Introducing The

All you have to
Macintosh Office.
add is people.

No, not computer systems people to help you design it. Or computer experts to show you how to use it.

But the kind of people who already make up most of your office.

Managers and professionals. People who spend most of their time selling products, services or, most importantly, ideas.

Because, unlike traditional office computer solutions, we didn't design The Macintosh Office around a mainframe.

We designed it around an idea.

The idea that people, not mainframes, are the most important information centers in an office. And that most things in business are really accomplished by teams of 5 to 25 people who need to share information with each other. What we call the workgroup.

That's why we put Macintosh at the heart of The Macintosh Office. Its powerful, 32-bit technology reduces the time it takes to become productive with a computer from well over a work week, to just under a lunch hour.

For the first time, the people who could really use a computer—managers and professionals—had a computer they could really use. In their choice of sizes: Macintosh 128K, Macintosh 512K and Macintosh XL.

Then we designed a network solution for workgroups of 5 to 25. Instead of buildings of 500 to 2,500.

We call it the AppleTalk Personal Network. It's as easy to hook together as an extension cord. And almost as cheap. Less than $50° a desk, versus up to $1,200 for a typical network system.

Since the number one product of business is still paper, we found a way to make every sheet count. A breakthrough in printed communications called the LaserWriter printer. It produces publication-quality text and graphics. Making your presentations, reports and overheads more persuasive.

We've even found a way for The Macintosh Office to share offices with IBM. An AppleTalk card that slips into an IBM PC, allowing it to trade information with Macintosh and access file servers.

Third party developers are also working on The Macintosh Office. Next month,

they'll be offering shared storage devices that let your workgroup share information. And they're writing a whole new generation of business software to go along with the 350 programs Macintosh already runs. Including Microsoft® Word, ThinkBank™ 512 and the new Jazz™ from Lotus.

Now, there's only one more thing we'd like to add to this ad: call 800-446-3000.

We'll tell you how to get everything you need to turn your office into a Macintosh Office.

People not included.
CONTENTS

FEATURES

<table>
<thead>
<tr>
<th>Feature Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>100</td>
</tr>
<tr>
<td>CIARCIA'S CIRCUIT CELLAR: BUILD THE HOME RUN CONTROL SYSTEM</td>
<td>102</td>
</tr>
<tr>
<td>PART 1: INTRODUCTION</td>
<td>102</td>
</tr>
<tr>
<td>COPROCESSING IN MODULA-2</td>
<td>113</td>
</tr>
<tr>
<td>A MILLION-POINT GRAPHICS TABLET</td>
<td>120</td>
</tr>
</tbody>
</table>

THEMES

<table>
<thead>
<tr>
<th>Theme Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMUNICATION WITH ALIEN INTELLIGENCE</td>
<td>126</td>
</tr>
<tr>
<td>THE QUEST TO UNDERSTAND THINKING</td>
<td>143</td>
</tr>
<tr>
<td>THE LISP TUTOR</td>
<td>159</td>
</tr>
<tr>
<td>PROUST</td>
<td>179</td>
</tr>
<tr>
<td>ARCHITECTURES FOR AI</td>
<td>193</td>
</tr>
<tr>
<td>THE LISP REVOLUTION</td>
<td>209</td>
</tr>
<tr>
<td>THE CHALLENGE OF OPEN SYSTEMS</td>
<td>223</td>
</tr>
<tr>
<td>VISION</td>
<td>245</td>
</tr>
<tr>
<td>LEARNING IN PARALLEL NETWORKS</td>
<td>265</td>
</tr>
<tr>
<td>CONNECTIONS</td>
<td>277</td>
</tr>
<tr>
<td>REVERSE ENGINEERING THE BRAIN</td>
<td>286</td>
</tr>
<tr>
<td>THE TECHNOLOGY OF EXPERT SYSTEMS</td>
<td>303</td>
</tr>
<tr>
<td>INSIDE AN EXPERT SYSTEM</td>
<td>315</td>
</tr>
</tbody>
</table>

BYE. ISSN 0160-5220 is published monthly by McGraw-Hill Inc. Founder: James H. McGraw (1860-1948). Executive, editorial, circulation, and advertising offices: 10 Main St., Peterborough, NH 03458; phone (603) 924-4281. Office hours: Mon.—Thurs. 8:30 AM — 4:30 PM, Friday 8:30 AM — 1:00 PM, Eastern Time. Address subscriptions to BYTE Subscriptions, 960 Main St., Peterborough, NH 03458. Postmaster: send address changes, UPS Form 3355, undeliverable copies, and fulfillment questions to BYTE Subscriptions, POB 596, Martinsville, NJ 08836. Second-class postage paid at Peterborough, NH 03458 and additional mailing offices. Publication number 4932. Subscriptions are $21 for one year, $38 for two years, and $57 for three years in the USA and its possessions. In Canada and Mexico: $23 for one year, $42 for two years, and $59 for three years. Foreign subscriptions and sales should be remitted in United States funds drawn on a U.S. bank. Please allow six to eight weeks for delivery of first issue. Printed in the United States of America.

COVER ILLUSTRATION BY ROBERT TINNEY
REVIEWS

INTRODUCTION ... 334
REVIEWER'S NOTEBOOK by Glenn Hartwig ... 337
The ITT XTRA by John D. Unger .. 338
An IBM PC-compatible system with telecommunications software.
INSIGHT-A KNOWLEDGE SYSTEM by Bruce D'Ambrosia .. 345
Software to help you build an expert system and learn about artificial intelligence.
REVIEW FEEDBACK .. 348
Readers respond to previous reviews.

KERNEL

INTRODUCTION ... 353
COMPUTING AT CHAOS MANOR: OVER THE MOAT by Jerry Pournelle 355
As construction workers descend on Chaos Manor, Jerry battles the flu to look at more new items.
CHAOS MANOR MAIL conducted by Jerry Pournelle .. 373
Jerry's readers write, and he replies.
BYTE WEST COAST: LASERS, OFFICE PUBLISHING, AND MORE by John Markoff and Phillip Robinson .. 379
BYTE U.K.: NEW DATABASE IDEAS by Dick Pountain ... 389
DEAS is a commercial database-generator package in which all data items are related by a system of coordinates abstracted from the real world.
BYTE JAPAN: THE FIFTH GENERATION IN JAPAN by William M. Raike 401
Our Japan correspondent takes note of the International Conference of Fifth Generation Computer Systems, the new Hitachi supercomputer, and software development in the country.
CIRCUIT CELLAR FEEDBACK conducted by Steve Ciarcia .. 408
Steve answers project-related queries from readers.

EDITORIAL: GOLFERS AND HACKERS ... 6
MICROBYTEs .. 9
LETTERS ... 14
FIXES AND UPDATES ... 33
WHAT'S NEW .. 39, 440
ASK BYTE .. 48
BOOKS & NEWSLETTERS ... 58
BOOK REVIEWS ... 65
EVENT QUEUE ... 83
WHAT'S NOT .. 96
BOOKS RECEIved .. 414
PROGRAMMING INSIGHT .. 429
UNCCLASSIFIED ADS ... 493
BYTE'S ONGOING MONITOR ... 494
BOMB RESULTS ... 495
READER SERVICE .. 495

Address all editorial correspondence to the Editor, BYTE, POB 312, Hancock, NH 03449. Unacceptable manuscripts will be returned if accompanied by sufficient first-class postage. Not responsible for lost manuscripts or photos. Opinions expressed by the authors are not necessarily those of BYTE.
Copyright © 1985 by McGraw-Hill Inc. All rights reserved. Trademark registered in the United States Patent and Trademark Office. Where necessary, permission is granted by the copyright owner for libraries and others registered with the Copyright Clearance Center (CCC) to photocopy any article hereon for the first fee of $1.50 per copy of the article or any part thereof. Correspondence and payments should be sent directly to the CCC, 22 Congress St., Salem, MA 01970. Specify ISSN (0360-5280). Copying done for other than personal or internal reference use without the permission of McGraw-Hill Inc. is prohibited. Requests for special permission or bulk copies should be addressed to the publisher. BYTE is available in microform from University Microfilms International, 300 North Zeeb Rd., Dept. PR, Ann Arbor, MI 48106 or 18 Bedford Row, Dept. PR, London WC2R 8DX England.
Subscription questions or problems should be addressed to BYTE Subscriber Service, POB 328, Hancock, NH 03449.
UNIX System V, the new standard in multi-user microcomputer operating systems, gives you high performance features along with the portability and flexibility of a standard.

Cromemco computers can make UNIX System V even better because our systems are designed with UNIX in mind. First of all, we offer UNIX System V with Berkeley enhancements. Then, our hardware uses advanced features like 64K of on-board cache memory and our high speed STDC controller to speed up disk operations—very important with UNIX.

More capability and expandability

We have a high-speed, 68000-based CPU that runs at 10 MHz, coupled with a memory manager that uses demand-paging and scatter loading to work with UNIX, not for it.

We provide room for expanding RAM to 16 megabytes—with error detection and correction—for running even the most sophisticated and advanced microcomputer programs. And the power to accommodate up to 16 users—all with plenty of memory.

But we give you even more.

A complete solution

We give you a choice in systems: the System 100 series, expandable up to 4 megabytes of RAM, and the System 300 series, expandable to 16 megabytes. A high speed 50 megabyte hard disk drive is standard on the systems. And you can expand the hard disk capacity up to 1200 megabytes using standard SMD drives. You can add floating point processing. High resolution graphics. Video digitizing and imaging. Communications through standard protocols. Mainframe interface.

And software support is here to meet your needs. We offer major programming languages, database management systems, communications software, including SNA architecture, X.25 protocol, and Ethernet; even a program to interface to an IBM PC if you need to. And, of course, access to the broad range of standard UNIX applications programs that is growing dramatically every day.

Easy to use.

We also make our systems easier to use, because we install the operating system before we ship your computer. No complicated installation procedures. And the Berkeley enhancements give you the standard UNIX System V operating system, but with the added convenience of these widely acclaimed improvements.

Cromemco’s System 100 and System 300 computers: designed to be the highest performance UNIX systems available anywhere.

Just call or visit one of our UNIX System V Official System Centers to see for yourself. They’ll also give you a copy of our new publication, “What you should know before you buy a UNIX system.” Or contact us directly.

We’ll be glad to show you how to get a better UNIX system.

Corporate Headquarters: Cromemco, Inc., 280 Bernardo Avenue, P.O. Box 7400, Mountain View, CA 94039. (415) 969-4710. In Europe:

Cromemco GmbH, 6236 Eschborn 1, Frankfurter Str. 33-35, P.O. 5267, Frankfurt Main, Germany.
Golfers and Hackers

It must no longer go unremarked that many of the criminals who threaten the foundations of our society are golfers. Golfers persist in attacking our personal, financial, and military security. Many golfers, like the famous one caught in the act in photo 1 (Spiro Agnew), have been involved in extortion, bribery, or other forms of corruption.

Some golfers have been known to hit out of bounds as a pretext for trespassing in residential communities. Such forays easily turn into incidents of voyeurism and burglary.

Violence

Other golfers use the harmless-looking little white balls to inflict injuries on bystanders, propelling the dangerous projectiles at speeds in excess of 120 miles per hour. The danger of head injuries is obvious. Golf’s careless disregard for the safety of other people hardens our children to violence. The idea that shouting a single, obscure word makes it all right to bop some innocent person on the head with a hard projectile has brought our society to the brink of savagery. Last week in a major American city a thug shouted “Fore!” and then mugged a grandmother as if it were the most natural thing in the world.

Golfing Arcades

Perhaps the most distasteful thing about golfers is their use in recent years of golfing arcades. These so-called “driving ranges” allow addicts to rent baskets containing dozens or even hundreds of golf balls so that the addicts can bombard surrounding land at rates previously unthinkable. Although the fences sometimes used around these golfing dens may protect people outside from physical injury, the fences do nothing to stop the spread of the moral rot associated with the trancelike concentration of the golfer on the little white ball. That little ball means more to the golf addict than honor, mother, or country.

The money squandered at golfing arcades, golf courses, and pro shops could buy a personal computer for every child in America or pay off the national debt, depending on national priorities.

National Security Implications

The parliament of King James II of 1457 banned golf because its addicts neglected to practice the use of the crossbow, then the chief means of national defense. Today in this country, golfers neglect the most advanced weapons systems in history. This neglect could nullify all the technical progress recently seen in weapons research. What good is an orbital-beam weapon if the operator is busy selecting a club?

It doesn’t take a genius to see that avoidance of golf is a cornerstone of Soviet military strategy. This gives the Soviets a tremendous advantage in wartime warfare. If the Soviets launch an attack at 3 p.m. EST on a weekday in June, approximately 20 percent of American manpower will be useless-ly deployed in fairways, sandtraps, and rough. Even those in bunkers will be in the wrong kind of bunkers. At 3 p.m. on a weekend, as much as 50 percent of our manpower might be trying to avoid bogies rather than to shoot them down.

Call to Action

Because of the threats that golfers pose to national security and our moral fiber, we are proposing that all golfers be arrested as soon as possible.

Unfair?

If the foregoing attack on golfers seems unfair (and, of course, the analogy is not perfect), it is little more so than the attack in the general press on hackers of another kind—computer hackers. Some national publications have used the term “hacker” incorrectly as a synonym for “criminal.” Hackers are people who play with computers at a technical level because they enjoy doing so. There are many thousands of hackers in North America. A few hackers use their computer skills for pranks, and fewer still use their skills to commit crimes. But the chances are excellent that far more hackers are helping build defenses around databases than trying to penetrate them. If even one percent of hackers started trying to invade our databases, problems would be far more serious than those sensationalized in the general press.

It wasn’t being a golfer that got Spiro Agnew into trouble. Just being a hacker won’t get anyone into trouble, either. Hackers are as entitled to the presumption of innocence as golfers and other common special-interest groups. Hackers are also entitled to the continued correct use of the authentic, distinctive, and colorful name that they gave themselves.

—Phil Lemmons, Editor in Chief
Maxell Gold.

The 3½” microdisk that gives Macintosh™ more to chew on and helps the HP® Touchscreen PC tap your deepest memories.

Whether you’re in search of primeval wisdom, or polishing up financial projections, Maxell makes the Gold Standard microdisk for your computer. In fact, there’s a Gold Standard for virtually every computer made. Maxell floppys are industry leaders in error-free performance. Each comes with a lifetime warranty. And each microdisk is perfectly compatible with your 3½” drive.

Maxell Corporation of America, 60 Oxford Drive, Moonachie, N.J. 07074
Princeton Graphic Systems and Sigma Designs team up to give you a brighter, sharper display.

SR-12 and Color 400. A brilliant combination for super-high resolution graphics and a crisp character display. For a brighter, sharper display with all your IBM PC-compatible software here's a team that can't be beat. The SR-12 super-high resolution RGB monitor from Princeton Graphic Systems and Color 400, the advanced color graphics adapter card from Sigma Designs.

Snap in Color 400. Begin by snapping Color 400 in to your IBM PC, XT, or AT. No switches to set. No cables to confuse. Color 400 gives you a razor sharp 640 x 400 display. It automatically doubles the number of lines on standard 200 line software. Watch your graphics come to life. Enjoy fully formed, monochrome-quality characters in text mode. Just turn on your PC and tune in a whole new world of vibrant color.

Turn on SR-12 for the impressive results. The SR-12 displays your Color 400 image with unmatched clarity and brilliant color. Because the SR-12 combines a .31mm dot pitch tube and a non-glare screen with an incredible 640 x 400 non-interlaced resolution, you get a flickerless image that's as crisp and clean as a personal computer can produce.

See how impressive this state-of-the art image can be on your own PC system. Visit your local retailer today and ask about this new color graphics team. Princeton Graphic System's SR-12 and Sigma Designs' Color 400. An unmatched, brilliant combination.
Macintosh Users Get IBM PC Emulator

Dayna Communications, Salt Lake City, UT, has announced MacCharlie, a hardware-and-software system that allows Macintosh users to run IBM PC software. Two hardware components are included: one adds 10 function keys and an 18-key numeric keypad/cursor pad to the Macintosh keyboard; the other has one or two 5¼-inch disk drives, memory, an IBM-compatible ROM chip, and an 8088 processor, as well as serial and parallel ports and a bus-extender port for an optional expansion chassis. Also included is a Macintosh program that handles all keyboard and display processing—and it can still be used to access the Mac’s desk accessories from within IBM PC applications. MacCharlie emulates all features of the IBM monochrome graphics card except for light-pen support.

The Macintosh can be set atop the matching MacCharlie unit, which adds four inches to the Macintosh’s width and one inch to its height. The Macintosh keyboard fits into the keyboard extender; the numeric keypad can be used as a standard Macintosh numeric keypad when in Macintosh mode. The bus-extender port allows use of an optional expansion chassis so that IBM cards can be installed: with an additional cable, IBM’s expansion chassis can be used. With one 5¼-inch disk drive and 256K bytes of memory, MacCharlie is $1195; with two drives and 640K, it’s $1895.

New Mac Products Shown

Several companies unveiled new products for the Macintosh at the MacWorld Expo in San Francisco. While many new software titles were demonstrated, memory-expansion and hard-disk-drive exhibits drew much attention.

Micro Conversion, Arlington, TX, and Levco Enterprises, Del Mar, CA, both offer complete 512K-byte upgrades for $400, including installation, and also sell uninstalled kits. Levco also sells a $60 kit with all necessary parts except the 256K-byte chips.

In addition to already-announced hard-disk products, new drives from Paradise Systems Inc. and Micro-Design were shown in prototype form. Not surprisingly, most exhibitors used hard disks and 512K-byte Macs to demonstrate their software.

Hayden Software showed Ensemble, an integrated package for the 128K-byte Mac. Database, spreadsheet, graphics, and text-processing features are included in the $300 program, which was developed in France. A number of new database programs were also exhibited at the show.

Paragon Courseware, Del Mar, CA, offers two font sets: a $50 Scientific Typing font and a $100 Electronic Circuits font.

Micro Focus Inc. now offers MacCOBOL, a COBOL development system.

Microsoft Releases Its Own C Compiler

Microsoft has released Microsoft C version 3.0, which replaces the Lattice-developed C previously sold by Microsoft for the IBM PC. Microsoft’s C compiler provides file-sharing and record-locking features for use in network environments; a separate Windows Toolkit will help C programmers develop applications to run under Microsoft Windows. Microsoft says that source and object code can be linked to run directly under MS-DOS or XENIX without modification. Microsoft C is $395.

New LCD Portables Use Backlit Display

Zenith Data Systems is expected to introduce a lap-top portable computer with a backlit liquid-crystal display (LCD). The 16-pound Z-175 will include one or two 5¼-inch disk drives, 256K bytes of RAM, and an 80C88 processor for less than $3000.

To counter the viewing angle and lighting problems caused by LCDs, Morrow Design also changed the 16-line by 80-character display on its Pivot computer, switching to backlit LCDs rather than relying on room light, despite the extra power consumed by the backlighting.
Proteon Adds 80-megabit-per-second Network

Proteon, which markets the ProNET token-passing starrring hybrid local-area network, now offers a faster network. While ProNET used a 10-megabit-per-second data rate, ProNET-80 transfers information at 80 megabits per second. Proteon expects it to be used in applications using multiple minicomputers and mainframes or in connecting graphics workstations with large file sizes. The network will be available for Unibus and Multibus systems for about $8000 per node.

Intel Will Sell CalTech's Hypercube Multiprocessor Computer

Intel has licensed the hypercube computer design from the California Institute of Technology and will sell a computer based on that multiprocessor architecture. The computer consists of a multiprocessor cube and a cube manager. The cube includes 32, 64, or 128 computational nodes, each of which includes an 80286 processor, an 80287 math coprocessor, and 512K bytes of memory. Each node in the cube can communicate with five adjacent nodes and with the cube manager through 10-megabit-per-second communications channels. The cube manager is an Intel 286/310 microcomputer with 2 megabytes of RAM and a 40-megabyte hard-disk drive. Intel claims a performance range from 2.5 to 10 million floating-point operations per second with an efficiency of 80 to 99 percent. Prices range from $150,000 to $520,000.

Torus Prepares to Launch LAN Software

Torus Systems Inc., Redwood City, CA, plans to introduce icon-based user-interface software for IBM PC network environments this month. The product will be based on Icon, the network software it says it has been selling since July in England for systems using 3Com's Ethernet network cards.

The program will include intranetwork electronic mail, telecommunications, file locking and sharing, and other network software features; users will also be able to run standard MS-DOS programs under the environment, either from local disks or from a file server.

NANOBYTES

While announcing the Macintosh Office in late January (see February BYTE, page 120), Apple also announced the Macintosh XL, which is simply the Lisa renamed. . . . Software Publishing Corporation has added XMODEM file-transfer and remote computer access features to its $140 pfs:Access program. . . . Kensington Microware, which advertised its Quick Cursor and Printer Buffer for Apple's Macintosh last year, has canceled development of those products. The company will continue to sell other "Maccessories": . . . Mostek, Toshiba, Hitachi, and AT&T's Bell Labs presented papers on CMOS I-megabit RAM chips at the International Solid State Circuits Conference (ISSCC) in February; IBM, NEC, Mitsubishi, Toshiba, and Fujitsu discussed NMOS I-megabit RAMs. Image-sensor chips were discussed by Mitsubishi and Sharp, and engineers from AT&T's Bell Labs discussed the development of a 32-bit floating-point digital-signal-processing chip. . . . Mother Jones' Son's Software, Reno, NV, is selling MJ, a set of background utility programs. In addition to redefining the PC's keys, MJ expands the IBM's keyboard buffer from 16 to 1000 keys, permits the cursor speed to be changed, and includes a password protection option. MJ costs $30, or $70, including source code. . . . Digital Equipment Corporation acknowledged in February that it had stopped manufacturing the Rainbow personal computer but said it will continue to ship from inventory and plans to announce a new version later this year. . . . Syntech, Canoga Park, CA, has announced a MIDI (musical instrument digital interface) adapter card for IBM, Apple, and Commodore computers. For the Apple or Commodore, the card is $100; for the IBM PC, it's $195. . . . The Library Corporation, Washington, DC, is selling a complete CD ROM system for the IBM PC, including a disc with records for a million English-language books, for $2930. . . . Corvus Systems Inc., San Jose, CA, has replaced its line of Omnidrive hard-disk drives with a single model that can be used with IBM PC; Apple II, III, and Macintosh; DEC Rainbow; and Zenith Z-100 computers. Corvus also dropped prices by about 30 percent. An I1-megabyte drive is now $1995. . . . Hammer Computer Systems Inc., Larkspur, CA, announced E-Z-DOS-IT, a $200 program that allows up to eight MS-DOS programs to execute concurrently. . . . Gold Hill Computers has enhanced its Golden Common LISP interpreter and will also offer a GC LISP compiler in the summer. A large-memory-model version will also be available for the IBM PC AT.
The TI 855 is the only printer with letter quality, draft speed, graphics, plug-in font modules... all for under $1000. (suggested retail price)

Finally, the printer for all PC needs.

The TI 855 printer. The printer for all major PC's. See for yourself today. Call 1-800-527-3500 for the dealer nearest you.

© 1984 TI

This printout was not generated by the TI 855.
interact with a Genius

SUPER XT SYSTEM PLUS®
Ultra-High resolution color card.
Ultra-High (720x400) resolution color monitor.
Gives excellent text resolution.
10x16 character cell.

SUPER XT OFFICE SYSTEM PLUS®
TTL monochrome monitor.
Gives you easy-on-the-eyes viewing.

SUPER XT COLOR SYSTEM PLUS®
High resolution color card and color monitor (640x200).
16 colors.

SUPER XT STARTER SYSTEM PLUS®
Composite monochrome monitor.
Includes color graphics card.
Gives you flexibility to run color and monochrome software.

Inquiry 417 for Dealers. Inquiry 418 for End Users.
The Ultimate in PC/XT® compatibles and peripherals!

The Super XT Plus Series® computer offers the maximum alternatives in the PC/XT compatible market. Alternatives which exceed current PC/XT configurations. Standard features on all Super XT Plus Series computers include: Full Compatibility with IBM PC/XT® machines, 256K expandable to 640K of parity checked memory, Eight (8) Slots, Two (2) Half-Height Floppy disk drives, 10 Mb Hard Disk, Parallel, Serial, Game port and Clock/Calendar. Options include: 5 Mb Removable Hard Disk, 10 Mb Removable Tape Backup System, Memory upgrade to 640K With years of experience in manufacturing and distribution throughout the world—Super Computer gives you the buyer exceptional quality, reliability, and price on all Systems and Peripheral products. Super Computer warrants all Systems and Products for a period of one year. The Super XT Plus Series computers and Peripherals expand to your requirements long after purchase. With features like this you are assured that the right choice is Super Computer. And the right choice is the Super XT Plus Series. The Super XT Plus Series. Interact with the Genius of Super Computer.

SUPER COMPUTER
Manufacturer/Distributor
17813 South Main St. Suite 123, Gardena, CA 90248
213/532-2133

SEE US AT COMDEX-LOS ANGELES
COVERING ADVANCED SYSTEMS

I have been using a Fujitsu Micro 16s (8086 processor) for the past eight months, and I don’t know how I got this far without some kind of micro. I am already planning for my next system, which will have either a 68020, a 16032, or a 32032 processor running UNIX.

Along with Jay Steinbrunn (Letters, August 1984, page 23), I too would like to see BYTE raise its sights and start to cover this future marketplace. Tell us what’s happening out there so I can start putting money into my “purchase” account. I’ve seen a few inklings of this advanced micro technology at some of the shows, namely Saber Technology’s use of the NS32032.

There are probably more of us out there that are interested in these advanced systems than you realize.

William H. Mestler
Tarzana, CA

Phil Lemmons replies:
We will keep an eye out for real 32-bit microcomputers at reasonable prices.

AN APPLE FOR BYTE

I want to compliment you on your special articles on the Apple computers (The BYTE Guide to the Apple Personal Computers, December 1984). The length of the articles showed that your company spent many hours choosing articles that would be enjoyed by the majority of readers. The articles were not only enjoyable, but they were also very informative. They showed an extreme amount of quality, which was the biggest impression I had after reading them. I commend your writers and company on a job well done.

Kevin Hoekman
Lakewood, CA

WHERE CREDIT IS DUE

I have just read your December 1984 issue. I was impressed by “High-Speed Dial-up Modems” by Kim Maxwell (page 179). I found the article very informative and timely. Kim Maxwell’s writing style is always very informative. He also manages to keep the reader interested throughout any articles he writes.

But I must challenge the description of Mr. Maxwell’s accomplishments. Mr. Maxwell is the current president of Maxwell-Vadic. He also holds a philosophy degree from Stanford. The remainder of the description is not correct.

Maxwell-Vadic was founded by seven individuals: Ted Saunders, Bob Stires, Jay Tutt, Tom McShane, Jim Barrick, Larry Taylor, and Kim Maxwell. The company was then known as Vadic. The ideas and circuits used to start Vadic were Ted Saunders’.

The very first full-duplex 1200-bps modem was invented and designed by John A. C. Bingham in 1972 during his employment at Vadic. Bingham must be given credit where credit is due. Mr. Bingham’s talents and contributions need to be recognized.

This is not meant to take anything away from Kim Maxwell. It is just to set the record straight. Mr. Maxwell’s contributions to the world of data communications are numerous, too numerous to list. He has peers in this group, but very few.

An engineer and investor at Vadic from November 1969 to November 1984, I saw most of the events during that period and was party to many. I also worked for both men and admire their talents and contributions to data communications.

Duane Marcroft
San Carlos, CA

WORDSTAR’S BAK EXTENSION

I read Vincent Alfieri’s “WordStar as a Programming Tool” (November 1984, page 505) with some enjoyment. I have long used WordStar for both program development and correspondence, and I agree with Dr. Alfieri’s verdict that it is a program hard to beat in power and versatility. Even after several years of using WordStar, including writing patches and modifications to the program itself, it still manages to surprise me with its power.

I know that the problem that Dr. Alfieri has experienced with limited disk space is frustrating. I have used the same problem myself. While my ultimate solution was to move to 8-inch disks, there are more immediately applicable fixes. The problem stems from the fact that WordStar saves the old version of an edited file, changing the file extension to BAK. Having rescued program files from otherwise hopeless oblivion by the use of this feature, I am quite willing to put up with its rather extravagant use of disk space.

It is an almost undocumented feature of WordStar that allows you to specify a disk drive to receive all work files and the final edited file other than the drive on which the original file resides. This can be done in either of two ways. From the Opening Menu, simply choose “D” or “N”, as appropriate, and when asked for the name of the file to edit, reply with the filename, but follow it with a space and a drive designator. For example, to edit the file TEST.DOC, which resides on drive B, and save the final, edited version on drive A, simply choose “D” or “N”, and when asked for the name of the file to edit, reply with the filename, but follow it with a space and a drive designator. For example, to edit the file TEST.DOC, which resides on drive B, and save the final, edited version on drive A, simply choose “D” or “N”, and when asked for the name of the file to edit, reply with the filename, but follow it with a space and a drive designator. For example, to edit the file TEST.BAK on drive B, and the file TEST.DOC on drive A, simply choose “D” or “N”, and when asked for the name of the file to edit, reply with the filename, but follow it with a space and a drive designator. For example, to edit the file TEST.BAK on drive B, and the file TEST.DOC on drive A, simply choose “D” or “N”, and when asked for the name of the file to edit, reply with the filename, but follow it with a space and a drive designator. For example, to edit the file TEST.BAK on drive B, and the file TEST.DOC on drive A, simply choose “D” or “N”, and when asked for the name of the file to edit, reply with the filename, but follow it with a space and a drive designator.

An an engineer and investor at Vadic from November 1969 to November 1984, I saw most of the events during that period and was party to many. I also worked for both men and admire their talents and contributions to data communications.

WILLIAM H. MESTLER
Tarzana, CA

KEVIN HOEKMAN
Lakewood, CA

L·E·T·T·E·R·S
The nicest thing about Maynard's hard drives is their humility. They never draw attention to themselves. They simply do what you tell them to do, so you can keep your mind on your work, not your hardware. Unsurpassed performance. Versatile design. Superb reliability. We give you an awful lot to forget about.

Internal, external, or portable hard drives from 10 to 30MB.

Maynard Electronics
430 E. SEMORAN BLVD., CASSELBERRY, FL 32707
305/331-4402
Inquiry 253
FINALLY! MAIL ORDER SERVICE YOU CAN DEPEND ON!

PROFESSIONAL SUPPORT PLUS RELIABLE PERSONALIZED SERVICE
AND WE'LL STILL BEAT MOST PRICES IN THIS MAGAZINE!

PROFITSTAR PROPaket $243
SYMPHONY (C.F.) $409
SIDEKICK $35
SUPERCALC 3 $193
TAX WIZARD $59
LOTUS 1-2-3 $295

Free UPS shipping on orders over $1,000.00
CALL FOR PRODUCTS YOU DON'T SEE HERE!
CALL FOR OUR FREE CATALOG
TO ORDER CALL TOLL-FREE:
(800) 235-3020 (USA)
(800) 235-3021 (CA)
(415) 382-9085

FREE VOLUME DISCOUNTS AVAILABLE
SALESMAN'S BEST FRIEND

(continued)
Our ProModem 1200 Makes Smart Modems Look Dumb

Send Or Receive 50 Pages Of Text Without Tying Up Your Computer

No wonder Smart Modems, Cats, and Maxwell's cringe when compared to our $495 ProModem 1200, an expandable 1200/300 baud modem for use with all personal computers. It costs less, but is smarter than the rest.

And when you add our $99 Communications Buffer and Alphanumeric Display options, ProModem 1200 becomes a veritable genius!

Imagine, you unplug your computer, take it home for the weekend, and while you're gone, ProModem 1200 answers the phone, collects messages up to 50 pages long, sends out electronic mail, and displays all events with the exact time of each. Thanks to ProModem 1200, expensive, hard-to-use communications software isn't needed. The communications is in the modem, and electronic mail becomes a background function, where it belongs.

Simple To Install And Use
Our Communications Buffer is a 4 by 6 card that plugs into the ProModem 1200 motherboard. It comes with 2K of CMOS battery backed-up memory, expandable to 64K. Part of the memory is used as a dialing directory with the balance reserved for storage. For $99 more, a front panel Alphanumeric Display can be added to show time, date, and 24 status and help messages. These two powerful options can be included at time of purchase, or can be added later.

Hayes Compatible
ProModem 1200 is Hayes compatible but that's where the resemblance ends. Our standard $495 modem includes a real-time clock/calendarse. Hayes charges hundreds more for a Smart Modem with a time-base. Nor do they have electronic mail capability at any price.

ProModem 1200 contains a battery backed-up real-time clock/calendar, a large dialing directory and can send or receive messages up to 50 pages long without tying up the computer.

Send for complete details and the name of the Prometheus dealer nearest you.
New Release

4.1

Microstat

We've continually improved Microstat since it was introduced in 1978, and the latest release includes many new features you've wanted.

- Interactive and Batch Processing
- Expanded Data Management
- Subsystem with New Data Transforms
- Reading data files created by other programs
- 3 types of Analysis of Variance
- Time Series Crossplots and Chi-Square
- Factorials, Permutations, and Combinations
- Hypothesis Tests

Microstat's algorithms have been designed to prevent numeric overflow and yield unbiased accuracy. Microstat's price is $125.00 (excluding the manual, available separately for $5.00) and is available for the Z80, 8086, 8088 CPUs and CP/M, CP/M86, MS-DOS, and PC-DOS. To order, call or write.

6413 N. College Ave. • Indianapolis, IN 46220
(317) 255-6476

Trademarks: Microstat (Ecsoft), CP/M (Digital Research), MS-DOS (Microsoft), PC-DOS (IBM), Z80 (Zilog), 8086, 8088 (Intel).

TOTAL CONTROL:

FORTH: FOR Z-80®, 8086, 68000, and IBM® PC
Complies with the New 83-Standard

- GRAPHICS
- GAMES
- COMMUNICATIONS
- ROBOTICS
- DATA ACQUISITION
- PROCESS CONTROL

- FORTH programs are instantly portable across the four most popular microprocessors.
- FORTH is interactive and conversational, but 20 times faster than Basics.
- FORTH programs are highly structured, modular, easy to maintain.
- FORTH allows direct control over all interrupts, memory locations, and I/O ports.
- FORTH allows full access to DOS files and functions.
- FORTH application programs can be compiled into turnkey COM files and distributed with no license fee.
- FORTH Cross Compilers are available for FOCUM or disk based applications on most microprocessors.

FORTH Application Development Systems include interpreter/compiler with virtual memory management and multi-tasking, assembler, full screen editor, decompiler, utilities and 200 page manual. Standard random access files used for screen storage, extensions provided for access to all operating system functions.

- Z-80 FORTH for CP/M or MS-DOS, $100.00
- 8080 FORTH for CP/M or MS-DOS, $100.00
- 8086 FORTH for CP/M or MS-DOS, $125.00
- 8088 FORTH for CP/M or MS-DOS, $125.00

FORTH + Systems are 32-bit implementations that allow creation of programs as large as 1 megabyte. The entire memory address space of the 68000 or 8086/88 is supported directly.

- PC FORTH $125.00
- 8080 FORTH + for CP/M or MS-DOS $250.00
- 8086 FORTH + for CP/M or MS-DOS $250.00
- 8088 FORTH + for CP/M or MS-DOS $250.00
- 68000 FORTH + for CP/M or MS-DOS $250.00
- 68000 FORTH + for CP/M or MS-DOS $250.00

Extension Packages available include: software floating point, cross compilers, INTEL 88787 support, AMG 9511 support, advanced color graphics, custom character sets, symbolic debugger, telecommunications, cross reference utility, B-tree file manager. Write for brochure.

LETTERS

NEWS FOR SORCERER OWNERS

May I suggest that BYTE try to mention the many orphans that have arisen in the (continued)
Introducing Reach!™

Our new intelligent 1200 baud modem fits where the old standard can't—into a single short slot on the IBM® PC-XT or Portable. Or any available expansion slot on the PC, AT and PC-compatibles. And it's packed with advanced features. The Reach! half-card design is about a half a pound lighter too.

So it makes a much nicer traveling companion than old fashioned external modems or heavier, long slot internal modems.

Tapping into services such as news from Dow Jones®, information from THE SOURCE™ and electronic mail delivery from MCI Mail™ and performing PC-to-PC data transfer has never been more convenient.

AST's reputation is built on quality products, quality support and quality service. Our complete documentation makes Reach! exceptionally easy to install and use, but if it's not enough we're always here to help.

Reach! from AST—the short and sweet solution to your telecomputing needs. Call our Customer Information Center (714) 863-1333 Ext. 5249 for more information and dealer locations. Or write, AST Research, Inc., 2121 Alton Ave., Irvine, CA 92714 TWX: 753699AST UR.

Sweet Performance

Crosstalk XVI Software:
The industry's best async communications software and its excellent documentation is included at no extra charge.

High Noise Immunity And Low Bit Error Rate: Insures data integrity even at 1200 bps over noisy, low-grade phone connections, eliminating the inconvenience and cost of retransmission because of noise-induced data errors.

On-Board Speaker: Lets you hear all the signals, just as if you were dialing the phone yourself, a convenient indication of proper operation.

Remote Digital Loopback: Used with a remote site, these diagnostics provide "real world" data transmission testing over the phone line.

Hayes® Compatibility: Opens up a world of popular, immediately available software to you.

Telecommunications Flexibility: Enjoy a choice of 110, 300 or 1200 baud speeds, Bell 103, 113 and 212A compatibility, automatic-dial, answer and speed selection, and both half- and full-duplex communications.

Call Progress Monitoring: Provides complete knowledge of communications progress, monitors dial tone (important in offices where you must dial "9" first), ringing, busy signal and automatically disconnects no answer calls.

Reach™ trademark of AST Research, Inc. IBM®, PC, PC-XT, Portable, PC & PC-AT trademarks of International Business Machines Corp. IDEAL™ trademark of IDEAL of America, Inc. THE SOURCE™ trademark of Source Monetizing Corporation, a subsidiary of The Reader's Digest Association, Inc. MCI Mail™ trademark of MCI Communications Corp. Hayes™ trademark of Hayes Microcomputer Products, Inc. Crosstalk XVI™ trademark of Ashland-Talke Symphony™ trademark of Lady Development Corp. Coaxial™ trademark of International Inc.

Inquiry 5 for Dealers. Inquiry 6 for End Users.

APRIL 1985 • BYTE
Before Microsoft® Word you had to choose between quick and clean. Producing professional looking documents meant going through draft after draft after draft.

The new Microsoft Word is different. You don't have to practice to make perfect. You can use the full power of the IBM® PC to eliminate the drafts. And give your ideas sudden impact.

Quick quality.

With Word, what you see on the screen is what you'll see on the page. You can preview and design documents. And instantly see the effect of your changes. (No more playing blindman's bluff between the screen and the printer.) Now you can breathe vitality into blocks of lifeless text.
Highlight pithy phrases, flag important words, drive home conclusions. With **boldface**, *italics*, *superscript* and *subscript*. (No more hieroglyphic codes.)

Microsoft Word gets unmatched professional quality from dot matrix, daisy wheel and ink jet printers. And on the new laser printers, it produces stunning results.

It lets you execute commands and edit text faster, with simple keystrokes or the optional Microsoft Mouse. And, Microsoft lets you execute commands and edit text faster, with simple keystrokes or the optional Microsoft Mouse. And, **MICROSOFT.** The High Performance Software.

Word has windows so you can have multiple documents on the screen, and you can easily cut and paste between them.

Word also includes a computer-based training disk that gets you up to speed quickly. Plus, a new comprehensive manual.

100% money-back guarantee.

You don't have to take our word about Word. Buy the new Microsoft Word from a participating dealer and if you're not satisfied for any reason, return it to the dealer within 30 days and he'll give you your money back.*

How do we get higher performance out of the PC? Simple, our MS-DOS® operating system tells the IBM PC how to think. And our BASIC is the language spoken by nine out of ten microcomputers worldwide.

So, if you want to clean up your act, act quick. Call (800) 426-9400. In Washington State, Alaska, Hawaii and Canada, call (206) 828-8088. And ask for the name of your nearest Microsoft dealer.

*Offer good in the United States on IBM PC versions of Microsoft Word purchased on or before August 31, 1983.
There are many micros that have no support now, and users who still have them are looking for help.

Ah, nostalgia! Remember Superbrain, TRS Model I, IMSAI, Videobrain, and Exidy Sorcerer? Some people still have them but think they are frozen in time.

For some machines, that is not so. The Exidy Sorcerer was still being made in 1984, under license in Holland. And there are still many fan magazines with software and hardware notes being published.

For the Exidy Sorcerer here are some of the magazines being published. (Write for subscription rates and possibility of back issues.)

European Sorcerer Club
Back issues only
Died with issue 43 in June 1984
Index in issue 26

Colin Morie
32 Watchyard Lane
Formby
Near Liverpool L37 3JU
England

Sorcerer Group International
do Don Gottwald
POB 33
Madison Heights, MI 48071
U.S.A.

Back issues from Gottwald at:
19967 Rosin Dr.
Mt. Clemens, MI 48044
U.S.A. (about $18 per volume for vols. 2 to 5)

now **Sorcerer Group International**
(8 times a year)
Tommy Stokes (or Ed King)
Route 1, Box 121
Eveton, AR 72633
U.S.A.

Sorcerer Computers Users of Australia
(12 a year/Airmail)
Box 2402
Melbourne, Victoria 3001
Australia

Southern California

Sorcerer Users Group
(4 to 6 a year casually)
do Cary E. Stewart
529 South Beachwood Dr.
Burbank, CA 91506
U.S.A.

ISIS (12 a year)
do Maurice Dow
84 Camberley Crescent
Brampton, Ontario L6V 3L4
Canada

Sorcerer User Group of South Australia (12 a year)
do Don Ide
14 Scott Rd.
Newton, South Australia 5074
Australia (Index in issue 51)

Exidy Sorcerer Gebruikers Group
(6 a year)
Published in Dutch with full English cover-to-cover translation a month later
Index in issue 15

Redactie ESGG
P0 Postbus 510
NL-1000 Amsterdam
The Netherlands

Sorcerer User Group Schweiz
Monthly in German
CH 3038 Kirchlindach
Switzerland (Index in issue 50)

Sorcerer Computer Users of New Zealand
Monthly, some Sorcerer material
do Selwyn Arrow
POB 6210
Auckland, New Zealand

Computer Collectief
Amstel 312 (to Carre)
NL-1017 AP Amsterdam
The Netherlands

Softdeal
Postbus 85
NL-1135 ZJ Edam
The Netherlands

Exidy Sorcerer Gebruikers Group
(6 a year)
Published in Dutch with full English cover-to-cover translation a month later
Index in issue 50

Redactie ESGG
P0 Postbus 510
NL-1000 Amsterdam
The Netherlands

Sorcerer User Group Schweiz
Monthly in German
CH 3038 Kirchlindach
Switzerland (Index in issue 50)

Sorcerer Computer Users of New Zealand
Monthly, some Sorcerer material
do Selwyn Arrow
POB 6210
Auckland, New Zealand

Computer Collectief
Amstel 312 (to Carre)
NL-1017 AP Amsterdam
The Netherlands

Softdeal
Postbus 85
NL-1135 ZJ Edam
The Netherlands

European Sorcerer Club
Back issues only
Died with issue 43 in June 1984
Index in issue 26

Colin Morie
32 Watchyard Lane
Formby
Near Liverpool L37 3JU
England

Sorcerer Group International
do Don Gottwald
POB 33
Madison Heights, MI 48071
U.S.A.

Back issues from Gottwald at:
19967 Rosin Dr.
Mt. Clemens, MI 48044
U.S.A. (about $18 per volume for vols. 2 to 5)

now **Sorcerer Group International**
(8 times a year)
Tommy Stokes (or Ed King)
Route 1, Box 121
Eveton, AR 72633
U.S.A.

Sorcerer Computers Users of Australia
(12 a year/Airmail)
Box 2402
Melbourne, Victoria 3001
Australia

Southern California

Sorcerer Users Group
(4 to 6 a year casually)
do Cary E. Stewart
529 South Beachwood Dr.
Burbank, CA 91506
U.S.A.

ISIS (12 a year)
do Maurice Dow
84 Camberley Crescent
Brampton, Ontario L6V 3L4
Canada

Sorcerer User Group of South Australia (12 a year)
do Don Ide
14 Scott Rd.
Newton, South Australia 5074
Australia (Index in issue 51)

Exidy Sorcerer Gebruikers Group
(6 a year)
Published in Dutch with full English cover-to-cover translation a month later
Index in issue 15

Redactie ESGG
P0 Postbus 510
NL-1000 Amsterdam
The Netherlands

Sorcerer User Group Schweiz
Monthly in German
CH 3038 Kirchlindach
Switzerland (Index in issue 50)

Sorcerer Computer Users of New Zealand
Monthly, some Sorcerer material
do Selwyn Arrow
POB 6210
Auckland, New Zealand

Computer Collectief
Amstel 312 (to Carre)
NL-1017 AP Amsterdam
The Netherlands

Softdeal
Postbus 85
NL-1135 ZJ Edam
The Netherlands

Sorcerer User Group Schweiz
Monthly in German
CH 3038 Kirchlindach
Switzerland (Index in issue 50)

Sorcerer Computer Users of New Zealand
Monthly, some Sorcerer material
do Selwyn Arrow
POB 6210
Auckland, New Zealand

I won't give prices since they will change and many of the above don't know rates to the U.S. since no one has asked before.

