.

"Our first target market is made up of the low-end, nontechnical people," said Jensen. "Primarily that includes students, grad students, psychologists, and noncomputer people working on fringe fields that have some overlap into neural-network theory and its applications. It's for the sort of people who don't want to get too heavily involved in mathematics but just want some idea of what this technology can do for them, and want some results they can see visually."

The version of the program for "hard cores" can best serve "as a simple prototyping tool," Jensen said. "It is very quick and easy to get things up and running and to adjust parameters interactively."

MacBrain runs on the Macintosh Plus, SE, or II. It contains an interpreter and paradigm shells and lets you create your own multiple paradigm shells. It is equipped to simulate adaptive resonance, the Delta rule, Boltzman machines, and Hopfield nets. An August update is set to support transputer-based boards. That version also offers two programming languages, one text-based and one graphics/icon-based, so people can do their own types of paradigms and rules.

If you are a developer looking to get involved with generalized parallel processing, you might want to check out the Parallon parallel-processing board from Human Devices (New York), now available for $999. It can insert a tamper-proof parallel processor into the 68020 slot of a Macintosh Plus, SE, or II. It can interface with the 68020 running MacWrite/2 or MacWorks and can run applications that have been adapted to the Macintosh's NuBus. It can also be used as a prototyping tool for the Macintosh's NuBus slot.
Real programmers don’t use dBASE. Or do they?
We’re finding that some very swift programmers are using it to
write some very fast applications,
and are completing their
projects much more quickly.
But they cheat.
They use our Clipper™
compiler to combine dBASE™
with C and assembler.
With dBASE used like
pseudo-code, they can then quickly create
prototypes that actually run.
Then, with dBASE doing the high-level database functions,
they use our Clipper compiler to link in C or assembly language
modules from their own bag of tricks.
And they’re finding that they’re linking in less than they
expected because Clipper compiled code runs so fast and
because of Clipper’s built-in enhancements.
Clipper includes easy networking that provides file and
record locking the way it should be done.
Fast screens that can be treated as memory variables and
eliminate the need for direct screen writes and all that tortuous
heap management code.
Box commands that make
windowing a breeze. And more.
So if you’d like to use your time
more productively, check us out:
Nantucket Corporation,
12555 W. Jefferson Boulevard,
Los Angeles, CA 90066.
Or if you’re on deadline, call
(213) 390-7923 today.
Clipper could get you out of
the soup.
York, New York). The board uses eight 8-MHz NEC V20 microprocessors (each with 32K bytes of no-wait-state RAM) in a proprietary arrangement to produce eight 1-million-instructions-per-second processing nodes. The configuration supports multiple instruction; multiple data program execution, with a ninth V20 controlling interprocessor communications; PC interface; and data-acquisition functions via on-board programmable I/O ports. You can install up to eight boards (64 processors) in a single system.

Parallon will not run most existing PC software, but it can run parallel programs in the background while standard PC programs operate normally in the foreground. The Parallon Developer's kit lists for $1250 and includes a loader and monitor/debugger. A parallel C compiler is in the works, according to Human Devices.

Martingale Research (Allen, TX) has a hierarchical dynamic system called SYSPRO (which stands for system simulation program). Written in FORTRAN, SYSPRO lists for $995 and includes object code, code for data-file generation, a plotting program, utilities, a user's manual, and an hour of phone consultation. With it, you can develop networks of up to 100 neurons.

SYSPRO Plus, which costs $1295, adds the source code for the back-propagation network, giving you nearly complete control of the model. If you aren't ready to invest that much, Martingale also has a back-propagation network simulator for $275 and a demonstration package for a rock-bottom $75. In any event, you'll need an arithmetic coprocessor (8087 or 80287) and about $12K bytes of RAM (for 100-neuron models), along with some sort of graphics (EGA recommended). Graphics are not an absolute requirement, because the output is also available in ASCII for paper-and-pencil plotting.

Hecht-Nielsen Neurocomputer Corp. (San Diego, CA) sells a neurocomputer coprocessor board that fits into any PC AT-compatible slot. At $9500, the ANZA board treads the boundaries of "low cost," but it lets you design and create simulations of neural nets for use in such areas as pattern recognition, robotics, and database searching. The company said the card can implement a network with up to 30,000 neurons and 480,000 interconnections. At the conference, Hecht-Nielsen demonstrated a face-recognition system based on the ANZA board.

MICROBYTE

GSS*X/386, it's a Xenix-based implementation for 80386-based machines. At press time, only an advance release was ready, but GSS said that the final edition will be ready by the end of the year and will support, among other things, EGA and VGA boards. Only a game? Strategic Simulations Inc. reports that George Bush was elected president of the U.S. by a landslide in a simulation of the 1988 election. The company hosted a simulated election at the Consumer Electronics Show, using its newest game program, President Elect—1988 Edition. In the simulated contest, Bush won 499 electoral votes. Loser Albert Gore, senator from Tennessee, garnered 39 votes. And some say Bush is unelectable.

Campus Nets, Sharing Research Seen as Keys to Academic Computing

Establishing effective campus networks, developing instructional programs that are more than computerized page-turners, and sharing the results of research are the biggest challenges facing academic computing, according to participating at a recent university conference. Representatives from more than 30 schools gathered in Boston, at a conference sponsored by IBM's Academic Information Systems (ACIS) division, to discuss the state of computing in colleges. They also exhibited projects that demonstrate the use of microcomputers (IBM microcomputers) as tools for learning.

Jerry Latta, IBM's ACIS group director and a former physics teacher, predicted that we'll soon see "a major cultural change" in education, a change that will be caused by campus-wide networks and computer-based instruction. Latta said instructional software now being developed at "leading" universities is designed to enhance learning rather than to assume the teacher's role. He also said that if programs are to be effective learning tools, they have to be more than textbooks adapted to a computer screen. "This is not automated page-turning," Latta said.

IBM's ACIS program provides research funds and equipment to schools that Latta termed "leaders": Carnegie-Mellon, Cornell, MIT, University of Texas, UCLA, University of Florida, and others. Some participants at the conference, even though they benefit from endowments such as IBM's, expressed concern that only the better known universities get significant research funds, while other schools can barely stock their libraries.

Asked if there's a trend toward colleges that have and colleges that have not, Latta said the schools that get grants will share the results of their research with schools that lack such funding. This "fan-out effect" will spread the technology to schools with "modest budgets," Latta said. He mentioned the University of Wisconsin's Wisc-ware program, a network for distributing instructional software, as one way in which technology is disseminated.

Some of the PC-based projects on display at the conference included a program to help people who have to work with toxic chemicals; Philo the Logician, intended to help students in introductory logic classes; tools for building expert systems; programs aimed at improving learning in large science-lecture classes; LAN-based coursework for students to read and critique each other's writing; an interactive phonetics lab; and programs for simulating molecular dynamics.

TECHNOLOGY NEWS WANTED. The news staff at BYTE is always interested in hearing about new technological and scientific developments that might have an impact on microcomputers and the people who use them. We also want to keep track of innovative uses of that technology. If you know of advances or projects that involve research relevant to microcomputing and want to share that information, please contact us. Call the Microbytes staff at (603) 924-9281, send mail on BIX to Microbytes, or write to us at One Phoenix Mill Lane, Peterborough, NH 03458.
How could anything be twice as good as the Norton Utilities? Good question.

After all, the Norton Utilities is far and away the best-selling program of its kind in the world.

Its remarkable UnErase feature has rescued the data—and the derrières—of thousands of grateful PC users.

While its passel of popular disk management programs is about the most useful thing to happen to PCs since MS/DOS.

So what could possibly be better than the Norton Utilities?

Better than ever. Well, for starters there's the Norton Utilities Version 4.0. It works all the same time-saving and data-saving wonders of our earlier versions—many of them three to five times faster than before.

It also performs several entirely new functions that are worth the price of the program all by themselves.

Like the unique File Info which lets you attach descriptions of up to 65 characters to your files.

(That is, if you can think of one that long.)

The new Norton Integrator lets you control every single Utility from a single program, and gives you on-line help for each function.

While the new user interface makes the Utilities so quick and easy to run it's ridiculous.

Better yet.

All of which brings us to the new Advanced Edition of the Utilities.

Because the Advanced Edition contains all of the features, functions and enhancements of Version 4.0.

Along with a wish list of technical features and functions sufficient to satisfy the yearnings of all those customers who've been politely writing and calling to request them.

Like Speed Disk, for tightening up disk space and optimizing access.

And Format Recover, for unformatting your accidentally reformatted hard disk.

If you're so inclined, you can explore absolute disk sectors, edit file directories, even attack the FAT table.

And, for the first time, get the upper hand on your hard disk's partition table.

Which of the new Norton Utilities is best for you is up to you, of course.

But one thing's for sure. Either way, you'll get the best of Peter Norton.

Peter Norton

Inquiry 228 for End-Users. Inquiry 229 for DEALERS ONLY.

SEPTEMBER 1987 • BYTE 41
THIS TIME WE OUTSMARTED

II5, 200 Baud Rate

SCOPE™ Advanced Scripting Language

Peruse Buffer

© 1987 Hayes Microcomputer Products, Inc.

Smartcom III requires 512K memory and a hard disk, and runs on IBM PC/XT, AT and PS/2 family or compatible computers.
EVEN OURSELVES.

Full-Featured Editor
File Compression
New Transfer Protocols

We at Hayes have always been credited with being ahead of our time. Now, we’re even ahead of ourselves. Introducing Smartcom III,™ clearly the most advanced, full-featured communications program ever designed for the IBM® PC-XT, AT, PS/2 family and your Hayes modem.

Smartcom III includes on-line help facilities for the novice as well as more advanced features for the power user. Features like a peruse buffer to automatically store information for later disk capture, printing or editing, an editor for creating and revising text, both on-line and off-line, and the support for multiple communications sessions with two remote systems simultaneously. Smartcom III also offers on-line DOS operations for the performance of common disk and subdirectory operations without ever having to exit the Hayes program. It even provides file compression and scrambling techniques for the enhancement of effective throughput and private data transmission.

Plus, with Smartcom III's Simple Communications Programming Environment, SCOPE,™ the transmission process can be totally automated. This easy-to-use scripting language comes complete with a learn mode and provides access to the programming tools used to create Smartcom III itself.

So now that you know what Smartcom III is capable of, you may wonder where intelligence of this caliber will lead you. And the answer to that is the future.

If you currently use Smartcom II™ or Crosstalk,™ take advantage of our special introductory offer:
If you purchased Smartcom II prior to 1/1/87, return the original program disk to us along with $60 and we'll upgrade you to Smartcom III. If you purchased Smartcom II after 1/1/87, return it along with $30 and dated proof of purchase for a Smartcom III upgrade. And if you use Crosstalk, send any version of the original program disk along with $60 and we'll give you the same Smartcom III upgrade.
This offer good through 12/31/87 only in the USA and Canada.

For more information, contact your local Hayes Dealer, write Hayes at the address below, or call 404-441-1617.

Hayes Microcomputer Products, Inc., PO. Box 105203, Atlanta, GA 30348.
Our software comes with something no one else can offer.

Lattice Service.

When you join the Lattice family of customers, you'll discover that your software purchase is backed by more than just an excellent warranty. It's backed by unparalleled technical support. By a total commitment to your success and satisfaction. And by Lattice's dedication to excellence in products and services. Unlike other software manufacturers who charge you for services after you've purchased their product, Lattice offers a unique package of support programs at a price we can all live with—FREE.

Lattice Bulletin Board Service
LBBS is our 24-hour a day bulletin board system that allows you to obtain notification of new releases, general information on Lattice products, and programs for the serious user. And if you've ever experienced the frustration of having to wait a year or more for a new release (that has corrected a bug), you'll really appreciate LBBS. Because with this service, you can actually download the latest program fixes to instantly eliminate any bugs discovered after release.

Technical Support Hotline
Responsible, dependable and capable Support Representatives are only a phone call away. You will talk to a highly skilled expert who is trained to answer any questions you have relating to specific Lattice products. Remember, your complete satisfaction is our goal.

McGraw-Hill BIX™ Network
The Byte Information Exchange (BIX) Network is a dial-in conference system that connects you with a Special Interest Group of Lattice users. The nominal one-time registration fee allows you to BIX-mail your questions—via your modem—directly to Lattice. Or you can post your questions in the conference mode for Lattice or other users to answer. Once again, you have 24-hour access.

Lattice, Incorporated
2500 S. Highland Avenue
Lombard, IL 60148
Phone: 800/533-3577
In Illinois: 312/916-1600

Available through dealers and distributors worldwide.
Two Programs Bundled with 1-megabyte Macs

Apple Computer recently showed us MultiFinder and HyperCard, two very impressive new software packages for 1-megabyte Macintoshes.

MultiFinder allows you to keep multiple applications ready for use and gives you limited multitasking, with almost perfect compatibility with existing Mac applications.

HyperCard uses the metaphor of "a stack of cards" (actually, a file full of graphic/text images) to provide a usable way of storing and cross-referencing data; it is also the foundation for what Apple calls "stackware," user- and commercially produced applications that sit on top of HyperCard.

One of the most significant things about these two products is that they will soon be included with the purchase of any 1-megabyte or larger machine or motherboard upgrade, thus making both of them part of the standard Macintosh configuration. (Officials at Apple said that existing Mac users will be able to buy these products for under $50 each.)

MultiFinder is a new file that augments the existing Finder by allowing you to display multiple applications and switch between them by clicking in the appropriate window. Unlike Apple's Switcher program, MultiFinder shows each application's window on the same desktop.

We played with an alpha version of MultiFinder and found that at least 90 percent of the applications we tried behaved well with it. MultiFinder usually took between 2 and 5 seconds to switch applications and refresh the display.

MultiFinder also offers limited multitasking capability with applications designed for it. New code in the Mac's Event Manager steals control from an active application (when it is doing nothing) and passes it to inactive applications that can do some small part of their work and return it in under 100 milliseconds. The Event Manager can steal control from any Mac application, even existing ones, but new applications can be written to surrender control with less overhead.

MultiFinder will include a built-in background task that spools print jobs, thus freeing the Mac for other work (this feature was not available in the version we saw).

Apple personnel reported that numerous companies are working on both enhanced and new products that can use background time (including background terminal programs). They also said that future versions of MultiFinder will build toward full multitasking, but they had no details on this.

By most people's definition of the word, HyperCard is a new category of software. Though it has roots in previous Mac and non-Mac applications, HyperCard is as much a new approach to dealing with data as it is a product for doing so. Another way of looking at it is as the next and newest level of the Macintosh user interface. In fact, Apple personnel (who say that the company is getting out of the software business) were promoting HyperCard as a platform on which programmers can build commercial products—though they were quick to point out that HyperCard is also useful right out of the box.

HyperCard stores information (text, graphics, sound, animation, and—indirectly—anything else you can think of) in a stack file full of screen-size images called cards. Any card can point to any other card, even a card in another file on a shared file server. These links can already be present in a stack, or you can put them in yourself. With just a few simple mouse-based movements, you can "paste" into a card a dialog button that, when pressed, will take you to any card that you designate.

This brings us to another important aspect of HyperCard: the multiple levels at which it can be used. You can set HyperCard to run at a given level, which simplies the menu bar accordingly.

At the first two levels, browsing and typing, you can look at stacks and modify and add cards. Many people will not get past these levels and will use supplied stack examples that function like phone lists, address books, appointment books, and similar applications.

The remaining three levels, painting, authoring, and programming, will attract some users into deeper and more fundamental levels of modifying a stack or creating a new one. At these levels, you can do things like change the size of a field, add a predefined button, and even specify exactly what a button does when you press it. HyperCard uses a simple but powerful English-like script language called HyperTalk to define a button's behavior.

Software developers can interact with HyperCard in a sixth way. By writing the appropriate programs, compiling them, and hiding them inside a stack file, a programmer can add new commands to HyperTalk, thus extending HyperCard to do things it was not explicitly designed to do. One example we saw was a cross-referenced geographic atlas; when we clicked on certain points on the screen, a laser-disk player that was connected to the Mac instantly displayed a satellite photograph of the area clicked on.

We have played with a beta version of HyperCard for several days and, so far, have found it fast, very useful, and a lot of fun. Look for a more detailed report on MultiFinder in the November BYTE and a report on HyperCard in the December issue.

—Gregg Williams and Tom Thompson
PaintJet Prints in Color

Hewlett-Packard's PaintJet color graphics printer uses thermal ink-jet technology to produce text and graphics with a resolution of 180 by 180 dots per inch. It also prints near-letter-quality text at 167 characters per second.

The printer mechanism holds four inks (black, yellow, magenta, and cyan) and mixes them to produce red, blue, and green. With the appropriate software, you can mix the three primary colors to produce 330 different shades and hues.

The PaintJet uses 60 nozzles to transfer the ink to the media. The nozzles, black or colored inks, and electrical printing elements come in disposable cartridges. HP rates the cartridge life at 1.1 million characters—about 1.1 million pages of text or 180 pages of color graphics.

You can use cut-sheet paper or single-sheet transparency film in the PaintJet in sizes up to 8 1/2 by 11 inches. A full page of color graphics on paper takes approximately 4 minutes to print. A special mode, used for producing color transparencies, requires about 8 minutes.

The PaintJet measures 3.9 by 14.4 by 11.9 inches and weighs 11 pounds. Its noise level during printing is below 50 decibels. The printer is available with either serial, parallel, or HP-IB (IEEE-488) interfaces. Price: $1395; black cartridge, $27.95; color cartridge, $34.95.

Contact: Hewlett Packard, 3000 Hanover St., Palo Alto, CA 94304, (415) 857-1501.

Protected-Mode 286 and 386 Operating Systems

E xtend MS-DOS with the OS/286 or OS/386 protected-mode operating systems. The systems run on top of DOS, using the same interface, so your DOS 3.x calls and BIOS functions are accessible. Device drivers and TSR (terminate-and-stay-resident programs) interrupt handlers written for DOS also run under OS/286 and /386.

OS/386 offers a 4-gigabyte address space and adds 32-bit performance to 386 systems, and you can customize it to give unmodified DOS programs up to 900K bytes, no matter how many TSRs, networks, or disk caches are installed. You can convert your 8086 assembly language programs to 16-bit (286) mode. On the 386, a 16-bit program runs two to three times faster than it would on the 386, the company reports. If you convert the program to 32 bits, it increases the speed another two to four times. Using the developer's toolkit, you can recompile programs written in C, Pascal, FORTRAN, or Common LISP.

The operating systems come with a kernel, linker, and symbolic debugger/command processor. Options include 16- and 32-bit compilers, High C, Professional Pascal, F77L FORTRAN, and a 32-bit assembler. The symbolic debugger acts as a command processor with command-line editing, a history mechanism, dynamic environment variables, and nesting of batch files.

Applications you develop with the 386 operating system are portable to other IBM PC-based 386 systems. Applications developed with OS/286 can be ported to compatible 286 and 386 systems.

To run the operating systems, you load them as device drivers at boot time. OS/386 uses two physical processors when they are present and requires an A.I. Architects HummingBoard, a Compaq 386, or a Chips and Technologies 386 Chipset or compatible with at least 1 megabyte of extended memory. For OS/286, you need an IBM PC AT or compatible with at least 1 megabyte of extended memory.

Price: $495 each.

Contact: A.I. Architects Inc., One Kendall Square, Suite 2200, Cambridge, MA 02139, (617) 577-8052.

Inquiry 577.

Unix Operating System

Sy stem V/386, a Unix operating system for the Intel 80386 microprocessor, includes optional development, word processing, and Streams networking packages. Source code is available. The operating system runs on any 386 machine, according to Micropoint.

Price: Two-user system, $199; development module, $499; text processing, $199; run-time system with all modules, $799; source code, $25,000. At press time, Micropoint had not set a price for the networking package.

Contact: Micropoint Systems Inc., 10 Victor Square, Scotts Valley, CA 95066, (800) 722-8649; in CA, (800) 822-8649.

Inquiry 578.
The software in Genoa's Galaxy" tape system makes backup easy and fast. Just choose your options from the menu, press a few keys, and four minutes later your 20 MB hard disk is all backed up.

SMART, AUTOMATIC
You can set your Genoa Galaxy to backup automatically on a regular basis—like once a day. (That's smart!) If you're working on your computer when it's time to backup, the Galaxy will remind you it's time to take a five-minute break. Or, you can tell Galaxy to backup automatically after hours.

And, while the Galaxy backs up your data, it will display an on-screen status report.

NETWORK UPGRADEABLE
Add Genoa's GenWare" software to your Galaxy tape backup system, and you can backup the data in your Novell network quickly and automatically. You can also easily exchange data between your stand-alone Galaxy units and your network units.

Genoa has the answer to the backup question: a whole family of tape backup units, from 20 to 120 MB, that are easy, automatic, and fast.

For the dealer nearest you or for more information, call 408-432-9090. Or write Genoa Systems Corporation, 73 E. Trimble Road, San Jose, CA 95131. FAX: 408-434-0997, TELEX: 172319

© 1987 Genoa Systems Corporation. GenWare and Galaxy are trademarks of Genoa Systems Corporation.
Snap Shot does Windows

BiScan's Snap Shot lets you capture and digitize moving or static images from television cameras, VCRs, or laser disks (any RS-170 signal). The program supports real-time digitization to 256 gray levels at a resolution of 512 by 512 pixels. You can control the brightness and contrast of the video signal.

Before printing the image, you can crop, size, enhance, halftone, and preview your image under Microsoft Windows. The program directly supports Aldus PageMaker, or you can transfer bit-mapped images to any application through the Windows Clipboard or create TIFF files for high-resolution hard copy.

Three models of Snap Shot are available. The Model 10 includes software, a full-slot image-processing board, cables, and connectors. The Model 20 adds a 13-inch RGB monitor, and the Model 30 adds a stand, a macro-zoom lens, cables, and a 48-bit YTE.

Price: Model 10, $2250; Model 20, $2860; Model 30, $3570.
Contact: BioScan Inc., 4520 Union Bay Place NE, Seattle, WA 98105, (206) 523-5000.
Inquiry 579.

Transfer Data Between Incompatible Programs

Magic Mirror is a memory-resident program that lets you reformat and transfer data between incompatible programs.

You highlight data on your screen to store it on disk in a memory buffer limited only by your disk space. You can then call the data from the disk and format it for the program you want to send it to. You can store the formatting procedure in a library and reformat the data to be transferred to another program. After you reformat the data, you can store it on disk for future transfer.

Price: $99.
Contact: Flagstaff Engineering, 1120 Kaibab Lane, Flagstaff, AZ 86001, (602) 779-3341.
Inquiry 581.

Altos Combines 386 and Xenix V

Altos Computer Systems claims its 386 Series 2000 is the industry's first 80386-based system that runs the Xenix System V operating system. The Series 2000 is available in four configurations, all of which include an 80386 operating at 16 MHz, an 80387 coprocessor, and a 32K-byte instruction cache. Also standard is a 1.2-megabyte 5 1/4-inch floppy disk drive, a 60-megabyte streaming tape-backup unit, and an Altos V terminal.

The Model 2408S supports up to 20 users and includes 4 megabytes of RAM and a 65-megabyte ESDI (enhanced small device interface) hard disk drive. The 2417S has a 142-megabyte hard disk drive. Supporting up to 64 users, the Model 2417M includes 4 megabytes of RAM, a 142-megabyte hard disk drive, and the Multidrop cabling and transmission system that lets you connect up to 64 RS-232C devices to the system on a single cable. At the top of the line, the Model 2817M adds 4 more megabytes.

Any of the Series 2000 systems can be expanded to up to 16 megabytes of RAM in 2-, 4-, and 8-megabyte increments. A 320-megabyte hard disk drive and an uninterruptible power supply (UPS) for the system will be available by the end of the year. The UPS will fit as a pedestal base to the computer system and will come with software that provides power-fail/auto-restart services if the power failure lasts longer than the UPS's 3- to 5-minute rated life.

Price: $25,000 and up.
Contact: Altos Computer Systems, 2641 Orchard Parkway, San Jose, CA 95134, (408) 946-6700.
Inquiry 582.
Long life and high speed run in our family.

The LaserImage 3000 — the most productive laser printer available.
No other laser printer in its class can surpass the 3000's speed. But there is more to productivity than high speed. There's reliability. The LaserImage 3000 is built to last. You can expect a 1,500,000 page life cycle from its advanced engine. Nationwide on-site service is also available.

Choose the PCPI laser printer that's right for you.
Whether you need the 6 page per minute speed and economy of the LaserImage 1000™, the 8 page speed of the LaserImage 2000™ or the high speed of the LaserImage 3000™, you are selecting a printer designed to give you dependability and long life. As with any close family, the LaserImage Series™ printers are fully compatible.

All members of the LaserImage family have a plotter and a graphics printer "built in."
The LaserImage family emulates LaserJet Plus, Diablo 630, IBM Proprinter, HP plotters and the Epson FX/80 — all standard. If your software works with these, it will work with any of the LaserImage Series printers.

Advanced graphic capabilities.
The LaserImage Series utilizes 100% of the page for graphics with sharp 300 dots per inch resolution. You can print in either the portrait or landscape format with PCPI's full bit map fonts and graphics.

Create the perfect image.
Choose your typeface from 31 standard near-typeset quality fonts, or select other optional typefaces from the PCPI font library.

Call PCPI toll free for the dealer nearest you.

Personal Computer Products, Inc.
11590 West Bernardo Court
San Diego, CA 92127
(619) 485-8411; Telex: 499-2939
FAX: (619) 487-5809

Toll Free Information:
1-800-225-4098
In California:
1-800-262-0522

PCPI is a public company whose shares are traded on the NASDAQ exchange.

Inquiry 216 for End-Users. Inquiry 217 for DEALERS ONLY.

© 1987 Personal Computer Products, Inc. LaserImage, LaserImage Series, LaserImage 1000, 2000 and 3000 are trademarks of Personal Computer Products, Inc. IBM Proprinter is a registered trademark of the International Business Machines Corporation. Epson FX/80 is a registered trademark of Epson America, Inc. HP and LaserJet Plus are registered trademarks of Hewlett-Packard Company. Diablo 630 is a registered trademark of Data I/O Corporation.
Three-Dimensional Charting and Graphing

Windows Graph is a business graphics and charting program that is compatible with Microsoft Windows. From data files, you can create two- and three-dimensional charts and graphs of up to 34 by 34 inches, including area, bar, column, line pie, scatter, table, and combination charts. You can also place an unlimited number of charts on one page. A Folder is included, in which you can store custom graphs for later access.

The program features three-dimensional support for all chart types, and Microsoft's DDE (Dynamic Data Exchange) protocol is supported for linking data from one application to another. You can also link data to charts within Windows Graph to the data contained in a worksheet window and import data from a variety of spreadsheets. You can also create labels in the window and type and manipulate text interactively on the chart pages. Line and paragraph formatting and editing features enable you to place text in the graph area. When you modify the data in the worksheet, the program automatically updates the charts.

In creating three-dimensional views, you control the amount of depth and projection view. You can also change the location of the axes, add major and minor grids, and clarify legends.

In addition, Windows Graph is compatible with In*Vision and Windows Draw, and you can load charts into either program for further manipulation.

Windows Graph runs on IBM PCs and compatibles with at least 320K bytes of RAM, two floppy disk drives, a graphics card, a graphics monitor, and a printer. Micrografx recommends a hard disk drive and 512K bytes of RAM.

Price: $395.
Contact: Micrografx Inc., 1820 North Greenville Ave., Richardson, TX 75081, (214) 234-1769.
Inquiry 583.

Getting Personal with Laser Printers

General Computer's Personal LaserPrinter (PLP) takes up about as much desktop real estate as an Imagewriter and costs about half the price of an Apple LaserWriter. The PLP runs with the Macintosh Plus, SE, and II. A 1-megabyte RAM cartridge plugged into the printer lets you run it off the 512K-byte Macintosh.

Having only 4K bytes of ROM and a tiny RAM buffer, the PLP is essentially a "dumb" printer. It uses Macintosh QuickDraw routines to process the image and then writes print files into spool files on your disk.

Using a Ricoh 6000 print engine, the PLP prints at 6 pages per minute. It features three print modes: high-quality mode prints at resolutions of 300 dots per inch; draft mode prints at 72 dpi and provides a printout in seconds; and preview mode prints to screen, letting you see what the document will look like when printed.

The PLP comes with 13 LaserWriter fonts plus nine additional fonts. The fonts are defined in software as outlines, enabling you to scale, rotate, and manipulate the fonts without affecting output quality. The PLP does not support PostScript and can't be used on a local-area network.

General Computer claims the PLP's cartridge is good for 1500 copies, the drum cartridge is good for 20,000 copies, and the cleaner cartridge for 10,000 copies. A replacement drum cartridge with two cleaner cartridges is available for about $200.

Price: $2595; toner cartridge, $29.
Contact: General Computer Corp., 215 First St., Cambridge, MA 02142, (617) 492-5500.
Inquiry 584.

28-millisecond Drive for the Mac SE and II

The Rodime 450 RX is an internal 45-megabyte hard disk drive that's designed for the Macintosh SE and II. The company claims the drive has an average access time of 28 milliseconds.

An embedded SCSI controller is used in the drive because of space constraints. Rodime says it fully meets Apple's SCSI specifications. The controller handles all error correction and disk management. Built-in diagnostics identify and flag 28 different fault conditions in the drive, controller, or power supply. The 450 RX is fully arbitrating, which maximizes data throughput when you use multiple SCSI peripherals. You can connect up to seven additional SCSI peripherals through the drive's SCSI port.

The 450 RX includes FileGuard software for backing up data from the hard disk to floppies. You must have a dealer install the drive in the Macintosh II or SE. Its installation is identical to that of Apple's hard disk drives, requiring a supplied mounting bracket and a 50-pin connector.

Price: $1595.
Inquiry 585.

Z80 Card Adds CP/M to PCs

MicroSolution's high-speed Z80 card lets you run CP/M programs on your IBM PC or compatible. The card requires a half-size 8-bit slot and has 64K bytes of RAM and an 8-bit Z80 processor that runs at 8 MHz with no wait states.

The Z80 card comes with the high-speed version of the company's UniDOS, a CP/M emulator that lets you create a complete Z80 CP/M version 2.2-compatible environment on your system.

Price: $195.
Contact: MicroSolutions Computer Products, 132 West Lincoln Highway, DeKalb, IL 60115, (815) 756-3411.
Inquiry 586.

continued
From the sophisticated realism, detail, and intellectual stimulation of Flight Simulator...

...to the brute-force fun, thrills and excitement of Jet...

...with new adventures in Scenery Disks...

...SubLOGIC. The State of the Art in Flight.

See Your Dealer. For additional product ordering information or the name of the dealer nearest you, call (800) 637-4983.
DG Upgrades Laptop

The Model 2T is Data General's latest incarnation of its Data General/One laptop computer. Weighing just under 12 pounds, the 2T adds a supertwist backlit LCD screen, a dual-speed Intel 80C88 running at both 4.77 MHz and 7.16 MHz, and removable batteries.

The standard model of the 2T has 512K bytes of RAM and a single 3½-inch floppy disk drive. You can upgrade the system's internal RAM in 256K-byte, 1-megabyte, or 2-megabyte increments, up to a maximum of 2.5 megabytes. A 3½-inch 10-megabyte internal hard disk drive is optional.

You can manually switch the supertwist LCD screen to a normal (nonbacklit) screen to conserve battery life. The system's nickel-cadmium rechargeable batteries are now removable and can power the 2T for up to 5 hours. In addition to the internal trickle-charger for the battery, an optional quick charge is also available. It fully recharges the batteries in 2 hours.

The 2T has both parallel and serial ports. Some available options include a Hayes-compatible 1200-bps modem, an internal interface card for an external 5¼-inch floppy disk drive, an 8087 coprocessor, a carrying case, and a car adapter. For software, the Model 2T comes with MS-DOS 3.2.

Price: $1695; with a hard disk drive, $2895.
Contact: Data General Corp., 4400 Computer Dr., Westborough, MA 01580, (800) 328-2436; in Massachusetts, (617) 366-8911.
Inquiry 587.

Split-Personality System

Datamedia Corp.'s Colorscan/2 is a diskless workstation with a motherboard full of application-specific integrated circuits (ASICs), a V30 processor running at 8 MHz, and 768K bytes of zero-wait-state RAM. The system unit has a footprint of 15 by 10 inches and is 2½ inches high. Not surprisingly, surface-mount technology is used extensively, and the Datamedia folks have taken several hints from IBM PS/2 designers with quick-disconnect components. The only cable goes to a cooling fan.

The Colorscan/2 can be a DEC VT-240-compatible terminal and a PC at the same time. You can hook up to an on-line system, such as a VAX, while working with a PC application at the same time. You switch between the terminal session and the PC by hitting a hot key. Since the Colorscan/2 has two RS-232C serial ports, you can also have an on-line session running under MS-DOS at the same time. As with the Macintosh, there's a Clip-board that lets you move data back and forth between VT-240 and PC modes.

The system's EGA chips are designed by Datamedia and provide a resolution of up to 800 by 480 on the 13-inch monitor, which is included. Characters display in a 10-by-10 pixel matrix. A custom ASIC also saves EGA registers and memory while in VT-240 mode. All VT-240 functions are stored in a 128K-byte ROM.

There's room inside for two add-in boards, as long as they aren't longer than 8 inches. You install all boards horizontally using 8-bit bus 90-degree adapters that are included with the unit.

Options include a long, narrow, battery-backed 2-megabyte RAM card that doesn't use either of the two expansion slots. And for those who choose not to go diskless, there's an expansion unit that sits vertically like a book and contains both a 3½-inch 1.4-megabyte floppy drive and a 3½-inch 20-megabyte hard disk drive. There's also a cardfile interface that accepts credit-card-size memory cards.

Price: $2000; 2-megabyte RAM card, $750; 3½-inch floppy/hard disk unit, $995; cardfile interface, $150.
Contact: Datamedia Corp., 11 Trafalgar Square, Nashua, NH 03063, (603) 886-1570.
Inquiry 588.

ON! System is Always On

The aptly-named ON! System doesn't have a power switch. In a departure from contemporary computer designs, the system stores all its built-in programs in RAM, with configurations available in either 2 or 4 megabytes.

Running an 8-bit Z80 processor with the ZRDOS operating system, the ON! System has built-in power-conditioning and backup power that the company claims will hold all data for up to 14 hours.

The built-in menu-driven software includes the NewWord word processor with a 65,000-word spelling checker and over 30 special utilities for file and system management. The system has an external 5¼-inch floppy disk drive that reads and writes data from over 40 disk formats, including MS-DOS.

The system unit has no moving parts, and, according to the company, doesn't require a cooling fan. Single parallel and RS-232C serial ports are standard, and the standard 14-inch monochrome display is available in green, amber, or white phosphor.

Price: $2989 with 2-megabytes of RAM; $3395 with 4 megabytes.
Inquiry 589.

continued
Verbatim 6.6 MB subsystems: high capacity with the convenience and security of removable floppies.

You’ll appreciate the advantages of Verbatim 6.6 MB subsystems from Kodak. You get 5.57 MB of formatted capacity and all the benefits of removable floppies. Store unlimited amounts of data. Easily transport files. Secure important information. And back up your hard disk quickly and reliably.

No need to throw away existing disks. This subsystem can read disks with 48, 96, and 192 tpi. Available to fit inside or alongside your IBM PS/2 model 30 or IBM PC/XT/AT and compatibles. Everything you need for fast, easy installation comes with the package. And you’re protected by a one-year warranty.

Ask your computer dealer about this new Verbatim subsystem and media. Or call 1-800-44KODAK, ext. 990.

Free Back-It software for hard-disk backup with purchase, while supplies last.
Low-Cost Buffer Gets Smaller

The new version of the MicroStuffer printer buffer measures approximately 5 by 6 inches—about half the size of its predecessor. The buffer has 64K bytes of RAM and works with all computers and most parallel-port printers. Installation is a simple matter of plugging it between your computer and printer.

MicroStuffer is totally transparent to the applications software. It shows buffer status with a flashing light on the front panel, which flashes faster as you fill the buffer. A "clear" push button clears the RAM, while a Repeat button lets you make multiple copies.

Price: $69.95.
Contact: Supra Corp., 1133 Commercial Way, Albany, OR 97321, (503) 967-9075.
Inquiry 590.

Up to a Gigabyte on the Mac II

Mirror Technologies' ProStation 1024 is a combination hard disk drive/tape-backup system designed especially for the Macintosh II, although it has a standard SCSI interface for use with any system so equipped. The system is available in hard disk configurations of 85, 172, 340, 680, and 1024 megabytes. The tape-backup part of the system is available in 40-, 120-, and 240-megabyte sizes.

The system has an average track-to-track time of 17 milliseconds.

The reader will also transfer columns of words and numbers into Lotus 1-2-3 and will read graphics into two graphics programs: PC Paint and PC Paintbrush. The reader has a built-in sheet feeder that lets it read stacks of up to five typewritten pages. Although Page Reader's software requires only 270K bytes of RAM, Saba recommends 640K bytes and a hard disk drive. To use the reader, you access the software with a hot key, tell it which word processor you're using, and press a key to activate the reader.

Price: $1299.
Contact: Saba Technologies Inc., 9300 Southwest Gemini Dr., Beaverton, OR 97005, (503) 626-7050.
Inquiry 593.

Bypassing the Power Supply

CPs (continuous parallel-power system) from Applied Research and Technology is an alternative power source for personal computers. The Co-Pilot 140 C Ps supplies DC power directly to a computer by bypassing the computer's internal power supply and completely eliminating any switchover delays. According to the manufacturer, the battery system and the Co-Pilot will power a fully loaded AT-type computer for approximately 2 hours.

Under normal operating conditions, the computer power supply receives AC power from the 115-volt AC line and converts the AC to appropriate levels of DC. Simultaneously, the Co-Pilot is producing the same voltages, which are placed in parallel to the computer's. Should a power loss occur, the computer's power supply would begin to fail, and its DC levels would start to drop. But because the battery-backed Co-Pilot's DC levels are connected to the computer, the system's power needs are met.

The company says its parallel-power approach also eliminates the normal AC/DC/AC conversion inefficiencies associated with other backup and uninterruptible power supplies.

Price: $1495.
Inquiry 594.
PROTEUS SYSTEMS features:
16MHz, Zero Wait State, 32-bit RAM Keyboard, Software, & Hardware selectable CPU speed & Wait States ROM based advanced Diagnostics.

Norton SI: 23.5!!

Editor's Choice.
"There are so many nice aspects to Proteus and the company that makes it, there isn't enough room to cover them all."
Lawrence Oakley,
Business Computer Digest, 387

PROTEUS SYSTEMS ARE DESIGNED AND BUILT IN USA
15-MONTH FULL WARRANTY, LABOR & PARTS INCLUDED
FREE NATIONWIDE ON YOUR SITE SERVICE!
24 HOUR ONLINE CUSTOMER SUPPORT

30 DAY MONEYBACK GUARANTEE
100% COMPATIBILITY WITH DOS, UNIX, XENIX, AUTOCAD, NOVELL

CHOOSE FROM THESE BEST HIGH SPEED 386 AND 286 SYSTEMS

PROTEUS-386
• 80386 Intel CPU, 16MHz, Norton St 23.5
• Zero Wait State, 64KB Cache
• Keyboard Selectable Speeds & Wait State
• 1 Megabyte 32-bit RAM expandable to 4MB on system board
• 2 Serials, 1 Parallel Port
• ROM Based Diagnostics & Setup
• Onboard EGA BIOS
• Coprocessor Support
• Hard Disk & Floppy Controller
• Clock, Cal., & battery backup
• 230V quality 110/220v power supply
• 1.2MB Floppy Drive, Choice of
• 3.5" Micro floppy
• Enhanced Keyboard
• 14" High Resolution Monitor
• Hercules compatible Mono graphics card
• 40MB Fast Hard Disk installed

Price: $1450.00
40MB EGA System $4595.00

PROTEUS-386i
• 80386-16 Intel CPU, 16MHz, Norton St 23.5
• 512KB 32-bit RAM expandable to 4MB on system board
• Keyboard Selectable Speeds & Wait State
• Coprocessor Socket
• Serial, & Parallels on mainbd.
• 230V, quality Power supply 110/220v
• Hard Disk & Floppy Controller
• 1.2MB Floppy Drive, choice of
• 3.5" micro floppy
• High Resolution Monochrome Monitor
• Hercules, Compatible Mono adapter
• Enhanced Keyboard
• 40MB Fast Hard Disk installed
• Custom Configurations available

Price: $3595.00
40MB EGA System $3995.00

PROTEUS-286E
• Intel 80286, 8/16MHz opt. 1OMHz.
• 80286-10, 8/16MHz Keybd Select.
• 512K RAM expandable to 1MB
• 2 Serials & 1 Parallel Ports
• 8 I/O Slots
• Hard Disk & Floppy Controller
• Clock, Cal., & Battery
• 195W Power supply 110/220v
• 2 Serials, Parallel Ports
• 1.2MB Floppy Drive, reads both
• 1.2MB and 360K floppy
• Maxivisor AT Style Keyboard
• Hercules, Compatible Graphics Adapter
• High Resolution Monochrome Monitor
• 30MB Seagate Hard Disk Installed

Price: $1780.00

"...Proteus 286e is a clear winner. We recommend it."
InfoWorld, April 27, 87

PROTEUS-286F
• 16MHz ZERO Wait State System
• 80286-10, 8/16MHz Keykd Select.
• 1.2MB Floppy Drive installed
• 8 I/O Slots
• Hard Disk & Floppy Controller
• Clock, Cal. & Battery
• 195W Power supply 110/220v
• 2 Serials, Parallel Ports
• 1.2MB Floppy Drive, reads 1.2MB
• and 360K floppy
• Maxivisor Keyboard

Price: $1450.00

WE HAVE THE LARGEST SELECTION OF HARD DISKS, MONITORS AND ADAPTERS AT THE LOWEST PRICES. WE CUSTOM CONFIGURE AND TEST THE SYSTEMS EXTENSIVELY FOR YOU.

HARD DISKS

20MB Seagate $279 30MB Seagate $375 38MB Seagate $355 40MB Seagate $449
42MB Miniscrbe $485 44MB Priam $795 80MB Seagate $955 140 Maktor $1195 150 Maktor $1195

MONITORS

High Resolution Monochrome $199 14" Proteus EGA Monitor $199 15" Color Monitor $346 17" Proteus EGA Monitor $449
850 Monochrome EGA Monitor $599

ADD-ONS

Herc. Compatible Mono card $98 IBM Compatible Color card $98
Proteus EGA, CGA, MDA card $255
Vega Deluxe CGA card $345
Atari Wonder Card $199
80286-10 Coprocessor $249
80386-10 Coprocessor $369
12008 Omnipotent Modem $399
24008 Omnipotent Modem $129
40MB Tape Backup Int $466
60MB & 120MB Tape Backup $1.59
3.5" Floppy Drive $179
360K Floppy Drive $295

To order or for information call us 1-800-782-8387
In New Jersey Call (201) 288 8629
Telex 510 601 0960

Proteus Technology Corp,
377 Route 17,
Airport 17 Center,
Hasbrouck Heights, NJ 07604

Visit us at PC Expo
New York Booth #1663

SEPTEMBER 1987 • BYTE 55
We wanted this to be a fair comparison.

One look at what the competition left out of their C compiler and you'll see why there's only one choice for people who want to learn C. Introducing Microsoft® QuickC™, the C compiler that gives you the features you need to learn C quickly with no sacrifice of compilation or execution speed.

Only QuickC gives you a completely integrated debugging environment so you can detect program logic errors and correct them instantly. And you know this debugger is advanced because it's from the makers of the Microsoft CodeView® source-level debugger.

Only QuickC's graphics libraries let you take advantage of the PC's extensive graphics capabilities. Just like you've come to expect with other languages.

Only QuickC has special context sensitive help for the C language and library routines. And help is right where you need it. On screen, so you don't have to go looking for it.

Only QuickC gives you such highly acclaimed documentation. There are extensive examples to guide you. And there's a special tutorial that helps BASIC and Pascal users move over to C faster.

If you're thinking you might want to move to an even more powerful C later, QuickC's your only choice.

TurboC

No integrated source-level debugging.

No graphics library.

No on-line help for the C language or library routines.
Life is not fair.

QuickC

Because no one else is truly 100% compatible with Microsoft C 5.0, the professional level optimizing compiler.

Microsoft QuickC Compiler Feature Comparison

<table>
<thead>
<tr>
<th>Feature</th>
<th>Microsoft QuickC</th>
<th>Turbo C[^]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debugger</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrated debugger and editor</td>
<td>Yes</td>
<td>—</td>
</tr>
<tr>
<td>Source-level debugging</td>
<td>Yes</td>
<td>—</td>
</tr>
<tr>
<td>Watch local & global variables</td>
<td>Yes</td>
<td>—</td>
</tr>
<tr>
<td>Set breakpoints</td>
<td>Yes</td>
<td>—</td>
</tr>
<tr>
<td>Stack tracing</td>
<td>Yes</td>
<td>—</td>
</tr>
<tr>
<td>Editor and Environment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WordStar® compatible</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Context-sensitive help for C language</td>
<td>Yes</td>
<td>—</td>
</tr>
<tr>
<td>Context-sensitive help for C functions</td>
<td>Yes</td>
<td>—</td>
</tr>
<tr>
<td>Brace, bracket & parenthesis matching</td>
<td>Yes</td>
<td>—</td>
</tr>
<tr>
<td>Mouse support</td>
<td>Yes</td>
<td>—</td>
</tr>
<tr>
<td>Support for EGA 43-line mode</td>
<td>Yes</td>
<td>—</td>
</tr>
<tr>
<td>Documentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete C language reference</td>
<td>Yes</td>
<td>—</td>
</tr>
<tr>
<td>Examples for every library routine</td>
<td>Yes</td>
<td>—</td>
</tr>
<tr>
<td>Compiler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Completely Microsoft CodeView compatible</td>
<td>Yes</td>
<td>—</td>
</tr>
<tr>
<td>Automatic enregistering</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Integrated MAKE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automatically generates .MAK file</td>
<td>Yes</td>
<td>—</td>
</tr>
<tr>
<td>In-memory MAKE compatible with stand-alone MAKE</td>
<td>Yes</td>
<td>—</td>
</tr>
<tr>
<td>Include file dependencies</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Libraries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graphics library included</td>
<td>Yes</td>
<td>—</td>
</tr>
<tr>
<td>CGA & EGA and VGA support</td>
<td>Yes</td>
<td>—</td>
</tr>
<tr>
<td>Library source code available</td>
<td>Yes ($150)</td>
<td>Yes ($150)</td>
</tr>
<tr>
<td>Microsoft C Optimizing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compiler 3D compatible</td>
<td>Yes</td>
<td>—</td>
</tr>
<tr>
<td>Microsoft LINK vs. Turbo Link</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Links programs up to 640K</td>
<td>Yes</td>
<td>—</td>
</tr>
<tr>
<td>Supports overlays</td>
<td>Yes</td>
<td>—</td>
</tr>
<tr>
<td>Directory searching for library files</td>
<td>Yes</td>
<td>—</td>
</tr>
</tbody>
</table>

At $99.00, no one can give you more for the price. And if you’re not happy, remember we back QuickC Compiler with a 30 day money back guarantee.*

What could be fairer than that?

Microsoft® QuickC™

For a QuickC information kit or the name of your nearest Microsoft dealer, call (800) 426-9400. In Washington State and Alaska, (206) 882-8088. In Canada, call (416) 673-7638.

*Offer valid only in U.S.A.
Turbo Pascal Controls Controller

The MT1000 is a single-board electronic controller designed for a wide range of control applications. According to Measurement Technology, it's the first controller to be programmed with Borland's Turbo Pascal, which has been enhanced on the MT1000 to include software interrupts that allow your program to respond in real time to external events.

Based on Hitachi's HD64180 CMOS processor, the MT1000 includes 64K bytes of battery-backed CMOS RAM, 128K bytes of user EPROM, 1K byte of EEPROM (electrically erasable), and a clock/calendar. Three RS-232C serial ports are included.

You can connect the MT1000 directly to a wide variety of sensors, as well as voltage and current input signals. It also has six frequency inputs that allow any frequency in the range of 50 hertz to 1 MHz to be automatically measured to .005 percent resolution within 20 milliseconds.

An optional floppy disk controller/256K-byte RAM card is available. The MT1000 requires a single 5-volt DC supply and typically consumes 5 watts of power.

Price: $1625.
Contact: Measurement Technology Inc., 1595 Central St., Stoughton, MA 02072-6054.
Inquiry 596.

Slotless Amiga Slot

The TimeSaver macro/ clock for the Amiga 1000 plugs into the line between the computer and keyboard and attaches to the underside of your computer. The built-in replaceable lithium battery has a rated life of 12 to 18 months, and the unit automatically enters the date and time whenever you power-up or reboot your Amiga.

There's a built-in ROM with macros that contain shorthand versions of many CLI commands. It can be disabled if you desire. In addition, the TimeSaver has 7K bytes of RAM for programming macro keys, with a learn mode that remembers commands that you key in. You can also include any macro you select in a start-up/reboot routine.

TimeSaver has a command-line history buffer that stores your last 1024 characters of CLI commands, and a command-line editor for editing CLI commands. The unit also allows you to password-protect your Amiga, preventing its start-up until you enter your personal password.

Price: $79.95.
Inquiry 597.

Mighty Meg adds up to 14.5 Megabytes

Quadram's Mighty Meg is a memory-expansion board for IBM PC ATs and full compatibles that uses SIMMs (single in-line memory modules) to add up to 14.5 megabytes of RAM to your system, using a single 16-bit expansion slot.

The five available configurations for the Mighty Meg start at 512K bytes. You can expand the board incrementally up to 4 megabytes using 256K by 9 SIMM devices, or up to 14.5 megabytes using 1 megabyte by 9 SIMM devices.

Price 512K bytes, $545; 14.5 megabytes, $4995.
Contact: Quadram, One Quad Way, Norcross, GA 30093-2919, (404) 923-6666.
Inquiry 598.

Two for the Toshiba

Multi-Tech Systems' MultiModem212TL is a plug-in card that fits into the expansion slot of the Toshiba T1100 Plus and T3100 laptop computers. The modem operates at both 300 and 1200 bps and is compatible with both the Bell 212A and the Hayes AT standards.

The MultiModem212TL measures 4.175 by 4.6 inches and interfaces with the internal Toshiba 60-pin bus. It includes two phone jacks and an on/off switch. The modem has a two-year warranty and is shipped with Multi-Tech's MultiComPC software on a 3½-inch disk.

Price: $299.
Inquiry 599.
SOFTWARE ENGINEERING COMES OF AGE.

ANNOUNCING LOGITECH MODULA-2 VERSION 3.0

Modula-2 is the language of choice for modern software engineering, and LOGITECH Modula-2 is the most powerful implementation available for the PC. The right language and the right tools have come together in one superior product. Whether you're working on a small program or a complex project, with LOGITECH Modula-2 Version 3.0 you can write more reliable, maintainable, better documented code in a fraction of the time at a fraction of the cost.

NEW IMPROVED COMPILER

Faster and more flexible. Now its' DOS linker compatible object files (.OBJ) can be linked with existing libraries in C, PASCAL, FORTRAN and ASSEMBLER so you can build on previous development and put the power of LOGITECH Modula-2 to work for you right now. Fully supports Wirth's latest language definition, including LONGINT and LONGSET, which provides large set support including SET of CHAR. Provides optimization for tighter, more efficient code generation.

NEW IMPROVED DEBUGGERS

Time gained with a fast compiler can be lost at debug time without the right debugging tools. With the powerful Logitech Modula-2 Debuggers you can debug your code fast, and dramatically improve your overall project throughput. The Post Mortem Debugger analyzes the status of a program after it has terminated while the dynamic Run Time Debugger monitors the execution of a program with user-defined breakpoints. With their new, mouse based, multiple-window user interface these powerful debugging tools are a pleasure to use.

FREE TURBO PASCAL TO LOGITECH MODULA-2 TRANSLATOR

NEW INTELLIGENT LINKER

Links only those routines from a particular module that you need, so you eliminate un referenced routines and produce smaller, more compact executable files.

NEW EDITOR

Our new, mouse based editor is fully integrated, easy to learn, fast and easy to use, and very customizable. Its multiple, overlapping windows and color support make it easy to manage parts of one file or several files on the screen at one time. You'll love using it - with or without a mouse.

For information about our VAX/VMS version, Site License, University Discounts, Dealer & Distributor pricing. To place an order call toll-free:

800-231-7717 In California:
800-552-8885

Logitech, Inc.
6505 Nolin Drive, Fremont, CA 94535
Tel: 415-795-5500

In Europe: LOGITECH, Switzerland
Tel: +41-21-879-666 Fax: 458 217 Tech Ch
In the United Kingdom: LOGITECH, Ltd.
Tel: 44908-301271 Fax: 44908-71751

SEPTEMBER 1987 • BYTE • 99
AI Development Environment Incorporates Virtual Memory

Written in 386 native mode with virtual memory supported at the hardware level, PowerLisp lets you develop and run 60-megabyte applications on 3-megabyte 386 systems or 31-megabyte applications on IBM PC ATs.

MicroProducts reports that PowerLisp is the full implementation of Interlis, originally written for use on a PDP-10. Common LISP features are also included, and Interlis and Common LISP programs can be supported simultaneously. Interlis functions can call Common LISP functions, and vice versa.

You can communicate between PowerLisp code and DOS applications executing in DOS memory. The program also has features that correct typos, entry errors, and programming errors. A static program analyzer lets you find and edit every place that calls a given function or refers to specific variables, objects, or properties.

You can communicate between PowerLisp code and DOS applications executing in DOS memory. The program also has features that correct typos, entry errors, and programming errors. A static program analyzer lets you find and edit every place that calls a given function or refers to specific variables, objects, or properties.

Power-Ex, an optional expert-system shell, is derived from EMYCIN and ported to PowerLisp. The shell supports backward-chaining reasoning, confidence factors, case files, automated consistency checking, and English-language consultations. An IBM PC running Power-Ex can support rule bases of thousands of rules and can directly import knowledge bases developed using EMYCIN.

You can configure PowerLisp to operate in extended memory above the 640K-byte limit. The program comes in 286 and 386 versions, with the 286 version upgradable to a 386.

MicroProducts reports that the 386 version is six times faster. To run the 286, you need an IBM PC or compatible with at least 2 megabytes of memory, a 30-megabyte hard disk drive, a CGA, EGA, or compatible graphics adapter, and MS-DOS or PC-DOS 3.0 or higher. To run the 386 version, you need a 386 system with at least 2 megabytes of memory, a 30-megabyte hard disk drive, a CGA, EGA, or compatible graphics adapter, and MS-DOS or PC-DOS 3.1 or higher.

Price: 286 version, $1195 or $1695 with 3-megabyte memory-expansion board; 386 version, $1695; Power-Ex, $500 (when purchased with the system).

Contact: MicroProducts Inc., 370 West Camino Gardens Blvd., Boca Raton, FL 33432, (800) 553-0777.

Inquiry 601.

TI Upgrades AI Development Tools

Textas Instruments has announced enhancements to its Personal Consultant Series of expert-system development tools. These include PC Scheme 3.0, Personal Consultant Easy 2.0, Personal Consultant Plus 3.0, two add-ons, and two run-time options.

PC Scheme 3.0 is an enhanced version of TI's implementation of Scheme, a lexically scoped dialect of LISP. Version 3.0 includes external language interfaces to C, Turbo Pascal, and others; random-file access and binary file I/O; and support for up to 2 megabytes of extended or expanded memory. An EMACS-like editor, EDWIN, lets you leave PC Scheme, execute a DOS-based program, and then return to PC Scheme. PC Scheme runs on IBM PCs, XT's, AT's, or compatibles with at least 320K bytes of RAM, two floppy disk drives or one floppy and one hard disk drive, and PC-DOS or MS-DOS 2.0 or higher. It also requires a minimum of 520K bytes to run EDWIN.

Personal Consultant Easy 2.0 is a utility designed to simplify the development of expert systems with up to 300 rules. The program offers a rule-entry language, an integrated window-oriented editor, regression testing, and rule tracing. Version 2.0 includes enhanced interfaces to external data, an enhanced knowledge-base listing, and forward-chaining capability, which can be completely forward- or backward-chaining. With version 2.0, you can also write as well as read DOS files and interface to dbase III, Lotus 1-2-3, and ASCII text files.

The program runs on IBM PC AT's and compatibles with 640K bytes of RAM, a 10-megabyte hard disk drive, and MS-DOS or PC-DOS 2.0 or higher.

Version 3.0 of Personal Consultant Plus, an expert-system shell, can, like Easy version 2.0, read data from external DOS or ASCII text files, Lotus 1-2-3, and dbase III. Plus 3.0 also offers delivery options, which enable expert systems developed with either Personal Consultant Plus or Easy to be delivered in LISP or C on DOS-based computers. Knowledge bases developed with Easy are upwardly compatible with Plus, according to TI.

Plus 3.0 is designed to take advantage of 80286- or 386-based systems. It provides extended knowledge-representation features and increased rule capacity, enabling you to develop larger and more complex applications than you can with Easy. Also, like Easy, Plus 3.0 is enhanced with external language interfaces to C and Turbo Pascal and expanded forward-chaining and frame control. Optional enhancements include the Images and PC Online programs.

Personal Consultant Plus 3.0 has the same hardware requirements as Easy 2.0.

Images and PC Online are optional add-on programs that run with Personal Consultant Plus. Images allows you to incorporate graphic images into your applications. It includes a set of interactive dials, gauges, and a selection of boxes to prompt you to input or display data. You can also use other graphics programs to create input forms, and you can display multiple images on the screen simultaneously.

PC Online supports data processing in batch mode. It lets you create process-monitoring systems that require little or no human interaction. TI reports. You can suppress screen output and notify the operator when information or action is required. PC Online also features reporting and trend-analysis capabilities.

Personal Consultant Plus runs on IBM PC AT's with at least 640K bytes of RAM and a 10-megabyte hard disk drive. You also need an EGA card to run Images.

One of the two run-time options for Personal Consultant Plus or Easy is C Delivery, available for DOS or Digital Equipment's VAX systems. C Delivery compiles the LISP-code knowledge bases into C source modules and links them with an inference engine and a window system, letting you deliver stand-alone or embedded applications on DOS-based systems.

Price: PC Scheme 3.0, $95; Personal Consultant Easy 2.0, $495; Personal Consultant Plus 3.0, $2950; Images, $495; PC Online, $995; C Delivery, $1995.

Contact: Texas Instruments Inc., Data Systems Group, P.O. Box 809063, DSG-150, Dallas, TX 75380-9063, (800) 527-3500.

Inquiry 602.
Introducing Logitech's Publishing Solution

LOGITECH $179
MOUSE
with Publisher Software

Our Mouse and Publisher Software is the complete solution for people who want to produce great looking, attention getting documents without having to master a lot of complex commands and typographical jargon. It's easy to learn, fast to use, and it gets you the results you need right now.

Page Layout Made Easy
You don't have to be a graphic designer to get professional quality results. Create and edit text right on the page. We offer design templates, automatic layout in 1-4 columns, automatic flow of text around graphics, and vertical and horizontal rulers to guide you.

Typography Made Easy
Select from over 61 fonts representing 14 typefaces, in sizes suitable for headlines, subheads and text. We provide optimal line spacing automatically. You adjust for special effects.

Graphics Made Easy
Use our ClipArt or create your own using LOGIPAIN/PC Paintbrush or MS Windows Paint software. You can shrink or expand your graphic images to fit. You can also modify, rotate or copy them.

Produced on a dot matrix printer. Laser printer support also included.

30 Day Money-Back Guarantee
3 Year Warranty

To place a credit card order call our special toll-free number:
800-231-7717
Call toll-free in California:
800-552-8885

YES! I want to produce great looking documents now!
LOGITECH Publisher Package $179
☐ w/ Serial Mouse and Plus Software
☐ w/ Bus Mouse and Plus Software
Add $6.50 for shipping and handling. California residents add applicable sales tax. Prices valid in U.S. only.
Total Enclosed $

Card Number Expiration Date

Signature

State

Inquiry 160 for End-Users. Inquiry 161 for DEALERS ONLY.

SEPTEMBER 1987 • BYTE 61
Engineering Model Analysis

Fujitsu's finite-element analysis program, Elm, enables you to test your three-dimensional structural designs for strength, safety, and performance. The program consists of an analysis module, ElmAnalysis, and integrated pre- and postprocessors, ElmPrelude and ElmEpilog.

ElmAnalysis performs static, eigenvalue, and response-spectrum analysis. The element library includes three-dimensional beam, truss, triangular, and quadrilateral shell elements, as well as two-dimensional 4-node and 8-node isoparametric elements.

The three-dimensional finite-element analysis preprocessor, ElmPrelude, is menu-driven and replaces manual calculations and batch-mode data entry with WYSIWYG (what-you-see-is-what-you-get) graphic approach to creating structural models. According to Fujitsu, you can display every feature of model composition through the use of colors and symbols (from element type, number, and rotation to boundary conditions). A Verify function enables you to display all the input data for a selected boundary condition or element.

The preprocessor includes pull-down menus, icons, and dialog boxes, and you use a mouse instead of the keyboard for data entry. Instead of looking up and keying in property values, you can use the industry-standard data supplied in the engineering libraries. If you want to perform your own batch-mode data entry rather than using ElmPrelude, you can use the free-format input scheme offered by ElmAnalysis.

ElmEpilog, the graphics postprocessor, is also menu-driven and lets you review and manipulate the output of ElmAnalysis with visual displays and printouts of the structure's undeformed shape, deformed shape, and mode shapes.

Elm is written in C and is also available in a two-dimensional version. Elm runs on IBM PCs, XTs, ATs, and compatibles with a 360K-byte floppy disk drive, at least 512K bytes of RAM, MS-DOS or PC-DOS 2.0 or higher, a 10-megabyte hard disk drive, and a numeric coprocessor. To use the pre- and postprocessors, you need a mouse, an EGA graphics board, and a monitor. Price: $3990; two-dimensional Elm, $495.

Contact: Fujitsu America Inc., Engineering Products Dept., Information Systems Division, 3055 Orchard Dr., San Jose, CA 95134-2017, (408) 432-1300.

Inquiry 603.

Threaded Interpretive Language for Laboratories

SALT II, a threaded-interpretable language developed at the University of Chicago, has about 200 assembly language instructions that you can call and compile within a BASIC program.

SALT II includes graphics routines for plotting records, scrolling plots or records, and placing cursors on plots. It enables you to analyze records for regional maximum and minimum, averaging, slope, threshold detection, integration, differentiation, and filtering. Other routines include expanded memory, transfer of numeric files to and from disk, laboratory interfacing, signal averaging, and background operations from BASIC. You can also add your own assembly language routines to the language.

The program supports every function of Tecmar's Labmaster interface board, including A/D, D/A, digital I/O, and timer/counter functions.

SALT II requires an IBM PC, XT, AT, or compatible with at least 256K bytes of RAM and MS-DOS or PC-DOS 2.0 or higher. You must also have a Tecmar Labmaster board for laboratory interfacing and a CGA for graphics.

Price: $75.

Contact: Sam Fenster, 5801 South Dorchester, Suite 12A, Chicago, IL 60637, (312) 702-1491.

Inquiry 604.

Drawing Chemical Structures on the Macintosh

DrawStructures contains 67 organic and biochemical structures, including all major classes of compounds and ring systems in object-oriented format for the Macintosh. Contained in PICT-format documents, you can use the structures as they appear, or modify them using MacDraw, MacDraft, or SuperPaint. Also included is a set of building blocks that can assist you in modifying or building your own structures in these environments.

Modern Graphics reports that DrawStructures does not work with CricketDraw, and SuperPaint accesses only 65 of the 67 documents.

The contained structures were created as object-oriented graphics, which you can resize without distortion or loss of resolution. You can use an ImageWriter, LaserWriter, or other PostScript device for output.

The program lets you copy and paste structures into other Macintosh programs, such as MacWrite. You can also incorporate text into the structures by using ImageWriter or LaserWriter fonts.

Price: $79.95.

Contact: Modern Graphics, P.O. Box 21366, Indianapolis, IN 46221-0366, (317) 253-4316.

Inquiry 605.

Neural-Network Demonstration Program

Awareness consists of four programs that demonstrate four neural-network algorithms. The programs are designed to teach you the properties of neural networks. The first program exhibits the computational capabilities of neural networks, such as association. The second program uses a generalized learning rule and demonstrates the exclusive OR (XOR) function, which you can use in learning context-sensitive signal processing. The third program is an example of a neural network that can produce solutions to combinatorial optimization problems. The fourth program deals with complicated problems, such as robotic control strategy.

The program runs on IBM PCs and compatibles with at least 256K bytes of RAM and MS-DOS or PC-DOS 2.0 or higher. It supports various graphics cards and the 8087 floating-point chip, which Neural Systems recommends.

Price: $130.

Contact: Neural Systems Inc., 2827 West 43rd Ave., Vancouver, British Columbia, Canada V6N 3H9, (604) 263-3667.

Inquiry 606.
Editors' Choice

Purchase our best selling LOGITECH Serial or Bus Mouse and Plus Package with CADD, Paint and Publisher software at very affordable prices. Each package is a complete solution that gets you the results you need right now.

CADD Solution $189

Our Mouse, Plus Software and LOGICADD (Generic CADD 3.0 plus DotPlot). Everything you need to turn your PC into a full featured CADD workstation. It's the complete solution for dimensioned line drawing and CADD.

Paint Solution $149

Our Mouse, Plus Software and LOGIPAINT (PC Paintbrush). With 11 type fonts and a 16 color palette, it's the paint set that's used by professional and beginning users alike. LOGIPAINT files move easily into both LOGICADD and Publisher documents.

Publishing Solution $179

Our Mouse, Plus Software and PUBLISHER Software (PFS: First Publisher). It's the complete package that makes it easy to produce high-impact, professional looking documents.

To place a credit card order call our special toll-free number:
800-231-7717
Call toll-free in California:
800-552-8885

YES! I want the
LOGITECH Mouse solution!
LOGICADD Package $189
□ w. Serial Mouse and Plus Software
□ w. Bus Mouse and Plus Software
LOGIPAINT Package $149
□ w. Serial Mouse and Plus Software
□ w. Bus Mouse and Plus Software
PUBLISHER Package $179
□ w. Serial Mouse and Plus Software
□ w. Bus Mouse and Plus Software
Add $6.50 for shipping and handling. California residents add applicable sales tax. Prices valid in U.S. only.

Total Enclosed $____

Card Number Expiration Date

Signature

Name

Address

City State Zip

Phone

LOGITECH

LOGITECH, Inc.
805 Veterans Blvd., Redwood City, CA 94063
Tel: 415-365-9852

In Europe:
LOGITECH SA, Switzerland
Tel: 41-21-879656 • Telex 455827 Tech Ch

In Italy:
Algol-Logitech Spa 39-2-315-3622

Inquiry 162 for End-Users. Inquiry 163 for DEALERS ONLY.

September 1987 • Byte 63
Training Your Musical Ear on the Commodore

Ear Training Tutor is a music software program that runs on the Commodore 64 and 128. The tutor drills you through more than 50 preset music lessons, playing musical intervals and triads in all inversions and asking you to name them.

First, select what you want to be tested on. You can choose to follow the preset lesson structure, or you can design your own lesson parameters using only the specific intervals or triads that require further practice.

You can also choose whether to hear the intervals in ascending or descending order.

The program then plays the intervals or triads and asks you to identify what you hear. When you've answered correctly, the musical notation is displayed on-screen on both the grand staff and a music keyboard. A record-keeping routine keeps track of the lessons you've completed successfully. You can save complete drill text results to disk, including percentage correct and the specific interval/triad attempts and misses. You can also view current or past test results on-screen and send output to a printer.

The program is played through the on-board music chip of the Commodore 64 and 128, or you can hook it up to a Passport-compatible MIDI interface connected to any MIDI synthesizer or to your home stereo system speakers or headphones.

Price: $30.
Contact: Trillium, 3770 Highland Ave., Suite 208, Manhattan Beach, CA 90266, (213) 545-8300. Inquiry 608.

Clockwork Across the World

Terminator draws a line between night and day that moves across a world map in real time. The line position changes with the time of day, and its shape changes with the seasons. In determining the shape and position of the line, the program takes into account the declination of the Sun; the size of the Sun; the refraction caused by the Earth's atmosphere; and the equation of time, which computes the difference between solar and clock time.

You can view the changes by running Terminator in a variety of modes, from 2 minutes to 1 week. You can change modes every second or so, as fast as the program can compute the data that refreshes the screen, Trillium reports. You can display your local date and time along with times in up to 24 cities or time zones anywhere on the map.

You can edit Terminator's setup parameters by choosing to display other cities or time zones or by changing the program's initial values.

Terminator runs on IBM PCs or compatibles with a Hercules monochrome graphics adapter, a CGA or EGA, and at least 128K bytes of RAM.
Price: $30.
Contact: Trillium, 3770 Highland Ave., Suite 208, Manhattan Beach, CA 90266, (213) 545-8300. Inquiry 608.

Decision Maker

Apian Software's Decision Pad helps you evaluate plans, products, and processes. It combines elements of spreadsheet and rational decision theory in an interactive decision-making environment.

At the beginning of an evaluation, the program presents you with data-collection forms. You can choose up to 150 alternatives and preferences, and up to 60 criteria per alternative. Then you allocate each to its proper place, using 1- or 2-level weights and 20 positions. You can also incorporate opinions of other people and quantify them, and you can output reports at each step.

Decision Pad includes sample templates for personnel, purchasing, product-marketing, investment, and sales-presentation applications.

The program has Lotus 1-2-3-compatible file-import and -export capabilities, as well as ASCII export.

Decision Pad runs on IBM PCs and compatibles with at least 256K bytes of RAM and MS-DOS or PC-DOS 2.0 or higher. You also need a monochrome, CGA, EGA, or compatible display. A mouse is optional.

Price: $195.
Contact: Apian Software, P.O. Box 1224, Menlo Park, CA 94026, (415) 851-8496. Inquiry 609.
C5.0 has three features professional programmers can't live without.
<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Microsoft® C 4.0</th>
<th>Microsoft® C 5.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieve (25 iterations)</td>
<td>5.7</td>
<td>3.5</td>
</tr>
<tr>
<td>Loop</td>
<td>11.0</td>
<td>0.0*</td>
</tr>
<tr>
<td>Float</td>
<td>19.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Phyrestone</td>
<td>22.8</td>
<td>19.1</td>
</tr>
<tr>
<td>Pointer</td>
<td>14.2</td>
<td>7.4</td>
</tr>
</tbody>
</table>

- New optimizations generate the fastest code:
 - Inline code generation, NEW!
 - Loop optimizations, NEW!
 - Loop invariant expression removal, NEW!
 - Automatic register allocation of variables, NEW!
 - Elimination of common sub expressions.
 - Improved constant folding and value propagation.

- Fine tune your programs for even greater speed:
 - Coding techniques for writing the fastest possible programs are included in the documentation, NEW!
 - Segment Allocation Control:
 - Group functions into the same segment to get faster NEAR calls, NEW!
 - Specify which segments receive variables to yield faster NEAR references, NEW!
 - Use register variable declarations.
 - Mix memory models using NEAR, FAR & HUGE pointers.

Benchmark run on an IBM Personal System/2. *Time in milliseconds.*
Fast Compilation.
Fast Prototyping.

Microsoft C Version 5.0 includes QuickC, which lets you edit, compile, debug, and execute in an integrated environment. It's ideal for prototyping.

- In-memory compilation at over 10,000 lines/minute. NEW!
- Built-in editor with parentheses, bracket and brace matching.
- Use the integrated debugger to animate through your program, add watch variables and set dynamic breakpoints. NEW!
- MAKE file is automatically generated for you. Simply indicate the modules you want to use, then MAKE compiles and links only those modules that have changed. NEW!
- Full C 5.0 compatibility:
 - Completely source and object code compatible.
 - Emits CodeView-supported executables.
 - Identical compile/link command line switches.
Fast Debugging.

Microsoft C Version 5.0 includes Microsoft CodeView, our source-level windowing debugger that lets you debug more quickly and thoroughly than ever before.

- Debug larger programs:
 - Debug through overlays created by the Microsoft overlay linker. NEW!
 - Expanded Memory Specification (EMS) support. NEW!
- Fast debugging through precise control of your program execution:
 - Access source level and symbolic debug information from your Microsoft C, FORTRAN, and Macro Assembler programs. NEW!
 - View your source code and assembly simultaneously.
 - Watch the value of variables change as you execute.
 - Set conditional breakpoints.
 - Animate or single step through your program.
- CodeView brings you as close as you've ever been to your hardware:
 - Swap between your code and output screens.
 - Watch your registers and flags change as your program executes.

C 5.0 will be available soon. If you purchase Microsoft C 4.0 after June 1, 1987, we'll give you a C 5.0 upgrade. Free. For your free information packet, call:
(800) 426-9400.
 EVENTS

September 1987

Australian Computer Conference '87, Melbourne, Australia. ACC '87 Secretariat, Box 98, East Melbourne, Victoria, Australia 3002, (03) 416 1053. September 8-11

Capital Microcomputer Users Forum, Washington, DC. Jackie Voigt, 2111 Eisen­
thower, Fort Worth, TX. Lori Navalta, 22314, (703) 683-8500 or (800) 638-8510. September 9-10

Robotics Systems in Aerospace Manufacturing, Fort Worth, TX. Lori Navalta, Technical Activities Division, Society of Manufacturing Engineers, One SME Dr., P.O. Box 930, Dearborn, MI 48121, (313) 271-1500, extension 370. September 9-11

SOFTTEACH: The Computer Products Training Forum, New York, NY and Atlanta, GA. Softsel, 546 North Oak St., Mather, The University of Nottingham, Nottingham, England. ACC '87 Secretariat, Washington, DC. Jackie Voigt, 2111 Eisen­
thower, Fort Worth, TX. Lori Navalta, 22314, (703) 683-8500 or (800) 638-8510. September 9-10

Euromicro 87: 13th Symposium on Microprocessing and Microprogramming, Portsmouth, England. Euromicro, Henge­
losestraat 705, P.O. Box 545, 7500 AM Enschede, The Netherlands, (31) (53) 338799. September 14-17

field, MA 02050, (617) 837-1341. September 14-18

Software Licensing Agreements: Buying, Selling, and Protecting Rights, Princeton, NJ and Atlanta, GA. Ann Molinari, DTI, Lakeview Plaza, P.O. Box 2429, Clifton, NJ 07015, (201) 478-5400. September 15 and September 22, respectively

ICCC—ISDN '87: Integrated Services Digital Network, Dallas, TX. Jane Far­
thing, Bell Atlantic, 1310 North Court House Rd., Arlington, VA 22201, (703) 974-5435. September 15-17

Midcon/87, Chicago, IL. Dale Litherland, Director of Education, Midcon/87, 8110 Airport Blvd., Los Angeles, CA 90045-3194, (800) 421-6816; in California, (800) 262-4208. September 15-17

Effective Skills for Technical Managers, Los Angeles, CA and Boston, MA. Marilyn Martin, Integrated Computer Systems, 5800 Hannum Ave., Culver City, CA 90231-3614, (800) 421-8166; in Canada, (800) 267-7014. September 15-18 and September 22-25, respectively

Visions '87 Computer Graphics Conference, Springfield, MO. Steve Finley, Department of Art and Design, Southwest Missouri State University, Springfield, MO 65804, (417) 836-5110. September 18-19

Engineering Workstations Conference, Los Angeles, CA. Corporate Expositions Inc., P.O. Box 3727, Santa Monica, CA 90403. September 21-23

CD-ROM Expo, New York, NY. Dorothy Ferriter, 375 Cohicutte Rd., P.O. Box 9171, Framingham, MA 01701-9171, (800) 343-6474; in Massachusetts, (617) 879-0700. September 22-23

Fourth Annual International Forum on Micro-Based CAD, Raleigh, NC. Gene Fernaro, C. C. Mangum Building, North Carolina State University, 3016 Hills­
borough St., Raleigh, NC 27695-7902, (919) 737-2356. September 23-25

Writing Better Computer Software Documentation for Users, Atlanta, GA. Dei­dre Mercer, Department of Continuing Education, Georgia Institute of Technol­
y, Atlanta, GA 30332-0385, (404) 894-2547. September 23-25

Information Systems Perspectives Symposium, San Francisco, CA. GUIDE Headquarters, 111 East Wacker Dr., Suite 600, Chicago, IL 60601, (312) 644-6610. September 27-30

ics Conference, P.O. Box N, Wayland, MA 01778, (617) 358-5356. September 28-October 1

Ninth Annual Electrical Overstress/Electrostatic Discharge Symposium, Orlando, FL. EOS/ESD Symposium, P.O. Box 14, Gillette, NJ 07933, (201) 522-4770. September 29-October 1

INFO '87: Information Management Exp­
osition and Conference, New York, NY. Show Manager, INFO '87, 999 Summer St., Stamford, CT 06905, (203) 964-0000. September 29-October 2

Send notice of your organization's public ac­
tivities at least four months in advance; we will publish them as space permits. Please send them to BYTE (Events), One Phoenix Mill Lane, Peterborough, NH 03458.
A choice of snap-in/out, 24- or 18-pin print heads gives you the versatility and ease of maintenance that other printers lack.

With a top speed of 360 cps, it makes most printers seem downright lackadaisical.

```
| P2400C |
```

But who needs competition when you’ve got all this?

Namely, the ALPS P2400C™ Dot Matrix Printer.

No other printer in its class can do so much for so many for so little.

For instance, the P2400C can easily take on all the work an office full of busy PCs can dish out. And take care of it faster. Thanks not only to its talents pointed out above, but to its many others, as well.

Like a choice of draft, correspondence and letter quality print modes. A print buffer expandable to 256K. Multiple font cartridges. And full compatibility with the most popular PCs and software.
COMPETITION.

Not to mention the ability to run quietly. At under 55dBA, the P24000C is one of the least noisy printers around.

One of the most durable, too. It comes with a full, one-year limited warranty. And if you give it normal care, it'll give you over five years of trouble-free performance.

Of course, there's nothing like a live performance to prove there's nothing like the P2400C.

For a free demo, or more information, call us at (800) 828-ALPS. In California, (800) 257-7872.

And see what every other dot matrix printer is lacking.

ALPS
AMERICA

IT'S TIME YOU SAW THE ALPS.
Nothing's Too Good

Dear Steve:

I am trying to optimize the performance of the hard disks in some IBM PCs and compatibles. Some of them take much longer to read tracks than others do, and I think part of the problem may be due to an incorrect interleave factor.

I would also like to change the number of bytes per sector for some special storage problems I have, but I can't find any information on how to do this low-level formatting. Even though the disk-controller cards are made by different manufacturers, they are interchangeable. Where would I find out how to do low-level formatting for both hard disks and floppy disks? I don't mind doing it in assembly language.

Phil Mumma
Redwood City, CA

Be careful about changing things down deep in the hardware. Many things can go wrong if you're not absolutely certain about what you're doing.

First, you should use CHKDSK to see how fragmented your files are. If the PC has to do a lot of seeks to get all the data, it'll take longer to read a file. Simply type CHKDSK * * and read the report. Compare the results from running CHKDSK on two PCs with differing times and see if there's any relation between the degree of fragmentation and the speed. You'll need to do that in each subdirectory on the hard disk; files that aren't listed are contiguous.

There are several utilities on the market that will defragment the files. Pick up a copy of PC Magazine and look through the products in the disk optimizer category. I've used a public domain program called DOG (which stands for disk organization) quite a while ago. It's a bit of a pain to use, but it works just fine. You can also download it from BIX.

You'll need to defragment files on a regular basis. I do mine after every complete disk backup, so if anything goes wrong I've got the data ready to reload.

Once you've got all your files contiguous, see if the problem goes away. If it doesn't, only then will it be worthwhile to change the interleave factor. To do that, you need a low-level formatting program that works with the particular controller card you've got and that allows you to select an interleave factor. Where to get the formatter is a good question; for starters, try the folks who sold you the card, or try a computer club.

You'll have to back up everything on your disk before you reformat it. The default interleave is 6, and I suspect that you're kidding yourself if you try anything below 3. Remember that if an interleave factor is too low for the program, you have to wait for one completed disk rotation for each sector that's read or written. This translates to a dramatic increase in time. The penalty for an interleave that's too high is relatively minor, so I bet you won't notice a significant change until you drop below the threshold and the time taken suddenly gets much worse.

Don't even think about changing the sector size! In principle this is easily done, but because it's so rarely attempted, the code in DOS to handle it hasn't been extensively tested. I've heard of several bugs in various versions of DOS that come to the fore when you try working with disks whose sector size you've altered.

A better approach to the whole problem is to use the BUFFER= statement in the CONFIG.SYS file to increase the number of DOS disk buffers. This will improve read performance quite a bit, particularly if you're doing random access to files. Sequential reads of all sorts won't improve much, simply because the buffers don't read far ahead. Writes won't improve at all because DOS writes through the buffer.

You might want to look into add-on disk-caching products that improve DOS's buffering. I'm not convinced that they're worth it, but if you've got a critical application you should look into them.

If your data is read-only, it's an ideal candidate for a RAM disk. You can get EMS (expanded-memory specification) RAM boards with 4 megabytes for under $1000 nowadays, so the only delay you'll experience is loading the memory up in the morning.—Steve

Ear to the Ground

Dear Steve:

I have an amateur interest in both earthquakes and computers. For several years, I have been recording earthquakes from all over the world on a homemade seismograph. (A 1979 article in Scientific American described how to build one.) The seismograph is simple: a weighted pendulum with a magnet, suspended near a 10,000-turn coil. Voltages induced in the coil by the relative motion of the coil (resting on the earth) and the magnet (suspended and free to swing) are amplified by a 741 op-amp-based amplifier and are used to drive a Heathkit chart recorder. I have recorded earthquakes as far away as Alaska with this setup.

I'm writing to you for help in moving this setup into the computer age. I would like to eliminate the chart recorder (which costs a fortune in paper every month anyway), send the voltage from the amplifier into an A/D converter, and sample the digitized waveform at a healthy rate (say, 20 times per second) with my IBM PCjr.

I've read your Circuit Cellar article on parallel interfacing (July 1986 BYTE), and it explained nicely why someone here at work suggested that I'd probably need an 8255-5 as well as an ADC0809. However, no one that I know has been able to point me to any kind of usable circuit, much less get me instructions on how I might interface it to my computer.

I have located a company in Minnesota that sells a prototype add-on "sidecar" to do just that, but their cost is $500 and they won't even consider releasing the schematics. Maybe there's someone who can help me.

Jon Elson, Roger James, Frank Kuechmann, Dick Nisley, Mark Voorhees, Steve Smith, and Charles Skiles.
Microsoft QuickBASIC 3.0’s speed was verified by an indisputably independent test.

In the May 5, 1987 issue of PC WEEK, some interesting benchmarks were published. We won virtually all the tests, but one test in particular caught our attention: the competitor’s. Now even they have to agree we’re faster.

Microsoft® QuickBASIC 3.0 gives you the fastest execution speed. It also lets you write code faster. That’s because you pick up speed working in an integrated programming environment which includes our unique integrated debugger.

With our debugger, you can view source code and program output simultaneously. And you can see the contents of variables while your program is running. Even set dynamic breakpoints.

Get your hands on Microsoft QuickBASIC 3.0. Right now, we’ll make it easy because we’re offering a $20.00 rebate.* And to be sure that you’re satisfied, we’re offering a 30 day money-back guarantee. So there’s no better time to do some independent testing of your own.

Microsoft®

For a reprint of the article, just give us a call at (800) 426-9400. Benchmarks reprinted with permission of PC Week. Microsoft and the Microsoft logo are registered trademarks of Microsoft Corporation. *See specially marked packages for details. Offer valid only in U.S.A.
Inquiry 155 for End-Users.
Inquiry 156 for DEALERS ONLY.

PROM/PAL PROGRAMMING? From $250.00

Finding a Low-Cost PROM or PAL* programmer is only half of the battle. Finding a company that won't desert you when you need support or service is the other half. Logical Devices Products cost you less because we offer the best price performance ratio in the market, and because once you buy our products you will experience less down time and more reliable operation than most other units. In addition you get features that were evolved from our years of experience of serving people who program chips. We offer a wide range of products from dedicated programmers to universal software driven models.

We offer a wide range of products cost you less because we offer the best price performance ratio in the market, and because once you buy our products you will experience less down time and more reliable operation than most other units. In addition you get features that were evolved from our years of experience of serving people who program chips. We offer a wide range of products from dedicated programmers to universal software driven models.

for the PCjr for $39. This board has a 60-pin connector that attaches to the PCjr but is otherwise unpopulated. What I'd like to do is wire-wrap the A/D circuitry onto this prototype board.

I had a chance to play with the IBM Data Acquisition and Control Adapter on a regular PC for a couple of weeks. During that time, I wrote some software to read the A/D adapter and display a time-varying voltage trace on the high-resolution graphics screen. Unfortunately, this card does not fit into the PCjr; besides, it costs over $1500 (it is packed with other functions, such as timers, D/A, and binary I/O). So my software is all set to go, but I have no hardware background on this stuff.

Can you help me out? I've tried all the sources I know of, without any luck.

Ted Blank
Wappingers Falls, NY

Actually, I think there's a more inexpensive way to do the deed — use the joystick input on your PCjr. Because the voltage output from the seismograph varies so slowly, you don't need a fancy A/D converter or all the complexity that goes along with it.

The joystick ordinarily works with a variable resistor between the input pin and +5 volts. The resistor determines the charging current for the timing capacitor. Anything that can stuff a suitable current into the capacitor will give pretty much the same results.

You probably already have a joystick, so there's no need to build a special cable that needs the funny Berg connector. Take the joystick apart and measure the voltages at either end of the x-axis potentiometer. One side will be at +5 volts, and the other (the input to the PCjr) will be somewhat lower. Because you need a ground connection, too, measure the voltages on one of the buttons: One side is ground, and the other is about +5 volts. (This would be simplified if I had a PCjr joystick reference manual handy.)

Next, the electronics for the seismograph:

The output of the amplifier circuit you have now is in the ballpark of 10 millivolts. What you need is a current in the range of 10 to 50 microamps. The solution is a voltage-to-current converter with a bit of amplification. The schematic in figure 1 diagrams something that should work: (Bear in mind that I haven't actually built this thing, so you'll have to do some fiddling to get it to work.)

To get the circuit calibrated, close the zero set switch and adjust the offset current potentiometer for zero volts at the wiper arm (you could use a switch there, too). Adjust the balance potentiometer for zero volts out of the 741.

Now enter the following BASIC program into your PCjr:

```
10 WHILE 0 = LEN(INKEY$)
20 PRINT STICK(0), STICK(1), STICK(2), STICK(3)
30 WEND
```

This will display the joystick input values.

Figure 1: Amplifier circuit for seismograph.
FREE SOFTWARE! Purchase over $100 and receive one of these disks absolutely FREE! Purchases over $250 get two free disks, over $400 get three, or get all four disks when your purchase is over $500! MIXED BAG — A great assortment of utilities and games all packed on one disk. 3) PC-WRITE — Try this famous feature packed word processor. It’s a winner! 3) FONT-SET — Lets you select popular fonts like bold, underline, etc. on most late model printers. Citizen, Epson, NEC, Okidata, Panasonic, Star, Toshiba, etc. You can even use your printer like a typewriter! 4) MAIL-LIST — Great mailing list program! Sort on any field, do qualified searches, print reports and mailing labels, and more!

<table>
<thead>
<tr>
<th>SOFTWARE</th>
<th>ACCOUNTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPIAP, AR, PR, GA</td>
<td>$169 ea.</td>
</tr>
<tr>
<td>Cyma</td>
<td>Call</td>
</tr>
<tr>
<td>DocEast Account Pro</td>
<td>$39</td>
</tr>
<tr>
<td>Dollars & Sense</td>
<td>$49</td>
</tr>
<tr>
<td>Managing Your Money 3.0</td>
<td>$117</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMMUNICATION PROGRAMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Copy Plus</td>
</tr>
<tr>
<td>CrossTalk</td>
</tr>
<tr>
<td>Remote</td>
</tr>
<tr>
<td>Smartcom II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATA BASE MANAGERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clipper</td>
</tr>
<tr>
<td>Clout 2</td>
</tr>
<tr>
<td>Condor III</td>
</tr>
<tr>
<td>Knowledgeman II</td>
</tr>
<tr>
<td>Printbase 2.2</td>
</tr>
<tr>
<td>Q&A</td>
</tr>
<tr>
<td>Quickcode</td>
</tr>
<tr>
<td>Quicksilver</td>
</tr>
<tr>
<td>Quickreport</td>
</tr>
<tr>
<td>Revelation</td>
</tr>
<tr>
<td>R: Base System V</td>
</tr>
</tbody>
</table>

EDUCATIONAL
- Flight Simulator: $28
- Turbo Tutor II: $25
- Typing Tutor: $25

GRAPHICS
- Chartmaster: Call
- Energraphics 2.01: $294
- In-A-Vision: $275
- Microsoft Bus: $106
- Microsoft Chart: $164
- Microsoft Serial Mouse: $119
- Newsroom: $31
- OPI-Mouse Multiphoto II: $99
- Printshop: $33
- Signmaster: $22

INTEGRATED
- Ability: $59
- Enable: $345
- Smart Software: Call

<table>
<thead>
<tr>
<th>LANGUAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lattice C Compiler</td>
</tr>
<tr>
<td>Microsoft C Compiler</td>
</tr>
<tr>
<td>Microsoft Fortran 4.0</td>
</tr>
<tr>
<td>Microsoft Macro Assembler</td>
</tr>
<tr>
<td>Microsoft Pascal Compiler</td>
</tr>
<tr>
<td>Microsoft Quick Basic 3.0</td>
</tr>
<tr>
<td>Ryan McFarlan Fortran</td>
</tr>
<tr>
<td>Ryan McFarlan Cobol</td>
</tr>
<tr>
<td>Turbo Basic</td>
</tr>
<tr>
<td>Turbo C</td>
</tr>
<tr>
<td>Turbo Pascal w/6809 + BCD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPUTERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ 386</td>
</tr>
<tr>
<td>60386-16 Micro Processor, 1 MB of Ram, 4 MB disk drive, 220 watt power supply, 6 layer motherboard, RT keyboard</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AZ TURBO XT</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM Compatible Computer, 135 watt power supply, 1 brand name floppy disk, 1 parallel port, serial port, 1 game port, PC keyboard, 640K Ram, 8 expansion slots, 6088-2 processor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROJECT MANAGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harvard Total Project II</td>
</tr>
<tr>
<td>Microsoft Super Project Plus</td>
</tr>
<tr>
<td>TimeBase 2.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPREADSHEET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsoft Multiplan</td>
</tr>
<tr>
<td>Spreadsheet Auditor 3.0</td>
</tr>
<tr>
<td>Supercalc 4</td>
</tr>
<tr>
<td>VP Planner</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UTILITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy II PC</td>
</tr>
<tr>
<td>Copywrite</td>
</tr>
<tr>
<td>Desktop 20</td>
</tr>
<tr>
<td>Double Dos</td>
</tr>
<tr>
<td>Fastback</td>
</tr>
<tr>
<td>Graph in the Box</td>
</tr>
<tr>
<td>Homebase</td>
</tr>
<tr>
<td>Microsoft Windows</td>
</tr>
<tr>
<td>Norton Utilities 3.1</td>
</tr>
<tr>
<td>Prokky 4.0</td>
</tr>
<tr>
<td>Q-DOS</td>
</tr>
<tr>
<td>Sidekick (unprotected)</td>
</tr>
<tr>
<td>Sideways 3.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WORD-PROCESSING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Easy Extra</td>
</tr>
<tr>
<td>Microsoft Word</td>
</tr>
<tr>
<td>Multimate Advantage II</td>
</tr>
<tr>
<td>Volkwritter 3.1</td>
</tr>
<tr>
<td>Webster Spellcheck</td>
</tr>
<tr>
<td>Word Perfect</td>
</tr>
<tr>
<td>Wordstar</td>
</tr>
<tr>
<td>Wordstar Propac</td>
</tr>
<tr>
<td>Wordstar 2000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HARDWARE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCESSORIES</td>
</tr>
<tr>
<td>Copy II PC Board</td>
</tr>
<tr>
<td>150 watt power supply</td>
</tr>
<tr>
<td>Mini Micro Parallel Print Buffer</td>
</tr>
<tr>
<td>Masterpiece</td>
</tr>
<tr>
<td>Masterpiece Plus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BOARDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST Advantage Premium</td>
</tr>
<tr>
<td>AST Premium Sxpc</td>
</tr>
<tr>
<td>AST Sxpc (384K)</td>
</tr>
<tr>
<td>Hercules Color Card</td>
</tr>
<tr>
<td>Hercules Graphics</td>
</tr>
<tr>
<td>Intel Above Boards</td>
</tr>
<tr>
<td>J Laser (Talk)</td>
</tr>
<tr>
<td>J Ram 3 (Talk)</td>
</tr>
<tr>
<td>J Ram 3 AT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WEB SPECIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>$195</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INCREDIBLE VALUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nationally advertised boards for IBM PC and most compatibles are at giveaway prices. Keyboards (similar to 5151)</td>
</tr>
<tr>
<td>Monochrome Board w/printer port (similar to Hercules Graphics)</td>
</tr>
<tr>
<td>Expansion Board 0 to 576K</td>
</tr>
<tr>
<td>Multifunction Board w/game port (similar to AST six pack)</td>
</tr>
<tr>
<td>Four Drive Floppy Controller</td>
</tr>
<tr>
<td>Color Card w/o printer port</td>
</tr>
<tr>
<td>Color card w/printer port</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MODEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Everest 300/1200</td>
</tr>
<tr>
<td>Hayes 1200</td>
</tr>
<tr>
<td>Hayes 1200</td>
</tr>
<tr>
<td>U.S. Robotics Courier 2400</td>
</tr>
<tr>
<td>U.S. Robotics Passwod 1200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MONITORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMDEK 410 Monitor</td>
</tr>
<tr>
<td>AMDEK 600</td>
</tr>
<tr>
<td>Magnavox Color RGB</td>
</tr>
<tr>
<td>Princeton Monitor</td>
</tr>
<tr>
<td>Samsung TTL Amber</td>
</tr>
<tr>
<td>Samsung TTL Green</td>
</tr>
<tr>
<td>Samsung Color w/tilt/turn</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRINTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANON LASER Citzens</td>
</tr>
<tr>
<td>MUP-10</td>
</tr>
<tr>
<td>Premiere 35 Daisywheel</td>
</tr>
<tr>
<td>EPS-30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LASER IMAGE 2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEC</td>
</tr>
<tr>
<td>NCR P5XLP</td>
</tr>
<tr>
<td>NEC P7 Parallel</td>
</tr>
<tr>
<td>NEC 8590</td>
</tr>
<tr>
<td>NEC P6 Parallel</td>
</tr>
<tr>
<td>NEC P960XL</td>
</tr>
<tr>
<td>NEC Laser Computer</td>
</tr>
<tr>
<td>OKIDATA - Call on all models</td>
</tr>
<tr>
<td>PANASONIC 1060-1</td>
</tr>
<tr>
<td>1091-1</td>
</tr>
<tr>
<td>1092-1</td>
</tr>
<tr>
<td>1502</td>
</tr>
<tr>
<td>KXP3511</td>
</tr>
<tr>
<td>STAR MICRONICS</td>
</tr>
<tr>
<td>NP10</td>
</tr>
<tr>
<td>NX10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TOSHIBA Call on all models</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAM</td>
</tr>
<tr>
<td>54K 150NS (set of 9)</td>
</tr>
<tr>
<td>256K 150NS (set of 9)</td>
</tr>
<tr>
<td>256K 120NS (set of 9)</td>
</tr>
</tbody>
</table>

| TECSYS | Shipping on most software in SLG IX order via UPS to order items 1 to 10 days to ship. We accept purchase orders linked with authorized institutions to bill. All items subject to our approval. We will be a 20% restocking fee on all unused software. All claims are subject to change. Due to copyright laws we cannot take back any software. |

| PHONE HOURS: Monday, Wednesday & Thursday 7am-9pm; Tuesday & Friday 7am-5pm; Saturday 9am-5pm, MST. |

TOLL-FREE ORDER LINE 1-800-421-3135
WAREHOUSE DATA PRODUCTS
2701 West Glendale Ave. • Phoenix, AZ 85051
so you can see what's going on. If you've got it wired up right, watch the first number (from STICK(0)).

Tap the seismograph so that you get a signal to play with and open the zero set switch. Set the range potentiometer to about midrange and adjust the offset potentiometer so that the minimum number is about +10 or so. Set the range port so that the maximum number is around +200. These two settings interact, so you'll need to tweek both of them to converge on the right settings.

Eventually you should have a slight oscillation going, with reasonable joystick values coming back. Now you can establish some software-conversion factors that relate the numbers you get from the STICK() function with the familiar values on the strip-chart recorder. I think you can use the PCJr and the recorder at the same time, but it's worth checking to make sure that the new circuitry doesn't load it down.

The rest of the software is up to you. Incidentally, some older 741 op amps suffer from what's known as "popcorn" noise: The output voltage abruptly jumps from one supply voltage to the other. If you're listening on a speaker, it sounds a lot like popcorn popping. If the output to this circuit shows unexplained spikes, try replacing the 741s with newer versions.—Steve

Squeaky Disk

Dear Steve:

The carbon brush on my 10-megabyte IBM hard disk drive squeaks. My dealer's service department fixed it once, but the squeak recurs. I called IBM and they want $555 to exchange the disk drive for a new one with a very short warranty. I thought I might try a tiny amount of graphite lubricant. If this is inadvisable, please let me know. Any help you can give is appreciated.

Kenneth L. Kayser

Milwaukee, WI

You've got the right idea. Pull the drive apart and put the tiniest possible drop of lubricant on the brush. The noise occurs because the rounded end of the spindle has worn a divot in the carbon brush. The divot catches with the roughness of the brush. The rest of the software is up to you. If you're listening on a speaker, it sounds a lot like popcorn popping. If the output to this circuit shows unexplained spikes, try replacing the 741s with newer versions.—Steve

New on the Block

Dear Steve:

I'm very interested in building the projects you present in BYTE, but I'm 15 years old and the only computers I have access to are an AT&T PC 6300 and an Apple II+-. Also, I don't know a thing about electronics. I want to learn, but I don't know where to start. Can you help?

—Chris Mulberry

Golden, CO

We were all beginners once, so it's nothing to worry about. A good source of basic electronics books and information is your local school or public library. Magazines such as Modern Electronics (available on most newsstands) publish much material useful to beginners.

There are several good hardware-oriented books available on interfacing the Apple. These include:

Uffenbeck, John E. Hardware Interfacing with the Apple II Plus. Englewood Cliffs, NJ: Prentice-Hall, 1983. (This last book uses a different bus-connector pin numbering than that used in the Apple manuals and every other Apple interfacing book. This can be confusing.)
1967: The first coronary bypass operation is performed. Fred Molinari, President, is there.

Announcing the most important bypass operation since 1967.

Introducing DT-Connect

Observing the first coronary bypass operation, Fred Molinari was struck by an inspiration.

"The PC AT's I/O is so slow—the bus is like a clogged artery!"

So he considered, "Wouldn't bypassing the host bus with an external, direct connection between acquisition boards and processor boards allow them all to run much faster?!"

Then, he fainted.

20 years later, Fred developed DT-Connect, an open interface specification permitting the direct connection of analog I/O or frame grabber boards to array processor boards.

Based on 16-bit tri-stated external I/O data ports and simple handshaking protocols, the DT-Connect interface eliminates the need for data to flow through the limited I/O of the host PC AT. Data flows faster, from 0 Hz to 10 MHz, speeding signal (DSP) and image processing on the IBM PC AT.

Best of all, many new Data Translation analog I/O, frame grabber, and array processor boards incorporate the DT-Connect interface. So they are superfast, and supercapable.

Call us for more information. But have smelling salts handy. The processing speed of DT-Connect isn't for the faint of heart.

Call (617) 481-3700.

DT-Connect is an open interface specification which permits the direct connection of stand alone data acquisition and frame grabber boards to processor boards for greatly accelerated signal (DSP) and image processing.

Call (617) 481-3700.
IS YOUR HARD DISK FULL?

You thought you would never run out of space on your hard disk, but they fill up quickly. And once your drive has reached its limit, what do you do? Buy an identical drive of the same capacity? Hopefully you'll have room in your computer for an additional drive. If not, do you buy a new drive of greater capacity to replace your old one? Hopefully you'll get a reliable, trouble-free hard disk.

With a PERSTOR 200 Series Controller you can solve today’s and tomorrow’s hard disk storage problems. PERSTOR 200 Series Controllers use ARLL technology to DOUBLE the capacity of MFM and RLL drives, so whether you have an older drive or you are planning to purchase your first hard disk, you'll get the performance and capacity that you need. For further information write or call (602) 991-5451.

PERSTOR
Sensible solutions for your hard disk problems.

Perstor Systems, Inc.
7825 East Redfield Road
Scottsdale, Arizona 85260

POWER MEMORY.

Introducing 4x488™

You can run your largest programs, control any instrument, test, measure, and print the results. All from one 4x488.

We designed the software, built the board, and wrote the book to increase your productivity.

To find out what we can do for you—call 617-273-1818.

Cec
Capital Equipment Corp.
Burlington, MA 01803

The bottom line—IEEE-488, RS232, par. port, 4MB EEM LIM, runs DOS and OS/2.

CIARCIA FEEDBACK

In addition, Radio Shack has published a number of books by Forrest Mims; they are all excellent sources of information.—Steve

SB180
Dear Steve:

I'm interested in your articles on the construction of the SB180 computer and its peripheral boards, and I plan to build an SB180 myself. Unfortunately, I cannot afford the Micromint boards, so I will have to either use prototype boards or make my own printed circuit board. In view of the lower electrical quality of these homemade boards, and also to reduce the cost, I plan to use the 3-MHz 64A180 instead of the faster B version that you use. Will I have to change any components besides the processor and the crystal?

I have also been unable to find the FDC9266 floppy disk controller chip. Is there any other combination of more readily available chips that I could use to provide an equivalent interface?

Finally, the SB180FX offers some extra features that I would like to incorporate into my project, if possible. Since I am a relative beginner at electronic construction, I would welcome any advice you can give on the practical details of the construction of the SB180FX.

Jim Hawkins
Royston, England

There shouldn't be any problem with using the 3-MHz version of the HD6 in a home-built version of the SB180. As you suspect, the appropriate crystal should be the only required change; however, you might want to adjust some of the things developed with the 6-MHz unit in mind, such as the disk-access times.

The SMC9266 floppy disk controller chip is compatible with the industry-standard NEC 765A FDC and SMC's 9229 digital-data separator. My main reason for choosing the 9266 was to conserve circuit board space.

Building the SB180FX using point-to-point wiring would be impractical because of the difficulties in wiring the PLCC sockets and the problems associated with the 9-MHz clock speeds.

—Steve

Expanding Term-Mite

Dear Steve:

I have some questions about the Term-Mite terminal board (January 1984 Circuit Cellar). I am using mine with an SB180. I’ve begun working with Echelon’s graphics software and I’m looking for information on modifying the Term-Mite program.

continued
Dot, Daisy and Laser.

The new family of Olympia printers with a prestigious technological heritage.

Olympia is first in making lasting impressions for a good reason. For over 80 years we've been a leading innovator in typing technology for the office. Now everything has changed. And nothing has changed. Our technology is as new as the dew. Our commitment to reliability, efficiency and service is as solid as ever.

The Olympia dot matrix printers produce clean, crisp printing at speeds from 130 CPS to 200 CPS for a wide range of applications. And our daisy wheels are unsurpassed in printing quality.

Our new Laserstar 6 is compact, versatile, compatible and offers the latest in desktop printing technology.

In short, whatever you need we've got. So don't go shopping without the big new name in printers on your list. Olympia.

We'll make a good impression on you. Then for you.

Call U.S., 1-800-524-2541

Call Canada, 1-800-268-6464. Or write Olympia Business Machines Canada Ltd., 58 Prince Andrew Place, Don Mills, Ontario M3C 3A2.
Easy to C

C is a great programming language. Now the C WORKSHOP makes it easy.

Interactive software teaches you C. When you complete and run a program exercise, the amazing Soft Tutor™ gives you immediate feedback, pinpointing any incorrect results.

If you've never programmed before, start with the basic ideas of structured programming. Study what you want when you want, including advanced pointer techniques and linked lists.

The C WORKSHOP has everything you need to learn and use C. You can write your own programs, too. The integrated editor and 5500 line/minute compiler are complete with popup menus, customizable keys, online help and C reference lookup.

Let the other guy struggle with confusing books and compilers. Join AT&T and other major companies now using C WORKSHOP. Columnist Adam Green calls it "the most intriguing new type of training system I've ever seen." (InfoWorld, 1/27/86)

Order your C WORKSHOP today. And C how easy it is.

Specifications

Tutorial: Quizzes, exercises, electronic index and bookmarks.

Soft Tutor: Detects incorrect output from program exercises. Shows example of the problem. Operates after compiler checks syntax.

Memory usage: Uses 220K. Uses additional RAM as available. If not satisfied, tell us why and return in 30 days for your money back.

Call toll-free (Visa, MC, AmEx) or write (800) 227-2400 ext. 955.

$66.95 $5.00

Name Address City State Zip

C Workshop software and book
Ship (we use Priority Mail)
Sales tax in CA (4.90)
Check enclosed for
Mail to: Workcraft
3827 Penniman Ave., Oakland, CA 94619

Quality software since 1981

CIARCIA FEEDBACK

I already know some of the things I would need: I could start with the source code for the Term-Mite, and then I would need a cross-assembly for the NS-455. Is a cross-assembly available from National Semiconductor, and will it produce code that can be burned into an EPROM?

In addition, I would like to add graphics characters. Can I add a full block and a hashed block, or are they already available?

I would also like to support windowing. With the Echelon window software, you have the ability to read the character at the cursor position and the ability to read a screen page. Are there any hardware limitations on performing either of these operations?

Courtney E. Smith
Tuba City, AZ

One of my Ask BYTE researchers, Jon Elson, has written a cross-assembly for the NS-455 chip. It's written in Turbo Pascal, which you can run on the SB180. You can reach him at 819 Marshall Ave., Webster Groves, MO 63119, (314) 962-6103.

You can implement the full block and the half-brightness block by displaying a space in reverse video and in half-intensity reverse video. Adding other characters requires the external character-generator feature, which disables half-intensity mode.

Windowing is certainly possible. All scrolling is done by copying character codes from one place in memory to another, and windowing just involves a few checks to keep the cursor in the correct window after linefeeds, wraparounds, and scrolling. When text scrolls off the top (or bottom) of the window, the bytes are just discarded.

The Term-Mite is almost completely software-driven, so you can accomplish almost anything with the right code. The Term-Mite source code is available from Micromint.—Steve

Between Circuit Cellar Feedback, personal questions, and Ask BYTE, I receive hundreds of letters each month. As you might have noticed, in Ask BYTE I have listed my own paid staff. We answer many more letters than you see published, and it often takes a lot of research.

If you would like to share your knowledge of microcomputer hardware with other BYTE readers, joining the Circuit Cellar/Ask BYTE staff would give you the opportunity. We're looking for additional researchers to answer letters and gather Circuit Cellar project material.

If you're interested, let us hear from you. Send a short letter describing your areas of interest and qualifications to Steve Ciarcia, P.O. Box 382, Glastonbury, CT 06033.

76 BY T E • SEPTEMBER 1987

Inquiry 317

Inquiry 172 —
What is HALO?
HALO is a device independent library of 190 graphics subroutines. It is compatible with 17 programming languages and over 110 graphics hardware devices for the IBM PC, PS/2 and compatibles. It provides the software designer with the richest environment of graphics functions; the programmer with reliable and well-documented tools; and DP managers with continuity of user interface and database format.

Who uses HALO?
Since its introduction in 1982, HALO has developed an installed base of 60,000 end-users, hundreds of site-licensed corporations, government agencies, universities, and national laboratories, and most importantly, a family of over 150 Independent Software Vendors (ISVs) who market applications written with HALO.

What about performance?
Our ISVs are the best proof of HALO's performance. They use HALO because:
- building their own library costs too much
- HALO outperforms the rest
- HALO is easier to program
- it supports a wider range of devices for a bigger potential market
- new device drivers are added quarterly to prevent software obsolescence and reduce maintenance costs.

How much does it cost?
A single license for HALO costs $300.00 and includes all device drivers and your choice of one compiler binding.
HALO is fully documented, includes LearnHALO (an interactive tutorial) and free 800# technical support.
If you need high performance graphics development software that provides a migration path to OS/2 and other future technology, follow the industry leaders—call (800) 426-HALO.

media cybernetics
8484 Georgia Ave.
Silver Spring, MD 20910
(800) 426-HALO
(301) 495-3305 telex 322014
HALO is a registered trademark of Media Cybernetics, Inc. IBM PC, and PS/2 are registered trademarks of International Business Machines Corp.
To get Lotus 1-2-3 to do all this more quickly and easily, we didn’t make it more powerful.

Lotus HAL doesn’t change 1-2-3 or the worksheet. It makes things easier. For instance, to graph sales by district from January to March just request “graph Jan to Mar.”

You can spend a lot of time setting up your spreadsheet. Summing up sales figures is a good example. With Lotus HAL, just request “total all rows” and 1-2-3 and Lotus HAL will create the formulas.

Say you want to extract just the information you want from a database. For example, you want to determine your top sales reps. Simply request “who has sales ≥ 8000.”

You may find yourself in the position of figuring out how a spreadsheet was built. Well, with Lotus HAL, you simply request “list the relation in the sheet.” And away you go.

Do you find it hard to sort things by district or sales or any other criteria? Just request “sort by dist.”

To create macros, well, you may not believe it is. What you see here isn’t a description of what’s happening—it’s the actual macro. See, we told you you wouldn’t believe this.
We made you more powerful.

How? With Lotus HAL™—a Companion product for 1-2-3® that helps you take shortcuts, undo mistakes, link spreadsheets, use your own words for commands and basically get more out of 1-2-3 than ever.

So much more, that Computerworld has named Lotus HAL “Product of the Year.”

The screens on the left will give you an idea of how easy it is to get more out of 1-2-3. And these are only a few of the enhancements and new features Lotus HAL brings to 1-2-3.

Lotus HAL gives you the ability to perform 1-2-3 tasks using simple English phrases—called, logically enough, “requests.” This has advantages for all kinds of 1-2-3 users: the newer users will find that difficult tasks are now simplified; the more experienced users will find that many time-consuming tasks can now be performed in a fraction of the time.

In addition to this powerful capability, Lotus HAL also allows you to test assumptions, correct mistakes and simply change your mind with ease. Because through a special capability called “undo,” Lotus HAL lets you reverse your last command—even retrieving a file before saving your work.

Besides all this, Lotus HAL gives 1-2-3 a number of other useful and powerful new features—like spreadsheet auditing and the ability to link cells or ranges between worksheets.

One obvious benefit of all this is that you save time. This is what led Business Software to say, "...(Lotus) HAL gives users the ability to move through 1-2-3 at least twice as fast."

And what does that savings in time mean to a business person? It means you’re more powerful, more productive, more effective than ever before.

Make yourself more powerful, and buy yourself Lotus HAL. You’ll find it at your Authorized Lotus Dealer, for just $150. Or, you can call us directly at 1-800-345-1043 and ask for Product YS-1377, or ask for YS-1385 to receive more information about Lotus HAL. See? Everything with Lotus HAL begins with a simple request.
QUBIE' Eliminates the Computer Decision Headache

The best remedy in terms of Features, Price and Performance is...

$499
*Shown With Optional 101 Key Keyboard

QUBIE' V20t!!!

Features
- 4.77/8 MHz Switchable Clock
- 135 Watt Power Supply
- 640K Ram On Motherboard
- NEC V20 Processor
- Multi I/O Card
- 360K Floppy Drive
- ‘AT’ Style Keyboard
- 1 Year Warranty

Options

Displays

Monochrome Kit (MONOKIT)
- Amber Monitor with Mono Graphic Card
- Tilt and Swivel Base
- $149

Color Kit (CGAKIT)
- RGB Color Monitor 14” Screen
- 640 x 200 Resolution
- Tilt and Swivel Base
- with Color Graphic Adapter
- $399

Enhanced Graphics Kit (EGAKIT)
- EGA Hi-Resolution Monitor 14” Screen
- 640 x 350 Resolution
- Fully IBM Enhanced Graphics Adapter Compatible
- Tilt and Swivel Base
- $579

"Call Now For More Selections"

Drives/Tape Backup

20MB Hard Disk Kit (PC20)
- 3 1/2 Plated Media Drive
- Boots Directly From Drive
- IBM Compatible
- 5 1/4” Short Slot Controller
- Card with Cables
- Low Power Consumption
- $299

42MB Hard Disk Kit (PC42HH)
- AT Speed in a XT
- 42MB Formatted
- 5 1/4” Short Slot Controller
- Card with Cables
- Standard Half Height
- Automatic Head Parking
- Low Power Consumption
- $519

40MB Streaming Tape Drive
- 40MB of Formatted Data Per Cartridge
- Data Transfer Rate of 1.875MB/Minute
- Standard 3 1/2 Floppy Disk Drive Mounting
- Uses Standard DC-20000 Tape Cartridge
- Low Power Consumption
- $349

The Qubie’ Promise

30 Day No Risk Guarantee
If you are not completely satisfied with your purchase, you may return it within 30 days for a full refund, including the cost to ship it back. (UPS ground shipments only)

One Year Warranty
All Qubie' products carry a full one year warranty on all parts and labor. 48 hour turnaround on all warranty repairs. Extended warranty (PCP) available on all products.

For fastest delivery, send cashier's check, money order, or order by Mastercard/VISA. Personal checks allow 14 days to clear. Corporations and institutions purchase orders accepted, call for prior authorization. California residents, add 6% sales tax.

QUBIE’

Outside California
(800) 821-4479
Inside California
(805) 987-9741

Technical Support
(805) 482-9829

Hours: M - F 8am - 5pm PTZ Sat 8am - 11am
CD ROM 2: OPTICAL PUBLISHING
Edited by Suzanne Ropiequet with John Einberger and Bill Zoellick
Microsoft Press
Redmond, WA: 1987
ISBN 1-55561-000-8
384 pages, $22.95

68000 ASSEMBLY LANGUAGE: TECHNIQUES FOR BUILDING PROGRAMS
Donald Krantz and James Stanley
Addison-Wesley
Reading, MA: 1986
ISBN 0-201-11659-6
402 pages, $24.95

SOFTWARE COMPONENTS WITH ADA: STRUCTURES, TOOLS, AND SUBSYSTEMS
Grady Booch
Benjamin/Cummings
Menlo Park, CA: 1987
635 pages, $35.95

Microsoft has long been a champion of emerging technologies, even if it has been a bit late in pushing them out the door. Last year, the company sponsored the first major conference on using compact optical disks (CDs) as read-only memory for computers. Microsoft also published the first major book on the new technology, CD ROM: The New Papyrus (reviewed in the October 1986 BYTE).

The articles in the first book covered a wide range of topics and expressed a general enthusiasm for the emerging CD-ROM technology. Many of the articles were introductory in nature and rarely went into much technical depth. The articles in CD ROM 2: Optical Publishing are more concrete and assume a greater background in storage concepts.

The articles are written by several different authors and compiled and edited by Suzanne Ropiequet, with assistance from John Einberger and Bill Zoellick. Though it contains many articles, this second volume lacks the variety and quantity of the first volume.

Two features of CD-ROM disks differentiate them from other removable data-storage media: They hold far more data, and they are read-only. The difference between a CD-ROM disk and a floppy disk is similar to the difference between a large book and a piece of paper. Like a book, the CD-ROM disk holds phenomenally more data, but it cannot be altered like a piece of paper can.

Optical Publishing treats the process of creating CD-ROM disks like book publishing. Instead of dwelling only on how computers can access CD-ROMs, the book spends a great deal of time explaining how standard computer concepts can be applied to the publishing industry. For example, a CD-ROM disk that has reference material on it is significantly more flexible than a book, even if the book has a great index. However, to be better than a book, the CD-ROM must have software support that's powerful and easy to use.

The book's orientation toward publishing makes it much easier to read than a technical book. It also conveys the big picture of CD-ROM: The data on the disks will be much more important than the computer controlling the disk reader. Although The New Papyrus had more interesting articles on information theory, Optical Publishing has more practical advice for people who intend to publish CD-ROM disks.

Responding to Users' Needs
The first couple of chapters quickly cover the background of CD-ROM and describe some of its potential applications. Editors Ropiequet, Einberger, and Zoellick provide an excellent technical summary of how data is read from a CD-ROM disk. Although this information is not necessary for someone preparing a CD-ROM disk, it is useful for an understanding of why you cannot simply give a disk producer a computer tape of files and expect a disk in return.

The next three chapters explain the underlying problems of preparing data for and retrieving information from CD-ROM disks. The editors detail the different methods for putting text on the disk. They also cover a much more interesting issue: how to read the information off the disk. This is followed by a chapter containing much more detail about methods for indexing and retrieving text on a disk, while the next chapter discusses index-
Inquiry 86

Z Best Sellers

Z80 Turbo Module-2 (1 disk) $89.95
The best high-level language development system for your Z80-compatible computer. Created by a famous language developer. High performance, with many advanced features includes editor, compiler, linker, 552 page manual, and more.

Z-COM (5 disks) $119.00
Easy auto-installation complete Z-System for virtually any Z80 computer presently running CP/M 2.2. In minutes you can be running ZCPR3 and ZRDOS on your machine, enjoying the vast benefits. Includes 80+ utility programs and ZCPR3 The Manual.

Z-Tools (4 disks) $169.00
A bundle of software tools individually priced at $260 total. Includes the ZAS Macro Assembler, ZDM debuggers, REVAS4 disassembler, and IT0Z/ZTOIZ source code converters. HD641-3 support.

PUBLIC ZRDOS (1 disk) $59.50
If you have acquired ZCPR3 for your Z80-compatible system and want to upgrade to full Z-System, all you need is ZRDOS. ZRDOS features elimination of control-C after disk change, public directories, faster execution than CP/M, archive status for easy backup, and more!

DSD (1 disk) $129.95
The premier debugger for your 8080, Z80, or HD64180 systems. Full screen, with windows for RAM, code listing, registers, and stack. We feature zCPR3 versions of this professional debugger.

Quick Task (3 disks) $249.00
Z80/HD64180 multitasking realtime executive for embedded computer applications. Full source code, no run time fees, site license for up to 20 users. We feature zCPR3 versions of this professional debugger.

Z-Best Sellers

885 N. San Antonio Road • Los Altos, CA 94022
415/948-3820 (Order line and tech support) Telex 4931646

BOOK REVIEWS

These chapters make the process sound simple, probably dangerously so. As artificial intelligence researchers are discovering, people expect to see requested information in context. For instance, if a youngster using a CD-ROM for a report in school requested information on George Washington, and the first entry that was shown was about George Washington University, the student might think that the software processing his or her selection was not very smart. Since CD-ROMs can hold an incredible amount of information, the retrieval and indexing software must be more responsive to users' needs.

The material in these chapters presents an unfortunately limited view of the many indexing and retrieval methods that have been developed in the last 20 years. Although a few algorithms are listed, their advantages and shortcomings are glossed over. Important factors such as access times and disk space trade-offs are pretty much ignored, even though these can be explained in terms no more technical than the ones that were used earlier in the book to describe how bits are stored on CD-ROM disks.

Some Comparisons

Two chapters explore images and sound, respectively. The material about storing and processing graphics is much more detailed.

Even though the chapter on presentation systems covers the range in fairly good detail, it offers little guidance in selecting a data format for images. This is unfortunate, since the book is a panoply of graphics standards from which to choose. To its credit, the chapter talks about many more side issues of image processing (such as compression, enhancement, and rasterization) than other sources of information.

The coverage of sound unfortunately does not include many side issues. Very little of the information relates to reproducing the audio data on different computers, or even how to store audio information in a general enough fashion for the CD-ROM disk to be of much use on more than one computer. This is indicative of the microcomputer industry’s emphasis on visual over aural presentation.

Disk production was largely ignored in *The New Papyrus* but is covered in excellent detail in *Optical Publishing*. Chapter 10 presents an overview of the issues involved with getting data onto the disk, while Chapter 12 goes into the hows and whys of mastering anding the disk. These two chapters give the reader a solid idea of the intricacies of preparing data for CD-ROMs.

Thorny Issues

Probably the strongest chapter of *Optical Publishing* is Chapter 13, which covers a wide range of topics under the heading “Data Protection.” Many early CD-ROM supporters waxed enthusiastic about putting entire encyclopedias, phone directories, and other reference books on a single CD-ROM, but they forgot a very important fact: The information in these works belongs to different people. This chapter goes into great detail about the legal issues involved in owning information and the format in which it is presented.

The sections on copyrights, trademarks, and trade secrets are also valuable to any print publisher considering putting its works on CD-ROM. Issues such as licensing information and property rights are also covered in detail. This chapter alone is worth the price of the book, especially for people who are wary of new information technologies.

Chapter 14 covers another thorny CD-ROM issue that is often ignored: updating CD-ROMs. Although it does not give many solid recommendations, it does raise interesting market-
Keep your mainframe in touch: Send your remote PCs a card!

If a telephone line goes to wherever your remote PCs are, Sync-Up™ from UDS can now link them directly to your mainframe!

Sync-Up fits a complete synchronous modem and a protocol converter onto a single card; no other modules are required. Add appropriate UDS-supplied software, and you'll have a fast, reliable micro-to-mainframe link. If your system is already supporting 201C, 212A, 208A/B and/or 9600B modems, no modifications are required at the mainframe end.

Sync-Up boards may be specified with software to support 2780/3780 or 3270 BSC, and 3270, 3770 or 5251 SNA or a variety of other protocols. For complete technical data and quantity prices, contact Universal Data Systems, 5000 Bradford Dr., Huntsville, AL 35805. Telephone 205/721-8000; Telex 752602 UDS HTV.

Universal Data Systems
BOOK REVIEWS

Inquiry 278 for End-Users.
Inquiry 279 for DEALERS ONLY.

Real-World Examples
The last two chapters of the book are long, self-aggrandizing case studies about how two companies put together CD-ROM databases from existing microfiche products. The first article is about a card catalog product for libraries. The author reminds us over and over how innovative his company was for using CD-ROM and how wonderful the technology is. Unfortunately, he gives very little concrete information for someone studying the process of transferring information to CD-ROM. The second article, describing a medical information system, is a good summary of the book but presents almost no new information.

If the editors of Optical Publishing had included more articles in this section, readers would better understand the problems associated with converting to CD-ROM technology.

One-Sided Coverage
Although Optical Publishing covers a great deal of material well, it has some problems. A fair amount of boosterism pervades the articles. Although some of the negative features of CD-ROM are mentioned, they are seriously downplayed. While this book is a very good guide if you’re interested in putting out a CD-ROM product, it is not very helpful if you’re weighing CD-ROM against other competing technologies.

Part of the reason for this mostly one-sided coverage is probably that Optical Publishing is published by Microsoft Press, and Microsoft has invested a great deal of money and time in the CD-ROM effort. Since Microsoft has not backed other technologies (such as write-once optical disks), it is not surprising that alternatives do not get much coverage in the book.

Another reason for the boosterism is that most of the authors work for companies that help other companies produce CD-ROM disks. This could have been avoided by the collection editor, but the lead editor, Suzanne Ropiequet, works for Microsoft Press, and both the other editors work for companies that consult on CD-ROM. While the editors’ credentials lend a certain amount of technical credence, they also call their bias into question.

For example, Optical Publishing makes dozens of references to the High Sierra Format (HSF) for information on CD-ROMs. In fact, Chapter 11 describes the format in great detail. Other formats are rarely mentioned, and most of the authors manage to put in a plug for HSF. Someone reading the book without reading other articles in the press wouldn’t know that there are many other competing formats and that many manufacturers have adopted their own formats.

The emphasis on HSF (also called the HSG Proposal in the book) may be partially due to the fact that Microsoft is a member of the group that is creating the format. Although HSF has a good chance of becoming an accepted standard, the editors of this volume have performed a disservice to readers by not discussing other formats or the reasons why one might choose a nonstandard format.

Optical Publishing contains a wealth of good information and is an excellent companion to The New Papyrus. The articles are readable and often interesting. Although the book is flawed by a one-sided attitude toward this emerging technology, it is still worthwhile reading for most people who are interested in CD-ROM technology.

Paul E. Hoffman (2140 Shattuck Ave., Suite 2024, Berkeley, CA 94704) is a freelance writer and consultant. He has written five books about Microsoft products, including Microsoft Word Made Easy (Osborne/McGraw-Hill, 1987).
The new generation of software development tools are here. Now . . .

It's

Your

Arity . . .

The only fully-integrated family of software development tools designed for today's programming needs.

You're looking for a language which can handle today's programming tasks: expert systems, natural language, relational databases, intelligent human interfaces. Your best move is Arity/Prolog. Arity/Prolog is the foundation for a variety of programming tools designed to meet your programming needs.

Prolog

Arity/Prolog is a true superset of the Edinburgh Prolog standard. It includes features such as one gigabyte of virtual memory, complete string support, database partitioning, definite clause grammar support, and full MS-DOS access. Arity/Prolog has highly-developed interfaces to other programming languages, such as C, assembly, and Pascal. So you don't have to abandon your existing development efforts to take advantage of the power and flexibility of Arity/Prolog.

Arity/Prolog is the overwhelming choice of users and reviewers alike as the premier Prolog implementation for IBM-PCs and compatibles.

Expert Systems

Arity/Expert is a programming tool which bridges the gap between a human's view of a problem and a computer's view of the problem.

Arity/Expert is a frame-based system which features backward chaining, automatic explanation generation, positive and negative confidence factors, and complete system debugging facilities. Arity/Expert is designed with a unique open-ended architecture that allows you to customize your expert system to match your individual needs.

SQL

Structured Query Language (SQL) is fast becoming the industry standard relational database interface language. The Arity/SQL package lets you easily add this familiar database interface to your Arity/Prolog applications. Using Arity/SQL queries, you can easily display specific information from a database table, combine data from many different tables, and perform comparisons among data in the database.

If you're planning to incorporate relational database technology into any of your applications, you'll want to use the combination of Arity/Prolog and Arity/SQL to speed your development efforts.

1-800-PC-Arity
(Mass: 617-371-U43)

Arity Corporation
30 Domino Drive
Concord, Massachusetts
01742
Inquiry 238
Quaid Analyzer
the tool
that created
CopyWrite

Now you can debug your own programs
with a professional quality debugger -
the one that unraveled every form of
copy-protection used on the PC.

With the Quaid Analyzer, you can:
□ See occurrences of any interrupt, with its
 meaning shown on the screen.
□ View memory as text or instructions,
 scrolling as easily as you do with an editor.
□ Run until a memory location or I/O port is
 changed.
□ Protect your hard disk from accidental
 destruction.
□ Analyze software without the source, even
 when it uses countermeasures to thwart
 tracing.
□ See all stages of the boot load.

We kept the Quaid Analyzer off the
market to avoid helping publishers with
copy-protection. Now that copy­
protection is gone, we can sell it to
you.

The Quaid Analyzer is a software tool occupying 100K bytes. It
runs on any IBM PC and most MS-DOS systems without hard­
ware modification.

Call (416) 961-8243
Quaid Analyzer $99 U.S.

All orders shipped at
our expense within a
day. All major credit
cards accepted.

Payment method MC-Visa-Amex-Diners-Check
Card No. ____________________________
Expire Date ____________
Name _______________________________
Address ____________________________
City/State __________________________
Phone No. __________________________
Signature __________________________

Quaid Software Limited

Ask about Disk Explorer the program that takes over
where Quaid Analyzer leaves off.

BOOK REVIEWS

68000 ASSEMBLY LANGUAGE:
TECHNIQUES FOR BUILDING PROGRAMS
Reviewed by Adam Brooks Webber

D onald Krantz and James Stanley’s 68000 Assembly Lan­
guage is a guide to writing programs for the Motorola
68000 family of microprocessors. The many examples included
in the text are duplicated on an MS-DOS disk that comes with
the book. According to the authors, the book is intended for
people who have some experience with assembly language for
another microprocessor and who want to make the transition to
programming for the 68000. The category of prospective read­
ers could be widened to include anyone who isn’t either a 68000
expert or completely new to the concepts of machine-level
programming.

Approach
This book is about generic 68000 programming, not about pro­
gramming for the particular 68000-based computer the authors
used. This means that the examples in the book, while helpful,
cannot be used without modification on a Macintosh, an Amiga,
or an Atari ST.

In general, 68000 Assembly Language is pleasant to read; the
tone is conversational in places. The serious-minded reader may
find parts of the book too flip, but I found that the occasional
humorous asides helped lighten what would otherwise have
been a very dense technical work.

Reference Section
The book has two main sections. The first is a reference manual
for the 68000. The authors describe the general architecture of
the 68000, including the register set, memory map, and ad­
dressing modes. They group the instructions together according
to function and explain each one individually. They introduce
and compare several common techniques for parameter-pass­
ing, including those typically generated by compilers. Finally,
Krantz and Stanley discuss the 68000’s mechanism for excep­
tion handling (but without going into too much detail about the
bus protocol).

The authors clearly know what they’re talking about and gen­
ergally have their facts straight, but the editing in the first section
of the book is terrible. I found the frequent typographical, factu­
al, and grammatical errors surprising—and what a reviewer
finds surprising, an earnest student of the 68000 may find mis­
leading. You may, for example, spend hours looking for another
reference to the JNZ instruction mentioned on page 61, only to
find no mention of it at all. You may rely on what you’re told on
page 10, that “When [a data register is] used as a destination, all
condition codes excepting the extend flag are affected,” which
is not always true. To their credit, however, the authors recom­
mend against using their book as a substitute for Motorola’s ref­
ence manual. I concur.

Tutorial Section
The second section of the book is a 68000 programming tutori­
al. This is the real meat of the book, based on the very sound
idea that people learn to write good code by reading good code.
The authors proceed step by step through the development of a
multiwindow text editor written completely in 68000 assembly
language. They include the entire text of the editor in the book
and on the accompanying disk. They provide several other ex­
amples in the same spirit: math routines, graphics routines, and
a simple device driver. This is a great approach, and the book is
worth buying just for the examples. The tutorial accounts for
about two-thirds of the book’s size and almost all its value.

continued

Inquiry 262 for MS DOS Products.
Inquiry 263 for all others. →
DISCOVER PARADISE

Programmer's Paradise Gives You Superb Selection, Personal Service and Unbeatable Prices!

Welcome to Paradise. The MS/PC-DOS and XENIX software source that caters to your programming needs.

- Lowest price guaranteed
- Huge inventory, immediate shipment
- Knowledgeable sales staff
- Special orders
- 30-day money-back guarantee*

Corporate Buyers

Call for special discounts and benefits!

We'll Match Any Nationally Advertised Price

80386 TOOLS

<table>
<thead>
<tr>
<th>List Price</th>
<th>List Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADVANCE C86</td>
<td>ADVANCE C86</td>
</tr>
<tr>
<td>C86 OPTINS</td>
<td>C86 OPTINS</td>
</tr>
<tr>
<td>CF50</td>
<td>CF50</td>
</tr>
<tr>
<td>CF50</td>
<td>CF50</td>
</tr>
<tr>
<td>DBC 111</td>
<td>DBC 111</td>
</tr>
<tr>
<td>25U 119</td>
<td>25U 119</td>
</tr>
<tr>
<td>195 149</td>
<td>195 149</td>
</tr>
<tr>
<td>155 185</td>
<td>155 185</td>
</tr>
<tr>
<td>105 205</td>
<td>105 205</td>
</tr>
<tr>
<td>375 555</td>
<td>375 555</td>
</tr>
<tr>
<td>155 375</td>
<td>155 375</td>
</tr>
<tr>
<td>105 165</td>
<td>105 165</td>
</tr>
<tr>
<td>37 55</td>
<td>37 55</td>
</tr>
<tr>
<td>25U 25U</td>
<td>25U 25U</td>
</tr>
<tr>
<td>195 195</td>
<td>195 195</td>
</tr>
</tbody>
</table>
Laptop & IBM PS/2 Users:
The solution to bridge the gap between your 5¼ & 3½ inch drives.
"It's a steal. It allows you to use your favorite DOS shell for selective file transfer and it even lets you use your PC's peripherals from your laptop... In short: An exceptionally fast and functional transfer utility. ... The Brooklyn Bridge is the perfect solution for people who use a laptop almost exclusively as a portable machine that travels from PC to PC. It's terrific!" — Howard Marks, PC Magazine, July 1987

Rated as one of the best of the best utilities by John Dvorak.
"This is one of those rare programs that you enjoy the minute you take it out of the box, especially when you discover that a cable is included... Excellent product." — PC Magazine, June 23, 1987

End users are "sold on Brooklyn Bridge... Dvorak is certainly correct in describing White Crane Systems' Brooklyn Bridge as Fabulous... and I love it." — G. Schochet, Letter to the Editor, PC Magazine, May 12, 1987

OnForm creates reusable files • Concatenates fields such as work out of forms work. Clipper compiled dBASE Ill.

"It's a steal. It allows you to use your favorite DOS shell for selective file transfer and it even lets you use your PC's peripherals from your laptop. In short: An exceptionally fast and functional transfer utility. The Brooklyn Bridge is the perfect solution for people who use a laptop almost exclusively as a portable machine that travels from PC to PC. It's terrific!" — Howard Marks, PC Magazine, July 1987

Rated as one of the best of the best utilities by John Dvorak.
"This is one of those rare programs that you enjoy the minute you take it out of the box, especially when you discover that a cable is included... Excellent product." — PC Magazine, June 23, 1987

End users are "sold on Brooklyn Bridge... Dvorak is certainly correct in describing White Crane Systems' Brooklyn Bridge as Fabulous... and I love it." — G. Schochet, Letter to the Editor, PC Magazine, May 12, 1987

Complete preprinted forms. At Multimate and most leading dBASE Systems. Inc. and take the • Maximum operating speeds with continuous forms.

"It's a steal. It allows you to use your favorite DOS shell for selective file transfer and it even lets you use your PC's peripherals from your laptop. In short: An exceptionally fast and functional transfer utility. The Brooklyn Bridge is the perfect solution for people who use a laptop almost exclusively as a portable machine that travels from PC to PC. It's terrific!" — Howard Marks, PC Magazine, July 1987

Rated as one of the best of the best utilities by John Dvorak.
"This is one of those rare programs that you enjoy the minute you take it out of the box, especially when you discover that a cable is included... Excellent product." — PC Magazine, June 23, 1987

End users are "sold on Brooklyn Bridge... Dvorak is certainly correct in describing White Crane Systems' Brooklyn Bridge as Fabulous... and I love it." — G. Schochet, Letter to the Editor, PC Magazine, May 12, 1987

OnForm creates reusable files • Concatenates fields such as work out of forms work. Clipper compiled dBASE Ill.

"It's a steal. It allows you to use your favorite DOS shell for selective file transfer and it even lets you use your PC's peripherals from your laptop. In short: An exceptionally fast and functional transfer utility. The Brooklyn Bridge is the perfect solution for people who use a laptop almost exclusively as a portable machine that travels from PC to PC. It's terrific!" — Howard Marks, PC Magazine, July 1987

Rated as one of the best of the best utilities by John Dvorak.
"This is one of those rare programs that you enjoy the minute you take it out of the box, especially when you discover that a cable is included... Excellent product." — PC Magazine, June 23, 1987

End users are "sold on Brooklyn Bridge... Dvorak is certainly correct in describing White Crane Systems' Brooklyn Bridge as Fabulous... and I love it." — G. Schochet, Letter to the Editor, PC Magazine, May 12, 1987

OnForm creates reusable files • Concatenates fields such as work out of forms work. Clipper compiled dBASE Ill.

"It's a steal. It allows you to use your favorite DOS shell for selective file transfer and it even lets you use your PC's peripherals from your laptop. In short: An exceptionally fast and functional transfer utility. The Brooklyn Bridge is the perfect solution for people who use a laptop almost exclusively as a portable machine that travels from PC to PC. It's terrific!" — Howard Marks, PC Magazine, July 1987

Rated as one of the best of the best utilities by John Dvorak.
"This is one of those rare programs that you enjoy the minute you take it out of the box, especially when you discover that a cable is included... Excellent product." — PC Magazine, June 23, 1987

End users are "sold on Brooklyn Bridge... Dvorak is certainly correct in describing White Crane Systems' Brooklyn Bridge as Fabulous... and I love it." — G. Schochet, Letter to the Editor, PC Magazine, May 12, 1987

OnForm creates reusable files • Concatenates fields such as work out of forms work. Clipper compiled dBASE Ill.
ProDesign II — Still $299!

ProDesign II — the Easy-to-Use CAD System. The CAD system that was introduced two years ago for the amazingly low price of $299. The CAD system that has undergone four major revisions with more than 400 enhancements. The CAD system that still costs only $299!

How do we do it? Our accountants said to raise the price to cover research and development costs. Our business advisors said to charge more for the additional features. Our competitors said it’s impossible to stay in business selling a comprehensive CAD package such as ProDesign II for only $299.

And our customers said $299 is great. So, we said:

“Aw... What the Heck! $299 it is!”

Now, two years after its introduction, ProDesign II is one of the world’s leading CAD packages. It has features previously found only on CAD systems costing thousands of dollars. For the single price of $299, you get these features and more:

- Support for more than 180 printers (including color printers)
- Support for more than 80 plotters, with plotter optimization.
- Easy-to-Use single keystroke commands.
- On-screen menus accessible with a mouse.
- Comprehensive drawing commands, including the finest curve fitting in the industry.
- Editing features unsurpassed by ANY other CAD package.
- Extensive snap features, including snap to point, endpoint, midpoint, line, circle, ellipse, arc, intersection, and perpendicular.
- True Auto Dimensioning with several formats.
- Extensive Layering features.
- Full Macro capabilities.
- Specialized drawing aids, such as tangents to circles and ellipses, parallel lines, parallel curves, wide lines, and more.
- Complete hatching with up to 40 different patterns.
- Area and length calculation for line curves, circles, etc.
- Full Zoom, Pan, and Rotate capabilities.
- Capability to transfer drawings to and from other programs.
- Capability to Break/Trim Lines, Curves, Circles, Arcs, and Ellipses.
- Many more features — All for only $299!

Where do you get ProDesign II? See your local computer dealer, or contact:

American Small Business Computers, Inc.
118 South Mill Street
Pryor, OK 74361
(918) 825-4844
Telex 9102400302
Inquiry 17

Want more information? Call or write for a detailed brochure and a free demo disk!
AT LAST: Professional Typesetting Capability For PC Users

With PC TeX™ — the best-selling full implementation of Professor Donald Knuth’s revolutionary typesetting program TeX.

FINEST Typeset Quality Printing From:
dot matrix laser phototypesetter

\[
\sum_{i=1}^{\infty} \left(\begin{array}{c} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \\ \end{array} \right) \int_{-\infty}^{\infty} e^{-x^2} \, dx
\]

WIDEST Range Of Output Device Drivers:
- Epson FX, LQ
- Toshiba
- Corona LP-300*
- Screen preview, with EGA or Hercules card

MOST COMPLETE Product Offering:
PC TeX (not copy protected) includes the following:
- Our specially written PC TeX Manual, which enables you to start using TeX right away.
- Custom “macro packages” that provide formats for letters, manuals, technical documents, etc.
- The latex document preparation system, a full-featured macro package for preparing articles, books, reports, etc., and latex User’s Manual.
- AMSTEX, developed by the Amer. Math. Society for professional mathematical typesetting.

Site licenses, volume discounts, and interfaces to PC Paintbrush, PC Palette, FancyFont and Fontrix are also available.

PRICED FROM ONLY $249.00!
(Printer drivers and interfaces additional.)

For IBM PC/XT, AT or compatible, DOS 2.0 or higher, and 512K RAM. Hard disk required for printer drivers and fonts.

* HP LaserJet and Corona require additional interface boards.

For more information call or write:
Personal TeX, Inc.
12 Malirona Avenue, Mill Valley, CA 94941 (415) 388-8853

This ad, with space for the photograph, produced by PC TeX. Typeset on the Epson FX80, the Corona LP 300 laser printer, and the Autologic APS-5 phototypesetter.

TeX is a trademark of the American Mathematical Society. Manufacturers’ product names are trademarks of individual manufacturers.

BOOK REVIEWS

Software Reusability

Software Components with Ada is organized into four “packages” (the term is derived from an Ada feature that enforces encapsulation). Each package is segmented into chapters. The first package introduces such concepts as reusability, object-oriented development, and the characteristics of structures, tools, and subsystems. Booch describes how the application of these concepts is a superior approach to building software systems.

The theme of software reusability recurs throughout the book. Booch cites studies that conclude that only 15 percent of the code written on the average software project is “new.” The rest has been written before, in some form or another, and could be reused. Hardware manufacturers have achieved orders of magnitude increases in productivity by adopting the component approach to engineering; software developers are just now beginning to catch up out of necessity.

In the first package, Booch reaches the conclusion that families of software components are necessary for the same reason that hardware vendors make many versions of the same microprocessor that vary according to power requirements, clock speed, price, and so on. Accordingly, he introduces a taxonomy he has developed to specify the various forms software components can take. The taxonomy separates components into data structures, tools, and subsystems. From there, the forms branch out until the lowest-level components are identified.

Data Structures Examined

In the second package, Booch explores the design and implementation of data structures. This section transcends other books on the subject because it takes the discussion of time and space behavior much further.

Each chapter in the second package describes a different data structure or class of structures. Still, the chapters are organized so that issues such as privacy, consistency, and concurrency can be isolated and examined.

In the third package, Booch shows how data structures are used to construct higher-level components that he categorizes as tools. In his taxonomy, tools are divided into the categories of utilities, sorting, searching (including pattern matching), pipes and filters. Utilities are further separated into primitive, structure, and resource utilities. Booch designs and implements several examples.

Subsystems and the Law

The fourth package is split into two chapters. The first concerns subsystems, which reside at the highest level of abstraction of software components. Booch describes the subsystem concept, along with its rationale and several technical and managerial issues. He cites several examples of applications at the subsystem level, including a windowing feature for user interfaces and the Space Shuttle Orbiter’s flight computer operating system.

The last chapter, “Managerial, Legal, and Social Issues,” covers such topics as how to identify reusable components, the techniques and problems associated with maintaining a large library of components, and how actual reuse affects the entire software development life cycle. Booch then moves on to the legal aspects of reuse.

Thorough and Applicable

In addition to being informative, Software Components with Ada is enjoyable to read. It is well-organized and written in a continued
Let's talk languages. Programming languages like Turbo Pascal, C or Basic can be killers. To many, they're foreign, complex, and generally intimidating. Mistakes can be deadly.

With Smalltalk/V, you have an elegantly simple solution that puts the power and majesty of a major AI programming language on your PC or compatible. It makes no difference if you're an experienced programmer or just getting started. Smalltalk/V gives you an easy-to-use and flexible programming tool.

This is the same language used by leading software companies for their new product development. There are sound reasons for this. Smalltalk/V offers a totally integrated programming environment using the premier object-oriented language. You use natural language rather than complex programming codes. It puts Macintosh-type graphic features on a PC including overlapping windows, bit-mapping, pop-up menus, and a mouse interface. More than mere window dressing, Smalltalk/V delivers fully interactive windows that are easy to build and quick to modify.

But don't just take our word on it. Hear what the experts have to say:

"This is the real thing folks. A super Smalltalk like this turns your PC into a hot workstation. It's fantastic... Highly recommended!"

John Docek
Contributing Editor
PC Magazine

"The tutorial provides the best introduction to Smalltalk available."

Dr. Andrew Bernet
AI Expert Magazine

"Smalltalk/V is the highest performance object-oriented programming system available for PC."

Dr. Pietro Scarselli
Chief Scientist
Olivetti Artificial Intelligence Center

Today, thousands of professionals, scientists and engineers are using Smalltalk/V to solve both simple and expert problems. Giving them a new dimension in computer applications for their PC.

Put new life into your PC by calling toll free 1-800-922-8255 and ordering Smalltalk/V today. Smalltalk/V by Digitalk, Inc., 9841 Airport Blvd., Los Angeles, CA 90045.

(213) 645-1082.

Smalltalk/V $99.95
RS-232 Communications Application Pack $49.95
EGA/VGA Color Extension Pack $49.95
"Goodies" Application Pack $49.95
SPECIAL OFFER: Smalltalk/V and all 3 packs only $199.95
Shipping and handling $5.00
(Outside North America $15.00)
California residents add applicable sales tax
TOTAL: $_____

TO ORDER CALL 1-800-922-8255 TODAY.

*Unconditional 60-day money-back guarantee. Simple return to Digitalk, Inc. and your refund will be immediately forwarded to you.
SAVE TIME with
FORMATTED DISKS

"Ready to use in your
IBM PC or compatible."

Nashua™

labeled or unlabeled,
your choice 53¢.

3M
unlabeled only, 69¢.

ALF formats brand-name factory certified bulk-pack
disks and double-checks them for defects. You save
the time and hassle of formatting disks yourself.

CALL TODAY TOLL FREE
1-800-321-4668
in Colorado, 303-234-0871
in California Call (408) 434-0877
SOURCE ELECTRONICS CORP.
2380 Cume Drive, Suite E
San Jose, CA 95131
Telex: 279366 Fax: (408) 434-0639

Expansion Chassis/Tape Back-up

Specification

<table>
<thead>
<tr>
<th>Model No.</th>
<th>No. of Slots</th>
<th>Space for % Height Drive</th>
<th>Power Supply (Watts)</th>
<th>Dimension DXWXH(cm)</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-1</td>
<td>0</td>
<td>1</td>
<td>50</td>
<td>30x16x6.5</td>
<td>$197</td>
</tr>
<tr>
<td>M-2</td>
<td>3</td>
<td>3</td>
<td>100</td>
<td>42x26x16</td>
<td>$299</td>
</tr>
<tr>
<td>M-3</td>
<td>5</td>
<td>3</td>
<td>100</td>
<td>39x30x15</td>
<td>$299</td>
</tr>
<tr>
<td>M-4</td>
<td>12</td>
<td>2</td>
<td>100</td>
<td>40x49x14</td>
<td>$299</td>
</tr>
<tr>
<td>M-5</td>
<td>0</td>
<td>2</td>
<td>45</td>
<td>39x16x15</td>
<td>$149</td>
</tr>
<tr>
<td>M-6</td>
<td>0</td>
<td>1</td>
<td>50</td>
<td>25.6x18x13.5</td>
<td>$169</td>
</tr>
<tr>
<td>M-7</td>
<td>5</td>
<td>2</td>
<td>100</td>
<td>38.5x30x13.5</td>
<td>$299</td>
</tr>
<tr>
<td>M-8</td>
<td>0</td>
<td>2</td>
<td>45</td>
<td>39.5x18x13.5</td>
<td>$149</td>
</tr>
<tr>
<td>M-9</td>
<td>0</td>
<td>2</td>
<td>60</td>
<td>38.5x49x9</td>
<td>$249</td>
</tr>
<tr>
<td>M-10</td>
<td>8</td>
<td>4</td>
<td>135</td>
<td>43x49x14</td>
<td>$299</td>
</tr>
</tbody>
</table>

* Extra space for a stand alone controller

ORDER TOLL FREE: (800) 826-0267
In California Call (408) 434-0877

A Software Component Standard

In the final analysis, these concerns do not diminish the impact the book should have on the software community. Booch pulls together many of the threads of traditional software theory and weaves them into a fabric that is altogether unique. I believe Software Components with Ada is destined to take its place on the reference shelf with the standard works of computer science.

Douglas Arndt (9427 East Third St., Tucson, AZ 85710) is a senior software engineer at Dalmo Victor and Singer. He is active in the Association of Computing Machinery’s Special Interest Group on the Ada Programming Language (ACM SIGAda).
FOR THE BEST BUYS, CALL US ANYTIME.

OUR POLICY:
- All returns require prior authorization.
- Credit card orders and prepaid orders.
- Prepaid personal or company check—allow two weeks to clear.
- Prices subject to change; call for latest prices.
- Shipping via UPS surface—add $3.00 per item.
- UPS Blue—add $8.00 per item.
- Call for shipping costs.

SOFTWARE

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word Processing/ Desktop Publishing</td>
<td>$139</td>
</tr>
<tr>
<td>Microsoft Word 3.1</td>
<td>$209</td>
</tr>
<tr>
<td>Multimate Advantage II</td>
<td>$259</td>
</tr>
<tr>
<td>Lotus Manuscript</td>
<td>$359</td>
</tr>
<tr>
<td>Office Writer/Speller</td>
<td>$249</td>
</tr>
<tr>
<td>Pagemaker</td>
<td>$499</td>
</tr>
<tr>
<td>PFS: Prof Write</td>
<td>$119</td>
</tr>
<tr>
<td>Ventura Publisher</td>
<td>$519</td>
</tr>
<tr>
<td>Volkswriter 3</td>
<td>$145</td>
</tr>
<tr>
<td>Word Perfect 4.2</td>
<td>$195</td>
</tr>
<tr>
<td>Word Perfect Server</td>
<td>$309</td>
</tr>
<tr>
<td>Word Perfect Station</td>
<td>$75</td>
</tr>
<tr>
<td>WordPerfect Pro 4.0</td>
<td>$249</td>
</tr>
<tr>
<td>Wordstar 2000</td>
<td>$289</td>
</tr>
<tr>
<td>Xwrite III</td>
<td>$199</td>
</tr>
<tr>
<td>Xwrite III+</td>
<td>$249</td>
</tr>
</tbody>
</table>

DATABASE SYSTEMS

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clipper</td>
<td>$389</td>
</tr>
<tr>
<td>DBase III Plus</td>
<td>$399</td>
</tr>
<tr>
<td>DBase III Lan Pac</td>
<td>$599</td>
</tr>
<tr>
<td>Foxbase+</td>
<td>$229</td>
</tr>
<tr>
<td>Paradox 2</td>
<td>$429</td>
</tr>
<tr>
<td>PFS: Prof File</td>
<td>$145</td>
</tr>
<tr>
<td>Q&A</td>
<td>$219</td>
</tr>
<tr>
<td>R Base System V</td>
<td>$239</td>
</tr>
<tr>
<td>RapidFile</td>
<td>$89</td>
</tr>
</tbody>
</table>

SPREADSHEETS/ INTEGRATED PACKAGES

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable 2.0</td>
<td>$389</td>
</tr>
<tr>
<td>Framework II</td>
<td>$399</td>
</tr>
<tr>
<td>Javelin+</td>
<td>$399</td>
</tr>
<tr>
<td>Lotus 1-2-3</td>
<td>$309</td>
</tr>
<tr>
<td>Lotus 1-2-3</td>
<td>$109</td>
</tr>
<tr>
<td>Multiplan</td>
<td>$125</td>
</tr>
<tr>
<td>Smart System 4</td>
<td>$429</td>
</tr>
<tr>
<td>SuperCalc 4</td>
<td>$279</td>
</tr>
<tr>
<td>Symphony</td>
<td>$449</td>
</tr>
</tbody>
</table>

COMMUNICATIONS

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Copy+</td>
<td>$119</td>
</tr>
<tr>
<td>Crosstalk XVI</td>
<td>$99</td>
</tr>
<tr>
<td>Crosstalk Mark IV</td>
<td>$129</td>
</tr>
<tr>
<td>Relay Gold</td>
<td>$159</td>
</tr>
<tr>
<td>Smartterm (Persoft)</td>
<td>$599</td>
</tr>
<tr>
<td>Smartcom II</td>
<td>$99</td>
</tr>
</tbody>
</table>

ACCOUNTING

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPI</td>
<td>$179</td>
</tr>
<tr>
<td>Great Plains</td>
<td>$499</td>
</tr>
<tr>
<td>Easy Business</td>
<td>$359</td>
</tr>
</tbody>
</table>

QUALIFIED INSTALLERS AVAILABLE

HARDWARE

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computers</td>
<td>$749</td>
</tr>
<tr>
<td>AST Premium 286</td>
<td>$219</td>
</tr>
<tr>
<td>Wyse 286 PC</td>
<td>$219</td>
</tr>
<tr>
<td>Panasonic Business Partner</td>
<td>$219</td>
</tr>
<tr>
<td>Toshiba 3100/1100</td>
<td>$219</td>
</tr>
<tr>
<td>Multifunction Boards</td>
<td>$239</td>
</tr>
<tr>
<td>AST Advantage (128K)</td>
<td>$419</td>
</tr>
<tr>
<td>AST Advantage Premium</td>
<td>$419</td>
</tr>
<tr>
<td>AST 6 Pak Plus (64K)</td>
<td>$119</td>
</tr>
<tr>
<td>JVC/O Mini II</td>
<td>$119</td>
</tr>
<tr>
<td>AST Premium (256K)</td>
<td>$219</td>
</tr>
<tr>
<td>AST Rampage PC</td>
<td>$279</td>
</tr>
<tr>
<td>AST Rampage 286</td>
<td>$399</td>
</tr>
<tr>
<td>Inboard 386A</td>
<td>$1350</td>
</tr>
<tr>
<td>Intel AboveBoard</td>
<td>$399</td>
</tr>
<tr>
<td>Orchid Jet 386</td>
<td>$949</td>
</tr>
<tr>
<td>PC Turbo 286 (1MB)</td>
<td>$749</td>
</tr>
<tr>
<td>PC Tiny Turbo 286</td>
<td>$449</td>
</tr>
<tr>
<td>QuadBoard (OK)</td>
<td>$109</td>
</tr>
<tr>
<td>Display Boards</td>
<td>$239</td>
</tr>
<tr>
<td>ATI EGA Wonder + Hercules Graphics Card Plus</td>
<td>$189</td>
</tr>
<tr>
<td>Hercules Color Card Hercules</td>
<td>$159</td>
</tr>
<tr>
<td>NEC GB1</td>
<td>$309</td>
</tr>
<tr>
<td>Paradise Auto Switch EGA 480</td>
<td>$339</td>
</tr>
<tr>
<td>Quad EGA ProSync Quadram EGA+</td>
<td>$289</td>
</tr>
<tr>
<td>Teeng EVA 480</td>
<td>$389</td>
</tr>
<tr>
<td>Modems</td>
<td>$279</td>
</tr>
<tr>
<td>Hayes 1200</td>
<td>$299</td>
</tr>
<tr>
<td>Hayes 1200B</td>
<td>$299</td>
</tr>
<tr>
<td>Hayes 2400</td>
<td>$499</td>
</tr>
<tr>
<td>Hayes 2400B</td>
<td>$499</td>
</tr>
<tr>
<td>IBM 14850</td>
<td>$129</td>
</tr>
<tr>
<td>US Robotics 1200B</td>
<td>$109</td>
</tr>
<tr>
<td>US Robotics 2400B</td>
<td>$189</td>
</tr>
<tr>
<td>Ventel 2400</td>
<td>$409</td>
</tr>
<tr>
<td>Ventel 2400B</td>
<td>$409</td>
</tr>
<tr>
<td>Watson</td>
<td>$339</td>
</tr>
<tr>
<td>Emulation Boards</td>
<td>$629</td>
</tr>
<tr>
<td>AST 5211-11 + Irmal/2</td>
<td>$725</td>
</tr>
</tbody>
</table>

MONITORS

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amdek 310A</td>
<td>$149</td>
</tr>
<tr>
<td>Amdek 410A</td>
<td>$169</td>
</tr>
<tr>
<td>Amdek 1280</td>
<td>$779</td>
</tr>
<tr>
<td>NEC MultiSync</td>
<td>$579</td>
</tr>
<tr>
<td>Princeton HX-12</td>
<td>$439</td>
</tr>
<tr>
<td>Princeton MAX-12E</td>
<td>$149</td>
</tr>
</tbody>
</table>

PRINTERS/PLOTTERS

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epson EX-1000</td>
<td>$549</td>
</tr>
<tr>
<td>Epson FX-86</td>
<td>$359</td>
</tr>
<tr>
<td>Epson FX-286E</td>
<td>$499</td>
</tr>
<tr>
<td>Epson LX-1000</td>
<td>$599</td>
</tr>
<tr>
<td>HP 7475</td>
<td>$1499</td>
</tr>
<tr>
<td>HP LaserJet II</td>
<td>$1825</td>
</tr>
<tr>
<td>NEC 3550</td>
<td>$789</td>
</tr>
<tr>
<td>Okidata 192+</td>
<td>$379</td>
</tr>
<tr>
<td>Okidata 193+</td>
<td>$549</td>
</tr>
<tr>
<td>Okidata 293</td>
<td>$689</td>
</tr>
<tr>
<td>Toshiba P321</td>
<td>$549</td>
</tr>
<tr>
<td>Toshiba P341 E</td>
<td>$769</td>
</tr>
<tr>
<td>Toshiba P351</td>
<td>$999</td>
</tr>
</tbody>
</table>

MASS STORAGE/BACKUP

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omega 20 + 20 + WinTfc</td>
<td>$1949</td>
</tr>
<tr>
<td>Irwin Tape Drives</td>
<td>$675</td>
</tr>
<tr>
<td>Plus HardCard 20MB</td>
<td>$949</td>
</tr>
<tr>
<td>Plus HardCard 40</td>
<td>$799</td>
</tr>
<tr>
<td>Pram 42MB AT</td>
<td>$899</td>
</tr>
<tr>
<td>Seagate ST 225 Wint</td>
<td>$329</td>
</tr>
<tr>
<td>Seagate ST238Wint</td>
<td>$389</td>
</tr>
<tr>
<td>Tallgrass</td>
<td>$899</td>
</tr>
</tbody>
</table>

NETWORKS

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ArcNet</td>
<td>$CALL</td>
</tr>
<tr>
<td>Novell</td>
<td>$CALL</td>
</tr>
</tbody>
</table>

INPUT DEVICES

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keytronics 5151</td>
<td>$169</td>
</tr>
<tr>
<td>Keytronics 101</td>
<td>$169</td>
</tr>
<tr>
<td>Microsoft Mouse</td>
<td>$129</td>
</tr>
<tr>
<td>PC Mouse/Del Halo I</td>
<td>$109</td>
</tr>
</tbody>
</table>

ACCESSORIES

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curtiss Ruby</td>
<td>$59</td>
</tr>
<tr>
<td>DataShield 1S-100</td>
<td>$69</td>
</tr>
<tr>
<td>Logical Connection</td>
<td>$329</td>
</tr>
<tr>
<td>Masterpiece Plus</td>
<td>$129</td>
</tr>
<tr>
<td>Microfazer II</td>
<td>$269</td>
</tr>
</tbody>
</table>

TELECOMMUNICATIONS

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic 2016</td>
<td>$259</td>
</tr>
<tr>
<td>TurboScan</td>
<td>$299</td>
</tr>
<tr>
<td>TurboSort</td>
<td>$299</td>
</tr>
<tr>
<td>Linksys</td>
<td>$299</td>
</tr>
<tr>
<td>Enterasys</td>
<td>$299</td>
</tr>
</tbody>
</table>

24 Hours A Day, 7 Days A Week

1-800-221-1260

FREE SHIPPING

on all orders over $1,000.00, credit card orders and prepaid orders.
Just because Freeway is easy to use, doesn't mean it's weak. Freeway is communication software by and for the power user.

Automation: You shouldn't waste your time with simple chores. So Freeway automates your communication. It stores over 20 settings for each host you call in its Phonebook. If a number is busy, Freeway will redial until you get through. And, in addition to the Autopilot, Freeway includes a powerful script facility, with access to all Freeway's features. For instance, a script can wait until 2 a.m., call a BBS, check for mail, and download any new files, leaving you an exact transcript.

Control: Freeway gives you far more detailed control than just the usual baud rate and parity. You have seven filters for incoming and outgoing text. You can specify the characters used for flow control, and the length of a Break. In all, you have control of over 50 settings, most of which can be different for each phone number.

And remember, just because Freeway is powerful, doesn't mean it's difficult. The advanced features are as accessible as the basics, via fast menus with keyboard shortcuts.

The easiest to use

Take Freeway's simple menus and clear displays. Add the arrow keys and the Escape and Enter keys. The result is powerful but straightforward communication — at your fingertips.

1. Phonebooks: Freeway lets you store the phone numbers (and other settings) for up to 100 computer systems. You just use the arrow keys to pick the number you want, hit Enter, and leave the dialing to us.

2. Autopilot: Computer communication is more than just placing a call. You have to log on to the other computer, and often type introductory commands. Freeway provides an "autopilot" to relieve you of this chore. You simply go through these preliminaries once, with the autopilot noting your every move. Then, when you next call, the autopilot will do the work for you.

3. Setting Up: Setting up Freeway is a piece of cake! The parameters you need — baud rate, parity, and even the number to call — are gathered in simple menus. To set them, you just zip through with arrows and Enter, and then save them in the Phonebook. Later, changing one or all of them is just as easy!

4. On-Line Help: Even though Freeway is very easy to use, we all need a hint now and then. Every line of every menu has on-line help at the touch of a key.
Over 30,000 satisfied users of previous version (KX-COM)

Crosstalk® Emulation: At the touch of a function key, you can switch from the menu interface to a command line interface. Crosstalk® users will feel right at home, and everyone can use whichever interface suits them best.

Terminal Emulation and File Transfer: We haven't forgotten the basics. Freeway emulates ANSI VT-100, VT52, and TTY. It offers seven file transfer protocols, including the new ultra-fast, ultra-reliable Freeway protocol. Why a new protocol? Because it is better — it sets many parameters automatically, adapts packet sizes to line conditions, and, in short, gets files through the first time.

Gory details: TTY, VT100, VT52 emulation. 75-115.2k baud. ASCII, Kermit, Xmodem, Ymodem, Ymodem batch, Compuserve-B, and Freeway protocols supported. Phonebooks store over 20 parameters for each host, including phone number, baud rate, LF filter, bit 8 filter, fold to uppercase, null line and tab expansions, flow control characters, and intercharacter and interline delays. Privacy passwords protect phonebooks. Global parameters separated from host-dependent parameters. Script facility, with full power of Freeway. Includes conditional branches, subroutines, and string and numeric variables. Elapsed session time available as a script variable. Autopilot replays login sequence. Big digital clock. Can beep, call a host, or run a script at specified times. Session time limit warning. Emulation of Crosstalk® interface; lots of extra commands. Copy, erase, rename files. Built-in page and line editors. Configurable for most modems, including non-Hayes. Auto-redial; programmable number of and delay between tries. Parallel command and menu interfaces. On-line help for each menu line. Cleans windows. Cooks omelettes.

It seems unbelievable to get such a complete communications software package for only $24.95. But it's true! With its many powerful features, Freeway handles all your communications applications with ease. It has full terminal emulation, full file transfer capabilities, baud rates up to 115200, and many other features, and it uses all the easy Freeway interfaces with pop-up menus. Freeway is a powerful tool, and it is only $24.95! (non-copy protected)

Freeway Advanced has of course all the power and simplicity of Freeway with more features there when you need them:

- Crosstalk emulation and a powerful script language jammed with features Crosstalk® doesn't have. A BBoard script is supplied free as an application (callers can change drives, directories, and upload and download files using any protocol).
- More communication parameters; filters, flow control, delays. Passwords protect phonebooks and unattended mode. (non-copy protected)

System Requirements: IBM PC, XT, AT, or PS/2 or 100% compatible.

Order now! Call toll-free 1-800/327-0310

Kortek BBoard (415) 327-4869

Or, send a check or major credit card number, including $5 for postage and handling, CA residents add 7% sales tax.

Kortek® is a registered trademark of Digital Communication Associates Inc. Kortek Inc. has no affiliation with and no relationship with Digital Communication Associates Inc.
PROPOSAL

After researching all our options, I can confidently recommend a software product by SoftCraft, Inc. The product is called Fancy Font and it would meet all our typesetting needs. Fancy Font is cost effective and is compatible with all our laser and dot matrix printers, as well as any of our installed word processors.

Fancy Font can meet the needs of the following departments:

- **Graphical Design**
 - Use fancy fonts for creating visual graphics, presentations, and advertisements. SoftCraft offers special service to digitize logos and symbols to meet departmental needs.

- **Technical Documents**
 - Fancy Font will save time and money in the production of our manuals and technical documents that require several sized chapters, titles, and section headings. The kerning option creates ligatures for most published documents.

- **Manufacturing Labels**
 - With Fancy Font, we can design our own product labels. The SoftCraft font library even has a bar code font available for inventory control purposes.

- **Accounting Reports**
 - Fancy Font can produce columns of figures in small typefaces and can be used with Lotus spreadsheet and graphs. Perfect for doing annual financial reports.

- **Public Relations and Marketing**
 - Fancy Font can make all our promotional materials look more professional. It is a software package versatile enough to produce news releases, invitations, company newsletters, even last-minute sales presentations. All looking as though they had been done by a professional typesetter service.

RECOMMENDATION: Fancy Font can meet the special needs of virtually every department in the company. No special hardware or installation is required, so we can use it as soon as it arrives. Font would cut company costs by reducing printing and typesetting fees and bring in-house, several services that we now send out. I recommend that we purchase Fancy Font immediately.

Send us your logo or signature for digitization.

Fancy Font

- Gives you the utmost in document versatility by allowing you to mix a variety of font styles and sizes in either portrait or landscape mode with your printer's native fonts.
- If you have an inexpensive dot matrix printer, Fancy Font turns low-resolution print quality into stunning high-resolution, proportionally-spaced text rivaling laser printer output.
- If you have a laser printer, Fancy Font turns it into an economical desktop publishing system. Fancy Font prints with a wide variety of typestyles and sizes normally available only from expensive typesetting services.

Fancy Font runs on all IBM PC's and compatibles and works with word processors, spreadsheet and database programs.

SoftCraft, Inc. offers a wide variety of personal typesetting software and fonts. Call our toll-free number for information on these and other products:

- **Fancy Font** $180
- **Fancy Word** $140
- **Laser Fonts** $180
- **SoftCraft Font Editor** $290
- **Business Font Pack** $90
- **Font disks** $15 each

Now with graphics!
Features

A Programmer's Introduction to OS/2 .. 101
by Ray Duncan

The New Generation: A Closer Look .. 110
by Richard Grehan

Ciarcia's Circuit Cellar: Build the Circuit Cellar AT Computer, Part 1 115
by Steve Ciarcia

Programming Project: Crafting Reusable Software in Modula-2 123
by Hanna Oktaba and René Berber

Programming Insight: Teaching Old Screens New Tricks 129
by Michael J. Sorens

Constructing an Associative Memory .. 137
by Bart Kosko

Karmarkar's Algorithm .. 146
by Andrew M. Rockett and John C. Stevenson
The Diconix 150. Take it or leave it.

The world’s most portable printer performs as well on your desktop as it does when you’re on the road. The small footprint reduces desktop clutter, while it enlarges a small budget.
A Programmer's Introduction to OS/2

Writing your first OS/2 application

OS/2 is Microsoft's multitasking, virtual-memory, single-user operating system for personal computers based on the Intel 80286 and 80386 microprocessors. Various releases have appeared during the last two years as DOS 5, NewDOS, Advanced DOS, ADOS, and NewDOS. OS/2 is the first software product born of the Microsoft/IBM joint development agreement of 1985.

OS/2 falls between Microsoft's MS-DOS single-tasking operating system and the Xenix multituser, multitasking operating system. Although it is compatible with MS-DOS file systems and can run many existing MS-DOS applications, and although it has a hierarchical directory structure, I/O redirection, and some interprocess communication mechanisms similar to Xenix, it is neither an overblown MS-DOS nor a stripped-down Xenix. It is a completely new operating system designed to support high-performance, intensely interactive, "personal-productivity," and networking applications in a business environment.

The retail version of the basic OS/2 operating system will not reach users until early 1988, and the graphic user-interface layer (the protected-mode Windows/Presentation Manager) will arrive even later. However, to help programmers get familiar with the new system as quickly as possible and encourage the early porting of existing applications to the new protected-mode environment, both Microsoft and IBM are directing earnest efforts at the software-development community. Both companies have announced an aggressive schedule of seminars for developers throughout the summer of 1987, and both have shipped software-development kits containing prerelease versions of the operating system and programming tools.

This article is the first in a series of three that will look at how to write programs to run under OS/2. The other articles will appear next month and in the Fall 1987 Inside the IBM PCs issue.

Key Features of OS/2

MS-DOS runs the 80286 processor in real mode, which is essentially an 8086-emulation mode. Even though the benefits of the 80286's higher clock rates and more efficient instruction set were not insignificant, both programmers and users found the persistence of the real mode's 1-megabyte-addressing limitation frustrating. OS/2 runs the 80286 in its preferred protected mode, with a physical address space of 16 megabytes and a virtual address space of 1 gigabyte. This use of protected mode has important implications for the structure of the operating system itself and for the design and operation of applications programs. (You can find a more detailed introduction to protected mode in Ross Nelson's article "A Protected-Mode Program for the PC AT" in the Fall 1986 Inside the IBM PCs, or in Intel's iAPX286 Operating System Writer's Guide.)

From the programmer's point of view, the key features of software development under OS/2 are a new application program interface (API), preemptive multitasking, interprocess-communication facilities, memory protection and virtual memory, dynamic linking, and compatibility with MS-DOS.

Application Program Interface

The OS/2 kernel provides about 200 services for applications programs executing under its control. Collectively they are referred to as the OS/2 API. You invoke all these services with far calls that are resolved at load time (see Dynamic Linking on page 104). Parameters—a mixture of values and addresses of values or structures—are pushed onto the stack prior to the call. A status code is returned in register AX: 0 if the function succeeded, or an error code if the function failed. Other returned values are placed in variables or arrays whose addresses were passed in the original call.

The OS/2 API functions fall into four major categories. DOSxxx calls are general services, including file and record I/O, device monitors, dynamic linking, multitasking, interprocess communication, memory management, timers, and internationalization support. VIOxxx calls display characters or strings with or without associated attributes, read back characters (and optionally, their attributes) from the display buffer, read or set cursor position and type, scroll up/down/left/right, set or get video mode, and put up or take down the pop-up window. KBDxxx calls are for keyboard status and input. MOUxxx calls read pointing-device position, status, and state of buttons; they also hide or reveal the pointer or set its shape.

A small subset of the above calls, known as the family API, has direct equivalents in MS-DOS function calls. OS/2 programs that restrict themselves to using the family API can be linked and bound in a special manner that lets them run in three environments: MS-DOS 2.x/3.x, the DOS 3.x compatibility box of OS/2, or protected mode under OS/2. Such programs are called family

Ray Duncan is author of Advanced MS-DOS: Microsoft's Guide for Assembly Language and C Programmers, Microsoft Press, 1986. He can be reached at P.O. Box 10430, Marina del Rey, CA 90295.
The user's interface to OS/2's multitasking capabilities is simple.

apps or bound apps; the programming tools in the software-development kits are supplied in this form. (For more information on building family apps, see "Microsoft's New DOS," by Eva White and Richard Grehan in the June BYTE.)

The Windows/Presentation Manager offers applications programs another 500 or so functions that create, destroy, and control the appearance and size of windows, perform device-independent graphic output, put up and take down the pull-down menus, load resources, and so on. I'll ignore these for the present, except to note that when Windows/Presentation Manager is present, it replaces the system's default VIO and KBD routines with new services that let a well-behaved text application run in a window without its knowledge.

An interesting feature of the new OS/2 API is that it is equally efficient to call it from either a high-level language or from assembly language. Consider the function DOS_SLEEP (probably the simplest useful function in the OS/2 API), which is called with a double-word value in milliseconds and suspends the caller's execution for the specified interval. The assembly-language form of the function call is

```
EXTERN DOS_SLEEP: FAR
.
.
push 0 ; push double value
1000
.
push 1000 ; to sleep for 1 second
.
call DOS_SLEEP ; transfer to OS/2
or ax,ax ; did call succeed?
.
jnz error ; jump if call
failed
```

To call an OS/2 API function from a C program, you simply declare it as far Pascal (i.e., parameters pushed left to right, the called routine clears the stack) and then invoke it directly:

```
EXTERN unsigned far pascal
DOS_SLEEP(unsigned long);
.
status=DOS_SLEEP(1000L);
```

The OS/2 C compiler generates the right code for the call automatically.

There is no execution time or space penalty, there is no need for intermediate library functions to shift parameters around or pop them into registers before transferring to the operating system, and the source code is far more compact and readable than its assembly language counterpart.

Although the OS/2 API is a considerable architectural change from the familiar INT 21h of MS-DOS, it offers many significant advantages. The API lets OS/2 take full advantage of the 80286's ability to automatically copy parameters from the caller's stack to the receiving routine's stack. The API also enforces the separation between kernel and user- privilege levels by protected-mode call gates. The API might make subsequent conversion of applications for a true 32-bit OS/2 almost trivial, and it raises the possibility that the entire operating system and its applications could someday be ported to a processor with a non-Intel architecture, such as the Motorola 68020.

Preemptive Multitasking

Preemptive multitasking refers to the operating system's ability to allocate processor time between multiple tasks in a manner that is invisible to those programs. It is sometimes called time-slicing. A hardware interrupt, called the timer tick, which is generated by a programmable timer chip, lets the operating system regain control at predetermined intervals.

After updating the current date and time, control is transferred to a scheduler that maintains a list of the active tasks and their state. If the scheduler determines that the currently executing program has exhausted its time slice or that another program with a higher priority is ready to execute, the scheduler suspends (preempts) the current program and gives control to another program.

The user's interface to OS/2's multitasking capabilities is simple and easy to understand. A special supervisory program, called the session manager, lets you start up one or more copies of the system's command processor (CMD.EXE, the protected-mode counterpart of MS-DOS'S COMMAND.COM). Each command processor and the programs that users launch from it are collectively termed a screen group and own a virtual screen buffer that receives all the output from the programs in that group. Users can cycle from one screen group to another with the aid of the session manager's hot key; when a screen group is brought to the foreground, its virtual screen buffer is mapped to the physical screen, and the programs in that group acquire control of the keyboard.

The programmer's view of multitasking under OS/2 is somewhat more complex and involves three types of system objects: screen groups, processes, and threads. Each screen group contains one or more active processes, and each process contains one or more active threads. The simplest case of a process is conceptually similar to a program loaded under MS-DOS: The process is initiated when the operating system allocates some memory, loads the necessary code and data from a disk file, and gives it control at an entry point specified in the file. Subsequently, the process can obtain and release other resources (such as access to disk files and additional memory), perform input or output, and spawn other processes by calls to the operating system. A process's membership in a screen group depends strictly on the membership of its "parent" process; similarly, any "child" processes that it creates will belong to the same screen group.

The OS/2 concept of threads is rather novel. A thread is a point of execution within a process and is associated with a stack, general register contents, and a state (i.e., waiting for some event, ready to execute, or executing).

Each process has exactly one thread when it is created, whose initial execution point is the entry point of that process. But that thread can create additional threads that then run asynchronously from the first and share ownership of all the processes' resources and "near data segments" (DGROUP).

Threads within a process can dynamically suspend, reactivate, and vary the priorities of one another and can perform input and output autonomously: Any necessary serialization of I/O is done within OS/2. Communication between threads is fast, since it is typically performed through shared data structures and does not need to involve operating system calls.

Interprocess Communication

OS/2 supports all the major methods of interprocess communication found in other multitasking operating systems. RAM semaphores are used for local signaling or resource synchronization between multiple threads in the same process. System semaphores that are called global objects can be used for signaling or resource synchronization between processes. Pipes, as in Unix, allow high-performance transfer of variable-length messages between closely related processes (usually a parent and its child processes).

Shared memory, named global memory segments, can be accessed by two or
YOUR PC WANTS YOU
TO GIVE IT THE SAME ADVANTAGE
YOU GIVE YOUR TAPE DECK
AND VCR.

It's only fair. Not to mention logical. PCs want to perform as well as all your other sophisticated electronic equipment. If you're like millions of informed people throughout the world, you rely on the ultimate in audio and video recording performance. You rely on TDK.

Well, you should also rely on TDK when it comes to your computer. TDK's Floppy Disks provide the same consistently high performance. The same level of absolute quality. Which is understandable since all TDK products share an unparalleled level of technical superiority that spans over 50 years.

In fact, TDK is the world's largest manufacturer of magnetic media.

What's more, they're also a major producer of electronic component parts, including the most sophisticated heads for disk drives. What a strategic advantage! With vital "inside" information like that, it's no wonder their disks provide error-free performance.

So, if you want to put a smile on your computer's face, choose from TDK's family of 5.25-inch standard, 5.25-inch High Density and 3.5-inch No-Risk™ Disks. It's to you and your PC's advantage.
more processes. Queues named global objects have several features: You can order messages in the queue by FIFO (first in/first out), LIFO (last in/last out), or priority, the queue can grow to almost any size, and many processes can write messages to the queue, but only the queue creator can remove them. Event flags, similar to those in Unix, are used to communicate between related processes and can simulate a software interrupt.

Memory Protection and Virtual Memory

All the processors in the Intel 8086 family generate memory addresses by combining the contents of a segment register (which you can think of as a base pointer) with an absolute or relative offset. On the 8086 or the 80286 in real mode, the value in a segment register is simply a paragraph address (a 20-bit physical address divided by 16). In protected mode, an additional level of addressing indirection is added. The value in a segment register is a selector, which is an index to an entry in a descriptor table that contains the base address and length of a memory segment, segment attributes (executable, read-only, or read/write), and privilege information. Each time a program makes a memory reference, the hardware accesses the descriptor table to generate the physical address and simultaneously checks to make sure that the memory access is valid.

Protected-mode addressing completely isolates tasks from one another. The descriptor tables themselves are not accessible by applications programs; only the operating system can manipulate them. If a program attempts to read or write a memory area that does not belong to it or calls an operating system routine to which it has not been given access, a hardware interrupt is generated that lets the operating system terminate the errant program.

The combination of preemptive multitasking and memory protection contributes to a robust environment: There is little opportunity in protected mode for an ill-behaved program to bring the entire system down by going into a loop or writing on code or data owned by another program.

The flip side of the memory-protection coin is virtual memory. OS/2 can manage up to 16 megabytes of physical memory, but the amount of installed RAM is nearly irrelevant to the average applications program running in protected mode.

When the sum of the memory owned by active programs in the system exceeds the amount of physical memory, memory segments are rolled in and out from a swap file as needed (or just discarded and reloaded in the case of code or read-only data segments). This segment-swapping is accomplished by a module of OS/2 known as the memory manager, with the aid of the processor's hardware memory-protection mechanisms, and the process is completely invisible to applications programs. The theoretical limit on the amount of memory a program can own or share is around half a gigabyte, but the practical limit is the amount of physical RAM plus the swapping space available on the hard disk.

Dynamic Linking

The 80286's support for protected virtual memory makes it possible to place frequently used procedures, including most of the OS/2 and graphic user-interface services available to applications programs, into special files known as dynamic link (dynalink) libraries. The routines in these libraries can be shared by all the programs that require them and are not loaded from disk into physical memory until they are needed. Placing common procedures in dynalink libraries lets you alter, improve, or replace those routines without any change to the applications programs that invoke them.

The calls from a program to the routines in a dynalink library are resolved in two stages. The linker is informed that a particular external name is a dynalink routine by either an Import statement in the program's module-definition file or by finding a special "stub" record in an object-module library. It then builds the information necessary for deferred linking into the program's .EXE-file header: the names of the dynalink routines that are needed, the modules in which they will be found, and a list for each routine of all the addresses within the program where it is called. When you load the program for execution, the list of imported routines is examined, any external routines that are not already resident in memory are fetched from the disk, and the addresses within the calling program are fixed up appropriately. You can think of this as late binding.

Compatibility with MS-DOS

OS/2 provides upward compatibility and a smooth transition from MS-DOS at three levels: the user interface, the file system, and the DOS 3.x compatibility box.

The command-line interface of OS/2 version 1.0 is identical to that of MS-DOS, with the exception of a few new or enhanced commands, batch-file directives, and CONFIG.SYS file options. The session manager, which is triggered by a hot key and lets the user move from one screen group and command processes to another, is self-explanatory, and its use becomes natural very quickly. Adaptation to the Windows/PM, when it arrives, will also be easy: Its methods of operation and pull-down menus are quite similar to that of Microsoft Windows except that it uses overlapping rather than tiled windows, and you launch programs from a list of long, descriptive names rather than double-clicking on a filename in a disk-directory listing.

The file structure for both flexible and fixed disks—that is, the layout of the partition table, directories, file-allocation tables, and the files area—is exactly the same for the initial release of OS/2 as for MS-DOS. This means that you won't be escaping the 32-megabyte volume limit or the 8-character filename limit for some time yet. However, it does let developers exchange files and move back and forth between the two environments with a minimum of difficulty. OS/2's provisions for mountable file systems portend release from some of the historical MS-DOS limitations.

The DOS 3.x compatibility box is not a box at all, but a component of the OS/2 operating system that lets one "old" application designed for MS-DOS run at a time in the 80286's real mode alongside "new" protected-mode applications. Requests by the real-mode application for MS-DOS services are trapped by OS/2 and translated into API calls, switching back and forth between real mode and protected mode as necessary to perform I/O and other services. The user can determine how much memory will be allocated to the DOS 3.x box by an entry in the CONFIG.SYS file or disable it completely.

One disadvantage of the DOS 3.x box is that it makes the system vulnerable as a whole. Ill-behaved MS-DOS programs that manipulate the hardware directly or take over interrupt vectors can cause problems or even a hard crash—this is unfortunately the trade-off for being able to use the old programs at all.

A Simple OS/2 Application

An OS/2 application is built from two basic elements: source files that can be compiled or assembled into relocatable object modules and a module-definition file that describes the program's segment behavior (see figure 1). In a traditionally trivial program that displays the message "Hello World!", the file HELLO.ASM contains the assembly language source code for the program (see listing 1). It looks similar to an equivalent MS-DOS program, with a few exceptions.

The directive .286c permits the as-
C for yourself

Get off to a fast start with MIX C. Our comprehensive book and nimble C compiler will have you programming in C before you know it.

Our book is your teacher. You’ll start right away, compiling and executing C programs. The tutorial takes you step by step through the C language. You’ll learn by example with a book that’s chock-full of sample programs. And the programs aren’t just stuff. They teach you the important C concepts. An amortization program teaches you how to use pointers to functions. A data base program teaches you how to manage memory dynamically. It’s the best hands on training available.

You’ll love working with our C compiler. It’s half as large and twice as fast as other C compilers. In fact, it’s the only full featured C compiler that can be operated comfortably on floppy disks. And as you would expect, MIX C is easy to use. It produces a complete program listing with compile errors clearly identified and explained. If you’ve been frustrated by other C compilers, don’t throw in the towel until you’ve tried ours. There’s a big difference.

Although it’s small, MIX C is not a subset. MIX C supports the full K&R standard, including the extensions that are often omitted in other C compilers. MIX C comes complete with a comprehensive book, a standard library of more than 175 functions, a blazingly fast linker, and tools for optimizing your programs for minimal space or maximum speed. All of this is yours for the incredibly low price of $19.95. That’s little more than the cost of most C books alone. So don’t be left behind. Order your copy today and find out why everyone is switching to C.

TO ORDER CALL TOLL FREE: 1-800-523-9520
For technical support and for orders inside Texas please call (214) 783-6000. Or contact one of our Distributors in Canada: Saragay 1-800-387-1288 • France: Info/Tech 1-43-44-06-48 • Australia: Techline 947-380-294 • Switzerland: DMB Communication CH-9-923-31817 • England: Analytical 0703-352099
System Requirements: MSDOS/PC-DOS 2.0 or higher; 256K Memory; 1 Disk Drive or CP/M 2.2 or higher (286); 512K Memory; 1 Disk Drive (2 recommended)
(Ctrace is not available for CP/M)

CTRACE DEBUGGER $19.95
SPLIT-SCREEN EDITOR $19.95
ASM UTILITY $10.00

CTRACE DEBUGGER $19.95

The perfect companion for MIX C is our exciting new C source debugger. Ctrace is unlike any debugger you’ve ever seen. It brings your programs to life on the screen. You’ll see your variable values changing as you watch your C source code executing. The animated trace shows you the flow of execution, statement by statement. It’s like watching the bouncing ball as the cursor dances over your C program.

Ctrace is very simple to operate. Commands are executed with a single keystroke. Pop up menus list the command options. Pop up messages tell you when something important happens. There are 6 windows of information: source, output, variables, watch, memory, and symbols. You can view as many as 8 windows at once. The function keys make it easy to quickly choose among 8 different views.

The combination of Ctrace with MIX C makes C programming a real joy. MIX C provides the power of a compiler while Ctrace provides an execution environment that’s more elegant than an interpreter.

SPLIT-SCREEN EDITOR $19.95

Another great companion to the MIX C compiler is our split-screen editor. It makes writing programs even faster and easier. With the MIX Editor, you can compile, link, and execute your program at the touch of a key. Compiling is fast because the MIX C compiler reads the program directly from memory. Correcting errors is easy because the editor automatically positions the cursor to the first error in the program. The editor is similar to Micropro’s WordStar but with additional programming features like split-screen, macros, and much more. Use it for all your programming needs.

ASM UTILITY $10.00

Our ASM utility is available if you want to link assembly language functions to your C programs. It works with Microsoft’s MASM or MB0 assemblers. Call assembly language functions just like C functions. Call C functions from assembly language. Lots of useful assembly language functions are included as examples.

The MIX C Works Only $39.90

Product Price Total
Ctrace (.19.95) $
C Compiler (.19.95) $
ASM Utility (.10.00) $
Split- Screen Editor (.19.95) $
The MIX C Works ($39.90) (.includes all of above) $

30 Day Money Back Guarantee
Not Copy Protected
Please check method of payment
__ Check ___ Money Order ___ MC/ VISA
Card # ____________________________
Expiration Date ________________
Please give name of computer
Please check operating system
MS/DOS/PC-DOS ___ CP/M
Please check disk size
5 1/4" ___ 3 1/2" ___ 8"
Please check disk format if CP/M
___ 8 SSD ___ 16 SSD ___ DSD
Your name _______________________
Street __________________________
City ____________________________
State _________ Zip _____________
Telephone _________________________
Country _________________________
assembly of 80286 nonprivileged instructions that are not present in the 8086 instruction set. The handiest of these is the "push immediate" instruction, which saves time and space when you set up parameters for an OS/2 API call.

References to OS/2 API entry points are accomplished with EXTRN directives, assigning a far attribute to the external name. The assembler does not know anything about the nature of the procedure represented by the external name, but only that it has to generate an intersegment call to reach it and that the final address will be fixed up later.

The declaration of DGROUP with the group directive is mandatory. This is a "magic" name that specifies the application's automatic data segment, which also contains the default stack and heap. The _TEXT and _DATA segment names are simply conventions used by the Microsoft high-level language compilers. Unlike MS-DOS, OS/2 automatically initializes the DS register to point to DGROUP before it transfers control to the program's entry point (the other conditions at entry to a protected-mode application are summarized in figure 2). This is also reflected in the Assume directive that follows the segment declaration of _TEXT.

The remainder of the HELLO.ASM file contains nothing unexpected. Two calls to OS/2 services are demonstrated: DOSWRITE performs a synchronous write to a file or a device, and DOSEXIT terminates the application with a return code. DOSWRITE is the counterpart to MS-DOS's INT 21h function 40h, and DOSEXIT is comparable to MS-DOS's INT 21h function 4Ch. The last line in the source file is an end directive that defines the program's entry point in the usual manner.

The file HELLO.DEF (see figure 3) is the module-definition file for the program. It demonstrates only a few of the possible commands and options that can be used in this file. The name directive states that this is an executable program rather than a dynamic-link library (whose .DEF file would contain LIBRARY instead).

Protmode signifies that the program will run in protected mode, while the lines beginning with code and data declare a few of the many possible segment attributes. The stack size for the program's initial thread of execution is defined by the stack directive; if this were a C program, an additional heapsize command would specify the initial size of the program's local heap.

Building the Application
To build the final executable program, you first translate the file HELLO.ASM...
to the relocatable object module HELLO.OBJ:

[C: \ OS2 \ SOURCE \ HELLO]
MASM <Enter>

IBM Personal Computer MACRO
Assembler Version 3.00
(C) Copyright IBM Corp 1981, 1984, 1987

Source filename [.ASM]:
HELLO< Enter>
Object filename [HELLO.OBJ]:
<Enter>
Source listing [NUL.LST]:
<Enter>
Cross-reference [NUL.CRF]:
<Enter>
5506 Bytes symbol space free

0 Warning Errors
0 Severe Errors

The Microsoft segmented executable linker—the new linker supplied in the
OS/2 software-development kit—combines the object module HELLO.OBJ
with the module-definition file (HELLO.DEF), a library that contains
special stub records for the OS/2 API dynamic links (DOSCALLS.LIB) and any
applicable run-time libraries (none in this case) to create the protected-mode exe-
cutable file HELLO.EXE:

[C: \ OS2 \ SOURCE \ HELLO] LINK
<Enter>

Microsoft (R) Segmented-
Executable Linker Version
5.00.21
Copyright (C) Microsoft Corp
1984, 1985, 1986. All rights
reserved.

Object Modules [.OBJ]: HELLO
<Enter>
Run File [HELLO.EXE]: <Enter>
List File [NUL.MAP]: <Enter>
Libraries [.LIB]: DOSCALLS
<Enter>
Definitions File [NUL.DEF]:
HELLO< Enter>

You can also supply the assembler and
linker with their parameters via the com-
mand-line or response files, or automate
the process by means of a make file and
the MAKE.EXE utility (see figure 4).

The output of the segmented execut-
able linker is an .EXE file with the same
structure as the .EXE files used in real-
mode Windows—the so-called New .EXE
continued

Listing 1: The source file HELLO.ASM for the sample application HELLO.EXE.

name hello
page 55,132
.title HELLO --- print Hello on terminal

;.286c

; HELLO.EXE utility, demonstrating a simple assembly-language program for
; Microsoft OS/2.

; (C) 1986 Ray Duncan

; stdin equ 0 ; handle for standard input
; stdout equ 1 ; handle for standard output
; stderr equ 2 ; handle for standard error
extern DOSWRITE: far
extern DOSEXIT: far

DGROUP group __DATA

__DATA segment word public 'DATA'

msg db Odh,Oah,"Hello Protected-Mode World!",Odh,Oah

msg_len equ $-msg

wlen dw ; receives number of bytes written

__DATA ends

__TEXT segment byte public 'CODE'

assume cs:__TEXT,ds:DGROUP

print proc far

push stdout ; file handle for standard output
push ds ; long address of write buffer
push offset DGROUP: msg
push msg_len ; size of write buffer
push ds ; variable receives bytes written
push offset DGROUP:wlen

call DOSWRITE ; transfer to OS/2
or ax, ax ; test returned status
jnz error ; jump
if write failed

push 1 ; terminate all threads
push 0 ; return success code
call DOSEXIT ; exit program

error: push 1 ; terminate all threads
push 1 ; return error code
call DOSEXIT ; exit program

print endp

__TEXT ends

end print

hello.obj : hello.asm
masm hello,hello,hello;

hello.exe : hello.obj hello.def hello
link/map/line hello,,doscalls,hello

Figure 4: A make file for the sample application HELLO.EXE.
INTEGRATED SOFTWARE

- Word Processing
- Spreadsheet
- Database
- Graphics

The Incredible JACK2® from Pecan at the Incredible Introductory Price of $49.95* (regularly $100)

For the IBM PC and Compatables Under DOS

All it takes is one screen to do everything you've always wanted to do, at one time.

Word processing. Spreadsheet. Data base management. Charting. JACK2 is the first integrated software product to do them all, simultaneously, on a single screen. All without ever changing disks or exiting programs.

No need for windows. No need to close one file before you open another. All without having to learn a specialized computer language.

Easy to use. Easy to learn.

JACK2 is as easy as master as it is powerful to use. All commands are in English. All have the identical function throughout JACK2.

Integrated, the four applications of JACK2 offer unlimited potential as a business tool. Individually, they offer everything an expert could ask for:

- Word processing. Multiple columns of word processing text on the same page.
- Spreadsheets. Perform calculations in English, not with obscure formulas.
- Databases. Even the charting function was designed for convenience.
- Graphics. Change a single piece of information in any one of the four related functions and JACK2 will change all the others, simultaneously, instantly and interactively.

Fast. Powerful. Because it was developed using UCSD Pascal™

Inquiry 221

INTRODUCTION TO OS/2

format. The file has an elaborate header that contains the names of imported dynamic link routines and any attached resources and describes the locations, sizes, and attributes of the various segments within the file.

OS/2 uses the information in the header to allow for sharing of text segments between multiple instances of the same process, to discard and reload text (i.e., machine-code) segments and read-only data segments on demand, and to allocate the program's stack and heap, among other things.

Making a Family App

Since the HELLO.EXE file uses only the OS/2 functions DOSWRITE and DOSEXIT, both of which are members of the subset family API, it can be converted to a family app that runs in either the DOS 3.x compatibility box or in protected mode. To do this, you use the BIND.EXE utility and a special library named API-LIB as follows:

```
[C: \OS2\SOURCE\HELLO] BIND HELLO.EXE API.LIB <Enter>
```

The output of this process is a new HELLO.EXE file that can run in either real or protected mode on an 80286 machine. To truly generalize this program and obtain a HELLO.EXE file that could run on any 80x86-based machine under MS-DOS or OS/2, you would have to replace all 80286-specific instructions in the source code with equivalent sequences that would run on an 8086/88.

For example, you would need to replace the instruction

```
push msg_len
```

with

```
mov ax, msg_len
push ax
```

You can easily locate the 80286-specific instructions in a program by removing the .286c directive from the source file and reassembling it; each instruction that will not run on an 8086/88 processor will then be flagged as an error.

Coming Attractions

Next month, I will develop and discuss a more complex application that makes use of OS/2's sophisticated multitasking as well as its interprocess-communication services.

[Editor's note: This article is adapted from Ray Duncan's book, Advanced OS/2, to be published by Microsoft Press in January 1988.]
New FoxBASE+ 2.00

Blazing Speed
New Features
Easier to Use

Complete dBASE III PLUS Replacement...And Much More
Don't change your programs, databases, screens, or reports! FoxBASE+ makes your dBASE applications run like lightning without changing one line! You can still use the best parts of dBASE—great interactive features like EDIT and BROWSE plus the full power of the "dot-prompt." Use FoxBASE+ in exactly the same, familiar, user-friendly way you use dBASE.

30+ Major Enhancements
User-Defined Functions, screen save & restore, VALID clause in GET's, built-in "light-bar" menus, 10 new commands, 4 new functions, and much more.

Faster Than Fast
FoxBASE+ was already the fastest dBASE product in existence—but based on independent benchmarks, new FoxBASE+ 2.00 averages 73% faster. That's an average 3.2 times faster than Clipper. 4.3 times faster than QuickSilver, and 5.9 times faster than dBASE III PLUS.

80386 Version Available NOW
For ultimate speed now, FoxBASE+/386 runs about 50% faster than standard FoxBASE+ 2.00—over 10 times faster in some operations. It takes full advantage of protected mode and the giant memory capacity of the 80386 chip today...yet runs under standard MS-DOS.

Easier To Use
Don't worry about memory configuration or size. New FoxBASE+ 2.00 automatically optimizes memory usage as it runs. It requires less memory yet runs faster. And because FoxBASE+ is completely interactive, you don't have to waste hours compiling and linking your programs.

FoxBASE+ Is Economical
Best of all, single-user MS-DOS FoxBASE+ 2.00 costs just $395 and FoxBASE+/386 2.00 just $595. Multi-user versions are also available! And with our Royalty-Free RunTime you can distribute your FoxBASE+ applications freely and never pay another dime.

FoxBASE+ runs on the new IBM Personal System/2 and 3.5" diskettes are available at no additional cost.
So call (419) 874-0162 and ask for the details about FoxBASE+ 2.00 and our money-back guarantee. After all...

Nothing Runs Like a Fox.

FoxBASE, FoxBASE+, and FoxBASE+/386 are trademarks of Fox Software. dBASE III PLUS is a trademark of Ashton-Tate. Clipper is a trademark of Nantucket. QuickSilver is a trademark of WordTech Systems. Personal System/2 is a trademark of IBM.
* Using the suite of 48 comprehensive benchmarks published in Data Based Advisor, March 1987.
** Multi-User FoxBASE+ 2.00 for MS-DOS costs $595. Multi-User XENIX version available at $795.

Fox Software
27493 Holiday Lane, Perrysburg, Ohio 43551
(419) 874-0162
Telex: 659540 RE27
Refinement of our benchmarks reveals some surprises about the relative speeds of 80386- and 68020-based machines.

YTE started benchmarking the relative speeds of the new crop of 80386- and 68020-based machines within days of getting our hands on them. We presented the preliminary—and controversial—results in the July issue: The 80386-based machines were faster. We presented additional tests in the August issue, with much the same results.

However, our preliminary benchmark tests weren’t ideal (some, in fact, contained outright errors, which I’ll detail later). It’s no small task to produce reliable benchmarks for systems with new architectures, especially when fundamental software-development tools (such as compilers) are few or in very early release.

So for this month’s New Generation segment, I corrected problems in the original benchmarks and ran the improved code on the following lineup of machines: the Mac SE, the Mac SE with General Computer’s HyperCharger and Levco’s Prodigy, the Mac II, the Arete 1100 supermicro, the Definicon DSI-780, the IBM PC AT, the IBM PS/2 Model 80, the Kaypro 386, the ALR 386/2, and the Compaq 386.

You will find statistics for most of these entries in our July and August New Generation articles.

Levco’s Prodigy for the Mac SE is a 68020 with a 68881 math coprocessor, both of which run at 16 MHz. It includes 1 megabyte of RAM. The Definicon DSI-780 is a coprocessor board for the IBM PC XT or AT (we plugged our DSI-780 into an 8-MHz AT) with a 16.67-MHz 68020 and 68881 and 4 megabytes of RAM. Both the Kaypro 386 and the ALR 386/2 use a 16-MHz 80386, but the ALR can accept a 10-MHz 80287 while the Kaypro (for reasons described later) could not use a math coprocessor.

The July issue also contains source code listings for the benchmarks. Listings are also available on BIX and BYTEnet, and on disk. (Order the July 1987 listings disk for the original benchmarks and the September disk for the corrected versions. See the card following page 256. For BYTEnet listings, see page 4.)

Sort and Float

Our Quicksort benchmark (SORT.C) was unreliable; it produced a list that was only “sort of” sorted. The cure was to change the outer for loop in the quick() function to read:

```c
for (i=lo, j=hi, pivot=base[hi]; i<j;)
```

I’ve simply changed the initialization portion of `j=hi-1 to j=hi`. Recall that the Quicksort algorithm operates by dividing the array being sorted into pairs of partitions such that one partition contains all elements greater than or equal to a given number (the “pivot”), and the other contains all elements less than or equal to the pivot. These partition pairs are again subdivided, and the process continues until the number of elements in each partition is 1. This is where the old SORT.C bombed; since j had been initialized to $hi-1$, the termination expression $i\leq j$ would not allow the for loop to execute.

All the times you see reported in tables 1a and 1b for the Sort benchmark were generated by the corrected program.

Next, we learned that optimizing compilers had a field day with the Float benchmark: I ran the original Float through MetaWare’s 80386 HighC compiler and set its switches so I could view the 80386 assembly language that the compiler was generating. As it turned out, the compiler discovered that Float consisted of repetitious instructions and could be optimized if the results were kept in registers and simply moved into memory as required. The compiler resolved the last six multiply instructions into simple `MUL` instructions.

To get around this, I recoded Float so that the loop enclosed only a single multiply and a single divide, and I boosted the loop count to 70,000 to make up for the six pairs of assignment statements I had removed. I also borrowed a technique from the Dhrystone benchmark and added code to factor out the looping time (by timing an empty loop and subtracting this value from the total elapsed time). Consequently, the new version of Float should give a better picture of the time it takes a math coprocessor to execute floating-point multiplications and divisions.

Flotsam and Jetsam

Running these benchmarks on such a diverse array of hardware gave me a chance to uncover all kinds of interesting tidbits:

• MetaWare’s HighC compilers (I used two versions, one for generating 80286 code and one for generating 80386 code) provide a floating-point software switch that you can set to enable or disable the generation of in-line floating-point coprocessor code. They also come with two libraries: one that supports a math coprocessor, and one that performs floating-point operations using emulation code.

You would think that turning off the floating-point switch and linking with the emulation library would be enough to ensure that the .EXE file you were creating would ignore any floating-point unit (FPU) that might be present in the machine. Not so. There is an environment variable in MS-DOS called NO87, which you set according to whether or not you have a coprocessor on-board. The upshot is that even if you have created a program using the emulator library, when you run it on a machine with a coprocessor and the NO87 variable set to a null value (i.e., you have executed the DOS command SET NO87= , the program runs faster than if there was no coprocessor.

Clearly, the emulation library must be carrying coprocessor code with it, and the program brings this code into action if it finds an FPU. (Actually, this technique makes sense. It allows you to create code that runs on systems with or without FPs; and if a system has an FPU, it gets a boost.) This means that you have to be careful about setting the compiler flag and the NO87 variable when benchmarking. All the figures you see in table 1b for 80386 machines are from machines with an FPU (unless specified otherwise).

• To run the 80386 benchmarks, I executed the programs using Phar Lap’s
RUN386 protected-mode environment (this is the only way you can run programs created by the 80386 version of the HighC compiler—see Matt Trask’s review of 386ASMLINK 1.1e in the August BYTE). The latest version of RUN386 we had was 1.1e, and it simply locked up the Model 80. (The problem seemed to occur when RUN386 tried to load a benchmark program: The system would freeze and the hard disk access light would remain on.) When I reverted to an earlier version (1.1), it worked.

- The Kaypro 386 machine I tested had a socket for an 80387, but the machine refused to acknowledge an FPU when I plugged one in. The Kaypro uses Intel’s 80386 motherboard, and there have been reports that Intel’s board is incompatible with an 80387. Looks like there’s some substance to those reports.

- I carefully followed Levco’s instruction manual for installing the Prodigy board’s accompanying software, but the installation disk’s contents did not match what the manual led me to expect; specifically, a control desk-accessory file was missing the RAM disk initialization (again, as outlined in the manual) a bomb box appeared. I finally discovered how to set up the Levco software by reading the “Get Info” information associated with the files on the floppy.

Results

First of all, it’s easy to see that if your application is floating-point-intensive, then no matter which processor you choose, for heaven’s sake, get a math coprocessor. The cost of coprocessors is still a bit high (often as much as or more than the CPUs that run them—as of this writing, you’ll pay around $300 for an 8-MHz 80287 and $200 for a 12-MHz 68881). But if processing time is money, the coprocessor could easily pay for itself.

In the 68000/68020 arena, it’s Definicon’s DSI-780 that appears to win out. I say “appears” because the C compiler used with the Definicon board (Silicon Valley Software’s C compiler) is necessarily different from the one I used on the Macintoshes (Consulair) and the Arete (its C compiler comes with Unix). Therefore, it is difficult to tell how much of the Definicon’s advantage to attribute to the compiler. (Here’s an example of a similar case: I also compiled the benchmarks using Lightspeed C version 2.01 on the Mac SE with Prodigy installed. Light-speed C turned in figures that were 10 percent to 15 percent faster than Consulair’s 68020 compiler—except for the floating-point benchmarks, which makes sense once you discover that Lightspeed C does not recognize the 68881.)

If money’s no object and you’re out for raw power, a Compaq 386 with an 80387 installed is your best bet in 80386-land. The figures for the 80386 systems are probably more meaningful than those for the 680x0 machines, since I was able to run the same .EXE files on all the 80386 systems. (Of course, I couldn’t do this for the AT; even so, at least the compiler on the AT was from the same company as the 80386 compiler—MetaWare.)

Overall, it appears that—and I know I’ll catch a lot of flak for this—the 80386 machines outperform the 68020 machines. Of course, the reasons for this could well go beyond the possibility that one processor is simply faster than the other; I’m using different C compilers, the hardware is different, the software. I’ve used represents only a tiny subset of all the applications users can expect to run, and so on. But let’s look at some facts: The C compilers I used were the only shipping 68020 and 80386 compilers available at the time I ran these benchmarks (Manx’s Aztec C 68020 compiler might be shipping by the time this issue reaches press, as might Computer Innovations’ C86-80386 compiler—we’ll include these in future New Generation stories), so, for now, these are the compilers available to you for your development work. Also, it makes no sense to benchmark the processors independently of the systems that incorporate them: You don’t buy just a processor, you buy a complete system—and the systems I tested are the same ones you can buy. So what we’re looking at are the hardware and software configurations that the world has made available to you so far.

[Editor’s Note: The table in this article is a condensation of a vast array of benchmark figures that were compiled. For the complete set of figures—especially if you’re interested in floating-point performance without an FPU—see the Supermicro benchmark topic on BIX.]
3M data cartridge available in five
The makers of even the most popular PCs know it's insane to go to market without a reliable backup.

So they each sat through hundreds of blank and scrambled screens to see which backup system backed up best.

In the end, they each chose 3M data cartridge tape technology.

Why?

We've been covering computer and human errors almost longer than computers and humans have erred together.

Not only did we patent data cartridge technology, we've had 16 years to make it better. Through every technological breakthrough, we've proven to be the best way to back up data.

Just ask Apple. And NCR. And HP. And IBM. And COMPAQ.

Call (800) 423-3280 for a list of data cartridge drive manufacturers.
12 MHz SPEED!

For your PC, XT, AT or compatible.

FastCACHE-286™
The Fastest PC Accelerator!

FastCACHE-286 is the fastest half card accelerator ever built. It is also the first to have an on-board 8088 socket, built-in high-speed 80287 clock, and software controlled slow and fast 80286 modes. FastCACHE-286 accelerates the IBM PC, XT and compatibles. It can be purchased in either a 9 or 12 MHz version starting at $399 (9 MHz). The card combines the best features of our 286TurboCACHE™ (PC Magazine "Editor’s Choice") with the ability to run asynchronously. This frees it from the 7.2 MHz frequency barrier of synchronous cache cards and enables the board to run on dual-speed motherboards and PCs such as the Zenith 158 or the Leading Edge Model D! The board includes MicroWay's DCache software and is compatible with all PC software and EMS, EEMS, and EGA.

<table>
<thead>
<tr>
<th></th>
<th>Slow Regen (sec)</th>
<th>Shuttle Regen (sec)</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC</td>
<td>1.0</td>
<td>5.68</td>
<td></td>
</tr>
<tr>
<td>9 MHz FastCACHE-286</td>
<td>7.1</td>
<td>1.32</td>
<td>$399</td>
</tr>
<tr>
<td>12 MHz FastCACHE-286</td>
<td>10.3</td>
<td>.93</td>
<td>$599</td>
</tr>
</tbody>
</table>

*Times in parentheses are with an 8087 or 80287.

MICROWAY . . . Respected throughout the industry for high quality engineering, service and technical support. Dealer, VAR, university and corporate inquiries are welcome.

The World Leader in 8087 Support
P.O. Box 79, Kingston, Mass. 02364 USA (617) 746-7341
32 High St, Kingston-Upon-Thames, England, 01-541-5466
Part 1: AT Basics

Build the Circuit Cellar AT Computer

New chip technology lets Steve put an AT on a card

The personal computer industry can best be described as competitive and fast-moving. Hundreds of manufacturers around the world are turning out IBM PC, XT, and AT clones, as well as board products for those who wish to mix and match to build a desktop computer. Heavy competition forces these manufacturers to continually bring out higher performing products that are less expensive than their competitors' products. Talk about a dog-eat-dog business!

Ordinarily, given such market volatility, I would not stick my neck into the "clone wars," but I just couldn't pass up the opportunity to show some new technology that would one-up all these companies. The two-part project starting this month uses a set of four high-integration ZyMOS ICs that contain most of the peripheral chips needed to build an IBM PC AT. Using this advanced technology, I will present a faster, smaller, and more efficient 100 percent compatible AT CPU board called the CCAT (Circuit Cellar AT). With the addition of Award Software's AT BIOS, the CCAT and your imagination can configure an unbeatable (should I say uncloneable?) 80286 computer system.

Technology to the Rescue
The ZyMOS POACH (which stands for PC on a chip) set is really an ASIC (application-specific IC) set that was originally developed to show just how much could be integrated on one 230-pin chip (it contained 22,000 logic gates). Eventually, it was divided into more cost-effective 84-pin devices (see photo 1).

ZyMOS uses standard-cell CHMOS (complementary high-speed metal-oxide semiconductor) technology for its ASIC products. Some methods for developing ASICs are gate arrays, programmable logic arrays, and standard-cell technology, to name a few. Standard-cell technology produces chips that are highly integrated (they can squeeze 25,000 logic gates on a single device) but also very efficient in their use of silicon area.

Gate arrays are essentially a mass of predefined gates that are interconnected by the designer, but that most often leave a lot of unconnected gates and waste silicon. The standard-cell approach uses just the logic elements the designer requires. The result is higher densities of utilized gates requiring smaller die size. Less silicon means lower cost per device.

Standard cells are predefined logic units that correspond to commercially available devices like inverters, AND gates, flip-flops, and more complex parts (like the 82xxx peripheral chips used in the IBM PC AT).

A chip designer developing an IC first lays out a schematic, just as for any project. Such a schematic typically contains off-the-shelf components like 8254 counter-timers, 7474 flip-flops, 7408 AND gates, and 7432 OR gates. Next, the designer enters this schematic into a computer using specialized graphics software.

Photo 1: This section of the Circuit Cellar AT circuit board shows the POACH (PC on a chip) integrated circuits.

Steve Ciarcia (pronounced "see-ARE-see-ah") is an electronics engineer and computer consultant with experience in process control, digital design, nuclear instrumentation, and product development. The author of several books on electronics, he can be reached at P.O. Box 582, Glastonbury, CT 06033.
ware that generates a file called a net list (Circuit Cellar projects are currently done on Schema).

The net list defines which logic elements from a library of standard cells are needed and how those cells are interconnected. The net list is input to a logic simulator, which the designer uses to debug the design, and then fed to a program called a router. The router actually lays out the final chip, transistor by transistor. Sounds easy! It's not—it's just easier and faster with the computerized tools. Even so, it took seven months to develop the four-chip POACH set used in the CCAT.

Understanding the AT’s Design

Before we look closely at the POACH chips and the CCAT, we should get some understanding of the IBM PC AT motherboard’s design so we can better understand what it is that we are trying to improve. The AT is an Intel 80286 16-bit microprocessor design that can optionally support the 80287 math coprocessor for fast floating-point operations. It also uses an Intel 8742 microcontroller as a keyboard processor.

In addition to the processors, the AT uses 10 VLSI peripherals that work in

Figure 1: The block diagram of the internals of POACH1.
conjunction with the 80286 to perform functions like bus timing, interrupt control, and direct-memory-access operations. These devices integrate much necessary logic that a designer would ordinarily have to build up from primitive logic functions to get a design to perform properly. They are the building blocks that, with integrated microprocessors, have shrunk the computer's physical size and made prices affordable.

The peripherals in the AT include two 8259A programmable interrupt controllers, an 82284 clock generator and ready interface, an 82288 bus controller, a 6818 clock/calendar/RAM, two 8237A DMA controllers, a 74LS612 memory mapper, an 8284 clock generator, and an 8254 programmable interval timer.

The interrupt controllers sort out and prioritize interrupt requests to the microprocessor. Each interrupt controller can handle up to eight interrupts, but Controller-2 (CTRL2) interrupts are directed through CTRL1, which uses up one of CTRL1's interrupt lines. Interrupt requests (IRQ) are mapped as shown in Table 1. The 82288 and 82284 perform general system clocking, some decoding of 80286 control signals, and bus-control functions in the AT.

The 6818 contains the clock/calendar and 64 bytes of CMOS RAM. The clock function uses 14 bytes of the RAM to hold time and date data. The rest of the RAM holds the system's configuration information, like the type of floppy and hard disk drives and low- and high-memory bytes. The 6818 is kept alive when the machine is powered down with battery power and a continually running clock frequency.

The two 8237AAs provide seven DMA channels. DMA CTRL1 supports 8-bit data transfers between 8-bit I/O adapters and 8- or 16-bit system memory. Data transfers can occur throughout the 16-megabyte address space in 64K-byte blocks. DMA CTRL2 supports 16-bit data transfers between 16-bit I/O adapters and 16-bit memory and can perform data transfers in 128K-byte blocks throughout the full 16-megabyte address range. Since the DMA controllers generate only 16-bit addresses, the system uses the LS612 memory mapper to extend the addressing to 16 megabytes.

A 14.318-megahertz crystal drives the 8284 clock generator. The 14.318-MHz clock is routed directly to the expansion slots.

The 8254 programmable interval timer provides 16-bit counters on three independent channels. Channel 0 produces the system timer signal (18 ticks per second), channel 1 generates the dynamic RAM-refresh request, and the system uses channel 2 for the speaker's tone generator.

You should begin to see some of the characteristics of the AT emerging. It is a 16-bit interrupt-driven system with DMA capability for fast memory data transfers. The PC's speaker is still there to prompt you with those annoying beeps and to add some dimension to game playing. And we've added a real-time clock to keep track of time and date.

If we tack on 512K bytes of DRAM and a couple of ROMs to hold the BIOS, the system starts taking form. It would be great if we could stop here, with about 43 chips making up the system. But we have to glue all this together and provide a means for the processor to talk to memory and the outside world—so we have address and data buses.

The AT has a number of address and data buses, with many buffers, latches, and multiplexers separating the individual buses. In fact, it has five distinct buses: local, system, X, memory, and L address. (The first four have both address and data components.)

| Table 1: Request mapping for the interrupt controllers on the CCAT. |
|-------------------------|-------------------------|-------------------------|-------------------------|
| CTRL1 | CTRL2 |
| IRQ0 | Timer output 0 |
| IRQ1 | Keyboard (output buffer full) |
| IRQ2 | Interrupt from CTRL2 |
| IRQ8 | Clock/calendar/RAM |
| IRQ9 | Software redirected to INT 0AH (IRQ2) |
| IRQ10 | Reserved |
| IRQ11 | Reserved |
| IRQ12 | Reserved |
| IRQ13 | Coprocessor |
| IRQ14 | Fixed disk controller |
| IRQ15 | Reserved |
| IRQ3 | Serial port 2 |
| IRQ4 | Serial port 1 |
| IRQ5 | Parallel port 2 |
| IRQ6 | Disk controller |
| IRQ7 | Parallel port 1 |

Figure 2: A pin-out diagram for the POACH1 chip.
The local address and data buses are tied directly to the 80286 and 80287. Twenty-four address lines and 16 data lines form the heart of the AT. The address lines are latched by three LS573s that buffer the local address bus from the system address bus. Because the 80286 can do word and byte data transfers, and word transfers need not be aligned, the

AT data-bus interface has to differentiate between the high-bus byte and the low-bus byte. ("Aligned" refers to the fact that the word address is even, that is, A0 = 0).

If the system has to transfer a word over the bus to an odd address location, it requires two bus cycles—one to transfer the low byte and one to transfer the high byte (this is a nonaligned word transfer). The local data bus is separated from the system data bus by an LS245 buffer and an LS646, which not only buffers but also has a latch function.

The system address and data buses are the primary ones in the AT for both memory and I/O transfers, including the interface to the AT's expansion slots. The sys-

Figure 3: The block diagram of POACH2.
The X address bus is a 17-bit bus that you can think of as private to the motherboard. The system uses this bus to address ROM (where the BIOS is kept) and motherboard I/O, as well as to generate addresses for DMA- and RAM-refresh operations. It is separated from the system address bus by LS245s.

The X data bus interfaces to functions like DMA controllers, interrupt controllers, the keyboard processor, and the clock/calendar/RAM hardware. Although the system uses the X address bus to select ROM data, this data is fed to the processor via the memory data bus, not the X data bus.

The memory address and data buses apply to DRAM on the motherboard. The 9 address lines (MA0 through MA8) of the memory address bus are a multiplexed version of 18 system-address lines. The memory data bus is a 16-bit motherboard bus that interfaces both DRAM and ROM.

The L address bus, hangs like an appendage off the local address bus. It is an unlatched 7-bit (LA17 through LA23) address that is always available except when an I/O processor gains control of the system. The L address bus gives the AT a 16-megabyte address range.

Complicated? You bet! We've just added 83 ICs for buffering, additional logic, and glue to tie the system together. This brings the total IC count for a 512K-byte AT-compatible motherboard equivalent down to 23 IC packages and two SIMMs (single in-line memory modules).

Ultimately, our design is intended to be totally IBM compatible, with certain key advantages. Using the POACH chips, we can squeeze the whole motherboard into an AT expansion board with room to spare and build a system on a passive backplane. Since all the usual power-hungry ICs are now incorporated in the POACH devices (the four-chip set needs less than 100 milliamperes), we will also be able to construct a low-power AT.

Next Month

I'll complete this project with a full schematic and a detailed description of the Circuit Cellar AT computer.

The POACH set brings the total chip count for a 512K-byte AT compatible down to 23 IC packages and two SIMMs.

The CCAT was a joint venture, and I'd like to note the contributions and help from ZyMOS, Micromint Inc., Award Software Inc., and the Circuit Cellar research staff. In addition, I'd like to personally thank Bob Andrews, Jeff Bachiochi, and Jeff Remmers for their efforts.

Editor's Note: Steve often refers to previous Circuit Cellar articles. Most of these past articles are available in book form from BYTE Books, McGraw-Hill Book Company, P.O. Box 400, Hightstown, NJ 08230. Ciarcia's Circuit Cellar, Volume 1 covers...
What is a Best Western?

“My home office wherever I travel.”

The right place at the right price.

Make reservations at any Best Western, see your travel agent, or call toll-free 1-800-528-1234
Genius Begins With A Great Idea ...
We designed our V.32 modem on the premise that speed is useless without reliability.

At Codex, we understand that all the speed in the world won't get you anywhere if you can't depend on it. And that's why we developed our V.32 modem to give you 9600 bps full-duplex dial transmission, rivalling the reliability of a dedicated leased line.

Admittedly a pretty big claim.

But then, it's really what you'd expect from the recognized leader in high speed modems. In fact, more data communications professionals prefer Codex than any other brand. And it's our high speed modem expertise that has allowed us to make a modem that not only meets, but exceeds the V.32 standard.

Our V.32 modem uses the same VLSI technology and forward error correction scheme (Trellis Coded Modulation) as our high speed leased line modems that reliably transmit data up to 19,200 bps.

So, you can be sure of continuous high quality transmission over a wide range of line conditions. This now allows you to cut connect time and save money by sending data at up to 9600 bps full duplex over ordinary dial lines.

We've even added a proprietary long haul echo cancellation feature, eliminating both local and distant echoes that can plague dial networks. So even if the phone company sends your data over satellite links, it arrives intact.

Plus our V.32 modem includes a soft strap front panel, multiple ACUs, a nest card option for maximum space savings, and operates in synchronous or asynchronous applications.

To find out more about the Codex V.32 modem, call 1-800-426-1212, Ext. 235. Or write Codex Corporation, Dept. 707-35, 7 Blue Hill River Road, Canton, MA 02021-1097. You'll discover that when we tell you about a V.32 with high speed performance and reliability, we're not blowing smoke.
Programmers are constantly being called upon to produce more and more software, and their productivity continues to be an increasingly pressing problem. One way to boost programmers' productivity is to design reusable software—software that is standardized in some way so that the programmer can use it in a later situation instead of writing new but similar code. If you begin designing your programs in a way that produces small, reusable units of code, you will eventually build up a library of code modules that you can draw from to speed up the design and coding of new programs.

Unfortunately, software seems to resist efforts to make it more manageable. Sorting a set of strings, for example, is different enough from sorting a list of numbers that writing new code from scratch seems simpler than trying to adapt an existing routine. One way to make software reusable is to try to separate the algorithm from the data structures it uses. If you can do this, you need to design, code, and debug the algorithm only once, adding only a few data-related routines to implement the algorithm in a new context.

In the case of a sorting routine, you would try to design it so that it takes as parameters an array of objects to be sorted and a procedure that defines which of two elements comes before the other. This is called parameterized programming because the elements that distinguish one occurrence of the routine are passed as parameters to it.

To support parameterized programming, a programming language needs to provide you with certain facilities. An article by Joseph Goguen (see reference 1) lists those facilities and explains how they are used. Such languages include Ada, with packages and generic packages; C, with the use of libraries; and Modula-2, with its modules and opaque-type declarations.

Modula-2 and Reusable Software
The programming language Modula-2 (see reference 2) has several constructs that support the crafting of reusable software. This language is readily available on many microcomputers, and for that reason we think it is important to promote its use for the design of reusable software.

In Modula-2, the basic concept of a module is, in an intuitive way, used to encapsulate pieces of software that make a logical unit in themselves—for example, an I/O package. There are several kinds of modules: program modules, local modules, and library modules. From here on, we will refer only to library modules.

Library modules are made out of two parts: a definition part and an implementation part. [Editor's note: Since these units of code begin with the phrases DEFINITION MODULE... and IMPLEMENTATION MODULE..., they too are called modules, but we will use the word "part" wherever possible to refer to these two parts that, together, completely define a library module.] The definition part contains a description of everything a module exports. This includes any constants or variables, the data types manipulated by the module, and the procedures that operate on them. A procedure description shows only its name, the name and type of its formal parameters, and, if it returns a value, the data type it returns.

The implementation part contains the implementation details (i.e., the actual code) of the procedures described in the definition part. It also contains auxiliary procedures, variables, module-initialization code, and anything not exported but needed for the implementation. Sometimes the definition part declares, but does not define, data types (which are called opaque types because client modules cannot "see" the implementation details). In such a case, the implementation part defines the opaque type, but the details of the data structure are restricted to the implementation part itself.

Several concepts of Modula-2 promote the design methodology of reusable software. The most important are:

• Separate compilation of modules. This permits the creation of module libraries, ready to be reused as many times as needed. Also, the structure of Modula-2 lets you change and recompile the implementation part of a module without recompiling its definition part or any other library modules that depend on it.

• Import lists. These allow modules to use portable procedures and data structures from other modules. This lets you use modules as building blocks in the construction of complex systems.

• Opaque types. When a module contains an opaque data type and all the proce-

Hanna Oktaha has a Ph.D. in mathematics from Warsaw University, Poland, and teaches computer science at the graduate level at the Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas de la Universidad Nacional Autónoma de México. Dr. Oktaha can be reached at IIMAS-UNAM, APDO Postal 20-726, Deleg. Alvaro Obregon, 01000 Mexico, D.F., Mexico. Rene Berber has a B.S. in chemical engineering from UIA, Mexico and is now working on his master's degree in computer science. He can be reached at Cádiz Norte 31, 03740 México, D.F., Mexico.
dures needed to manipulate it, client modules can manipulate variables of that data type without knowing how the data is represented internally. To create reusable software via parameterized modules, you define an opaque data type and then create a generic routine that passes as arguments the procedures that will tell the routine how to interact with the data type. (In the case of the sorting example, you would pass a procedure that would tell the generic sort routine how to judge which of two elements comes first.)

• Procedure types. Modula-2 allows variables to hold values of type "procedure," thus allowing procedures to be passed as argument variables into another procedure.

• Open arrays. A program can pass an open array by name into a procedure without knowing its size at compile time. (Pascal, for example, can't do this.) This capability increases Modula-2's flexibility in writing procedures to manipulate arbitrary arrays of data.

Design Methodology for Parameterized Modules
You can use the following steps to create a parameterized module. As with any programming methodology, this is not a fixed procedure to follow, but it includes the important points you should look out for, and, with some experience, you would use to create reusable software.

• Analyze the system you are designing to see if any of its parts might be useful in other systems. If this is so, you have found a reusable part.

• See if you can design the reusable part so that it can pass the data type and, if possible, the procedures that manipulate it as parameters. An example of this is a FIFO (first-in/first-out) queue handler in which the type of elements manipulated is a parameter to the module. In such a case, you can change the type of elements stored in the queue without altering the operations that store or take out elements.

• To build the reusable package, define two modules: one for the opaque definition of the new data type and the procedures that manipulate it, and another for the procedures that use the new data type opaquely to get the real work done. (Remember that each of these modules will have both definition and implementation parts.) The definition part of the second module needs only to import the opaque data type and the procedures associated with it.

• The opaque data type and its procedures are actually defined in the implementation part of the first module. This implementation either defines the data type (if you use it here only) or imports it from another module (if you make it available to other modules as well). In either case, you should actually implement the opaque data type visible outside the first module as a pointer to the data type that you need.

• Both parts of the second module, along with the definition part of the first module, can be compiled and stored in a library of reusable modules. When a similar application arises that needs the same operation performed on a different data type, then you can reuse these modules; you will need to rewrite only the implementation part of the first module (i.e., the opaque data type and its procedures).

An Example
To illustrate how to apply this method, let's analyze an example that follows all the steps just described.

Suppose you are designing a file system, and one of the operations your clients require is sorting file descriptors of disk directories alphabetically by filename. After some thought, you realize that the sort operation is general enough to apply to several situations; in particular, to finite sequences of any data type, as long as the data type has defined for it an ordering operation "<" and, this operation satisfies the properties of total order (see the comments of listing 1 for a definition of total order). From this, you decide that you can parameterize your sort operation using an arbitrary data type (let's call it ElemType) and a procedure called compare that implements the "<" function.

Now, to do the actual programming in Modula-2, you must first code the definition part of the module that describes the formal type parameter ElemType and the compare procedure. Let's call this module SortElemType; listing 1 shows its definition part. [Editor's note: Enhanced, ready-to-run versions of listings 2, 3, 5, 6a, and 6b are available under the names SORT.DEF, SORT.MOD, SORTTEST.MOD, SORTElem.DEF, and SORTElem.MOD on disk, in print, and on BIX; see the insert card following page 236 for details. These programs run under version 2.0 of Logitech's Modula-2. Listings are also available on BYTEnet; see page 4.]

The definition module of SortElemType provides an interface for a sort module, declaring ElemType as the data type to be manipulated. By making this an opaque type, you can isolate its actual definition to the implementation part of this module. ElemType is followed by the description of the compare procedure, which is a Boolean relation that gives the ordering over elements of type ElemType. Unfortunately, there are no tools in Modula-2 definition modules to express what a procedure does, so we have documented this in a comment statement.

Next, write the definition part of Sort, the module that gets the real work done using the data type ElemType (see listing 2). Note that this module imports both ElemType and compare and exports QuickSort, an implementation of the algorithm developed by C. A. R. Hoare. [Editor's note: Compilers that implement the most recent definition of Modula-2 as defined in reference 2 do not need to use EXPORT QUALIFIED statements in definition modules; if they are included, they are treated as comments.] The procedure's formal parameter is an open array, which makes it possible for it to sort arrays of different sizes.

Listing 3 is the implementation part of the Sort module; the implementation of QuickSort is adapted from Nicklaus Wirth's recursive implementation (see reference 3). All the QuickSort procedure does is define a local procedure, Sort, and then call it. Modula-2 uses the built-in function HIGH(A) to find the upper bound of the open array A. Just because the formal array argument A is indexed from 0 to HIGH(A) (open arrays must be indexed in this way), the actual array given to QuickSort is not restricted to that set of index limits.

The two definition parts and this implementation part in listings 1 through 3 comprise our reusable sort module. You can compile them (doing the definition modules first) and store them together for later use.

Now, getting back to the task of sorting the list of files alphabetically by name, you need to code the implementation part for the SortElemType module (see listing 4). In this module, you must either specify or import the actual data type needed and implement the compare procedure used to define the alphabetical ordering.

This implementation defines ElemType as a pointer to records of type FileDesc; if you don't import FileDesc from another module (as it is not here), then this module is the only part of the system that knows what constitutes the manipulated data.

Procedure compare expresses the "<" relation of descriptors, taking into account the alphabetical order of its field, name. The procedure StringComp, which properly belongs to a module that implements string operations, is an auxiliary function used to compare any two strings. In it, you see again the use of open arrays as formal parameters, conforming to the agreed-upon convention in Modula-2 of the data type "string" as an array of any number of characters with a lower index of zero.
Statistics prove that every week in every area of the country there are electrical power surges, spikes, brownouts and blackouts. Electrical power outages can destroy not only valuable data and processing time but can also cause irrevocable damage to your expensive computer hardware.

PowerVision the first truly affordable high quality sine wave SPS.

In addition to the PowerVision 300 watt system, 500 and 1000 watt units are available for larger computers. All three feature an immediate transfer. PowerVision provides blackout, brownout and transient protection.

PowerVision ultimately saving you time and money.

C-COR Electronics, maker of PowerVision, has extensive experience in power protection devices. Our PowerVision line is backed by a one year limited warranty.

PowerVision products are as close as your phone. Don’t be left unprotected any longer.

Listing 1: The definition part of the SortElemType module. This module defines the new opaque data type (ElemType) and the procedure that operates on it (compare).

DEFINITION MODULE SortElemType;

EXPORT QUALIFIED ElemType, compare;

TYPE ElemType; (*pointer to any data type*)
PROCEDURE compare (x, y: ElemType): BOOLEAN; (* compare(x,y) implements: x < y defined as NOT (y <= x), for ascending order; and if descending order is desired compare(x,y) should implement: x > y defined as NOT (x <= y); where "<=" denotes a binary relation that must satisfy the total order properties:
1. x <= x
2. x <= y AND y <= x => x = y
3. x <= y AND y <= z => x <= z
4. x <= y OR y <= z for every x, y *)

(* ... and other operations to manipulate the data *)
END SortElemType.

Listing 2: The definition part of the Sort module. This module defines the procedure that sorts an array of items of type ElemType.

DEFINITION MODULE Sort;

FROM SortElemType IMPORT ElemType, compare;

EXPORT QUALIFIED QuickSort;

PROCEDURE QuickSort (VAR A: ARRAY OF ElemType);
(*Input: an array A filled with data
Output: same array sorted.
Requires that ElemType has a total order relation named "compare".*)
END Sort.

Listing 3: The implementation part of the Sort module. This module implements the sorting procedure defined in listing 2.

IMPLEMENTATION MODULE Sort;

FROM SortElemType IMPORT ElemType, compare;

PROCEDURE QuickSort (VAR A: ARRAY OF ElemType);

PROCEDURE sort (l, r : INTEGER) ; (* N. Wirth, '86 *)
VAR i, j : INTEGER;
x, w : ElemType;
BEGIN
i := l; j := r;
x := A[(l+r) DIV 2];
REPEAT
WHILE compare(A[i],x) DO INC (i) END;
WHILE compare(x,A[j]) DO DEC (j) END;
IF i <= j
INC (i); DEC (j)
END
UNTIL l > j;
IF l < j THEN sort(l, j) END;
IF l < r THEN sort(l, r) END
END sort;
BEGIN
sort(0,HIGH(A))
END QuickSort;
END Sort.

Listing 4: The implementation part of the SortElemType module. This module, which is the only one that must be rewritten to handle a different kind of sort operation, gives the implementation details of the opaque data type ElemType and the compare procedure.

IMPLEMENTATION MODULE SortElemType;

(* FROM FileDescriptor IMPORT FileDescr;
(used instead of definition below when the data has already been defined) *)
CONST EOS = OC; (* end-of-string character *)
TYPE ElemType = POINTER TO FileDescr;
FileDescr = RECORD
name : ARRAY[0 .. 8] OF CHAR;
ext : ARRAY[0 .. J] OF CHAR;
size: ARRAY[0 .. 10] OF CHAR;
date: ARRAY[0 .. 8] OF CHAR;
time: ARRAY[0 .. 6] OF CHAR
END;
PROCEDURE compare (x, y : ElemType): BOOLEAN;
BEGIN
RETURN StringComp(x<.name, y<. name)
END compare;
PROCEDURE StringComp (sl, s2: ARRAY OF CHAR): BOOLEAN;
(* returns sl < s2 *)
VAR i, max: CARDINAL;
BEGIN
i : =0; max:=HIGH(sl);
WHILE (i <max) & (sl[i] = EOS) DO
IF sl[i] = EOS
THEN RETURN FALSE (* sl = s2 *)
ELSE INC(i)
END
END;
RETURN sl[i] < s2[i]
END StringComp;
END SortElemType.

Listing 5: The skeleton of a program used to test the generic sort module defined by listings 1 through 4.

MODULE SortTest;

FROM SortElemType IMPORT ElemType;
FROM Sort IMPORT QuickSort;
(*other imports here*)
CONST N = 100;
VAR a : ARRAY [1..N] OF ElemType;

END
Listing 6: Expanding the generic module to handle new situations. With redefined definition (a) and implementation (b) parts of the SortElemType module, the user of the final program can choose which of two fields to use in sorting the list of records. Note that this method still restricts the programmer to sorting a single given data type.

a

DEFINITION MODULE SortElemType;

EXPORT QUALIFIED ElemType, compare, select, optionMenu;

TYPE ElemType; (*as before*)

PROCEDURE compare (x, y: ElemType): BOOLEAN; (*as before*)

PROCEDURE select (option: CARDINAL); (*used by user to select desired comparison procedure, a default is provided until the user changes it*)

PROCEDURE optionMenu; (*displays on the screen the available options*)

END SortElemType.

b

IMPLEMENTATION MODULE SortElemType;

(* ... same type declarations *)

VAR comp: PROCEDURE (ElemType,ElemType): BOOLEAN;

PROCEDURE compare (x, y: ElemType): BOOLEAN; (*as before*)

BEGIN (*call the procedure currently*)

RETURN comp(x,y) (*assigned to "comp"*)

END compare;

PROCEDURE select (option: CARDINAL);

CASE option OF (*compare by:*)

1 : comp:= compName; (*file-names*)

2 : comp:= compExt (* extension *)

ELSE comp:= compName (* default*)

END

END Select;

PROCEDURE optionMenu;

BEGIN

WriteString("options:"); WriteLn;

WriteString(" 1 to sort by file-name"); WriteLn;

WriteString(" 2 to sort by extension"); WriteLn;

WriteString(" the default is 1, any other is taken as 1");

WriteLn; WriteLn

END optionMenu;

Listing 7: An unsafe method that allows a generic routine to work with different data types. Listings (a) and (b) sketch out the structure of the definition and implementation parts, respectively, of a new generic sort module called GSort. Listing (c) shows how a comparison routine handles the conversion of a pointer (i.e., an address) to the data it points to. This method is unsafe because a programmer may accidentally use the wrong comparison operation for a given data type, and the compiler will not know that an error has been made.

a

DEFINITION MODULE GSort;

FROM SYSTEM IMPORT ADDRESS;

EXPORT QUALIFIED QuickSort;

TYPE COMPROC = PROCEDURE (ADDRESS, ADDRESS): BOOLEAN;

PROCEDURE QuickSort (VAR A: ARRAY OF ADDRESS; compare: COMPROC);

END GSort.

b

IMPLEMENTATION MODULE GSort;

FROM SYSTEM IMPORT ADDRESS;

PROCEDURE QuickSort (VAR A: ARRAY OF ADDRESS; compare: COMPROC);

PROCEDURE sort (l, r: INTEGER); (*N. Wirth, '86*)

VAR w, x: ADDRESS;

(*the rest as before*)

END GSort.

c

PROCEDURE compName (x, y: ADDRESS): BOOLEAN;

VAR xt, yt : POINTER TO FileDescr;

BEGIN

xt:= x; (*convert (implicitly) ADDRESS to*)

RETURN StringComp(xt^.name,yt^.name) (*xt^.name gets the name field of the record pointed to by xt*)

END compName;
Pointers are handy to use, since the algorithm can move them easily.

After compiling listing 4, you are ready to use the Sort and SortElemType modules, which are now configured to sort a list of filenames alphabetically. Listing 5 shows the skeleton of a program that uses these modules to perform this sort. You should keep this program as a test of your sort library.

A More Versatile Implementation
At this point you may ask, “What happens if I want to sort both by name and by extension? I can’t have two different SortElemType implementations in the same program.”

Since you want to do several compare operations on the same data type, you can solve this problem by changing the SortElemType. You must change the implementation of compare so that it returns the proper value based on your choice of sort type (see listings 6a and 6b). You can do this in Modula-2 by declaring a variable of a procedure type; that is, a variable whose value is a Module-2 procedure.

In listing 6b, the variable compare represents any element of the class of functions that have two parameters of type ElemType and a return value of type BOOLEAN. You can assign any such procedure to the variable compare with the statement compare := procname.

This is, in fact, what the select procedure does; it lets you choose between the available procedures (shown, if necessary, by the optionMenu procedure). Notice that since compare is not exported in the definition part of this module (see listing 6a), it can only change value inside this implementation module and is safe from tampering by any other module. Another point is that you must initialize compare to some value, and you do this in the initialization part of the module (the last three lines of listing 6b).

In this example, we generalized a module to allow a program to sort its records on different fields. By introducing other procedure-type variables, you could provide other kinds of control, such as selecting one of several sorts to use, changing the order of sorting, or other such modifications.

This change in the SortElemType module does not affect the Sort module, and its access to the type and comparison procedure are the same as before. But you still have to recompile Sort because it imports a module whose definition part has been redefined (SortElemType).

Some people may criticize the use of the exported function compare as inefficient; after all, it does nothing but call comp, and you could save time by exporting comp and using it instead of compare. The reason for this particular way of coding is safety: By encapsulating comp, you can change it only inside this module. Exporting it, however, makes the program somewhat unsafe because you could conceivably change it from the outside.

The point here is that you have traded efficiency for safety, which Liskov and Guttag (see reference 4) say is sometimes necessary. When a module is intended to be used by anyone, they say, then you should opt for safety; if only you use it, then you can take chances and try to gain some efficiency. (We found the improvement to be less than 1 percent in running time, measured using sample runs with 100 file descriptors.)

Unsafe Generic Modules
The reusable packages that are built following the method just shown have a disadvantage that will surface if somebody wants to sort different data types in the same program—it can’t be done. This shortcoming arises from the fact that the implementation of the formal parameter module (the implementation part of SortElemType) is, at the same time, the actual parameter instantiation (the module in which ElemType is defined). Since there can be only one implementation of a module in a program, you are limited to one instantiation, or definition, of ElemType.

You can get around these restrictions by using the low-level facilities of Modula-2. In doing so, however, you will lose some of the protection against error that Modula-2 normally provides. Listings 7a and 7b show how to build a generic sort without using a formal parameter module like SortElemType.

In listings 7a and 7b, the array of pointers has been replaced by an array of type ADDRESS, the elements of which are compatible with any pointer type. Pointers are convenient to use, since the algorithm can move them easily.

The alternative of using actual data, probably structured, results in an expensive operation. You must move the data word by word. Notice that, in listing 7a, QuickSort now sorts an array of addresses instead of ElemTypes. Also, compare is now a procedure variable of type COMPROC (which is any procedure that takes two addresses for arguments and returns a Boolean value).

When you use this method, you must declare that all the arrays you will sort are arrays of elements of type ADDRESS. The specific comparison routine for a given array must then use implicit- or explicit-type transfer to access the actual data (which is pointed to by the array elements of type ADDRESS) and return the correct value. Listing 7c shows how you would rewrite compare to work within this scheme.

This generic module allows you to use any number of data types and their respective comparison procedures in the same program. The reason we call this implementation unsafe springs from the definition of compare, which is any procedure that receives two addresses and returns a Boolean value. If you mistakenly send an array with one type of data and a function that compares another kind of data, the compiler will not catch your error and the program may give wrong answers or even cause the system to crash. Nevertheless, if your program needs to sort more than one data type, this is an approach you can use—but carefully!

Benefits of Reusable Software
The methodology described in this article is only one of a number of ways to obtain reusable modules; see references 3 and 6 for other approaches. With these and other such methods, you gain two important things: productivity, by reducing the effort you spend programming, debugging, and testing those modules already coded as generic; and reliability, by building new software on existing modules that you know work properly.

These benefits make the work expended in designing the module this way well worth it.

REFERENCES
There's One Personal Computer Company That Always Has The Right Solutions
Board-level best. Do you recognize these boards? Look under the hood of your IBM® PC, XT or AT.* With sales of SixPakPlus®, Rampage® and Advantage™ multifunction boards exceeding 2 million, you can bet most IBM Personal Computers are enhanced by AST. Think of us every time you need more memory, more I/O, graphics or modems for your PCs, XTs, ATs, and yes, especially the new IBM Personal System/2®. AST enhancements contribute to a more productive overall office environment.

First in a series of system solutions. Waste no time trying to match components to create a complete system. You can purchase, plug in and operate AST's integrated workstation solutions in no time.

All of our products meet our strict guidelines for industry compatibility, but advanced architecture and innovative technology transform AST computing solutions into something more.

You get more performance
from the AST Premium/286™ AT-compatible personal computer, with its 10 MHz processing speed and true, zero wait-state operation. You get more extensive printer and plotter emulations and faster, high-quality output from the AST TurboLaser™. And more software and complete system compatibility from the first desktop publishing solution for the IBM world, the AST Premium Publisher™. **Compatible connectivity.**

Buy communications solutions today that you can continue to expand and use tomorrow. AST's complete line of micro-to-mini, micro-to-mainframe, gateway and local area networking solutions provide total compatibility with industry standards. Plus, a common, user-friendly interface throughout AST's communications products allows you to mix and match AST products in order to create a custom solution. So, if SNA, BISYNC, 5251, 3270, LU6.2 PU 2.1, Gateways, NetWare™, Token Ring Network, IEEE 802.3 and other communications specifications worry you, leave
the expertise to AST.

Our terminal emulation products lead the industry in providing unique, cost-saving ways for your PCs to be linked with minicomputers or mainframes. And our simple-to-install networks with advanced operating system features appeal to both first-time and sophisticated users.

Bridging the computer gap with DEC™ and Apple® enhancements. AST crosses industry boundaries to bring Apple and Digital Equipment Corporation (DEC) users the same experience and commitment to quality we give to the IBM world.

In addition to manufacturing industry-specific enhancements, AST offers products that bridge normally incompatible technologies—like MS-DOS coprocessor boards that allow Macintosh users to run IBM applications software and terminal emulation packages allowing IBM PCs to communicate with DEC computers.
With so many different standards and daily advancements in the personal computer industry, it becomes a superhuman responsibility to stay informed. And yet, you must, in order to select the best products for your company and your own personal computer.

What's the solution? Rely on one company—AST Research. With a solid track record for quality and performance among a full-range of computer solutions for the IBM PC, XT, AT and Personal System/2, AST has earned a name that assures satisfaction.

You Guessed It!
Showing up in first place, worldwide. It’s no accident that AST products continue to win over the hearts and minds of editors and customers alike. AST’s track record for quality is hard-earned. It begins with 1,150 employees throughout the world singularly committed to product excellence. It continues with state-of-the-art research and development, manufacturing and worldwide corporate facilities encompassing a quarter of a million square feet. And it’s carried on by a wide network of dealers, OEM partnerships, distributors, training personnel and service centers always at your service.

Whether your business requires a single board, or complete system, you’ll find AST Research is the single solution for powerful computing. Call us today at (714) 756-4700. Or fill out the coupon below and mail it to AST Research, Inc., 2121 Alton Ave., Irvine, CA 92714-4992.
Teaching Old Screens New Tricks

Create fancy screen displays for your homegrown programs

Have you ever wondered how the big software packages make those flashy screen displays? You could always purchase a screen-management program, but for those who enjoy doing it themselves, I will provide some insight and a few easy techniques for creating fancy displays on your IBM PC.

You can manipulate bold (or bright), underlined, reverse, or blinking characters on your monochrome monitor. (The techniques can easily be adapted to work with a color monitor.) I will not address the use of graphics boards or adapters, and I have limited my graphics discussion to the standard graphic character set, ASCII codes 128 through 255, which is sufficient for making borders, windows, and other shapes on the screen.

Screen Writing
There are two approaches to creating displays: screen writing and memory writing. Screen writing involves writing sequences of characters, including special control characters, to the screen. The control characters manipulate the screen.

Chapter 2 of the DOS 2.10 technical manual describes "extended screen and keyboard control." For example, consider designing your DOS prompt so that it shows the current path, followed by a > and a space, but having it displayed in bright letters. Here's the prompt command that you'd need:

prompt $e[1m$pga[0m $a

Let's dissect this command piece by piece. The dollar sign ($) characters are documented under the prompt command. The $e is an escape character (ASCII 27), $p is the current path, $g is the > symbol, and $a is undefined, but it is used to force a space after the >. To print bright characters on the screen, it is necessary to write an escape character followed by [1m. To restore dim characters, you use an escape character followed by [0m. Put the pieces together as shown, and you get the effect described above, except for one thing: You must include a device driver, called ANSI.SYS, in your CONFIG.SYS file.

If you do not have a CONFIG.SYS file, create a text file with that name and keep it in your root directory. For our purposes, all it needs is this single line: DEVICE = ANSI.SYS. This causes the screen to have some smarts; rather than printing some textual representation of an escape character (my machine prints an arrow), it executes the escape character as a screen-control function.

After you add this line to the CONFIG.SYS file, reboot your computer so that the device driver will take effect. Then the DOS prompt appears as described above.

To create bright letters inside a program, the technique is essentially the same. I'll use Turbo Pascal for the programming examples, but the names should be suggestive enough for you to readily adapt the code to your favorite language.

The code shown in listing 1 first defines three constants. Then, the writeln statement displays the list of things inside the parentheses in the order shown. This will cause string 1 to appear in bright text, while string 2 will appear in dim text (see code fragment A). Other characteristics, such as blinking, reverse, colored, and underlined text, can also be printed in this way once we know the appropriate codes. Note, however, that once an escape sequence is printed, all subsequent output will appear in the specified style until a new escape sequence changes it.

Note one additional prerequisite when using a programming language: You must direct the output specifically to the standard output device—not to the screen. This may seem perplexing because, by default, the standard output device is the screen. But the screen is not always the standard output device. In Turbo Pascal 3.0, for example, writeln will not work unless you first use the {$p} compiler directive (where $n is some integer larger than zero) to indicate that all writelns should go to the standard output device.

Now let's examine a framework for easily changing from one style of text to another, rather than laboriously using the escape codes. I've used Turbo Pascal for the examples. First, let's establish the definitions as shown in code fragment B. Pascal lets you create new types. The first declaration enables you to write a ScreenStyle type, which has only one of the five values shown. The second declaration allows you to create variables of type ScreenMode, which can have any one of the five values shown.

<table>
<thead>
<tr>
<th>ScreenMode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bright</td>
</tr>
<tr>
<td>2</td>
<td>Dim</td>
</tr>
<tr>
<td>4</td>
<td>Underline</td>
</tr>
<tr>
<td>8</td>
<td>Reverse</td>
</tr>
<tr>
<td>16</td>
<td>Bold</td>
</tr>
</tbody>
</table>

SetOneStyle returns a string that forces a single text style, while SetTextStyle returns a string that can be a combination of one or more styles, such as underlined and boldfaced characters.
create a string that initiates blinking characters, for example, you call SetOneStyle(BlinkText). This returns a text string with embedded control characters. In other words, you can assign the returned value to a variable; let’s call it BlinkString.

BlinkString := SetOneStyle(BlinkText);

We can then display BlinkString just as we displayed control codes above:

write(BlinkString);

or, if there is no reason to store the result of SetOneStyle in BlinkString, we can print the function result directly:

write(SetOneStyle(BlinkText));

Both write statements achieve identical results. (The difference between write and writeln, by the way, is that the latter will terminate a line and start a new line.)

You can use the routine SetTextStyle to create combinations of styles. The generalized control-string format is an escape character followed by [;...;#m, where you can use more than one code between the ' and the m. Each # character represents a style code.

The ... indicates that you can repeat these style codes. You must separate each pair of codes by a semicolon, and an m must terminate the sequence. SetTextStyle requires two input parameters: a desired style code and an existing style string. The new style code is added to the existing style string so that it maintains the above format (see code fragment C).

You set the local variable CodeChar depending on the value of the style parameter with the case statement. Then you assign a value to the function. If the ExistingString is empty, you just create a standard escape string, such as [5m. Otherwise, you need to chop off the m, add the ; separator, add the new code, and then tack on the m at the end.

In SetTextStyle (see code fragment D), you first create a string to set the screen back to normal, regardless of its previous condition. If you are actually requesting something other than “normal,” then you concatenate the second code by a second call to SetTextStyle as shown in code fragment D.

You can intermix the different text styles freely, for the most part, so you must take some care in creating escape sequences. If you write an escape sequence for blinking text, as shown above, and then later write an escape sequence for reverse text, you will actually get reversed blinking text, because you have not turned off the blinking effect. It is best to use some type of flag to keep track of the current styles. To change a style, then, the necessary steps are to modify the flags to get the condition you want, send an escape sequence to turn off all effects, and send an escape sequence to establish all effects specified by the flags.

Code fragment E is a routine for managing a set of Boolean flags so that you can examine the current style of your screen by checking the set of corresponding flags. The flags are Boolean variables called Bold, Blink, Underscore, and Re-

<table>
<thead>
<tr>
<th>Listing 1: Code fragments used to generate screen attributes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code fragment A</td>
</tr>
<tr>
<td>const BrightControl := "[1m";</td>
</tr>
<tr>
<td>DimControl := "0m";</td>
</tr>
<tr>
<td>ESC := #7; ... writeln(ESC, BrightControl, string1,</td>
</tr>
<tr>
<td>ESC, DimControl, string2);</td>
</tr>
<tr>
<td>Code fragment B</td>
</tr>
<tr>
<td>type ScreenStyle := (BoldText, BlinkText, UnderscoreText,</td>
</tr>
<tr>
<td>ReverseText, NormalText);</td>
</tr>
<tr>
<td>ShortString := string(25);</td>
</tr>
<tr>
<td>Code fragment C</td>
</tr>
<tr>
<td>function SetTextStyle(Style: ScreenStyle; (the desired text style)</td>
</tr>
<tr>
<td>ExistingStyle: ShortString (the control string to modify)) : ShortString;</td>
</tr>
<tr>
<td>var CodeChar: char;</td>
</tr>
<tr>
<td>TextStyle: ShortString; begin</td>
</tr>
<tr>
<td>case style of:</td>
</tr>
<tr>
<td>BoldText: CodeChar := ";1;";(the magic numbers)</td>
</tr>
<tr>
<td>BlinkText: CodeChar := ";9;";</td>
</tr>
<tr>
<td>UnderscoreText: CodeChar := ";4;";</td>
</tr>
<tr>
<td>ReverseText: CodeChar := ";7;";</td>
</tr>
<tr>
<td>NormalText: CodeChar := ";0;";</td>
</tr>
<tr>
<td>else writeln("Internal error in SetTextStyle"); end (case);</td>
</tr>
<tr>
<td>if (ExistingStyle = ") then</td>
</tr>
<tr>
<td>SetTextStyle := chr(27) + ";" + CodeChar + ";" +</td>
</tr>
<tr>
<td>else SetTextStyle :=</td>
</tr>
<tr>
<td>copy(ExistingStyle, 1, length(ExistingStyle) -1) + ";" +</td>
</tr>
<tr>
<td>CodeChar + ";";</td>
</tr>
<tr>
<td>end;</td>
</tr>
<tr>
<td>Code fragment D</td>
</tr>
<tr>
<td>function SetOneStyle(Style: ScreenStyle): ShortString;</td>
</tr>
<tr>
<td>var CodeStr: ShortString; begin</td>
</tr>
<tr>
<td>CodeStr := SetTextStyle(NormalText, ");")</td>
</tr>
<tr>
<td>if (Style = NormalText) then SetOneStyle := CodeStr</td>
</tr>
<tr>
<td>else SetOneStyle := SetTextStyle(Style, CodeStr); end;</td>
</tr>
<tr>
<td>Code fragment E</td>
</tr>
<tr>
<td>function RefreshStyles: ShortString;</td>
</tr>
<tr>
<td>var CodeStr: ShortString; begin</td>
</tr>
<tr>
<td>CodeStr := SetTextStyle(NormalText, ");")</td>
</tr>
<tr>
<td>if Bold then CodeStr := SetTextStyle(BoldText, CodeStr);</td>
</tr>
<tr>
<td>if Blink then CodeStr := SetTextStyle(BlinkText, CodeStr);</td>
</tr>
<tr>
<td>if Under then CodeStr := SetTextStyle(UnderscoreText, CodeStr);</td>
</tr>
<tr>
<td>if Reverse then CodeStr := SetTextStyle(ReverseText, CodeStr);</td>
</tr>
<tr>
<td>RefreshStyles := CodeStr;</td>
</tr>
<tr>
<td>end;</td>
</tr>
<tr>
<td>Code fragment F</td>
</tr>
<tr>
<td>write(SetOneStyle(Reverse));</td>
</tr>
<tr>
<td>DrawBorders;</td>
</tr>
<tr>
<td>[user defined routine]</td>
</tr>
<tr>
<td>write(RefreshStyles);</td>
</tr>
</tbody>
</table>
verse, which keep track of the four named styles. Suppose you want to create a border in reverse characters while not interfering with the rest of the display. You need to write a control string to turn on the reverse-character style before you start drawing the border, and then you must write a control string to restore the screen state so that the subsequent text will be displayed in the same style combination as it was before you turned on the reverse characters.

RefeshStyles (see code fragment E) will first turn all styles off and then reactivate any that are supposed to be on. Thus, in order to draw your reverse border, you first set the screen to reverse style, draw the borders, and then refresh the styles. It's fine to change the style without adjusting the flags in this instance, since you will be refreshing the state to agree with the flags before you do anything else. The code might look like that shown in code fragment F.

For drawing a window, characters in the ASCII range 176 through 223 are appropriate. They provide an appealing screen display for many applications. The techniques described so far can create specific strings of text with a lot of flexibility. For entire screen design, however, memory writing is more appropriate.

Memory Writing

The memory-writing method is somewhat more low-level, but you can create very fast screen displays with it, and you do not need the ANSI.SYS driver in your CONFIG.SYS file. I'll limit my discussion to the IBM PC monochrome monitor, as in the previous section; you can implement colors by simply adding more flags and more style choices.

The IBM PC display screen is memory-mapped at address B8000:0000 for monochrome displays (segment B800, offset 0) and at B8000:0000 (segment B800, offset 0) for color displays. Writing data into memory at the address of the screen will show that data on the display. Since there are 25 lines of 80 characters each, the screen occupies exactly 4000 bytes of contiguous memory. Each screen character is represented as a 2-byte entity. You will need a record structure that can easily access memory locations, like that in code fragment G.

This creates a new data type consisting of a character called Value followed by a byte called Style. Bytes and characters are actually the same thing, but you can refer to them differently. If you define a variable Spot of type ScreenChar, then you can refer to the two components of Spot as Spot.Value and Spot.Style.

This means that you can modify your screen manually if your favorite language has a fast, efficient procedure for moving blocks of memory around. Turbo Pascal, for instance, has the move procedure: move(source, destination, count), wherein you move the specified number of bytes (count) from the source to the destination. As an example, let's continued
NEW TRICKS

Big Blue introduced a new standard.

By now you've heard that Big Blue has introduced a new PC standard. Naturally, Amdek® is right on top of this technology.

Introducing our latest technical achievements—the Amdek 732 color and 432 monochrome monitors.

Sharper, cleaner text. Richer, more vibrant color. Vertical refresh as high as 70 Hz to eliminate flicker and maintain a crisp, steady image. An anti-glare screen that reduces eye fatigue. And a tilt/swivel stand that prevents neck strain.

The 732 allows you to choose from a palette of over 256,000 colors. And the text switch delivers clear single color text for word processing.
Table 2 shows how the different codes can and cannot be combined. The representations show the bit settings within the style byte. To achieve a certain style, set the ones and zeros shown. The X terms can be either zeros or ones.

Those familiar with digital logic will recognize the X terms as "don't care" terms. Hence, to create a bold character, you can use the code 0F, 5F, FF, or 09. However, be careful; 09 also fits the pattern for underlining, so both styles will appear. Table 1 shows, for example, that you cannot mix reverse characters with underlined ones, since the low-order bit of the reverse style is a 1, while that of underlined style is a 0.

Table 3 shows the useful combinations in both hexadecimal and binary. These are like a set of mnemonic constants for use in a program. Finally, let's see how to make a program flexible enough for it to recognize and act upon the difference between a monochrome monitor and a color monitor. Buried obscurely in some portion of memory is a single integer that can tell you what type of monitor you have. So you define an absolute variable:

```pascal
var VideoCode: integer absolute $0040:$0049;
```

If this value is a 2 or a 3, the display is color; if it's a 7, the display is monochrome. Other values may or may not have any significance.

Now you can tell what type of display you have. How do you use this information? Modify the previous definition of Screen, renaming it MonoScreen, and add two more definitions (see code fragment M).

Somewhere in your program initialization, you need to set up the Monitor variable for use by the rest of the program, as shown in code fragment N.

The addr function returns the address of the specified variable. From that point on you no longer need to worry about what type of display screen you have. All references to it, however, must be through the pointer variable, Monitor. Thus, instead of using Screen[n], you use Screen^[n] in the code.

Custom-Made

Today's sophisticated programs need to incorporate impressive screen displays without sacrificing speed. With a few tools, you can enhance your programs with the look and feel of expensive custom-made software.

We can top that!

For the ultimate in monochrome, the 432 features a large 14-inch, flat-surface screen that actually displays larger type for easier viewing.

And because the Amdek 732 and 432 are compatible with IBM®'s new Personal System/2™ Video Graphics Array (VGA) and MultiColor Graphics Array (MCGA), the image of all your programs will look better than you've ever imagined.

At Amdek, we weren't content with just meeting the new standard.

Our goal was to exceed it!

1901 Zanker Road, San Jose, CA 95112 Phone: 800/PC-AMDEK FAX: 408/436-8187
The standard by which all other monitors are monitored.

MultiSync
So perfect a solution for business graphics it's become the best-selling color monitor.
Like most revolutionary products, the NEC MultiSync is based on a simple idea: Instead of one monitor for one board, why not have a single monitor compatible with all graphics boards. From CGA to PGC and beyond.

That simple idea has made MultiSync the world's best-selling color monitor and the undisputed industry standard.

MultiSync offers a maximum resolution of 800 x 560 for brilliant business graphics. And compatibility with old and new systems from PC/XT/AT to IBM PS/2 and Apple Mac II. It has a 14" diagonal screen, tilt/swivel base and 7-way text switch that lets you choose the color that's easiest on your eyes.

Best of all, it has one feature no one else can give you at any price: NEC. So why settle for monitors trying to equal the standard when you can have the one that created it. For literature or a dealer call 1-800-447-4700. For technical details call NEC Home Electronics (USA) Inc. 1-800-NEC-SOFT.
If the sheer weight of UNIX brings the PC to its knees, all applications running under it will suffer. Conceived more than a decade and a half ago, UNIX is today the result of modifications, additions and patches by hundreds of programmers. It needs the resources of at least an AT.

Compare this to the QNX O/S, designed by a dedicated team with a common purpose and complete understanding of both the software and the environment in which it must run. Having elegantly solved the problem of inter-task communications, QNX is more than capable of networking and real time performance — the superior choice for process control and office automation systems.

Quick and efficient on a PC, QNX soars on an AT. QNX occupies 80K (stand-alone version) to 114K (network version) of system memory and allows 40 tasks (programs) and up to 16 terminals per computer.

QNX modular architecture facilitates easy adaptation and extensions by software developers for specific requirements. In addition, PC-DOS runs as a single-tasking guest operating system under QNX. With the DOS Development System, DOS EXE files can be developed in shorter time than under DOS itself.