Here are some software sources for the Sorcerer that you might want to keep on file:

Arrington (Ensign) Software
7337 Northview
Boise, ID 87304
U.S.A.

Howard Arrington
Suite E, 2312 North Cole Rd.
Boise, ID 87304
U.S.A. (This is an old address.)

COMTRO Software Development
Rec. Bonsel Str. 10
NL-6433 EP Hoensbroek
The Netherlands

Roger Hagan
1146 Fairview Ave. North
Seattle, WA 98109

System Software
I Kent St.
Bicton, Western Australia 6157
Australia

Nigel Yeo
24 Bodmin Ave.
Macclesfield, Cheshire
England

Calcom BV
Nijverheidstraat 22
NL-2802 Al Gouda
The Netherlands

Softdeal
Postbus 85
NL-1135 ZJ Edam
The Netherlands

Computer Collectief
Amstel 312 (to Carre)
NL-1017 AP Amsterdam
The Netherlands

Ion Weather
Morristown Municipal Airport
Morristown, NJ 07960
U.S.A.

Tercentenial Technical
70 Tercentenial Dr.
Billerica, MA 01821
U.S.A.

South Valley Electronics Inc.
Suite E, 2110 Walsh Ave.
Santa Clara, CA 95050
U.S.A.

Mentzer Electronics
590 South Hill Boulevard
Daly City, CA 94014
U.S.A.
I happened on Mr. Dennis Dom's letter ("A Call for Better Apple Support." September 1984, page 14) and but for near-identical circumstances, I would have dismissed it as one of those individual quirks in product support. I fully endorse Mr. Dom's comments. His perceptiveness of the ProDOS documentation problem is particularly commendable when one considers the fact that he is experienced in DOS 3.3!

In early March of this year our information-processing group decided that a small "user-friendly" micro might provide quick turnaround for some of our project record-keeping applications. Although the senior program manager was a Kaypro owner, he carefully avoided imposing his own preference on the organization. An Apple II+ owner made a seemingly sound recommendation that we get an Apple IIe with duodisk and a small dot-matrix printer.

Two days later, the Apple IIe arrived with its display, an Epson printer, and the duodisk. VisiCalc and two PFS packages also were provided to get things started. A seeming ton of books accompanied the units. A quick pilot run with VisiCalc and PFS was made, and a short training session was held for floor engineers and project managers.

People experienced losses of whole files, mutilation of data, and I/O errors using PFS. The possibility of human error was explored, and new data backup procedures were instituted. Repair of the duodisk decreased the variety of I/O errors but did not eliminate them. Substitution of the duodisk with two standalone drives did not help. The Apple technician blamed the problem on PFS. The salesman who had originally sold us the Apple and the software then sold us Appleworks. The users read Appleworks documentation, more training sessions were held, new files were established, data was reentered. Within a day there were more I/O errors and losses of data reported. The Apple dealer then replaced the main logic board and again worked on.

The advantages are clear. A BayTech port contender adds more users to your computer and does it at a price that's far less than expensive hardware or software modifications. A Model 5218B, for example, doubles your users by allowing 12 terminals to contend for 6 ports. Simple to set up and use, with easy-to-understand messages, the port contenders feature protocol conversion; user queue; disconnect by operator, computer or time-out; hardware or X-ON/X-OFF handshaking; and more.

Seven models, $629 to $1,750. (800) 523-2702

Bay Technical Associates, Hwy. 603, P.O. Box 387, Bay Saint Louis, Mississippi 39520
(601) 467-8231 Telex: 910331618 (BAY TECH)
the duodisk. This finally solved the problem (both Appleworks and PFS work well now).

A task request arrived on my desk to write some printer set-up utilities and a project accounting package for the Apple. Coming from a CP/M-86, TRSDOS, and IBM-PC/AT background, I didn't instantly see the relationship between the Apple DOS and BASIC. The undocumented "loading of integer BASIC" was disturbing. My first effort on the printer routines worked well enough (after I found that I/O had to be directed to physical card slots and that the Apple did not support logical devices). Since the design for the project accounting task involved multiple files and several large arrays I broke out the books. As in Dennis Doms's case, we had received a ProDOS users manual and an Apple IIe owners manual. These had no substantive information that documented the machine or Apple's software. The paper quality was nice; the indexes and tables of contents had errors. The ProDOS manual talked about differences from DOS 3.3 and seemed aimed at people familiar with Apple DOS. The ton of books also included books for the 80-column card, the Apricot printer card, a duodisk manual, a pamphlet for the display, and several excellent manuals for VisiCalc, PFS, and the Epson printer.

I called our dealer and was told that we deserved a ProDOS Programmer's Manual since it had been out of stock when we bought the machine. He did not have one but would special-order one for us. I described my needs for documentation and was told I would need the Applesoft and DOS 3.3 manuals and that these were extra-cost items. I was told to ignore all references to Integer BASIC since it was an "archaic tongue" and no documentation was in print for it. (Undocumented modules of an operating system bother me!) The pricing was confused, but a total of $70 plus tax finally went on our purchase order. We soon received a bill. Two trips to the dealer and multiple phone calls over a six-week period failed to produce the manuals. There was talk of them being in a warehouse, then being back-ordered from Apple, then being out of print. Finally, with a Friday promise that they would be mailed on Monday, Accounting paid the bill. Two weeks later the dealer produced an explanation that the required manuals were unavailable from Apple and there was no projected delivery date.

Two months after the first phone call about documentation, our "free" ProDOS Programmer's Manual arrived. It was much as Mr. Doms describes—dependent on the DOS 3.3 and Applesoft documentation. The senior program manager visited the Apple dealer and with some hostility offered an invitation to small-claims court. The salesman then gave us his personal copies of the DOS 3.3 and Applesoft manuals. We then considered that the purchase order had been filled.

Our company's purchasing agent will ensure that no more business is directed to the Apple dealer who sold us the Ile. Apple's viability in the microcomputer business is doubted by every engineer, project manager, and technician who has been associated with our Ile. We now have three more Kaypro owners. At the office I'm pleased by the Displaywriter with its

If lightning still scares you, you're using the wrong file manager.

Be sure. Btrieve™.

Lightning may strike. But it doesn't have to destroy your database.

Btrieve™ file management offers automatic file recovery after a system crash. So accidents and power failures don't turn into database disasters. Your Btrieve-based applications will come up when the lights come back on.

Fast. Btrieve is lightning fast, too. It's written in Assembly language especially for the IBM PC™. And based on the b-tree file indexing system, with automatic balancing and electrifying access speed.

The standard for networking. Btrieve/N (network version) sets the standard for the industry's most popular LANs, including IBM's PC Network.

Fully-relational data management. SoftCraft's entire family of products gives you a complete, fully relational database management system. Btrieve™ adds report writing capabilities. Xtrieve™ speeds users through database queries with interactive menus.

For professional programmers. Btrieve is the fast, reliable answer for all your application development. In any development language—BASIC, Pascal, Cobol, C, Fortran, and APL. With Btrieve, you can develop better applications faster. And know they'll be safe if lightning strikes.
If you don’t have a Hercules Graphics Card, you could end up looking like this:

“I know, because one day it happened to me...”

“I was running some routine tests on a non-Hercules monochrome graphics card when I was struck by a severe case of low resolutionitis. I’m the president of Hercules and that’s me exhibiting the symptoms of the disease in its advanced stages. Not a pretty sight, is it?

“What causes low resolutionitis? Experts point to ordinary monochrome graphics cards with coarse, hard-to-read graphics. A bad case of eyestrain may develop if action is not taken immediately.

“Fortunately for me, a Hercules Graphics Card was nearby. A quick change brought soothing 720 x 348 graphics. That’s twice the resolution of ordinary 640 x 200 graphics cards.

“Including Microsoft Flight Simulator, now Hercules compatible!

“Oh, and don’t forget that a parallel printer port is standard on the Hercules Graphics Card, not an extra cost option.

“Now, if you’re worried about buying a new product that hasn’t had all the bugs worked out, relax. Hercules has sold more monochrome graphics cards for the IBM’ PC, XT’ and AT’ than anyone else in the world.

“So... you’re convinced that you should buy a Hercules Graphics Card. Now, steer clear of cheap imitations. You may save a few bucks, but you won’t get all of these five essential features which only Hercules has:

“1) A safety switch that helps prevent damage to your monitor, 2) the ability to keep an IBM or Hercules Color Card in your system, 3) the ability to use the PC’s BASIC to do graphics, 4) a Hercules designed chip that eliminates 30% of the parts that can go wrong, and 5) a two year warranty, because we think reliability is something you should deliver and not just talk about.”

Call 1-800-532-0600 Ext 408 for the name of the Hercules dealer nearest you and we’ll rush you our free info kit.
p-System. I am quite happy with my TRS-80 at home. Recent clamorings by my offspring for Macintoshes coincided with the lie problems. Both kids and their friends understand why I hesitated then made another choice for them.

This is my first experience with an Apple. I have no personal need to make it more detailed or extended in time. I find the documentation to be shallow, the I/O implementation crude (even when measured against 1980 standards), and the service haphazard. I more carefully assess what Apple owners and users have to say about their machines.

My feelings might not be quite so strong if only the hardware or the documentation had been screwed up. The infant mortality in the hardware combined with documentation hassles have heavily underscored the flaky sales support and the mediocrity of the operating system and language. Color Apple with a worm in it!

By contrast, Digital Equipment Corporation provides us with singularly outstanding support for our Rainbow. That system is supported by an excellent certification program for third-party software. If DEC says that a particular package such as CTOS or Lotus 1-2-3 will run on the Rainbow, you can bet the company has tried it and within the range of their tests has found no implementation bugs. Our IBM Displaywriters use CP/M-86 and UCSD p-Systems that have outstanding support from D/R and Softtech as well as IBM. My TRS-80 came with a language reference manual and DOS manual as well as owner/operators manuals. The additional technical reference manuals were readily available from the dealer at nominal charges. Every Tandy manual was well written, pretty much stand-alone, and had a good reference appendix. The indexes and table of contents did not contain errors in page numbers.

Just out of curiosity, I priced documentation at our local Commodore dealer and at a nearby Tandy Computer Center. Much of it is free with the system, and the prices on the remainder are moderate—what’s more, it’s readily available.

PAUL M. HINE
San Diego, CA

When a manufacturer sells a computer and withholds information on that computer, the computer’s worth is in direct proportion to the amount of information one receives. No information means the computer is worthless. A computer is unique in this regard. If you buy a car, someone can always drive it or fix it without a shop manual. Try programming a computer to do something you want it to do without information on the I/O ports or the memory map. Try getting a computer fixed that no one has schematics for. Of course, somebody can always charge you three or four hundred dollars and replace the entire main circuit board when only a twenty-cent chip may be defective. You don’t need a schematic to do that. After all, the manufacturer makes a lot of money selling you a new circuit board for $400 when you don’t need one.

I have an Apple IIc. I was originally interested in the compact Apple IIc because of its built-in disk drive and its ability to be powered from a 12-volt car battery. Apple computer promised some day Real
A few smart reasons to buy our smart modem:

Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Ven-Tel 1200 PLUS</th>
<th>Hayes 1200 PLUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200 and 300 baud, auto-dial, auto-answer</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Compatible with "AT" command set</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Can be used with CROSSTALK-XVI or Smartcom II software</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Regulated DC power pack for cool, reliable operation</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Eight indicator lights to display modem status</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Speaker to monitor call progress</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Attractive, compact aluminum case</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Two built-in phone connectors</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Compatible with The Source and Dow Jones News Retrieval</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Unattended remote test capability</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Phone cable included</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Availability</td>
<td>Now</td>
<td></td>
</tr>
</tbody>
</table>

Price

<table>
<thead>
<tr>
<th></th>
<th>$499</th>
<th>$699</th>
</tr>
</thead>
</table>

The Ven-Tel 1200 PLUS offers high speed, reliable telecommunications for your personal computer or terminal. Whether you use information services or transfer data from computer to computer, the Ven-Tel 1200 PLUS is the best product around. Available at leading computer dealers and distributors nationwide.

Also from Ven-Tel: internal modems for the IBM and HP-150 Personal Computers with all of the features of the 1200 PLUS.

You choose. The Ven-Tel 1200 PLUS—the smartest choice in modems.

Ven-Tel Inc.
2342 Walsh Avenue
Santa Clara, CA 95051
(408) 727-5721

Crosstalk is a trademark of Microstuf; Hayes and Smartcom II are trademarks of Hayes Microcomputer Products.
Borland’s SideKick
Software Product of the Year

SideKick is InfoWorld Software Product of the Year. It won over Symphony. Over Framework. Over ALL the programs advertised in this magazine. Including, of course, all the “fly-by-night” SideKick imitations. SideKick Simply the best.

Here’s SideKick running over Lotus 1-2-3. In the SideKick Notepad you’ll notice data that’s been imported directly from the Lotus screen. In the upper right you can see the SideKick Calculator.

Jerry Pournelle, BYTE: “If you use a PC, get SideKick. You’ll soon become dependent on it.”

Garry Ray, PC Week: “SideKick deserves a place in every PC.”

Charles Petzold, PC Magazine: “In a simple, beautiful implementation of WordStar’s block copy commands, SideKick can transport all or any part of the display screen (even an area overlaid by the notepad display) to the notepad.”

Dan Robinson, InfoWorld: “SideKick is a time-saving, frustration-saving bargain”

Symphony, Lotus & Lotus 1-2-3 are trademarks of Lotus Development Corp. dBase & Framework are trademarks of Ashton-Tate. WordStar is a trademark of Micropro International Corp. SideKick is a trademark of Borland International.
Planning to deduct your PC? The IRS just made it tougher.

According to the Tax Reform Act of 1984, if you want to take a business deduction for your personal computer, you now must prove you use it more than half the time for business. And that proof must be in the form of a daily log.

You can waste valuable time each day recording your use. Or you can use WorkLog to do the job in seconds.

Considering how much your time is worth, isn’t $59.95 a worthy investment?

To order call (206) 526-0711. Or ask for our brochure that describes the power and elegance of this state-of-the-art software. WorkLog makes it easy.

WorkLog
The essential time-saver.

For IBM-PC, XT, AT, and compatibles. Requires 128k and any version of PC-DOS.

ProfitWare/5207 Ravenna Ave. N.E./Seattle, WA 98105

LETTERS

Soon Now to have a liquid crystal display that would draw very little power and operate from a battery.

The first snafu I ran into was when I tried to find out from the Apple IIc manuals what the pin connections were for the nonstandard serial-port connector. No luck. Nowhere in the manuals that came with the computer could I find the connections for the serial interface.

The next thing I did was call Apple long distance. I put on hold for five minutes listening to some music. Needless to say, it was not high-fidelity. Finally, Patty came on the line and told me I had to call another long-distance number in another part of the country. Get this, I am in L.A. Well, I called that number and an answering machine came on the line telling me to leave my name and phone number and my question and they would get back to me within 24 hours. Since I am in and out of the office all day and no one else at my office is knowledgeable enough to ask intelligent technical questions about RS-232C interfaces, that might be a problem. If Apple personnel happened to call back while I was out of the office, at least another 24 hours would go by before I could ask the first question. At this rate, a year or more would go by before I could write this assembly-language program to talk to the Apple IIc. The answering machine also advised me to contact my nearest dealer.

We have a lot of Apple dealers here in L.A. I contacted three of them. None of them knew anything more about it than I did. One advised me to go to all of the bookstores and get a book on the Apple IIc. I did just that; in fact, I bought three books. So far, I have spent at least 40 hours of my valuable time, $40 on books, and $50 on long-distance phone calls. Now I know the pinouts on the connectors, but that is all the useful information those three books could tell me. Absolutely nothing else of any value. No memory locations for setting up the RS-232C interface chip or how to write code to send or receive data from the RS-232C interface in assembly language or BASIC.

Has Apple management grown so greedy that it doesn’t want people to buy any device to hook up to an Apple IIc unless they buy it from Apple? Does Apple want anyone to write and sell software other than Apple Computer? Is Apple management so paranoid that someone will copy the IIc that it is afraid to document the ROM? Why does Apple have an army of lawyers ready to sue (continued)
Systemaster II. Responding to market demand for speed and increased versatility, Teletek is proud to announce the availability of the next generation in 8-bit technology — the new Systemaster III. The Systemaster II will offer two CPU options, either a Z80B running at 6 MHz or a Z80H running at 8 MHz, 128K of parity checked RAM, two RS232 serial ports with on-board drivers (no paddle boards required), two parallel ports, or optional SCSI or IEEE-488 port. The WD floppy disk controller will simultaneously handle 8” and 5¼” drives. A Zilog Z-80 DMA controller will provide instant communications over the bus between master and slave. Add to the DMA capability a true dedicated interrupt controller for both on-board and bus functions, and the result is unprecedented performance. Systemaster II will run under CP/M 3.0 or TurboDOS 1.3, and fully utilize the bank switching features of these operating systems.

SBC 86/87. As the name indicates, Teletek’s new 16-bit slave board has an Intel 8086 CPU with an 8087 math co-processor option. This new board will provide either 128K or 512K of parity checked RAM. Two serial ports are provided with individually programmable baud rates. One Centronics-compatible parallel port is provided. When teamed up with Systemaster II under TurboDOS 1.3, this 5MHz or 8MHz multi-user, multi-processing combination cannot be beat in speed or feature flexibility!

Teletek Z-150 MB. Teletek is the first to offer a RAM expansion board designed specifically for the Z-150/Z-160 from Zenith. The Teletek Z-150 MB is expandable from 64K to 384K. Bring your Z-150 up to its full potential by adding 320K of parity checked RAM (or your IBM PC, Columbia, Compaq, Corona, Eagle, or Seequa to their full potential). The Teletek Z-150 MB optionally provides a game port for use when your portable goes home or a clock/calendar with battery backup! Evaluate the Systemaster II, SBC 86/87 or Teletek Z-150 MB for 30 days under Teletek’s Evaluation Program. A money-back guarantee is provided if not completely satisfied! All Teletek products carry a 3-year warranty. (Specifications subject to change without notice.)

IN BRAZIL: Danvic S.A R. Conselheiro Nebias, 1409 01203 Sao Paulo, Brazil Tel: 221-6033 (P A B X) Telex: 1123888 CICP BR

TELETEK
4600 Pell Drive
Sacramento, CA 95838
(916) 920-4600
Telex #4991834
Answer back — Teletek

Inquiry 382

NEW PRODUCT NEWS FROM TELETEK

Yes, I'm interested in information regarding:

☐ Systemaster II
☐ SBC 86/87
☐ Z-150
☐ Evaluation Program
☐ Teletek's 5-100 Board List

Name __
Company __
Address __

Yes, I'm interested in information regarding:

☐ Systemaster II
☐ SBC 86/87
☐ Z-150
☐ Evaluation Program
☐ Teletek's 5-100 Board List

Name __
Company __
Address __
anyone if the company even hints of manufacturing a machine that will run Apple software? Hasn't Apple management learned that the more information you supply in the box with the computer, the less money it takes to support the product? Is the well-documented IBM PC outselling Apple everything?

One would think that Apple had learned its lesson with the Apple III. The Apple III came with no real documentation as well. We all know what happened to the Apple III. From what I have seen of the Macintosh documentation, the Mac is in the same boat. I would not use a Mac if you gave me one.

The next problem I found was that the RS-232C data-transmission rate in the Apple IIc was off frequency by just enough to prevent the RS-232C from working properly. Apparently Apple divided down the microprocessor clock crystal to save the $3 cost of a data-transmission rate crystal. If the IIc had a schematic in the owners manual, any competent computer technician would know about the transmission-rate problem before purchasing the computer. I guess that is one of the reasons Apple did not put a schematic in the owners manual in the first place. The man on the Apple hotline told me to take the IIc into any Apple computer dealer, who would fix it at no cost. None of the three dealers I contacted had heard of this repair program, nor would they do it at no cost.

If you buy an Apple other than the IIc, you need your head examined.

A Commodore 64, although it costs much less than the Apple IIc, is worth at least 100 times as much because you can use it. You can get a vast quantity of programming and technical information on the Commodore 64 in great detail. Information that is necessary to program and interface all the things that people need a microcomputer for.

I now own a $1200 paperweight.

Paul Lamar
Redondo Beach, CA

WHERE ARE APPLE'S MANUaLS WHEN YOU NEED THEM?

Last night I tried to order an Apple IIc Reference Manual at my local dealer. I was told that the manual costs $50, could be ordered only in boxes of five, and if I would order five that they would be glad to handle my order. Of course I thought that I would go elsewhere.

When I arrived home, some back issues of Apple Assembly Line had come in the mail. I discovered that Texas Apple dealers had the same policy and that it extended to ProDOS and IIe manuals as well. Eventually I learned that these manuals could be ordered by mail from a dealer in New York (212-512-4100).

Providing access to the fundamental hardware manuals for the machine is the most minimal level of dealer support possible. Perhaps K-Mart does not provide access to manuals for the computers it sells, but every self-respecting computer dealer must do this.

The poor availability of these manuals must in part stem from the fact that they are seen as manuals only a hacker or professional software developer would want or need. Apparently Apple believes that its customers are not likely to grow in

(continued on page 436)
C Changes Quickly

Our December 1984 article “C-Language Development ‘tools’” by G. Michael Vose (page 119) brought several new C Interpreter vendors out of the woodwork. We also learned of a name change for one of the article’s previewed products.

The Safe C Compiler from Catalytix Corporation (55 Wheeler St., Cambridge, MA 02138) is now called the Safe C Runtime Analyzer. The product’s functions have not changed, only the name, to distinguish it from production compilers.

Catalytix also announced the release of its Safe C Standalone Interpreter. The interpreter is a complete C implementation that allows the use of any text editor and source-code formatting or cross-referencing utilities. Code interactively written and debugged within the interpreter can subsequently be compiled into executable files, using any compiler that conforms to the Kernighan & Ritchie (K&R) C-language specification. Currently available for the IBM PC and other MS-DOS machines, the Safe C Standalone Interpreter sells for $400. A Macintosh version is under development.

Age of Reason Company (318 East 6th St., New York, NY 10003) has announced the availability of RUNIC—a C interpreter for MS-DOS computers. Distributed by Lifeboat Associates (1651 Third Ave., New York, NY 10128), RUNIC costs $150.

RUNIC features a built-in line editor similar to the Microsoft BASIC editor, plus the capability to use an outside editor. You can even compile your C programs from within the RUNIC interpreter. RUNIC fully implements the K&R specification for C, but this interpreter has a limit of 2000-line programs.

Gimpel Software (3207 Hogarth Lane, Collegeville, PA 19426) markets a C interpreter called C-terp, also for the IBM PC and work-alikes using MS-DOS 2.x. C-terp costs $300; a demonstration disk is available for $45. C-terp also fully implements the Kernighan & Ritchie C-language specification, includes an editor, and offers batch-mode operation. C-terp supports small or large memory models.

Lastly, Computer Innovations (980 Shrewsbury Ave., Tinton Falls, NJ 07724), purveyors of the C86 C Compiler, offers Introducing-C, a C interpreter designed to help the programming novice learn C as his/hers first language.

Introducing-C does not fully implement the K&R C specification, but it documents the differences in a 10-page appendix. For example, Introducing-C does not support multidimensional arrays, #defines, struct and union data structures, the typedef declaration, and several other components of C. Future revisions to the interpreter will provide many of the features currently missing. Introducing-C’s interpreter is upward-compatible with the C86 compiler.

Computer Innovations claims that Introducing-C is suitable for learning structured programming and most of C and for developing “medium-sized, non-scientific programs.” Available for the IBM PC, Introducing-C costs $95.

Printer Buffer Messaged

In the June 1984 BYTE there were several errors in the article “Build a Printer Buffer” by John Bono (page 142). Richard Carlsen from Upton, New York, built the printer buffer, encountered and overcame some difficulties, and wrote us about his travails. Here are some excerpts from his letter:

I noticed corrections in the November 1984 BYTE on the ROM listings (page 34), but I haven’t seen any hardware updates, so here are some suggestions for improving John Bono’s project.

In listing 1 on page 453 (June BYTE), line 13 should show EQU OFFFH (zero, not ‘oh’) and line 17 should be A, OFFH.

In the schematic on page 450, IC 14 is incorrectly labeled 74LS00 at the top of the page. IC 14 is a 74LS367A. (I should also note that I tried both the 74LS367 and 74LS367As and they both work fine.) Input pins 4 and 10 of IC 14 should be tied high or at least not left floating as those sections are unused. Floating leads are not good practice and could cause some occasional errors.

On the middle left on page 450 the data lines are in inverse order. D0 should be D7. D6 should be D1, and so on until D7 is D0. They are labeled correctly at the 280 and 2716.

A useful item to add is a reset switch across the 68-μF (microfarad) cap on pin 26 of the 280. I added a 47-ohm resistor in series with the switch so discharge of the 68-μF cap is a little more gentle.

At the lower right on page 452 you’ll find IC 13 and IC 24 (printer acknowledge FF). A signal is missing (G6) at IC 13, pin 9. Remove pin 4 of IC 24 from +5 V. Leave IC 24, pin 2 connected to +5 V. Now connect pin 4 of IC 24 to pin 9 of IC 13. This will allow D306 at line 26 on page 453 to reset the printer’s acknowledge flip-flop.

On page 452, data lines, strobe, busy, and acknowledge to the left of IC 9 should be labeled “TO COMPUTER.” At the right of IC 15 they should be labeled “TO PRINTER.”

Be aware that all 4164 RAM chips are not created equal. They come in different speeds usually designated by a -2 or -3 suffix. I have had no trouble with either. However, some companies require 128 refresh cycles over a 2-microsecond period. Others may require 256 refresh cycles over a 4-microsecond period. I used NEC 4164-2 chips and Mostek 4564-2 chips successfully, both of which require 128 cycles. Others requiring 256 refresh cycles gave me occasional errors.

Another pointer: Watch the power wire...
ing to these RAM chips. Pin 16 is ground and pin 8 is +5 V. This is not as you would usually expect with 16-pin chips, and I sure got caught wiring these wrong.

On my unit I used a crystal oscillator at 1 MHz hooked to pin 6 of the 280. If you do this, a 1K pull-up resistor or so at pin 6 will ensure that the ‘1’ levels are 4.0 to 4.5 V as the 280 requires there.

Not all printers and computers handle Centronics interfacing in the same manner. My Kaypro 2, for example, does not use the ACK signal. The buffer works fine with my Okidata 92 with the Kaypro using just the busy signal. Your computer may also use other signals such as the “Paper Out” line. Consult your printer and computer manuals or dealer about your printer and computer parallel ports before starting this project. In most cases you should be able to work things out with the available signals supplied by the buffer.

Some new ideas have been suggested by other readers of this article for improving the project and I'll pass them on.

1. Multiple dumps by the use of a repeat printout switch would be useful. This would allow extra copies of a document to be printed from the buffer's memory without disturbing the computer. Recording of the RAM and some minor hardware additions would be necessary.

2. Self-check of memory. This would require some additional ROM coding.

3. A printer code preloader, which would let you change printer functions (such as compressed print mode, character pitch, or near letter quality) by sending the printer prewritten codes stored in the printer-buffer ROM. These could be selected by thumb-wheel switch and entered to the printer by a push-button switch using the remaining port 7 select at G7 pin 7 of IC 13 as a means of addressing this feature.

4. If anybody has completed these or other features, please write in to BYTE and let the rest of us in on it. This is a great project when it's working.

I would like to thank John Bono for writing this article and his patience with my questions. I wish also to thank other readers for their time on the phone and exchange of ideas, and BYTE for acting as the intermediary.

Communication on Modem Gets Garbled

In the What's New section of the Guide to the Apple Personal Computers, a special supplement to the December 1984 BYTE, we inadvertently published the wrong picture and supplied some incorrect information.

The picture on page A136 does not depict Multi-Tech Systems' internal modem card for the Apple II, but rather it shows Multi-Tech Systems' MultiModem 1200/300-bps external modem.

The single-board MultiModem IIe, shown here, fits entirely inside Apple II series computers and does not require a serial card. It operates at 110/300 bps, features auto-answer and auto-dial, and comes with communications software. The list price is $229, which includes free-time and subscription discounts to a number of database networks, such as Dow Jones News/Retrieval Service and the Instant Yellow Page Service.

The MultiModem 1200/300 stores up to six 31-digit telephone numbers, detects dial and busy tones, and can continuously redial busy numbers. It lists for $549.

Both modems come with two-year warranties. Multi-Tech Systems Inc. is headquartered at 82 Second Ave. SE, New Brighton, MN 55112, (612) 631-3550.

SANYO SYSTEMS

Complete Sanyo Systems
Lots of Free Software

OUR PRICE COMMITMENT
MidWest will try in good faith to beat any nationally advertised price.

Prices subject to change and type errors
FREE CALL USE
Call Today!
Information -- Ordering
1-800-423-8215
In Ohio 1-800-321-7731
CUSTOR Service (513) 663-4992

FREE CASH PRICING: Cash, Check, Money Order, VISA or MC
COGS (Add 4%)
AXX (Add 1%)
POS (Add 3%)

MidWest Micro-Peripherals
Division of Midwest Micro-Peripherals Inc.
910 South Springfield St
De Pere, Ohio 43012

34 BY T E • APRIL 1985
DATASAFE by AFTEK
THE HIGH PERFORMANCE
RANDOM ACCESS TAPE BACK-UP!
THE NEXT GENERATION OF TAPE DRIVES.

DATASAFE STAND ALONE UNIT
- C/W cable (chains off DB-37 connector on rear of computer)
- Has its own booster power supply
- Is easy to install

DATASAFE INTERNALLY MOUNTED UNIT
- Is daisy chained off the existing floppy controller
- Requires IBM plug compatible bus and internally selected 4 channel select floppy disk controller
- No additional slots needed

- For IBM XT's and compatibles
- Incorporates main frame micro reel technology
- Random access
- Use of PC DOS and MS DOS commands (tree, path, etc.)
- MTBF - 20,000 hrs.
- Reliable (150,000 load and unload failsafe tested by an independent laboratory)
- C/W software device drivers
- C/W cable
- Extremely fast back-ups
- 10 meg available only
- Priced less than 50% less than the nearest rival
- ONE YEAR WARRANTY

The DATASAFE uses industry standard 1/4" tape on a self threading 2.2" spool

AFTEK
Business Machines Inc.
1050 Clinton St.
Buffalo, New York 14206
Tel.: (716) 694-5366 Telex: 916428

Inquiry 17

762 Gordon Baker Rd.
Willowdale, Ontario Canada M2H 3B4
Tel.: (416) 497-0531 or toll free 1-800-268-5412 Telex: 06-986133
You have wanted to do something, but the door has been closed . . .

Helix is a data-based system, so that once you enter information you can use it for anything – reports, lists, analyses, mail merge printouts, or even relational look-ups to other data-bases within Helix.

Requires: an external drive or hard disk
Runs on: 512K Macintosh • Lisa with MacWorks
Supports: Hard disks • Keypad +15" Imagewriter
Includes: Helix Program disk • Helix Guided Tour disk • Helix Resource/Work disk • User Manual • 18-ring project binder
• Reference pad for custom documentation • Registration card for support & updates
Offers: Modeless input, interactive query, editing, & report generation • Text-formatting • Calculations between fields & across records • Object-oriented, icon-based design • Relational Look-ups • List management • Mail merge • Clipboard & ASCII file transfer • Special Template tools for form design • User defined, automatically updated Indexes • Unrestricted length & number of fields • Complete printing options • Vertical and horizontal autoscroll • Visual building blocks for arithmetic, date, text & Boolean operators, functions, & values.

All open windows are updated automatically. Used here to simultaneously enter project notes, see synopses, get phone numbers, and display important “global” statistics.
Odesta Helix opens the door.

Now, you don't have to learn a programming language or worry about "relational algebra". Except for the three numbers you see, no typing was used to create these calculations: "If invoice amount is equal to or greater than $2500, then don't charge for shipping, otherwise charge 2.5% of the invoice amount"...

"Look up the price for the item in the inventory data-base"...

"Multiply the item's price by how many were shipped"...

Helix provides a unique place to work because it takes a different approach.

It is based on the idea that we discover the important questions, relationships, and connections between things by working with them.

(So we need to be able to work with words and numbers in many different forms).

That our own experience, perception, and understanding are the basis of true "knowledge work".

And that this process can be both productive and playful, intently serious and intensely enjoyable.

(So we need a technology that is flexible, accommodating, and directly responsive to our actions and style of dialogue).

Inquiry 287

Odesta, 5186 Doolittle Drive, Northbrook, IL 60062 (USA)
(800) 323-5423 In Illinois, (312) 498-5615

A Data-Based Information Management &
Decision Support System
ANNOUNCING ANOTHER KING-SIZE ADVANTAGE C.ITOHHAS OVER OTHER PRINTERS!

The biggest name in printers might be a name you don’t even know. C. Itoh.
But people who do know C. Itoh printers know that they’ve always had a big edge in speed. And an edge in reliability.
And an edge in support, with service centers nationwide and the backing of a worldwide $60 billion parent company.
And now, C. Itoh ProWriter™ dot matrix and StarWriter™ daisy wheel printers have a big edge in price, too.

We’ve been able to reduce our retail prices an average of 30%, because we’ve reduced our distribution costs by selling directly to our dealers.

It’s given us a price advantage of $80 to $1,000 over what the competition has to offer.

Take a look.

<table>
<thead>
<tr>
<th>DOT MATRIX</th>
<th>BRAND</th>
<th>MODEL NO.</th>
<th>SPEED (LINES PER MINUTE)</th>
<th>PRICE (BF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. ITOH</td>
<td>7500</td>
<td>54</td>
<td></td>
<td>$289</td>
</tr>
<tr>
<td>EPSON</td>
<td>RX-80F</td>
<td>44</td>
<td></td>
<td>$399</td>
</tr>
<tr>
<td>STAR</td>
<td>GEMINI 10X</td>
<td>48</td>
<td></td>
<td>$399</td>
</tr>
<tr>
<td>IBM</td>
<td>5152</td>
<td>36</td>
<td></td>
<td>494</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DAISY WHEEL</th>
<th>BRAND</th>
<th>MODEL NO.</th>
<th>CHARACTERS PER SECOND</th>
<th>PRICE (BF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. ITOH</td>
<td>A10-20S</td>
<td>29</td>
<td>10</td>
<td>$669</td>
</tr>
<tr>
<td>OMEU</td>
<td>LP20</td>
<td>20</td>
<td>80</td>
<td>799</td>
</tr>
<tr>
<td>NEC</td>
<td>2010</td>
<td>20</td>
<td>90</td>
<td>965</td>
</tr>
<tr>
<td>DIABLO</td>
<td>620</td>
<td>20</td>
<td>100</td>
<td>995</td>
</tr>
<tr>
<td>C. ITOH</td>
<td>F10-55</td>
<td>55</td>
<td>15</td>
<td>1,449</td>
</tr>
<tr>
<td>DATA PRODUCTS</td>
<td>CP55</td>
<td>55</td>
<td>20</td>
<td>1,895</td>
</tr>
<tr>
<td>OMEU</td>
<td>1155</td>
<td>55</td>
<td>50</td>
<td>1,995</td>
</tr>
<tr>
<td>NEC</td>
<td>7700</td>
<td>55</td>
<td>100</td>
<td>2,495</td>
</tr>
</tbody>
</table>

C. Itoh. The best selling printers in the world, with 1.7 million printers sold in 1984 alone, now have the best prices, too.

For more information call toll-free 1-800-423-0300. Or write C. Itoh Digital Products, Inc. 19750 South Vermont Avenue, Suite 220, Torrance, CA 90502.
Thermal Printer Has Full Graphics Ability

General Electric recently announced the Model 3-8100, a $300 thermal-transfer letter-quality printer with full graphics capability. Although the printer comes standard with a Centronics-type parallel connector, GE will also sell two compatibility modules for $89.95. One allows direct connection to the Atari 400/800 computers and Commodore's 64 and VIC-20; the other module permits direct connection to the IBM PCjr.

The Model 3-8100 prints at two speeds: 50 cps in draft mode and 25 cps in letter-quality mode. At both speeds, the printer is quiet. A 16-dot print head provides high-resolution dot-matrix output.

The Model 3-8100 can use single-sheet, roll, or 9½-inch-wide fanfold paper. It prints on thermal paper if you remove the cartridge. Each ribbon cartridge costs about $6 and provides about 100,000 characters.

Keyboard Enhancement Has Macros, Data Encryption

Borland International's SuperKey is a RAM-resident keyboard-enhancement program featuring macros and automatic data encryption. This program lets you define, edit, save, load, and recall macros on your IBM PC in real time.

SuperKey has a memory-resident full-screen macro editor that can be pulled down on top of a currently running program. The program supports single-key macros, user-definable macro titles, help menus, date/time information, alternate arrow-key definition, key-click switching, keyboard lock/unlock, sound effects, and color control.

With SuperKey, you can recall from a command stack the last 20 commands entered. These are displayed in a menu window that lets you select, edit, and reuse the commands at the DOS command level or in a program. SuperKey has a cut-and-paste capability that permits any data to be copied from the screen, stored within SuperKey under any key, and then moved into another application.

The SuperKey data-encryption function lets you encode files in two modes. In the first mode, no second file is created, thus saving disk space. In the second mode, you can encrypt binary files by transforming them into ASCII. This lets you transmit these files over telephone lines. The recipient of the files decrypts them using a special "key."

Also featured is a display burn-in protection capability that automatically switches off a monitor's video signal when no activity is detected for a reasonable length of time. The display is automatically reactivated when any key is pressed. The program is priced at $69.95. Contact Borland International, 4113 Scotts Valley Dr., Scotts Valley, CA 95066, (408) 438-8400. Inquiry 601.

GE TVs Also Serve As Monitors; Modem Unveiled

Two new television sets from General Electric can also serve as your computer monitor. The Model 13BC5509 is a 13-inch color monitor, and the Model 12XR5204 is a 12-inch black-and-white monitor.

Both units handle 80-character-per-line displays and feature a display width-reduction capability that prevents character loss at the screen's edge. They accept composite-video input as well as standard antenna connectors and are compatible with most home computers from Apple, Atari, Commodore, IBM, and other manufacturers.

Suggested retail price is $489.95 for the color monitor and $129.95 for the black-and-white unit.

In a concurrent announcement, GE introduced the Model 3-8200 direct/acoustic modem. This 300-bps modem has a standard RS-232C cable, and optional cables are available for direct connection to Atari or Commodore computers.

The 3-8200 has automatically switchable answer/originate modes and once tied into a database, it automatically adjusts for full- and half-duplex operation.

Kaypro’s 286i is an IBM PC AT Compatible

Kaypro’s 286i, scheduled for formal introduction last month, is compatible with IBM’s Personal Computer AT. It features a 6-MHz 80286 processor, two parallel ports, one serial port, and two 1.2-megabyte 5¼-inch floppy-disk drives. The system’s main board comes with 512K bytes of RAM, expandable to 640K bytes: expansion cards can supply an additional 15 megabytes of RAM to the system.

The system’s main board port, and two 1.2-megabyte graphics supporting Epson’s Kaypro’s 286i is an IBM PC AT Compatible parallel ports. one serial 6-MHz 80286 processor. two 5¼-inch floppy-disk drives. The system’s main board comes with 512K bytes of RAM, expandable to 640K bytes: expansion cards can supply an additional 15 megabytes of RAM to the system.

Three of the system’s eight IBM-compatible expansion slots are occupied, leaving five for additional peripherals or memory. The 286i’s 84-key keyboard is also functionally compatible with the PC AT’s.

Standard with the system are color graphics (RGB and composite, both of which are compatible with the IBM graphics-display card) and a clock/calender with battery backup. Software bundled with the system includes Micropro’s WordStar, Mail-Merge, InfoStar, CalcStar, tutorials, and Microsoft’s GW-BASIC Interpreter.

The Kaypro 286i has a suggested list price of $455.00. For more information, contact Kaypro Corp., 533 Stevens Ave., Solano Beach, CA 92075, (619) 481-4300. Inquiry 603.

Internal Hard Disk for PC AT

Control Data Corporation is now shipping a 30-megabyte hard-disk drive that fits inside IBM’s PC AT. Called the StorageMaster 630, this drive has a typical access time of 30 milliseconds, which is reported to be approximately 25 percent faster than the native IBM drive.

The StorageMaster 630 uses the PC AT’s resident disk controller and is shipped with adaptive software that lets you tweak it for operation with PC-DOS 3.0. The software gives you the ability to logically partition and format the disk, and includes diagnostic routines.

A pair of StorageMaster 630s can be tucked side-by-side within the PC AT’s cabinet. Installing the StorageMaster 630 into the PC AT housing is said to require less than one hour.

Disk image or selected file-backup capabilities for the StorageMaster 630 are available through use of Control Data’s 45-megabyte StorageMaster 745 4-inch cartridge streaming-tape backup system.

The suggested list price for the StorageMaster 630 is $2145. Contact Control Data Corp., 8100 34th Ave. S., POB 0, Minneapolis, MN 55440, (800) 328-3390. Inquiry 613.

(continued)
They said it couldn’t be done.
Borland Did It. Turbo Pascal 3.0

The industry standard
With more than 250,000 users worldwide Turbo Pascal is the industry’s de facto standard. Turbo Pascal is praised by more engineers, hobbyists, students and professional programmers than any other development environment in the history of microcomputing. And yet, Turbo Pascal is simple and fun to use!

<table>
<thead>
<tr>
<th></th>
<th>TURBO 3.0</th>
<th>TURBO 2.0</th>
<th>MS PASCAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPILATION SPEED</td>
<td>8 sec.</td>
<td>16 sec.</td>
<td>206 sec.</td>
</tr>
<tr>
<td>EXECUTION SPEED</td>
<td>9 sec.</td>
<td>13 sec.</td>
<td>30 sec.</td>
</tr>
<tr>
<td>CODE SIZE</td>
<td>12 K</td>
<td>12 K</td>
<td>35 K</td>
</tr>
<tr>
<td>BUILT-IN EDITOR</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>ONE STEP Compile</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>COMPILER SIZE</td>
<td>35 K</td>
<td>35 K</td>
<td>300K+</td>
</tr>
<tr>
<td>TURTLE GRAPHICS</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>BCD OPTION</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>PRICE</td>
<td>$699.95</td>
<td>$599.95</td>
<td>$124.95</td>
</tr>
</tbody>
</table>

The best just got better:
Introducing Turbo Pascal 3.0
We just added a whole range of exciting new features to Turbo Pascal:
• First, the world’s fastest Pascal compiler just got faster. Turbo Pascal 3.0 compiles twice as fast as Turbo Pascal 2.0. No kidding.
• Then, we totally rewrote the file I/O system, and we also now support I/O redirection.
• For the IBM PC versions, we’ve even added “turtle graphics” and full tree directory support.
• For all 16 Bit versions, we now offer two additional options: 8087 math coprocessor support for intensive calculations and Binary Coded Decimals (BCD) for business applications.
• And much much more.

The Critics’ Choice.
Jeff Duntemann, PC Magazine: “Language deal of the century . . . Turbo Pascal: It introduces a new programming environment and runs like magic.”
Dave Garland, Popular Computing: “Most Pascal compilers barely fit on a disk, but Turbo Pascal packs an editor, compiler, linker, and runtime library into just 29K bytes of random-access memory.”
Jerry Pournelle, BYTE: “What I think the computer industry is headed for: well documented, standard, plenty of good features, and a reasonable price.”

Portability
Turbo Pascal is available today for most computers running PC DOS, MS DOS, CP/M 80 or CP/M 86. A XENIX version of Turbo Pascal will soon be announced, and before the end of the year, Turbo Pascal will be running on most 68000 based microcomputers.

An Offer You Can’t Refuse
Until June 1st, 1985, you can get Turbo Pascal 3.0 for only $69.95. Turbo Pascal 3.0, equipped with either the BCD or 8087 options, is available for an additional $39.95 or Turbo Pascal 3.0 with both options for only $124.95. As a matter of fact, if you own a 16 Bit computer and are serious about programming, you might as well get both options right away and save almost $25.

Update policy
As always, our first commitment is to our customers. You bought Borland and we will always honor your support.
So, to make your upgrade to the exciting new version of Turbo Pascal 3.0 easy, we will accept your original Turbo Pascal disk (in a bend-proof container) for a trade-in credit of $39.95 or Turbo Pascal 3.0 with both options for only $124.95. As a matter of fact, if you own a 16 Bit computer and are serious about programming, you might as well get both options right away and save almost $25.

Software’s Newest Direction
4113 Scotts Valley Drive
Scotts Valley, California 95066
TELEX 72093

Inquiry 47
Turbo Pascal is a registered trademark of Borland International, Inc.
S-100 Graphics Cards Produce TV-Quality Images

The S-Series of color-graphics products lets you produce images to the maximum resolution of NTSC and PAL television standards on Cromemco's 68000-based S-100 computer systems. The S-Series comprises the previously announced SDD Color Digitizer Interface, plus four new S-100 (IEEE-696 standard) bus cards.