Communication among all tasks is via "message-passing." Tasks anywhere on a network of up to 255 computers communicate rapidly and transparently with each other.

With the true distributed processing and resource sharing of QNX, all the resources on the network are available to any user. Application programs and data can be distributed over the network without having to go through a central file server.

Network growth is fast and simple. If your disk becomes a bottleneck, add a disk anywhere on the network. If your needs outgrow your present configuration, just add terminals and/or computers as required, without having to re-write programs and without system degradation.

If you would like to know the secret of the QNX architecture, please give us a call. We invite End Users, VAR's, OEM's and Software Developers to discover a whole new world of computing capabilities.

Over 30,000 systems have been installed worldwide since 1982.

THE ONLY MULTI-USER, MULTI-TASKING, NETWORKING, REAL-TIME OPERATING SYSTEM FOR THE IBM PC, AT, THE HP VECTRA, AND COMPATIBLES.

Quantum Software Systems Ltd. • Kanata South Business Park • 175 Terrence Matthews Crescent • Kanata, Ontario, Canada • K2M 1W8

UNIX is a registered trademark of AT&T Bell Labs. IBM PC, AT and PC-DOS are trademarks of IBM Corp. HP and VECTRA are registered trademarks of Hewlett Packard Company.

Inquiry 335
Constructing an Associative Memory

This simple nonlinear neural network runs on your PC

From the earliest days of behaviorist psychology, scientists have believed that the associative structure of learning resides in the neural microstructure of organisms. But where do memorized patterns reside? Do we encode *Gone With the Wind* in a cell or do we somehow superimpose it on or between several cells? How is the ability to fix a flat tire or to play the *Moonlight Sonata* stored in memory? How do we learn the color green from green things, or triangularity from triangles? How do asynchronous neurons keep any pattern, such as a phone number, reverberating in short-term memory long enough for us to learn it?

An associative memory is a mapping from data to data, a mathematical abstraction from the familiar associative structure of human and animal learning. We associate behavioral responses with sensory stimuli, effect with cause, like character with like faces, breakfast with sizzling bacon. An associative memory is parallel distributed—as in a neural network, for example—when it memorizes data by superimposing it on the same memory medium.

I will show you how to construct the simplest nonlinear neural-network associative memory—called a BAM (bidirectional associative memory)—that recalls or content-addresses stored associations \((x, y)\) by minimizing a system “energy” (which I will define mathematically later). The BAM is a two-layer feedback network of interconnected neurons. Each neuron \(a\), in layer or field \(F_a\), is totally connected by “synapses” to every neuron \(b\), in field \(F_b\), and vice versa, and no neurons are connected within a field. Associations \((x, y)\) are stored by placing them at local energy minima. Input patterns tend to map into the most similar stored associative memories, such as BAMs with few neurons, on digital computers with little effort.

The Benefits

Associative neurocomputing has two major benefits that underlie the current surge of ANS interest in industry, academia, and government. First, ANS devices can store large numbers of complex patterns—speech templates, visual scenes, robot movements, spatiotemporal behavior, social behavior, and so on. Second, ANS devices can classify new patterns to stored patterns quickly. Roughly speaking, neurocomputing devices classify patterns at a speed independent of the number of patterns stored. They immediately map input patterns to the nearest stored patterns. However, if they store too many patterns, classification accuracy degrades.

These two properties of neurocomputing resemble our ability to recognize familiar faces, aromas, and melodies at age 5 and at age 50 with roughly the same rapidity. We say the lawyer is quick on her feet if she accurately associates live testimony with obscure case precedents. We frequent the mechanic or physician who accurately diagnoses problems on the spot. We marvel at the cocktail-party pianist who plays from memory.
Each set of associations sculpts its own energy surface over the BAM state space. Associations are placed on the energy surface like rocks on a rubber sheet. Geometrically, it is clear that the number of energy minima does not affect the speed with which an input pattern rolls down the energy surface into a particular local minimum. Hence, no matter how big the BAM (whether it consists of 10 neurons or 10 billion neurons), it immediately converges to the nearest minimum.

The BAM is a two-field network of symmetrically interconnected neurons, as shown in figure 1. There are \(n \) neurons in \(F_a = [a_1, \ldots, a_n] \) and \(p \) neurons in \(F_b = [b_1, \ldots, b_p] \).

Each neuron is a simple nonlinear function. It transforms the sum of weighted input signals into a single output signal. In the simplest case, the output is binary, 1 or 0 (in general, a neuron's output signal continuously varies from 0 to 1). Stephen Grossberg of Boston University has proven mathematically that to accurately store and process distributed information in a neural network, this signal function must be a sigmoid or S-shaped function, such as \((1 + e^{-t})^{-1}\), and, indeed, the average firing frequency of real neurons is sigmoidal. The threshold function of a binary neuron is the Heaviside step function, \(H(t) \), and, indeed, the average firing frequency of real neurons is sigmoidal. The threshold function of a binary neuron is the Heaviside step function.

BAM Encoding

Encoding is learning. A neural network learns by modifying the synapses between its neurons. In a BAM, all synaptic information is contained in an \(n \times p \) connection matrix \(M \). Every matrix \(M \) between \(F_a \) and \(F_b \) produces a stable BAM. All inputs quickly map to a pattern of stable reverberation. But different connection matrices encode different \((A, B)\) associations as stable reverberations.

A BAM encodes a particular set of associations \([A_1, B_1], \ldots, [A_m, B_m]\) by summing bipolar correlation matrices. This is an example of Hebbian, or correlation, learning. You can also interpret this method of encoding as Grossberg reciprocal outstar coding, in that each neuron in \(F_a \) and \(F_b \) fans out its output along modifiable pathways. The encoding scheme tends to place distinct associations \((A_i, B_i)\) at or near local energy minima—provided you don't encode too many associations. You cannot reliably encode (store and decode) more patterns than the number \(n \) of neurons in field \(F_a \) or the number \(p \) of neurons in \(F_b \), whichever is less; that is, given that you have \(m \) patterns, \(m < \min(n, p) \). One way or another, the number of neurons in every neural network, artificial or biological, limits its storage capacity.

Bipolar vectors or matrices are binary vectors or matrices with \(-1s\) replacing 0s. The bipolar versions of the binary patterns \(A_i = (1 0 1 0 1 0) \) and \(B_i = (1 1 0 0) \) are \(X_i = (1 -1 1 -1 -1 1) \) and \(Y_i = (1 1 -1 -1). \) In general, \(X \) and \(Y \) will denote the respective bipolar version of the binary vectors \(A \) and \(B \). It can be shown that BAM correlation encoding improves if bipolar vectors and matrices are used instead of binary vectors and matrices.

The BAM encoding scheme converts each binary pair \((A_i, B_i)\) to a bipolar pair.

Figure 1: Topology of a BAM, showing the two fields of neurons connected by synapses.
frightened
impatient
upset
tedious
dizzy
perplexed
crazy
dumb
outraged

aggravated
confused
perturbed
overwhelmed
defeated
stupid
annoyed
irate
fooled

sick
troubled
tired
miffed
agitated
wrecked
moronic
pained
thwarted

don't hold back now.
how do you really feel about working with columns?

Columns. The black hole of word processing technology.
Try to move a column with your present word processor. Good luck. Try to add or delete a column. Sorry.
Lotus Manuscript™ can change how you feel about working with columns. Really. Because Lotus Manuscript thinks vertically as well as horizontally.

Consider this. On ordinary word processors, when you create a table or put any information in columns, you work horizontally, using tabs to create a vertical effect.

With our sophisticated table editor, you can actually create each column independent of one another. You can change information, even delete, move or insert columns, without the usual litany of expletives deleted.

And it's not just limited to columns you create yourself. Take tables from Lotus® 1-2-3 or Symphony® for instance. When you import that tabular information into Lotus Manuscript, it recognizes it as columns, so you can change, delete, move, insert or format this material as well. You can even dress up your tables with a variety of boxes and borders.

As you can see, Lotus Manuscript is not just another word processor. It's a complete document creation system, with more impressive features than we could ever go into here.

Lotus Manuscript is designed to work on most IBM® PCs and compatibles. Its familiar 1-2-3 interface makes it easy to use. And our Manuscript evaluation kit makes it easy to try. For $10.00, you'll get a presentation disk, working software, and a tutorial manual. To get your evaluation kit, call 1-800-345-1043, ask for LotusYS-1450.

Or, for more information, see your Authorized Lotus Dealer, or write Lotus Development Corp., 90 Annex, Atlanta, GA 30390-03070.

Lotus Manuscript™

(X, Y), converts each bipolar pair to a bipolar correlation matrix \(X_i^r Y_i \), and then adds up the bipolar correlation matrices
\[
M = X_1^r Y_1 + X_2^r Y_2 + \ldots + X_n^r Y_n
\]
where the column vector \(X_i^r \) is the vector transpose of the row vector \(X_i \). For example, if \(X = (-1, -1) \), then
\[
X^r = \begin{pmatrix} 1 \\ -1 \end{pmatrix}.
\]

A special case of the BAM occurs when \(F_a = F_b \) and all \(A_i = B_i \). Then \(M = M^T \) and the BAM collapses to symmetric unidirectional associative memory that stores the single patterns \(A_i \), if \(M \rightarrow X/ \) is a local energy minimum. (The general continuous version of the symmetric unidirectional associative memory is known as the Cohen-Grossberg autoassociator; the special binary version is known as the Hopfield model.) Let's assume the general case where \(F_a \) and \(F_b \) are distinct.

Suppose you want to find the BAM that encodes the two binary associations
\[
A_1 = (1 0 0 1 0) \quad B_1 = (1 1 0 0 0),
A_2 = (1 0 1 0 1) \quad B_2 = (0 0 1 1 0).
\]
Note that this example does not strain the memory capacity, since \(2 < \min(6, 4) \).

Convert these binary pairs to bipolar pairs:
\[
X_1 = (1 -1 1 -1 1),
Y_1 = (1 1 -1 -1 1),
X_2 = (1 -1 -1 1 -1),
Y_2 = (1 -1 1 1 -1).
\]

Convert these two bipolar vector pairs to two bipolar correlation matrices:
\[
X_1^r Y_1 = \begin{pmatrix} 1 & 1 & -1 & -1 \\ -1 & -1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ -1 & -1 & 1 & 1 \\ -1 & -1 & -1 & 1 \end{pmatrix},
\]
\[
X_2^r Y_2 = \begin{pmatrix} 1 & 1 & -1 & -1 \\ -1 & -1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ -1 & -1 & 1 & 1 \\ -1 & -1 & -1 & 1 \end{pmatrix}.
\]

Note that the \(i \)th row of the \(i \)th correlation matrix \(X_i^r Y_i \) is simply \(Y_i \) multiplied by the \(j \)th element of \(X_i \), and that the \(j \)th column is simply \(X_i \) multiplied by the \(j \)th element of \(Y_i \). So correlation matrices can be written down directly when given bipolar associations. Then \(M \) is generated by
\[
M = X_1^r Y_1 + X_2^r Y_2:
\]
\[
M = \begin{pmatrix} 2 & 2 & 0 & 0 & 0 \\ -2 & -2 & 2 & 0 & 0 \\ 2 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ -2 & -2 & 0 & 0 & 2 \end{pmatrix}.
\]

This synaptic matrix encodes my particular computational problem; namely, storing \((A_1, B_1)\) and \((A_2, B_2)\) in a parallel distributed network. The matrix element \(M_{ij} \) indicates the symmetric (distance-dependent) synapse between neurons \(a_i \) and \(b_j \). The synapse is excitatory if \(m_{ij} > 0 \), inhibitory if \(m_{ij} < 0 \). (Try drawing the BAM network topology obtained with this matrix \(M \).)

You can erase association \((A_1, B_1)\) from \(M \) by adding \(-X_1^r Y_1 \) to \(M \). This is equivalent to encoding \((A_1, B^* \) or \((A^*, B_1)\), where the superscript \(c \) denotes complement. The complement of \((0 1 1 0 0)\), for instance, is \((1 0 0 1 1)\). This is because you obtain the complement of a bipolar vector by multiplying the vector by \(-1\). A little thought then shows that when you encode \((A_1, B_1)\) in \(M \), you encode \((A^*, B^*)\) in \(M \) as well, and vice versa.

The BAM energy \(E \) of association or state \((A_1, B_1)\) is \(-A \cdot M \cdot B^T\). In the example, \(E(A_1, B_1) = E(A_2, B_2) = -6 \). (In upcoming examples, you'll see that the BAM encoding algorithm placed \((A_1, B_1)\) and \((A_2, B_2)\) in local energy minima.)

BAM Decoding

BAM decoding is associative recall. Say an input pattern \(A \) is presented to BAM field \(F_a \). The \(n \) neurons across \(F_a \) are turned on or off according to whether the corresponding binary values of \(A \) are \(1 \) or \(0 \). Each neuron \(a_i \) in \(F_a \) fans out its binary value across the \(p \) pathways as if pouring water into a pipeline system. The synaptic value \(m_{ij} \) multiplies, or "gates," the binary value \(a_i \). Each neuron \(a_i \) in \(F_a \) receives a fan-in of input products \(a_i m_{ij} \) from each of its \(n \) synaptic connections; \(b_j \) then behaves as an OR gate, since any neuron in \(F_b \) can activate it. Neuron \(b_j \) sums its input across all connections, \(s_j = a_i m_{ij} \), and \(m_{ij} \) then thresholds this sum to generate its output binary signal. If the input sum exceeds \(b_j \)'s threshold, which I assume is 0, then \(b_j \)'s output is \(1 \). If it is less than threshold, \(b_j \)'s output is 0. If it equals threshold, \(b_j \) maintains its current state. Neuron \(b_j \) then fans out its output signal across the \(p \) pathways to each neuron \(a_i \) in \(F_a \). This means \(F_a \) uses the transverse memory \(M^T \) to send information, while \(F_b \) uses \(M \).

Each \(a_i \) then generates its binary signal from all its summed inputs and sends it back to \(F_b \). And round and round the BAM goes. Fortunately, it is a mathematical theorem that the BAM always rapidly converges, so it will not oscillate chaotically forever. (Exercise: Show that a state change in \(F_a \) or \(F_b \) and the threshold signal law forces the energy \(E \) to decrease, and that \(E \) cannot decrease forever. This is sufficient to prove that any matrix \(M \) continued

Listing 1: Pseudocode for a BAM demonstration program written in BASIC.

Step 1. For all \(i,j \), clear \(M(i,j) \), \(A(i) \), \(B(i) \). This is an initialization step.
Step 2. Get input into \(A() \) and \(B() \) for an association to be learned.
Step 3. Learn the desired input association.
 a. Build \(X(1) \) for \(A(1) \) where \(X(1) =-1 \) if \(A(1) =0 \)
 and \(X(1) =1 \) if \(A(1) =1 \);
 b. Build \(Y(1) \) from \(B(1) \) where \(Y(1) =-1 \) if \(B(1) =0 \)
 and \(Y(1) =1 \) if \(B(1) =1 \);
 c. For all \(i,j \), build \(M(i,j) = M(1,j) + X(1) \cdot Y(1) \).
Step 4. If there is another association to learn, go to step 2.
Step 5. Input a \(new A() \) and \(B() \) to be run on the network.
 The input for each element will have the values 0 or 1.
Step 6. Run the A to B iteration of the network.
 a. The new \(B(j) = 1 \) if the sum of \(A(1) \cdot M(1,j) \) for all \(i \)
 is greater than the 0 threshold;
 b. The new \(B(j) = 0 \) if the sum of \(A(1) \cdot M(1,j) \) for all \(i \)
 is less than the 0 threshold;
 c. The new \(B(j) = \) unchanged if the sum of \(A(1) \cdot M(1,j) \)
 for all \(i \) is equal to the 0 threshold.
Step 7. Run the B to A iteration of the network.
 a. The new \(A(1) = 1 \) if the sum of \(B(j) \cdot M(1,j) \) for all \(j \)
 is greater than the 0 threshold;
 b. The new \(A(1) = 0 \) if the sum of \(B(j) \cdot M(1,j) \) for all \(j \)
 is less than the 0 threshold;
 c. The new \(A(1) = \) unchanged if the sum of \(B(j) \cdot M(1,j) \)
 for all \(j \) is equal to the 0 threshold.
Step 8. Repeat steps 6 and 7 until there are no changes in \(A() \) and \(B() \).
Step 9. Display the results.
The single best way to turn your PC-AT into a multi-user system.

Introducing the Wyse WY-60.

Now there's a perfectly compatible, reliable, economical, Wyse way to get multi-user mileage from your PC-AT. Wyse WY-60 terminals give you complete compatibility for your IBM Personal Computer AT systems, right down to the exact keyboard layout, character set and display features.

The only thing different is how much cleaner and more readable your information is with the WY-60's high resolution and flat, non-glare, 14" tilt/swivel screen.

Multiple display formats go up to 132 columns and 44 lines on one screen, to get the most out of applications such as Multiplan and WordStar.

And a 512-character downloadable soft font is also there when you need mathematical symbols or customized character sets.

The adjustable arm is optional, and you can choose a green, white or amber screen.

No wonder we ship more terminals than anybody but IBM.*

Call toll-free or write, today, for more information. Wyse Technology, Attn: Marcom Department 60-AT, 3571 N. First St., San Jose, California 95134.

Call 1-800-GET-WYSE

You never regret a Wyse decision.

Wyse is a registered trademark of Wyse Technology. WY-60 and the "V" shielded logo are trademarks of Wyse Technology; IBM and IBM Personal Computer -AT are trademarks of International Business Machines Corporation; WordStar is a registered trademark of Microstar International; Microsoft is a registered trademark of Microsoft Corporation. © 1985 Wyse Technology. *Distributed 1985 terminal shipment update.
produces a stable BAM.\)

BAM decoding is easier done than said. Returning to the example, let's see if the memory matrix M actually stores the pairs (A_i, B_i) and (A_j, B_j). You do this by presenting A_i to the BAM and observing whether (A_i, B_i) is recalled. If it is, then either A_i or B_i will recall (A_i, B_i). Repeat this test for A_j and B_j.

Vector-matrix multiplication summarizes BAM forward and backward information flow. Forward flow proceeds through M, and backward through M^T. The row vector $AM = (4 2 -2 -4)$ is the vector of fan-in inputs received by F_A. The threshold-signal law then yields $(4 2 -2 -4) \rightarrow (1 0 1 0) = B_i$, since you are synchronously updating all neurons in F_i. So A_i evoked B_i, which sends an M^T-filtered vector of signals back to F_A; $B M^T = (2 -2 -2 -2 -2) \rightarrow (1 0 1 0 1 0) = A_i$. If you now push A_i through M again, B_i results, which again evokes A_i, and so on forever. Thus, the short-term-memory pattern (A_i, B_i) reverberates across the BAM. It is a stable equilibrium point of the dynamic system. Put another way, both A_i and B_i recall the stored association (A_i, B_i). Similarly, $A_j M = (4 -2 2 -2 -4) \rightarrow (1 0 1 0) = B_j$, and $B_j M^T = (2 2 2 -2 -2 -2) \rightarrow (1 1 1 0 0 0) = A_j$. So (A_j, B_j) is also stored as a stable point.

An instructive exercise would be to see how many synapses in M you can remove or change without affecting these stable reverberations.

The BAM is error-correcting. Partial or noisy patterns tend to recall complete patterns. For example, the input $A = (0 1 1 0 0 0)$ is just A_i perturbed by 1 bit. Then $A M = (2 -2 -2 -2) \rightarrow (1 0 1 0) = B_i$, and thus A evokes the resonant pair (A_i, B_i). Note that (A_i, B_i) has energy $E(A_i, B_i) = -4 > -6 = E(A_j, B_j)$, evidence that the BAM encoding procedure placed (A_i, B_i) at a local energy minimum.

Suppose you add the new association (A_k, B_k) to the BAM memory M, where $A_k = (1 1 0 1 1)$, $B_k = (0 1 1 1)$. This strains the BAM's storage capacity but does not exceed it. Geometrically, when you store only a few association patterns (A, B), each forms a large basin of attrac-
Finally. A Portable Designed To Break The Mold, Instead Of Your Back.

Portable computers fit a predictable pattern. The more powerful they are, the less portable they are. With one magnificently small exception. The T3100/20.

It's the best shape power has ever been in. A smaller, slimmer profile that's tailored to you, instead of the other way around.

Yet inside this sleek 15-pound package are 640KB of RAM and a built-in 20MB hard disk. All driven by an 80286 microprocessor, the same CPU that sparks the IBM® PC AT®.

Its gas plasma screen is so bright, it looks like a full-size CRT display. Which, by the way, you can easily plug into the T3100/20's standard RGB color port.

MS-DOS® 3.2 is standard. So are parallel, serial and 5½" external drive ports. And a soft carrying case.

With every T3100/20, we'll include free copies of Lotus® Symphony® and Lotus Metro, two of the world's most popular programs, for the world's most popular portable computer.

You can also add a 1200 bps Hayes® compatible modem, a five-slot IBM-compatible expansion chassis, 2 megabytes of extended memory, and a numeric keypad.

The T3100/20 is backed by Exceptional Care**, our promise that if we have to fix your computer, we'll fix you up with another one while you wait.

All of which leads one to a small dilemma. How to regard a machine that changes forever the way the world thinks about portable performance.

You could think of it as a desktop on a crash diet. Or the muscle of an AT without the bulk. Or simply as PC World put it: "A small miracle."

Call 1-800-457-7777 for the Toshiba computer and printer dealer nearest you. He can show you how to enjoy all the advantages of power: With none of the burdens.

IBM & PC AT are registered trademarks of International Business Machines Corporation. MS-DOS is a registered trademark of Microsoft Corp. Lotus, Symphony and Metro are registered trademarks of Lotus Development Corp. Hayes is a registered trademark of Hayes Corp. *Limited time offer. **No-cost enrollment required. See your dealer for details.

In Touch with Tomorrow

TOSHIBA
Toshiba America Inc., Information Systems Division
tion in the BAM state space. As you add more patterns to the BAM, the basins increase in number but shrink in diameter and depth. The BAM recognizes fewer crease in number but shrink in diameter. Worse, spurious attractor basins can emerge, causing misclassification. When this happens, the BAM experiences a thing it never learned.

In this case, the new memory \(M = X_1 Y_1 + X_2 Y_2 + X_3 Y_3 \) is given by

\[
M = \begin{pmatrix}
1 & 1 & 1 & -1 \\
-1 & -1 & 3 & 1 \\
3 & -1 & -1 & -3 \\
-1 & -1 & -1 & 3 \\
-1 & 3 & -1 & -1 \\
3 & 1 & 1 & 3
\end{pmatrix}
\]

When you retest to see if \((A_1, B_1)\) and \((A_2, B_2)\) are still stable points, you'll find that they are, since \(E(A_1, B_1) = E(A_2, B_2) = -6\). To test \(A_3, M = (4 4 4 4) \rightarrow (0 1 1 1) = B_2\) and \(B_3, M^T = (1 3 5 -1 3 5) \rightarrow (1 1 0 0 1 1) = A_3\). So \((A_3, B_3)\) is also a resonant stable point, but with energy that's twice as small, namely, \(E(A_3, B_3) = -12\). Since \((A_3, B_3)\) is a deeper basin, you can expect it to attract and classify more patterns. The unit input \((I I I I I I) \), which is 1 bit closer to \(A_3\) than to \(A_1\) or \(A_2\), recalls \((A_3, B_3)\). But if you flip the last bit, the new input \((1 1 1 1 1 0) \) misclassifies to a spurious association \((A, B)\), where \(A = (1 1 0 1 0)\) and \(B = (1 1 0 1 0)\), also with energy \(E(A, B) = -6\). Such misclassification reflects that you have almost overstuffed the BAM memory matrix \(M\).

If you'd like to experiment with the above algorithm, Duane DeSieno, Rod Taber, and Joel Davis have provided programs in BASIC, Pascal, and C. [Editor's note: These programs are available on disk, in print and on BIX; see the card following page 256 for details. They are also available from BYTEnet listings; see page 4.] Listing 1 shows pseudocode for the BASIC program.

Asynchronous BAM Recall

Figure 2 illustrates asynchronous BAM recall. Field \(F_3\) contains \(n = 10 \times 14 = 140\) neurons. \(F_2\) contains \(p = 9 \times 12 = 108\) neurons. Both vector fields are arranged as binary matrices to help the eye detect interesting spatial patterns. The BAM stores the three alphabetic associations: \((M, V), (S, E),\) and \((G, N)\). A 40 percent noise-corrupted version (99 bits randomly flipped) of \((S, E)\) is presented to the BAM. Figure 2 shows 11 snapshots of the asynchronous recall process. At each clock cycle, roughly six randomly chosen neurons are allowed to make update (state-change) decisions. This is a cross-sectional approximation of a stochastic neural process—a set of independent neurons, each randomly updating in time.

Different random-update choices produce different asynchronous-recall trajectories. In this BAM, most trajectories recall the desired nearest stored association, since the memory capacity is not strained and the spatial patterns all differ significantly. In figure 2, \((S, E)\) is perfectly recalled, as the neurons independently proceed from local chaos to global order—without any neuron aware of its global effects. The anarchical neurons are guided as if by an invisible hand to correct global system errors without knowing that such errors have occurred and need to be corrected.

Finally, BAMS are perhaps best implemented in optics, with photons instead of electrons. Neurons in fields \(F_3\) and \(F_2\) can be totally interconnected to each other with simple lenses. Using resistors to interconnect amplifiers is much more difficult, space consuming, and expensive. Unlike electrical pathways, optical-interconnect beams can pass through one another without interference.

For More Information

A ssociative-memory literature is mathematical, interdisciplinary, and vast. McCulloch and Pitts introduced the first Boolean switching-function neurons in 1943. Kohonen largely pioneered the study of correlation-matrix memories. His 1984 book is a standard in the field. Steinbuch put forth the idea of stable points in crossbar associative networks in his 1961 "learning matrix."

Amari et al first made the rigorous connection between associative networks and thermodynamics. Hopfield next made the connection between stable points and energy minima by establishing an isomorphism between symmetric binary networks and the Ising spin-glass model of ferromagnetism in statistical mechanics. Grossberg et al have proven all of the above and more with rigorous mathematics. With Carpenter, Grossberg developed the adaptive resonance model that, in some sense, an adaptive BAM approximates.

Grossberg's 1982 and 1987 volumes of Rumelhart and McClelland provide an accessible introduction to neural networks from a cognitive-sciences perspective.

FOR FURTHER READING

FREE...Perfect Monitor Comparison Kit.

Return this card or call today: 1-800-553-0305
Offer expires: December 31, 1987

☐ YES. I want to preview the most important innovation since the computer.
 Send my Kit today, including viewfinder and four-color slides.

NOTE: To receive your FREE Kit, you must complete the information below:

Name_________________________ Title_________________________

Company Name____________________________

Address_________________________ City_________________________ State_________________________

Zip Code_________________________ Phone # (_______)

Product usage: Business ☐ Personal ☐

Application (e.g., Graphics, spreadsheet, etc.)

Purchase Time Frame: ☐ Within 1 month ☐ Within 1-3 months ☐ Within 3-6 months ☐ Over 6 months

Purchase Quantity: ☐ Single purchase ☐ 2-20 units ☐ 21-50 units ☐ 51-100 units ☐ Over 100 units

What best describes your involvement in the purchase decision? (Check any that apply.)

☐ Recommend ☐ Influence ☐ Purchase

Are you interested in a product demonstration?

☐ Yes ☐ No

10096/090187/20029

© 1987, Zenith Data Systems

THE QUALITY GOES IN BEFORE THE NAME GOES ON
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 87 MT. PROSPECT, IL

POSTAGE WILL BE PAID BY ADDRESSEE

Zenith | Data Systems
Perfect Monitor Program
P.O. Box 7618
Mount Prospect, IL 60056
When Zenith Invented The Perfect Monitor
The Industry Took A Giant Leap.

In the harsh light of day, no other monitor compares with Zenith's Perfect Monitor. The breakthrough of flat technology has redefined the monitor industry forever. The Perfect Monitor will redefine your expectations with one look.

50% brighter. Vastly enhanced contrast. Colors, richness and highlights that leap off the perfectly flat screen. Eyestrain and glare are virtually unheard of.

Backward and Forward Compatibility. The Perfect Monitor is compatible with IBM's new Personal System/2® computers. And with Zenith's Z-449 Video Card, it accommodates Zenith PC's...plus other AT and XT compatible PCs.

FREE...the Perfect Monitor Comparison Kit. To preview Zenith's new perfect monitor, send for your FREE Kit, which includes a viewfinder and 4-color slides.

Or if you can't wait, call today: 1-800-553-0305.

Offer expires 12/31/87.

Personal System/2 is registered trademark of IBM Corp.

© 1987, Zenith Data Systems

Inquiry 320

SEPTEMBER 1987 • BYTE 145
Karmarkar’s Algorithm

A method for solving large linear programming problems

[Editor’s note: This is easily the most mathematically advanced article we’ve done in BYTE. Readers might remember Andrew Rockett and John Stevenson as two of the three authors of a two-part article (August and September 1980 issues) on Khachiyan’s algorithm, another algorithm for linear programming that turned out to be sound in theory but unusable in practice.

Here is my attempt to summarize the important points this article makes. First, it describes Karmarkar’s algorithm, how it works, and why it’s valid in the theoretical sense. It does not, however, include a modification of the algorithm (included in Karmarkar’s original paper) that makes its implementation feasible for large problems being solved on mainframe computers.

Second, the classic simplex method for solving linear programming problems differs from Karmarkar’s algorithm in that the former stops when it has found the absolute best solution, while the latter stops when it finds an answer that is a set factor better than the initial guess; this is assumption (C) of problem type (4) in the section “Karmarkar’s Restricted Problem.” This means that the choice of the initial guess greatly influences the accuracy and validity of the final answer.

Third, Karmarkar’s algorithm does not directly solve linear programming problems. Instead, it attempts to minimize a given function (called the objective function) within an n-dimensional “triangular” region called a simplex. (See “Concepts from Linear Algebra” on page 147 for more detailed definitions.) It turns out that we can map the problem space of the linear programming problem (which is called an n-dimensional orthant) into a simplex, solve the problem using Karmarkar’s algorithm, then get the final answer by mapping the solution back into the orthant that represents the original problem. (Figure 4 shows a geometric representation of how the orthant maps into the simplex.)

Figures 2 and 3 show a geometric visualization of how Karmarkar’s algorithm works. In figure 2, we start with the point \(a_0 \) in the center of the circle, knowing that the solution is at one of the endpoints of the line it’s on. The first part of Karmarkar’s algorithm takes us to a better approximation to the answer, \(x^{(1)} \), which lies between \(a_0 \) and one of the two points at the intersection of the line \(a_0 \) is on and the inscribed circle. (In general, we will use lowercase boldfaced letters to indicate column vectors only, while uppercase boldfaced letters will indicate matrices of arbitrary size; scalars will be italicized.) Karmarkar’s theorem proves that, by limiting your step to one-fourth the size of the “step” that is possible at this point, you can guarantee under all circumstances a certain minimum improvement. This is discussed under “The Main Theorem.”

Figure 3 shows how Karmarkar’s algorithm iterates from one approximation to the next. A “better” point \(x^{(1)} \) is projected into the \(a_0 \) center of another simplex (triangular region). The work of figure 2 is repeated in this second simplex, and the better approximation it produces, \(a^{*} \), is then mapped back into the first simplex, resulting in a still better approximation, \(x^{(2)} \). This process is repeated a given number of times to get the final approximation, \(x^{(m)} \), which is then transformed into the original orthant to get the final result.

It turns out that you can calculate the number of iterations, \(m \), needed to improve the initial estimate by the factor desired (see “The Main Theorem” below for the equation for \(m \)). If, after \(m \) iterations, the calculated results don’t show the desired improvement, the problem is infeasible and has no solution.

“Nonzero Objective Functions” and later sections describe strategies for taking away certain restrictions that limit the problems Karmarkar’s algorithm can solve. These sections also discuss the problem of feasibility and the use of Karmarkar’s algorithm in real-world situations.]

—Gregg Williams, Senior Technical Editor

In the fall of 1984, a new mathematical technique briefly became front page news. The New York Times called it a “breakthrough in problem solving,” while Time magazine described a “major math breakthrough” in an “abstruse branch of mathematics known as linear programming.” The method was devised by Nerendra K. Karmarkar at AT&T’s Bell Laboratories in New Jersey. Unlike Khachiyan’s algorithm, another new way of solving linear programming problems, Karmarkar’s algorithm had already demonstrated its worth: An article in the September 21, 1984, issue of Science reported that an implementation of the algorithm outperformed one implementation of the classic simplex method by a factor of over 50 on medium-scale problems of 5000 variables.

In this article, we shall place Karmarkar’s algorithm in the context of linear programming theory relative to the simplex method, given both geometric and algebraic descriptions of the procedure and an indication of why it works. Then we will explain how to reduce a general linear programming problem to the restricted form actually solved by Karmarkar and mention

Andrew M. Rockett and John C. Stevenson can be reached through the Department of Mathematics, C. W. Post Campus, Long Island University, Greenvale, NY 11548.
some implementation considerations. Our presentation is based on Karmarkar's paper "A New Polynomial-Time Algorithm for Linear Programming" (Combinatorica, vol. 4, 1984, pages 373–395). We will illustrate several points with example problems and BASIC programs that solve them.

LP Problems and the Simplex Method

By a linear programming (LP) problem we mean a problem of the form

$\minimize c^T x$

subject to $Ax \geq b$ and $x \geq 0$

where c and x are vectors in \mathbb{R}^n, A is an $m \times n$ matrix, and b is a vector in \mathbb{R}^m. The objective function is $c^T x$, and the conditions $Ax \geq b$ and $x \geq 0$ are the constraints. Given (1), there is a corresponding maximization problem called the dual problem:

$\maximize b^T y$

subject to $A^T y \leq c$ and $y \geq 0$

The solutions of these problems are related, as you can see by noticing that $b^T y \leq (Ax)^T y = x^T (A^T y) \leq x^T c = c^T x$. So the maximization problem seeks to increase $b^T y$ as much as possible, while the minimization problem seeks to decrease $c^T x$, which is always greater than or equal to $b^T y$. Consequently, if a solution can be found, it must occur when $b^T y = c^T x$. The simplex method is a linear programming algorithm that solves both the original problem and the dual problem at the same time. To apply the simplex method to problem (1), first we rewrite the problem as

$\minimize c^T x$

subject to $Ax = b$ and $x \geq 0$

where now the vector x is in \mathbb{R}^n. The m additional components are called slack variables since each of the m inequalities in the original constraint $Ax \geq b$ requires one slack variable $s_k \geq 0$ to transform the kth inequality $A_k x \geq b_k$ into an equality $A_k x - s_k = b_k$. The vector c and the matrix A of (3) are obtained from those of (1) by extending the old c with m zeros and by adjoining -1_s to the old A. Although (3) at first seems to be a trivial reformulation of (1), it is not, since the m slack variables are closely related to the variables we called y in the dual problem (2). Moreover, we now know a basic point $x^{(0)}$ that satisfies $Ax = b$ in (3), since $x^{(0)}$ can be obtained by setting $x_k^{(0)} = 0$ for $k = 1, \ldots, n$, and $x_{k+1}^{(0)} = -b_k$ for $k = 1, \ldots, m$. [Editor's note: $x^{(0)}$ is an $(n+m)$-dimensional vector of R^{n+m}; the superscript (0) is used to denote that it is the first true value of an iterated sequence of points $x^{(0)}, x^{(1)}, x^{(2)}, \ldots$. The kth component of this vector is the value $x_k^{(0)}$.] If $x_k^{(0)} \geq 0$, it is called a basic feasible point, since it satisfies the constraints of (3).

"Stage one" of the simplex method transforms a basic point into a basic feasible point, then "stage two" moves to successively better (in terms of the objective function) basic feasible points until the minimum of the objective function is reached. Since there are a finite number of basic feasible points, the simplex method will either find the solution or detect the nonsolvability of the problem in a finite number of steps. Unfortunately, the number of basic feasible points increases rapidly as the number of variables increases, and it is possible to construct problems that trick the simplex method into visiting almost all possible basic feasible points before reaching the optimum point. (See the version of the "Klee-Minty problem" included in Part 2 of our article on Khachiyan's algorithm in the September 1980 BYTE.)

Thus the worst-case performance of the simplex method is exponential in n, the number of variables. We shall write this as $O(e^n)$; the Bachmann-Landau order notation $f(n) = O(g(n))$ means that

$$\lim_{n \to \infty} \left| \frac{f(n)}{g(n)} \right| \leq K$$

where K is a constant independent of n. Put another way, for large n if you double the size of the problem, the running time will be multiplied by e^n, and e^n gets large very fast!

In spite of the worst-case performance, the simplex method has worked well in practice. Since most computer implementations continued.
tions use finite-precision arithmetic, the possibility of "cycling" due to degeneracy is practically eliminated because of the perturbation caused by round-off errors while proper scaling of the initial problem removes the pitfalls of the Klee-Minty problem. (As far as we are aware, all known Klee-Minty problems depend on scaling tricks to create their effect.)

Karmarkar's Restricted Problem
Karmarkar's algorithm does not solve the linear programming problems (1), (2), or (3) but rather the restricted problem

\[\begin{align*}
\text{(4)} & \quad \text{minimize } c^T x \\
\text{subject to } x & \in \Omega \cap \Delta^*
\end{align*} \]

where \(c, x \in R^{n+1} \) and \(\Omega = \{ x \mid Ax = 0 \} \) is the solution space of a homogeneous system of linear equations and \(\Delta^* \) is the \(n \)-dimensional simplex contained in \(R^{n+1} \) (see the text box "Concepts from Linear Algebra."). We shall make three assumptions about problem (4):

(A) the minimum value of the objective function is zero;
(B) the problem is feasible and the center \(a_0 \) of the simplex \(\Delta^* \) is a feasible point (i.e., \(a_0 \in \Omega \)); and
(C) a termination parameter \(q > 0 \) is given, and we will accept the problem as solved when we obtain a feasible point \(x \) with

\[\frac{c^T x}{c^T a_0} \leq 2^{-q}. \]

Minimizing the Objective Function
Suppose we wish to minimize \(c^T x \) where \(x \) is on a sphere \(S \) centered at a point \(a \). Since the solutions of \(c^T x = 0 \) are the vectors \(x \) that are perpendicular to the vector \(c \) at the origin, the solutions of \(c^T x = K \) form a family of lines parallel to the solutions of \(c^T x = 0 \). If \(K > 0 \) the displacement is in the direction of \(c \), while if \(K < 0 \) the displacement is in the opposite direction. It now becomes clear that the point on \(S \) that minimizes \(c^T x \) is \(x' \), the intersection of the circle with the vector \(-c \) drawn from the center \(a \) (see figure A).

After we have investigated Karmarkar's solution of this problem, we shall show how to transform the general problem (3) into a problem of the form (4) and how to deal with assumptions (A) and (B). Assumption (C) is inherent in any calculation that uses finite-precision arithmetic.

To make our discussion less abstract, consider example 1 as an instance of problem (4):

Example 1: minimize \((3 \ 3 - 1)x\)
subject to \(x \in \Omega \cap \Delta^* \)
where \(\Omega = \{ x \mid (2 - 3 \ 1)x = 0 \} \) and \(x \in R^3 \)

We have sketched the region \(\Omega \cap \Delta^* \) for this problem in figure 1. Since the objective function (the one being minimized) is linear and the region \(\Omega \cap \Delta^* \) is a line segment, if the function is not constant on the region, then the minimum must occur at one endpoint or the other. At \((3/5, 2/5, 0)^T\) the value of the objective function is \((9/5 + 6/5 - 0) = 3\), while at \((0, 1/4, 3/4)^T\) the value is \((0 + 3/4 - 3/4) = 0\) and assumption (A) of problem (4) is satisfied. Since the center point \(a_0 = (1/3, 1/3, 1/3)^T \) has \(Ax = (2(1/3) - 3(1/3) + 1(1/3)) = 0\) it is a member of \(\Omega \), and assumption (B) is fulfilled.

We have a problem in which the region is bounded (by the simplex \(\Delta^* \)), an interior point is known, the solution is known to be on the boundary, and an approximate solution will be satisfactory if it is within a preset tolerance of the desired value.

The Initial Step
Since \(a_0 \) of the simplex does not meet assumption (C), we cannot accept it as a solution to example 1. We must find a new point satisfying both assumptions (A) and (B) that gives a smaller objective function value. Karmarkar uses the objective function to find the best direction to move from \(a_0 \) as follows. Since \(c \in R^{n+1} \) does not give a direction in the lower dimensional region \(\Omega \cap \Delta^* \), \(c \) is projected orthogonally onto the region; this projected vector \(c^* \) then points in the direction opposite to the one we want (since we are minimizing, not maximizing). Since it suffices for the algorithm to move from interior point to interior point, Karmarkar further simplifies the problem by minimizing as follows: Inscribe a sphere in \(\Delta^* \) centered at \(a_0 \); then the intersection of this sphere with \(\Omega \) will again be a sphere of a lower dimension (because \(\Omega \) is a subspace of \(R^{n+1} \), and \(a_0 \) is both the center of the sphere and in \(\Omega \)). But then this minimization problem is trivial (see the text box "Minimizing the Objective Function"), and we have found a point to which we should move. For technical reasons that provide a guaranteed minimum improvement (see "The Main Theorem" on page 150), Karmarkar does not move as far as possible on each step and effectively uses a smaller sphere than the inscribing one we have described.

In figure 2 we indicate this process as applied to example 1. Since both our example and drawing are contained in three dimensions, the final sphere in \(\Omega \cap \Delta^* \) is of dimension 0 (two points), which makes the sketch rather trivial. However, this final sphere is two dimensions less than the simplex, and this is the case in general.

The General Iteration Step
If we call the initial point \(x^{(0)} \) (so that \(x^{(0)} = a_0 \) and the result of the initial step is \(x^{(1)} \), then we must describe the construction of \(x^{(k+1)} \) from \(x^{(k)} \) for \(k > 0 \). Each of these points is interior to \(\Omega \cap \Delta^* \), and \(x^{(k+1)} \) is obtained from \(x^{(k)} \) in a manner similar to the initial step. Karmarkar applies a projective transformation from \(\Delta^* \) to itself that moves \(x^{(k)} \) to the center \(a_0 \) and fixes the corners of the simplex. But now the initial step method can be applied to find a better point in the transformed simplex, and continued
Figure 1: The region $\Omega \cap \Delta^2$ is the intersection of the subspace of \mathbb{R}^3 and the two-dimensional simplex Δ^2. In example 1, $\Omega = \{ x \mid (2 - 3) x = 0 \}$ is a plane passing through the origin and intersecting Δ^2 in the line segment from $(0, 1/4, 3/4)^T$ to $(3/5, 2/5, 0)^T$.

Figure 2: The initial step. The vector c^* is obtained by an orthogonal projection of $(3, 3, -1)^T$ onto the region $\Omega \cap \Delta^2$; it goes behind the $x_1 - x_2$ plane. We show the inscribed one-dimensional sphere S' centered at a_0 (the center of the circle). Its intersection with Ω is the lower dimensional sphere S_0, also centered at a_0. Karmarkar's algorithm selects as the next point the point $x^{(1)}$ part way toward the minimizing point on S_0.

Figure 3: The general step: a projective transformation. To visualize a projective transformation from Δ^2 to itself, we imagine two separate simplices of different sizes and orientations such that the lines joining the corresponding vertices all intersect at a common point P and the image of $x^{(k)}$ in the first (left) simplex is a_0 in the second simplex (figure 3a). After optimizing in the second simplex, the solution points a^* and P determine a line that intersects the first simplex at $x^{(k+1)}$ (figure 3b). Connoisseurs of projective geometry will recognize this sketch as one portion of the proof of Desargues's theorem.
DISC DATA MANAGER:
For people who need a lot of storage now...

Introducing the DISC DATA MANAGER™ from Seagate. The high-capacity storage subsystem that expands module by module to meet your changing needs.

Since you choose the capacity, you never pay for more storage than you need. Yet, affordable growth is there when you need it.

The DISC DATA MANAGER is a SCSI subsystem that provides compatible storage for many environments. Including PC-DOS® and Novell’s popular Advanced Netware®.

As your needs for storage sharing increase, the DISC DATA MANAGER can be converted into the LAN DATA MANAGER™, a high-performance, IBM®-compatible file server.

But this is just half the story.

KARMARKAR’S ALGORITHM

then \(x^{(k+1)} \) is found by reversing the transformation to return to the original simplex.

In figure 3 we show how such a projective transformation can be constructed for example 1. We can see that for this example, the \(x^{(k)} \) is move nearer and nearer to the actual solution point on the boundary. Since \(x^{(k)} \) is sent to \(\mathbf{a}_0 \) by the transformation, the line segment from \(x^{(k)} \) to \((0, 1/4, 3/4)\), the desired boundary point, is stretched at each iteration, and the next \(x^{(k+1)} \) moves closer to the boundary point but never reaches it. Thus assumption (C) is an essential feature in that it ensures an end to Karmarkar’s method.

It is worth noting that since the algorithm returns to the initial region at each step, round-off errors will not accumulate. The method is stable in that, should an \(x^{(k)} \) be outside \(\Omega \cap \Delta^* \) from numerical error, the algorithm can continue as soon as \(x^{(k)} \) is revised to be feasible again.

An Algebraic Description

We will now make our geometric description precise by giving algebraic formulas for various parts of the process. Suppose we have \(x^{(k)} \) and we want to find \(x^{(k+1)} \).

First we need a projective transformation \(T: \Delta^* \to \Delta^* \), which sends \(x^{(k)} \) to \(\mathbf{a}_0 \). Let \(D = D(x^{(k)}) \) be the diagonal matrix of \(x^{(k)} \) and let \(T(x) = D^{-1}x/eTD^{-1}x \). Since \(D^{-1}x^{(k)} = e \) and \(eTD^{-1}x^{(k)} = e'e = n + 1 \), we see that \(T(x^{(k)}) = \mathbf{a}_0 \). To show that \(T \) is a projective transformation, it suffices to show that \(T \) takes lines to lines.

Notice that \(T(x) \) is really \(D^{-1}x \) together with a normalization to \(\mathbf{a}_0 \) so that \(T(x) \) remains in \(\Delta^* \). Since \(\Omega = \{ x | A x = 0 \} \) is an affine space and projective transformations preserve affine spaces, \(\Omega' = T(\Omega) \) is an affine space. \(\Omega' \) is also the null space of \(AD \) since \(A x = 0 \) if and only if \(AD(T(x)) = 0 \) (to see this directly, just put in our definition of \(T(x) \) and notice that \(DD^{-1} = I_{n+1} \)).

Let \(B \) be the matrix \(AD \) augmented with a bottom row of ones \(\mathbf{1} \), i.e., \(B \) will define \(\Omega' \cap \Delta^* \) since \(\Omega' \cap \Delta^* \) is \(\Omega' \) together with the condition that the sum of the components of the vector is 1.

Let

\[
\mathbf{c}_r = (I_{n+1} - B(B'B)^{-1}B)\mathbf{c}.
\]

be the projection of \(\mathbf{c} \) onto the null space of \(B \).

Since the radius of the largest inscribed sphere in \(\Delta^* \) is \(r = 1/\sqrt{(n + 1)n} \) we can improve our objective function by moving a distance no more than \(r \) (which guarantees feasibility) from \(\mathbf{a}_0 \) in the direction \(-\mathbf{c}_r \). Karmarkar introduces a parameter \(\alpha \) between 0 and 1 (\(\alpha \) can be set equal to 1/4) and moves the length \(\alpha r \) from \(\mathbf{a}_0 \) in the direction that decreases the value of the objective function to find his new point

\[
\mathbf{a}^* = \mathbf{a}_0 - \alpha (\mathbf{c}_r/|\mathbf{c}_r|)
\]

and then we set \(x^{(k+1)} = \mathbf{a}^*/eTD\mathbf{a}^* \) so that \(x^{(k+1)} \) is in \(\Omega \cap \Delta^* \) and \(T(x^{(k+1)}) = \mathbf{a}^* \).

The BASIC program in listing 1 carries out this calculation for example 1 and arrives at the solution \(x^{(19)} = (0.0003, 0.2501, 0.7497) \) with the termination parameter \(\epsilon'(x^{(19)}/e'T\mathbf{a}_0 \) < 0.001. The exact solution is \((0, 0.25, 0.75) \).

The Main Theorem

We now have an algorithm, some nice pictures, and an example that the algorithm appears to solve. The only problem is that as yet there is no reason to suppose that the algorithm succeeded for any reason other than sheer luck. Projective transformations
Listing 1: This BASIC program, KAREXI, is written in a version of Microsoft BASIC that should run on most microcomputers. It solves the problem given as example 1 in the text.

200 ' N is number of unknowns and K is the number of equations
202 ' N = 3 : K = 1
206 ' K1 = K + 1 : K2 = 2*K1
212 DIM AO(N), XOLD(N), XNEW(N), CC(N), CP(N), A(K,N), B(K1,N), B1(K1,K2), B2(N,K1), B3(N,N)
214 ' CC is for the objective function
216 ' Bl, B2 and BJ are used for the computation of CP
218 ' Rand C are "row" and "column" indices
220 ' Initially, set Xnew = AO, the center of simplex
222 ' T is the tolerance
224 ' ALPHA is usually set equal to 1/4
226 ' ITERATION = 0
228 FOR C = 1 TO N: AO(C) = 1 / N: XNEW(C) = AO(C): NEXT C
230 ' T = .001
232 ' V = 0: FOR C = 1 TO N: V = V + CC(C)*AO(C): NEXT C: VNEW = V
234 ' Now we can begin the MAIN ITERATION process...
236 ' DATA for constraint matrix A
238 ' DATA for objective function CC
240 ' DATA 2, -1, 1
242 ' FOR R = 1 TO K: FOR C = 1 TO N: READ A(R,C): NEXT C: NEXT R
244 ' V = 0 FOR C = 1 TO N: V = V + CC(C)*AO(C): NEXT C: VNEW = V
246 ' ITERATION = ITERATION + 1
248 ' Put Xnew into Xold
250 ' FOR C = 1 TO N: XOLD(C) = XNEW(C): NEXT C
252 ' Construct the matrix B
254 ' FOR R = 1 TO K: FOR C = 1 TO N: B1(R,C) = A(R,C)*XOLD(C): NEXT C: NEXT R
256 ' DATA for constraint matrix A
258 ' DATA 2, -1, 1
260 ' FOR R = 1 TO K: FOR C = 1 TO N: READ A(R,C): NEXT C: NEXT R
262 ' FOR C = 1 TO N: READ CC(C): NEXT C
264 ' DATA for objective function CC
266 ' DATA 2, -1, 1
268 ' FOR C = 1 TO N: READ CC(C): NEXT C
270 ' Set initial Value to value at center of simplex...
272 ' S = 0 FOR C = 1 TO N: S = S + CC(C)*AO(C): NEXT C: SNEW = S
274 ' Now we can begin the MAIN ITERATION process...
276 ' WHILE VNEW / V > T
278 ' PRINT USING "####"; ITERATION:;
280 ' FOR C = 1 TO N: PRINT USING "####"; XNEW(C) : NEXT C
282 ' S = 0 FOR C = 1 TO N: S = S + CC(C)*AO(C): NEXT C: SNEW = S
284 ' T = T + 1
286 ' DATA for constraint matrix A
288 ' DATA 2, -1, 1
290 ' FOR R = 1 TO K: FOR C = 1 TO N: READ A(R,C): NEXT C: NEXT R
292 ' DATA for objective function CC
294 ' DATA 2, -1, 1
296 ' FOR R = 1 TO K: FOR C = 1 TO N: READ A(R,C): NEXT C: NEXT R
298 ' S = 0 FOR C = 1 TO N: S = S + CC(C)*AO(C): NEXT C: SNEW = S
300 ' WHILE VNEW / V > T
302 ' PRINT USING "####"; ITERATION: ;
304 ' ITERATION = ITERATION + 1
306 ' Put Xnew into Xold
308 ' FOR C = 1 TO N: XOLD(C) = XNEW(C): NEXT C
310 ' Construct the matrix B
312 FOR R = 1 TO K: FOR C = 1 TO N: B1(R,C) = A(R,C)*XOLD(C): NEXT C: NEXT R
314 ' CC is for the objective function
316 ' Bl, B2 and BJ are used for the computation of CP
318 ' Rand C are "row" and "column" indices
320 ' Initially, set Xnew = AO, the center of simplex
322 ' T is the tolerance
324 ' ALPHA is usually set equal to 1/4
326 ' ITERATION = 0
328 FOR C = 1 TO N: AO(C) = 1 / N: XNEW(C) = AO(C): NEXT C
330 ' T = .001
332 ' V = 0: FOR C = 1 TO N: V = V + CC(C)*AO(C): NEXT C: VNEW = V
334 ' Now we can begin the MAIN ITERATION process...
336 ' DATA for constraint matrix A
338 ' DATA for objective function CC
340 ' DATA 2, -1, 1
342 ' FOR R = 1 TO K: FOR C = 1 TO N: READ A(R,C): NEXT C: NEXT R
344 ' V = 0 FOR C = 1 TO N: V = V + CC(C)*AO(C): NEXT C: VNEW = V
346 ' ITERATION = ITERATION + 1
348 ' Put Xnew into Xold
350 ' FOR C = 1 TO N: XOLD(C) = XNEW(C): NEXT C
352 ' Construct the matrix B
354 ' FOR R = 1 TO K: FOR C = 1 TO N: B1(R,C) = A(R,C)*XOLD(C): NEXT C: NEXT R
356 ' CC is for the objective function
358 ' Bl, B2 and BJ are used for the computation of CP
360 ' Rand C are "row" and "column" indices
362 ' Initially, set Xnew = AO, the center of simplex
364 ' T is the tolerance
366 ' ALPHA is usually set equal to 1/4
368 ' ITERATION = 0
370 ' FOR C = 1 TO N: AO(C) = 1 / N: XNEW(C) = AO(C): NEXT C
372 ' T = .001
374 ' V = 0: FOR C = 1 TO N: V = V + CC(C)*AO(C): NEXT C: VNEW = V
376 ' ITERATION = ITERATION + 1
378 ' Put Xnew into Xold
380 ' FOR C = 1 TO N: XOLD(C) = XNEW(C): NEXT C
382 ' Construct the matrix B
384 ' FOR R = 1 TO K: FOR C = 1 TO N: B1(R,C) = A(R,C)*XOLD(C): NEXT C: NEXT R

...and a lot more in the future.

With the DISC DATA MANAGER, you can add more disc drives as your need for storage grows. Adding one or more drives gives you a capacity range from 160 MB to over 1 gigabyte.

Using multiple drives, you can perform overlapping operations. Or back up important files on separate drives. There's even an optional 40 MB tape drive for archival storage.

Best of all, the DISC DATA MANAGER is made by Seagate, the people who have built reliable performance into more than 6 million 5 1/4" hard disc drives.

For more information on the storage subsystem that grows with you, call us. 800-468-DISC. Ask for Tim.
do not preserve linear functions such as the objective function of the problem. Karmarkar’s main result is the association of a “potential function” with the objective function, and then a proof that his algorithm reduces the potential function by a guaranteed amount with each iteration, and then a proof that the reduction of the potential function is equivalent to reduction of the ratio \(\frac{c^T x}{c^T a_0} \). While an exposition of these proofs is beyond the scope of this article, we shall state his principal result and show how the reduction in \(\frac{c^T x}{c^T a_0} \) then follows.

Given the objective function of problem (4), let the corresponding potential function \(f(x) \) be

\[f(x) = \sum_{j=1}^{n} \min \left(\frac{c_j}{c_{a_j}}, x_j \right) \]

Karmarkar’s main result is the association of a “potential function” with the objective function, and then a proof that his algorithm reduces the potential function by a guaranteed amount with each iteration, and then a proof that the reduction of the potential function is equivalent to reduction of the ratio \(\frac{c^T x}{c^T a_0} \). While an exposition of these proofs is beyond the scope of this article, we shall state his principal result and show how the reduction in \(\frac{c^T x}{c^T a_0} \) then follows.

Given the objective function of problem (4), let the corresponding potential function \(f(x) \) be

\[f(x) = \sum_{j=1}^{n} \min \left(\frac{c_j}{c_{a_j}}, x_j \right) \]
Improve Your Word Processor With Hercules.

Now your word processor can have full display and printing flexibility without slowing down. The secret is the exclusive Hercules graphics card mode called RamFont. Which isn’t really graphics at all. You see, graphics mode is slow. That’s why most IBM compatible word processors run in fast, but limited text mode (they can only display 256 ASCII characters).

No Compromises with RamFont.

Some choice. Slow down software by using graphics mode to display italics, subscripts, superscripts, large characters, different fonts, etc. Or forget all that in favor of speedy text mode.

Hercules solved the problem without compromise some time ago ... almost 200,000 graphics cards ago to be specific. Because in addition to text mode and 720x348 graphics, we include RamFont. Today’s standard for text-based programs. RamFont gives the flexibility of graphics at the speed of text by displaying 3072 software defined characters instead of ASCII’s limited 256. Available in two versions for your PC: the Hercules Graphics Card Plus (for monochrome TTL monitors) and the Hercules In Color Card (for “EGA-type” and multi-sync monitors).

Improve Today’s Software.

RamFont runs Microsoft Word complete with its excellent on-screen display of attributes and fonts. But there’s a difference. It’s up to four times faster than the graphics mode in which it was written. Only Hercules cards let Lotus Manuscript display boldface, italics, subscripts, superscripts, and many equations in text processing mode. And RamFont expands Broderbund ForComment’s viewing area to a full 80x43.

Programs like Design Enterprise’s Alexander use it to display symbols (musical notes and foreign languages) which, before RamFont, were possible only in the much slower graphics mode. Other programs including Nota Bene, WordMARC, and Qalam all have optimized displays with RamFont.

In fact, every word processor can run better with Hercules. Independent add-on packages (TurboFonts, the Enhance Star series, etc.) let word processors like WordPerfect, Multimate, WordStar, and DisplayWrite take advantage of the same sort of display and printing flexibility.

Improve The Software of Tomorrow.

WYSIWYG for underlining, italics, subscripts, font display, etc. is just the beginning. A whole new generation of word processors will use RamFont to mix a nearly infinite variety of fonts in different sizes on-screen at sizzling text speed. Which will make them look like, but run much faster than most of today’s desktop publishers.

So, for better word processing, ask for Hercules with RamFont. It’s the most compatible way to improve your writing.

Hercules InColor Card

- Standard Text—All programs run in 2 or more colors.
- Hercules 720x348 graphics in up to 16 colors—15% higher than EGA.
- Hercules RamFont—5,072 software definable characters in 16 colors up to 12,288 in 2 colors.

For more information call Hercules toll-free at: 1-800-532-0600 Ext. 304. In Canada, 1-800-323-0601 Ext. 304.

Hercules Computer Technology. Berkeley, California 94710; Tech Support: (415) 540-0749; Sales: (415) 540-4242. Hercules, RamFont and InColor are trademarks of Hercules Computer Technology. Other products are trademarks of their respective holders. © 1987 Hercules Computer Technology.
\[
(5) \quad f(x) = \sum_{i=1}^{n+1} \ln(c_i^T x / a_i)
\]

where \(\ln(r) \) is the natural logarithm of the real number \(r \) and \(x_i \) is
the \(i \)th component of the \((n+1)\)-dimensional point \(x \). Karmarkar
considers this potential function under the projective transformation \(T \) and shows that, in the transformed space \(\Omega \cap \Delta^* \), the point that minimizes \((Dc)^T(T(x))\) on the inscribed sphere of
radius \(\alpha \) either gives a value of zero or has reduced the transformed
potential function by at least \(\delta > 0 \) where the constant \(\delta \)
depends on \(\alpha \). In particular, if \(\alpha = 1/4 \) then \(\delta \geq 1/8 \). Then
applying the inverse transformation, he obtains

Karmarkar’s theorem: Either (i) \(c_i^T x(\alpha + 1) = 0 \) or (ii) \(f(x(\alpha + 1)) \leq f(x(\alpha)) - \delta \) where \(\delta \) is a constant depending on \(\alpha \), and if \(\alpha = 1/4 \), then \(\delta \geq 1/8 \).

Suppose the algorithm has run for \(m \) iterations and \(c_i^T x(m) > 0 \). How close to the solution have we come? Applying the theorem repeatedly, we have

\[
\sum_{i=1}^{n+1} \ln[c_i^T x(m) / a_i] \leq \sum_{i=1}^{n+1} [\ln(c_i^T a_i) - \ln(1/(n+1))] - m\delta
\]

so

\[
(n+1) \ln[c_i^T x(m) / a_i] \leq (n+1) \ln(c_i^T a_i) + \ln(1/n+1) - m\delta
\]

which gives us

\[
(6) \quad \ln\left(\frac{c_i^T x(m)}{c_i^T a_i} \right) \leq \ln(n+1) + \frac{1}{n+1} \sum_{i=1}^{n+1} \ln(x(m)_i) - \frac{m\delta}{n+1}
\]

Because \(x(m) \) is in the interior of \(\Delta^* \), all of the components of \(x(m) \) are \(0 < x(m)_i < 1 \) and so the term \(\sum \ln(x(m)_i) \) is negative. Thus

\[
\ln\left(\frac{c_i^T x(m)}{c_i^T a_i} \right) < \ln(n+1) - \frac{m\delta}{n+1}
\]

The equation

\[
m = \frac{(n+1)(q + \ln(n+1))}{\delta}
\]

gives us the number of iterations of Karmarkar’s algorithm we need to calculate. To see that this is true, substitute \(m \) into the last inequality, which eventually becomes

\[
\ln\left(\frac{c_i^T x(m)}{c_i^T a_i} \right) < q - q
\]

Exponentiating both sides and noting that \(e^r < 2^s \) for \(q < 0 \), we get

\[
\frac{c_i^T x(m)}{c_i^T a_i} < e^q < 2^q
\]

which is equivalent to condition (C) of Karmarkar’s restricted
problem, problem (4). The above definition for \(m \) leads us to
approximate the number of iterations of Karmarkar’s algorithm as \(O((n+1)(q + \ln(n+1))) \).

Nonzero Objective Functions

We now turn to the assumptions we made about problem (4). Assumption (A) was that the minimum of the objective function

was zero. Let us now suppose that the minimum is not zero but some other number \(M \). How can we regain assumption (A)? Since \(x \in \Delta^* \), \(x_1 + \ldots + x_{n+1} = 1 \) and multiplication by \(M \)
gives \(M = M(x_1 + \ldots + x_{n+1}) \). Now we can make the objective function homogeneous by considering instead

\[
c_i^T x - Mx = (c - Me)^T x
\]

since the minimum of this function is zero.

As an example, let us alter example 1 by changing only the objective function:

Example 1a: minimize \((1 1 0)x\)
subject to \(x \in \Omega \cap \Delta^*\)
where \(\Omega = \{x \mid (2 - 3 I)x = 0\} \) and \(x \in R^3 \)

(This retains the region \(\Omega \cap \Delta^* \) of example 1.) The minimum
still occurs at \((0, 1/4, 3/4)\) but instead of 0 it is now 1/4. The
alteration discussed above gives the new objective function

\[
(1 1 0)x - (1/4)x = (3/4 3/4 - 1/4)x
\]

which has a minimum value of 0.

Reduction to the Restricted Problem

Actually, example 1a came from a problem of the general form
(3). Let us see how the reduction of problem type (3) to type (4)
was carried out for the example problems before we consider the
reduction method in general. Consider the problem

Example 1b: minimize \((1 1)x\)
subject to \((-2 - 3)x = -1\) (where \(x \in P_3\))

and the sketch of the constraint region in figure 4. Notice that the minimum occurs at \((0, 1/3)\) and that \((1, 1)^T\) is an interior feasible point. We construct a projective transformation \(T \) from \(P_3 \) to \(\Delta^3 \) as follows:

\[
X_1 = x_1/(x_1 + x_2 + 1)
X_2 = x_2/(x_1 + x_2 + 1)
X_3 = 1/(x_1 + x_2 + 1)
\]

where lowercase \(x \) components are for the vector of \(P_3 \) while
upercase \(X \) components are for the vector in \(\Delta^3 \) (which requires
three components since \(\Delta^3 \subset R^3 \)). This transformation sends \((0, 1/3)\) to \((1/3, 1/3, 1/3)\) and the feasible point \((1, 1)^T\) into
the bounded simplex \(\Delta^3 \). Since \(X_j \) approaches 0 as \(x_1 \), \(x_2 \rightarrow \infty \), we see
that \(X_j = 0 \) corresponds to "infinitely large" values for \(x_j \) and \(x_k \)
in the far reaches of \(P_3 \). Thus \(T \) has taken the unbounded region
\(P_3 \) and compressed it into the bounded simplex \(\Delta^3 \).

What happens to the straight line \((2 - 3)x = -1\)? Since \(x_1 + x_2 + 1 \geq 1 \) for \(x \in P_3 \), we can rewrite the original constraint
\(Ax = b \) as

\[
\frac{2x_1 - 3x_2}{x_1 + x_2 + 1} = -1
\]

\[
x_1 + x_2 + 1
\]

which is the same as \(2X_1 - 3X_2 + X_3 = 0 \). With this done, we
have reduced example 1b (of type (3)) into a problem of type (4).
(Notice that the image of the half-line region in \(P_3 \) is a line segment
in \(\Delta^3 \) as we would expect, since \(T \) is a projective transformation.)

The reduction described in the previous paragraph is general­
ized easily. Suppose we have any problem of type (3) and an
interior feasible point \(a \in P_3 \) (so that \(Aa = b \)). Let \(T: P_3 \rightarrow \Delta^3 \subset R^{n+1} \) be given by

continued
Better Spreadsheets, Fast With Hercules.

Like to know a secret shared by nearly 200,000 Hercules RamFont users? Your 1-2-3, Symphony, Framework or Multiplan* will run better on a Hercules Graphics Card Plus or Hercules InColor Card.

And we run them better in a number of ways.

Display More Data.

First, you get more data on the screen without sacrificing your ability to scroll or move around the spreadsheet fast. Hercules' exclusive RamFont mode lets 1-2-3 and Symphony display nearly twice as much data (from 2,000 characters to about 3,400) expanding your view from 80 columns x 25 rows to a full 90x38. Microsoft Multiplan's display expands from 80x25 to 90x30 with the ability to toggle between the two. And Ashton-Tate's Framework goes from 80x25 to 90x43.

More data on screen without a loss of scrolling speed means you get a more functional spreadsheet. And you get it fast.

Crisp Graphics.
Mono & Color.

Hercules 720x348 graphics is the highest popularly supported resolution available for IBM PCs/XTs/ATs, and a wealth of compatibles. Our industry-standard 720x348 graphics mode and RamFont mode are now available for both monochrome TTL monitors (Hercules Graphics Card Plus) and enhanced color "EGA type" and multi-sync monitors (Hercules InColor Card).

All of which means that built-in graphics on 1-2-3, Symphony, Framework II, SuperCalc 4, Javelin, Open Access, and Enable will be able to run in both mono and full color on either card. And so can add-on packages like Microsoft Chart, VP Graphics, and Stella Business Graphics.

Compatibility Plus.

Which brings us to yet another big benefit for spreadsheets and graphics. Hercules cards are completely compatible with each other. Any monochrome standard text, Hercules graphics or Hercules RamFont compatible program (and there are thousands of them) will run in two to sixteen colors on the Hercules InColor Card without changing video drivers.

And that makes moving (or networking) between mono and color systems a breeze.

So, for better spreadsheets ask for Hercules with RamFont. We're the graphics cards you can count on.

For more information call Hercules toll-free at: 1-800-532-0600 Ext. 304. In Canada, 1-800-323-0601 Ext. 304.

Hercules
We run your software better.

Inquiry 118 for End-Users. Inquiry 119 for DEALERS ONLY.

Hercules Computer Technology, 2550 Ninth Street, Berkeley, California 94710; Tech Support: (415) 540-0749; Sales: (415) 540-0212; Hercules, RamFont and InColor are trademarks of Hercules Computer Technology. Other products are trademarks of their respective holders. © 1987 Hercules Computer Technology.

Figure 4: Reduction to the restricted problem. The projective transformation \(T \) sending \(P', \) (the "first quadrant") to \(\Delta^2 \) can be visualized as follows: Imagine tipping the sketch of \(P', \) so that "infinity" dips down to the horizon (a). What you now see is a triangle bounded by the two axes and the horizon line or "line at infinity" (b).

\[(7) \quad X_k = \frac{x_k/a_k}{(x_1/a_1) + \ldots + (x_n/a_n) + 1} \quad \text{for} \ k = 1, \ldots, n; \]

and

\[X_{n+1} = \frac{1}{(x_1/a_1) + \ldots + (x_n/a_n) + 1} \]

where, as in the example, lowercase components are for the vector in \(P' \), while uppercase components are for the vector in \(\Delta^2 \) (which requires \(n + 1 \) components since \(\Delta^2 \subset \mathbb{R}^{n+1} \)). As in the example, the system of equations \(Ax = b \) in problem (3) is transformed into a homogeneous system as required by problem (4) since we have the additional component \(X_{n+1} \), which can be used to eliminate the constant terms in the constraints of (3). Moreover, assumption (B) is satisfied since \(T \) sends the feasible point \(a \) to the center \(a_0 \) of the simplex \(\Delta^2 \).

It remains for us to explain two things: first, how the interior feasible point can be found (since it is essential for the construction of the transformation \(T \)); and second, what to do if the minimum of the objective function is not known.

Feasibility Problems

Given a system of equations \(Ax = b \) as in problem (3), we wish to find a solution \(a \) in the interior of \(P'. \). Let \(x_0 = e \) (so \(x_0 \) is in the interior of \(P' \)) and let \(b_0 = Ax_0 - b \). If \(b_0 = 0 \), then \(x_0 \) is feasible and we are done, so let us suppose that \(b_0 \) is not zero. We introduce an artificial variable \(\lambda \) and consider the problem

\[(8) \quad \begin{align*}
& \text{minimize } \lambda \\
& \text{subject to } Ax - b = \lambda b_0 \\
& \text{where } x \geq 0 \text{ and } \lambda \geq 0
\end{align*} \]

But \(x = x_0 \) and \(\lambda = 1 \) is a feasible point for (8), and this problem is of the form (3). If the minimum of \(\lambda \) is zero, then we have solved \(Ax - b = 0 \), and we have a feasible point for problem (3). Of course, if there is no feasible point to be found, then problem (3) has no solution anyway.

Since the feasibility problem corresponding to example 1b is rather trivial, let us consider a slightly larger problem that might come from a problem of the form (1). The four inequalities

\[x_1 \leq 3 \\
\begin{align*}
 x_2 & \leq 2 \\
 x_3 & \leq 5 \\
 x_4 & \leq 4
\end{align*} \]

form the boundaries of a 1-by-1 unit square in \(P' \) whose upper left corner is \((2, 5)^T\).

If we introduce four (nonnegative) slack variables, we can rewrite these inequalities as equalities:

\[\begin{align*}
 x_1 + s_1 &= 3 \\
 x_2 - s_2 &= 2 \\
 x_3 + s_3 &= 5 \\
 x_4 - s_4 &= 4
\end{align*} \]

We now have a problem in \(P_4 \). Setting \(x_0 = e \) and \(b_0 = Ax_0 - b \), we find that \(b_0^T = (\begin{smallmatrix} -1 \\ -2 \\ -3 \\ -4 \end{smallmatrix}) \), so our problem can be rewritten as

Example 2a:

\[\begin{align*}
& \text{minimize } (0 \ 0 \ 0 \ 0 \ 0 \ 1)^T Y \\
& \text{subject to } \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & -1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & -1 & 4 \end{pmatrix} \begin{pmatrix} Y \\ x_0 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ 5 \\ 4 \end{pmatrix} \\
& \text{and } Y \in P', \end{align*} \]

continued
De-clone Your Compatible With Hercules.

Most popular IBM PC/XT/AT compatible computers really stand out with Hercules Graphics Cards.

That's because our cards can actually improve the way software runs on the COMPAQ DeskPro 286/386, Leading Edge Model D, and IBM compatible models from Epson, Hewlett-Packard, Kaypro, NCR, Tandy, Zenith, and many others.

Three Modes You Need for Your Software.

Both the Hercules Graphics Card Plus (for TTL monochrome monitors) and new Hercules InColor Card (for multi-sync and enhanced color "EGA type" monitors) contain the three modes you need to get the most out of software on your compatible.

High Resolution Graphics: Your PC benefits from Hercules' crisp 720x348 resolution—the highest popularly supported standard—in monochrome, or up to 16 colors.

RamFont Mode: This powerful new mode allows popular programs to display up to 3,072 software definable characters instead of the fixed 256 ASCII character set.

Text Mode: Thousands of standard text programs run on both Hercules cards.

With RamFont, Lotus 1-2-3 and Symphony display nearly twice their regular spreadsheet data... with no loss in scrolling speed. Microsoft Word runs up to four times faster. Lotus Manuscript, and many other word processors, can have the true text speed display of italics, subscripts and superscripts. And, it enables add-on packages to open up whole new areas of font and foreign character display for programs like WordPerfect, WordStar, and Multimate; while providing powerful capabilities for software of the future.

We Love Compatibility

Our Graphics Card Plus and new InColor Card are completely compatible with each other. So you can easily move your software from mono to color systems and back again without worrying about video drivers.

So to get the most out of your software, specify a Hercules Graphic Card Plus or a Hercules InColor Card for your system. And make your compatible more than a clone.

For more information call Hercules toll-free at 1-800-532-0600 Ext. 304. In Canada, 1-800-323-0601 Ext. 304.

Hercules Computer Technology, 2550 Ninth-Street, Berkeley, California 94710; Tech support: (415) 540-0740; Sales: (415) 540-0212. Hercules, RamFont and InColor are trademarks of Hercules Computer Technology. Other products are trademarks of their respective holders. © 1987 Hercules Computer Technology.
New Quark®/PC Single Board Computer

Base model 5.75" x 8"

Only $395.

Reg. Price $495.

Quantity discounts available.

- IBM PC® compatible single board computer mounts to 51/4" drive
- Includes Floppy Disk & Color Graphics CRT Controllers plus more

Also includes: Legal BIOS • Boots MSDOS® 3.0 • Printer Port • 2 Serial Ports • 256K RAM • Clock speed at 4.77 MHz • Alphanumeric and Graphics Modes for Color Video, Controller • Standard IBM® Keyboard Port.

Options include: 512K RAM • Piggyback 110 channel Controller • Standard IBM® Keyboard Port.

THE 3.5" CONNECTION!

This internal 3.5\textquoteleft\textquotedblleft\ disk drive is a "drop-in" replacement for 5.25\textquoteleft\textquotedblleft drives! It's the ideal solution for exchanging data between your PCXT88 and the new generation of laptops. Disk format is compatible with IBM, Toshiba and Zenith portable systems. The Model 873W drive kit contains everything you need, including interface adapters, premium SONY drive, and complete documentation. Use your existing disk controller (no additional slots required). Requires DOS 3.2 for maximum performance. Ask about our Model 873W (1.44MB).

KARMARKAR'S ALGORITHM

Here y_1, \ldots, y_7 correspond to x_1, \ldots, x_6 and y_8 to λ. But this problem is similar to example 1b, and we can apply the projective transformation $T: P^7 \rightarrow A' \subset R^8$ given by

$$Y_k = \frac{y_k}{y_1 + \ldots + y_7 + 1} \quad \text{for } k = 1, \ldots, 7;$$

$$Y_8 = \frac{1}{y_1 + \ldots + y_7 + 1}$$

(usage our usual notation) to obtain a problem in the form of problem (4):

Example 2b:

minimize $(0, 0, 0, 0, 0, 0, 1, 0)Y$

subject to

$$
\begin{pmatrix}
1 & 0 & 1 & 0 & 0 & 0 & -1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & -2 \\
0 & 1 & 0 & 0 & 1 & 0 & 3 & -5 \\
0 & 1 & 0 & 0 & 0 & 1 & -4 & -4
\end{pmatrix}Y = 0
$$

and $Y \in \Delta^7$

After this problem is solved by Karmarkar's algorithm, the inverse projective transformation must be applied to return to our original coordinates in P^7. Of course, we are interested only in the first two coordinates; the rest are the four slack variables and the artificial variable.

The BASIC program KAREX2 carries out this calculation for example 2 and arrives at the solution $x_1 = 4.42794$ with a tolerance of 0.001. [Editor's note: See the end of the article for more information on KAREX2 and KAREX3. These two programs are minor variations on listing 1.]

An Infeasible Problem

Suppose example 2 were not feasible. How would we have discovered this using Karmarkar's algorithm? From equation (6) we saw that if the algorithm is carried out m times, the ratio $c^T x^*(m)/c^T a_0$ must be no more than a certain size. Thus given the q from assumption (C) of problem (4), we can calculate in advance the maximum number of iterations we will run the algorithm. If after that many iterations we do not have an answer within the required tolerance, then our system of equations is not feasible.

For example, let us alter the situation of example 2 to require $x_1 \geq 3$ and $x_6 \leq 2$ instead of $2 \leq x_1 \leq 3$. Proceeding as before, we obtain

Example 3:

minimize $(0, 0, 0, 0, 0, 0, 1, 0)Y$

subject to

$$
\begin{pmatrix}
1 & -1 & 0 & 0 & 0 & 3 & -3 \\
1 & 0 & 1 & 0 & 0 & 0 & -2 \\
0 & 1 & 0 & 0 & 1 & 0 & 3 & -5 \\
0 & 1 & 0 & 0 & 0 & 1 & -4 & -4
\end{pmatrix}Y = 0
$$

and $Y \in \Delta^7$

The BASIC program KAREX3 attempts to solve this problem in the same manner that KAREX2 solved example 2, but we have added a "failure" detection routine: At the end of each iteration, the program tests inequality (6) and ends if it does not hold. We decided to use inequality (6) in our example rather than the later inequality Karmarkar used to estimate the number of iterations because dropping the $\Sigma \ln(x_i^{(m)})$ terms results in a rather large overestimate of the number of steps needed. The program fails at iteration 26 where $x_1^{(26)} = 1.81118$ and $x_6^{(26)} = 3.02786$. continued
Finally! A printer as versatile as your PC.

By giving you extraordinarily easy access to all the printout options your office needs, the new Facit B-line matrix printers really let you exploit the full potential of your PC.

Such as when you want to change from high throughput draft to perfect quality NLQ – just flick the rotary switch on the front panel. When you want to change font – just plug in a new font card. When you need to change from continuous forms to cut-sheets – the printer loads the paper for you.

And while the beauty of the B-line concept improves the impression made by your PC, the attractive design and low noise level make the printers perfect for every office environment, too.

Check out the facts below and go for a test drive at your nearest Facit representative.

- B3100: 80 columns, 128 lines/minute* (250 cps)
- B3150: 136 columns, 128 lines/minute* (250 cps)
- B3350: 136 columns, 109 lines/minute* (200 cps), 18-needle printhead for 100 cps NLQ
- Rotary switch for fast print quality selection
- Easy operation with soft set-up in national language
- Extensive paper handling – push/pull tractor, tear-off, automatic loading of single sheets. Optional single or double bin sheetfeeder
- Low noise key
- Facit, IBM Proprinter and Epson FX/JX emulations
- Parallel and serial interfaces
- 4-color option
- Extra fonts by means of plug-in card
 - 80 col, 10 cpi.

IBM and Epson are registered trademarks
KARMARKAR’S ALGORITHM

Solving an LP Problem

Now we can put all these pieces together and explain how to solve the linear programming problem (3). One way would be to rewrite the problem as a (giant) feasibility problem (as we described for Khachiyan’s algorithm) and then proceed to solve it. While this way of solving a linear programming problem looks nice, it defeats the advantage of Karmarkar’s approach: the use of the objective function as a gradient to find the "best" direction to move.

Karmarkar’s solution is as follows: First, find a feasible point in the interior of \(P^+ \). If no point can be found, then there is no solution to the problem and we are finished. Given a feasible point, construct the transformation (7) and reduce the problem to the restricted form (4) with assumptions (B) and (C) fulfilled.

Now we must deal with assumption (A). If the actual minimum is known, we can proceed as before by altering the objective function (as we did with example 1a). But what if the minimum value is unknown? We can at least put upper and lower bounds, say \(u_0 \) and \(u_1 \), on it (these may be ridiculous overestimates, but since the objective function is a linear function on a bounded region, such bounds must exist). Now divide the difference between these bounds into thirds and set \(l_i = u_0 + (u_1 - u_0)/3 \) and \(u_i = l_i + 2(u_1 - u_0)/3 \). If we pretend that the minimum actually is \(l_1 \) and run the algorithm (modified so that if it finds a point \(x^{(m)} \) with \(c^T x^{(m)} < 0 \) then it backtracks along the line segment to \(x^{(m-1)} \) to find the point with \(c^T x = 0 \) and returns this value as \(x^{(m)} \), we will find out whether or not the real minimum is between \(l_0 \) and \(l_1 \). If it is, we have new upper and lower bounds and we can repeat this process; if it is not, we can pretend that \(u_1 \) is the minimum and try again. Either way, the range between the upper and lower bounds is reduced by either 1/3 or 2/3 each time. In this way, we can zero in on the actual minimum of the objective function very quickly.

Some Implementation Comments

As you may have noticed, we have used \(a_0 = e \), the unit vector, in our examples; this was done only to simplify the arithmetic. The projective transformation \(T: P^+ \rightarrow \Delta \) in equation (7) is defined for any point \(x \) in the interior of \(P^+ \); clearly, the more "intelligent" your choice of \(a_0 \), the quicker Karmarkar’s algorithm will find the solution.

Karmarkar’s estimates of the relation between the \(\alpha \) and \(\delta \) were crucial to the proofs of his theorems. Since the feasible point used as the initial point in his algorithm is arbitrary, it is clear that as a practical matter, \(\alpha \) may be allowed to vary from step to step. One may choose \(\alpha \) so that each successive approximation to the solution remains feasible and interior to \(\Delta^+ \). You are invited to experiment with various \(\alpha \) in the example programs we have included.

While we have touched on the issue of complexity, our discussions have been far from complete. It is difficult to compare the simplex method and Karmarkar’s algorithm since the work involved within each of their respective steps is different. The main bottleneck in Karmarkar’s algorithm is the matrix inversion step needed for the orthogonal projection of \(c \) to \(c_x \). In our sample programs, we have made no attempt at speed: We find \((BB^*)^{-1} \) by brute force row reduction of \(BB^* \).

Karmarkar also describes a modified algorithm in which the computations in the \((k+1) \)th step use those of the \(k \)th step, and he is able to reduce the arithmetic operations required for each step from \(\Omega(n^3) \) to \(\Omega(n^{4/3}) \). Readers interested in this modification should consult Karmarkar’s original paper (cited at the beginning of this article).

[Editor’s note: The source code for KAREX1.BAS, KAREX2.BAS, and KAREX3.BAS is available on disk, in print, and on BIX. See the insert card following page 256 for details. Listings are also available on BYTEnet; see page 4.]
What happened to the article on page 208?

Someone ahead of you knows. He has information you'll never see. Make a career move now! Keep up with your peers—order your own subscription today.

Save $20 off the newsstand price—12 issues at $22 instead of $42. If you're not satisfied write “cancel” on your invoice and keep the first issue free.

☐ U.S. ☐ Canada/Mexico ☐ Europe-Air Delivery ☐ Worldwide-Surface Delivery
$22.00 (1 yr.) $25.00 U.S. (1 yr.) $69.00 U.S. (1 yr.) $37.00 U.S. (1 yr.)

☐ Bill me (North America only)
☐ Payment enclosed (U.S. Funds drawn on a U.S. bank only)
☐ Charge to my ☐ VISA ☐ MasterCard
Card # ___________________________ Expires ___

Name ________________________________
Address ______________________________
City/State ____________________________
Country ______________________________
Code ________________________________

Signature ____________________________

Please allow 6-8 weeks for processing your subscription

For direct ordering call toll free weekdays 9:00 am—5:00 pm EST: 1 800 423-8272.
(In New Jersey: 1 800 367-0218).
Season’s Top-Selling

Fall 1987

EPSON FX-286E
- 240 cps Draft/40 cps NLQ
- 132 Column, 8K Buffer
- Friction/Tractor Feed
No. EPFX286E

NEC 1401 Multisync
- Multisync RGB
- 800 x 560 Display
- 6 Text Switchable
No. NEC1401

HAYES
Smartmodem 1200
- 300/1200 Baud External
- Automatic Speed Selection
- Voice/Data Transmissions
No. HY1200

LOTUS 1-2-3
No. ICLQ01

VIDEO SEVEN
VEGA Deluxe
- 752 x 410 Display
- EGA, CGA, MGA, HGC
- 256K-DRAM Screen Buffer
No. VSEGAD

$439
$549
$299
$319

COMPUTER MAIL ORDER
When you want to talk computers.
When you want to talk price.
Call toll-free: 1-800-233-8950.
Outside the U.S.A. 717-327-9575 Telex 5106017898 Fax No. 717-327-1217
CMO. 477 East Third Street, Dept. A109X, Williamsport, PA 17701
All major credit cards accepted
PC-TOO 8MHz XT Systems

BASIC SYSTEM CONFIGURATION:
- NEC V-20 CPU, 4.77 - 8 MHz Speed
- 640K Mother Board Memory
- 8 I/O Expansion Slots
- 360K Floppy Disk Drive
- Floppy Drive Controller
- Clock Calendar with Battery Backup
- 150 Watt Power Supply
- IBM Compatible BIOS
- 100-Key AT-XT Switchable Keyboard
- 24 Hour Burn-In
- Backed by our One Year Warranty

BASE SYSTEM PRICE:
- With Dual 360K Floppies..............................$639.00
- With 20 MB Hard Drive and Controller..............$899.00

PC-TOO 12 MHz XT Systems

- NEC V-20 CPU, 12 MHz Speed
- 640K Mother Board Memory
- 8 I/O Expansion Slots
- 360K Floppy Disk Drive
- Floppy Drive Controller
- Clock Calendar with Battery Backup
- 150 Watt Power Supply
- IBM Compatible BIOS
- 100-Key AT-XT Switchable Keyboard
- 24 Hour Burn-In
- Backed by our One Year Warranty

BASE SYSTEM PRICE:
- With 20 MB Hard Drive and Controller...............$919.00
- With 20 MB Hard Drive and 40 MB Tape..............$1269.00

PC-TOO 8 MHz AT Systems

BASIC SYSTEM CONFIGURATION:
- NEC V-20 CPU, 12 MHz Speed
- 640K Mother Board Memory
- 8 I/O Expansion Slots
- 360K Floppy Disk Drive
- Floppy Drive Controller
- Clock Calendar with Battery Backup
- 150 Watt Power Supply
- IBM Compatible BIOS
- 100-Key AT-XT Switchable Keyboard
- 24 Hour Burn-In
- Backed by our One Year Warranty

BASE SYSTEM PRICE:
- With 20 MB Hard Drive and Controller................$1299.00
- With 40 MB Hard Drive and Controller..............$1469.00

PC-TOO 10 MHz 0-Wait State System

- 10 MHz 80286 16-Bit Microprocessor
- 512K Motherboard Memory Expandable to 1 MB
- 8 I/O Expansion Slots (6 16-Bit & 2 8-Bit)
- Battery Backed-up/Real-Time Clock
- 1.2 MB Floppy Disk Drive
- Dual Hard Disk/Dual Floppy Controller Card
- 238 Watt Power Supply
- Fully Compatible High Speed BIOS
- 5 Half-Height Front Storage Slots (4 exposed)
- 101-Key Enhanced Keyboard
- Microsoft MS-DOS with GW-Basic
- 24-Hour Burn-in
- Backed by our One Year Warranty

BASE SYSTEM PRICE:
- With 20 MB Hard Disk Drive...........................$1799.00
- With 40 MB Hard Disk Drive and 40 MB Tape.......$2249.00
Execution.
Did you know that CMO ships 90% of its orders the same or the next day. Our sophisticated mainframe system enables us to achieve efficiencies that have our competition green with envy. CMO provides many important customer services including toll-free ordering, toll-free order status and toll-free customer support. We offer free catalog membership and we don’t require our customers to pay money to join a club in order to buy from us. We offer alternative methods of shipping to best suit your needs. For a nominal fee our trained technicians will assemble your system, installing boards, drives and other options. We will burn your system in and test it so when you recieve it all you need to do is unbox it and plug it in. Our qualified, courteous sales consultants are ready to serve you. Phone today.

Call toll-free: 1-800-223-8950

Outside the U.S.A. 717-327-9575 Telex 5106017898 Fax No. 717-327-1217

Most major credit cards accepted.
NEC GB-1 Board
- 640 x 480 Display
- 256K Display RAM
- Dr. Halo II Software
$319

QUADRAM QuadEGA ProSync
- 752 x 410 Display
- AutoSelect Display Mode
No. QU6000P $339

NSI Smart EGA Plus
- Runs all standards in color
- 800x600 or 640x480 Modes
- Half-Size, supports IBM PS/2 VGA
No. NSI04 $289

EVEREX Autoswitch Enhancer
- Autoswitch EGA
- 132 Column Operation
- Parallel Printer Port
No. EV657B $149

INTEL Above Board/286
- 512K Expandable to 2 MB
- Conventional, Expanded and Extended Memory
- For AT or XT up to 12.5 MHz
No. IN4020 $349

INTEL Inboard 386/AT
- Converts AT to 386 16 MHz operation
- Up to 1 MB with 32 bit memory on board
No. INB3000 $1459

HERCULES Graphics Card Plus
- 720 x 348 Bit Mapped Graphics
- RAM Font Software Included
- Parallel Port
No. HEGCP $199

ZUCKERBOARD Mono Graphics Card
- 720 x 348 Pixel Graphics
- Hercules Compatible
- 64K RAM, Parallel Port
No. HX05 $999

AST Six Pak Plus
- 64K to 384K Memory
- Clock, Serial, Parallel, Game Port
- SuperPak, SuperDrive Software
No. ATS1 $129

AST Advantage
- Up to 3 MB of Memory
- Supports PC-DOS and Xenix
- Parallel/Serial Ports
No. ATADV $319

BOCA BocaRam AT
- 16 Bit, Runs to 16 MHz
- 1 MB - 4 MB Memory
- Expanded, Extended, LIM
No. BOAT10 $279

QUADRAM Silverboard
- 640K Memory
- Clock, Parallel, Game Clock
- Quadmaster, PolyWindows Software
No. QU02B $119

QUADRAM Model 30 Quadboard
- IBM PS/2 Model 30 compatible
- 256K to 2 MB Memory expansion
- Parallel, Serial Ports
No. QUPS30 $299

ZUCKERBOARD PS/2
50/60 Multifunction Board
- 256K to 3 MB Memory
- Parallel and Serial Ports
- EMS and Diagnostic Software
No. HX15 $249

EVEREX RAM 4000
- IBM PS/2 Model 50 & 60
- Up to 4 MB Memory
- Expanded, Extended, LIM
No. EV136 $379
Competitive Pricing.

Did you know that CMO will meet or beat any legitimate competitive price. That’s why our client list keeps growing. More and more people are discovering that CMO can save them a lot of money. Just call our toll-free number with your best price and allow one of our courteous and knowledgeable consultants to beat the price—and save you money.
NEC P660
- 24-Wire Dot Matrix
- 216 cps Draft/65 cps NLQ
- 360x360 Dots per inch
No. NIP660

$459

PANASONIC KX-P1091i
- 160 cps Draft/32 cps NLQ
- 9-Pin Head, 80 column
- IBM Pro Printer Emulation
No. PA1091

$179

PANASONIC KX-P1595
- 240 CPS Draft/21 CPS NLQ
- 16.5" Paper Width
- Rear Push Tractor Feed
No. PA1595

$449

BROTHER M-1509 Dot Matrix
- 180 CPS Draft/45 CPS NLQ
- Auto Paper Loading
- Friction and Pin Feed
No. BRM1509

$389

BROTHER HR-40 Daisywheel
- 40 CPS, 136 Columns
- 2 Color Printing
- Friction and Forms Tractor
No. BRHR40

$589

BROTHER 2024L 24 Wire
- 160 CPS Draft/96 CPS NLQ
- 136 Column/272 Condensed
- Tractor and Friction Feed
No. BRL2024

$599

OKIDATA ML-192 Plus
- 9 Pin Dot-Matrix
- 200 cps Draft/40 cps NLQ
- 80 column, 8K Buffer
No. OK192P

$329

OKIDATA ML-193 Plus
- 200 CPS Draft, 40 CPS NLQ
- 8K Print Buffer
- 9 Wire, 132 Column
No. OK193I

$479

OKIDATA ML-293
- Dual 9 Pin Dot-Matrix
- 240 cps Draft/100 cps NLQ
- 136 column, 8K Buffer
No. OK293

$539

TOSHIBA P321SL
- 24 Wire Print Head
- 216/180/72 cps
- Character font cartridges
No. TB321SL

$529

TOSHIBA P351-II
- 24 Wire Print Head
- 268 cps Draft/100 cps NLQ
- 136 column
No. TB351S

$889

CITIZEN Premier 35
- 35 cps Daisywheel
- Built-in clock/calendar display
- Error messages in English
No. CZMSP35

$489
EPSON LX-800
• 150 CPS Draft/30 CPS NLQ
• 9 Pin Dot Matrix, 80 Column
• Built-in Tractor Feed
No. EPLX800
$179

EPSON FX-86E
• 240 cps Draft/40 cps NLQ
• 9 Wire Dot Matrix
• Selectype Control Panel
No. EPFX86E

EPSON EX-1000
• 9 Pin Dot Matrix
• 300 CPS Draft/50 CPS NLQ
• 132 Column, BK Buffer
No. EPEX1000
$319

EPSON EX-800
• 9 Pin Dot-Matrix
• 300 cps Draft/50 cps NLQ
• 80 column, 8K Buffer
No. EPEX800
$379

EPSON LQ-800
• 24 Wire Dot-Matrix
• 180 cps Draft/60 cps NLQ
• 80 column, 7K Buffer
No. EPLQ800
$449

EPSON LQ-1000
• 24 Wire Dot Matrix
• 180 CPS Draft/60 CPS NLQ
• 136 Column, Select Type III
No. EPLQ1000
$569

NEWLETT PACKARD Thinkjet 2225C
• 150 CPS Inkjet
• Transportable, Lightweight
• Pin or Tractor Feed
No. HP2225C
$379

CITOH 315XP
• 300 cps Draft/50 cps NLQ
• 15" Carriage Width
• IBM/Epson compatible
No. TE315XP
$549

STAR MICRONICS NX-15
• 120 CPS Draft/50 CPS NLQ
• 5K Buffer, 132 Column
• Friction & Tractor Feed
No. SGNX15
$349

Selection.
Did you know that CMO carries over 3,000 products including the best respected names in the industry. Representing over 200 manufacturers, our $8 million inventory is housed in over 60,000 sq. ft. of space. Because of our large inventory, we are able to provide our customers with tremendous options and selections from which to choose. Also, our trained consultants offer free consultation and will be happy to help design and configure your system to fit your needs and budget.

Call toll-free: 1-800-223-8950
Outside the U.S.A. 717-327-9575 Telex 5106017898 Fax No. 717-327-1217
Most major credit cards accepted.
Mountain Drivecard
- 20 Meg, No. MB20: $519
- 30 Meg, No. MB30: $589
- 50 Meg, No. MB50: $729

Mountain Beta Drive
- 5¼” Bernoulli Technology
- 20 MB Removable Cartridge
- Unlimited Storage
- No. MB9029: $1,499

Mountain Dual 20 MB External
- Bernoulli Technology
- Dual 20 MB Cartridges
- Requires PC2 Controller
- No. MB4174: $1,799

CMS Drive Plus 21
- 21 MB Expansion Card
- 3½” Rigid Disks
- 5 MB/sec. Transfer Rate
- No. CH20DP: $339

CMS T-160 Back Up
- 60 MB on single cartridge
- Streaming or File-by-File
- Complete with controller
- No. CH60BE: $599

Iomega Bernoulli Box
- Uses 2 20 MB Cartridges
- Performs, Expands
- Reliable, Transportable
- No. MB40: $1,899

Seagate 20 MB Hard Drive Kit
- Seagate ST-225 Drive
- Hard Drive Controller
- Mounting Hardware
- No. SA225C: $339

Seagate 30 MB Hard Drive Kit
- Seagate ST-238 Drive
- RLL Controller Card
- Mounting Hardware
- No. SA238C: $389

Iomega Excel-Stream 60
- 60 MB Cassette Back-up
- Back up 5 MB per minute
- Built-in Formatter
- No. EV60ST: $589

Irwin 20 MB Tape Subsystem
- 20 MB Tape Capacity
- Interface Cable Kit Included
- 250 Kbps Data Transfer Rate
- No. IW420XT: $479

Racore Jr. Expansion Chassis
- Provides 360K Disk Drive
- Clock/Calendar and DMA
- Parallel Port and Expansion
- No. RR1501: $329

Miniscribe 6053 44 MB Drive
- 44.6 MB Hard Drive
- 28 MB Full Height
- 5 Mbits/sec. transfer
- No. SA6053: $679

Saba Handscan
- Reads Words and Numbers
- Exports to spreadsheets, word processors and data bases
- Works with Lotus 1-2-3, Multimate
- Wordperfect, dBase & RBase
- No. ICSA1000: $469

Polaroid Pallette Plus
- Computer Image Recorder
- 35mm and 3x4 Film Unit
- 8 Pallette Software Included
- No. PO01P: $2,399
AMDEK

Video 310A
- 12" TTL Amber
- 12 MHz Band width
- 80 x 25 lines, 2000 characters

No. AMA310 $139

AMDEK

Video 410 Series
- 12" TTL Amber, Green, White
- Up to 999 lines
- Flat non-glare screen

No. AM410A, G, or W $159

AMDEK

Color 600
- 13" Dark Bulb CRT
- Supports 16 colors
- 80 x 25 lines, 2000 characters

No. AMC600 $349

AMDEK

Color 722
- 13" In-line, etched screen
- Supports 64 colors
- 720 x 350 display

No. AMC722 $469

MAGNAVOX

PC-Monitor 80
- 12" TTL Display
- 1000 Lines (center)
- Dark Glass CRT

No. NAP613, Green $99.99

MAGNAVOX

RGB Monitor 80
- 14" RGB/Composite
- 640 x 240 Display
- Dark Glass CRT

No. NAP515 $299

MAGNAVOX

Professional 8CM873
- Multimode teletypograms
- 926 x 580 display
- 15 KHz to 34KHz

No. NAP873 $549

ZENITH

ZVM-Composite
- 12" TTL Composite
- 25 x 80 lines
- Anti-Glare Screen

No. ZEG1230 $99.99

NEC

TTL Monochrome
- 12" TTL Monochrome
- 720 x 350 Display
- Non-Glare Phosphor

No. NEA1265, Amber $99.99

NEC

Multisync Plus
- 15" Flattened CRT
- 960 x 720 Resolution
- 3-Way Text Switch

No. NEC1401P $1199

PRINCETON

MAX-12
- 12" Amber TTL
- 720 x 350 Display
- 16 Shades

No. PNM12E $149

PRINCETON

HX-12E
- 12" Color RGB
- 640 x 350 Display
- EGA Compatible

No. PN12E $479

Dependability.

Did you know that CMO is one of the oldest direct marketers of computers in the country. We are also one of the largest—serving more than 350,000 customers. Our list of satisfied customers include over 75% of the Fortune 1000 companies. Also, many schools and universities, as well as many small businesses and individuals have come to depend on CMO for their computer related needs.

Call toll-free: 1-800-223-8950

Outside the U.S.A. 717-327-9575 Telex 5106017898 Fax No. 717-327-1217

Most major credit cards accepted.
<table>
<thead>
<tr>
<th>Product</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXELL Double & Hi Density</td>
<td>5½ DS/DD 10 Pack No. MXD2</td>
<td>$16.99</td>
</tr>
<tr>
<td></td>
<td>5½ Hi Dens. 10 Pack No. MXD2HD</td>
<td>$18.99</td>
</tr>
<tr>
<td>MAXELL Data Tape</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC300A, No. MXMC4500</td>
<td></td>
<td>$21.99</td>
</tr>
<tr>
<td>DC600A, No. MXMC600AG</td>
<td></td>
<td>$25.99</td>
</tr>
<tr>
<td>DC2200, No. MXMC2050</td>
<td></td>
<td>$19.99</td>
</tr>
<tr>
<td>ALLSOP Diskette Holders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3½” Holds 30 No. ARDF30M</td>
<td></td>
<td>$9.99</td>
</tr>
<tr>
<td>5¼” Holds 60 No. ARDF50</td>
<td></td>
<td>$9.99</td>
</tr>
<tr>
<td>SONY 3½” & 5½” Diskettes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC300A, No. MXMC4500</td>
<td></td>
<td>$19.99</td>
</tr>
<tr>
<td>DC600A, No. MXMC600AG</td>
<td></td>
<td>$9.49</td>
</tr>
<tr>
<td>CRT Valet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arm rotates 360°</td>
<td></td>
<td>$99.99</td>
</tr>
<tr>
<td>KALAMAR Teakwood File Cabinets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holds 45 3½” Discs No. CR52</td>
<td></td>
<td>$14.99</td>
</tr>
<tr>
<td>Holds 50 5¼” Discs No. CR54</td>
<td></td>
<td>$17.99</td>
</tr>
<tr>
<td>KEYTRONICS KB-5151 Keyboard</td>
<td></td>
<td>$159.00</td>
</tr>
<tr>
<td>No. KT5151</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KENSINGTON MasterPiece Plus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. KEM08</td>
<td></td>
<td>$109.00</td>
</tr>
<tr>
<td>AMERICAN POWER 330 Watt UPS</td>
<td></td>
<td>$399.00</td>
</tr>
<tr>
<td>No. AJ300XT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CURTIS Surge Protectors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. CUSP1P, Diamond</td>
<td></td>
<td>$49.99</td>
</tr>
<tr>
<td>No. CUSP2P, Ruby</td>
<td></td>
<td>$69.99</td>
</tr>
<tr>
<td>CURTIS Universal Printer Stand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. CUUPS1</td>
<td></td>
<td>$19.99</td>
</tr>
<tr>
<td>CURTIS Tool Kit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. CUTK1</td>
<td></td>
<td>$22.99</td>
</tr>
<tr>
<td>DATASHIELD Turbo 350 SPS</td>
<td></td>
<td>$449.00</td>
</tr>
<tr>
<td>No. DZ205</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATASHIELD Surge Protectors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5100, No. DZ902</td>
<td></td>
<td>$79.99</td>
</tr>
<tr>
<td>585, No. DZ503</td>
<td></td>
<td>$69.99</td>
</tr>
<tr>
<td>HEWLETT PACKARD HP-18C Business Consultant</td>
<td>$139.00</td>
<td></td>
</tr>
<tr>
<td>No. HP18C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTEL Math Co-Processors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. IN8087 PC</td>
<td></td>
<td>$129.00</td>
</tr>
<tr>
<td>No. IN8098 AT</td>
<td></td>
<td>$179.00</td>
</tr>
</tbody>
</table>

CMO. Policies and particulars.

- Next day shipping on all in-stock items.
- Free technical support from our own factory-trained staff.
- Toll-free order inquiry.
- No surcharge on VISA or MasterCard orders.
- Credit cards will not be charged until the order is shipped.
- No limit and no deposit on COD orders.
- No sales tax on orders shipped outside PA.
- No waiting period for cashier's checks.

SHIPPING. Add 3% (minimum $7.00) shipping and handling on all orders. Larger shipments may require additional charges. Returned items may be subject to a restocking fee. All items subject to availability and price changes. Educational Institutions call toll-free 1-800-221-4283.

Call toll-free: 1-800-223-8950

Outside the U.S.A. 717-327-9575 Telex 5106017898 Fax No. 717-327-1217

Most major credit cards accepted.
ANCHOR
Volksmodem 1200 Internal
• 300/1200 Baud Internal
• Hayes compatible
• Communications Software included

$89.99
No. ANVM7

LOTUS
1-2-3 Upgrade
• Version 2.01 Full Set of Six Disks
• Full Spreadsheet Data Base
• Lotus users dream

$249
No. ICL020

BOCA
EGA
• 640 x 350 Resolution
• 16 Color/64 Palette
• 256K of Video Memory

$149
No. BOEGA

LEADING EDGE
Model-D Monitor
• 12" TTL Green Screen
• IBM Compatible
• Ergonomic Design

$79.99
No. LEG

LOGITECH C7 Serial Mouse
with Software
• Opto-mechanical
• 200 DPI Resolution
• 3 Button Design

$74.99
No. ICLG03

STAR MICRONICS
NX-10 Printer
• 120 cps, Draft/30 cps NLQ
• 5K Buffer, 80 column
• Friction and tractor feed

$159
No. SGNX10

CENTRAL POINT
Copy II PC Option Board
• Menu-Driven
• Makes exact back-ups
• Includes track editor

$84.99
No. ICCP02

TURNER HALL
Note-It
• Electronic annotate for 1-2-3
• DOS command access
• Edits, searches, prints

$45.99
No. ICTH02

PC-T00
Datasave 4000
• 40 MB Formatted capacity
• 3½" Pocket Size Cartridges, DC 2000
• Uses existing floppy controller

$429
No. MBPC5750

COMPUTER MAIL ORDER
When you want to talk computers.
When you want to talk price.
Call toll-free: 1-800-233-8950.
Outside the U.S.A. 717-327-9575 Telex 5106017898 Fax No. 717-327-1217
CMO. 477 East Third Street, Dept. A109X, Williamsport, PA 17701
All major credit cards accepted
Printer Technologies

Color Printing .. 163
by Naomi M. Luft

Vector-to-Raster Algorithms 177
by Dick Fountain

Page Printers .. 187
by Rick Cook

Print Quality .. 199
by Lars Jansson

Engineering Close-Ups:
Taming the Hot Heads 209
by Keith B. Davenport

Matrix-Line Printing 215
by Mark Hohneker

Color Thermal-Transfer Printing 221
by Julio Guardado

Designing a High-Speed
Page Printer Controller 225
by Phil Ellison

Strip-Buffer vs. Full-Page
Bit-Map Imaging 229
by Bert Douglas
Introduction
Printer Technologies

The values by which we measure printers are easily understood and yet imprecisely defined. Speed is easiest to measure in characters per second, but that approach has little value to users, who are more interested in pages per minute, a value that can’t be derived simply from a printer’s maximum rate. But measures of throughput require agreement on what constitutes a representative document. Quality doesn’t lend itself to precise definition either. Each level of printing—draft, near-letter-quality, and letter-quality—has its own separate criteria. Furthermore, each different technology tends to have its own set of standards.

Even cost comparison is not always straightforward. Increasingly, printers have optional font cards or cartridges and software that may affect cost. With page printers, the addition of memory to a system may make cost comparisons misleading, and the presence or absence of on-board intelligence, in the form of a controller, can also confuse cost comparisons.

In this collection of articles, we’ve tried to help define the issues more precisely by explaining exactly what goes into the various technologies. Rick Cook’s article, “Page Printers,” brings out some important distinctions and limitations of laser, liquid-crystal-shutter, and light-emitting-diode designs. He explains why these units are so expensive and what it will take to bring their costs down.

In “Color Printing,” Naomi M. Luft describes the subtractive color process and the various ways we have of currently getting living color on paper. This article also includes a text box entitled “Plastic Ink,” which describes a new implementation of the ink-jet technology.

Lars Jansson takes an original and direct approach to the question of “Print Quality.” He explains the factors affecting print quality and proposes a set of objective measurements. Dick Fountain puts aside his regular column this month to discuss the conversions necessary to make rasterized images from vector information in “Vector-to-Raster Algorithms.”

Turning to more traditional printer designs, three short engineering close-ups give an insider’s view of how dot-matrix-impact, thermal-transfer, and other designs continue to be refined. “Taming the Hot Heads” by Keith B. Davenport shows how careful engineering and CAD have helped to maximize print-head efficiency and reduce the heat buildup that comes with fast printing. Mark Hohneker summarizes an alternative approach to standard dot-matrix-impact designs in “Matrix-Line Printing,” and Julio Guardado describes another increasingly important technology in “Color Thermal-Transfer Printing.”

Two additional engineering close-ups deal with page printers. In “Designing a High-Speed Page Printer Controller,” Phil Ellison describes what is involved in making a page printer controller in order to maximize throughput. On an even more detailed level is Bert Douglas’s article, “Strip-Buffer vs. Full-Page Bit-Map Imaging.”

One aspect of printer technology we don’t cover in this section is speed—how to measure and define it. Instead, we will conclude this introduction with a summary of a proposed new standard for measuring speed.

According to a draft version of the European Printer Performance Test (EPPT), 11 major printer manufacturers in Europe worked to develop the specification for measuring true print speed or throughput. The specification is intended for use with all printer designs (i.e., dot-matrix, daisy-wheel, ink-jet, thermal-transfer, and laser). The standard does not deal with measurements or criteria for measuring quality, character fonts, and so forth. However, it does provide a descriptive system for defining the various quality levels so that, for example, draft printing and letter-quality printing speed become objective terms.

The hope of the original group of 11 manufacturers is that the proposed standard will be adopted or at least incorporated into an official standard by the European Computer Manufacturers Association (ECMA) and the American National Standards Institute (ANSI). The test is designed for use only with printers that support European languages.

The tests are divided into performance tests and endurance tests. For the performance tests, the data patterns are printed five times. For the endurance tests, data patterns are printed repeatedly for 1 hour. The tests are (a) a letter test using a standardized letter; (b) a spreadsheet test using a 132-character-per-line spreadsheet; and (c) a graphics test, consisting of two vertical lines and two triangles, made up strictly of bit-image information.

The draft version of the EPPT runs 14 pages plus appendices. It is a precise and well thought-out standard and, if adopted, will do much to eliminate the current confusion regarding advertising and specification of printing speed. For further information on the proposed EPPT, you can write to Alan Clennetson, Dataquest U.K. Ltd., 13th Floor, Centre Point Bldg., 103 New Oxford St., London WC1A 1DD, U.K.

—George A. Stewart and Jane Morrill Tazelaar, Technical Editors
Color Printing

A balancing act among price, performance, and print quality

IN COLOR PRINTING, you get what you pay for. The key word, and one I will use many times, is trade-off. You pay for higher resolution with longer processing and printing times. To get higher speed, you pay—and pay. To get more color choices, you trade effective print resolution. And the list goes on. But the list of available color-printing technologies also goes on; the current total is six.

In order of current popularity, these six basic color-printing technologies are pen and electrostatic plotters, and thermal-transfer, ink-jet, serial dot-matrix, and electrophotographic (color laser) printers. The vector-oriented pen plotters are by far the most popular, largely because they are flexible. They "write" with varied-color pens on various media and have a large base of existing software. However, raster-based competitive technologies are gaining ground by offering faster print speeds, superior text printing, and compatibility with the emerging world of digital imaging.

Unlike pen plotters, raster-based printing systems must perform several electronic image-creation functions, including combining basic colors under software control, precisely overlaying colors to get shades, and interpreting a rasterized bit stream rather than vector commands. Although each color-printing technology handles these required functions differently, some basic principles are common to all.

Generating Colors
The most familiar example of a raster-based product that produces a variety of shades through color mixing is the television set. The color “model” used for producing colors on TVs, and the closely related color computer monitors, is RGB: Three light sources (red, green, and blue) generate the color within the monitor. The presence of all three colors creates white, while their absence results in black. Red, green, and blue are sometimes called the additive colors.

Printing systems usually do not use the RGB model because the colors are strong and opaque and therefore do not combine well. Instead, the complementary model, CMY (cyan, magenta, and yellow), is customary. Cyan, magenta, and yellow are referred to as the subtractive primaries because they create color by subtracting a particular color of light reflected off a white page. Cyan is the absence of red, magenta the absence of green, and yellow the absence of blue. You can combine these three colors to create the additive colors (red, green, and blue), as well as black (see figure 1). (Since this combined black often appears brown, many printers are also configured with a "true" black as a fourth color.)

The process of combining colors is mechanically tricky and represents a technical challenge for all printer technologies. With the exception of ink-jet, all color printers separate the printing function for each of the subtractive colors, overlaying the colors in several passes. Thus, registration is critical to ensure that each pixel lines up precisely with the corresponding pixel from a previous pass. In moving-head (serial) printing systems, such as serial dot-matrix and some thermal-transfer printers, the print head traverses the same line repeatedly until it has printed all the colors, then the paper moves to the next line. Page-oriented systems, such as fixed-head thermal-transfer, electrostatic, and electrophotographic printers, print the entire page in one color before going to the next color.

Mixing Colors
Processing color separations and overlaying pixels become even more complex when an application requires more than the seven basic colors shown in figure 1. In general, printers lack the flexibility of computer monitors, which can vary shades under software control by varying the intensity of the electron beam. The only printing technology to achieve shading by varying the electrical signal is dye sublimation, an emerging subset of thermal-transfer printing that creates near-photographic-quality output. The more common approach to printing shades of the basic colors is dithering.

The dithering process generates shades of gray by mixing black with various percentages of white. Rather than treating each pixel as a single dot, systems that employ dithering combine dots into a matrix to create intermediate color values. Figure 2 shows how, in a 2-by-2 matrix,
you can combine the two basic values, black and white, into five shades.

In color systems, the range of shades increases substantially with a 2-by-2 matrix. Each subtractive color can have five intensity levels that can in turn be overprinted, thereby generating up to 125 different shades (5 by 5 by 5, with the three multiples representing the three subtractive colors). The possibilities increase as the matrix size increases. In a 3-by-3 matrix, each color can have 10 intensity levels, so you can achieve 1000 shades of color. Dithering patterns exist in the application software, the printer-resident firmware, or a combination of both.

Figure 1: This diagram shows the actual subtractive colors: cyan, magenta, and yellow. The other colors—red, blue, green, and black—were formed by combining these colors; that is, the yellow and magenta together form the red shown here, and so on. The brownish black is a combination of CMY and illustrates why many printer manufacturers add a true black to their colors.

Figure 2: Dithering generates shades of gray by mixing black and white. Treating each dot as a 2-by-2 matrix lets you combine black and white into five shades: 100 percent white, 25 percent black and 75 percent white, 50/50, and so on. You can employ a similar scheme with colors, greatly increasing the number of available colors but also decreasing the final resolution.

You make trade-offs, however, in this method of increasing the number of colors. Dithering is effective only in relatively high resolution systems in which individual dots are barely distinguishable and, consequently, a matrix of dots is small enough to appear as a single picture element, so the color shade appears spatially integrated to the eye. The matrix structure effectively reduces the printer's resolution. For example, if a 200-dot-per-inch printer generates 125 shades using a 2-by-2 matrix, its effective resolution is reduced by that factor of 2 to 100 dpi. For 1000 colors (the 3-by-3 matrix), the effective resolution is reduced by a factor of 3 to 67 dpi. Therefore, when you need the highest possible resolution, you need to restrict your choices to the seven basic colors. Dithering is especially useful for shading large areas like pie charts in business graphics.

Two alternatives to dithering maintain printer resolution while they expand the number of color shades. One approach, used in commercial printing, is to vary the size of the dot in a technique called half-toning. Because it is difficult to control dot size with existing printer technologies, only a few specialized systems have taken this approach; most of them use ink-jet technology.

Another approach is to use ink or ribbons with more than three subtractive colors, ideally, two intensity levels for each subtractive primary. With six colors plus black, you could generate 216 colors per picture element without losing any resolution. The disadvantages of this approach are that the costs of hardware and supplies increase while throughput rates decline, since you need to either make more passes or distribute hardware resources, such as ink-jet nozzles, between more colors.

Setting Up Your System
With the exception of pen plotters, all current color printers are raster-based; that is, the image is decomposed into scan lines and then reconstructed during printing. Since most software defines graphics in terms of vectors, graphics systems have an algorithm to convert vector commands into a matrix for display on the raster-based monitor; you can use this same matrix to print the image (see "Vector-to-Raster Algorithms" by Dick Pountain on page 177). Again, trade-offs are involved in choosing various print matrices.

Three basic configuration choices exist: You can attach a printer directly to the monitor's screen buffer, which holds a bit map of pixel information; a printer can share the video signal with the monitor; or you can convert the computer's vector information into a printer-compatible raster image via software or dedicated hardware.

The first two choices are "screen-dump" methods that let you bypass the need for software drivers and generate quick hard copies of screen information. The information is transferred one for one from the computer to the hard-copy device; therefore, whatever is on the
Print Master from BayTech is an intelligent printer controller that connects between your computers and printers. It allows you to share one printer automatically, contend for multiple printers automatically, or switch between several printers by sending a simple code, not by changing cables. Plus, Print Master's generous built-in buffer spools data until your printers can receive it.

Because Print Master is a very flexible device, you can set it up to fit your application, even if your application changes.

YOU SET UP THE IN-OUT PORTS

You configure Print Master's ports for any combination of printers and computers by answering questions from easy-to-follow menus. For example, with the ten port Print Master, nine computers can share one printer, eight computers can share two printers, seven computers can share three printers, and so on, to one computer which can share nine printers. You can also menu-select the disconnect time-out, form feeds, etc. and on serial models, the configuration of individual ports to translate for printers and computers using different configurations.

Since Print Master can accept data faster than your printer (up to 19.2KB serial or 5,000 characters per second parallel), you can send a print job to Print Master's standard 512K buffer and then go on to another project. All users connected to Print Master can send data to this common pool buffer, and they can be doing it simultaneously, even if no printer is available. Data is stored in the buffer until it can be sent on a first-job-in first-job-out basis to the selected printer. If you need more memory than 512K, Print Master is optionally available with one megabyte buffer.

If several users are sharing one printer, printer sharing via Print Master is completely automatic. There are no codes to send. You simply perform your normal print operation. If you are sharing several identical printers, connection is also automatic. Again, you perform your normal print operation and are connected to the next available printer on a first-come-first-serve basis. Print Master will send data to all printers simultaneously to keep your printers running at full capacity.

If you are sharing several different printers, such as a laser-jet, a dot matrix and a plotter, and you wish to select a specific printer, you do your normal print routine and also send a printer select code (which you can define yourself) before the first characters of your data. The data is then routed to the selected printer. It's that easy.

PARALLEL, RS-232C OR RS-422A MODELS

706A (6 parallel ports), $795
706C (6 serial ports), $795
708C (8 serial ports), $895
710C (10 serial ports), $995
706D (4 parallel/2 serial), $795
708D (6 parallel/2 serial), $895
706E (4 serial/2 parallel), $795
708E (6 serial/2 parallel), $895
710E (8 serial/2 parallel), $995
706F (4 serial/4 parallel), $895
710F (6 serial/4 parallel), $995
710G (6 serial/4 parallel), $995
All above models have standard 512K buffers.
Additional 500K buffer, $249
RS422A for distances up to 4,000 feet now available on some models.

WANT DETAILS?

Call or write BayTech at P.O. Box 387, Highway 603, Bay Saint Louis, Mississippi 39520, USA. Telex 910-333-1618. Phone 601-467-8231 or 800-523-2702
screen will appear exactly the same way on the printer. However, the printer usually has a higher resolution than the system monitor. Thus, when you transmit the pixels to the printer and print them at full resolution, the printed image becomes much smaller than the displayed image was. For example, a 640- by 480-pixel image on the screen printed at 200 dpi becomes a 3.2- by 2.4-inch printout. Systems usually compensate by assigning multiple print dots to each screen pixel to get a larger image. Since this method doesn’t take advantage of the printer’s higher resolution, the “jaggies” (visible stairstepping) from the screen also appear on the printout.

The third approach, converting vectors to raster information specifically for the printer, has the advantage of not limiting the image to the size of the monitor’s screen buffer; printing can take place at full resolution. The trade-offs are in price and performance. Because the system must manipulate many more bits of information, this approach is both processing- and memory-intensive, which adds to the expense and can result in low throughput rates.

Vector-to-raster conversion can take two approaches: software- or hardware-based. Some systems generate raster data in host software and transmit a bit map to the printer via the standard printer interface. The main disadvantage of this software-based method is that it ties up the host during image processing. More advanced systems frequently use dedicated hardware processors that are optimized for this conversion function. The configuration possibilities include an external box, an add-in card, and a printer-resident controller. Add-in cards can cost as little as $600, while the higher-performance rasterizers can run over $6000, a hefty price now that most high-end color printers cost under $10,000. In addition, you need software drivers to link applications with each specific output device.

I want to look at the operating principles and performance trade-offs of the six color-printing and -plotting technologies currently available. Figure 3 illustrates how these technologies compare in price and performance.

Pen Plotters

To date, pen plotters have been the most popular color-output devices. Widely used in technical applications such as CAD/CAE, they can produce output up to E-size (34 by 44 inches). Office applications, such as business graphics and presentation materials, increasingly use plotters. Desktop models for A- and B-size drawings are available for under $2000, and software drivers in numerous packages support them. On the systems level, pen plotters are less complex and less expensive than many other printers because they can interpret software directly in terms of vectors and, thus, don’t need vector-to-raster conversion.

Mechanically intensive devices, pen plotters require that various pens and output media (paper, transparencies, velum) move under software control, so that the pens can actually write to generate a graphic and associated text. Plotting involves combining x and y motions to execute vector commands (e.g., to draw a line between two points or a circle around a point). You change colors by mechanically switching pens typically held in a carousel or bank along the side of the plotter. The number of pens ranges from 2 to more than 10.

Plotters fall into three basic groups: flatbed, drum, and hybrid. All three have a carriage bar along which the pen moves to draw along one axis (say, the x axis). They differ in how they achieve pen motion in the y direction. **Flatbed** plotters hold the paper stationary while the pen moves in the y direction; the size of the flatbed creates the limit on output size. For applications that require output-size flexibility, you would use a drum or hybrid model. **Drum** plotters move the paper back and forth using a rotation drum to achieve motion in the y direction. **Hybrid** plotters similarly move the paper to achieve y motion; however, they hold it between friction rollers, are much smaller than drum plotters, and have no mechanism for rolling up long plots.

Available pen plotters offer varying levels of plotting accuracy and speed. High-level systems have resolutions to 0.001 inch, meaning that they can mechanically place dots that close to each other. Another measure of accuracy is repeatability, or how precisely the plotter

Figure 3: A price/performance comparison of color-printer technologies.
NOW DINERS CLUB CAN MAKE YOUR AMERICAN, CONTINENTAL, NORTHWEST AND UNITED FREQUENT FLYER MILEAGE REALLY SOAR.

From now on, when you use the Diners Club Card, you can earn Club Rewards points good towards exciting gifts and services, including extra mileage in the participating frequent flyer programs of your choice. Or, if you choose, frequent stayer credit at Hilton, Radisson, Ramada or Sheraton hotels.

So dine with the Diners Club Card. Sleep on it. Rent with it. Whatever. And watch your frequent flyer miles soar. Or use someone else's card...and miss all the rewards only Diners Club can give you.

Call 1-800-DINERS-1. Join the Club. The rewards are endless.

© 1987, Citicorp Diners Club Inc.

Frequent Traveler benefits available through the Club Rewards program. Participating companies subject to change. Club Rewards is a service available only to Personal Cardmembers of Diners Club from Citicorp located within the 50 United States. Free enrollment required. Certain terms and conditions apply. *United participation limited to 1986-87 Club Rewards brochure.
Electrostatic Plotters

Electrostatic technology was the first raster-based output method widely used for printing color graphics, particularly in technical environments. Its primary advantages over pen plotting are its improved speed, quiet operation, and suitability for unattended operation. Like pen plotters, some electrostatic plotters are capable of large-format output. However, electrostatic plotters are among the most expensive color printers available, with B-size products costing between $12,000 and $14,000, and larger-format plotters ranging from $40,000 to $100,000 or more. In addition, you must use a special dielectric coated paper.

Electrostatic plotters operate by passing dielectric paper under a fixed-page-width electrostatic head that consists of a line of individual styli. Voltage is selectively applied to the individual styli, placing a charge on the dielectric paper and creating a latent image. Then the paper passes through a bath of liquid toner, and the charged areas attract toner particles. In a color system, this charging and toning process takes place several times (three if you use CMY, four if you add a separate black); the toner bath is different for each color. As a result, this technology is mechanically complex. Figure 4 is a schematic of an electrostatic plotter by Benson Inc.; this plotter is unique in that it has multiple heads as well as multiple toner baths so you don’t need to rewind the paper between colors.

One advantage of electrostatic plotters is their high-resolution output. Several systems exist with 400-dpi resolution, which improves output quality, especially when you need a large number of colors (due to the trade-offs between dithering and resolution). Some plotters also have a lower-resolution mode for proofing or plotting at higher speeds; 400 dpi is relatively slow in terms of processing time and paper-indexing rate.

Thermal Transfer

Thermal-transfer printers come in two varieties: serial (moving-head) printers and fixed-head page printers. Although both types lay down color similarly and require the same kind of media, they vary significantly in price. The serial printers, usually appealing to home users, cost less than $300. The page-oriented systems, primarily used for engineering output (in many cases for proof copies, due to output-size limitations) and some new applications such as presentation graphics, cost between $4500 and $10,000. Thermal-transfer printing is particularly effective for area fills, since the density of the graphic does not affect print speed in page systems.

Three key elements compose thermal-transfer printing: a thermal head, a ribbon, and paper. The thermal head consists of a set of resistive elements that selectively heat up when an electrical current is applied. Direct-thermal printers, in which the head causes a specially treated paper to darken, have used these heads for a long time. Thermal-transfer printing inserts a wax-coated ribbon between the head and paper. The ribbon is heated from behind, the wax-based ink coating melts, and the image is transferred to the paper (see figure 5). Using a ribbon lets the thermal head print on plain paper and in color.

Like electrostatic plotters, thermal-transfer printers produce color prints through multiple passes of the subtractive primaries. In both serial and fixed-head configurations, the thermal-transfer ribbon has blocks of each subtractive color. In serial printers, these blocks are the same length as the print line: The head traverses the line with one color and then goes back to the beginning of the same line to overprint it with another color, and so on. The print mechanism indexes continued
You've got a great idea . . .
... you're ready to write your programs.

You don't want to be sidetracked by all the paperwork. With Manx Aztec C and the ingenious make function, your creative processes won't get bogged down in program administration and housekeeping. Manx Aztec C has the most sophisticated, hardworking program administrator available to you. Once you've described your project, adding new features or enhancements is simple. You never have to concern yourself with the repetitive, tedious task of rebuilding your systems.

The development process moves quickly. Compiles, assemblies, link edits . . . all finish in record time.

Manx Aztec C is the fastest, most efficient C development system in the industry. Benchmarks show it . . . reviews commend it . . . users praise it.

You're ready to test the program. You're ahead of schedule. The Manx Aztec C Source Level Debugger shows you the exact C language statement giving you a problem. You fix the problem quickly . . . you're still ahead of schedule.

You've got some time for fine tuning. The Manx Aztec C Profiler examines your program, tells you where the slow spots are and validates your test procedure. A few changes and it's exactly what you wanted.

You've made it!

Aztec C is available for MS-DOS/PC DOS. Call for details on Macintosh, Amiga, Apple II, CP/M-80, CP/M-86, TRS-80, ROM and others.

To order, or, for information
Call Today
1-800-221-0440

In NJ or outside the USA call (201) 542-2121

30-day satisfaction guarantee. Special Discounts are available to professors, students, independent developers, and on a "trade-in" basis. Site licenses.

C'Prime (Compiler, Assembler, Linker) $ 99.
Aztec C 86-d Developer's System $299.
Aztec C 86-c Commercial System $499.
PC ROM (8086, 68000, 8080, or 6502) $750.

Third Party Software for Aztec C: HALO, PHACT, C-tree, PRE-C, Windows for C, PC-lint, PANEL, Greenleaf, db Vista, C-terp, Plink-86, FirstTime, C Util Lib, and others.

NOTES

"... a superb linker, a profiler, an assembler, and a set of development utilities are only the beginning of this package . . . performed admirably on the benchmarks, with short compile times and the best link times in this review . . . includes the most professional make utility . . . documentation is clear and complete. There is no doubt that this is a valuable and powerful programming environment." Computer Languages Feb. '86

"... execution times are very good, close to the best on most tests . . ." PC Tech Journal Jan. '86

"Easily one of the fastest compilers overall . . . library provides a lot of flexibility . . . generates small .EXE files." Dr. Dobbs Journal Aug. '85

Manx Software Systems
One Industrial Way
Eatontown, NJ 07724

While ink-jet printing is conceptually very attractive, it has a number of problems. To the next print line only after all three or four colors have printed and the ribbon has progressed to a new block of the first color. In fixed-head page printers, the color blocks are page-size. You must pass the whole page under the head several times, usually by backing the paper up and refeeding it, an approach that offers a registration challenge. The size of these ribbon blocks effectively limits the size of a printed page.

Thermal-transfer printing has several advantages: The serial printers offer the least-expensive color output currently available, while the page printers offer relatively fast print speeds (some systems can print a page in less than a minute), high resolution (the majority of printers now have 200- or 300-dpi resolution), and reliability. The disadvantages of thermal-transfer technology include the cost of supplies (the ribbons are expensive, and most systems require special “plain” paper with a very smooth finish) and print quality (some users object to the shiny crayon-like output).

Ink-Jet
Ink-jet is the only raster-based technology that prints color in a single pass. This is possible because ink-jet heads have multiple ink nozzles, with at least one per subtractive color. Having several nozzles per color increases overall throughput speed. Because of the need for extensive “plumbing” (connecting nozzles to multiple ink sources), ink-jet printers tend to be more costly than thermal-transfer printers for a given performance class, ranging in price from $700 to about $6000. In addition, early systems were plagued with reliability problems, such as clogged nozzles from dried ink, which gave the technology a bad name. Figure 6 is a schematic of an early-model ink-jet printer from Advanced Color Technology.

Ink-jet printing is a true noncontact technology. A print head generates individual ink droplets and propels them to the paper, creating characters and patterns (see photos 1a to 1d).

Three basic classes of ink-jet printers exist: continuous-jet, drop-on-demand, and phase-change. Continuous-jet printers employ a stream of ink droplets (typically more than 50,000 per second) issued from print nozzles under pressure. A charge is selectively applied to the droplets, and, depending upon the desired configuration, some droplets are deflected toward and others away from the page. Drop-on-demand printers are simpler, forming droplets in the nozzles and ejecting them through appropriate timing of electronic signals. Some systems use piezoelectric crystals that contract the nozzle; others use small heating elements that cause the ink to temporarily boil and be ejected. An even more elaborate use of heat exists in phase-change ink-jet printing. This method liquefies solid ink pellets, ejects them from the print nozzles, and “freezes” them on the paper surface without their wicking, or bleeding, into the paper. Phase-change ink-jet printing is uncommon (see the text box “Plastic Ink” on page 174).

While ink-jet is conceptually a very attractive technology and offers good color with moderate supply costs, it has a number of problems. You pay a comparative-continued

Introducing the newest, most versatile high resolution color monitor in the industry today—Mitsubishi's Diamond Scan (Model AUM-1371A).

Actually five monitors for the price of one, the Diamond Scan delivers everything you'll ever need in a multi-application monitor. Including full compatibility with the IBM® PGC/EGA/CGA/MDA and Monochrome Hercules graphics boards. And for even greater flexibility, the Diamond Scan also accepts NTSC video input.

Exceptional design characteristics allow for a resolution up to maximum 800 horizontal dots and maximum 560 vertical lines on a 13V" viewing area. What's more, Mitsubishi's Diamond Scan incorporates proprietary auto-scan circuitry which automatically locks onto any horizontal frequency from 15.6KHz to 35.0KHz, and any vertical frequency from 45Hz to 75Hz.

Other advanced design features include a high resolution CRT with .31 dot pitch, automatic screen image adjustment, super-high contrast panel glass for improved visibility and Diamond Matte® coating for maximum glare reduction. All packaged in a compact, ergonomically styled plastic cabinet.

Move up to Mitsubishi's Diamond Scan—the new standard in performance and versatility by which all others will be compared.

For additional information and the location of your nearest distributor, call Mitsubishi today at 1-800-556-1234, Ext. 54. In California, call 1-800-441-2345, Ext. 54.

Mitsubishi Electronics America, Inc., Computer Peripherals Division, 991 Knox Street, Torrance, CA 90502.

Graphic Board Compatibility*
- [] Quadram QuadEGA ProSync
- [] Orchid Turbo EGA/Turbo PDA
- [] Sigma Designs Color 400
- [] Video 7 Vega-Deluxe
- [] QDP VIVA 640/800/1000
- [] Paradise Auto SW EGA
- [] STB EGA Multi Res
- [] Everex Micro Enhancer
- [] Hercules
- [] IBM VGA, PGC, EGA, CGA
- [] AST Research AST-3G/Model 1
- [] ATI Graphics Solution/EGA Wonder

*Partial List Only

Mitsubishi Diamond Scan™
The New Standard In Multi-Application Monitors.
UNIVERSAL (E) PROM/PLD MULTIPROGRAMMER™

BYTEK System 125 is based on an advanced modular design concept with support for over 1200 Devices. Gradually, or all at once, you can build a full Universal MultiProgramming site to program EPROM/EEPMOS, PLD/EPLD/GALs, PROMs and MICROs.

BYTEK MultiProgrammers™ offer User-Friendly Operation, High Quality, Reliability, and are backed by Dedicated Customer Service, and Unlimited Product Support. Full One Year WARRANTY, and FREE SOFTWARE updates. All Products are 100% USA Made.

BYTEK System 125 is the first Universal MultiProgrammer™ for both the Engineering Laboratory and Production Environments available at affordable prices.

Photo 1: This sequence of photos shows a drop of ink emerging from the print head of the Hewlett-Packard PaintJet color-graphics printer. (a) At 25 microseconds, the ink jet is about 0.3 mm long and is still coming out of the nozzle. About half of its length is shown. Note the circular orifice; the ink is going from left to right. (b) At 45 µs, the head of the ink jet has formed and is almost ready to separate from the rest of the ink jet. The tail of the jet is just now exiting the nozzle. The total jet length is about 0.7 mm. (c) At 85 µs, the entire jet is shown and is about 0.73 mm long. The head of the jet is about 1.0 mm from the nozzle and has separated from the rest of the ink jet (note the formation of a circular form at the right end of the jet). (d) At 125 µs, the tail has broken up into separate drops, and the head is about to hit the paper. The drops behind the head are moving quickly and hit the same spot on the paper as the head, creating a single dot.

Serial Dot-Matrix

For office use, serial dot-matrix printers are the most popular. However, they have a limited presence in color applications, even though an increasing number of them have color capabilities. While most configurations are suitable for business graphics or emphasizing text, few can act as a pen-platter replacement and produce presentation-quality output.

Serial dot-matrix printing is an impact technology. Wires in a print head are fired, striking the ribbon, which releases ink on the paper as the head traverses the print line. As in serial thermal-transfer printing, all colors are overlaid on each print line before moving on to print the next line. Unlike their thermal-transfer counterparts, however, most serial dot-matrix ribbons have horizontal stripes of the colors that run the length of the ribbon. The system switches colors by mechanically shifting the ribbon up and down. Most serial dot-matrix printers use CMY, but a few use RGB.

Using serial dot-matrix technology for color printing has some favorable points. It is an established, reliable technology, using low-cost supplies, that offers true plain-paper printing and convenient monochrome operation. The technology does have its shortcomings, however. Hard copy is limited to paper; workable transparencies are generally unavailable. When you need area fills, the output tends to streak, and the color lacks brilliance. In addition, the diameter of the wires in the print head limits the potential resolution; most wires are between 0.007 and 0.014 inch.

Color Electrophotography

An electrophotographic printer is essentially a color copier used as a computer printer. Use of electrophotography for color printing is on the verge of becoming a reality. You could convert a color copier into a computer printer by fitting it with a continued
Mitsubishi Has A Great Picture In-Store For You.

A High-Quality Line of PC Monitors Priced Below The Competition.

Introducing the Mitsubishi brand name family of PC Monitors. Select from five different IBM® compatible models, along with the new IBM PS/2™ compatible XC-1429C. Each has a 13V” diagonal viewing area and proprietary high contrast glass for the sharpest image possible.

Affordably Priced PC Monitors
The XC Series incorporates proven Mitsubishi quality and reliability at an extremely affordable price. In fact, we’ve included a wide variety of features for which you’d expect to pay considerably more. Like advanced video and deflection circuits to reduce distortion and optional tilt and swivel base for improved ergonomics. Also in-line self-convergence for low power consumption and extra reliability.

The XC Series is available in quantity, ready to support a wide range of application needs—from standard word processing and business graphics to windowing and high resolution solids modeling and CAD.

Complete Customer Satisfaction
Mitsubishi stands behind its brand name XC Series monitors with knowledgeable applications and service personnel and backs each product with a comprehensive one-year warranty. It all adds up to a worldwide reputation for state-of-the-art electronics and unparalleled customer satisfaction.

For product literature and your nearest distributor, call Mitsubishi today at 1-800-556-1234 Ext. 54. In California call 1-800-441-2345 Ext. 54. Mitsubishi Electronics America, Inc., Computer Peripherals Division, 991 Knox Street, Torrance, CA 90502.

Inquiry 188 for End-Users.
Inquiry 189 for DEALERS ONLY.

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>XC-1409C</td>
<td>$519.00</td>
<td>IBM-CGA Compatible Medium Resolution Monitor: 13V” • 2,000 characters, 640 x 200 graphics resolution • TTL video input 15.75KHz • 16 colors 0.4mm pitch stripe mask</td>
</tr>
<tr>
<td>XC-1410C</td>
<td>$659.00</td>
<td>IBM-EGA Compatible High Resolution Monitor: 13V” • 2,000 characters, 640 x 350 graphics resolution • Dual-Mode/TTL video input 15.75/22.4KHz • 16/64 colors 0.4mm pitch stripe mask</td>
</tr>
<tr>
<td>XC-1430C</td>
<td>$739.00</td>
<td>IBM-EGA Compatible High Resolution Monitor: 13V” • 2,000 characters, 640 x 350 graphics resolution • Dual-Mode/TTL video input 15.75/22.4KHz • 16/64 colors 0.31mm fine dot pitch</td>
</tr>
<tr>
<td>XC-1412C</td>
<td>$799.00</td>
<td>IBM-PGC Compatible High Resolution Monitor: 13V” • 4,800 characters, 640 x 480 graphics resolution • Analog video input 30.49KHz • Infinite colors 0.31mm fine dot pitch</td>
</tr>
<tr>
<td>XC-1429C</td>
<td>$685.00</td>
<td>IBM-VGA Compatible High Resolution Monitor: 13V” • 4,800 characters, 640 x 480 graphics resolution • Analog video input 31.5KHz • Infinite colors 0.28mm fine dot pitch</td>
</tr>
</tbody>
</table>

IBM is a registered trademark of International Business Machines Corp., © 1987 Mitsubishi Electronics America, Inc.
Plastic Ink

Jane Morrill Tazelaar

Plastic ink? It sounds strange to me, too, but Thermo Jet, an ink-jet technology from Howtek Inc. in Hudson, New Hampshire, uses plastic ink in a combination of phase-encoded and drop-on-demand printing to produce an output similar to embossing with a fantastic variety of colors and attention to detail. The printer surrounding this technology is Howtek's Pixelmaster. It can print digitized images of photographs—you need another unit to do the digitizing—and the "printed" output appears similar to an original painting of the scene. There's almost a three-dimensional quality to it.

Thermo Jet is by no means limited to reproducing photographs. Business graphs are crisp, clean, and clear. Logos resemble those you find on expensive stationery—raised, embossed, shiny, very professional. They look like originals, and indeed they are. Print quality is astounding; it resembles the kind you find on wedding invitations—raised, embossed, high-quality.

How Does It Work?
One of the major problems with many ink-jet printers is the tendency of the ink's solvent to evaporate, leaving dried ink clogging the jets. Plastic ink is loaded dry and serves as its own carrier, so there is no solvent to evaporate; hence, no clogging. Other ink-jet problems include the way in which ink tends to "bleed" into the paper it is being sprayed on before it dries and the way it smudges if you touch it before it's dry. Plastic ink eliminates these problems because it solidifies immediately on contact with the paper.

Plastic ink is solid at room temperature and has a melting point well above it. Within the Pixelmaster printer, the ink remains in a liquid state because it is kept in a reservoir that is heated to a temperature above the ink's melting point. The print head is also heated. Thus, while the ink remains in the printer, it is liquid. As soon as it leaves that heated environment—conventional piezoelectric crystals apply pressure on the reservoir, expelling the ink through the jet "on demand"—the ink cools and returns immediately to its natural solid state, producing a high-quality, slightly raised output. The solid plastic inks are clean and easily inserted through shape-coded receptacles in the Pixelmaster.

The Pixelmaster Printer
The Pixelmaster comes in two configurations. The Pixelmaster I has 8 jets for each color (black, cyan, magenta, and yellow) and prints a full page of information—either multicolor or black only—in approximately two minutes. The Pixelmaster II comes with 20 black jets and 4 jets for each of the other three colors. It prints a page of black-only text in 30 seconds and a page of color in 4 to 5 minutes. Retail prices for either configuration start at $4,495.

At 240 by 240 dpi by four colors of ink, the Pixelmaster can place as many as 21.5 million dots on an 8½-by-11-inch piece of paper. It can generate up to 64 levels of each of the RGB colors (converted to CMY via proprietary software) for a total of over 250,000 possible color shades. These numbers help to explain the beautiful realism it attains (see the photos). In addition to magnified colored reproductions, the Pixelmaster can print four-color separations, one color per page, and mirror images, used to produce transparencies.

The Pixelmaster is limited in output size; although geared to office use and supporting letter and A4 paper sizes, it does not support legal and B5 paper sizes. However, it does provide the other normal abilities of an office printer: You can vary lines per inch, page length (within stated limits), margins, number of copies, and so forth. You can integrate all kinds of color images and text on any standard office paper. You can vary the color and thickness of your "pen" and generate truly solid area fills. And you can emulate LaserJet raster-graphic densities. You can print text, fonts, and special characters in a variety of styles and sizes by inserting the appropriate font card, and reference as many as 120 different fonts or symbol sets at one time, all on a single page if you wish.

The Pixelmaster contains 32 ink jets mounted on a round print head that rotates on an axis concentric to the curved platen. Vertical motion tabs pick up a single sheet of paper from the holder and wrap it into a semicircle around the print head. A slight vacuum holds the top of the sheet against the platen, and the paper moves smoothly past the rotating print head. Since the paper remains at a fixed distance and angle from the ink jets—print-head rotation and paper lift are synchronized—each jet can be aimed and timed to accurately place dots of ink on the paper.

An easily Controller (IC), a single-board computer built around a 68000 microprocessor with between 512K bytes and 4.5 megabytes of RAM (in 2-megabyte increments), drives the printer.

Digitized images of photographs produced by Howtek's Pixelmaster printer using Thermo Jet technology and plastic ink.
In All Honesty

I haven't seen the Pixelmaster in operation, and I won't pretend that I have. I am told that using it is as simple as loading the paper and pressing the right buttons. I am told that it runs very quietly. I believe the people at Howtek, but you can't prove these things by me.

What I will stand up and shout about, however, is the most exciting output I have ever seen from an office printer: pictures that seem almost touchable, print quality that is indeed touchable, and brilliant detail and color quality. Plastic ink may sound like a strange idea, but in the world of ink-jet printing, it might turn out to be sheer genius.

data-controlled light source—a laser for a color laser printer. The first such system will probably be available in early 1988. Initial price estimates range from $20,000 to $25,000; this is comparable to electrostatic plotters.

Electrophotography is a plain-paper technology; rather than imaging directly on paper as electrostatic plotting does, light exposure creates a charge on a photoconductive drum. These latent images are toned (usually with a dry toner); then the toner is transferred to the paper and fused. In some cases, an intermediate, nonconductive surface receives each color layer before finally transferring it to the page.

Much of the excitement about the potential of color laser printers is based on the tremendous success of their monochrome counterparts. As some prices have dipped below $2000, these page printers have become an accepted office output device. Experts expect color laser printers to share some of the positive attributes of the current laser offerings and thereby bring color out of specific application niches. Print resolution will be high, probably the 300 dpi that is standard for page printers, and therefore compatible with office-oriented software in monochrome mode. The cost of supplies should be low. And while speeds are likely to be below 10 pages per minute for color output, monochrome pages should run at 20 to 30 ppm.

A Balancing Act

While the growth of color printing has been slower than expected, it is not for lack of color-printing technologies. The task for color-printer manufacturers now is refining those technologies so that you don't lose resolution when you want a large variety of colors, you don't have to take a slow printer in order to get one you can afford, and you can use any sort of paper or transparency that you want with any sort of printer that you have. But this is still in the future. For the present, you must balance price, performance, print quality, and other factors in choosing a color printer or plotter.

FOR MORE INFORMATION

The issues discussed in this article and the potential for color in a variety of environments are treated in detail in a new market study by Datek Information Services entitled High End Color Printers for Emerging Applications. For more information on this and other Datek reports, write Datek at 255 Ballardvale Street, Wilmington, MA 01887, or call (617) 657-5400.

LABTECH ACQUIRE is the newest system from Laboratory Technologies. It is designed for those of you who have relatively simple data acquisition tasks to do, but who don't want to do your own programming or pay the price for a full-blown data acquisition and control system.

Now, with ACQUIRE, you can bring data in from four analog sources and one digital source, display it on the screen, and stream it to disk in real-time. You can even do things normally associated with more expensive systems, like triggering the start of acquisition, and time stamping the data.

Transporting that data to your favorite analysis program is easy. We even supply macros and programs to help you get started.

And if your needs grow in the future, and you want to take data from more channels, work with specialized data channel types, analyze the data in real-time, control your tests, or provide for more generalized triggering, you can move on to the industry standard, LABTECH NOTEBOOK. All of the tests you have set up with ACQUIRE will run unchanged.

And you get all this for only $195. For information on where to buy along with a list of interface hardware supported by LABTECH ACQUIRE, write Laboratory Technologies or call (617) 657-5400.

LABTECH ACQUIRE is compatible with the IBM PC/XT, AT, or compatibles, and instrumentation interfaces from a large and growing number of manufacturers.

LabTech Technologies Corporation
255 Ballardvale Street
Wilmington, MA 01887
(617) 657-5400 • Telex 986695

LabTech is a registered trademark of Laboratory Technologies Corporation.

SEPTEMBER 1987 • BY T E 175
MICROSERVE GUARANTEES THE LOWEST PRICE FOR QUALITY COMPARABLES OR YOUR MONEY BACK!

$659 COMPLETE!
With One 360k Floppy and One 20Mb Hard Drive
ONLY $959

Requests For Bids on High Volume Orders Welcomed

$1199 COMPLETE SYSTEM!

STANDARD FEATURES:
- IBM AT Compatible
- 6/10 MHz CPU speeds
- 1MB RAM Memory
- High Resolution Amber Monitor
- Hercules Compatible Graphics Card
- Parallel Port
- User Manual
- Complete and Ready to Run!

STANDARD FEATURES:
- IBM PC/XT Compatible
- 4/8 MHz CPU speeds
- 640k RAM Memory
- Two 360k Diskette Drives
- 150 Watt Switching Power Supply
- FCC Approved Chassis
- AT Style Keyboard
- High-Resolution Amber Monitor
- Hercules Compatible Graphics Card
- Parallel Port
- User Manual
- Complete and Ready to Run!

CALL MICROSERVE FOR QUOTES
ON CONFIGURATION OF YOUR CHOICE

MICROSERVE Computer Products are the Highest Quality and Best Values on PC/XT and AT Compatibles!

HARD DRIVES
- Seagate 20Mb w/contr. ST225 ... $335
- Seagate 30Mb w/contr. ST238 ... 389
- Seagate 20Mb for AT ST225 ... 289
- Seagate 30Mb for AT ST4038 ... 329
- Seagate 40Mb for AT ST251 ... 629
- Seagate 60Mb for AT ST4096 ... 929

PRINTERS
- Panasonic 1080 ... $219
- Panasonic 1091 ... 269
- Okidata 182 ... 229
- Okidata 152A ... 350
- Okidata 1934 ... 525
- Citizen 1200 ... 189
- Citizen M5P10 ... 279
- Citizen M5P20 ... 315
- Citizen M5P15 ... 379
- Citizen M5P23 ... 439
- Toshiba P321 ... 445
- Toshiba P341E ... 659
- Toshiba P351II ... 529

MONITORS
- Amber TTL w/Tilt Swivel Base ... $219
- Color RGB Monitor ... 279
- EGA Monitor w/Card ... 429

MOST ORDERS SHIPPED WITHIN 48 HOURS

TERMS: All prices subject to change without notice. Shipping is FOB Phoenix, AZ. Minimum shipping charge is $2.50. UPS C.O.D. is $3.00 additional. Arizona residents only, add 6.7% sales tax. Allow extra two weeks shipping time when paying by personal or company check. No extra charge for MasterCard or Visa orders. All shipments sent insured. A Returned Material Authorization number obtained from MicroServe in advance must be shown on the shipping label for all returns. All systems are burned-in and tested for 24 hours. We configure systems boards, set up switches, format hard drives, perform all diagnostics, and check the system with your monitor. All systems are FCC approved. Class 15J, Part 6.

CALL TOLL FREE:
1-800-621-8285
(In Arizona, Call: 1-252-0017)

Inquiry 178 for End-Users, Inquiry 179 for DEALERS ONLY.
FROM CRTS TO printers, the world of personal computers contains a multitude of raster devices trying to express vector information. While programs specify formulas, curves, and objects, most of the visual output devices that personal computers use (except the pen plotter) must translate that information into the sequence of dots, or pixels, that a raster device can portray. (While dots refer to printed output and pixels to screen output, there is no difference between the two in terms of raster imaging. Therefore, I shall use the word dots, where applicable, to focus on printing, while the word pixels would be equally correct were I to focus on displays.)

Made for TV
The archetypal raster device is the television CRT. Even the word raster comes from television technology, where it describes the two-dimensional array of horizontal scan lines traced by a flying dot of light as it creates a TV picture (a process called raster scanning).

A raster device produces an image by scanning each horizontal line and generating the sequence of dots that it finds, thereby building up a whole picture. The exact sequence of dots is calculated from information found in the operating software. Since raster images consist of separate dots, a raster device can't draw continuous lines like a vector device can. If you have sufficient resolution and slightly overlapping dots, you can maintain the appearance of continuity most of the time, but diagonal lines inevitably contain an element of "jagginess."

Most personal computers use a raster CRT as their primary output device. Some portables use liquid-crystal, gas-plasma, electroluminescent, or other types of flat-screen displays, but you can still categorize them as raster displays although technically they don't produce their displays with a flying dot. What they do have in common is a picture composed of individual pixels, arranged in lines drawn one after the other.

Most of the printers for personal computers are also raster devices. Laser printers print lines of dots in sequence to build up an image on the paper. Most dot-matrix printers have the ability to print both in bit-image mode, a raster process, and in character mode. The daisy-wheel printer is one exception; it prints only whole characters, can't draw arbitrary lines, and gives you no access to the individual dots.

Creating a Good Disguise
Since raster devices are so widespread and vector devices relatively rare, why bother to make the distinction? Because the kinds of data structures and algorithms you need to program the two are fundamentally different. More important, vector representation is much more intuitive to the human mind and far more flexible in use. As so often happens in computing, we are faced with a paradox: We wish all output devices were vector-oriented, but they tend to be raster-oriented. A lot of programming effort goes into disguising the latter as the former.

For example, the natural way to specify a circle would be to provide the coordinates of its center and its radius. A raster display will have none of this; it understands only a sequence of dots on each line. It doesn't care which of these dots fall on the circle and which don't.

The vector description is not only more natural, it is also more flexible and economical. You can represent a circle, at its simplest, with three numbers (x, y, and radius). If you need to move the circle, ideally all you must do is change the values of x and y. However, to a raster device, moving the image changes everything, as each dot on the circle will be in a different place.

Some personal computers that support graphics include a BASIC command to draw a circle on a raster device from a vector representation. But at some lower level, either in the BASIC interpreter itself or in the operating system, software is working away furiously to convert this vector representation into a pattern of dots suitable for the raster device, a process called rasterization. The special algorithms employed by this process are often called vector-to-raster or scan-conversion algorithms.

Laser printers increasingly incorporate their own intelligence and rasterization routines, and the performance of their conversion algorithm can have a crucial affect on their speed. Laser-printer rasterization

Dick Pountain is a technical author and software consultant living in London, England. He can be contacted c/o BYTE, One Phoenix Mill Lane, Peterborough, NH 03458.
terization can take a lot of processing time because the resolution is more than 10 times that of a typical CRT screen. Many current laser printers contain a pro-
cessor chip at least as powerful as the CPU in the computer to which they are
connected. The use of custom hardware for rasterization is also increasing (see
"Designing a Raster-Image Processor" by Jon Barrett and Kirk Reistroffer in the
May BYTE).

With a Little Bit
Raster devices that can produce arbitrary graphics images (as opposed to just char-
acters) are usually "bit-mapped." This means that every pixel or dot in the raster
image is represented by a bit in computer memory. For example, in a bit-mapped
CRT display, the whole screen image is stored as a sequence of bits in an area of
computer memory reserved for this pur-
pose, called the display buffer.
The display buffer is accessible not
only to the CPU but to a video-controller
chip that scans through it at short inter-
vals (60 times per second for most U.S.
screens) and translates every 1 bit into a
bit map only at output time. As well as
in altering a MacDraw image than you do
in modifying one from MacPaint.

In an object-oriented program, each
component is a separate object that you
can move as a whole, alter in size, or
rotate to any angle. The ideal in graphics
programs from CAD/CAM to desktop
publishing is to keep the data geometrical
(and, therefore, flexible) as long as possi-
ble, converting to the relatively inflexible
bit map only at output time. As well as
consuming a lot of processing time, ras-
terization causes an irreversible loss of
information; it is difficult indeed to ex-
tract geometrical information from bit-
mapped images. You can, however, ma-
nipulate them to some extent with the
BitBLT operation.

The Plot Thickens
The most primitive operation on a raster
device is plotting a single point at an arbi-
trary location, expressed in device coor-
dinates (the number of dots by the num-
er of scan lines). However, even this
operation is not trivial. You must convert
the device coordinates to the memory ad-
dress of the appropriate word and then set
the correct bit within that word using logi-
cal masking operations. To make things
worse, you often have to count from the
wrong end of the word to find the correct
bit, a bit-reversed format:

\[
\text{dot} \quad 01234567 \\
\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\end{array} \\
\text{bit}
\]

Listing 1 contains Plot, a pseudocode
algorithm for plotting, which assumes the
bit-reversed format. [Editor's note: This
article uses the following conventions: square brackets, [x], mean "the contents
of memory location x"; "means "raised
to the power"; and the logic operators
OR, AND, and NOT are bit-wise operations
rather than Boolean ones. All the algo-
rithms given are in pseudocode.]

In practice, you wouldn't actually em-
ploy multiplication and division as I have
in listing 1. A plotting routine must be as
fast as possible, since printing ultimately
depends on it, and it will be executed bil-
ions of times. You should always write it
in machine code and optimize it using
every trick your instruction set offers.
You should also replace all the multi-
plication, division, and power operations
with logical left and right shifts. For ex-
ample, if your word length is 8 bits and
you have 640 dots per line, you want a
routine that operates like FasterPlot
(see listing 2). A faster, but more hard-
ware-specific, solution would be to elimi-
nate y coordinates from the calculation by
precomputing the address of every scan
line on the device and storing them in a
lookup table.

Listing 1: Plot, a pseudocode algorithm for plotting a single point at an
arbitrary location.

Program(X,Y)
Address <- BufferStartAddress + QUOTIENT((X +
Y * PixelsPerScanline) / BitsPerWord)
BitNumber <- (BitsPerWord - 1) - REMAINDER((X +
Y * PixelsPerScanline) / BitsPerWord)
Mask <- 2 ^ BitNumber
[Address] <- [Address] OR Mask

Listing 2: FasterPlot, a more efficient version of listing 1.

Program FasterPlot(X,Y)
Address <- BufferStartAddress + (X SHIFTR 3) +
(Y SHIFTL 6) + (Y SHIFTL 4)
Mask <- 125 SHIFTR (X AND 7)
[Address] <- [Address] OR Mask

continued
If you ever wanted to take a crack at assembly language, now’s the time.

You probably already know that assembly language subroutines are the smartest way to get the fastest programs. But if the complexities of working with assembly language subroutines made you think twice, here’s some good news. We’ve made Microsoft® Macro Assembler Version 5.0 a lot easier to use.

We eased the learning process by giving you the best support around. We completely revised our documentation. The new Mixed Language Programming Guide gives you step by step instructions for linking your assembly code with Microsoft QuickBASIC, C, FORTRAN, Pascal and other languages. And you get a comprehensive reference manual with listings of the instruction set and examples of each instruction. We didn’t stop there, though. You also get an on-disk collection of templates and examples.

We’ve also dramatically simplified the high-level language interface. In just a few simple steps, you can be calling Macro Assembler subroutines from programs written in your favorite language.

Now that you’re writing the fastest programs, Microsoft is giving you the fastest way to debug them. For the first time, we’ve added our CodeView® debugger to Macro Assembler. With source code and comments on your screen, Microsoft CodeView makes debugging programs containing assembly language subroutines a snap.

And you’ll be glad to know that you don’t sacrifice any speed for all the ease of use. We took the fastest Macro Assembler on the market and made it even faster.

So what are you waiting for? Get your hands on Microsoft Macro Assembler and see what it’s like to break your personal speed limit.

For more information or for the name of your nearest Microsoft dealer, call 800-828-0000. In Washington State and Alaska, (206) 882-8088. In Canada, call (416) 873-7138.

Microsoft, the Microsoft logo and CodeView are registered trademarks of Microsoft Corporation.
VECTOR-TO-RASTER ALGORITHMS

Figure 1: The staircase effect achieved when you try to plot a straight diagonal line on a raster device.

Figure 2: A diagram of Bresenham's method for determining which point to plot next to come closest to the ideal of a particular line.

Listing 3: BresenhamLine, a pseudocode algorithm for an abbreviated and limited version of Bresenham's line algorithm.

```plaintext
Program BresenhamLine(X1, Y1, X2, Y2)
Deltax ← X2 - X1
Deltay ← Y2 - Y1
Error ← 2 * Deltay - Deltax
X ← X1
Y ← Y1
FOR Count FROM 1 TO Deltax
  IF Error > 0 THEN
    Y ← Y + 1
    Error ← Error + 2 * (Deltay - Deltax)
  ELSE Error ← Error + 2 * Deltay
  ENDIF
  X ← X + 1
  Plot(X, Y)
ENDFOR
```

Listing 4: HorizLine, an algorithm for horizontal lines in pseudocode.

```plaintext
Program HorizLine(X1, X2, Y)
FirstAddress ← BufferStartAddress + (X1 SHIFTR 3) + (Y SHIFTL 6) + (Y SHIFTL 4)
LastAddress ← BufferStartAddress + (X2 SHIFTR 3) + (Y SHIFTL 6) + (Y SHIFTL 4)
FirstMask ← 255 SHIFTR (X1 AND 7)
LastMask ← NOT (255 SHIFTR (X2 AND 7))
[FristAddress] ← [FirstAddress] OR FirstMask
FILL FROM FirstAddress+1 TO LastAddress-1 WITH 255
[LastAddress] ← [LastAddress] OR LastMask
```

For screen applications, you may want a second version of Plot that replaces the OR operation on the Mask with a bit-wise XOR. This produces the effect of plotting a black pixel on white areas and a white pixel on black areas, while reploting the same point erases it. You can use drawing routines based on this primitive to draw over any image and then restore the previous image; this is one way to provide a screen-cursor symbol or a rubber-band box for grabbing screen areas.

Once you can plot a point, you need a routine that can draw lines. Line plotting on a raster device bears little resemblance to geometry, where \(y = Mx + C \) (\(M \) being the slope and \(C \) a constant). Instead of plotting in continuous two-dimensional space, you are trying to plot onto a grid of discrete points.

You cannot, in general, plot a straight diagonal line on a raster device; you can only approximate it with a series of steps resembling a staircase (see figure 1). You can use the geometrical formula by computing \(y = Mx + C \) for each \(x \) (in floating-point arithmetic) and then rounding the value of \(y \) to the nearest integer, but it's too slow for practical use.

True raster-line algorithms calculate which of the available dots (from the grid of discrete points) fall closest to the ideal straight line between the two points. To achieve maximum speed, these algorithms avoid multiplication and division. The best are incremental algorithms, where you compute each step from the preceding one.

Bresenham's Line Algorithm

The most widely used raster line algorithm today is Bresenham's line algorithm, discovered by J. E. Bresenham, an IBM researcher, in 1965. This algorithm maintains an error term whose value is proportional to the deviation of the points from the ideal line. If a point has just been plotted, in general, two possible choices exist for the next point (A and B in figure 2), and one of them will be nearer to the ideal line than the other.

Bresenham's error term is proportional to \((Da - Db) \), the difference in distances from the ideal line. In figure 2, A is closer to the line; since \(Da < Db \), the error term is negative, and you need to increment only the \(x \) coordinate, resulting in a horizontal line segment. If the error term is positive, \(B \) is closer to the line, and you increment both the \(x \) and the \(y \) coordinates, resulting in a step (both a horizontal and a vertical line segment).

Bresenham devised an algebraic derivation of the error term so it can be calculated incrementally, using only integer addition, subtraction, and multiplication by 2 (replaced in practice by a left shift).
VECTOR-TO-RASTER ALGORITHMS

See BresenhamLine in listing 3. (For space reasons, I have confined myself to a line with an uphill slope of less than 45 degrees; a more generalized version of the algorithm examines the relative magnitudes of \(x_1, y_1, x_2, \) and \(y_2\) and swaps variables appropriately.)

The only true straight lines you can draw on a raster grid are horizontal lines, vertical lines, and the 45-degree diagonal line (which is at an actual 45 degrees only if the device has a square aspect ratio). These special cases are easier to plot, and so they often have their own separate routines that run faster than the general case. For example, horizontal lines occupy contiguous addresses in the bit map; thus, you can plot them noniteratively using a fast memory-fill instruction.

The only trick lies in masking the partial bytes that may occur at either end of the line. Assuming the same hardware characteristics as FasterPlot, HorizLine (see listing 4) ignores the line less than eight dots long that falls within 1 byte; in that case, you should use both FirstMask and LastMask. (Listing 5 contains VertLine, a routine that plots vertical lines.)

You can now combine these horizontal and vertical line routines into a fast box-drawing routine, Box, which you could use, for example, to print forms on a laser printer (see listing 6). In a similar fashion, you could use the general-purpose line routine, BresenhamLine, to write a polyline routine that draws a polygon from a list of coordinate pairs that describe its vertices.

Going Around the Bend
You can draw curved lines using just the polyline routine, as a sufficient number of short line segments can approximate a curve; for example, a regular polygon with a sufficient number of sides can approximate a circle. A sufficient number is that number that reduces the length of a side to a single dot, for this is as near to a true curve as a raster device can come.

Circles and ellipses are so useful that it’s practical to have a fast routine especially for drawing them. The equation for a circle of radius, \(r\), about the origin, \(0,0\), is \(x^2 + y^2 = r^2\). However, plotting this equation directly using floating-point arithmetic and rounding is impractical; the square-root calculation is too slow. Instead, you can use an error term whose value is proportional to \(x^2 + y^2 - r^2\) and choose the points that minimize this error.

As in Bresenham’s line algorithm, algebraic rearrangement lets you use only simple integer calculations. J. Michener’s algorithm is a variation on Bresen-continued
ham's: To gain speed, you compute only one-eighth of the points on the circle, the 45-degree slice from 12:00 to 1:30; the rest is deduced on the grounds of symmetry (see Circle in listing 7). Again, you would actually implement the multiplications as left shifts.

Curve-fitting algorithms can be used to handle arbitrarily curved lines. However, these are usually reserved for sophisticated CAD/CAM systems and are not yet routinely implemented on laser printers or other personal computer raster devices. The principle of a curve-fitting algorithm is to roughly sketch out a path by plotting a number of guide points and then fitting to them the nearest curve the algorithm can find using pieces from different cubic curves. Cubic curves take the form \(y = Ax^3 + Bx^2 + Cx + D \) and have the happy property of fitting together smoothly where they join.

A typical application for a curve-fitting algorithm would be smoothing the wire-frame drawings of aircraft or car designs on a CAD workstation. (For a fuller account of Bézier and B-spline methods for curve fitting, see “Free-Form Curves on Your Micro” by Steve Enns in the December 1986 BYTE.)

Fill It Up, Please
Once you can draw boxes, polygons, and circles, you want to be able to fill them with a solid color. The fastest way is to do it when you are drawing the original shape, for that's when the coordinates of each point on the shape are available. For example, you could modify Circle (see listing 7) into FilledCircle (see listing 8) by drawing horizontal lines between symmetrical pairs of points, instead of just plotting them.

A filled box is similarly produced from a sequence of horizontal lines. Filled polygons, however, present more of a challenge; you must find the points at which each horizontal scan line intersects with the edges of the polygon. If you are drawing a concave polygon, there may be more than two such points for some lines. The resulting algorithms are complex and involve keeping sorted tables of the intersection points and the polygon edges.

Filling arbitrary outlines after they have been drawn is a more difficult process, but one that an interactive drawing program might require. Once you have drawn a shape, information about its outline exists only in the bit map; extracting that information is painful. You must write a routine that reads the value of a dot from the bit map, the exact reverse of Plot, so that you can detect the edges of the region to be filled. IsSet (see listing 9) returns the value “true” if the point \(x,y \) is turned on and “false” if it is not (i.e., if the dot has the background color).

The simplest fill algorithm is the flood fill, which is more common in screen applications. It searches in all directions from a chosen start point for pixels that are not set and then sets them; the process resembles water flooding across a floor. Filling stops when the flood reaches the boundary of the shape. That boundary must consist of an unbroken chain of set pixels; if it has any holes, the flood will leak out and fill the area around the shape, a common experience for users of drawing software. The algorithm is most clearly expressed in the recursive form shown in FloodFill (see listing 10).

FloodFill examines the four nearest neighbors of each point: left, right, up, and down. In topological terms, it fills a 4-connected region. You could easily expand it to examine eight neighbors (including the diagonally adjacent pixels), but this expansion can cause the flood to leak through boundaries drawn using any variant of Bresenham’s line algorithm, since they have “holes” in the diagonal directions (see figure 3).

This recursive flood fill uses an enormous amount of stack space when you run it over sizable areas on a high-resolution device. Iterative versions that overcome this problem are less elegant; they identify horizontal “runs” of pixels to be

Listing 9: IsSet, a pseudocode routine to determine whether a particular bit in a bit map is a 0 or a 1.

```plaintext
Function IsSet(X,Y)
Address <- BufferStartAddress + (X SHIFTR 3) + 
           (Y SHIFTR 6) + (Y SHIFTR 4)
Mask <- 128 SHIFTR (X AND 7)
Value <- [Address] AND Mask
IF Value = 0 THEN RETURN FALSE
ELSE RETURN TRUE
ENDWHILE
```

Listing 10: FloodFill, a pseudocode algorithm in recursive form that floods an area in order to fill it.

```plaintext
Program FloodFill(X,Y)
WHILE NOT IsSet(X,Y)
    Plot(X,Y)
    FloodFill(X-1,Y)
    FloodFill(X+1,Y)
    FloodFill(X,Y-1)
    FloodFill(X,Y+1)
ENDWHILE
```

Figure 3: This shows how a flood fill can leak through the “holes” in a diagonal line.

Figure 4: This shows the only method of enlarging a character stored in bit-mapped form—pixel replication.
filled by searching along each scan line to find where it intersects with the boundary.

What a Character!
The drawing primitives we have seen can produce text characters on a raster device, but this is not usually the primary method of displaying text. It’s far too slow to draw a letter using line- and maybe curve-drawing primitives every time you press the key. Instead, on "soft" systems like the Macintosh, Amiga, and most laser printers, characters are normally stored in nonvisible RAM as a set of bit maps that make up a complete font and then copied to the display buffer as needed. If you have a character-only device, the font lives in ROM, and the display hardware copies it directly.

More sophisticated typesetting systems employ a two-stage process. They store the fonts as vector descriptions and then convert them to bit maps in font memory, using algorithms like those above. From font memory, the bit maps can be copied to the display buffer on demand. The advantage of this approach is that you can produce different sizes and styles of characters from the same description by applying geometric transforms—you might slope a font to italicize it—while preserving the display quality.

Donald Knuth’s METAFONT is an example of a system that describes typefaces geometrically in terms of curved segments. The PostScript page-description language can also compute bit maps from mathematically described fonts.

By contrast, fonts that are stored solely in bit-mapped form are relatively inflexible. You can enlarge them only by the crude process of replicating the dots (i.e., by printing two or four dots for each one in the original character). This has the profound disadvantage of magnifying the jaggedness of the original in proportion and leads to unsightly characters in the larger point sizes (see figure 4). The alternative is to store a separate font bit map for each point size, which uses a lot of memory. (Transforming bit-mapped characters is limited to rotation in multiples of 90 degrees.)

Bit Blitting
The operation used to copy characters to the display buffer has become famous as the BitBlt or Blt operation, short for bit boundary block transfer. The basic Bit operation copies the bits that represent a rectangular area of dots from one place (the source) to another (the destination) in memory.

The source and destination may both lie elsewhere, such as in font memory. Dots need not be aligned on word boundaries, hence the bit-boundary tag; therefore, much of the algorithm is concerned with masking out parts of bytes that fall outside the source or destination rectangles. It must also cope with the various cases where the source and destination rectangles overlap (they might even be the same rectangle).

The most general form of Blit can combine the source and destination rectangles using logical operations rather than simply copying, for example, source XOR destination. With it, you can obtain many special effects, such as characters with transparent backgrounds or characters overprinting each other, perhaps, for accents. (For a good description of the use of the BitBlt operation in kerning characters for a laser printer, see “Designing a Raster-Image Processor” in the May BYTE.)

BitBlt is, in theory, a general operation that can serve as the sole graphics primitive in a system (it was used this way by its inventors, the Smalltalk team at the continued
AN ALMOST FOOLPROOF WAY TO MAKE ARCHIVAL BACKUPS OF PROTECTED SOFTWARE!

The Copy II PC Option Board is an easy-to-use add-in board that will give your PC the same disk duplication technology used by most disk duplication firms (who put the copy protection on software in the first place).

DUPLICATES NEARLY ALL PROTECTED DISKETTES.

The Option Board can easily backup almost all protected diskettes for the IBM PC, including ones software-only backup programs can't touch. It even includes a track editor that will allow the more technically inclined to look at protection schemes and edit any data on a diskette.

The Option Board uses a half-size slot in an IBM PC, XT or AT, Heath/Zenith 150, 151, 158, Compaq Desktop. Requires: 1 360KB drive, 256K memory. Extra $15 cable required for Compaq Portable, HP Vectra and Tandy 1000.

Call 503/244-5782, M-F, 8-5 (West Coast time) with your in hand.

Or send a check for $95.00 U.S. plus $3 s/h, $15 overseas. Please specify your computer brand when ordering so we can send you the correct cable.

$95.00
Central Point Software, Inc.
9700 S.W. Capitol Hwys., #100
Portland, OR 97219

Backup utilities also available for the Macintosh, Apple II, Commodore 64/128 and Atari ST.
Star has ImagePower Printers for:

Bankers...
NX-10 offers flexibility and value, with 120 cps Draft mode, and 30 cps Near Letter Quality, for credit and loan reports.

Executives...
The Signature NB24-15 features professional-looking Letter Quality at 72 cps, with high resolution graphics.

Students...
Budget-minded students like the NP-10. Draft at 100 cps, and crisp NLQ looks great in class.

Editors...
The ND-10 meets deadlines with a fast 180 cps Draft mode, time-saving 12 8K buffer. Plus, crisp NLQ.

Accountants...
Spreadsheets fly out of the NR-15 at a fast 240 cps Draft, plus features that make numbers look more impressive.

Lawyers...
Signature NB24-10 prints drafts at 216 cps, true Letter Quality at 72 cps, for faultless legal briefs.

Engineers...
NB-15, our fastest Signature, with a 15" carriage perfect for number crunching and design work, 300 cps Draft, 100 cps NLQ.

Retailers...
They're sold on the NX-15; prints inventory reports and spreadsheets at 120 cps Draft, or 30 cps NLQ.

And you.

Whether you need spreadsheets, graphics, or word processing, Star has an ImagePower™ Printer to make your work, and you, look your very best.

The 24-wire Signature Series offers impeccable Letter Quality print-outs, outstanding graphics, and terrific speed. Star's 9-wire models combine print quality and speed, without squeezing your budget.

And every Star printer features a convenient front control panel—placing important functions right at your fingertips. Plus, built-in tractor and friction feed paper-handling features are included as standard.

To find out where you can get a Star ImagePower Printer that's right for you, call 1-800-447-4700.

THE IMAGEPOWER PRINTERS

Inquiry 276

SEPTEMBER 1987 • BYTE 185
Our laser printers speak for themselves.

Select from a wide range of LaserPro laser printers. High quality printing at eight to fifteen pages-per-minute. Software compatibility with virtually all packages that support the Hewlett-Packard LaserJet PLUS™, HP LaserJet™, Diablo® 630, Epson® FX-80, Qume Sprint® II, NEC Spinwriter® and other popular printers. Prices begin at $1,895.*

*Suggested U.S. retail price

Inquiry 198 for End-Users. Inquiry 199 for DEALERS ONLY.
Page Printers

New technologies help laser printers and their cousins cost less and produce better results

Rick Cook

TODAY'S PAGE PRINTERS have two problems. The first is obvious: price. At a time when a good printer costs less than $1300 and a less capable unit can sell for under $200, laser printers start at $1700 and go up quickly.

The second problem is resolution. For traditional computer-printing jobs, the 300-dot-per-inch resolution of current-model page printers is more than adequate. However, the advent of page printers has spawned new applications—notably, desktop publishing—where 300 dpi is not always good enough. Traditional graphics-reproduction methods for typesetting and photography use resolutions of 1000 to 2400 dpi.

Help is coming on both fronts, thanks to new technologies such as LED, liquid-crystal-shutter, and ion-deposition imaging, and to traditional market forces such as volume production and changes in the design philosophy regarding printer intelligence. In this article, I'll survey the present technology and look at some of the developments that promise to make page printers even more powerful and versatile and, in some cases, less expensive.

How a Page Printer Works

Most page printers use electrostatic forces to create a page image from rasterized digital information and to transfer that image in the form of toner onto a piece of paper.

The heart of an electrostatic page printer is a drum or belt coated with a photoelectric substance that develops a positive or negative charge in response to light. The usual coatings are selenium and some organic compounds. A beam of light (or an array of individual light sources) "writes" an image onto the drum one row of dots at a time (see photo 1). As each row of dots is written out, a stepper motor advances the drum by one row and the light source writes out the next line of the image.

The result is a 1000-volt electrostatic image of the page on the drum, against a background potential of about 100 V. As the drum rotates, it passes over a reservoir of toner, finely divided particles of an organic compound that is susceptible to static charge. The charged areas on the drum attract and hold the toner. The toner-laden image on the drum is then brought into contact with a sheet of paper that has been charged to an even higher potential, usually about 2000 V, by means of a corona mechanism. The toner jumps to the paper in the same way that bits of lint will jump up and cling to a vinyl comb. Heated rollers fuse the toner to the paper to produce the finished page, and the paper-handling system passes it to the output tray.

After transferring the image onto paper, the drum rotates past a discharge wire to eliminate any remaining charge. Then a scraper assembly removes the last traces of toner, leaving the drum clean and ready to receive the next image.

Figure 1 illustrates the entire system (for a laser printer) schematically, but don't be misled: The process is not simple. A good laser printer is a tightly coupled system of electronic, chemical, optical, and mechanical parts. This intricacy and interaction of technologies is largely responsible for the laser printer's high cost.

Consider just one element: the image drum (or belt, in some designs). The drum must rotate smoothly, precisely, and concentrically. If it is out of round or mounted eccentrically, the light will be out of focus on the surface at some points, and any spot of toner left at that point will be too large. Furthermore, if the drum does not advance smoothly and accurately, the rows of pixels will be blurred or misplaced. Getting the required precision from the drum movement takes a good stepper motor, quality bearings, and a drum manufactured to close tolerances.

Because these active elements have to be so closely matched, manufacturers buy them as preassembled "engines" from one of the OEMs, such as Canon, Ricoh, and Kyocera. The end-product manufacturers then add a controller, a paper-handling mechanism, and other components to make a complete printer.

Kinds of Page Printers

Laser printers were the original page printers and are still the most widely used variety. They have been available for about 10 years, starting on printers for large computer systems and filtering down to microcomputers. Today, laser-printer technology is widely available and continued

Rick Cook is a freelance writer specializing in computers and high technology. He can be reached at 3820 West Flynn, Phoenix, AZ 85019.
generally well-understood.

These printers use a laser beam to write the image onto the drum. The laser isn’t aimed directly at the drum. Instead, it is aimed at a rotating mirror, usually with 8 to 16 faces, that scans the beam across the face of the drum, turning on and off according to the digital information coming from the rasterized image. The controller synchronizes the scanning beam and the drum-advance motor with the flow of rasterized information.

Small laser printers that produce fewer than 10 pages per minute generally use a laser diode to produce the beam. Faster printers use a more powerful helium-neon or argon laser; the power of the beam determines how quickly the laser can charge the individual points on the drum.

Compared to other kinds of page printers, the biggest design challenge associated with laser printers is their optical system. To work properly, the laser printer’s beam must be equally strong and precisely focused at every point along the scan line. It must also be aligned with the drum and synchronized with its rotation.

Any scanning beam is subject to what are called cosine-fourth losses, named for the function that describes them. (The losses are proportional to the fourth power of the cosine of the angle between the beam and the scanned surface.) As a result of these losses, the beam is weaker and more diffuse at the edges of the scan than at the center. Laser printers use a complex lens system designed to compensate for these losses. Likewise, the faces of the rotating mirror need to be precisely aligned and perfectly flat. Any irregularity will cause misalignment of a row of pixels.

Finally, the optics have to be held in precise alignment with the drum and each other. Vibration or misalignment can ruin a laser printer’s print quality. (This is one of the reasons laser printers are so heavy, but transformers needed to produce the high voltages also contribute weight.) If a laser printer’s optical system gets knocked out of alignment, it is not simple to repair; the unit generally has to go back to the manufacturer.

Although the laser-beam design is the most common approach to writing an image on the electrostatic drum, other designs are available and offer certain advantages. One type of page printer uses a row of LEDs, one for each pixel in the row, to write the image to the drum. Datasouth now offers an LED printer (the Pagewriter 8, $2995) based on an NEC print engine.

LED engines are made by NEC and Sanyo at the low end (less than 10 ppm), Kentek and Agfa at the medium range (more than 12 ppm), and Kodak at the high end (up to 92 ppm).

A third variation is the LCS printer, which has a row of liquid-crystal “shutters” in place of the diodes. A powerful fluorescent bulb provides the light, and pulses of electricity open and close the shutters to write the image. Taxan sells an LCS printer (the Crystaljet, $3495). Figure 2 shows an LCS print head.

Because LED and LCS printers use fixed, multiple light sources rather than scanning a beam across the drum, they are optically simpler than a laser printer. Alignment is easy to maintain, and you can replace the print bar (the part that holds the LEDs or LCSs) in the field in a few minutes.

This optical simplicity is somewhat offset by the need to drive each light source individually, which increases the electronic complexity. Most LED and LCS printers multiplex the control signals to cut down the number of signal lines. However, this means that all the light sources cannot be on at once—the printer has to write different sections of the scan line at different times. In some designs, the light bar is mounted at an angle to the drum’s rotation to let it write to only part of the drum at once.

In both LED and LCS printers, the number of elements in the print bar determines the resolution. The difficulty of packing the light elements densely enough to achieve high resolution is one of the reasons LED and LCS printers came later than laser printers. In the case of LED printers, the devices must be packed onto LSI chips. For instance, the NEC engine in the Datasouth LED printer uses LEDs built on chips with LSI technology, 128 LEDs per chip. In the
LCS printers, the shutters had to be much smaller than previous applications had demanded (see photo 2).

The LCS design poses an additional problem: The heat from the light source tends to distort the cells in the array. The solution has been to minimize the light intensity and to engineer the print bar to handle the strain.

A close relative of electrostatic printers is the ion-deposition printer, which uses a beam of charged particles (ions) rather than a beam of light to write the image on the drum.

Like LED and LCS printers, an ion-deposition printer uses a row of elements to write to the drum. The elements are conceptually similar to a triode vacuum tube with ions flowing from cathode to anode, regulated by a grid. Unlike other page printers, these printers do not use heat to fuse the toner to the paper. The drum is much harder than the light-sensitive ones used in laser, LED, and LCS printers, making it feasible to coldFuse the toner particles onto the paper by means of a pressure roller. As a result, the printer generates less heat. Figure 3 is a schematic illustration of the ion-deposition design.

Ion-deposition technology offers a number of advantages in medium-to-high-speed printers, most notably durability. In a laser printer, 500,000 copies per drum is considered excellent performance, and some printers will do only 15,000 copies before the drum needs replacement. By contrast, C.Itoh claims that the drum on its ion-deposition printer will print between 1 and 3 million copies before it must be replaced. These printers have fewer moving parts than laser printers—contributing to the design’s reliability.

Moreover, the drum’s hardness lets it stand up to harder scraping than is possible with an electrostatic drum. More of the excess toner particles are removed, resulting in fewer “freckles” on the pages.

Ion-deposition printers are basically volume devices. Although the technology could be used in a desktop printer, it tends to be more expensive in low-volume applications than electrostatic systems. Furthermore, because the rollers have to press the toner onto the paper, ion-deposition print has a shiny (“calendered” is the technical description) look that some people find objectionable.

Cutting Costs
One way to cut the cost of page printers is to build a lot of them. As production increases, economies of scale set in and the cost of making a page printer drops. Copiers are made in much larger numbers than laser printers, one of the main reasons a plain-paper copier sells for half the price of a laser printer.

Other page-printing technologies, such as LED and LCS, can also push down prices. Currently, LED and LCS printers are no cheaper than laser printers. But laser printers have been made for longer and in larger volumes than LED and LCS designs. Manufacturers claim LED and LCS prices will drop as they move farther along the learning curve and production increases.
The declining cost of electronic components, especially RAM, helps, but so much of a printer is electromechanical that prices probably won’t drop as rapidly as they have for computers.

Another way to cut the cost of a page printer is to reduce its intelligence. Moving the rasterizing and image-storage components from the printer to the computer reduces the cost of the printer significantly. The amount of actual savings to the user depends on whether the computer’s main processor and memory are used to control the printer, or whether a full-featured computer-on-a-board must be added through an expansion slot. For example, Atari’s $1500 SLM-804 laser printer uses a separate controller box between the printer and the computer. Apple is also reportedly taking this tack (i.e., taking the intelligence out of the printer) with its new design for a laser printer that will supposedly list for between $2000 and $2500. IBM’s Personal Pageprinter ($2199) uses a similar approach.

On the negative side, when the computer handles the control functions, a complete bit map of the page must be passed to the printer for every copy of the page printed. Without a fast communications channel, printing will be slow. Some companies, such as Electronic Form Systems and TallTree, use a video interface to keep the speed up. IBM’s Personal Pageprinter ($2199) uses a similar approach.

Increasing the Resolution

Aside from lower cost, what users want most from a page printer is higher resolution.

At 300-dpi standard resolution, the page printer falls in an uncomfortable middle ground. The quality of text and graphics on a 300-dpi page printer is superior to that from other kinds of computer printers but not as good as the type-set material found in books and magazines. Traditional typefaces can only be approximated on a 300-dpi device (see the text box “Page Printer Typography” on page 194). In particular, half-tone images suffer on a page printer (see the text box “A Gray Area for Page Printers—Photography” on page 192).

The minimum resolution on typesetters today is about 1200 dpi. If inexpensive page printers could print at that resolution, they would be much more useful. In fact, doubling the current resolution to 600 dpi would be good enough to handle most graphic-arts jobs. Book-quality work printed on coated stock would still be out of reach.

In the next 24 months, you will probably see a number of 600-dpi desktop page printers. But, for a variety of reasons, they will cost much more than the 300-dpi models. As a printer’s resolution increases, so does its cost of manufacture. The individual dots have to be made smaller, and their placement must be more precise. This is true for both vertical and horizontal resolution.

Increasing horizontal resolution requires better optics, especially on laser printers, because the effects of the cosine-fourth losses become more significant at higher speeds and densities, the power level is more critical. Increased resolution also requires more precise control of the light source. On a laser printer, that means more accurate mirrors and more precise scanning. LED and LCS printers need more elements in the print bar and the ability to turn the elements on and off more quickly.

The accuracy of the drum-advance mechanism basically determines vertical resolution, since the drum must advance by one pixel for each new row of pixels. That means a better stepper motor and other components, as well as more precise electronic control.

Another consideration is the size of toner particles. Generally speaking, the smaller the average size of the toner particles, the higher the printer’s resolution can be. However, the smaller the particles, the harder they are to control. A page printer is basically an electrostatic material-handling system where the material handled is toner. Ideally, there should be no charge anywhere except where the printer puts it, there should be no attraction among toner particles, and the particles should not move except in response to applied static fields.

In practice, however, toner particles are attracted to each other, they adhere to the drum, and they are influenced by stray electrostatic forces within the...
It's moving day.

Time to pack up that big mainframe program and move it to the PC.

Relax. It's going to be the easiest move you ever made if you use the new RM/FORTRAN™ V2.4 with Austec's new RM/Forte™ productivity tools.

RM/FORTRAN has the VAX, VS and FORTRAN-66 extensions you need, and is field-proven with more than two years of mainframe conversions by thousands of demanding engineers and scientists.

And, with RM/Forte you can complete your conversion at a record pace . . . cutting debug time up to 50% . . . diagnosing syntactical errors in 1/5 the time.

You're in the fast lane because RM/Forte integrates all major program development tasks—edit, compile, link and debug—into one interactive, menu-driven environment. Just a few simple keystrokes move you from one task to another . . . and back again.

Plus, you get a full-screen editor, a syntax checker and a source code manager that automates compiling and linking as you make changes.

RM/FORTRAN applications are more than just easy to develop—they run fast, too. Sieve or Whetstones, RM/FORTRAN benchmarks ahead of the bunch. And if you need it, RM/FORTRAN has a very fast 8087/80287 emulator to give you the power of a coprocessor.

But don't take our word for it. Listen to a moving professional: "RM/FORTRAN lets us move mainframe programs to PCs faster and cleaner than any other compiler on the market." (John Haestad, Haestad Methods)

RM/FORTRAN was the first PC FORTRAN GSA certified a Full Level ANSI 77 with no errors. You may have heard of its sister: IBM PC Professional FORTRAN.

Enough reading. Start writing. Fill out and send in the coupon below to find out more about RM/FORTRAN with the new RM/Forte productivity tools. Then move it!

Austec Inc.
600 Deep Valley Drive
Rolling Hills Estates, CA 90274
Or call 213/541-4828

Let's get moving. Send me details on RM/FORTRAN V2.4 with RM/Forte Productivity Tools, and your special upgrade offer:

Name ____________________________
Company ____________________________
Street ____________________________
City ______ State ______ Zip ______
Phone ()

Inquiry 253

OFFICIAL SUPPLIER IBM FORTRAN/2
A Gray Area for Page Printers—Photography

Photographs are a challenge for today’s page printers. While text printed at 300 dpi might look beautiful to the casual observer, photographs rendered at the same resolution are decidedly second-rate. The reason for this is best summed up in two words: continuous tones.

The typical black-and-white photograph consists of continuously varying tones of gray. An artist attempting to copy a black-and-white photo can recreate the grays by mixing varying amounts of black and white paint on a palette. Of course, that solution isn’t feasible in mechanical reproduction systems such as printing presses, which work with only one shade of ink. Because of this fundamental limitation, photographs and other continuous-tone images must go through a process known as screening before they can be mass-printed.

Photographic Screening
In the screening process, a grid of dots or lines called a screen is placed over the photograph, and a new photograph is made. The resulting halftone has no gray tones; instead, the gray regions are approximated by means of black dots that vary in size and shape. The density of the screen (i.e., the number of dots or lines per inch) along with certain other factors determines how well the halftone reproduces the original’s gradual changes in tone. Higher density allows more gradual changes. Newspaper-quality halftones are typically made with an 85-line screen (i.e., 85 dots or lines per inch); magazine-quality uses a 100- or 133-line screen.

Digital Approaches
The same process can be simulated on a computer. First, the photo is digitized. A scanner moves across the photo just as if it were a print head moves across a page, but, instead of printing, it reads the gray level of the image at fixed intervals. Each sample reading is stored as a number in a given range.

To reproduce the digitized image, the computer creates a bit image made up of small two-dimensional cells. The sampled gray levels are mapped into these cells. To reproduce a gray level from the digitized image, a corresponding percentage of pixels within that cell are turned on. For instance, if an 81-dot region is to have a gray level of 25 percent, 20 of the dots inside the cell are turned on.

Resolution vs. Shading
To allow for smoothly varying tones, small cells are needed (just as with the small dots in the halftone screens). But the smaller the cell, the fewer dots can be placed inside it. This, in turn, limits the number of discrete shades that are possible within a cell.

For instance, to approximate a 75-line screen requires 75 cells per inch. At 300 dpi, a page printer can place just 16 (i.e., 4 by 4) dots inside such a cell, yielding only 16 possible gray levels.

Note that the resolution is now 75 cells per inch—the image will have only 75 discrete regions per inch, instead of the 300-dpi resolution when only two gray levels, black and white, are represented.

Some printers come with software to accomplish this kind of halftone simulation. Adobe Systems’ PostScript, the PDL used in Apple’s LaserWriter and certain other models, provides screen for setting the cell size, set screen for controlling the method of filling pixels inside each cell, and set transfer for applying further transformations to the gray level inside each cell.

The net result of this software-simulated halftoning still falls short of the result of true photographic halftoning. The problem is the shape of the dots.

If you examine a printed photo under a magnifier, you will find that the shape of the dots varies depending on their surroundings. This is especially true along edges where the dots tend to elongate in the direction of the edge. This makes edges stand out much more clearly. Since edge definition is vital to perceived sharpness, the result is a major improvement in effective image quality.

Page printers generally cannot vary the shape of their smallest dot, and thus, at the lowest level, they cannot duplicate the effect of the photographic halftone. At a higher level—the cells made up of dots—page printers can vary the way the cell is filled in, but this approach operates at the expense of resolution.

One solution to this problem is to use a higher-resolution laser printer, so that the cells can be smaller and still represent a large number of discrete gray tones. This is effective but also expensive.

Smaller Dots
DP-Tek (Wichita, Kansas) has taken a more direct approach to the dot-shape problem. The company manufactures a Canon-engine controller called Laserport. Laserport combines a software package (for simulating the halftone process as explained previously) and a custom controller that actually varies the shape of the laser’s dots.

DP-Tek claims that the Laserport controller can produce the equivalent of a 100-line screen print on a standard Canon print-engine laser printer, when driven by an IBM PC AT or comparable computer. (Figure A is a Laserport simulation of a 100-line screen, using as in-
According to DP-Tek, the Laserport system is based on two elements: the controller's ability to produce dots in any needed shape and the company's rasterization process, which mathematically models the effects of screening a photograph.

DP-Tek originally developed the system because it had to put in a system to prepare a computerized Multiple Listing Service book. The books show real-estate agents the houses available for sale in a particular area and usually include a photograph of the house as well as the description. Because the books are updated frequently and issued in fairly small print runs, this was an ideal application for a laser printer—except for the photographs.

"The computer industry has always used standard graphics techniques," says Alan Frazier, DP-Tek's president. "We took the same approach at first, but we couldn't get a satisfactory quality level. Finally, we spent a lot of time looking at dots."

According to Frazier, one of the most important parts of developing the system was modeling what happens when a photograph is screened; in other words, when light is reflected through a variable-density screen from an image. The development work was done on AT-class computers in C and Pascal and later optimized and converted to assembly language for run-time packages. This was combined with a proprietary controller that can vary the shape of dots.

The company is closemouthed about the details of the process. All Frazier will say about the way the controller works is that "in electronics, states are rarely purely on or off." Presumably, the controller varies the intensity of the printer's laser beam and/or the scan rate and drum-rotation rate to vary the shape of the dots. Figure B is an enlargement of a 300-dpi test pattern produced by Laserport, showing the system's ability to vary the dot size over a wide range.

The controller fits in the computer's case and works with the printer's resident controller. When the printer is printing text or graphics, the Laserport controller stays in the background. When it has to print a photograph, the Laserport controller handles it. The company claims that Laserport is transparent to the software that works with the laser printer.

The Laserport software includes drivers for the printers, modeling software to duplicate the effects of screening a photograph, and a set of high-level picture-printing commands. To print a picture, the user or the application program must tell Laserport where the picture is to go on the page and the name of the file containing the picture image.

The DP-Tek controller is sold to OEMs for incorporation into their systems. One customer is Chorus Data Systems of Merrimack, New Hampshire, which uses it with its Photobase graphics database.

Figure B: An enlargement of a 300-dpi test pattern produced by Laserport, showing the system's ability to vary the dot size over a wide range.
Page Printer Typography

Laser printers are producing a revolution in typography. Type designers are adapting existing type styles to laser printers and designing new type styles to capitalize on the strengths of image printers and minimize their weaknesses.

The first mechanical composing machines, such as the Linotype, provoked a similar revolution when they appeared in the 19th century. The rigid mechanical spacing of the letters and the limited number of characters available in typesetter magazines forced designers to modify their type families. For example, italic fonts tended to become wider to match the spacing of regular fonts.

Phototypesetting precipitated another, smaller revolution in the 1950s. Rather than handcrafting each font in its own point size, typographers could design a single font and use optics to produce a range of smaller and larger fonts. In some cases, the substitution of optics for hand design has resulted in a lowering of typographic quality.

The onset of digital type in the 1970s and 1980s has brought with it the promise of a return to the high art of typography. Having characters stored digitally brings all the power of CAD to the hands of the type designer. Page printers have brought the world of digital type to the personal computer desktop.

Typefaces and Fonts
Type is classified according to families. A family is a group of alphabets that are stylistically related. Within each family are several typefaces—alphabets sharing the same characteristics. Times Roman, Times Roman Bold, and Times Roman Italic are all members of the same type family. Typefonts are examples of a typeface in a particular type size. For instance, 24-point Times Roman Bold is a font, but Times Roman Bold is a face, a member of the Times Roman family.

What computer people commonly call a typefont on a laser printer is really a typeface, since it comes in several different sizes.

The distinction between typeface and typefont is important because there is more to the different fonts in a face than enlarging and reducing the type. This is especially true with laser printers.

Low-Resolution Typography
A type designer working for laser printers has two interrelated problems. Figure C illustrates them.

The first one is that some faces don't work well at 300 dpi. For instance, a face with slight angles in its long strokes will cause trouble. The classic example is Optima, a face with gently slanting verticals. At 300 dpi in common book sizes, this produces a jarring break in long verticals, such as the stem of a d or an l. Italics from many families give designers trouble for the same reason.

The lower resolution can interfere with subtle features of typefaces. Garamond, a common book face, has cups at the top and bottom of many strokes. At 300 dpi, those cups are hard to reproduce in common font sizes.

The second problem is that, even in fonts that are adaptable to laser printers, the coarser resolution requires adjusting the letter shapes. For example, in many faces, the points of the w and v extend slightly below the baseline. At 2000 dpi, this looks elegant. At 300 dpi, the extension becomes crude and jarring.

A related consideration is font size. Relative letter spacing and weight (i.e., thickness of strokes) tend to change with the size of the font. Details that cannot be reproduced in small sizes are important in larger sizes; without them, the type looks wrong. Similarly, spacing that is appropriate for small sizes is often too loose in larger sizes.

This is nothing new. Type designers have always had to adapt fonts to the method of typesetting. But today's bit-image printers require more adaptation than previous innovations.

The correct, but not universally practiced, process of adapting a typeface to a laser printer starts with an idealized version of the face at very high resolution. This is as close to the original type design as possible, without any compromises for reproduction or resolution. Typically, before a type foundry begins adapting a typeface, a type designer must "clean up" the letterforms to correct for adaptations that were made for the sake of other typesetting processes.

Once the idealized process is in hand, the
designers can begin adapting the face for different fonts.

A laser printer complicates this process because the resolution is so low. Information is lost when letters are reduced without any increase in resolution. For instance, a serif might disappear in the smaller typefonts, or a thin stroke may become exaggerated. As a result, type design for laser printers is in part a matter of trompe l’oeil. The eye must be fooled into believing features are present that actually aren’t. The question facing the type designer is: Which information can be lost without distorting the letter too much? In one case, it might be better to compress a letter. In another, the stroke might be widened or a serif might be omitted.

One common adjustment is to increase or decrease the width of the strokes (vertical lines) so they coincide with a pixel column. Curves are less of a problem because the pixels of a curved line naturally fall on different scan lines, and the roughness can be made to average out. The extreme points of curves must coincide with pixel columns or they will become flat or pointed.

If you examine an enlargement of a laser-printed font, you will often find dots that don’t seem to belong. An r might have a dot that appears too high in the curved stroke, or a d might have a dot almost floating inside the enclosed space. Actually, these “excess” dots are carefully placed to add weight or thickness at critical points and trick the reader’s eye into seeing elements or details that are not there (see figures D and E).

The scaling is typically done algorithmically, at least in part. Type foundries usually have proprietary algorithms to change letter shapes as they enlarge and reduce their basic designs.

Once the face has been enlarged or reduced, a type designer usually optimizes it to make the font look as good as possible. This can involve not just resolution and size; it can also depend on the nature of the printer that will output the type. For instance, not all bit-image printing engines have the same ability to reproduce thin lines. The amount of optimization that is done depends on how well the algorithm represents the face in the new font and how much money the customer is willing to spend to get it right.

Adobe’s PostScript PDL and Bitstream’s Fontware system include algorithms for sizing faces effectively.

Bitstream has automated much of the design process with a program. Originally written in LISP on a Symbolics LISP machine, it is an expert system that chooses the best adjustments when scaling a face based on the rules used by Bitstream’s type designers. Bitstream offers Fontware to OEMs so they can scale and fine-tune faces for their equipment themselves. The company plans to offer a run-time package to do the scaling on the laser-printer controller or the computer driving it. Hardware and software OEMs will be able to adapt the package to their equipment or software to give their users the same kind of control over their fonts. If a user needs a 22-point font, he or she can get something optimized for 22 points, not something designed for 24 points and scaled down.

Despite the problems involved in adapting faces to bit-image printers, there is only limited interest in designing faces, especially for 300-dpi printers.

Matthew Carter, vice president of design at Bitstream, is adamant that good type is good type; it doesn’t change over the centuries. Garamond, a very popular face today, was designed about 400 years ago. It is a mistake to discard one face and design a new one just to accommodate the limitations of a new technology, Carter claims, because the technology will have improved enough to handle the standard face before the new face catches on.

Figure D: Some type styles are not representable at resolutions below 800 dpi. The lowercase n (detail a) from Garamond #3 has wavering strokes and serif features that cannot be fit to conform to the grid (detail b). To get the effect of a finely wrought typeface using 300 dpi, designers often trick the eye by adding dots where they don’t belong (detail c).

Figure E: Characteristics of some type styles are representable with manual corrections by designers working directly with the output technology. The uppercase E of Futura is enlarged at 12 times actual size (detail a) to show the serrated edge of the sloped vertical. At twice actual size (detail b), the serrations are still visible; but at actual size (detail c), the letters appear smooth and consistent.
Canon introduces MORE.
More easy-to-use features.
More advanced technology.
More productivity.

PERMA POWER FIGHTS SURGES TWO WAYS...
OR WE PULL THE PLUG

Perma Power Surge Suppressors give you peace of mind, knowing that your computer is protected against power line surges and against suppression element failure.

PROTECTION FROM POWER LINE SURGES
Our unique 2-stage circuit uses heavy-duty metal oxide varistors to protect you against high-voltage lightning-induced surges, and high-speed semiconductor devices to protect against frequent fast surges. Only this kind of hybrid circuit can provide the necessary high power dissipation while still providing fast response time and low let-through voltage.

PROTECTION EVEN IF WORN OR BURNED OUT
Any surge suppressor can wear or burn out. With Perma Power you can relax! Power to your system is stopped ... as completely as if the plug was disconnected. Other surge suppressors may use a light or buzzer "warning," while they continue to let raw, unprotected power feed directly into the computer. Only with Perma Power's patented Automatic Shutdown* feature is your equipment kept safe from damaging raw power.

Ask for Perma Power Extended Life Surge Suppressors, in 2, 4, or 6 outlets and Power Control Center models to insure your computer is being protected. At office, computer or electronics dealers nationwide.

PAGE PRINTERS

No one kind of page printer is going to give users everything they want. There are too many basic conflicts and trade-offs.

printer. The particles seep into other parts of the printer. All these effects get worse as the toner particles get smaller.

The traditional solution is to use a wet toner in which the particles are suspended in a liquid. This method is used by high-resolution electrostatic printers like laser phototypesetters, but it is messy and adds complications of its own. New toner formulations and better toner-manufacturing processes are another possible approach.

The paper becomes a factor as resolution increases. One of the reasons laser phototypesetters achieve such high resolution is that their output is printed on very glossy stock. The smooth surface makes fine detail possible. But the quality of paper supplied to most office page printers isn't nearly as smooth; thus, the page printer's output isn't as good at comparable resolutions. Apart from the cost of ultrasmooth paper, the paper-handling mechanisms used in desktop page printers depend on the surface roughness of the paper to get a grip. Paper on very smooth stock requires different, more complicated methods, such as vacuum gripping.

As resolution increases, the electronic components of the printer become more expensive. Doubling the resolution to 600 dpi from 300 dpi means quadrupling the amount of RAM needed to store a page image—to 5 megabytes from 1.25 megabytes (unless the controller design is changed; see the article entitled "Designing a High-Speed Page Printer Controller" by Phil Ellison on page 225). Furthermore, the controller must either work twice as fast to lay down twice as many dots per scan line in the same time or slow down the laser beam, increasing the time required to print a page. While the electronics costs don't increase in proportion to the mechanical costs, the increases are significant.

Intrinsically, there is no reason a desktop page printer cannot match the resolution of phototypesetters—if the buyer is willing to pay the price. For example, VariType now makes a small 600-dpi laser printer that costs about $18,000.
Some phototypesetting machines are basically specialized laser printers, but they are even more expensive.

One factor holding back the development of high-resolution personal desktop page printers is that the manufacturers aren't sure that enough users are willing to pay the price. So far, the small page printer market has been highly price-sensitive, and the makers aren't sure most users will pay for higher resolution. Vari-typer's printer, for instance, is aimed at the typesetting market.

The Coming Printers
No one kind of page printer is going to give users everything they want. There are too many basic conflicts and trade-offs. Instead, you will probably see a range of desktop page printers with different mixes of price and features.

At the low end will be inexpensive 300-dpi printers with print speeds of 5 ppm or less and street prices between $500 and $1000. These printers will rely on the computer's processor and memory for control. Due to memory constraints, they will probably not be able to print full-page graphics and will not use a page-description language (PDL). They will probably be limited to 8½-by-11-inch paper and might handle only certain weights of paper. You might see the first of these by the end of the year, although the very inexpensive examples are probably two years off.

The next group of printers will offer higher print speeds and more features for a higher price. They will include a PDL, full-page graphics, more flexible paper-handling, and a variety of bells and whistles. These printers will probably start at about $1200 and run up to $5000 or more, depending on features. These printers are essentially refined versions of today's page printers. In that sense, they are already available.

Above that will be the high-resolution page printers. Except for their 600-dpi resolution, they will be much like the preceding group of printers. Prices for high-resolution printers will probably start at around $5000. It will be at least a year, more likely two, before these desktop high-resolution page printers appear.

Finally, there will be desktop color page printers (see the article entitled "Color Printing" by Naomi M. Luft on page 163). These will probably come in at around $10,000 and won't be available for at least two years.

One thing is certain. Users want fast, quiet, high-resolution printing. That being the case, page printers of all sorts are going to proliferate for the rest of the decade.
At 6.4 pounds, the new T1000 is the lightest portable PC in the world. It's a good ten pounds lighter than some "portables." And you know how it feels to carry around ten extra pounds.

Yet within its diminutive footprint (it's about a foot wide and not even that deep) lies all the power of a desktop PC.

Included are 512KB of RAM and a built-in 720KB 3½" floppy drive, plus MS-DOS® 2.11 in ROM.

It comes with a new supertwist screen that's adjustable a full 180° and folds flat when you want to add a CRT.

The IBM®-compatible T1000 offers you some very intelligent options. Like a numeric key pad and a 1200 bps Hayes® compatible internal modem. Or an expansion card that will improve its memory by another 768KB.

All in all, it's the perfect way to go to work without going to work. Or to get home early, even when you'll be working late.

Call 1-800-457-7777 for the Toshiba computer and printer dealer nearest you. And see how it feels to pick up the most portable portable in the world. Nothing is as easy to take.

Except, maybe, its price.

MS-DOS is a registered trademark of Microsoft Corporation. Hayes is a registered trademark of Hayes Corporation. IBM is a registered trademark of International Business Machines Corporation.

In Touch with Tomorrow

TOSHIBA

Toshiba America Inc., Information Systems Division
Print Quality

The factors influencing print quality and ways to measure it

Lars Jansson

WHAT IS GOOD print quality? The easy answer is a subjective one: Good print quality is whatever most people consider it to be. However, for a printer manufacturer, that answer is not good enough.

Over the past year, engineers at Facit have been working on a set of objective definitions for print quality. We have also developed a measurement system that rates a print sample over a wide range of performance values relating to print quality. The ultimate goal is to rate printer technologies, as well as commercial printers, on the basis of print quality without relying on subjective, variable human judgments.

From a technical point of view, perfect print quality entails the ability to put a message at an exact position on a piece of paper without distortion. The message can be a complete image; it is then called graphics. You can divide such an image into graphics primitives—line, arc, and dot. Alternatively, a message can consist of text, which can be further broken down into text primitives—alphanumeric characters. The alphanumeric primitives are far more complex than the graphics primitives; each letter or number is a graphics image in its own right.

In any system that does not produce fully formed characters, the symbols are built up from dots. (This includes dot-matrix-impact, thermal, laser, ink-jet, and similar printers.) Thus, we start with some fundamental questions about dots. What are the properties of a dot? What are the properties of a system for putting dots on paper? And what are the properties of a symbol composed of dots? Answering these questions gives us a good start on defining and measuring print quality.

Design Considerations

A dot has size, shape (normally round), and color or gray level (in an ideal black-and-white system, a dot is black or it doesn't exist at all). When we transfer a dot to paper, its size changes and its shape is no longer what it was supposed to be—distortion enters the picture. But before printing, and from a design standpoint, size and shape are important parameters.

When we want to place a dot on paper, the first question is: On what positions horizontally and vertically is it possible to put a dot? In other terms, what position-grid or matrix do we have? The next question is: How close to one dot can we place another? Most printers cannot actually use horizontally adjacent grid positions due to compromises between speed and resolution.

For example, a typical character matrix in a 9-pin dot-matrix printer has 12 horizontal grid positions in each \(\frac{1}{16} \) inch. But what is the actual resolution available for character generation? The last three of the positions make up the intercharacter spacing; therefore, the character matrix is actually 9 by 9. But if we place a dot on the first position, that pin typically cannot use the second position because the electromechanical system takes time to stabilize before it can fire again. Thus, the closest allowable spacing, or the horizontal resolving power, for dots on a line is \(\frac{3}{16} \) inch, not \(\frac{1}{16} \) inch as the character matrix might suggest.

In the vertical dimension, the resolution is the same as the vertical spacing of pins on the print head. Improving the resolution beyond these design limitations requires multipass techniques: After the first print pass, the paper or the print head is offset by a small amount horizontally or vertically and prints the line again.

Next, consider the readability of dots, lines, and arcs. What happens when we place a number of dots in line? How close do they have to be to generate a good line and not just dot, dot, dot?

Figure 1a shows that a 30 percent overlap with regard to diameter and grid position gives a decent line. But is that the whole story? If the dots are square or rectangular, which is common for thermal-transfer techniques, overlap is not necessary—at least not for horizontal and vertical lines.

Diagonal lines present another problem, shown in figure 1b. This figure shows that dot overlap alone does not give the complete picture. Figure 2 illustrates a more refined measurement, the blank-area factor.

Mathematically, the blank-area factor is the ratio of the blank (unprinted) area to the total area of the ideal line. In the case of circular dots printing a straight line, it continued

Lars Jansson is a member of the strategy and development staff at the head office of Facit, a Swedish manufacturer of computer peripherals. He can be contacted at Facit AB, S-17291 Sundbyberg, Sweden.
is sufficient to calculate one-quarter of the area over a span of two overlapping dots:

$$A = \frac{1}{4} \int_0^{SD} [f(x) - g(x)]dx$$

$$= \int_0^{SD} \left[\frac{D}{2} - \sqrt{\left(\frac{D}{2}\right)^2 - x^2} \right]dx$$

$$= \frac{SD}{4} - \frac{SD}{8} \sqrt{1 - \left(\frac{S}{D}\right)^2}$$

$$+ \frac{D^2}{8} \arcsin \frac{S}{D}$$

where D = the print wire diameter, S = the distance between print positions (center to center), $f(x)$ = the shape of the ideal line to be printed, and $g(x)$ = the shape of the print wire.

The blank-area factor is given by

$$A = SD - \frac{1}{2} \left[SD \sqrt{1 - \left(\frac{S}{D}\right)^2} + \frac{D^2}{8} \arcsin \frac{S}{D} \right]$$

Generally, the greater the overlap, the smaller the blank-area factor will be. But, when we use the above equation for varying degrees of overlap, we discover a point of diminishing returns somewhere between 10 percent and 30 percent, at least when round print wires are used (see table 1).

Of course, printer symbols don’t consist just of straight lines. Arcs—circles or partial circles—are crucial in the design of most typefaces. Unfortunately, in the case of arcs, minimizing the blank-area factor requires a higher degree of dot overlap. Furthermore, these arcs demand as much from the vertical resolution as from the horizontal, while in most matrix printers, the vertical resolution is often just half as good as the horizontal. The solution to this design challenge tends to be expensive.

Minimizing the Blank-Area Factor

If we can achieve good print quality by having a small blank-area factor, how do we then get one? One answer is obvious—a dense matrix and small dots. We find this in laser printers with a resolution of 300 by 300 dots per inch and a dot size of about 0.1 millimeter. However, impact matrix printers have a limit to the dot size: pins of 0.1-mm diameter will pass right through the ribbon without touching. The minimum practical dot size seems to be 0.2 mm, which we find in 24-pin print heads.

A small dot causes a new problem: Reproducing the vertical lines or stems of most characters requires printing at least two adjacent dots, which slows down printing and also affects the blank-area factor.

With this in mind, we must look for a different dot shape, one that gives a better blank-area factor and does not require two dots to make a vertical line. Figure 3a shows the result (enlarged and idealized) of using a semieliptical dot that is 0.2 mm vertical and 0.34 mm horizontal. If a print head can accommodate elliptical pins, this approach looks promising.

Typographic Ideals

What is the property of a symbol?

If we restrict ourselves to alphabetic and allow full freedom for aesthetic considerations, we can avail ourselves of 500 years’ worth of typesetting and font design. So why reinvent the wheel by doing our own typefaces? Unfortunately, we do not have full freedom, particularly not in matrix printers. Given the limitations of a particular matrix, it can be extremely difficult to adapt a set of characters that was originally defined in terms of continuous lines. It is often much easier and more successful to design an attractive set of characters specifically for one printer’s limitations. So we’re back to fundamentals of typeface design.

What then is the most important property of a symbol? If we can’t read it, it doesn’t matter how pleasing it is to the eye, so readability is number one. What is readability, and what distinguishes one character from the other?

Figure 3b tells you that the upper part of lowercase letters gives much more readability information than the lower part. (Try reading each half with the other half blocked from view.) In particular, the intersection between stem and body gives a lot of information—distinguishing between b and d, for example.

Most of the characters in the roman alphabet consist of one or more lines created without lifting the pen from the paper. Some characters also have diacritical marks, but, even for those characters, the major portion is a continuous line. What distinguishes one line from another is the varying line width and, in some cases, the serifs used at the end of the line.

We have a dilemma. Typographic art requires a fine grid, small dots, and, very often, thick lines. On the other hand, print speed requires either a coarse grid or, in a fine grid, the allowance to skip over one or several positions after printing a dot. The cost of technology limits the position accuracy, dot frequency, and dot size. It is not possible to satisfy all these quality and speed requirements at the same time. Already, at the design stage, we have to make compromises.

After designing the ideal grid and selecting a dot size, dot shape, and character shape, we can print symbols on paper. But the result on paper is far from what we envisioned. Misalignment and skewing appear, with respect to lines and even with respect to character cells. The characters themselves do not look as designed. Ink appears where it is not supposed to be and none, or very little, where it is supposed to be. Why is this so, and how do we measure the departure from the ideal?

Measurement System

To objectively and efficiently perform all the measurements and their related calcu-
A Motherboard and 4 Expansion Cards in the Space of a Half-Height 5-1/4" Disk Drive! from $329
(Qty 100, $252)
Little Board™/PC
World's smallest PC — and CMOS too!

Little Board™/186
High performance single board MS-DOS system.

Little Board™
World's least expensive single board system.

Project Board/186™
Prototype adapter for 80186 based projects and products.

Project Board/80™
Prototype adapter for Z80 based projects and products.

CMOS Video Controller
4-mode CMOS video controller for Little Board/PC.

SCSI Memory Controller
SCSI controller for fixed and removable volatile and non-volatile semiconductor memory.

Expansion/186™
Multi-function expansion for Little Board/186. I/O, Serial, RAM, and Math Options.

SCSI Z80 Host Adapter
SCSI host adapter for any Z80 system. Plugs into Z80 socket.

Concurrent PC-DOS™
Multi-user, multi-tasking operating system for Little Board/186 supports up to four users.

Distributors:
- Argentina: Factoria, S.A. 41-0018
- Australia: Current Solutions (03) 227-5555
- Brazil: Computadores Computador (41) 262-4666
- Canada: Tr-M (404) 438-0228
- Denmark: Danish (03) 66 20 20
- Finland: Symmetric Cy 358-0-650-322
- France: Egal Plus (1) 4502-850
- Germany, West: IST-Elektronik Vertriebs GmbH 089-611-615
- Israel: Alpha Terminals, Ltd. (03) 49-16-95
- Spain: Hardware & Software 204-2099
- Sweden: AB Akta (96) 64-90-20
- UK: Ambar Systems, Ltd. 0296 435511
- USA: Contact Ampro

SEPTEMBER 1987 • BYTE 201
CD-ROM IS HERE!

LOW PRICES

<table>
<thead>
<tr>
<th>CD-ROM DRIVES</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panasonic SC-D17</td>
<td>$1095</td>
</tr>
<tr>
<td>Half-height - internal mount - high speed - industrial grade - Hi-Fi CD audio capabilities (with CDP Audio Software described below) - daisy chain capabilities (for IBM PC/XT/AT and full compatibles)</td>
<td></td>
</tr>
</tbody>
</table>

SPECIAL SEPTEMBER OFFER

| Hitachi CDR-1503S | $799 |
| Full height - standalone - front audio lead - Hi-Fi CD audio capabilities (with CDP Audio Software described below) - daisy chain capabilities (for IBM PC/XT/AT and full compatibles) |

| Hitachi CDR-2500 | $495 |
| Full height - internal mount - high speed - daisy chain capabilities - for IBM PC/XT/AT and full compatibles |

SOFTWARE

| Grolier—The Electronic Encyclopedia | $295 |
| Contains 30,000 articles, full text of the 20-volume Academic American Encyclopedia, an educational tool the whole family can use. Easier to use and less than half the cost of the printed encyclopedia. Early buyers entitled to low cost annual updates. |

| Microsoft—Bookshelf | $295 |

| CDP—Audio Software | $95 |
| Software permits users to access Hi-Fi CD audio capabilities of Panasonic SD-D1 and Hitachi CDR-1503s drives described above. |

AUDIO SOFTWARE COMPETITION

The first 100 purchasers of the CDP-Audio Software are invited to customize the software to include programmable CD music capabilities. The author of the software will be awarded $1,000 of CDP products and the top 10 major writing reference sources including the American Heritage Dictionary, The Concise Encyclopedia of Science and Technology (7,000 articles) and the Dictionary of Scientific and Technical Terms (9,500 terms and 115,000 definitions). Powerfull search algorithms provide instant access to relevant data.

STARTER PACKAGES

All drives will be discounted $50 when purchased with software. Call for corporate discount information.

| TO ORDER CALL 800-MEGABYTE (634-2298) IN NEW YORK STATE 212-996-6999 INQUIRIES CALL 212-996-6999 Policy: Shipping and handling extra. Personal and company checks require 3 weeks to clear. For faster delivery use your credit card (add 3% for MC and Visa, add 5% for AMEX) or send a cashier's check or bank money order. New York residents add 8.25% state tax. All prices in U.S.A. Sales prices are subject to change and all items are subject to availability. defective software will be replaced with the same item only. Hardware will be replaced or repaired within the terms and limits of the manufacturer's warranty. We cannot guarantee compatibility. All sales are final and returned shipments are subject to a restocking fee. |

PRINT QUALITY

In locations, we use an image-processing system from the Swedish company Context-Vision (see figure 4).

First, we take a carefully planned printed sample, enlarge it, and convert it into a digitized gray-scale image. Photo 1 shows an original and its digitized counterpart. Now that the print sample is in digital form, we have access to a powerful array of image-processing operations.

The first operation is to divide the image into meaningful regions—characters or dots, depending on what we're measuring. Briefly, the system uses a threshold level to sort out the pixels that belong to the background from the ones that belong to the character or dot. Photo 2, produced with the Context-Vision system, is a histogram showing the frequency of intensity levels. Table 2 lists some of the results of the image analysis.

Position Deviation

One way to measure position deviation is simply to measure the distances between characters on a row of identical characters and calculate the variance. However, numerical cancellation tends to reduce the validity of the measure. A better way is to measure the deviation of each character from its ideal location, using as a reference point the character's center of gravity, as shown in figure 5.

Position variance is defined as

\[\sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (d_i - \bar{a})^2 \]

where \(d_i \) is the distance between a printed and an ideal character, \(n \) is the number of distances measured, and \(\bar{a} \) is the mean value of the distances \(d_i \).

Edge Sharpness

Good printing should be crisp and clear; the edges of characters should be very well defined. Reality, once again, tells you that this is not the case. Under magnification, the edges appear as shown in photo 3.

One way to measure edge sharpness is to plot the darkness of a character as a function of distance across one of its component stems and then measure the...
The fact is, companies that use POSTSCRIPT® laser printers are creating some very exciting communications. Quite often, the word magic pops up.

Yet behind this exciting development in business communication, you'll find some hard facts worth serious consideration.

Fact. POSTSCRIPT is the page description language chosen by some of the best names in desktop publishing.

Fact. POSTSCRIPT gives you the option of printing from an IBM PC, Macintosh, or mini/mainframe.

Fact. You won't be tied to a single vendor so you can buy the printer that's best for your company's needs.

Fact. Since POSTSCRIPT is device independent, you can design a document, then professionally print it later at a higher resolution.

Fact. You can choose from hundreds of software programs that support POSTSCRIPT.

Fact. POSTSCRIPT lets you combine text, line art, and even digitized photographs on the same page.

Fact. If you don't ask for a printer equipped with POSTSCRIPT, you won't get the magic behind desktop publishing.

Now that you have the facts, just think what your company can do with the magic. For more facts, give us a call at 415-852-0271.

POSTSCRIPT from Adobe.
The magic behind desktop publishing.
width of the edge—the portion of the character where the intensity falls from 90 percent to 10 percent (see figure 6). This measurement is repeated along the perimeter and is normalized by dividing the sum by the number of samples.

Edge Roughness

Before a character—and, on a lower level, a dot—is printed, its edge is straight or slightly curved. In the printing process, this property is lost and edge roughness appears instead (see photo 4).

Edge roughness is thus defined as the distortion that comes from small local errors in the edge line; note that this attribute is distinct from the global shape deviations described below.

To measure roughness, we use the fact that the perimeter of a character with a rough edge is longer than the one of a character with a smooth edge. Using image processing, we smooth the perimeter and then compare the perimeters before and after smoothing. Roughness is thus defined as the ratio of the original perimeter to that of the averaged object.

Edge Orientation Variance

An interesting property of edge roughness is the variation of the orientation of roughness around the edge. By measuring the direction as well as the magnitude of roughness for every point around the perimeter, we can understand some of the reasons for the edge roughness. For example, depending on the roughness orientation, we may be able to deduce that a print wire is oscillating or out of alignment or that power distribution is uneven over the wire matrix. Our image-processing system includes a special operator that produces an image in which the brightness of each pixel corresponds to the confidence that an edge is present and the color corresponds to the direction of that edge (see photo 5).

Shape Deviation

A large global error in a character (e.g., a bent stem in the letter T) is defined as shape deviation. Shape deviation is measured over a set of, say, 100 duplicate characters by superimposing the characters on each other. You can measure the "fuzziness" of the edge by calculating the statistical variance between pixels located at the same place on the different characters and then summing these variances. (Note that the pixels I'm referring to exist inside the image-processing system and are much smaller than the print dots.)

Gray-Level Variance

The gray-level variance measures how uniform the blackness of the character is. Ideally, the gray-level variance should be zero, or at least very small. Gray-level variance is calculated as follows:

\[
\sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2
\]

\[
= \frac{1}{n-1} \left[\sum_{i=1}^{n} x_i^2 - n \bar{x}^2 \right]
\]

where \(x_i\) = the gray level of each pixel in the character, \(n\) = the number of pixels in the character, and \(\bar{x}\) = the mean value of the gray level \(x_i\).

Figure 4: Schematic diagram of the ContextVision image-processing system FaCit uses to make objective print-quality measurements.

Photo 1: (a) The original printed test pattern and (b) its digitized counterpart (with colors reversed).
This measurement applies to entire pages as well as to characters. In the case of characters, we measure the gray level of each pixel and calculate the result. To get the gray level of a page, we perform the same calculation a second time, using the mean value of the characters' gray level as measurement data.

Interpreting the Data

Now that we have an objective measurement tool for print quality, how do we apply it? Looking over the different attributes, it seems that we have been measuring badness rather than goodness of printing. Does this negative orientation let us make positive comparisons?

Table 2: The statistical results from the image-processing analysis.

(Roundness in the ContextVision system is the integration of the shortest distance to the edge per pixel for all pixels within the dot, for all dots within the sample. D_{max} is the length of the longest axis through the center of gravity for each dot in the sample. Angle is the angle of the longest axis.)

<table>
<thead>
<tr>
<th>Arithmetic mean</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (mm2)</td>
<td>0.091</td>
</tr>
<tr>
<td>Mean diameter (mm)</td>
<td>0.340</td>
</tr>
<tr>
<td>Roundness (CTX)</td>
<td>1.585</td>
</tr>
<tr>
<td>Perimeter (mm)</td>
<td>1.395</td>
</tr>
<tr>
<td>D_{max} (mm)</td>
<td>0.430</td>
</tr>
<tr>
<td>Angle (deg)</td>
<td>90.0</td>
</tr>
<tr>
<td>Satellites</td>
<td>4</td>
</tr>
<tr>
<td>Measured objects</td>
<td>16</td>
</tr>
<tr>
<td>Contrast (obj/bkn)</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Figure 5: A character's "center of gravity" is used as a reference point in calculating position variance.

Figure 6: The gray level of a character is plotted as a function of distance. The area between 90 percent and 10 percent intensity corresponds to the fuzzy edge of the character. In sharp, clear printing, this region is minimized.

Photo 2: Histogram of the gray-scale image of photo 1.

Photo 3: Edge sharpness is measured within the white border. The red graph shows the rate of fall off from black to white.

Photo 4: To measure edge roughness, we compare the perimeter of the original object to the perimeter of a smoothed version.

Photo 5: Different colors represent different orientations of edge roughness in this computer-enhanced representation.
What can you expect from the new LaserJet Series II Printer?

Everything.
Because the LaserJet Series II Printer from Hewlett-Packard is the product of experience. It's a second generation printer from the company with the world's largest installed base of laser printers.

Whatever your company's needs, the LaserJet Series II will deliver the performance you expect, at up to 8 pages/minute.

Take a simple memo like the Soup letter we created with Microsoft Word. As you can see, you can print in a variety of formats and type styles with our wide selection of LaserJet fonts.

Or you can create a sophisticated combination of text and graphics. With additional plug-in memory, you can also produce full-page 300 dpi graphics, like our Nuts form shown below. To do this, we used HP's new ScanJet desktop scanner, Microsoft Windows and Pagemaker® from Aldus.

With support by more than 500 of the most popular software packages, the LaserJet Series II Printer can produce whatever type of business document you need. And LaserJet Series II works with all popular PCs.

In fact, only the price is unexpected — starting as low as $2,595.*

For the authorized dealer nearest you, call us at 1 800 367-4772, Ext. 900A.
What users perceive as bad print quality relates directly to certain measurable attributes: smearing (and its inverse, voids), shape, and dot density.

Between different print samples?

To make the leap from laboratory measurements to inferences about perceived quality, we must calibrate our measuring tool against the subjective opinions of a wide variety of users. In other words, we need to know the relationship between objective measurements like position deviation, shape, and dot density, and wine-tasting terms such as crisp, clear, and pleasing.

To go one step further, can we use our objective measurements to define, once and for all, the various print-quality levels: draft, correspondence, near-letter quality, letter quality, and whatever we wish to call the next quality level?

At Facit, we have much more research to do on these issues, but preliminary work reveals some useful information.

What users perceive as bad print quality relates directly to certain measurable attributes: smearing (and its inverse, voids), shape, and dot density. A print sample's rating in these three areas seems to account for 80 percent of its subjective score, provided it is a normal sample without gross errors.

Smearing (ink where it is not supposed to be) and voids (no ink where it is supposed to be) correspond to our measurements of edge roughness and sharpness.

Shape attributes correspond to our measurements of the blank-area factor, position grid, and shape deviation.

Dot density relates to the tuning of the virtual and the actual grid, the blank-area factor, and the gray-level variance.

Once we have agreed on a correlation between our objective measurements and subjective judgments, we still are not done. Finding the reason for the flaws in a print sample—a design limitation of the printer, a faulty adjustment, poor quality or incorrectly matched ribbon, or unsuitable paper—is outside the scope of our tests but is important nonetheless.

We are continuing to work on the problem of measuring print quality, and we welcome comments and suggestions from users and from others involved in printer design.
SOMETIMES, THE ACID TEST OF OUR MICROPROCESSOR DEVELOPMENT TOOLS IS UP IN THE AIR.

Two miles up, in the belly of a U2 jet, the US. Government is now tracking acid rain and radioactive particles with a just-developed device called an Upper Air Sampler.

But months earlier, with expensive development hardware on the blink, timely completion of the project was in real jeopardy. Luckily, Avocet was called to the rescue. And within 48 hours we came through. With "the best software development tools" their design engineer had ever seen.

Not to mention, down-to-earth prices.

Let Avocet turn your PC or VAX into a powerful, integrated development system in 48 hours, even overnight.

Avocet can help you turn more good ideas into more real products in less time.

Just call us now and we’ll get you up and running—with everything you need to turn your computer into a personal, professional development system.

All at a modest price. From a single source. Backed by the reassurance of a technical hotline. So friendly, knowledgeable support is always as close as your phone.

No wonder design engineers with no time to spare come to us first—and keep coming back smiling.

Any similarity to Intel, Hitachi or Motorola is purely intentional.

Avocet's professional quality AVMAC assemblers run on any PC-compatible with DOS or Xenix. And on VAX Unix. Just released, AVMAC Version 2.0 has major speed improvements to assure you lightening-quick assembly. Plus, enhanced compatibility with Intel, Hitachi, Motorola & other chip makers—so you can convert existing code more easily than ever before.

After assembly, check your program with AVSIM™—widely acclaimed as the best simulator/debugger in the industry AVSIM tests target µP code right on your PC—with no special hardware. It’s crashproof. And what you see is what you get: AVSIM's full-screen display gives you instant visual access to the entire CPU—registers, memory, I/O ports, even attached peripheral chips.

CALL TOLL-FREE 800-448-8500* to order or receive our latest catalog of microprocessor development tools.

Try before you buy.
Order your AVMAC assembler and AVSIM simulator/debugger today and we’ll include a special demo kit for both. Try the demo for 30 days. If you’re not satisfied for any reason, return the unopened products for a full refund, less the $35 demo/documentation kit which is yours to keep.

Avocet Systems. We help you get your job done, on time and on budget.

Avocet Systems, Inc., 120 Union Street P.O. Box 490AI, Rockport, Maine 04856
*Outside US and in ME, call (207) 236-9055
TLX: 467210 AVOCET CI FAX: (207) 236-6713

Avocet delivers all the tools you need—in 48 hours or less.
Ask about our AV/PRO™ and AV/PAL™ programmers. And our NEW 8051 in-circuit emulator, development boards, AV/PAS 51™ cross-compiler—and AVKIT™ the total Unix toolbox for DOS, including the incomparable VI editor.

© 1987. Avocet Systems, Inc. All rights reserved. VAX is a trademark of DEC. Unix is a trademark of AT&T. Xenix is a trademark of Microsoft. CP/M is a trademark of Digital Research.

THE SOURCE FOR PERSONAL µP DEVELOPMENT TOOLS.
Printers encompass technologies from a wider variety of engineering disciplines than any other component of a computer system. Most design improvements go far beyond electronics and electromechanics into areas such as ballistics, chemistry, thermal mechanics, optics, fluid mechanics, and metallurgy.

At the same time, the engineering goals behind these improvements are easy to appreciate, since the ultimate product, printing, is one with which we are all familiar.

Considering these two points about printer technology—its variety and concrete end-product—we thought it would be interesting to present close-up views of specific printer developments, written by engineers with firsthand knowledge of the problems involved.

The five close-ups that follow don't cover all the various printing technologies, but they do illustrate the engineering process that underlies any technological improvement: analysis, design, modeling, prototyping, and refining to a finished design.

As you'll see, printer technology is a mature but by no means static area of engineering.

—George A. Stewart
Technical Editor

Taming the Hot Heads

As printers get faster, print heads get hotter. Computer-aided design plays a major role in solving the problem.

Keith B. Davenport

A warning label ("Hot") appears on almost every current-model dot-matrix impact (DMI) print head. The need for that warning is a direct result of the increased speeds in today's printers. New print-head designs are capable of 200 to 300 characters per second. Just as important, character throughput has increased due to improved printer firmware and increased paper slew rates. The negative side of increased throughput is that the print head has a higher duty cycle; it has less time to cool off.

Other than the safety issue, what's wrong with a hot print head? Operating at high temperatures reduces the useful lifespan of most materials or requires that more expensive, high-temperature materials be used. High temperatures reduce the ferromagnetic qualities of most materials, which are the heart of any electromechanical device. The more energy wasted, the larger the power supply must be. Finally, a hot print head often reduces throughput because the printer must slow the printing rate at various times during printing to let the head cool off.

Most DMI print heads are very inefficient, with typically 94 percent to 99 percent of the input energy wasted. Figure 1 illustrates the various kinds of losses in the DMI design.

Engineers at Newbury Data Recording have been making DMI print heads since the early 1970s. Their first print head was a seven-pin device using coaxial solenoids to drive the print wires (see figure 2). Though it was in step with the state of the art at that time, the design had several disadvantages: The nonlaminated structure allowed for high magnetic "eddy current" losses; the completely encased coil restricted heat dissipation; the large remanent air gap in the rear bearing...
Spock IS THE LOGICAL CHOICE

FEATURES:
- Single slot, 8 bit interface for PCs and compatibles
- 640x200, 350, 400, 480 or 800 x 400 or 960x350 (60 hz refresh), 1000x700 (interlaced), 30 Mhz video Rate max.
- 1024 x 1024 x 8 frame buffer
- 256 simultaneous colors from a palette of over 60,000
- Supports 28 commands in hardware including eight windows, plus viewports. Excellent window & icon management
- Compatible with most analog monitors including multi-scan types
- ‘C’ drivers included (source code provided)

Spock is a full featured graphics card for PCs and compatibles. The board uses the NCR 7300 color graphics controller making it capable of executing up to 3.75 million instructions per second. A DMA channel allows for high speed data transfer between the PC and the screen. The board uses an on-chip sequencer to perform display refresh while the drawing processor draws images into its cache memory. During display blanking intervals, the images in the cache are downloaded to the frame buffer. In this way images are drawn very quickly without producing flashes on the display. The board supports the use of soft fonts allowing it to be tailored to specific applications such as scientific notation. It can support two modes of text; fast text and proportionally spaced. The high level command set reduces software development costs and improves performance. And much more... please call for more information.

PIXELAR
Imaging Systems Corp
21 Antares Dr., Unit 207
Nepean, Ontario, Canada
K2E 7T8
(613) 226-8727
Visa and American Express accepted
Custom and OEM Inquiries welcome!

Call us... and let us beam you a board

HOT HEADS

1. Generate the actuator (pin-drive) mechanism.
2. Describe the actuator mathematically.
3. Compile a computer program to optimize the efficiency.
4. Predict the overall performance using a finite-element analysis program.
5. Compare computer predictions with the actual model.
6. Realize a manufacturable design using CAD.
7. Use open construction to allow forced-convection cooling to occur during carriage motion.
8. Maximize the heat-conducting surfaces.
9. Use laminated structure to minimize the eddy currents.

Because of the decision to laminate, New-
hoby engineers rejected the previous coaxial design. A laminated cylinder is expensive to manufacture and is less efficient. Instead, they chose a simple U-shaped yoke with a pivoted armature (see figure 3) and used this design as the basis for a mathematical model describing the dynamics of the actuator to the point of air-gap closure (when the armature is pulled down by magnetic force onto the yoke).

The engineers made one major assumption about the magnetics of the model: The flux in the armature equalled the flux in the air gaps. Reluctance (magnetic resistance) was calculated as four components: yoke, air gaps, leakage, and armature.

Mathematical Model
The model describes every aspect of the print head: electrical, magnetic, and mechanical, as well as their interrelationships, and with respect to time.

When the coil receives an electrical pulse, the current generates a flux field concentrated in the yoke and passing across the air gaps (see figure 4). The flux field increases with time, accelerating the armature/arm/print wire assembly until the air gap closes, launching the print wire into free flight to place a dot upon the paper. The print wire returns by rebound, colliding with and imparting momentum to the arm; a visco-elastic damper absorbs most of the energy over the course of several bounces.

In modeling the electrical input energy, the engineers chose a capacitor-discharge circuit that provides an LCR (inductance-capacitance-resistance) network. They concentrated on the capacitor-discharge drive because it provides a constant energy input. However, two other designs can also be used by simple changes to the mathematical model: voltage drive and current limit. Providing an infinite value of capacitance would force the model to behave as a voltage drive, and placing a current-limit trap in the algorithm would let it simulate a current-limit circuit.

To maximize the coil surface area and minimize leakage flux, they placed a coil on each limb of the yoke. Tapering the yoke tips let them (at the expense of magnetic saturation) significantly reduce the length and hence inertia of the armature.

Within the armature/arm assembly, they calculated a theoretical mechanical continued
efficiency of 65 percent, but much depends on the arm shape and the practical limitations of manufacture.

Computer Modeling and Design
Having settled on a model, the engineers developed a computer program called Sheba (which stands for simulated high-speed electromagnetic ballistic actuator) to optimize the efficiency, based on the following inputs:
- time to shut the air gap
- capacitor voltage
- print energy at launch (½mv²)
- starting values for all dimensions
- capacitor value
- frictional allowances
- material characteristics

At various stages within the program's operation, ferromagnetic data is extrapolated using linear interpolation. The program attempts to optimize efficiency by varying five dimensions of the model: armature thickness, yoke thickness, yoke throat width and depth, and yoke limb width. These are the key parameters affecting the electromagnetic actuator.

The program outputs all dimensions and voltages, electrical current profile, number of turns in the coil, initial air-gap distance, time to launch, other electrical and mechanical characteristics, and, of course, the overall efficiency.

The mathematical model and Sheba describe the actuator only to the point of air-gap closure. Since this is only 30 percent of the total cycle, the engineers needed another means of completing the study. They used a general-purpose finite-element program, ANSYS, to analyze the time/displacement histories of the structure under various loading conditions. This let them graphically describe the important components of the system and follow their behavior under various flux-field situations.

To measure actual performance of prototype models for the print-head actuator, they used a noncontacting displacement follower, deriving time/displacement and first and second derivative curves for single-shot or continuous operation of any of the moving parts. They then correlated the measured and predicted results and made the necessary modifications to the computer model. For example, the visco-elastic damper has nonlinear characteristics that are particularly difficult to model.

To ensure a manufacturable design, they made extensive use of CAD. All detail, assembly drawings, and the bill of materials were produced from a solids model (see photo 1).

The overall design is suited for a variety of product ranges, resulting in further benefits from using a computer model in the design. It was a straightforward process to produce components for a variety of print-head models by duplicating components in the computer model. The use of CAD also made possible the generation of complex three-dimensional and sectional views in any orientation— invaluable for checking manufacturability.

The resulting print head, incorporated into a capacitor-discharge drive circuit, requires only 4.7 millijoules per cycle per actuator (12 percent efficient); incorporated into a voltage drive circuit, the head requires 8 mJ/cycle/actuator (7.4 percent efficient). Contrast these numbers with typical industry figures of 11 mJ/cycle/actuator (6.3 percent efficient).

The Future
Still greater demands will continue to be made on DMI print heads, and therefore it becomes increasingly important to provide devices with higher efficiencies (see figure 6). The flapper or armature print head is limited in its performance by the high inertia of the moving parts. Stored-energy heads may become increasingly important because they offer potentially higher firing frequencies with better efficiency. [Editor's note: The stored-energy design is described in "Matrix-Line Printing" on page 215.]

The design approach summarized in this article—with suitable changes to the mathematical algorithms—will be equally beneficial to future print heads, keeping efficiency high and temperatures low.
Spectrum Software’s MICRO-CAP II® is fast, powerful, and feature rich. This fully interactive, advanced electronic circuit analysis program helps engineers speed through analog problems right at their own PCs.

MICRO-CAP II, which is based on our original MICRO-CAP software, is a field-proven, second-generation program. But it’s dramatically improved.

MICRO-CAP II has faster analysis routines. Better resolution and color. Larger libraries. All add up to a powerful, cost-effective CAE tool for your PC.

The program has a sophisticated integrated schematic editor with a pan capability. Just sketch and analyze. You can step component values, and run worst-case scenarios—all interactively. And a 500-type* library of standard parts is at your fingertips for added flexibility.

MICRO-CAP II is available for IBM® PCs and Macintosh.* The IBM version is CGA, EGA, and Hercules® compatible and costs only $895 complete. An evaluation version is available for $100. Call or write today for our free brochure and demo disk. We’d like to tell you more about analog solutions in the fast lane.

- Integrated schematic editor
- Fast analysis routines
- High-resolution graphic output
- Standard parts library of 500* types
- IBM versions only.

MICRO-CAP II is a registered trademark of Spectrum Software. Macintosh is a trademark of Macintosh Laboratory, Inc. and is being used with express permission of its owner. Hercules is a registered trademark of Hercules Computer Technology.

1021 S. Wolfe Road, Dept. E
Sunnyvale, CA 94087
(408) 738-4387
ABOUT ANALYZING YOUR DATA. You might be spreading your spreadsheet a little too thin. Or maybe you're starting from scratch. But if you're serious about data analysis, you're ready for SPSS/PC+—a full software family that brings you eight high-powered ways to complete any data analysis task.

Enter it. SPSS Data Entry II is a fully integrated data entry, cleaning and editing tool.

Analyze it. The SPSS/PC+ base package provides a powerful array of statistical and reporting procedures.

Picture it. SPSS/PC+ Graph-in-the-Box featuring New England Software's Graph-in-the-Box offers full color "snapshot" graphics.

Examine it. SPSS/PC+ Advanced Statistics lets you get more serious with your data.

Predict it. SPSS/PC+ Trends—our latest option—is the complete time series analysis/forecasting tool.

Table it. SPSS/PC+ Tables produces presentation-ready tables instantly.

Chart it. SPSS/PC+ Graphics featuring Microsoft Chart creates show-stopping graphs and charts.

Map it. SPSS/PC+ Mapping featuring MAP-MASTER creates maps where vast amounts of data can be summarized and presented in one simple picture.

SPSS/PC+ products are being put to productive use by serious fact finders in business, government and education. For countless purposes such as market research, wage and salary studies, survey analysis, and quality control. Plus each product is superbly documented and supported by SPSS Inc., a leader in statistical software for nearly 20 years. While specially tailored customer support is available through the VALUE PLUS plan.

So if you're serious about data analysis, step up to SPSS/PC+. For details, contact our Marketing Department.

CALL 1/312/329-3315
Matrix-Line Printing

In this alternative to serial character printing, an 8-inch-wide bank of print hammers moves just 1/3 inch to print an entire line

Mark Hohneker

Matrix-line technology has been used in commercial, heavy-duty printers for over 12 years but has only recently been adapted for personal computing applications. I am going to explain some of the more unusual features of matrix-line printing as implemented in printers from Printronix.

The typical dot-matrix printer uses a print head with 9 to 24 closely spaced pins. The print head generates print characters in serial fashion, moving horizontally back and forth across the full width of a page, printing a vertical bar of nine or more dots at each dot column position. In this design, printing speed is largely a function of the number of characters printed.

In matrix-line technology, 24 print hammers are arrayed horizontally on an 8-inch shuttle (wide-carriage designs use more print hammers and a wider shuttle). The hammers fire simultaneously, printing an entire horizontal line of dots with a single 1/3-inch sweep of the shuttle assembly. Figure 1 is a simplified drawing showing the design’s major components.

During the course of this sweeping movement, each hammer prints a horizontal dot pattern for characters that belong in the 1/3-inch zone covered by that hammer. At a setting of 10 characters per inch in an 8-by-9 matrix, each zone contains 30 dots, or 3 characters.

At the completion of the horizontal sweep, the printer advances the paper by one dot row. The shuttle then reverses direction and prints the next row.

Although the matrix-line printer uses a hammer bank in place of a serially moving print head, it does maintain a logical continued
Data presented row-by-row

Typically 3 characters per hammer

All print positions tracked by the logical print head

Matrix-line Printing

Figure 2: On-board printer firmware rasterizes a full line of text into a buffer called the logical print head, which is then mapped into the hammer bank. The figure shows the number of dots printed by a single print hammer to produce three characters in nine sweeps of the shuttle.

Figure 3: The hammer bank consists of 24 stored-energy print hammers. a) While the coil is de-energized, the permanent magnet holds the hammer in tension. b) When the coil is energized, its magnetic force field cancels that of the permanent magnet, letting the hammer spring forward, striking the ribbon onto the paper on the platen.

Advantages of the Hammer-Bank Design

Since the shuttle motion of the printer is the same regardless of the contents of each dot row, the number of rows in a character matrix solely determines printing speed. It is independent of the number of characters to be printed on a given line of text.

Since the 24 individual print hammers serve the same function as the 9 print wires in a serial moving-head design, the duty cycle per pin is far less, and the life cycle increases correspondingly. Since horizontal motion is confined to a span of ½ inch, position tolerances are easier to maintain, assuming the mechanical spacing of the hammers is correct to start with.

In terms of graphics, matrix-line printers have no vertical bias; the same set of hammers produces each row of dots. In contrast, nine-wire printers tend to produce visible bands or patterns that are nine dots wide.

The matrix-line printer design proves that, in dot-matrix printing, there is indeed more than one way to put the dots on paper.
ADVANCE TO THE
NEXT LEVEL

ATI-386
The ATI-386 AT board is a high-performance system board that provides the primary elements for building advanced personal computers. The board is functionally compatible with the system board in the IBM AT. However, it contains an 80386 microprocessor, 32-bit access to data and other features that give it over twice the performance of an 8MHz IBM AT.

Other features include downward compatibility with IBM 8 MHz AT, one MByte 32-bit on-board memory expandable to 16 MByte, a socket for the Intel 80387 math co-processor and more.

ATI-386-64
The ATI-386/64 Board features the same specifications as the ATI-386 AT board as well as on-board 64 KByte cache memory, cacheable to a full 16 MByte memory space to achieve nearly zero-wait state operation at full speed.

ATI-6/12 System 286
The ATI System 286-12 runs at an amazing speed of 12MHz. That’s 20% faster than the IBM* Personal System 2 50/60.

And to protect your existing investment, we’ve built-in a normal-speed mode as well. A few simple keystrokes will switch you to 6MHz operation mode, when necessary.

Combine the ATI System 286-12 with our MegaGraph Plus EGA board to get superb graphics performance. Or expand your system’s main memory with the ATI Multifunction card. Expand from single-user to multi-user system with up to five disk drive slots and eight expansion slots. 6/8 & 6/10 MHz systems also available.

12 MHz Multifunction Card
Our versatile multifunction card features a system bus of 12MHz. Sockets on board to handle up to 25 MBytes of memory, one serial port, one parallel port, one game port. Optional second serial port available.

Professional Image Board
The new Professional Image Board is a PC board which allows an ordinary home video camera (color or black-and-white) to be plugged into an IBM PC/XT/AT personal computers or IBM compatibles. Now, live, fast action scenes can be instantly captured in full color and frozen. The frozen pictures can be stored on a floppy or hard disk. The frozen pictures can also be transmitted to any remote computer in the world via modem or network.
And so did hundreds of other companies.

Before millions of people picked Macintosh®, Apple® picked Motorola's M68000 Family—the brains behind one of the most successful computer products ever launched.

Now Apple has tapped the brainpower of the Motorola MC68020 microprocessor for the Macintosh II, bringing the high performance of a graphics workstation to business desktops everywhere.

72% of all 32-bit systems ever shipped included at least one MC68020. That's more than a million high-performance systems.

The graphics solution.
The M68000 family helped Apple implement the visionary "point and click" graphic workstation style that has driven productivity up while driving training costs way down. Businesses of all sizes are discovering dramatic productivity increases in office computing through innovations such as desktop publishing.

The software solution.
Among programmers and designers dedicated to creating the best, most innovative applications, the M68000 architecture has been the leading choice by far—with over seven million M68000 systems installed since 1979.

Meanwhile, the MC68020, on the market now for three years, is already backed by two billion

This is more 32-bit software than all competitive products combined!

Join the Brain Trust.
Challenge us to persuade you of the sound business and technical reasons to join the MC68020 Brain Trust. Write us at Motorola Semiconductor Products Inc., P.O. Box 20912, Phoenix, AZ 85036.

Mc68020, Motorola® chip.

Registered trademark.
A complete solution
Here, at last, is the working environment of the future for developing error-free and efficient microprocessor code. Save time and money with UniLab II's seamlessly integrated toolset:

An 8/16-Bit Universal Emulator—With UniLab's full selection of symbolic debug commands you can quickly display and change all registers, memory, and ports, plus set software and hardware breakpoints.

An Advanced 48-Channel Analyzer—Most other development systems are dead in the water if there is a hardware fault, such as a simple bus short. Now, you can use the power of UniLab to home in on both software and hardware problems quickly.

An Input Stimulus Generator—You conveniently specify system inputs and observe the results.

A Built-In EPROM Programmer—helps finish the job!

Development Dreams Come True
Use UniLab's advanced windows to set up your screen the way you want to... view multiple items of interest. Imagine being able to automatically compare a current trace with previous trace data to instantly determine differences. You can set breakpoints, single-step, then go back to the analyzer without missing a beat. If you make a change in your code, use UniLab's built-in line-by-line assembler to instantly patch the fix and test the results. Think of the time savings.

Find Bugs Fast
Searching for bugs by single-stepping through suspect code can take forever. Now, with UniLab, just specify the bug symptom you are looking for as a trigger spec and let UniLab catch the bug for you as your program runs in real time.

Get Running Fast
You probably won't use your development system every day. You do need a system that's easy to learn, and easy to come back to. That's UniLab. It lets you use commands or menus—or a mixture of both. The same commands work for all MPUs. Useful help screens, an on-line manual & glossary, instant pop-up mode panels, a quick command and parameter reference, are at the ready.

Affordable. Expandable
At less than $5,000 UniLab costs less than our less-able competitors. You can add our new Program Performance Analysis option to help you optimize your software. If you don't need UniLab's power, other models are available from $2,995. Get the story on UniLab II and how it can revolutionize your software design efficiency, as it has for thousands. Universities, ask about our Education Outreach Discount Program.

Call Toll-Free 1-800-245-8500. In California call (415) 361-8883.
Color Thermal-Transfer Printing

Getting good results requires solutions to a variety of engineering challenges

Julio Guardado

The thermal-transfer process is simple in principle, but its implementation for high-quality printing like that shown in photo 1 is quite complex. I'll describe some of the engineering challenges and show how CalComp solved them in designing a series of color printers.

In the thermal-transfer process, a donor ribbon coated with a solid ink is heated to the ink's melting point. The ink is then transferred to the receiving paper or film, to which it adheres after cooling. Figure 1 illustrates the process.

By repeating the process three times using combinations of inks of the three primary subtractive colors (yellow, magenta, and cyan), you can produce colors across the full spectrum.

Lining Up the Dots

Registration of the three passes is the first challenge. For instance, to produce a blue dot, the printer must place a dot of magenta ink directly on top of a yellow dot. The molten layers of ink mix to form a light filter that turns white light into blue. However, if the second dot is misregistered, it ruins the effect. The ColorMaster design places up to 200 dots per linear inch, each dot with a 0.005-inch diameter. That doesn't leave much room for error in the placement of dots that are supposed to be overlaid.

Any multipass device is subject to errors caused by tolerance buildups in the mechanism. A small variance in paper positioning, added to a small variance in printhead positioning and a small amount of vibration, may result in a variance that exceeds the design tolerance. The thermal nature of the design introduces an additional source of variance: the expanding and contracting caused by changes in the moisture content of the medium.

To minimize registration error, ColorMaster uses a unidirectional media-feed mechanism. The paper or transparency film is fed from an automatic sheet feeder and clipped to a rubberized drum (with a circumference of 12 inches).

The media-handling drum makes three rotations, exposing the paper to three panels of yellow, magenta, and cyan ribbon. Each pass takes about 20 seconds, yielding a page rate of one per minute.

The ColorMaster's unidirectional media transport avoids the backlash that can occur when a drive changes direction. The drum's rubberized surface also helps by overcoming the media's tendency to slip or change shape better than would a sprocket feed or friction feed; the holding force is spread out over the entire paper surface rather than being concentrated along the edges of the paper.

The net result of this media-handling system is an overall registration of about half a dot, which is well below the threshold at which fringing and other undesirable visual effects appear.

Thermal Print Heads

As with any raster printing device, including impact printers, the designer has a choice between using a scanning head, which moves across the width of the page printing dots as it goes along, and a stationary head, which prints an entire line of dots simultaneously.

Stationary heads—because there are more of them and they print simultaneously—offer greater throughput than scanning heads. The design also reduces the problem of registration to one dimension, continued
Thin-film heads (see figure 3) are manufactured much in the same way as ICs. A resistive material 0.5- to 1-micron thick is deposited between each pair of conductors, forming a discrete heating element. A protective glass layer 7 to 10 microns thick is applied to both print-head types.

Heat transfer from the heads to the ink is 20 percent efficient. The head heats to about 350° C within a span of about 1 millisecond, raising the ink temperature to its melting point of 70° C. To minimize power requirements, current is applied in multiple strobes.

By definition, thick-film heads are more durable than thin-film. They also allow higher tolerances in their mechanical design since they project farther from the background surface. Thin-film heads, on the other hand, can be manufactured less expensively, use about 20 percent to 30 percent less energy, and can provide higher dot densities.

The ColorMaster design uses a thick-film stationary head to maximize throughput and reliability while providing 200-dpi resolution. In terms of manufacturing, the key challenge has been to achieve element-to-element uniformity, since this largely determines the lateral evenness of color on the final printed page. Head uniformity is a function of the resistance distribution of the thick-film material. At the beginning of the ColorMaster's development, element-to-element variation was as high as 25 percent over all the elements. Heads now used in the ColorMaster production units have a variation of 5 percent over 95 percent of the elements.

Thermal Ribbon and Media
Thermal ribbon is a substrate coated with a heat-sensitive solid ink made primarily of waxes, oils, and dyes. Varying the ratio of these ingredients changes the viscosity, melting point, and, ultimately, image quality. The substrate itself introduces another variable, determining the efficiency of heat transfer from the heads to the ink.

Thermal-transfer printers usually output on paper or transparency film (for use with overhead projectors). The properties of these two media are quite different, and getting good results on both using the same ink and the same print head is another difficult challenge.

The Future of Thermal Transfer
Manufacturers of color thermal printers are currently working on several challenges: to lower the cost of the units through improvements to the manufacturing process, to provide even higher resolution through improvements to thin-film technology, and to allow printing on lower-cost, rougher papers.
DMM-300
3.5 DIGIT DMM / MULTITESTER
$79.95

Our best model. A highly accurate, full function DMM loaded with many extra features. Audible continuity, capacitance, transistor, temperature and conductance all in one handheld meter. Temperature probe, test leads and battery included.

- **Basic DC accuracy:** plus or minus 0.25%
- **DC voltage:** 200mV - 1000V, 5 ranges
- **AC voltage:** 200mV - 750V, 5 ranges
- **Resistance:** 200 ohms - 20M ohms, 6 ranges
- **AC/DC current:** 200mA - 10A, 3 ranges
- **Capacitance:** 200pF - 10A, 2 ranges
- **Transistor tester:** NPN, PNP
- **Input impedance:** 200K ohm
- **Conductance:** 200 ohms - 20M ohms
- **Fully over-load protected
- **Input impedance:** 10M ohm

DMM-200
3.5 DIGIT FULL FUNCTION DMM
$49.95

High accuracy, 20 amp current capability and many range settings make this model ideal for serious bench work. TR stand for hands-free operation. 2000 hour battery life with standard 9v cell. Probes and battery included.

- **Basic DC accuracy:** plus or minus 0.25%
- **DC voltage:** 200mV - 1000V, 5 ranges
- **AC voltage:** 200mV - 750V, 6 ranges
- **Resistance:** 200 ohms - 20M ohms, 6 ranges
- **AC/DC current:** 200mA - 20A, 6 ranges
- **Fully over-load protected
- **Input impedance:** 10M ohm

DMM-700
3.5 DIGIT AUTORANGING DMM
$49.95

Autoranging convenience and fully manual operation. Selectable LO OHM mode permits accurate in-circuit resistance measurements involving semiconductor junctions. MEM mode for measurements relative to specific reading. Probes and battery included.

- **Basic DC accuracy:** plus or minus 0.5%
- **DC voltage:** 200mV, autoranging
- **AC voltage:** 2v - 500v, autoranging
- **Resistance:** 200 ohms - 20M ohms, autoranging
- **Full over-load protected
- **Input impedance:** 10M ohm

DMM-100
3.5 DIGIT POCKET SIZE DMM
$29.95

Shirt-pocket portability with no compromise in features or accuracy. Large, easy to read 5" LCD display. 2000 hour battery life with standard 9v cell provides over two years of average use. Probes and battery included.

- **Basic DC accuracy:** plus or minus 0.5%
- **DC voltage:** 2v - 1000V, 4 ranges
- **AC voltage:** 2v - 750v, 2 ranges
- **Resistance:** 2k ohms - 2M ohms, 4 ranges
- **AC/DC current:** 20mA - 2A, 4 ranges
- **Full over-load protected
- **Input impedance:** 10M ohm

MODEL 2000
20mHz DUAL TRACE OSCILLOSCOPE
$349.95

Model 2000 combines useful features and exciting quality. Frequency calculation and phase measurement are quick and easy in the X-Y Mode. Service engineers will appreciate the TV Sync circuitry for viewing TV-V and TV-1 as well as accurate synchronisation of the Video Signal. Blanking, pedestal, VITS and Vertical/Horizontal sync pulses.

- **Lab quality compensated 10X probes included
- **Built-in component tester
- **110/220 Volt operation
- **X-Y operation • Bright 5" CRT • TV Sync filter
- **Z Axis on/off modulation
- **X-Y operation • Bright 5" CRT • TV Sync filter

MODEL 3500
35mHz DUAL TRACE OSCILLOSCOPE
$499.95

Wide bandwidth and exceptional 1mV/DIV sensitivity make the Model 3500 a powerful diagnostic tool for engineers or technicians. Delayed triggering allows any portion of a waveform to be isolated and expanded for closer inspection. Various Holdoff makes possible the stable viewing of complex waveforms.

- **Lab quality compensated 10X probes included
- **Built-in component tester
- **Z Axis on/off modulation
- **X-Y operation • Bright 5" CRT • TV Sync filter

DPM-1000
3.5 DIGIT PROBE TYPE DMM
$54.95

Auto ranging, pen style design for the ultimate in portability and ease of use. Custom 80 pin LSI chip increases reliability. Audible continuity tester and data hold feature for added convenience. Case, test leads and battery included.

- **Basic DC accuracy:** plus or minus 1%
- **DC voltage:** 2v - 500v, autoranging
- **AC voltage:** 2v - 500v, autoranging
- **Resistance:** 2k ohms - 2M ohms, autoranging
- **Full over-load protected
- **Input impedance:** 11M ohm

ORDER TOLL FREE
800-538-5000

OR VISIT OUR RETAIL STORE
1256 SOUTH BASCOM AVE.
SAN JOSE, CA. (408) 947-8881
Designing a High-Speed Page Printer Controller

Fast forms processing is an ideal application for page printers. The controller is often the bottleneck.

Phil Ellison

Common sense tells us that an electronic/mechanical print engine should be slower than an all-electronic controller, but the reverse is usually true. Most of the time, in a desktop page printer, the engine outperforms the controller. The engines are capable of printing at a rate of six or more pages per minute, while the controllers often feed the printer data at less than one page per minute. Unless the printer is producing the same page multiple times, the speed of the print engine is meaningless.

In electronic forms processing, the form exists as an electronic image until it is printed with the data filled in. The forms are designed, stored, managed, updated, and completed in computer memory and translated to paper only when needed in a paper format.

The controller bottleneck is a serious problem in forms processing, where the printer must turn out many different form sets every day. The requirements for forms printing are stringent. The controller must be able to handle complex combinations of fonts (sometimes as many as 36 per form plus 36 for the variable data to fill in the blanks), graphics, logos, and digitized signatures. The overall forms-processing system usually needs to be a turnkey system because its typical operators are not computer specialists.

Design Solutions

Most first-generation personal page printers have the controller built into the printer. In fact, the dedicated computers in those controllers are commonly more powerful than the microcomputers attached to them (for instance, a 68000-based printer attached to an 8088-based computer).

Placing the printer controller in the computer lets the computer's microprocessor handle memory-intensive page makeup and processing operations. The controller writes the byte stream to the print engine. This approach eliminates duplicating parts of the computer system, such as chassis, memory, and power supply. It also eliminates the need to have font memory (RAM, ROM, or disk) in the printer and provides for a convenient user interface (the keyboard and display screen as opposed to a printer control panel and set of LEDs).