The SVID Color Video Generator Board works with the SDMA Video Memory Controller card to generate color images by panning over a virtual 1024-by-1024-pixel image. The NTSC version displays 756 by 484 pixels, while the PAL card set generates a 756-by-577-pixel image. Depending on graphics memory, up to 8 bits of data can be allocated per pixel to select up to 256 colors from a palette of 256,000.

The 256KTP card comes with 256K bytes of two-port memory; four 256KTP cards are required to take advantage of the full 1024-by-1024-pixel, 256-color capability of the S-Series. The SDCM Color Modulator Board converts red-green-blue signals to broadcast-type composite signals meeting either the NTSC or PAL standards.

The S-Series cards allow computer-generated or digitized graphics to be overlaid on other broadcast images. A zoom feature allows up to 4-to-1 enlargement of screen areas, while a pan feature can be used to move through the 1024 by 1024 image area either displaying edges or wrapping around to the opposite side of the image. Image input and output are possible using a wide range of devices: Any composite-video image can be digitized by the SDD card, while the other cards combine to provide output in RGB and NTSC and PAL composite-video formats.

The SVID video-generator board costs $795, while the SDCM modulator card is $995. Both are available in either NTSC or PAL versions. The SDMA controller board is $795, and each 256KTP memory card is $1995. The SDD digitizer card, for either NTSC or PAL versions, is priced at $995. Contact Cromemco Inc., 280 Bernardo Ave., POB 7400, Mountain View, CA 94039, (415) 964-7400.

TI's Arborist, Decision-Tree Analysis Software, Supports IBM

Texas Instruments' Arborist, a decision-tree analysis software package, runs on both the TI Professional Computer and IBM's Personal Computer. Arborist brings quantitative decision-making techniques to planners using these desktop computers.

In decision-tree analysis, a series of multiple chance events and possible decisions is represented by a tree structure. If the planner can estimate the outcome and probability of each individual decision or event, Arborist can then determine the best choice at each decision point.

Arborist is intended primarily for people who have at least a basic understanding of decision-tree analysis. It uses a graphical display of decision-tree structures to aid in the decision-making process. The program accommodates color or monochrome displays and the 8087 numeric coprocessor.

Arborist sells for $595. For further details, contact Texas Instruments Inc., POB 80963, Dallas, TX 75380-9063, (800) 527-3500.

XL/Serve for Macs

XL/Serve permits the Macintosh/XL (formerly the Lisa 2/10) to function as a disk and print server in an AppleTalk Personal Network. It lets distributed Macintoshes share disk storage and Imagewriter printers.

XL/Serve includes disk and printer software that runs concurrently on a host Macintosh/XL under MacWorks, driver software for individual Macintoshes, and a backup and restore utility.

You can partition the host disk into individual volumes, and users can be granted read-only or read-write status.

Inquiry 608.
Sure, ProKey™ is a nice little program. But when the people who brought you Turbo Pascal and SideKick get serious about keyboard enhancers, you can expect the impossible . . . and we deliver.

<table>
<thead>
<tr>
<th>SuperKey</th>
<th>ProKey</th>
</tr>
</thead>
<tbody>
<tr>
<td>All features resident in RAM at all times</td>
<td>NO</td>
</tr>
<tr>
<td>Resident pull-down macro editor</td>
<td>YES</td>
</tr>
<tr>
<td>Resident file encryption</td>
<td>NO</td>
</tr>
<tr>
<td>ProKey compatibility</td>
<td>YES</td>
</tr>
<tr>
<td>Display protection</td>
<td>NO</td>
</tr>
<tr>
<td>Ability to import data from screen</td>
<td>NO</td>
</tr>
<tr>
<td>Pull-down menu user interface</td>
<td>NO</td>
</tr>
<tr>
<td>Context-sensitive on-line help system</td>
<td>NO</td>
</tr>
<tr>
<td>Display-only macro creation</td>
<td>NO</td>
</tr>
<tr>
<td>Entry and format control in data fields</td>
<td>NO</td>
</tr>
<tr>
<td>Command keys redefinable “on the fly”</td>
<td>NO</td>
</tr>
<tr>
<td>Price</td>
<td>129.95</td>
</tr>
</tbody>
</table>

Total ProKey compatibility. Every Prokey Macro file may be used by SuperKey without change so that you may capitalize on all the precious time you've invested.

Now your PC can keep a secret! SuperKey includes a resident file encryption system that uses your password to encrypt and decrypt files, even while running other programs. Two different encryption modes are offered:

1. Direct overwrite encryption (which leaves the file size unchanged) for complete protection. At no point is a second file that could be reconstructed by an intruder generated. Without your secret password, no one will ever be able to type out your confidential letters again!

2. COM or EXE file encryption which allows you to encrypt a binary file into an ASCII file, transmit it through a phone line as a text file and turn it back again into an executable file on the target machine (only if you correspondant knows the secret password). Now, you will even be able to secretly exchange programs through Public Bulletin Board Systems or services such as CompuServe.

Totally memory resident at all times, gives Superkey the ability to create, edit, save and even recall new or existing macro files anytime, even while running another program.

Pull down macro editor. Finally, a sensible way to create, edit, change and alter existing macro definitions. Even while using another application, a simple keystroke instantly opens a wordprocessor-like window where you're allowed to see, edit, delete, save and even attach names to an individual macro or file of macros, and much more.

Sorry ProKey!

Superb software at reasonable prices! There is much more to SuperKey. Maybe the best reason to buy SuperKey is that it is a Borland International Product. Each one of our products is the best in its category. We only believe in absolutely superb software at reasonable prices!

An offer you can't refuse.

Whether you are a ProKey user or you've never used a keyboard enhancer before, your boat has come in. Until June 1st, 1985 you can get your copy of SuperKey at this special introductory price.

Get your PC a SuperKey today!

SuperKey is available now for your IBM PC, XT, AT, Jr. and truly compatible microcomputers.

Borland International

Software's Newest Direction
413 Scotts Valley Drive
Scotts Valley California 95066
TelEx: 172873

Inquiry 48

IBM is a registered trademark of International Business Machines Corporation. ProKey is a trademark of RoseSoft. SuperKey and SideKick are trademarks of Borland International, Inc.
Hayes Offers Smartcom II for the Macintosh

Hayes Microcomputer Products has announced Smartcom II for the Macintosh. The program, originally written for the IBM PC, has been redesigned to take advantage of the Macintosh graphical user interface.

Smartcom II is compatible with MacWrite and Micropaint applications that spool files, and performing database operations. It supports both the Hayes Verification Protocol and the XMODEM protocol for file transfers. It also lets you switch back and forth between voice and data during a communications session.

Hayes reports that the Smartcom II program will permit two Macintosh computers to exchange graphical images in real time using conventions similar to those in MacPaint. An image created on one screen is automatically reproduced on the remote screen. The second user can “take over” the drawing and make changes and additions.

The retail price for the Smartcom II software for the Macintosh is $149. For more information, contact Hayes Microcomputer Products Inc., 5923 Peachtree Industrial Blvd., Norcross, GA 30092, (404) 449-8791.

Inquiry 609.

Multiuser Board for IBM Based on 68000

The Multi-PC/68 from LinkData is a multiuser 68000 microprocessor board for the IBM Personal Computer. This two-board combination runs UNI-DOS, a DEC-like operating system that lets the PC run multiuser software written for the DEC PDP-11 family of minicomputers.

When equipped with Multi-PC/68, the IBM PC XT can support four terminals and run five concurrent programs written in the DIBOL or CADOL minicomputer languages. The IBM PC AT can support up to eight terminals and run nine programs. In addition, both the XT and AT can run MS-DOS applications concurrently with UNI-DOS applications.

The dealer price of the Multi-PC/68 system, including UNI-DOS, ranges from $2000 to $4000, depending on how much memory and how many RS-232C ports are included. LinkData will also make available to dealers a $200 DEC-like word processor, a series of accounting packages ($295 each), and a line of vertical-market applications packages with price tags spanning from $750 to $1000.

For more information, contact LinkData, 2005 Route 22, Union, NJ 07083, (201) 964-6090.

Inquiry 610.

Harmony Comes to Mac

Harmony is a set of productivity tools that runs as a desk accessory on the 512K-byte Macintosh or as an application program on the 128K-byte Macintosh. Harmony offers a full database in which each record can hold up to 18 information fields. Harmony has a time-manager module with a calendar, an appointment book with project-management features, a memo writer, and a print-spooler application that spools files from MacWrite and Microsoft Word.

Other features include a telecommunications application with auto-dial capabilities. Harmony can work in concert with Jazz from Lotus Development Corporation and other Macintosh programs. Intermatrix says that the program will be available in mid-April and that it will be priced at $195. Contact Intermatrix, 5547 Satsuma Ave., North Hollywood, CA 91601, (818) 509-0474.

Inquiry 611.

Harris Announces PC Network/File Server

The Harris 9300 network/file server can link up to 16 IBM PC-compatible, 3270 terminals, Harris PCs, or printers with a high-capacity hard-disk drive and a local-area network.

Devices are linked by a coaxial cable with a data-flow rate of 1 megabit per second. The 9300 uses an 80286 chip for network processing and supports up to 80 megabytes of hard-disk storage and 2 megabytes of memory. An optional 280B runs word-processor and office-automation programs developed by Lanier, a subsidiary of Harris.

The system with 1 megabyte of memory, 37 megabytes of hard-disk storage, and hardware for connection to the network is about $11,000. Adapter cards for personal computers are $1050 each. Deliveries are expected to begin in June. Contact Harris Corp., Melbourne, FL 32919, (305) 727-9100.

Inquiry 612.
The industry standard. With more than 250,000 users worldwide Turbo Pascal is the industry's de facto standard. Turbo Pascal is praised by more engineers, hobbyists, students and professional programmers than any other development environment in the history of microcomputing. And yet, Turbo Pascal is simple and fun to use!

Jeff Doxstimann, PC Magazine: "Language deal of the century... Turbo Pascal: It introduces a new programming environment and runs like magic."

Dave Garland, Popular Computing: "Most Pascal compilers barely fit on a disk, but Turbo Pascal packs an editor, compiler, linker, and run-time library into just 29K bytes of random-access memory."

Jerry Pournelle, BYTE: "What I think the computer industry is headed for: well documented, standard, plenty of good features, and a reasonable price."

Portability. Turbo Pascal is available today for most computers running PC DOS, MS DOS, CP/M 80 or CP/M 86. A Xenix version of Turbo Pascal will soon be announced, and before the end of the year, Turbo Pascal will be running on most 68000-based microcomputers.

High resolution monochrome graphics for the IBM PC and the Zenith 100 computers

Dazzling graphics and painless windows. The Turbo Graphix Toolbox will give even a beginning programmer the expert's edge. It's a complete library of Pascal procedures that include:

- Full graphics window management.
- Tools that will allow you to draw and hatch pie charts, bar charts, circles, rectangles and a full range of geometric shapes.
- Procedures that will save and restore graphic images to and from disk.
- Functions that will allow you to precisely plot curves.
- Tools that will allow you to create animation or solve those difficult curve fitting problems.
- And much, much more.

No sweat and no royalties. You may incorporate part, or all of these tools in your programs, and yet, we won't charge you any royalties. Best of all, these functions and procedures come complete with commented source code on disk ready to compile!

Searching and sorting made simple

The perfect complement to Turbo Pascal. It contains: Turbo-Access, a powerful implementation of the state-of-the-art B+ tree ISAM technique; Turbo-Sort, a super efficient implementation of the fastest data sorting algorithm, "Quicksort on disk". And much more.

Jerry Pournelle, BYTE: "The tools include a B+ tree search and a sorting system; I've seen stuff like this, but not as well thought out, sell for hundreds of dollars."

Get started right away: Free database! Included on every Toolbox disk is the source code to a working database which demonstrates how powerful and easy to use the Turbo-Access system really is. Modify it to suit your individual needs or just compile it and run.

From Start to Finish in 300 pages. Turbo Tutor is for everyone, from novice to expert. Even if you've never programmed before, Turbo Tutor will get you started right away. If you already have some experience with Pascal or another programming language, Turbo Tutor will take you step by step through topics like data structures and pointers. If you're an expert, you'll find the sections dealing with subjects such as "how to use assembly language routines with your Turbo Pascal programs."

A must. You'll find the source code for all the examples in the book on the accompanying disk ready to compile. Turbo Tutor might be the only reference on Pascal and programming you'll ever need.

$34.95

TURBO-PASCAL FAMILY

Available at better dealers nationwide. Call (800) 556-2283 for the dealer nearest you. To order by Credit Card call (800) 255-8008.

Carefully Describe your Computer System:

- Machine []
- Bits []
- Use []
- PC-DOS []
- MS-DOS []
- CP/M 80 []
- CP/M 86 []
- My computer's name/model is:

The disk size I use is:

- 5.25" []
- 8" []
- 5.25" []

Amount (CA 6% tax)

Payment: [] VISA [] MC [] Bank Draft [] Check

Credit Card Exp. Date: /

Name on Card:

Card #:

Telephone:

Tel:

CCDS and Purchase Orders WILL NOT be accepted by Borland. California residents add 6.5% sales tax.

Outside USA, add $10 and make payment by bank draft, payable in US dollars drawn on a US bank.

$34.95
IBM's new Personal Decision Series.
A powerful team of business programs designed for exceptional flexibility.

There's rarely one best way of doing anything.
Rather, lots of very good ways; a reality that IBM's Personal Decision Series handily accommodates.
More than any software we know of, it gives you choices. You tailor it to your needs, instead of vice versa.

You begin with Data Edition, a program that not only manages huge amounts of information, but lets you take it from a surprising variety of sources: data banks, mainframes, even files created by other PC programs.

And you can retrieve your data in nearly any form you like, without a lot of headscratching. You can begin producing real work in a couple of hours.
Add Reports+ and you can create your own style documents, pulling facts from up to 6 Data files at a time, in formats you can design, for applications you can invent.

Graphs gives you a choice of 13 graph styles, with over 20 variations. And you can update old graphs without...
based on the curious notion that things is any way you want to.

having to make new ones.

There's also Plans+ for financial modeling and spreadsheets, and Words for putting your sentences, numbers and graphs all together.

The Personal Decision Series can even take information from a number of non-Series programs. So if you already have a favorite spreadsheet or writing program, you may still be able to use it.

You can even use files from an IBM System/36 or System/370 computer; by adding an Attachment/36 or /370 Edition.

All of which is perfect for people who insist on doing things their way.

Do you know somebody like that?

To learn more, call an IBM marketing representative, or visit an IBM Product Center or authorized IBM PC dealer.

For the store nearest you, and a free brochure, call 1-800-447-4700. (In Alaska and Hawaii, 1-800-147-0890.)

Little Tramp character licensed by Bubbles Inc., s.a.

Inquiry 194
Conducted by Steve Ciarcia

ELEMENTARY INFORMATION

Dear Steve,

Can you tell me where I can get specific and in-depth answers to elementary questions about computers and electronics? I know that you answer questions, but I also know that you couldn't be expected to give very lengthy answers to my beginner's questions.

CHARLES F. PORTER
Cedar Rapids, IA

The Ask BYTE column addresses hardware-related questions of general interest but is not meant for the beginner. BYTE's sister publication, Popular Computing, caters to a less technical audience, and its Ask Popular column addresses questions related to computers in general. Both publications may answer your specific question, but the turnaround time is lengthy.

If you need specific answers to specific questions in a reasonable amount of time, try a local computer club. There is usually an "expert" available on almost any topic. Failing that, the local bookstore will feature many books on computers and computer-related material.—Steve

S-100 SWITCHING SUPPLY

Dear Steve,

I would like to do graphic-arts work with a computer capable of producing a minimum of about 800 by 800 pixels and at least 100 simultaneously displayable colors. I have seen ads for various color boards or dedicated graphics computers, but they either don't match my specs or they are too expensive.

I'd like to build my own color add-on board for the Commodore 64 or a complete computer. I'd appreciate any suggestions.

LES KOHUTH
Syosset, NY

High-resolution graphics systems are expensive and seem overpriced in comparison to the graphics systems available on microcomputers. To understand this high cost, let's look at the components of a high-resolution graphics system.

To display the resolution that you mentioned, a monitor with a video bandwidth of at least 18 to 20 MHz is needed to distinguish individual pixels, or dots. This requirement can be understood if we look at the makeup of one scan line of the picture.

The normal scan rate is 15,750 scans per second, and at 800 pixels of horizontal resolution, this is 12,600,000 pixels per second. However, the case where all the pixels are lit results in a zero-bandwidth requirement, and a DC voltage is all that is required. In the worst case, when every other pixel is lit, a clear display of 6 million pixels per second is needed. This appears to require only a 6-MHz bandwidth, but bandwidth is usually defined as the frequency where the signal (or gain) is reduced by 3 dB, or 50 percent of the normal level. Such a bandwidth would result in low brightness and contrast in picture areas where fine detail is shown. To display sharp images at this resolution, it is necessary to approximate a square wave at 6 MHz.

The standard television sweep frequencies generate 525 horizontal lines per frame in two vertical scans (interlaced). A limit of about 400 lines within this region is required for good linearity. Most microcomputer graphics systems provide 200 or so lines by using the so-called noninterlace mode, displaying the same information on adjacent pairs of lines. This can be doubled by using twice as much memory and reprogramming the video controller. Getting to 800 lines requires twice as many horizontal sweeps per frame (and half the frame rate), which is not within the capabilities of the popular $500 RGB monitors. Monitors of this type are available, but the prices are in the several-thousand-dollar range.

800 by 800 pixels requires 640K bits, or about 80K bytes, of memory to give one color (we get black for free). If you want to be able to assign different colors to each pixel, rather than define characters within a block of 8 by 8 contiguous pixels, the memory is arranged in layers. One 80K-byte layer gives black and white, two layers doubles this to four colors (three colors plus black), another layer doubles again, etc., for as many colors as we want, or can afford. Your spec of (continued)
Ah, the great ones...
They organized their ideas, their intuitions, their idioms. They set them down, sorted them out, arranged them and re-arranged them till they came out right. They used small scraps of paper to record huge hunks of Truth; primitive tools to produce profound prose. But when the words finally went forth, they made indelible marks on all who read them.

The amazing thing is that these monumental processors of words did it without the benefit of monumental help. Like Leading Edge Word Processing: the easiest to use, yet most potent piece of software ever created to take full advantage of all the power inherent, but until now un-tapped, in today's most sophisticated personal computer. (Like the IBM* PC and the even faster and more powerful Leading Edge' PC.)

The heart and soul of it is a 5/4" floppy disk, elegantly logical instruction manual and documentation... everything. And what you end up with is word processing at the leading edge.

LEADING EDGE™ WORD PROCESSING FROM $100
IBM IS A REGISTERED TRADEMARK OF INTERNATIONAL BUSINESS MACHINES CORPORATION
LEADING EDGE IS A TRADEMARK OF LEADING EDGE PRODUCTS, INCORPORATED.
“at least 100 colors” rounds up to 128, or seven layers of memory. This is $700 worth of memory chips, if you can use the low-cost 64K-byte chips in common use for microcomputer memory these days. Add board space and sockets and do the work yourself, and you’re still talking $1000 for memory, and this type of memory really isn’t suitable for a high-performance graphics board. You really need a two-port system so that putting data into the memory doesn’t interfere with the display and vice versa.

This amount of memory exceeds the addressing capacity of all the common video-controller chips. Also, 6 million pixels must be read from memory each second. At 7 bits per pixel, the processor must access 750K bytes from each layer each second, or a total of 5.25 megabytes per second throughput if only one processor is used. This is too fast for inexpensive video processors, or microprocessors, so either parallel or very fast processors with bank switching are needed. Such circuitry is complicated, and considerable processing is required to separate the data into the required RGB analog signals.

Some boards, or add-on systems, are available for the IBM PC and some of its clones that can provide various combinations of features at reasonable cost. One such system is the VUX, made by Vectrix Corporation, 1416 Boston Rd., Greensboro, NC 27407. This appears to require a special monitor, however.

Other systems that are compatible with common RGB monitors and provide up to 16 colors at 640- by 400-pixel resolution and 132 colors at 320 by 200 resolution are available from $300 to around $1000. Check advertisements for products made by Quadram, Princeton Graphics, and Tecmar Inc. in magazines like BYTE to find some that might represent that might represent a satisfactory compromise. Another good source for information on this subject is Electronic Imaging magazine.

—Steve

RECONFIGURING THE PC XT

Dear Steve,

I have two questions that I would like to have answers for. They both relate to the IBM PC XT. After devouring your most interesting articles and answers in BYTE, I believe you can answer them.

The XT comes equipped with an asynchronous communications card configured as COM1. I have installed a Hayes internal modem that for compatibility with some important software I have to use as COMI. I have had to remove the IBM asynchronous card because I don’t know how to reconfigure it to be COM2. There are no switches on it or any documentation on how this might be done. I have been told that it is possible, but no one has been able to tell me how to do it.

There are times when I really don’t need to use my hard disk, such as when I am working for hours on a mainframe and just using my XT as a terminal. Since my warranty has expired anyway, I don’t mind experimenting if I have some expert guidance. Would there be any way to boot my system without the hard disk, when it is not needed, by installing a switch somewhere? If this is possible, would it be worth saving a few hours of idle running time on the hard disk? I know it would be quieter and more enjoyable working without it when I don’t need it.

—Bob Stephan

Pebble Beach, CA

Modifying the IBM asynchronous card to make it operate as COM2 is feasible. The port addresses used by COM1 are 3F8H to 3FFH, while COM2 uses 2F8H to 2FFH. The schematic in the IBM PC Technical Reference Manual shows a jumper that determines whether the card is selected with A8 equal to 0 or 1, although neither the documentation that comes with the card nor the Technical Reference Manual makes reference to this. The jumper is probably soldered in and may not be there on all boards.

Modifying the main system board to start up without the fixed disk is an operation I don’t recommend. The increase in life of the fixed disk is probably minimal, and turning it on and off when you need it might offset any gain realized by not running it full time. I also suspect, based on my experience with IBM PCs, that the fan makes as much noise as the disk, so there is little to be gained.

—Steve

READING LATCH OUTPUTS

Dear Steve,

I have a Sinclair 1000 that I’m trying to use in a security system. In my system, octal latches monitor infrared beams. When a beam is broken, my program addresses a latch at an address above RAM and uses a POKE to put a 1 in the latch to ring the bell. This works fine. The problem is when I try to check the octal latches...
HOW TO CONTROL THE RISE AND FALL OF POWER.

Your small business computer can give you the power to raise your productivity. But first you have to control the power you give it. Because even the slightest dip or surge of electricity can result in a shocking surprise. An instant loss of important data or misinformation. Even worse, a total power line failure can create department devastation...a total system crash. You can’t afford errors, delays and other problems. After all, you’ve invested in a computer to increase efficiency. But now there’s a solution you can afford. The Sola SPS. This economical, UL listed Standby Power System is designed to protect personal, micro and mini computers from AC line disturb-

ances and failures. Sola SPS provides clean, regulated AC power to your computer when your power line experiences irregular voltage. Line dips or line surges are immediately converted to proper voltage. When the AC line is present, the SPS filters power to eliminate electrical noise. And when the AC line fails, the SPS goes into full action, providing precise AC power to the load from its internal battery. So the only noise you’ll hear is the sound of performance. There’s no maintenance. No installation. No kidding. Just plug it in and turn it on. Why let your productivity rise and fall with your power? The solution is as simple as SPS. The standby system that Sola stands behind.

Write for free literature. 1717 Busse Hwy., Elk Grove Village, IL 60007 (312) 439-2800 Inquiry 336
Color your graphics with the Dataproducts 8050.
For sale, lease or rent from MTI.
The Dataproducts Model 8050 printer is one of the most economical yet highly versatile color printers available for use in today's professional microcomputer applications environment. Whether you buy, rent or lease, MTI is the one source for all computer printers. And our prices are hard to beat. Call MTI and save.

mti systems
A SUBSIDIARY OF DISCOMMUN INCORPORATED

Computer & Data Communications Equipment
Sales / Leasing / Service / Systems Integration

New York: New Jersey: Ohio: Kentucky: Pennsylvania: California:
212/761-0977 800/651-0167 513/891-7050 818/883-7633
516/650-4500 412/931-9351 818/663-7833
All other areas: 800/645-6530
*In MTI areas only.

To get a lot out of your printer, you need a lot of programs, right?

SoftStyle
SoftStyle, Inc. 7192 Kalanianaole Hwy. Suite 205 Honolulu, Hawaii 96825 Phone (800) 367-5600
$69.95. Enhances over 30 dot matrix printers, including Epson and Okidata. IBM PC or compatible.

Wrong. Sure, you could buy one package to change type sizes, another to create fonts, and still another to print sideways. Or you could get one simple program to do it all!

Printworks™
It's loaded.

with the PEEK command, instead of seeing the latch, it reads garbage. I have tried addresses just above RAM all the way up to address 65535, and I still read garbage.

It appears that when you check an address that is above RAM it mirrors back to a RAM or ROM address. Can you tell me how I can address and see my octal latches instead of mirroring back to RAM? Thanks for your help.

DAN GROGAN
San Pedro, CA

It appears that your Sinclair 1000 is not reflecting your PEEK commands back into low memory. As I interpret your letter, you have a set of latches that are supposed to put data on the bus to tell the computer that a detector has been tripped, and you are having trouble reading the latch outputs.

Are you sure that the address decoder on the latch board is set to the address to which you are writing? Is it properly timed to put the data on the bus at the right time or hold it there long enough to be recognized by the processor? The fact that you can write a bit into the bell latch seems to indicate that you are able to address the high memory, but the timing in writing data into the latch could be a lot less critical than reading data.

Have you looked at the signals at the latch outputs and on the data bus to be sure that they are putting out the correct voltage levels? How about signal quality? The level is fairly easy to get with TTL or CMOS chips if the power-supply voltage is at the required 5 volts, but if the wiring connecting the latches to the computer bus isn't properly dressed, you can do horrible things to the normally clean square waves put out by the latches.

Steve

A/D FOR Z-100

Dear Steve,

I have a Zenith Z-100 computer with two disk drives and with 192K bytes of memory. Now I am thinking of providing an A/D interface for the serial input so that I can feed in analog signals from various instruments, such as a spectrophotometer, pH meter, etc. Looking through the journals I located a few suppliers, though mostly of rather fancy multichannel data-acquisition units I do not need. At the most, I need four channels of input without any specialties attached. I would appreciate it if you could let me know of any

(continued)
AZTEC C is documented in detail. AZTEC C is a sophisticated development system also supports the generation of ROM system with assemblers, debuggers, linkers, editors, utilities and extensive run time libraries. AZTEC C is unparalleled.

POWERFUL — AZTEC C86/PRO 3.2 outperforms the latest C compilers and assemblers in terms of speed, memory usage, and compatibility with various operating systems.

PORTABLE — MANX Software Systems provides real portability with a family of compatible AZTEC C software development systems for PC DOS, MS DOS, CP/M-86, Macintosh, CP/M-86, TRS-80-MICRO, and Commodore C64 (the C64 system is only available as a cross compiler - call for details). The AZTEC C86/PRO is compatible with UNIX and XENIX.

PROFESSIONAL — For professional features, AZTEC C86/PRO is unparalleled.

- Full C Compiler (8086/8088 - 60186 - 80286)
- Macro Assembler for 8086/8088/8086/80286
- Linkage Editor with ROM support and overlays
- Run Time Libraries - object libraries + source libraries
- Selection of 8086/8088/80286 for 60186, 80286, and 8086 processors
- Options exist to cross develop ROM code for 65xx, 8080, 8085, and Z80 processors.
- Cross development systems are also available that target most micro computers. Call for information on AZTEC C86/PRO support for XENIX and TOPVIEW.

AZTEC C68K

- For the Macintosh
- AZTEC C68K-c is the finest C software development system for the IBM AT, MACINTOSH, MS DOS, CP/M-80, ROM APPLICATIONS, IBM PC/XT, APPLE II, CP/M-86, TRS-80-MICRO, CROSS DEVELOPMENT.

Why Professionals Choose Aztec C

AZTEC C compilers generate fast, compact code. AZTEC C is a sophisticated development system with assemblers, debuggers, linkers, editors, utilities and extensive run time libraries. AZTEC C is documented in detail. AZTEC C is the most accurate and portable implementation of C for microcomputers. AZTEC C supports specialized professional needs such as cross development and ROM code development. MANX provides qualified technical support.

AZTEC C86/PRO

- for the IBM AT and PC/XT
- AZTEC C86/PRO provides the power, portability, and support necessary to develop sophisticated software for PC DOS, MS DOS and CP/M-86 based microsystems. The system also supports the generation of ROM based software for 8038/8086, 80186, and 80286 processors. Options exist to cross develop ROM code for 65xx, 8080, 8085, and Z80 processors. Cross development systems are also available that target most micro computers. Call for information on AZTEC C86/PRO support for XENIX and TOPVIEW.

AZTEC C68K-c

- for the Macintosh
- AZTEC C68K-c is the finest C software development system for the IBM AT, MACINTOSH, MS DOS, CP/M-80, ROM APPLICATIONS for the IBM AT, MACINTOSH, MS DOS, CP/M-80.

To order or for information call:

800-221-0440

(201) 530-7987 (NJ and outside U.S.A.) Or write: MANX SOFTWARE SYSTEMS P.O. Box 55, Shrewsbury, N. J. 07701.
CLEAN THE MACHINE!

There's enough to worry about without the headache of your computer's downtime or the loss of valuable data caused by dust.

Before dust affects your computer's operation do what a rapidly growing number of computer users do: use Dust-Off® II. Don't just move dust—remove it. Unlike liquid cleaners, Dust-Off® II is a safe, dry, "canned air" cleaning system for your computers, printers, disk and tape drives, diskettes, CRTs, media storage containers and modems. In fact, it works on everything that works in the office.

Dust-Off® II's patented valve gives you pinpoint fingertip-control to blast away pollutants before they cause aggravating downtime. Add the Stat-Off® II accessory, and you have the only dry, non-contact method for eliminating dust-holding static electricity. The Dust-Off II system also includes the Dual Extender and the Mini-Vac vacuum for eliminating hard-to-reach dust.

Get Dust-Off II at your local computer or office supply dealer. Or send $1.00 (postage and handling) for a 3 oz. trial size and literature.

ASh ASK BYTE

Analog Devices (2 Technology Way, Norwood, MA 02062, (617) 329-4700) makes the µMAC-4000 series data-acquisition systems that provide up to 12 channels of 13-bit A/D input/output and serial communication, priced at $995 and up.

Two other units that interface through RS-232C are the 16-channel, 12-bit ADC-II from Remote Measurement Systems Inc., POB 15544, Seattle, WA 98115. (206) 525-3369. It's advertised at $369. Also available is the BUSStor D16 8-bit, 16-channel unit from Connecticut Microcomputer. The address is 36 Del Mar Dr., Brookfield, CT 06804. (203) 775-4595.

All three of the above units accept digital inputs as well as analog.

Since your Zoo uses the S-100 bus, you might also want to consider the plug-in A1N-12 S-100 board from Dual Systems Corp., 2530 San Pablo Ave., Berkeley, CA 94702. (415) 549-3854. This unit provides for 16 channels of input with 12-bit conversion, priced at $775.

Between Circuit Cellar feedback, personal questions, and Ask BYTE, I receive many more letters than you see published, and it often takes a lot of research.

If you would like to share the knowledge you have on microcomputer hardware with other BYTE readers, joining the Circuit Cellar/Ask BYTE staff would give you the opportunity. We're looking for additional researchers to answer letters and gather Circuit Cellar project material.

If you're interested, let us hear from you. Send a short letter describing your areas of interest and qualifications to Steve Ciarcia, POB 582, Glastonbury, CT 06033.

IN ASK BYTE. Steve Ciarcia answers questions on any area of microcomputing. The most representative questions received each month will be answered and published. Do you have a nagging problem? Send your inquiry to Ask BYTE. at Steve Ciarcia, POB 582, Glastonbury, CT 06033.

Due to the high volume of inquiries, personal replies cannot be given. All letters and photographs become the property of Steve Ciarcia and cannot be returned. Be sure to include "Ask BYTE" in the address.

The Ask BYTE staff includes manager Harvey Weiner and researchers Bill Curlew, Larry Bregoli, Dick Sawyer, and Jeanette Dejan.
Now Showing
In Black And White

If you own an IBM-PC or PC work-alike, Roland's new MB-142 monitor lets you show off your text and graphics in today's hottest colors—black and white. That's right! The MB-142 gives you black characters on a paper-white background—just like people have been reading for centuries. You can also have white characters on a black background with just the touch of a button.

Both of these black and white display formats are easier on the eyes and less fatiguing than the green or amber phosphor used in standard monochrome monitors. The MB-142's large 14-inch screen, combined with its ultra-high 720 x 350 resolution, can display characters that are larger and more legible than what you can get with ordinary monochrome monitors. Another great plus is that the MB-142 plugs directly into the monochrome board of your IBM or compatible—just like your present monochrome monitor, with nothing more to buy.

Because of the MB-142's advanced electronic circuitry, you even have the ability to mix graphics and text on the same display when using graphics and text boards from leading manufacturers such as Persyst, STB, Paradise, Hercules, AST and many others. What makes it all possible? The same sophisticated technology used in color monitors.

The MB-142 supports all the winning cards

Push a button for instant reverse screen

For business, black and white makes more sense than green and black

The software programs listed are trademarks of the following companies: AutoCAD, Autodesk, Inc.; CADDraft, Personal CAD Systems, Inc.; Chart-Master, Decision Resources, Inc.; Eneregraphics, Enertron Research, Inc.; Lotus 1-2-3, Lotus Development Corp.; VersaCAD, T&W Systems, Inc.
Innovative, Highest Quality Products From

BACKUP SYSTEMS
Internal
- Streaming Tape
- Cassette
- Floppy Tape

External
A selection of Streaming Tape, Cassette and Floppy Tape systems in either individual units or combined with hard disk drives and expansion slots.

Unique Features:
- Space-saving half-height internal systems
- Backup capacities up to 100 MB
- Fast image backup—ten megabytes backed up in minutes
- File-by-file and mirror image backup and restore
- EXCLUSIVE file-by-file restore from a fast mirror image backup
- Easy to use software, simply press a key—no complex commands
- Largest selection of backup/retrieve options

EXPANSION SYSTEMS
Everex offers a complete line to choose from...
- Full-Size system with eight expansion slots and room to add up to four storage/backup systems.
- Half-Size system with three expansion slots and space for two storage/backup systems.
- Slimline system, only 2½ -inches high with three full-size, one half-size expansion slots and room for two storage/backup systems.
- All Expansion systems are available with any combination of Everex hard disk drive and backup systems.

HARD DISK DRIVE SYSTEMS
Choose from a wide selection of models to meet your needs:
- Space-saving internal systems
- External systems with extra expansion slots
- Capacities from 10 to 32 megabytes
- Factory tested for trouble-free operation

GRAPHICS PRODUCTS
Everex offers a complete line of graphics products to choose from...
- The Edge Color/Monochrome adapter
 - Runs color software on your IBM monochrome display with a FULL SCREEN in 16 shades, no software patches needed
 - High resolution, 720x348, monochrome graphics
 - Operates Lotus 1-2-3, Symphony and other popular programs in an extended 132 column by 44 or 25 row display in HIGH resolution monochrome
 - Printer connection
- Graphics Edge Color/Monochrome adapter
 Similar features as the Edge but also offers:
 - More high resolution colors: 16 in 640x200 graphics
The Company That Stands For Excellence...

- Displays the same information on a color AND monochrome monitor simultaneously

Dual Graphics Color/Monochrome adapter
- Works with high resolution color AND monochrome displays
- Operates Lotus 1-2-3, Symphony and other popular programs in an extended 132 column by 44 or 25 row display
- More exciting colors: 16 colors in 640x200 and 320x200 graphics
- Printer connection

Graphics Pacer Monochrome adapter and Floppy Disk Controller
- Runs sharp, high resolution monochrome graphics
- Operates up to four floppy disk and floppy tape drives
- Printer connection
- Uses only one expansion slot

Evergraphics Monochrome adapter
- Operates crisp, high resolution monochrome graphics
- Includes printer and light pen connections

COMMUNICATIONS AND MULTIFUNCTION

Evercom Internal Modem
- Gives you all of the features found in modems costing hundreds more:
 - Fully Hayes and Bell 103/212A compatible
 - Data transmission speeds in either 300 or 1200 bps
 - Automatic dial and answer
 - Works with tone and pulse phone systems
 - Voice AND data communications
 - Built-in speaker with software volume control
 - Includes powerful, easy to use software

MagicCard Multifunction adapter
- Adds more memory to your computer—up to 384K
- Serial connection for modems, printers, plotters and more
- Printer connection
- Game paddle/Joystick connection
- Reliable clock/calendar with battery back-up
- FORM MANAGER electronic filing system and form creator
- PC WRITE easy to use word processing program
- With printer spooler, electronic disk drive and more

Excellence is the standard at Everex—it’s in our name, our products, in everything we do. When you look for the best for your computer—you’ll find Everex products.

Visit your local Everex dealer today and ask to see Everex products in action. For the name of your nearest Everex dealer, please call (415) 498-1111.

Dealer Hotline: (800) 821-0806. In CA (800) 821-0807.
Address: 47777 Warm Springs Blvd., Fremont, CA 94539 (415) 498-1111.

IBM, PC, XT and AT are registered trademarks of International Business Machines Corporation.
Form Manager is a trademark of BIT Software Inc.
PC WRITE is a trademark of Quicksoft Inc.
FUTURE INTELLIGENCE
A monthly newsletter devoted to tracking future computing technologies emphasizes research and business. Areas covered include artificial intelligence, supercomputers, parallel processing, expert systems, natural language, and voice/speech/pattern recognition and synthesis. An annual subscription is $295. Contact Ed Rosenfeld, Intellect, POB 20008, New York, NY 10025.

BASED IN THE BAY
A nonprofit users group for Sanyo computerists, the Bay Area Sanyo Enthusiasts (BASE) welcomes anyone interested in computers. Regular meetings are held. Contact Lee Swearingen at (813) 788-7865 or Dave Robbins at (813) 886-7751 or write BASE, POB 260517, Tampa, FL 33685.

CHUGGING ALONG
The Capitol Heath Users Group (CHUG) meets on the third Monday of every month at the Fairfax High School in Alexandria, VA 22310. Members operate two 24-hour bulletin boards at (703) 759-2072 and (703) 360-3812. CHUG sponsors an annual conference, houses special-interest groups, and produces a monthly newsletter, CHUG, which is included in the annual S12 membership fee. Call John Roach in the evening at (703) 971-4930 or write CHUG, POB 1023, Alexandria, VA 22310.

STANDARDS' BBS
The National Bureau of Standards' (NBS) Institute of Computer Sciences and Technology (ICST) has established a BBS at (301) 948-5718. Open to the public, its purpose is to exchange information that assists federal agencies in the efficient selection of software and hardware. Among topics discussed are security and interfacing. For details on the project, contact Ted Landberg at ICST, NBS, 225 Room #A266, Gaithersburg, MD 20899, (301) 921-3485.

JOIN CP/M EFFORT
CP/M SIG assists members in the technical aspects of CP/M and related software through monthly meetings, a monthly newsletter, and a 24-hour RCP/M system at (303) 465-1313. Article submissions are welcome, public-domain software is available, and lectures educate members on areas of interest. Discounts on hardware and software and a subscription to the newsletter are provided with payment of S12 a year. Contact CP/M SIG, POB 633, Broomfield, CO 80020-0633.

GERMAN MAC RULES
At least once every two months, members of Clubmac (Europe) submit an article to the newsletter on anything about the Mac or their membership is not renewed. The result is a newsletter that keeps members up to date with latest developments, reviews new programs and hardware, and solves members' computing problems. The annual membership fee is £25 per annum. Contact K. Leslie, Clubmac, Triererstrasse 8, D-5511 Wincheringen, West Germany.

BCS GOES REGIONAL
The Monadnock Region IBM PC Users Group, a subgroup of the IBM PC Users Group of the Boston Computer Society (BCS), gathers in Keene, New Hampshire, to see demonstrations and meet with other users. By joining, you benefit from a software exchange, group-purchase discounts, a monthly newsletter, and automatic BCS membership with access to the BCS BBS. Contact Susy Thielen, 45 Kelleher St., Keene, NH 03431, (603) 352-0971.

CALL THE AMATEURS
The bulletin board of the New York Amateur Computer Club (NYACC) is up and running. The bimonthly newsletter contains NYC users group meetings and contacts, a NYACC directory, events, articles, letters, and news. Meeting times and locations of several users groups are announced on a hotline at (212) 864-4599. The membership is S15 annually; students pay S10. Write the NYACC, POB 106, Church Street Station, New York, NY 10008.

DOWN UNDER THE TRS-80—Members of the Sydney TRS-80 Users Group (SYDTRUG) share knowledge about hardware, software, and education, business, and related applications for TRS-80 computers. Communication occurs through the monthly newsletter containing news and reviews, plus lectures, demonstrations, and the 24-hour BBS (TRU-B80) in Australia on (02) 332-2494. The BBS features messages, group news, and the exchange of public-domain software. Meetings are held on the second and third Saturdays of each month in Botany, New South Wales. Write SYDTRUG, POB 43, Erskineville 2043, New South Wales, Australia, tel. (02) 772-2009.

ENGINEERS ANALYZE STRUCTURE—The Structural Analysis Programs Association (SAPA) upgrades the skills of engineers who use microcomputers to analyze and design buildings. Structural software and computer services that address this issue are discussed in the quarterly newsletter, SAPA NEWS, and in seminars held one full day in eight-month intervals. The annual membership fee is $100. Contact J. Jeff Davies, SAPA, Suite D2, 30 Southeast Seventh St., Boca Raton, FL 33432, (305) 392-6597.

BBS IN FOX RIVER FORMS CLUB—Simplified Computer Solutions in Wisconsin has helped to form the Green Bay/Fox River Valley's bulletin-board service, SCS ABBS. The SCS Users Group evolved from the BBS and provides members with access to a library, group purchasing. (continued)
PERSONALITY PROBLEM?
UNIX™ and DOS™ At the Same Time!

Looking at an IBM PC/AT? Happy with DOS but want UNIX? Happy with UNIX but want DOS? Want them working together?

Get The Connector™

The Connector is a revolutionary product that allows DOS applications to run on the IBM PC/AT or XT under VENIX/86 (the first licensed AT&T UNIX operating system for the IBM PCs) or PC/IX. That means you can add one or more terminals to your AT which run programs using multi-user VENIX/86 to share the disk and printer. Switch between UNIX and DOS at the console with a single command. And run more than one task simultaneously. Like running a spelling check in the background while you print a report and run Lotus 1-2-3™ or dBase™.

Get yourself an AT and load it with VENIX. Collect your DOS and/or UNIX applications. We’ll supply The Connector. The right solution to your software personality problems.

Call for complete details.
Unisource Software Corp., Department 4109, 71 Bent Street, Cambridge, MA 02141.
Telex 92-1401/COMPUMART CAM.
617-491-1264
THOUSANDS OF AVAILABIE ITEMS. CALL FOR COMPLETE PRICING.

SYSTEMS

IBM PC
3270, 200MB Disk Drive, Color Graphics/monochrome Graphics board, Parallel Printer Port, Monochrome Display (Gray Green), List price $2550.00 - Only $2095.00
Super XT 10 Meg Upgrade $2795.00
IBM AT 11% OFF

IBM SOFTWARE

LOTUS 1-2-3 $289.00
LOTUS Symphony 415.00
MICROPRO Wordstar 243.00
ASCH Express For IMS 195.00
Word/Wri/Ouse 279.00
Microsoft Word 279.00
Microsoft Excel 195.00
Project 199.00
ASCHNOTE Friday 199.00
Protherapy 239.00
MICROSOFT Word 279.00
Word Wri/Ouse 279.00
Microsoft Excel 239.00
Microsoft Access 239.00
Lotus 1-2-3 11% OFF

IBM HARDWARE

AST Six Pack Plus 64K $259.00
MegaPlus $259.00
PC Net 1 Starter Kit $630.00
QUADRA Quadboard 0-X $279.00
Super Quad 239.00
Quadlink 479.00
MICROSCIENCE

UNION Winchester $289.00
FRANKLIN TELECOM

10 Meg Harddisk $719.00
22 Meg Harddisk $749.00
Call
Call
HINCHLIVE Mono Graphics $329.00
Color Graphics $199.00
ORDER 1-800-1ST IBM
PC Net 1 Starter Kit $630.00
Call
PIEBALD P 80 Plus 64K $249.00
Super Quad 239.00
Graphix II NEW $309.00
AT Hardware $99.00
TEAC 55F $124.00
SSF $159.00
TANDON 1000 $199.00
IBM Poppy 12 Meg $199.00
Call
TALL DRASS (2MB WinDOS) $1395.00
RAM44X upgrade $29.00
MOUSE SYSTEMS Optical Mouse $189.00
AL, AM, VK, PERSIST, ORION, TITAN AND OTHERS

PRINTERS

BROTHER HR-15 $369.00
HR-25 $319.00
HR-35 $359.00
2040U $419.00
June 3100 $429.00

TELEX #505757/Answer Back - ComputerBanc U.D

800/332-BANC

C h A R I T Y F A C T S

Many people think that the Bear Facts Newsletter contains more information about the Bear Facts Newsletter than is actually true. The annual fee is $12 and requires a blank disk as an initial contribution. Newsletter subscriptions are an additional $6. Write KUB, P.O. Box 23510, Baltimore, MD 21203.