The controller we at EFS designed, the Formwriter Adapter Card (see photo 1), is a single board with a Motorola 68008 microprocessor, several custom logic arrays, and 256K bytes of 120-nanosecond RAM. It runs under a multitasking operating system written specifically for this application; the system can handle an unlimited number of separate tasks.

The operating system, written in assembly language, allocates resources by time slices and interrupts. Time slices control most of its activities, but important events, such as the horizontal sync pulses, generate interrupts. By design, the controller is fast but limited. It detects error conditions at the printer, for instance, but passes them on to the host processor for action.

Forms are created and stored in FGL (forms-generation language), a document description language optimized for forms. FGL resolution is 2400 dots per inch horizontally and vertically. This permits easy scaling to the resolution of the output device being driven.

A moderately complex form, compiled in FGL, like the IRS Form 1040 page 1, requires about 8K bytes to store. Variable information for forms is stored and managed separately and merged for display and printing. This eliminates the need to store the form multiple times.

The Computer/Printer Interface

The connection between the computer and page printer is often another bottleneck. Conventional serial connections are limited to 19.2K bits per second. Parallel connections at 56K bps are better, but still not fast enough to keep pace with the print engine's capacity. Because a full page of graphics represents, on the average, about 1.05 megabytes of information, sending a full page over a parallel interface requires about 150 seconds.

The Formwriter Adapter Card connects directly to the video port of the laser engine over a shielded twisted-pair cable. The data-transmission rate ranges from 1.5 to 8 megabits per second, depending on the capacity of the print engine.

Almost all print engines receive data through a video interface. This means that one controller card can drive a variety of print engines, such as models from Xerox, Ricoh, and Canon. However, video interfaces differ among the various printers; there is no standard.

All the interfaces support the basic functions of control, status reporting, and image synchronization. Control commands allow the controller to start and stop the printer, select paper trays, control display indicators, and so forth. In some cases, commands are sent over a serial line using a command/response protocol. In other cases, commands are implemented using TTL signals.

Status functions allow the controller to monitor the condition of the printer and detect various errors, such as paper jams, out of paper, engine errors, and so forth. In some systems, the controller uses hardware signals to sample and evaluate the printer status in real time. More commonly, status information is passed over a serial communications line using a query/status exchange. Sometimes the control and status protocols are combined or intermixed in such a way that the controller might issue a print command and receive back a status response such as out of paper.

Image synchronization applies separately to the horizontal and vertical dimensions. The controller needs to know when the printer's photoreceptor is positioned at the top of the page and when to

Phil Ellison is engineering manager at Electronic Form Systems. He can be contacted at EFS, 2395 Midway Rd., Carrollton, TX 75006.
begin sending raster data for each scan line down the page.

A print command typically initiates the vertical synchronization sequence. When it has a page ready to print, the controller issues a print command and the printer responds with a vertical sync signal that begins the print cycle. The controller then looks for horizontal sync signals from the printer and sends one scan line of raster image for each horizontal sync, progressing down the page.

Again, the specifics of sending the raster image vary with each printer. Normally the image is sent at video rates of 1.5 MHz or higher and is synchronized with a video clock signal that is provided by the printer. The printer samples the video data signal at each strobe of the video clock and writes a dot when the signal is TRUE.

Implications for Other Printer Applications
The EFS Formwriter Adapter Card proves that the controller does not have to bottleneck the printing system. However, it is not intended as a general-purpose printer controller, rather it is optimized for forms processing.

Page printers have raised the expectations of many personal computer users with regard to traditional word processing and data reporting. Don't be surprised if the next generation of general-purpose page printers incorporates many of the design concepts that we found to be so effective in driving page printers at top-rated speed.
Introducing Printer Control Worth Showing Off

Worth Showing Off

DUET™

DUET IS ONE OF THOSE PIECES OF SOFTWARE THAT SHOULD HAVE EXISTED A LONG TIME AGO.

IT BEGINS BY MAKING RESIDENT ONSCREEN PRINTER CONTROL A REALITY... AND THEN IT GOES A WHOLE LOT FURTHER.

Just because you need to print something sideways... doesn't mean you have to turn your whole world upside down!

We're out-sidewaysed Sideways™... and that's only one part of Duet!® Duet decodes and prints spreadsheets and text sideways in the background... while you and your computer go off in other directions... together!

When you swear at your printer... does that help you remember how to get it into compressed mode?

Duet's pop-up menu allows you to select compressed print or double width, letter quality or draft. You can change spacing, choose a font or easily command whatever else your printer has to offer. You can even advance your paper a page or a line at a time without having to approach your hardware. On laser printers you can choose between landscape and portrait modes, select paper tray and lots more. And you'll never have to memorize escape sequences to do it. Duet can make your word processor, spreadsheet or database report generator do things with the printer it never knew was possible.

Power failure? Printer jam?

Anyone who's been around printers for a while knows the feeling of groping around for a power switch while paper flies in all directions and the print head bores a hole in your masterpiece. That's why Duet saves print queues to disk. When you bring the power up again, or clear the confetti out of your printer, you'll be able to restart wherever you left off... or even back up a page or two if necessary.

Have you ever been forced out of your own office because someone came to visit while your printer was hammering away?

Duet lets you quiet your printer with a keystroke, and then start up again when it's convenient for you... and you'll never miss a character.

With all of its power, Duet is so easy to use that in five or ten minutes, it will feel like an old friend. And like any true friend, it's never intrusive. Depending on how you configure it, Duet can occupy as little as 60K of RAM.

$89.95*

CSI is the original developer of The Spreadsheet Auditor, and the producer of the premier LAN electronic mail system: The Network Courier.

Lotus and Symphony are trademarks of Lotus Corporation. Sideways is a trademark of Fun Software.

To order your copy of Duet direct, phone: 800-645-5501 or, in California dial 800-556-6699. Or mail us your name and address along with a check, money order, or your Visa, MasterCard or American Express number and expiration date. California residents, please add sales tax (6.25%). For orders outside the U.S. please add $15. CSI, 736 Chestnut Street, Santa Cruz, CA 95060.

Inquiry 329 SEPTEMBER 1987 • BYTE 227
Now Project Computer Data With Color.

Use color to clarify your presentation and excite your audience for less than $1600.

All you need is a personal computer, overhead projector and a new color MagnaByte II™ Electronic Imager to instantly share colorful computer data with a room full of people.

The MagnaByte II LCD display palette transforms the color data that appears on your monitor into an electronic "transparency" utilizing selected colors for added impact. Even if your computer system is monochromatic, MagnaByte II will project in deep blue and yellow. When placed on an overhead projector, the data and graphics that were once confined to your small monitor are simultaneously projected onto any wall or screen. No additional hardware or software is required. Just connect the palette and remote control to the interface card provided with MagnaByte systems and turn on the computer. Exclusive MagnaByte circuitry provides quick, convenient setup including automatic image centering.

This new color MagnaByte II system can be used with IBM PC/XT/ATs and most IBM compatibles such as the Telex Intelligent Workstation. A monochromatic version of the MagnaByte is compatible with the Apple II family including the GS series.

Both models come with a multilingual software program allowing you to capture and assemble information onto your own presentation disc.

For a free brochure about this exciting new color LCD technology plus the name of your dealer, phone or write to: Telex Communications, Inc., 9600 Aldrich Ave. So., Minneapolis, MN 55420.

Call Toll Free:
1-800-328-5727 ext. 8812.
In MN 1-800-742-5685 ext. 8812.

MagnaByte

IBM is a registered trademark of International Business Machines Corporation. Apple is a registered trademark of Apple Computer, Inc.
Strip-Buffer vs. Full-Page Bit-Map Imaging

As printer resolution increases, the cost of a full-page bit map goes up quadratically. Strip-buffer technology is a memory-thrifty alternative.

Bert Douglas

One of the jobs of a printer controller is to convert a page of two-dimensional objects (text characters and other shapes) into a sequence of dot rows that can be transmitted to the engine for printing. That job is getting harder as the number of dots increases.

With traditional full-page bit-map designs, the controller generates a bit-map image of the entire page to be printed; one bit in memory corresponds to one dot location on the printed page. The image is not sent to the print engine until the entire page is ready.

This method allows for virtually unlimited complexity on the page, but it also requires a lot of memory. At a resolution of 300 dots per inch, an 8½-by-11-inch image requires a megabyte of RAM; doubling the resolution to 600 dpi ups the memory requirement to 4 megabytes.

Time is another cost of the full-page bit-map approach. The two-cycle mode of writing the image and then copying it to the print engine frequently results in waiting periods between pages, making it difficult for the system to meet the rated speed of the printer.

Strip-buffer imaging is an alternative technology that minimizes memory requirements while sacrificing some of the capacity for complexity. Another purpose of the design is to ensure that the controller drives the print engine to its throughput capacity, regardless of the contents of the pages.

Strip buffering is similar to the virtual-memory technique used in large computers to provide a logical address space larger than the available physical memory. The logical address space is the print drum, and the physical address space is the strip buffer (see figure 1).

The strip buffer is a narrow, horizontal bit matrix (typically 256 by 2550 bits). At any given time, the content of the strip buffer is a partial-page bit image.

The bit image can consist of any arrangement of predefined text characters and graphics, with certain limitations. Each individual text character and graphic object must be able to fit entirely within the strip buffer. (However, some graphic elements, such as lines and boxes, can be larger than the size of the strip buffer.) The constraints in no way hinder the use of the system for general forms printing and word processing, but they might make it unsuitable for extremely complex graphic arts work.

Imaging a Page of Text

In the strip-buffer controller design, printing and imaging take place simultaneously. While one line of dots is being output to the print engine, another line is being written into the strip buffer. The top row of bits from the strip buffer is output to the print engine, the remaining lines of the buffer scroll up one row, and a new line of dots fills the bottom row of the strip buffer.

Printer software in the host computer sends a page of text in the form of a display list (i.e., a sequence of instructions for printing). The display list is a concise, high-level description of the page to be printed. A typical page-display list is only about 1 percent as large as a full-page bit-map description.

Inside the controller, a display-list interpreter (DLI) goes to work on the display list, generating rasterized data for the strip buffer.

To illustrate the operation of the DLI, I'll follow its handling of a hypothetical stream of commands from a simple display list. For the sake of simplicity, I'll reduce the dimensions of the output: Page size is 20 by 50 dots rather than the typical 3300- by 2550-dot page. The strip buffer is 10 dots deep rather than the usual 256 dots. The character matrix is 5

Figure 1: At any given time, the strip buffer contains only a partial-page bit image. In a process similar to virtual-memory techniques, the physical address space of the strip buffer scrolls across the much larger logical space of the printed page.
Figure 2: Step-by-step imaging of a simplified page using the strip-buffer technique. Not all steps are shown.

Figure 3: Character matrices.

Recall that I assumed a line spacing of 5.5 dots. The first linefeed moves the cursor down 5 dots, and the second one moves it down 6 dots. The DLI handles fractional line spacing by rounding to the nearest dot, while retaining the ideal fractional dot position for subsequent line-space calculations.

As dot rows in the strip buffer are printed, the DLI examines the next object in its list and determines when the strip buffer has advanced far enough down the logical page to encompass the next object outside the limits of the strip buffer. The whole process operates in step with the print engine.

As shown in the figure, the physical bit image never exceeds the size of the strip buffer, even though the logical bit image (written to the print engine) spans a full page. In this way, the use of a strip buffer ensures a low memory requirement.

While the full-page bit-map design is required for truly unlimited page complexity, the strip-buffer design can handle most applications. Furthermore, the strip-buffer design can be modified to accommodate more demanding graphics. As printer resolution increases, the strip-buffer approach may be an essential element in keeping printer costs down.
Recent PC announcements have left Compaq in an enviable position.
In the midst of the clamor surrounding the new IBM® PS/2 personal computers, one thing is perfectly clear to people who really know PC's. COMPAQ® personal computers still work better. They enhance your productivity within the industry standard, and give you maximum performance from the world's largest library of business software.

Still the performance leader

COMPAQ personal computers prove superior in overall performance.

Take speed. The COMPAQ DESKPRO 286® runs your software up to 20% faster than its PS/2™ counterpart. And, the COMPAQ DESKPRO 386™ sets all records for speed in advanced-technology, industry-standard personal computers.

Consider flexibility. Compaq offers 5 1/4" diskette drives, and allows you to add 3 1/2" drives. In fact, you can add up to four different storage devices on all COMPAQ desktops.

Examine compatibility. We let you use all the industry-standard software and expansion boards that you already own.

Look at expandability. Our industry-standard slots enable you to add many extra functions. So you can configure your system exactly the way you want it.

Finally, compare portability. You can't. The 12-MHz 80286-based COMPAQ PORTABLE III™ is the undisputed leader. It offers the performance of a desktop without any of the compromises you'll find in other portables. Compaq applies innovative technology within the industry standard, without sacrificing compatibility.

Earn higher returns on your investment

American business has $80 billion invested in

It still simply works better.

IBM, OS/2 and PS/2 are trademarks of International Business Machines Corporation. MS OS/2 is a product of Microsoft Corporation. ©1987 Compaq Computer Corporation. All rights reserved.
Compaq has become famous for its legendary compatibility and connectivity. Our personal computers will run thousands of programs, without modification, far faster than other computers. And they work with all the other compatible computers in your office, without time-consuming diskette conversions.

As for the future, all 80286- and 80386-powered COMPAQ personal computers will run the new MS OS/2 operating system, allowing you to directly access up to 16 megabytes of memory. And they'll run all the applications developed for OS/2™. Again, much faster.

Two-way compatibility

Two-way compatibility they work with all the other compatible computers in your office, without time-consuming diskette conversions.

We don't burn bridges, we build them

At Compaq, advances are measured by our ability to push technology forward, without leaving you behind.

COMPAQ computers let you incorporate developing technology, and take advantage of the latest technology in a way that's fully compatible with the hardware, software and add-ons you already own. So Compaq protects your investment.

These are all reasons why recent surveys show COMPAQ owners are the most satisfied personal computer users.

Call 1-800-231-0900, operator 39, for information and the location of your nearest Authorized COMPAQ Computer Dealer. In Canada, call 416-449-8741.
This printer is planning a corporate takeover.
The 24-pin C-815 Supra.

In the fast-paced world of corporate computing, one printer has been voted most likely to succeed.

The new 24-pin ProWriter C-815 Supra, from C. Itoh Digital Products.

Supra power.
With its 8086 microprocessor, one megabit ROM and 64K RAM, the C-815 is the only printer that will match the power and speed of your PC for the demanding high-volume, multi-user environment of today's corporate departments.

For starters, it's one of the fastest 24-pin dot matrix printers on the market today. And at 53 dBA in normal mode and 51 dBA in quiet mode, it's also the quietest.

The unique diamond configuration of the Supra's 24-pin printhead allows the printer to race through drafts up to 570 characters per second, or attention-getting true letter quality proposals at an incomparable 162 cps (12 cpi) — over 60% faster than the Toshiba P351.

Many users? One printer.
The Supra is the printer to have at LAN's end. Because with its massive 42K buffer, there's no more waiting in line for important documents. And with built-in emulations for the IBM ProPrinter XL, Toshiba P351 and Qume Sprint 11, and parallel/serial interfaces, it will run with just about any system or software in your department.

Functions follow forms.
If multi-part forms are an important part of your business, nothing beats the Supra. In its Copy + mode, it will handle up to six copies — a third more than the competition. What's more, the Supra features advanced paper-handling like top, bottom and rear feed and a pull-type tractor standard. A bi-directional tractor and single- and dual-bin sheet feeders are also available.

Intelligent features include a handy Clear Buffer mode that automatically clears the buffer without turning off the printer. A unique Top of Form sensor also saves paper by actually overriding the software and not advancing to the next page, unless it's necessary.

Presentation graphics.
The Supra also prints bidirectional business graphics up to 160 x 360 dots per inch, including true circles (instead of ovals you get from other 24-pin printers). For eye-catching headings, users can also magnify characters up to eight times, horizontally and vertically.

With optional font cards, you can express yourself in a variety of typestyles. You can even create and permanently store your own typeface or logo using C. Itoh's optional download card and Font Master software.

Corporate conqueror.
The new C. Itoh C-815 Supra is one of the fastest, quietest dot matrix printers on the market today. It's a master of capabilities that line and laser printers can't touch. And it's backed nationwide by C. Itoh Digital Products' one-year warranty.

The takeover has begun. Ask to see a Supra today.

C. Itoh Digital Products, Inc.
19300 South Hamilton Avenue • Suite 110
P.O. Box 9085, Torrance, California 90508
Telephone: (213) 327-2110 or (800) 423-0300

Toshiba P351 is a registered trademark of Toshiba America, Inc. IBM ProPrinter is a registered trademark of International Business Machines Corporation. Qume 11 is a registered trademark of Qume Corporation.

Inquiry 70 for End-Users.
Inquiry 71 for DEALERS ONLY.
Reviews

Reviewer's Notebook 236
by Cathryn Baskin

The Kaypro 386 239
by Ray Duncan

Mail-Order Performance 245
by Frederick D. Davis

The NEC MultiSpeed 253
by David Satz

The Micro Clipper Graphics Subsystem 257
by Charles Weston

PC-MOS/386 263
by Richard Grehan

Actor 1.0 266
by Leonard Moskowitz

ALS Prolog 269
by Alex Lane

Benchmarking dBASE III Plus Compilers 277
by Malcolm C. Rubel

DESIview 2.00 281
by John McCormick
On page 110 in this issue, you’ll see comparative benchmarks for a variety of 80386 and 68020 systems. Take a look at the results achieved by Definicon Systems’ DSI-780 coprocessor board. This board and its compiler, which we installed in an 8-megahertz IBM PC AT, turned in a performance better than that of any of the other 86000 and 68020 systems and compilers we tested, including the Arete. In half of the tests—the Fibonacci, Savage, and Sieve—the DSI board outperformed the Compaq Deskpro 386 and the IBM PS/2 Model 80.

The price you pay for this performance is $3295, which gets you the DSI-780 with 16-MHz 68020 and 68881 microprocessors and 4 megabytes of RAM. Look for a full review of this board in the October issue. Definicon also sells other models, including the DSI-780+, which runs at 20 MHz and can hold up to 16 megabytes of RAM. With 1 megabyte, the DSI-780+ costs $2295; with 4 megabytes, $3595. You can contact Definicon Systems at 1100 Business Center Circle, Newbury Park, CA 91320, (805) 499-0652.

This month, beta versions of Microsoft’s new Quick C and C 5.0 compilers arrived in our offices. BIX senior editor David Betz, who reported on Borland’s Turbo C last month, offers his early impressions of both Microsoft compilers below.

—Cathryn Boskin
Senior Technical Editor, Reviews

Like Borland’s Turbo C, Microsoft’s Quick C ($99) is a fast integrated C development environment for IBM PCs, ATs, and true compatibles. Quick C provides a compiler, linker, editor, make facility, and source-level debugger, all within a single integrated environment.

For programmers who aren’t comfortable with an integrated environment, Quick C also provides a command-line interface, as well as a stand-alone make facility, linker, and object-module librarian. Quick C supports four different memory models (small, medium, compact, and large) and mixing of models through the command-line interface. The integrated environment always uses the medium memory model.

The copy of Quick C I looked at was a beta release that I couldn’t benchmark for either compile speed or execution speed. I was able to compile and run the same code that I used to benchmark the Turbo C compiler last month, but because the integrated environment supports only the medium memory model, I was unable to compare the results directly with those from Turbo C.

Running a program within the Quick C integrated environment causes an executable file to be created in the current directory. Unlike with Turbo C, this file can’t be used outside the Quick C environment. The separate option that allows stand-alone programs to be built can be somewhat confusing because you can’t run the stand-alone programs from inside the environment, and the programs generated to run in the environment can’t be run as stand-alone programs.

The main advantages of Quick C over Turbo C are its source-level debugger and compatibility with Microsoft C. Both products provide an easy-to-use user interface and a command-line interface for experienced programmers. Both are fast compilers that provide quick turnaround time for the edit/compile/link/execute cycle.

Microsoft will sell Quick C both alone and as part of the new C version 5.0 compiler ($450). To compare version 5.0 with 4.0, I used the beta version of 5.0 that I received to run some of BYTE’s standard benchmark programs (see table 1) on a Compaq Portable 286 with an 8-MHz 80286. To get an idea of how using the large memory model slows down program execution, I ran the Dhrystone with both the large and small memory models. I ran the remaining benchmarks with only the small memory model, and I ran each test with and without optimization.

For the optimized versions, I used the compiler’s -0x switch to get the highest level of optimization. For the unoptimized versions, I used the -0d switch to disable all optimizations.

Using optimization caused some rather strange problems with some of the benchmarks. For instance, the Float benchmark consists of a series of floating-point operations whose values aren’t used for anything. With optimization enabled, Microsoft C 5.0 recognized that the results weren’t going to be used and eliminated the computations. This kind of “dead code” elimination is good for a real application but invalidates benchmarks like this implementation of the Float test.

Quick C runs on the IBM PC and compatibles with 384K bytes of memory, MS-DOS 2.0 or higher, and one double-sided floppy disk drive. Microsoft C 5.0 will run on the IBM PC and compatibles with 384K bytes of RAM, MS-DOS 2.0 or higher, and a hard disk drive. For more information, contact Microsoft Corp., 16011 Northeast 36th Way, P.O. Box 97017, Redmond, WA 98073-9717, (800) 426-9400 or (206) 882-8088.

(Note: In July, I mentioned that Turbo C had a bug that prevented large-model programs from linking correctly. Borland has provided a fix for the problem that will be made available to any current owner of Turbo C on request.)

—David Betz
Senior Editor, BIX

Table 1: Benchmark results for Microsoft C 4.0 and the beta version of 5.0. -0x tests were run with the highest level of optimization; -0d tests were run with no optimization. Numbers in parentheses indicate how many iterations were performed. All times are in seconds.

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>5.0 (-0x)</th>
<th>5.0 (-0d)</th>
<th>4.0 (-0x)</th>
<th>4.0 (-0d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieve (10)</td>
<td>1.63</td>
<td>3.30</td>
<td>2.78</td>
<td>4.14</td>
</tr>
<tr>
<td>Sort (10)</td>
<td>3.79</td>
<td>5.33</td>
<td>4.25</td>
<td>5.35</td>
</tr>
<tr>
<td>Fib (10)</td>
<td>11.73</td>
<td>22.96</td>
<td>12.95</td>
<td>20.14</td>
</tr>
<tr>
<td>Float</td>
<td>0.00</td>
<td>75.63</td>
<td>45.75</td>
<td>76.16</td>
</tr>
<tr>
<td>Savage (2500)</td>
<td>53.08</td>
<td>56.44</td>
<td>59.48</td>
<td>59.48</td>
</tr>
<tr>
<td>Dhrystone (small model)</td>
<td>2061.00</td>
<td>1261.00</td>
<td>1666.00</td>
<td>1209.00</td>
</tr>
<tr>
<td>Dhrystone (large model)</td>
<td>1630.00</td>
<td>1000.00</td>
<td>1363.00</td>
<td>986.00</td>
</tr>
</tbody>
</table>
GENICOM LASER PRINTERS

A classic combination of performance and value

Presenting the Genicom Laser Classics. Two laser printers that offer full Hewlett-Packard® LaserJet Plus emulation for today’s growing desktop publishing applications. Plus a great deal more.

The first value in laser printing.
Searching for the most sensible laser printer for your personal computer? The PagePrinter 8 is the answer. It features the lowest consumables cost of any 8 page per minute laser, just 2.7 cents per page.

Now, add in a 300,000 page printer life. And more features than any laser in its price range. It’s easy to see what makes the PagePrinter 8 a value leader.

The last word in laser printing.
If your business is ready for a reliable, high volume workhorse, you’re ready for the Genicom 5010.

The 5010’s full feature control panel puts the world of laser printing at your fingertips. Print everything from letters and legal size paper to transparencies in seconds. Select fonts and switch between portrait and landscape at the push of a button.

There’s even a 32 character LCD performance and diagnostic readout that communicates in plain English.

The 5010 and the PagePrinter 8 from Genicom. Two classic examples of better laser printers for your money. For more information, call 1-800-4-GENICOM. In VA, 1-703-949-1170.

<table>
<thead>
<tr>
<th>PagePrinter 8</th>
<th>Genicom 5010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed:</td>
<td>8 pages per minute</td>
</tr>
<tr>
<td>Paper Handling:</td>
<td>100 in, 100 out uncollated</td>
</tr>
</tbody>
</table>

The Printers That Mean Business.
Genicom Drive, Waynesboro, VA 22980

Hewlett-Packard, IBM, Diablo and Epson are registered trademarks of Hewlett-Packard Company, International Business Machines Corporation, Xerox Corporation and Epson America, respectively.
PURCHASE TOMORROW'S OPERATING SYSTEM TODAY

THE MULTITASKING, MULTIUSER MS-DOS REPLACEMENT

- Runs on any IBM-PC, XT, AT, 80386, or true compatible
- Runs MS-DOS programs and uses the MS-DOS file system
- Features file sharing and file locking
- Provides true concurrent multitasking and task switching
- Supports multiple terminals with no extra software needed
- Features a user-configurable windowing interface
- Allows addressing of extended memory
- Features a file permission system
- Supports the MS-DOS command language and then extends it with commands like PROTECT, PRIV, SPAWN, and KILL

ONLY $99 diskettes and manual included FROM WENDIN, of course.

Don't Wait for OS/2!
Order Wendin-DOS today!!

TO ORDER CALL (509) 624-8088

And don't forget, Developers, to also order the Wendin-DOS Application Developer's Kit — The kit that gives you access to over 80 system services supported by Wendin-DOS — ONLY $99. After all, you can't develop tomorrow's applications with yesterday's DOS.

SIMPLY SEND A BRIEF, WRITTEN REQUEST FOR INFORMATION ABOUT ANY WENDIN PRODUCT TO:

Wendin, Inc.
P.O. Box 3888
Spokane, WA 99220-3888

We will send you an exciting full color catalog and a FREE product line demo diskette, while supplies last, compliments of Syncom Technologies, Inc., and Wendin, Inc. (509) 624-8088.

(System hardware recommendation — minimum 512K machine with at least the computing power of an IBM-AT.)

DEALER INQUIRIES WELCOME
Foreign orders inquire about shipping. Domestic orders add $5.00/1st item, $1.00 each additional item for shipping, handling, and insurance. We accept Visa, MC, American Express, C.O.D., and Bank Drafts drawn on U.S. Banks. Washington residents add 7.8% sales tax.

MS is a trademark of Microsoft.
Wendin is a registered trademark of Wendin, Inc.
Wendin-DOS and Wendin-DOS Application Developers Kit are trademarks of Wendin, Inc.

Working beyond the horizon to develop the operating systems of tomorrow
© Copyright 1987 Wendin, Inc. (509) 624-8088
The Kaypro 386
Ray Duncan

The Kaypro 386 is an entrant in the newly emerging class of high-performance IBM PC AT compatibles. These machines have the general architecture of a PC AT but are based on an Intel 80386 32-bit microprocessor. In addition to a normal PC AT-compatible expansion bus, they also have a nonstandard 32-bit memory bus for increased performance.

The Kaypro 386’s exterior appearance is similar to that of a PC AT, with the keylock, 1.2-megabyte floppy disk drive, disk- and power-indicator lights, connectors, and power switch all in their familiar locations. The computer is currently available in two models. The Model A ($4495) comes with 512K bytes of RAM and no hard disk drive. The Model E comes with 2.5 megabytes of RAM and either a 40- or a 130-megabyte hard disk drive. The two configurations sell for $5795 and $8095, respectively.

At the time of this writing, Kaypro announced that an additional model, the Model N, was expected to begin shipping this summer. It is intended for use as a network server, and it comes with 2.5 megabytes of RAM and either a 240- or a 330-megabyte hard disk drive. Prices for the two configurations are $14,450 and $19,450, respectively.

Standard equipment on the Model A and Model E includes a real-time clock, a parallel port, a serial port, a combination floppy disk and hard disk controller board that can handle up to two floppy disk drives and two hard disk drives, and a 102-key keyboard that is similar to the IBM 101-key enhanced keyboard. The case has room for up to five half-height storage devices. The power supply is switch-selectable between 110 and 220 volts and is rated at 215 watts.

All three models of the Kaypro 386 use the same motherboard, the Intel iSBC 386 AT, which has a 16-MHz 80386 microprocessor and 512K bytes of 120-nanosecond RAM. [Editor’s note: The motherboard is similar in design to the ALR Access 386’s motherboard, another Intel-derived design. For more information, see “The ALR Access 386 and the Compaq Deskpro 386” by Stanley J. Wszola and Curtis Franklin Jr. in the February BYTE.] You can slow down the Kaypro 386’s microprocessor to the equivalent of 6 MHz under software control (by inserting wait states) or by entering a special key sequence for use with timing-dependent programs. For expansion, the machine has two 8-bit IBM PC- compatible slots and four 16-bit PC AT-compatible slots, as well as two 32-bit slots that can accept either 8-bit boards or special 2-megabyte 16-bit memory-expansion boards built by Intel and available from Kaypro for $665; 8-megabyte boards may be available in the future. One of the Kaypro 386’s 16-bit slots is occupied by the disk-controller card.

The expansion bus runs at 6 MHz for compatibility with older boards, except for the two 32-bit slots, which you can configure with jumpers on the motherboard to make them run at 16 MHz when 32-bit memory cards are present. A 68-pin grid-array (PGA) socket is present on the motherboard for installation of a 16-MHz 80387 numeric coprocessor (not yet available from Kaypro) or an Intel Math Coprocessor Module piggyback board ($495), which adapts a 10-MHz 80287 40-pin DIP chip with some support circuitry to the 80387 PGA socket.

Two video display adapters are available as options for the Kaypro 386. One is the Kaypro Multi-Video Board, which can emulate the IBM Monochrome Adapter, the IBM Color Graphics Adapter, or the Hercules Monochrome Graphics Card. The other is the Kaypro Enhanced Graphics Adapter, which is based on the Chips and Technologies four-chip EGA set. Two optional monitors are available for the Kaypro 386: a 12-inch monochrome monitor and a 14-inch enhanced graphics monitor.

Ray Duncan is a software developer for Laboratory Microsystems Inc. (3007 Washington Blvd., Suite 230, Marina del Rey, CA 90292) and author of Advanced MS-DOS: The Microsoft Guide for Assembly Language and C Programmers (Microsoft Press, 1986).
REVIEW: KAYPRO 386

Kaypro 386

Company
Kaypro Corp.
533 Stevens Ave.
Solana Beach, CA 92075
(619) 481-3900

Size
21¾ by 16½ by 6½ inches; 42 pounds

Components
Processor: 32-bit Intel 80386 running at 16 MHz, switchable to 6 MHz; socket for Intel 80387 numeric coprocessor
Memory: 512K bytes on system board; optional 2-megabyte Intel MEM020 plug-in expansion board, expandable to 16 megabytes
Mass storage: One 1.2-megabyte high-density floppy disk drive (all models) and one 40- or 130-megabyte hard disk drive (Model E) or one 240- or 330-megabyte hard disk drive (Model N)
Keyboard: 102 keys; 12 function keys
I/O interfaces: Eight slots: two 8-bit IBM PC compatible; four 16-bit PC AT compatible; two 32-bit slots for special Intel MEM020 memory boards; one serial port with DB-9 connector; one parallel port with DB-25 connector

Software
Microsoft MS-DOS 3.21; GWBASIC 3.20; Quarterdeck Office Systems' OEMM-386 1.0; Storage Dimensions' SpeedStor hard disk utility package

Options
2-megabyte 16-bit memory-expansion board: $665
2-megabyte 32-bit memory-expansion board: $1145
Kaypro Multi-Video Board: $210
Kaypro Enhanced Graphics Adapter: $295
12-inch monochrome monitor: $145
14-inch enhanced graphics monitor: $595
360K-byte floppy disk drive: $145
40-megabyte hard disk drive: $1398
80-megabyte hard disk drive: $1750
133-megabyte hard disk drive: $3595
Kaypro 386 Technical Manual: $125

Documentation

Price
Model A (does not include a hard disk drive): $4495
Model E (with 40-megabyte hard disk drive): $5795
Model E (with 130-megabyte hard disk drive): $8095

The graphs for Disk Access in BASIC show how long it takes to write and then read a 64K-byte sequential text file to a hard disk. The Sieve graph shows how long it takes to run one iteration of the Sieve of Eratosthenes prime-number benchmark. The Calculations graph shows how long it takes to perform 10,000 multiplication and 10,000 division operations using single-precision numbers. The 40K Format/Disk Copy benchmark was not performed because the computers had only one floppy disk drive. The 40K File Copy graph shows how long it takes to copy a 40K-byte file from one location on the hard disk to another. The Spreadsheet benchmarks show how long it takes to load and recalculate a 100-row by 25-column spreadsheet in which each cell equals 1.001 times the cell to its left. (For the program listings, see BYTE's Inside the IBM PCs, Fall 1985, page 185.) All benchmark tests were run without any extended memory management, disk driver, or disk-caching programs. Tests on the Kaypro 386 were done with MS-DOS 3.21 and GWBASIC 3.20; tests on the Compaq Deskpro 386 were done using Compaq DOS 3.1 and Compaq BASIC 3.11; and tests on the IBM PC AT were done with PC-DOS 3.2 and BASICA 3.2. All spreadsheet benchmarks were done using Multiplan 1.06.
SAVE $20

United States □ One Year $22 □ 2 Years $40
Canada/Mexico □ One Year U.S. $25
Europe □ $69 (air delivery), U.S. Funds enclosed
 □ $37 (surface mail), U.S. Funds enclosed

□ BILL ME. If I'm not completely satisfied with my first copy, I'll simply write "cancel" across your invoice, mail it back, and my subscription will be cancelled.
□ Check Enclosed □ Bill VISA □ Bill Mastercard

Please allow 6-8 weeks for processing your subscription.

Name ___________________________ 479TSU
Address ___________________________
City/State/Zip _______________________
Acct. # __________________________ Expire __________
Signature _________________________

Please allow 6-8 weeks for processing your subscription.
Other options include additional 1.2-megabyte and 360K-byte floppy disk drives; 40-, 80-, and 133-megabyte hard disk drives; and internal and external 60-megabyte tape-backup units.

My review unit was a Model E with 2.5 megabytes of RAM, a Kaypro Enhanced Graphics Adapter and monitor, a 1.2-megabyte floppy disk drive, and a Pentium 4042-megabyte hard disk drive with a rotary voice-coil head positioner and a claimed 30-millisecond average access time. The CORE International Coretest Disk Performance Test program recorded a data-transfer rate of 164K bytes per second, an average seek time of 24.5 ms, and a track-to-track seek time of 4.4 ms for the Kaypro 386's hard disk system. The disk-controller card uses Western Digital from Storage Dimensions.

Essential Software
The Kaypro 386 comes with Microsoft MS-DOS 3.21 and GWBASIC 3.20. In addition, the computer comes with a setup program for system configuration that is easy to use; Quarterdeck Office Systems' Expanded Memory Manager (QEMM-386) 1.0, which allows you to configure extended memory above 1 megabyte according to the Lotus/Intel/Microsoft Expanded Memory Specification (EMS); and Storage Dimensions' SpeedStor 4.02a hard disk utility package. SpeedStor includes the HARDPREP and PARTED programs, which are used to format and partition the hard disk, and HARDrive.SYS, an installable device driver that configures the partitions of a larger-than-32-megabyte hard disk drive for use as multiple logical volumes.

The Printed Word
The Kaypro 386 User's Guide describes the standard features and options of the computer's various models, unpacking and setting up the system, and configuration of the system for various options. It also covers the keyboard and use of the editing keys, some introductory material on MS-DOS commands and management of MS-DOS, and instructions for using some of the Kaypro utility programs. Appendices include an MS-DOS bibliography, a table of the extended character set, and charts of the system board jumpers and the pin-outs of the various connectors.

Also included with the Kaypro 386 are an MS-DOS 3.2 User's Guide and Reference Manual and a GWBASIC 3.1 Interpreter Manual. In addition, the Kaypro 386 comes with an 8-page glossy brochure about Quarterdeck's QEMM-386 1.0, which contains installation and operating instructions and a license and disclaimer of liability. The SpeedStor disk comes with a 64-page instruction booklet from Storage Dimensions.

My review unit also came with an 84-page preliminary copy of the Kaypro 386 Technical Manual. This book contains some general descriptive material and a block diagram and jumper settings for the system board, pin-outs for the various connectors and power supply, a list of the interrupt numbers assigned to the BIOS functions and hardware controllers, and a fairly detailed summary of the disk controller's registers and commands. The preliminary manual has no schematics or BIOS listings.

Compatibility
To evaluate the Kaypro 386's hardware compatibility with the IBM PC and PC AT, I loaded the machine with various combinations of expansion boards, including Hercules and Vega EGA video adapters, an Intel Above Board/AT with 2 megabytes of RAM, a 3COM Etherlink network card, a Microsoft Mouse (bus version), a Hayes-compatible 1200-bit-per-second internal modem, and a Hitachi CDR-1502S CD-ROM drive and adapter. The Kaypro 386 worked flawlessly with all these boards.

To assess the machine's software compatibility, I tried running a broad variety of popular application packages, utilities, and programming tools on it. The software I tested included Morgan Computing's Trace 86 debugger 2.00, Microsoft's SYMDDB 4.00 and CodeView 1.11 debuggers, Chris Dunford's ProCed command-line editor 1.02L, Datastorm's ProComm 2.4.2 (a telecommunications program), Revolution Software's Cruise Control 2.15 (a keyboard enhancer), Microsoft Word 3.1, Microsoft WordStar 3.30, Microsoft Windows 1.03, Fifth Generation Systems' Fastback 5.13, Laboratory Microsystems' UR/Forth 1.01, Microrim's R:BASE System V 1.1, Quarterdeck's DESQview 1.3, and Lotus 1-2-3 2.0.

The only program that did not work as expected at 16 MHz was Lotus 1-2-3, which did not recognize its key disk. When I slowed the processor to 6 MHz by pressing Control-Alt-1, the copy-protection scheme functioned properly and the program loaded. I then resumed 16-MHz operation with the Control-Alt-2 key sequence.

Reliability and Performance
I used the Kaypro 386 for one month on a daily basis in my office along with a Compaq Deskpro 386 on a local area network for normal programming and word-processing tasks. During this time, the machine proved completely reliable, and I encountered no problems.

The results of the BYTE benchmark tests show that the hard disk access times for the Kaypro 386 and the Compaq Deskpro 386 are basically equivalent. The floppy disk access times varied, with the results slightly favoring the Kaypro 386. This discrepancy may be because the Deskpro 386 automatically slows down to 8 MHz when accessing a floppy drive to provide automatic compatibility with most copy-protection schemes.

The BASIC Sieve and Calculations benchmarks and the Spreadsheet Recalculate test demonstrate a consistent 7 percent to 10 percent advantage in execution speed for the Deskpro 386. Since the microprocessor in both machines runs at 16 MHz, the speed difference seems to be due to the Deskpro 386's static memory chips and the more sophisticated 32-bit memory bus's access to those chips, in contrast to the Kaypro 386's dynamic RAM board.

I ran all the benchmark tests with no programs running in the background and with the extended memory management program, QEMM.SYS, and the program for use with the 40-megabyte hard disk drive, HARDrive.SYS, disabled. Thus, the benchmark results in the graph on page 240 reflect the performance of the raw hardware.

I tested these two 80386 machines further by writing two highly optimized assembly language implementations of the Sieve of Erathostenes algorithm popularized by Jim Gilbreath. [Editor's note: For more information, see "Erathostenes Revisited: Once More through the Sieve" by Jim and Gary Gilbreath in the January 1983 BYTE. The listings are available on disk, in print, and on BIX. See the insert card following page 256 for details. Listings are also available on BYTEnet. See page 4.]

The first implementation, SIEVE86, uses only 8086 instructions and can run on the Intel 8086/8088 or 80286/80386 microprocessors in real mode (i.e., the 8086 emulation mode used by these processors when running MS-DOS). I assembled and linked SIEVE86 into an .EXE file with the Microsoft Macro Assembler (MASM) and the Microsoft Object Linker, respectively. The second implementation, SIEVE386, uses the 80386's 32-bit registers and operations throughout. I assembled, linked, and debugged the program with Phar Lap's 386[ASM, 386]LINK, and MINIBUG 80386 programming tools. I then ran it for timing purposes under the control of the Phar Lap 386[DSO-Extender, which provides a 32-bit protected-mode runtime environment for programs. The 386[DSO-Extender tool loads a 32-bit application into extended memory (above...
Picking Some Nits

The Kaypro 386 has some flaws, particularly when compared to the Compaq Deskpro 386. For example, the various option jumpers on the motherboard are spread from one end to the other instead of being centralized in one location as they are in the Deskpro 386. Similarly, the socket for the 80387 in the Kaypro 386 is buried under the edges of the hard disk drive and power supply in such a manner that it would be nearly impossible to add a numeric coprocessor chip or module without disassembling the computer.

The portions of the documentation that originate with Kaypro (i.e., the Kaypro 386 User's Guide and Kaypro 386 Technical Manual) are barely adequate. The user's guide is poorly organized, inconsistent, and often omits important information or provides information that is inaccurate or misleading. For instance, the key sequence to increase the volume of the key clicks is not documented; I discovered it to be Control-Alt-+ by trial and error. The procedure for making the hard disk bootable is located in Chapter 2 under “Hardware Installation,” while the section in Chapter 3 entitled “Loading MS-DOS onto the Hard Disk” describes only how to copy MS-DOS files from the distribution floppies to drive C. The entire “Getting Started” section is oriented toward floppy disk-based systems, even though the typical 80386 system is hard disk-based. The page entitled “Redirecting Screens” discusses redirection of the standard output device; redirection of the standard input device is not mentioned at all.

Final Thoughts

The Kaypro 386 is a reliable personal computer that delivers two to three times the performance of the IBM PC AT. Its compatibility with standard 8086- and 80286-based PCs and software is excellent. Its performance is similar to that of the Compaq Deskpro 386. The deficiencies in its documentation and other minor inconveniences, such as the position of the jumpers on the motherboard and the layout of the keyboard, will be no great obstacles to experienced users.

If you need to run software applications at the fastest possible speed, or if you are prototyping 80386 software, the Kaypro 386 is perfectly suitable. As a slightly more economical alternative to the Compaq Deskpro 386, whether for software development or for crunching data, the Kaypro 386 appears to be a good buy.
KOH-I-NOOR PLOTTER PENS

Koh-I-Noor, the leader in providing highest quality hard copy for technical drawing, now combines many years of experience and long-term association with plotter manufacturers to provide pens for the business professional. Koh-I-Noor Fiber Tip and Disposable Liquid Ink Plotter Pens provide the highest quality, brightest appearing output for use on overhead projections, chart papers and graphic papers for the most effective presentations.

Koh-I-Noor Fiber Tip Plotter Pens are available for the most popular plotters, including Hewlett Packard and Houston Instruments. They are offered in two line widths with up to ten brilliant colors. The pens provide excellent contrast and fill-in for overhead projections, reports and graphs.

DPP®—Disposable Plotter Pen™ is also available for the most popular plotters, including the new "S" Style DPP, which is used on Hewlett Packard's tabletop and similar plotters with liquid-ink capability. The DPP provides the highest quality output on chart paper and uncoated presentation paper. Line quality does not deteriorate over time, and the ink in the cartridge is waterproof and fade resistant. The pens are available in four precise line widths and in up to ten colors.

Both the Koh-I-Noor Fiber Tip Plotter Pen and the Disposable Plotter Pen are designed for the easiest possible use. No maintenance or cleaning. Once activated, they are immediately ready for use. When they run out of ink, just throw them away. Koh-I-Noor Plotter Pens—for the best possible hard copy. For more information, see your dealer or send the coupon.

KOH-I-NOOR RAPIDOGRAPH®

Inquiry 330

For the most effective presentations—overhead projections and report graphs.
Osborne/McGraw-Hill's
Indispensable
Complete Reference Series

1-2-3®: The Complete
Reference
by Mary Campbell
Every Lotus® 1-2-3® com­
mmand, function, and proce­
dure is thoroughly explained
and demonstrated in "real­
world" business applications.
Includes money-saving cou­
poms for add-on products.
892 pages.
$22.95, A Quality Paperback,
ISBN 0-07-881005-1

DOS: The Complete
Reference
by Kris Jamsa
Has all the answers to all
your questions on DOS
through version 3.X. This
essential resource is for
every PC-DOS and MS­
DOS® user. 1045 pages.
$24.95, A Quality Paperback,
ISBN 0-07-881259-3

dBASE III PLUS™: The
Complete Reference
by Joseph-David Carrabis
Conveniently organized so
you can quickly pinpoint all
dBASE III™ and dBASE III
PLUS™ commands,
functions, and features.
768 pages.
$22.95, A Quality Paperback,
ISBN 0-07-881012-4

C: The Complete
Reference
by Herbert Schildt
For all C programmers,
beginners and seasoned
pros, here's an encyclope­
dia of C terms, functions,
codes, and applications.
Covers C++ and the
proposed ANSI standard.
740 pages.
$24.95, A Quality Paperback,
ISBN 0-07-881263-1

AVAILABLE NOW at Fine Book Stores and Computer Stores Everywhere.
Or Call Our Toll-Free Order Number 800-227-0900
800-772-2531 (In California)
Available in Canada through McGraw-Hill Ryerson, Ltd. Phone 416-293-1911

Osborne McGraw-Hill
2600 Tenth Street
Berkeley, California 94710

Trademarks: Lotus and 1-2-3 are registered trademarks of Lotus Development Corp. dBASE is a registered trademark and
dBASE III PLUS is a trademark of Ashton-Tate. MS-DOS is a registered trademark of Microsoft Corp.
Mail-Order Performance

Frederick D. Davis

The Proteus-286GT from Proteus Technology Corp. ($2395) and the GV-286 from PC Designs ($2920) offer a multitude of optional hard disks, monitors, display adapters, and keyboards. Although each improves on the performance of the IBM PC AT, each has a different way of doing so. As evidence of a growing trend, both of these 12-MHz dual-speed PC AT compatibles are available only by mail order from their respective companies.

Common Denominators

Because the Proteus-286GT and the GV-286 both have the same chassis, the computers look a lot alike, except for the front panels. The units I reviewed were both equipped with 30-megabyte Seagate ST4038 hard disk drives, each with a 40-millisecond average access time; 1 megabyte of 100-nanosecond RAM on the main board, 640K bytes below the 1-megabyte address and 384K bytes above; an EGA adapter based on the Chips and Technologies chip set; an NEC Multisync monitor; and a 1.2-megabyte floppy disk drive. Both machines also had Western Digital disk controllers and were supplied with MS-DOS 3.2 and GWBASIC 3.2.

The chassis used for both machines is a sturdy 21 1/4- by 16 1/2- by 6 1/2-inch steel case containing a 200-watt UL-approved 110/220-volt power supply. At the rear of the chassis are cutouts for three DB-25 connectors and two DB-9 connectors. These cutouts enable you to install up to five ports without taking up extra rear slot ends for connectors. The chassis incorporates five half-height drive slots with individual power and ground connectors and two floppy disk drive data connectors. The full-height hard disk drive occupies two of the five slots, and the 1.2-megabyte floppy disk drive takes up another slot.

The chassis also has a rear switched-power outlet for a monitor. This outlet is convenient, but it requires a plug with a special rectangular cross-section ground prong. The standard three-prong plug won't fit, and neither machine comes with an adapter.

Both computers have cylindrical vending-machine-style locks for enabling and disabling their keyboards and retaining their covers. The motherboards of both systems have six 16-bit PC AT-compatible slots and two 8-bit PC-compatible slots. Neither motherboard has any visible rework on the top side. Unfortunately, neither system filters its cooling air, and a heavy buildup of dust on high-performance chips can contribute to failure due to overheating.

Each machine I reviewed came with its own custom BIOS and two modes of operation: a high-speed microprocessor mode with a low-speed bus and a low-speed mode for both the bus and microprocessor. You can change speeds by internal switches or from the keyboard in MS-DOS by using special key combinations.

The Proteus-286GT

The Proteus-286GT has a 12.5-MHz Intel 80286 microprocessor that runs with one wait state. As an alternative, you can jumper-select either a 6-MHz or an 8-MHz clock rate with zero wait states. Under MS-DOS, you can select the microprocessor speed (but not the wait state) from the keyboard. You select the wait-state condition via a jumper on the motherboard; however, the bus speed for both modes is 6 MHz to avoid problems with PC AT-compatible accessory boards. The computer has no fast slot for full-speed add-on memory boards; therefore, you must use the 6-MHz PC AT bus speed when you are using memory that is not on the motherboard. In addition, the Proteus-286GT has no indicator on the front panel to tell you when you are in high-speed mode.

The Proteus-286GT I reviewed had a 10-MHz 80287-10 math coprocessor installed and running at 10 MHz (a $375 option). To accomplish this speed, the

continued

Frederick D. Davis (P.O. Box 427, Riverton, UT 84065) is a self-employed consultant and programmer/analyst.
80287 is mounted on a piggyback board with its own crystal. This setup outperforms a directly mounted 80287, which would have to run at the 6-MHz bus speed.

The system motherboard is socketed for up to 4 megabytes of RAM using 1-megabit chips. The motherboard memory runs at 12.5 MHz with one wait state and is a major improvement over add-on memory boards that must run on the 6-MHz bus.

The Proteus-286GT has a potential heat problem that is not evident on the GV-286—the 80286 microprocessor chip does not have a heat-sink cover. The piggyback 80287 board raises the height of the math coprocessor chip, which is oriented parallel to the bus slots. When an accessory board is mounted above it, the bottom of this board comes in direct contact with the entire length of the top of the chip, which further reduces the chip's ability to dissipate heat. In spite of this situation, however, I did not experience any heat problems with my review unit.

The Proteus-286GT comes with three serial ports and two parallel ports mounted on the motherboard. The three serial ports all have DB-25 male connectors mounted in the chassis cutouts. The two parallel-port connectors (female DB-25 style) are mounted separately on two slot-end covers, effectively blocking those two slots from being used for boards. Although five of the six 16-bit slots and one of the two 8-bit slots are available, only four of the 16-bit slots can easily be used due to the port mountings. Furthermore, the lithium battery for the CMOS configuration RAM blocks one of the DB-9 chassis cutouts. A few changes in layout would have made better use of the system's resources.

The standard configuration of the Proteus-286GT includes two Teac floppy disk drives (one a 1.2-megabyte drive and the other a 360K-byte 5¼-inch drive). You can get a 3½-inch 720K-byte floppy disk drive instead of the 5¼-inch drive if you prefer. The only remaining half-height disk location has available power but no front-panel access opening, which rules out the possibility of adding a tape drive.

The Proteus-286GT uses Video-7's EGA-compatible Vega Deluxe graphics board, which is based on the Chips and Technologies EGA chip set. The characters on both machines are clear and sharp, and I experienced no problems working all day with either system combination.

The GV-286
The PC Designs GV-286 has an Advanced Micro Devices 80286 micropro-
The graphs for Disk Access in BASIC show how long it takes to write and then read a 64K-byte sequential text file to a hard disk. (For the program listings, see BYTE’s Inside the IBM PCs, Fall 1985, page 195.) The Sieve graph shows how long it takes to run one iteration of the Sieve of Eratosthenes prime-number benchmark. The Calculations graph shows how long it takes to do 10,000 multiplication and 10,000 division operations using single-precision numbers. The 40K Format/Disk Copy benchmark was not performed because the computers had only one floppy disk drive. The 40K File Copy graph shows how long it takes to copy a 40K-byte file from the hard disk to the floppy disk using the system utilities. The Spreadsheet graphs show how long it takes to load and recalculate a 100-row by 25-column spreadsheet in which each cell equals 1.001 times the cell to its left. The spreadsheet used was Microsoft Multiplan 1.10.

The GV-286 comes with 1 megabyte of 100-ns RAM on the motherboard. The motherboard also contains a CMOS battery-backed clock/calendar that is powered by inexpensive and easily available AA cells.

The floppy disk drive supplied with the GV-286 is a 1.2-megabyte Toshiba drive, and two half-height floppy disk drive slots are on the front panel of the machine. Also on the front panel is a high-speed indicator light (next to the hard disk access light) and a reset button (located next to the vending machine-style lock).

The GV-286 comes with a 30-megabyte Seagate ST4038 hard disk drive, an 80286 processor running at 12 MHz with one wait state. I have been unable to determine the equivalence of this chip to the Intel 80286 with regard to protected-mode operations on suitable operating systems. A major design difference between the Proteus-286GT and the GV-286 is the GV-286’s 32K bytes of 45-ns static RAM cache. The microprocessor runs from this cache with no wait states when you enable the cache from the keyboard by pushing the Control, Alt, and left Shift keys simultaneously and then pressing the plus (+) key. You disable the cache by pressing the same key combination and then pressing the minus (−) key.

Using the cache memory produces a significant increase in performance under many circumstances. The amount of this performance improvement depends on the size of the program running in the cache and the size and organization of the program data.

The GV-286’s motherboard has five empty 16-bit slots and is socketed for an 80287 math coprocessor chip. The 80286 microprocessor, unlike the Proteus-286GT’s, has a heat-sink cover. The motherboard uses the Chips and Technologies PC AT chip set. PC Designs claims that, despite the 12-MHz clock speed, the company has not exceeded the specifications for any of the chips.

PC Designs chose to design its internal bus around the 8-MHz PC AT single-cycle specification (i.e., the bus actually runs at 6 MHz for multiple cycles but is compatible with 8-MHz boards). The GV-286 also has a switch on the motherboard that sets the internal bus speed to 12 MHz, which is nonswitchable. This is an added extra for system optimization; all your peripheral and memory boards must be compatible with this speed before you can use this feature. However, all the timing loops in the custom BIOS have been rewritten to be completely independent of the 12-MHz microprocessor clock.

The GV-286 comes with a 30-megabyte Seagate ST4038 hard disk drive, an 80286 processor running at 12 MHz with one wait state. I have been unable to determine the equivalence of this chip to the Intel 80286 with regard to protected-mode operations on suitable operating systems. A major design difference between the Proteus-286GT and the GV-286 is the GV-286’s 32K bytes of 45-ns static RAM cache. The microprocessor runs from this cache with no wait states when you enable the cache from the keyboard by pushing the Control, Alt, and left Shift keys simultaneously and then pressing the plus (+) key. You disable the cache by pressing the same key combination and then pressing the minus (−) key.

Using the cache memory produces a significant increase in performance under many circumstances. The amount of this performance improvement depends on the size of the program running in the cache and the size and organization of the program data.

The GV-286’s motherboard has five empty 16-bit slots and is socketed for an 80287 math coprocessor chip. The 80286 microprocessor, unlike the Proteus-286GT’s, has a heat-sink cover. The motherboard uses the Chips and Technologies PC AT chip set. PC Designs claims that, despite the 12-MHz clock speed, the company has not exceeded the specifications for any of the chips.

PC Designs chose to design its internal bus around the 8-MHz PC AT single-cycle specification (i.e., the bus actually runs at 6 MHz for multiple cycles but is compatible with 8-MHz boards). The GV-286 also has a switch on the motherboard that sets the internal bus speed to 12 MHz, which is nonswitchable. This is an added extra for system optimization; all your peripheral and memory boards must be compatible with this speed before you can use this feature. However, all the timing loops in the custom BIOS have been rewritten to be completely independent of the 12-MHz microprocessor clock.

The GV-286 comes with 1 megabyte of 100-ns RAM on the motherboard. The motherboard also contains a CMOS battery-backed clock/calendar that is powered by inexpensive and easily available AA cells.

The floppy disk drive supplied with the GV-286 is a 1.2-megabyte Toshiba drive, and two half-height floppy disk drive slots are on the front panel of the machine. Also on the front panel is a high-speed indicator light (next to the hard disk access light) and a reset button (located next to the vending machine-style lock).

The GV-286 comes with a 30-megabyte Seagate ST4038 hard disk drive, an
MULTIUSER BBS

Off-the-shelf and custom systems for:

* Multi-User Teleconferencing
* Multi-User Electronic Mail
* Multi-User File Upload/Download
* Multi-User Order Entry
* Multi-User Games and Amusements
* Multi-User Database Lookup
* Multi-User Online Expert Systems
* Multi-User Catalog Scanning
* Multi-User Classified Advertising
* Multi-User Educational Services

The GV-286 is the clear winner in ease of reconfiguring the CMOS RAM.

EGA-compatible graphics board, and a serial/parallel port board, as well as the necessary documentation, all supplied by Everex. Also included with the machine is a detailed printout of the hard disk checkout data.

One of the GV-286's two serial ports terminates in a DB-25 connector mounted in a chassis cutout, and the other terminates in a DB-9 connector on the same slot cover with a single DB-25 parallel port connector. Everex's documentation about these ports is far more complete than the information that you would normally receive about them. You can configure the serial ports on this board as either data terminal equipment (DTE) or data communications equipment (DCE) by changing a jumper. A 9-pin-to-25-pin adapter cable is also included with the Everex serial/parallel port board.

Configuring CMOS RAM

Of the two machines, the GV-286 is the clear winner in ease of reconfiguring the CMOS RAM. Each time you power up the GV-286, you are given the chance to reconfigure it. The dialog box closely follows that of the IBM PC AT diagnostics, in which the default answers are your previous configuration data. The system automatically detects and configures the memory.

The Proteus-286GT comes with a program that clears parts of the CMOS memory, so you must reconfigure the CMOS RAM each time you boot up the machine. To add or delete memory data, you must disconnect the CMOS battery for about 30 minutes. The next time you boot up the computer, the memory is automatically resized and stored in CMOS RAM, and you must reconfigure everything in the CMOS memory area; there is no way to edit the information once it is in the CMOS memory.

Keyboards

I used two optional keyboards with the GV-286: a Maxi-Switch 101 and a Key Tronic KB101. Both of these enhanced keyboards have 12 function keys located in a row above the number keys and a numeric keypad to the right of the main keyboard. A separate small keypad, which contains the cursor-control keys and the function keys that are normally active when the Num Lock is off, is located between the main keyboard and the numeric keypad. The Escape key is next to the number 1 key, 1.5 inches above its traditional left-hand position. Both keyboards interchange the normal positions of the Caps Lock and Control keys. The Num Lock, Scroll Lock, and Caps Lock keys on both of these keyboards all have LED indicators.

The Maxi-Switch 101 contains a switch that lets you swap the Control and Caps Lock keys. An alternate set of key caps is supplied with the keyboard, since the two keys are different sizes. This keyboard has maximum resistance in the first millimeter of key travel and then practically no resistance. The Key Tronic KB101 has a soft, linear resistance for the entire keystroke.

The Proteus-286GT I reviewed came with an 86-key IBM PC AT-style keyboard with 10 function keys and an even resistance over the full keystroke that is more crisp than that of the Key Tronic KB101 keyboard.

Operating Systems and Software Compatibility

Both of my review units were shipped with MS-DOS 3.2, GWBASIC 3.2, EGA board utilities, and hard disk utilities. The MS-DOS/GWBASIC combination is a separately priced option for both machines. The Proteus-286GT comes with several specific utilities that let you reset the date and time (although you can't do this when booting the computer), an EMS 3.2 memory simulator, and a program that moves a file from one directory to another. The GV-286 software package includes a utility for the Everex serial/parallel port board, a copy of PCWrite on the Everex I/O utilities disk, and a copy of Quarterdeck's DESQview multitasking program.

I tested the high-speed mode of both machines by running the DOS 3.xx versions of the following programs: Graphin-the-Box 1.3, dBASE III, Story Teller, WordStar Professional 3.31, SuperCalc 3.2.1, Multiplan 1.06, and Boardroom Graphics 3.0. In addition, I tested Connect on the Proteus-286GT. All these programs worked fine.

I also tried three additional operating systems on each machine: Concurrent PC DOS 4.1 and Concurrent PC DOS XM 5.0, Microport Unix System V/286 1.3, and Digital Research's FlexOS 286 1.31, a new multiuser/multitasking, real-time, protected-mode operating system. Concurrent PC DOS 4.1 and Concurrent PC DOS XM worked fine on both machines most of the time. However, the GV-286 crashed twice while running Concurrent PC DOS 4.1 with Access Manager 1.1 as
a background task, a task running on one
virtual console doing intensive disk I/O
(through both Access Manager 1.1 and
Concurrent PC DOS 4.1), and VEDIT 1.3
running on a second virtual console
while VEDIT was apparently attempting
disk I/O.

I say "apparently" because I may have
caused the failure by entering disk I/O
commands. Both failures occurred while
I was using the Maxi-Switch 101 key-
board. I used three different keyboards
(the Maxi-Switch 101, the Key Tronic
KB 101, and the Proteus-286GT's PC
AT-style keyboard) on the GV-286 at
various times. The two crashes occurred
under the same circumstances, I was un-
able to do it.

The most significant incompatibility I
encountered was with a 2.5-megabyte 70-
milliseconds RAM chip Cheetah memory
board. When the GV-286's and Proteus-
286GT's microprocessors were running
at 12 and 12.5 MHz, respectively, nei-
ther machine could recognize and size the
board correctly, even though both com-
panies say that the buses run at 6 MHz.
The Proteus-286GT couldn't find the
board at all, while the GV-286 either
couldn't find it or sized it incorrectly and
detected errors in it. When I set both re-
view machines up with the microproces-
sor and the bus at 6 MHz, however, they
ran the Cheetah board flawlessly. This
might be a timing problem caused by the
difference between the microprocessor
and bus speeds. I had no way to deter-
mine this, however.

Benchmarks
The GV-286 is from 15 percent to 23 per-
cent faster than the Proteus-286GT on all
microprocessor and memory bench-
marks; how much faster depends on the
particular benchmark and the design of
the two computers. The Disk Access in
BASIC test results were mixed, since they
don't depend on just microprocessor and
memory speed.

The program and the data used for the
Calculations benchmark will fit in cache
memory concurrently and will therefore
run with no wait states. The Sieve bench-
mark's data is a large array, so data has to
be swapped in and out of cache memory
along with the program and appropriate
parts of GWBASIC. The GV-286 ran
slower than a true zero-wait-state ma-
chine, but still faster than a machine
without cache memory. The bottom line
is that the Proteus-286GT is almost twice
as fast as the 8-MHz IBM PC AT, while
the GV-286 is a little more than twice as
fast as the 8-MHz PC AT. The complete
benchmark results are shown in the graph
on page 247.

Documentation
Both machines come with a user's man-
ual, an MS-DOS 3.2 user's guide, and a
GWBASIC user's guide. In addition, the
Proteus-286GT comes with the MS-DOS
Programmer's Reference. The Proteus
continued
Technology’s version of the above manuals consists of four small softbound volumes in a single slipcase. The PC Designs’ version comes in two miniature vinyl three-ring binders. The Proteus-286GT also comes with an additional Introduction to the Proteus Environment, which is tailored to the novice user and describes computer basics (e.g., floppy disks and graphics boards).

Both machine’s user’s guides include sections for the novice, with information on handling computer boards and replacing the case and disk drives. Beyond that, the Proteus-286GT user’s manual has a weak technical section that is confined mostly to diagrams and annotations of items like connector pins and slot and socket locations. The manual gives little explanation of what is going on, and the diagram descriptions are weak. [Editor’s note: Proteus Technology says that it is now preparing a new user’s manual.]

The GV-286 user’s manual is more complete and clearer on technical matters, such as definitions of the system interrupts and I/O address mapping, than the Proteus-286GT manual. The material is also easier to find and understand in the GV-286 manual. In short, the GV-286 manual is adequate, but the Proteus-286GT’s manual is not.

Warranty and Service

PC Designs provides a one-year repair or replacement warranty and one year of toll-free technical telephone support with the GV-286. The company also has a 30-day money-back (except for shipping charges) compatibility guarantee. All service is handled by PC Designs at its Broken Arrow, Oklahoma location.

Proteus Technology has a 30-day money-back satisfaction guarantee and a 15-month labor and parts warranty for the Proteus-286GT. During this period, service is provided by a third-party service supplier. Proteus provides the first 60 days of service at the customer’s site for no additional charge. Proteus also has a technical-support number during business hours and operates a 24-hour on-line bulletin-board service for registered owners.

Assessing the Trade-Offs

Both of these machines offer substantial gains in microprocessor performance over the PC AT and many of its clones, and both exhibit good PC AT software compatibility. However, they both suffer some hardware compatibility problems when the microprocessor is running in fast mode with the bus at a PC AT-compatible speed.

PC Designs pays better attention to details, such as board layout, heat dissipation, CMOS reconfiguration, port placement, and documentation, with the GV-286 than Proteus Technology does with the Proteus-286GT. Proteus, on the other hand, offers better service if you can’t afford downtime. The Proteus-286GT can also hold a full 4 megabytes of RAM on the motherboard, which may eliminate the need for an add-on board. [Editor’s note: Due to variations in price and availability of options, contact the companies for the latest configurations of these systems.]

In either case, you should weigh the cost and performance advantages of a higher-speed hard disk drive for either of these systems. The Seagate ST4038 just isn’t fast enough for the performance potential that these computers offer. Both machines are strong contenders for multitasking, and a faster hard disk drive can only improve this situation.

If you want a high level of performance in a moderately priced computer and you are willing to carefully check out the add-on boards, either of these machines is a good buy.
Now, EGA WONDER displays VGA on multi-sync monitors.

Without switching or having to take the system apart, without having to use specific monitors for specific programs, the EGA WONDER, with SoftSense Automatic Mode Switching, upgrades the EGA standard and maintains downward compatibility to older standards on any monitor.

EGA WONDER's expanded 132 column capability allows Lotus users to display a year-at-a-glance of information on 1-2-3 and Symphony spreadsheets. Connectivity support to mini and mainframe computers is provided because EGA WONDER runs SmarTerm and VTerm in 132 columns. Word processing in 132 columns is fully supported on WordStar and WordPerfect.

EGA WONDER supports 800x600, 752x410 and 640x480 modes on MultiSync monitors, 752x410 on 25kHz 400 line monitors and EGA, CGA, MDA, Hercules and 132 column modes on MultiSync, EGA, 400 line 25kHz, RGB, TTL Monochrome, Composite, Compaq Portable and IBM PC Portable monitors. EGA WONDER represents a new beginning for users of IBM PC/XT/AT, IBM Series 2 Model 30, or compatible computers and is now available from all major computer stores. Call us today at (416) 756-0711 for more information.
Get a new handle on your business with SBT.

Now Available for SCO XENIX

Now you can handle up to 254 users, all working in the same data files, with the SBT MultiNet Database Accounting Library. The accounting software written in dBASE III PLUS.

So whether your business is large or small, you can grow to the limits of the most advanced PC networks available.

When you want that special report, or your business needs something we didn't think of, you can quickly and easily modify our programs to meet your needs exactly (because our dBASE source code is included absolutely free).

And if you don't have time to make the changes yourself, there's a nearby consultant who can make them for you.

So if your company has two users or two hundred and fifty, you can add customers, update records, and have as many people enter orders as it takes to keep your business growing.

Isn't it nice to know there's software you can't outgrow? The SBT MultiNet Database Accounting Library.

Now you can get a new handle on your business.

Call today for our demo disk and brochure.

<table>
<thead>
<tr>
<th>Product</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>dProfessional</td>
<td>Time & Billing</td>
</tr>
<tr>
<td>dOrders</td>
<td>Sales Order Processing</td>
</tr>
<tr>
<td>dInvoice</td>
<td>Billing/Inventory Control</td>
</tr>
<tr>
<td>dStatements</td>
<td>Accounts Receivable</td>
</tr>
<tr>
<td>dPurchase</td>
<td>Purchase Order</td>
</tr>
<tr>
<td>dPayables</td>
<td>Accounts Payable</td>
</tr>
<tr>
<td>dPayroll</td>
<td>Payroll/Labor</td>
</tr>
<tr>
<td>dLedger</td>
<td>General Ledger/Finance</td>
</tr>
<tr>
<td>dAssets</td>
<td>Asset/Depreciation</td>
</tr>
<tr>
<td>dProject</td>
<td>Project/Job Accounting</td>
</tr>
<tr>
<td>dProperty</td>
<td>Tenant/Unit Management</td>
</tr>
<tr>
<td>dMaterials</td>
<td>Manufacturing Planning</td>
</tr>
<tr>
<td>dMenu/Backup</td>
<td>Menu/Backup</td>
</tr>
</tbody>
</table>

MultiNet versions $200 additional per module

Call today for the name of the SBT consultant in your area.

One Harbor Drive
Sausalito, CA 94965 (415) 331-9900
Telex 9102404708

Macintosh, Atari and compiled versions are available. dBASE III PLUS is a registered trademark of Ashton-Tate, Inc. Macintosh is a trademark of Apple Computer, Inc. Atari is a registered trademark of Atari Corp. XENIX is a registered trademark of Microsoft Corp. SCO is an abbreviation of the Santa Cruz Operation. SBT Database Accounting Library and MultiNet are trademarks of SBT Corp. © 1987, SBT Corporation.
The NEC MultiSpeed

David Satz

The NEC MultiSpeed tries to hold true to the adage that good things come in small packages. The MultiSpeed is a portable, battery-operated MS-DOS computer with 640K bytes of RAM and a supertwist LCD screen. It runs at both 4.77 and 9.54 MHz and comes with ROM-resident utility software and on-line help files. In addition to having two internal 720K-byte 3½-inch floppy disk drives, the MultiSpeed is capable of maintaining files in an internal, nonvolatile RAM disk. Its suggested retail price of $2195 includes MS-DOS 3.20, the ROM-resident utilities, a set of four spiral-bound manuals, and an AC adapter.

[Editor's note: NEC has introduced the MultiSpeed EL ($2495). It has the same features as the original MultiSpeed plus an electroluminescent backlit LCD screen and a larger power supply.]

The Inner Sanctum

The MultiSpeed is built around NEC's V30 microprocessor, a CMOS chip that is compatible with Intel's 8086 but with a different internal architecture, giving faster performance even at the nominal 4.77-MHz clock rate. Normally, though, the computer boots up and runs at 9.54 MHz. You can select the slower speed by invoking a ROM-resident setup routine or by setting a rear-panel configuration switch. NEC claims that the Multi-Speed's microprocessor runs with zero wait states at either speed, except when the LCD screen is being updated. There are two empty ROM sockets in the underside of the computer, but no socket for a numeric coprocessor.

This 11-pound computer is not the most petite of laptop designs, but you can carry it comfortably by the slide-out aluminum handle. Its extra few cubic inches provide keyboard features that will be reassuringly familiar to desktop computer users: a separate numeric/cursor-control keypad on the right-hand side (set above the main keyboard) and 10 function keys arranged in two columns along the left. The 85 full-size, full-stroke keys are cleanly designed with a moderately stiff spring action and very little play or wiggle; they touch bottom with a smart tap. The nonslip-textured key tops are comfortably contoured, with the F and J keys scooped out more deeply than the others. The layout of the main keyboard closely resembles that of the original IBM PC's keyboard, except for the addition of special Pop Up and Help keys. LED indicators are built into the Caps Lock and Num Lock keys.

The MultiSpeed is ready to run as soon as you check the four rear-panel configuration switches, install the main battery, connect its polarized three-pin cable connector, and switch the backup battery into operation. After turning on the main power switch and angling the screen into position, you can abort the power-on self-test RAM-check routine by pressing the space bar. A slider control to the right of the LCD screen adjusts the screen's contrast.

The reflective (nonbacklit) supertwist LCD screen has a 1.6-to-1 aspect ratio and good overall legibility. The screen can display 80 characters by 25 lines and either 320 by 200 or 640 by 200 pixels. Programs that require an IBM Color Graphics Adapter (CGA) can be indirectly displayed with differential shading of the LCD. The main character font is attractively designed with a single-dot line thickness in an 8 by 8 matrix. The pixels look like thin upright purple rectangles set against a vaguely greenish metallic background. The contrast is distinctly greater than that of other LCD screen types. The screen is mounted in the lid of the unit, and you can remove it to facilitate the use of a CRT monitor if desired. No audible alarm or shut-off switch is provided to prevent the lid from closing when the battery power is still on.

The NEC MultiSpeed features a battery-backed RAM disk; its contents survive rebooting DOS, even after a crash due to main battery failure. You can set the RAM disk for any size up to 126K bytes. Usually, 2K bytes of battery-backed RAM is reserved for system setup parameters, so that even with no RAM

David Satz (118 State St., Apt. C, Brooklyn Heights, NY 11201) is a classical musician and recording engineer.
Either continuously or only during a disk ler (FDC) to draw its operating current by spring-loaded door flaps. When you drive openings, located along the right-side immediately to save a few moments mark tests or during ordinary use. hand side of the computer, are protected operation. The insert a disk, its window shutter is slid though the drives are loud enough to re- a slight slowdown of initial disk access but I found it had no observable effect on sion units. No access to the system bus is available from outside the computer. slants when the main battery is discharged internal drives to be directly accessed by the FDC port of an IBM PC or PC XT, does not overcome the copy-protection problem, and some users do not have access to suitable desktop computers at their convenience. The machine's special features bring about another potential source of trouble. The interrupts that trigger the ROM-resident programs and on-line help (inter- rup 60, 81, and 82), although officially reserved for BASIC, are occasionally used by applications programs. Such pro- grams can run on the MultiSpeed only if the ROM-resident programs are dis- abled, which the SETUP program allows you to do by reclaiming their workspace in RAM. However, SETUP cannot dis- able itself. For drastic instances, you can disconnect the special keys entirely from their interrupts with the KILLPOP.COM program, available on disk with the system, from NEC dealers, or by download- ing it from the NEC bulletin board. NEC claims that software that pro- duces a conflict is rare. Despite my ear- nest attempts to make trouble, all my MS- DOS programs include SETUP, for the selection of system parameters, including RAM disk size, microprocessor clock speed, CGA emulation parameters, and the FDC Power Save mode; OUTLINER, for out-
REVIEW: NEC MULTISPEED

NEC MultiSpeed

Company
NEC Home Electronics (U.S.A.) Inc.
Computer Products Division
1255 Michael Dr.
Wood Dale, IL 60191-1094
(312) 860-9500

Size
13% by 12 by 3 inches; screen size: 9 by 4½ inches; weight: 11 pounds

Components
Processor: Intel 8086-compatible
NEC V30, switchable between 4.77 and 9.54 MHz
Memory: 640K bytes of 150-ns CMOS and dynamic RAM (up to 126K bytes can be allocated to the nonvolatile RAM disk); 512K bytes of ROM; internal sockets for additional ROM
Mass storage: Two 720K-byte double-sided, double-density 3½-inch floppy disk drives
Display: 80-column by 25-row supertwist LCD; emulates IBM CGA to give 320 by 200 or 640 by 200 monochrome graphics
Keyboard: 85 keys; 10 function keys; separate numeric/cursor-control keypad I/O interfaces: RS-232C serial port, male DB-25 connector; Centronics parallel printer port, female DB-25 connector, external floppy disk controller interface port, female DB-15 connector; IBM PC-compatible RGB video port; coaxial socket for DC operation and battery-charging current

Software
MS-DOS 3.20; Phoenix ROM BIOS; TELCOM, NOTEPAD, FILER, OUTLINER, DIALER, and SETUP programs; on-line help files

Options
300/1200-bps internal modem: $399
External Transfer Kit (includes cable and software for slaving the MultiSpeed's internal disk drives to an IBM PC or PC XT FDC port): $99
12-volt automobile power adapter cord: $20
Carrying case: $99

Documentation
User's Guide, 186 pages;
Introduction to MS-DOS, 76 pages;
TELCOM/DIALER User's Manual, 136 pages;
OUTLINER/FILER/NOTEPAD User's Manual, 284 pages

Price
$2195

The graphs for Disk Access in BASIC show how long it takes to write and then read a 64K-byte sequential text file to a blank floppy disk. (For the program listings, see BYTE's Inside the IBM PCs, Fall 1985, page 195.) The Sieve graph shows how long it takes to run one iteration of the Sieve of Eratosthenes prime-number benchmark. The Calculations graph shows how long it takes to do 10,000 multiplication and 10,000 division operations using single-precision numbers. The System Utilities graphs show how long it takes to format and copy a 40K-byte file using the system utilities. The 40K Format/Disk Copy test was not performed on the PC AT because the computer had only one floppy disk drive. The Spreadsheet graphs show how long it takes to load and recalculate a 25-by-25-cell spreadsheet in which each cell equals 1.001 times the cell to its left. The spreadsheet used was Microsoft Multiplan. Tests on the NEC MultiSpeed were done using MS-DOS 3.2, GWBASIC 3.2, and Multiplan 1.08. Because the MultiSpeed's software package does not include any programming language, all BASIC tests were run with a generic version of GWBASIC.
certain measure of data protection into the MultiSpeed: If you shut off the power switch or press Control-Alt-Delete while there are ROM-resident programs suspended with data unsaved, a warning message appears and gives you a chance to save the data. All unsaved data is lost when you reboot with the hardware reset switch. Also, changing the RAM disk parameters forces a cold start and the loss of all the RAM disk’s previous contents; the exit menu from the SETUP program warns of this eventuality.

The ROM-resident software attempts to be self-documenting by means of menus and a context-sensitive on-line help facility. In a manner that is strikingly similar to Microsoft Multiplan and Word, the prompt/menu lines are always on-screen during program execution. Backing these up are more detailed messages that appear in large on-screen windows whenever you press the Help key. The messages are available whenever ROM-resident programs are run, even to remote users when TELCOM is operating the auto-answer modem. The message texts could stand to be proofread (e.g., Newline: Toggles whether or not a linefeed will follow each carriage return.). But they are thorough; if they don’t tell you how to do something, you probably can’t do it.

Impressions

The MultiSpeed was pleasant to operate as soon as I learned where to reach for the cursor-control keys. I also found the Shift and Enter keys too small and narrow for my taste. The LED indicator on the Num Lock key toggles when the key is pressed, regardless of the actual status-bit setting; when I ran SideKick, its calculator, which manipulates the status bit directly, was able to throw the indicator into the reverse of its proper function.

The supertwist LCD screen is easy to read under strong overhead lighting; I observed no ripple under 60-hertz fluorescent lighting. However, the single-dot thickness of the normal font characters makes reverse video very difficult to read. The slowness of the screen display, a characteristic of supertwist LCDs, is also bothersome at times. Still-stand screen messages waft gently into place; I found scrolling text difficult to read. I could not scan bulletin-board messages using an external 2400-bps modem, nor could I read screen listings using the DOS TYPE and DIR commands. Rapid typing is also a bit disorienting—I suffered “cursor anxiety” when deleting text with repeated backspaces. I did, however, like the screen’s effect on animated displays and game programs. For example, it imparts an eerie, slithering motion to the cells in Conway’s Game of Life, and the screen objects in Flight Simulator seemed to rhythmically undulate.

The ROM-resident software contains numerous bugs, some of which could cause significant loss of data. In TELCOM, for example, if you begin capturing text within the Terminal mode and then suspend it, you must rename the file from the Command mode, or the file is never closed. If it is not renamed, you’ll have a zero-length file in the disk directory, and you’ll lose most of your data; no warning is given unless you happen to page through the various Terminal mode help screens. When operating without the XON/XOFF protocol, the pause needed for writing captured text to a floppy disk or to view the previous screen causes a loss of any incoming data.

NOTEPAD gets confused by ASCII control codes, which it interpreted as end-of-line and end-of-file characters the first time I tried to use it with preexisting text. When I gave the program a chance to originate a text file more to its own liking, I typed for a while and, long before the end of the available buffer space, it suddenly decided not to allow characters to be inserted. It signaled INTERNAL ERROR (which the on-line help explained as Severe internal error was detected) and asked whether I wanted to recover this file. I typed a Y and was greeted with the message: Document in memory cannot be recovered. Press any key to resume. The text file itself, which I had saved to disk a moment before the error message appeared, showed no irregularities, and I could edit it under SideKick. This error message came up each time I reloaded the file and attempted to insert a character. When I contacted NEC about the problem, the company responded by saying that NOTEPAD was designed for general-purpose word processing with ASCII text files, and that files created with other-word-processing programs that contain control codes embedded in text may not be compatible with it.)

Other details of NOTEPAD and TELCOM are poorly thought out. NOTEPAD starts in the Edit mode with an empty screen while displaying the Command mode menu, looking like it needs a command letter; the command letter goes, of course, into the text window, and you must delete it before hitting Escape to get to the actual Command mode. In Command mode, however, there is no prompt for getting back to the Edit mode; you have to ask for help to find out that you have to press Escape once again.

Benchmark Performance

The benchmark results for the NEC MultiSpeed show a level of microprocessor performance that puts it in the speed category of a slow PC AT-class machine; this is quite commendable for a computer with a list price of just $2000. By comparison, the similarly priced Zenith Z-181 takes over 205 seconds to run the Sieve test, while the MultiSpeed runs it in just under 140 seconds. The Core International Disk Performance Program gives average access times for the Multi-Speed in the neighborhood of 200 milliseconds, just slightly better than those obtained with the Toshiba T1100 Plus and the IBM PC Convertible. I obtained the MultiSpeed’s benchmark times for the Disk Access in BASIC tests with the FDC Power Save mode off. This had no measurable effect on the benchmarks, since, in these tests, the disk drives run continuously. The complete benchmark results appear on page 255.

Final Impressions

The MultiSpeed is relatively inexpensive, highly portable, has a fast microprocessor, and is user-friendly. The key-board is of good quality; for some users, the existence of a separate numeric keypad will justify the awkward position of the cursor-control keys. The nonvolatile RAM disk facility is a natural feature for a battery-operated computer.

The supertwist screen is nicer to look at than to use. Its qualitative advantage over the best conventional LCD screens should not be overstated; it is still critically dependent on ambient lighting (especially in reverse video), and, while its contrast ratio is higher than that of many other units, it is still a contrast between two dark colors. Furthermore, the supertwist pixels are a little slow, which can be irritating.

The lack of an external 51/4-inch floppy disk drive (or any hardware expansion at all) is a severe limitation. I’m sure most users would rather have the FDC socket rewired for this purpose. However, serial-port transfer programs, such as Brooklyn Bridge and LapLink, are available for file transfer via the RS-232C port.

The MultiSpeed’s ROM-resident programs offer more than minimal functionality, but they also contain more than minimal bugs. The computer’s software compatibility is infringed upon by these features, and some users may choose to disable them. Despite its weak points, the Multi-Speed is a fast and easy-to-use computer. If you disregard the bugs in the ROM-resident software, the extra features and fast microprocessor could make this computer a favorite with first-time users, as well as experienced users who need portability and speed.
BYTE LISTINGS
YOUR WAY!

It's easy. Now there are three ways to get source-code listings that go with BYTE articles-on disk, in print or on line.

LISTINGS ON DISK
BYTE listings on disk are right for you if you want to compile or run programs quickly. Disks are now available by annual subscription as well as individual orders. BYTE offers listings in 11 popular disk formats.

LISTINGS IN PRINT
This print supplement contains source-code listings described in the issues of BYTE.

LISTINGS FROM BIX (BYTE Information Exchange) By joining BIX, you can download BYTE source-code listings at standard BIX rates. See BIX informational ad listed in Reader Service index in this issue.

FOR DIRECT ORDERING CALL TOLL FREE:
800-258-5485

Call: M-F, 8:30 a.m. to 4:30 p.m. Eastern Time
(603-924-9281 for New Hampshire residents)

For credit card orders only.

ON DISK
Please send me single disks in the format checked for the following 1987 issues:

<table>
<thead>
<tr>
<th>Month</th>
<th>January</th>
<th>February</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IBM PC</td>
<td>Apple II</td>
<td>Kaypro 2 CP/M</td>
<td>Tandy Mod 4</td>
<td>MS-DOS 8 Sector</td>
<td>TI Professional</td>
<td></td>
</tr>
</tbody>
</table>

Disks of listings for December 1985 and all 1986 issues are available at the prices stated at the right. Please mark the appropriate format and note the issue date below.

Month __________ Year __________

IN PRINT
1987 Supplement Issues

<table>
<thead>
<tr>
<th>Month</th>
<th>January through March for only $6.95</th>
<th>April through June 1987 for only $6.95</th>
<th>July through September 1987 for only $6.95</th>
<th>October through December 1987 for only $6.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTSIDE USA</td>
<td>$9.95 (Save $4.90)</td>
<td>$9.95 (Save $4.90)</td>
<td>$9.95 (Save $4.90)</td>
<td>$9.95 (Save $4.90)</td>
</tr>
</tbody>
</table>

1986 Supplement Issues

<table>
<thead>
<tr>
<th>Month</th>
<th>January through June 1986 for only $6.95</th>
<th>July through September 1986 for only $6.95</th>
<th>October through December 1986 for only $6.95</th>
<th>1986 Annual Subscription for only $18.00 (Save $4.85)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTSIDE USA</td>
<td>$9.95 (Save $4.90)</td>
<td>$11.95 (Save $5.95)</td>
<td>$11.95 (Save $5.95)</td>
<td>$11.95 (Save $5.95)</td>
</tr>
</tbody>
</table>

COMBINED DISK AND PRINT SUBSCRIPTION
Bundled together, giving you the convenience of disk-based source-code plus the ease of reference of print.

IN USA:

<table>
<thead>
<tr>
<th>Format</th>
<th>IBM PC</th>
<th>Apple II</th>
<th>Kaypro 2 CP/M</th>
<th>Tandy Mod 4</th>
<th>MS-DOS 8 Sector</th>
<th>TI Professional</th>
</tr>
</thead>
<tbody>
<tr>
<td>5½ inch</td>
<td>$84.95</td>
<td>$94.95</td>
<td>$104.95</td>
<td>$114.95</td>
<td>$124.95</td>
<td>$134.95</td>
</tr>
<tr>
<td>OUTSIDE USA:</td>
<td>$104.95</td>
<td>$114.95</td>
<td>$124.95</td>
<td>$134.95</td>
<td>$144.95</td>
<td>$154.95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Format</th>
<th>Apple Macintosh</th>
<th>Atari ST</th>
<th>Amiga</th>
<th>HP 150</th>
<th>IBM PS/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3½ inch</td>
<td>$94.95</td>
<td>$94.95</td>
<td>$94.95</td>
<td>$94.95</td>
<td>$94.95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Format</th>
<th>CP/M</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 inch :</td>
<td>$94.95</td>
</tr>
</tbody>
</table>

FOLD HERE

Name: ____________________________
Address: ____________________________
City: __________________ State: ______ Zip: ______
County or Parish: __________________ Country: ______
Credit Card #: ____________________
Exp. Date: ______ Signature: ______ Date: ______

SEPTEMBER

Please allow 4-8 weeks for delivery.

(continued on following page)
Electric Power—vital, indispensable—yet a source of frequent unpredictable problems

Blackouts
- May occur at any time
- Result from actions beyond utility’s control
- Can interrupt microcomputer activities and minimize time critical work

Brownouts
- Present in areas where electrical loads are high
- Result in sudden drops in voltage which can damage sensitive electronic equipment

Electrical Noise (Flickers, Intermittents)
- Occur due to power quality issues
- Flickers can cause interference in electronic circuits

Voltage Transients (Spikes, Glitches)
- Occur due to surges in the power line
- Can cause damage to electronic equipment

Voltage Instability (Surges, Flickers)
- Surges can cause equipment to fail
- Flickers can cause equipment to malfunction

Frequency Deviation
- Can cause problems with electronic devices

ANSI Standards
- Provide guidelines for electrical equipment

Automatic Voltage Regulators
- Protect equipment from voltage fluctuations

Knapco UPS Systems
- Uninterruptible Power Source
- Factory Direct

UPSC 200+ 200 Watt $279.99
UPSC 350 350 Watt $299.99
UPSC 550 550 Watt $399.99
UPSC 800 800 Watt $599.99
UPSC 1000 1000 Watt $699.99

** European Designed UPS

- Made in USA
- Modified Sine-Wave
- 2 Ms. Switchover Time
- All Models w/Internal Cell 200VA or More
- Unconditional 1 Year Warranty
- 2 Outlets, Brown Out, Black Out, RFI And Spike Protection

AMERICAN POWER CONVERSION
- Made In USA
- Synchronized Sinewave Models
- 2 To 3 Ms. Transfer Time
- Compact Design
- Prevents Sags, Spikes, Noise and Interference

Inquiry 424

H.J. Knapp of Florida, Inc.
4750 96th St. N. St. Petersburg, Florida 33708

DATA TRANSFER SWITCH
- 6 OUTLET BLOCK
- 12 in $9.95
- 24 in $16.95

MODEM SPIKE PROTECTORS
- MSP-1
- $19.95
- 12 in
- $24.95

LINEGUARD
- 6 OUTLET BAR
- 12 in $19.95
- 24 in $39.95

6 OUTLET BAR
- 6 OUTLET BAR
- 12 in $19.95
- 24 in $39.95

12" MONITOR
- Hi Res. Electohome/Canada
- $69.95

8" DISC DRIVE
- Made In USA
- $99.95

Made In USA
- Synchronized Sinewave Models
- 2 To 3 Ms. Transfer Time
- Compact Design
- Prevents Sags, Spikes, Noise and Interference

ATTACH A BATTERY TO YOUR COMPUTER
TO LAN OR NOT TO LAN
THAT IS NOT THE QUESTION
THE QUESTION IS WHO CAN GIVE YOU
THE BEST SOLUTION.

Option A—We ease the connectivity for you:
Free consultation on LAN
Various hardware/software discounts
Moderate Installation/Training charge
90 days labor/180 days parts warranty.
Maintenance contract available.

OVER 40 STATIONS ASK “DAN”

Option B—Or if you want to do it yourself:

<table>
<thead>
<tr>
<th>Item</th>
<th>List</th>
<th>Sale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Novell Netware/286</td>
<td>$2195</td>
<td>$1795</td>
</tr>
<tr>
<td>Novell Netware/86</td>
<td>1595</td>
<td>1295</td>
</tr>
<tr>
<td>SMC Active Hub</td>
<td>800</td>
<td>560</td>
</tr>
<tr>
<td>SMC Passive Hub</td>
<td>110</td>
<td>75</td>
</tr>
<tr>
<td>SMC PC-110 NW Card</td>
<td>545</td>
<td>320</td>
</tr>
<tr>
<td>Compatible Arcnet Card</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethernet Card</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AST 1.5M File Server</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethernet Workstation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cable RG-62/U 1st 25ft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extra Foot</td>
<td></td>
<td>23</td>
</tr>
</tbody>
</table>

Option C
Ideal for small operation, we have
"Novell Netware/286 Starter Kit"
Nondedicated/Dedicated $2695/2895
Choice of
1. Arcnet—Passive Hub, 3pc-110 & cable
2. Ethernet—3 Ethernet cards & cable

Option
For very light users, we have
"Novell Netware/86 EasyKit",
3 node complete PC-NET $1595
All kits include:
File server preparation
Application software installation
Two hours tutorial instruction

Option E—A High End Complete LAN
3-Node Ethernet with PCs $4675
* AT Server, 10 MHz, 1 M, 40 HD, 1.2 FD, KB
Monitor, Ethernet Network card
* 2 Diskless Ethernet Workstation
* Novell Netware 286 2.0 A
* 2-20 ft. cable
* 10 M bps Data Transmission Rate

Storage Devices

<table>
<thead>
<tr>
<th>Device</th>
<th>List</th>
<th>Sale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Disk</td>
<td>225</td>
<td>CTLR, 20M 270</td>
</tr>
<tr>
<td></td>
<td>238</td>
<td>CTLR, 30M 330</td>
</tr>
<tr>
<td></td>
<td>251</td>
<td>40M, 40Ms 470</td>
</tr>
<tr>
<td>Miniscribe</td>
<td>4096</td>
<td>80M, 28Ms 920</td>
</tr>
<tr>
<td></td>
<td>6053</td>
<td>42M, 28Ms 595</td>
</tr>
<tr>
<td>Master</td>
<td>6085</td>
<td>80M, 28Ms 870</td>
</tr>
<tr>
<td>Tape Backup</td>
<td>1140</td>
<td>120M, 28Ms 2095</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device</th>
<th>List</th>
<th>Sale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teac</td>
<td>60/X</td>
<td>60M, Int/Ext 625/785</td>
</tr>
<tr>
<td>Emerald</td>
<td>50/X</td>
<td>50M, Int/Ext 645/825</td>
</tr>
<tr>
<td></td>
<td>60/X</td>
<td>60M, Int/Ext 1185/1295</td>
</tr>
<tr>
<td></td>
<td>120/X</td>
<td>120M, Int/Ext 1650/1895</td>
</tr>
</tbody>
</table>

Link your LAN to mini/mainframe with TCP/IP

NETWORK ASSOCIATES CORPORATION
TEL: 408-744-0631
FAX: 408-744-0639
Novell Authorized Dealer
LAN should be nothing but a commodity.
Let us remove its barrier for you.

256PNW-2 BYT E SEPTEMBER 1987

Inquiry 427
XT TURBO SYSTEM
Mono: $569.00
3 TIMES FASTER THAN IBM XT
- Mini AT Case
- 150W Power Supply
- 640K on Board
- V20-8
- AT Type Keyboard
- Floppy Disk Controller
- 1 360K Drive
- Monochrome Graphics Card w/Printer Port
- TTL Hi-Res Monitor
- Assembled and Fully Tested
- 1 Yr Warranty Including Parts and Labor

SENIOR AT SYSTEM
Mono: $1349.00
- AT Case
- 200 W Power Supply
- I&M on Board
- AT Keyboard
- 1.2 MB Drive
- AT Controller Card
- Monochrome Graphics Card w/Printer Port
- TTL Hi-Res Monitor
- Assembled and Fully Tested
- 1 Yr Warranty Including Parts and Labor

MINITOR
- Samsung TIL Hi-Res Monitor $79.00
- Samsung EGA Monitor $370.00
- CTX 14T0 Hi-Res Color TV $280.00
- Taxan 660 EGA Monitor CALL
- Sony 1392 Multisync $629.00
- NEC Multisync $579.00

HARD DISK & FLOPPY DRIVE
- TEAC 360K Floppy Drive $90.00
- TEAC 1.2MB Floppy Drive $125.00
- TEAC 1.44MB Floppy Drive $125.00
- Fujitsu 360 Floppy Drive $85.00
- Seagate ST-225 20MB Hard Disk w/1 $339.00
- Seagate ST-238 30MB Hard Disk w/1 $399.00
- Seagate ST-251 40MB Hard Disk $475.00
- Seagate ST-4038 80MB Hard Disk $525.00
- Seagate ST-4038 80MB Hard Disk $595.00
- Mecrisco 6035 77MB (28MS) $599.00
- 30MB Hard Card $449.00

PRINTERS
- Epson FX-286E 240/48CPS 136 COL $459.00
- Epson LOBO 180/60 CPS 24 PIN S/P $479.00
- Panasonic PX-P1000/$1091.00 $185.00/$225.00
- Citizen 1200 120 CPS 80 COL $185.00
- Citizen MSP-10 160 CPS 80 COL $275.00
- Citizen MSP-15 160 CPS 135 COL $325.00
- Citizen Premiere 35 Daisy Wheel CALL
- Okidata ML Series CALL
- Olympia NP 130 i CALL
- Olympia ESW 1000 Daisy Wheel CALL
- Olympia NP 80 200 CPS 80 COL CALL

TAX BACKUP
- Toshiba 5341 E CALL
- Toshiba P321S/24 pin 216/72 CPS 80 COL S/P w/Tractor CALL
- HP Laser Printer Series II $1750.00

MODEM
- Mitsubishi 1200B Internal Modem $119.00
- Mitsubishi 1200B External Modem $149.00
- Mitsubishi 2400B Internal Modem $169.00
- Mitsubishi 2400B External Modem $236.00
- Smart One 1200B Internal Modem $199.00

EGA CARDS
- Vega Video - 7 Deluxe $349.00
- Genoa Super EGA 640 x 480 $285.00
- Talungr (EGA Wonder) $299.00

ES, POWER SUP. S, AND MORE PLEASE
Applications
- Inexpensive local area network.
- Printer buffering and sharing by multiple hosts.
- Host buffering and sharing for multiple printers.
- Local RS232C/RS422 data concentrator with programmable controller functions.
- Timed dial-up and message transfer with stand-alone modem.
- Point-of-Sale (POS) network systems.
- Electronic mail systems.

System Features
- Ten asynchronous RS232C/RS422 ports.
- 192K bytes of buffer memory.
- Resident FORTH language (Up to 7 screens of Forth may be stored in changeable non-volatile memory).
- Host programmable port set-ups stored in non-volatile memory.
- Port reprogrammable transfer destination by embedded character protocol.
- Remote (modem) factory custom programmable.
- Real-time calendar clock for time and date stamping of messages.
- Any port to any port data concentrators.

Component Systems Inc.
778 A Brannan Street
San Francisco, CA 94103
Telephone (415) 861-1345
YOU WANT SPEED, VERSATILITY AND RELIABILITY. YOU WANT EPSON.

EPSON FX-SERIES PRINTERS
Model FX-286e $499.00 / FX-86e $375.00
America's business choice in dot-matrix printers. The FX-86e standard and FX-286e wide carriage printers deliver all the performance you need to handle virtually every business printing task. Perfect for correspondence, spreadsheets, financial reports, and graphs.

- Prints 240 characters per second (cps) in draft mode and 48 cps in Near Letter Quality mode
- SelectType front control panel offers fast, simple selection of print modes and fonts
- Standard Friction Feed and Tractor Feed for use with virtually any type of paper
- Epson Standard Code compatibility with IBM®-style graphic characters and IBM printer emulation
- Optional Cut Sheet Feeder available

EPSON EX-SERIES PRINTERS
Model EX-800 $535.00 / EX-1000 $629.00
High-speed just became faster with the EX-800 standard and the EX-1000 wide carriage printers. At 300 characters per second (cps) in the draft mode and 60 cps in the Near Letter Quality mode, these 9-pin, dot-matrix printers produce volume work in a flash.

- Prints 300 cps in the draft mode and 60 cps in Near Letter Quality mode
- SelectType II front control panel puts eight different typestyles at your fingertips
- Built-in Automatic Sheet Load and Push Feed Tractor
- Epson Standard Code compatibility with IBM®-style graphic characters and IBM printer emulation
- User-installable, Color Option Kit for seven-color printing
- User-installable, Scanner Option Kit will scan and digitize hard copy images fed through the printer

EPSON LQ-SERIES PRINTERS
Model LQ-800 $549.00 / LQ-1000 $759.00
Outstanding print quality. Our LQ-800 standard and LQ-1000 wide carriage 24-pin dot-matrix printers produce such clear, crisp images you'll think documents were typed on a fine, office typewriter.

- Prints 180 characters per second (cps) in draft mode and 60 cps in Letter Quality mode
- Front panel, one touch selection for Letter Quality or draft mode
- Built-in 7K buffer allows you to print and use your computer simultaneously
- Optional, user-installable Identity and Font Modules expand your printing capabilities
- Optional Cut Sheet Feeder and Tractor Feed available for versatile paper handling

Do You Need a Reliable, Low Cost Source for PC Products?
Then call Diamond Software.

Diamond Software
800-227-0545
In California (415) 633-2588
FAX # (415) 633-2817
7916 Capwell Drive, Oakland, CA 94621

For more information, or to place an order, call and ask for Dept. 9060.

Inquiry 421 • SEPTEMBER 1987 • BYTE 256PNW-5
Make The Right Connection

TCS-7000
- 6/12 MHz Switchable
- IBM PC-AT Compatible
- Expands to 1 Mb Ram on Motherboard
- 8 Expansion Slots

TCS-4000
- IBM PC-AT Compatible
- 6/30 MHz Switchable
- Expands to 1 Mb Ram on Motherboard
- Equivalent to 5 Expansion Slots

Connection
Local Area Network

TCS4000

Call Now: (408) 435-0140

IBM PC-AT Compatible
Tatung Computer Systems give you better than IBM PC-AT Compatible speed, memory, and performance at a great price. And, you need look no further to find savings on high quality monitors, too.

IBM and DEC VT 220 are registered trademarks of International Business Machines & Digital Equipment Corporation.

Tatung Computer Systems give you better than IBM PC-AT Compatible speed, memory, and performance at a great price. And, you need look no further to find savings on high quality monitors, too.

You see, Tatung is one of the world's largest manufacturers of computer components with a reputation for superior quality known around the world. In fact, we produce over a million monitors every year.

That's quality you can trust. And we deliver complete after sales service to you.

Inquiry 428
Mercury 386 System

The Mercury 386 Mother Board is an AT compatible Mother Board based on the Intel 80386 32-Bit Microprocessor. The Mercury 386 Board uses AT enclosure, Power Supply, Keyboard, and AT Interface Cards; And it runs PC Software three to four times the speed of a PC/AT.

- 512K interleaved 32-Bit Ram on board
- Real time clock/calendar with battery backup
- Intel 32-Bit 80386 microprocessor
- 16 MHz clock speed
- Socket for 80387

Mercury AT 286

- 6/10 MHz switchable
- 640K RAM on board
- 2 hard disk & 2 floppy drive controllers
- 1.2 MB floppy drive
- 8 expansion slots
- Parallel port
- 2 serial port one standard one option
- Game port
- Real time clock w/back up battery
- Phoenix bios
- 80287 math co-processor socket
- 200 watt power supply
- Key lock & LED
- Casper Hi-Res. Amber monitor w/swivel base
- AT/XT switchable keyboard w/tactile feedback
- Hardware reset switch
- Landmark speed test = 10.3 MHz

Mercury AT-286 Plus

- 6/10/13 MHz switchable
- 3 speed selectable
- Landmark speed test = 13.2 MHz
- 640K RAM on board
- 1.2 MB floppy drive
- Phoenix bios
- 8 expansion slots
- Parallel port
- 2 serial port one standard one option
- Game port
- Real time clock w/back up battery
- 80287 Math. co-processor socket
- 200 watt power supply
- Key lock & LED
- Casper Hi-Res. Amber monitor w/swivel base
- AT/XT switchable keyboard w/tactile feedback
- Hardware reset switch
- 2 hard disk & 2 floppy drive controllers

Mercury XT-III Turbo

- 4.77/8 MHz switchable
- 640K Ram on board
- 180 watt power supply
- 2 floppy drives
- 8 expansion slots
- Monographics card
- 2 parallel port
- 2 serial port one standard one option
- Game port
- Real time clock w/back up battery
- AT look like metal case
- 8087 socket
- Casper Hi-Res. Amber monitor w/swivel base
- AT/XT switchable keyboard w/tactile feedback
- SI = 1.7 time fast than XT

Mercury XT-VI Turbo Plus

- 4.77/10 MHz switchable
- 640K Ram on board
- 180 watt power supply
- 2 floppy drives
- 8 expansion slots
- 2 parallel port
- 2 serial port one standard one option
- Game port
- Real time clock/calendar w/back-up battery
- AT keyboard w/tactile feedback (XT-AT switchable)
- Hi-Res monitor w/swivel base
- 8087 socket
- SI = 2.0

ONE YEAR GUARANTEE

Quality Software
System Upgrades that make sense. Let us show you what additional memory and disk caching can do for slow data bases.

Network Systems
We can help you solve small systems problems in an economic way. Demonstrations available.

In-store Rental of PCs and Printers.
We offer use of the new IBM and Macintosh Laser Write printer.

$2990
- 8 Slot - Two for high speed 32 Ram expansion, Two PC compatible. Four AT compatible.
- 6/16 MHz clock speed switchable
- 1.2 MB floppy drive
- 40 MB ST - 251 hard disk
- Monographics card
- 220V power supply
- Hi-Res monitor w/swivel base
- AT keyboard w/tactile feedback

Mercury delivers the lowest prices, the biggest selection and the best value in the Bay Area. All our systems are 100% IBM compatible and include disk drive, monitor and keyboard. Our monitor boasts the best color graphics and perfect high resolution text. And a Mercury Computer has enough power and expansion slots to build just about any computer system you might want in the future.

SPECIALTIES

Mercury XT-12 Turbo

- 4.77/10 MHz switchable
- 640K Ram on board
- 180 watt power supply
- 2 floppy drives
- 8 expansion slots
- 2 parallel port
- 2 serial port one standard one option
- Game port
- Real time clock w/back up battery
- AT keyboard w/tactile feedback (XT-AT switchable)
- Hi-Res monitor w/swivel base
- SI = 2.0

SPECIALTIES

Mercury XT-VI Turbo Plus

- 4.77/10 MHz switchable
- 640K Ram on board
- 180 watt power supply
- 2 floppy drives
- 8 expansion slots
- 2 parallel port
- 2 serial port one standard one option
- Game port
- Real time clock/calendar w/back-up battery
- AT keyboard w/tactile feedback (XT-AT switchable)
- Hi-Res monitor w/swivel base
- SI = 2.0

SPECIALTIES

OTHER OPTIONS

Citizen 120D Printer ... $199
Modem 300/1200 .. $129
360 Floppy Drive .. $99
EGA Card .. $199
Monitor .. Call
Hard disk ST-22S/ST 4026 $290/$490
ST-4038/ST 2S .. $580/$650
Logic Mouse C-7 Plus $79

(Not Responsible for Misprints — Call to Verify Prices)

HOURS M-F 10-7, Sat 11-5

Mercury Computer
2501 Channing Way, Berkeley
415/549-1717

Mercury Computer
1443 Broadway, Oakland
415/763-7622
Electronics... The Magazine That Gives You Technology With Perspective.

There's simply no other magazine like Electronics! It brings to your desk the comprehensive coverage and perspective you need, no matter what your job or responsibilities are. Electronics provides you with technical information on computers, data processors, peripheral equipment, office and business machines, communications equipment and semiconductors. Information that keeps you abreast of industry breakthroughs, trends and business directions. It gives you the savvy needed to compete.

Each issue focuses in on the meaningful technological developments and concerns driving the electronics industry.

Why Is Electronics Free to Professionals Like You?
By controlling circulation, we make our readership fit our editorial. Editorial for important people, like you, who need the important information only Electronics provides.

And it's yours, FREE... if you qualify. Simply fill out and return the adjacent card. If you qualify, we'll start your subscription with the very next issue of Electronics.
Electronics FREE. If You Qualify.

☐ YES, begin my FREE subscription to Electronics magazine, if I qualify.

☐ No, I am not interested in this free offer.

Signature

Company affiliation and address must be given. Application must be signed and dated.

Name

Title

Company

Div. or Dept.

Address

City
State
Zip

☐ Check here if you wish publication to be sent to home address

TO QUALIFY, you must answer all questions. The publisher reserves the right to serve only those individuals who qualify for a free subscription. This application becomes void if improperly completed.

1. The primary end product (or service) at your plant, and the product (or service) that is your own work. (Insert one code for each)

☐ Plant

☐ Own work

A. Computers, data processing/ periphery equipment, office/business machines
B. Communications, data communications, telecommunications equipment
C. Navigation and guidance, aircraft/ missile systems and equipment (oceanography)
D. Test and measurement equipment
E. Consumer products (TV, radio, hi-fi, recorders, home computers, appliances)
Q. Medical systems and equipment
R. Industrial control systems and equipment
G. Semiconductor production equipment (component insertion, coil winding, etc.)
E. Electronic sub-assemblies, components and materials (active and passive components, ICs, discretes, hybrids, power supplies)
I. Other manufacturers using electronic equipment as part of their manufacturing process (machine tools, chemicals, metals, plastics, pharmaceuticals, etc.)

2. Your principal job function: (Insert one code only)

A. Corporate management (owner, partner, president, VP, etc.)
B. Operating management (general manager, group manager, division head, etc.)
C. Engineering management (project manager, chief engineer, section head, VP of engineering, VP of research and development, VP of quality control, etc.)
D. Software engineering
E. Systems engineering/integration
F. Quality control engineering (reliability and standards)
G. Design engineering
H. Engineering support (lab assistant, etc.)
I. Test engineering (materials, test, evaluation)
J. Field service engineering
K. Research and development (scientist, chemist, physicist, etc.)
L. Manufacturing and production
M. Purchasing and procurement
N. Marketing and sales
O. Professor/ instructor at
P. Senior student at
Q. Graduate student at
R. Other (please describe)

3. Your principal responsibility: (Insert one code only)

1. General management 3. Engineering
2. Engineering management 4. Other

4. What is your title? (Insert one code only)

Operations Management

01. President/ Chairman/ Owner /

02. Vice President

Engineering Management

11. Technical Director

12. Chief Engineer

13. Principal Engineer

14. Research Director

15. Section Head

16. Project Engineer

17. Senior Engineer

18. Software Manager

19. Senior Test Engineer

20. Senior Field Test

21. Manufacturing/ Production Manager

22. Group Leader

23. Department Head

24. Other Management (explain)

Engineer

Design or Standards Personnel

31. Systems Engineer

32. Software Engineer

33. Test Engineer

34. Field Test Engineer

35. Manufacturing Engineer

36. Production Engineer

37. Engineer

38. MTS

39. Consultant

40. Scientist

41. Physicist

42. Other Staff (explain)
The Micro Clipper Graphics Subsystem

Charles Weston

Graphics performance has been the traditional stumbling block to truly productive IBM PC-based CAD systems. Specifically, the problems with running popular packages, such as AutoCAD, are low screen resolution and poor graphics throughput. However, at least one solution is now available.

Micro Clipper Graphics from Pixelworks ($3295) is a two-board graphics subsystem for the IBM PC AT, RT, and compatibles that typically improves AutoCAD graphics performance by 5 to 10 times. The subsystem provides enhancement functions, such as continuous real-time pan and zoom and a split-window display. It also operates with other popular CAD packages, including EasyCAD, Personal Designer, and VersaCAD.

The subsystem features a 66-MHz internal clock, pipelined architecture, and direct memory access (DMA) to a locally generated graphics display list. It supports a "multisync" mode of 720 by 560 pixels with 4-bit planes, a 1020 by 816-pixel 4-bit-plane mode (these modes both provide 16 colors from a palette of 4096), and emulation of IBM CGA and EGA. The subsystem uses a 9-conductor NEC MultiSync-type (9-pin D to 9-pin D) cable. An optional jumper is available for CGA or EGA pass-through, allowing you to route your CGA or EGA adapter's signal through Micro Clipper Graphics to avoid switching monitor cables whenever you want to use your standard display adapter. Unfortunately, although you can use Micro Clipper Graphics as a CGA or EGA adapter, you have to manually toggle a switch on the board.

The Micro Clipper Graphics subsystem requires a host computer with two adjacent 16-bit slots (like those on an IBM PC AT or RT PC), 22.5 watts of 5-volt power, and a 60-hertz noninterlaced 3-wire RGB monitor, such as the NEC MultiSync. All CAD programs recommend, and some require, a math coprocessor. RAM requirements vary, depending on the CAD package. Generally, you'll need enough RAM to satisfy not only the CAD software's basic needs, but also about double the amount of RAM you would normally need for the display list. This means that if you're processing 250K-byte AutoCAD drawings, at least another half megabyte of RAM is required. AutoCAD specifies a minimum of 512K bytes of RAM, but as the program "pages" a drawing from disk into RAM, the more memory you have, the more efficiently your system will run.

Pixelworks also offers a big brother to Micro Clipper Graphics, called Clipper Graphics ($4500), that is designed primarily for three-dimensional use. It has a 119-MHz clock, resolution of 1024 by 1280 pixels, and 256 simultaneous colors from a 4096-color palette. A 16.7-million color palette is available as an option. Its special three-dimensional functions include rotation, translation, perspective, and shading.

I evaluated Micro Clipper Graphics on a TeleVideo TeleCAT-286* equipped with an 8-MHz 80286 processor, 2 megabytes of RAM, an 80287 math coprocessor chip, a 30-megabyte hard disk drive, and an NEC MultiSync monitor.

Inside the Graphics Engine

The most interesting component of the Micro Clipper Graphics subsystem is the graphics engine. Its primary function is to manipulate "transformed vectors," which are the definitions of lines based on a coordinate system. The graphics engine accomplishes all scaling, rotation, zooming, and panning by matrix multiplication of these vectors.

A bus interface processor on the subsystem communicates with the host computer's bus. This processor is responsible for DMA, using a 16-bit DMA channel in Cascade mode to access nonsequential addresses. To increase the overall processing speed, Micro Clipper Graphics becomes the bus master, sourcing the addresses necessary to get the display-list data. (CAD drawing data is stored in hierarchical tree structures throughout the memory space.)

A display-list processor interprets the...
Micro Clipper Graphics

Type
Graphics subsystem

Company
Pixelworks Inc.
225A Lowell Pk.
Hudson, NH 03051
(603) 880-1322

Size
Two 13½- by 4½-inch boards; weight: 2 pounds

Features
Ten enhanced CAD functions, including Autopan and Zoom, CGA- and EGA-emulation modes; split screen; writable control store for user-defined graphics primitives; line, polyl ine, rubber-band, and drag support; 16 simultaneous colors from a palette of 4096; support for AutoCAD, VersaCAD, and other popular CAD packages; third-party software support for the GKS standard and Tektronix and DEC terminal emulation; comes with Pixelworks' drivers and diagnostics on two 5 ¼-inch floppy disks.

Hardware Required
IBM PC AT, RT, and compatibles with at least 512K bytes of RAM, a hard disk drive, and an NEC MultiSync-type RGB monitor capable of 720- by 560- or 1020- by 816-pixel resolution; math co processor and extra memory recommended

Software Required
MS-DOS or PC-DOS 3.0 or higher or GEM plus CAD application software package

Documentation
29-page user's manual

Price
$3295

Micro Clipper Graphics adds a level of functions that are completely resident in the subsystem's hardware, and the CAD application software has no knowledge of

continued
"Real-time source-level debugging of very large programs simply can't be done without Atron's AT PROBE."

Ed Oates, Director of PC Software Development, Oracle Corporation

The good news with your new Microsoft 4.0 or Lattice* C compilers is that they're providing more symbolic debugging information than ever. The bad news is you can't fit your program, a software debugger and that monster symbol table into memory - at least at the same time.

The great news is that Atron's AT PROBE™ hardware-assisted software debugger not only has 1-MByte of onboard memory for debugger and symbol table, but it now supports local variables and complex data types.

The AT PROBE is a debugging tool that plugs into your PC AT and monitors everything the processor is doing. In real time.

REAL TIME DEBUGGING. SOONER OR LATER, YOU KNOW YOU'LL NEED IT.

The AT PROBE's hardware-assisted breakpoints trap on reading, writing, executing, inputting and outputting. On single or ranges of addresses, including particular variable values. All in real time. For a mere software debugger to attempt this, a 1 minute program would take 5 hours to execute.

OPTIMIZED CODE - GOOD, BAD AND UGLY

The good news is optimizing compilers generate very tight code. The bad news. The time to debug optimized code is inversely proportional to the quality of the optimizer. Figuring out how in the world you ended up somewhere gets ugly, fast.

With AT PROBE's real-time trace capability, program execution history is saved on-board, in real time. Once a hardware trap has occurred, PROBE displays the program execution in detail, including symbols and source code. Real-time trace can show you how out-of-range pointers got that way. And there's really no other way to debug interrupt-driven code.

AT PROBE OPTIMIZES THE OPTIMIZED

When the job of bugbusting is done, your AT PROBE becomes a performance analyzer. So you can have both reliability and performance. So you can send only the best software into the field.

CALL TODAY FOR YOUR FREE BUGBUSTING MANUAL

Nine of the top ten software packages were debugged using Atron tools. Our complete tutorial on state-of-the-art bugbusting is yours, free. Full of examples and illustrations, it will show you how to become a bugbuster yourself.

Call today. Bust bugs tomorrow.

Soon to be supported. Copyright © 1987 by Atron. AT PROBE is a trademark of Atron. IBM and Oracle own numerous registered trademarks.
whether any of the functions has been in­
voked, or even that they exist. Zooming
in AutoCAD with Micro Clipper Graph­
ics occurs entirely inside the graphics en­
gine of the subsystem.

A small window in the upper left
corner of the screen displays a scaled ver­
sion of the complete drawing being edited
with its own cross-hair cursor. The cur­

or position in the small window corre­
sponds to the position of the working

cursor. In Zoom mode, a lightened trans­
parent block within the small window
shows you where you are working in rela­
tion to the complete drawing. The level of
detail in ×25 zoom makes it difficult to
see where you are without this indicator.

To change the zoom level, you use
AutoCAD's Control-L command. Micro
Clipper Graphics traps the command and
controls the zoom from the graphics en­
gine. Control-L steps continually among
three zoom factors. The first time the
function is invoked, the graphics subsys­tem will execute a ×5 zoom; the next
time, a ×25 zoom; and the third time, a
×1 zoom (a return to the original draw­
ing scale). A zoom is not a pixel replica­
tion, but a total recalculation and scaling
of the individual lines' endpoints de­
scribed by the clipping rectangle.

The six "local" commands (so named
because they execute on the subsystem)
are AUTOPLAN, ZMALL, SPLIT, SIZE,
CLEANUP, and REDRAW. The most useful
of these added features is AUTOPLAN. In
Zoom mode, you simply use the mouse to
move the cross hair and the transparent
window around the scaled drawing in the
small window, and the rest of the screen
displays a panorama of the drawing at the
zoomed magnification practically as fast
as you can move the mouse.

The ZMALL function redraws the or­
iginal picture without zooming or panning.
SPLIT toggles the small window that dis­
plays the scaled drawing. The SIZE func­
tion prints out the current number of
display-list pages in use at the bottom of
the screen. The CLEANUP command
erases all unnecessary dots, such as those
for control points for circle and arc cen­
ters. The REDRAW function redraws an
image. Although AutoCAD already has a
REDRAW command, the function added by
Micro Clipper Graphics is performed
quickly by the subsystem.

Other functions offered by Micro Clip­
er Graphics include ZMIND, LPAN, and
LDRAG. The ZMIND function, which you
invoke from the command line, defines the
zoom area, and it simplifies the DEF­
WIND implementation in AutoCAD. The
first selection of ZMIND, done with the
mouse or the cursor, sets the start corner
of the area, or block, to be zoomed, and
the second selection sets the opposite
corner. The area is then enlarged to fill
the entire view window of AutoCAD.

LPAN pans the screen to the current
cursor position shown in the small win­
don. LDRAG drags the current zoom win­
dow to a new point on the screen. LDRAG
works whether the small window is in use
or not, so you can zoom around a drawing
even if you don't know the precise cursor
position in relation to the complete
drawing.

Graphics Performance

Graphics system performance is not easy
to assess; comprehensive benchmarks for

graphics systems are still being evaluated
and debated. The performance of Micro
Clipper Graphics can best be measured
by using some actual AutoCAD draw­
ings. For the benchmark drawings, I se­
lected the well-known AutoCAD nozzle
drawing, a printed circuit board layout
from The Great SoFtWestern Company,
and the CADSource Shootout (a drawing
specifically designed to exercise CAD
functions).

The tasks I timed were a redraw, a ×5
zoom, and a ×25 zoom. I created a
script-command file and used Auto­
CAD's timing function to calculate the
calculated elapsed times for doing the assigned
benchmark tasks. The script-command
file started the AutoCAD timer, executed
100 iterations of each test function using
the AutoCAD nozzle drawing, and then
stopped the timer. I conducted the same
tests using the CADSource Shootout
and the printed circuit board layout, but I exe­
cuted only two iterations because of the
time required. I then divided the total
elapsed time by the number of iterations
to determine the time required for one
iteration. The benchmark results of the
AutoCAD system running on my Tele­
Video TeleCAT-286+ with a Quadra­
QuadEGA+ + board in both CGA and
EGA modes, with Micro Clipper Clip­
er, and with Clipper Graphics, are
shown in table 1.

Table 1: Benchmark results; all times are in seconds. Anomalies in timings
for some tests, such as the ×25 zoom, are due to the ability of high-resolution

<table>
<thead>
<tr>
<th>Drawing</th>
<th>AutoCAD</th>
<th>QuadEGA+ (CGA)</th>
<th>QuadEGA+ (EGA)</th>
<th>Micro Clipper Graphics</th>
<th>Clipper Graphics</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB layout</td>
<td>Redraw</td>
<td>13.95</td>
<td>16.59</td>
<td>1.92</td>
<td>2.15</td>
</tr>
<tr>
<td></td>
<td>×5 zoom</td>
<td>4.09</td>
<td>6.24</td>
<td>1.84</td>
<td>2.03</td>
</tr>
<tr>
<td></td>
<td>×25 zoom</td>
<td>2.60</td>
<td>3.03</td>
<td>2.04</td>
<td>2.22</td>
</tr>
<tr>
<td>CADSource Shootout drawing</td>
<td>Redraw</td>
<td>9.65</td>
<td>15.08</td>
<td>1.15</td>
<td>1.33</td>
</tr>
<tr>
<td></td>
<td>×5 zoom</td>
<td>5.88</td>
<td>8.27</td>
<td>0.86</td>
<td>1.05</td>
</tr>
<tr>
<td></td>
<td>×25 zoom</td>
<td>5.25</td>
<td>6.84</td>
<td>0.53</td>
<td>0.64</td>
</tr>
</tbody>
</table>

Time Caveats

The benchmark times for the CGA and
EGA modes of the QuadEGA+ + board are
close to those of the Micro Clipper Graphics
subsystem for some of the zoom
tests, but these results can be misleading.
Due to the lower resolution of the CGA
and EGA graphics modes, there is not
much detail in the zoomed image, and
therefore the images are drawn relatively
fast. However, the lack of detail in a 320­
by 200-pixel ×25 zoomed image renders
the drawing useless for all practical pur­
poses—there are just not enough pixels to
accurately represent the information. The
slower-than-expected zoom times for
Micro-Clipper Graphics and Clipper
Graphics is caused by the subsystems' higher
resolution, which provides more
detail than the CGA and EGA modes; the
greater the number of pixels, the more
processing required.

Overall, the benchmark tests show that
the Redraw speed of Micro Clipper
Graphics is several times faster than that
of AutoCAD running with a math coop­
rocessor. In addition, while its price at first
seems prohibitive, the Redraw speed, en­
hanced resolution, and the ease with
which you can zoom and pan around
drawings makes Micro Clipper Graphics
a useful graphics enhancement tool.

260 BY T E • SEPTEMBER 1987
To get any job done, you need the right tools. Ideally, they should be extensions of your talents, freeing you to do what you do best. And speed, precision, flexibility, and consistency are always top priorities, no matter what the job. If communicating with drawings is part of your job, AutoSketch should be one of your resources.

AutoSketch from Autodesk, the developers of AutoCAD® is the precision drawing tool for professional use. It's fast, powerful, and simple to learn. The price is right, too.

With AutoSketch and your personal computer, you'll enter the world of computer-aided drawing with ease. You may never have designed with a PC before, and you may think it's bound to be complicated and time-consuming. Surprise! With AutoSketch, you'll probably be up and running in about an hour.

Despite its ease of use, AutoSketch is a full-function, object-oriented CAD program. Pull-down menus and dialog boxes help you each step of the way. With a click of the mouse, you can draw, then copy, mirror, or move objects, even create symbol libraries. AutoSketch automatically updates measurements whenever you stretch, scale, or rotate dimensioned objects. It even keeps track of everything you do, so that you can delete and restore parts of your drawing as easily as you change your mind, using successive undo or redo commands.

We know you'll be impressed with the professional results. So will your clients and colleagues.

AutoSketch runs on the IBM PC/XT/AT and compatible systems with a minimum of 512K RAM and either color or monochrome display. The standard version is yours for just $79.95. If your PC has an 8087 or 80287 math coprocessor, this version operates about three times faster. The speed-enhanced version for $99.95, requiring the coprocessor, is three times faster still.

Call 800-445-5415 for the name of the AutoSketch Dealer nearest you or more information on supported peripherals. To order direct with a credit card, call 800-772-9200, ext. 347.
Touch all the bases.

Databases, that is.

Exactly the ones you need to remain competitive in a rapidly changing marketplace. Our magazine is here to coach business professionals in the online skills. Because tapping into the exciting new sources of business information can be the move that keeps you one step ahead of the competition.

It's a guaranteed way to put runs on the board. So whether you're a rookie in the online game or a veteran with years of experience, let Online Access magazine help make winning a little easier.

Touch all the bases.
With Online Access.

Call 800.922.9232 and subscribe today.

Yes, I want the power of online information at my fingertips. Please send me a 1-year subscription to Online Access for $24.95. If ever I'm not satisfied with my subscription, I'll let you know – and will receive a refund on all unmailed issues.

Please bill me □ Payment enclosed □

Name

Company

Title

Address

City State Zip

U.S. funds only. Canadian residents add $6.00.
PC-MOS/386
Richard Grehan

A DOS-compatible multitasking, multiuser operating system for 80386-based hardware

PC-DOS just isn't cut out as an 80386 operating system, and new OSs are trickling out in an effort to fill the gap. One of the early arrivals is The Software Link's PC-MOS/386. Its design is ambitious: PC-MOS/386 attempts to retain compatibility with PC-DOS while adding a host of multitasking and multiuser capabilities, plus the ability to run protected-mode 80386 execution. I tested PC/MOS-386 release 1.01 on two Compaq Deskpro 386s: one with an 80287 coprocessor, 2 megabytes of RAM, and a 20-megabyte hard disk drive, and the other with an 80387 coprocessor, 4 megabytes of RAM, and a 40-megabyte hard disk drive. In addition to a five-user version ($595), PC-MOS/386 comes in two other forms: a single-user version ($195) and a 25-user version ($995).

A Promising Start
Installing PC-MOS/386 is as painless as it gets. I simply inserted the master disk in the floppy disk drive, booted the system, ran REDSETUP (analogous to PC-DOS's FDISK) to create a PC-MOS partition on the hard disk, ran FORMAT to format the hard disk, executed MSYS C: to write boot information on it, and copied three files to it to get a bootable PC-MOS drive. The manual guided me step-by-step through all this, and I encountered no problems in getting the system operational.

Since PC-MOS lets you create a logical drive of up to 256 megabytes, I was able to use the entire 40-megabyte drive on one machine. PC-MOS has no trouble reading standard PC-DOS 360K- and 320K-byte floppies, so transferring files onto the hard disk was simply a matter of using the COPY command.

All the commands in PC-DOS for creating, deleting, copying, and renaming files and directories are available in PC-MOS/386, and most of them use the same syntax. I found some differences that led to momentary confusion; for example, the PC-DOS CHKDSK command is called VERIFY in PC-MOS/386, and PC-DOS's VERIFY command is called VVER.

PC-MOS/386 uses a CONFIG.SYS file to define the operating system's environment at boot-up time. Several of the CONFIG.SYS directives are similar to those in PC-DOS. For instance, BUFFERS=nnn tells PC-MOS to set aside nnn (which can range from 1 to 999) 512-byte records in memory for disk buffers. DEVICE=<filename> directs PC-MOS to load <filename> as a device driver.

Other directives, listed below, have no PC-DOS counterparts.

• FREEMEM=m,n informs PC-MOS of free memory your system might have between 640K bytes and 1 megabyte; m and n specify the low and high boundaries, respectively.

• SLICE=nnn sets the time-slice size in units of 1/6 second. The default is SLICE=1, in which case the processor will service a task for 1/6 second before swapping in the next task.

• SMPFSIZE=nnnK allots nnnK bytes to the system memory pool, which PC-MOS uses to track open files and created tasks. The default is 20K bytes, but as you anticipate running more tasks, you must increase the size.

• USERFILE=<path> $USER.SYS tells PC-MOS/386 where to find the $USER.SYS file, which holds security information.

You can specify a number of other driver files in CONFIG.SYS. For instance, DEVICE=$CACHE.SYS nnnK installs a disk-caching system. If you include DEVICE=$EM.SYS nnnK, then at boot time PC-MOS installs driver code that emulates Lotus-Intel-Microsoft expanded memory nnnK bytes long. Finally, DEVICE=$PIPE.SYS <devname>, n installs a pipe with buffer size n that partitions can use to communicate with one another. Your tasks can access the pipe like any other device with the name <devname>.

And You'll Also Receive . . .
ED is PC-MOS/386's source-file editor, which, fortunately, does not adhere to the format of PC-DOS's Edlin. You can operate ED in one of two modes: a command mode, where you work a line at a time from a prompt line (similar to Edlin), and a visual mode, where ED becomes an easy-to-use screen-oriented editor. I found myself switching to the visual mode constantly, since I could figure out how to make changes with only rare forays to the manual.

DEBUG is the PC-MOS/386 equivalent to the PC-DOS version of DEBUG, with some handy enhancements. Not only does PC-MOS'S DEBUG have all the commands of the PC-DOS version, but you can also set up to 10 breakpoints, access the registers of a math coprocessor, and use a remote terminal for your debugging session. Another clever addition is DEBUG's assemble/unassemble command (AU). Using AU when you can enter a machine-code source statement at a selected address, DEBUG will automatically echo your input and display the address and the hexadecimal bytes that the source code translates to.

At the time of this writing, only the user's manual for the operating system was available. Instructions for installation and for setting up various device drivers are clear. Whenever I had trouble with the system, I had no difficulty locating topics in the manual. Sometimes, continued

Richard Grehan is a technical editor for BYTE. He can be reached at BYTE, One Phoenix Mill Lane, Peterborough, NH 03458.
Moving into Multitasking
PC-MOS/386 lets you execute more than one program at once by dividing extended memory (i.e., memory above 1 megabyte) into multiple partitions in which DOS applications execute. The maximum size of any partition is 640K bytes, and the size and number of partitions that you can have depends, of course, on the amount of RAM on your computer. When PC-MOS/386 first boots up, it sets up partition 0 in the memory region below 640K as attached to the main console.

To create a new partition, you use the ADDTASK command. This command lets you specify the partition’s size, its task ID, its security class, and a start-up batch file name that’s analogous to AUTOEXEC.BAT in PC-DOS. By specifying these parameters, you create a second task that is associated with the main console. To access a given partition, you simply press the Alt key and then type that partition’s number on the numeric keypad.