BUSINESS BBS

The Tulane University Business Bulletin Board (TUBBB) system combines business researchers, faculty, alumni, and students on line to share ideas, data, and programs. Contact John Page, A. B. Freeman School of Business, Tulane University, New Orleans, LA 70118.

JOIN LONE STAR

The Lone Star Computer Club of Racine, Wisconsin, a group of users of all kinds of computers, meets at 7:30 p.m. on the second Thursday of each month at the Douglas Avenue Park Community House. The monthly newsletter. President's Newsletter, combines articles, software reviews, regular features, and library and system notes with applications. Contact H. S. Kanekeni, Lone Star Computer Club, P.O. Box 93, Kenosha, WI 53140.

VICTOR 9000 IN NW

The Victor 9000 Users Group serves users in Oregon and southern Washington state by meeting regularly to discuss the merits of the Victor 9000 business computer. A monthly newsletter, discount purchases, software demonstrations, and support for new users are group benefits. Contact Alan Bergen, 17765 Southwest Ebberts Court, Beaverton, OR 97005.

KAYPRO IN BALTO

The Kaypro Users of Baltimore (KUB) meet at 7:30 p.m. on the first and third Wednesdays of every month at Loch Raven Middle School in Baltimore, Maryland. The Bear Facts Newsletter contains further information. The annual fee is $12 and requires a blank disk as an initial contribution. Newsletter subscriptions are an additional $6. Write KUB, P.O. Box 23510, Baltimore, MD 21203.

ZORBA IN U.S.

The Zorba Equipment Users Society (ZEUS), a source of information and support for Zorba owners nationwide, maintains a public-domain library. The newsletter, Oracle of Zeus, is produced six times a year on disk and contains up to 30 files of relevant information. The $25 annual membership fee covers a subscription to the newsletter. Contact Randy Brook, ZEUS, P.O. Box 1112, Athens, OH 45701.

EXPLORING THE STARS

Users of MicroPro's WordStar and InfoStar can subscribe to two Stargazer newsletters, Exploring WordStar and Exploring InfoStar. Designed to unlock the potential of the programs, they supply information for solving application questions and clarifying documentation through a practical, hands-on approach. Members are encouraged to submit articles and can benefit from group-purchase discounts. Subscriptions are $24 annually per newsletter or $40 for both. Contact Hi-Tech, Department B, 4 Harwood Dr., Glen Cove, NY 11542.

MAC GETS TECHNICAL

A Macintosh Programming Journal, Mattie, reviews software development and programming exclusively for the Mac. Each month articles written by a panel will build on previous columns, enhancing readers understanding of how to best apply Macintosh software technology. The subscription rate is $24 a year. Contact Mattie, P.O. Box 846, Placentia, CA 92670. (714) 993-9939.
THE SIMPLE APPROACH
IS THE SYMBOL APPROACH.

INTRODUCING POCKET APL™
Pocket APL, a new PLUS★WARE™ product, symbolizes a whole new way to solve problems.
Faster than Fortran. Simpler than Basic. And at a cost much less than Cobol and many other programming languages. Its use of symbols makes it concise and efficient—powerful and productive.

WORKING IN SHORTHAND — WORKING FASTER, SMARTER.
Pocket APL allows you to shrink the length of your programs. Because just a few symbols say what takes lines and lines to say in other programming languages. So Pocket APL cuts the drudgery and need for tedious subroutines and long lists of commands.

GET FLEXIBILITY WITH CANNED SOFTWARE.
Pocket APL is a complete APL implementation with enhancements like online HELP, windowing, report formatting, dual file system, and debugging aids. It's also a powerful online calculator. So you don't have to switch back and forth between programs or from your hand-held calculator to the computer.

And the symbols? Simple. You'll learn them fast. They'll become as second nature to you as +, −, ×, and ÷. Once you start using them, you'll be programming four to 10 times faster than with conventional languages. And as your needs grow, you can easily upgrade to STSC's APL*PLUS®/PC System for even more features—like communications and graphics.

POCKET APL COSTS MUCH < YOU'D EXPECT.
Pocket APL makes programming easy. And priced at just $95, it's easy on the budget, too. It works with IBM PC's and compatibles and requires only 128K. So if problem-solving is taking up too much of your time, the answer is symbol. Pocket APL.

To order, or for more information, call 800-592-0050. In Maryland, call (301) 984-5123.

Or write STSC, Inc., 2115 East Jefferson St., Rockville, MD 20852. All major credit cards accepted.

Problem-solving at the speed of thought.

Pocket APL uses a soft character set for computers with IBM-compatible graphics board or color monitor; keywords for computers with monochrome. Optional character generating ROM can be ordered for IBM PC monochromes or Hercules monochrome boards.

PLUS★WARE and Pocket APL are trademarks of STSC, Inc. APL★PLUS is a service mark and trademark of STSC, Inc., registered in the U.S. Patent and Trademark Office and in other countries.
When one of twenty Micro Mart Sales Pros answers a call, he’s ready at his PC.

LEADING EDGE Complete or Monochrome Systems. AT THE COMPUTER SPECIAL OF THE MONTH! INTRODUCTORY LOW PRICES systems. FROM $1495

Canon

LEADING EDGE Color printers. Complete line.- - - - - - - - TOSHIBA

MONT! CALL FOR DETAILS!

28YT E• A P R IL1 9 8 5

annel-Edge

PROTOCOL CONVERSION

SNA & BISYNC 3780, 5251 Mod 12 & 3270 Emulators and 3270 Keyboards.

SANTA CLARA PC Partner &

We have thousands in stock.

THE PRINTER SPECIAL OF THE MONT! FROM $299

WEBSTER PRODUCTS 9800 Color & 8070A, 132 col, 200 cpm.

STAR MICHIGAN Complete line.

TEXAS INSTRUMENTS $85, $86 & $86XL.

FROM $99

Letter Quality

NEC Spin writes $820, $850, $850.

JUKE G100,G5000.

$419/$749

O-TECH Starwriter (40 cps).

Printmaster, (95 cps).

$399/$1299

COMEX (336)

We carry a full range of form handling options.

Call us for our unadvertised LQ Printers!!

Floppy Disk Drives

TANDON TM 100-2, DD/DS, 330K. $149

1/2 HEIGHT DISK DRIVES: SHUGART, MITSU.

BUSHI, TSAC, PC,XT & AT comp. FROM $119

SPECIAL/2x2 (1/2 DD):“Y” cables & brackets. FROM $89

Hard Discs

Micro Mart carries all the major brands. If you don’t see it—ask for it.

PRAGMATIC PERIPHERALS P-10, 20, 30 & 60 internal & external. For your PC, XT, AT, AFTC, COMPAG or others. FROM $899

SYSGEN 10 & 20 Meg w/streamer tape.

NEW MODELS—CALL!

SYSGEN Image & Quickfix, streamer tape back-up for your IBMXT & AT. CALL BERNOUULLI TECHNOLOGY Hard Disc Subsystems.

$899

DAYTON Rewinde of hard discs. 21 & 32MB/1tape. Start @ $849

Chips

We guarantee the lowest price for chips! Call us!!

INTEL 8087, 80287 High speed coproc. FROM $129

64K RAMCHIPS. CALL FOR MARKET PRICE

56K RAMCHIPS. CALL FOR MARKET PRICE

128K FLOYG-BACK Chips for your AT. CALL BERNOUULLI TECHNOLOGY Hard Disc Subsystems.

$899

Multifunction Boards

We have a complete line of multifunction boards compatible with the Portable, AT, XT & Jr.

SIX PACK 64-384K, multifunc.

Mega-pluS 64-64K, max. & func.

NVI (RAMboards, for PC & PC compatibles-call. 1/0 MINUTE, 1/0 shortboard for Portable & AT.

ADVANTAGE 128K-5MB, expansion for AT. CALL QUADRUM QUADRABOARD, 64-384K. $899

Software

ASK ABOUT THE SOFTWARE SPECIAL OF THE MONT! FROM $899

ACCOUNTING

SOGICOM / US Complete Line

unbundling windows.

FROM $899/BI.

BYTE * APRIL 1985

Micro Mart has over 20 store locations. Call for the one nearest you.

(404) 449-8089

Prices are subject to change without notice and are similar, but may vary at Micro Mart Retail Stores.
As the order is processed, each product is thoroughly tested before shipping.

8283.8485! LET'S SHIP IT!

TO BUTTE AND ZEPHYR HILLS...READY TO GO!!

Micro to Mainframe Order Entry and Processing is fast...then we can ship by Federal Express for next day delivery.

The result? Some very satisfied Micro Mart Customers!

Micro Mart has financing options available. Ask for a Micro Mart Blue Chip Credit Card application, today.

©Copyright Micro Mart 1985
Technology Corporate Campus
3159 Campus Drive
Norcross, Georgia 30071

Micro Mart is a registered trademark of International Business Machines Corporation.

America's PC Specialist.

MICRO MART

IBM is a registered trademark of International Business Machines Corporation.
THE FASTEST LINK
FROM MICRO TO MAINFRAME

for IBM PC, XT AT and compatible includes software, synchronous adapter board and manual

The BARR/HASP Intelligent Communications package provides more than just connection—it's powerful enough to drive multiple high-speed printers for volume printing, yet versatile enough to print checks and invoices on any size printer. With the menu-driven software, you can perform all program functions accurately and easily, and without lengthy training.

BARR/HASP emulates a full function IBM 3777-2 and HASP on the 360/20. Print speeds on single and multiple printers range from 30 cps to beyond 2,400 lpm (7,000 lpm on the PC AT). Line speeds range from 1,200 to 9,600 Baud on dial-up and to 19,200 Baud on a dedicated line. With the PC AT, you can achieve a new speed record for a microcomputer—56,000 Baud—and drive even the fastest laser printers at maximum efficiency.

All tasks—printing, plotting, sending jobs, and using the console—operate simultaneously from a single PC. Such high performance translates into instant savings. BARR/HASP now replaces expensive, cumbersome Remote Job Entry workstations—and does it for a fraction of the cost.

You'll find the BARR/HASP manual complete and refreshingly intelligible. But should you have a question, BARR's technical experts are just a toll-free phone call away.

FREE 30-DAY TRIAL
See for yourself how the BARR/HASP Link can work for you. For a free 30-day trial, call

800-BARR-SYS
(800-227-7797)
in NC, call 919-782-4462

$890

BARR SYSTEMS, INC.
2500 Blue Ridge Road, Suite 315
Raleigh, NC 27607
Inquiry 39
BUILD YOUR OWN EXPERT SYSTEM
Chris Naylor
John Wiley & Sons
New York: 1985
246 pages. $13.95

ARTIFICIAL INTELLIGENCE IN BASIC
Mike James
Focal Press
Stoneham, MA: 1984
122 pages. $14.95

THE COGNITIVE COMPUTER: ON LANGUAGE, LEARNING, AND ARTIFICIAL INTELLIGENCE
Roger C. Schank with Peter G. Childers
Addison-Wesley
Reading, MA: 1984
282 pages. $17.95

BUILD YOUR OWN EXPERT SYSTEM
Reviewed by
Ramachandran Bharath

A n increasing number of comprehensive introductions to expert systems—computer programs that emulate the decision making of human experts—have been published recently. Two examples are Building Expert Systems by Frederick Hayes-Roth (Reading, MA: Addison-Wesley, 1983), and A Practical Guide to Designing Expert Systems by Sholom M. Weiss and Casimir A. Kulikowski (Totowa, NJ: Rowman and Allanheld, 1984).

But the object of Chris Naylor’s book, Build Your Own Expert System (originally published in the United Kingdom in 1983), is to help home computer users write expert systems that learn.

John F. Sowa, author of Conceptual Structures: Information Processing in Mind and Machine (Reading, MA: Addison-Wesley, 1983), groups expert systems into three categories based on the kinds of problems they address: classification (such as diagnosis of disease), design (of chips, for example), and decision support. Naylor’s book is aimed essentially at teaching readers about classification problems.

Naylor begins with a good discussion of the general advantages and limitations of current expert systems. He follows this with a chapter on statistical and probability theories; he provides the essentials of elementary probability theory and discusses revising initial estimates of probabilities in light of relevant additional information. (The technique for such revision of initial estimates is known as Bayes’ theorem.) Naylor introduces these concepts extremely well by relating them to an expert system the reader might want to build: a program for forecasting weather using information on current condi-

After providing this background, the author leads the reader through the process of developing a general BASIC program that can solve a broad range of classification problems. The process includes a BASIC program that asks the user questions regarding the variables relevant to the problem and the outcomes possible in the problem. The program then must be given examples of the different outcomes and of the values of the associated variables. The program can handle any problem that has these characteristics: a set of variables relevant to the problem; different outcomes distinguished by a different pattern of values for the variables; and the pattern of values of the variables indicates which outcome would result.

A concrete example of this abstract definition is medical diagnosis. Here, the pattern (symptoms) tells the doctor (continued)
Inquiry 400

COMPUTER COURSES:
"Structured Programming in BASIC" for IBM PC

"Microprocessing Essentials" includes
Microtrainer 2, four interface boards, and power supply.

Both are university level courses.

TEACHING HARDWARE:

Microtrainer 2: 68000-based single board computer
Microtrainer 68K: 68000-based single board computer
Interface Boards: Demonstrate practical digital circuits
EPROM Programmer
Power Supply: 5V regulated 1.5A bench supply
6800 Assembler, runs on IBM PC
68000 Assembler, runs on IBM PC
Classroom Logic Trainer and Student Supplies
Write or phone for free brochures. Quantity discounts available.

Waterloo Distance Education
279 Weber St. N., Unit 17
Waterloo, Ont. Canada N 2 J 3 H 8
(519) 884-4340

Waterloo Distance Education
1081 Clinton St.
Buffalo, N.Y.
14206

BEFORE YOU BUY CABLE ASSEMBLIES,

CHECK UNDER THE HOOD!

DATA SPEC™ cable assemblies are the very best. Each cable is fully shielded to exceed FCC EMI/RFI emission requirements. The unique P.D.T. technique, introduced by DATA SPEC™ and employed beneath the hood shield, ensures maximum integrity under the most adverse conditions. DATA SPEC™ has interface cables for all your requirements: Printers, Modems, Monitors, Disk Drives, and much more. And all DATA SPEC™ cable assemblies carry a lifetime warranty. Insist on DATA SPEC™ cables in the bright orange package. Available at better computer dealers everywhere. For more information, call or write:

DATA SPEC™
A Division of Alliance Research Corporation
20120 Plummer Street • Chatsworth, CA 91311 • (818) 993-1202

Copyright © IBM by Alliance Research Corporation
Print: PHO

BOOK REVIEWS

which outcome (disease) is indicated. The pattern is represented by a set of variables; a 1 in a particular variable means the symptom that variable represents is present; a 0 stored means it is not. Another example is a fault-diagnosis problem to test Naylor's expert program. In this problem, the possible variables are the faults you might observe in a cassette recorder: no lights; tape won't move; unit won't record; intermittent sound; distorted sound; erratic speed; and hum. Depending on which subset of these seven variables is operative, you can determine which outcome (or fault) you should diagnose, such as the switch is off, the tape jammed, the tape was inserted wrongly, the head is dirty, or there's a problem with the amplifier. (An optional extension of this is incorporated in a listing.) Using the diagnosis as the output, the extension offers as output a suggested remedial action—clean the head, switch on the recorder, etc.—that is, it is a two-node (or two-stage) classification problem.

The second stage classifies the faults to produce remedial action. Readers can come up with their own examples of situations that fit this general classification-problem format. By finding a suitable problem that relates different subsets of a set of variables to different outcomes, the general program can be used for diagnosis.

In the course of developing this general program, Naylor introduces the theoretical concepts underlying the general classification problem, referred to in texts on statistical theory as multiple discriminant analysis (the problem of discriminating or distinguishing between different outcomes on the basis of information regarding the discriminating variables). By the time readers work through the explanations of each line of the program and what it does, they will have learned useful statistical theory related to a problem that holds their interest.

The author explains the fundamental basis of all diagnostic or classification-type expert systems. He illustrates how they are essentially a set of IF (set of symptoms) THEN (corresponding outcome or diagnosis) statements. These are usually referred to as "production rules." He discusses major successful expert systems, like MYCIN, for medical diagnosis; Prospector, for geological prospecting; and DENDRAL, for chemical analysis. The book is worth reading just for this lucid explanation of the basis of current systems and for the discussion of making a program so specific to a particular problem area that it cannot easily be adapted to a different problem area. In contrast, the programs Naylor teaches readers to build are of the learning type; that is, on the basis of examples of different types of problems, they can learn to diagnose problems in different areas. He points out that the disadvantage of this is that such a general program would not be as efficient as one built for a specific purpose.

SUMMARY

I highly recommend this book for several reasons. It provides a simple yet insightful discussion of extant successful
Not long ago, PC Magazine called MDBS III “The most complete and flexible data base management system available for microcomputers.” That’s a powerful statement. But then, MDBS III is an amazingly powerful software package. So powerful, in fact, that it lets you build mainframe-quality application systems on your micro or mini. MDBS III is not for beginners. It’s for application developers with large data bases or complex data interrelationships who want to define data base structures in the most natural way—without resorting to redundancy or artificial constructs. It’s for professionals who can appreciate its extensive data security and integrity features, transaction logging, ad hoc query and report writing capability and its ability to serve multiple simultaneous users. And if you want the power and the glory that only the world’s most advanced data management system can provide, MDBS III is for you. For information on MDBS III and our professional consulting services, write or call Micro Data Base Systems, Inc., MDBS/Application Development Products, 85 West Algonquin Road, Suite 400, Arlington Heights, IL 60005. (800) 323-3629, or (312) 981-9200. MDBS III. ABSOLUTE POWER.
Graphics capability enables HP 150 to be used as digital oscilloscope for real time signal display.

For more information contact:
CLINICAL MICROSYSTEMS, INC.
P.O. Box 36-1055
Melbourne, Florida 32936
(305) 723-5475

expert systems. It teaches the basic principles of statistical theory, production rules, learning algorithms, and so forth in a practical way and provides a technical summary at the end of the book for reference. The book contains a program for an expert system that is based on an application of Bayes’ theorem.

Running the program in chapter 7 helped immensely in following Naylor’s explanations. Also, verifying that the sample program produced the results indicated by the author confirmed that I was on the right track. The programs are given in Apple II and Spectrum versions of BASIC. The reader with access to a different system (I had to modify the learning program for the IBM Personal Computer) becomes painfully aware of the difficulty of understanding the logic of another person’s BASIC program when it is written in a version that uses only single-letter names for variables. Naylor mentions the unsuitability of BASIC for these types of programs; his choice was based on the fact that it is the language most commonly available for home computers. Now that microcomputer versions of a more suitable language, Prolog, are becoming available, I hope Naylor’s next edition of the book will provide micro-PROLOG listings as well.

Ramachandran Bharath is a professor in the Department of Management, Marketing, and Data Processing at Northern Michigan University (Marquette, MI 49855).

ARTIFICIAL INTELLIGENCE IN BASIC
Reviewed by Norman J. Chaplin

The artificial intelligence (AI) invasion that was once predicted has now arrived. In fact, this intelligence has established itself in the areas of intelligent games, decision analysis, and expert systems in addition to programs that correct spelling and grammar.

Mike James, the author of Artificial Intelligence in BASIC, believes the best way to comprehend the scope of AI is to gain experience in it. He recommends using BASIC, which is both widely understood and easily read.

To illustrate different techniques, James uses a few simple problems that are repeated in various branches of AI. He provides practical programs that can be entered without prohibitive effort from a keyboard. His BASIC dialect is a standard Microsoft version without special features; it can be adapted readily to most home computers.

James uses a heuristic attack on the familiar nine-square problem (arrange 8 numbered tiles in numerical order within a 3 by 3 array). He defines a heuristic rule as one that, when applied, tends to make the result move closer to the solution. With a heuristic, as opposed to an algorithm, there is no guarantee that a solution will be found. The path of the heuristic may be diverted into a closed loop of repeating positions. The program prints the board position to the screen every two to four moves and prints out the total number of moves taken to reach
a solution. Although many of my attempts ended in continual cycling through a particular sequence of moves, I generally solved the problem in twenty to sixty moves, and sometimes in as few as seven or eight.

MAN AND MACHINE

The opening chapter discusses "Your Computer's IQ," "Computer-Aided Intelligence," and "What Is Intelligence?" In the sections on pattern recognition and speech production and recognition, James admits that these subjects are too much for BASIC and are best handled with dedicated hardware. A discussion of grammar leads to an example of English generated by a computer. "Thinking, Reasoning, and Problem Solving" deals with mathematical theorem proving, cybernetics, and human associative memory.

Man teaches machine in chapters 4, 5, and 6. Man instructs the program Aardvark to recognize animals. To accomplish this, Aardvark asks a series of questions to build up its inventory of identifiable animals until it becomes an expert in animal identification. Aardvark is rudimentary, but with some expansion it could become a practical program, useful in fields such as mineral identification. I used it for bird identification.

"Structure of Memory" discusses the problem of memory-recall and explains computer solutions such as relational stores and conceptual databases. James fully illustrates the conceptual database problem with the Tom the Cat program: which solves the recall problem using a number of corresponding matrices. If you enter "TOM IS A CAT: CAT HAS FUR: and then inquire, Does Tom have fur? the program answers YES. (Tom wouldn't run until I eliminated its bugs.)

LANGUAGE AND PHILOSOPHY

Another chapter deals with language: syntax, parsing, and semantics. Several pages cover Eliza, the psychotherapy program. There is also a listing and description of a BASIC program, Chat, that generates English sentences.

The last chapter is about philosophy. Can a computer program be intelligent? Or merely very clever? What about awareness? Should the Turing test be modified to measure artificial intelligence? The theme of this book could be summarized in James's words: "There is nothing very different about intelligent programs and they can be understood without any difficult theory." Neurophysiology shows us how small groups of neurons work, functions that we can duplicate electronically. Psychology, however, is so general that it can provide little practical guidance. James emphasizes that the third-generation software beginning to appear is characterized by the assumption that any misunderstandings are the program's fault, and the program will attempt to correct its mistake by learning the meaning of the new input from the user. This could be interpreted as intelligent behavior. I loaded a Commodore 64 with the Chat program, made a few changes, and found (continued)
the answers from such a short program to be thought-provoking. The program generates ideas, which is a form of creativity. But is it creativity from the machine that arranges the word symbols, or from the man who interprets those symbols? Or both? Is this machine-aided creation? The sentences generated by Chat are enigmatic, but that could be changed by programming some restrictions on word association. The meaningless sentences would be reduced by this and further suppressed by a supervisory censor. We could even program it to learn from human prose. But would we then be restricting creativity?

If you are already competent in AI, Artificial Intelligence in BASIC is not for you unless you would like to instruct others. It could be a useful text for a short laboratory course in which the existing programs could be extended as exercises, or it could serve as a practical supplement to more theoretical material. It is superb as an introductory text for study at home. The programs are short enough that you could enter most in less than half an hour.

The knowledge attained from these short BASIC programs is readily transportable to other, more efficient languages, where it can become a tool for construction of large, more practical AI programs.

Norman J. Chaplin (3155 South Dr., Allentown, PA 18103) is a retired designer in VLSI now acting as a writer and consultant.

THE COGNITIVE COMPUTER
Reviewed by Darrow Kirkpatrick

Roger Schank, director of Yale University's Artificial Intelligence Project, has succeeded in writing a clear, exciting report on the nature of human intelligence and the implications of machine intelligence. Explaining his research, Schank tells us how much we must know about computers, what we can learn about intelligence from the development of understanding computers, and how intelligent computers will affect our world.

SETTING THE RECORD STRAIGHT
Schank risks distilling his 20 years of research into one nontechnical book about artificial intelligence. This is his attempt to set the record straight. Along the way we can learn a little about how computers work and a great deal about how human beings think, learn, and understand. Schank thinks learning about AI research is more important for an understanding of computers than learning to program in BASIC (or any of the other computer-literacy skills in vogue). AI research has the potential to transform our lives through the creation of new machines that can do things never done before.

COGNITIVE UNDERSTANDING
If we want to build understanding computers, first we must understand ourselves; we must be familiar with human (continued)
Amazing what goes into Macintosh these days.
Macintosh and IBM PC software. Compatible at last, thanks to MacCharlie, a rather innovative coprocessing system.

And imagine the consequences. Nearly 10,000 IBM PC software programs designed for general business and specific applications in real estate, insurance, law, medicine, banking, etcetera, can now join forces with Macintosh's own popular programs.

And, the myriad of IBM PC-compatible software adopts Macintosh's many beloved features, including desktop utilities such as the clipboard and the calculator.

In addition, MacCharlie allows IBM PC and Macintosh data files to be exchanged. Talk about flexibility.

But the good news gets better.

You see, MacCharlie delivers hardware compatibility, as well. For example, IBM letter-quality printers can be easily used with Macintosh.

Furthermore, MacCharlie now allows Macintosh to perform virtually any networking an IBM PC can perform. Even to the extent of tying in with IBM mainframes.

In other words, your networking capability goes beyond the Apple family.
How does it happen? As easily as slipping on penny loafers.
In mere moments, MacCharlie combines the best features of the world's premier personal computers.
And despite the fact that it turns one computer into two, MacCharlie adds but a handful of square inches to Macintosh's physique.
In short, one of life's most perplexing decisions—whether to buy a Macintosh or an IBM PC—
can now be made with the greatest of ease.
Ask for MacCharlie at your local computer store. Or, for more information, call toll-free, 1-800-531-0600. (In Utah, call 801-531-0600).

MacCharlie offers 256K RAM, with optional upgrade to 640K RAM; 360KB disk drive, and optional second disk drive.
thought processes before we can program an understanding computer. Schank defines three levels of understanding: making sense, cognitive understanding, and complete empathy. Current AI research is concerned mostly with cognitive understanding. Computers will be able to learn, relate the present to the past, formulate new information, and explain themselves.

People understand in terms of their own experiences. We can understand only if our memories are able to change to match a situation. In a sense, we are programmed by our experiences. But intelligent entities can, at best, “make sense” of experiences they haven’t had. Computers will never understand us at the level of complete empathy because they are not like us.

Intelligence is the ability to react to something new in a nonprogrammed way. The fundamental difference between imitation and understanding in a system is self-knowledge. An intelligent system must be able to explain itself.

Because AI research is a new and different science, every major AI project is in some sense a failure at modeling human intelligence. Each success shows only what is missing. AI is a steady but plodding study of the impossible. As it asks questions about language, reading, and understanding, it can lead us to appreciate human qualities and abilities even more.

AI research has an uneasy relationship with computer science. Computer scientists are searching for ways to make computer hardware and software work more efficiently, but AI researchers are attempting to raise the level of understanding of computers. Ultimately, Schank feels, AI will be assimilated into other disciplines.

Schank defines product-directed AI as concerning the technology of getting computers to do intelligent things, and theory-directed AI as concerning the representation of knowledge, learning, and human thought processes. Expert systems are examples of product-directed AI.

LANGUAGE AND KNOWLEDGE STRUCTURES

Until recently, the representation of abstract ideas and concrete events has been possible only with natural languages. Computers also must be able to handle abstract concepts, but a system will not seem very intelligent without also having a clear grasp of the obvious. In a humorous progression of examples of conceptual errors in the development of an early AI program, Schank demonstrates just how obscure the obvious can be.

Our memories are tuned to ideas, not words. A major task in AI programs is making the computer forget the words and retain their meanings. An understanding system must rely on very basic conceptual representations of events. The Yale Artificial Intelligence Project utilizes only 11 primitive actions to represent real-world happenings.

An interesting thing about human knowledge is not how much we know, it’s how effortlessly we recall what we know. One of the basic methods used to represent knowledge in AI programs is the “script.” Scripts enable computers to deal with everyday, stereotypical situations by using a group of connected possibilities, or “slots,” and rules for filling these slots.

But if computers are to understand more than stereotypical situations, they must have some knowledge of why and how people do what they do. Computers must have knowledge structures for goals and plans.

Early AI research concentrated on the outer form of language by building parsers to dissect language into its grammatical elements. Current research is occupied with understanding the content of communication. For Schank and others, language is a vehicle rather than an end: the aim is to write programs that concentrate on meaning rather than on grammatical structure.

In the early 1970s Schank and his students built software programs called the Inferencer and the Paraphraser. In order to process sentences and make conclusions, the Inferencer could parse, draw inferences, and generate natural language. The Paraphraser could understand a sentence well enough to restate it in different ways, from different perspectives. However, to understand large pieces of text, computers must draw inferences from many connected sentences.

A computer can use scripts to make up for the lack of logical connections between events, but researchers have to give the computer methods for dealing with the world when it does not have a script. More sophisticated AI programs use beliefs, inferences, plans, goals, scripts, and prior memories in order to understand. Researchers have seen the importance of a dynamic, flexible memory that changes every time it understands something.

In the long term, it is unrealistic for us to expect to build perfectly general knowledge structures into computers. Instead we must give them the ability to learn. This is the only way computers will be able to make connections across different fields of knowledge—thereby solving what Schank calls the “domain problem.” Computers will have to know what they don’t know as well as what they do know.

AI IN EDUCATION

I suspect that first among Roger Schank’s priorities is teaching. He has strong opinions about education. The issue is not how much we must learn about computers but what we can learn from them.

Schank thinks children should first learn to read and write. Public schools and teachers are not equipped to train children for programming careers. Schank concludes that children are better off with no programming skills rather than poorly taught computer skills.

Schank thinks that children must learn at an active, individualized pace. Children must actually learn, not just repeat, new principles. Experimentation with computers can provide this kind of learning.

For Schank, education is the most important and poten-
For five years NESTAR has ventured where giants have feared to tread—local area networking. In fact, NESTAR has installed more large local area networks in large institutions than any other manufacturer.

Soon the giants will be involved in networking and that will ensure broad industry support. NESTAR's products will be totally compatible and complementary to the systems sold by the giants. That way you receive the advanced technology and responsiveness of NESTAR today with the comfort that compatibility with giants brings.

Call or write for your copy of:
"Executive Briefing"
2585 East Bayshore Road,
Palo Alto, CA 94303 • (415) 493-2223
DISK CONTROLLERS

Digitalk

- DT050
 - Digitalk... $34.95 ea.
 - MMS 104 Processor... $34.95 ea.
 - Part No. DT057...
 - $24.95 ea.

MICROPROCESSOR COMPONENTS

New Super Low Prices!

MICROPROCESSOR CMS

- 74HC High Speed CMOS

New Super Low Prices!

TWIN

- Z80A, Z80B, Z800 SERIES

TWIN

- 74HC High Speed CMOS

For more details and specifications, please refer to the full document or visit Jameco Electronics at 1255 Shoreway Road, Belmont, CA 94002, or contact them at (415) 592-6097. Telax: 176043.
THE JBAOCM ALLOWS CONNECTION OF STANDARD SERIAL RS232 PRINTERS, MODEMS, ETC. TO YOUR VIC-20 AND C-64. A-4-POLE SWITCH ALLOWS SELECTION OF THE 4 CONTROL LINES. COMPLETE INSTALLATION AND OPERATION INSTRUCTIONS ARE PROVIDED.

PROMODEM 1200 AND OPTIONS

The PROMODEM is a Bell 212A (300/1200 baud) intelligent telephone modem. It features a full Featured Expandable Modem. Standard features include Auto Answer and Auto Dialing. The PROMODEM also comes complete with connector and cable—plug it into your disk controller card. 8x6 or 28-pin connector 6-120V • Weight: 4.5 lbs.

ADD-514 (Disk Drive). $165.95

ADD-IC (Disk Drive Card). $49.95

More Apple Computer Add-Ons

- **AF1** (Keyboard Protector) $39.95
- **KHP-6007** (Switching Power Supply) $59.95
- **KB-16** (Apple II Keyboard) $39.95
- **MOH-2DG** (Memory Onboard) $169.95
- **JE64** (IBM Card for Apple II) $99.95
- **ADD-12** (12V, Half Height Drive Case) $179.95

ADDITONAL APPLETOM ADD-ONS AVAILABLE

ARC-16K (IBM RAM Card for Apple II). $39.95

MTEC (IBM RAM Card for Apple II). $69.95

ASSC-P (Super Serial Card for Apple II). $99.95

ADD-IE (5.25" Half Height Drive Case). $179.95

KEYBOARDS

- **JE520AP** (Apple II Keyboard Only) $149.95
- **KB-69** (Apple II Keyboard Only) $199.95
- **EAE-1** (Expanded Apple Enclosure Case Only) $95.95

Power Supplies

- **KEPCO/TKS 400 WATT POWER SUPPLY**
 - Input: 115/250 VAC • Output: +5V @ 2.5A, -5V @ 1A, +12V @ 2A, -12V @ 1A, 15V @ 2A
 - Price $149.95

Apple Accessories

- **FUNKTIONS! ACCESSORY**
 - Functions: Fil a power supply and module (board to board) directly into your disk controller card
 - Size: 6" L x 3 1/2" W x 1 1/2" H
 - Price $99.95

- **PARTY ADDITIONS!**
 - Commodore® Accessories ProModem 1200 and Options
 - Power supply
 - Apple® Accessories
 - IBM® Accessories

UV-EPROM Eraser

- Erases up to 8 chips within 2 minutes 1 chip in 18 minutes Handling cost and erasure system easy. Special-conductive foam tip eliminates static buildup. Built-in safety lock to prevent UV exposure. Compact—only 9.00 L x 1.00 W x 3.00 H. Complete with holding tip for 8 chips.
- Price $74.95

UV-115L Replacement Bulb
- Price $16.95

PROJEDMERON PROGRAMMER

- coverage all EPROMs • Software, user manual, and documentation included
- Price $195.00

24 & 28 PIN PACKAGES

- 6 & 64 EPROMS

REQUIRES NO ADDITIONAL SYSTEMS FOR OPERATION

JE64-A EPROM Programming
- Price $1195.00

JE64-ARS COMMUNICATION PROGRAM
- Price $195.00
A beneficial application of computers. Schools should be paying attention to computers not because they will take over our lives or because everyone has to be a programmer but because computers are part of the solution to education problems.

The Future

Computers will be really useful to the average person only when they can be used with no training at all. Schank sees advisory systems in areas such as finance, medicine, and law becoming available within the next few years. Sophisticated learning systems, with cognitive abilities, will be available within a decade, Schank says. And within 50 years he predicts, there will be integrated world-knowledge systems capable of learning about new domains: their most effective role will be as librarians and consultants, figuring out what we need to know about a subject and the right way to explain it to us.

AI may change the way we look at ourselves. One of its by-products will be the opportunity for an informed public. People lack the information they need because they don't want to appear stupid, bother an expert, or pay lots of money for advice. In the future, people will be able to obtain expert advice of all kinds, easily, quickly, and inexpensively from computers. Of course, we should evaluate computer advice as carefully as we would that from any other advisor with a stake in our decision.

Criticism

Schank is best, and worst, when hypothesizing. He has made a career out of playing mind games, and most of those he presents are fascinating. However, he occasionally slips into an overly optimistic view of computers and the future. He says that machines will not only take over the most unpleasant human jobs and will provide people with the information they need to run their daily lives. I think this will be more a function of what people seek rather than simply what computers can provide.

Audience

The Cognitive Computer is not for those people who are interested in the engineering behind AI programs. Schank does not include details on how AI programs go together, what languages they are written in, and what kinds of hardware they run on. His contribution is to put thinking computers in perspective and show us where we can go with them.

It is a credit to his science of understanding how humans understand that Schank writes with such clarity. He demonstrates a genuine concern for how computers and their AI software will affect human lives. Schank has a healthy perspective on scientific progress: he doesn't believe that every aspect of human thought can or should be modeled on computers.

Darrow Kirkpatrick is an applications engineer at Development Associates Controls (POB 1049, Carpinteria, CA 93013).
You can buy a less expensive diskette and not save a thing.

One can understand the temptation to buy a less expensive diskette.
 Rather than a Dysan* diskette.
 After all, the less expensive diskette is probably almost as good. And should you run into a bad one, well, it didn’t cost that much, anyway.
 Right? Not quite.
 You see, a less expensive diskette is by definition less diskette. And the few pennies you save are worth a great deal less than what you have to lose.
 Namely, your data.
 That's why it makes more sense to spend a bit more for a Dysan diskette.

 Every Dysan diskette you buy will record and retain all your data all the time.
 You can be sure of that because every Dysan diskette is certified 100 percent error free and backed by our lifetime warranty.*

So next time you're tempted to buy a less expensive diskette, ask yourself this question:
Can you really afford it?
For the name of the Dysan dealer nearest you, call toll free (800) 551-9000.
Dysan Corporation, 5201 Patrick Henry Drive, P.O.
Box 58053, Santa Clara, CA 95050.

Dysan

Somebody has to be better than everybody else.
Announcing the first major breakthrough in word processing technology since WordStar.

Now, state-of-the-art comes easy.

Introducing WordStar 2000, a totally new word processing program from the makers of WordStar.

WordStar 2000 removes all limits from word processing. From what you can create. From what you can achieve.

Because WordStar 2000 lets you do everything.

Easily.

From windows, to undo, to spelling correction, WordStar 2000 does it all. And more.

WordStar 2000 gives you the works.

“Windows” allows you to work on different documents — simultaneously. “Undo” lets you replace text you mistakenly removed. A built-in spelling corrector checks and corrects misspellings from over 97% of the most commonly used words.

WordStar 2000 also has a “typewriter mode” to fill in forms or envelopes easily. Plus “format sheets,” which give you ready-made headings, tabs and margins at the touch of one key. It can even create and update footnotes.

Finally, a truly integrated word processing system.

WordStar 2000 goes well beyond words. It comes with a built-in five function math. A built-in mail merge enables you to mass produce form letters. Get our special Plus package and you also get a built-in mail list data base that allows you to create, update and sort your own mailing lists. Also a built-in indexer. Not to mention built-in telecommunications capabilities.

All integrated together, so you never have to leave the program.

The only word processing program that interacts with you on your level, whatever your level.

Before we created WordStar 2000, we studied the way people worked, and thought. We also drew from our experience with over 1,250,000 WordStar owners.
As a result, the keys you press are the keys you’d expect to press (“c” for copy, “p” for print, etc.). You may also use your computer’s function keys. Menus have been uniquely designed for easy access to all functions. And MicroPro’s exclusive “tutor-in-your-computer” makes learning fast and fun.

WordStar 2000 is the easy word processing program you’ll never outgrow. Of course, the original WordStar and WordStar for PCjr will continue to provide substantial and proven word processing capability for those with more modest budgets.

See your local MicroPro dealer today or call (800) 227-6703 [in CA (800) 632-7979] for the dealer nearest you.

So you can remove all limits from what you can achieve.

Now available for IBM PC/AT/XT and compatibles with 256K RAM. Upgrade from WordStar to WordStar 2000 through your dealer, or call MicroPro Customer Update (800) 227-5609, 9am-3pm P.S.T.

WORDSTAR

2000

Now there are no limits.
A Custom System For Less than a Clone

The Silver Fox will run most of the best-selling programs for the IBM-PC like the PFS series, WordStar, Multifunction, dBASE II, High Sierrana, and Lotus 1-2-3.

But the basic Silver Fox gives you more hardware than other 8086 systems including 32KB of RAM, 4 video outputs, 17 high-resolution monitors, a full 25x80 display, and a superior keyboard with a built-inavy.

Also included as standard equipment is the best-time software bundle in the business including:

- H DOS 3.1
- Color BASIC
- WordStar 3.3
- Easy Writer
- Spell
- FLDshare
- PC File III
- Colc
- Games Graphics
- PD Desk OS Tutor

But the big feature the IBM-PC and its clones can’t match is the Silver Fox 1.6 megabytes of storage. Even though the Silver Fox drives can store more than twice as much information, they can also read and write to standard 10KB, 32KB, and 50KB forms.

Because the Silver Fox is born in a 40KB microcomputer in Japan it simply makes more reliable on-PC than it’s assembled by hand. So we back each Silver Fox with a limited lifetime warranty.

If you didn’t think your $1397 would buy you this much computer it may sell $1-800-FORAFAX

and leave your name and address or the on-line order at the bottom.

We will ship your Fax catalog that will tell you how it can.

Columbia’s

If you’re looking for maximum compatibility, minimum price, and worldwide service you should consider buying a Columbia from Scottsdale Systems. Each system comes with a huge software bundle including H DOS 5.1, WordStar, Easy Writer, Perfect Print, Perfect Finder, Perfect Speler, Fnc Graph, Home Accountant, Plus Space Commanders, All Tutorials, and 11 M IV. We have the lowest prices on all Columbia systems including the new 4220 desktop with 250K 2220 package with a built-in 9” monitor. Your choice

$1698

While they last complete systems
Sanyo 1100’s

Our lowest price ever on a complete dual drive system: Each 555Board/Sanyo 1100 system includes built-in 230K (230K) disk drives, a 12” 25x80 green phosphor monitor, a parallel port and a serial port, and a great keyboard with 13 special keys (engraved with both WordStar and BASIC) and a built-in palm rest.

Plus each system comes with CFPM Sanyo BASIC and complete Manuals and software including WordStar 3.3, MailMerge, SpellStar, Database, Reporter, and Calculator. We guarantee each system, and they’re backed by over 75 service centers nationwide.

As someone who would know it, my local dealer says you couldn’t possibly sell the whole package for $884 because he sells the WordStar alone for $483.

With the local dealer a penny wise correct because while we lose on the whole sale we gain on the order.

Scottsdale Systems Ltd.

617 N. Scottsdale Road, Suite B
Scottsdale, Arizona 85257

(602) 941-5856

Call 8-5 Mon.-Fri.

We participate in arbitration for business and customers through the Better Business Bureau of Maricopa County.

SINCE 1980

TELEMARKETING ONLY. If you plan to visit please call first for an appointment. Prices listed are for cash and include a 3% discount. You sell on a Net 30 basis to Parma 1-200 companies and universities. No C.O.D.s. Ask F.O.S. or P.O.s. add 2%. Visa, Mastercard add 3%. As residents add 5%. Prices subject to change. Each price is subject to availability. Personal/company checks take 3 weeks to clear. All items listed are new with manufacturers warranty. 0-200 reselling fee is a returned merchandise. Shopping extra products are F.D. pair of shipment. Software is not warranted for suitability. Registered trademarks: Televisio Televisio Systems, Inc. Sanyo Fax/M. HAGEN-DOS-Scottsdale Systems Ltd. Commuter-Visual Computer Incorporated.

Scottsdale Systems Ltd.

617 N. Scottsdale Road, Suite B
Scottsdale, Arizona 85257

(602) 941-5856

IS IT SICK TO LOVE A PRINTER?

If you love your Olivetti 92 or Epson FX-80 don’t read any further because the new Olympia NP is priced as foster is more than培育 and has a near letter quality mode that is much superior to anything in existence today.

Plus unlike the Olivetti or the Epson the Olympia comes with adjustable tractor feed (as well as ribbon feed) as standard equipment. The new model of a push typewriter and the NP has a true bar so that it works great with computer forms.

The NP comes with the quality mark that has made Olym a world leader in typewriters and is supplied with nationwide service.

With the 92’s and Epson’s, the Olympia is one of the only models that can do this at a workable price. The Olympia NP 92 is a sure thing in the future. Now you can own the best printer at the lowest price because it’s what it should be.

If you’re considering the purchase of an Epson, or even a Toshiba, you might want to check out this computer/visual machine.

Because if you were to buy an Epson ET-80 or an Olivetti 92 with or without the lower cost of $599 anywhere you would be paying about $1000 more for an inferior printer. Scottsdale Systems sells the Olympia NP with 10-15% cash back at a mere

$344
April 1985

- BUSINESS SHOW
 Business-Expo. various sites throughout the U.S. This show features exhibits and services related to office technology. Contact International Business Expositions Inc. 200 East Northland Towers. 15565 Northland Dr., Southfield, MI 48075-5378. (313) 569-8280. April-May

- INTELLIGENT MACHINES
 Machine-Intelligence Classes. Turing Institute, Glasgow, Scotland. Among the classes offered are 'Foundations of Artificial Intelligence' and "Cognitive Modelling as a Basis for Expert Systems.” Contact The Turing Institute, George House, 36 North Hanover St., Glasgow G1 2AD, Scotland; tel. 041-552-6400. April-lune

- MEMORY CARDS
 STUDIED-Memory-Card Technology. Columbus, OH. Business, industrial, and technological concerns will be addressed. Panel discussions and exhibits. The fee is $495. Contact Phil Wells, Battelle Memorial Institute. 505 King Ave., Columbus, OH 43201-2693. (614) 424-7249. April 10-11

- SYSTEMS DEVELOPMENT AND FOURTH GENERATION—Structured Techniques Using Fourth Generation Languages. Chicago, IL. This seminar explains how to use fourth-generation languages in a structured systems development environment. Contact Digital Consulting Associates Inc. 6 Windsor St., Andover, MA 01810. (617) 470-3870. April 10-12

- COMMUNICATIONS TECHNOLOGY FOR THE NONVERBAL—The Fourth Annual Conference on Communication Technology: Technology and Nonspeaking Children. Joseph Stokes Auditorium, Children's Hospital of Philadelphia, PA. Up-to-the-minute information on the use of technology with nonverbal children will be presented. Concurrent sessions will address ongoing research, computers, and treatment strategies. The registration fee is $95. Contact Joan Bruno, Children's Seashore House, 400 Atlantic Ave., POB 411, Atlantic City, NJ 08404. (609) 345-5191, ext. 278. April 12-13

- MAC IS FEATURED
 MacFair, Creese Student Center, Drexel University, Philadelphia, PA. Seminars, demonstrations, and exhibits. Student-sponsored. Contact MacFair, The DUsers, Creese Student Center, Drexel University, Philadelphia, PA 19104. (215) 895-2573. April 13

- OPTICAL STORAGE INVESTIGATED—The 1985 Materials Research Society Symposium D. Golden Gateway Holiday Inn, San Francisco, CA. The mass-storage technologies symposium will investigate optical data storage. Areas to be addressed include write-once and erasable media, read-only technology, substrates, and lasers. Contact D. H. Davies, Symposium Co-Chair, 3M, 420 North Bernardo Ave., Mountain View, CA 94043, (650) 338-8731, ext. 278. April 15-18

- SEMINAR CONSIDERS

- BUCKEYE SHOW
 The Ninth Annual Computer Fair. University of Dayton Arena, OH. Terminals, microcomputers, and word processors will be displayed.