To set up a multuser configuration, you use the ADDTASK command as before, except you specify parameters that indicate the serial port the partition is associated with, the data rate of the port, and the device driver that PC-MOS/386 should use to talk to the remote terminal you’re using. (You have your pick of PC-type, ADDS Viewpoint, TeleVideo 910, DEC VT-52, or Teletype terminals, among others.)

Once you’ve got multiple tasks running, you can call a number of task-maintenance commands. Many of these are grouped under the MOS utility command. They include:
- MAP, which displays a map of all the partitions currently defined, the address at which the partition starts in memory, the size of the partition, the serial port that it’s associated with (if any), and more.
- DIS, which lets you disable any code in the current partition that polls the keyboard looking for input (since this could eat up processor time). If PC-MOS senses that a task is awaiting keyboard input, the task is suspended until an actual keyboard request is issued. As I’ll discuss later, this may not work for some programs that must have direct access to the keyboard.
- USEIRQ n, for reserving control of interrupt vector n (where n can range from 2 to 7). This handles the situation where two or more tasks attempt to gain control of the same interrupt vector, say, for managing an I/O port. Once a task is completed, it can free whatever interrupts it has control of by using the MOS FREEIRQ n command.

Additional commands for managing partition parameters are available in the MOSADM utility command. These include commands for setting the time slice for the task in a partition, assigning a priority to a partition, and turning the system’s disk-caching on or off.

Since PC-MOS/386 is a multiuser OS, there’s an optional security system that you can install. Basically, it gives you 26 security classes and the ability to assign a class to each directory and file. A user’s privileges for a particular directory or file depend on an access-level code associated with that class. This code ranges from 0 to 3 and is read from a user log file ($$USER.STS) and attached to a user when logging onto the system. A 0 access privilege means the user has no access to a directory or file, a 1 grants execute-only privileges, a 2 grants read and execute privileges, and a 3 means unrestricted access.

What Works and What Doesn’t
I tried a number of popular IBM PC programs with PC-MOS, and the following is a brief description of what I encountered.
- XyWrite III (version 3.05): I loaded a document and did some simple editing. All went well until I tried to quit and received the file open, QUIT anyway? prompt, at which point the machine locked up completely. This is probably a case of an application that sidesteps the operating system and “talks” directly to the keyboard. The PC-MOS user’s manual warns of problems with packages like this.
- Norton Commander (version 1.00): When I tried to execute this program, PC-MOS reported that a general software error had occurred and that it was attempting to terminate the application. It succeeded.
- WordStar (version 3.30): This worked fine. I loaded a file, did minor editing, and saved.
- SideKick (version 1.50): When I installed SideKick and attempted to activate it, the machine simply beeped at me four times.
- QuickBASIC (version 2.0): I used the BASIC version of BYTE’s Sieve benchmark to test QuickBASIC and had no problem with the compiler.
- Turbo Pascal (version 3.01A): I used a number of the demo programs supplied with Turbo Pascal, and they all worked (including the spreadsheet demo). I also successfully compiled and ran the programs using the version of Turbo Pascal that includes 8087 support. Turbo Pascal’s SOUND.PAS demo turned up an interesting effect, however. If I started the program (which causes the computer to sound like a ringing phone) in one partition and switched to another partition, sometimes the sound followed me across partitions. An engineer at The Software Link said that this was due to a program that fools with the system timer, which is a sensitive area to PC-MOS/386 since it uses the timer to generate task-switching interrupts.
- Turbo C (version 1.0): Using Turbo C’s interactive environment editor, I recorded the timing routines for the BYTE C benchmarks to use Turbo C’s gettime () function, recompiled, and executed the programs. I did not run any benchmarks that performed floating-point operations, due to problems with the math coprocessor that I’ll discuss later.
- AutoCAD (version 2.6): AutoCAD worked until I attempted to load a drawing, at which time the screen Flickered...
strangely and I was returned immediately to the system prompt.

- Lotus 1-2-3 (version 2.01): This worked fine in partition 0, but when I created a second task in a 500K-byte partition and switched to the second partition, 1-2-3 simply killed the machine when I executed it. The company said that the version of PC-MOS/386 I was using lets you create a partition that is too big, and that a rule of thumb for maximum partition size was 640K bytes minus whatever size I had set the system-memory pool to. So I reduced the partition size to 400K bytes, and, sure enough, I could run 1-2-3 in both partitions simultaneously.

- Microsoft C (version 4.0): Microsoft C worked fine. However, it was while using this package that I first discovered that PC-MOS/386 and the 80387 didn't get along.

- MetaWare's High C (version 1.3): I really hoped I could execute this package, since it's currently the only C compiler that can generate 80386 code. However, you can run programs created by High C only under Phar Lap's RUN386, and RUN386 will not execute in PC-MOS/386. This is due to the fact that RUN386 attempts to create a protected-mode environment, and since PC-MOS/386 runs programs in virtual 8086 partitions, it won't let RUN386 take control of the 80386. A programmer at The Software Link informed me that the company was working on a fix to allow High C to execute under PC-MOS/386 but did not indicate when the fix would be available.

- GWBASIC (version 2.02): This version of GWBASIC worked like a champ. I used it to run the BASIC benchmarks. It was while running GWBASIC from a remote terminal that I encountered additional problems, however, which I'll discuss below.

Complaints

At the top of my list of gripes is the lack of a list of software that The Software Link has tested on PC-MOS/386. It would be helpful to know what programs you shouldn't even bother trying with this operating system.

I also ran into problems determining the proper setting for environment parameters as defined in the CONFIG.SYS file. Specifically, the manual gives little guidance for choosing a proper time-slice value, and no help at all in picking a proper system-memory-pool size. Your best method for zeroing in on a proper timeslice is experience, and you'll surely want to experiment with different values as the task load changes. However, the only way I could determine a system-memory-pool size that worked was by booting the system, trying to add a second task, getting a Not enough memory message, editing the CONFIG.SYS file, rebooting the system, and repeating the process all over again.

I spent most of an afternoon trying to get an external terminal to work with PC-MOS. First I connected a Wyse terminal via a serial cable, but when I initialized a task associated with the serial port, PC-MOS would do nothing but transmit spaces to the monitor. Oddly enough, flow control worked—I could hit Control-S on the Wyse to halt the incoming characters and then use Control-Q, and they'd resume; but I could get no prompt, nor any way to send a command to PC-MOS from the terminal.

Next, I connected an IBM PC and started up the VTERM terminal-emulation program. I finally got things to work and started GWBASIC from the remote terminal. Scrolling was horribly slow, however, since the screen completely rewrote itself for every new line that rolled in at the bottom. I'm certain that the scrolling was being done by VTERM, so I shouldn't fault PC-MOS for the lack of speed. But during rewriting of the remote terminal's screen, the task running on the main console simply came to a standstill. I could type characters at the console, and the type-ahead buffer would remember them; when scrolling on the terminal was completed, they would burst out onto the screen as the main console task sprang back to life. I contacted The Software Link about this problem and was told that they had not seen it happen before.

Benchmarks

To get a sense of how the operating system performed, I ran the standard BASIC and C benchmarks. The results of the BASIC benchmarks are in table 1. I tried the benchmarks with the time slice set to both 1 and 2 and with a second task (with a partition size of 600K bytes) sitting at the PC-MOS prompt on a remote terminal (i.e., quiescent). The alteration in timeslice size had little or no effect on the execution time. If you compare these results with those obtained running a Compaq Deskpro 386 under Compaq DOS 3.1 (see page 240), you'll see that PC-MOS has little effect on CPU-intensive operations when there's only one active task. Adding a second task added only minor overhead.

PC-MOS/386 runs the Calculation, Sieve, and Read tests as fast as, or only slightly slower than, MS-DOS on a Deskpro 386. However, PC-MOS's Write benchmark is nearly twice as slow. I think this is due to additional code that PC-MOS must run to coordinate multiple tasks accessing the same disk (code that executes even when you're only running one task).

To test the effects of running multiple tasks, I used the TIMES function in GWBASIC. I set up three 500K-byte partitions in addition to partition 0, executed GWBASIC in each one, and loaded and executed the BASIC benchmark programs with the additional statement

50 IF TIMES<>"13:00:00" GOTO 50

tackled on the front of each parameter. In this way, the system executed four copies of each benchmark simultaneously.

The average result for each benchmark continued.

Table 1: (a) Bye's BASIC benchmarks run in partition 0 with no other partitions activated. (b) The same benchmarks, this time run in partition 0 with another task added (in partition 1) and sitting at the PC-MOS/386 system prompt. All times are in seconds.

\[\begin{array}{lll}
\text{a. 1 task in partition 0} & \text{Slice= 1} & \text{Slice= 2} \\
\hline
\text{Write} & 10.4 & 10.4 \\
\text{Read} & 4.8 & 4.8 \\
\text{Calculation} & 7.0 & 7.0 \\
\text{Sieve} & 23.4 & 23.4 \\
\hline
\text{b. 2 tasks (1 active, 1 waiting at system prompt) } & \text{Slice= 1} & \text{Slice= 2} \\
\hline
\text{Write} & 10.6 & 10.5 \\
\text{Read} & 4.9 & 4.9 \\
\text{Calculation} & 7.4 & 7.1 \\
\text{Sieve} & 24.5 & 24.0 \\
\end{array} \]

Table 2: The BYTE C benchmarks run under PC-MOS/386 using Microsoft's C compiler version 4.0.

\[\begin{array}{ll}
\text{Benchmark} & \text{No coprocessor} & \text{80287} \\
\hline
\text{Sieve} & 8.5 & 8.5 \\
\text{Float} & 22.7 & 4.4 \\
\text{Savage} & 41.7 & 2.8 \\
\text{Sieve} & 1.1 & 1.1 \\
\text{Sort} & 2.2 & 2.2 \\
\text{Fileio} & 128.0 & 128.0 \\
\text{(with cache)} & 114.0 & 113.0 \\
\text{Dhrystone} & 3125.0 & 3125.0 \\
\hline
\text{(Note: All times are in seconds, except the Dhrystone, which is in Dhrystones per second.)} \\
\end{array} \]
was as follows: Write, 42.5 seconds; Read, 17.5 seconds; Calculation, 28.5 seconds; and Sieve, 97.5 seconds. Except for the Read benchmark, these times are approximately four times greater than the times for the benchmarks run in partition 0 with three additional quiescent partitions. The Read benchmark is only about three times greater. This makes sense: Since all tasks were reading from the same file, the system was most likely performing only one physical read per sector, so three of the four partitions could read the data from memory buffers.

Finally, I executed the standard BYTE C benchmarks. The times you see in Table 2 were generated by programs processed by Microsoft C version 4.0. I tested the programs with and without the 80287 math coprocessor, and here’s where I ran into another problem. One of our Deskspro 386s has an 80287 installed, and each time I tried executing a C program that made use of the math coprocessor, the machine froze. All these programs worked on the same machine under PC-DOS and executed fine on our other Deskspro 386, which has an 80287. A programmer at The Software Link informed me that the company was aware of this problem and was working on a fix.

A Nice Idea
My most vivid memory of working with PC-MOS/386 is how many times I had to power the machine off and back on again after something I’d done had locked it up. Case in point: The manual clearly documents that the maximum partition size you can create using ADDTASK is “determined by the amount of free memory that is remaining on your computer and cannot be larger than approximately 640K,” but I can’t remember how many times I executed ADDTASK 600K (and even ADDTASK 500K) on a 4-megabyte machine only to have it lock up—and with only two partitions. The Software Link says it’s working on a fix to keep the machine from freezing in such a situation.

Engineers at The Software Link also said they were aware of most of the other problems I had encountered, that they were working on fixes, and that users of PC-MOS/386 would receive free updates for them all. (I was told that the first update was due out in July.) All in all, although PC-MOS/386 has a great deal of potential, I cannot at this point recommend it. I wonder whether its multituser capabilities make any sense in an application beyond, say, a means for a background task to control infrequent access to the system via a modem. And if you’re interested only in multitasking, other packages on the market (Quarterdeck’s DESQview, for example) provide this capability.

Admittedly, PC-MOS/386 offers an environment for executing protected-mode 80386 programs, and this might prove useful if you’re developing 80386 code. But I was unable to use the only high-level 80386 development package that I had—High C—because of PC-MOS’s incompatibility with RUN386. Even if The Software Link can get High C to work on this operating system, PC-MOS/386 carries with it the old PC-DOS restriction of a 640K-byte maximum partition size, so there’s no way to experiment with larger address spaces.

The idea of a multitasking 80386 operating system with PC-DOS compatibility combined with advanced task communications is exciting. But PC-MOS’s designers still have some work to do.

Actor 1.0

Leonard Moskowitz

Object-oriented programming languages (OOPL), of which the best-known is Smalltalk, ease program development and maintenance. Often, however, these languages are also slow, memory-hungry, and have a steep learning curve. Actor is an OOPL designed to be a fast, memory-efficient, easy-to-learn alternative to Smalltalk.

Actor version 1.0 ($495) runs under the Microsoft Windows operating environment version 1.03 on IBM PCs and compatibles with MS-DOS 2.0 or higher. It requires a hard disk drive, a graphics display adapter, a mouse, and 640K bytes of memory. I ran Actor on a 6-MHz IBM PC AT with 640K bytes of memory, an EGA graphics adapter, a 30-megabyte hard disk drive, and a Mouse Systems optical mouse running under PC-DOS 3.2 and Microsoft Windows 1.03.

Actor achieves its speed through use of a token-threaded interpreter, optional early binding, and an incremental dynamic-memory garbage collector, as opposed to Smalltalk's byte-code interpreter, late binding, and various implementation-dependent garbage-collection schemes. Like Smalltalk, Actor is an interpreted language and provides a rich programming environment. Actor differs from other object-oriented languages in that its syntax is similar to Pascal and C. Actor allows optional termination with semicolons to make Pascal programmers feel more at home. Assignment is via the := form, which, again, is much like Pascal. Blocks are enclosed in curly brackets, as in C, and the then can be left out of conditional forms. Although these points don’t make object-oriented programming concepts any easier to absorb, they do ease the transition.

As with any new release of software, there are a few problems with Actor. A README file on the disk describes most of them and mentions that they will be fixed in the next version. An additional shortcoming is that in the 640K-byte limit of PC-DOS, Actor leaves little room for application code. Future releases of Actor will increase the amount of memory available to a programmer.

[Editor's note: In the August 1986 issue of BYTE, dedicated to the theme of object-oriented languages, Charles B. Duff, the author of the Actor language, discusses the philosophy behind its design. Other articles in that issue explain what an object-oriented language is and its advantages and disadvantages over more conventional programming languages, like C or Pascal.]

A Complete Environment

Actor provides a complete programming environment, familiar to the users of Smalltalk and Flavors, including browsers, inspectors, a workspace, and a file editor. Browsers are specialized edit windows designed to view and change Actor-class source code and immediately implement the changes. When you edit in a browser, text is automatically formatted. Inspectors, another kind of window editor, allow you to view an object, send it messages, or modify it. You can use inspectors to trace an object’s inheritance of methods and instance variables. The Actor workspace is the developer’s primary interaction window. In the workspace, you can write and interpret Actor source code (as you can in the browser and inspector windows), edit, select to browse or inspect, and check on certain system parameters.

Actor provides a solid base of programming code. It comes with more than 90 predefined object classes and hun-
dreds of methods, including various types of windows, collections (arrays, structures, bags, strings, symbols, sets, dictionaries, and graphic objects), associations (for making ordered pairs), characters, and numbers (16-bit signed integers, longs, and reals). One class, Behavior, lets you treat classes as objects and is used to implement inheritance. You can use the browser to explore the class-hierarchy source code for 92 of the classes and their methods. The source for primitive methods is not provided. Primitive methods perform basic operations required by Actor objects, and, in the interest of speed, are written in assembly language.

Two classes, Library and Proc, let you call library procedures from Microsoft languages such as C, FORTRAN, Pascal, and assembly language. You use the Library class to set the filename of the library, and then you add entries for each procedure in the library that you want to use. The Library class creates an instance (or object) of class Proc for each entry, which you can call by sending a message to the Proc object that defines the procedure.

Not all the classes come already loaded into Actor; in some cases, you load them into the environment when you need them. For example, to use the file editor you want the Proc class that comes with Actor, you must load in the FileWindow class. If you want the editor to be present each time you enter Actor, you can save a copy (or snapshot) of the environment that you’ve built up during a session for later use.

When using an editor within Microsoft Windows, such as Microsoft Write, I had to take Actor out of the system because Windows spent most of its time accessing the disk, compensating for the memory shortage. I used WordStar and PC-Write outside of Microsoft Windows, and both worked just fine.

Actor is tightly integrated with Microsoft Windows’ mouse-and-menu operating environment, which gives it a familiar feel to those who have used Windows. Windows is slow and ungainly on PCs and XTs, but on an AT, response was timely as long as I was running only Actor and not too close to the memory limit.

Actor provides a full set of interface functions to Windows. You can define windows, menus, dialog boxes, accelerator keys, and icons and pass information between Actor and Windows. Each window becomes an Actor object, and you communicate with it and command it much as you do with any Actor object.

Speed Optimizations
Actor gives you the option of defining the type of a program’s variable at compile (early binding) rather than at run time (late binding). By using this option, you can substantially improve a program’s run-time efficiency. As an example, running the Sieve of Eratosthenes with late binding took 6.6 seconds; with early binding, it took 5.4 seconds.

Early binding should be used only after the application is completely debugged and the algorithms are optimized. You can use the class PROF.ACT to profile your application to find which functions of the application is spending the most time in. Once you have isolated the heavily used functions, you can specify early binding by explicitly assigning the class of the receiving object so that the compiler can search this class for the object pointer of the method.

[Editor’s note: The source code for both versions of the Sieve test are available on disk, in print, and on BIX. See the insert card following page 256 for details. Listings are also available on BYTEnet. See page 4.]

In most languages that provide garbage collection, long pauses occur intermittently while the computer reclaim discarded memory. In Actor, however, garbage collection is interleaved with program execution; thus, Actor never stops for a noticeable interval. Actor’s object memory is divided into static and dynamic areas. (You can adjust the size of each with parameters in the Microsoft Windows initialization file.) The garbage collector polices the dynamic memory; this memory contains volatile objects, such as strings and integers.

Static memory, which contains objects such as classes, methods, and symbols, rarely changes during run time. But it may fill up during the edit/modify/compile cycle of code development. Then you can explicitly evaluate the cleanup() object to invoke the static-memory garbage collector. The manual cautions that you should save the image of the system first; if Actor runs out of dynamic memory during the static-memory cleanup, you lose all the work done since the last snapshot. I found this out the hard way.

Using Actor
Actor comes on seven 5¼-inch floppy disks. Three hold the Actor files and an installation program, and the other four hold a run-time version of Microsoft Windows. Since I already had a complete version of Windows on my PC AT, I only had to run Actor’s installation program. The program transfers the files from the floppy disks to the appropriate directories on your hard disk and adds Actor’s static- and dynamic-memory-allocation variables to Windows’s initialization file. The process takes under 5 minutes.

Actor 1.0

<table>
<thead>
<tr>
<th>Type</th>
<th>Object-oriented programming language</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company Name</td>
<td>The Whitewater Group Inc.</td>
</tr>
<tr>
<td>Technology Innovation Center</td>
<td>906 University Place</td>
</tr>
<tr>
<td>Evanston, Illinois 60201</td>
<td>(312) 491-2370</td>
</tr>
<tr>
<td>Format</td>
<td>Seven 5¼-inch floppy disks; not copy-protected</td>
</tr>
<tr>
<td>Computer</td>
<td>IBM PC, XT, AT, or compatible with a hard disk drive, at least 640K bytes of RAM, a graphics display adapter, and a mouse</td>
</tr>
<tr>
<td>Software Required</td>
<td>MS-DOS 2.0 or higher</td>
</tr>
<tr>
<td>Documentation</td>
<td>500-page user's guide with tutorial</td>
</tr>
<tr>
<td>Price</td>
<td>$495 with Microsoft Windows run-time support package; academic price: $99</td>
</tr>
</tbody>
</table>

The Whitewater Group recommends that memory-resident programs not be used with Actor or Windows and mentions that you may have to delete device drivers and RAM disks to make enough space for Actor. The memory problems were apparent the first time I tried to run Actor; I met with a Not enough memory to run Actor message.

After I deleted all the graphics drivers from my AUTOEXEC.BAT and CONFIG.SYS files, Actor loaded up. I immediately checked to see how much memory was free by using the Microsoft Windows system menu about item (the run-time version supplied with Actor doesn’t have this item); only 6K bytes was left. The Actor user’s guide says that when less than 10K bytes is available, Actor is running critically short of memory and could crash, so I went back to my CONFIG.SYS and AUTOEXEC.BAT files and deleted the mouse drivers (superfluous under Microsoft Windows). I then had 40K bytes free.

Finally, I deleted my RAM disk driver and 3¼-inch floppy disk driver, rendering my extended-memory RAM and the 3½-inch floppy drive useless. This freed up another 12K bytes, making a total of only 52K bytes available. (If I’d been running an IBM EGA board instead of... continued
my Vega video card, roughly another 8K bytes could have been reclaimed, for a total of 60K bytes.

Actor takes up over 350K bytes of memory. Adding Windows's RAM requirement (about 230K bytes in my system) leaves very little for the user. Multi-tasking under Windows with Actor installed is just about impossible. Even using Windows's spooler causes Windows to access the disk continuously, slowing the work pace to a crawl.

Quirks
Windows considerably eases the task of programming user interfaces, but it has its quirks. It is possible to move a window so that its control areas—size box, caption bar, and system menu—are inaccessible to the mouse. Then you have to remember the keyboard equivalents to the mouse commands to get the window back on the screen. Also, Windows's naming conventions conflict with those of Actor. Method names are lowercase in Actor unless the name is the concatenation of two English words, in which case the first letter of the second word is capitalized. Windows comes with predefined uppercase messages. In addition, Windows limits you to a maximum of five active display contexts at one time.

Actor's user interface is inconsistent. In the workspace window, if you want to execute a section of code, you can position the mouse at the end of the line and press Return. However, if you do this in an editor window (the file editor or the browser), the code is not executed; instead, a new line is inserted. To execute code in the editor or browser, you must select the text with the mouse and click on the Do It! menu item. There is a hazard to this: Highlighting (inverse video) is used for both editing and execution. If you highlight a section of code to run it via the Do It! command and then accidentally type some input, the highlighted code is deleted and cannot be retrieved.

There are other inconsistencies: In the workspace, you press Control-Return to insert a new line. In other windows, that does nothing. In some windows, the Control-A accelerator key highlights the entire text; in others, it doesn't. The Select All edit menu item doesn't work at all. Neither does the Undo menu item, which the documentation says will be implemented in a future release.

Cautions
As I mentioned earlier, Actor has a few serious bugs. Once I ionized (i.e., inactivated) a sample window that I'd built during a tutorial exercise. When I reactivated it and tried to close it via the system menu Close item, I received an error message, and the machine locked up so tight I had to reboot, losing the environment I'd built up during the tutorial.

Another time, I ran the file editor provided with Actor. I selected Actor's parent directory and then its parent, my root directory. When I tried to edit a file, an error window popped up with the message: Dynamic memory is full. When I clicked on its confirmation, Actor exited to Windows and its icon was deleted, and again the environment was lost. This was due to the memory limitations.

On occasion, an error window would pop up claiming that Actor's stack overflowed. If I closed Actor's windows and attempted to reload, Windows would indicate an infinite wait. I could not correct this error, and the only alternative was to reboot. At other times, Actor would lock up for no apparent reason.

There are a few less serious bugs, too, including odd highlighting of areas in the Actor workspace window (the Whitewater Group now has a patch that fixes this), incompatibilities between long and integer objects, and the printing of returned results in inappropriate areas of the workspace. Error messages are printed to the Actor Display window, which is overwritable and not refreshed, so if you have a window overlaying the error message, you will never see it. If you move the window, the text is not restored. This, again, is due to the memory limitations. Other error messages, which are printed in the pop-up window, are truncated and often uninformative. When a file loads, and also when a program runs that prints out to the Actor Display window, other windows' caption lines get replicated over and over again up to the top of the display window. Once the program is loaded or finishes running, the garbage goes away.

Documentation
The Actor user's guide comes in a 500-page three-ring binder. It includes a review of all major classes; sections on memory management, calling external library procedures, accessing MS-DOS and Windows functions, and building applications; a class reference; a language description; a list of error messages; and a complete subcategorized index.

The documentation opens with a quick section on hardware requirements and installation, and then goes through a pleasant and thorough 74-page tutorial. The tutorial includes a short discussion of the Microsoft Windows user interface. Next is a clear description of what object-oriented programming is all about, including descriptions of classes, objects, methods, messages, instances, instance variables, and inheritance. This discussion is highlighted by a short demonstration program implementing a LOGO-like turtle. The tutorial covers the use of inspectors, browsers, some of the primary programming constructs and classes, and it closes with a demonstration of Actor's facility with windows.

On the whole, the documentation is very effective. In some areas, though, it doesn't match the way the programs operate. The file-read method requires an integer argument, but the manual specifies a long-number argument in several places. Methods that the documentation says should return \texttt{<A Turtle>} return their message parameters instead (e.g., the message \texttt{r(90)} returns 90 instead of \texttt{<A Turtle>}).

Also, since Actor is case-sensitive, a user expects the documentation to be reasonably consistent about case. But when you type the message \texttt{home(Sam)}, it returns \texttt{<A Turtle>}, which is not quite the same as the documentation's \texttt{<A Turtle>}. Later the manual shows that when you add an element to \texttt{SortedCollection} objects, they return the whole object. In fact, they don't; they return the element.

All in all, however, even with the minor hiccups, the documentation and demonstrations are well written and pleasant to use, and they serve their purpose.

Support
The Whitewater Group provides three levels of support. The first (Level 0) is free access to an Actor bulletin-board service for all registered users, three calls to The Whitewater Group Technical Support Hotline, a promised prompt response to mailed inquiries, and no penalty or charge for bug fixes or reports.

The next two levels of support are $100 and $250 options. Level One ($100) support provides for up to 20 free calls per year to the Hotline, up to a 20 percent discount on future products, free access to a special section on the bulletin-board service, which has maintenance releases and small system enhancements, and interface for one user representative per unit purchased, up to a maximum of three. The Level Two support plan ($250) provides unlimited phone support from the Technical Support Hotline, access to a developer's workshop on the bulletin-board service, and up to five user representatives. Serious software developers should consider this option. Special support plans are available for academic sites.

Other Considerations
As a development language for the Microsoft Windows operating environ-
ment, Actor has the potential to be a powerhouse, but this potential won't be realized in the cramped quarters of today's 8088/8086/80286-based MS-DOS machines. Actor will come into its own when OS/2 becomes available or when versions of Actor are developed for fast, large-memory-space machines, like the Apple Macintosh II, Commodore Amiga, Atari ST, or 80386-based machines. While it runs acceptably fast on the 80286-based PC AT, it fairly begs for expanded memory. The Whitewater Group says it plans to port Actor to multiple machine architectures and operating systems and to implement a standard graphics layer. The next release of Windows will provide for expanded memory.

Although Actor 1.0 is expensive, it is also easy to learn and pleasant to use, and it provides strong development and runtime features. Actor's philosophy of appealing to C and Pascal programmers just might lure proceduralists to object-oriented programming. Subsequent releases will probably clean up the minor documentation errors and the software bugs; until then, however, let the user beware.

[Editor's note: Actor version 1.1 is now available and, according to the company, is 60K bytes smaller than version 1.0. The static garbage collector now uses the hard disk as a temporary storage device instead of the dynamic memory region, and the window class hierarchy has been revised.]

Leonard Moskowitz (0-75 Morlot Ave., Fair Lawn, NJ 07410) heads a Research and Development group that applies artificial intelligence technology to the problems of maintenance and diagnostics at Allied Corporation's Bendix Test Systems Division.

ALS Prolog

Alex Lane

The ALS Prolog compiler from Applied Logic Systems is a Prolog language compiler for MS-DOS computers. It is available in two versions, the Professional version 1.0 ($499) and the Personal version 1.0 ($199), and requires an IBM PC or compatible with a minimum of 256K bytes of memory and one floppy disk drive. I reviewed both packages on an IBM PC XT with 640K bytes of memory and a 20-megabyte hard disk drive.

Compiling on the Fly

The heart of the ALS Prolog software is ALSPRO.EXE, which reads source files and compiles them on the fly into abstract machine instructions. The package provides object-code files of such instructions for the built-in predicates, a debugger, and a definite-clause-grammar (DCG) expander. The Professional version also provides source code for these predicates.

The Personal version of ALS Prolog comes with a number of examples, including the eight queens problem, the missionaries and cannibals problem, and a symbolic differentiator. The Professional version has a larger number of examples, including a couple of expert applications written with the ALS Prolog compiler version 1.0. Each of your customers must have a copy of the compiler; the intermediate code won't run without it. Furthermore, there is no way to hide predicates, so the source code for your application is available to anyone with a rudimentary knowledge of Prolog.

A major disadvantage of using intermediate code is that if you plan to sell Prolog applications written with the ALS Prolog compiler version 1.0, each of your customers must have a copy of the compiler; the intermediate code won't run without it. Furthermore, there is no way to hide predicates, so the source code for your application is available to anyone with a rudimentary knowledge of Prolog.

ALS automatically saves the abstract object code generated by the compiler in a file with an .OBP extension (unlike the .OBJ extension for object files in other languages) for future loading. If you make no changes to the source file, ALS saves compilation time by directly loading the object file the next time you consult the source file.

A make-like facility that is transparent to the user decides whether to load existing .OBP instruction files or to read in and compile new source code. Its decision is based on the DOS date-time stamp on the file, so if you are one of those who never enter the correct date and time on

ALS Prolog

Type
Programming language

Company
Applied Logic Systems Inc.
Box 90, University Station
Syracuse, NY 13210
(315) 471-3900

Format
One (Personal version) or two
(Professional version) 5¼-inch floppy disks

Computer
IBM PC, XT, AT, or compatible with at
least 256K bytes of memory (512K bytes
recommended for Personal version)
and one floppy disk drive (hard disk drive
recommended for Professional version)

Software Required
PC-DOS/MS-DOS 2.0 or higher

Compatible Software
Aztec C86 C compiler, version 3.2

Documentation
ALS Prolog Technical Reference
Manual; Prolog Programming for Artificial
Intelligence by Ivan Bratko (Reading,
MA: Addison-Wesley, 1986)

Price
$499 (Professional version)
$199 (Personal version)

continued
your PC as you boot and reboot your system, beware. It is entirely possible for the ALS program to ignore your most recent changes to a Prolog source file and load old object code that has a “ fresher” date.

ALS Syntax
By and large, ALS Prolog implements the standard Prolog syntax found in C-Prolog and Edinburgh Prolog, as published in Programming in Prolog by W. F. Clocksin and C. S. Mellish (New York: Springer-Verlag, 1982). ALS’s one major extension (besides the use of uninterned atoms, discussed below) is the implementation of modules to support good software-engineering practice. The use of modules lets you isolate some procedures from others by judiciously placing them in separate modules with appropriate use declarations and export declarations.

After working with the software, I concluded that, aside from a few added features, such as an interface to the Aztec C compiler, the Professional version of ALS Prolog is basically the same program as the Personal version. One major difference, however, is that the Personal version supports both interned and uninterned atoms, while the Personal version supports only interned atoms. Thus, in the Professional version, atoms that seldom appear in the program text can be stored on the Prolog heap in memory instead of in the symbol table, thereby conserving valuable space in the table.

Another difference is that the Professional version has predicates that invoke the ROM BIOS services as well as the BIOS keyboard services. This gives programmers an opportunity to write procedures to manipulate the user’s screen.

The biggest extra in the Professional package, however, is the ability to utilize the $1code/4 predicate to access the code generator for the abstract machine instructions. This lets programmers experiment with compilation on the abstract machine or compile “roll-your-own” clauses. The ALS Prolog manual contains several examples of the use of the $1code/4 predicate, and several more appear in the accompanying source files.

Documentation: Thin but Adequate
The basic ALS package consists of a three-ring IBM-style binder containing printed documentation, one disk of software for the Personal version or two disks for the Professional version, and a card containing your to a free copy of Ivan Bratko’s Prolog Programming for Artificial Intelligence (Reading, MA: Addison-Wesley, 1986). [Editor’s note: See Alex Lane’s review of Ivan Bratko’s book in the August issue of BYTE.]

The core section of the ALS documentation is about 60 pages long, and most of those pages are devoted to a terse description of the language syntax and the built-in predicates. Another dozen or so pages discuss the example programs that come with the package. If you consider that ALS intends Ivan Bratko’s book to serve as a language tutorial, the documentation is adequate.

The Professional version’s documentation contains additional pages that discuss the use of the $1code/4 predicate, the interface to the Aztec C compiler, and the extra example programs. Each version includes approximately 60 pages of documentation on the VI.EXE editor.

Page 101 of the Professional version manual catalogs a raft of arcane limitations for the package—compiled code is limited to 48K bytes, functors are limited to 15 arguments, the symbol table is limited to 907 entries, and so on. Other limitations were not included in the manual. For example, I learned early on to be leery of floating-point operations in ALS Prolog, such as

```prolog
1.0000000000000001
```

This would very likely fail, because the actual value of G is something like 1.0000000000000001, rather than 1.0. However, the debugger would display

```
1 := 1 !
```

and then calmly announce the failure of the test. This is a problem, because `1 := 1 must be true.

I liked the compact debugger implemented in ALS Prolog. It has the standard trace/1 and spy/1 predicates and a leash/1 predicate, which controls the debugger’s prompts at the call, redo, fail, and exit ports.

Editor Interface
The ALS package comes set up with the VI.EXE editor, although you can change the default editor using the change_editor/1 predicate. Thereafter, typing

```
edit_FILENAME
```

suspends operation of the ALS package and lets you use the default editor to edit whatever file you’ve indicated. If you don’t supply a filename, the editor will call up the last file that you edited.

Upon leaving the editor, ALS Prolog “reconsults” the file you are working on;
that is, any predicates in that file overwrite existing predicates in memory. If the system finds any syntax errors while recomputing the file, it flags them and displays the line number of the error on the screen. As with most compilers, this line number is only approximate. It reflects the line where the error was detected, which is not necessarily where it actually occurred.

Benchmarking ALS Prolog

I performed a series of benchmarks similar to those previously carried out on Borland's Turbo Prolog (see page 295 in the September 1986 BYTE). I did not measure the time required for compilation of code in memory, since this time never exceeded 10 seconds and usually was too short to be noticeable. For the sake of comparison, I also ran the tests on version 1.1 of Turbo Prolog. The results are shown in table 1.

The Math Functions test measures how fast Prolog can calculate the square root, natural logarithm, exponential, arctangent, and sine of a fixed argument 1000 times. The Floating Point test repeats a series of four basic operations 5000 times, while the Sieve extracts the prime numbers between 1 and 100.

The Disk Read and Disk Write tests are Prolog implementations of the standard BYTE benchmarks and measure the time required to perform the respective tasks 512 times on 128-byte atoms.

In my opinion, these benchmarks are of limited value because the power of Prolog lies not in how fast it can calculate a transcendental function or in how quickly it can isolate primes, but in how rapidly it can manipulate symbols and make inferences. The conclusion to draw from these particular benchmarks is: If continued

Table 1: Results of the benchmark tests run on the ALS Prolog Compiler and Arity Prolog. Tests were conducted on an IBM PC XT with 640K bytes of memory and a 20-megabyte hard disk drive. All times are in seconds.

<table>
<thead>
<tr>
<th>Test</th>
<th>ALS Prolog 1.0</th>
<th>Turbo Prolog 1.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>List Reversal</td>
<td>13.79</td>
<td>11.27</td>
</tr>
<tr>
<td>Floating Point</td>
<td>201.91</td>
<td>30.83</td>
</tr>
<tr>
<td>Sieve</td>
<td>6.7</td>
<td>2.89</td>
</tr>
<tr>
<td>Math Functions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sqrt</td>
<td>30.81</td>
<td>5.19</td>
</tr>
<tr>
<td>Logs</td>
<td>31.25</td>
<td>13.58</td>
</tr>
<tr>
<td>Exp</td>
<td>29.0</td>
<td>24.24</td>
</tr>
<tr>
<td>Atan</td>
<td>30.21</td>
<td>15.46</td>
</tr>
<tr>
<td>Sin</td>
<td>35.05</td>
<td>16.18</td>
</tr>
<tr>
<td>Factorial</td>
<td>34.6</td>
<td>21.86</td>
</tr>
<tr>
<td>Tower of Hanoi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 rings</td>
<td>4.18</td>
<td>2.69</td>
</tr>
<tr>
<td>7 rings</td>
<td>19.06</td>
<td>10.87</td>
</tr>
<tr>
<td>10 rings</td>
<td>153.13</td>
<td>87.71</td>
</tr>
<tr>
<td>Disk Write</td>
<td>29.05</td>
<td>29.73</td>
</tr>
<tr>
<td>Disk Read</td>
<td>29.39</td>
<td>15.86</td>
</tr>
</tbody>
</table>

Nothing Should Come Between Mainframe Mag Tapes and Your dBASE or Lotus Except

Telebyte Tape Drives

TDX Mag 9-track 1/2" Tape Systems from Telebyte provide faster, error-free downloading of mainframe data into your PC. You control the start-stop tape drive either from the keyboard or with Telebyte's exclusive Dataverter software for faster file transfer — the equivalent of a 720,000 bit/second datalink.

Telebyte TDX tape drives are available at either 45 or 75 ips, feature dual density (800/1600 bpi) storage and back up processed files at 2 MB/minute (up to 10 times faster than other 9-track drive systems) as a bonus.

Enter data into dBASE® and Lotus® with no user programming. You do it in two easy steps because Telebyte's exclusive Dataverter runs under both DOS 2.0 and Xenix®. Dataverter will automatically convert packed, zoned and unsigned decimal field files, as well as labeled tapes, from EBCDIC to ASCII. The tape system is also supported by software languages in your PC, including C, BASIC, Fortran, Cobol, etc.

Only Telebyte offers such mainframe standards of reliability and IBM-compatible tape drive quality for so little money.

TELEBYTE TECHNOLOGY, INC.

GSA Contract Number GS00K86AGSS301

1-800-835-3298

Telebyte Technology, Inc. • 270 E. Pulaski Road • Greenlawn NY 11740 • (516) 423-3232

dBASE® is a registered trademark of Ashton-Tate, Inc.; Lotus® is a registered trademark of Lotus Development Corporation; IBM® is a registered trademark of International Business Machine Corporation; Xenix® is a registered trademark of MicroSoft.
you want a language that's suitable for numerical analysis, Prolog isn't it.

Other tests, however, do provide some evidence of the package's performance. These include the Factorial test, which uses simple recursion to measure how fast 10! can be calculated 1000 times; the List Reversal test, which measures the time required to reverse a list of 50 integers 30 times; and, to a lesser extent, the Tower of Hanoi program, which performs recursion and screen output.

I also performed the Peak System Performance and Nondeterministic Behavior benchmarks from the Logic Programming Group and the Computer Architecture Group of the European Industry Research Center in Munich. The Boresea performance benchmark consists of a sequence of 200 predicates having no arguments and no choice points. The results show the effect of pure calls, and the KLIPS (thousands of logical inferences per second) figure gives a rough idea of peak system performance. ALS Prolog ran 1000 iterations of the Boresea test in 5.66 seconds and performed 35.33 KLIPS. The Choice Point benchmark tests calls that invoke the creation of a branch point to which execution may possibly backtrack. The compiler ran 100 iterations of this test in 0.37 seconds and performed 5.40 KLIPS.

[Editor's note: The benchmark programs are included in the file ALS-PRO.TXT, which is available on disk, in print, and on BIX. See the insert card following page 256 for details. Listings are also available on BITNet. See page 4. You will need an IBM PC and ALS Prolog or another compatible version of Prolog to run the tests.]

ALS Prolog Version 1.1

Although the upcoming release of ALS Prolog version 1.1 was not part of the formal review, I did discuss it with Applied Logic Systems. Version 1.1 addresses some of the shortcomings of the current package, and the company said that all owners of version 1.0 will receive a free upgrade to 1.1.

As mentioned earlier, in version 1.0 the size of the compiled code is limited to approximately 48K bytes. According to the company, version 1.1 implements a virtual-memory scheme that will let you write much larger programs. Version 1.1 will also let you create stand-alone .EXE files and allow predicates to be hidden. In addition, an interface to the Microsoft C compiler will be provided.

Finally, the company told me that additional predicates will implement DOS function calls and destructive assignments (along the lines of LISP's RPLACA and RPLACD) to permit creation of Pascal-like data structures.

Nice Product, Some Shortcomings

ALS Prolog is a comfortable, competent package to work with. ALS's conformity to the Edinburgh syntax means that you don't have to master a "new, improved" variation of the language. Compilation is pretty much transparent to the user; if I hadn't been told that ALS Prolog was a compiler, I'd have assumed from the interactive response that it was an interpreter. Two features I particularly liked were the editor interface and the compact debugger.

In general, I liked the ALS Prolog compiler, but I think version 1.0 has too many shortcomings—such as the inability to develop salable applications and the limited clause space of 48K bytes for compiled code—to be worth the price.

Alex Lane (Reynolds, Smith and Hills, P.O. Box 4850, Jacksonville, FL 32201) is a senior software engineer and moderator of the Prolog conference on BIX.
Select 5 Books for only $395

Please accept my membership in The Computer Book Club® and send the 5 volumes listed below, billing me $3.95 plus shipping and handling charges. If not satisfied, I may return the books within ten days without obligation and have my membership canceled. I agree to purchase 3 or more books at regular Club Prices (plus shipping/handling) during the next 12 months, and may resign any time thereafter.

Write your selections here:

Name
Address
City
State/Zip
Phone

Valid for new members only. Foreign applicants will receive special ordering instructions. Canada must remit in U.S. currency. This order subject to acceptance by The Computer Book Club®

BY-987B

The Computer Book Club®
P.O. Box 80, Blue Ridge Summit, PA 17214
Increase your knowledge about all aspects of computers

An absolutely no-risk guarantee.

Select 5 Books for only $3.95

More programs, projects, and ways to use your micro.
Keep well-informed about the latest books available—and get discounts of up to 50% off the publishers' prices!

Membership Benefits • Big Savings. In addition to this introductory offer, you keep saving substantially with members' prices of up to 50% off the publishers' prices. • Bonus Books. Starting immediately, you will be eligible for our Bonus Book Plan, with savings of up to 80% off publishers' prices. • Club News Bulletins. 14 times per year you will receive the Book Club News, describing all the current selections—mains, alternates, extras—plus bonus offers and special sales, with hundreds of titles to choose from. • Automatic Order. If you want the Main Selection, do nothing and it will be sent to you automatically. If you prefer another selection, or no book at all, simply indicate your choice on the reply form provided. As a member, you agree to purchase at least 3 books within the next 12 months and may resign at any time thereafter. • Ironclad No-Risk Guarantee. If not satisfied with your books, return them within 10 days without obligation! • Exceptional Quality. All books are especially selected by our Editorial Board.

The Computer Book Club®
Nobody ever said programming PCs was supposed to be easy.
But does it have to be tedious and time-consuming, too?
Not any more.
Not since the arrival of the remarkable new program on the left:
Which is designed to save you most of the time you're currently spending searching through the books and manuals on the shelf above.

The Norton On-Line Programmer's Guides™ are a quartet of pop-up reference packages that do the same things in four different languages.

Each package consists of two parts: A memory-resident Instant Access™ program. And a comprehensive, cross-referenced database crammed with just about everything you need to know to program in your favorite language.

And when we say everything, we mean everything.
Everything from information about language...
announces a
ng tool for people
manual labor.

syntax to a variety of
tables, including ASCII
characters, line draw-
ing characters, error
messages, memory
usage maps, important
data structures and
more.

How much more?
Well, the databases
for BASIC, C and Pas-
cal give you detailed listings of all built-in and
library functions.

While the Assembly database delivers a com-
plete collection of DOS service calls, interrupts
and ROM BIOS routines.

You can, of course, find most of this informa-
tion in the books and manuals on our shelf.

But Peter Norton—who’s written a few books
himself—figured you’d rather have it on your
screen.

In seconds.
In full-screen or moveable half-screen mode.
Popping up right next to your work. Right
where you need it.

This, you’re probably thinking, is precisely the
kind of thinking that pro-
duced the classic Norton
Utilities.

And you’re right.
But even Peter Nor-
ton can’t think of every-
thing.

Which is why there’s
a built-in compiler for
creating databases of your own.

And why all Guides databases are compatible
with the Instant Access program in your original
package.

So you can add more languages without spend-
ing a lot more money.

To get more information, call your dealer. Or
call Peter Norton at 1-800-451-0303 Ext. 40.
And ask for some guidance.

Peter Norton
COMPUTING

Inquiry 230 for End-Users. Inquiry 231 for DEALERS ONLY.
Choose Business Week Video Magazine's "How to Benefit From Tax Reform". Why? That's simple. It's co-hosted by Dr. Arthur Laffer, one of the fathers of tax reform, and an economic advisor to the President. And Business Week Editor William Wolman.

So pull up your chair. And let a panel of America's top tax and investment experts tell you what they know. With candor. Commentaries. Interpretations. The hour will fly by. With clips from the past. Tips for the future. And most important, what you can do to start benefiting now!

Also included, get the "Business Week Personal Tax Planning Guide"—a comprehensive 48 page guide, prepared by Deloitte, Haskins & Sells—that complements the video. And helps you forecast your own 1987 and 1988 taxes.

Everything you need to know about tax reform. With that same insightful analysis that made Business Week the number one business magazine. The choice is clear. You can get your video somewhere else, but then it wouldn't be from Business Week.

To order now, just call toll-free: 1-800-523-5503 today. (In Illinois, call 1-312-250-9292.)

Or clip and mail in the coupon below.
Benchmarking dBASE III Plus Compilers

Malcolm C. Rubel

Quicksilver 1.1 from Wordtech Systems and Clipper (Autumn 1986 version) from Nantucket, two true compilers, and FoxBASE + 2.00 from Fox Software, a pseudocompiler, are all unique implementations of the dBASE III language. Each is a subset of the dBASE III Plus language as defined by Ashton-Tate, and each program has some commands, functions, and capabilities that are not contained in the other packages.

These three compilers are also supersets of dBASE III Plus, because each contains features that are not available in dBASE III. These programs take dBASE III instructions and compile them into more compact code that takes up less memory space and executes faster. Comparing these compilers to dBASE III is therefore a more complex task than simply measuring speed differences. Each program has its own strengths and weaknesses when compared to dBASE III Plus and to each other.

Each of these products supports networking. The network support is included with Clipper and Quicksilver; with FoxBASE +, it costs an additional $200. Neither Nantucket nor Fox Software will say what local area networks their compilers will run on; they will only say that their compatibility relies on the LAN's proper adherence to using DOS function calls. Wordtech says that Quicksilver will run on the Novel11, IBM, and Software 2000 LANs.

All three products support record- and file-locking, exclusive file use, and printer commands. Quicksilver also has an Automatic mode that lets applications run on a LAN without the user's having to go in and do all the programming manually.

Clipper and Quicksilver, the two true compilers, have the ability to integrate unique functions into applications compiled with their libraries. You can write the functions in dBASE, C, or assembly language and then link them to the application when the load module is assembled. You can even include these routines in the working .PRG files or develop them as separate object modules. This capability gives both programs a decided edge over dBASE III Plus and FoxBASE +, in that you can develop or purchase custom extensions to the language for a specific purpose and include them as an integral part of the application.

To do this with dBASE III, you must fudge some of these features as a part of a procedure file or purchase one of the add-on packages that will enable you to gain access to the functions. Tom Rettig's Library (which is available in Clipper and dBASE III editions) and the dBASE Tools for C package enable you to perform this type of function, but both require you to use more programs and more memory. If you intend to distribute your final application, this also adds more files and more cost for the end user.

One negative aspect of both Clipper and Quicksilver is that neither permits access to the dBASE III Plus full-screen functions, including APPEND, BROWSE, CHANGE, and EDIT. This means that you must spend time programming replacements for these functions if you need them. This is not as great a loss as it would seem, however, as commercial-quality applications should not be using these functions anyway because they permit unrestricted access to the database without any edit checks.

Clipper

Nantucket's Clipper, the first of the native-code dBASE compilers, was released over two years ago and has undergone four major revisions. The current release, which is simply called the Autumn 1986 version, includes network support, some new commands, and a better memory-management capability that includes support for expanded memory. Nantucket says that Clipper-compiled programs can use up to 1 megabyte of RAM for indexing, although I did not test this. In certain situations with large indexes, this should substantially improve the product's indexing speed.

Of the three compilers, Clipper is probably the least compatible with dBASE III Plus. Several commands, including box commands, READKEY, and RETURN to Master, are either not supported by Clipper or are supported in a different manner than that of dBASE III Plus. Clipper also has many commands and functions that are not available in dBASE III Plus. These include special help capabilities, memory variables, the ability to open multiple parent-child relationships at once, special menu-creation commands, the SAVE SCREEN command, arrays, FOR . . NEXT loops, and the VALID function, to name a few.

The differences between Clipper and dBASE III can make Clipper more versatile than dBASE III, but they also make programming more difficult, as most people would use dBASE III for program development and then compile their applications with Clipper. Nantucket supports a CLIPPER public variable that enables developers to include Clipper-specific code in their development files that does not run when the file is executed on an interpreter such as dBASE III Plus. Unfortunately, as soon as you start including some of the more powerful Clipper commands, you must start writing
code solely for Clipper, because the code differences between Clipper and dBASE III quickly become a burden.

Clipper also supports many of dBASE III's functions in a slightly different manner than dBASE III does, so you must learn a slightly different language if you want to compile your applications with Clipper. For example, the Clipper VALID function as a part of the PICTURE template language provides a way for you to program direct access to HELP, lookup tables, or to other programs during the middle of a READ; dBASE III does not support this feature. To use the feature, you must learn how to program this function for Clipper, as well as how to write code that will execute under dBASE III during program development.

While there is a tremendous amount of information in the Clipper user's manual, it is sometimes not easy to find what you need (even with the index), and then you must read the information carefully. Nantucket should do some work to make the manual a more usable document. The manual is split into two different sections: the basic manual and the Autumn 1986 update. For a compiler that costs close to $700, it is not too much to expect a better-quality manual.

Clipper comes with a custom version of Phoenix Computer Products' Plink86, so you can compile applications that are too large to fit into RAM as overlay programs. Unless you need to use the overlay capabilities of Plink86, however, the DOS LINK program supplied with MS-DOS works just as well and is quicker. I used DOS LINK as a linker for Clipper for all the benchmark tests.

Unless specifically told otherwise, Clipper compiles the named program and all called programs into a single object file. You can then link that object file or files with the Clipper library to create an executable load module. Clipper lets you compile separate object modules using a special compiler file with a .CLP extension. Clipper will then compile only those files you specify. This feature can be used for reducing compile times during debugging and for creating overlays.

By press time, Nantucket had not yet released its Spring 1987 version of Clipper. I called the company, however, and received a description of the latest version's new features and enhancements. Nantucket says it has improved Clipper's indexing speed due to recoding and compatibility. Clipper indexes can be either Clipper- or dBASE-compatible. The compiler's sorting speed has also been improved due to recoding.

The Spring 1987 version of Clipper also has a number of new commands. The SET SOFTSEEK ON/OFF command allows "relative" seeking (i.e., if a record is not found, the pointer is set at the next logical record). The SET CURSOR command turns the cursor on or off, SET MESSAGE TO <expN> [CENTER] centers a message on the specified line, and the MEMOLINE and MLCOUNT functions can format a memo for printing. In addition to these functions, the latest version of Clipper has a number of file-handling functions that are compatible with DOS 3.3. The program now provides for more than 150 open files and can handle strings up to 64K bytes long.

Quicksilver 1.1

Wordtech Systems advertises Quicksilver 1.1 as the first dBASE III Plus compiler. The compiler supports the dBASE III Plus language more closely than Clipper does, but if you use the full capabilities of Quicksilver, it is not compatible with dBASE III either. Although version 1.1 of Quicksilver is more compatible with dBASE III Plus than the original version was, it also implements some commands that take it further away from dBASE III Plus.

Quicksilver 1.1 supports FOR...NEXT loops and has an excellent help function that is part of the @GET command. A set of AUTOMEM functions provides a mechanism for creating, loading, and clearing memory variables with the same names as field variables, as well as replacing data-table fields with the contents of these memory variables.

Several of Quicksilver's functions bring it much closer to the extended capabilities of Clipper. The SET ORDER TO function enables you to have more than one index active at a time, FROW() and FCOL() position the cursor in an alternate
QuickSilver does not come with a linker. WordTech Systems suggests that you use the DOS LINK program, which is fine, unless you must create overlays. QuickSilver supports Plink86, but you must buy it separately from Phoenix Computer Products for $495.

FoxBASE + 2.00

FoxBASE + 2.00 from Fox Software is not a true compiler, but rather an interpreter of tokenized code. The latest version has automatic memory management and allocates all available memory, including up to 64K bytes of expanded memory. This is a boon to developers whose code must run on different types of machines. FoxBASE + adjusts itself to the machine’s available memory when it is loaded and optimizes its performance for that environment. If the environment changes (due to activating a spooler, for example), you no longer have to change the CONFIG.FX file.

Version 2.00 of FoxBASE + requires only 360K bytes of memory (versus the 375K bytes needed for version 1.21), and
the product now runs faster than version 1.21 in all areas that I tested by an average of 23 percent. The program is memory-sensitive; I ran out of room running large indexes with under 480K bytes of free memory. This should not have happened, but at least Fox Software is up-front about this and will tell you that the program likes a lot of memory.

FoxBASE+ has several capabilities, commands, and functions that look and act very much like Clipper's. The compiler also has some excellent dBASE III likes a lot of memory.

language extensions of its own.

This should not have happened, but at least Fox Software is up-front about this and will tell you that the program likes a lot of memory.

FoxBASE+ has several capabilities, commands, and functions that look and act very much like Clipper's. The compiler also has some excellent dBASE III likes a lot of memory.

language extensions of its own.

This should not have happened, but at least Fox Software is up-front about this and will tell you that the program likes a lot of memory.

FoxBASE+ has several capabilities, commands, and functions that look and act very much like Clipper's. The compiler also has some excellent dBASE III likes a lot of memory.

language extensions of its own.

This should not have happened, but at least Fox Software is up-front about this and will tell you that the program likes a lot of memory.

FoxBASE+ has several capabilities, commands, and functions that look and act very much like Clipper's. The compiler also has some excellent dBASE III likes a lot of memory.

language extensions of its own.

This should not have happened, but at least Fox Software is up-front about this and will tell you that the program likes a lot of memory.

FoxBASE+ has several capabilities, commands, and functions that look and act very much like Clipper's. The compiler also has some excellent dBASE III likes a lot of memory.

language extensions of its own.

This should not have happened, but at least Fox Software is up-front about this and will tell you that the program likes a lot of memory.

FoxBASE+ has several capabilities, commands, and functions that look and act very much like Clipper's. The compiler also has some excellent dBASE III likes a lot of memory.

language extensions of its own.

This should not have happened, but at least Fox Software is up-front about this and will tell you that the program likes a lot of memory.

FoxBASE+ has several capabilities, commands, and functions that look and act very much like Clipper's. The compiler also has some excellent dBASE III likes a lot of memory.

language extensions of its own.

This should not have happened, but at least Fox Software is up-front about this and will tell you that the program likes a lot of memory.

FoxBASE+ has several capabilities, commands, and functions that look and act very much like Clipper's. The compiler also has some excellent dBASE III likes a lot of memory.

language extensions of its own.

This should not have happened, but at least Fox Software is up-front about this and will tell you that the program likes a lot of memory.

FoxBASE+ has several capabilities, commands, and functions that look and act very much like Clipper's. The compiler also has some excellent dBASE III likes a lot of memory.

language extensions of its own.

This should not have happened, but at least Fox Software is up-front about this and will tell you that the program likes a lot of memory.

FoxBASE+ has several capabilities, commands, and functions that look and act very much like Clipper's. The compiler also has some excellent dBASE III likes a lot of memory.

language extensions of its own.

This should not have happened, but at least Fox Software is up-front about this and will tell you that the program likes a lot of memory.

FoxBASE+ has several capabilities, commands, and functions that look and act very much like Clipper's. The compiler also has some excellent dBASE III likes a lot of memory.

language extensions of its own.

This should not have happened, but at least Fox Software is up-front about this and will tell you that the program likes a lot of memory.

FoxBASE+ has several capabilities, commands, and functions that look and act very much like Clipper's. The compiler also has some excellent dBASE III likes a lot of memory.

language extensions of its own.

This should not have happened, but at least Fox Software is up-front about this and will tell you that the program likes a lot of memory.

FoxBASE+ has several capabilities, commands, and functions that look and act very much like Clipper's. The compiler also has some excellent dBASE III likes a lot of memory.

language extensions of its own.

This should not have happened, but at least Fox Software is up-front about this and will tell you that the program likes a lot of memory.

FoxBASE+ has several capabilities, commands, and functions that look and act very much like Clipper's. The compiler also has some excellent dBASE III likes a lot of memory.

language extensions of its own.

This should not have happened, but at least Fox Software is up-front about this and will tell you that the program likes a lot of memory.

FoxBASE+ has several capabilities, commands, and functions that look and act very much like Clipper's. The compiler also has some excellent dBASE III likes a lot of memory.

language extensions of its own.

This should not have happened, but at least Fox Software is up-front about this and will tell you that the program likes a lot of memory.

FoxBASE+ has several capabilities, commands, and functions that look and act very much like Clipper's. The compiler also has some excellent dBASE III likes a lot of memory.

language extensions of its own.

This should not have happened, but at least Fox Software is up-front about this and will tell you that the program likes a lot of memory.

FoxBASE+ has several capabilities, commands, and functions that look and act very much like Clipper's. The compiler also has some excellent dBASE III likes a lot of memory.

language extensions of its own.

This should not have happened, but at least Fox Software is up-front about this and will tell you that the program likes a lot of memory.

FoxBASE+ has several capabilities, commands, and functions that look and act very much like Clipper's. The compiler also has some excellent dBASE III likes a lot of memory.

language extensions of its own.

This should not have happened, but at least Fox Software is up-front about this and will tell you that the program likes a lot of memory.

FoxBASE+ has several capabilities, commands, and functions that look and act very much like Clipper's. The compiler also has some excellent dBASE III likes a lot of memory.

language extensions of its own.

This should not have happened, but at least Fox Software is up-front about this and will tell you that the program likes a lot of memory.

FoxBASE+ has several capabilities, commands, and functions that look and act very much like Clipper's. The compiler also has some excellent dBASE III likes a lot of memory.

language extensions of its own.

This should not have happened, but at least Fox Software is up-front about this and will tell you that the program likes a lot of memory.

FoxBASE+ has several capabilities, commands, and functions that look and act very much like Clipper's. The compiler also has some excellent dBASE III likes a lot of memory.

language extensions of its own.

This should not have happened, but at least Fox Software is up-front about this and will tell you that the program likes a lot of memory.

FoxBASE+ has several capabilities, commands, and functions that look and act very much like Clipper's. The compiler also has some excellent dBASE III likes a lot of memory.

language extensions of its own.

This should not have happened, but at least Fox Software is up-front about this and will tell you that the program likes a lot of memory.

FoxBASE+ has several capabilities, commands, and functions that look and act very much like Clipper's. The compiler also has some excellent dBASE III likes a lot of memory.

language extensions of its own.

This should not have happened, but at least Fox Software is up-front about this and will tell you that the program likes a lot of memory.

FoxBASE+ has several capabilities, commands, and functions that look and act very much like Clipper's. The compiler also has some excellent dBASE III likes a lot of memory.

language extensions of its own.

This should not have happened, but at least Fox Software is up-front about this and will tell you that the program likes a lot of memory.

FoxBASE+ has several capabilities, commands, and functions that look and act very much like Clipper's. The compiler also has some excellent dBASE III likes a lot of memory.

language extensions of its own.

This should not have happened, but at least Fox Software is up-front about this and will tell you that the program likes a lot of memory.

FoxBASE+ has several capabilities, commands, and functions that look and act very much like Clipper's. The compiler also has some excellent dBASE III likes a lot of memory.

language extensions of its own.

This should not have happened, but at least Fox Software is up-front about this and will tell you that the program likes a lot of memory.

FoxBASE+ has several capabilities, commands, and functions that look and act very much like Clipper's. The compiler also has some excellent dBASE III likes a lot of memory.

language extensions of its own.

This should not have happened, but at least Fox Software is up-front about this and will tell you that the program likes a lot of memory.

FoxBASE+ has several capabilities, commands, and functions that look and act very much like Clipper's. The compiler also has some excellent dBASE III likes a lot of memory.

language extensions of its own.

This should not have happened, but at least Fox Software is up-front about this and will tell you that the program likes a lot of memory.

FoxBASE+ has several capabilities, commands, and functions that look and act very much like Clipper's. The compiler also has some excellent dBASE III likes a lot of memory.

language extensions of its own.

This should not have happened, but at least Fox Software is up-front about this and will tell you that the program likes a lot of memory.

FoxBASE+ has several capabilities, commands, and functions that look and act very much like Clipper's. The compiler also has some excellent dBASE III likes a lot of memory.

language extensions of its own.

This should not have happened, but at least Fox Software is up-front about this and will tell you that the program likes a lot of memory.
FoxBASE run-time module.

The compiler test I ran uses a 31K-byte benchmark program to generate the results shown in table 2. The FoxBASE + code size shown in the table is only for comparison to the standard dBASE code size.

Indexing

In addition to the indexing speed shown in the benchmark results in table 1, each of the three compilers creates indexes that are slightly different from those of dBASE III Plus. Only the Quicksilver indexes are compatible with dBASE and carry the same .NDX extension. Clipper's indexes have an .NTX extension and must be created explicitly. FoxBASE + indexes carry an .IDX extension and are created automatically in place of dBASE indexes if the application is brought over from dBASE III Plus.

Both Clipper's and Quicksilver's indexes are bigger than those created by dBASE. The indexing of these programs is slower, and their seeking is no faster than that of dBASE III Plus. FoxBASE + uses B+ Tree indexing and creates smaller, faster indexes.

Strengths and Weaknesses

On the surface, it would seem that FoxBASE + is the clear winner in the compiler benchmarks. Version 2.00 has eliminated most of the limitations of version 1.21, and its impressive speed usually overcomes the few areas in which it is weaker than the true compilers. Of course, Clipper and Quicksilver can do certain things better than FoxBASE + can: They enable you to link in C and assembly language procedures; Clipper has better array capabilities; Quicksilver offers windows; no run-time program is needed with either compiler; and their memory requirements are not as stringent as FoxBASE +'s in most circumstances. However, in most cases, FoxBASE + will still outperform the true compilers simply through sheer speed.

If you eliminate FoxBASE + and are left with a decision between Quicksilver and Clipper, neither product has a clear edge in speed, and, while Clipper's code is much more compact than Quicksilver's, it does not contain the full support for windows that Quicksilver has. The compiled code size of a medium-size application (104K bytes of program code) is 277K bytes, or 36 percent larger than Clipper's load module. QuickSilver's single file will not even fit on a floppy disk for distribution. These differences may become critical when an application is prepared for distribution.

On the other hand, applications compiled in QuickSilver's d-code overlay program, which is slower than the optimized code, consist of three files, none of which is too large to fit on a floppy disk, and they still execute reasonably fast. Even using the large library, large applications will run in as little as 256K bytes of free memory. Quicksilver's indexing and sorting speeds improve dramatically as the available memory increases.

Clipper's indexes are larger than Quicksilver's and are not compatible with dBASE III + indexes. Quicksilver holds a slight edge in indexing speed, and its indexes are compatible with dBASE .NDX files.

QuickSilver is definitely an easier product to work with when developing programs, and its symbolic debugger appears to be better than that supplied with Clipper.

Which program is better? It's hard to give a simple answer. QuickSilver is probably a better choice for the first-time compiler user because it is closer to dBASE and is supported by several development tools. Its manual, an important tool for the first-time user, is much better than Clipper's. QuickSilver is not, however, so much better than Clipper that current Clipper users should switch. I would certainly not recommend switching if code size is an important factor in your applications. Once you discover some of its powerful extensions, Clipper is still a fine program. Nantucket will, however, have to do something to improve the compiler for the Spring 1987 release.

DESQview 2.00

John McCormick

If you're looking for multitasking capability for the new IBM Personal System/2 computers, Quarterdeck Office Systems' DESQview 2.00 ($129) can provide it now. (The standard edition of IBM's multitasking operating system OS/2 will not be generally available until the first quarter of 1988.) DESQview is a windowing program for MS-DOS that lets you load multiple DOS programs and run them concurrently. DESQview also lets you run more programs than will fit in memory by swapping programs to disk, to a RAM disk, or to expanded memory, which Quarterdeck refers to as virtual memory.

Besides providing windows, concurrent processing, virtual memory, and expanded memory support, DESQview provides batch-file support, data transfer between windows, scaling of bit-mapped graphics screens, mouse support, on-line help, an auto-dialer, DOS services, and macros. DESQview can also run Microsoft Windows, GEM-, and TopView-specific programs in Video Graphics Array (VGA)- or Enhanced Graphics Adapter (EGA)-mode windows. For 80386 machines, it supports virtual screens, allowing you to run text and Color Graphics Adapter (CGA) graphics programs in the background. On IBM PS/2 machines that have 1 megabyte of memory (the Model 50 and above), DESQview is able to move 60K bytes of its overhead into memory above the 640K-byte DOS limit region, reducing the amount of memory below 640K bytes that DESQview takes up from 145K bytes to 85K bytes. Version 2.00 allows you to keep up to 60 windows open at the same time (versus the nine windows with previous versions). Version 2.00 will take up a bit more lower memory than version 1.30 does, unless your computer has extended or expanded memory.

DESQview runs on the IBM PC, XT, AT, and compatibles; the Compaq Deskpro 386; and the IBM PS/2 computers under PC-DOS or MS-DOS 2.0 or higher. It requires 512K bytes of memory (640K bytes is recommended), and it runs with boards that support the Lotus/Intel/Microsoft Expanded Memory Specification (EMS), such as the Intel Above Board. It also runs with enhanced expanded memory boards, such as the AST RAMpage!, the AST SixPak-Premium, the AST Advantage Premium, and the Quadram QuadEMS+. DESQview also supports monochrome, CGA, EGA, VGA, or Hercules display-adaptor boards. You can operate the program with or without a mouse; mice that are supported include the PC Mouse, Microsoft Mouse, Logitech C7 Mouse, Visi On Mouse, Maynard Mouse, AT&T Mouse, and any mouse that is compatible with the Microsoft Mouse driver.

SEPTEMBER 1987 • BYTE 281
continued
DESQview 2.00

Type
Concurrent, multitasking, windowing environment

Company
Quarterdeck Office Systems
150 Pico Blvd.
Santa Monica, CA 90405
(213) 392-9701

Format
One 5¼-inch floppy disk

Computer
IBM, PC, XT, AT, or compatible, IBM PS/2 computer, or Compaq Deskpro 386
with 512K bytes of memory (640K bytes recommended), two floppy disk drives or one floppy disk drive and one hard disk drive, and a monochrome, CGA, EGA, VGA, or Hercules display adapter, mouse recommended

Software Required
PC-DOS or MS-DOS 2.0 or higher

Language
Assembly language

Options
Quarterdeck Expanded Memory Manager 386: $59.95

Documentation
210-page user's guide; 14-page documentation

Price
$129.95

I installed and ran DESQview on two different machines. One was a 10-megahertz PS/2 Model 60 with 1 megabyte of RAM, one 1.44K-byte 3½-inch floppy disk drive, a 40-megabyte hard disk drive, parallel and serial ports, and a mouse. The other computer I used was a 4.77-MHz Tandy 1200 with a 10-megabyte hard disk drive, 640K bytes of memory, and an AST SixPakPremium Enhanced Expanded Memory Specification (EEMS) board with 2 megabytes of memory.

A big advantage for some users is that version 2.00 of DESQview enables you to run DOS programs, such as Format and Copy, in the background. The documentation for version 2.00 is nearly twice as long as that of older versions, and it also contains more colorful graphics, more troubleshooting information, and a new guide to error messages. A section entitled "Programmer's Reference" explains how to interface programs with DESQview. Version 2.00 has 12 options that aid in custom-installing programs, and its help screens are context-sensitive.

Installation
During the normal installation procedure for hard disk operation, DESQview searches for programs it recognizes, such as Lotus 1-2-3 or Multiplan, and, at your option, it can automatically install its custom DESQview Program Information File (DVP) setup for these programs. This file contains information about the program it describes, such as the DOS command that starts it up, how much memory it needs, and the drive and directory that it is stored on. DESQview can also use IBM TopView Program Information Files (PIFs).

Installing a program that has a PIF file merely requires that you name the program and tell DESQview what directory it is located in. The rest of the setup information is included in that file. You can easily modify window characteristics (such as size, colors, and so forth) either permanently during setup or temporarily while in a window.

You can custom-install programs that don’t come with a PIF file by specifying a set of parameters, such as how much memory the program will require, whether it uses graphics, whether it can be swapped to disk, whether it requires a key disk, and what key letters you want to use when calling it up.

Auto-dial settings and modern characteristics, as well as long-distance access codes, are also set during initial setup, as is the proportion of time spent in foreground and background processing and which, if any, mouse you will be using. If you have an earlier version of DESQview installed in your system, the custom installation features are retained when you upgrade to version 2.00.

Running Programs
WordStar, WordPerfect, and Lotus 1-2-3 run fine under DESQview and will even run in small windows because they have automatic custom installation available in DESQview’s setup. Copy-protected programs requiring start-up disks are easier to operate using DESQview, because once they are started, you can switch to a program in another window and back again without having to shut down the copy-protected program and insert the key disk to start it up again.

Because DESQview enables you to window most nonresident programs, and because DESQview provides its own macro key facility, your need for many memory-resident programs is greatly reduced. DESQview supports version 1.5 of SideKick, which should be started in its own window but will operate in all windows. Print spoolers and RAM disks should be loaded before DESQview.

While DESQview will operate in a system with only 512K bytes of memory, if you want to do multitasking you will quickly run out of memory when loading programs in different windows on a 512K-byte system. For instance, a copy of KnowledgeMan/2 will practically fill 640K bytes, and, if you want to run Lotus 1-2-3, DESQview will have to swap KnowledgeMan/2 to disk; if your system has only floppy disk drives, you will have a long wait, and even swapping to a hard disk takes about 15 seconds.

Using DESQview with EMS memory gives your programs more room, but, because you can’t run programs completely in EMS memory, there is a limit to how much it can help. EMS memory provides a 64K-byte window onto a memory space above the 1-megabyte limit of DOS. Programs such as Lotus 1-2-3 Release 2.0, which are designed to use EMS memory for data storage, make use of the EMS memory regardless of the amount of memory assigned in the program setup (as long as enough regular memory is allocated to load the program). For programs that are not designed to specifically take advantage of EMS memory, you can use this memory as a RAM disk.

DESQview operates best when EEMS memory is available because, unlike EMS memory, you can run a larger part of programs from it. When using EEMS boards, you will want to remove or disable as much of your system memory as possible, setting the EEMS board to replace up to 640K bytes. DESQview uses EEMS memory as "shadow" memory (i.e., DOS doesn’t know it exists) below the 640K-byte DOS limit. By having only 128K bytes of motherboard memory and the remainder derived from the EEMS board, DESQview can allocate 636K bytes to the first window you open and more than 600K bytes to each additional window until you run out of memory.

Only users who have large amounts of EEMS memory available in their systems will be able to take full advantage of DESQview 2.00’s capabilities. Without EMS memory, you have to spend a lot of time waiting for programs to be swapped on and off a disk or RAM disk when the regular memory is not sufficient to accommodate all the resident software. If you have about 5 megabytes of EEMS memory available, this completely eliminates the need for disk swap-
Background Processing
In addition to loading multiple programs simultaneously, DESQview will allow programs to continue to run in the background. The more time devoted to these background programs (such as a spreadsheet recalculations, for instance), the slower the foreground screen becomes. For tasks such as word processing, data entry, or other relatively slow operations, you can allocate a lot of time to the background, and the machine will not appear to run slowly. Allocating little time to the background will enhance the performance of the foreground program.

When running DESQview on the IBM PS/2 Model 60 with a fast (33-millisecond access time) hard disk drive, I found that it was practical to run several programs, even in a machine that did not have EEMS memory. Disk swapping was so much faster that it took an average of only 1.95 seconds to swap large programs. Even with 1 megabyte of standard memory, however, it was difficult to open more than 11 windows before running out of common memory.

Even if you are limited to only 640K bytes of regular memory, some programs that require only 60K bytes to run in a window, such as WordStar 3.31, let you load multiple copies with ease and switch between projects or files with two keystrokes and no wait for disk swapping.

For 80386 machines, the Quarterdeck Expanded Memory Manager 386 ($59.95) is available as an option. It allows you to take advantage of the 80386 extended memory. DESQview also supports the virtual 80386 architecture on the Deskpro 386. The installation procedure is slightly different, but otherwise DESQview works as it does with other computers, using up to 5.5 megabytes of memory to run programs in windows as big as 624K bytes each. Version 2.00 supports virtual screens on 80386-based computers and takes advantage of the EGA screen’s larger text capacity.

One ideal use of a multitasking system would be to run a communications program in the background for uploading or downloading while you work on something else in the foreground. When installing a communications program, you must be sure that it is never swapped to disk while operating. One communications program that I have found to work well in the background is HyperACCESS from Hilgraeve Inc.

What’s It Good For?
I found DESQview to be particularly handy for use with copy-protected programs that require a key disk. I found it practical to always keep a copy of Lotus 1-2-3 running in one window because it is so easy to access when I don’t have to deal with copy protection every time I want to reload it during a workday.

DESQview is suitable for users who need multitasking and can afford to slightly increase processing time for each program, or for users who need to switch between a number of programs quickly and often. If you run programs concurrently, however, they will all slow down (considerably, if your computer is running at 4.77 MHz). If you stick to programs that have PIF setup information or programs for which DESQview has a special setup, then DESQview will operate with no problems, and installation will be very simple.

John McCormick (RD #1, Box 99, Mahaffey, PA 15757) is a computer consultant and freelance writer.
Timely and Detailed Computer-Related News and New Product Information Via Your Computer

IBM unveils its new Personal System/2 Computers and OS/2 operating system. BIX begins providing detailed coverage to its 17,000 users worldwide, five minutes after the corporate unveiling.

A spokesman for a major 386 chip manufacturer says the industry is turning to single-sourcing. BIX has the story and analysis, including a forecast of possible 386 chip shortages in the months ahead.

Buyers of a major computer manufacturer’s newest product report interface problems with some hard disk drives. BIX reports first on the problem and on the company’s announcement of an update.

If information like this vital to you and to your company, you should know about Microbytes, one of six powerful services you get when you join BIX.

NEWS

Microbytes is a daily newswire of computer-related information, available to all BIX users. BYTE and BIX editors attend trade shows and press conferences, talk with industry leaders, researchers and product developers and scan thousands of press releases. Each day they file detailed reports, often exclusive, filled with information that’s vital to you—new technologies and trends that will influence the products of the future, major speeches and events, acquisitions and more.

NEW PRODUCTS

Microbytes is new product information. BYTE and BIX staff analyze thousands of new computer-related products each month, and detail the most significant in specially organized hardware and software product listings.

DETAILED AND IN-DEPTH

Microbytes supplements BYTE’s editorial coverage with additional articles, interviews and special product previews and reviews. You never miss important items because BIX remembers what you’ve read and takes you immediately to any new information posted since the last time you were on. And since important news is retained on-line, you can quickly locate past coverage of specific products or events using the powerful BIX search command.

Need more information? Call or write BIX and ask for the Microbytes Information Pack or circle number 425 on the BYTE Reader Service Card.

Join Microbytes Today

If you’re unfamiliar with on-line services but interested in Microbytes, we’ve made things easy for you. Follow the procedures on the opposite page, but enter the word micronews in place of the word new. You’ll be automatically joined to the free BIX learn conference (which teaches you how to use the system) and to Microbytes. (Other BIX services are yours whenever you want them. Once you’ve registered, BIX bills you only for the time you are connected...no minimum monthly charges or special fees)

BIX Microbytes is one of six powerful services available to you when you join BIX.
Six great reasons to join BIX today

• Over 140 microcomputer-related conferences:
 Join only those subjects that interest you and change
 selections at any time. Take part when it's convenient
 for you. Share information, opinions and ideas in
 focused discussions with other BIX users who share
 your interests. Easy commands and conference digests
 help you quickly locate important information.

• Monthly conference specials:
 BIX specials connect you with invited experts in lead­
 ing-edge topics—the IBM PS/2 family, OS/2, and more.
 They're all part of your BIX membership.

• Microbytes daily:
 Get up-to-the-minute industry news and new product
 information by joining Microbytes.

• Public domain software:
 Yours for the downloading, including programs from
 BYTE articles and a growing library of PD listings.

• Electronic mail:
 Exchange private messages with BYTE editors and
 authors and other BIX users.

• Vendor support:
 A growing number of microcomputer manufacturers
 use BIX to answer your questions about their products
 and how to use them for peak performance.

What BIX Costs... How You Pay

ONETIME REGISTRATION FEE: $25

<table>
<thead>
<tr>
<th>Hourly Charges</th>
<th>Off-Peak</th>
<th>Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7PM–6AM</td>
<td>6AM–7PM</td>
</tr>
<tr>
<td>(Your Time of Access)</td>
<td>Weekdays Plus</td>
<td>Weekdays</td>
</tr>
<tr>
<td>BIX</td>
<td>$9</td>
<td>$12</td>
</tr>
<tr>
<td>Tymnet*</td>
<td>$2</td>
<td>$8</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$11/hr.</td>
<td>$20/hr.*</td>
</tr>
</tbody>
</table>

* Continental U.S. BIX is accessible via Tymnet from throughout the U.S. at charges much less than regular long distance. Call the BIX helpline number listed below for the Tymnet number near you or Tymnet at 1-800-336-0149

** User is billed for time on system (i.e., 1/2 Hr. Off-Peak w/Tymnet = $5.50 charge.) BIX and Tymnet charges billed by Visa or Mastercard. Call or write for other billing options.

JOIN BIX RIGHT NOW:
Set your computer's telecommunications program for full duplex, 8-bit characters, no parity, 1 stop bit OR 7-bit characters, even parity, 1 stop using 300 or 1200 baud.
Call your local 'Tymnet* number and respond as follows:

Tymnet Prompt You Enter
Garble or "terminal identifier": a
login: bix <CR>
BIX Logo—Name: new <CR>

After you register on-line, you're immediately taken to the BIX learn conference and can start using the system right away.

FOREIGN ACCESS:
To access BIX from foreign countries, you must have a packet switching account with your local Postal Telephone & Telegraph (PTT) company. From your PTT enter 310600157878. Then enter bix <CR> and new <CR> at the prompts. Call or write us for PTT contact information.

BIX
One Phoenix Mill Lane
Peterborough, NH 03458
(603) 924-9281

Inquiry 450

SEPTEMBER 1987 • BYTE 285
News about the Microsoft Language Family

Microsoft® Macro Assembler Version 5.0

Microsoft Macro Assembler Version 5.0 has a host of exciting new features that make assembly language programming easier and more powerful than ever! Microsoft Macro Assembler Version 5.0 now includes the Microsoft CodeView® window-oriented debugger and can assemble instructions written for the Intel® 80386 CPU. Comprehensive documentation and example programs help you write assembly code subroutines that can be called from other Microsoft languages such as C, BASIC, FORTRAN, and Pascal. Microsoft Macro Assembler Version 5.0 also assembles your programs 25-40% faster than Version 4.0.

Now it's easy to write assembly language subroutines for high-level language programs

If you have always wanted to write fast assembly language subroutines to make your programs fly, now is the time to try Microsoft Macro Assembler Version 5.0. Version 5.0 comes with a completely new Mixed-Language Programming Guide, which describes in clear, step-by-step language how to write, assemble, and link an assembly language subroutine with your Microsoft BASIC, C, FORTRAN, or Pascal programs. The examples from this manual are provided on disk so you can use them as templates, filling in your own code and leaving the prologue and epilogue instructions that make the interface function correctly. Now Microsoft Macro Assembler Version 5.0 makes segmentation easy. Our new “simplified segmentation” directives are short, straightforward, and intuitive: To declare the correct model for your subroutine, just use the .MODEL directive and choose the model you need: SMALL, MEDIUM, COMPACT, LARGE, or HUGE. To start your data segment, just add a .DATA directive; to set your stack, add a .STACK directive; and to begin writing instructions, use the .CODE directive.

Microsoft Macro Assembler now includes the CodeView source-level debugger

CodeView, Microsoft’s famous debugger for its C and FORTRAN languages, now comes to the world of assembly language programming. Source-level debugging allows you to view your program just as you wrote it, including the comments and spacing that are especially important in helping you follow your program’s execution. You can access variables by name, even if they aren’t declared public, and see constants as names instead of as anonymous numbers.

Write programs for the 80386

Microsoft Macro Assembler Version 5.0 can assemble the new instructions available with the powerful 80386 CPU and the 80387 math coprocessor, as well as 80286 instructions that have been enhanced to work with 32-bit registers. You can also use the new 32-bit wide registers to write faster programs than, ever by using such operations as 32-bit add and subtract and 32-bit multiply and divide without using multiple registers. For more powerful data access Microsoft Macro Assembler Version 5.0 allows you to choose any 32-bit register for indirect memory access, to use “scaling” for easy array access, and to move 32 bits of data directly from memory into a register and back.

For more information on the products and features discussed in the Newsletter, write to: Microsoft Languages Newsletter, 16011 NE 36th Way, Box 97017, Redmond, WA 98073-9717. Or phone: (800) 426-9400. In Washington State and Alaska, call (206) 882-8088. In Canada, call (416) 673-7638.

Look for the Microsoft Languages Newsletter every month in this publication.
Kernel

Computing at Chaos Manor:
In the Chips 289
by Jerry Pournelle

Applications Only:
Potpourri 307
by Ezra Shapiro
Our "SCANNING CONNECTION" system can be used to read your paper documents into a PC. Pictures and graphs can be scanned and saved in various file formats for use by many word processing and desktop publishing systems. Text images can be converted to character text for use with most word processing and typesetting systems. Images can be sent over telephone lines to another PC or a facsimile machine.

We have developed a special controller card for high speed compression of images and for character recognition. Books, magazines, newspapers, reports, and typed documents can be read by our OCR software. The software can be trained to recognize almost any font style. System prices including scanner and software start at $1795.

With our "TAPE CONNECTION" system you can read and write most 1/2" 9-Track magnetic tapes using your PC. Tapes can be 600, 1600, or 6250. Our file transfer software can process ANSI labeled tapes from most computer systems including DEC, HP, HONEYWELL, and IBM. Large files from multivolume tape reels can be transferred to a disk at rates up to 5 MB/min. Software is provided to use the system for backup of the hard disk on your PC.

With more than twenty years experience in working with tape drive systems, we can solve most PC tape conversion problems. We can supply more than ten different tape drive models. System prices including tape drive, controller card, and software start at $3495.

We specialize in conversion systems and can transport your documents or images to almost any computer, word processing, or typesetting system. With our "DISKETTE CONNECTION" system you can read and write most 8", 5½", or 3½" diskettes using your PC. We support systems from DEC, CPT, WANG, NBI, LANIER, HONEYWELL, and XEROX. We support most IBM systems including 3741, S/36, PC/36, 4300, and Displaywriter.

Since 1981 we have developed hundreds of software programs and designed many specialized diskette hardware products. With thousands of installations worldwide, we are probably the world leader in manufacturing diskette conversion systems. System prices including diskette drive, controller card, and software start at $1195.

Inquiry 95 for End-Users.
Inquiry 96 for DEALERS ONLY.
In the Chips

Jerry Pournelle

Fast Kat gets even faster with a math coprocessor, DESQview, and VOPT.

It was almost a quiet month. Of course, we did have to go to Atlanta for Spring COMDEX. There then were publicity arrangements for Janissaries III: Storms of Victory and the new Niven/Pournelle/Barnes book Legacy of Heorot, and Niven and I have been hard at work on The Moat Around Murcheson’s Eye, and we got a new puppy and had to persuade the cat not to leave home; but all in all, nearly quiet.

Fast Kat
It’s official: the main machine at Chaos Manor is now Fast Kat. For the record, Fast Kat is a Kaypro 386 with built-in EGA color. Mine has accessories: the Intecotrend Megatrend 19-inch EGA monitor, a DataDesk Turbo-101 keyboard, Xerox PC TypeRight in-line spelling checker box, and Amdek CD-ROM reader. They work together fine, and the system is fast. While I was changing over from Zelda the Zenith Z-248 to Fast Kat, I did some rearranging. My desk is now completely surrounded by computers. One of these days I’m going to design some computer furniture; nothing I’ve seen makes really efficient use of the limited space near a desk.

Otherwise, I don’t have a lot to report about Fast Kat that I didn’t say last month. Once in a while I think I’ve found PC-compatible software Fast Kat won’t run, but every time that has turned out to be my fault.

We did make one improvement since last month; we managed to install a math chip. It wasn’t easy.

Math Chips
Last month’s column featured a new round of tests with my matrix benchmark program. Examining the results gave me a surprise: no matter what the basic speed of the machine, for math-intensive programs like matrix operations, the really dominant factor is the presence of a math chip. There are differences between the 8087, 80287, and 80387, but they are nothing compared to the difference between having a math chip and not having one.

Fast Kat didn’t come with a math chip, but once I started playing with benchmarks, it became obvious he’d need one.

Intel makes a small adapter board about 3 inches square to adapt the 80287 math chip so that it can work with an 80386 CPU. The Intel people were kind enough to send me several of them for the various machines we have here. First to get one was the CompuAdd Standard 286-II with the Cheetah Adapter/386 board.

On opening the machine I found a minor problem: Cheetah makes its own board inserted into its socket I’d have to slide the chip forward; but then I found that the hard disk’s cage doesn’t come out. The bottom support of that cage is a piece of steel bent at a right angle; it’s bent down far enough that it was impossible to slide the chip board under the disk cage. It was clear that if I could ever get the adapter board inserted into its socket I’d have plenty of room; but while the pins on the square-gate-array socket are considerably more rugged than those on a standard chip, I didn’t want to force things.

Eventually I took the vise grips to the cage-support bar; by bending that angle bracket so that it’s about 60 degrees instead of 90 degrees, I haven’t weakened it much (as all Kaypro stuff is, it’s strong enough to resist 7.5 on the Richter scale); and that made just enough room to slide the assembly under the cage. I’d previously lubricated the pins with Stabilant (what I used to call Tweek), and it dropped right in.

After that, things went fast. Reassembly was no trouble, and everything works fine. A few days later, while talking to the Kaypro technicians about setup software, I mentioned the problem I’d had getting the math chip in.

"Gee," one said. "We didn’t think you continued"

Jerry Pournelle holds a doctorate in psychology and is a science fiction writer who also earns a comfortable living writing about computers present and future.
could do that. We always take out the motherboard.

Sigh.

DESQview Yet Again

Yesterday morning, I got a beta-test developer's copy of Softguard's VM/386 virtual operating system for the 386. I haven't had a chance to do anything with it; at least it exists.

For the moment, though, the best way to get much of the power of the 386 is with Quarterdeck's DESQview. For those who've missed the past few months' discussions, DESQview is a program that allows multitasking. In a 286 AT system, DESQview does this by swapping programs in and out of extended memory or, if need be, to disk or RAM disk files. It can do that on a 386, too, but, in fact, Quarterdeck's QEMM 386 Memory Manager program coupled with the 386's speed makes all that pretty well invisible.

DESQview isn't perfect. Far from it. It has DESQview Utilities consisting of a calculator, calendar, dialer, and notepad, and while they're all right, they're not as easy or convenient (at least for me) to use as SideKick is. For example, I like to use SideKick to grab stuff from the BIX screen, edit and modify it, and then squirt it back to BIX through the modem. With SideKick, the importation is almost trivially easy. The export is tougher: first you do Control-K-E, then tell it what key to trigger the squirt, then mark the beginning and end of the block to be squirted. I have a SuperKey macro that makes all that a great deal simpler.

For a while my SideKick upload procedure didn't work, and I thought it was something to do with the 386; but it turned out I'd copied my AUTOEXEC.BAT file wrong and invoked SideKick before SuperKey. SideKick has to be last, and if it isn't, not only can you mess up SideKick's ability to export stuff with the Control-K-E command, but you can muck up other programs as well.

As an example, I've set up Brief, my favorite programming editor, in its own directory and put a path to that directory in the AUTOEXEC.BAT file. This works fine, unless you put SuperKey after SideKick. When you do that, if you call Brief from anything but its own subdirectory, the machine locks up. The first time that happened I thought it was Brief's fault, but it wasn't.

The moral of the story is that if you use memory-resident programs and get odd results from anything else, you'll probably want to check the memory residents before spending a lot of time in diagnostics.

Provided that SideKick is installed last, though, it really is convenient.

Alas, SideKick won't work with DESQview. If you invoke SideKick in its own window, DESQview won't let it have a communications port; if you invoke it in a batch file in the same DESQview window as, say, Crosstalk, your communications are going to be slow and jerky. I don't know why, but the effect is very real—and even if you were willing to put up with that, the SideKick export won't work anyway!

All of which means that if you use DESQview, you have to put up with the DESQview Mark, Cut, and Paste routines, which is awkward. The DESQview notepad editor uses mostly the same commands as WordStar, and they can be changed if you like, so it's not hard to use. But unless you invoke the DESQview notepad before you start any other job, the colors are so grimly horrible you can't believe them. In theory, it's easy to change colors in a DESQview window. In practice, it's one more thing to try to learn, and the colors for the notepad would still depend on when you opened...
RECENT DISCOVERY

TRTC PLUS by Cobalt Blue. Translate FORTRAN 77 and RAFTOR to C except
F77 I/O, FORTRAN character, and
complex expressions. Some DEC F77
extensions. Library C Source. MS $ 279

System - use with C MS 229
SQL Dev't Package MS 229
Auto-Intelligence PC $ 739
Cxpert - shell for C MS 295
Export-e - Powerful, samples PC 339
Exprs.
Runtime System PC 469
Insight 2 + MS 379

Intelligence/Compiler PC 739
T.I. : PC Easy MS 435
Personal Consultant Plus PC 2398
Personal Consultant Runtime PC 85
Turbo Expert-Study(400 rules) MS 129
Corporate (4000 rules) MS 359

AI-Lisp

Microsoft: MuLisp 85 MS $ 159
PC Schema LISP - by T1 PC $ 85
Star Sapphire MS 459
TransLISP - learn fast MS $ 79
TransLISP PLUS
Optional Unlimited Runtime MS $ 139
PLUS for MSDOS MS 169
Others: IQ LISP($239), IQC LISP ($269)

A P : Active Prolog Tutor - build
applications interactively PC $ 49
ARYT Prolog - full, 4 Meg
Interpreter - debug, C, ASIM PC $ 229
COMPILE/Interpreter-EXE MS 569
Standard Prolog MS 79
MacProlog Complete MAC 269
MicroProlog - Prof. Entry Level MS $ 85
MicroProlog Prof. Comp. /Interp. MS 439
MPROLOG P550 PC 175
Prolog-86 - Learn Fast MS 89
Prolog-86 Plus - Develop MS 199
TURBO PROLOG by Borland PC 69

Basic

BAS-C - economy MS $ 179
BAS_PAS - economy MS $ 135
Basic Development System PC 105
Basic Development Tools PC 89
Basic Windows by Syscom PC 95
BetterBASIC MS 129
Exim Toolkit - full MS 45
Finally - by Komputerwerks MS 58
Mathzby MicroHelp MS 55
QBasic - by Crescent Software MS 89
QuickBASIC MS 69
Quick Pak-by Crescent Software PC 59
Stuy-Res PC 59
Turbo BASIC - by Borland PC 69

FEATURE

TP2C - Translate Turbo Pascal
formatted C & R C (proposed ANSI
85 standard). Include files, in-line
code, nested procedures. 95 + %
successful conversion. PC $ 219

RECENT DISCOVERY

dB2C Toolkit V 2.0 by Software
Connection. 220 + dbII functions in
C source, file handler, windowing,
to db__VISTA, c-tree,
dbCII, MS, Lattice, Instant C
No Royalties MS $ 289

dBASE Language

Clipper compiler PC Call
dBASE II MS $329
dBase III Plus PC $429
dBASE III LANPack PC $649
DBX Interpreter by Word Tech PC $139
FoxBASE 4 + single user MS $349
Quick Silver by Word Tech PC $439

dBase Tools for C

dBrief with Brief MS $65
DBC ISAM by Lattice MS Call
dFlow - flowchart, xref MS Call
document - (50 rules superset MS Call
genF by Bytel-code generator MS $299
QuickCode III Plus MS $239
Tom Rettig's Library MS $89
U1 Programmer - user interfaces MS $249

30: More FORTRAN

Fortib + by Alpha MS $ 59
I/O Pro - screen development PC $129
MS Fortran - 4.0, full '77 MS $279
No Limit - Fortran Scientific MS $109
PC-Fortran Tools - xref, pprintf MS $165
RM/Fortran MS Call
Scientific Subroutines - Matrix MS $129

Multilingual Support

BTRIEVE ISAM MS $185
BTRIEVEN-multuser MS $435
Flash-Up Windows PC $79
GSS Graphics Dev't Toolkit PC $375
HALO Development Package MS $389
HALO Graphics MS $209
Informix 4GL-application builder PC $789
Informix SQL - ANSI standard MS $639
NET-TOOLS - NET-BIOS PC $129
Opt Tech Sort - sort, merge MS $ 99
PANEL MS $215
PARBASE - by Phoenix MS $229
Polyboost - speed I/O, keyboard PC $69
Prime Factor FFT - 8087/287 MS $145
PVCS Corporate-source control MS $309
PVCS Personal MS $109
QMake by Quilt MS $ 79
Report Option - for XTools MS $109
Screen Machine PC $ 99
Source2 Sculptor MS $ 95
SRMS - new version MS $159
Synergy - create user interfaces MS $375
VXM - multi-env link MS $195
Xtreme - organize database MS $199
ZAP Communications - VT 100 PC $ 89

FEATURE

C Worthy Interface Library - Complete,
tested human interface for MS C, Lattice
or Turbo C. Full screens, Windows, DOS,
Error handling, Menus, Messages.
Source separate, no royalties. PC $249

Note: All prices subject to change without notice. Mention in ad. Some prices
are specials. Ask about GDD and PDS. Formats: 3 1/2 - diskette available.
5 1/4-diskette. UPS surface shipping add 50c item

Call for a catalog, literature and solid value
800-421-8006
We want to help!

If you have a problem with your BYTE subscription, write us with the details. We'll do our best to set it right. But we must have the name, address, and zip of the subscription (new and old address, if it's a change of address). If the problem involves a payment, be sure to include copies of the credit card statement, or front and back of cancelled checks. Include a "business hours" phone number if possible.

BYTE
Subscriber Service
PO. Box 6821
Piscataway, NJ 08854

New!

Code View? For Turbo Pascal?

T-DebugPLUS 2.0 brings powerful but easy-to-use symbolic run-time debugging to your fingertips — the same power you'd expect to find in Microsoft's CodeView™. Debug Turbo Pascal programs faster with:

- Watch windows for variables
- Conditional breakpoints
- CGA, EGA & Hercules graphics

"T-DebugPLUS is the most important Pascal tool ...since Turbo itself."
PC Magazine, June 23, 1987

T-DebugPLUS is only $60.
Call toll free for credit card orders.
1-800-538-8157 x 830
1-800-672-3470 x 830 in CA

Satisfaction Guaranteed or your money back within 30 days.

For all that, I tend to use DESQview more and more. For one thing, Quarterdeck is quite responsive to bug reports; the DESQview you'll be able to buy when you read this will not be the same one I'm running. Also, DESQview has some really neat features, including a very nice keyboard swap and macro program similar to SuperKey. It's possible to build a customized file of keyboard macros that will be "automagically" invoked whenever you bring in the program they're associated with.

For example, when I bring in WordPerfect under DESQview, I also bring in a macro that redefines the backspace to "left-arrow delete left-arrow right-arrow." The "left-arrow delete" business is necessary because DESQview won't let you define a key recursively; and the "left-arrow right-arrow" monkey motion makes WordPerfect reformat the paragraph. I expect that would be a silly thing to do on a slower machine, but on the Kaypro 386, the operation is instantaneous.

The macros are neat, but mostly, DESQview is still the only way to do real multitasking; and that's quite often worth the problems DESQview can cause.

Swaps
I use DESQview a lot, but not always; often, it's just more convenient to have my usual bunch of memory-resident programs. Of course, I want them installed automatically; I also tend to want a different configuration of memory residents...
NEW! From Sterling Castle...
BASIC Development Tools™
Powerful “Automatic Programming” Tools That Save You Hours of Valuable Time.

The novice or power programmer, can easily add these professional features:
- Screen Builder
- B+ Tree
- EZ Screen Pop-up Windows
- Help Message System

BASIC Development Tools™ (BDT™) is compatible with the newest, fastest compilers, including Microsoft QuickBASIC™ and Borland Turbo Basic™. In BDT you have four powerful aids that can be used separately or together.

Screen Builder System translates the painted screen image into BASIC code which then can be merged in your program.

B+ Tree Data Manager is a very fast data file index system providing both direct and sequential access to data. Complete source provided.

EZ Screen Pop-up Window Manager, written in assembler, easily inserts menus, windows, notepads. Saves a portion of the screen to/from a buffer.

Help Message System allows the creation of context sensitive help messages in your application program. With BDT you have four of the most popular programming aids for $99 includes two diskettes and 220 page manual.

60 DAY FREE TRIAL.
ORDER TODAY! (800) 732-7853
(213) 366-3020 in California
All trademarks acknowledged.

PVCS
The Most Powerful & Flexible Source Code Revision & Version Control System

The POLYTRON Version Control System (PVCS) allows programmers, project managers, librarians and system administrators to effectively control the proliferation of revisions and versions of source code in software systems and products. PVCS is a superb tool for programmers and programming teams. (A special LAN version is also available.) If you allow simultaneous changes to a module PVCS can merge the changes into a single new revision. If the changes conflict, the user is notified.

Powerful capabilities include: Stores and retrieves multiple revisions of text; Maintains separate lines of development or “branching”; Provides for levels of security to assure project integrity; Uses an intelligent “difference detection” to minimize the amount of disk space required to store a new version. Requires DOS 2.0 or higher. Compatible with the IBM PC, XT, AT and other MS-DOS PCs.

Personal PVCS
— For single-programmer projects $149 $109

Corporate PVCS
— For larger, multiple-programmer projects $395 $309

Call POLYTRON at (503) 645-1150 for pricing on larger networks.

FREE*: Probe the Minds of 19 World-Class Programmers!

Programmers at Work is a fascinating collection of interviews with industry leaders like Jon Sachs, Wayne Ratliff, Dan Bricklin, and Bill Gates. “Prefaced by a short biography and including program doodles and samples of source code, each interview examines the forces, the events, and the personality traits that have influenced the programmers’ work.”

FREE* or Only $14.95! — from the jacket

NOW: Special OFFER! $250 of any software and get Programmers at Work FREE!

Payment method: _____ Check/MO _____ MasterCard/VISA

Acct. # ___________ Exp.: ________

Your Computer: ___________ O/S: ___________

Name: ___________

Street: ___________

City: ___________

State: ___________ Zip: ___________

Item: ___________

Price: ___________

Total: ___________

OFFER EXPIRES 9/30/87.

FREE fully functional DEMO disk!

Stunning speed, unmatched performance. Total flexibility. Simple and intuitive operation. The newest VEDIT PLUS defies comparison.

Other editors just don’t offer this wide a range of features:
- Execute DOS commands
- Built-in macros
- Keystroke macros
- Multiple file editing
- Undo line changes
- Paragraph justification
- On-line calculator

VEDIT PLUS performed 10 times faster than its nearest competitor in a pattern matching search test and replaced patterns even faster.

Go ahead. Call for your free, fully functional demo today. You’ll see why VEDIT PLUS has been the #1 choice of programmers, writers, and engineers since 1980.

Available for IBM PC’s, MS-DOS, and CP/M.

Free fully functional DEMO disk!

GET YOUR FREE DEMO DISK!

Order any product on this page OR $250 of any software and get Programmers at Work FREE!

Call TODAY for FREE detailed information or try RISK-FREE for 31 days.

High Quality Software Since 1982

Call Today for FREE detailed information or try RISK-FREE for 31 days.

800-421-8006

HOURS: 8:30 A.M. - 8:00 P.M. E.S.T.

5 Pond Park Road, Hingham, MA 02043 Mass: 800-442-8070 or 617-740-2510 5/87
Even More Power & Flexibility

BRIEF 2.0

BRIEF easily conforms to your editing preferences and style, ensuring you are truly comfortable and productive. Straight from the box, BRIEF is as much editor as most people will ever need — thanks to features like the real Undo, flexible windowing, and unlimited file size.

But BRIEF’s hidden power is in its exclusive macro language. Customize BRIEF to include the commands and features YOU desire. It’s fast and easy.

Users and industry press alike unanimously praise BRIEF.

"BRIEF (195) for 30 days—if not satisfied get a full refund."

— Jerry Pournelle, Byte 12/86.

Now BRIEF 2.0 adds:

- Windows
- Multi-level Undo
- Edit many files at once.
- All new documentation WITH tutorial on the Macro Language.
- Command line editing (move cursor, add & delete characters, specify parameters).
- Expanded Regular Expressions, with matching over line boundaries.
- More block types, with marking by character, line or column.
- Reconfigurable indenting for C files (supports most indenting styles).
- Large display support, including wider displays.
- Borderless windows.

BRIEF ($195) for 30 days — if not satisfied get a full refund.

If you already own BRIEF, call for update info.

Requires an IBM PC, AT or compatible with 192K.

Solution Systems
541 Main Street, Suite 410B
Wayne, MA 02190

CALL 800-821-2492

CHAS MANOR

Inquiry 272

depending on which job I want to do. That used to take me more time than I like.

The solution to that seems obvious enough now, but I confess it took me a while to think of it. What I’ve done is make a series of batch files that copy specialized versions of AUTOEXEC.BAT and CONFIG.VSYS. As an example, I have a file called MAKEREG.BAT that says:

```
echo off
echo Setting up to make 'REGULAR'
set REGULAR=Ready!, SuperKey, and SideKick
echo on

copy autoexec.reg autoexec.bat
copy config.reg config.sys
```

Similar batch files are MAKVAM.BAT, which sets things up to install DESQview; MAKEFRAM.BAT, which sets up to install Framework; and so on. Fast Kat resets very quickly, so it’s no inconvenience. All of this is so obvious, I wonder why it took me so long to think of it.

Q&A

I’ve had Q&A version 2.0 for the 80386 for most of the month, and I like it a lot. There are more powerful database programs, and there are certainly better text editors; but I think there isn’t a much better combination database and word processor, and each of them separately is a great deal better than good enough. The main attraction, though, is that there’s nothing easier to use right out of the box.

Q&A isn’t perfect. The original version ate memory like mad, and so does this version. This is because of an artificial intelligence routine called the Intelligent Assistant. There aren’t any small and compact AI programs. If you run Q&A without the Intelligent Assistant, it’s not much larger than other database programs. Q&A for the 386 is partly written in 386 native code, but it doesn’t take much advantage of extended memory. Symantec says they’ll change that.

Another problem with the new Q&A is the manual. Unlike the original, this one isn’t loose-leaf. It’s spiral-bound in two parts. That probably wouldn’t be a problem for some people, but it is for me. The two volumes are very different in size. Volume II is quite thin. I’m always losing it—and it contains the index, so then it’s nearly impossible to find anything in Volume I. This is a dumb way to organize material. I’ve ended up digging out the old loose-leaf manuals for version 1.2. They’re not seriously out of date.

On the good side, Q&A for the 386 is
blazingly fast. Moreover, it not only runs fine under DESQview, the DESQview script (key-swap and macro) capability lets you improve Q&A quite a lot. Q&A has a pretty powerful macro capability of its own, but it's not always as convenient to use as DESQview's.

For example, the Q&A people went to considerable trouble to make the backdrop work differently when in type-over and insert mode. I'm not used to that; I want the backdrop to be the Rubout key that both deletes the letter to the left of the cursor and sucks up the empty space formerly occupied. It was no great trick to use the DESQview macro capability to set things so the backdrop does that all the time. Since Q&A's word processor automatically reformats paragraphs with every insert/delete, no monkey motions were needed.

The Q&A word processor is plenty good enough for just about everything I'm likely to do, but if that were all there was to the program, I'd never use it; TNT Software's MyWord and Bob Wallace's shareware PC-Write both pack more features and cost quite a lot less; and some of Q&A's editing features are not particularly easy to use.

As an example, to get a word count, you must go into search mode, then search on the wild card for "any word" (which happens, in Q&A, to be "..."). That uses a lot of keystrokes, and for what? Also, to get line counts, you have to do arithmetic; there's nothing corresponding to WRITE's command that tells you words, lines, and paragraphs before cursor, after cursor, and for entire document in one (almost instantaneously executed) command.

So: the word processor is easy to learn and better than adequate, but not spectacular. The big deal is that Q&A is an easy-to-use database.

The word processor with Q&A is easy to learn and better than adequate, but not spectacular. The big deal is that Q&A is an easy-to-use database.

my kind of game, which is to say there's a little arcade skill involved, but it's mostly strategy. Part of that strategy is commodity trading; and in Sundog that can be complex.

In fact, the game information was so complex I found myself wanting a database program to organize it; and since I needed a way to test Q&A for myself, this seemed a good way to do it.

A Database for Sundog

I had the same experience Mrs. Pournelle did, namely, that it took almost no time to get things set up. Q&A organizes records as "forms," and designing a form is literally no trick at all. Of course, I wasn't sure what information I wanted, or how to organize it, but that didn't turn out to be difficult, either.

Sundog is a complex game. There are about a dozen solar systems, each with one to four planets. Each planet has from one to seven cities. Each city has an exchange building located randomly inside its boundaries. The exchanges offer a variety of commodities, but not all commodities are offered at all exchanges.

Each commodity comes in grades A (best) through G (worst). Prices for commodities in various grades vary from planet to planet, and from city to city on each planet. You can get information about prices in a particular city only by visiting that city's exchange and either offering to sell something you've brought or waiting to see what's offered for sale.

One object of the game—or at least a necessary action—is to make money through buying commodities in one place, transporting them to another, and selling them. Of course, if you buy inappropriate items for the place you're going, you can lose money, especially since fuel isn't cheap.

To make things even more complicated, the game lets you engage in black-market trading of ship and computer parts. These don't come in grades (al-

continued
Q&A is, after all, a file management program, and what I have here is a relational-database problem.

though you could consider them all to be of grade A) and aren’t bought and sold in exchanges; to buy, you generally go to a parts store on a high-tech planet, and to sell, you generally go to a bar.

Finally, there is information about the cities themselves; information unrelated to any commodity. Things like, does the city have parts stores? What do they look like? Where is the exchange? (You can spend half an hour of real time looking for it if you haven’t made notes.) What’s the price of beer and hamburgers? (This gives a good indication of the general price levels for the city as a whole.)

This makes for a complicated database. When I started, I set it up so that a record consisted of the name of the star system; planet; city; commodity; grade; price; and left fields for comments.

I certainly don’t have information about all commodities or all grades for each city. On the other hand, if I find that in one city the price for grade D biochips is higher than the price for grade B in another city, I don’t need to know more to get a handle on the profit to be made in that commodity.

Q&A is admirable for organizing information like that. Once I had my database established, I had it print out reports: one set was organized alphabetically by commodities, so that any time I needed to buy a given commodity, I could look up all the places that commodity might be available and the price I’d be likely to pay; and another report was organized by cities, so that I could look up for any given city what commodities I’d been offered and what they sold for.

Q&A could handle other information, but organizing it wasn’t quite so simple. In fairness, what I have isn’t a simple problem. For example, how to preserve general information not associated with commodities? Do I note the location of the exchange in a field on a typical form with commodity information, and thus have that blank field on most entries; or do I put it on a special form with the commodity information blank; or do I make a special file that contains only that information?

No database easily handles this kind of problem. What I really need is a pair of linked relational databases, as well as some ingenuity in modeling my data problems. Q&A certainly does this as well as most, and because it’s comparatively easy to add new data fields, or even get the Intelligent Assistant to make new databases from your old one, I was able to work around the difficulty. Q&A is, after all, a file management program, and what I have here is a relational-database problem. More on this in the next few months.

Meanwhile, my main problem was that blanks are sorted to the beginning of a report, and sometimes my reports had unesthetic blank-line entries at the top when printed out.

Another example: suppose I know that in the city of Drahew I can buy grade C drokls for 10,000 and grade E for 9000. A good guess would be that grade D sells for 9500; it would sure be nice if I could make the computer go through the database and fill in blanks everywhere through interpolation and averaging. Of continued

Q&A is admirable for organizing information like that. Once I had my database established, I had it print out reports: one set was organized alphabetically by commodities, so that any time I needed to buy a given commodity, I could look up all the places that commodity might be available and the price I’d be likely to pay; and another report was organized by cities, so that I could look up for any given city what commodities I’d been offered and what they sold for. Q&A could handle other information, but organizing it wasn’t quite so simple. In fairness, what I have isn’t a simple problem. For example, how to preserve general information not associated with commodities? Do I note the location of the exchange in a field on a typical form with commodity information, and thus have that blank field on most entries; or do I put it on a special form with the commodity information blank; or do I make a special file that contains only that information?

No database easily handles this kind of problem. What I really need is a pair of linked relational databases, as well as some ingenuity in modeling my data problems. Q&A certainly does this as well as most, and because it’s comparatively easy to add new data fields, or even get the Intelligent Assistant to make new databases from your old one, I was able to work around the difficulty. Q&A is, after all, a file management program, and what I have here is a relational-database problem. More on this in the next few months.

Meanwhile, my main problem was that blanks are sorted to the beginning of a report, and sometimes my reports had unesthetic blank-line entries at the top when printed out.

Another example: suppose I know that in the city of Drahew I can buy grade C drokls for 10,000 and grade E for 9000. A good guess would be that grade D sells for 9500; it would sure be nice if I could make the computer go through the database and fill in blanks everywhere through interpolation and averaging. Of continued

Computers For The Blind

Talking computers give blind and visually impaired people access to electronic information. The question is how and how much?

The answers can be found in “The Second Beginner's Guide to Personal Computers for the Blind and Visually Impaired” published by the National Braille Press. This comprehensive book contains a Buyer's Guide to talking microcomputers and large print display processors. More importantly it includes reviews, written by blind users, of software that works with speech.

Send orders to:
National Braille Press Inc.,
88 St. Stephen Street, Boston, MA 02115
(617) 266-6160

NBP is a nonprofit braille printing and publishing house.
USE THE BRAINS YOUR IBM WASN'T BORN WITH.

Right at your fingertips in CompuServe's IBM Forums.

Our IBM Forums involve thousands of users worldwide who will show you just how easy it is to get the most from your IBM and IBM compatibles.

The IBM New Users Forum lets you ask basic questions of PC experts. The IBM Junior Forum is perfect for PCjr® users. Trade tips with other IBM PC and AT users in the IBM Software Forum. Ask questions and get answers directly from the manufacturers in the PC Vendor Support Forum. And if you're looking for a PC Bulletin Board, visit the IBM Communications Forum.

Or try the IBM Hardware Forum for discussions on hardware topics and product updates.

Easy access to free software, including free uploads.

You can easily download first-rate, non-commercial software and utility programs. Upload your own programs free of connect time charges. And take advantage of CompuServe's inexpensive weeknight and weekend rates, when forums are most active and standard online charges are just 10¢ a minute. You can go online in most areas with a local phone call. Plus, you'll receive a $25.00 Introductory Usage Credit when you purchase your CompuServe Subscription Kit.

Information you just can't find anywhere else.

Use the Forum Message Board to send and receive electronic messages. Join ongoing, real-time discussions in a Forum Conference. Communicate with industry experts, including the programmers who write your favorite programs. Search Forum Data Libraries for non-commercial software and shareware.

Enjoy other useful services too, like electronic editions of popular computer magazines.

All you need is your IBM computer or IBM compatible computer (or almost any other personal computer) and a modem.

To buy your Subscription Kit, see your nearest computer dealer. Suggested retail price is $39.95.

To receive our free brochure, or to order direct, call 800-848-8199 (in Ohio and Canada, call 614-457-0802). If you're already a CompuServe subscriber, type GO IBMNET (the IBM Users Network) at any prompt to see what you've been missing.

CompuServe® Information Services, P.O. Box 20212
5000 Arlington Centre Blvd,
Columbus, Ohio 43220
800-848-8199
In Ohio, call 614-457-0802
An H&R Block Company
Inquiry 55
CLEO is your SNA or BSC Gateway

Remote Sites Communication
Whatever your industry, your remote computers need to share information with your mainframe. Or, they need to exchange data with other remotes. In either case, you need a total solution at the remote sites. You need software, hardware interfaces and modems that all work together smoothly. You need CLEO!

CLEO software products allow microcomputers to communicate with minicomputers and mainframes, and to emulate their workstations. Since 1981, CLEO has provided remote communications between micros and mainframes for the automotive, insurance, medical and banking industries. Today over 44,000 CLEO users worldwide are running on all major brands of microprocessors. The greatest number of these users run CLEO software on IBM Personal Computers and NETBIOS LANs.

Complete Software/Hardware Package
Every CLEO package contains all the software and hardware accessories needed at the remote site. Your selected CLEO SNA or BSC software is packaged with 1) an internal modem card for dial-up applications, or 2) an interface card and cable for use with your existing modem. There's no waiting for non-CLEO add-ons. And, you get prompt, single-source service.

Package prices range from $795.00 for most stand-alone packages, up to $2,995.00 for the 32-user SNA gateway.

Call us today to discuss your application.
CLEO Software
1639 North Alpine Rd.
Rockford, IL 61107
Telex 703639

Headquarters:
USA: 1-800/233-2536
Illinois: 1-800/422-2536
International: 815/397-8110

Sales and Distribution:
Benelux, Scandinavia: 31 (71) 899202
Canada, East: 800/361-3185
Canada, West: 800/361-3185
Canada, Montreal: 514/737-3631
Colombia, S.A.: 12879492
Denmark: 451 628300
Italy: (0331) 634 562
Mexico City: 203-0444

CLEO and 3780Plus are registered trademarks of CLEO Software.
IBM is a registered trademark of International Business Machines Corporation.
Intelligent Reports

As I mentioned earlier, Q&A has an AI routine—written originally in LISP, as a matter of fact—called the Intelligent Assistant. This makes report generation and database manipulation much easier. For instance, I can, with patience, tell the Assistant to go through and make new forms based on information derived from the old ones and present the information in interesting ways.

The Intelligent Assistant can be taught all manner of things. It knows the difference between verbs and adjectives. You can teach it a new vocabulary, and since it has automatically learned a lot about the database the first time it’s invoked, it’s easy to give it synonyms. I can do a lot with the Assistant, and it’s easier to use every time I try.

On the other hand, I haven’t been able to get the Assistant to give me much help finding the most profitable deals. It’s easier to print out the data organized in different ways and search through myself.

Q&A uses a menu system. The menus are one of the main reasons why Q&A is so easy to learn and use, and I wouldn’t change them for the world, especially since there’s context-sensitive on-line help at all stages, from database creation to report design. Sometimes, though, the menus get in the way when I’d like to jump from one place to another. Macros do only part of the job. Oh, well, you can’t have everything.

I suppose it’s a bit silly to complain on the one hand that Q&A is a memory hog, and on the other to wish for new features. Of course, it wouldn’t be impossible to get Q&A smarter and effectively smaller by using the 386’s capabilities.

Q&A is both easy to learn and easy to use. There are lots of features and utilities to help import data from other databases, including PFS:File, dBASE II and III, and Lotus 1-2-3, so the data can be reorganized. With Q&A, it’s particularly simple to add new categories of information you didn’t think of, and the Intelligent Assistant helps a lot. Q&A is fast. For most jobs, it’s more than good enough. The next step up is something like Guru from Micro Data Base Systems, and that’s complex, not easy for beginners to learn or use, and quite expensive. The bottom line is that Q&A is what I find myself using at Chaos Manor for everything from games to organizing the files.

Fixing WordStar

There are a lot of new text editors out, but it’s amazing how many people still use WordStar. Clearly, there’s a dance in the old girl yet.

Serious WordStar users may want to get WordStar Professional 4.0, which fixes a number of complaints people had about version 3.3 and adds new features—but there are some disadvantages to that. When MicroPro married WordStar and NewWord to produce 4.0, they made some changes in the file, menu, and command structures. Most of the changes were trivial, but some weren’t, so there can be some incompatibilities between old and new WordStar files.

For those who really like the look and feel of the old WordStar, there may be a better route. Over the years, user’s groups have built a body of folklore on ways to customize WordStar by patching the code. Patching means using DDT, Debug, or a similar utility to modify a copy of the command file; it’s simple enough to do, provided you know what has to be done.

You can find tips on how to modify WordStar on both free and commercial bulletin boards, in user’s group publications, or in conversations at computer club meetings. But if you want to go at it systematically, the simplest way is to get hold of the following two items.

The first is Stuart Bonney’s The Wordstar Customizing Guide (Wordware Publishing, P.O. Box 1747, Plano, TX 75074, (214) 423-0090). This used to be called Wordstar As You Like It, and it features a pretty complete presentation of how to use Debug to customize WordStar. It has an excellent discussion of WordStar’s hidden proportional spacing capability and goes into principles of printer installation. There’s a supplementary section for CP/M users. If you use WordStar at all, this book is worth the price.

If you’re really serious about patching WordStar, you need StarFixer by Stephen Manes and Paul Somerson (Bantam Books, but you can get your copy directly from the authors at Hard/Soft Press, P.O. Box 1277-B, Riverdale, NY 10471, (800) 222-9409). This package bills itself as “The Ultimate WordStar Enhancement.” I suspect MicroPro would say that WordStar 4.0 has a better claim to that...continued

UTAH COBOL™

NEW VERSION 4.0
$69.95

For IBM PCs, XT’s, AT’s and other DOS machines. This is the one you’ve heard so much about—with fast compile times, small object code modules, no royalties, and clear error messages. Version 4.0 is based upon ANSI-74 standards with new features including:

- Multi-key indexed files with up to 24 keys. This advanced feature requires the software package Btrieve which is optionally available.
- Windowing, pop-up’s, color and overlays. This advanced feature requires the software package Saywhat which is optionally available.
- Accept numerics with decimal point alignment, numeric checking, AUTO-SKIP, SECURITY, LENGTH-CHECK, EMPTY-CHECK.
- Fast memory mapped DISPLAY’s (1, 5) ERASE, BEEP, ATTRIBUTE.
- Level 66’s – READ INTO–WRITE/REWRITE FROM and DELETE.
- An easy to use, COBOL source code EDITOR with auto line numbering, A-margin, B-margin tabbing with full screen cursor control.
- Current customers can receive the new version by sending in their original diskette and $30.00. This offer expires Dec. 31, 1987

Also available: Utah FORTRAN, Utah BASIC, Utah PASCAL, Utah PILOT, Btrieve and Saywhat. Used by 60,000 professionals, students and teachers in 40 countries.

To order call:
(702) 827-3030

IBM is a registered trademark of International Business Machines, Inc. Btrieve is a registered trademark of Softcraft, Inc. SAYWHAT is a trademark of The Research Group, Utah COBOL is a trademark of Ellis Computing, Inc. © 1987 Ellis Computing Inc.
Eureka is powerful enough to get most engineering and financial jobs done.

Finally, there’s a discussion of how to use Debug to do even more advanced modifications of WordStar.

Bonney’s book has somewhat clearer discussions of what you’re doing and why, while StarFixer is generally more complete, and its programs are easier to use. Both are just about indispensable for anyone doing professional work with WordStar. Recommended.

Eureka!
It used to be that if you got a small computer, you’d sooner or later be surround by scornful philistines demanding to know “What can you do with that a calculator can’t do?” It wasn’t always easy to answer that question unless you were a programmer.

There have always been “math programs” for small computers, but they haven’t been easy to learn. There’s muMath, based on MIT’s MACSYMA symbolic algebra program: extremely powerful, but complicated to get going and easy to forget if you didn’t use it a lot. There was TK!Solver, not so powerful, but nearly as tough to learn. The ultimate, I suppose, was the language APL, which made child’s play out of all kinds of hairy mathematical problems but was something between a hobby and a career to learn.

Now there’s Borland’s Eureka: The Solver. It’s not as powerful as APL or muMath, but it will get most engineering and financial jobs done. It’s very easy to use. The manual is clearly written, and there are plenty of examples. You can get Eureka up and running in about five minutes.

My first Eureka task was elementary planet design. As Paul Anderson put it in the old SFWA Handbook, “Far too many stories merely give us a planet exactly like Earth except for having neither geography nor history. Other stories, trying for the exotic, serve up an unbelievable mishmash.” The remedy to that is to use imagination but fit what you imagine into the equations that govern the real universe.

For example, the size of a sun pretty well determines both its color and brightness. The illuminance a planet will receive is determined by the solar luminosity and the distance to its star

\[i = \frac{L}{R^2} \]

(where \(i \) is illuminance received relative to what Earth gets from Sol, \(L \) is the star’s luminosity relative to Sol, and \(R \) is distance to the star relative to Earth’s distance from Sol). The planet’s year is determined by that distance and also the star’s mass (\(M^2 = R^3 \), where \(M \) is stellar mass relative to mass of our sun, \(P \) is the period in years, and \(R \) is the distance relative to Earth’s distance from the sun). The apparent size of the star as seen from the planet depends on distance and stellar diameter. And so forth.

To design a planet, you pick the numbers you want and stuff them into the equations, then solve for everything else. This isn’t hard, but it used to be tedious. Eureka has changed all that.

When you invoke Eureka, you come up in the Borland editor that’s used for nearly all their programs. You then write your equations using pretty standard notation (e.g., \(M^2 = R^3 \), then set the values you want fixed (e.g., by writing \(i = 0.97 \), \(L = 0.93 \), and so forth), then turn Eureka loose. It will give self-consistent values for every variable in your equations. If some of those values turn out not to your liking, you can change them. If you fix too many of the variables so that the system of equations is no longer self-consistent, Eureka will tell you that. The whole process is nearly instantaneous and completely painless.

Of course, you can use Eureka for a lot more than planet design. The manual gives examples of solving financial problems, like mortgage payments, ballistic problems, polynomials, charged particles in a gravitational field, and a whole bunch of other stuff.

Eureka can make graphs and generate reports. It doesn’t require a math chip, but it will automatically use one if your computer has a math chip installed.

I’ve often said that if I could do arithmetic, I might well have become an astrophysicist. I understood high school and college physics, but I got lousy grades because, although I set up the equations right, I never got the right answers. If I’d had a PC and Eureka, I would have.

Borland’s blurb says that “if you’re a scientist, engineer, financial analyst, student, teacher, or any other professional...
From 360K to 70MB, we've still got your number.

The best value in personal computing just got even better. We've added more standard features while lowering our prices* even further. Starting at an incredible $850, our XT-compatible workstations now come with a standard dual video adapter and a serial port.

In our line of AT-compatibles there is a choice of five models, starting at a low $1,899. And all come with additional standard features such as a powerful 1MB of main memory, a serial port and a parallel port. And at prices that are consistently around 40% less than our major competitors.

But a low price doesn't mean you have to sacrifice quality. Tandon personal computers are brought to you by a trusted manufacturer who has been an industry leader for over a decade.

For the Tandon dealer nearest you call toll-free 1-800-556-1234 ext. 171. In California call 1-800-441-2345 ext. 171.

Tandon Personal computers. With selection and price, we've still got your number.

Please send me your Tandon Fact Pac, a comprehensive set of literature and product reviews.

Name

Position

Company

Address

City/State

Telephone

Tandon Computer Corporation
405 Science Drive
Minnetonka, MN 55343
605-733-6104

*Manufacturer's suggested retail price. Monitor not included.
working with equations, Eureka: The Solver can do your algebra, trigonometry, and calculus problems in a snap. That's pretty well true. I'd add that eventually everyone has to deal with equations and numbers, and when it happens, Eureka will make it a lot easier. I'll go further: programs like this may go a long way toward correcting some of the deficiencies of our school system. A computer can't teach math, but with a PC and this program, you can learn to use math on your own.

Get Eureka. You won't regret it. Highly recommended.

Care and Feeding of Fixed Disks

Hard disks are wonderful, but after a while, reading and writing to them takes longer and longer. What happens is that when you start with an empty disk there's plenty of space available, and your files are written in one long string. As the disk gets full and you erase files, things get patchier and patchier until, finally, the space that's left is all chopped up, so that the disk controller has to keep looking for space, finding it, writing to it, and recording where it wrote it. This makes for a lot of head movement and takes time.

The remedy for that is to repack your disk every now and then. Several disk management programs are available, but the one I use is Golden Bow's VOPT. This comes with VMAP, which paints a map of which disk sectors are in use and which are empty, and VOPT, which moves the files around so that everything that can be saved is saved in contiguous blocks. VOPT keeps track of how many files it has moved and how long it took; on the Zenith Z-248 and the Kaypro 386, that will typically be some 25 files moved in around 30 seconds.

It makes a real difference. As a test, I let my disk get cluttered and disorganized, then wrote an enormous text file to it, retrieved it, erased it, used VOPT to repack, and did all that again. Retrieving the file took about 16 percent less time after VOPT. Now I routinely use VOPT every couple of days.

VOPT comes with a jazzed-up version of the DOS utility CHKDSK, but for some reason the Golden Bow CHKDSK has never worked on either the Z-248 or the Kaypro 386. It hardly matters: VMAP and VOPT are what's important.

The other program you need is SpeedStor, which I mentioned last month. SpeedStor is a hard disk drive integration and diagnostic program that lets you install virtually any size hard disk in your system. I finally got around to partitioning Fast Kat's 40-megabyte hard disk, of which DOS could find only 32 megabytes. Thanks to SpeedStor, it now has two 20-megabyte logical drives. (VOPT, incidentally, can operate on both of them with no difficulty.)

SpeedStor is especially useful if you're installing your first hard disk in a PC or XT. The manual is detailed, and since the program works automatically in batch mode for most hard disk installations, SpeedStor makes the installation fairly simple.

Winding Down

I'm out of time and space, and I haven't even got started on the pile I set out to write about.

I do want to mention Definicon's 68020 and graphics boards for the PC. Their boards drop into a PC and turn it into the fastest thing this side of a VAX; maybe faster. There's not a lot of software, but there are compilers. My matrix benchmark runs (in C) so fast you can't really measure it. Anyone doing serious software development ought to know about Definicon. Then there's a flyer from the good guys at The Software Toolworks reminding me that Chessmaster 2000 makes a great Christmas gift. I think they have a weird idea of BYTE deadlines, but, in fact, that's the best chess program I know of. There's a pile of stuff I collected at Spring COMDEX, including pc-ditto, which lets you run just about any PC program on your Atari ST. There's Borland's new C compiler and a big package of new stuff from Microsoft. It will all have to wait.

The game of the month (other than Sundog for the Atari ST) is Faery Tale Adventure for the Amiga. This has fabulous graphics and a pretty good story line. It's hard to get started—I kept getting killed in the first three minutes, so I never saw much of the scenery—but my son Phillip has definitely mastered the system and is able to romp about bashing bad guys.

The book of the month is Arthur Ferrill's The Fall of the Roman Empire—The Military Explanation (Thames and Hudson, 1986). Good reading and plenty of lessons for our time.

With any luck, by next month I'll have written some new text-handling benchmark programs.

Jerry Pournelle welcomes readers' comments and opinions. Send a self-addressed, stamped envelope to Jerry Pournelle, c/o BYTE, One Phoenix Mill Lane, Peterborough, NH 03458. Please put your address on the letter as well as on the envelope. Due to the high volume of letters, Jerry cannot guarantee a personal reply.
Nothing says Artificial Intelligence has to be complicated, academic or obscure. Turbo Prolog® proves that. It's intelligent about Intelligence and teaches you carefully and concisely so that you soon feel right at home.

Which is not to say that Artificial Intelligence is an easy concept to grasp, but there's no easier way to grasp it than with Turbo Prolog's point-by-point, easy-to-follow Tutorial.

Turbo Prolog is for both beginners and professional programmers

Because of Turbo Prolog's natural logic, both beginners and accomplished programmers can quickly build powerful applications—like expert systems, natural language interfaces, customized knowledge bases and smart information-management systems. Turbo Prolog is a 5th-generation language that almost instantly puts you and your programs into a fascinating new dimension. Whatever level you work at, you'll find Turbo Prolog both challenging and exhilarating.

Turbo Prolog is to Prolog what Turbo Pascal is to Pascal

Borland's Turbo Pascal® and Turbo C® are already famous, and our Turbo Prolog is now just as famous.

Turbo Pascal is so fast and powerful that it becomes a worldwide standard in universities, research centers, schools, and with programmers and hobbyists. Turbo Prolog, the natural language of Artificial Intelligence, is having the same dramatic impact.

Borland's new Turbo Prolog Toolbox adds 80 powerful tools

Turbo Prolog Toolbox includes 80 new tools and 8000 lines of source code that can easily be incorporated into your own programs. We've included 40 sample programs that show you how to put these Artificial Intelligence tools to work.

Already one of the most powerful computer programming languages ever conceived, Turbo Prolog is now even more powerful with the new Toolbox addition.

The Critics' Choice

"I really wouldn't want to choose the most important MS-DOS product developed last year, but if I had to, I think it would be Borland's Prolog, which gives users a whole new way to think about how to use their computers.