IF YOU WANT your organization's public activities listed in BYTE's Event Queue, we need to know about them at least four months in advance. Send information about computer conferences, seminars, workshops, and courses to BYTE, Event Queue, POB 372, Hancock, NH 03449.

Contact Dan Schumacher, University of Dayton, 300 College Park Ave., Dayton, OH 45469. (513) 229-3511. April 16-17

- DBM AND FOURTH GENERATION—Database Management Systems and Fourth Generation Languages for Personal Computers. Atlanta, GA. Topics include approaches for managing data, operational considerations, and management issues. The fee is $795. Contact Software Institute of America Inc., 8 Windsor St., Andover, MA 01810. (617) 470-3880. April 17-19

- OFFICE, DP EQUIPMENT
 CeBIT '85. Hannover, West Germany. More than 1300 exhibitors from more than 25 countries will display office equipment and data-processing technology. Held in conjunction with the Hannover Fair. Contact Hannover Fairs Information Center, Route 22 East, POB 338, Whitehouse, NJ 08888. (800) 526-5978; in New Jersey, (201) 534-9044. April 17-24

- NETWORK CONTROL AND MANAGEMENT
 Network Management/Technical Control. Marriott Copley Place, Boston, MA. Diagnostic and test instruments will be among the products displayed. Contact Louise Myerow, Registration Manager, CW/Conference Management Group, 375 Cochituate Rd., POB 880, Framingham, MA 01701. (800) 225-4698. In Massachusetts (617) 879-0700. April 18-19

(continued)
COMPUTER FESTIVAL

The Tenth Annual Trenton Computer Festival, Trenton State College, Trenton, NJ. Talks, tutorials, user-group activities, exhibits, computer graphics, theater, games, and a 50-acre outdoor electronics flea market are some of the highlights of this annual event. Contact Ms. Marilyn Hughes, Trenton State College, Hillwood Lakes C.N. 550, Trenton, NJ 08623, (609) 771-2487. April 20-21

DECISION-SUPPORT DISCUSSED—National Conference on Decision-Support Systems, Washington, DC. Examines the implementation and integration strategies of decision-support systems into management. Two days of workshops. The fee is $745. Contact Conference Manager, U.S. Professional Development Institute, 1620 Elton Rd., Silver Spring, MD 20903, (301) 445-4400. April 22-25

PUBLIC NETWORK OPERATIONS—X.25 and Packet Switching Networks

Atlanta, GA. This course covers the internal operations of a packet-switching network and its implementation. International standards are also covered. The fee is $795. Contact Elaine Hadden Nichols, Department of Continuing Education, Georgia Institute of Technology, Atlanta, GA 30332-0385, (404) 894-2547. April 23-25

TRADE SHOW, CONFERENCE—Electro/83 and Mini/Micro Northeast-83

New York City. Areas to be covered include artificial intelligence, communications and networks, consumer electronics, high-density data storage, and personal computing. Contact Electronic Conventions Management, 8110 Airport Blvd., Los Angeles, CA 90045, (213) 772-2965. April 23-25

EXHIBITION

COMPUTER APPICATIONS EXPLORATION

Persocom '83, Sofia, Bulgaria. An international conference on the applications of personal computers and the problems encountered in using them. Contact Dr. Marcel Israel.
EVENT QUEUE

Bulgarian Academy of Sciences, Institute of Industrial Cybernetics and Robotics, 113 Sofia, Acad. G. Bonchev St., Bl. 12, Bulgaria; tel: 72-46-98; Telex: 22836 ITKR BG. April 23–26

• EXPERT SYSTEMS
 Expert Systems and Knowledge Engineering, Gottlieb Duttweiler Institute, Ruschlikon/Zurich, Switzerland. The theme is "Essential Elements of Advanced Information Technology;" Contact Dr. T. Bernold, Gottlieb Duttweiler Institute, CH-8803 Ruschlikon/Zurich. Switzerland. April 25–26

• MICROE CAMPER STATE—The Fourth Annual New York Computer Show and Software Exposition, Nassau County Coliseum, Uniondale, NY. Contact Ann Katcef, CompuShows, P.O.B. 3315, Annapolis, MD 21403, (800) 368-2066; in Annapolis, (301) 263-8044; in Baltimore, (301) 269-7694; in the District of Columbia, (202) 261-1047. April 25–28

• VIRGINIA COMPUTING
 The Fourth Annual Virginia Computer Show and Software Exposition, Virginia Beach, VA. Contact Ann Katcef, CompuShows, P.O.B. 3315, Annapolis, MD 21403, (800) 368-2066; in Annapolis, (301) 263-8044; in Baltimore, (301) 269-7694; in the District of Columbia, (202) 261-1047. April 25–28

• EQUIPMENT SALE

• SPRING WITH COMMONERS—COMMON's Spring '85 Conference, Louisville, KY. More than 250 presentations are planned. Contact COMMON, Spring '85 Conference, Suite 1717, 435 North Michigan Ave., Chicago, IL 60611, (312) 644-0828. April 27–May 1

• INTELLIGENT VISION
 Intelligent Vision Systems, Holiday Inn, Monterey, CA. The technical and marketing aspects of intelligent vision will be covered. Contact Richard D. Murray, Institute for Graphic Communication Inc., 375 Commonwealth Ave., Boston, MA 02115, (617) 267-9425. April 28–30

• INTRO TO UNIX
 Introduction to the UNIX System, Atlanta, GA. The pros and cons of UNIX will be covered. Contact Digital Consulting Associates Inc., 8 Windsor St., Andover, MA 01810, (617) 470-3870. April 29–30

• C FOR ENGINEERS
 C Programming for Engineers, University of Michigan, Dearborn. A short course and workshop. Contact Professor R.E. Little, University of Michigan, 4901 Evergreen Rd., Dearborn, MI 48128, (313) 593-5241. April 29–May 3

• KNOWLEDGE ENGINEERING—Knowledge Engineering: A Short Course, University of Tennessee Space Institute, Tullahoma. Contact Professor Moons Ali, University of Tennessee Space Institute, Tullahoma, TN 37388-8897, or call the Short Course Office at (615) 455-0631, ext. 278. April 29–May 3

• COMMERCIAL AI HIGH-TECH CONFERENCE—AI 85: Artificial Intelligence and Advanced Computer Technology Conference/Exhibition, Convention Center, Long Beach, CA. More than 20 technical sessions as well as (continued)

There's no magic to using your personal computer for data acquisition. Fred Molinari, President

There's no trick to it. Just take your choice of our new single board plug-ins and bring complete analog and digital I/O capabilities to your personal computer.

Whether you're working in a laboratory research or industrial process control, our single boards can give you measurement and control capabilities without having to spend big bucks.

And who knows that better than the leading supplier of low cost data acquisition boards, systems, and software?

Our boards include A/D with programmable gain, D/A, digital I/O, clock and direct memory access capabilities. With power and performance to match your PC, our analog interfaces provide 12 or 16-bit A/D resolution and direct connection for high or low level signal inputs.

And these boards just plug into the PC's backplane. No messy external boxes or cables. User input connections are simple with our compatible line of screw terminal panels.

Comprehensive user manuals with many programming examples get you up and running fast.

So why look any further? No other analog I/O systems can offer PC users such quality, power and performance for such a reasonable price.

After all, making data acquisition easy is what we're all about.

And that's no illusion.

Call (617) 481-3700.

Data Translation is the leading supplier of personal computer hardware and software for data acquisition and control.

Data Translation

In Canada: 416-625-0067

IBM PC is a registered trademark of IBM. Apple II is a registered trademark of Apple Computer Corp. TI Professional is a registered trademark of Texas Instruments. DEC Rainbow is a registered trademark of Digital Equipment Corp. COMPAG is a registered trademark of COMPAG Computer Corp.

Inquiry 109

April 1985 • Byte 85
New 64K SBC
Only
$375.

- **Requires no terminal. Includes Video Controller and CP/M® 2.2**
- **Runs any size floppy drive.**
- **Other models include Hard Disk Controller, CP/M® 3.0, 128K or 256K RAM, and 8088**

64K SBC includes:
- 6MHz 2808

- Video Controller
- 2 Serial Ports
- 4 Parallel Ports
- I/O Expansion

*CPM is a registered trademark of Digital Research Inc.
CP/M is a registered trademark of Digital Research Inc.*

Source Code and Drivers Included

Call our Toronto office today.

Or write:

Megatel
1051 Clinton St.,
Buffalo, N.Y.
14206

Substantial OEM Discounts Available

EVENT QUEUE

May 1985

- **SUMMER SEMINARS**
 - Summer Seminar Series, Rochester Institute of Technology, NY. A series of one-week seminars. Titles include "Introduction to Linear Systems and Digital Signal Processing," "Basic 6800/6809," and "Advanced Digital Logic." Contact Yvonne Fish, School of Engineering Technology, Rochester Institute of Technology, One Lomb Memorial Dr., POB 9887, Rochester, NY 14623. (716) 475-2915. May 1

- **FAULT-TOLERANT DESIGN—Introduction to Fault-Tolerant Microcomputer Systems.** Wisconsin Center, Madison. Presentations will emphasize practical applications. The fee is $650. Contact William C. Dries, University of Wisconsin-Extension, Dept. of Engineering and Applied Science, 432 North Lake St., Madison, WI 53706. (608) 262-6243; in Wisconsin. (608) 262-2061. May 1

- **INTEGRATED OPTICS**
 - EGIO '85: The Third Euro continued
THE PROFESSIONAL'S CHOICE

Software

Word Processing Editors

- EASYWRITER II
- SCIENTIFIC
- PROFESSIONAL

Desktop

- SPREADSHEET
- SUPERCALC 3
- WRITING
- WORD PERFECT
- TKISOLVER
- VOTER
- VOLKSWRITER II
- SYNERGY

Spreadsheets

- EASYWRITER II
- SYNERGY

Project Management

- OPEN ACCENT
- SMART SYSTEM
- AUDITOR

Hardware

Multifunction Boards

- AST 6700 PLUS (64K)
- AST 6700 PLUS (128K)
- AST 6700 PLUS (256K)

Input Devices

- KEYTRONIC
- MICROSOFT
- MOUSE

Mass Storage

- ALLOY PC-BACKUP
- AST BSC
- ASTPCOX

Networks

- AST PC NET
- CORRECTOR

Communications

- SMARTCOM II

Lowest Price Guarantee

We will match current nationally advertised prices on most products. Call and compare.

1-800-221-1260
In New York State call (718) 438-6057

Free Shipping

on all credit card or prepaid orders and all orders over $1000.

Inquiry 352

Softline Corporation
P.O. Box 729, Brooklyn, N.Y. 11230
TELEX: 421047 ATLN UI

April 1995 • BY T E 87
A black border may appear around the Palette slide image, which will be imperceptible when projected.
Now last minute presentations can be made from your personal computer. In color. In house. In minutes.

Introducing Polaroid Palette.

Whether your presentation is in 30 minutes or 30 days, the new Polaroid Palette Computer Image Recorder will make it easier. Priced at under $1800, it lets you make Polaroid instant 35mm slides or prints from personal computer-generated data. Right at your desk. So now you can create a presentation in minutes. Without sending out for processing, paying premiums for rush service or risking the security of your confidential information.

Works with the graphics packages of the IBM PC or XT, DEC Rainbow or PRO, Apple IIe or II+ and AT&T 6300.

The Polaroid Palette is designed to work with many graphics software packages. In fact, when using such popular programs as Graphwriter, Chart-Master, Sign-Master, DR Draw and DR Graph, Palette can virtually double both the horizontal and vertical resolution of your monitor. Plus, a "backfill" feature reduces raster lines for a smoother, more finished appearance. The result—presentation quality slides. On-the-spot.

Color 35mm slides, even from a black and white CRT.

Think of it as an artist's palette. Because Palette "paints" your graphs, charts and text. You're choosing from up to 72 colors. If you don't want red, press a few keys—it's green. And if you're not the artistic-type, Polaroid has developed a menu of color sets: combinations of colors that have been specially coordinated to complement your presentations. And all of this is yours, even if you have a black and white monitor.

Lets you make last minute changes or add up-to-the-minute information.

The Polaroid Palette is the fast, convenient, low-cost way to prepare slides for your presentation. And perhaps even more important, Palette allows you to keep confidential information confidential. You won't have to send your work out to anyone again.

So why wait until the last minute to find out about Polaroid Palette? Call this toll-free number or return this coupon. Because with Palette you'll make your deadlines, in no time.

CALL 1-800-225-1618

For a demonstration, call toll-free, or mail the coupon to Polaroid Corp., E.I. Marketing, Dept. 604, 575 Technology Sq., Cambridge, MA 02139.

CALL 1-800-225-1618

□ Send information □ Have representative call.

Company __ Title ______________________

Address __

City ____________________ State __ Zip ____________

Telephone (__________) _________ PC make and model ____________________________

Polaroid

B-4/85

* Suggested list price. Polaroid®

- SPRING COMDEX
 COMDEX Spring. Atlanta, GA. More than 750 companies will exhibit. Contact The Interface Group Inc., 300 First Ave., Needham, MA 02194, (800) 325-3330; in Massachusetts, (617) 449-6600. May 6–9

- MAPLE LEAF COMPUTING—The 1985 Canadian High Technology Show, Civic Centre, Ottawa, Ontario, Canada. Product displays, speakers, and tutorials. Contact Canadian High Technology Show, Suite 214, 2487 Kaladar Ave., Ottawa, Ontario KIV 8B9, Canada, (613) 731-9850. May 7–8

- MEMORY CARDS STUDIED—Memory-Card Technology, Crowne Plaza, San Francisco, CA. See April 10–11 for details. May 7–9

- PC DISPLAYS
 PC Expo, Convention Centre, Montreal, Quebec, Canada. Contact PC Expo, 20 Butterick Rd., Toronto, Ontario M8W 3Z8, Canada, (416) 252-7791. May 8–10

- TOPICS IN COMPUTER LAW—The Sixth Annual Computer Law Institute, Los Angeles, CA. Topics on the docket include proprietary rights issues in the design of compatible products, product distribution, and anti-trust and copyright issues. Contact Cheryl Litrenta, University of Southern California Law Center, University Park, Los Angeles, CA 90007, (213) 743-2582. May 9–10

- C CONVOCATION

- GRAPHICS FOR ENGINEERING. DRAFTING
 Computer Graphics for Engineering/Drafting Practice and Computer Graphics Workshop, University of Texas, Austin. These short courses stress learning the principles of computer graphics and seek to develop the ability to prescribe computer graphics equipment for engineering applications. Contact College of Engineering, University of Texas, Austin, TX 78712, (512) 471-3506. May 13–17

- PROFESSIONAL TUTORIALS—Tutorials for Professional Development. Hyatt Hotel, Los Angeles, CA. A series of all-day seminars in software, logic programming, and communications. Contact Gerry Segal, MD 20052, (800) 424-9773; in the District of Columbia, (202) 676-8520. May 20–22

- MODULA-2 ENGINEERING—Software Engineering with Modula-2, Atlanta, GA. A course emphasizing methods for building large-scale software systems in Modula-2. Prerequisite: knowledge of Ada or Pascal. The fee is $495. Contact Elaine Hadden Nicholas, Continuing Education, Georgia Institute of Technology, Atlanta, GA 30332-0385, (404) 894-2547. May 15–17

- OK SHOW
 The Eighth Annual Show & Tell Microcomputer Conference, University of Oklahoma, Norman. Microcomputer fans of all ages and levels of expertise come together to share ideas and demonstrate applications and hardware. Contact Richard V. Andre, Show & Tell Computer Conference, Mathematics Department, University of Oklahoma, 601 Elm St., Norman, OK 73019. May 18

- CAD TECHNOLOGY

- SOFTWARE AND HUMAN DEVELOPMENT
 Computer Software and Human Development Conference, Royal York Hotel, Toronto, Ontario, Canada. Held in conjunction with the Third Annual Software Panorama, this conference will examine the impact of software development on business, education, health, and agriculture. Contact Reuben Lande. The Software Developers Association, Suite 500, 185 Bloor St. E, Toronto, Ontario M4W 1C8, Canada, (416) 922-1193. May 22–24

- DISK STORAGE EXPO

- MANAGE PROGRAMS

- COMPUTER INTERFACING—Personal Computer and STD Computer interfacing for Scientific Automation. Virginia Polytechnic Institute and State University, Blacksburg, Virginia. A hands-on workshop with participants wiring and testing interfaces. The fee is $450. Contact Dr.
LEARN TO BUILD PROGRAMS—First North American Summer School on Program Construction. Newport, RI. Methods for the effective construction of software will be taught. Contact Teleprocessing Inc., 60 State St., Boston, MA 02109, (617) 367-6227, June 3–12.

COMPUTER MAINTENANCE

COMPUTERS FOR SALE

MUMPS MEETING

ROBOTIC STRATEGIES

CLINICAL COMPUTING
Computing in Clinical Laboratories: The Fifth International Conference. Stuttgart, Federal Republic of (continued)
No need to tie up your valuable computer to duplicate diskettes... when VICTORY can provide you with a duplicator that will do the job flawlessly, and much faster. One button operation automatically formats, duplicates and verifies up to 8 diskette copies at the same time.

VICTORY can supply you with literally dozens of standardized formats to match the protocol of virtually any current computer. In addition, built-in utilities enable you to read or devise any format you may require. If that's not enough, VICTORY can help you with unusual or unique formatting, serializing or copy-protecting problems.

VICTORY duplicators are designed to be reliable. Each of the copy drives has a separate controller to increase copying throughput and ensure maximum uptime. VICTORY Duplicators use industry proven drives combined with 100% digital technology... there are no analog circuits to slowly drift out of tolerance.

Let us help free you from your disk-duplicating bottleneck at a surprisingly attractive price. Write or call: VICTORY ENTERPRISES TECHNOLOGY, INC., 8910 Research Blvd., Suite B2, Austin, Texas 78758- (512) 450-0801.
Our multi-mode HERMES printers shake hands with all kinds of computers. Even some you've never heard of.

And for your IBM-PC™, we have created the fully compatible multi-mode HERMES PC-PRINTER I.

Fully compatible with your IBM-PC™, tested with Easywriter™, Multiplan™, Lotus 1-2-3™ and other software packages, the HERMES PC-PRINTER I allows you to convert your personal computer to a heavy duty professional system. IBM-PC™ users who only pick the best will also appreciate:

Its speed. Bi-directional, shortest path printing. 200 cps Data, 100 cps Near Letter Quality (single pass).

Its resolution. Finest print quality available on a matrix printer. So good you can even print signatures. Bit mapping graphics in single, double and triple density modes.

Its quality. Swiss high quality construction. Very high reliability for heavy duty use.

Its versatility. Choice of printing styles with the complete IBM™ character set tables (266 chars.). Wide range of automatic sheet-feeders with 1 or 2 bins + envelopes, single document inserter, roll-holder and tractor.

Its ease of use. Plug'n play installation. Plug it in, switch it on yourself.

To receive a sample of the finest quality matrix print-out and additional information on the HERMES PC-PRINTER I, please return the coupon below.

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company</td>
<td>City</td>
</tr>
<tr>
<td>Street</td>
<td>Zip</td>
</tr>
<tr>
<td>State</td>
<td>Phone ()</td>
</tr>
</tbody>
</table>

Send to: HERMES PRODUCTS, Inc. – Printer Division
1000 Lower Road, LINDEN, NJ 07036, (201) 674 0300

Contact factory direct for OEM sales of print-heads and printer mechanisms.
Three more firsts from the people who invented the wheel.
From day one, Xerox and Diablo have been known as the two best names in daisywheel printers. And now there are three more in the Xerox line to choose from.

The Xerox Advantage D-25 Diablo printer turns out letter quality documents quickly and quietly. And it does all that for the price of a dot matrix printer.

At 80 c.p.s., the D-80IF is the fastest daisywheel printer ever made by Xerox. It has a built-in double bin sheet feeder. As well as the capacity to handle up to 16 computers at once.

And the D-36 spells reliability. It averages 4,000 hours of printing between maintenance calls.

But Xerox didn’t stop there. Each of these new machines is compatible with most computers on the market, including the IBM-PC. And they’re all easy to use.

They’re also a part of Team Xerox, so they can be serviced by the national Xerox service force and authorized service locations across the country.

So if you’re looking for the latest in daisywheel printing technology, go with the people who’ve been in the business the longest. Call 1-800-833-2323, ext. 25, your local Xerox office, an authorized Diablo or Xerox dealer or send your business card to Xerox Corporation, Dept. 25192, P.O. Box 24, Rochester, NY 14692.

For more information from Xerox, circle 405 on the Reader Service card.
Knife the Mac

Ennui Associates has announced MacKnifer, a hardware attachment that mounts on the side of your Macintosh and sharpens knives, scissors, lawn-mower blades—anything in your home that needs sharpening. With MacKnifer's patented double-action grinding wheel, you can easily sharpen any utensil in less time than it takes the Mac to open a file. According to the manufacturer, MacKnifer is so easy to use that you can operate it within 30 minutes of taking it out of the box. Turn your spare computing time into extra cash with a knife-sharpening business on the side...of your Macintosh. For more information on MacKnifer, contact Ennui Associates, 52502 Marginal Ave, Somnolencia, CA 90541.

Nouveau-Chic Luggage

The Spike Untermeyer Luggage Company manufactures hollow replicas of the most popular lap-size and transportable personal computers for use as travel bags by status-conscious travelers. For example, the Untermeyer Executive Portfolio resembles a Tandy Model 100, complete with movable (nonfunctional) keys. The Executive Portfolio flips open to reveal enough space for a pad, appointment calendar, several pens and pencils, or a couple of peanut butter and jelly sandwiches for that quick executive snack. The Untermeyer Overnighter, easily confused with a Compaq, TL, or IBM portable computer, is perfect for that sudden business trip. Untermeyer luggage is painfully authentic. The Overnighter is exactly half an inch too large to fit under the average coach airline seat, and the bottom of the case is heavily weighted to ensure that nasty crack on the shins when you maneuver past the flight attendant.

For more information, contact the Spike Untermeyer Luggage Company Inc., 442 Glenwood Ave., Prosac, NJ 22104.

One for the Road

Honda Corporation has announced the Transporter, the first truly transportable computer. With a few simple twists, you can transform the Transporter from a portable computer (with full keyboard, 24-line by 80-column display, and two microfloppy-disk drives) into a single-passenger automobile.

The Transporter runs on 32 D-cell batteries (not included) with additional one-year battery backup for the ignition, which is in ROM (ride-only memory). Thus, if the Transporter won't start on a chilly winter morning, you can simply give it a cold boot to jog its memory. Although the Transporter is somewhat heavier than other portable computers, you can easily drive it through airport terminals. Service will be available through AAA (American ASCII Association), which provides pickup and delivery with no tote-charges.

Options include the TP-100 Printer Trailer, the 300-BeePS Modem, and a genuine Naugahyde keyboard cover. Honda has also announced plans to release the SemiPortable, a 20-megabyte hard-disk system that transforms into a 18-wheel tractor/trailer (assembly required).

The Transporter is 100 percent compatible with the popular Toyota Corolla and runs on most operating roads. The cost is $5995. For more information, contact Honda Corporation Ltd., 2 Duryea Drive, Minikin, Ml 48101.
Celebrity Software, maker of the Howard Cosell Word Processor and the Michael Jackson Spreadsheet, has announced the Princess Di Database. If your data is a royal mess, this hierarchical database will arrange things in a neat succession for you. You can obtain output from the system every nine months, with three levels of security: Mum's the Word, Rumor City, and Tell the World. Available at supermarket checkout counters, the Princess Di Database is priced at $49.95 from Celebrity Software, 135 Pachelbel Canyon, San Regales, CA 90342.

High Press Technologies (Hipiech) has announced a new publication, Personal Photocopying. Designed to make photocopiers less threatening for the average person, the magazine will be written in nontechnical language that explains PRINT, PAUSE, and CANCEL in language that a layperson can understand.

Articles in the first issue of PPC will include "1001 Ways to Make Money with Your Photocopyer," "Paper Jam—Deadly Threat to Your Business," and "Big Gray: The Xerox Story." Based on research done in its own offices, Hipiech has also announced Constant Coffee Making. For a one-year subscription to either magazine, send $25 to POB 123123, South Banausic, WI 03458.

ThinkFast Software has introduced a revolutionary natural-language database designed for home management. MOM, the Model Management program, is a matriarchal database of home-related subjects that responds to plain-English queries. After entering information about your home, age, eating habits, and shoe size, you enter search phrases in the format "Where is the screwdriver?" After a quick pass through its files, MOM responds. "Right where you left it—behind the TV set." Enter the search phrase, "Where are my sneakers?" and MOM responds with lightning speed, "I don't know where your sneakers are; I don't wear your sneakers.

ThinkFast has also announced a product for integration with MOM, one that provides personal advice and guidance. Decisions and Declarations (DAD) responds to the traumas of everyday living with such plain-English messages as. "You want to cry? I'll give you something to cry about!" and "Ask MOM!

MOM and DAD are priced at $99 each from ThinkFast Software, Dutoff Way, Homeville, NC 28210.

Incognito, a low-profile time-management program for MS-DOS computers, combines an appointment calendar with 200 stock excuses for breaking or avoiding social engagements.

The Incognito calendar's avoidance categories include: My Mate and I; The Car; Kids, Pets, and Relatives; Let Me Check With My . . . (accountant, boss, etc.); I'm Coming Down With . . . : and Previous Engagement.

Incognito's Fib-Jogger utility reminds you what you said to whom and tells you when you've ducked someone more than a set number of times. The program also generates fake itineraries, resumes, and credit references.

For your copy of Incognito, send $395 to ApresHeures Computing, 70 Main St., Paulsboro, NJ 03458. (800) 123-4567. Call after 6 p.m. Please allow 10-12 weeks for delivery.
Texas Instruments announces
Dr. L.S. Montejo Professional

Dr. L.S. Montejo,
Cardiac Anesthesiologist,
Boston, Massachusetts.
the Computing System.

No two individuals work alike. TI had unique answers to help Dr. L. S. Montejo keep his patients and his business healthy.

"I used to walk out of the operating room with a clipboard and a chart," says Dr. L. S. Montejo. "Now I walk out with a floppy disk."

Dr. Montejo is a prominent anesthesiologist who is pioneering the use of personal computers in heart surgery. His unique idea for making quicker, more informed decisions led to a unique solution from TI: a portable PC he could talk to. Configured to his exact needs from the wide range of TI options.

"Using TI's Speech Command," he says, "I can respond to drug reactions faster, with the PC making calculations as I speak to it. And my hands are free to do other things.

"The information just flies by. But the computer organizes it, and by calling up color charts, I can make better decisions at a glance. It lets me provide better medical care."

In his office, Dr. Montejo uses a desktop TI Professional Computer to keep the business side of his practice operating smoothly.

"Having to wait on a computer is a waste of valuable time," he says. "TI runs software fast. And the TI screen has a lot better resolution than other monitors."

His TI 855 printer also speeds up the paperwork. "We can use it to go from draft to letter quality immediately, and change typefaces very quickly by using the control panel instead of software commands."

TI had what the doctor ordered to put together a complete PC system for his specific needs. Including a solution for a budding computer genius in his family. "My daughter," he says, "loves her Speak & Spell."

TI has the right answers for the way you work. With TI's broad line of versatile computer products, you can put together a system unique enough to put your own name on it. Your TI dealer can provide you with just the right combination of hardware, software, service and support for your special needs. For more information and the location of your nearest TI dealer, call 1-800-527-3500.

TEXAS INSTRUMENTS
Creating useful products and services for you.

From desktop, portable and briefcase PCs to minicomputers and a full line of printers, you can assemble a TI system as unique as you are.
In January we presented a real feast in the Features department; because we had no theme section, we were able to publish 11 articles on a wide variety of topics. This month, the significance of our theme on artificial intelligence and the depth of coverage it required limited the space we had available for features. Next month we'll return with our usual number.

As we hinted in the March Features introduction, this month Steve Ciarcia begins a three-part project that he's wanted to build for some time. The Circuit Cellar Home Run Control System takes up where Steve's first project of this type left off some years ago (see "Build a Touch Tone Decoder for Remote Control," December 1981, page 42). Imagine full programmable control over just about any outlet in your home. Lights can turn on and off automatically as you enter and leave a room. You can design a complex surveillance and security system that includes automatic emergency dialing. And you can phone home, check system status, and make modifications to the control system to suit your schedule. All in all, Steve was pretty happy with his original 1981 design, but with recent technological advances and his eye for improvement, he developed the Home Run Control System to be a lot friendlier and deliver a lot more.

In August 1984 the BYTE theme was Modula-2. Heralded by many as the language of the future, it also has detractors, some of whom point out that Modula-2 is only an upgrade of its Pascal ancestor with problems of its own. Colleen Roe Wilson's "Coprocessing in Modula-2" describes Modula-2's facility for the development of concurrent programs, one of its significant differences with Pascal.

If you have a Zenith Z-100 and are interested in exploiting its graphics capabilities, you might want to build "A Million-Point Graphics Tablet" based on Koala Technologies' KoalaPad. James Hawley shows you how to add the appropriate components and interface it to the Z-100's S-100 bus. With his graphics tablet, you can use a stylus instead of a light pen for pinpoint control over your drawings.

—Gene Smarte, Managing Editor
Energy management, convenience, and security in one package

Six years ago I presented an article on building a computer-controlled security system using an SDK-85 experimenters board. To this day, I still get letters asking for software and material sources. Since home/industrial energy and security management have been and still are a major interest (and little has been published since then), that article remains a popular reference for students and experimenters.

As I look back on it now, I realize that my first home-control computer was engineered properly but was about as user-friendly as ENIAC. It's time to readdress the subject, bring the design up to date, and make this home-control system a real friend.

I conceive of this project as a simple computer control system equally applicable in the home or factory. The choice of input sensors and output controls designates its primary application.

Whether for industrial or home use, control systems function similarly. Specific input data is analyzed and compared to a predetermined set of action parameters. If a favorable comparison exists, the designated task is performed. For example, if a light is to be turned on at 2:00 p.m., the control system sees a negative request-affirmation comparison until that time. At that instant, the output of the control system turns on the light and then continues with the next request. In a control system configured as an alarm, the inputs would be from contact closures, and the outputs would be to bells, automatic dialers, and other such items.

Whatever the application, control systems are designed to be either open loop or closed loop in function. An open-loop controller simply outputs its decision and forgets about it. Industrial control systems, on the other hand, require more assurance that the action has been performed. They close the loop by analyzing feedback signals from the operation being controlled.

Steve Ciarcia (pronounced "see-ARE-see-ah") is an electronics engineer and computer consultant with experience in process control, digital design, nuclear instrumentation, and product development. He is the author of several books about electronics. You can write to him at POB 582, Glastonbury, CT 06033.
a heating element is turned on, a current sensor in series with the element’s power source or a temperature sensor next to the element indicates positively that the action has been performed.

It is this open-loop versus closed-loop configuration that, for most applications, defines whether a controller is consumer or industrial quality. I beg to differ with the trend, however, and feel that it is about time a system successfully bridged the gap. The Circuit Cellar Home Run Control System (HCS) is the result.

My intention is not to directly address the industrial market with my HCS. Rather, I will apply some of my industrial process-control experience to produce a design that offers flexibility and reliability as a home-control and energy-management system. If you are in the process-control business, you will soon realize that its sophistication and cost-effectiveness make it ideal for dedicated industrial-control applications where you might ordinarily use an expensive programmable controller.

HOME RUN CONTROL SYSTEM

Practically all commercial home-control systems use BSR X-10 remote-control power modules. They are sold under a variety of trademarks: Plug-N-Power, Sears Home Control, BSR X-10, and GE HomeMinder. These remotely controlled power switches turn the power on or off to lights and appliances that are plugged into them. A separate controller activates the individual switches by transmitting a coded command sequence through the power lines. Command controllers are available that perform timed or telephone-designated activations.

The Plug-N-Power or Sears Home Control system is quite adequate for most open-loop applications. An attic fan that needs to run two hours a day to keep the attic cool could use a timer-activated BSR module. Simply set the command unit to turn the fan on from 1:00 to 3:00 every afternoon. For example. Of course, on really hot days the attic fan will need to run longer. And on rainy days you'll be wasting power. If you compensate (close the loop) by changing the run time each day, it is hardly a home-control system. Instead, it is merely a more convenient manual power switch.

The solution is to use a true closed-loop control. By adding a 120- to 135-degree thermostatic switch in the attic, the control system can know when the attic is hot and has to be exhausted. A 90-degree thermostatic

![Figure 1: A block diagram of the Circuit Cellar Home Run Control System.](image-url)
switch is also wired in. When the attic temperature reaches 135 degrees, the fan turns on. It turns off when it gets to 90 degrees. The BSR control modules could still provide the on/off power to the fan, but the control decision is more adequately defined by directly monitoring the temperature with heat sensors than by simple timed activation. This way, the fan will stay on as long and often as needed. On cloudy or rainy days, the fan might not come on at all. (I am aware that special thermostatically controlled attic-fan switches can accomplish this specific task without a computer. I am not trying to find a specific solution but rather to demonstrate the two control approaches as they apply to general-purpose control systems.)

The immediate answer to open-loop BSR control is to add more intelligence in the form of a computer. Presently, many control systems on the market use personal computers. Using the parallel I/O (input/output) and display capabilities of the personal computer with a specialized BSR transmitter card installed, many companies have successfully designed just the kind of home-control system I'd want. However, such a seemingly economical approach uses the entire function of the computer. You can have a $2500 Apple II home controller or suffer when the entire system grinds to a halt because you've loaded a word-processing program. Besides, it can cost $10 a month just to run an IBM PC 24 hours a day—and don't forget the cost of the uninterruptible power supply.

Ultimately, successful computer-based energy-management and home-control systems must have completely dedicated functions. Trying to time-share tasks among games, word processing, and environmental control is simply more complicated than it's worth. The age of specialized computers is at hand.

The Circuit Cellar HCS is designed specifically for that task. It is a single-board microprocessor-based controller that uses a combination of both open- and closed-loop control design. It takes advantage of the cost-effective BSR control modules and fully duplicates any of the manual, automatic, or timed functions presently supported in the BSR product line.

The Circuit Cellar HCS closes the control loop with 16 hard-wired digital input and 8 TTL (transistor-transistor logic)-compatible hard-wired output lines. Relays, contact closures, motion detectors, and thermostatic switches can be connected to these I/O lines for direct “sense and respond” activities. It can also accommodate 48 BSR modules. Figure 1 is a block diagram of the HCS.

The 6802-based HCS is a stand-alone control unit (see photo 1) complete with battery backup. Photo 2 shows the prototype circuit board that mounts inside the control unit. The HCS communicates with the user through either a serial terminal or video monitor and keyboard. In the terminal mode, RS-232C communication is at 75 to 4800 bits per second (bps).

The HCS optionally supports an integral video-display generator to provide a 24-line by 40-character display either directly to a composite video monitor or to a television set. A keyboard encoder allows connection of either an Apple II-compatible parallel-encoded keyboard or an unencoded scanned-matrix keyboard. Finally, the HCS can communicate with other systems. An additional con-

(continued)
nectar has been provided to which an auto-answer modem can be attached (such as the Hayes 300 or 1200). When the modem answers and the CTS line is activated, the HCS switches its display to the modem data rate and allows the remote calling terminal to access and control the HCS. Unlike auto-answer BSR units that allow command input only, this option lets you view the complete status of all I/O and make program changes as well.

The HCS can schedule to turn outputs on or off based on combinations of the following conditions:

- time of the week (e.g., Tuesday at 4:32)
- time of the month (e.g., 22nd at 11:20)
- input line going high
- input line going low
- turn off after time delay (e.g., remain on for 15 minutes)
- one-time action triggered by specific input or time

When you want to create an event, various combinations of inputs and time can be specified. They are

1. ON at specified time OFF at specified time
2. ON at specified time OFF when specified input occurs
3. ON when specified input occurs OFF at specified time
4. ON when specified input occurs OFF when specified input occurs or
- ON while specified input occurs
5. ON when specified input occurs OFF after period of time

Lights can be dimmed to one of 16 levels. This allows mood control, night light, or power conservation operation. Text messages of variable size can be scheduled as announcements or reminders. And the HCS uses less than 5 watts (W).

The processor and clock continue to operate during a power failure; scheduled events are noted in memory. When AC power is restored, the HCS restores all modules to the state they would be in if power weren’t interrupted.

The on-time of desired modules, usually lights, tracks the sunset. This alleviates having to adjust the schedule many times per year as the sunset changes. Included is a com-

Photo 3: A typical status-display screen. At the top, the screen shows that an alarm has been triggered and that several preprogrammed actions have taken place. The bottom half of the screen indicates the status of all the output drivers.

Photo 4: The editing menu. You reach this screen from the status-display screen by pressing the space bar. All the functions will be explained in subsequent articles.
mand to compensate sunset times for daylight saving.

The HCS can optionally restore the status of all modules every four minutes. This is useful in commercial applications where a module may be turned off by a transient or non-HCS-generated command. Restore can also be triggered by an input line.

Modules can be bypassed for a selected interval (up to 44 days). This can be used for vacations or holidays. It also allows an input occurrence to lock out specified modules. Clock accuracy can be adjusted by software to within one second per day. And. finally. the entire event schedule can be listed to the serial port. The speed of the listing can be controlled to allow for printing of the schedule.

The HCS is designed to communicate in English and not in a programming language. All control sequences are prompted through menus. and any input errors simply cause the system to revert back to the status display or the option menu.

The HCS is designed around the concept of an ‘event.’ An event has four elements: the type of event. the device on which the event will operate. the trigger that starts the event. and the trigger that ends the event. The type of event is defined in terms of its ‘driver.’ These include Message Driver. BSR On/Off Driver. BSR Cycle Driver. BSR Dimmer Driver. Direct Output Driver. and Superkeys.

The Message Driver displays a message on the terminal. The BSR On/Off Driver turns a BSR control module on or off. The BSR Cycle Driver causes a specified BSR module to cycle on and off periodically at a rate determined by the user. The BSR Dimmer Driver changes the brightness of a BSR lamp module. The Direct Output Driver sets the output level on the eight direct output lines. Superkeys are 16 function keys that. when selected by a three-button sequence. trigger a predefined event sequence (such as turning on specific BSR modules. displaying particular messages. or setting specific outputs). The quantity of events is limited only by

Figure 2: Programming the HCS to turn the attic fan on.

FRI APR 5 10:09 PM

1111111

1 BSR ON/OFF A
2 BSR DIMMER A
3 BSR CYCLER A
4 BSR ON/OFF B
5 BSR ON/OFF C
6 DIRECT OUT
7 MESSAGES
8 SUPERKEY

MEANS EVENTS ARE SCHEDULED

1 BSR ON/OFF A
2 BSR DIMMER A
3 BSR CYCLER A
4 BSR ON/OFF B
5 BSR ON/OFF C
6 DIRECT OUT
7 MESSAGES
8 SUPERKEY

Figure 2 (continued)

(No events are presently scheduled)

ENTER DRIVER NUMBER (1-8)?

1 BSR ON/OFF A
2 BSR DIMMER A
3 BSR CYCLER A
4 BSR ON/OFF B
5 BSR ON/OFF C
6 DIRECT OUT
7 MESSAGES
8 SUPERKEY

ENTER DRIVER NUMBER (1-8)?

ENTER MODULE NUMBER (1-16)?

THIS DRIVER/MODULE NOT IN USE

CREATE OR DELETE EVENT (C/D)?

ENTER NAME OF MODULE

ONE RETURN STARTS NEW LINE
AND TWO RETURNS ENDS

?ATTIC FAN

1 ON AT SPECIFIED TIME
OFF AT SPECIFIED TIME

2 ON AT SPECIFIED TIME
OFF WHEN SPECIFIED INPUT OCCURS

3 ON WHEN SPECIFIED INPUT OCCURS
OFF AT SPECIFIED TIME

APRIL 1985 • BYTE 107
By selecting different options you can program the HCS to perform specific tasks.

the available RAM (random-access read/write memory). (Even though the Superkeys, messages, and outputs are not BSR devices, I refer to each of their separate events as modules to be consistent with BSR terminology.)

The HCS has two display modes: status and editing. The status display, shown in photo 3, is the normal operating display of the HCS. At the top is the current date and time. Below that is an area where any messages will be displayed when activated. At the bottom is the actual real-time status of all output drivers presented as an 8-driver by 16-module display matrix. If no action has been defined for a particular module, a raised dot is displayed. If an event has been programmed for a particular module, a "O" indicates that it is currently off; a "I" indicates that it is currently on. The display updates in real time as the modules change state or the clock updates.

Pressing the space bar displays the editing menu (see photo 4). By selecting the different options presented in the menu, you can program the HCS to perform the specific tasks you wish. Controlling the attic fan with two thermostatic switches attached to input lines 1 and 2 respectively is a relatively simple procedure. Figure 2 shows what appears on the display screen as we program that event.

The fan will start when input line 1 goes low (it can be redefined for reverse polarity) and will go off when line 2 goes low. Perhaps you want to know when the fan is on [besides remembering that driver 1/module 1 is the fan and looking at the status display], so we'll add a message defined (continued)
As I use the HCS and find certain functions or displays I want revised, some of them may change.

We can create an event at this point by simply typing “A.” The display that results is shown in figure 3.

There is a lot more to this control system than the simple example in figure 3 illustrates. You probably noticed functions such as Restore, Sunset Adjust, Delay, Bypass, and Hold in the editing menu. Eventually, I’ll get to explaining them all and illustrating their use.

ONE PARTING COMMENT

The HCS is an evolving design. This is a three-month project that is being written over the course of three months. While the hardware design is fixed and printed-circuit boards are checked out, software is constantly evolving and more features are being added. Photos of the menus, status displays, and other items are taken at a specific time in the evolution of the software. As I use the HCS and find certain functions or displays that I want revised, some of them may change.

User-friendliness is one area. In reviewing some of the higher-volume but lower-functioning control systems such as GE’s HomeMinder, the emphasis is on graphics and simple user interfacing. If you want to control a lamp on the HomeMinder, you look for the picture of a lamp and manipulate it on the screen.

I configured HCS to be a high-level controller with much less emphasis on pretty graphics. However, many of the professional software people who have seen HCS believe it would have

(continued)
a much wider audience if it had some ‘paint-by-numbers’ appearance. Consequently, they plan to support it independently. A HomeMinder-like graphics package is presently being written for the IBM PC by third parties. It will connect to the HCS through the terminal I/O port. Hopefully, I’ll have a picture of it in operation by the third month.

While I’ll live without Alice-in-Wonderland control software, I was bitten by the large-system interface bug and decided to take advantage of big-system functions. The HCS optionally includes an upload/download capability to the IBM PC (eventually for other computers). The complete command and control sequence resident in the HCS can be uploaded serially to the PC for storage on disk. A download provision reprograms the HCS with that control sequence.

This storage capability allows the user to run the HCS with various control sequences loaded from disk. A “training” session debugs the sequence and then it is stored on disk for later retrieval. Industrial users who change program sequences frequently include the prime beneficiaries, but new tools often produce new applications. This function is also accessible via the HCS’s modem port, and Home Run can be completely reprogrammed by telephone. (Perhaps you have a vacation home. Simply call ahead and let the HCS make it a warm and cozy arrival.)

EXPERIMENTERS AND OEM USERS

As always, I try to support the computer experimenter by providing sources for many of the components. The Circuit Cellar Home Run Control System is a single-board design suitable for OEM applications as well. It is available in various configurations that are all ultimately upgradable to the same potential.

If you plan on building the unit from scratch, good luck and take heart. Send me a picture of your board, and I’ll send you a free hexadecimal dump (16K bytes) of the control software, provided it is for noncommercial private use. I’ll supply the code on two 2764 EPROMs (erasable programmable read-only memories) and a manual for $32 (postpaid in the U.S.). Add $7 for overseas.

CIRCUIT CELLAR FEEDBACK

This month’s feedback begins on page 408.

NEXT MONTH

This is a three-part article. Next month, I’ll describe the hardware in detail, hopefully to the extent that you can build your own HCS. The third part will emphasize the software and demonstrate a typical control application.

ROBOTIC PROPS (counterclockwise from upper left): 1. CYBOT INC., 12510 128th Ave. NE, Kirkland, WA 98034. 2. MICROBOT INC., 453 Ravendale Dr., Mountain View, CA 94043. 3. HAIKATO ROBOTICS LTD., 1580 Lincoln St., Suite 950, Denver, CO 80203. 4. HEALTH Co., Hilltop Rd., St. Joseph, MI 49085. 5. RB ROBOT CORP., 14618 West 6th Ave., Golden, CO 80401. 6. RSI INC. (Robotics Systems International Ltd.), 9665 West Saanich Rd., RR2, Sidney, British Columbia V8L 3S1, Canada. 7. HUBOTICS INC., 6352-D Corte Del Abeto, Carlsbad, CA 92008. 8. RHINO ROBOTS INC., POB 4010, Champaign, IL 61820.

The following items are available from The Micromint Inc., 25 Terrace Dr., Vernon, CT 06066
(800) 635-3355 for orders
(203) 871-6170 for information

1. Home Run HCS—Complete assembled system with enclosure and Apple-compatible keyboard...
2. Home Run HCS—Populated PC board. Assembled and tested PC board. No enclosure or keyboard...
3. Home Run HCS—Video-based kit. Includes PC board and all components except enclosure, keyboard, and serial-interface components (IC16, IC17, IC20, and two DB-25 connectors)...
4. Home Run HCS—Terminal-based kit. Includes PCB board and all components except video-display processor (IC22, IC23, and IC26). No keyboard, enclosure, or RF modulator...

The following items are available from

VACUUM CLEANER CO., 93 South Maple St., Manchester, NH 03103.
GENTLE VACUUM CLEANER CO., 93 South Maple St., Manchester, NH 03103.
GENIE VACUUM CLEANER CO., 93 South Maple St., Manchester, NH 03103.

All kits and assembled units include operators manual, power supply with wall transformer/transmitter module, and 8K bytes of RAM. All units are supplied without keyboard encoder chip (not necessary when using encoded keyboard, IC18—optionally available). All items that list enclosures also include backup battery holder (6 “C” cells), less batteries. Serial-port and video-display-processor upgrades for items 3 and 4 and various other components are also available.

Please include S8 for shipping and handling in the continental United States. S12 elsewhere. New York residents please include 8 percent sales tax. Connecticut residents please include 7.5 percent sales tax.

Editor’s Note: Steve often refers to previous Circuit Cellar articles. Most of these past articles are available in book form from BYTE Books, McGraw-Hill Book Company, POB 400, Hightstown, NJ 08250.

To receive a complete list of Circuit Cellar’s Circuit Cellar project kits, circle 100 on the reader-service inquiry card at the back of the magazine.
The new Hercules Color Card gives you these five important features in a color graphics card.

1. Full IBM color card compatibility.1 Any program that runs on IBM's color card will run on the new Hercules Color Card at the same resolution.

2. A parallel printer port—standard on the Hercules Color Card, but forgotten by IBM on theirs.

3. It's short. The pint-sized Hercules Color Card fits in the short slot in an XT or Portable.2 And it's AT™ compatible.

4. It can work in your system at the same time as the famous high resolution Hercules Graphics Card.3 And it will continue to work backed by our 2 year warranty.

5. Low price. At a suggested list price of $245, the Hercules Color Card is only $1 more than IBM's card.4 And our Graphics Pak™ saves you even more money when you buy both Hercules cards at the same time.

Call 1 800 532-0600 Ext 432 for the name of the Hercules dealer nearest you. See why the company that made the first graphics cards for the IBM PC still makes the best.

<table>
<thead>
<tr>
<th></th>
<th>IBM Mono Display Compatible</th>
<th>IBM Color Display Compatible</th>
<th>Hi-Res Text</th>
<th>720 x 348 Hi-Res Graphics</th>
<th>320 x 200 Color Graphics</th>
<th>640 x 200 B&W Graphics</th>
<th>Parallel Printer Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hercules Color Card</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hercules Graphics Card</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBM Mono Card</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBM Color Card</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Address: Hercules, 2550 Ninth St, Berkeley, CA 94710 Phone 540-6000 Telex 75-1063

Foreign distributors: Compuserver/Canada; Reflex/UK; Computer 2000/W, Germany; Edis/DFrance; Imagineering/Australia; Holland Info Products/Holland; DataTeam/Scandinavia

Trademarks/Owners: Hercules, Graphics Pak, Hercules Computer Technology, IBM, AT®, International Business Machines—Notes: (1) An adapter is supplied for composite video. (2) The IBM Color/Graphics Monitor Adapter must be removed from the Portable before the Hercules Color Card is installed. (3) Model GB101 or later. (4) Based on the list price as of July 1, 1985 for the IBM Color/Graphics Monitor Adapter.
Imagine dBASE III™ running up to 20 times faster.

The time for Clipper has arrived.

Clipper introduces you to the time of your life.

Time is your most valuable commodity. Because how you spend your time, is how you live your life.

At Nantucket, we believe you should live life to the fullest.

Clipper, the first true compiler for dBASE III,™ is a timely example. Now, dBASE compiled by Clipper runs 2 to 20 times faster than dBASE with its standard interpreter. A dBASE interpreter painstakingly checks and executes your source code one line at a time, every time you run a program. With Clipper, once you’ve debugged your source code, it’s compiled into more efficient machine code. Your program runs without the time-consuming overhead of redundant translation. Clipper compiles all your existing and future dBASE III programs.

Developing a compiler for dBASE III was just a matter of time. Call your dealer or our toll free 800 number and ask for Clipper.

Then go make the most of your life time.

20456 Pacific Coast Hwy., Malibu, Ca. 90265 (800) 556-1234 ext. 225 In California (800) 441-2345 ext. 225

dBASE III is a registered trademark of Ashton Tate
The key to writing concurrent programs is coordination

One of the main differences between Modula-2 and its ancestor, Pascal, is that Modula-2 contains specific programming constructs to permit the development of real-time concurrent programs. Thus, you can use Modula-2 to write operating systems and other low-level software instead of using assembly language, the language in which operating systems are traditionally written.

Concurrency

Truly concurrent programs execute at exactly the same instant in time—implying the use of separate computers. True concurrency occurs in distributed processors such as those found in control systems and other real-time applications.

When several people use a single computer, however, concurrency refers to interleaved execution. Such programming is at the heart of large time-sharing systems, where many users on a single computer can run programs at the same time. Each person perceives only the execution of his own program, while the operating system performs a juggling act partitioning the processing power among the users. Interleaved execution, then, is the seeming concurrency of many processes running on one processor.

Whether we call it true concurrency or not, the problems inherent in writing this type of program are much the same. The main problem is timing. Concurrent programs must deal with nondeterministic events that occur at arbitrary times.

Suppose you have two computers connected by some kind of communications link. You want to write a program so that two people sitting in two different places can exchange messages by typing at their respective keyboards. Each computer must perform this basic sequence of actions:

- When a key is struck on computer A’s keyboard, A must retrieve that key’s value and send it to computer B.
- When a character arrives at computer A from computer B, A must

(continued)

Colleen Roe Wilson (RR 1, Campbellville, Ontario L0P 1B0, Canada) is a member of the technical staff at Allied Canada in Mississauga, Ontario. She has a B.S. and an M.S. in mathematics and enjoys gourmet cooking, gardening, and hiking.
display it in the next free position on its screen.

Does this sound simple enough? Let's take a look at what can happen. If you stop and think about how you type at a keyboard, it becomes obvious that you can't expect a fixed pattern to the keyboard input and the arrival of data on the link. Two users might carry on a question-and-answer conversation so that only one person types at a time. On the other hand, two users might argue type simultaneously. Either way, the program needs to know what to do. This nondeterministic activity differentiates real-time programs from typical application programs with fixed read/write interfaces. You can't predict how many reads (input from the keyboard) or writes (output to the link) the program will have to deal with or how they will be ordered.

The nondeterministic nature of concurrent programming leads to some interesting problems—deadlock or "deadly embrace" being the best known. Suppose a time-sharing system is trying to run two programs. Both programs need exclusive use of the computer's tape drive and a particular printer to run. The operating system starts program A, which acquires the tape drive. Having used its time slot, program A is suspended while the operating system starts program B. Program B immediately acquires the printer and is suspended. When A starts up again, it attempts to acquire the printer and fails, so its execution is suspended until the printer is freed. When B starts up again, it attempts to acquire the tape drive and is likewise suspended until the drive is freed. The two programs are deadlocked. Neither can proceed until the other frees the resource needed.

The key to writing successful concurrent programs is coordination. You must make sure that programs that are either cooperatively or independently executing interact with each other in a constructive—or at least nondestructive—manner. Modula-2 has programming constructs dealing with concurrency to aid in this coordination.

COPROCESSES

Coprocessing is a technique that helps you implement coordination when writing concurrent programs. For example, suppose you write two programs to execute as coprocesses—Text and Disk. Text prompts you to enter text from the keyboard for disk storage (it could be an editor). Disk is a low-level driver program that interacts with the disk to read and write records. The two coprocesses interact as follows:

- Text prompts you for keyboard input and puts the characters into a buffer as it receives them until it finds the record terminator.
- Text signals Disk that a record is ready in the buffer and suspends execution.
- Disk retrieves the record and writes it to the disk.
- Disk signals Text that the record has been written and suspends its execution.
- Text resumes execution at the point of suspension and prompts you for more input.

Thus, Text and Disk coprocess the information by passing it back and forth. This producer/consumer relationship is the classic relationship between coprocesses.

You can expand this concept to include more than two processes. Suppose you want various processes to exchange messages during execution. They need to be able to send messages to other processes and to receive the same—a sort of electronic interprocess mail scheme. One special process is the postmaster. It receives and stores messages and then distributes them as requested by the designated receiving process. The postmaster acts as a coprocess with the other processes that can request to send or receive messages. When sending, the requesting process suspends execution while the postmaster picks up the message in its buffer and resumes when the postmaster is done. When receiving, the requesting process suspends while the postmaster fills its buffer with the message and then continues.

WRITING COPROCESSES IN MODULA-2

Two essential mechanisms are needed to implement the mechanics of coprocesing: first, a means of identifying and executing a program that establishes it as a process; second, a method so that two coprocesses can signal each other to coordinate their activities. Modula-2 has facilities for these mechanisms imbedded within it. Modula-2 programmers do not have to get around the language to write coprocesses: the language directly supports this kind of programming.

The most fundamental support of coprocesses provided in Modula-2 is the data type PROCESS, which can be imported from the module SYSTEM. We expect languages to support our abstract number systems with such data types as REAL and INTEGER, but this is something new: a process materialized in a data type. The need for it is obvious: a language that manipulates processes must be able to refer to them in a concrete manner.

Coprocesses use these PROCESS variables to communicate with each other. Therefore, when you create a coprocess, you must bind it to one of these variables. Likewise, when these programs pass control to one another, they must use PROCESS variables to indicate their targets. Modula-2 contains two procedures that provide this control: NEWPROCESS and TRANSFER, both of which are imported from the module SYSTEM.

NEWPROCESS, which creates a coprocess within the system and binds it to a PROCESS variable, is called by

```plaintext
NEWPROCESS(p: PROC,a: ADDRESS,s: CARDINAL,VAR c: PROCESS);```

In this statement, p is the name of a procedure that contains the code you want to constitute the process, a is the
IMIGIT adds icon-selected Graphic Functions, text, and textures with a full palette of vibrant colors.

Together You Enjoy Unparalleled Economy and Applications Flexibility.

For $695.00 you get the PC-EYE™ video digitizer board and IMIGIT™ graphics software. PC-EYE allows you to capture real-life images with an ordinary video camera or VCR and produce them on your personal computer. IMIGIT is an icon-oriented graphics software package which allows you to modify the camera image by adding text, patterns, colors, lines and shapes. By using cut and paste features with multiple video images, you can store images for later retrieval and print images from the screen.

You get this Exciting Tool for integrating video images with graphics created by other software packages like Lotus 1-2-3*, Graftalk*, CAD and business presentation packages. Imagine combining a real-life camera image, text and a pie chart generated by Lotus into one picture. It’s really as easy as 1, 2, 3.

IMIGIT Supports . . .

High Resolution - up to 640 x 512 pixels with 16 colors or gray scale (64 with 6-bit PC-EYE). Flexibility - to support the most popular graphics cards and printers for convenient display and hardcopy output. Speed - less than 2/10 of a second to capture an image in the IBM-compatible 320 x 200 mode. All in all, a powerful but easy-to-use package that allows you to develop sophisticated and dramatic graphic presentations.

CHORUS is the Single Source for your graphics and imaging needs. Complete solutions in both hardware and software. Call us for other low cost/high performance imaging products such as Dr. Halo* and Halo* graphics software; video cameras and accessories; and graphic adapter cards. You can expect prompt delivery, technical support and complete OEM design assistance.

CALL 1-800 OCHORUS or 603-424-2900.

PC-EYE and IMIGIT are trademarks of Chorus Data Systems, Inc.

*Dr. Halo and Halo are trademarks of Media Cybernetics, Inc.
Graftalk is a trademark of Redding Group, Inc.
Lotus 1-2-3 is a trademark of Lotus Development Corporation
Inquiry 66
address of a storage area that serves as the working space for the process (local data and context are stored in it), s is the size of the working space, and c is a PROCESS variable that NEWPROCESS sets to the value of the coprocess it creates.

TRANSFER is the procedure that transfers control from the calling coprocess to the one called. It is invoked by

\[
\text{TRANSFER(VAR thisprocess,coprocess: PROCESS);}
\]

When a TRANSFER takes place, the calling coprocess is suspended and its context (data values, current program counter, etc.) saved. When the called coprocess executes the reverse TRANSFER, the calling program resumes execution at the point immediately following its just-executed TRANSFER statement. This is the significant difference between procedural calls and TRANSFERs. Each time you call a procedure, execution returns to the beginning of the program and local storage is reallocated. Coprocesses maintain context between TRANSFERs.

The actual implementation of the data type PROCESS and the procedures NEWPROCESS and TRANSFER varies with each machine and compiler. However, you need not be concerned with this. The data abstraction provided by Modula-2 lets you merely manipulate the PROCESS variables with these procedures. Your interface is constant across machines. Contrast this with assembly-language programming, where you need significant knowledge of the operating-system internals to manipulate the data structures representing processes.

**Coding an Example**

Now that we've established what facilities exist in Modula-2 to program coprocesses, let's look at an example. Starting at the top of the module definition of TermHandler (see listing 1), you import the needed concurrency structures from SYSTEM: the data types PROCESS, ADDRESS, and WORD, and the procedures NEW-
COPROCESSING IN MODULA-2

PROCESS, TRANSFER, ADR, and SIZE. ADDRESS and WORD are self-explanatory primitive data types. ADR is a function that returns the initial address of the variable passed to it, and SIZE is a function that returns that variable's storage allocation size. Assume the existence of a module named SYSIO, from which you import GetChar and PutDisk. In the CONST section you define the buffer size (bufsize) and the record terminator CR (carriage return). In the VAR section you define the shared buffer (buffer) and the shared character count (nchar). In addition, you define working spaces for the two coprocesses you will create (wspT and wspD).

Suppose you want to handle keyboard-to-disk transfers for a number of terminals—an order-entry system, for example. Listing 1 shows an array of processes (T) and working spaces (wspT). The procedure GetChar is passed a terminal-port number (this term) and returns a status (true means new character returned while false means the opposite) as well as the keyboard character (newchar). If a character has arrived since the last GetChar call, it is returned; otherwise the status reports the failure. The reason will become clear in a moment.

As the main body of code for TermHandler begins, process D is created, followed by the nterm terminal processes. Then the program enters a loop continually coprocessing with each of the individual terminal handlers. Each one manages its own character count (count) and buffer (localbuf). When a handler detects a CR or a full buffer, it moves its own buffer and count to the global buffer (buffer) and global count (nchar) and transfers to process D to dump the record. (Although it is more common for coprocesses to share pointers to variables than actual variables, these examples use them to make the code more readable.) You can see that if GetChar waited for a character to arrive—in other words, if it did not use the status—a single terminal could hold up all the others if it produced no input.

What does coprocessing achieve in this example? First, when a specific terminal handler issues a TRANSFER back to process C, its context is saved in its workspace. Therefore, the next time it is activated, the values of count and localbuf are appropriately set. This would not be true if you used procedural calls instead of coprocesses.

Second, because each handler maintains its own data structures, the overall program is kept fairly simple. You don't have to manage an array of buffers and counters. Each handler is concerned with only a single buffer and counter, and the code is recycled nterm times. You also gain flexibility. A more sophisticated version of TermHandler could associate processing priorities with some terminals and choose to ignore others. In fact, in a coprocessing situation TermHandler could create new terminal handlers on request (instead of using a fixed number) or only transfer to a specific handler on certain conditions.

Conclusion

Coprocesses cooperatively process information by interleaved execution on a single computer. You must be careful to ensure that processes interact constructively, and Modula-2 automatically contains the programming constructs to aid in this coordination. These coprocesses provide a means of passing control between programs without losing the desired execution sequence or the context.

*FREE 3M Flip 'n' File Offer...

Lifetime Warranty

SS-DD

$152

5% QTY. 20

$205

$284

3.5" SS-135 TPI

With FREE 3M Flip 'n' File

If it's worth remembering, it's worth Scotch. Factory fresh and prepacked with 10-5/4" 3M diskettes in a Flip 'n' File. Includes Typewriter envelopes, post cards, and labels and write-protect tabs.

Special Bonus Offer

As an introductory offer, for every box of 3M 5/4" diskettes you order you get 15% off the regular price. 3M's new Flip 'n' FileTM. 50% more storage capacity, sturdy and with compact design that swings open to an easy-to-use work station in one quick motion. A moveable front panel and see-through window in front and back feature index cards. Holds 15-5/4" diskettes. Formerly a $10.00 value is offered free of charge while supplies last.

3M Headcleaning Kit

Without disassembly or mess, without abrasion or scratching, 3M Headcleaning Kit has everything you need for 10 headcleaning operations...

Disk Storage

Amaray Media

Note: 50 (50-5/4" diskettes)...

Disk Minder II-75

50 (50-5/4" diskettes)...

Micro Disk Minder 36

Holds 36-5/4" diskettes... 

PRINTER RIBBONS

EA. DZ.

Epson MX-70/80...

$153

$40

$17

$41

$20

$94

$30

$41

Price Promise

We will better any lower delivered price on the same products and quantities advertised nationally.

TERMS:

FREE USE OF VISA & MASTERCARD. American Express also accepted. COD orders add $20.00 handling charge. Shipping: Add $3.00 per 100 diskettes or fraction thereof. Other Items: Add $2.00 for disk storage or headcleaning kit or each multiple of B Ribbons. P.O. accepted. Utah residents add 5% sales tax. Minimum order $30.00.

TOLL FREE ORDER LINE:

1-800-233-2477

(1-800-AFFAIRS)

INFORMATION AND INQUIRIES:

1-800-842-8717

HOURS: 8 AM - 5 PM M-F

78 - Inquiry
Scrolling down Fifth Avenue.
Step beyond the limits of personal computing, and through the doors of the world's finest stores. Or right into the action on Wall Street. Browse, buy, sell or trade. Stocks, information, Maine lobster, Oregon seedlings, Italian luggage, airline tickets. Without leaving your chair.

With an Avatex™ modem, your personal computer can take you wherever you want to go, on your schedule. As far, as fast, as often as you like, at a price that won't stop you in your tracks.

Avatex gives you the power, speed and intelligence of a serious piece of communications equipment, streamlined so anyone can use it easily and productively. Immediately.

So with Avatex the possibilities are astronomical, but the price of owning one is not: Avatex 300—$64.95; Avatex 600—$99.95; Avatex 1200—$299.95.

For the name of the Avatex dealer nearest you, call 800-4-AVATEX.

Avatex Modems
The next step in personal computing.

Avatex™ is a trademark of E R DataComm. UL, CB & FCC Part 15 and Unapproved Copyright 1985 by E R DataComm. Suggested retail price.
A MILLION-POINT GRAPHICS TABLET

How to build low-cost graphics for the Z-100

The need for a graphics tablet is quickly apparent if you try to do high-resolution drawings from a keyboard. Although you can create complex pictures with the control keys and cursor, you will soon want a true drawing machine because of the directional and speed limitations of keyboard drawing.

The Zenith Z-100 is truly a graphics computer with 640 by 225 pixels in three planes (eight colors). The machine devotes 64K bytes to each plane and has the ability to create 640 by 480 pixels in eight colors. The ZBASIC graphics commands offer a quick method of creating custom graphics programs.

To attain true graphic creativity you need to use a stylus for input. You can draw with a light pen but it is often awkward to use vertically and difficult to tell exactly where the pen is pointing on a pixel-by-pixel basis. A graphics tablet solves these problems.

There are many methods of interfacing analog input to a microcomputer’s bus but it is simplified by bus-compatible analog-to-digital (A/D) converters. The National Semiconductor ADC1001 enables you to interface a 10-bit digital (1024-point) signal to the Zenith S-100 bus with only two support chips.

The graphics pad described here uses Koala Technologies KoalaPad for the analog $x,y$ input that feeds the two ADC1001s connected to the S-100 bus. To modify the KoalaPad, you open it by unscrewing the screws on the bottom, holding the unit together and flipping it over, and then lifting the pad away from the circuit board. Remove the black and blue wires from the bottom of the board and, with wire-wrap wire, solder them onto pins 4 and 9 (respectively) of the chip on the lower left side of the circuit board (next to resistor number 23). These two lines will now carry the 0-3-volt analog signal (see photo 1). Tape the wires out of the way and gently replace the pad. Then put on the cover, turn the unit over, and screw it back together. The KoalaPad is now ready to plug into the empty socket on the S-100 card. A brief description of the circuit is shown in figure 1. You can use the wire-wrap wire-and-solder method to build the board but the 3M press-pin method is easier. It allows rapid assembly and disassembly. The 3M socket and insertion tool make up

---

The following is a list of the parts used in this project and the price paid for each. This project can be built for less than $180.

- I KoalaPad: $99.00
- I S-100 Proto card: $15.00
- 2 ADC1001 A/D converter ICs*: $60.00
- 2 20-pin sockets: $50
- 2 14-pin sockets: $50
- 1 16-pin socket: $25
- 1 74LS20 dual 4 input nand: $50
- 1 74LS04 hexadecimal inverter: $50
- 1 7805 +5-volt regulator: $75
- 1 100-μF capacitor: $50
- 1/4-watt resistors: $1.00
- 2 10k ohm
- 1 8.2k ohm
- 1 1.5k ohm
- 1 330 ohm

Total: $178.50

* available from: DIGI-KEY
Highway 32 South
POB 677
Thief River Falls, MN 56701
(800) 346-5144

The following is a list of the parts used in this project and the price paid for each. This project can be built for less than $180.

James Hawley (4272 Queens Ave. South, Minneapolis, MN 55410) is the president of Laminar Flow Inc. in Minneapolis. He enjoys flying gliders and designing computer-graphics hardware and software.

---

120 BYTE • APRIL 1985
the 3M wiring system, which is sold as the Whiz Kit by Ragon Inc. of Minneapolis, Minnesota. Its ease and speed justify the high cost of the sockets.

Listing 1 gives you all the programming necessary to get the x, y values you need for drawing or cursor movement from the circuit board. If you intend to compile the program, it is a good idea to repeat the OUT and INP routines and compare the values you get. This error checking is helpful because the KoalaPad can generate some bogus values because of the execution speed of compiled code.

If the ZBASIC language were changed to take full advantage of the interface mode, then Zenith would be able to offer true high-resolution color graphics at the lowest price in the industry.

**Listing 1**: This program is all you need to access the KoalaPad.