Jerry Pournelle, 'A User's View,' InfoWorld"

Turbo Prolog offers the fastest and most approachable implementation of Prolog.

Darryl Rubin, AI Expert

Turbo Prolog Features:

- A complete development environment
- A fast incremental compiler
- A full-screen interactive editor
- Graphic and text window support
- Tools to build your own expert systems
- Full DOS access and support
- A free Tutorial
- The free GeoBase® natural query language database
- An easy-to-understand 200-page manual

All this and more for only $99.95!

The new Turbo Prolog Toolbox includes:

- 80 tools
- 8000 lines of source code that can easily be incorporated into your own programs
- 40 sample programs
- Business graphics
- File transfers from Reflex®, dBASE III, 1-2-3® and Symphony®
- Sophisticated user-interface design
- Screen layout and handling—including virtual screens
- Complete communications package including XMODEM protocol
- Parser generation
- Opportunity to design AI applications quickly
- 5th-generation language and supercomputer power to your IBM®PC and compatibles

Only $99.95!
Nobody understands the value of good information better than the people who work in computers and communications.

And for those people, no information carries more weight than McGraw-Hill’s. We provide the databases, analyses and news that computer and communications professionals rely on to illuminate the workings of their industries.

Everyone in the business keeps up with the latest developments by reading McGraw-Hill magazines. BYTE, Electronics and Data Communications are all required reading in the field. So are books from Osborne/McGraw-Hill.

For MIS/EDP and communications professionals, Datapro’s print and on-line directories and reports cover every aspect of computer hardware and software from mainframes to micros, as well as communications and office automation.

For people who manufacture or sell microcomputers and microsoftware, Future Computing is the
and "byte" use every bit

number one information source for product tests, analyses and comparisons.

People who specialize in communications are wired into CCMI/McGraw-Hill, to receive not only the hard facts on communications tariffs, but also in-depth analyses and bottom-line recommendations via print, software and on-line products.

And when telecommunications and computer companies plan for the future, they rely on DRI Communications to provide them with forecasts of economic forces and industry trends.

When it comes to turning megabytes into megabucks, nothing computes like McGraw-Hill information.

McGraw-Hill.
Information that leads to action.
Our Prices Are So Low
They're Downright Embarrassing

Our low prices are leaving a lot of people red-faced.

Like manufacturers who charge twice as much for similarly-configured systems. And managers who paid twice as much for their company's computer equipment.

Our low prices include all the things that other manufacturers leave out — like monochrome monitors, graphics cards, and hard drives. SST Quantus business computers are complete, ready-to-run systems, featuring name-brand components. At unbelievably low prices.

So when you need high-performance computer systems at the right price, call SST. Anything else will leave you in the red.

Scientific Storage Technology
One Butterfield Park, Spofford, NH 03462
(800) 255-0125 (603) 363-4564
(800) 356-9001
I've bitten the bullet. The Macintosh Plus and the QMS laser printer live on, but my faithful Compaq is sitting in a corner gathering dust. I'm now running my MS-DOS programs on a Tandon AT clone, a PCA-40 to be exact, equipped with an EGA card and a Quinmax monitor. The Tandon is not the slickest, fastest AT out there—it runs only at 6 or 8 megahertz—but I needed a stock machine for evaluating software in a clean environment. The "40" in the name indicates that this baby comes with a 40-megabyte, 40-millisecond hard disk drive.

So far, it has run like a dream, right out of the box. Nary a problem. The monitor is a little fuzzy, and it broadcasts annoying interference to the Mac two feet away, but that isn't Tandon's fault. I'm pleased with the machine.

I'm pointing this out for two reasons. First, I'll be able to look at software that requires AT speed and EGA graphics (such as desktop-publishing products). Look for some AT/EGA packages to hit the market called Instant Recall, so a name change was inevitable, and it will sell for $69.95.

The first release of MemoryMate will not be a major revision of the package. I've been told to expect a slightly different look to the program's menu and a method of shutting off the Control-key command triggers to avoid contention with keyboard macro programs, but not much else.

I'm hoping Fremont will finally have the freedom to work on enhancements; I'll report changes when they happen. In the meantime, though, I still recommend the basic product; it's a winner.

As you would expect, there was a lawsuit. Mirror lost. Now we have Mirror II (SoftClone, $69.95), sporting a user interface that doesn't look anything like Crosstalk XVI. No more infringement. However, Mirror II still reads Crosstalk script files, and the new interface causes hardly a moment's pause to anyone familiar with Crosstalk.

This is my favorite stand-alone communications program. It supports more protocols and emulates more terminals than I'll ever need. A "learn" mode automatically creates Crosstalk log-on scripts (a nifty technique—Mirror stuffs the last 10 characters received from the remote computer into a variable so it can tie your actions to the actual prompts). If you initiate a file transfer, you can lean on both Shift keys and send Mirror into the background and continue working in the foreground; I've noticed no performance degradation when I do this.

There's a built-in editor for creating scripts, mail messages, and so on. Command lines can be edited without retyping. You can monitor call progress if your modem supports the procedure. Mirror II can keep a time-stamped transaction log. And your old Crosstalk files can be run without modification.

I used Mirror for a year. I've been using Mirror II for a month. I have been, and still am, extremely happy with this package.

A Better Card File
Tracker (Adaptive, $99) is the kind of software package that can best be termed a "no-brainer." Designed for businesspeople with little patience for intricate computer procedures, it's an MS-DOS text database product called Instant Recall. It's a great little data-retrieval system: simple, fast, and uncluttered. You can store up to 2 megabytes of free-form text records, each of which can be up to 60 lines by 80 characters. There are no field names as such; you can search on any word or phrase that appears anywhere in the database. Because the program can operate either as a stand-alone application or as a pop-up with cut-and-paste capabilities, I've been using it to store all sorts of fragments, including notes about appointments, stray electronic-mail messages, and reference materials for this column.

I've been waiting for an update for some time, but nothing has happened. I suspect Michael Fremont, the program's creator, has been caught in the trap that catches many shareware authors: He's been too busy running a small business to spend much time improving the code.

The good news is that relief is in sight. By the time you read this, the product will have become a commercial offering from Broderbund, and Fremont will no longer have to worry about marketing and distribution. The program will be known as MemoryMate (a horrible name, but there's at least one other package on the market called Instant Recall, so a name change was inevitable), and it will sell for $69.95.

No Longer a Clone
When Mirror, an MS-DOS telecommunications package, entered the world, it did so as a copy of Crosstalk XVI. Sure, there were some enhancements, but Mirror was intended to appeal to those seeking a low-cost alternative to Crosstalk. It looked like Crosstalk, it acted like Crosstalk, and it read Crosstalk scripts.

As would you expect, there was a lawsuit. Mirror lost. Now we have Mirror II (SoftClone, $69.95), sporting a user interface that doesn't look anything like Crosstalk XVI. No more infringement. However, Mirror II still reads Crosstalk script files, and the new interface causes hardly a moment's pause to anyone familiar with Crosstalk.

This is my favorite stand-alone communications program. It supports more protocols and emulates more terminals than I'll ever need. A "learn" mode automatically creates Crosstalk log-on scripts (a nifty technique—Mirror stuffs the last 10 characters received from the remote computer into a variable so it can tie your actions to the actual prompts). If you initiate a file transfer, you can lean on both Shift keys and send Mirror into the background and continue working in the foreground; I've noticed no performance degradation when I do this.

There's a built-in editor for creating scripts, mail messages, and so on. Command lines can be edited without retyping. You can monitor call progress if your modem supports the procedure. Mirror II can keep a time-stamped transaction log. And your old Crosstalk files can be run without modification.

I used Mirror for a year. I've been using Mirror II for a month. I have been, and still am, extremely happy with this package.

A Better Card File
Tracker (Adaptive, $99) is the kind of software package that can best be termed a "no-brainer." Designed for businesspeople with little patience for intricate computer procedures, it's an MS-DOS text database product called Instant Recall. It's a great little data-retrieval system: simple, fast, and uncluttered. You can store up to 2 megabytes of free-form text records, each of which can be up to 60 lines by 80 characters. There are no field names as such; you can search on any word or phrase that appears anywhere in the database. Because the program can operate either as a stand-alone application or as a pop-up with cut-and-paste capabilities, I've been using it to store all sorts of fragments, including notes about appointments, stray electronic-mail messages, and reference materials for this column.

I've been waiting for an update for some time, but nothing has happened. I suspect Michael Fremont, the program's creator, has been caught in the trap that catches many shareware authors: He's been too busy running a small business to spend much time improving the code.

The good news is that relief is in sight. By the time you read this, the product will have become a commercial offering from Broderbund, and Fremont will no longer have to worry about marketing and distribution. The program will be known as MemoryMate (a horrible name, but there's at least one other package on the market called Instant Recall, so a name change was inevitable), and it will sell for $69.95.

The first release of MemoryMate will not be a major revision of the package. I've been told to expect a slightly different look to the program's menu and a method of shutting off the Control-key command triggers to avoid contention with keyboard macro programs, but not much else.

I'm hoping Fremont will finally have the freedom to work on enhancements; I'll report changes when they happen. In the meantime, though, I still recommend the basic product; it's a winner.

No Longer a Clone
When Mirror, an MS-DOS telecommunications package, entered the world, it did so as a copy of Crosstalk XVI. Sure, there were some enhancements, but Mirror was intended to appeal to those seeking a low-cost alternative to Crosstalk. It looked like Crosstalk, it acted like Crosstalk, and it read Crosstalk scripts.
APPLICATIONS ONLY

client/contact database from Australia that runs either as a memory-resident utility or as a stand-alone program. Nothing spectacular, but it’s simple and handy for anyone who has to make a lot of phone calls.

The program presents you with a data-entry screen containing 15 predefined fields for name, address, telephone number, and so on. Though you can change the field names, you can’t alter the length of the fields or the appearance of the screen. Perhaps the most useful items here are the three date fields, for first contact, last contact, and next contact; one touch of a function key retrieves the records for all the calls you have to make today.

Tracker has two secondary windows for each record. The first lets you attach a list of up to 20 keywords; the second is a utilitarian editor for adding text notes. Notes are stored by date; you can have as many as you like, provided you enter no more than—ahem—64,000 lines per note per day. Records can be dredged up and reports printed, sorted on any field or the keywords. The program will dump out text files delimited for mail merge into half a dozen of the most popular word processors. Tracker will also auto-dial your phone and print mailing labels.

Objections? In resident mode, Tracker is a glutton, gobbling more than 200K bytes of RAM, a total that puts it at the extreme fringe of acceptability. If you use large applications, Tracker is just too fat to use as a pop-up. My only other complaint is that the display is downright unattractive. I really don’t need a half-inch logo to remind me of the program’s name on every data screen.

The documentation is readable and thorough. Collectors of curiosities will appreciate the full-color photograph of an Australian aborigine on the disk itself.

Tracker is obviously limited, but it’s functional. If you need exactly what it offers, I recommend it. If you need anything more flexible, try MemoryMate or the contact tracking systems that come as sample files with so many database managers these days.

Now here’s a question: Do you call software from Australia “Down Under-ware,” or is that something you buy from L.L. Bean to keep you warm in the winter?

Another Courseware Package
I suppose it’s fate that just because I decided to write about Macintosh courseware-authoring systems last month, another product in that category arrived precisely a week after my deadline. Sigh. Oyster (Poseidon, $79.95) is a straightforward development system for instructional materials.

While Oyster isn’t as flexible as its more ambitious competitors, it is easy to learn and use. It produces self-contained files that can be run as independent applications, and it’s roughly a quarter the price of either Course Builder or Guide. Oyster lacks administrative functions, so it’s useless for testing, but it’s quite effective for training and drilling.

The basic building block is the multiple-choice question. You create the question and responses with the built-in editor, then drag radio buttons (called “hot dots” by Oyster) into position on the screen. A student using the completed course clicks on a dot to indicate the answer. Oyster allows importation of graphics through the Clipboard and Scrapbook functions; dots can be placed on top of images, so you can develop picture questions.

Any response can be linked to another screen full of information or another question, so you can organize files in any order you like—branching, linear, or even circular. The program keeps track of these links.

Continued
CAREER ASSURANCE.

Dow Jones News/Retrieval®
Membership gives you instant online access to:

<table>
<thead>
<tr>
<th>Breaking Business News</th>
<th>Current Stock Quotes</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Wall Street Journal</td>
<td>Historic Stock Quotes</td>
</tr>
<tr>
<td>The Washington Post</td>
<td>Company vs. Industry Performance</td>
</tr>
<tr>
<td>Updates On Competition</td>
<td>Instant “Backgrounder” Research</td>
</tr>
<tr>
<td>Investment Analysts' Reports</td>
<td>10-K & 10-Q Data</td>
</tr>
<tr>
<td>Detailed Corporate Profiles</td>
<td>SEC Insider Trading Activity</td>
</tr>
<tr>
<td>Financial Overviews</td>
<td>Earnings Reports and Forecasts</td>
</tr>
<tr>
<td>P/E Ratios</td>
<td>An Online Business Library</td>
</tr>
</tbody>
</table>

...Just a sample of the many business and financial services available.

How to entrench your present position and promote your future success—for only $49.95.

Can a $49.95 membership in Dow Jones News/Retrieval®—the premier online business and financial information service from Dow Jones & Company, Inc.—really help assure you a more successful career?

Judge for yourself.

Mail the Membership Enrollment Form at right. Within a few days your Membership Kit will arrive and you can go online, analyzing breaking news from a continuously updated business journal—before it hits the newsstand.

You'll also have instant access to leading investment analysts’ comments on your business hunches and strategies, plus the ability to get detailed reports on nearly 10,000 companies within minutes.

And those are only three of our 40-plus services.

To start your membership, fill out the Enrollment Form at right, drop it in the mail and give our service a try.

After all, making sure you have more current, more complete information is a very assuring career move.

Show me how Dow Jones News/Retrieval® can help assure my career success.

- Send me a Corporate Membership Kit, entitling me to 8 free hours of online time, passwords for myself and my colleagues, a User's Guide, 12 months of Dowline™ Magazine, and waiver of my first year's $12 annual service fee—for $49.95.
- Send me a Personal Membership Kit: same as above but with 5 free hours of online time and a single password for myself alone—for $29.95.
- Check enclosed
- Charge to my: □ AmEx □ MC □ VISA □ Bill me later

If you pay by credit card, all future charges will be billed to that account.

Name ___________________________ Title ___________________________
Company _________________________ Address _________________________
City/State/Zip ______________________ Daytime Phone ______________________
Computer make and model ______________________

If you need more information, call 1-800-221-7700, Ext. 4181 today!

Dow Jones News/Retrieval®
The premier source of online business and financial information.

SEPTEMBER 1987 • BYTE 309
of the structure with an outline, much like a table of contents, that appears in a window in the lower portion of the editing display.

The documentation is superb. It’s well-written and logical, and it contains one of the best discussions on how to develop successful computerized training programs that I’ve ever seen.

Oyster is a solid package, fairly priced, and good at what it’s supposed to do.

A Direct Port

The MS-DOS version of Guide (OWL International, $199.95) is a mirror image of Guide on the Macintosh, running under Microsoft Windows. I’ve already written extensively about Guide in my April and August columns, so I won’t go into much detail here. It’s a hypertext system; sliding the cursor over a section of text or a graphics image will pop open a new layer of information. You can organize materials in surprising ways because you’re freed from the linear constriction of either flat text or outline format. I like the concept, and Guide is an excellent implementation of it.

Once again, though, I’m dismayed at the clunkiness of the Windows interface as opposed to that of the Mac. First, you’d better have a PC AT to run the program at acceptable speed. Second, the text characters are rather ugly, even with an EGA setup. Third, Guide changes the shape of the cursor to indicate hidden layers within a document. This works fine on the Mac, but the special cursors in Windows seem huge and misshapen; moving through a Guide document is rather like dialing a telephone with a baseball bat.

Guide itself runs fine, but I was disappointed at the lack of color, which seemed a natural addition to an MS-DOS version. The sample files included are quite helpful, and the documentation is excellent.

Beggars Can’t Be Choosers Department: For reasons I can’t fathom, Guide on the PC costs $65 more than the same product on the Macintosh. What can I say? Go buy a Mac?

Funnies Program

Now that Mindscape’s ComicWorks has grown up into GraphicWorks, a powerful artistic tool, I could argue that the world once again has room for a Macintosh program designed exclusively for the creation of comic books. However, after playing with The Comic Strip Factory (Foundation, $89.95), I’m not so sure.

What we have here is a comic strip assembly program. To call it a graphics package would be a mistake; though there are a few features you might find in painting and drawing software, The Comic Strip Factory (TCSF) has little capacity for the creation of original graphics.

You start with a blank page, on which you lay out borders for comic strip boxes. Next, you paste in backgrounds. Then you add characters, or rather you build them from a storage file of MacPaint body parts. You move a torso into position, then you graft on the appropriate head and limbs. Finally, you add speech balloons. What this is, really, is an object-oriented toolkit for constructing comics from graphic elements. If you will, The Comic Strip Factory is a PageMaker for the funny papers.

continued
Announcing
Two Dynamic New Imprints

The Borland-Osborne/McGraw-Hill Business Series

- **Using REFLEX®: THE DATABASE MANAGER**
 by Stephen Cobb
 Features sophisticated SuperKey® macros and REFLEX Workshop™ applications.

- **Using SPRINT™: The Professional Word Processor**
 by Kris Jamsa and Gary Boy
 Take advantage of this fabulous new word processing system that is powerful, fast, and includes many desktop publishing features.

The Borland-Osborne/McGraw-Hill Programming Series

- **Using Turbo C®**
 by Herbert Schildt
 Here's the official book on Borland's tremendous new language development system for C programmers.

- **Advanced Turbo C®**
 by Herbert Schildt
 For power programmers. Puts the amazing compilation speed of Turbo C® into action.
 $22.95 paperback, ISBN 0-07-881280-1

- **Advanced Turbo Prolog® Version 1.1**
 by Herbert Schildt
 Now includes the Turbo Prolog Toolbox™ with examples of spreadsheets, databases, and other business applications.

- **Turbo Pascal® Programmer's Library**
 by Kris Jamsa and Steven Nameroff
 Revised to cover Borland's Turbo Numerical Methods Toolbox™

- **Using Turbo Pascal®**
 by Steve Wood
 Featuring MS-DOS programs, memory resident applications, in-line code, interrupts, and DOS functions
 $18.95 paperback, ISBN 0-07-881283-6

- **Advanced Turbo Pascal®**
 by Herbert Schildt
 Expanded to include Borland's Turbo Pascal Database Toolbox® and Turbo Pascal Graphix Toolbox®

Available at Book Stores and Computer Stores. OR CALL TOLL-FREE 800-227-0900 800-772-2531 (In California)
IEEE-488
- GPIB controller board for IBM PC/XT/AT
- Control up to 14 Devices
- User friendly Software Commands
- DMA Transfer to 200k byte/sec.
$345.00 Including software

RS-422/232
- Single channel async communication board for IBM PC/XT/AT
- Software selectable to be RS/422/485, 232 or Current Loop
- Selectable Address & Interrupt

IEEE-488
- GPIB controller board for IBM PC/XT/AT
- Control up to 14 Devices
- User friendly Software Commands
- DMA Transfer to 200k byte/sec.
$345.00 Including software

RS-422/232
- Single channel async communication board for IBM PC/XT/AT
- Software selectable to be RS/422/485, 232 or Current Loop
- Selectable Address & Interrupt

Inquiry 239
Inquiry 240

RS-422
Communications Board
- For IBM-PC/AT/XT and compatibles
- Dual RS-422/RS-485 interface
- Differential drivers to 4000 ft.

Fast Delivery

$795.00

Inquiry 241

MODULAR
DATA ACQUISITION
- For IBM & Compatibles
- Flexible and Inexpensive
- Money Back Guarantee
- Free Technical Support

Fast Delivery

Inquiry 242

The program is clear, simple to run, and its operations are all handled smoothly. You've got a pixel editor (similar to FatBits) for refining images and a separate utility called PartMaker for collecting objects from MacPaint files to be used in TCSF. I found no real bugs or anomalies when I built a few strips of my own.

The only problem I encountered was in printing, and that had more to do with the nature of laser printers than with TCSF. The Comic Strip Factory is really best at ImageWriter printing. When I forgot to disable smoothing, the poor QMS laser printer took forever to calculate the transition from 72 to 300 dots per inch. Printing was positively painful.

TCSF comes with a collection of six characters (actually a collection of their body parts) that you can combine into a comic strip. You get a moth-eaten wizard, a fantasy lizard with big teeth, a computer nerd with thick glasses (designed to offend anyone who's ever spent time with a computer), an elfin dancer with breasts and tiger stripes, and two cutey insects. The insects are named, so help me, Broadway Bug and Sweet Patootie. It's easy enough to tell them apart—the male has a top hat; the female has eyelashes and a brassiere. Drawn by Trici Venola, they're proof that the Macintosh can be used to produce glib, trite comic art.

The four backgrounds provided with TCSF, by Kurt Wahnler, are much more neutral, and hence better. I admit that this is a judgment call, but if you've got any imagination, creativity, or self-pride, you won't want to use this stuff.

If you want to be original, you're going to have to use MacPaint to create your artwork, then chop it up with PartMaker so it can be digested by TCSF. In order to create a comic strip, you're going to be using three programs. Both SuperPaint and Graphic Works are supersets of MacPaint, and not much tougher to learn. And those programs give you object orientation and rotation, as does TCSF, but you also get a full palette of graphics tools, editing at laser-printer resolution, and a host of other features lacking in TCSF. With a teeny bit more effort, you can create comics entirely within either program.

The Comic Strip Factory is fun to use, and it's well-documented. Its creators seem to be neat people. I wish I could justify the purchase of it for those reasons alone, but I can't. This is a limited graphics environment for the assembly of comic strips, priced roughly equivalent to superior graphics programs that can do everything that TCSF does and more. The Comic Strip Factory is just too little too late.
Choose ALR's 16-MHz 80386 system for less than $2,000, or a blazing 20-MHz system for less than $2,500.

Last year, Advanced Logic Research introduced the first 80386 systems. Now we're introducing the ALR 386/2, the second generation.

Until now, if you wanted three times the speed of an AT you paid about three times what our first generation did to the performance barrier. Annotate it.

Starting at $1990, ALR's totally new 386/2 systems couple the power of 32-bit processing with true 32-bit memory. Even the system and graphics BIOS are implemented in a 32-bit architecture. That simply means your applications will run faster on a 386/2 than any other available computer. And ALR 386/2 systems let you use all the peripherals, graphics, enhancements and applications developed for the most widely adopted computer operating environment in history.

Which makes you wonder why others want thousands more for less flexible, first-generation 386 systems.

How to run circles around the competition.

Sure, Compaq and IBM use the fastest available hard disks and controllers with 1:1 interleaving, just like Advanced Logic Research. But they don't buffer a full 17-sector hard disk track, settling for sector by sector buffering. Our way makes the fastest even faster where it counts—in the real world.

And with up to 2 MB of RAM on the motherboard, you get flexibility with your power.

Naturally the raw speed of the 80386 means the 386/2 series make great EGA graphic workstations for CAD/CAM. Or choose enhanced EGA or GA 786 graphics from ALR and a variety of sources and get the performance.

You can even run applications without memory limitations. Because all enhanced ALR systems include the Phoenix Control/386 Software utilities with 32-bit disk caching, Wdisk and EMS/EEMS Software.

A full range of high-performance communications, memory and storage enhancements are available from ALR.

Advanced Logic Research. Faster, first.

Advanced Logic Research got its start designing high-performance microcomputers for customers that demanded more power than they could get off the shelf. We designed one of the first IBM PC-compatibles. Developed the enhanced performance AT-compatible PC Magazine called "...the most judicious choice..." And introduced the first 386 system, which PC Tech Journal said "...brings up-to-date technology to affordable 386 systems".

The ALR 386/2 Model 40 with EGA adapter is similar to the IBM Model 80-041 and Compaq Deskpro 386 Model 40 with EGA adapter. Except for a lower price and twice their standard RAM.

The 386/2 series makes the best use of floor or desk space.

Speed to burn. Without having money to burn.

Read the reviews and compare the 386/2 to the others. Then compare more. If you find more power, flexibility and quality somewhere else, buy somewhere else.

You won't find a more competitive price anywhere else—the ALR 386/2 Model 10 delivers 80386 power and 1 MB of RAM for $1990 and includes a 1.2 MB floppy disk drive and controller. Models with hard disk storage to 130 MB and included Control/386 software reaffirm ALR's ability to define leading edge performance. At leading edge prices.

Advanced Logic Research, Inc.
10 Chrysler, Irvine, CA 92718 (714) 581-6770
FAX: (714) 581-9240 TELEX: 5106014525,
Answer back Advanced Logic
From Asia or Europe call ALR/Wearnes Technology
Phone: (65) 2592521 TELEX: RS:811:WRNTEC
Inquiry 340 for End-Users.
Inquiry 341 for DEALERS ONLY.
continued from page 32

"sleep": You put a request to the system for a keypunch and then gracefully get out of the way of the CPU so other tasks can have more time. If you busy-wait, you hog the CPU and prevent some other tasks from running.

Another rule to follow is to go through the operating system for almost any procedure. Once programs start viewing the operating system as the resource manager, they are freed from the task of determining the exact configuration of the particular machine they are running on. Sure, there is an overhead for multitasking and for having to consult the operating system for resources. But the overall gain in productivity is a more important factor.

Programs written for the earlier 8-bit micros, and even for the IBM PCs, are for the most part assembly language hacks that attempt to get the most out of every byte and every microsecond. Thus, they tend to pay little attention to the operating system. In the 8-bit 1-MHz world, this sort of programming is acceptable. In the 16- or 32-bit 8-MHz world, it is not.

Unfortunately, the Atari ST has the body of a 16-bit computer but the mind of an 8-bit computer. As a result, the primitive and inflexible software practices for the Atari ST remain in the dark ages—even if it is easier to port to the ST than to the Amiga.

Ali Ozer
Stanford, CA

I suppose you’re right. The fact is, though, that while I see very elegant stuff for the Amiga, I see five times as much software developed for the Atari ST.

Every now and then, too, I get a finished program that, when put in the Amiga, gives me a guru meditation. I’ve given up copying that long-number error message.

But it’s a gorgeous machine, and I have no doubt you’re right about its versatility.—Jerry

Dear Jerry,

Concerning the letter from Warren Block in the March Chaos Manor Mail and your subsequent response, I am inclined to think that both of you are, in fact, correct and that there should be no argument.

Version 1.1 of the Amiga’s operating system is prone to the “quest for the guru,” and there is also a lot of irresponsible software out there in Amigaland. The reason for the slop in the available software may be partly due to the following problems: The Addison-Wesley manuals are fraught with ambiguities, errors, and missing explanations; there is very little support for assembly language programming in comparison with the voluminous C support; and only low-level programming can keep a fairly firm grip on the reins of the operating system (yes, I know C is a systems language, but try writing interrupt code with it, or perhaps time-critical disk code).

Version 1.2 is more stable. Available software is rarely able to run correctly on both versions, however, and I find myself cataloging my software according to this phenomenon. Also, RAM expansions don’t seem to be supported very well (if at all).

I think the Amiga is an excellent piece of hardware. But when it comes to software—both systems and applications—it fails the test. A multitasking system is fine for use within an application, but on a system of this size with so few physical devices (not to mention the fact that any application can usurp the system), I really don’t see the point.

Most likely it will take a few more years before the Amiga is truly understood. When this happens, we may well see the appearance of some very phenomenal software. Until then we will just have to settle for being both amazed and disgruntled at the same time.

Michael N. McFarland
Littlerock, CA

Close to my own sentiments. Thanks.
—Jerry

Disk Could Be a Problem
Dear Jerry,

In the March Chaos Manor Mail, you stated in reply to Paul Horvick that “most of that stuff is on such cheap media that I won’t even put them in my machine for fear it will mar the disk heads.” How can we identify disks that are likely to damage disk heads? Do some disks contain abrasive materials that cause this problem? As cheap disks are flooding the market now, I would appreciate some comments on how to select disks.

Harry H. Hull
Sun City Center, FL

In the old CP/M days, there were certainly disk brands I wouldn’t put in my drives. I had to check for the drive heads that might have had any disk operation. In those days most brands did not have an problems: The Addison-Wesley manuals are fraught with ambiguities, errors, and missing explanations; there is very little support for assembly language programming in comparison with the voluminous C support; and only low-level programming can keep a fairly firm grip on the reins of the operating system (yes, I know C is a systems language, but try writing interrupt code with it, or perhaps time-critical disk code).

Version 1.2 is more stable. Available software is rarely able to run correctly on both versions, however, and I find myself cataloging my software according to this phenomenon. Also, RAM expansions don’t seem to be supported very well (if at all).

I think the Amiga is an excellent piece of hardware. But when it comes to software—both systems and applications—it fails the test. A multitasking system is fine for use within an application, but on a system of this size with so few physical devices (not to mention the fact that any application can usurp the system), I really don’t see the point.

Most likely it will take a few more years before the Amiga is truly understood. When this happens, we may well see the appearance of some very phenomenal software. Until then we will just have to settle for being both amazed and disgruntled at the same time.

Michael N. McFarland
Littlerock, CA

Close to my own sentiments. Thanks.
—Jerry

Disk Could Be a Problem
Dear Jerry,

In the March Chaos Manor Mail, you stated in reply to Paul Horvick that “most of that stuff is on such cheap media that I don’t even put them in my machine for fear it will mar the disk heads.” How can we identify disks that are likely to damage disk heads? Do some disks contain abrasive materials that cause this problem? As cheap disks are flooding the market now, I would appreciate some comments on how to select disks.

Harry H. Hull
Sun City Center, FL

In the old CP/M days, there were certainly disk brands I wouldn’t put in my drives. I had to check for the drive heads of those disks, marked up both read and write operations. In those days I preset the brand using the cheap brands.

Now, I don’t; but I do know the good brands, like Dysan, Scotch, and Maxell.

I’m probably too paranoid, but if a disk looks at all questionable—marks on the media, lack of high polish, etc.—I’ll run it once, but only to copy what’s on it.—Jerry

In the old CP/M days, there were certainly disk brands I wouldn’t put in my drives. I had to check for the drive heads of those disks, marked up both read and write operations. In those days I preset the brand using the cheap brands.

Now, I don’t; but I do know the good brands, like Dysan, Scotch, and Maxell.

I’m probably too paranoid, but if a disk looks at all questionable—marks on the media, lack of high polish, etc.—I’ll run it once, but only to copy what’s on it.—Jerry
We've made Computer Aided Design & Drafting so easy-to-use, affordable, and capable that now it's showing up virtually everywhere. In the office, on the job site, at school, and home.

Managers are using Generic CADD™ to generate reports, forms and flow charts. Tradespeople are using Generic CADD™ to make plans and change plans. Schools are using Generic CADD™ to change the way their students learn.

Professionals of all types now realize that Generic CADD™ gives the same kind of power over their drawing that spreadsheet programs gave them with numbers!

Generic CADD™ Just $99.95
Not copy protected.
60-day money back guarantee.

Productivity Modules:
DotPlot™
AutoDimensioning™
Drafting
Enhancements 1™ & 2™
AutoConvert™
Generic IGES™

To order, call toll free:
1-800-228-3601
or 206-885-5307
8763 148th N.E.
Redmond, WA 98052

Inquiry 106 for End-Users.
Inquiry 107 for DEALERS ONLY.

Generic SOFTWARE
The 10th Northeast Computer Faire shows you how to get from Beantown to Boomtown.

With this year's special focus on the biggest vertical markets in Boston and throughout New England, the Northeast Computer Faire maps out the way to bigger business opportunities and higher productivity.

Highways to Success
Our Conference and exhibit floor will highlight computer products geared to fit your business needs in areas such as manufacturing, education, engineering, medicine and finance. And we'll be spotlighting software for CAD/CAM, Desktop Publishing, Communications, Business and Accounting.

Seminars Put You in The Passing Lane
In our exclusive Professional Development Seminars, top instructors will guide you through timely subjects such as IBM’s Personal System/2, desktop publishing, and advanced programming techniques for dBASE III Plus.

The Freeway to Expertise
In our free hands-on classes, you can test drive desktop publishing systems, Lotus 1-2-3, MS-DOS, MultiMate and Wordstar.

Plus, vendor presentation sessions offer you in-depth new product introductions. Special demonstrations will feature exciting explorations into the world of computerized music, animation, video and other areas. And more show specials and bargains on products and services will be available than ever before. Get started on the road to Boomtown now by filling out and sending in the discount registration form below!

Or register on-line withBoston CitiNet. Dial (617) 439-5699 on your modem and enter GO FAIRE, or call (617) 439-5678, today!
The Best of BIX is a small sample of the type of one-on-one interaction that users of the BYTE Information Exchange enjoy regularly. If you'd like to take part, see the advertisement on page 285.

APPLE

The Apple section this month consists entirely of a long message from conference co-moderator Morgan Davis about the results of his investigation into the virtually undocumented IIGS serial ports.

THE IIGS SERIAL PORT PROCESSOR: AN INVESTIGATION

I've come to the conclusion that if one requires information about how to access certain features of the Apple IIGS, the one is left to one's investigative devices. This has been traditional for as long as I can remember, anyway.

With the emergence of the IIGS we were supposed to see a plethora of technical information being made available to anyone who could pay for it. Addison-Wesley is publishing the huge technical volumes on the IIGS's Toolbox, as well as a "suite" of other IIGS technical manuals. And anyone can walk down to the bookstore and pick up a copy.

One area where nobody seems to know what is going on is with the IIGS's serial port. Those of you who have had BIX accounts for at least eight months have seen many pleas for information about the ports, but so far, none of our knights in shining phosphor from Apple have been able to provide much assistance.

CAP ON, MAGNIFYING GLASS IN HAND

Being generally curious, finding out what the deal is with the ports has become more of an adventure for me than a real need. To start my investigation, I obtained a large "Components Data Book" for Zilog chips. As we all know, the two Apple IIGS ports are governed by a single Zilog 8530 serial communications controller (SCC) chip. From this, I've learned that the SCC in the IIGS is a very powerful and exciting chip to work with.

Without getting into the heavy technical descriptions of the features of this chip, let's just say that it does a lot of fancy stuff that the old 6551, used by the IIc and the Super Serial Card, never could have accomplished.

The 8530 has two channels, one for the printer port and the other for the modem port. They are labeled "Channel A" and "Channel B." In the peripheral I/O area of the IIGS ($E000xx) are four locations that allow a program to directly access the 8530. They are:

- C038 - Channel B control and status register
- C039 - Channel A control and status register
- C03A - Channel B data register
- C03B - Channel A data register

For programmers, this arrangement makes it easy to access the register for the channel you require by using an indexed instruction. What's slick about this dual-channel system is that the same location can be used to obtain status information (by reading), or to control certain SCC modes (by writing).

For passing data in and out of the SCC, you either read the data register to grab a character, or you write to the data register to send one out. Overall, a simple scheme.

Here's where it gets messy.

REGISTERS FOR DAYS

Unknown to most is that the 8530 has many internal 8-bit registers that correspond to a variety of functions and statuses. In all, the chip has nine read registers and 16 write registers!

Of the nine read registers, only four of them can actually be used for reading status information: RRO, RRA, R10, and R15. Read Register #6 (RR6) is the same as the associated channel's data register ($C08A or $C0B8).

All the 16 write registers (WRO through WR15) can be accessed, and, likeRR6, Write Register #8 is the data register, used for sending a character out of the port.

Some of you might wonder how one would access up to 16 independent registers on the 8530 when we're given just one location per channel in which to access the chip. This is done by selecting the register you want to work with. To select a specific register, you must write the register's number (0 to 16) in the lower three bits of the appropriate channel's control register (either $C038 or $C039). The next time you access one of these locations, you'll be accessing the 8530 register specified by the initial write.

So, in order to read a certain register, it would require one write to select it, and then the read. Conversely, to write to a specific register, you must write once to select it, and then write again to make your change. As an example, the following will read RR12 from the monitor:

*038:0c ;Select register 12, Channel B
*038
[RETURN] ;Read RR12's value

One important note needs to be made. If you select, for example, Register #2 and then read $0038 (Channel B status) twice in a row, you'll get two different values. This is because the 8530 will reset the selected register back to Register #0 (RRO or WRO) after you've either read or written to your selection. You'd read RR2 the first time, and then read RRO the second time.

(By the way, register selection is made by writing to WRO. If you're not sure if WRO is selected when you first want to access the 8530, you should read the status register first so that the 8530 will reset the register selection to #0 for you. This isn't written down anywhere, but I think it would be a safe thing to do).

HIGH LEVEL, HIGH ADVENTURE

For those of you who don't enjoy having to get down on your hands and knees to access the bare hardware, relax in knowing that you can talk to the 8530 through the serial port firmware on the Apple IIGS. You'll have to make extended calls to the firmware using GetSCC and SetSCC to reach the many registers of the 8530, but at least it keeps your clothes clean.

continued
As an example, the following routine, which can be typed into the monitor, will read RR12 (the low byte of the data-rate time constant).

```
call 151

; Enter the monitor

; Enter mini-assembler

; Firm for slot 2 (usually the modem port). It's hardcoded to

; Enter mini-assembler

/ 1 3 0: 1 d a # 1 987 ; A, X, and Y to point to parameters

; (the address is $00/0380)

; 1 dx # 0 7

; J82:00 00 ; Result space

; J81:08 ; Extended code is 8

; J8 0 : 0 4 ; Parameter count is 4

; J85:00 ; Value from RR12 is returned here

; J85 [RETURN] ; View contents of RR12
```

This shows how to make an extended call to the Pascal 1.1 firmware for slot 2 (usually the modem port). It's hardcoded to $C200 for the extended-call entry point.

WRANGLING REGISTERS
By now, you're probably wondering what each of the read and write registers do, and which bits control what. Sorry, I'm not going to type in the settings for 200 bits. If you're really interested in this stuff, I strongly recommend that you order a data sheet from Zilog or pick up a components manual. Why the spec sheet for the 8510 was not included with all the other data sheets in the Apple IIGS Hardware Reference is beyond me. Then again, there are many things Apple does that are beyond the grasp of rational comprehension. :-)

If interest is high, perhaps I can type in descriptions of what I consider to be the few most useful registers. Until then, there are many things Apple does that are beyond the grasp of rational comprehension. :-)

--Morgan ("Real Programmers Don't Need Manuals") Davis

MACINTOSH

Nobody's perfect, as shown by a BIXen's look at the typos inside a Macintosh SE. That discussion eases into a hot debate on the SE's cooling fan. There's a discussion on the apparent fragility of the SE, and a how-to on hooking up MultiSync/Multiscan monitors to the Macintosh II. And how compatible is the Mac NuBus anyway?

THE GREAT MAC SE TYPO-AND-FAN SAGA

For the curious, while disassembling a Mac SE, I noticed the following:

>> There is a spot for a resistor just below the fan. Perhaps to slow and quiet it down?

macintosh/mac.se #221, from lloeb (Larry Loeb, conference moderator), Fri May 22 10:06:49 1987. A comment to message 220.

The Billy Steinberg solution for the fan:

"100 ohms at 1/2 watt."

macintosh/mac.se #225, from nz_mhamel (Michael Hamel), Sun May 24 00:44:23 1987. A comment to message 221.

Speaking of the fan, surely some thoughtful hardware person (coughing violently and pointing to self) could, if they had an SE (more coughing), make the fan thermostatically controlled. I mean, it must be designed to cool a fully loaded SE with hard disk, external drive, and something in the slot at ambient temperatures of 95c or so. So most of the time it's running much too fast. A temperature sensor coupled to a proportioning control should ensure it only comes on when it has to and at whatever speed it has to to keep things cool. Probably it would just start to make enough noise to be annoying after you've worked at the SE long enough to be really irritated by it, eh?

On the fan, also, has anyone else noticed that when the hard disk in the SE is reading in a long file, such as an application, the speed of the fan changes. I mean to say, the pitch of the whine goes lower transiently and then returns to its normal continuous-wave whine. Does this mean that the power supply is being taxed such that the voltage on the fan drops a little when the hard disk is turning? Sounds like the power supply is a little too close to the specifications for the hardware being powered. Which means that the fan is really needed to keep the SE from becoming a baked apple (which the Mac Plus I use at work has done twice), since a larger power supply was not used, apparently owing to heat constraints.

I've had two review machines in here and BOTH fans never changed pitch under any load or disk operation.

The Sony power supply is 100 watts up from 60 watts on the "Classic" Mac.

I think there is AMPLE margin designed in this time; and would disagree with your thoughts on this.

macintosh/mac.se #230, from rsimonsen (Redmond Simonsen), Mon May 25 01:29:29 1987. A comment to message 228.

Could be a harmonic that is changing the sound of the fan rather than a slowdown due to stressing the power supply.

macintosh/mac.se #233, from bohannan (Bruce Bohannan), Fri May 29 23:56:54 1987. A comment to message 226.

I have the same problem (attribute?) with my SE fan... about once an hour, the pitch rises and then falls back to normal. It sounds like some sort of harmonic distortion to me.

macintosh/mac.se #229, from bvwanterp (Bill Vanantwerp), Sun May 24 15:13:10 1987. A comment to message 225.

Trouble is that a true pid-type controller costs more than it's worth, I would think. My solution on a Plus was to install a continued
Complete systems for Less than ANYBODY!
And we can FINANCE YOU!
Our revolving charge makes owning the system you want easy!
Over a $BILLION of AVAILABLE!!

NOT A LEASE * YOU OWN IT!

$29. mo. TURBO XT MODEL #5301
- Selectable 6.77 & 8 MHz
- Processing Speed: 4 MHz
- RAM Memory: 384K on Main Board
- BIOS: 8088/2 CPU-Cpus on 2 in 1 Unit
- Eight Expansion Slots: PCI-1
- Complete Keyboard RETAIL VALUE $899. OUR PRICE 499.

$39. mo. TURBO XT MODEL #5302
- Selectable 6.77 & 8 MHz
- Processing Speed: 4 MHz RAM Memory on Main Board
- BIOS: CPU-Cpus on 2 in 1 Unit
- Eight Expansion Slots: PCI-1
- Complete Keyboard RETAIL VALUE $899. OUR PRICE 739.

$45. mo. TURBO XT MODEL #5303
- Selectable 6.77 & 8 MHz
- Processing Speed: 4 MHz RAM Memory on Main Board
- BIOS: CPU-Cpus on 2 in 1 Unit
- Eight Expansion Slots: PCI-1
- Complete Keyboard RETAIL VALUE $899. OUR PRICE 1019.

$49. mo. TURBO XT MODEL #5304
- 8 MHz Processing Speed
- 64K RAM Memory on Main Board
- BIOS: CPU-Cpus on 2 in 1 Unit
- Eight Expansion Slots: PCI-1
- Complete Keyboard RETAIL VALUE $899. OUR PRICE 1295.

$49. mo. TURBO XT MODEL #5305
- 8 MHz Processing Speed
- 64K RAM Memory on Main Board
- BIOS: CPU-Cpus on 2 in 1 Unit
- Eight Expansion Slots: PCI-1
- Complete Keyboard RETAIL VALUE $899. OUR PRICE 1479.

$59. mo. TURBO XT MODEL #5306
- 8 MHz Processing Speed
- 64K RAM Memory on Main Board
- BIOS: CPU-Cpus on 2 in 1 Unit
- Eight Expansion Slots: PCI-1
- Complete Keyboard RETAIL VALUE $899. OUR PRICE 1539.

$59. mo. TURBO XT MODEL #5307
- 8 MHz Processing Speed
- 64K RAM Memory on Main Board
- BIOS: CPU-Cpus on 2 in 1 Unit
- Eight Expansion Slots: PCI-1
- Complete Keyboard RETAIL VALUE $899. OUR PRICE 1719.

$59. mo. TURBO XT MODEL #5308
- 8 MHz Processing Speed
- 64K RAM Memory on Main Board
- BIOS: CPU-Cpus on 2 in 1 Unit
- Eight Expansion Slots: PCI-1
- Complete Keyboard RETAIL VALUE $899. OUR PRICE 1859.

STORAGE KITS from 10 mb to 360 mb.

$59. mo. AT PORTABLE TURBO MODEL #5501
- 8 MHz Processing Speed
- 64K RAM Memory on Main Board
- BIOS: CPU-Cpus on 2 in 1 Unit
- Eight Expansion Slots: PCI-1
- Complete Keyboard RETAIL VALUE $899. OUR PRICE 1749.

$69. mo. TURBO AT MODEL #5502
- 8 MHz Processing Speed
- 64K RAM Memory on Main Board
- BIOS: CPU-Cpus on 2 in 1 Unit
- Eight Expansion Slots: PCI-1
- Complete Keyboard RETAIL VALUE $899. OUR PRICE 1899.

$69. mo. TURBO AT MODEL #5503
- 8 MHz Processing Speed
- 64K RAM Memory on Main Board
- BIOS: CPU-Cpus on 2 in 1 Unit
- Eight Expansion Slots: PCI-1
- Complete Keyboard RETAIL VALUE $899. OUR PRICE 2099.

$69. mo. TURBO AT MODEL #5504
- 8 MHz Processing Speed
- 64K RAM Memory on Main Board
- BIOS: CPU-Cpus on 2 in 1 Unit
- Eight Expansion Slots: PCI-1
- Complete Keyboard RETAIL VALUE $899. OUR PRICE 1999.

$69. mo. TURBO AT MODEL #5505
- 8 MHz Processing Speed
- 64K RAM Memory on Main Board
- BIOS: CPU-Cpus on 2 in 1 Unit
- Eight Expansion Slots: PCI-1
- Complete Keyboard RETAIL VALUE $899. OUR PRICE 2119.

$69. mo. TURBO AT MODEL #5506
- 8 MHz Processing Speed
- 64K RAM Memory on Main Board
- BIOS: CPU-Cpus on 2 in 1 Unit
- Eight Expansion Slots: PCI-1
- Complete Keyboard RETAIL VALUE $899. OUR PRICE 2219.

INSTANT CREDIT NOW!
Even if you have a computer... We'll sell you add-ons from our TOP QUALITY products, and FINANCE them too!
MONITORS ARE ADDITIONAL, SURGE PROTECTOR/POWER DISTRIBUTION CENTERS ARE OPTIONAL AND AVAILABLE FOR ONLY $39.95

SAY CHARGE IT!
ADD A MONITOR/MEMORY/PACKAGES:
ORDER TOLL FREE:
1-800-237-5758 EXT. 823
CUSTOMER SERVICE (813) 961-5584
HOURS M-SAT (813) 961-5584
OPEN MON-THUR 9 AM-7 PM
OPEN SATURDAY 9 AM-5 PM
CORPORATE HEADQUARTERS 18520 N. FLORIDA AVE., LUTZ, FLORIDA 33549 (813) 961-8444

PAYMENT ACCEPTED BY:
AMEX, DISCOVER, VISA, MASTERCARD
ADD A MONITOR/MEMORY/PACKAGES:
DEALERS! call for the up to minute prices for: BRAKES, 8087, EXPANSION CARDS, IC'S, and much, much more!
1-800-825-SAVE

OFFICES NOW OPEN: TAMPA MIAMI • LOS ANGELES WASHINGTON D.C. • TAIPEI JAPAN

NORTHEAST REGIONAL SALES OFFICE 1-301-933-3523
WASHINGTON, D.C. AREA 1-800-942-9468

PRICES SUBJECT TO CHANGE DUE TO AVAILABILITY AND MARKET FLUCTUATIONS WHOEVER PRINTED THIS CREDIT APPLICATION FEE
fan with a switch that I turned on only when I wasn’t within earshot. Works like a dream. Inside my Plus rarely gets to be more than 10C.

FRAGILE SE: HANDLE WITH CARE

macintosh/mac.se #235, from tom_thompson (Tom Thompson, BYTE), Mon Jun 8 08:47:03 1987.

Well, we just got our SE back from COMDEX, and it turns out that they don’t take to being hauled about too well. Case in point:

A key on the keyboard was broken off. I managed to reattach it by *very* carefully using epoxy cement. One foul-up and the key could have been glued permanently into the “on” position, but with a lot of care and a little luck I managed it. This reaffirms my previous opinion about the new keyboard - a tad too frail for my liking, especially when compared to the classic Mac keyboard. (We’ve shipped some of these Macs to various shows, and I’ve yet to hear of a keyboard problem.)

The video display didn’t work. This provoked a number of four-letter rune incantations, after which I switched the SE off. Turning it back on, I could see that the internal hard disk seemed to run through a typical boot sequence. So I stuck in a formatted floppy, which the SE appeared to read properly. Now the test: I hit Command-E on the keyboard and phwang, out pops the floppy. Now that we know the CPU is OK, it’s time to open the SE now to file this comment. But be advised: I don’t think the SE is nearly as shippable as the classic Macs. Be careful!

At any rate, fixing that problem was simply a matter of plugging the connector back on. The hard disk seems OK, and I’m using the SE now to file this comment. But be advised: I don’t think the SE is nearly as shippable as the classic Macs. Be careful!

Scott Thompson, Jun 8 1987
Catch the Excitement!
Today, High-Tech Job
Opportunities are
Everywhere!

Now you can take
control of your future
with NRI's newest hands-on
training and carve out your own
place in today's electronics world.
Select a new career field or start a
business of your own. Now the choice is
yours. And only NRI gets you where you're
going with the latest professional
instruments and test equipment you build
and keep as you learn at home.

No other school of its kind
has prepared so many people for
successful careers in electronics.
For over 70 years, NRI technical
engineers and educators have
demonstrated a unique ability to
spot and anticipate the important
technological trends, then
develop state-of-the-art training
that's prepared over 1.3 million
business people for successful
careers in each new emerging field.

Now NRI presents three
new state-of-the-art training
opportunities in today's fastest growing
electronics fields.

Build Your Own IBM-Compatible
Computer as You Learn Digital
Electronics Servicing.

A brand new course for an exciting new
field...servicing computer peripherals (disk
drives, printers, display terminals, modems, etc.)
and the latest digital equipment found in industry
today. Job opportunities for the trained digital
technician have never been greater. It takes
skilled personnel to keep today's digitally
automated production lines and manufacturing
equipment rolling. NRI trains you to be a high-
demand digital technician or prepares you for
your own independent service business.

As you learn, you get practical hands-on
experience building your own 256K, IBM-
compatible NRI Model XT computer-complete
with disk drive and monitor. When you add
NRI's exclusive diagnostic software, you
transform your computer into a dedicated digital
testing device for troubleshooting video displays

Only NRI trains you
for so many careers
on the leading edge
of today's electronics
revolution.

and terminals, disk drives, and more!

You also build and learn to use and service your
own triggered-sweep oscilloscope, digital logic
probe, and digital multimeter...instruments
used by today's digital electronics professionals.

When you select NRI training in Digital
Electronics Servicing, you'll be preparing
yourself to move into one of today's hottest
electronics careers!

Build an Operating Robot as You Learn
Robotics and Industrial Control.

Already, advanced robotics systems are
producing everything from electronic circuits
to automobiles. By 1990, over 100,000
"smart" robots will be in use, creating over
30,000 new technical jobs.

NRI trains you to operate, program, service
and troubleshoot industrial robots as you build
your own remote controlled, programmable
mobile robot. You get professional
insights and up-to-date training to
prepare you to handle the technology
that's changing the face of industry today.

Install and Troubleshoot Your Own
Home Satellite TV Equipment as
You Learn Satellite Electronics.

You've seen them in backyards, beside
motels, atop office buildings, and in military
stations—all those dishes reaching out
for TV programs, computer transmissions, data
signals, and messages of all kinds from the
growing number of satellites stationed 22,300
miles above the earth. Now NRI training can
give you in on the ground floor of a new career
or even a business of your own in
this exciting new growth field.

NRI trains you to service consumer TVRO systems, as well as
the larger commercial and military
equipment used to transmit and
receive worldwide communications:

news, weather, national security &
defense transmissions and all types of voice,
data and video signals.

Learn to install satellite
systems...adjust, troubleshoot
and repair dishes, amplifiers,
converters, antennas and
receivers. And get "hands-on"
experience as you install your own satellite
TVRO system that will bring TV signals from
around the world into your home.

Send for Free Catalog of High-Tech
Career Opportunities.

Now you, too, can catch the excitement.
Just send for your free copy of the 100-page NRI
High-Tech Electronics Careers catalog. See the
future open up for you as you explore exciting
new opportunities for higher pay, advancement
even your own business. Review the complete
descriptions of the training you get, the equip-
ment that makes each opportunity come to life.
Send today and get your start on tomorrow.
If the card is missing, write to us.

NRI School of Electronics
McGraw-Hill Continuing Education Center
3939 Wisconsin Avenue
Washington, DC 20016
We'll Train You For Tomorrow.

SEPTEMBER 1987 • BYTE 321
SPECs

NEC MultiSync JC-1401PJA, primarily designed as an EGA-compatible TTL (digital RGB) monitor, includes IBM Professional Graphics Adapter compatibility.

Resolution: 800x560
Analog 0.6V
Video bandwidth: 30MHz
Synchronization: Horizontal 15.5-35KHz
 Vertical 55-62 KHz, noninterlace

SETTINGS

Analog/TTL: Analog
Manual: On

CABLE

NEC DEC Description Apple video card (*DB*-15)
1 Red 2 Red
2 Green 3 Green
3 Blue 4 Blue
4 Composite Sync 5 CSync
5 V. Sync 6 N/C or Ground
7,8,9 Ground

A LOOK AT NUBUS COMPATIBILITY

macintosh/mac.ii #212, from reviews6, Thu May 21 22:01:55
1987.

The Sony Multiscan, like the NEC MultiSync, is a monitor
designed for compatibility with several IBM standards. It
handles PGA and VGA.

It also works very nicely with the Mac II. I'm told that it
looks identical to the Apple monitor except for the case. (Apple
has acknowledged using a Sony tube; other differences are
unclear.)

I also heard that only the late-model NECs can handle the
Mac's scan rate.

macintosh/mac.ii #205, from murdock (Albert Sousa), Mon May

Will TI NuBus cards work on the Mac II? I'm referring to the
LISP processor card on the Explorer and the memory, CPU, and
peripheral cards from the Business Pro. Also, a magazine made
reference to a new Mac in alpha. It said this new Mac was as big a
jump over the Mac II as the II was over the Plus. Any comments?

macintosh/mac.ii #210, from nwallach (Naor Wallach), Thu May

Looking at the pictures from AST for its 286 card, I believe
that Apple has developed its own form factor for its cards. I do
not believe that it has followed the NuBus spec in its
mechanical design. Therefore, no NuBus card compatibility.
Electrically, Apple used NuBus though.

macintosh/mac.ii #216, from tom.thompson, Tue May 26

I think it's the other way around: Apple has followed the
form-factor (mechanical) specs from the NuBus doc, but it's only
partially compatible electrically. If the card requires the
-5.2V that the Apple NuBus doesn't supply. Except for this one
change, the Mac II follows the NuBus electrical specs closely and
should work.

macintosh/mac.ii #233, from nwallach, Sun May 31 21:03:48
1987. A comment to message 216.

The spec I have mentions a form factor that is identical to
VMEbus. I'll check my spec if someone will post the mechanical
dimensions for their Apple NuBus cards.

macintosh/mac.ii #240, from tom.thompson, Mon Jun 1

Just a guess, but what version of the NuBus spec do you have? I
had spec 1.6, which only mentioned the VME form factor. Things
didn't look too pleasant electrically, either. However, when I
received my copy of the NuBus spec, I found out it's now in draft
version 2.0. Apple is pretty well in order with the electrical
definitions (except for the -5.2V), and a "PC" form-factor card
was introduced. The dimensions for the PC form factor are:

101.6mm (4.0") in height
327.03mm (12.875") in length max.

Length shall vary on left side of card; minimum length is
177.8 mm (7.06")

Connector is a Eurocard type C connector; specifically, 603-
2-IEC-C096-M.

This is probably the form factor Apple is using for the boards
(certainly not the VME form factor!).

macintosh/mac.ii #243, from nz._mhamel, Tue Jun 2 04:17:46

I thought Apple was a bit more deviant than that from the NuBus
spec; hasn't A31, which was a ground, become an interrupt line,
IRQ*? And Apple doesn't support block transfers (or is that
optional now?)?

A comment to message 243.

Yes, upgrading the video card is just a matter of putting in the
chips. I saw it done and it took about 2 minutes, maybe 3. And
the chips weren't even from Apple. I believe $41 is a reasonable
price if bought in quantity through a user's group co-op or
something.

macintosh/mac.ii #247, from tom.thompson, Tue Jun 2

No, A31 is an address/data line, it can't be a ground. The
interrupt request is now IRQ*, which can be bused or non-bused
(Apple chose the latter route, so that each card could have
its own dedicated interrupt), No, the Mac II doesn't support
block transfers, and they are optional in version 2.0 of the
spec.

macintosh/mac.ii #249, from nwallach, Tue Jun 2 19:29:58

Hmmmmmmmm!

My spec. is document T1-2242825-0001, published by Texas
Instruments. You know, the people who developed NuBus.

Of course, there is nothing to say that they are perfect.
Thanks anyway.

macintosh/mac.ii #250, from sjones (Scott Jones), Tue Jun 2

You're wrong! TI didn't develop the NuBus. Some of my
continued
Compose Yourself!

Now create superb sounding music on your IBM® PC. Ad Lib® makes it easy.

Just when you thought you'd heard it all, along comes Ad Lib.

And with it comes rich, room-filling music like you've never heard from a PC before. With rumbling bass, crystal clear highs, upfront mid-range. All of it composed and performed on the first complete PC music system for people like you—long on desire, little short on experience.

The heart of the system is the Ad Lib Music Synthesizer Card™. An electronic sound synthesizer based on the same digital technology found in professional keyboards and the finest music computers. Just plug it into your PC and get clean, powerful music through high fidelity headphones, bookshelf speakers, even your home stereo. It'll handle up to eleven different instrument sounds playing at once, so it's perfect for anything from a solo to a symphony.

There's also Ad Lib Visual Composer™ about the most instinctive composition software ever devised. Simply draw lines to indicate notes, using the on-screen piano keyboard. Change instruments, tempo and volume with a couple of keystrokes. Cut, copy and paste portions of your music in a snap.

Included with the program is Composition Projects™ #1, a step-by-step guide to creating all kinds of music, including classical, jazz, bossa nova, ragtime, and more. Just the thing for an ever-expanding repertoire.

Visual Composer is worth $89.95 if purchased separately, but it's yours free when you buy the system.

Then play back all of your creations, as well as several pre-programmed selections on the Juke Box™ playback software, also included with your system.

Look for the Ad Lib Personal Computer Music System™ at selected computer and music stores, or order direct from Ad Lib with your check, Visa or MasterCard.

The Ad Lib Personal Computer Music System. At last, you have what it takes to make great-sounding music.

The Ad Lib Personal Computer Music System includes the Ad Lib Music Synthesizer Card, Juke Box playback software, free Visual Composer software with 50 pre-set instrument sounds and Composition Projects #1 - $245.00

Enhance your system further with this additional Ad Lib software:

Music Championship™ #1—Basic Concepts. Learn to identify basic musical concepts, including tempo, mode, rhythm and key. Perfect for all ages. The first in a series of music training programs combining synthesized music with exciting computer game competition - $39.95

Instrument Maker™ software. Lets you create and save new instrument sounds for use with Visual Composer. After 23 sound characteristics like attack, sustain and decay. Modeled after professional music synthesizer software - $49.95

Look for more Ad Lib music software titles coming soon.

Requires IBM PC, XT, AT or compatible, 256K RAM, DOS 2.0 or higher, CGA, EGA or monochrome graphics adaptor.

To place your order, or to request your free demonstration recording, call us toll-free today.

Ad Lib Inc.
50 Stanford Street
Suite 800
Boston, MA 02114

1-800-463-2686

Inquiry 334
professors at MIT developed it a number of years ago. I just licensed the NuBus from them! I was surprised to hear that Apple had chosen it for the Mac II. I still have some course notes describing the bus-arbitration protocol that the professors had designed [from a class called 6.032].

What's the date on that thing? I've got the IEEE P1196 specification, draft 2.0, dated December 15, 1986. It's also an unapproved draft, but since it's still in the proposal stage (hence the "P" with the spec number), no big deal. No idea when it'll be finalized, but this document's the latest I've seen.

Hmmm, all these MIT types coming out of the woodwork!

I do wish that Apple had kept in some of the features of the NuBus. Like the fast block transfers.

IBM PC

Can you use a single-sided 3 1/2-inch floppy disk in one of the new 1.4-megabyte PS/2 drives? It seems so at first glance. But wait, there's more. If that isn't enough to pique your interest, you can read all about the stuttering ROM BIOS or the nonfunctioning alternate Alt. In the realm of the more contemporary PS/2 systems, there's a discussion of the pros and cons of the Micro Channel bus and bus ID numbers. This month's IBM PC section finishes up a thread on how EXEC does temporary exits to DOS.

THE DANGERS OF SINGLE-SIDED DISKS

I dumped the ROM BIOS of my Model 60 out to disk earlier today, just so I could do some spelunking. Here's a picture of the front end of the file:

```
-d 100
9900XX66881158
((CC))CODPPTYRRTIITGHTT
IBM64 COORDHPPOORAAATTIIOONN
11998811, 11998877
AALILLRHITGHTTSS
RESSEERVVEEED
```

Was there a mega$$$ conspiracy afoot? Am I being overcharged for high-density disks, when any old 3 1/2-inch disk will work? Is there a difference in reliability between these disks? Anyone have any suggestions?

Well, just watch out for the single-sided disks. ... "single-sided" means that the disks failed the certification tests on one surface but not the other. There could be a very slight flaw on the bad side. ... or there could be a large one.

I do wish that Apple had kept in some of the features of the NuBus. Like the fast block transfers.

STUTTERING ROM BIOS

I dumped the ROM BIOS of my Model 60 out to disk earlier today, just so I could do some spelunking. Here's a picture of the front end of the file:

```
-d 100
9900XX66881158
((CC))CODPPTYRRTIITGHTT
IBM64 COORDHPPOORAAATTIIOONN
11998811, 11998877
AALILLRHITGHTTSS
RESSEERVVEEED
```

Was there a mega$$$ conspiracy afoot? Am I being overcharged for high-density disks, when any old 3 1/2-inch disk will work? Is there a difference in reliability between these disks? Anyone have any suggestions?

Barry, what do you get if you output that as a direct image to the screen, using the alternate bytes as attribute bytes? Must look pretty funny.
The computer industry is hopping. And COMDEX/Fall '87 is the place to roll back the rug, kick up your heels, and get down to business with more than 1300 exhibitors in a “sold out” show.

COMDEX/Fall '86 and COMDEX/Spring '87 proved that the industry had regained its form. The former signaled the resurgence, and the latter became the most successful Spring show ever, with over 52,000 attendees.

The perfect partner for VARs, VADs, distributors, OEMs, and other resellers, COMDEX/Fall '87 pairs you with suppliers of the newest products and services that will vitalize your sales for 1988 and beyond. Hardware and software for communications, CAD/CAM and desktop publishing, multi-user systems, micro-mainframe integration, workstations, local area networks—you can take a turn with all the liveliest opportunities of the season.

And you'll step up your sales momentum through such Conference exclusives as field reports from users and resellers on IBM's new generation of desktop machines, Apple's Macintosh series, and through seminars on desktop publishing, CAD/CAM and corporate connectivity.

COMDEX/Fall '87 is where the industry is hopping. Fill out and send in the coupon now for attendee registration information. Or write to COMDEX/Fall '87 Attendee Registration, 300 First Avenue, Needham, MA 02194.

COMDEX/Fall has me dancing in the aisles!
☐ Send me complete attendee information, including registration form, hotel and travel discounts.
☐ Send me exhibitor wait list information.
☐ Have a Sales Representative call me.

Name________________________
Title________________________
Company_____________________
Address______________________
City__________________________
State________________________
Zip__________________________

Return to COMDEX/Fall '87 Attendee Registration
300 First Avenue, Needham, MA 02194

Inquiry 350

November 2-6, 1987 · Las Vegas · Nevada

Produced by THE INTERFACE GROUP Inc.
Integrand's new Chassis/System is not another IBM mechanical and electrical clone. Appearance, power, thermal, reliability and EMI problems that plague other designs have been solved. An entirely fresh packaging design approach has been taken using modular construction. At present, over 40 optional stock modules allow you to customize our standard chassis to nearly any requirement. Integrand offers high quality, advanced design hardware along with applications and technical support all at prices competitive with imports. Why settle for less?

Rack & Desk Models
Accepts PC, XT, AT Motherboards and Passive Backplanes
Doesn't Look Like IBM
Rugged, Modular Construction
Customize with over 40 Stock Panels
Excellent Air Flow & Cooling
Optional Card Cage Fan
Designed to meet FCC
204 Watt Supply, UL Recognized
143W & 85W also available
Reasonably Priced
Made in USA

THE NONFUNCTIONING ALTERNATE ALT

The second Alt key (to the right of the spacebar) isn't recognized by any of my programs. The second Control key (also to the right of the spacebar) functions normally. Do I need to trade in my keyboard? Or did IBM just do something different with the second Alt key? Also, does anyone know how to make use of the F11 and F12 function keys? I don't have the Tech Ref yet; do they use special return codes?

I can try it when I get to work tomorrow. I wonder if it'll blow up the machine (hope, hope).

Gee, these software guys don't know much about hardware, do they?

Actually, I've wondered about that BIOS stuttering for years (you can find it in every PC from the very first one) until I started working for a hardware company. You see, ROMs are usually organized as "by 8," meaning that they can be accessed 8 bits at a time. Since 16-bit accesses are much faster if you don't have to read the same ROM twice, IBM (and most everyone else) arranges ROMs as two 8-bit ROMs with their addresses interleaved. In other words, all the even-numbered bytes are in one ROM and all the odd-numbered bytes are in the other. Most software for burning ROMs comes with a "byte-split" utility, which takes your object code and splits it into two files, one for each ROM.

So, all IBM is doing is making sure that the complete text of the copyright message is stored in each ROM!

Well, that makes sense. Thanks, Ed.

Does anyone have a clone that has a "stuttering" BIOS footprint like that? Mine doesn't; its front end is a perfectly readable copyright message (maybe this means that the low-byte ROM chip is not copyrighted unless it's treated as a set along with the high-byte chip, and vice versa?).

I suppose they could protect their rights by only copyrighting every other byte. Any 16-bit machine (8086, 80286, ...) should exhibit this same stutter.

The second Alt key (to the right of the space bar) isn't recognized by any of my programs. The second Control key (also to the right of the space bar) functions normally. Do I need to trade in my keyboard? Or did IBM just do something different with the second Alt key? Also, does anyone know how to make use of the F11 and F12 function keys? I don't have the Tech Ref yet; do they use special return codes?

ibm.ps/model.50 #265, from kkonnerth (Karl Konnerth), Mon Jun 15 01:40:15 1987. A comment to message 259.

We haven't had many problems with the Alt keys on our 50s and 60s. Occasionally, a program will reject one of the Alt keys, but it happens so infrequently that I can't remember which program was affected! Have you run the diagnostics yet? Note bene: You can access the advanced diagnostics by pressing Control-A at the main menu for the Reference Disk.
If you're in the business of programming business solutions, you need to know about BB'.
Throughout the world, the industry's best and brightest programmers are discovering the power that BB' brings to Business BASIC.
And the numbers are growing. This year, over 30,000 copies of BB' are performing across the United States, Canada, Europe, Asia and South America.

BB' is GOOD COMPANY WITH SOME GOOD COMPANIES.
The BB' name is well known to some of the most well respected names in the computer industry. Open Systems, Altos and State of the Art have adopted the BB' language for their accounting packages. NCR selected BB' as their standard Business BASIC offering.
These diverse companies, with very different needs, depend on the wide-ranging capabilities of BB' and the availability of over 1,000 BB' vertical application packages ranging from hospitality to waste management.

IT MATTERS THAT YOU'RE RUNNING BB', IT SELDOM MATTERS WHAT COMPUTER.
The power of BB' is unique in its enhancement of the Business BASIC language. You'll discover, though, that there need not be anything special about the computer you're programming.
BB' will make you a believer on most every major computer brand available today. And BB' is portable. With BB', you have guaranteed portability of your application across all supported operating environments. This means a program written on a single-user PC can run with NO modification on over 35 different UNIX computers!

BB' IS SETTING NEW STANDARDS WITHIN A 15-YEAR STANDARD.
BB' is simply the most contemporary implementation of one of the most traditional products in computer programming. Features like pop-up windowing on dumb terminals, device independent graphics, multi-keyed files, string arrays, long variable and function names, trigometric functions, matrix arithmetic, and others are simpler and swifter than you ever thought possible.
There are many other examples of BB' excellence like its callable business graphics utility set that makes graphics presentation of your data easy.

BB' IS THE SINGLE BIGGEST STEP YOU CAN MAKE TO OPTIMIZE YOUR BUSINESS BASIC LANGUAGE.
And it begins with this step. Call us at BASIS Incorporated. Find out how you can stay in step with the thousands of BB' programmers and bring an entire new dimension to your business applications.
We'll send you information on our just released BB' Progression/2, the newest, most advanced programming language from BASIS.
BB' Progression/2 will do much more than add personality to your language. That's not the half of it. BB' Progression/2 will give your Business BASIC a whole new character.

To order BB' Progression/2 in the United States please call TOLL FREE directly, 1-800-423-1394
In Canada, 1-416-494-0472
For technical support or more information, 1-505-821-4407

To order BB' Progression/2 in Europe please contact one of our European distributors,
EDIAS, Hans Kirchhoff, Pfriftgstammstrasse 25
D 6200 Wiesbaden, West Germany
Phone: (0 61 22) 2016 Telex: 418 25 63
PL Informatique, 6 rue Benjamin Constant
75019 Paris, France
Phone: (1) 4905 10.65 Telex: 214 583
MULTSYS A S, Torger Vras Plass 5A
3044 Drammen, Norway
Phone: (03) 83 86 05 FAX: (03) 89 02 59
BASIS Incorporated
PO. Box 20400
Albuquerque, New Mexico USA 87154
Electronic Bulletin Board 1-505-821-2933
MCI Mail, Basis (255-6242)
Telex 65025560242 mp
BB' is available on most popular UNIX, DOS and Network environments. Please call for assistance with your particular requirements.
UNIX is a trademark of Bell Laboratories.
NCR is a trademark of NCR Corporation.
Altos is a trademark of Altos Computer Systems.
Microsoft is a trademark of Microsoft Corporation.

Inquiry 342 for End-Users. Inquiry 343 for DEALERS ONLY.

SEPTEMBER 1987 • BYTE 327
In companies where professional treatment for mental illness is still viewed negatively, everybody suffers. The employee, fearing how it will look on his record, suffers by not seeking treatment. And the company suffers. From increased absenteeism and loss of productivity.

But you can help change all that. By recognizing that mental illness is a medical illness that requires medical treatment. And by looking into medical insurance coverage that encourages employees to seek professional treatment without fear or hesitation.

Today, many companies have successfully improved employee performance by structuring their health plans to include long and short-term treatment.

Learn more. For an informative booklet, write: The American Mental Health Fund, P.O. Box 17700, Washington, D.C. 20041. Or call toll free: 1-800-433-5959.

Learn to see the sickness. Learning is the key to healing.
THE AMERICAN MENTAL HEALTH FUND

BTW, not many programs used F11 and F12 when that keyboard was offered with the XT and AT, and not many use it now. I seem to recall that they require a separate BIOS call to read.

A LOOK AT THE MICRO CHANNEL BUS

IBM.PS/IBM.BUS #50, from greenber, Tue Jun 9 09:03:50 1987.

Well, now that the smoke has cleared a bit (and now that I finally have my Tech Ref so I understand the answers!):

Q: What makes the Micro Channel superior to the old XT bus? To the old AT bus? To other buses put out by other companies?

Q: These IDs that IBM promises to give to everybody: Is that the only way to get them, or can manufacturers make a deal and split a given number in some way between themselves?

Q: What peripherals might be uniquely suited to the PS/2 and why? In fact, why isn't the motherboard, and the CPU on it, considered a peripheral?

Q: When the Model 80 comes out, will the real power of the 386 shine through on the Micro Channel? Or will the Micro Channel start to shine when powered by the 386?

Well, now that I can follow what the heck people are gonna say, I'll try to translate a bit as required.

A comment to message 50.

yes yes yes no yes size 9 yes maybe yes

Well, anyway, the reason the CPU is not a peripheral is because guest masters on the bus cannot control the watchdog timer - control will always return to it. Of course, if the CPU disables the timer, all bets are off.

A comment to message 51.

Now, since I'm just starting to wade through the tech spec, perhaps you can help me out:

What the heck *is* the watchdog timer, and should I care that it exists?

IBM.PS/IBM.BUS #53, from matt.trask, Tue Jun 9 12:02:31 1987.

A comment to message 52.

The normal NMI services, such as parity check (yechh!) and NDP error, are implemented through the NMI vector in the normal
MICROMINT'S Gold Standard in Single Board Computers & Controllers

MICROMINT introduces a stand-alone serial digital imaging system: The MICROMINT Imaging X/1000 Digital Imaging System is a compact, fast, and versatile high performance grayscale video display system on the market today. The system is designed to be used as a building block in a variety of systems, ranging from medical imaging to scientific research. The system is based on the Advanced Imaging Technology and is available in a variety of configurations, including a stand-alone processor and an expansion board that can be used with a variety of hosts.

OEM-286

The OEM-286 is a valuable addition to the MICROMINT line. The system is a 286-based board that can be used as a standalone processor or as an expansion board with a variety of hosts. The board includes a 286 processor, a 1MB memory, and a serial interface. The board is designed to be used with the MICROMINT Imaging X/1000 system, and it can be used to display a variety of images, including medical images and scientific research data.

SB180FX

The SB180FX is a fully featured single board computer that includes a 16-bit microcontroller, 128K of RAM, and a serial interface. The board is designed to be used as a standalone processor or as an expansion board with a variety of hosts. The board includes a 16-bit microcontroller, 128K of RAM, and a serial interface. The board is designed to be used with the MICROMINT Imaging X/1000 system, and it can be used to display a variety of images, including medical images and scientific research data.

GT180

The GT180 is a high performance graphics display system that includes a 16-bit microcontroller, a 128K of RAM, and a serial interface. The board is designed to be used as a standalone processor or as an expansion board with a variety of hosts. The board includes a 16-bit microcontroller, 128K of RAM, and a serial interface. The board is designed to be used with the MICROMINT Imaging X/1000 system, and it can be used to display a variety of images, including medical images and scientific research data.

BCC52

The BCC52 is a basic controller that includes a 16-bit microcontroller, 128K of RAM, and a serial interface. The board is designed to be used as a standalone processor or as an expansion board with a variety of hosts. The board includes a 16-bit microcontroller, 128K of RAM, and a serial interface. The board is designed to be used with the MICROMINT Imaging X/1000 system, and it can be used to display a variety of images, including medical images and scientific research data.

BCC40

The BCC40 is a powerful 16-bit expansion board that includes a 16-bit microcontroller, 128K of RAM, and a serial interface. The board is designed to be used as a standalone processor or as an expansion board with a variety of hosts. The board includes a 16-bit microcontroller, 128K of RAM, and a serial interface. The board is designed to be used with the MICROMINT Imaging X/1000 system, and it can be used to display a variety of images, including medical images and scientific research data.

BCC52 & BCC11

The BCC52 & BCC11 software and accessories are designed to work with the MICROMINT Imaging X/1000 system. The software includes a variety of tools for developing and debugging software, as well as a variety of accessories for interfacing with other systems. The software includes a variety of tools for developing and debugging software, as well as a variety of accessories for interfacing with other systems.
The new bus time-out mechanism and watchdog timers also cause NMI through a TRM — oh well, I saw it somewhere.) There is some method but can't be masked by this method. (Pause while I shuffle through a TRM — oh well, I saw it somewhere.) There is some method other than the FC NMI mask to shut off the watchdog timer. I thought it was via the BIOS, but now I can't find it. AHA! There it is: For PS systems (except the 30, of course), Int 15h with AH=CJh AL=00h disables the watchdog, and AL=01h enables it with BX; count. This would be subject to protection with a real OS so temporary masters would not be able to seize the bus forever.

When your machine craps out, this gives it a more effective kick in the butt than the keyboard reset. Of course, if the software is the problem as opposed to a hardware glitch, you might get to reboot anyway, but at least you don't have to toggle the red switch. I don't know how well this works; the guy at the seminar said the machines were shipped with this feature disabled.

The bus time-out feature is supposed to save you in this situation. Presuming a real OS that knows about it, this is used to regain control from failed adapter cards that can then be shut off via the FGA mechanism. This is also useful with intelligent devices that become bus masters and then crash while running on-board firmware/software.

That is probably the domain of an OS, not some TSR. It is also possible in software to "probe" a board via its slot address and get back a response (assuming the board is working, of course).

At the tech seminar at COMDEX, the IBM guys sounded like they were welcome to use IDs from their boards if we develop clones. The gotcha is that software is allowed to make assumptions about boards based on the ID number.

But let's say that three years from now I design a superfast MITS Altair emulation board or something that *nobody else in the world* is going to be functionally identical to; how do I pick a number that *nobody else* has ever grabbed? Is IBM going to maintain a register?

IBM reserves 0-32767 for internal use; you can choose from 32768-65535.

In theory, if two boards have the same ID, they'd better be functionally identical. Matter of fact, the IBM guy said that we were welcome to use IDs from their boards if we develop clones. The gotcha is that software is allowed to make assumptions about boards based on the ID number.

But let's say that three years from now I design a superfast MITS Altair emulation board or something that *nobody else in the world* is going to be functionally identical to; how do I pick a number that *nobody else* has ever grabbed? Is IBM going to maintain a register?

IBM reserves 0-32767 for internal use; you can choose from 32768-65535.

In theory, if two boards have the same ID, they'd better be functionally identical. Matter of fact, the IBM guy said that we were welcome to use IDs from their boards if we develop clones. The gotcha is that software is allowed to make assumptions about boards based on the ID number.

But let's say that three years from now I design a superfast MITS Altair emulation board or something that *nobody else in the world* is going to be functionally identical to; how do I pick a number that *nobody else* has ever grabbed? Is IBM going to maintain a register?

IBM reserves 0-32767 for internal use; you can choose from 32768-65535.

In theory, if two boards have the same ID, they'd better be functionally identical. Matter of fact, the IBM guy said that we were welcome to use IDs from their boards if we develop clones. The gotcha is that software is allowed to make assumptions about boards based on the ID number.

But let's say that three years from now I design a superfast MITS Altair emulation board or something that *nobody else in the world* is going to be functionally identical to; how do I pick a number that *nobody else* has ever grabbed? Is IBM going to maintain a register?

IBM reserves 0-32767 for internal use; you can choose from 32768-65535.

In theory, if two boards have the same ID, they'd better be functionally identical. Matter of fact, the IBM guy said that we were welcome to use IDs from their boards if we develop clones. The gotcha is that software is allowed to make assumptions about boards based on the ID number.

But let's say that three years from now I design a superfast MITS Altair emulation board or something that *nobody else in the world* is going to be functionally identical to; how do I pick a number that *nobody else* has ever grabbed? Is IBM going to maintain a register?

IBM reserves 0-32767 for internal use; you can choose from 32768-65535.

In theory, if two boards have the same ID, they'd better be functionally identical. Matter of fact, the IBM guy said that we were welcome to use IDs from their boards if we develop clones. The gotcha is that software is allowed to make assumptions about boards based on the ID number.

But let's say that three years from now I design a superfast MITS Altair emulation board or something that *nobody else in the world* is going to be functionally identical to; how do I pick a number that *nobody else* has ever grabbed? Is IBM going to maintain a register?

IBM reserves 0-32767 for internal use; you can choose from 32768-65535.

In theory, if two boards have the same ID, they'd better be functionally identical. Matter of fact, the IBM guy said that we were welcome to use IDs from their boards if we develop clones. The gotcha is that software is allowed to make assumptions about boards based on the ID number.

But let's say that three years from now I design a superfast MITS Altair emulation board or something that *nobody else in the world* is going to be functionally identical to; how do I pick a number that *nobody else* has ever grabbed? Is IBM going to maintain a register?

IBM reserves 0-32767 for internal use; you can choose from 32768-65535.

In theory, if two boards have the same ID, they'd better be functionally identical. Matter of fact, the IBM guy said that we were welcome to use IDs from their boards if we develop clones. The gotcha is that software is allowed to make assumptions about boards based on the ID number.

But let's say that three years from now I design a superfast MITS Altair emulation board or something that *nobody else in the world* is going to be functionally identical to; how do I pick a number that *nobody else* has ever grabbed? Is IBM going to maintain a register?

IBM reserves 0-32767 for internal use; you can choose from 32768-65535.

In theory, if two boards have the same ID, they'd better be functionally identical. Matter of fact, the IBM guy said that we were welcome to use IDs from their boards if we develop clones. The gotcha is that software is allowed to make assumptions about boards based on the ID number.

But let's say that three years from now I design a superfast MITS Altair emulation board or something that *nobody else in the world* is going to be functionally identical to; how do I pick a number that *nobody else* has ever grabbed? Is IBM going to maintain a register?

IBM reserves 0-32767 for internal use; you can choose from 32768-65535.

In theory, if two boards have the same ID, they'd better be functionally identical. Matter of fact, the IBM guy said that we were welcome to use IDs from their boards if we develop clones. The gotcha is that software is allowed to make assumptions about boards based on the ID number.

But let's say that three years from now I design a superfast MITS Altair emulation board or something that *nobody else in the world* is going to be functionally identical to; how do I pick a number that *nobody else* has ever grabbed? Is IBM going to maintain a register?
Announcing BYTE's New Subscriber Benefits Program

Your BYTE subscription brings you a complete menu of the latest in microcomputer technology every 30 days. The kind of broad-based objective coverage you read in every issue. In addition, your subscription carries a wealth of other benefits. Check the check list:

BONUSES

✓ Annual Separate Issues: In addition to BYTE’s 12 monthly issues, subscribers also receive our annual IBM PC issue free of charge, as well as any other annual issues BYTE may produce.

✓ BYTE Deck: Subscribers receive five BYTE postcard deck mailings each year—a direct response system for you to obtain information on advertised products through return mail.

✓ Reader Service: For information on products advertised in BYTE, circle the numbers on the Reader Service card enclosed in each issue that correspond to the numbers for the advertisers you select. Drop it in the mail and we’ll get your inquiries to the advertisers.

✓ TIPS: BYTE’s Telephone Inquiry System is available to subscribers who need fast response. After obtaining your Subscriber I.D. Card, dial TIPS and enter your inquiries. You’ll save as much as ten days over the response to Reader Service cards.

✓ BYTE’s BOMB: BYTE’s Ongoing Monitor Box is your direct line to the editor’s desk. Each month, you can rate the articles via the Reader Service card. Your feedback helps us keep up to date on your information needs.

✓ Subscription Service: If you have a problem with, or a question about, your subscription, you may phone us during regular business hours (Eastern time) at our toll-free number: 1-800-423-8912 (in N.J., 201-981-1963). You can also use Subscription Service to obtain back issues and editorial indexes.

PAID SERVICES

✓ BIX: BYTE’s Information Exchange puts you on-line 24 hours a day with your peers via computer conferencing and electronic mail. All you need to sign up is a microcomputer, a modem, and telecom software. For further information and cost call 1-800-227-BYTE.

✓ Program Listings: Listings of programs that accompany BYTE articles are now available on BIX, on disks or in quarterly printed supplements (see reply cards in this issue for cost information), or call 1-800-258-5485.

✓ Microform: BYTE is available in microform from University Microfilm International in the U.S. and Europe. See Contents page for cost information.

DISCOUNTS

✓ 13 issues instead of 12 if you send payment with subscription order.

✓ One-year subscription at $22 (50% off cover price).

✓ Two-year subscription at $40.

✓ Three-year subscription at $58.

✓ One-year group subscription for ten or more at $18.50 each. (Call or write for details.)

TOLL-FREE NUMBERS FOR YOUR CONVENIENCE:

Subscriptions & Back Issues:
1-800-423-8912 (in N.J., 201-981-1963)

BIX: 1-800-227-BYTE

Program Listings Orders:
1-800-258-5485

And... welcome to BYTE country!
A lot of programs these days provide a function for temporarily exiting to DOS. My understanding is that when you exit to DOS, a new copy of COMMAND.COM is loaded into memory. When you exit DOS back to your program, you type "Exit" at the DOS prompt. So, here's the question. What is the specific function in DOS for performing this operation, and is there a "programmer's" term for it?

There isn't a specific operation in DOS to provide a new command processor; it's just a special case of the EXEC function (Int 21h Fn 4Bh). Your program must look in the environment for the COMSPEC string to find the disk location of COMMAND.COM, and then feed that to EXEC (after making sure enough unowned memory is available in the system so that COMMAND.COM can run).

While we are talking about the EXEC function, I notice that any changes to the environment are not maintained after you exit each copy of COMMAND. How can you maintain a new variable across command-processor loads? I'd like to let my software know that something happened out there and set some new parameter to pass back to the lower- (or higher-) level processor. When I try it, it goes away with EXIT. Even when I put a dummy value in or change the dummy value to a real value, EXIT does not work.

You can't. EXECing a program passes a copy of the environment, as Ray noted; EXITing the COMMAND.COM or terminating the child program loses the environment. There are ways to hunt for the "root" environment. . .take a look at tech.support/overview, somewhere in the first couple of messages, for one way. You can also look at the "snoop" code Ray Smith just uploaded recently (or will soon) or the MAPMEM.PAS module of the tterc02.l file for a clue as to how to locate COMMAND.COM and its environment (the first copy). This has to be the most common question on BIX, though, and it's all due to the half-usefulness of the environment under DOS.

Since I know it's a Unix feature, is there a way, oh Unix gods, to set the root environment from a child in that system?

I took the Bell Labs shell programming course some time ago, and at least at that time, it was impossible. At least in the Bourne shell, all scoping is downward—you can change anything you want at a lower level, but everything bounces back to its original shape as you come back up.
Those fantastic Byte covers—and boy, do they look great on this stylish, 3/4 sleeve T-shirt from Robert Tinney Graphics! The colored sleeves and neckline vividly complement the full-color design.

And don’t mistake this for a rubbery patch that cracks and peels off after a few washings. This is true four-color process: the permanent inks are silk-screened onto the fabric, resulting in a beautiful, full-color image that lasts!

You’ll also appreciate the shirt itself: a heavyweight cotton/polyester blend which combines tough washability with the cool, soft comfort of cotton. Each Byte T-shirt is priced at only $12.50 ($11.50 each for 3 or more). Be sure to include shirt size: C—(child 10-12), S—(34-36), M—(38-40), L—(42-44), and XL—(46-48). Most orders shipped within a week.

<table>
<thead>
<tr>
<th>COTI</th>
<th>#</th>
<th>TITLE</th>
<th>SIZE</th>
<th>AMOUNT</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Send the following T-shirt(s) at $12.50 each, or $11.50 each for 3 or more. I have included $2 for shipping & handling ($5 overseas).

☐ I have enclosed U.S. check or money order.
☐ C.O.D. (via UPS—stateside orders only)
☐ VISA ☐ MasterCard ☐ American Express

Card #: ____________________________
Expires: ____________________________
Signature: __________________________

Ship my shirt(s) to:

Name: __
(Business): __
Address: __
City: ___
State: __________________ Zip: __________

Shipping & handling (see above) $ ______
TOTAL $ ______

☐ Please send your COLOR brochure

mail this coupon to:
Robert Tinney Graphics
1864 North Pamela Dr.
Baton Rouge, Louisiana 70815

For VISA, MasterCard or American Express orders, or for more information Call 1-504-272-7266
In the company cafeteria, a $104,100 purchase is taking shape.

During lunch, electronics engineers, Bill Pearce and T.C. Patch, are discussing the pros and cons of various computer printers. Their final selections and purchases will range from pin-matrix to laser printers in order to satisfy a variety of requirements and environments throughout their company. Overall, Bill and T.C. are responsible for purchasing a new micro system worth $513,616 for their company. The choice is theirs because they are experts in microcomputer technology, “Power Users” of computers at work and at home.

BYTE readers have real clout where they work. For example, during the next 12 months, BYTE subscribers with engineering titles like Bill’s and T.C.’s will buy or influence their companies’ average purchases of $370,000 for micros and peripherals and $143,616 for software. It’s a fact...the BYTE reader is the “Power Buyer.”

In terms of buying influence, our “Bill Pearce” and “T.C. Patch” typify average BYTE readers with engineering titles, according to the 1986 Hardware and 1987 Software Purchasing Influence Studies.

Are you putting the “Power of BYTE” to work for your micro products? To find out how...call your BYTE Advertising Sales Consultant today.

BYTE means business.
> Setting environment in Unix

Far as I know, that's right. Environment is singular. I suppose that a Supreme Kernel Hacker 3rd Class could track back through the PPIDs of a process to find the root process.

> Exiting to DOS...

This operation is often referred to as "shelling" to DOS. When you use int 21h Fn 48h to load and run a second (or third, or fourth...) copy of COMMAND.COM, DOS in effect isolates you from the task you shelved from, giving you a copy of the environment area to play with. That is, the descendant COMMAND.COM task inherits the environment from the parent task; any changes the descendant task performs to the environment (e.g., via the SET command) affect only the descendant's copy, not the parent's copy. Rduncan's point on making sure there is enough free memory is very important if you're writing software that will provide a shell operation. Many older compiler/linkers (and some new ones) put a word in the .EXE file header that instructs DOS that this task uses all available memory. DOS will believe this, whether it is true or not, and you will have to free up some memory via int 21h Fn 4Ah or you will trash the system-memory arena, as the Tech Ref puts it.

> Eight/16 bit full-length expansion slots

Unix, being a multituser system, allows the environment to be changed for a user at log-in time via the .profile. This fixes only that user's environment for all his or her processes.

> Five serial/parallel connector punchouts

Unix environment area to play with. That is, the descendant COMMAND.COM task inherits the environment from the parent task; any changes the descendant task performs to the environment (e.g., via the SET command) affect only the descendant's copy, not the parent's copy. Rduncan's point on making sure there is enough free memory is very important if you're writing software that will provide a shell operation. Many older compiler/linkers (and some new ones) put a word in the .EXE file header that instructs DOS that this task uses all available memory. DOS will believe this, whether it is true or not, and you will have to free up some memory via int 21h Fn 4Ah or you will trash the system-memory arena, as the Tech Ref puts it.
THE BUYER'S MART is a monthly advertising section which enables readers to easily locate suppliers by product category. As a unique feature, each BUYER'S MART ad includes a Reader Service number to assist interested readers in requesting information from participating advertisers.

ACCESSORIES

FREE CATALOG

Thousands of parts and a new surplus electronic parts at super low prices. FAST ORDER PROCESSING AND SHIPPING (95% of all orders shipped within 48 hours).

CALL OR WRITE FOR A FREE CATALOG...

ALL ELECTRONICS CORPORATION
POB 2046, Los Angeles, CA 90006-0460
1-800-826-5432

SOFTWARE PACKAGING, DISKS

Anthropomorphic Systems Limited
376·8 East St. Charles Road
Lombard, IL 60148
1-800-DEAL-NOW (312) 629-5160

BAR CODE LABEL PRINTING

Printmark II is a one-of-a-kind unique memory resident program that prints Code 39, 2 of 5 and UPC barcodes on Epson, IBM graphics and HP LaserJet printers. Print directly from any program including dBASE III, clipper, Lotus, Wordperfect, without copying data to special print files. Superb documentation. 1985 PC compatible bar code readers $398.

BEAR ROCK SOFTWARE CO.
569 Enterprise Dr., Placentia, CA 92706 (714) 523-1238, In Calif. (408) 370-6747

BAR CODE DIRECTORY

The Automatic Identification Manufacturers and Services Directory contains over 350 listings from every major supplier of bar code products, ...companies that market complete bar code systems, scanners, printers, data collection terminals, film masters, labels, software, seminars and consultants. $49.95

Helmers Publishing
54 Concord St., Peterborough, New Hampshire
(603) 924-9631

BAR CODE READERS

PC/XT/AT Bar Code Readers attaches as 2nd keyboard, reads bar codes as keyed data. One model converts to external mounting via velcro or slot mounting, in PC: $239. RS-232 Modem—$399. Rugged metal wand. Reads UPC, EAN, Code 39, etc. Same day ship, 1 year warranty.

Worthington Data Solutions
417 A Ingalls St., Santa Cruz, CA 95060
(408) 459-9238

DATA INPUT DEVICES

Bar Code & Magnetic Stripe Readers for microcomputers & terminals, including IBM, DEC, AT&T, CT, Wyse, Wang. All readers connect on the keyboard cable & are transparent to all software. Low cost bar code print programs & magnetic encoders are also available. USA approved.

TPS Electronics
4047 Transport, Palo Alto, CA 94303
415-856-6833 Telx 371-9097 TPS PLA

BUSINESS OPPORTUNITIES

Instrumentation consultants in all parts of the U.S. We want to refer potential clients to local consultants for PC-based instrumentation solutions. Respond to: P.O. Box 9565, New Haven, CT 06536.
BUSINESS OPPORTUNITIES

EATEN ANY GOOD CHIPS LATELY?

We eat, drink and sleep hardware and we know describing the results. We're looking for others who have built unique projects and can write articles about them. If you've got a great project ready for a chapter in our book, write us now. We're already in the business and we pay top dollar!

Microservices

67 Scott Drive, South Windsor, CT 06074

Inquiry 662.

CAD/CAM

CADalyst™

FINALIST - CAD Technology kaleidoscope with High-Tech Industry CAD systems. ONLY BEGON!

• Template • Dimensioning • Line Types

• Rotation • Epson or Proprietary Plotting

IBM PC or compatible, 9,500 mouse or joystick compatible.

Full, English language graphic and inquiry.

(800) 255-5604 MC/VISA (314) 346-4909

COMPUTER GRAPHICS RESEARCH

Rt. 1, Box 714, Camdenton, MO 65020

Inquiry 663.

COMPUTER BOOKS

Computer Books Catalog

Attn: Computer Professional Order Office 7/31/1987

Prentice Hall Professional/Technical/Reference Category Books for Computer Scientists, Computer/Electrical Engineers and Electronic Technicians for only $2.00 and receive $5.00 off your first book purchase from this catalog!

Prentice Hall Publishers

College Marketing Dept., Englewood Cliffs, NJ 07632

Attn: Mary Colt

(201) 767-5937

Inquiry 668.

NEW COMPUTER BOOKS

Clipper Connection • DBASE II/Clipper Prog. Guide

• DBASE III Plus: Th3 Manual You Didn't Know You Needed

Working with MS-DOS • Working with Systat

The WordStar Handbook • Working with ProC

Lisp Prog. Guide • Turbo Pascal Prog. Guide

Excel Using Macros • Catalogue Available

WEBER SYSTEMS INC.

(800) 851-8018 orders only

MC/VISA/AMEX

9457 Mayfield Road, Chelanester, OH 44026

Inquiry 669.

COMPUTER BOOKS

SELECTED COMPUTER BOOKS

TEAMate - a mainframe quality BBS. A mini Commodore X111 model, Integrated mail, content retrieval and more.

MULTI-USER BBS (FOR IBM PC AT)

TEAMate - a mainframe quality BBS. A mini Commodore X111 model, Integrated mail, content retrieval and more.

MS-DOS, XENIX and UNIX versions.

MMB Development Corporation

2017 N. Soledad Ave., Suite K, Manhattan Beach, CA 90265

(213) 545-1655

Inquiry 666.

COMMUNICATIONS

3780RJE FOR PCs

Complete $249 - Save over $500

Talk to mainframes, minis, PCs.

- Bitwise 3780RJE word manipulation & 18 2.2 Kbps throughput

- RJ4 card input/output, printer, PC-PC file transfer

- Satisfaction Guaranteed. Call for prompt delivery.

- 1-800-523-8396, ext. 210

Inquiry 669.

LOGIC SIMULATION

Now you can have state of the art logic simulation for only $25. Dynamic and static simulation with concurrent faults, propagation delay as a function of loading, knowledge based ATG, Interactive plotting, user friendly. (MDAS Vers. 4) IBM XTAT

MICRO-ANALYTIC

2860 Hudson Ave., Corona, CA 91719

(714) 371-5703

Inquiry 664.

DATA CONVERSION

CONVERSION SPECIALISTS

601 Main St., Ste. 635, El Segundo, CA 90245

(213) 455-6651

Inquiry 677.

CROSS ASSEMBLERS

WHY PAY MORE? THREE ASSEMBLERS FOR LESS THAN THE PRICE OF ONE

Quality cross assemblers for FORTRAN, INTER+, ABSOLUTE or BINARY listings. Complete error checking and reporting. Data string, dölles and actual status capability. Multiple run and data versions. Each assembler comes complete with documentation and trivially easy.

P.O. Box 98903 - 600 — 602

$39.95 New Mexico residents add 5% sales tax.

APPLI SYSTEMS

P.O. Box 98903, St. Paul, MN 55193

Inquiry 671.

3050000000000

MULTI-DISK DISK

CONVERSIONS

Media transfer to or from IBM, Xerox, DEC, Wang, Lanier, CFT, Micom, NBI, CT, also WP, WS, MS/WRO, DW, WM, Samma, DEC DX, MAS 11, Xerox Writer, AGC.

FREE TEST CONVERSION

CONVERSION SPECIALISTS

631 Main St., Ste. 635, El Segundo, CA 90245

(213) 455-6651

Inquiry 677.

DISK/TAPE/DISK

CONVERSIONS - AUTOMATICALLY

Bring your own diskette or tape just 1/2 days!

SOUND MONEY

1-800-851-8018

9570 Black Mtn. Rd., Saticoy, CA 92126

(617) 853-9597

Inquiry 678.

E & J Enterprises, Inc.

P.O. Box 617, Henderson, Nevada 89015

Inquiry 679.

BORLAND

Osborne — McGraw Hill

COMPUTER BOOKS

• Advanced Turbo C 2.585 pgs. $22.95 • Turbo Pascal Programs Library 285 pgs. $21.55 • Using Turbo C 2 300 pgs. $19.95 • Advanced Turbo PRO Deluxe Version 1.1 330 pgs. $24.95

Add $35.00 per disk shipping, Check, Visa, MC, AX, FREE CATALOG ON COMPUTER BOOKS

MEDIA PUBLICATIONS

(415) 368-3800

2166 Old Middlefield Way, Mountain View, CA 94043

Inquiry 667.

ASSEMBLERS & TRANSLATORS

Over 20 high quality, full function, test relocatable and absolute macro assemblers are available immediately. Source language translators help you change microcomputer Delivery, or into MS-DOS, CP/M, and 8088 versions.

RENTACR

P.O. Box 2679

San Jose, California 95150

(408) 265-5411

TWX: 910-378-0034

Inquiry 673.

DISK AND TAPE CONVERSIONS

High quality conversion services & OCR scanning for Dedicated Word Processors, Mini and Micro computers. Over 10003/16, 5/4", and 8 formats. IBM/COM, MS-DOS, UNIX, XENIX & most other systems. Apples, Macintosh, Commodore conversions start at $29.00. Call or write today for a cost saving quotation to 18 your diskettes or tapes for free diskette conversion needs.

CREATIVE DATA SERVICES

1210 W. Latimer Ave., Campbell, CA 95008

(408) 866-0800

Inquiry 679.

CUSTOM SOFTWARE

CUSTOM SOFTWARE

To your specifications!

Specializing in BIT-32 microprogramming applications and design.

High-level: MS-DOS based 'C'.

Documentation: Other than well-commented listings is OPTIONAL for an additional fee.

WEBER SYSTEMS INC.

(800) 851-8018

MC/VISA/AMEX

9457 Mayfield Road, Chelanester, OH 44026

Inquiry 669.

DATA/DISK CONVERSION

Disk/Tape - Disk/Tape • OCR

Over 1,000 formats 5/16", 5/4", or 8 inch disks; 9 track mag tape. 10 MB Bernoulli cartridge.

Data base and word processor conversion specialists in Government Sensitive Data. Call for free consultation.

Computer Conversions, Inc.

We take the hassle out of data conversion...

9580 Black Mtn. Rd., Ste J, San Diego, CA 92126

(619) 853-9597

Inquiry 676.

DISK CONVERSIONS

MAKE MEDIA TRANSFER TO OR FROM IBM, Xerox, DEC. Wang. Lanier, CFT, Micom, NBI, CT, also WP, WS, MS/WRO, DW, WM, Samma, DEC DX, MAS 11, Xerox Writer, AGC.

FREE TEST CONVERSION

CONVERSION SPECIALISTS

631 Main St., Ste. 635, El Segundo, CA 90245

(213) 455-6651

Inquiry 677.

77113/16, 5/4", and 8" formats. IBM/COM, MS-DOS, UNIX, XENIX & most other systems. Apples, Macintosh, Commodore conversions start at $29.00. Call or write today for a cost saving quotation to 18 your diskettes or tapes for free diskette conversion needs.

CREATIVE DATA SERVICES

1210 W. Latimer Ave., Campbell, CA 95008

(408) 866-0800

Inquiry 679.

SOFTWARE

MEDIA CONVERSION/DATA TRANSLATION

More than just a straight dump or ASCII transfer!

Word Processing, DBMS, and Spreadsheets data on Disks or Tapes transferred directly into applications running on Mainframes, Minis, Micros, Dedicated Word Processors, Timeshared, and Electronic Publishing systems.

IBM PC/AT/Macintosh supported.

CompuDataTranslators, Inc.

3325 W. 10th Street, Los Angeles, CA 90010

(213) 462-6222

Inquiry 675.

DATA FORMATS, INC.

(408) 629-1088

More than just a straight dump or ASCII transfer! Support included In most cases.

Disk Conversions, Inc.

9580 Black Mtn. Rd., Ste J, San Diego, CA 92126

(619) 853-9597

Inquiry 676.

MEDIA CONVERSION/DATA TRANSLATION

CONVERSIONS - AUTOMATICALLY

offer limited to stock on hand.

AHPPI SYSTEMS

P.O. Box 98903, St. Paul, MN 55193

Inquiry 671.

CUSTOM SOFTWARE

MEDIA CONVERSION/DATA TRANSLATION

CONVERSIONS - AUTOMATICALLY

offer limited to stock on hand.

AHPPI SYSTEMS

P.O. Box 98903, St. Paul, MN 55193

Inquiry 671.

FREE TEST CONVERSION

CONVERSION SPECIALISTS

631 Main St., Ste. 635, El Segundo, CA 90245

(213) 455-6651

Inquiry 677.
PC MINI-SUPERCOMPUTER
Up to 36 MIPS in Your PC!
Fill your PC/XT/AT with 1 to 8 PC4000 boards for a high speed PC/REC system. The PC4000 uses the NCEC/REC Engine which executes high level forth in silicon. Each PC4000 is a general purpose parallel coprocessor that delivers speeds in the 5 to 7 MIPS range over a 100 times faster than a PC. K & R standard C and Forth available. From $1395

SILICON COMPOSERS (415) 322-8725
201 California Ave., Suite 1, Palo Alto, CA 94306

LAPTOP COMPUTERS
LAP-LINK
The ultimate solution for linking laptop computer with any IBM compatible desktop PC. “300 baud transfer rate” faster than any other product available. No installation necessary; easy to use split screen design. Includes incredible "universal cable" that connects any machine to your PC. Traveler extra data faster than a DCD copy command. Only $129.95 including universal cable and both 31/2" and 5 1/4" disks. "Bridge" owners can trade in for only $99.95 w/old cable.

Traveling Software, Inc.
39150 North Creek Parkway, Bothell WA 98017
1-800-343-8080 (206) 483-8088

MAILING LIST PROGRAMS
Professional List Management
Ad list — multiple mailing list management for the XT/AT/386. Capacity 20 million names, automatic zip and state verification. Print any label, custom charts and state verification. Print any label, custom charts

September 1987 • Byte 339

Inquiry 709.

Inquiry 710.

Inquiry 711.

Inquiry 712.

Inquiry 713.

Inquiry 714.

Inquiry 707.

Inquiry 706.

Inquiry 705.

Inquiry 704.

Inquiry 703.

Inquiry 702.

Inquiry 701.

Inquiry 700.
Inquiry 715.

NETWORKING

Multiple Users Under PC DOS
PC-MOS/368 and Multilink Advanced turn
DOS into a powerful multiuser O/S. Connect
inexpensive CRT terminals to serial ports on X86/386.
• Complete line multiuser hardware/software
• Custom system configurations available.
Call today for Free Consultation
201-222-3633
DATATRUST
375 Westminster Ave., Long Branch, NJ 07740

Inquiry 716.

PROGRMMER'S TOOLS

Modula-2
REPERIORE is an integrated DBMS, window/forms/menu
generator multi-window test editor and expression evaluator
designed specifically for M2. Only $59 with full (600K)
source code and 300p printed manual. Complete manual
and assistance for all new users free demo disk.
MOSVISHAPE/PC/คอม
PMI
4538 SE 50th, Portland, OR 97206
(503) 777-8844, Bk: pmi

Inquiry 717.

FREE PRICE GUIDE

Call or write for our FREE comprehensive price guide containing
hundreds of languages, utilities and books specifically for
IBM personal computers and compatibles. We are the worlds
leading independent dealer of programmers development tools
because we provide second school low discount prices, fast
delivery. FREE USA shipping and no hidden charges.
Programmers Connection
294 SE 82nd, Portland, OR 97266
(503) 222-1166 Canada
910204675i Texas
800-336-1994 USA

Inquiry 718.

SALES/MARKETING TOOLS

dBASE BUSINESS TOOLS
• General Ledger
• Cash Receipts
• Order Entry
• Sales Analysis

dBASE ACCOUNTING
999 E. Main St., Suite 105A
San Diego, CA 92197
(619) 223-3344

Inquiry 719.

PUBLIC DOMIAN

PUBLIC DOMIAN SOFTWARE
Over 3000 disks covering PC/DOS, CP/M, Mac-
intosh, Atari and Amiga. Priced from $40 each by mail or
download by modem from our 16 remote systems.
500-9500 baud. $50+ (Megabytes online) for fast an-
nual charge of $50 (US). Fast service, shipped around
the world. Call or circle inquiry #720 for our FREE 40
page minibrochure of highlights.
CANADA REMOTE SYSTEMS LIMITED
1-1-16-23-2383

Inquiry 720.

PUBLIC DOMIAN

RENT SOFTWARE $1/DISK
Rent Public Domain and User Supported Software
for $1 per disk or bulk copy. IBM Apple, C-64,
Sanyo 550 and Mac. Sample 5$. VISA/MC $2 hr.
Infodistributor line. (619) 941-3244 or send $10 SASE
(specifically computer. Money Back Guaranteed).
FutureSystems
Box 3040 (T), Vista, CA 92083
Office: 10-6 PST Mon.-Sat.
(619) 941-9761

Inquiry 721.

SOFTWARE/ACCOUNTING

NEW INTEGRATED ENVIRONMENT
AI FOR THE IBM PC
TOPS I is a FULL VERSION OF OESS WHICH RUNS UNDER MS-DOS. EAST EFFICIENT
EXPERT SYSTEM DEVELOPMENT TOOL.
PROTOTYPING 1150
PRODUCTION 1550
PROFESSIONAL 3575
SHIPPING ADO

Inquiry 722.

SOFTWARE/BASIC

BESK BITS & BYTES
P.O. Box 870, Dept B, North Hollywood, CA 91618
(818) 993-6304

Inquiry 723.

PUBLIC DOMIAN SOFTWARE

POWERCHURCH PLUS™
Fast, friendly, reliable church administration
system. Full fund accounting, mailing lists,
membership, contributions, attendance,
word processing, accts. payable, payroll,
multi-user support, and much more - all
for $495 complete. Demo version, $10
F1 SOFTWARE
P.O. Box 3096, Beverly Hills, CA 90212
(213) 854-0865

Inquiry 724.

SOFTWARE/BUSINESS

PUBLIC DOMIAN SOFTWARE

Compiled Basic Tools
We now carry a complete line of libraries and tools
for Compiled Basic in addition to our
Finally VI. Get our catalog of top brand
products for Compiled Basic, by calling 1-800
423-3430 (9:00 AM to 8:00 PM EST)

KOMPUITERWERC, INC.
151 Panview Blvd, Pittsburgh, PA 15215
PA & AK call (412) 782-0384

Inquiry 725.

 excit 726.

SOFTWARE/BUSINESS

DATA ENTRY/BUSINESS

DATA ENTRY SYSTEM
An interactive computer based system for
data entry. It handles a variety of tasks
including word processing, mailing lists,
accounts receivable, accounts payable,
tellers, reports any field(s). Optional $256 funds: optional
reports anytime or any month. Supports 2000 people/lop
pledge: statements; post to 255 xlyear. Finance-GIL with
Membership-61 fields plus alternate address: labels.

Inquiry 727.

SOFTWARE/BUSINESS

TSAA8-TRANSPORTATION
A general purpose system for solving transportation,
assignment and transhipment problems. Solves
transportation problems with up to 510 origins and/or
destinates by applying the Transportation Simplex
Algorithm. Menu-driven with features similar to LPS8.
Requires 102K, $149 with 8087 support user's own

EASTERN SOFTWARE PRODUCTS, INC.
P.O. Box 15382, Alexandria, VA 22309
(703) 350-7800

Inquiry 728.

SOFTWARE/CHURCH

Smith's Text Checker
Express your ideas clearly and more forcefully with
Smith's Text Checker. Business people, engineers,
and students need it to improve their
reports, letters, and memos. For the IBM PC with
128K & disk drive. Not copy protected. $20 ppd;
cchecks OK

SMITH CONSULTING
Route 1 Box 213, Greensburg, IN 47240
(812) 663-7470

Inquiry 729.

SOFTWARE/CHURCH

ROMAR CHURCH SYSTEMS™
Membership-61 fields plus alternate address: labels,
letters, reports any field(s). Offering 250 funds, optional
pledge; statements, post to 255 xyear. Finance-GIL with
budget: up to 500 sub-totals & 99 totals & MTD
reports anytime for any month. See 2000 people/lop
pp: 25000/10 meg. At least too 10! Write
Romar Church Systems, Att: BMB
P.O. Box 6117, Edinburg, TX 78534
(210) 262-2188

Inquiry 730.

SMITH'S TEXT CHECKER

EXPERT SYSTEM DEVELOPMENT TOOL
PROTOTYPING: $125 PRODUCTION: $250
EPI-Tools, you are the only one al the helm.

Inquiry 731.

DO YOU WRITE SOFTWARE?
EZ-INSTALL helps you CLEANLY distribute software
applications or programs to users! Get control—stop
messing with .BAT files. Check available disk,
memory, file sizes, disk stamps, cranes, directories.
DOS versions, etc. "Bullet-proof" installation routines
can be yours! Only $595 (MIC, VISA).
The Software Factory, Inc.
1330 Dallas Pkwy, LB 4, Dallas, TX 75248
(214) 490-0385

Inquiry 732.
SPECIAL BBS OFFER FOR IBM (IDEA-TREE) Multi-circuit system. Public/private map areas, file transfer, modem, database, more.

Inquiry 733.

IDEA-TREE improved students’ scores by as much as 250 pts. Includes 5 disks + manual. $59.95.

Covers every type of exam question with instant feedback on the screen. Designed by MBA’s, the program has Analysis • Plotter Drivers • Graphics • Signal Circuit Analysis • Root Locus • Thermal • Pump/Fan/Compr. Sizing • Project Financial Analysis • Heat Exchanger Sizing • Conversion Calculator • Fluid Properties library • Specification Writer.

Above programs in one stand alone Integrated PC/MSDOS • Macintosh • CP/M. VISA/MC.

Processing • Filter Design • Report Proofback, solutions, timed tests, personalized score total control. For MS-DOS and HP Plotters. F·CURVE. A few ol F-CURVE’s features: Plot-data, smooth readers • Transfer Function Analysis •

SOFTWARE/ENGINEERING

Engineer/Scientific Journal ACCESS is the only journal devoted to meeting the needs of engineer/scientists using microcomputers. If you are interested in numerical analysis, statistics, modeling, expert systems, or other technical applications, subscribe to ACCESS. $21/yr.

LESDis Publishing Co., Inc.
P.O. Box 17564, Seattle, WA 98119
(206) 522-5101 (voice) or (206) 522-7125 (BBS)

SOFTWARE/ENGINEERING

PC HYPER-CALCULATOR Pop-up VSDOS emulation of HP-11C scientific and HP-2C finance calculators. Two-way transfer, program & data files, alpha prompts, rectangles, arithmetic, 100 registers, 100 program steps. Free 6557 version, utility programs. $49.85 + $5.00 SH.

SUINDERLAND SOFTWARE ASSOCIATES Secured on P.O. box 9066, Redondo Beach, CA 90277 CALL TOLL FREE 800-828-2928 ext. 502

SOFTWARE/GENERAL

3 VANISHING POINTS

30 Perspective Perspective Plotting realistic view with complicated rotation capability. $9.95 + $4.50 SH.

ACCESS is the only journal devoted to meeting the needs of engineer/scientists using microcomputers. If you are interested in numerical analysis, statistics, modeling, expert systems, or other technical applications, subscribe to ACCESS. $21/yr.

SOFTWARE/ENGINEERING

 Thou shalt save hours! Draw, edit and print timing diagrams having 32 logic "signals" or time waveforms on a color IBM computer and Epson/IBM printer. $39.50ea. /s at $33.00ea; $1.00 @ $27.50 ea. add 6% in NJ / $3 per order outside US and Canada

CHIKONDO P.O.'s

Kenneth Curtis
Box 539 RD2 Woodland Drive, Califon, NJ 07830
Inquiry 737.

TIMEPLOT

Save hours! Draw, edit and print timing diagrams having 32 logic "signals" or time waveforms on a color IBM computer and Epson/IBM printer. $39.50ea. /s at $33.00ea; $1.00 @ $27.50 ea. add 6% in NJ / $3 per order outside US and Canada

CHIKONDO P.O.'s

Kenneth Curtis
Box 539 RD2 Woodland Drive, Califon, NJ 07830
Inquiry 737.

Scientific Plotting Pkg. Engineer/scientists prepare publication-quality plots with FCURVE. A few of F-CURVE’s features: Plot data, smooth curve through data, regression curves (linear or nonlinear). Drawlinen, log, inverse, or power axes Label plot. You have total control. For MS-DOS and HP Plotters.

SOLE DISCOUNT! IRAM/CHECK

LEDs Publishing Co., Inc.
P.O. Box 12047, Research Triangle Park, NC 27709
(919) 477-3890

Inquiry 738.

SOFTWARE/ENGINEERING

ENGINEERING SOFTWARE

S&H.

FREE CATALOG!

Geological and scientific software for all applications: log plotting, gridding/contouring, hydrology, digitizing, 3-D solid modeling, synthetic seismogram, fracture analysis, image processing, scan ticket manager, over 50 programs in catalog. Macintosh too!

Rockware, Inc.
7195 W. 20th Ave., Denver, CO 80215 USA
(303) 238-9113

Inquiry 740.

Inquiry 741.

Inquiry 742.

Inquiry 743.

Inquiry 744.

Inquiry 745.

Inquiry 746.
SOFTWARE/GRAPHICS

PC TECHNICAL GRAPHICS

TERMAC is a technical library for the EGA or Tectrac Graphics Master. Similar to PLOT-10, includes Windows, portability, various graphing programs, curve fitting, complete plotting programs. Use, service, multi-axis, D.O.C., contour. Jeremy Roumazas (Aug 85 flyte) "...as good as any i have ever seen..." Demo disk, literature available. Advanced Systems Consultants 2115 Davenport St., Suite 200, Chicago, IL 60614 (312) 431-0154

Inquiry 751.

SOFTWARE/GRAPHICS

CGA - Hercules Graphics Module-MGa allows you to use your business graphics, games, BASICA graphics and other CGA specific software with your Hercules Monochrome Graphics adapter and monochrome monitor. Works with all CGA displays. $195 (5 $5 extra) for the 3x-TSR version. 30-day money back guarantee. Call or write.

T.B.S.P. Inc.
2265 Westwood Blvd, Suite 763, Los Angeles, CA 90064 (213) 312-0154

Inquiry 757.

SOFTWARE/INVENTORY

POPULAR HGGRAPH

Inquiry 752.

SOFTWARE/INVENTORY

SUPER RETAILER* IS HERE!

Find out why over 500 purchasers are now using the latest point of sale program. Ultra-flexible cash, bank, credit, deposit. Control your busy retail store. A complete and complete solution. IBM & compatibles. Complete source in PUM 86 and Assembler.

PMC
100 East 2nd Street, Mineola, NY 11501 800-DIAL-PMC in NY 516-294-1400

Inquiry 758.

SOFTWARE/LANGUAGES

POWER with MasterFORTH

MasterFORTH is a complete programming environment for the IBM PC family, the Apple II family, the Macintosh & others. It includes a macro-assembler, full file interface, string package, & resident debugger. Programs can also be optimized with the optional target compiler. $100-125.

MicroMotion (213) 821-4340
8726 S Sepulveda Blvd. #A171, Los Angeles, CA 90045

Inquiry 763.

SOFTWARE/MUSIC

Turbo.ASM

The only package designed to run Turbo Pascal and MASM. Make MASM calls without affecting code space. Pass data back and forth. Learn internals of Turbo Pascal. Use Turbo Pascal to learn MASM! Includes source & more.

PM Tools (415) 366-2062
748 Holly Hill, Redwood City, CA 94061 $45.00

Inquiry 764.

SOFTWARE/REAL ESTATE

MANAGEMENT & ANALYSIS

REAL PROPERTY MANAGEMENT... $395/$595 for 2 user shopping centers... Records and budgets incompreassable by month/department. Write checks, involves, 1009 forms, allocates costs. and cash flow by property.

REAL ANALYZER... $195 for detailed analysis of residential or commercial properties. Easy "WHAT IF" 30-day money-back guarantee.

REAL-COMP, INC.
P.O. Box 169, Cupertino, CA 95015

Inquiry 765.

SOFTWARE/SCIENTIFIC

DATA ACQUISITION AND ANALYSIS ON PCB'S

• Measure for Data Acquisition directly to Logic. 2 + POWER PERIPHERALS • Advanced Digital Signal Analysis • FRAME FAC· TORY II suprise library Call Turbo Pascal C. Fairman Inc. Up to 5,500 plus pins 32 word processor. $2 per code available. 2 manual for $15 dos development board. PLUS: 250 page Technical Manual. $50 Department with source. Software. Turbo Pascal. C. Fortran, Basic. Includes Turbo Pascal and assembler.

SongWright Software
Route 1, Box 83, Lovettsville, VA 22020 (703) 822-9066

Inquiry 766.

ORDINARY/PARTIAL DIFFERENTIAL EQN SOLVER

FOR THE IBM PC & COMPATIBLES

MAGNETIC DEVELOPERS

MACINTOSH

Speed up application development on your Mac and porting with complete library. PROGRAMMER'S EXTENDER VOL. 1 — menus, windows, dialogs, text addl. — VOL. 2 — Printing, graphics, it.uns.

Communications EXTENDER — serial port communications manipulation.

Invention Software Corp.
P.O. Box 3168, Anim Arbor, MI 48106

(313) 998-8108

Inquiry 761.

SOFTWARE/SCIENTIFIC

SCRUTINY

An advanced symbolic debugger for all MS-DOS computers. Compatible with Turbo Pascal, MacroAssembler, others. Packed with features including support for floating point and 8087 debug registers.

M STREET SOFTWARE
9400 E. McDonough Lane, Suite 114, Dallas, TX 75206
214-827-4908

Inquiry 762.

ORDINARY/PARTIAL DIFFERENTIAL EQUATION SOLVER

FOR THE IBM PC & COMPATIBLES

MICROCOMPATIBLES INC.
301 Prelude Dr., Silver Spring, MD 20901

(301) 593-0682

Inquiry 767.

SOFTWARE/PLOTTER SUPPORT

GRENPEARL

GRAPHICS PRINTER SUPPORT

At last! Use the PlotSc key to make quality scaled 800-628-2828 dot matrix, inkjet, or laser printer. GRAF PLUS supports all versions of PC or MS-DOS with IBM (incl. Hercules) and compatible. Over 160 standard functions plus macros, 64 pages/layers, zoom printer. Powerful string & data handling facilities. Improved speed, if0 & functions. Interpreter compatible with four mainframes SNOBOL4, strings, 8087 for floating point, macro-assembler, full file interface with mainframe SNOBOL4. 64K Advantage portable for apts., shopping centers, .. Records and budgets incompreassable by month/department. Write checks, involves, 1009 forms, allocates costs. and cash flow by property.

MicroMotion (213) 821-4340
2265 Westwood Blvd., Suite 793, Los Angeles, CA 90064 (213) 312-0154

Inquiry 760.

SOFTWARE/REAL ESTATE

MANAGEMENT & ANALYSIS

REAL PROPERTY MANAGEMENT... $395/$595 for 2 user shopping centers... Records and budgets incompreassable by month/department. Write checks, involves, 1009 forms, allocates costs. and cash flow by property.

REAL ANALYZER... $195 for detailed analysis of residential or commercial properties. Easy "WHAT IF" 30-day money-back guarantee.

REAL-COMP, INC.
P.O. Box 169, Cupertino, CA 95015

Inquiry 765.

SOFTWARE/SCIENTIFIC

DATA ACQUISITION AND ANALYSIS ON PCB'S

• Measure for Data Acquisition directly to Logic. 2 + POWER PERIPHERALS • Advanced Digital Signal Analysis • FRAME FAC· TORY II suprise library Call Turbo Pascal C. Fairman Inc. Up to 5,500 plus pins 32 word processor. $2 per code available. 2 manual for $15 dos development board. PLUS: 250 page Technical Manual. $50 Department with source. Software. Turbo Pascal. C. Fortran, Basic. Includes Turbo Pascal and assembler.

SongWright Software
Route 1, Box 83, Lovettsville, VA 22020 (703) 822-9066

Inquiry 766.

ORDINARY/PARTIAL DIFFERENTIAL EQN SOLVER

FOR THE IBM PC & COMPATIBLES

MICROCOMPATIBLES INC.
301 Prelude Dr., Silver Spring, MD 20901

(301) 593-0682

Inquiry 767.
SOFTWARE/SCIENTIFIC

SCI-GRAF and SCI-CALC SCI-GRAPF produces high bit maps graphics thru easy menus or interactive C libraries. Supports log scales, error bars, screen and printer output.
SCI-CALC is a pop up calculator with complete expression editing, scientific, statistical, and logical functions. Prices start at $19.95.
Microcomputer Systems Consultants
Box 747, Santa Barbara, CA 93102
(805) 963-3412
Inquiry 768.

SOFTWARE/TOOLS

SCREEN MANAGER MENU, WINDOW, and DATA ENTITY Support for the Professional Programmer! Interfaces to most languages, BASIC, C, FORTH, COBOL, PASCAL, ASSEMBLY. 100 Page Manual. Thirty day money back guarantee. No Royalties.
The West Chester Group
P.O. Box 1354, West Chester, PA 19380
(215) 694-4296 CALL FOR FREE DEMO
Inquiry 774.

STATISTICS

SL-MICRO Tabulate survey results or analyze experimental data using SL-MICRO. It has functions with statistics, Crosstabs, Anova, T-Test, Multiple Regression & Correlation. Data Editor & Data Transformations. Only $250 for PC-DOS, MS-DOS or CP/M
QSC, Box 776, East Lansing, MI 48826
(517) 641-4428
Inquiry 780.

STATIONERY

Custom PC Stationery Continuous printed letterheads wimico part edges. Matching window or regular envelopes. Numerous colors, ink & papers at lowest prices. Fast delivery & top quality. We'll print your present design or set type for your new design.
Call toll free 800-624-2961 (TN: 901-756-7010) for samples, price list, or write.
PerFORMS Press
8456 Lofren Cove, Cordova, TN 38018
Inquiry 775.

STATIONERY

LAN TOOLBOX FOR TURBO PROGRAMMERS!

Lions of Turbo Pascal file handling routines when DOS 3.x have pulled at a lime? Do you need ports most languages and filetypes including Btrieve, Btrieve and WKS files, performs linear programming, linear regression, solve system of equations, and other
this package is definitely worth the money. After all, this is the year of the LAN. $99.95.

OPT-Tech Data Processing
Box 678 - Zephyr Cove, NV 89448
Inquiry 777.

STATISTICS

PRO CAST FORECAST SALES, INVENTORIES, etc. Complete time series analysis - trend, seasonality, exponential smoothing, Box, Jenkins, and more. Great graphics! Exchange data with other programs. $150. 30-day money guarantee. Demo $10. IBM-PC or compatible.
FLEMMING SOFTWARE
P.O. Box 528 - Oakton, VA 22124 (703) 591-6451
Inquiry 778.

STATISTICS

What is Turbo GhostWriter? An Application Generator for Turbo Pascal Complete Database in Minutes!

Extremely fast Sort/Merge/Select utility. Run as an MS-DOS command or CALL as a subroutine. Supports most languages and filetypes including Btrieve and dBASE. Great for large databases, multiple keys and much more! MS-DOS $149. XENIX $249.
(702) 588-3737
Opt-Tech Data Processing
P.O. Box 678 - Zephyr Cove, NV 89448
Inquiry 771.

STATISTICS

NUMBER CRUNCHER STAT SYS Menu-Oriented Multiple regression & stepwise regression ANOVA, time series, discriminant cluster and factor analysis, principal components, scatter plots, histograms, tests, contingency tables, non-parametric import export data Spreadsheet sort, join, merge. $99 MS-DOS. Quantity discount.
NCSS-B
865 East 400 North, Kaysville, UT 84037
(801) 546-0445
Inquiry 779.

LAN TOOLBOX FOR TURBO PROGRAMMERS!

Have a special application database that's restricted to one computer at a time? Do you need to share that database using record locking and unlocking commands? Are you frustrated with the limitations of Turbo Pascal file handling routines when DOS 3.x have pulled at a lime? This package is definitely worth the money. After all, this is the year of the LAN. $99.95, VISA/AMC accepted.
Night Owl Computer Services
Software & Consulting
P.O. Box 130377, Toronto, ON 44165
(416) 474-3248
Inquiry 773.

UTILITIES

SOURCE CODE LIBRARIAN & VERSION CONTROL SYSTEM

TLIB keeps ALL versions of your program in ONE compact library file, even with hundreds of revisions. 5 times faster than SSDS
LAN compatible
Free public domain MAKE (with source by L. Oyer MS-DOS/CP/M 2.5 x $39.95 + $15.95 VISA/AMC
BURTON SYSTEMS SOFTWARE
POB 4156, Cary, NC 27511
(919) 489-3060
Inquiry 785.
THE BUYER'S MART

UTILITIES

PAL FOR SIDEKICK!
Personal Appointment Locator automatically shows coming appointments, searches your files, maintains to-do lists, automatically repeats appointments, examines multiple files. Resident alarm timout! Only $49.95.

PAL SOFTWARE
Ste. 128 110 Green St., New York, N.Y. 10012
(Voice Line) 914-762-5322
(BBS) 914-762-8585

PEP
Your Data to MS-DOS!
PEP ("Printer Emulation Package") is a unique software system to be an intelligent serial printer. Converting your TOA.

SOFTWARE
ASSEMBLY LANGUAGE PRE-PROCESSOR
13 Saratoga Or., Kirkland, Quebec, Canada H9H 3J9
P.O. Box 460969, Garland, TX 75046

INQUIRY 785.
3rd Fl.
July Laboratories
P.O. Box 1586, Media, TX 76667 817-562-3444

PC-Write® Shareware Ver. 2.71
Fast, full featured word processor/next/ed for IBM PC. Write your first screen clips, master-erase, split screen, ASCII files, macros, Easy to use. Supports 400 printers - LaserJet and PostScript, Job Spooling, User Guide and Tutorial on 2 disks for $18. Try it, then register with us for only $89 and get your User Manual, 1 year tech-support, newsletter and 2 upgrades. 90-day guarantee. VISA/AMC.

Quicksoft
302-292-0451 TODAY CALL 215 First N., #22-4BYCCT, Seattle, WA 10634

HADDICK & HADDICK
P.O. Box 1586, Media, TX 76667

QUAD SOFTWARE LIMITED
45 Charles St. E. PO. Box 460969, Garland, TX 75046

UTILITIES
THE BUYER'S MART

HEBREW / GREEK / ARABIC

NEW WORD
A WordStar clone, but better. Act now—limited quantities available
For CP/M-60 — $69.00
Includes WORD Plus, Specify disk format
Add $4.00 S/H, CA residents add 6% tax.

QUICKSOFT
(215) 394-8622

PEP Your Data to MS-DOS!
PEP ("Printer Emulation Package") is a unique software system to be an intelligent serial printer. Converting your TOA.

PC-Write® Shareware Ver. 2.71
Fast, full featured word processor/next/ed for IBM PC. Write your first screen clips, master-erase, split screen, ASCII files, macros, Easy to use. Supports 400 printers - LaserJet and PostScript, Job Spooling, User Guide and Tutorial on 2 disks for $18. Try it, then register with us for only $89 and get your User Manual, 1 year tech-support, newsletter and 2 upgrades. 90-day guarantee. VISA/AMC.

Quicksoft
302-292-0451 TODAY CALL 215 First N., #22-4BYCCT, Seattle, WA 10634

HEBREW / GREEK / ARABIC

NEW WORD
A WordStar clone, but better. Act now—limited quantities available
For CP/M-60 — $69.00
Includes WORD Plus, Specify disk format
Add $4.00 S/H, CA residents add 6% tax.