```plaintext
10 'LISTING #1
20 OUT 1270 'START CONVERSION
30 A=INP(127) 'INPORT TOP 8 BITS
40 B=INP(127) 'IN BOTTOM 2 BITS
50 A=A*4:B=B/64:X=A+B '10 BITS
60 OUT 1260 'START CONVERSION
70 A=INP(126) 'INPORT TOP 8 BITS
80 B=INP(126) 'IN BOTTOM 2 BITS
90 A=A*4:B=B/64:Y=(A+B)/4
```

**Figure 1**: The 74LS04 inverts address signals to the 74LS20 to create two chip-select signals for the two ADC1001s (U3 and U4). It also inverts the OUT and INP lines and sends their signals to U3 and U4 as WR and RD. The clocks on pins 19 and 4 of the ADC1001s use a resistor capacitor circuit, and reference voltage for the circuit comes from resistors across GRD and +5.
METHING B
INSTANT DATABASES ... BECAUSE THAT'S HOW MOST OF US NEED INFORMATION ... INSTANTLY!

Homebase provides you instant access to a whole realm of databases. Just hit the hotkey to freeze whatever software you're working in, and you're ready to find, insert or manipulate data.

This is much more than a simple cardfile or mini-database. You'll be able to set up your own templates, define parameters such as the length of a field, and do rapid key searches. You can have thousands of records in a database. And numerous databases on your menu.

$49.95

SOMETHING BRAND NEW

INSTANT DATABASES ... BECAUSE THAT'S HOW MOST OF US NEED INFORMATION ... INSTANTLY!

Homebase provides you instant access to a whole realm of databases. Just hit the hotkey to freeze whatever software you're working in, and you're ready to find, insert or manipulate data.

This is much more than a simple cardfile or mini-database. You'll be able to set up your own templates, define parameters such as the length of a field, and do rapid key searches. You can have thousands of records in a database. And numerous databases on your menu.

THE TOOLS YOU NEED.

We've included a powerful set of tools that will save you time and help you organize information, schedule, calculate and a whole lot more. All within a quick keystroke ... regardless of the software you're running! You may find a few of these in some "desktop" products ... but nothing else approaches the power of Homebase!

- Instant Databases
- Phone Message Pad
- Rolodex™
- Appointment Calendar
- Calculator
- Notepad
- Time and Expense Diary
- Programmable Hotkey (You choose the key that gets you to your Homebase)
- Electronic Mail (as an automatic multi-task)
- Tables and Pages (for those things you always need to look up)
- Alarm Clock (Including Musical Snooze Alarm)
- To-Do List
- Quickterm Terminal (available even when you're working in another program)
- Autodialer
- Template Maker (for designing your own databases)
- DOS Services
- Rolodex Card Printer
- Mailing Label Printer
- Data Transfer (between databases of your other software)
- Cut and Paste (great for putting together an Electronic Mail letter that combines a chunk of spreadsheet, some text from a document, and a few notes)
THE EXCITEMENT IS BACK

With the Electronic Mailbag of Your Dreams

ELECTRONIC MAIL THAT TAKES CARE OF ITSELF . . . IN THE BACKGROUND

(While you're running WordStar, Lotus, dBase, a compiler or whatever)

We wanted electronic mail that could take care of itself while we were busy on the computer doing something else.

We always felt that there was something strange about having to play postman every time a piece of electronic mail was due.

It was always a case of loading up a communications package and either waiting for the mail or going out to fetch it.

Now we've got it! And you can have it, too. With HOMEBASE. Electronic mail can arrive while you're working in another piece of software. Up in the corner of your screen, a signal lets you know that there's incoming mail. You can read it as it comes in, if you want. Or you can ignore it, and your mail will automatically file itself... to be read at your leisure.

When you're sending Electronic Mail, its just as easy. Once you've written and addressed your letter, the rest is done for you.

WHY ARE YOU GETTING SO MUCH SOFTWARE FOR SUCH A SMALL PRICE?

Amber Systems makes tools for programmers including VSI--The Window Machine.

We make mouse drivers, asynchronous drivers and electronic mail packages for a number of companies. Now, we've decided to use these tools, plus some new ones that aren't yet on the market, to produce new concepts in software. Because we make the tools ourselves, our costs, and consequently yours, are the lowest possible... with never a compromise in quality.

YES! Site licenses are available for companies... large and small. If you would like to order a single copy, now, to examine and show around your company, its cost can be deducted, later on, from your site license.

For further information on site licenses call 408-996-1883.

ORDER YOUR COPY OF HOMEBASE TODAY!

For VISA and MasterCard Orders Call Toll Free: 800-538-8157 Ext. 824
In CA 800-672-3470 Ext. 824

Call Mon. • Fri. 6 A.M. to 12 P.M., Sat. & Sun. 6 A.M. to 8 P.M. (P.S.T.)
or fill in this ORDER FORM and enclose a check, money order or your VISA or MasterCard number.

HOMEBASE is available for the IBM PC, XT and true compatibles $49.95 + $5 for shipping and handling*

*California residents add 6% sales tax. Outside U.S. please add $5. Checks must be on a U.S. bank and in U.S. dollars. Sorry, no C.O.D. or purchase orders.

For dealer and site license information, call 408 996-1883.
YOU AWAKE ONE MORNING to find your brain has another lobe functioning. Invisible, this auxiliary lobe answers your questions with information beyond the realm of your own memory, suggests plausible courses of action, and asks questions that help bring out relevant facts. You quickly come to rely on the new lobe so much that you stop wondering how it works. You just use it. This is the dream of artificial intelligence. In this issue of BYTE, a group of distinguished authors, including leading researchers, examine the state of this challenging field. While the auxiliary lobe is a distant dream, some of these articles show that AI has won a place on personal computers.

Understanding artificial intelligence requires understanding intelligence itself. Marvin Minsky of MIT explores the concept of intelligence and considers whether we will be able to communicate with extraterrestrial intelligence when we encounter it. Some of the conceptual structures needed to make computers perform operations natural to the human mind are covered by Roger Schank and Larry Hunter of Yale.

Computer science is among the first fields to benefit from AI. John Anderson and Brian Reiser of Carnegie-Mellon describe their interactive LISP program that teaches people to program in LISP, while Yale's Lewis Johnson and Elliot Soloway explain the operations of their LISP program that finds nonsyntactic bugs in Pascal programs.

If we are to have powerful AI on personal computers, we must have efficient hardware and software. Michael Deering of Schlumberger Research surveys some efficient architectures for AI. After noticing the recent flowering of LISP on personal computers, MIT's Patrick Winston provides an introduction to the language. Carl Hewitt, developer of an early logic programming language, questions whether logic programming will be able to develop intelligent systems for complex applications in the real world.

In their article, Dana Ballard and Chris Brown of Rochester University explain how the miracle of vision rests on hierarchical representations of information as well as on parallel processing. Parallelism is explored further by Geoffrey Hinton of Carnegie-Mellon, who presents two theories of how learning could occur in brain-like networks. Jerome Feldman of Rochester elaborates on key issues in massive parallelism in both natural and artificial intelligence. John Stevens of the University of Toronto takes a bold and intriguing look at the possibilities of copying the brain's own circuitry directly. He starts with the device physics of the brain and goes on to discuss silicon-based designs.

The methods for building expert systems discussed by Robert Michaeleson, Donald Michie, and Albert Boulanger include not only those based on rules but also those based on deeper representations of knowledge. Beverly and William Thompson explain a rule-based expert system written in Pascal.

Space limitations prevented the inclusion of Michael Fichtelman's expert system in Logo and Phillip Robinson's description of a custom AI chip developed at Syracuse University. Look for these articles in forthcoming issues.

Many of the technical terms used in the context of AI involve subtle variations on the traditional computer science definitions. Please consult the glossary on page 138 for definitions of several of these terms.

—Phil Lemmons, Editor in Chief
WHEN FIRST WE MEET those aliens in outer space, will we and they be able to converse? I believe that, yes, we will—provided they are motivated to cooperate—because we’ll both think in similar ways. I propose two kinds of arguments for why those aliens may think like us, in spite of having very different origins. These arguments are based on the idea that all intelligent problem solvers are subject to the same ultimate constraints—limitations on space, time, and materials. For animals to evolve powerful ways to deal with such constraints, they must have ways to represent the situations they face, and they must have processes for manipulating those representations. These two requirements are:

Economics: Every intelligence must develop symbol systems for representing things, causes, and goals, and for formulating and remembering the procedures it develops for achieving those goals.

Sparseness: Every evolving intelligence will eventually encounter certain very special ideas—e.g., about arithmetic, causal reasoning, and economics—because these particular ideas are very much simpler than other ideas with similar uses.

The economics argument is that the power of a mind depends on how it manages the resources it can use. The concept of thing is indispensable for managing the resources of space and the substances that fill it. The concept of goal is indispensable for managing how we use the time we have available—both for what we do and what we think about. Aliens will use these notions too, because they are both easy to evolve and because there appear to be no easily evolved alternatives for them.

The sparseness theory tries to make this more precise by showing that almost any evolutionary search will soon find certain schemes that have no easily accessible alternatives. That is, other different ideas that can serve the same purposes. These ideas or processes seem to be peculiarly isolated in the sense that the only things that resemble them are vastly more complicated. I will discuss only the specific example of arithmetic and conjecture that those other concepts of objects, causes, and goals have this same island-like character.

Critic: What if those aliens have evolved so far beyond us that their concerns are unintelligible to us and their technologies and conceptions have become entirely different from ours?

Then communication may be infeasible. My arguments apply only to those stages of mental evolution in which...

 Artificial-intelligence pioneer Marvin Minsky is Donner Professor of Science in the Department of Electrical Engineering and Computer Science at Massachusetts Institute of Technology (545 Technology Square, Cambridge, MA 02139). In the late 1950s, Minsky, together with John McCarthy (now at Stanford), created MIT’s AI Laboratory, of which Minsky was the director for several years. Minsky has long been interested in SETI (the Search for Extraterrestrial Intelligence) and participated in the important 1971 conference on communication with extraterrestrials, held in Soviet Armenia and organized by Carl Sagan.
A distinctive aspect of intelligence is the ability to solve new, different problems.

which beings are still concerned with surviving, communicating, and expanding their control of the physical world. Beyond that, we may be unable to sympathize with what they come to regard as important. Yet even then we can hope to communicate with the mental mechanisms they use to keep account of space and time; these could remain as sorts of universal currency.

Critic: How can we be sure that things like plants and stones or storms and streams are not intelligent in other ways?

If you can't say in what respects their intelligence is similar, it makes no sense to use the same word. They certainly don't seem good at solving the kinds of problems that challenge our intelligence.

Critic: What's so special about solving problems? Please define intelligence precisely so that we'll know what we are discussing.

It's not one author's place to tell other people how to use a word that they already understand. Let's just use intelligence to mean what people usually mean: the ability to solve hard problems—like how to build spaceships and long-distance communication systems.

Critic: Then please define what a hard problem is. For instance, we know that human intelligence was involved in building the pyramids—yet coral-reef animals build things on an even larger scale. Should we therefore be able to communicate with them?

No. Humans do indeed solve such problems, but it is only an illusion that coral-reef animals do. An important factor is speed. No single bird discovers how to fly: Evolution used a trillion bird-years to find out how—yet man learned to fly in tens of human-years. And while a person might take several years to find a way to build a structure like an oriole's nest or a beaver's dam, no oriole or beaver could ever learn to do such things at all without exploiting the ancient nest-machines their genes construct inside their brains. A distinctive aspect of what we call intelligence is this ability to solve a wide range of new, different kinds of problems. This is why it makes sense to try to communicate with an individual animal that can learn quickly how to solve new hard problems.

What enables us to solve hard problems so quickly? Here are some ingredients that seem to me so essential that I would expect intelligent aliens to use them, too:

Subgoals—to break hard problems into simpler ones
Subobjects—to make descriptions based on parts and relations
Cause-symbols—to explain and understand how things change
Memories—to accumulate experience about similar problems
Economics—to efficiently allocate scarce resources
Planning—to organize work before filling in details
Self-awareness—to provide for the problem solver's own welfare

Still, aren't these only a few of the myriads of other possibilities? Why can't our aliens do all such things in completely alien ways? I believe that these problem-solving schemes are not as arbitrary as they seem.

THE SPARSENESS PRINCIPLE

Why does it seem so obvious to us that two and two equal four? Such mysteries have long concerned philosophers—why certain concepts seem to come into our minds as though they need no prior experience or evidence. My answer is that this may be due, at least in part, to the following computational phenomenon.

The Sparseness Principle: Whenever two relatively simple processes have products that are similar, those products are likely to be completely identical.

Because of this, we can expect certain a priori structures to appear, almost always, whenever a computational system evolves by selection from a universe of possible processes. The ideas of number and arithmetic are examples of this, and my conjecture is that this may be why different people can communicate so perfectly about such matters, although their minds may differ in many other ways. This may apply to aliens, too. Let me explain the sparseness principle by recounting two anecdotes. One involves a mathematical experiment, the other a real-life experience.

A Mathematical Experiment—I once set out to explore the behaviors of all possible processes—that is, of all possible computers and their programs. There is an easy way to begin that search: you just list all possible finite sets of rules, one by one. This is easy to do using methods that Alan Turing described in 1936; these are what today we call Turing machines. Naturally, I didn't get very far because the variety of such processes grows exponentially with the number of rules in each set. However, with the help of my student, Daniel Bobrow, I managed to examine the first few thousand of such machines—and we found that among them there were only a few distinct kinds of behaviors. Some of them simply stopped without accomplishing anything. Many of the others just erased their input data and did nothing else. Most of the remainder quickly got trapped in circles, senselessly repeating the same steps over again. There were only a few left that did anything interesting at all—and these were all essentially the same: Each of them performed a counting operation that repeatedly increased by one the length of a string of symbols. In honor of their ability to do what resembles a fragment of simple arithmetic, let's call these A-machines. Let's think of this exploration as exposing parts of some infinite computational phenomenon.

(continued)
Gold Hill Computers brings the language of Artificial Intelligence to Your Personal Computer.

Why every Computer Professional should know COMMON LISP.

You know how frustrating it is to deal with programs that are stupid and inflexible like those buried inside automated bank teller machines and airline reservation systems. You also know how frustrating it is to engineer solutions to today's information-processing problems with languages designed mainly for number crunching. It doesn't have to be this way.

Programs based on the ideas of Artificial Intelligence and implemented in COMMON LISP can be intelligent, flexible, and human-like. When you use COMMON LISP in combination with artificial intelligence techniques, you will be able to solve problems you could never solve before. You will be able to write powerful programs that can accommodate naive computer users who want intelligible answers to questions quickly.

The best way to get started is to buy GOLDEN COMMON LISP, the first COMMON LISP for personal computers.

GOLDEN COMMON LISP: The AI Tutor

GOLDEN COMMON LISP makes it easy for you to learn to use COMMON LISP, on your personal computer, by yourself, at your own pace. The San Marco LISP Explorer, a 1000-frame interactive software slide show developed by Patrick H. Winston and San Marco Associates, takes you through COMMON LISP and exciting artificial intelligence applications like expert systems, intelligent data-access systems, and natural language interfaces.

GOLDEN COMMON LISP: The Complete Lisp Environment

The GOLDEN COMMON LISP package includes:
- the GC.Lisp interpreter
- the GMACS editor
- the San Marco LISP Explorer
- the On-line Help system
- LISP, 2nd edition by Winston and Horn
- the COMMON LISP Reference Manual by Steele
- the GOLDEN COMMON LISP User's Manual

GOLDEN COMMON LISP: The Powertool for Personal Computing

GOLDEN COMMON LISP is an extensive subset of COMMON LISP, supporting more than 400 Lisp primitives. Advanced features of GOLDEN COMMON LISP include co-routines for multi-tasking, macros for code clarity, streams for I/O, closures for object-centered programming, and multiple-value-returning functions for efficiency.

GOLDEN COMMON LISP requires an IBM, PC XT, PC AT, or 100% IBM PC compatible computer with 512K bytes of memory and PC-DOS 2.0 or higher. More memory is recommended for applications development.

ORDER GC.Lisp TODAY using the coupon below. Or call our Sales Department at:

617-492-2071

<table>
<thead>
<tr>
<th>Gold Hill Computers</th>
<th>B1-85</th>
</tr>
</thead>
<tbody>
<tr>
<td>163 Harvard Street</td>
<td></td>
</tr>
<tr>
<td>Cambridge, MA 02139</td>
<td></td>
</tr>
</tbody>
</table>

Name
Title
Department
Organization
Address
Phone
Type of computer
* Enclosed is a check to Gold Hill Computers for GC.Lisp.
* Please bill my □ MasterCard □ VISA card.

Card #: Expiration Date

Signature

Quantity Description Unit Price Total Price

<table>
<thead>
<tr>
<th>GOLDEN COMMON LISP</th>
<th>$495</th>
</tr>
</thead>
</table>

Subtotal
MA residents add 5% Sales Tax
Total Amount

We welcome inquiries about volume discounts, dealer discounts, and educational discounts for university-affiliated purchasers.

□ Please send me more information.

Golden Common Lisp and GC.lisp are trademarks of Gold Hill Computers. The San Marco LISP Explorer is a trademark of San Marco Associates. LISP is copyrighted by Addison-Wesley Publishing Company, Inc. The COMMON LISP Reference Manual is copyrighted by Digital Equipment Corporation. IBM PC, PC XT, PC AT, and PC-DOS are trademarks of International Business Machines.
### DISK DRIVES

<table>
<thead>
<tr>
<th>Brand</th>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tandem</td>
<td>TM100-2 DS/DD</td>
<td>$165</td>
</tr>
<tr>
<td>Matsushita JA</td>
<td>551</td>
<td>$149</td>
</tr>
<tr>
<td>TEAC</td>
<td>FD-558 Slimline</td>
<td>$149</td>
</tr>
<tr>
<td>Shugart</td>
<td>SA-455 half-high</td>
<td>CALL</td>
</tr>
</tbody>
</table>

### HARD DISKS/TAPE

- **Maynard**
  - WSI: $895
  - WS2: $1095

### COMPUTER HUT

**IBM-PC,** **PRICE CALL FOR SPECIAL MONTH OF COMPUTER HUT.**

**TEAC**
- Six Pak Plus 64K
  - Mega Plus II 64K
  - I/O Plus II
  - SB
  - Microlog
  - Baby Blue II 64K

**EVEREX, SYSGEN, MOUNTAIN CALL MAYNARD ELECTRONICS**
- Floppy Disk Controller: $129
- FDC w/Par. Port or Ser Port: $179/$189
- Sandstar Series: CALL

### QUADRAFON

Quadboard 64K exp. to 384K: $279
- Quadcolor I & II: CALL

### AST RESEARCH

- Six Pak Plus 64K: $279
- Mega Plus II 64K: $279
- I/O Plus II: $129
- SB: CALL
- MICROLOG
  - Baby Blue II 64K: $489

### GRAPHICS BOARDS

- TECMAR
  - Graphics Master: $489
- HERCULES
  - Hi Res Mono Graphics: $329
  - Color Graphics w/Par Port: $185
- PARADISE
  - Modular Graphics: $299

**ANY PRODUCT NOT LISTED? CALL EAST COAST COMPUTER HUT OF NEW ENGLAND INC. 101 Elm St. Nashua, NH 03060 (603) 889-0666 For Orders Only — (800) 525 5012**

### MODEMS

**Hayes**
- Smartmodem 1200: $469
- Smartmodem 1200B: $409

**BIZCOMP**
- PC Intellimodem: $359
- PC Intellimodem-ST: CALL

**NOVATION**
- SmartCat: $359

### PRINTERS

**EPSON**
- FX-80: CALL
- RX-80: CALL
- JX-80: CALL

**Brother**
- HR-15 Par: $399
- HR-25: $649
- HR-35: $639

**DYNAX**
- DX-15 Par: $399

**C-ITOH**
- PROWRITER: CALL
- STARWRITER F-10P: $1095

**OKI DATA**
- 84P: CALL
- 92P: BEST

**NEC**
- Spinwriter 2050: $699
- 3550: $1449
- Pinwriter P2: $689

**TOSHIBA**
- P1351: $1399

**DAISYWRITER**
- 2000 w/48K Buffer: $849

**DAPRODUCTS**
- CALL

### MONITORS

**DISK DRIVES**
- FD-558 Slimline: $149
- TM100-2 DS/DD: $165
- MATSUSHITA JA 551: $149
- TEAC FD-558 Slimline: $149

**TEAC**

**STORAGE**

- **SHUGART SA-455 half-high**

**COMPUTERS**

**IBM**
- Video 300G: $135
- Video 310A: $179

**AMDEK**
- HX12 Hi Res RGB monitor: BEST

**PGS**
- MAX-12 Hi Res Mono: PRICES
- SR-12 Super Hi Res RGB: CALL

**SOFTWARE**

**WORDPROCESSING**
- MS Word: $239
- Volkswriter Deluxe: $169
- PFS: Write: $89
- PFS: Proof: $69
- WordPerfect: $269
- WordStar: CALL
- Multimate: $269

**DATABASE/INTEGRATED**
- dBase III: $389
- Quick code III: $179
- PFS: File: $89
- PFS: Graph: $69
- PFS: Plan: $89

**DATABASE**

**UTILITIES/COMPILERS**
- Crosstalk: $109
- Sideways: $49
- Turbo Pascal: $45
- LIFEBOT: $299

**BUSINESS**
- MS Basic: $259
- MS Fortran: $239

**APPLICATIONS**
- dBase III: $389
- Quick code III: $179
- LOTUS 1-2-3: $299
- WordStar: CALL

**OTHER**
- Mastertype: $35
- Typing Tutor III: $39
- Math Blaster: $39
- Flight Simulator: $45
- Managing your money: $135

**TRAINING & REPAIR**
- Ask about our training & repair services.

**ASK ABOUT OUR TRAINING & REPAIR SERVICES.**

### EAST COAST

**COMPUTER HUT**
- 524 S. Hunter
- Wichita, Kansas 67207
- (316) 681-2111

**FOR ORDERS ONLY — (800) 572 3333**

### CANADA

**MICROCONTEXT AUTHORIZED DEALER**
- 5253 Ave Du Parc
- Montreal Que H2V 4P2
- (514) 279-7291

**FOR ORDERS ONLY — (800) 525 5012**

### MID-WEST

**COMPUTER HUT INC.**
- 101 Elm St. Nashua, NH 03060
- (603) 889-0666

**FOR ORDERS ONLY — (800) 525 5012**

**IBM** is a trademark of IBM Corp. Return authorization and order status call information line Inquiry 83
"universe of possible computational structures." Then this tiny fragment of evidence suggests that such a universe may look something like figure 1.

The Xs represent those useless processes that scarcely do anything at all, while the As represent those little counting machines, which in effect are all identical. Little processes like these, inside our minds, could be seeds of our more mature ideas about arithmetic. My point is that it seems inevitable that somewhere in a growing mind some A-machines must come to be.

Now, possibly, there are some other really different ways to count. So there may appear much later some of what we represent as B-machines, which are processes that act in ways that are similar but not identical to the ways A-machines behave. But our experiment hints that even the simplest possible B-machine will be so much more complicated that it is unlikely any brain would discover one before it first found many A-machines.

I think of this little thought experiment as resembling an abstract version of those first experiments in which Stanley Miller and Harold Urey set out to explore with real chemicals the simplest combinations of constituents. They started with a few elements like hydrogen, oxygen, nitrogen, carbon, and phosphorus and found that those chemicals react first to make simple molecules and then go on to form peptides, sugars, nucleotides, and whatnot. Of course, we would have to wait much, much longer before the appearance of tigers, woodpeckers, or Andromedans.

A Real-Life Episode—Once, while I was still a child in school, I heard that minus times minus is plus. How strange it seemed that negatives could cancel out—as though two wrongs could make a right, or "this statement lies" could be a truth. I wondered if there could be something else, still like arithmetic but having yet another sign. Why not make up some number things, I thought, that go not just two ways, but three? I searched for days, making up new little multiplication tables. Alas, each system ended either with impossible arithmetic (e.g., with one and two the same), with no signs at all, or with an extra sign. Eventually, I gave up. If I had had the courage to persist, as Gauss did, I might have discovered the arithmetic of complex numbers or, as Pauli did, the arithmetic of spin matrices. But no one ever finds a three-signed imitation of arithmetic because, it seems, it simply doesn't exist.

Try, for example, to make a new number system that's like the ordinary one except that it skips some number—say, 4. It just won't work. Everything will go wrong. You'll have to decide what 2 plus 2 is. If you say that this is 5, then 5 will have to be an even number, and so also must 7 and 9. Then, what's 5 plus 5? Is it 8, or 9, or 10? You'll find that to make the new system at all like arithmetic you'll have to change the properties of all the other numbers. Then, when you're done, you'll find that you have changed only those numbers' names and not their properties at all.

Similarly, you could try to make two different numbers be the same—say, 139 and 145. But then, to make subtraction work, you'll have to make 6 the same as 0 and 4 plus 5 equal to 3. Suddenly, you'll find that the sum of two positive numbers is smaller than either of them—and that scarcely resembles arithmetic at all. (In fact, this leads to modular arithmetic, which has a certain usefulness in abstract mathematics but is worse than useless for keeping track of real things.) And so it goes.

There is just no way to take a single number out or put another one in. Nor can you change a single product, sum, or prime.

What gives arithmetic this stark and singular rigidity? You cannot make the smallest hole in it or make it stretch or bend the slightest bit. You have to take it as it stands, the whole thing, all or nothing, unchangeable. Because it's isolated as an island in that universe of processes. That selfsame A-machine exists, immutably complete, as part of every other process that can generate an endless chain of different things.

I sometimes wonder if it's dangerous to make our children dwell so long on arithmetic since, when seen this way, it leads to such a singularly barren world. True, some children find in it a universe of different things to do. Most children, though, just find it dull—a source of endless rote and pointless pain: it's like the tedium of working clay too cold to mold into any other shape.

From all this, I conclude that any entity who searches through the simplest processes will soon find fragments of arithmetic, hard substances likely to give rise to something else.

Figure 1: A universe of possible computational structures.
Pascal and C Programmers

Your programs can now compile the FirstTime™

FirstTime is an intelligent editor that knows the rules of the language being programmed. It checks your statements as you enter them, and if it spots a mistake, it identifies it. FirstTime then positions the cursor over the error so you can correct it easily. FirstTime will identify all syntax errors, undefined variables, and even statements with mismatched variable types. In fact, any program developed with the FirstTime editor will compile on the first try.

More than a syntax checker! FirstTime has many unique features found in no other editor. These powerful capabilities include a zoom command that allows you to examine the structure of your program, automatic program formatting, and block transforms.

If you wish, you can work even faster by automatically generating program structures with a single key-stroke. This feature is especially useful to those learning a new language, or to those who often switch between different languages.

Other Features: Full screen editing, horizontal scrolling, function key menus, help screens, inserts, deletes, append, searches, and global replacing.

Programmers enjoy using FirstTime. It allows them to concentrate on program logic without having to worry about coding details. Debugging is reduced dramatically, and deadlines are more easily met.

FirstTime for PASCAL $245
FirstTime for C $295
Microsoft PASCAL Compiler $245
Microsoft C Compiler $395
Demonstration disk $25

Get an extra $100 off the compiler when it is purchased with FirstTime.
(N.J. residents please add 6% sales tax.)

Spruce Technology Corporation
110 Whispering Pines Drive
Lincolntown, N.J. 07728
(201) 741-8138 or (201) 603-0003

Dealer enquiries welcome. Custom versions for computer manufacturers and language developers are available.

FirstTime is a trademark of Spruce Technology Corporation.

COMUNICATION

ments that do not merely resemble arithmetic but are arithmetic. It is not a matter of inventiveness or imagination, only a fact about the geography of the universe of computation, a world far more constrained than that of real things.

Thesis: All processes or formalisms that resemble arithmetic are either identical to it or else unthinkably complicated. This is why we can communicate perfectly about numbers.

What has this to do with aliens? Only that they too must have evolved by searching through some universe of possible processes, and any evolutionary process must first consider relatively simple systems and thus discover the same isolated islands of efficiency.

Finally, we ought to ask why processes occur that way without some similar ones nearby? It is hard to formulate this precisely, because the meaning of similar depends on what you want to use it for. One way to explain it is to point out that a small set of rules can generate a vast world of implications and consequences. But there is no converse because usually a small set of rules can't describe a large and complex thing. This is simply a matter of arithmetic: There just aren't enough small sets of rules to go around! And that explains why we cannot take some set of rules, use it to generate a universe of consequences, make a few changes in that universe, and then describe that end result, again in terms of only a few rules. Now, that altered universe has become one of miracles, not of laws. There are not enough small sets of rules to produce the effect of continuity.

CAUSES AND CLAUSES

An alien mind would probably be entirely different from ours if how we think were just an evolutionary accident. And then, communication would likely not be feasible. But although every evolution is composed of many accidents, each one tends to first try relatively simple ways at every stage. Since were the first on earth to develop complex languages, and since these languages probably employ many relatively simple principles, it is likely that alien species will share many of these. I propose this in a form so strong that it may seem entirely preposterous at first: I believe that many aspects of our language/grammar forms may be almost inescapable.

Why do we say things like "It soon will start to rain?" Why must we always postulate some agent-cause even when there is no actor on the scene? It doesn't matter if we're right or wrong; we'll find a cause or imagine one. I claim we seek some cause for every difference, move, or change. Sometimes our language syntax forces this on us, but I claim it is not merely a matter of verbal form; it stems from deeper causes in the ways we think. My guess is that even before our ancestors began to speak, they first developed special brain machinery for representing objects, differences, and causes, and our language/grammar later reflected these. Specifically, I suspect that many of our thought processes are based on using the following kinds of mental symbol representations:

Object-symbols representing things, ideas, or processes—In languages, they often correspond to nouns. Our minds tend to describe every situation, real or mental, in terms of separate object-things and the relations between them.

Difference-symbols representing differences between, or changes in, objects—In languages, they often correspond to verbs. When any object undergoes a change or two objects are compared, the mind ascribes some differences to them.

Cause-symbols—When any difference is conceived, the mind finds a cause for it, a something that is held responsible. And we use a clever mental trick to represent causes in much the same ways that we represent objects.

Clause-structures—For describing complicated situations, we have a trick that lets us treat any expression

(continued)
The best-performing multiuser database manager is here today with ShareIT, part of the ITSeries from Martin Marietta. ShareIT offers a unique combination of software and hardware to deliver the performance you need.

**What is the ShareIT software?**

KeepIT Plus™, a multiuser version of KeepIT™, the menu-driven relational database manager that forms the centerpiece of the ITSeries of integrated software.

**What is the ShareIT hardware?**

The COGENT Database Machine™, a board that provides the interface between KeepIT Plus and the database.

**How are the PCs networked?**

Using any of the standard network boards: PCnet, the Novell Gateway adapter card, or IBM's Sytek LAN card. No need for added-cost network operating system software.

**Why does ShareIT work so well?**

Because the COGENT Database Machine board provides the hardware performance of a dedicated file server using:

- An 80186 co-processor and disk controller that handle all file access.
- Cache memory for faster buffered access to the database.
- Additional random-access memory for index file processing.
- Firmware for flat file access, B-tree indexing, and record lock.

And KeepIT Plus provides:

- Index file management on the COGENT board without the need to transfer index files across the network.
- Easy-to-use, yet comprehensive, database management.

For more information or the name of the ITSeries dealer nearest you, call 800/222-0592 or 609/799-7500.
or description, however complicated, as though it were a single component of another description. In languages, this corresponds to using embedded phrases and clauses.

It is that final self-embedding trick of representing prior thoughts as things that gives our minds their awesome power. For this permits us to reuse the same brain machinery over and over again, at each step replacing an entire conceptualization by a compact symbol. That way, we can build up gigantic structures of ideas as easily as our children build great bridges and towers from simple separate blocks. That way, we can build new ideas from old ones—and that is what enables us to think. This applies to our computers as well.

This must be why our languages also have structures that we can reuse: Our thoughts themselves must use the same machinery repeatedly. That’s how our thoughts extend themselves to infinite variety. And, unless aliens do that too, they cannot turn their thoughts to the prior products of their thoughts. Without this trick of turning symbols on themselves, you can’t have general intelligence, however excellent your repertoire of other skills may be.

Critic: You might as well argue that the aliens will speak English if you claim they too use nouns and verbs and compound embedded sentences. But what if they don’t think in terms of objects and actions at all?

I don’t think it’s an accident that we think in terms of thing and cause. Whatever may occur, that form of representation leads us always to wonder who or what is responsible. And so, this evolutionary trick leads us to search to find dependencies that help predict—and hence control—not just the world outside but also what may happen in the mind. Perhaps it’s also why we all grow up believing in a self: perhaps that “I” in “I just had a good idea” stems from that same machine. Because if you are compelled to find something to cause the things you do, that something needs to have a name. You call it “me.” I call it “you.”

Critic: But what’s so great about dependencies? Why can’t some aliens perceive entire scenes as wholes instead of breaking them down into those clumsy parts? Why not, instead, see what there really is, holistically—a steady flow of flux in space in time, instead of arbitrary form-filled mind-made fragments of approximations to reality?

It surely is a healthy tendency to yearn for better ways to see the world. But worshipping as-yet-undiscovered transcendental schemes can blind us to the power we draw from our usual ways of separating things. Each animal must pay a corresponding price in energy and nourishment for each machine it carries in its brain. Just as clause structure in language lets us focus our entire word machine on each part of a description, our concept of seeing separate things lets us factor situations into parts and then apply our whole mind machine to each part of the problem. Enthusiasts of holism have never understood the hidden cost a mind would have to pay to “see everything at once.” We’d never be able to see anything clearly at all.

There have been many speculations on how brains might use something like holograms for memories. But on one side there is no evidence for this: on the other there are few advantages to it. Holograms store no more information than other methods, and computer scientists know other, better ways to add redundancy to memory to make it robust and injury resistant. It is true that holograms can simplify certain kinds of recognitions, for instance, deciding whether a picture contains copies of some specific other picture. But that also makes it much more difficult to make most other kinds of decisions, to say whether a picture contains two subpictures that share some specified relationship. In fact, a hologram may be almost the worst possible way to represent relations among the things it represents, because memory and learning are useful only when they inform us about relations that are at least partially predictable. We do not want our memories to give equal weights to every arbitrary feature of a situation. If a scene contains 50 features, you don’t want to equally consider all the quadrillion possible subsets of those features. And so we need some methods for isolating and grouping that can emphasize the most usefully predictable subsets. In short, without the additional constraints on relations between features, which result in the concept of an object, we’d simply never see the same thing twice. Then we’d have no way to learn from our experience. No knowledge could accumulate.

CAUSES AND GOALS

How does having memory help—when no two problems are ever quite the same in all respects? Our past experience would seem to have no relevance unless we had some ways to see which aspects of the world remain the same, while others change. This is why knowledge cannot have much use unless expressed in terms of relations between predictable features and the actions that we can take. But given these it then may become possible to predict which actions might cause undesirable features to disappear.

To say that “y happened because of x” is, in effect, to say that x can help you to predict which actions can lead to y. It helps to control its environment if an animal can find such causes—fragments of predictability that work better than chance. But such predictions aren’t useful when too many small effects add up. What are causes anyway? The very concept of a cause involves a certain element of style: A causal explanation must be brief. Unless an explanation is compact, we cannot use it to predict. We would agree that x is a cause of y if we see that y depends much more on x than on most other things. But we wouldn’t call x a cause if it were a discourse that carried on and on, mentioning everything else in the
BASF QUALIMETRIC™ FLEXYDISKS: A GUARANTEED LIFETIME OF OUTSTANDING PERFORMANCE.

BASF Qualimetric FlexyDisks feature a unique lifetime warranty,* firm assurance that the vital information you enter on BASF FlexyDisks today will be secure and unchanged tomorrow. Key to this extraordinary warranted performance is the BASF Qualimetric standard... a totally new set of criteria against which all other magnetic media will be judged.

You can count on BASF FlexyDisks because the Qualimetric standard reflects a continuing BASF commitment to perfection in magnetic media. One example is the unique two-piece liner in our FlexyDisk jacket. This BASF feature traps damaging debris away from the disk’s surface and creates extra space in the head access area for optimum media-head alignment. The result is a guaranteed lifetime of outstanding performance.

For information security that bridges the gap between today and tomorrow, look for the distinctive BASF package with the Qualimetric seal. Call 800-343-4600 for the name of your nearest supplier.

Inquiry 40

*Contact BASF for warranty details.
whole world and never coming to any point. This applies to objects too.  
There can't be any objects, things, or causes in worlds where everything that happens depends, more or less equally, on everything else that happens.

It makes no sense to talk about a thing in such a world, because our very notion of a thing assumes some constellation of properties that stays the same or changes ways we can predict, when other things around it change. When you move an object, its location changes—but not its color, weight, material, size, or shape. How convenient that our world lets us change a thing's place and still leave so many other properties unchanged. If this were not the case, the number of combinations to keep track of would grow exponentially with the number of features we perceive and we would have no sense of what causes things to happen.

To deal with something complicated, you must find a way to describe it in terms of substructures within which the effects of actions tend to be localized. To know the cause of a phenomenon is to know, at least in principle, what can change or control it without changing everything else. This is useful when it enables us to change one thing without making other things worse.

For a mind to discover causes in its world, it must have sensors that detect changes that are predictably related to the actions it can take. Fortunately, evolution tends automatically to select just such matched sets of sensors and effectors, because in virtually any environment an animal's survival is enhanced if its actions are based on good predictions. So we can expect evolutionary processes to accumulate mechanisms that reflect the causal laws that operate in their environments. And it would seem that the most powerful methods are those that let you make predictions about the effects of contemplated action chains, that is, the ability to make plans.

Problems seem hard when their solutions aren't obvious. The most general way we know to solve problems is to set up systems that have some way to make "progress toward a goal." In the late 1950s, A. Newell and H. A. Simon worked out a theory of what they called the "General Problem Solver." This is a theory of how to reach a goal by making progress—finding actions that can replace each problem that has a high-level difficulty by other problems, each of which has a lower-level difficulty. No one can prove that all intelligent problem solvers, however alien, must use this selfsame principle. But until we find another, comparably general idea—and none is on our horizon—it is hard to imagine how an intelligence could evolve without exploiting some such idea of goal.

RELIABLE COMMUNICATION
Before we ask how aliens communicate, we ought to ask how humans can. Is there ever a word that means the same to any two of us? Everyone must have wondered once, "Could two persons have different meanings for every word, yet never sense that anything is wrong?" What if each thing that's green or blue to me is blue and green to you? The sparseness theory claims that we need have no fear of that, at least for technical concepts, since one of the two outwardly indistinguishable meanings would probably be vastly more complicated than the other and would never have been conceived in the first place. Sparseness means we can trust one another.

We know very little of where that idea might lead because we know so little about how sparseness isolates any particular concept. But the general idea does seem to support the mathematical and physical intuitions proposed by Hans Freudenthal in LINCOSS, his book on alien communication, perhaps even in regard to the miniature models he suggests for discussing social and administrative subjects. There is one problem though: Introspection is a poor guide for guessing which of our common-
No micro in its right mind would want a showdown with Pinnacle. Its awesome fire power is provided by the superb Motorola 68000 charging along at 12MHZ with no wait states (giving about 3MIPS).

And Pinnacle's ammo belt is just bristling with high powered options to give rapid fire to all seven users. P-System, Unix®, CP/M-68K®, Mosy, BOS, Mirage, Tripos all obey instantly — along with their armies of applications.

Up to 8 Megabytes of directly addressable RAM and 110 Megabytes of Winchester storage dance when Pinnacle barks its sharp orders.

And that's just for starters. There's also the Pinnacle IX with TWO 68000's, DMA, and Memory Management hardware. Ideal for disk intensive operating systems like Unix® and Pick.

And a Pinnacle LX expansion chassis allowing nine 68000 processors to network 56 users. A micro's gotta do what a micro's gotta do.

And starting at under $4000 Pinnacle's just the fastest there is.
sense concepts are really simple, because many things we find easy to do use brain machines whose complexity we cannot sense. For example, we find it easy to stand on two feet, but some aliens might find that quite astonishing.

What other ideas are likely to be universal in the sense of being islands in that sea of possible ideas? Surely the mathematical notions of utility, linear approximation, probability, and the simplest program-like processes are. These could serve to communicate much about trade and commerce, basic facts of biology, and even many principles of mental life—e.g., about objects, goals, and memories. At some point, though, sparseness must fail, because things that are more complicated will have all kinds of variations and alternatives, and communication will encounter obstacles of every sort.

**THEREFORE**

There is little more that I can say today with any scientific certitude. Tomorrow there could be more, perhaps because of soon-to-come gains in computational power that could let us explore a little further into the mysterious ocean of all possible simple machines. There we might find a few more ideas isolated enough to share with other minds. Such explorations also might tell us more about the origin of life itself by showing us the simplest schemes that could support the simplest forms of evolutionary search.

**BIBLIOGRAPHY**


**ACKNOWLEDGMENT**

This article is an adapted version of a paper by Marvin Minsky in *Extraterrestrials: Science and Alien Intelligence,* edited by Edward Regis Jr. and published by Cambridge University Press. Copyright March 13, 1984, revised December 10, 1984. The book will be available in the summer of 1985. Reprinted with permission of the editor and Cambridge University Press.

---

**A GLOSSARY**

**AND, OR, AND STREAM PARALLELISM:** different techniques for implementing parallel operations, based on and, or, and pipelined execution hierarchies.

**BAGS:** formal mathematical objects that differ from sets in that they allow duplicate items.

**BLACKBOARD:** used in systems composed of independent modules as a means of communication. The blackboard is a common area of memory containing system-state data that all modules can access.

**FRAME:** a knowledge structure (or database) used to describe the attributes that an object possesses, arranged in a "slot and filler" format. Each slot and its contents carry information about a particular aspect of the object.

**GRAIN SIZE:** when used in conjunction with parallel processing, grain size refers to the complexity of the code chunks allocated to each processor. For example, if processor A is assigned to perform an addition operation while processor B is assigned to perform a sort operation, the grain size of the code assigned to processor A is smaller than that assigned to processor B.

**HEURISTIC:** a technique that improves the efficiency of a problem-solving process, even though its use cannot be strictly justified. In AI, heuristics are typically used to reduce the time required to solve extremely complex search problems.

**KNOWLEDGE ENGINEER:** an AI programmer who constructs expert systems.

**PREDICATES AND DEMONS:** a predicate is a type of function that tests for some condition involving its arguments. A demon is a procedure that activates automatically in response to recognizing a predefined state.

**SCRIPT:** a frame-like knowledge structure used to represent related sequences of events. The slots in a script contain information concerning an event (where the event occurs, people involved, objects manipulated, etc.), and the events are linked in a causal chain.

**SEMANTIC NET:** a graph of nodes and connecting links; the nodes represent objects, and the links represent relationships. A family tree is a good example of a semantic net.

**TAGGED MEMORY ARCHITECTURE:** in AI applications, tagged memory architectures use part of each memory word to convey information about the data stored in the remaining bits of that word, including the data type and format.

**UNIFICATION:** a pattern-matching method; the result of a unification is the assignment of values to the variables of two patterns so that both patterns become identical.
ACCOUNTANTS TO ZOO KEEPERS NEED DATABASE APPLICATIONS.
HOW CAN I SPEAK THEIR LANGUAGE?

HERE’S HOW: dBASE III™ SOFTWARE

Whether you're keeping track of accruals or zebras, dBASE III™ will easily create specialized applications which speak your customers' language.
You can quickly write applications for your customers because dBASE III contains a high-level language of plain-English commands that's powerful and easy to use. And, because we understand that your customers' needs often change, we made it easy to modify the structure of your database.
Let's say you've set up a database application for a zoo keeper. After using the application for six months, he discovers that he needs to specify the sex of all his animals, an item he forgot to ask for when you created the application. You've got 1,397 records entered, but you have to change the structure of the database.
These commands:

**USE ANIMALS**
Selects the database.

**MODIFY STRUCTURE**
Move the cursor to the place where you want to insert the new field.

**SEX**
Adds the new field.
The new field will be inserted above the cursor position.

value of a character field, and is one column wide.

| Ctrl | W | ends your input. |
| Ctrl | N | confirms that you're satisfied with what you've done. |

Now, your customer is ready to identify his zebras as boys or girls using the program you created for him.

dBASE III makes your programming effort quick and productive because it's an English-language exercise whether your customer is keeping track of cash flow or feeding schedules.

For a dealer near you call (800) 437-4329, ext. 232.
In Colorado (303) 799-4900, ext. 232.

Software from ASHTON TATE™
We'll put you in control.
Buy 10 flo stop worrying

Free Flip 'n' File"/15 ($10 Retail Value)
The Flip 'n' File™/15 is an island of calm and order in the savage environment of the modern office.

It's also free, when you buy a specially marked package of 10 double or single sided, double density 3M diskettes. They're the certified 100% error-free diskettes; no floppies are more reliable.

With this kind of protection, all you have to worry about now is when this limited special offer sells out.

Offer available from participating distributors, personal computer dealers and office supply dealers.

Which, if you don't hurry, could be before the next major coffee spill.

One less thing to worry about.
Introducing Expert Ease: The First Practical Expert Systems Generator For Your IBM PC.

Are you ready to join the Artificial Intelligence revolution?

**Expert system - Type of artificial intelligence program that allows the computer to be taught, using English sentences, to solve a problem.**

You're an Expert. And you're someone who's thought about writing your own expert systems program for quite awhile. The only thing holding you back is that you haven't had the big bucks to buy a mainframe. Now, with Expert Ease™ you can easily create your own expert system on your own IBM PC.

"Expert Ease is a fascinating new software package that, for the first time, allows experts in any field to create problem-solving 'expert systems on a microcomputer...One of the most interesting, thought provoking programs to come along in quite some time."  

PC Magazine

**Make Your Knowledge Work For You.**

Expert Ease is the first practical AI system generator that's just waiting to become as smart and as savvy as you are. It learns as you learn. Simply enter your expert information by example, and Expert Ease will automatically construct the appropriate decision tree to allow the non-expert to make a decision, solve a problem or have the benefit of your expert advice. It even uses the non-expert's own vocabulary and terminology.

"In a demonstration test, Expert Ease proved to be extremely simple to follow... The potential applications are significant."  

The Artificial Intelligence Report

**Expert Ease Can Approve Loans Or Load Airplanes.**

The applications and uses for Expert Ease are virtually unlimited. You can do something as straightforward as loan approvals or something as complex as recommending the most efficient way to balance the cargo on an airplane. Expert Ease can trouble shoot car problems or diagnose medical problems. You can update, modify, improve, refine or enhance your expert system at any time. In short, anything you can do, it can do as well.

"Expert Ease can codify any discipline, decision process, or set of rules, policies or procedures... Using Expert Ease is simple... The approach is like one of a mentor instructing an apprentice."  

Electronics

**Join The Next Generation Of Expert Programmers.**

Until now, the expert systems technology designed into Expert Ease has only been available to mainframe users. There's little doubt that with the introduction of Expert Ease, there will be an explosion in expert systems development. Business programs will be written to improve quality control and productivity. Tutorial programs will be developed as learning aids. And experts from all walks of life will be sharing their thoughts in ways that have yet to be conceived.

Human Edge Software Corporation will remarket selected Expert Ease applications. When you develop your million dollar system, contact us first. If you have an expertise you need Expert Ease. Order now and save $100!

"The most intriguing product I saw during the past year was Expert Ease,... this early glimpse into what may be next year's hottest software category left me hungry for more. Once you've worked with software that reflects your own thinking, it's hard to be satisfied with anything less."  

Mike Edelhart, Executive Editor

**SAVE $100.**

Pay only $595. If your dealer doesn't have Expert Ease yet, order direct point. Order by Master Card or VISA, or call 1-800-624-5227 (in California 1-800-824-7325)

Name __________________________
Address _________________________
City _____________________________
State ____________________________
Zip ______________________________
Card Name _______________________
Card Number _____________________
Expiration Date ___________________
Signature _________________________

15-Day Money Back Guarantee.

**HUMAN EDGE**

We Make Computers Think
Human Edge Software Corporation
2445 Faber Place, Palo Alto, CA 94303

Inquiry 190
I·N·T·E·L·L·I·G·E·N·C·E

THE QUEST
TO UNDERSTAND
THINKING

by Roger Schank and Larry Hunter

It begins not with complex issues
but with the most trivial of processes

ARTIFICIAL INTELLIGENCE, or AI, takes as its subject matter some of the most daunting questions of our existence. What is the nature of mind? What are we doing when we are thinking, feeling, seeing, or understanding? Is it possible to comprehend how our minds really work? These questions have been asked for thousands of years, but we’ve made little tangible progress at answering them.

AI offers a new tool for those pursuing the quest: the computer. As anyone who has used one can attest, computers often create more problems than they solve. But for probing the issues of mind and thought, that is just what we need.

The fundamental use of computers in helping us understand cognition is to provide a testbed for our ideas about what the mind does. Theories of mind often take the form of process descriptions. For example, a theory of question answering might claim that people first translate a question into an internal representation, use that representation as an index into memory, translate the recalled memory into an appropriate form for an answer, and then generate the words to communicate it. (This example is offered not as a real theory of question answering but as an example of what a process theory of mind might look like.)

Process theories seem to be a good way of describing what might go on inside the brain. One problem with them, however, is that all too often what looks like a good description really isn’t specific enough to make the theory clear. “Use the representation as an index into memory” isn’t a good explanation of the processes behind remembering a fact. How are facts recalled? How is the memory organized? What happens when memory gets very large? What if a fact isn’t directly encoded in memory but can be inferred from something that is? A researcher trying to write a program that embodies the above simplistic theory would run into all of these problems and more. That’s why we need to write programs. Programming forces us to be explicit, and being explicit forces us to confront the problems with our theories.

Not long ago, AI researchers like ourselves focused on what they considered to be manifestations of highly intelligent behavior: playing chess, proving mathematical theorems, solving complex logical puzzles, and the like. Many AI researchers devoted a lot of energy to these projects and found powerful computational techniques for accomplishing such “intelligent” tasks. But we discovered that the techniques we developed are not the same ones that people actually use to perform these tasks, and we have instead begun to concentrate on tasks that almost any adult finds trivial: using language, showing common sense, learning from past experiences.

LANGUAGE

We began studying these “trivial” tasks by trying to write programs that...
People understand a great deal more than the lexical content of an utterance.

could use English (or other natural languages) in a useful way. We wanted such programs to be able to understand the written word well enough to summarize it, translate it into another language, or answer questions about it. We were immediately confronted with the fact that people understand a great deal more than just the immediate lexical content of an utterance. For example, most people would agree that the sentence "John bought a new car" contains a reference to money, even though the word "money" does not appear in the sentence. Any program that understands that sentence would have to be able to answer "Yes" to the question "Did John spend money?"

How could a program know that? One approach might be to associate "money" with the word "bought," claiming that "buy" means "trade money for." This method uses the meanings of the various words in the sentence to build up a representation of the meaning of the whole sentence. That is more or less the right approach, but it has some problems. For one, words are ambiguous, and the inferences we make about their meanings can easily be wrong. "Buy" for example, doesn't always mean money changes hands, as in: "John bought Mary's argument." Ambiguity is so widespread that any program dealing with natural language must have powerful methods for handling it.

Another problem is that often underlying meanings do not come from the definitions of any particular word. Consider the following story: "John went to a restaurant. He ordered a sandwich. The waiter brought it quickly, so he left a large tip." The meaning of this story obviously includes the fact that John ate the sandwich and paid for it. However, those actions are not implicit in any particular word in the story. How might a computer program infer them? It would have to know about what goes on in restaurants. A person could also conclude that John probably looked at a menu, that he sat at a table, that a cook made the sandwich, and so on. The program needs to be able to fill in the unmentioned gaps in a text with information about the events being described.

There is a solution to both problems: The program must be constantly generating expectations about what will happen next. Ambiguity is rarely noticed by human speakers because the context makes clear which meaning is correct. For a program to be able to resolve ambiguity, it must build up a "context" as well. In other words, the program must have some idea of what will happen next, based on what has happened previously and what it already knows about these kinds of situations. Expectations are very helpful in resolving ambiguity; the expected sense of an ambiguous word is the one that should be assumed. The expectations set up by "The bartender poured scotch on . . . " makes it easy to use the proper sense of "the rocks."

Expectations also help fill in the gaps in a story. They commonly come in bunches or packages. When we hear about a restaurant, we expect to hear about a variety of objects, events, and people. There should be a menu, the patron should look at the menu, pick something, tell the order to a waiter or waitress, wait for a while, be served, eat the food, have the table cleared, get a check, pay the check, leave a tip, and depart. As is obvious from this example, expectation packages can be temporally ordered, which makes it possible to infer that "John ate his sandwich" in the earlier example. When an expectation is satisfied, the program can infer that the expectations temporally prior to it are probably also satisfied. People know about common sequences of actions in the world and use that knowledge to generate expectations. There is no way to understand language without knowing something about the subject matter under discussion.

To build programs that test these ideas, we had to figure out what kinds of expectations exist and specifically how they are used. First, we looked to human behavior to guide us. People constantly generate expectations at many different levels of specificity. We have expectations about what syllable sounds are likely to be heard next that help us resolve ambiguous sounds into words. We have lexical expectations about what words or classes of words will come next. We have expectations of events that are likely to occur. We also have a variety of expectations about other things, like the kinds of goals that various people may have, plans and counterplans involved in pursuing those goals, and emotional reactions to various events.

Then we thought about how a program might handle this. In some sense, every natural-language parser uses expectations. The difference between a traditional, strictly syntactic parser and a more conceptual parser is the source of its expectations. A syntactic parser uses only knowledge about grammar. A conceptual parser uses information from many sources, grammatical and otherwise. While a traditional parser sees syntactic analysis as a preliminary process for other analyses, a conceptual parser sees syntax as only one of many sources of information used simultaneously to understand text.

Many of the low-level expectations of our parsers come from the vocabulary used to represent meaning. Some of our programs have used conceptual dependency (CD) to represent meanings (see reference 1). The basic CD form has slots for an action, an actor, an object, and a directional component (from or to). Each CD action has associated semantic constraints on the kinds of entities that can fill its slots. For example, the CD action ingest requires that its object be edible and its actor be alive. When any word that refers to "ingest" appears in a

(continued)
Since 1918 we've been quietly designing, manufacturing, and distributing a broad range of products for industry, business, and consumers all over the world. And so we've quietly grown to be a multinational company with almost a billion in sales from the world's toughest markets. Markets that demand quality, performance, and reliability. Which is why Tatung terminals and monitors have become the choice of important systems designers. Tatung monitors are compatible with virtually all popular computer systems. Each model offers superior resolution and CRT color imagery, along with controls for precise picture "tuning". Tatung terminals offer operational flexibility, compatibility with all popular systems, and day-in-day-out reliability. But, no matter which model you choose, no other terminal or monitor offers as much...for so little.

For complete information call toll free: 1-800-421-2929.
In California, call (213) 979-7055.
TATUNG COMPANY OF AMERICA, INC. 2850 El Presidio, Long Beach, CA 90810.

Tatung Monitors are available at:
WESTERN MICRO SYSTEMS
A Quality Distributor Serving the 13 Western States
Western States 1-800-544-0020
In California 1-800-338-1600
What every Apple owner should know about

WORD JUGGLER™

If you own an Apple IIe or IIc—or you're planning to buy one—here are a few things you should know about Quark's Word Juggler word processor.

First of all, Word Juggler is the only word processor that gives you a powerful spelling checker and a built-in telecommunications feature. So you can create a document—check it for spelling errors—and then send it via electronic mail. All with just one program.

Plus, Word Juggler is the most easy-to-use, professional word processor you can buy for your Apple. Even complicated "cut-and-paste" tasks can be accomplished with just a few keystrokes.

There's nothing to memorize, either. Because Word Juggler comes with replacement keycaps—and a special keyboard template—which identify principal editing and formatting commands. So you can focus your efforts on using the program, not learning it.

Fact is, no other word processor for your Apple IIe or IIc gives you this unique combination of power, functionality and ease of use. And if all these advantages aren't compelling enough, check the price. Suggested retail is only $189.

So visit your favorite dealer today. Ask for a complete demonstration—and for a copy of our brochure, "What Every Apple Owner Should Know About Word Juggler." If you don't have a favorite dealer, but would like one, just call 1 (800) 543-7711. We'll fix you up.

Copyright 1985, Quark Incorporated
text, expectations are generated to hear about an edible object (generally after the word meaning "ingest") and a living actor (generally before "ingest"). Notice that the expectations generated are both semantic (predicting a word or meaning) and syntactic (predicting where the word might be found). Of course, even the CD action may be ambiguous. One way to clear up the ambiguity in such cases is to generate the expectations from both possible meanings and pick the action whose expectations are met by the remaining words in the story. This technique could be used to clarify the meaning of "buy" in the earlier example: "buy" would generate two sets of expectations, one predicting a valuable object and the other predicting an opinion. When one expectation set was satisfied, the program could deactivate the other.

There are many other ways to clear up ambiguities. More complex expectation schemes can provide better information. Consider the restaurant story above. The sentence "The waiter brought it quickly, so he left a large tip" has an ambiguous pronoun, "he.") Standard rules for pronoun reference fail here: sex and number don't differentiate, and "he" does not refer to the most recent agreeing antecedent, "waiter." The only way to clarify the meaning of this pronoun is by the expectation that patrons leave tips for servers. You might try associating this information with the appropriate meaning for the word "tip," but patron and server are not just semantic restrictions on slot fillers. John might be a patron in this episode, but he might act as a server in some other situation. The patron/server/tip expectation and the identification of John as a patron must come from a package of expectations about restaurants.

When we began to use packages of expectations in programs, we discovered a few things about packages. First, any story will refer to many packages, and the packages can relate to each other in many different ways. Packages can be grouped together themselves (date = drive, restaurant, drive, movie, drive) or can fill slots in some other package (the "pay" slot of restaurant might be filled by "wash dishes"). They can occur at the same time (eating and taking an airplane) or be incompatible (driving an automobile and taking an airplane). Packages can also have word senses associated with them. In the restaurant package, "tip" is more likely to mean "money" than "end point." This kind of associated lexicon doesn't solve the problem of ambiguity, but it is a helpful tool.

We also ran into some problems with packages. How could a program figure out which package to use at any given time? It is reasonable to add activation conditions to a package that specify the situations in which that package might be relevant. Early programs just looked at each package to see if its conditions had been met. As the number of packages increased, their organization had to improve. We needed some way of finding the right set of expectations at the right moment, without looking at every package. As we built programs that used packaged expectations and gave them real stories (taken verbatim from the UPI newswire), we noticed that sometimes expectations failed. These failures were often very interesting events. We began working on ways to determine the difference between a failed expectation and an unresolved one that should be inferred.

Another problem was picking what was to be a package and what wasn't. There are many things about eating at home that are like going to a restaurant. Do the expectations about eating at home come from the same package or a totally different one? How about eating in different restaurants? We needed a theory of how to organize and find groups of expectations.

(continued)
Inquiry

beautiful summer for all of you.

ping) so if a price seems high, call me and maybe we can adjust it. --

148 BYTE • APRIL 1985

ALTOS 586-20 . . . . . . . . . . . $5350
ALTOS 580-20 . . . . . . . . . . . $3350
803 ..... $1769 803H .. .. $2549
NEC 8201 .. . .. ... . . .. ... $329
ABATI LO ... ..... . .. . ... $339
IBM PC ... . ............ $CALL
LEADING EDGE PC ...... . . $CALL
OKI DATA (LOW PRICES) .... $CALL
3550 .... $1359 3510 ..... $1215
8510 . .... $309 1550P . . ... $449
TOSHIBA 1340P . . ... ... . .. $709
JUKI 6100 ........... . ... $399
EPSOM ......... - ...... . $CALL
BROTHER HR 25P . ......... $655
7710 .... $1635 2030 . $599
620 . . . . . .$699 630API . . . $1529
TELEVIDEO 950 .... . . • ... . $895
DUME 102G .... . ...... . .. $425
DAISYWRITER 48K .. ...... . $799
PRINCETON HX12 .... . . . .. $459
AMDEK 300G. . . . . . . . . . . . . $129
ALTOS F10-40C PS .$889 F1055 ... $1089
WYSE 50. . . . . . . . . . . . . . . . $485

PROMODEM 1200B . . . . $289
SMARTMODEM 1200 . $419
SMARTMODEM 1200B $479

May spring time be the beginning of a

THINKING

Briefly, we began by looking at language. We wanted to generate a program that would read a few sentences and answer questions about them. We have found that, in order to do this, we need to build expectations about the subject matter of the text. Those expectations come from many diverse sources of knowledge and are bundled together into packages. We then have to consider what kinds of packages there are and how we can organize and use them. What began as a study of language has turned into a study of knowledge and knowledge organization—in other words, a study of memory.

MEMORY

Where do predictions come from? How do we know what to expect next? We use relevant previous experiences to help us understand. Newborns can't comprehend restaurant stories, and people who have worked in restaurants can read more into seemingly insignificant events. We encode what we see in terms of what we have already experienced. That is why two people can see the same event and yet understand it very differently—they each bring different beliefs and expectations to bear. Our ability to understand a situation comes from our ability to compare it to relevant previous situations. The knowledge we gain from experience—episodic memory—is the same knowledge we use to understand—semantic memory.

How does this relate to our prediction packages? The first thing we noticed was that using packages might be an efficient way to remember episodes. Instead of having to store every event in an experience, a program could just save a pointer to the prototype (restaurant, for example) along with those parts of the experience that weren't part of the package (for example, the patron was John, the food was a sandwich, the tip was large). Memory need only register those parts of an episode that differentiate it from the prototype. Since packages contain what we expect in a situation, they are effectively prototypes: hence, they can serve to organize memory of events. Our packages now have another role to play: They should accomplish the functions of event memory as well as provide the expectations that aid in understanding.

If packages are to function as memory as well as processing structures, they have additional requirements. First and foremost, a memory system must be dynamic. The memory must be altered by its experiences. A memory system that fails to respond to new inputs and learn from its experiences is not very useful. A memory system that produces expectations must be able to respond to expectation failures by reorganizing itself to provide better expectations in the future. Second, a memory system must be able to find what it knows. This may not seem very hard, but it is. The task of memory is to take a given event and find related events. But what constitutes a "related" event, and how do we know where to look for one? These two goals—remembering and learning—drive our theorizing about the structure of memory. We need to understand how knowledge is structured and how it can change.

We also have a powerful technique with which to investigate the structure of human memory: reminding. Reminding is a ubiquitous phenomenon; people are constantly reminded of one thing by another. You can be reminded of an object, a person, or a situation. In the course of normal conversation, people are often reminded of previous events. During the mental processing of that conversation, some memory is activated to help understand the new input. The fact that one experience reminds us of another indicates that we are using the same structure to process one as to remember the other. By examining the process of reminding, we can explore the structure of memory.

Armed with our new conception of memory structures, let's return to our restaurant example. Suppose that when John received the bill, the waiter (continued)
GTX-100. Computer security so advanced, it could even foil Mata Hari.

If the World War I spy Mata Hari were around today, she'd probably be into computers. Maybe into yours.

Computer espionage is a growing threat these days. With just one phone call, a thief can tamper with data stored in your computer: confidential correspondence, meeting transcripts, employee records, and privileged client files.

Computer intruders can steal information like that. Or erase it. Or alter it to their advantage.

That's why your computer needs the protection of GTX-100. It's a new kind of security subsystem developed from Lockheed's years of experience with high technology and strict security.

GTX-100 puts an electronic wall around your sensitive files and prevents your computer from talking to strangers.

Send us the coupon for more information plus the name of your nearest dealer or distributor. He can demonstrate why GTX-100 won't yield your secrets to even the cleverest of computer spies.
Common sense is knowing about a lot of things and using what you know in a variety of situations.

had made an arithmetic error and charged him too much. John noticed this and complained. The waiter was apologetic and not only fixed the error but offered John a free dessert. John—or any dynamic memory system trying to understand what is happening—should record this deviation from the expected routine. If he were later to notice a similar error while buying auto parts, he might be reminded of his experience in the store. He might then expect compensation from the store to make up for the mistake. How can an experience in an auto-parts store remind you of an experience in a restaurant? There must be some memory structure that is used to understand both experiences. In addition, by storing information about expectation failure (and its results) in the shared structure, we automatically make an appropriate generalization.

What does this tell us about the organization of memory? Surely not all the expectations are the same across these events; John doesn’t expect to see a menu or be served a lobster dinner in the auto-parts store. But some expectations are indeed the same. He expects to find out what is available, to tell someone what he wants, to receive it, to get a bill for what he has ordered, and to pay the bill. Some major scenes happen in one event and not in the other; there is no equivalent to being directed to a table by a hostess in the auto-parts store. Also, the specifics added to the generalized scenes are different. For example, in an auto-parts store you find what you want by looking through fat catalogs of numbered parts sorted by model and year; in a restaurant, you look at the menu.

We can draw several conclusions about memory structures. Packages are nested, that is, packages have subpackages. In AI terminology, the packages are called MOPs (for memory organization packages), and the subpackages, scenes. Scenes are shared—most appear in many MOPs. Examples of scenes might be pay and order. It is important to note here that there is no “correct” list of packages. The packages that any dynamic memory system uses at any particular time depend on its own prior experiences. Furthermore, a MOP contains information about the specific details of its own scenes. These details are called colorations: for example, the restaurant MOP might color the pay scene by specifying the acceptable types of payment in a restaurant (cash, credit, dishwashing, etc.).

The ability to share scenes provides a mechanism for making useful generalizations. When there is an expectation failure and the source of the expectation is part of a shared structure, the failure and any new expectations based on that failure are stored in that structure. When a similar situation occurs, even in a different package, the previous failure comes to mind (is reminded) because it is stored in the shared scene. Then it can be used to help guide processing. A program using this system might learn to count its change in the auto-parts store after being shortchanged in the restaurant. Since both use the pay scene, this combination of failure-driven learning and shared memory structures is quite powerful. Expectation failure can also be used to build new MOPs from old ones by changing the colorations or the order of scenes (for example, in fast-food restaurants, you pay before you eat).

Many more kinds of memory and processing structures are used in our AI theories and programs than we can describe here, but the basic requirements of a useful memory organization should be clear. (For more information, see references 2 and 3.) What
MULTI-USER REQUEST:
THE DBMS THAT MAKES GREAT MINDS THINK ALIKE.

Now there's multi-user software to go with your multi-user hardware—including the new IBM PC/AT®.

Now there's reQuest.
reQuest is the database management system that can support just one PC, or an entire Local Area Network.

It gives your top managers the individual computing power to build high-performance applications. Plus the networking power to share their thoughts with your company's other great minds.

No executive is an island.
Think of the possibilities:
When everyone shares the same database, decision-making becomes more consistent, company-wide.
Sales can keep in touch with Production.
Property can compare notes with Finance.

Reports will be more accurate.
Strategies will be more cohesive.
And you'll finally realize the full potential of your executive PCs.
Proven, guaranteed performance.
reQuest has been proven in hundreds of major government and business applications.

It works with a wide variety of hardware, including IBM PC® and PC compatibles, Burroughs, A. B. Dick, NCR, Hewlett-Packard, and many others.

It has the capacity to download information from your mainframe, process it, and send it back. And the versatility to serve as the foundation for dozens of popular programs, including LOTUS 1-2-3®, Multiplan®, and WordStar®.

Yet, its menu-driven format is so easy that even the most computer-shy managers can quickly build and operate their own applications. And reQuest is backed by full money-back satisfaction guarantee.

Request reQuest, today.
Call or write now for a free brochure or our $9.95 sample diskette:
1-800-321-DBMS.

You'll see how much more your company can do when you connect with reQuest.

re(Quest®
POWER TO SHARE
System Automation Software, Inc.
8555 Sixteenth Street, Silver Spring, MD 20910
301-565-9400

Trademarks: All trademarks are registered.
IBM, PC, and PC/AT; International Business Machines, Corp.
WordStar, Micropro Corp. reQuest is a trademark of System Automation Corporation.

TOUGH LOCAL NETWORK PROBLEM:
"How can our department get our six computers and three
printers to work together efficiently? We also want to
be able to access outside data services and our
future company LAN."

SIMPLE $2995* SOLUTION: NetCommander
NetCommander is a smart, small Local
Area Network manager. It lets you link
from four to 40 computers and peripherals —
in any mix of models and makes. A 50K buffer
(expandable to 250K) makes sure that productivity
is high — keeping fewer printers humming — while
computer and PC users do their thing, without waiting
for a printer, modem, or shared disk. Those devices can be
specified with names defined by users — and allocated on the
basis of availability and capability. And NetCommander handles
multiple protocols and different baud rates simultaneously —
without modifications to hardware or software. It will also tie into your
company's LAN. The latest in a family of products in use since 1979.
NetCommander is a smart, small, efficient network manager.

For more information, call or write:

NetCommander
Digital Products Inc. • The Simple Network Solution Company
600 Pleasant Street • Watertown, MA • 02702
(617) 924-1680 • Outside Mass., call 1-800-243-2333
And check out our 30-day trial evaluation.

SuperSoft Programmer Utilities
When Performance Counts

Star-Edit and Disk-Edit

Star-Edit is the professional
programmer's text editor with an
outstanding list of commands tailored
to program development. It can greatly
simplify all your editing tasks—moving
and reproducing text or code, viewing
two files simultaneously through
separate windows, moving text or code
between different files, searching
forward or backward, and moving to the
beginning or end of any word, sentence,
paragraph, parentheses, or curly
brackets. Virtual memory makes Star-
Edit ideal for extremely large files; and
because it never uses over 128K, it is
well suited for multiple process and
windowing environments. (PC DOS,
MS-DOS, CP/M-86, CP/M-80, UNIX,
or XENIX): $250.00

Disk-Edit is the uniquely powerful disk
utility for programmers which gives you
access to every bit of information on
your disk. It lets you read disk data in
both HEX and ASCII, "text edit" any
information on your disk, restructure
disk information; and save lost or
scrambled data. Imagine scrolling
through your disk data, jumping
between HEX and ASCII windows, and
editing information anywhere on your
disk. For all floppy and hard disk
systems. (PC DOS, MS-DOS, CP/M-86,
CP/M-80, UNIX, or XENIX): $100

To order call: 800-762-6629
In Illinois call: 217-359-2112
or write to SuperSoft.

SuperSoft
1713 S. Neil St., P.O. Box 1628
Champaign, IL 61820
telelx:270365

THINKING

may not be clear is how important
memory and its organization are to
nearly all cognitive activity. Getting
just the right piece of knowledge at
the right moment from our huge and
constantly changing memory is not
only crucial for language under­
standing but crucial for exhibiting common
sense (which is really just knowing
about a lot of things and being able
to use what you know in a variety of
situations), for applying expert knowl­
dge, for writing interesting stories,
and for accomplishing a host of other
tasks. Being able to learn from expe­
rience and apply that knowledge in
relevant situations is an important
step toward actual intelligence.

WHAT IS AI?
The term "artificial intelligence" has
been much abused of late, and we
would like to try to clarify what we
mean by it. Programs that manifest
tories of knowledge do interesting,
sometimes even impressive feats. But
many programs that are not attempt­
ing to model cognition also do im­
pressive things. The public perception
of AI has focused on the artificial.
Computers are indeed doing things
we never imagined machines could
do. Computer scientists and engineers
are constantly expanding the useful­
ness and power of their machines.
That is important science and engi­
neering, but it is not AI. AI focuses on
intelligence—something that remains
mysterious and elusive. Most good AI
programs aren't terribly useful, and
many very useful, "smart" programs
aren't AI at all. If this distinction were
understood, we could avoid a lot of
confusion and disappointment.

So-called expert systems are a case
in point. These programs, more ac­
curately dubbed "rule-based," do not
attempt to reason the way a human
expert would. They often do very
useful tasks, and that's great, but they
are not model theories of intelligence.
A human expert is not someone who
is just following the rules. He has the
experience to know when he is seeing
an exceptional case, and he can recall
relevant past cases to help him figure

(continued)
Given enough time, an end result of the desired quality may be finally attained - (see natural examples). In business, however, the bottom line is directly proportionate to the quality of, and the time consumed by, the tools employed - (see digital examples).

CCT teams up with MACROTECH to bring these ultimate speed and power tools to the serious business/scientific market. State-of-the-art processors, with super high-speed/high-density memory boards, form the basis for CCT machines with bottom-line computing power PCs can't touch.

CCT Implements Tomorrow's Technology Today!
For further details, see our technical ad on page 449 of this issue, or contact our technical staff at (602) 282-6299. For system quotations and ordering only, call our sales building at (800) 222-8686.
**Call Toll Free**

1-800-528-1054

**YOUR WYSE CHOICES**

**IBM-COMPATIBLE PERSONAL COMPUTER**

**Dual Drive**
- 256K • MS DOS
- GW Basic

**Single Drive - 10 Megabyte**
- 256K • MS DOS
- GW Basic

Wy-500 Green Monitor • Wy-600 Color Monitor • Wyse 50 • Wyse 75

SAVE UP TO 30%

---

**VIDEO TERMINALS**

<table>
<thead>
<tr>
<th>ADDS</th>
<th>Call</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-2 Green</td>
<td>$469</td>
</tr>
<tr>
<td>A-3</td>
<td>$469</td>
</tr>
</tbody>
</table>

| Altos | $699 |

Qume	$599
OYV 102 Green	$519
OYV 102 Amber	$519
OYV 103 Green	$519
OYV 103 Amber	$519
OYV 104 Green	$519
OYV 105 Green	$519

Televisio	$1225
80C	$979
80D	$979
91C	$559
921	$449
922	$639
925	$639
926	$639
950	$599

W	$489
2-36	$565
2-46	Call

| Zen | $489 |
| Z-46 | $565 |

**MODEMS**

<table>
<thead>
<tr>
<th>Anchor Automation</th>
<th>Call</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anchor Express</td>
<td>$239</td>
</tr>
<tr>
<td>Mark X8</td>
<td>$239</td>
</tr>
<tr>
<td>Hayes</td>
<td>$239</td>
</tr>
<tr>
<td>Smartmodem 300 Baud</td>
<td>$239</td>
</tr>
<tr>
<td>Smartmodem 1200 Baud</td>
<td>$239</td>
</tr>
<tr>
<td>Smartmodem 1200 IBM</td>
<td>$239</td>
</tr>
<tr>
<td>Micromodem IIE (Apple)</td>
<td>$599</td>
</tr>
<tr>
<td>Novation SmartCat Plus</td>
<td>$599</td>
</tr>
</tbody>
</table>

| Prometheus All models | $599 |
| Racal-Vadio All models | Call |

**COMPUTERS**

<table>
<thead>
<tr>
<th>Altos</th>
<th>All Computer Models</th>
<th>Call</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEC</td>
<td>PC-801 Computer</td>
<td>$315</td>
</tr>
<tr>
<td>NEC</td>
<td>PC-820/45 Battery</td>
<td>$315</td>
</tr>
<tr>
<td>NEC</td>
<td>PC-820/30 Ram</td>
<td>$315</td>
</tr>
<tr>
<td>NEC</td>
<td>PC-821/24/21 CA Aca</td>
<td>$315</td>
</tr>
<tr>
<td>NEC</td>
<td>PC-821/24/21 CA Aca</td>
<td>$315</td>
</tr>
</tbody>
</table>

| Northstar | All Computer Models | Call |

Sanyo	MBC-775 Pk	Call
Sanyo	MBC-550 System	$549
Sanyo	MBC-552 System	$549
Sanyo	MBC-555 System	$549
Sanyo	MBC-850	$549
Sanyo	MBC-855	$549
Sanyo	MBC-860	$549
Sanyo	MBC-870	$549
Sanyo	MBC-875	$549
Sanyo	MBC-880	$549

**MONITORS**

Amdek All Monitors	Call	
Princeton Graphic	$479	
Sanyo	OPT-30	$599
Sanyo	OPT-35	$599
Sanyo	OPT-35	$599
Sanyo	OPT-70	$599
Taxan	121 Green	$5125
Taxan	121 Black	$5125
Taxan	420 RGB / Green	$5125
Zenith	ZV-622 Amber	$595
Zenith	ZV-621 Gray	$595
Zenith	ZV-623 Gray	$595
Zenith	ZV-633	$595
Zenith	ZV-633	$595

**DISK DRIVES**

Alpha Omega turbo 10	$739	
Iomega	Bernoulli 11 for IBM	$580
Rana	10 Megabyte	$580

---

**OTHER INFORMATION**

Other Information: 602-954-6109

2222 E. Indian School Rd.
Phoenix, Arizona 85016

**Store Hours**

Mon-Fri 10-5:30 Saturday 9-1

**Order Line Hours**

Mon-Fri 8:30-5:30 Saturday 9-1

Prices reflect 3% to 5% cash discount. Product shipped in factory cartons with manufacturer's warranty. Please add $8.00 per order for UPS shipping. Prices & availability subject to change without notice. Send cashier's check or money order... all other checks will delay shipping two weeks.
out what to do. AI theories of expert behavior must describe how an expert knows when something doesn't fit his general rules and what to do about it. AI theories need to account for how experts change and add to the rules they use, based on the success or failure of those rules.

Artificial intelligence is a much more basic science than is popularly believed. Many of our best AI ideas require a great deal of work before they can become useful applications. And when an AI idea is turned into a useful system, in some sense it isn't AI anymore. The construction of such a system requires all kinds of non-AI programming effort—to make the idea work in a real environment, on real computers, in some useful way. Such a system is made possible by the AI idea, but the program's merit comes from its functionality, not its heritage. The fact that a program is based on an AI idea is no way to judge its functionality.

Are there any applications of AI? We think so. If we are gaining insights into how people think, then our findings should help people think better. Perhaps AI's most important applications will not be the programs that we write but the newfound ability to understand how people think. As we find out more about how people read, understand, and create, we may be able to help them do those things better. Perhaps AI's most promising applications are in education—helping to teach people how to read, remember, and think based on a fundamental knowledge of those processes.

Let's consider the problem of teaching children—or adults—to read. In trying to write programs that can read, we have learned a great deal about the reading process. Perhaps we can transfer some of this into improved techniques for teaching reading. Of course, this is not always a straightforward task, but we believe it is possible. Expectations play a central role in understanding text. As children build up expectations about words and stories, they become better readers. Language ability is strongly tied to knowing the content of the material, so the books children read should relate to what they know. We may be able to write better reading textbooks by using expectation packages that children know about. We can write textbooks that encourage them to use their knowledge to fill in the details behind the text, to make inferences. Since AI has focused on language for most of its existence, it has a lot to contribute to reading education. But that's not all AI has to offer; its promise extends throughout education and beyond. AI should eventually provide insights into how to learn and remember better, how to improve explanatory faculties, and even how to extend creativity.

Artificial intelligence is part of the grand attempt to understand thinking. We believe it is making important contributions to that endeavor, and that is the goal of our science. The programs we write are experiments, not results. Our interest is intelligence, not artifact. As we make progress, our results may prepare the way for the automated companions that could become an indispensable part of everyday life. These will not be our real results, though. The real results will be a new kind of understanding of ourselves, an understanding that is ultimately much more valuable than any program.

REFERENCES
**FOR YOUR APPLE**

### COMPUTERS

<table>
<thead>
<tr>
<th>Model</th>
<th>LIST</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple Macintosh</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### OTHER HARDWARE

<table>
<thead>
<tr>
<th>Model</th>
<th>LIST</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple Macintosh</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### BUSINESS SOFTWARE

<table>
<thead>
<tr>
<th>Model</th>
<th>LIST</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple Macintosh</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### UTILITIES SOFTWARE

<table>
<thead>
<tr>
<th>Model</th>
<th>LIST</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple Macintosh</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### DISKETS

<table>
<thead>
<tr>
<th>Model</th>
<th>LIST</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple Macintosh</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### MODEMS

<table>
<thead>
<tr>
<th>Model</th>
<th>LIST</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple Macintosh</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### PRINTERS

<table>
<thead>
<tr>
<th>Model</th>
<th>LIST</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple Macintosh</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### PRINTER INTERFACES & BUFFERS

<table>
<thead>
<tr>
<th>Model</th>
<th>LIST</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple Macintosh</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### CABLES

<table>
<thead>
<tr>
<th>Model</th>
<th>LIST</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple Macintosh</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### ACCESSORIES

<table>
<thead>
<tr>
<th>Model</th>
<th>LIST</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple Macintosh</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
<> 198• bi Conray-LaPotnte. Inc;

( ORDER NOW (800) 547-1289 )

FOR YOUR I~i-r~-PC, XT, AT or JR
UST COWIWY
PRICE
PRICE

_ __;S:o...Y=-S=T
-=-=
EM"-='S= ----- AS~Si)(Pak Plus, 64K

360K.
- Ca// for Details -

900ay

_-=

limited Warranty

Advanlage••, Mullil. Bd for AT
llO Plus II. SIPICC
llO Plusll , SIPICC'/G
110 Plusll. 2SIPICC'/G
MonoGrapltP~o·• PICC (fOll.otus)
PCNel, Starter Kit. PC002
PCNel, Cirruit Board. PC001
Combo~IO f'luOJcts IN STOCK
Mega~us Prtxl!cls IN STOCK
COMX, NEW
Eccrio RAM Plus••. 364K to 1.5 meg.

SM

-

---

--

e

By Us

9

$24 5

SiKPakPlus, 256K, S/PfCC+S/W
SixPakPlus. 384K, SIPICC+SIW
Game Port for SixPak
Preview'• Graph ics~ w/para 64K

256K ~:B~~~ - PC

Disk Drives
by CDC

board, SfPICC/G, Fas1tak 1• & Spoo!ei
EconoRAM'•. lull 364K bocrd
CALL CURTIS, UNI-I, MOflilorlill/swivel base
3·91001 ~ EXlensionCable
HAUPPAGE(HCW), 808/Ch~
8087 Math Pak(Chip & Soflw)
8087 Software Pak
CAl.1.
8087 Maao Pak

SANYO 555-2.

256K, 2 320K Disk Drives

~ll.1Ilf
,.,,,.......Z150,
256K, 2 320K Disk Drives.
MS OOS 2.1. 8088 Chip, 2 SIP

- ---,,_HARD,,...,.==-=0"'1"'s"'K
=s,--- - - ~~~t~~~J:'C: w,Pd".
Mooo Graphics Card

Ki~ "" """""~ 10 wOtf< ""h DOS 2.012.1. ~:~~~~:~N Ext: Po"';. Si.WY
~1alL
Hard OisSc Conl~l~T Cini arwJ
PC Savl!f''• U~Cord:f;:~
KAMERMAN, Extemal l O~kit
51295 cog:~ KEYTRONIC, KB5151,Std. ko,l><ml

Megaf~IOO,ltll!milllO~ ~t

M:~::"C\:~em'7i~':i"J?{~~)

QUADRAM. OwcfdisJcs Int. w/controller.
Ful Une

RANA, Exl!mi11 10~wl""1110ller

=

SB95

9S

KO~~~·s:ik=•em
Koala Pad'•w/PC Oesign
Pn:grarmiet's Guide

51495 $109 S MAYNARD, SANO STAR SERIES
$ 995 $ 79S
~=~~';'; ~:~

'!l

~;t~;d~~KOC"'IJIS 3 modules

CDC, Limiled 30 day w.rr.vity: tall fer QUafllity pOOes.

Full Height
Half Height,

HardOisk l/F MOOJle

$149
$129
$ 300 1185
$310
195
$ 265
205
$ 16
12

S69>
$ 895

~:

$ 595
$ 215
S 265
$
315
$ 495

SI090

s &15

~;~~~nC~b~ule
Para or Clod< Cal. Moduo. ea.
G.,...AdaplerMo<iJle
MerooryModuo,OK
Memory Mo<ilo256K
10megHardDisl< Kit&ContC:.d

MICRDSOF'I; Mowo !or PC

~::~: ~K

395
46S MOUSE SYSTEMS. PC Mouse & Paint
~ PARADISE, -Gr.Voit>~
445
Pnlel or 5'ria/ f91 . .._
150 PERSYST, MEW
185 PC/Mono Board, WIPd" pal
PCIColcdir.11:IE<Bd.wlfi111t J>01&ll f
215
375
808 Soad'" Colo' AdapltS, ~ ,,.
PLANTRONICS.
790
36S
Cokr 04 & Colo<tna;c. 16- wll'n
CALL o~:~~ts11•n. 16 cdor wl f>a-a

2

CAU

$39 5
S 595

32S

~ ~

~g

LIST CONROY
PRICE
PlllCE
s 195 139
s 395 27S
s 625 450
s 295 189
s 395 28S
s 95
6S
$250

$ 244

s 5.95

S 395
S 295
S 675

OuadbO..d II, 64K. to 256K. 2SICC

:
$ 395

26S

m
m

n~

Quad512+256Kwl5"ialpol1

$245
S 45
S 245

195
29
169
329
295

Upgrade Ouadcolor I lo II kif
Quad,ue. board. Mooo, SIP/CC
Ouadchrome Mooilor. 12" RGB Color
OUJJcl\rome II Monilor, 14" RGB Color

$ 345
S 795
S 650

S
19
1S9

Ambercl1"J1tte Mooitor. 12" ArrtJer
Ouad 3278
Ouacite!VI

$$125DI~
.,

r0165S0

S2295

54S

S 499
S 395

rs

l ~
5 255
S 209
1

S 200
S l50 $
S l5

~

1:

S 495

S 265
4
S 99
S 30

i~

S 49
S 122
l 1:

~:~~:,:~~~.w;:~port

63
~:.i~:lx
139 TG PRODUCTS, JoySlick
8 9 TITAN, Accelo·a1orPC(BOB6+ 12BK)
14 WJCO, Smarlboard Ke)tioard

1~~

39S
20S

**

S 275

S 45
$ 995
S 400

FOR YOUR PC.JR

KEYTRONIC, KB5151 Jr. ~
KOAL.A, Touc!t To!jel for Jr.
~~ MOUSE SYSTEMS. M..... l0<Jr.
43 Ml~?~~ 123K BoosterwlMouse

199
269
49S
4S0

* ~~

*

ComX
EconoRAM Plus'" ~

m
29
7S0
279

$395

384K Multifunction RAM Board

exp:~dj'~~~5~o~J:,.~Jt11byte
~i1y for LI' lo 1.5<re;l, \WOpo1.
Faslrak'" RAM Disk and Spooler Softw.fll.

I
**

EconoRAM™ 384K

LIST CONROY
PRICE
rl!ICE
S 255
19S
$ 125
7S
S 195
12S

l :~
3 ~~ OUADRAM,Ou>:lm!nl~l128K· 512K. PICC) $ 275
$11SO TE=R~~
i:

PRICES ARE
DROPPING,
SO CALL!

9 Each, 4164 chips
90DayWarrantybyus

420

~:

~:

3~

$18 ...
4256 chip, 150 ns

*CHIP
64K *
KIT
m $29

i:
ssso