QUICKSOFT
(215) 394-8622

ADVERTISE YOUR COMPUTER PRODUCTS HERE

THE BUYER'S MART

NEW WORD
A WordStar clone, but better. Act now—limited quantities available
For CP/M-60 — $69.00
Includes WORD Plus, Specify disk format
Add $4.00 S/H, CA residents add 6% tax.
Inquiry 280

RAW_TEXT_END
NEC V20 & V30 CHIPS

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>UP71012-9</td>
<td>$9.95</td>
</tr>
<tr>
<td>UP71012-10</td>
<td>$11.55</td>
</tr>
<tr>
<td>UP71013-9</td>
<td>$14.55</td>
</tr>
<tr>
<td>UP71013-10</td>
<td>$16.15</td>
</tr>
</tbody>
</table>

MICROPROCESSOR COMPONENTS

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC68000L8</td>
<td>$19.95</td>
</tr>
<tr>
<td>MC68000L10</td>
<td>$19.95</td>
</tr>
<tr>
<td>MC68000L2</td>
<td>$19.95</td>
</tr>
<tr>
<td>MC68000L20</td>
<td>$19.95</td>
</tr>
<tr>
<td>MC68000L32</td>
<td>$19.95</td>
</tr>
</tbody>
</table>

MEMORIES

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>27250</td>
<td>$10.50</td>
</tr>
<tr>
<td>27300</td>
<td>$10.50</td>
</tr>
<tr>
<td>27400</td>
<td>$10.50</td>
</tr>
<tr>
<td>27500</td>
<td>$10.50</td>
</tr>
<tr>
<td>27600</td>
<td>$10.50</td>
</tr>
<tr>
<td>27700</td>
<td>$10.50</td>
</tr>
<tr>
<td>27800</td>
<td>$10.50</td>
</tr>
</tbody>
</table>

EMBEDDED CONTROLLER

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>272000</td>
<td>$10.50</td>
</tr>
</tbody>
</table>

CD-ROMS

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4001</td>
<td>$10.50</td>
</tr>
<tr>
<td>CD4002</td>
<td>$10.50</td>
</tr>
<tr>
<td>CD4003</td>
<td>$10.50</td>
</tr>
<tr>
<td>CD4004</td>
<td>$10.50</td>
</tr>
<tr>
<td>CD4005</td>
<td>$10.50</td>
</tr>
<tr>
<td>CD4006</td>
<td>$10.50</td>
</tr>
</tbody>
</table>

CMOS

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4040L12</td>
<td>$1.25</td>
</tr>
<tr>
<td>4040L14</td>
<td>$1.25</td>
</tr>
<tr>
<td>4040L16</td>
<td>$1.25</td>
</tr>
<tr>
<td>4040L18</td>
<td>$1.25</td>
</tr>
<tr>
<td>4040L20</td>
<td>$1.25</td>
</tr>
<tr>
<td>4040L22</td>
<td>$1.25</td>
</tr>
<tr>
<td>4040L24</td>
<td>$1.25</td>
</tr>
</tbody>
</table>

IC SOCKETS

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>27205</td>
<td>$10.50</td>
</tr>
<tr>
<td>27305</td>
<td>$10.50</td>
</tr>
<tr>
<td>27405</td>
<td>$10.50</td>
</tr>
<tr>
<td>27505</td>
<td>$10.50</td>
</tr>
<tr>
<td>27605</td>
<td>$10.50</td>
</tr>
<tr>
<td>27705</td>
<td>$10.50</td>
</tr>
<tr>
<td>27805</td>
<td>$10.50</td>
</tr>
</tbody>
</table>

SATELLITE TV DESKTOP DEMO CHIP

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM5321N</td>
<td>$11.95</td>
</tr>
</tbody>
</table>

INTERISIL Also Available!

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74HCT - CMOS TTL</td>
<td>$0.95</td>
</tr>
</tbody>
</table>

LINEAR

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM141</td>
<td>$1.25</td>
</tr>
<tr>
<td>LM144</td>
<td>$1.25</td>
</tr>
<tr>
<td>LM145</td>
<td>$1.25</td>
</tr>
</tbody>
</table>

ACCESSORIES

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell, 222G</td>
<td>$1.50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell, 222G</td>
<td>$1.50</td>
</tr>
</tbody>
</table>

PARTIAL LISTING • OVER 4000 COMPONENTS AND ACCESSORIES IN STOCK! • CALL FOR QUANTITY DISCOUNTS
INTRODUCING JAMECO'S NEW COMPUTER KITS!!

Jameco's IBM™ AT Compatible Kit!
Mini-268 6/8/10/12MHz Kit!

Part No. Description Price
JE1015 XT/AT Style Keyboard... $9.95
JE1016 120w Power Supply $9.95
JE1022 25V High Density Disk Drive $11.95
JE1045 Hard Disk/Flippy Controller $19.95
JE1003 512 RAM Module (Zero-K RAM-incl. Award BIOS) $49.95

Regular List $108.40
SALE! $105.85!

Jameco's IBM PC/XT Compatible Kit

Regular List $165.40
SALE! $164.45!

IBM Compatible Motherboards
• 4.77MHz operation (Turbo only)
• 687 Math Co-processor capability
• BIOS ROM included

IBM-MBT 4.77MHz Turbo 4.77/8MHz •••• $99.95
ST225K 20MB drive (only) $274.95
ST238K 50MB w/Controller (PC/XT) $339.95
ST251XT 40MB w/Controller (PC/XT) $399.95
ST251AT 40MB w/Controller (SC/XT) $399.95

SALE! $99.95

IBM-MON 4.77MHz •••• $99.95
SIMM 512 RAM (18 Chips) ... $20.70
IBM-CC 512 Flippy Controller Card •••• $34.95
6116P-4 20MB Power Supply •••• $39.95
JE1022 5V High Density Disk Drive •••• $119.95
JE105 Flippy Controller Card •••• $34.95
JE1015 XT/AT Style Keyboard... $9.95
JE1030 165 Watt Power Supply •••• $69.95
JE1050 Mono/Graph. Card w/Port $9.95
JE1020 5V/SID Disk Drive•••• $199.95
JE1050 Mono/Graph. Card w/Port $9.95

FREE! QUICKSOFT PC WRITE WORD PROCESSING SOFTWARE INCLUDED!

JAMECO'S IBM™ AT Compatible Kit

Jamec...
The Best Color Graphics Buy of the Century

Board Features:
- Multiple Modes:
 - CGA: 320 x 200 - **ENHANCED TO 640x400**
 - EGA: 640 x 350 - **ENHANCED TO 640x400**
 - VGA Resolution: 640x480 using Microsoft Windows, Lotus, AutoCAD, P CAD, etc.
 - Hercules: 720x350
 - AutoSwitch
 - Parallel Printer Port

Monitor Features:
- 13" Diagonal Viewing Area/Non-GLARE Screen
- Matrix Pitch: 0.31 mm/Black Matrix
- Addressability: 640 Horizontal x 480 Vertical
- PAGA compatible, operates with separate RED, GREEN & BLUE Analog Signals and can support an infinite number of colors.

Imagine your CGA Software running at better than EGA Resolution

Floppy Disc Drives
- TANDON - TM 55-4
 - 96 t.p.i. DS/DD
 - 5 1/4" $69.00
 - 3 1/2" $35.00
- REMEX - RFD-480
 - 237, 360K DS/DD
 - 3 1/2" $35.00
- QUME - Track 142
 - 360K DS/DD 5 1/4"
 - 15% off $65.00

Hard Disk Drives
- FULL HEIGHT 10Mb
- $89.00
- 10 Mb Formatted
- 8.2 Mb Unformatted

Drives
- IBM - 39.95
- ZENITH - $39.95
- ASTEC - $39.95
- PANOFLY - $39.95
- PANOFLY - $39.95
- Hitachi - $1499.00
- 53 Mb Unformatted
- 42 Mb Formatted
- 22.5 ms average access time

Price
- $249.00

The Return of the Spy in Hitachi Atari

Imagine your CGA Software running at better than EGA Resolution

Laser Array

Original Assembly Cost

- $5,000.00

Components
- (3) special lenses
- (2) beam splitters
- (5) special mirrors

Laser Output

- 12K volts at a maximum output power of 10 milliwatts

Power Supply

- 15.5" long and 1.75" in diameter

Order Desk

- Continental U.S. Orders Welcome
- (800) 872-8878 (800) 223-9977 (213) 217-8912

- Inside California Orders: (213) 217-8912

- L.A. & Technical Info: (213) 217-8912

Minimum Order

- $200.00
DIGITAL and ANALOG I/O for the
IBM PC, XT, AT

UNIVERSAL I/O
This board has three 8255 VIA's that make up the nine 8 bit I/O ports. That's 72 I/O lines! This board also has 16 ANALOG inputs. Each input has a 0 to 5 volt range, 8 bit resolution (256 steps), 20 meg input impedance. Conversion time is 200 us per channel. A DIP switch is used to select the I/O address. This board also has a prototype area.

ORDER part # 83-064A $229.95

PARALLEL I/O
This board has two 8255 VIA's that make up six 8 bit parallel I/O ports. That's 48 I/O lines!

ORDER part # 86-108A $99.95

Free Catalog!
To get a FREE CATALOG of JBE products send a label with your name and address and I will stick it on a catalog and send it to you. I also make I/O boards for Apple computers and single board control computers.

JOHN BELL ENGINEERING, INC.
400 Oxford Way, Belmont, CA 94002
(415) 502-8411 9am to 4pm Pacific time.

Inquiry 333
DIGITAL and ANALOG I/O

PowerStation™
VT220 Emulation Software
and Keyboard

A Complete VT220 Work Station Upgrade for the IBM PC/XT/AT
PowerStation™-220 $289
KEA Systems Ltd.

312 - 2150 West Broadway
Vancouver, B.C. Canada V6K 4L9
Order Desk (604) 663-8702 Toll Free
30 day money back guarantee. MC/VISA

Inquiry 154

PAL Programmer

- Works with PC XT
- Programs 20 x 24 pin 16K 32K 64K 128K EPROM
- Support ID11E10161
- Security Fuse Blow
- OM1, LCD, SAVE, EDIT, BLANK, CHECK, READ, WRITE, VERIFY FUNCTION
- High yield, very reliable
- SW included

$395

*EPROM programmer (1, 4, 8 socket) $95
+ Supports 24-82 pin EPROM, CMOS EPROM, EPPROM
+ 27C16-27C128, 27512, 27300, 27300, 2864A
+ Program 27C326 only 30 sec with Quick-guide
-64, 64-256, Vpp=5, 6.25, 255, 11, 21, 215
-874A/48/49 programmer $245
- TTL IC & MEMORY TESTER $245
- BIPOlar ROM programmer $335
- 86000 Single Board Computer $395

XELTEK

473 Sapena Ct.
Unit 24
Santa Clara, CA 95054

Inquiry 319

Inquiry 145

ENHANCED
VT220 $150

The most complete VT220 emulation available
for your PC/XT/AT or compatible.
- HIGH PERFORMANCE to 38.4K BAUD
- TRUE DOUBLE HIGH/DOUBLE WIDE
- TRUE 132 COLUMN MODE ON MOST EGA'S
- COLOR EXTENSIONS/256/64/128/128/256/128 fonts
- SOFTWARE/MACROS, DOS ACCESS
- XMODEM/KERMIT FILE TRANSFERS
- Plus many more extensions!

ZSTEMpci™-VT220 Emulator $150.
with PowerStation™-220 Emulator $289
EGA/Amiga option for true EGA 132 columns $39
ZSTEMpci™ - 4041 option $99

KEA Systems Ltd.

312 - 2150 West Broadway
Vancouver, B.C. Canada V6K 4L9
Support (604) 732-7411
TELEX 04-35248 VCR FAX (604) 732-0715
Order Toll Free (600) 663-8702
30 day money back guarantee. MC/VISA

Inquiry 146

Inquiry 261

Fe-AT TTURBO COMPLETE SYSTEM 51139.DD
640K RAM/1.2M floppy drive/HDD/3D/3D
controller/Monochrome card/Monochrome monitor/5020W power/supply/AT style keyboard.

Inquiry 255
Plug into the future

With the A-BUS you can plug your PC (IBM, Apple, TRS-80) into a future of exciting new applications in the fields of control, monitoring, automation, sensing, robotics, etc.

Alpha's modular A-BUS offers a proven method to build your "custom" system today. Tomorrow, when you are ready to take another step, you will be able to add more functions. This is ideal for first time experimenting and teaching.

A-BUS control can be entirely done in simple BASIC or Pascal, and no knowledge of electronics is required!

An A-BUS system consists of the A-BUS adapter plugged into your computer and a cable to connect the Adapter to 1 or 2 A-BUS cards. The same cable will also fit an A-BUS Motherboard for expansion up to 25 cards in any combination.

The A-BUS is backed by Alpha's continuing support (our 11th year, 50,000 customers in over 60 countries).

The complete set of A-BUS User's Manuals is available for $10.

* About the A-BUS:
 * All the A-BUS cards are very easy to use with any language that can read or write to a Port or Memory. In BASIC, use INP and OUT (or PEEK and POKE with Apple and Tandy Color Computers)
 * They are all compatible with each other. You can mix and match up to 25 cards to fit your application. Card addresses are easily set with jumpers.
 * A-BUS cards are shipped with power supplies (except PD-123) and detailed manuals (including schematics and programming examples)

* Relay Card
 * RE-140: $1.29
 * Includes eight industrial relays. (3 amp contacts. SPST) individually controlled and latched. 8 LED's show status. Easy to use (OUT or POKE in BASIC). Card address is jumper selectable.

* Reed Relay Card
 * RE-156: $1.99
 * Same features as above, but uses 8 Reed Relays to switch low level signals (20mA max). Use as a channel selector. Solid state relay driver, etc.

* Analog Input Card
 * AD-142: $1.29
 * Eight analog inputs. 0 to +5V range can be expanded to 100V by adding a resistor. 8 bit resolution (20mV). Conversion time 120us. Perfect to measure voltage, temperature, light levels, pressure, etc. Very easy to use.

* 12 Bit A/D Converter
 * AN-146: $1.39
 * This analog to digital converter is accurate to 0.25%. Input range is -4V to +4V. Resolution: 1 millivolt. The on board amplifier boosts signals up to 50 times to read microvolts. Conversion time is 130ms. Ideal for thermocouple, strain gauge, etc. 1 channel. (Expand to 8 channels using the RE-156 card).

* Digital Input Card
 * IN-141: $1.59
 * The eight inputs are optically isolated, so it's safe and easy to connect any "on/off" devices, such as switches, thermostats, alarm loops, etc. to your computer. To read the eight inputs, simply use BASIC INP (or PEEK).

* 24 Line TTL I/O
 * DG-148: $0.65
 * Connect 24 input or output signals (switches or TTL devices) to your computer. The card can be set for: Input, latched output, strobed output, strobed input, and/or bidirectional strobed I/O. Uses the 8255A chip.

* Clock with Alarm
 * CL-144: $0.89
 * Powerful clock/calendar with: battery backup for Time, Date and Alarm setting (time and date): built in alarm relay, led and buzzer: timing to 1/100 second. Easy to use decimal format. Lithium battery included.

* Touch Tone® Decoder
 * PH-145: $0.79
 * Each tone is converted into a number which is stored on the board. Simply read the number with INP or POKE. Use for remote control projects, etc.

* A-BUS Prototyping Card
 * PR-152: $0.15
 * 3½ by 4½ in. with power and ground bus. Fits up to 10 I.C.'s

Smart Stepper Controller

SC-149: $329

World's finest stepper controller. On board microprocessor controls 4 motors simultaneously. Incredibly, it accepts plain English commands like "Move arm 10 2 inches left". Many complex sequences can be defined as "macros" and stored in on board memory. For each axis, you can control coordinate (relative or absolute), ramping, speed, step type (half, full, waveform), scale factor, units, holding power, etc. Many inputs: 8 limit & "wait until" switches, panic button, etc. On the fly reporting of position, speed, etc. On board drivers (350mA) for small stepper motors (MO-103). Send for SC-149 flyer.

Remote Control Keypad Option

RC-121: $49

To control the 4 motors directly, and "teach" sequences of motions.

Power Driver Board Option

PD-123: $99

Boost controller drive to 5 amp per phase. For two motors (eight drivers).

Breakout Board Option

BB-122: $19

For easy connection of 2 motors. 3 ft. cable ends with screw terminal board.

Stepper Motor Driver

ST-143: $79

Stepper motors are the ultimate in motion control. The special package (below) includes everything you need to get familiar with them. Each card drives two stepper motors (12V, bidirectional, 4 phase. 350mA per phase).

Stepper Motors

MO-103: $15 or 4 for $39

Pancake type. 2½" dia. ½" shaft, 7½/step, 4 phase bidirectional, 300 step/sec, 12V, 36 ohm, bipolar. 5 oz.in torque. Same as Alpha's KZ701-02.

Current Developments

Intelligent Voice Synthesizer. 14 Bit Analog to Digital converter. 4 Channel Digital to Analog converter. Counter Timer. Voice Recognition.

A-BUS Adapters for:

IBM PC, XT, AT and compatibles. Uses one short slot.

AR-133...$69

Tandy 1000, 1000 EX & SX, 1200, 3000. Uses one short slot.

AR-133...$69

Apple II, II+ IIe. Uses any slot.

AR-134...$49

TRS-80 Model 102, 202. Puts into 40 pin "system bus".

AR-135...$69

Model 100. Uses 40 pin socket. (Socket is duplicated on adapter). AR-135...$69

TRS-80 Mod 3, 4, 5, 6. Fits 50 pin bus. With cordless Y-cable.

AR-132...$49

TRS-80 Mod 4P. Includes extra cable. 35 pin bus is recessed.

AR-137...$62

TRS-80 Mod 1. Puts into 40 pin 1/0 bus or K8 or E/1

AR-131...$39

Color Computers (Tandy). Fits ROM slot. Multipak or Y-cable.

AR-138...$49

A-BUS Cable (3 ft, 50 cond.)

CA-163: $24

Connects the A-BUS adapter to one A-BUS card or to first Motherboard. Special cable for two A-BUS cards.

CA-162: $34

Each Motherboard holds five A-BUS cards. A sixth connector allows a second Motherboard to be added to the first (with connecting cable CA-161: $12). Up to five Motherboards can be joined this way to a single A-BUS adapter. Sturdy aluminum frame and card guides included.

New A-BUS Prototyping Card

PR-152: $15

3½ by 4½ in. with power and ground bus. Fits up to 10 I.C.'s

Add $3.00 per order for shipping.

Alpha Products

242-B West Avenue, Darien, CT 06820

Technical Info:

(203) 656-1806

Add S3.00 per order for shipping.

Alpha Products

242-B West Avenue, Darien, CT 06820
Discover the Difference...

TERMS: Free use of VISA, Mastercard, and American Express.

PRICE PROMISE: We will better any lower delivered price.

Shipping: U.S. orders add $3.00 per 100 diskettes or fraction thereof, add $5.00 for COD orders.

Simply 2 FOR 1 LIFETIME WARRANTY

DS/DD IBM-AT Compatible

5-1/4" • 48 TPI

1.09

.59

.49

1.19

.77

.84

.77

.54

1.45

32¢

BULK

5-1/4"-48 TPI

IBM-AT Compatible

NOW IN COLOR

BULK

COLOR OR GRAY

1.09

.59

.49

1.19

.77

.84

.77

.54

1.45

ORDERING INFORMATION

TERMS: Free use of VISA, Mastercard, and American Express.

PRICE PROMISE: We will better any lower delivered price.

Shipping: U.S. orders add $3.00 per 100 diskettes or fraction thereof, add $5.00 for COD orders.

For Free Order Line: Information Line
1-800-233-2477 1-801-561-0092

Inquiry 58

Inquiry 102

Inquiry 250

Inquiry 286
The Sweet P100 was private labeled for the Epson corporation under the Contrex Brand. This plotter makes short work of transforming financial and numeric data into a graphic presentation. Many ready-to-run programs such as Centronics interface allows the Swee...
Own your own computer and office supply business!

I'm Jerry Saperstein, founder and President of DISK WORLD!, Inc. Since 1983, I've earned more than $250,000 a year selling computer and office supplies.

And so can you.
Enter a major industry without major capital! More than twenty-two billion dollars worth of office and computer supplies will be sold this year...most of it on a local level from small stores and independent agents.

Through mail order advertising, I can capture the interest of most of the 20,000,000 businesses who need and buy office and computer supplies...but you can because you are local to them...and you can do it far more economically than I could through national advertising.

And that situation creates an opportunity for you.

A money making opportunity! I'd like you to explore the possibilities of establishing your own part or full time computer and office supply business.

It can be operated easily out of your own home.

You'll be offering more than 25,000 commonly used office and computer supply items at substantial discounts from list price, easily offering better bargains than local suppliers...but still making a profit for yourself.

Let me show you how.

I've prepared a complete business plan called "Making Money In Office and Computer Supplies". It shows you everything you need to know...including advice on how to avoid failure.

The business plan costs $24.95...and you can read it for 10 days and return it for a full refund for any reason within that time. Or you can get our FREE expanded information package.

The choice is yours.

I'd like to see you in the office and computer supply business because it would be good for both of us.

You would make some money...and so would I...and so would thousands of businesses who could save money on all their computer and office supply needs.

Take advantage of this offer today and order "Making Money In Office And Computer Supplies" WITHOUT RISK or ask for the FREE expanded information package.

Office & Computer Supplies, Inc.
P.O. Box 1415
Highland Park IL 60035

Office and Computer Supplies, Inc.
P.O. Box 1415
Highland Park IL 60035

Yes! Enclosed is my check or money order for $.

Please send me a copy of "Making Money In Office And Computer Supplies"...I understand that I may return it within 10 days for a full refund for any reason whatsoever.

Well, I'm not merely ready to buy the business plan yet, but please send me the FREE expanded information package.

Name:

Address:

City State ZIP

INQUIRY 200
PC COMPATIBLE SYSTEMS

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST PREMIUM 286</td>
<td>Model 140 with 44 Mb mSEC Drive, 10MHz 8226 with 16.5 MB Norton, 1MB 100mSEC RAM, Serial & Parallel Ports, Clock/Cal, RT-Style Keyboard, 3.5 Plus Card with EGA-EGA-HGC and 256k RAM, and MS DOS, GW-BASIC</td>
<td>$65.00</td>
</tr>
</tbody>
</table>

COPIER & ACCESSORIES

- **NOVELL**
 - S-100 DIV. 6/08/96 CORP.
 - 14455 NORTH 79TH ST., SCOTTSDALE AZ 85260
 - TEL: (602) 991-7800

LASER PRINTERS

- OKIDATA LINEARLINE
 - Ricoh Engine, 6 Pages per min., 128K RAM (expands to 512K), Perfect for Text Intensive Applications...
 - $1,488

- Cordata LP-300 Laser Printer
 - $1,640

PRINTERS & PLOTTERS

- brother M-1709 $425

POWER SYSTEMS & ACCESSORIES

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>WYSE</td>
<td>WYPC-286 10 MHz, 64K, S, P, 1.2 Floppy</td>
<td>$1,488</td>
</tr>
<tr>
<td>WYPC-286-85</td>
<td>w/720 MB, 20 MB Hard Disk, 1.2 Floppy</td>
<td>$2,498</td>
</tr>
<tr>
<td>WYPC-286-20</td>
<td>w/20 MB Hard Disk</td>
<td>$1,759</td>
</tr>
</tbody>
</table>

MONITORS & TERMINALS

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST WYSIWYG Full Page Monitor & Ctrl.</td>
<td>$1,195</td>
<td></td>
</tr>
<tr>
<td>Samsung EGA Tilt 'n' Swivel, 14" Monitor</td>
<td>$365</td>
<td></td>
</tr>
<tr>
<td>Samsung 12" TTL Tilt 'n' Swivel Amber Monitor</td>
<td>$97</td>
<td></td>
</tr>
</tbody>
</table>

MODEMS

- EasyData "MODEMS, Hayes compatible and more!"
 - EasyData 1200 PC Half Card w/Cable-Mini | $115 |

DRIVES

- ID130 133Mb, 20mSEC with Installation Hardware/ Software (XT-1140 Compatible) | $2,195 |
- ID75 7MB, 20mSEC | $1,079 |
- ID00 102Mb, 20mSEC w/AT, Controller | $1,560 |
- ID230 233Mb, 20mSEC w/ software & AT Controller | $2,888 |
- V150 43Mb, 20mSEC w/ AT, Controller | $999 |
- Everex 800 60MB Internal Tape | $759 |
- Irwin 20MB Internal Tape | $486 |

MICROPOLIS

- Mitsubishi MF504 4MB w/Serial Interface | $2,015 |
- Mitsubishi MF501 8MB w/Parallel Interface | $2,015 |
- Mitsubishi MF505 8MB w/External Controller | $2,015 |
- Mitsubishi MF505 8MB w/AT, Controller | $2,015 |
- Mitsubishi MF505 8MB w/ 386, Controller | $2,015 |
- Mitsubishi MF505 8MB w/ 386, Controller | $2,015 |
- Mitsubishi MF505 8MB w/ 386, Controller | $2,015 |

WESTERN DIGITAL

- StarLAV/Novell Starter Kit - $1,095
 - StarHub 10 Active Ports...
 - Starch Card...
 - StarCard Plus...

CONNECTIVITY

- Intercorporate MicroSystems - MS-CPS-PC CPU Card/VT/ST Slave CPU Card and Graphics Terminal with Software for WorkNet 11.0...
 - $1,056

- ArchNet Starter Kits with Novell Software...
 - $1,995

NOVELL

- With Advanced WorkNet 286 v2.0A...
 - $1,995

- 3 CompuPro PC ArchNet Cards and Cables...
 - $1,995

- Ethernet Kit with File Server Card, Two Work Stations Cards & $2,065

TELEPHONE & NETWORK

- Inventory 284 for End-Users. Inventory 285 for DEALERS ONLY.
IEEE488 Technology that hits the mark

- For IBM PC/XT/AT/PS/RT/68000 and all other compatible computers
- For PHILIPS PC: YES
- IBM commands (clear, etc.) implemented
- SPQ/ASYST compatible
- 64 kbyte memory capacity
- DMA and INTERRUPT can be activated by simple commands
- HELP functions, SYNTAX monitoring in clear text
- BASIC, BASIC/Comma, Turbo BASIC, Turbo Pascal, MODULE 2, FORTRAN, C, ASSEMBLER

DEALER & OEM WELCOME

912 HILLER AVE. SAN JOSE, CA 95134

800-821-1133

Inquiry 129

SPECIAL EPROM PROGRAMMER

APROTEK 1000

ONLY $225.00

COMPLETE WITH PERSONALITY MODULE

117 AC POWER RS-232 CONNECT 16 BAUD RATES - HANDSHAKE TO HOST COMES COMPLETE WITH IBM-PC, APPLE II, OR CPM (SPECIAL COMPUTER) DRIVER PROGRAM ON DISC. PROGRAMS THE FOLLOWING 5 VOLT 24 OR 28 PIN DEVICES: 2716 SERIES THROUGH 27321, 28XX SERIES, 68764 PLUS OTHERS. PLEASE SPECIFY PERSONALITY MODULE DESIRED WITH ORDER. ADDITIONAL PERSONALITY MODULES, ONLY $10.00 EA. FULL 1 YEAR WARRANTY.

TO ORDER CALL 1-800-952-5900 OR WRITE APROTEK

101A AVENIDA RACER

Add CAMARILLO, CA 93010

40 1/2 Steeples USA life: (805) 987 2544 VISA or MC Am 3%

W: Accepted Govt, School & Large Corp. P.O.s

Inquiry 212

NOW, AN EASY WAY TO SHARE YOUR PRINTER!

Share any number of PC's and printers without cables, switches, or wiring. Just plug PCB's LIF Devil into the printer port of your PC. Works like a printer buffer and saves the data on a removable RAM cartridge. At your convenience, plug the RAM cartridge into another LIF Devil attached to your shared printer. Easy! Allows you to work anywhere. Free up your PC and Printer. Even a floppy disk can't do all that PAMCO's LIF Devil can. Comes complete with power supply, standard parallel printer port interface, standard parallel printer cable and plug, one RAM cartridge and instructions for only $149.95.

Call for more information 1-800-652-6265

Inquiry 194

Inquiry 315
Hard Disk Drives

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toshiba ND04D PC/XT</td>
<td>$95.00</td>
</tr>
<tr>
<td>ACP IBM Drives OS</td>
<td>$299.00</td>
</tr>
</tbody>
</table>

EGA Specials

<table>
<thead>
<tr>
<th>EGA Monitor</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plus EGA Card</td>
<td>$519.00</td>
</tr>
<tr>
<td>Plus Multicomputer EGA Card</td>
<td>$719.00</td>
</tr>
</tbody>
</table>

Floppy Disk Drives

<table>
<thead>
<tr>
<th>Drive</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toshiba FDD043 3.5"/w/125K</td>
<td>$69.00</td>
</tr>
<tr>
<td>Toshiba FDD030 3.5"/w/72K</td>
<td>$69.00</td>
</tr>
<tr>
<td>Toshiba FDD030 3.5"/w/40K</td>
<td>$69.00</td>
</tr>
<tr>
<td>Toshiba FDD020 3.5"/w/20K</td>
<td>$69.00</td>
</tr>
</tbody>
</table>

Software

- **Video**
 - Toshiba ST225 $289.00
 - Toshiba ST23B $499.00

- **PC/XT**
 - Toshiba ST225 $289.00
 - Toshiba ST23B $499.00

Expanded Memory

- 1Mb Chip 100ns: $33.95
- 1Mb Chip 150ns: $36.95
- 1Mb Chip 200ns: $39.95

Expansion Cards

- Filecard 20 Western Digital $539.99
- Filecard 30 Western Digital $549.99
- NEC ST225 $995.00

Cable & Connectors

- 8 Pin Head Cleaner $9.00
- 18 Pin Head Cleaner $9.00

Diskettes

- Maxell II 2DD $26.95
- Maxell II 3DD $26.95
- Maxell II 5DD $9.95

Drivers

- Toshiba ND04D PC/XT $95.00
- Toshiba FDD043 3.5"/w/125K $69.00
- Toshiba FDD030 3.5"/w/72K $69.00
- Toshiba FDD030 3.5"/w/40K $69.00
- Toshiba FDD020 3.5"/w/20K $69.00

Computer Systems

- IBM PS/2 Model 30 $2999.00
- IBM PS/2 Model 50 $3499.00
- IBM PS/2 Model 70 $4999.00

Supercard

- IBM SuperCard w/Phantom $399.00

Corporate Buyers

- ADDITIONAL BARE BONES
 - 8 MHz XT Turbo $299.00

Closeouts & Supplies

- IBM Personal Computer $299.00
- Toshiba ST23B $499.00
- Toshiba ST225 $289.00

** Elli**

- IBM Personal System/2 $299.00

Software

- Toshiba ST225 $289.00
- Toshiba ST23B $499.00

IBM Compatibles

- Toshiba ST225 $289.00
- Toshiba ST23B $499.00

Specials

- Toshiba ST225 $289.00
- Toshiba ST23B $499.00

IBM Compatibles

- Toshiba ST225 $289.00
- Toshiba ST23B $499.00

Supercard

- IBM SuperCard w/Phantom $399.00
51/4" DS/DD 64c: 51/4" DS/DD 1.64

Price based on quantity of 300 includes sleeves, labels and tabs.

SATISFACTION GUARANTEED
800-222-0490
In NJ 201-462-7628

MEGASoft
P.O. Box 710, Freehold, NJ 07728
Full service duplication facility

WHY WAIT?
Run QNX now and do it all true networking, multi-tasking, and multi-user systems.

QNX users and sell only QNX and QNX compatible products including wide area networking, nodes and bridges. Call about our complete line of passive and active hubs. Call or write for our catalogue.

T&T COMPUTER PRODUCTS
P.O. Box 33213 Tulsa, Oklahoma 74133
(918) 663-2087 MC/VISA Accepted
QNX is a registered trademark of Quantum

MOTION CONTROL DREAM
$75 PER UNIT

4 AXIS VERY SMART STEPPER CONTROLLER
- 49 high level commands in plain English.
- Macros: Battery backup for memory.
- Learn mode with optional "Teach Pendant"
- 4 axis simultaneous control. You select the ramps, speeds, drive types...
- Input for Limit Switches, Panic button, etc.
- On board multitasking compiler.
- Works with any computer with a Centronics port or with the Alpha Products A-BUS system

See page 351 for details of the SC-149.

INQUIRY 10

16-BIT RESOLUTION ANALOG-TO-DIGITAL CONVERTER
12,000 SAMPLES/SEC for IBM PC, XT & AT
SINGLE PIECE PRICE $475

We manufacture a broad line of data acquisition and control hardware and software for Apple and IBM computers.
Call for quotes on custom hardware or complete systems.

LAWS LABS, INC.
5700 RAIBE ROAD
COLUMBIA FALLS, MT 59912
406-387-5555

Inquiry 173
Inquiry 79
Inquiry 254

Inquiry 321
Inquiry 251
Inquiry 37

"D" SIZE PLOTTER $1495.00

Model PC 34/36
Pen Plotter:
(415) 490-8390

655 John Muir Drive • Suite 416
San Francisco, CA 94132

NEWS RELEASE

dc6

DCB-DCP $195

PC488 $195

LOW COST PCI/XT/AT INTERFACE FOR IEEE-488 (GPIB/HPIB)
- SHORT CARD FOR PCI/XT/AT & COMPATIBLES
- 1-OF-6 INTERRUPT LEVELS
- 1-OF-2 DMA CHANNELS
- UP TO 4 BOARDS/COMPUTER
- CONTROLLER/TALKER/LISTENER
- QUANTITY DISCOUNTS
- COMPATIBLE WITH MOST SOFTWARE PACKAGES

M & C MICROSYSTEMS
355 West Olive Ave. Sunnyvale, CA 94086
Phone (408) 730-5511 Visa & MC

Inquiry 10
Inquiry 49
Inquiry 79

16-20 BIT INTERFACE

PC488 $475

PC488

LOW COST PCI/XT/AT INTERFACE FOR IEEE-488
- SHORT CARD FOR PCI/XT/AT & COMPATIBLES
- 1-OF-6 INTERRUPT LEVELS
- 1-OF-2 DMA CHANNELS
- UP TO 4 BOARDS/COMPUTER
- CONTROLLER/TALKER/LISTENER
- QUANTITY DISCOUNTS
- COMPATIBLE WITH MOST SOFTWARE PACKAGES

M & C MICROSYSTEMS
355 West Olive Ave. Sunnyvale, CA 94086
Phone (408) 730-5511 Visa & MC

Inquiry 10
Inquiry 49
Inquiry 79

Inquiry 37
Inquiry 254
Inquiry 173

Sure it's insured?

SAFWARE® Insurance provides full replacement of hardware, media and purchased software. As little as $39/yr. covers:
• Fire • Theft • Power Surges
• Earthquake • Water Damage • Auto Accident

For information or immediate coverage call:
1-800-848-3469
In Ohio call 1-614-262-0559

SAFWARE
SAFWARE, The Insurance Agency Inc.

Inquiry 254
Inquiry 173
Inquiry 37
80386 PERSONAL COMPUTER
$2,590

IDEAL FOR CAD/CAE/CAM/CAT WORKSTATIONS

• 256 Memory Expandable to 16MB
• 2 Serial Parallel Ports
• On Board Socket for 80287
• 1.2MB Floppy Drive + Floppy and Hard Disk Drives Controller
• Optional: 2 Serial and 2 Parallel Ports, 512K Installed, Expandable to 1MB On Board Memory

FORTRONe 230 Watt Power Supply

80386 PERSONAL COMPUTER

8 MHz ZERO WAIT STATE

• IBM AT Compatible • 150Watts Power Supply • DOS 3.2 GW Basic
• IBM XT, AT

TERMS:

80386 PERSONAL COMPUTER

8 MHz ZERO WAIT STATE

• IBM AT Compatible • 150Watts Power Supply • DOS 3.2 GW Basic
• IBM XT, AT

TERMS:

80386 PERSONAL COMPUTER

8 MHz ZERO WAIT STATE

• IBM AT Compatible • 150Watts Power Supply • DOS 3.2 GW Basic
• IBM XT, AT

TERMS:

80386 PERSONAL COMPUTER

8 MHz ZERO WAIT STATE

• IBM AT Compatible • 150Watts Power Supply • DOS 3.2 GW Basic
• IBM XT, AT

TERMS:
Re-ink ANY FABRIC RIBBON automatically for LESS THAN 5 CENTS with MACINKER™

MACINKER
IMAGewriter I AND II $42.00
UNIVERSAL (cartridge or spool) $68.50
MULTICOLOR IMAGewriter $80.00
MULTICOLOR ADAPTER ONLY $40.00
Shipping (first unit) $3.00

■ Lubricated DM INk EXTENDS PRINT-HEAD LIFE! Black, blue, brown, red, green, yellow, purple, orange—2 oz. bottle $3.00; pint $16.50. Gold, silver, indelible and OCR inks available. Heat transfer MarkInks and ink available plus a complete range of accessories for special applications.
■ Top quality, GUARANTEEd, double density ribbon cartridges and reloads available.
■ DEDICATED MAC INKERS AVAILABLE FOR EXTRA LARGE OR SPECIAL CARTRIDGES.

MERCURY MODEM
*100% Hayes™ compatible!
$149.00
Shipping $4.00

■ 24 month warranty ■ Status lights ■ Speaker
■ 300/1200 baud ■ Call progress detection.
Quick Link Communications software:
MS DOS and Macintosh—$29.95
with modem—$15.00 cable—$15.00.

*Hayes is a trademark of Hayes Microproducts.

A BUFFER AND A DATA SWITCH! PROTEUS™
The "Siamese" Buffer

64K—$199.00
256K—$299.00
Cable—$10.00
Shipping $4.00

■ Proteus directs two printers working simultaneously, and frees your computer for other applications.
■ Now you can merge a form letter with your mailing list, set up one printer with letterhead, the other with envelopes, press "START" and RELAX while PROTEUS DOES IT ALL—ALL AT ONCE!
■ Compact 2 parallel ports ■ Multiple copy capability ■ "Flexible Capacity" buffer for each port.

1986 "Best Buy of the Year" Award—Computer Shopper

DATA SWITCHES
2 Port—$46.00
4 Port—$59.00
Shipping $4.00
Parallel, serial, 2 or 4 way, crossed, etc.

CABLES: We carry cables for all common computers and peripherals. Rapid turn-around on custom orders. Competitively priced.

ORDER TOLL-FREE
1-800-547-3303
In Oregon (503) 626-2291 (24 hour line)

Computer Friends®
14250 N.W. Science Park Drive
Portland, OR 97229, Telex 4949559
Dealer Inquiries Welcome.

MERCURY MODEM
1985 1986 1987
Jan. $4.25 $4.25 $4.25
Feb. $4.25 $4.25 $4.25
March $4.25 $4.25 $4.25
April $4.25 $4.25 $4.25
May $4.25 $4.25 $4.25
June $4.25 $4.25 $4.25
July $4.25 $4.25 $4.25
Aug. $4.25 $4.25 $4.25
Sept. $4.25 $4.25 $4.25
Oct. $4.25 $4.25 $4.25
Nov. $4.25 $4.25 $4.25
Dec. $4.25 $4.25 $4.25

SPECIAL ISSUES and INDEX
BYTE '83—'84 INDEX $1.75
BYTE 1985 INDEX $2.00
1984 SPECIAL GUIDE to IBM PCs
(Vol. 9, No. 9) $4.75
1985 INSIDE THE IBM PCs
(Vol. 10, No. 11) $4.75

Circle and send requests with payments to:
BYTE Back Issues
PO. Box 328
Hancock, NH 03449

NAME ___________________________ ADDRESS ___________________________
CITY ___________________________ STATE ______ ZIP ____________

Check enclosed Payments from foreign countries must be made in US funds payable at a US bank.
VISA □ □ □ □ MasterCard □ □ □ □
CARD # ___________________________ EXP. DATE ___________________________

The above prices include postage in the US. Please add $.50 per copy for Canada and Mexico; and $2.00 per copy to foreign countries (surface delivery). Please allow 4 weeks for domestic delivery and 12 weeks for foreign delivery.

In Oregon (503) 626-2291 (24 hour line)

Computer Friends®
14250 N.W. Science Park Drive
Portland, OR 97229, Telex 4949559
Dealer Inquiries Welcome.

ORDER TOLL-FREE
1-800-547-3303
In Oregon (503) 626-2291 (24 hour line)

Computer Friends®
14250 N.W. Science Park Drive
Portland, OR 97229, Telex 4949559
Dealer Inquiries Welcome.

MERCURY MODEM
1985 1986 1987
Jan. $4.25 $4.25 $4.25
Feb. $4.25 $4.25 $4.25
March $4.25 $4.25 $4.25
April $4.25 $4.25 $4.25
May $4.25 $4.25 $4.25
June $4.25 $4.25 $4.25
July $4.25 $4.25 $4.25
Aug. $4.25 $4.25 $4.25
Sept. $4.25 $4.25 $4.25
Oct. $4.25 $4.25 $4.25
Nov. $4.25 $4.25 $4.25
Dec. $4.25 $4.25 $4.25

SPECIAL ISSUES and INDEX
BYTE '83—'84 INDEX $1.75
BYTE 1985 INDEX $2.00
1984 SPECIAL GUIDE to IBM PCs
(Vol. 9, No. 9) $4.75
1985 INSIDE THE IBM PCs
(Vol. 10, No. 11) $4.75

Circle and send requests with payments to:
BYTE Back Issues
PO. Box 328
Hancock, NH 03449

NAME ___________________________ ADDRESS ___________________________
CITY ___________________________ STATE ______ ZIP ____________

Check enclosed Payments from foreign countries must be made in US funds payable at a US bank.
VISA □ □ □ □ MasterCard □ □ □ □
CARD # ___________________________ EXP. DATE ___________________________

The above prices include postage in the US. Please add $.50 per copy for Canada and Mexico; and $2.00 per copy to foreign countries (surface delivery). Please allow 4 weeks for domestic delivery and 12 weeks for foreign delivery.

In Oregon (503) 626-2291 (24 hour line)

Computer Friends®
14250 N.W. Science Park Drive
Portland, OR 97229, Telex 4949559
Dealer Inquiries Welcome.

ORDER TOLL-FREE
1-800-547-3303
In Oregon (503) 626-2291 (24 hour line)

Computer Friends®
14250 N.W. Science Park Drive
Portland, OR 97229, Telex 4949559
Dealer Inquiries Welcome.

MERCURY MODEM
1985 1986 1987
Jan. $4.25 $4.25 $4.25
Feb. $4.25 $4.25 $4.25
March $4.25 $4.25 $4.25
April $4.25 $4.25 $4.25
May $4.25 $4.25 $4.25
June $4.25 $4.25 $4.25
July $4.25 $4.25 $4.25
Aug. $4.25 $4.25 $4.25
Sept. $4.25 $4.25 $4.25
Oct. $4.25 $4.25 $4.25
Nov. $4.25 $4.25 $4.25
Dec. $4.25 $4.25 $4.25

SPECIAL ISSUES and INDEX
BYTE '83—'84 INDEX $1.75
BYTE 1985 INDEX $2.00
1984 SPECIAL GUIDE to IBM PCs
(Vol. 9, No. 9) $4.75
1985 INSIDE THE IBM PCs
(Vol. 10, No. 11) $4.75

Circle and send requests with payments to:
BYTE Back Issues
PO. Box 328
Hancock, NH 03449

NAME ___________________________ ADDRESS ___________________________
CITY ___________________________ STATE ______ ZIP ____________

Check enclosed Payments from foreign countries must be made in US funds payable at a US bank.
VISA □ □ □ □ MasterCard □ □ □ □
CARD # ___________________________ EXP. DATE ___________________________

The above prices include postage in the US. Please add $.50 per copy for Canada and Mexico; and $2.00 per copy to foreign countries (surface delivery). Please allow 4 weeks for domestic delivery and 12 weeks for foreign delivery.

In Oregon (503) 626-2291 (24 hour line)

Computer Friends®
14250 N.W. Science Park Drive
Portland, OR 97229, Telex 4949559
Dealer Inquiries Welcome.

ORDER TOLL-FREE
1-800-547-3303
In Oregon (503) 626-2291 (24 hour line)

Computer Friends®
14250 N.W. Science Park Drive
Portland, OR 97229, Telex 4949559
Dealer Inquiries Welcome.
Solving your scientific and engineering problems just got simpler.

Science & Engineering Software Co. is the only source with all the software you need to solve your specialized problems: Statistical data analysis, circuit design, data acquisition and signal analysis, solving complex equations, 3D CAD/CAM design, high-speed graphics, technical word processing and more. Whether you're writing your own program or looking for a specific application, our experts can help you choose the best programs for your needs.

Call today and get our solutions working for you.
- No one offers you more variety.
- If you don't see a title, we'll special order it.
- If you don't know the publisher, we'll find it.
- Over 300 programs available.
- We offer a 30-day, money-back guarantee.*

ORDERING INFORMATION

We accept AMERICAN EXPRESS, MC, VISA and PERSONAL CHECKS. There is no surcharge on credit card or C.O.D. New York State residents must add sales tax. Shipping and handling $3.00 per item. Rush service is available.
- International orders add $10 for export preparation.
- Prices and policies may change without notice.
- Corporate buyers call for special rates.

* Use for expenses before you buy some manufacturers won't take returns if disk seals are broken.

In the U.S. CALL 1-800-333-3141
International Orders 914-332-0756

Science & Engineering SOFTWARE CO.
55 South Broadway, Tarrytown, NY 10591

September 1987 • Byte 361
Translate your BASIC source programs to Pascal source. P-tral, now available for the IBM PC and compatibles, will translate MS-BASIC/BASICA to Turbo Pascal.

(Req Dos 2.0 or later w/ANSI.SYS).

Also available for the Apple II series (incl. IIgs) and converts Applesoft to Apple Pascal.

(212) 206-6490 / 924-0576
WOODCHUCK INDUSTRIES
340 WEST 17TH STREET (4FB)
NEW YORK, NY 10011

$179

TRANSLATOR

Translate your BASIC source programs to Pascal source. P-tral, now available for the IBM PC and compatibles, will translate MS-BASIC/BASICA to Turbo Pascal.

(Req Dos 2.0 or later w/ANSI.SYS).

Also available for the Apple II series (incl. IIgs) and converts Applesoft to Apple Pascal.

(212) 206-6490 / 924-0576
WOODCHUCK INDUSTRIES
340 WEST 17TH STREET (4FB)
NEW YORK, NY 10011

DYNAMIC RAMS

1Mbit

1Mbit

1Mbit

1Mbit

1Mbit

1Mbit

1Mbit

1Mbit

$22.00

$4.15

$3.55

$2.75

$3.35

$1.20

I.C. EXPRESS

15358 Valley Blvd. City of Industry. CA 91746
Phone: 310-360-2168
(Dealer Ref: 6-8-7)

ORDER TOLL FREE
(800) 892-5869 + (800) 450-2161

CALL FOR CURRENT PRICES & VOLUME DISCOUNTS.

FOR FREE CATALOG CALL V1S35-600-000-MP-147:

MADE IN U.S.A.

MC/Visa/Discover/COD's (cash or certified check)

Please call or write for our free catalog

For FAST Delivery

HARD DISK CONTROLLERS

ADOPTEC

PC-XT Controller ST506/412

$85

2070 PCXVT FII

$109

3530 SCSI to QIC 36

$99

4000 SCSI to ST506/412

$109

4004A SCSI to ST506/412

$129

4700 SCSI to ST506/412 FLL

$129

4520 SCSI to ESDI

$109

5500 SCSI to ST506/412

$255

5580 SCSI to ESDI

$450

OTHERS

Xebec S1400

$109

OMTI 20C. L

$99

DTC 510A

$99

Shugart 10-12, 3 or 4

$79

W/ID 102-5HD Xebec Compatible

$109

ADD $3.00 FOR SHIPPING

Call for cable prices.

Telex 1561447 SELL

Computer Surplus Store "WE

FAX 408-434-0931 AND

P.O. BOX 494 MC/VISA Accepted

FRANKLIN, OH 45005 Mail Orders Please

8052 Basic CPU

16K BASIC Programmer

81256, 1Mbit expansion Bus

Highest Quality

1 Year Warranty

$280.00 QTY 1

Call Now! (603) 469-3232

Binary Technology, Inc.

Men St., P.O. Box 67 Menlo, N.H. 03707

"128 is a trademark of Intel Corporation.

DearPuters

Computer Surplus Store "WE

Computer Surplus Store "WE

PC= + MIDI

It's a simple equation. To plug your PC or PC

compatible into the modern world of music-

making, use the complete line of MIDI soft

ware and hardware from YOVETRA TECHNOLOGIES.

• SEQUENCER PLUS; 65-track total MIDI

 recorder/editor.

• CV CONVERSION PLUS: the converter for music

 notation programs.

• PATCH MASTER: network organizer and

 sound editor.

• OP-4001: PC/MIDI interface card.

"I've never seen a more powerful, easy-to-use

software package - use it in the modern world of

music. Use the complete line of MID" soft

ware and hardware from YOVETRA TECHNOLOGIES.

PC+MIDI = MUSIC

CONVERSION PLUS: file convener for music

sound library.

SEQUENCER PLUS: 65-track total MIDI

recorder/editor.

PATCH MASTER: network organizer and

sound editor.

OP-4001: PC/MIDI interface card.

Front more information contact YOVETRA

TECHNOLOGIES, Dept. PC, 425 M. Pleasant

Avenue, Mamaroneck NY 10543, or call

(914) 689-3377.

P-tral BASIC to Pascal

$179

RADIO CONTROLLERS

AUDITEL

PC-XT Controller ST506/412

$85

2070 PCXVT FII

$109

3530 SCSI to QIC 36

$99

4000 SCSI to ST506/412

$109

4004A SCSI to ST506/412

$129

4700 SCSI to ST506/412 FLL

$129

4520 SCSI to ESDI

$109

5500 SCSI to ST506/412

$255

5580 SCSI to ESDI

$450

OTHERS

Xebec S1400

$109

OMTI 20C. L

$99

DTC 510A

$99

Shugart 10-12, 3 or 4

$79

W/ID 102-5HD Xebec Compatible

$109

ADD $3.00 FOR SHIPPING

Call for cable prices.

Telex 1561447 SELL

Computer Surplus Store "WE

FAX 408-434-0931 AND

P.O. BOX 494 MC/VISA Accepted

FRANKLIN, OH 45005 Mail Orders Please

8052 Basic CPU

16K BASIC Programmer

81256, 1Mbit expansion Bus

Highest Quality

1 Year Warranty

$280.00 QTY 1

Call Now! (603) 469-3232

Binary Technology, Inc.

Men St., P.O. Box 67 Menlo, N.H. 03707

"128 is a trademark of Intel Corporation.

DearPuters

Computer Surplus Store "WE

Computer Surplus Store "WE

PC= + MIDI

It's a simple equation. To plug your PC or PC

compatible into the modern world of music-

making, use the complete line of MIDI soft

ware and hardware from YOVETRA TECHNOLOGIES.

• SEQUENCER PLUS; 65-track total MIDI

 recorder/editor.

• CV CONVERSION PLUS: the converter for music

 notation programs.

• PATCH MASTER: network organizer and

 sound editor.

• OP-4001: PC/MIDI interface card.

"I've never seen a more powerful, easy-to-use

software package - use it in the modern world of

music. Use the complete line of MID" soft

ware and hardware from YOVETRA TECHNOLOGIES.

PC+MIDI = MUSIC

CONVERSION PLUS: file convener for music

sound library.

SEQUENCER PLUS: 65-track total MIDI

recorder/editor.

PATCH MASTER: network organizer and

sound editor.

OP-4001: PC/MIDI interface card.

Front more information contact YOVETRA

TECHNOLOGIES, Dept. PC, 425 M. Pleasant

Avenue, Mamaroneck NY 10543, or call

(914) 689-3377.
Nhat's New at AMERICAN DESIGN COMPONENTS?

Includes ColecoVision Roller Controller - Expansion Module - ColecoVision Super Action Controller Set -

ADAM COMPUTER

PC 8300 HOME COMPUTER (Advanced version of the Timex 1000)

3 1/2", 10Mb HARD DISK DRIVE (IBM Compatible)

42-key mechanical keyboard (not membrane); contains 2X of RAM; reverse video 2048 x 8256; 5.25" X Y terminal, ROM BY BASIC; graphics capability; sound music, TV or monitor; joystick input operates on 115 VAC, indicates Alt, acc. / Switch, TV cable, and pan of cassette cables. Will run all prerecorded tapes for Sinclair/Timex 1000/2X3. Mfr - Power 3000. In orig. boxes. Item #10150 $99.00

Full HT. DISK DRIVES

48 TPI (IBM Comp.) Double sided double density, full height drive! 48 T.P.L. 60 tracks. Mfr - Tandon TM1002 Item #7928 $79.00

60 TPI, QS/Ds/Density Mfr - CDC #5039 Item #1883 $99.00

DOS 3.2 Compatible 96 TPI, QS/Ds/Density

Tandy TM554-4 Disk/Quad Mfr - Capetronic #631030 Item #6831 $199.95

STEPPING MOTORS for ROBOTICS

Precision stepper with incorporated from 1 to 7.6 degrees. Speeds up to 5,000 steps.

Stepper 8° x 1° output

Item #11336 $24.95

STEPPING MOTORS

8° x 1° deep

Precision stepper with incorporated from 1 to 7.6 degrees. Speeds up to 5,000 steps.

Item #11336 $24.95

AMERICAN DESIGN COMPONENTS, 62 JOSEPH STREET, MOONACHIE, N.J. 07074

MINIMUM ORDER

- My check or money order is enclosed.
- Charge my credit card.
- Visa
- Master Card
- Amex

Byte 97

Card No.

Exp. Date

Telephone: Area Code

Name

Address

City

State

Zip

All inquiries and free catalog requests call 201-393-2710.

SEPTEMBER 1987 • BYTE 363
Get the whole story on graphics terminal emulation.

To find out more about software that lets your PC emulate
TEKTRONIX™ 4055/6/7/9 and
DEC VT100® terminals,
call or write:

GRAFOIN
4304 Shevron Crescent Blvd., Suite 200
San Jose, CA 95129 (408) 249-7951

8051, 8096, 68HC11, 68008
SINGLE BOARD COMPUTERS

We feature a series of single board computers for process control applications. Available as bare boards or assembled and tested. Optional EPROM resident System Monitors and BASIC interpreters are also available.

ALLEN SYSTEMS
2151 Fairfax Road
Columbus, Ohio 43221
614-488-7122

IEEE 488
(GPIB/HPIB)

Controllers
Buffers
Converters
Interfaces
Terminator Boards

For PCs, Macintoshes, HP plotters, instruments, printers, etc.

Call or send for your FREE Technical Guide

LOtech (216) 439-4091
2340 Aurora Road
Cleveland, Ohio 44146

Inquiry 218 Inquiry 133 Inquiry 177
END OF SUMMER CLEARANCE SALE

SUMMER CLEARANCE SPECIALS

CAT™ 4.77
BASE SYSTEM
• 256K (Optional 640K)
• 150 watt Power Supply
• AT Style Keyboard
• FDC w/8060K Floppy
• 8087 Socket

ARCHIVE Tape Backup
• 40 Meg
• AT or XT
• Cassette Software
$3950

$349.00
4.77 MHz

CAT™ 8MHZ
BASE SYSTEM
• 256K (Optional 640K)
• 150 Watt Power Supply
• AT Style Keyboard
• 4.77 or 8 MHz
Keyboard Selectable
• FDC w/8060K Floppy
• 8087 Socket

$399.00
4.77 or 8 MHz

CAT™ 10MHZ
BASE SYSTEM
• 256K (Optional 640K)
• 150 Watt Power Supply
• AT Style Keyboard
• 360K Floppy w/Controller
• AT Style Case w/Reset & Turbo Switch

$449.00
4.77 or 10 MHz

CAT™ 268-10
BASE SYSTEM
• 640K (120 NS)
• 200 Watt Power Supply
• AT Style Keyboard
• Western Digital Controller
• Toshiba 1.2 meg Floppy
• Legal Bios w/manuvals
• Systems Documentation
• 1 Year Warranty

$999.00
68k or 10MHz

ALL TRADEMARKS ARE REGISTERED with their respective companies

800-654-7762
SALES
7AM—6PM PST
702-294-0204
Customer Service • Order Status
9AM—4PM PST

1000 Nevada Highway • Unit 101
Boulder City, Nevada 89005

NO SURCHARGE FOR MC/VISA

TERMS:
• MC • VISA • COD • CASH
• Purchase Orders from Qualified Firms
• Personal Checks • AE add 4%

SHIPPING:
• UPS • Federal Express

SEPTEMBER 1987 • B Y T E 365
Add-Ons for the Blind

What you add on to your computer, if you’re a blind operator, is almost more important than the computer itself.

Scanners, modems, braille printers, speech synthesizers, braille output devices and a host of other peripherals are described in “Add-Ons: The Ultimate Guide to Peripherals for the Blind Computer User.”

The product reviews contained in this book are written by those who know them best—blind computer users.

$16.95 for braille or cassette
$19.95 for print.

Send orders to:
National Braille Press Inc.
88 St. Stephen Street, Boston, MA 02115
(617) 266-4160
XEROX 6064 PERSONAL COMPUTER

XEROX...They Set The Standards!

For over 20 years Xerox has been the world leader in office products and copying equipment. They have set standards that others can only imitate. The Xerox 6064 Personal Computer was designed to meet the demands of business, professional, and personal computing today, and into the future! We are proud to offer this complete Xerox System at a remarkably LOW price. Compare for yourself...then buy your Xerox 6064 from C.O.M.B.!

Get the Xerox Advantage! The Xerox PC offers you the advantage of running IBM™ compatible MS*-DOS, so you can run the hundreds of business and professional software programs available today! And the Xerox PC is easy to use! It's designed to get you up and running as quickly as possible with computer-aided instruction and superior documentation covering all aspects of personal computing.

Xerox...Service You Can Count On! If you're considering an IBM™-compatible, don't be misled by price alone! The system we are offering is a complete system...very easy to hook up and use...and very affordable. But more than that, each system we sell is backed by Xerox service and support. When you buy this system, your name and computer's serial number is automatically registered with Xerox. Should you need service or advice, a network of over 150 service centers stands ready to help you. Before you buy...compare! Xerox is your best value! Check all these features:

- IBM™/PC/XT Compatibility.
- 256KB Memory Features an 8MHz Intel 8086-2 Microprocessor for Faster Speed, Less Waiting Time.
- Two 5¼" Floppy Disk Drives, 360K Each.
- Seven Expansion Slots, Plus a Serial Port for Communications or Printer, and Parallel Printer Port.
- High-Resolution 640 x 400 Pixels Monochrome Monitor, with 12" Diagonal Non-Glare Screen, Swivel and Tilt Base.
- Standard 83-Key PC Keyboard with Mouse Interface (Mouse Not Included.)
- Comes with ScreenMate™, a User Friendly Guide to the Functions of the MS*-DOS Operating System. ScreenMate™ is Menu Driven...No Need to Remember Complicated Commands!

Let's You Select from a Menu and Provides Clear On-Line Instructions If You're Confused About Your Next Step.

Complete Tutorial Software and Manuals Included:
- "Getting Started" Booklet
- Four Reference Guides.
- Four Software Programs: Two X-Cel™ Training Disks, Two Diagnostic Disks, GW*-BASIC Interpreter, and MS*-DOS/ScreenMate™ Operator's Guide.
- Twenty Blank Disks.

Over 150 Service Centers Nationally.

Manufacturer's Limited 90-Day Warranty on Parts/Labor.

List Price $2224.80
Priced At Only $999

Memory Expansion Board for Xerox 6064
Personal Computer: Expands the memory to 640K.

List: $249.00
Priced At: $129

Send Xerox Personal Computer Item H-2730-7129-232 at $999 each, plus $49 each for ship, handling.
Send Xerox Memory Expansion(s) Item H-2730-7128-978 at $129 each, plus $5.00 each for ship, handling.
(Minnesota residents add 6% sales tax. Sorry, no C.O.D. orders.)

Toll-Free: 1-800-328-0609
Send to:
C.O.M.B. Direct Marketing Corp.
1495 Xenium Lane N/Minneapolis, MN 55441-4454

SEND TO:
C.O.M.B. Direct Marketing Corp.
1495 Xenium Lane N/Minneapolis, MN 55441-4454

PLEASE PRINT CLEARLY
Name ____________________________
Address ___________________________
City ____________________________
State ____________________________
ZIP ____________________________
Phone ____________________________

PLEASE PRINT CLEARLY
Name ____________________________
Address ___________________________
City ____________________________
State ____________________________
ZIP ____________________________
Phone ____________________________

Toll-Free: 1-800-328-0609

PLEASE PRINT CLEARLY
Name ____________________________
Address ___________________________
City ____________________________
State ____________________________
ZIP ____________________________
Phone ____________________________

Sales outside the 48 contiguous states are subject to special conditions. Please call or write to inquire.

SEPTEMBER 1987 • BYTE 367
Continental U.S. Inside California Technical Support
(800) 421-5500 (800) 262-1710 (213) 973-7707

$398 SATISFACTION GUARANTEED OR YOUR MONEY BACK!

8 MHz TURBO-XT

- 640K of RAM
- 4.77 or 8 MHz
- 150 Watt Power Supply
- Deluxe keyboard
- 360K Disk Drive
- 8 Expansion Slots
- 8087 Socket
- One Year Warranty

$998

OPTION A
- High-Resolution Amber Flat Screen
- High Resolution Graphics Card
- Parallel Printer Port

ADD $148

OPTION B
- Hi-Res RGB Color Monitor
- High Resolution Graphics Card
- Parallel Printer Port

ADD $298

OPTION C
- 21.3 Megabyte Hard Disk Drive
- Dual Hard Disk Controller Card

ADD $298

NEW! TURBO-AT

- 640K of RAM
- Expands to 1 MB
- 200 Watt Power Supply
- AT-Style Keyboard
- Hard Disk Controller
- 1.2 MB Disk Drive
- One Year Warranty

$998

HARD DISK DRIVE

- 10 MB Full Hr Kit
- Hard Disk, Controller (PC) and Cables
- 20 MB ½ Hr Kit
- 30 MB ½ Hr Kit
- 30 MB for AT...
- 40 MB for AT...

$199

HARD DISK DRIVE ON A CARD

- 21 MB Card
- 40 MB Card
- 21.3 MB Formatted
- Lowpower
- Head Park Zone
- Plated Media
- Light 2.4 Lbs.

$358

$498

360K DISK DRIVE

- Built By Alpine Electronics to IBM Specifications, same as Quate 142
- $65
- 390K
- 48 TPI
- Double-sided

$149

3½” DISK DRIVE FOR YOUR PC/XT/AT

- 720K Disk Drive for Mass Storage or for Down Loading to your Lap-Top or New IBM PS/2 that Requires DOS 3.20

$149

1200 BAUD MODEM

- Internal 1200 Baud Card with Software
- External 1200 Baud
- Internal 2400 Baud Card with Software
- External 2400 Baud

$78

MICROSOFT MS-DOS 3.21

- Including GW-BASIC
- Supports 3½” Drive

$88

DELUXE KEYBOARD DRAWER

- Ball-Bearing Slides with Ergonomic Palm Rest

$48

SAMSUNG HI-RES MONOCHROME FLAT SCREEN

- Amber or Green Monitor
- Free Tilt-N-Swivel Base

$98

MICROSPeiD FAST 88 7 MHZ TURBO BOARD FOR YOUR TURBO

$99

HARD DISK DRIVE FOR YOUR APPLE

- AS LOW AS

$119

1 MB RAM Card w/OK

$129

20 MB Hard Disk

$179

1 MB RAM Card & Cable

$149

Serial Board

$60

HAYES SMARTMODEM 1200

- 1389

HAYES SMARTMODEM 2400

- 1549

HAYES SMARTMODEM 33600

- 1589

NEW! 720K DISK DRIVE FOR IBM PS/2

- TM100-2 Full Hr. Replacement Drive for Your IBM PC or XT

$78

NEW! Samsung Hi-Res Flat Screen Monitor

- Amber or Green Monitor
- Plated Media
- Light 2.4 Lbs.

$78

NEW! 360K HI-RES MONOCHROME FLAT SCREEN

- Amber or Green Monitor

$78

NEW! 3½” DISK DRIVE FOR YOUR IBM PC/XT/AT

- 720K Disk Drive for Mass Storage or for Down Loading to your Lap-Top or New IBM PS/2 that Requires DOS 3.20

$78

NEW! 1200 BAUD MODEM

- Internal 1200 Baud Card with Software
- External 1200 Baud
- Internal 2400 Baud Card with Software
- External 2400 Baud

$78
EPSON® PLOTTER
FOUR PEN/FOUR COLOR

$198

LIST PRICE $599

4 Waterbase Pens __________ $15
4 Oil Base Pens __________ $15
4 Ball Point Pens __________ $8
100 Sheets Coated Paper __________ $5
10 Sheets Overhead
Transparency Film __________ $5
Top Rated Business Graphics Software
Package for PC __________ $29
Parallel PC Cable __________ $19
Serial Kit __________ $89

“The Epson Hi-80 is the final choice. It makes a name for itself at the low end of the price scale ($599) and the top end of the performance scale.”
PC MAGAZINE

• Fast - 9 Inch Per Second
• Accurate - .1 mm Step Size
• Four Pen/Four Color

EPSON® PRINTER

$148

LIST PRICE $299

FX-86e EX-800 LQ-800 LX-800
FX-286e EX-1000 LQ-1000 LQ-2500

LP Low Prices

HI-RES RGB MONITOR

$289

LIST PRICE $499

• Samsung 14" Monitor
• 640 x 240 Non-glare Tube

NEC MULTISYNCH

$529

13" Color Monitor

NEC MULTISPEED

$1488

Lap-Top Computer

DAISY WHEEL PRINTER

LETTER QUALITY

$198

LIST PRICE $499

Parallel & Serial Option $50

INTEL

Math Co-Processor

8087-3 (5 MHz) $1298
8087-2 (8 MHz) $1298
8087-1 (10 MHz) $1298
80287-6 (6 MHz) $1298
80287-8 (8 MHz) $1298
80287-10 (10 MHz) $1298
80387

LIST PRICE $1295

JADE COMPUTER

4901 W. Rosecrans Ave. Box 5046
Hawthorne, CA 90251-5046

Prices at our seven store locations will be
higher.
We accept cash, checks, credit cards or
purchase orders from qualified firms and
institutions. Minimum prepaid order $15.00.

Continental U.S.A. (800)421-5500
Inside California (800)262-1710

Ca. & Tx. residents add sales tax. Prices &
availability subject to change without notice.
Shipping & handling charges via UPS
Ground 50c/lb. UPS Air $1.00/lb. Minimum
charge $3.00.
BUILD A SYSTEM FOR LESS THAN $500!

XT COMPATIBLE

$499.15!

- 360K FLOPPY DISK DRIVE AND CONTROLLER
- MONOCHROME MONITOR AND GRAPHICS ADAPTOR
- XT STYLE KEYBOARD
- PARALLEL PRINTER PORT
- COMPLETE INSTRUCTIONS

ORDER THE FOLLOWING:
XT COMPATIBLE MOTHERBOARD, 256K OF RAM, 135 WATT POWER SUPPLY, XT STYLE FLIP-TOP CASE, MCT-5150 XT STYLE KEYBOARD, 1/2 HEIGHT 360K 5 1/4" FLOPPY DRIVE AND CONTROLLER, HYUNDAI MONOCHROME MONITOR AND GRAPHICS ADAPTOR.

WHY BUY A SYSTEM FROM JDR?
- BUILD IT YOURSELF AND SAVE!
- QUALITY COMPONENTS AND COMPETITIVE PRICES
- ANYONE CAN ASSEMBLE A SYSTEM IN 2 HOURS USING A SCREWDRIVER AND OUR EASY-TO-FOLLOW INSTRUCTIONS
- TOLL FREE TECHNICAL SUPPORT IN THE U.S. OR CANADA
- MONEY BACK GUARANTEE (ASK FOR DETAILS)

I am very pleased with the computer system I purchased from you and all the outstanding support and courteous people on your staff. Your company’s attitude and commitment to customer satisfaction is exceptional and makes it a pleasure to participate in mail order purchases. YOUR ATTITUDE SHOULD BE INDUSTRY STANDARD.

Daryl Hammond

AT COMPATIBLE

$1046.15!

- 1.2M FLOPPY DISK DRIVE & FLOPPY/HARD CONTROLLER
- MONOCHROME MONITOR AND GRAPHICS ADAPTOR
- AT STYLE KEYBOARD
- PARALLEL PRINTER PORT
- COMPLETE INSTRUCTIONS

ORDER THE FOLLOWING:
6/8 MHz AT COMPATIBLE MOTHERBOARD, 256K OF RAM, 220 WATT POWER SUPPLY, AT STYLE SLIDE TYPE CASE, MCT-5060 AT STYLE KEYBOARD, 1/2 HEIGHT 1.2MB 5 1/4" FLOPPY DRIVE AND FLOPPY/HARD CONTROLLER, HYUNDAI MONOCHROME MONITOR & GRAPHICS CARD.

Visit our retail store located at 1256 S. Bascom Ave. in San Jose, (408) 947-8881

PLEASE USE YOUR CUSTOMER NUMBER WHEN ORDERING

TERMS: Minimum order $100.00. For shipping and handling include $2.50 for UPS Ground and $3.50 for UPS Air. Orders over 1lb. and foreign orders may require additional handling charges—please contact our sales department for the amount. CA residents must include sales tax. All merchandise is warranted for 90 days unless otherwise stated. Prices are subject to change without notice. We are not responsible for typographical errors. We reserve the right to limit quantities and to substitute manufacturers. All merchandise subject to prior sale. A full copy of our terms is available upon request. Items pictured may only be representative.

COPYRIGHT 1987 JDR MICRODEVICES

THE JDR MICRODEVICES LOGO IS A REGISTERED TRADEMARK OF JDR MICRODEVICES. JDR INSTRUMENTS AND JDR MICRODEVICES ARE TRADEMARKS OF JDR MICRODEVICES. IBM IS A TRADEMARK OF INTERNATIONAL BUSINESS MACHINES CORPORATION.
BARGAIN HUNTERS CORNER

HYUNDAI
MONOCHROME
MONITOR

* 12" NON-GLARE AMBER SCREEN
* IBM COMPATIBLE TTL INPUT
* ATTRACTIVE CASE WITH TILT & SWIVEL BASE

ONLY $69.95

SPECIAL ENDS 10/31/87

SOCKET-WRAP I.D.
• SLIPS OVER WIRE WRAP PINS
• IDENTIFIES PIN NUMBERS ON WRAP SIDE OF BOARD
• CAN WRITE ON PLASTIC, SUCH AS
CAPACITORS
TANTALUM
1.0µ 15V .05 15V .22
2.2µ 15V .22
4.7µ 15V .22
10µ 15V .22
22µ 15V .22
50µ 15V .22
100µ 15V .22
220µ 15V .22
500µ 15V .22
1.0µ 15V .05 15V .22
2.2µ 15V .22
4.7µ 15V .22
10µ 15V .22
22µ 15V .22
50µ 15V .22
100µ 15V .22
220µ 15V .22
500µ 15V .22
MONOLITHIC
SIP 10 PIN 9 RESISTOR
SIP 8 PIN 7 RESISTOR
SIP 15 PIN 15 RESISTOR
DIP 16 PIN 15 RESISTOR
DIP 14 PIN 14 RESISTOR
DIP 13 PIN 13 RESISTOR

SWITCHING POWER SUPPLIES
PS-IBM
• FOR IBM PC XT COMPATIBLE
• 125 WATTS
• 5V @ 15A, 12V @ 4.2A
• 5V @ 15A, 12V @ 5A
• ONE YEAR WARRANTY
PS-IBM-150
• FOR IBM PC XT COMPATIBLE
• 150 WATTS
• 5V @ 15A, 12V @ 16A
• 12V @ 5A, 5V @ 5A
• ONE YEAR WARRANTY
PS-AT
• FOR IBM PC XT COMPATIBLE
• 220 WATTS
• 5V @ 20A, 12V @ 9A
• 5V @ 5A, 12V @ 5A
• ONE YEAR WARRANTY
PS-A
• USE TO POWER APPLETYPE SYSTEMS
• 75 WATTS, UL APPROVED
• 5V @ 7A, 12V @ 3A
• 5V @ 10A, 12V @ 2A
• APPLE POWER CONNECTOR
PS-1558
• 34.95

EXTENDER CARDS
IBM-PC $92.95
IBM-AT $39.95

WISH SOLDERLESS BREADBOARDS

NEW STORE HOURS! M-F: 9-7, SAT: 9-5 & SUN: 12-4
Visit our retail store located at 1256 S. Bascom Ave. In San Jose, (408) 947-8881
PLEASE USE YOUR CUSTOMER NUMBER WHEN ORDERING
TERMS: Minimum order $10.00. For shipping and handling include $2.50 for UPS Ground and $3.50 for UPS Air. Orders over $75 and foreign orders may require additional shipping charges—please contact our sales department for the amount. CA residents must include applicable sales tax. All merchandise is warranted for 10 days unless otherwise stated. Prices are subject to change without notice. We are not responsible for typographical errors. We reserve the right to limit quantities and to substitute manufacturer. All merchandise subject to prior sale. A full copy of our terms is available upon request. Items priced may only be representative.

COPYRIGHT 1987 JDR MICRODEVICES
THE JDR MICRODEVICES LOGO IS A REGISTERED TRADEMARK OF JDR MICRODEVICES. JDR INSTRUMENTS AND JDR MICRODEVICES ARE TRADEMARKS OF JDR MICRODEVICES. IBM IS A TRADEMARK OF INTERNATIONAL BUSINESS MACHINES CORPORATION. APPLE IS A TRADEMARK OF APPLE COMPUTER.
MODEL MS-200 $39.95
- **STURDY ABS PLASTIC CONSTRUCTION**
- **100% APPLE COMPATIBLE**
- **SIX MONTH WARRANTY**
- **FULL HT SHUGART MECHANISM**
- **SIX MONTH WARRANTY**
- **BUILD-IN POWER STATION**
- **TILTS AND SWIVELS**
- **UL APPROVED**

CASPERS EGA MONITOR
- **EGA, CGA, COMPAQ Compatible**
- **SCANNING FREQUENCIES: 15.75, 21.575 MHz**
- **RES: 640 x 200, 350**
- **21" NON-GRADE SCREEN**
- **16 COLORS OUT OF 64**
- **14", BLACK MATRIX SCREEN**
- **$399.95**

CASPERS RGB MONITOR
- **COLOR GREEN SCREEN, SWITCH ON REAR**
- **IBM COMPATIBLE**
- **14", NON-GRADE SCREEN**
- **RESOLUTION: SARH: 240V**
- **35mm DOT PITCH**
- **CABLE FOR IBM PC INCLUDED**
- **$279.95**

FORTRONICS MONOCHROME
- **IBM COMPATIBLE**
- **13", NON-GRADE SCREEN**
- **HIGH RESOLUTION: 600 LINES, CENTER**
- **25 MHZ BANDWIDTH**
- **CABLE FOR IBM PC INCLUDED**
- **$99.95**

AP-150 $99.95
- **2 WAY, DIRECT DRIVE**
- **100% APPLE COMPATIBLE**
- **SIX MONTH WARRANTY**

AP-135 $129.95
- **FULL HT SHUGART MECHANISM**
- **DIRECT REPLACE FOR APPLE**
- **SIX MONTH WARRANTY**

AD-3C $139.95
- **100% APPLE COMPATIBLE**
- **READY TO PLUG IN, W/SHIELDED CABLE & MOLED 15 PIN**
- **FAST, RELIABLE SLIMLINE DIRECT DRIVE**
- **SIX MONTH WARRANTY**

DISK DRIVE ACCESSORIES
- **FOD CONTROLLER CARD $49.95**
- **IBC ADAPTOR CABLE $19.95**
- **ADAPTS STANDARD APPLE DRIVES FOR USE WITH APPLE III**

KB-1000 $79.95
- **CASE WITH KEYBOARD**
- **FOR APPLE TYPE MOTHERBOARD**
- **USER DEFINED FUNCTION KEYS**
- **NUMERIC KEYPAD W/ CURSOR CONTROL**
- **CAPS LOCK**
- **AUTO-REPEAT**

JOYSTICK 6C-10 $18.95
- **6 BUTTONS FOR AUTO CENTER OR FREE MOVEMENT**
- **COMPATIBLE WITH IBM**
- **SOLID, PLASTIC CASE**
- **INCLUDES ADAPTOR CABLE FOR IBM, APPLE II, III**

POWER STRIP
- **$9.95**
- **FOR APPLE IV**
- **15 AMP CIRCUIT BREAKER**
- **6 FOOT POWER CORD**
- **PLUGGABLE**

WITH SURGE PROTECTION
- **$12.95**

DISKETTE FILES
- **5¼" DISKFILE HOLDS 70 $8.85**
- **3½" DISKFILE HOLDS 40**

CALL FOR VOLUME QUOTES
TOTAL SYSTEM CONTROL FROM A SINGLE SLOT

MCT-MB80 $119.95
- Hercules compatible monochrome graphics, 720 x 340 pixels
- Game port
- Parallel port & clock/calendar
- Serial port included, optional
- Supports both DS/DD and DS/DD using DSO 3.2 or higher

STANDARD MOTHERBOARD

• Turbo 4.77
• 8 slot (2 eight bit, 1 wait state)

QUALITY IBM COMPATIBLE MOTHERBOARDS

TURBO 4.77 / 8 MHZ $109.95
- JDR Part #: MCT-TURBO
- 4.77 or 8 MHz operation with 8088-2 & optional 8087-2 CD-Processor
- Dynamically adjusts speed during diskette operation for maximum throughput and reliability
- Choice of normal / turbo mode or software selected processor speed
- Standard motherboard
- JDR Part #: MCT-XMB

80286 / 6 / 8 MHz $379.95
- JDR Part #: MCT-ATMB
- 8 slot (2 eight bit, 6 sixteen bit) AT motherboard
- Hardware selection of 6 or 8 MHz
- 1 wait state
- Reset switch, front panel LED indicator and keylock supported
- Socket for 1MB of RAM and 80287 ON board
- On board battery backed clock operates with PC-DS or MS-DS

IBM COMPATIBLE

3 1/2’ FDD Kit $149.95
- JDR Part #: FDD-35 kit
- 720K format, DOS 3.3 compatible
- Allows data interchange with IBM compatible drives
- Mounting hardware for 5 1/4” slot
- Both AT & XT versions available

IBM XT STYLE COMPUTER CASE

- An attractive steel case with a hinged lid fits the popular PC XT compatible motherboards
- Switch cut-out on side for PC XT style power supply
- Cut-out for 8 expansion slots
- Includes speaker
- All hardware included

NICKEL EXPRESS PC/XT SPEED UP KIT FROM RIM ELECTRONICS

- Increase the speed of your PC/XT or clone by 67% or more!
- No extra installation software or hardware speed selector
- 2 MHz V20 processor & software included
- Select for 3 turbo frequencies
- External reset switch
- Optional 8088 or 8086 processor available
- Kit includes carding, test clip and switches

IBM COMPATIBLE KEYBOARD

MCT-5060 $59.95
- IBM at style layout
- Software autoselect for XT or AT
- Available
- Extra large shift & return keys
- Led indicators for scroll caps & number lock
- Auto repeat feature

MCT-5150 $49.95
- XT style layout

MCT-5339 $79.95
- IBM enhanced style layout
- Software autoselect for XT or AT
- Available
- 12 function keys
- Extra large shift & return keys
- Led indicators for scroll caps & number lock
- Auto repeat feature
- KIT-5151 $69.95
- KBS151* EQUIVALENT

IBM COMPATIBLE FLOPPY DISK DRIVE

IBM COMPATIBLE 3 1/2’’ FDD DRIVE

SOFTWARE SELECTED PROCESSOR SPEED

IBM XT STYLE SLIDE TYPE CASE $38.95
- AT style slide type case $89.95

EASYDATA MODEMS

- All models feature auto-dial, answer the call on busy, Hayes compatible, power up self test
- Supports voice or pulse dialing, built-in speaker, PC Talk II communications software, Bell Systems 103 & 21A full or half duplex and more.

INTERNAL

EASYDATA-12H $79.95
- 1200 baud half card

EASYDATA-12B $99.95
- 1200 baud 10” card

EASYDATA-24B $179.95
- 2400 baud full card

EXTERNAL

NO SOFTWARE INCLUDED

EASYDATA-12D $119.95
- 1200 baud

EASYDATA-24D $219.95
- 2400 baud

IBM COMPATIBLE KEYBOARD

MCT-EGA

- 100% IBM compatible, passes IBM Diagnostics

MCT-CG

- Short slot card uses VLSI chips to improve reliability

MCT-MGP

- Short slot card uses VLSI chips to improve reliability

EASYDATA MODEMS

- Supports Hayes, compatibles, and IBM serial port

MCT DISPLAY CARDS

EASYDATA-12H $79.95
- 1200 baud half card

EASYDATA-12B $99.95
- 1200 baud 10” card

EASYDATA-24B $179.95
- 2400 baud full card

MCT DEVELOPMENT TOOLS

MCT-PAL

- One array logic chip can replace 4-5 TTL ICs

MCT-MP

Microprocessor programmer

MCT-EPROM

EPROM programmers

MCT PRODUCTS CARRY A ONE YEAR WARRANTY
MULTIFUNCTION CARDS
FROM MODULAR CIRCUIT TECHNOLOGY

MCT-MF
$79.95
ALL THE FEATURES OF FAST'S SIX PACK PLUS AT HALF THE PRICE!
- 0.348K DYNAMIC RAM USING 4164s
- INCLUDES SERIAL PORT, PARALLEL PRINTER PORT, GAME CONTROLLER PORT AND CLOCK/CALENDAR
- SOFTWARE FOR A RAMDISK, PRINT SPOOLER AND CLOCK/CALENDAR

MCT-ATMF
$139.95
ADDs UP TO 3 MB OF 1 BIT RAM TO THE AT
- USER EXPANDABLE TO 1.5 MB OF ON-BOARD MEMORY (NO MEMORY INSTALLED)
- FLEXIBLE ADDRESS CONFIGURATION
- INCLUDES SERIAL PORT AND PARALLEL PORT
- OPTIONAL PIGGYBACK BOARD PERMITS EXPANSION TO 3 MB

MCT-MIO
$79.95
A PERFECT COMPANION FOR OUR MOTHERBOARD
- 3 DRIVE FLOPPY DISK CONTROLLER
- INCLUDES SERIAL PORT, PARALLEL PORT, GAME PORT AND CLOCK/CALENDAR
- WITH BATTERY BACK-UP
- SOFTWARE FOR A RAMDISK, PRINT SPOOLER AND CLOCK/CALENDAR

MCT-10
$59.95
USE WITH MCT-FH FOR A MINIMUM OF SLOTS USED
- SERIAL PORT ADDRESSABLE AS COM1, COM2, COM3, COM4
- PARALLEL PRINTER PORT ADDRESSABLE AS LPT1, LPT2, LPT3 OR LPT4
- GAME PORT
- USE ONLY SERIAL SUPPORT CHIPS FOR HIGH SPEED OPERATION IN AN AT

MCT-EMS
$129.95
2MB OF LOTUS/INTEL/MICROSOFT COMPATIBLE MEMORY FOR THE XT
- CONFORMS TO LOTUS/INTEL/EMS
- USER EXPANDABLE TO 2 MB
- USES 64K OR 256K DYNAMIC RAM
- NO MEMORY INSTALLED
- USE AS EXPANDED OR CONVENTIONAL MEMORY, RAMDISK OR PRINT SPOOLER
- SOFTWARE INCLUDES EMS DEVICE DRIVERS, PRINT SPOOLER AND RAMDISK

MCT-ATEMS
$139.95
CAN BE USED FOR CONVENTIONAL, EXPANDED OR EXTENDED MEMORY
- A FINE EXAMPLE OF FLEXIBILITY:
 - OFFERS EXPANDED AT MEMORY OR EXPANDED (LIM/EMS) MEMORY AS WELL AS
 THE ABILITY TO FILL OUT CONVENTIONAL (6048K) MEMORY
- 3 MEGABYTES CAPACITY IN A SINGLE SLOT
- RAMDISK, PRINT SPOOLER AND LIM/EMS SOFTWARE INCLUDED
- SPECIAL MEMORY MAP ANALYSIS INCLUDED

MCT-MIO-SE
$79.95
PIGGYBACK BOARD (ZERO K INSTALLED)

RAM CARDS
FROM MODULAR CIRCUIT TECHNOLOGY

MCT-RAM
$59.95
A CONTIGUOUS MEMORY SOLUTION FOR YOUR SHORT OR REGULAR SLOT
- SHORT SLOT, LOW POWER PC COMPATIBLE DESIGN
- OFFER UP TO 576K OF ADDITIONAL MEMORY
- USER SELECTABLE CONFIGURATION
 - AMOUNTS OF 162, 324, 512, 1286 & 5768K
- USING COMBINATIONS OF 64 & 256K RAM

MCT-EMS
$129.95
2MB OF LOTUS/INTEL/MICROSOFT COMPATIBLE MEMORY FOR THE XT

MCT-ATEMS
$139.95
CAN BE USED FOR CONVENTIONAL, EXPANDED OR EXTENDED MEMORY

DISK CONTROLLER CARDS
FROM MODULAR CIRCUIT TECHNOLOGY

MCT-FDC
$29.95
QUALITY DESIGN OFFERS 4 FLOPPY CONTROL IN A SINGLE SLOT
- INTERFACES UP TO 4 FD0s TO AN IBM PC OR COMPATIBLE
- INCLUDES CABLES FOR 2 INTERNAL DRIVES
- USES STANDARD DB37 CONNECTOR FOR EXTERNAL DRIVES
- SUPPORTS BOTH OS/2 AND DS/20 WHEN USED WITH DOS 3.2 OR FORMAT

MCT-HDC
$79.95
FLOPPY HARD DISK CONTROL FOR WHAT OTHERS CHARGE FOR FLOPPY CONTROL
- BM XT COMPATIBLE CONTROLLER
- SUPPORTS 16 FLOPPY DRIVE SIZES INCLUDING 5.25, 3.5, 5.25 & 80MM
- OPTIONS INCLUDE THE ABILITY TO DIVIDE 1 LARGE DRIVE INTO 2 SMALLER, LOGICAL DRIVES
- INCLUDES CABLES FOR 1 INTERNAL DRIVE

MCT-RLL
$119.95
GET UP TO 50% MORE STORAGE SPACE ON YOUR HARD DISK
- INCREASES THE CAPACITY OF PLATED MEDIA DRIVES BY 50%
- RLL 2.7 ENCODING FOR MORE RELIABLE STORAGE
- TRANSFER RATE IS ALSO 50% FASTER; 750K/Sec vs. 500K/sec
- USE WITH ST-233 DRIVE TO ACHIEVE 30-50 MB IN A HALF HEIGHT SLOT

MCT-FH
$139.95
STARVED FOR SLOTS? SATISFY IT WITH THIS TIMELY DESIGN
- INTERFACES UP TO 2 FDDs & 2 HDDs
- CABLES FOR 2 FDDs & 1 HDD
- FLOPPY INTERFACE SUPPORTS BOTH OS/2 & DS/20 WHEN USED WITH DOS 3.2 OR FORMAT
- ALL POPULAR HDD SIZES ARE SUPPORTED, INCLUDING 5.25, 3.5, 2.5 & 80MM
- CAN DIVIDE 1 LARGE DRIVE INTO 2 SMALLER, LOGICAL DRIVES

MCT-ATFH
$149.95
FLOPPY AND HARD DISK CONTROL IN A TRUE AT DESIGN
- AT COMPATIBLE, CONTROLS UP TO 2 360K/720K OR 1.2MB FDOS AS WELL AS
 2 HDDS USING THE AT STANDARD CONTROL TABLES
- SUPPORTS 2 FDDs & 1 HDD
- LED TO INDICATE HD ACTIVITY
- 16 BIT BUS PROVIDES RAPID DATA TRANSFERS
- FULLY SUPPORTED AT BIOS

HALF HEIGHT HARD DISK DRIVES
40 MB
$469
Model ST-251 5/4" half height FAST 40ms access time

60 MB
$649
Model ST-277 5/4" half height FAST 40ms access time (RAIL)

HALF HEIGHT HARD DISK SYSTEMS
20 MB
$299
30 MB
$329
Systems include half height hard disk drive, hard disk drive controller, cables and instructions. All drives are pre-tested and warranted for one year.
You Choose the Best Article Each Month

BYTE's ongoing monitor box (BOMB) lets you rate each article you've read in BYTE as excellent, good, fair, or poor. Each month, you can mail in the BOMB card found in the back of the issue. We tally your votes, total the points, tell you who won, and award the two top-rated nonstaff authors $100 and $50, respectively. An additional $50 award for quality goes to the non-staff author with the best average score (total points divided by the number of voters). If you prefer, you can use BIX as your method of voting. We welcome your participation.

<table>
<thead>
<tr>
<th>ARTICLE#</th>
<th>PAGE</th>
<th>ARTICLE</th>
<th>AUTHOR(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>37</td>
<td>Microbytes</td>
<td>staff</td>
</tr>
<tr>
<td>2</td>
<td>45</td>
<td>What's New</td>
<td>staff</td>
</tr>
<tr>
<td>3</td>
<td>68</td>
<td>Ask BYTE/Circuit Cellar</td>
<td>Ciarcia, Grehan</td>
</tr>
<tr>
<td>4</td>
<td>81</td>
<td>Book Reviews</td>
<td>Hoffman, Arndt</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
<td>A Programmer's Introduction</td>
<td>Duncan</td>
</tr>
<tr>
<td>6</td>
<td>110</td>
<td>A Closer Look</td>
<td>Grehan</td>
</tr>
<tr>
<td>7</td>
<td>115</td>
<td>Ciarcia's Circuit Cellar</td>
<td>Ciarcia</td>
</tr>
<tr>
<td>8</td>
<td>123</td>
<td>Build the Circuit Cellar AT</td>
<td>Ciarcia</td>
</tr>
<tr>
<td>9</td>
<td>129</td>
<td>Programming Insight: Teaching</td>
<td>Soeren</td>
</tr>
<tr>
<td>10</td>
<td>137</td>
<td>Constructing an Associative</td>
<td>Koisko</td>
</tr>
<tr>
<td>11</td>
<td>146</td>
<td>Karman's Algorithm</td>
<td>Rockett, Stevenson</td>
</tr>
<tr>
<td>12</td>
<td>163</td>
<td>Color Printing</td>
<td>Luft</td>
</tr>
<tr>
<td>13</td>
<td>177</td>
<td>Vector-to-Raster</td>
<td>Pountain</td>
</tr>
<tr>
<td>14</td>
<td>187</td>
<td>Page Printers</td>
<td>Cook</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARTICLE#</th>
<th>PAGE</th>
<th>ARTICLE</th>
<th>AUTHOR(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>199</td>
<td>Print Quality</td>
<td>Jansson</td>
</tr>
<tr>
<td>16</td>
<td>209</td>
<td>Taming the Hot</td>
<td>Davenport</td>
</tr>
<tr>
<td>17</td>
<td>215</td>
<td>Matrix-Line Printing</td>
<td>Hohnekner</td>
</tr>
<tr>
<td>18</td>
<td>221</td>
<td>Color Thermal-Transfer</td>
<td>Guardado</td>
</tr>
<tr>
<td>19</td>
<td>225</td>
<td>Printing</td>
<td>Ellison</td>
</tr>
<tr>
<td>20</td>
<td>229</td>
<td>Strip-Buffer vs. Full-Page</td>
<td>Douglas</td>
</tr>
<tr>
<td>21</td>
<td>239</td>
<td>Mall-Order Performance</td>
<td>Davis</td>
</tr>
<tr>
<td>22</td>
<td>245</td>
<td>The NEC MultiSpeed</td>
<td>Satz</td>
</tr>
<tr>
<td>23</td>
<td>253</td>
<td>The Micro Clipper Graphics</td>
<td>Weston</td>
</tr>
<tr>
<td>24</td>
<td>257</td>
<td>PC-MOS/386</td>
<td>Grehan</td>
</tr>
<tr>
<td>25</td>
<td>263</td>
<td>Actor 1.0</td>
<td>Moskowitz</td>
</tr>
<tr>
<td>26</td>
<td>266</td>
<td>ALS Prolog</td>
<td>Lane</td>
</tr>
<tr>
<td>27</td>
<td>269</td>
<td>Benchmarking dBASE III</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>277</td>
<td>Plus Compilers</td>
<td>Rubel</td>
</tr>
<tr>
<td>29</td>
<td>281</td>
<td>DESQview 2.0</td>
<td>McCormick</td>
</tr>
<tr>
<td>30</td>
<td>289</td>
<td>Computing at Chaos Manor</td>
<td>Pournelle</td>
</tr>
<tr>
<td>31</td>
<td>307</td>
<td>Applications Only:</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>317</td>
<td>Best of BIX</td>
<td>BIXen</td>
</tr>
</tbody>
</table>

BOMB Results

The winning entries for June indicate that our readers have a great deal of interest in new IBM products. First place goes to the BYTE editorial staff for "First Impressions: The IBM PS/2 Computers." In second place is "Microsoft's New DOS" (aka OS/2) by Eva White and Richard Grehan of BYTE's editorial staff. "Putting with Yin and Yang," the activity that took place at Chaos Manor, gave third place to Jerry Pournelle. It wasn't only new IBM products that garnered attention. What's New from the BYTE staff took the fourth-place award. Ciarcia's Circuit Cellar for June wound up in the fifth position. In it, Steve showed how to "Build a Gray-Scale Video Digitizer, Part 2: Digitizer/Transmitter." The BYTE staff shows up again in sixth place, this time for Microbytes. In seventh place overall, and winner of $100 as the highest nonstaff vote gatherer, is William G. Hood for his Programming Insight, "Polynomial Curve Fitter." In eighth place, and winner of $50, is Paul D. Bourke for his Programming Project, "A Contouring Subroutine." Mr. Hood wins the $50 bonus award for quality. Congratulations to all.

Coming Up in BYTE

Features:
A survey of application packages that run under OS/2; Jef Raskin's new Cat "information appliance"; Acorn debuts the world's first commercial RISC machine, and Dick Pountain looks at it.

Circuit Cellar:
The concluding section on building an IBM PC AT clone.

Programming Insight:
An algorithm for deriving Xmode cyclic redundancy checks.

Theme:
Heuristic algorithms includes articles on zero-knowledge proofs, back propagation and general learning rules, compiler optimization heuristics, a search strategy for common sense, PRESS—the Prolog equation solver system, and an introduction to neural networks.

Reviews:
The Macintosh II, the GRIDLite Portable, and the new Wang Portable are system reviews. Definicon's DSI-780 and a survey of four laser printers cover peripherals. Language reviews include three libraries of windowing menu design and data-form entry routines, as well as a comparison of two low-cost, low-functionality C-language packages. Application software reviews include an examination of Guide and a comparison of MathCAD, Eureka: The Solver, and Point Five equation-solving programs. We'll also have a review of a package said to be based on forward- and backward-chaining techniques, Personal Consultant Plus.
Editorial Index by Company

Index of companies covered in articles, columns, or news stories in this issue. Each reference is to the first page of the article or section in which the company name appears.

<table>
<thead>
<tr>
<th>COMPANY</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.I. ARCHITECTS</td>
<td>45</td>
</tr>
<tr>
<td>ACADEMIC INFORMATION SYSTEMS</td>
<td>37</td>
</tr>
<tr>
<td>ADAPTIVE</td>
<td>307</td>
</tr>
<tr>
<td>ADOBE SYSTEMS</td>
<td>187</td>
</tr>
<tr>
<td>ADVANCED COLOR TECHNOLOGY</td>
<td>163</td>
</tr>
<tr>
<td>ADVANCED LOGIC RESEARCH</td>
<td>239</td>
</tr>
<tr>
<td>ADVANCED MICROWAVES</td>
<td>245</td>
</tr>
<tr>
<td>ALDUS</td>
<td>37</td>
</tr>
<tr>
<td>ALTOS COMPUTER SYSTEMS</td>
<td>45</td>
</tr>
<tr>
<td>AMDUX</td>
<td>289</td>
</tr>
<tr>
<td>APIAN SOFTWARE</td>
<td>45</td>
</tr>
<tr>
<td>APPLE COMPUTER</td>
<td>37, 187, 307</td>
</tr>
<tr>
<td>APPLIED LOGIC SYSTEMS</td>
<td>263</td>
</tr>
<tr>
<td>APPLIED RESEARCH</td>
<td>45</td>
</tr>
<tr>
<td>ASHTON-TATE</td>
<td>277</td>
</tr>
<tr>
<td>AST</td>
<td>277</td>
</tr>
<tr>
<td>AT&T</td>
<td>277</td>
</tr>
<tr>
<td>AVANT GARDE SYSTEMS</td>
<td>289</td>
</tr>
<tr>
<td>BENDSON</td>
<td>163</td>
</tr>
<tr>
<td>BIOSCAN</td>
<td>45</td>
</tr>
<tr>
<td>BITSTREAM</td>
<td>187</td>
</tr>
<tr>
<td>BLTHY SOFTWARE</td>
<td>37</td>
</tr>
<tr>
<td>BONDWELL</td>
<td>253</td>
</tr>
<tr>
<td>BORG AND INTERNATIONAL</td>
<td>263, 289</td>
</tr>
<tr>
<td>BRODERBUND SOFTWARE</td>
<td>307</td>
</tr>
<tr>
<td>C LTD.</td>
<td>45</td>
</tr>
<tr>
<td>C.ITOH</td>
<td>187</td>
</tr>
<tr>
<td>CALCOMP</td>
<td>221</td>
</tr>
<tr>
<td>CANON</td>
<td>115</td>
</tr>
<tr>
<td>CCI</td>
<td>115</td>
</tr>
<tr>
<td>CHEETAH INTERNATIONAL</td>
<td>245, 289</td>
</tr>
<tr>
<td>CHIPS AND TECHNOLOGIES</td>
<td>239, 245</td>
</tr>
<tr>
<td>CHORUS DATA SYSTEMS</td>
<td>187</td>
</tr>
<tr>
<td>COMMODORE BUSINESS MACHINES</td>
<td>37</td>
</tr>
<tr>
<td>COMPAC</td>
<td>239, 257, 263, 277</td>
</tr>
<tr>
<td>CONWAY DATA</td>
<td>253</td>
</tr>
<tr>
<td>CORE INTERNATIONAL</td>
<td>239</td>
</tr>
<tr>
<td>CRAY</td>
<td>37</td>
</tr>
<tr>
<td>DATA GENERAL</td>
<td>45, 253</td>
</tr>
<tr>
<td>DATAMEDIA</td>
<td>45</td>
</tr>
<tr>
<td>DATASTORM</td>
<td>230</td>
</tr>
<tr>
<td>DATAVUE</td>
<td>253</td>
</tr>
<tr>
<td>DATEK INFORMATION SERVICES</td>
<td>163</td>
</tr>
<tr>
<td>DEFINICON SYSTEMS</td>
<td>289</td>
</tr>
<tr>
<td>DIGITAL RESEARCH</td>
<td>245</td>
</tr>
<tr>
<td>DP-TEK</td>
<td>187</td>
</tr>
<tr>
<td>ELECTRONIC FORMS SYSTEMS</td>
<td>187, 225</td>
</tr>
<tr>
<td>EPSON AMERICA</td>
<td>257</td>
</tr>
<tr>
<td>EVEREX</td>
<td>245</td>
</tr>
<tr>
<td>FACIT</td>
<td>199</td>
</tr>
<tr>
<td>FIFTH GENERATION SYSTEMS</td>
<td>239</td>
</tr>
<tr>
<td>FLAGSTAFF ENGINEERING</td>
<td>45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPANY</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUNDATION PUBLISHING</td>
<td>307</td>
</tr>
<tr>
<td>FOX SOFTWARE</td>
<td>277</td>
</tr>
<tr>
<td>FUJITSU AMERICA</td>
<td>45</td>
</tr>
<tr>
<td>GENERAL COMPUTER</td>
<td>45</td>
</tr>
<tr>
<td>GENERIC SOFTWARE</td>
<td>37</td>
</tr>
<tr>
<td>GOLDEN BOW SYSTEMS</td>
<td>289</td>
</tr>
<tr>
<td>GRAPHIC SOFTWARE SYSTEMS</td>
<td>37</td>
</tr>
<tr>
<td>GREAT SOFTWESTERN</td>
<td>257</td>
</tr>
<tr>
<td>HAYES MICROCOMPUTER</td>
<td>239, 253</td>
</tr>
<tr>
<td>HECHT-NIELSEN NEUROCOMPUTER</td>
<td>37</td>
</tr>
<tr>
<td>HERCULES</td>
<td>239, 277</td>
</tr>
<tr>
<td>HEWLETT-PACKARD</td>
<td>45, 163</td>
</tr>
<tr>
<td>HITACHI</td>
<td>239</td>
</tr>
<tr>
<td>HOWTEK</td>
<td>163</td>
</tr>
<tr>
<td>HUMAN DEVICES</td>
<td>37</td>
</tr>
<tr>
<td>IBM</td>
<td>37, 101, 115, 177, 187, 239, 245, 253, 257, 277</td>
</tr>
<tr>
<td>IDS</td>
<td>257</td>
</tr>
<tr>
<td>INTECOLOR</td>
<td>289</td>
</tr>
<tr>
<td>INTEL</td>
<td>37, 101, 239, 245, 289</td>
</tr>
<tr>
<td>KAYPRO</td>
<td>239, 253, 289</td>
</tr>
<tr>
<td>KEY TRONIC</td>
<td>245</td>
</tr>
<tr>
<td>KYOCERA</td>
<td>187</td>
</tr>
<tr>
<td>LABORATORY MICROSYSTEMS</td>
<td>239</td>
</tr>
<tr>
<td>LASERPORT</td>
<td>187</td>
</tr>
<tr>
<td>LIVING VIDEOTEX</td>
<td>37</td>
</tr>
<tr>
<td>LOGITECH</td>
<td>257, 277</td>
</tr>
<tr>
<td>LOTUS DEVELOPMENT</td>
<td>239, 245</td>
</tr>
<tr>
<td>MARTINGALE RESEARCH</td>
<td>37</td>
</tr>
<tr>
<td>MAXI-SWITCH</td>
<td>245</td>
</tr>
<tr>
<td>MAYNARD</td>
<td>277</td>
</tr>
<tr>
<td>MEASUREMENT TECHNOLOGY</td>
<td>45</td>
</tr>
<tr>
<td>MEGAHertz</td>
<td>45</td>
</tr>
<tr>
<td>MICRO ILLUSIONS</td>
<td>289</td>
</tr>
<tr>
<td>MICROGRAFX</td>
<td>45</td>
</tr>
<tr>
<td>MICROMINT</td>
<td>115</td>
</tr>
<tr>
<td>MICROPRT SYSTEMS</td>
<td>45, 245</td>
</tr>
<tr>
<td>MICRPRO</td>
<td>239</td>
</tr>
<tr>
<td>MICROPRODUCTS</td>
<td>45</td>
</tr>
<tr>
<td>MICRORIM</td>
<td>239</td>
</tr>
<tr>
<td>MICROSOFT</td>
<td>101, 239, 245, 263</td>
</tr>
<tr>
<td>MICROSOULATIONS COMPUTER</td>
<td>45</td>
</tr>
<tr>
<td>PRODUCTS</td>
<td>45</td>
</tr>
<tr>
<td>MIRROR TECHNOLOGIES</td>
<td>45</td>
</tr>
<tr>
<td>MODERN GRAPHICS</td>
<td>45</td>
</tr>
<tr>
<td>MORGAN COMPUTING</td>
<td>239</td>
</tr>
<tr>
<td>MOTOROLA</td>
<td>101, 255</td>
</tr>
<tr>
<td>MSB MUSIC SOFTWARE</td>
<td>45</td>
</tr>
<tr>
<td>MULTI-TECH SYSTEMS</td>
<td>45</td>
</tr>
<tr>
<td>NATUCKET</td>
<td>277</td>
</tr>
<tr>
<td>NEC HOME ELECTRONICS</td>
<td>245, 253, 257</td>
</tr>
<tr>
<td>NEURAL SYSTEMS</td>
<td>45</td>
</tr>
<tr>
<td>NEURONICS</td>
<td>37</td>
</tr>
<tr>
<td>NEWBURY DATA RECORDING</td>
<td>209</td>
</tr>
<tr>
<td>NOVELL</td>
<td>277</td>
</tr>
<tr>
<td>OFFICE AUTOMATION SYSTEMS</td>
<td>229</td>
</tr>
<tr>
<td>ONI SYSTEMS</td>
<td>45</td>
</tr>
<tr>
<td>OWL INTERNATIONAL</td>
<td>307</td>
</tr>
<tr>
<td>PC DESIGNS</td>
<td>245</td>
</tr>
<tr>
<td>PC'S LIMITED</td>
<td>257</td>
</tr>
<tr>
<td>PERSONAL COMPUTER SUPPORT GROUP</td>
<td>45</td>
</tr>
<tr>
<td>PHOENIX COMPUTER PRODUCTS</td>
<td>277</td>
</tr>
<tr>
<td>PIXELWORKS</td>
<td>257</td>
</tr>
<tr>
<td>POSIDEON</td>
<td>307</td>
</tr>
<tr>
<td>POTOMAC ELECTRIC POWER</td>
<td>37</td>
</tr>
<tr>
<td>PRIAM</td>
<td>277</td>
</tr>
<tr>
<td>プリンウラクシ</td>
<td>215</td>
</tr>
<tr>
<td>QMS</td>
<td>45, 307</td>
</tr>
<tr>
<td>QUADRUM</td>
<td>45, 277</td>
</tr>
<tr>
<td>QUARTERDECK OFFICE SYSTEMS</td>
<td>239, 245, 277, 289</td>
</tr>
<tr>
<td>RICOH</td>
<td>225</td>
</tr>
<tr>
<td>RODIME</td>
<td>45</td>
</tr>
<tr>
<td>SABA TECHNOLOGIES</td>
<td>45</td>
</tr>
<tr>
<td>SAM FENSTER</td>
<td>45</td>
</tr>
<tr>
<td>SAMSUNG</td>
<td>257</td>
</tr>
<tr>
<td>SEAGATE</td>
<td>245</td>
</tr>
<tr>
<td>SOFTKZONE DISTRIBUTING</td>
<td>307</td>
</tr>
<tr>
<td>SOFTLOGIC SOLUTIONS</td>
<td>45</td>
</tr>
<tr>
<td>SOFTWARE 2000</td>
<td>277</td>
</tr>
<tr>
<td>STORAGE DIMENSIONS</td>
<td>239, 289</td>
</tr>
<tr>
<td>STRATEGIC SIMULATIONS</td>
<td>37</td>
</tr>
<tr>
<td>SUPRA</td>
<td>45</td>
</tr>
<tr>
<td>TALLTREE</td>
<td>187</td>
</tr>
<tr>
<td>TANDON</td>
<td>307</td>
</tr>
<tr>
<td>TAXAN USA</td>
<td>187</td>
</tr>
<tr>
<td>TEAC</td>
<td>245</td>
</tr>
<tr>
<td>TELE-WARE WEST</td>
<td>245</td>
</tr>
<tr>
<td>TELE VIDEO</td>
<td>257</td>
</tr>
<tr>
<td>TEXAS INSTRUMENTS</td>
<td>37, 45, 177</td>
</tr>
<tr>
<td>THE SOFTWARE LINK</td>
<td>263</td>
</tr>
<tr>
<td>THE SOFTWARE TOOLWORKS</td>
<td>289</td>
</tr>
<tr>
<td>THE WHITFIELD WATER GROUP</td>
<td>263</td>
</tr>
<tr>
<td>TOSHIBA</td>
<td>253</td>
</tr>
<tr>
<td>TRILLIUM</td>
<td>45</td>
</tr>
<tr>
<td>ULTRA</td>
<td>37</td>
</tr>
<tr>
<td>VARITYPER</td>
<td>187</td>
</tr>
<tr>
<td>VIDEO-7</td>
<td>239, 245</td>
</tr>
<tr>
<td>VISI ON</td>
<td>277</td>
</tr>
<tr>
<td>WESTERN DIGITAL</td>
<td>245</td>
</tr>
<tr>
<td>WINTERECH</td>
<td>245</td>
</tr>
<tr>
<td>WORTECH SYSTEMS</td>
<td>277</td>
</tr>
<tr>
<td>XEROX</td>
<td>177, 187, 225, 289</td>
</tr>
<tr>
<td>ZENITH DATA SYSTEMS</td>
<td>253, 289</td>
</tr>
<tr>
<td>ZYMOS</td>
<td>115</td>
</tr>
</tbody>
</table>
READER SERVICE

Advertising Supplements included with this issue:
Priority One Electronics (US Subscribers)
Computer Mail Order/CMO (Selected US Subscribers only.)

<table>
<thead>
<tr>
<th>Inquiry No.</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>307 VYXOTECH</td>
<td>392</td>
</tr>
<tr>
<td>306 WAREHOUSE DATA</td>
<td>71</td>
</tr>
<tr>
<td>305 WAREHOUSE DATA</td>
<td>15</td>
</tr>
<tr>
<td>310 WENDIN INC</td>
<td>238</td>
</tr>
<tr>
<td>311 WENDIN INC</td>
<td>238</td>
</tr>
<tr>
<td>312 WHITE CRANE SYSTEMS</td>
<td>90</td>
</tr>
<tr>
<td>313 WHITE CRANE SYSTEMS</td>
<td>32</td>
</tr>
<tr>
<td>314 WINTER CORP</td>
<td>5</td>
</tr>
<tr>
<td>315 WINTER CORP</td>
<td>356</td>
</tr>
<tr>
<td>316 WOODCHUCK INDUSTRIES</td>
<td>382</td>
</tr>
<tr>
<td>317 WORDCRAFT</td>
<td>76</td>
</tr>
<tr>
<td>318 WYSE TECHNOLOGY</td>
<td>193</td>
</tr>
<tr>
<td>319 XELTEK</td>
<td>350</td>
</tr>
<tr>
<td>320 ZENITH ELECTRONICS</td>
<td>370</td>
</tr>
<tr>
<td>321 Z-WORLD</td>
<td>370</td>
</tr>
<tr>
<td>322 Z-WORLD</td>
<td>370</td>
</tr>
</tbody>
</table>

INTERNATIONAL SECTION

No domestic inquiries please.

<table>
<thead>
<tr>
<th>Inquiry No.</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 ADVANCED DIGITAL</td>
<td>64A-1</td>
</tr>
<tr>
<td>501 AL. DOWNLOADING</td>
<td>64A-24</td>
</tr>
<tr>
<td>502 ASHFDOR INTL</td>
<td>64A-3</td>
</tr>
<tr>
<td>503 BONDEWELL INTL</td>
<td>64A-5</td>
</tr>
<tr>
<td>504 BONDEWELL INTL</td>
<td>64A-5</td>
</tr>
<tr>
<td>505 CONEXIONS</td>
<td>64A-24</td>
</tr>
<tr>
<td>506 CORPORATE SOFTWARE</td>
<td>64A-20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inquiry No.</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>509 CUT PRICE SOFTWARE</td>
<td>64A-23</td>
</tr>
<tr>
<td>510 C.A.S. COMPUTER POINT</td>
<td>64A-23</td>
</tr>
<tr>
<td>511 D.F. PETERG</td>
<td>64A-23</td>
</tr>
<tr>
<td>512 DIAMOND SOFTWARE</td>
<td>64A-24</td>
</tr>
<tr>
<td>513 ELITE VISION SYSTEMS</td>
<td>64A-24</td>
</tr>
<tr>
<td>514 EURO-LINK, INC</td>
<td>64A-23</td>
</tr>
<tr>
<td>515 EUROMARK INTL</td>
<td>64A-16</td>
</tr>
<tr>
<td>516 EUROMARK INTL</td>
<td>64A-16</td>
</tr>
<tr>
<td>517 EUROMARK INTL</td>
<td>64A-16</td>
</tr>
<tr>
<td>519 GREY MATTER</td>
<td>64A-15</td>
</tr>
<tr>
<td>520 MAGNETIC MEDIA MARKET</td>
<td>64A-23</td>
</tr>
<tr>
<td>521 MAYFAIR MICRO</td>
<td>64A-19</td>
</tr>
<tr>
<td>522 MICROCOM RESEARCH</td>
<td>64A-24</td>
</tr>
<tr>
<td>523 MICROPROCESSOR ENGINEERING</td>
<td>64A-24</td>
</tr>
<tr>
<td>524 MICROPROCESSOR ENGINEERING</td>
<td>64A-24</td>
</tr>
<tr>
<td>525 MICROPROCESSOR ENGINEERING</td>
<td>64A-24</td>
</tr>
<tr>
<td>526 MICROPROCESSOR ENGINEERING</td>
<td>64A-24</td>
</tr>
<tr>
<td>527 NOKIA INFO SYS</td>
<td>64A-17</td>
</tr>
<tr>
<td>528 PARADIGM PUBLISHING</td>
<td>64A-24</td>
</tr>
<tr>
<td>530 PEGAN SW</td>
<td>64A-23</td>
</tr>
<tr>
<td>531 PENTIX MONITORS</td>
<td>64A-9</td>
</tr>
<tr>
<td>532 PENTIX MONITORS</td>
<td>64A-9</td>
</tr>
<tr>
<td>533 PENTIX MONITORS</td>
<td>64A-9</td>
</tr>
<tr>
<td>534 PENTIX MONITORS</td>
<td>64A-9</td>
</tr>
<tr>
<td>535 PENTIX MONITORS</td>
<td>64A-9</td>
</tr>
<tr>
<td>536 PENTIX MONITORS</td>
<td>64A-9</td>
</tr>
<tr>
<td>537 PENTIX MONITORS</td>
<td>64A-9</td>
</tr>
</tbody>
</table>

REGIONAL SECTION

Greater NYC/Tri-State Area 256 NY 1-8

<table>
<thead>
<tr>
<th>Inquiry No.</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>602 ADVANCED DIGITAL</td>
<td>64A-1</td>
</tr>
<tr>
<td>603 ADVANCED DIGITAL</td>
<td>64A-1</td>
</tr>
<tr>
<td>604 ADVANCED DIGITAL</td>
<td>64A-1</td>
</tr>
<tr>
<td>605 ADVANCED DIGITAL</td>
<td>64A-1</td>
</tr>
<tr>
<td>606 ADVANCED DIGITAL</td>
<td>64A-1</td>
</tr>
<tr>
<td>607 ADVANCED DIGITAL</td>
<td>64A-1</td>
</tr>
<tr>
<td>608 ADVANCED DIGITAL</td>
<td>64A-1</td>
</tr>
</tbody>
</table>

**SUBSCRIBERS ONLY!* Use BYTE’s Telephone Inquiry Processing System Using TIPS can bring product information as much as 10 days earlier.

SEND FOR YOUR SUBSCRIBER I.D. CARD

1) If you are a new subscriber or have lost your I.D. card, circle #1 on the Reader Service Card; attach mailer label. We will immediately send your personal TIPS subscriber card.

GET PREPARED

2) Write your Subscriber Number, as printed on your Subscriber I.D. Card, in boxes in Step 5 below. (Do not add 0's to fill in blank boxes)

3) Write numbers for information desired in boxes in Step 7b below. (Do not add 0's to fill in blank boxes)

CALL TIPS

4) Now, on a Touch-Tone telephone dial: (413) 442-2668 and wait for voice commands.

ENTER YOUR SUBSCRIBER AND ISSUE NUMBERS

5) When TIPS says: “Enter Subscriber Number” (Enter by pushing the numbers and symbols [# or * enclosed in the boxes] on telephone pad ignoring blank boxes) Enter [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] []

6) When TIPS says “Enter magazine code & issue code” Enter [] [] [] [] []

ENTER YOUR INQUIRIES

7a) **When TIPS says “Enter (next) Inquiry Number”** Enter one inquiry selection from below (ignore blank boxes)

7b) Repeat 7a as needed (maximum 17 inquiry numbers)

1. [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] []
2. [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] []
3. [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] []
4. [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] []
5. [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] []

END SESSION

8) End session by entering [] [] [] [] [] []

9) Hang up after hearing final message

If you are a subscriber and need assistance, call (603) 924-9281.

Domestic and Canadian Subscribers Only!

If you are not a subscriber fill out the subscription card found in this issue or, call BYTE Circulation 800-423-8912.

382 BYTE • SEPTEMBER 1987
To get further information on the products advertised in BYTE, fill out the reader service card by circling the numbers on the card that correspond to the inquiry number listed with the advertiser. This index is provided as an additional service by the publisher, who assumes no liability for errors or omissions.

* Correspond directly with company

HARDWARE

<table>
<thead>
<tr>
<th>Inquiry No.</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 Alpha Products</td>
<td>351</td>
</tr>
<tr>
<td>10 Alpha Products</td>
<td>358</td>
</tr>
<tr>
<td>22 Atronics Int'l. Inc.</td>
<td>217</td>
</tr>
<tr>
<td>42 Capital Equipment</td>
<td>74</td>
</tr>
<tr>
<td>43 Capital Equipment</td>
<td>294</td>
</tr>
<tr>
<td>90 Engineers Collaborative</td>
<td>354</td>
</tr>
<tr>
<td>116 Hercules Computer Tech.</td>
<td>193</td>
</tr>
<tr>
<td>117 Hercules Computer Tech.</td>
<td>193</td>
</tr>
<tr>
<td>118 Hercules Computer Tech.</td>
<td>155</td>
</tr>
<tr>
<td>119 Hercules Computer Tech.</td>
<td>155</td>
</tr>
<tr>
<td>120 Hercules Computer Tech.</td>
<td>157</td>
</tr>
<tr>
<td>121 Hercules Computer Tech.</td>
<td>157</td>
</tr>
<tr>
<td>350 Interface Group</td>
<td>325</td>
</tr>
<tr>
<td>133 IO Tech</td>
<td>364</td>
</tr>
<tr>
<td>333 John Bell Engineering</td>
<td>356</td>
</tr>
<tr>
<td>154 Link Comp. Graphics</td>
<td>368</td>
</tr>
<tr>
<td>194 National Instrumentals</td>
<td>28</td>
</tr>
<tr>
<td>203 Orchid Technology</td>
<td>36</td>
</tr>
<tr>
<td>204 Orchid Technology</td>
<td>36</td>
</tr>
<tr>
<td>226 Persitor Systems Inc.</td>
<td>74</td>
</tr>
<tr>
<td>227 Persitor Systems Inc.</td>
<td>74</td>
</tr>
<tr>
<td>228 Pixelar</td>
<td>210</td>
</tr>
<tr>
<td>261 Seallevel Systems</td>
<td>360</td>
</tr>
<tr>
<td>307 Voyetra Tech</td>
<td>362</td>
</tr>
</tbody>
</table>

DRIVES

<table>
<thead>
<tr>
<th>Inquiry No.</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>85 Eastman Kodak Co.</td>
<td>53</td>
</tr>
<tr>
<td>259 Seagate Technology</td>
<td>150,151</td>
</tr>
<tr>
<td>260 Seagate Technology</td>
<td>150,151</td>
</tr>
<tr>
<td>293 Tigertronics</td>
<td>158</td>
</tr>
</tbody>
</table>

HARDWARE PROGRAMMERS

<table>
<thead>
<tr>
<th>Inquiry No.</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>19 Aptek</td>
<td>356</td>
</tr>
<tr>
<td>33 BP Micros</td>
<td>370</td>
</tr>
<tr>
<td>34 Bytek Corporation</td>
<td>172</td>
</tr>
<tr>
<td>36 B & C Microsystems</td>
<td>349</td>
</tr>
<tr>
<td>37 B & C Microsystems</td>
<td>358</td>
</tr>
<tr>
<td>154 Link Comp. Graphics</td>
<td>368</td>
</tr>
<tr>
<td>155 Logical Devices</td>
<td>70</td>
</tr>
<tr>
<td>156 Logical Devices</td>
<td>70</td>
</tr>
</tbody>
</table>

INSTRUMENTATION

<table>
<thead>
<tr>
<th>Inquiry No.</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Computer Continuum</td>
<td>352</td>
</tr>
<tr>
<td>348 El & S</td>
<td>366</td>
</tr>
<tr>
<td>88 Elekor Inc.</td>
<td>366</td>
</tr>
<tr>
<td>147 KeithleyVdc</td>
<td>24</td>
</tr>
<tr>
<td>151 Lawson Labs</td>
<td>358</td>
</tr>
<tr>
<td>209 Orion Instruments</td>
<td>220</td>
</tr>
<tr>
<td>229 Qua Tech</td>
<td>312</td>
</tr>
<tr>
<td>229 Qua Tech</td>
<td>312</td>
</tr>
<tr>
<td>242 Qua Tech</td>
<td>312</td>
</tr>
<tr>
<td>244 Qua Tech</td>
<td>312</td>
</tr>
<tr>
<td>250 Real Time Devices</td>
<td>352</td>
</tr>
</tbody>
</table>

MASS STORAGE

<table>
<thead>
<tr>
<th>Inquiry No.</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>228 3M Company</td>
<td>112,113</td>
</tr>
<tr>
<td>52 Compact Disc Prods. Inc.</td>
<td>202</td>
</tr>
<tr>
<td>67 Contech</td>
<td>349</td>
</tr>
<tr>
<td>95 Flagstaff Engineering</td>
<td>288</td>
</tr>
<tr>
<td>96 Flagstaff Engineering</td>
<td>288</td>
</tr>
<tr>
<td>109 Genq Systems</td>
<td>47</td>
</tr>
<tr>
<td>128 Ibx Comp Corp</td>
<td>370</td>
</tr>
<tr>
<td>* Maxell Data Products</td>
<td>7</td>
</tr>
<tr>
<td>211 Overland Data Inc</td>
<td>249</td>
</tr>
<tr>
<td>212 Overland Data Inc</td>
<td>249</td>
</tr>
<tr>
<td>290 Telebyte Technology</td>
<td>271</td>
</tr>
<tr>
<td>306 Visionics Corp</td>
<td>84</td>
</tr>
</tbody>
</table>

MISCELLANEOUS

<table>
<thead>
<tr>
<th>Inquiry No.</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 Bay Technical Assoc.</td>
<td>165</td>
</tr>
<tr>
<td>45 Central Point Software</td>
<td>164</td>
</tr>
<tr>
<td>69 C-Cor Electronics</td>
<td>125</td>
</tr>
<tr>
<td>72 Dalco Electronics</td>
<td>362</td>
</tr>
<tr>
<td>73 Data Translation</td>
<td>73</td>
</tr>
<tr>
<td>80 Disks Plus</td>
<td>727</td>
</tr>
<tr>
<td>81 Disks Plus</td>
<td>335</td>
</tr>
<tr>
<td>91 Everex Systems</td>
<td>19</td>
</tr>
<tr>
<td>92 Everex Systems</td>
<td>19</td>
</tr>
<tr>
<td>103 General Imaging Corp.</td>
<td>295</td>
</tr>
<tr>
<td>124 Hitech Equipment</td>
<td>364</td>
</tr>
<tr>
<td>126 Hooledon Company</td>
<td>160</td>
</tr>
<tr>
<td>126 Hooledon Company</td>
<td>160</td>
</tr>
<tr>
<td>129 Ines Gmeh</td>
<td>356</td>
</tr>
<tr>
<td>132 Integrant Research</td>
<td>326</td>
</tr>
<tr>
<td>134 I-C Express</td>
<td>362</td>
</tr>
<tr>
<td>330 K-ho-ko Raphodag</td>
<td>243</td>
</tr>
<tr>
<td>379 Merritt Comp. Prods.</td>
<td>354</td>
</tr>
<tr>
<td>191 M-S Corp.</td>
<td>358</td>
</tr>
<tr>
<td>202 Omnitrax Inc.</td>
<td>356</td>
</tr>
<tr>
<td>213 Pumco</td>
<td>356</td>
</tr>
<tr>
<td>222 Perma Power Electronics</td>
<td>196</td>
</tr>
<tr>
<td>223 Perma Power Electronics</td>
<td>196</td>
</tr>
<tr>
<td>251 Rose Electronics</td>
<td>366</td>
</tr>
<tr>
<td>278 Suncoast Systems Inc.</td>
<td>84</td>
</tr>
<tr>
<td>279 Suncoast Systems Inc.</td>
<td>84</td>
</tr>
<tr>
<td>282 Swisscomp Inc.</td>
<td>75</td>
</tr>
<tr>
<td>291 Telex Communications</td>
<td>222</td>
</tr>
<tr>
<td>292 Telex Communications</td>
<td>222</td>
</tr>
<tr>
<td>294 Tigertronics</td>
<td>362</td>
</tr>
<tr>
<td>6 UPS-Depot</td>
<td>370</td>
</tr>
<tr>
<td>305 Victrix Enterprises</td>
<td>197</td>
</tr>
</tbody>
</table>

MODEMS/MULTIPLEXORS

<table>
<thead>
<tr>
<th>Inquiry No.</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Cleo Software</td>
<td>298</td>
</tr>
<tr>
<td>* Codec Corporation</td>
<td>122</td>
</tr>
<tr>
<td>324 Foster Technology</td>
<td>364</td>
</tr>
<tr>
<td>131 Intejecta</td>
<td>358</td>
</tr>
<tr>
<td>240 Qua Tech</td>
<td>312</td>
</tr>
<tr>
<td>241 Qua Tech</td>
<td>312</td>
</tr>
<tr>
<td>243 Qua Tech</td>
<td>312</td>
</tr>
</tbody>
</table>
To receive further information on the products advertised in BYTE, complete the questionnaire and circle the appropriate numbers of the advertisers you select from the list. Add a first-class stamp to the card, then drop it in the mail. Not only do you gain information, but our advertisers are encouraged to use the marketplace provided by BYTE. This helps us bring you a bigger BYTE. The index is provided as an additional service by the publisher, who assumes no liability for errors or omissions.

Fill out this coupon carefully. PLEASE PRINT. Requests cannot be honored unless the zip code is included. This card is valid for 6 months from cover date.

BYTE’s ongoing monitor box (BOMB) lets you rate each article you’ve read in BYTE as excellent, good, fair, or poor. Each month, you can mail in the BOMB card found at the back of each issue. We tally your votes, total the points, tell you who won, and award the two top-rated nonstaff authors $100 and $50, respectively. An additional $30 award for quality goes to the nonstaff author with the best average score total points divided by the number of nonstaff authors you rated your method of voting. We welcome your participation.

BYTE READER SERVICE CARD

To receive further information on the products advertised in BYTE, complete the questionnaire and circle the appropriate numbers of the advertisers you select from the list. Add a first-class stamp to the card, then drop it in the mail. Not only do you gain information, but our advertisers are encouraged to use the marketplace provided by BYTE. This helps us bring you a bigger BYTE. The index is provided as an additional service by the publisher, who assumes no liability for errors or omissions.

Fill out this coupon carefully. PLEASE PRINT. Requests cannot be honored unless the zip code is included. This card is valid for 6 months from cover date.

BYTE’s ongoing monitor box (BOMB) lets you rate each article you’ve read in BYTE as excellent, good, fair, or poor. Each month, you can mail in the BOMB card found at the back of each issue. We tally your votes, total the points, tell you who won, and award the two top-rated nonstaff authors $100 and $50, respectively. An additional $30 award for quality goes to the nonstaff author with the best average score total points divided by the number of nonstaff authors you rated your method of voting. We welcome your participation.

To determine this month’s Article No. see BOMB as listed in Table of Contents under Departments.
You won't have to with our new Silentwriter™ LC890 page printer. It's the desktop publishing printer with more than twice as much memory as an Apple® Laserwriter™, for example. Which means it puts information together faster—and saves valuable minutes every time you create a new page of graphics or text. And the more complex the page, the more time saved.

The Silentwriter LC890 is also one of the least expensive printers that uses Adobe PostScript® page description language. Which lets you combine text, line art, and even digitized photographs on the same page.

Of course, you may not need all this pizazz for your printed pages. Then you should look into our Silentwriter LC860 Plus or our Silentwriter LC850, which are ideal for text and less complex graphics applications.

Our Silentwriter series will also keep you from wasting time with breakdowns and service. Because every Silentwriter printer has a life of about 600,000 pages—more than twice as much as ordinary lasers.

So if you want to make the most of desktop publishing, don't waste a minute. Call 1-800-343-4418 (in MA 617-264-8635). Or write: NEC Information Systems, Dept. 1610, 1414 Massachusetts Ave., Boxborough, MA 01719.

NEC PRINTERS. THEY ONLY STOP WHEN YOU WANT THEM TO.
Tandy Computers: Because there is no better value.

The New Tandy® 4000

A price breakthrough in high-performance 80386 technology.

Put a Tandy 4000 on your desk and unleash the incredible power of the 32-bit, 16-megahertz 80386 microprocessor. Our Tandy 4000 is so cost effective you can actually configure a 386 system for less than you'd pay for a competitor's 286 model.

The 4000 is ready to run current PC and AT® software with incredible new speed. And when new operating systems such as OS/2™ become available, the full potential of 80386 can be unleashed.

When used with the XENIX® operating system, your Tandy 4000 can become the heart of a multiuser office system. Or configure the Tandy 4000 as a 3Com® workgroup file server to achieve maximum productivity.

A built-in, high-capacity 3½" disk drive lets you store up to 1.4 million characters on pocket-sized diskettes. Six AT slots and two XT™ slots give you plenty of room for system expansion. The Tandy 4000 also comes with serial and parallel ports, a 101-key enhanced keyboard, and a keylock with chassis-lock mechanism for system protection.

Come into your local Radio Shack Computer Center today and see the new Tandy 4000—only $2599. (25-5000)