~~~

150ns

24S
225
395

149

~::~~d1's~6!;, !'a~~t

$149
9 Each, 4256 chips

19S
176
46S

~

2

CHIP KIT

$ 559 $ 39S
S 559 $ 39S

Ouadloard6'1K. JoJIMK. SIPICCIG
Ouadboard. no RAM, expar<I to 3B4K
Ouadboard 256K, lo 3B4K, SIP/CC

~::::~·.~~~\~~~;~~6K

*256K*

1
1
I

s 115

s 100

~ S~KeyTableswlsoflware

CALL

~lemal I 0 meg W/<OlllOiler
FLOPPY DISK DRIVES

MAYNARD, Coouol!rGan!wlpar;apcn
Coouol!rc..lwl-lpal
s.r.i.ta- Com c..l (""!'IS 3 rt"'1JleS)
PERFECTDATA, HeadClmngKl1

OTIIER HARDWARE

OTHER HARDWARE

COMPUTER

Single Function Board

m

21S

~g

$325

~-·· and Spoolir.
FU!y f.ar!Ja1tie, 1 Vs Lm!ed war.tey.
Wor1<sonOOS 1.1, 2.0or2.1
Plices irid availability subject to change. Call.

SOFTWARE FOR YOUR IBM-PC, XT, AT or JR
BUSINESS

BUSINESS

BUSINESS

UTILITIES

C~WROY

LIST CONMY
LIST CONROY
PRICE
PRICE
PRICE
rtltCE
LIVING VIDEOTEXl Think Tn
s 195 10S SOFTWARE PUBL., PfS:""'*'
S 125 $ 79
LOTUS, 1·2-3
s 495 309 PfS: Fi~
140 189
Symphony
s 695 ~ 46S PfS:Wlile
S 140
89
MDBS, Knowla!geman
S 140
89
s 500 300 PfS:GraplJ
MECA, Managing Ycu Money
s 195
~~:~:!or
PFS:Acces.s.
each
.
~
1;g
:~
50 MICROPRO , WonlStar•• (PC)
s 350
495
WordStar'" (Jr)
s 195 11 S SORCt M,~111
5 395
24S
375
WordS!ar 2000
s 495
~~~~~:~~·= ~! ~'"
g:~
50
WordStar 2000 Plus
s 595
CDEX, Training Programs-Large nventory S 70
45
WordStar Prolessiooal Plus
s 399 $ 199
s 695 39S ""1«tConi>o(Writ" & Spet"')(PC)
CONTINENTAL. Ullral ~e (PC)
S 195
12S
WOldS!ar Prolessional, 4 Pak
s 495 26S Pe1«t Cono> (Jr)(WlilelS!)el!Thesaus S 139 $ 89
S4 VISICORP, Voieale~
S 250
1S9
TaxAdvanlage(PCorJr)
$ 70
45 MailMefl]e. SpellStaror Slcv1ndex, ea.
s 99
FCM (Filing, Catal()'Jing. Mai1ing)(PC)
S 125
75 ProOptions Pak (MM/SS/SI)
s 195
WARNER, Des1<!lrvnzor JPCorJrl
S 195
125
Plope'1y Managemen1 (PC)
S 495
295
lnloS!ar Plus(+ S1aotxts1)
s 595
n
UTILITIES
DOW JONES, lnves11re1I Evaluator
S 139
99
COITeciStar
$ 145
Maokel Maroger Plus
S 300
159 MICRO RIM, RBase Solies 4000
s 495 269
9S BORLAND,Sidelock(PCorJr)
S S> $ 35
Ma1ketAnalyzer
S 350
219 E.xteOOed P.eport Writer
s 150
$ 65 $ SS
Maiket Microscope
S 350
219 ABase Clout
s 195 12S Sodekick(Cqiiallje)IPC0< .Jr)
S 55
3~
Sp<ead Sheet
S 249
1S9 MICROSOFl SpeH
s 50 32 ~::'boxf'ascillPC) IPC or Jr)
FOX&GELLER, dUtil (OOS orCPIMB6) S 99
6S
Mulliplan (PC or Jr)
s 195 n~ CENTRAL POIN~ CoJ>y JI PC
30
ou·ickcode or dGraph, each
S 295
165 Char1 or Project each
s 250 23S COMX. , • .,........ RAM/Disk mualor & ~ ~SJ>Ol)ler. For
HARVARD, Tolo Project Mar~ger
S 495
31S
WO<d
s 375
Harvard Project Manager
s 395
239
Word with MollSe
$475
289 any PCIOOS or RAM Cartl.M<ru llri"'1
S 100
S9
110 DIGITALRES,CPIM·B6'" (PC/XT)
s BO
39
HAYDEN, P~Writer
S 200
125 MONOGRAM, ()oj"'5&$ensewl"""""t $ 180
$ 200
13S
Pie Speller
$ 50
30 MULTIMATE, Multimate Ver. 4.0
s 495 29S CBASJCB6'" (CPI M·B6)
420
CBASICColr!JilO'(CPIM·B6.or PCDOS. ea) S 600
395
HOWARDSOFT, Tax Preparer lor'B4
S 295
19S OPEN SYS, GL ,AR .AP,PR,INV0< PO.ea. s 695
17S
Corrurenl CPIM·B6" wlwindowi
S 835
22S
Real Esta1e Analyzer
S 250
170 PEACHTREE, Back to Ba:ks G..
$ 295
Pl.i l iPCDDS)
S750 $495
HUMAN EDGE, Mind Prober (PC or .J)
$ 50
32
Peach Pak
s 395 225
Sj!ttd Prog. Pl<g. (CPIM·B6)
S 200 $ 13S
ColTJl'lunications Edge (PC)
$ 195
119
Peach Text 5000
s 395 225
295
DR
LOGD·B6
(CPIM·86)
S
100
$
69
Sales Edge
S 250
159 QUADRAM, Tax Sllategy
s 395
CALL
Ma11a~t Edge
S 250
159 Investment Strategy
s 395 29S EPY>Ot Stoel<
12 FUNK SOFTWARE, Sidewal'
S 60
40
Neqotiatton EdrJe
S 295 $ 185 QUE, Using 1-2-3
s 15
12 HAYES,Sm:J"comll (OataComm.J
S 149
99
IUS, EasyWriterl\ System
$ 350 $ 250
1-2·3for8usiness
s 15
1S LIFEBOAT, LatliceC
$ 500
295
fa<ySp0lerll
S BS
12S
Usir>;jSyrriro.y
s 20 1BS
MICROSTUF, ~lXVl(PCorJr )
s 195 129
GL, AR. AP. OE or !NV. each
S 595
37S SAMNA, Word Pico
s 295 235 MICROSOFl
M"'o"""1fu
S 100 $ 69
KENSJNGTON,Easy Link Mail Manager
S 95
S9 SATELLITE, WOldl'lirlect (PC)
$ 495
LlFETREE, Volkswriter Deluxe
S 395
159 WordPerfecl(Jr)
49
BASIC Corc>0r
.
S 395 1259
s 69
Volkswnler
S 195
10S SOFTWARTS, TK Sol,er(specil DOS)
S 600
~
s 399 269 =:ASIC Gat<'0r
SOFTWARE INrL, Open A=
s 695 395 COBOL Corc>0r
:
459
FORTRAN Corc>"'
S :)'.;()
229
PASCALC<I>....
S :llJ
199
LIST
PR ICE
APPLIED SOFTWARE, VosaF011n
S 389
ASHTON-TATE, FraittewOtf<
$695
dBase Ill
S 695
dBase ~ l<eo. PC·DOS & 12BKJ
S 495
dBase II to Ill l.IJl}1!de
$ 200
All, Training Pr<YJ1ams-Large lnven!Oly
$ 75
BPI, Job Cost Accountir>;j
S 795
Gerl'I Acclg, AR, AP or PR. each
S 595
BRODERBUND, B<Mlk St Wnter(PC or ..i) S BO

PRICE
249
34S
360
289
119

s

m
m
m

NORTON, Utilities( l 4~)MewVri:ll

s

WESTERN UllON, Easy LoUW Mn,T

S 95

OPEN SYSTEMS. BASIC lntirprtt"
ROSESOF1; Proi<ey

f

JJM'"

! 3
S

I
I

i

as

6S

-~~~~-=----~----!

m

0 1

I

LIST COHOl
PfllCE
l'lllCl
69
100
$ 195
130
S 130
79

S 99

MOUSE SYSTEMS. PC ll!inl

I

HOME&EDUCATIONAL

ARMONK, E>cecuti,..Sli<t
BPI, Flnorol ActO<Jnlir>;j
CONTINENTAL. HOl'TteAa:otrllanl(Jr)

S 40
S 99
S 75

D~~~~~:~:"'~

rn~

i

21
63
S9

~

KOAL.A, Grajlllics Exhib<IO< (Jr)
s 40
25
MONOGRAM,Oollars&s.r..w1fcncas1 S 165
110
SCARBOROUGH, Mast«Type(PCor.Jr) S 50 $ 32
Your-NetWOl'1h
S 100 $ 63
SIMON & SCHUSTER, T)lli;g Tulor!N
S 50 $ 33
PLUS: BPI, CSS, COMPREHENSIVE, DAVIDSON,

HARCOURl PBL CORP.

RECREATIONAL
= ==:=:C':==:=-:.:,:=.:....:::..::;:_....,,-=.,,I

BLUECHIP, Miniat;Jin!, Barron. T)<OOn. <a.
BRODERBUNO, Urve l""entory h Stoel<
ELECT1lONICART5,~ .......,,,1'15m
HAYOEN, S:woon lllJChess)
INFOCOM, Lage lnvtntory In Stoel<
MICROSOF'I; f19tt Simu~tor jPC or Jr)
ORIGIN, Ultima Ill (PC or Jr)
PROFESSIONAL. Tri..;al'e-,..( PCorJr)
SPECTRUM HOLOBYTE, Gato
SPINNAKER. rs O.,ice Amalo1
-.--.a..gor.,~
SUB LOGIC, lfr/tl M"""1"""'

.

S 60 $ 39
CALL
CALL
S 50 $ 34
CALL
s 50
33
S 60
39
s 40
25
S 40
2S

I

S 40 $ 2S
S 40 $ 27

~

we

OUR REFERENCES:

ll"'8 l>eerj In compU!eis an<I oj"""'nlcs tllnce
1958. a computer dealer tinCe 1978 and in com..
pule<cma!l ~•Ince 1980. 8enli81 111 ln10Btlle
BanN. (500! 6'4S·4678. we btio!lll to 111e Cltamber
01 eom~e ' (503) ~a-tM 11 . ~ Direct Marl<et·
log!Ao...Clatlon, or call Oun~ and Bro~~ ~ )'Q<I
""'a ~bor. Recfplenlof 1984 ORl:,GQN BUSINESS M.6,~NEAWARD.

CALL

(800> s41-1289

ln~; ~~Jai,Si:,51

QUESTIONS

NO SALES TAX

I

I r=:
F

.

(=~s~7

ORDER DESK HOURS

1503) 621> ·9878

-frl-6AM UrMPST
.....,_IOAM •~ PUST

WE!KCIAY$0NLY

lfiAM l'.e'e 15 9AM in Ni:wY'°"'I

"')Oll<>do'


To safeguard your computer against mysterious errors and costly servicing, not just any surge and noise suppressor will do. *Serious computer problems demand serious computer protection... DATAGARD®* by SL WABER.

For more information about DATAGARD and our complete line of Computer Accessories, call or write today.

**SL WABER**
A Division of SL Industries, Inc.

Computer Accessories Group
300 Harvard Avenue
Westville, NJ 08093
Toll-free (800) 257-8384
In NJ (609) 456-5400

*Nobody does it better. Nobody can.*
FOR THE LAST FIVE YEARS, we have been studying how students learn mathematical, logical, and programming skills. We have reached the point where we can develop computer-based tutors for such domains. This article discusses our work on a LISP tutor. LISP is one of the main programming languages of artificial intelligence (AI) and has gained importance with the rising prominence of AI.

Universities like ours, Carnegie-Mellon University (CMU), are seeing a rapidly increasing demand for courses in LISP. Many students here learn it as their first programming language. But LISP is quite difficult because of its symbolic nature and its use of recursion and because of the need to learn abstract AI programming techniques. We see a remarkable range of mastery from courses designed to teach LISP. Some students find that a single course serves as their entry into the world of AI; others leave feeling they have learned nothing.

Studies of students learning such cognitive skills have revealed that private tutoring appears to be much more effective than conventional classroom instruction. Classroom learning involves listening to lectures, reading texts, and working alone on homework problems. Private tutoring provides the student with an experienced person to guide his reading and problem solving. In a comparison involving LISP, we found that students with private human tutors needed only 11 hours to learn as much as classroom students learned in 43 hours. In both situations most of the time was spent actually trying to write LISP programs rather than reading or reviewing the instruction. The major role of the tutor is to make the problem-solving episodes more effective learning experiences.

Educational psychologists have observed that private tutoring is an advantage with many different types of material. One study (see reference 1) compared students who spent the same amount of time learning—some with private tutors and some in the classroom—for two different subjects, probability and cartography. Ninety-eight percent of the tutored students did better on performance tests than the average classroom student did. Interestingly, the major benefit occurred with the poorer students. There was relatively little advantage of private tutoring for the best students.

Our goal has been to develop a computer-based tutor that is as effective in teaching LISP as a human tutor. GREATERP (Goal-Restricted Environment for Tutoring and Educational Research on Programming) is an attempt to combine artificial-intelligence technology and a psychological theory of skill acquisition into an effective teaching device. This tutor is itself a large LISP program that runs under Franz LISP on VAXes. We have already begun field testing this tutor in CMU classrooms and have seen it lead college students to faster, more effective learning of LISP programming. In this article, we discuss how the tutor works, why it is effective, and the prospects for moving a version of it to personal computers.

GREATERP is only one of the tutors
that we have developed at Carnegie-Mellon. The Advanced Computer Tutoring Project at CMU currently has tutors under development for high-school algebra and geometry, and we have plans to create tutors for calculus and other programming languages such as Pascal and Prolog. The LISP tutor provides an example of our approach in bringing AI techniques into educational-software development.

INTELLIGENT TUTORING

These tutoring projects are examples of a particularly promising approach to educational software called intelligent tutoring (see reference 2). Such systems differ from other AI approaches to education by their attempt to provide effective instruction in problem solving the way a human tutor does.

There are a number of components typically found in an intelligent tutoring system. First, there is a domain expert, which can actually solve the problems. (GREATERP contains a system that can write LISP functions from problem specifications.) Second, there is a bug catalog, which contains all the possible deviations a particular student can make from the ideal expert behavior. Third, there is a tutoring module, which constitutes an expert system for instruction. It is based on three sets of principles: one for determining from a student's behavior what he knows and what confusions or bugs he has, another for deciding when to interrupt him in the problem-solving process and what to say, and a third to figure out what problems a student should do and when he should advance to new material. Typically, these decisions are based on an internal model that the tutor keeps of the student’s knowledge and difficulties so far, enabling it to tailor its instruction to each individual student.

Finally, the tutoring system must contain an interface for communicating with the student. Its construction requires human-engineering decisions concerning how to present information understandably, how to query the student, how the student should enter answers, and what information should be maintained on the screen.

Until recently, intelligent tutoring was a topic for advanced research but didn't seem to offer a viable method for delivering educational software. This situation has changed for two reasons. First, an increasing expertise in cognitive psychology and artificial intelligence allows us to build such tutors much more efficiently and rapidly. For example, we can develop lesson material on our LISP tutor at a faster rate than that estimated for conventional educational software (200 hours per hour of instruction). Second, while an intelligent tutor requires a larger, faster computer, hardware costs are dropping to where it is becoming cost-effective to purchase the equipment required.

DESIGN OF THE LISP TUTOR

The goal underlying our design of the LISP tutor is simple: A student should be able to work on a problem in a "friendly" environment, as if he were using a smart, structured editor. However, whenever he makes a planning or coding error or asks for help, the tutor should provide helpful information that guides the student back to a correct path to the solution. In addition, we wanted our tutoring environment to represent the conceptual structure of programming problems better than a simple screen editor.

In order to monitor a student's progress and discover and instruct about errors, the tutor must be able to solve the problems the student is working on. Therefore, the first component in the LISP tutor is the ideal model, a simulation of the programming knowledge ideal students use in solving problems. This ideal model is based on a detailed theory of how students learn to program (see reference 3).

We used GRAPEs (Goal-Restricted Production System, see reference 4) to represent the rules programmers have for solving problems. Each problem-solving rule is represented in the system as a production rule. Each production rule contains an IF part, which is a set of conditions used to determine if the rule applies, and a THEN part, which specifies what to do in that situation. The following are English versions of two of the hundreds of GRAPEs production rules known by the tutor:

IF the goal is to combine LIST1 and LIST2 into a single list
THEN use the function APPEND and set as subgoals to code LIST1 and LIST2

IF the goal is to check that a recursive call to a function will terminate and the recursive call is in the context of a MAP function
THEN set as a subgoal to establish that the list provided to the MAP function will always become NIL after some number of recursive calls

The first is a straightforward production rule about the use of the LISP function APPEND to make one list from two other lists. The second is a rather esoteric production rule that an advanced programmer might have. When the ideal model codes a LISP function, it applies many production rules like these to plan and then write the code. It also contains a large set of buggy rules that represent misconceptions novice programmers often develop during learning.

The ideal model represents the knowledge we want the student to acquire. But the tutor must also represent what he currently knows or does not know and his approach to each particular problem. The tutor follows the student as he types in his code, symbol by symbol, and tries to figure out what correct or buggy production rule would have led to that input. If the rule found is a correct one, then the tutor stays silent and waits for further input. If, on the other hand, the input is in error, the tutor interrupts with advice. Thus, as long as the student follows a path leading to a correct solution, the tutor stays in the background.

(continued)
Put your blue box out to pasture.

Genesis Has Better Choices for Superior 8086 Designs.

Genesis development tools turn your IBM PC or compatible computer into the most flexible, comprehensive development system made for 8086-family designs. Genesis offers the widest choice of proven languages, superior debugging tools, and even in-circuit emulators. It all starts with ACCESS, the superior Genesis operating environment that allows Intel's 8086 development software to run under MS-DOS. And not only do we sell ACCESS and all the Intel languages for 8086 and 80186 designs - we also offer an ACCESS system for 8-bit designs as well.

Genesis Is Faster.

You get performance as well as flexibility with Genesis. For example, in our tests the ASM 86 assembler running under ACCESS on an IBM PC AT runs 4.7 times as fast as the assembler on a hard-disk based Series III floppy-disk based Intel system. The ASM 86 assembler we tested under ACCESS even ran 1.53 times faster than a VAX 11/782 running competing cross-software.

Genesis Is Easier to Use.

Of course, Genesis offers more than speed of execution. The GeneScope family of symbolic debuggers and in-circuit emulators share the most powerful and easiest to use human interface available today. GeneScope offers high-level macro facilities, an on-line symbolic assembler, alphanumeric and graphic support, and many more features that make Genesis tools a better solution than other systems.

Genesis Costs Less.

With Genesis you get all the flexibility of a personal computer and all the power of expensive dedicated development systems. You can get your products to market faster, at a fraction of the cost.

Is there really any reason to keep using obsolete, expensive equipment — when you can have Genesis instead? Quit chewing your cud — give us a call and find out how Genesis tools can make your life easier.

Genesis Has a Better Solution.

Genesis Microsystems Corporation 196 Castro Street Mountain View, California 94041 Phone: (415) 964-9001 Telex: 4998093 GENMS Ul Inquiry 165
The LISP tutor works through the algorithm step by step.

The LISP tutor is designed to provide as much guidance as necessary. When it finds that the student is having difficulty coding a problem, it takes him from "coding mode" into "planning mode"; that is, the tutor works through the algorithm with the student, step by step, using an example. After the algorithm is constructed, the student can return to coding, presumably with a better idea of what he should do to get his code to work properly.

We have designed this tutor with a strong commitment to immediate feedback. As soon as the student makes a mistake, the tutor responds with an appropriate diagnostic message. Because a student can write his code a small piece at a time, the feedback appears as soon as one item is wrong. By contrast, in the standard learning situation a student only receives feedback after he codes the entire function—or set of functions—and tries to run it. There is considerable psychological evidence that humans learn better with immediate feedback.

The tutor also provides guidance by hinting toward the correct solution if the student is having difficulty. These hints take the form of queries and reminders about current goals. If necessary, the tutor can provide the next small piece of code so that the student can continue. This is done at the student's request or after he has made more than the maximum number of allowed errors—usually two—for that portion of code. The goal here is for the student to do as much of the work as possible. Students learn much more effectively by doing than by watching. By providing the next portion of code, the tutor enables the student to work through the rest of the problem in cases where he might otherwise have given up. As a consequence, he can tackle more and more difficult problems.

A major design feature of the tutoring interface provides the student with a structured editor through which to enter code. This editor automatically balances parentheses and provides placeholders for the arguments of each function. For example, to write a function definition in LISP, you must use the function defun followed by the function name, a parameter list, and the function body. To begin, the student types a left parenthesis and the word defun. As soon as he types the space following that word, the tutor redisplays the code as

```
(defun <NAME> <PARAMETERS> <PROCESS>)
```

The symbols in angle brackets indicate arguments that must be coded. The tutor places the cursor underneath <NAME> and highlights it to indicate that the function name must be coded next.

This structured editor relieves students of the burden of balancing parentheses and checking syntax. It enables them to focus on the more conceptually difficult aspects of LISP. Our results show that this leads to faster learning of these major techniques and skills—with no deficit in syntax knowledge. Students removed from the tutor perform as well as or better on all aspects of coding, including algorithm design, memory for LISP functions, and syntax, than those conventionally taught.

The editor also facilitates communication between the student and the tutor. Our studies of interfaces have shown that in the normal question-and-answer format of most educational software, the tutor and the student can easily get "out of sync" on complex problems, where the student is not sure what part of the problem the tutor is talking about. In the LISP tutor, the student types directly into the code, replacing one of the placeholders, and thus it is always clear what part of the problem is being coded. Furthermore, these symbols help to communicate the conceptual structure of the programming problem. For example, when the student types the iterative construct prog, the tutor provides the template for iteration:

```
(prog <LOCAL VARIABLES> <INITIALIZATIONS> <BODY> <REPEAT>)
```

This template helps to structure the problem into a list of local variables, initializations of those variables, code for the program body (i.e., the repeated actions), and a return to the start of the loop. In many cases a symbol is expanded into more detailed symbols: for example, the <BODY> is coded as two portions: a <TERMINATING CASE> and the <UPDATING CODE>.

When an error arises or the student requests assistance, the tutor constructs an English explanation based on templates associated with each production rule. These explanation templates allow the tutor to describe an error or provide a hint by using a general rule and making reference to the specific problem being coded. However, writing programs to understand natural language is an enormously difficult and expensive task. In fact, students' descriptions of their algorithms are often hard for even human tutors to understand. Therefore, when the student is working with the tutor to design an algorithm, rather than having him type in English responses to the tutor's questions, we provide a menu of choices for his responses. This menu is constructed from the English descriptions of the correct and buggy production rules under consideration.

**LEARNING LISP WITH THE TUTOR**

Currently the LISP tutor contains approximately 325 production rules about planning and writing LISP programs and 475 buggy versions of those rules. It is effective in diagnosing and responding to between 45 and 80 percent of the student's errors, depending on the complexity of the
Move over, Crosstalk® . . .

The NightOwl’s in town and he’s packing a 16-bit MEX!

Last year, the NightOwl delivered MEX, the Modem EXecutive that tamed the 8-bit communications frontier.

This year, he’s doubled his byte with MEX-PC — the supercharged 16-bit communications package for the IBM-PC — and he’s looking to take on the big boys, feature for feature.

$59.95 plus $5 for shipping and handling
(includes MEX-PC software and complete manual)

Supports all popular modems • Programmable for unattended operation • Extensive HELP overlay • Auto-dial and redial • Alternate long distance dialing (ALD) • “List” dialing with automatic baud switching • Instant defining of IBM-PC function keys • Fast creation of custom “smart” phone directories • All popular protocols — extended Christensen XMODEM (Checksum and CRC) ComputeServe, ASCII (X-on, X-off) odd-even-none bit parity • A CLONE routine for unlimited creation of customized versions • Full access to your own operating system and software while logged onto a host system • Delay-adjustable Break key • DOS-compatible commands • Supports all monitors, port switching, named directories, on-line printing • IBM-PC-XT-AT — all DOS levels • 110 to 19,200 baud on most equipment • Source code for any overlay available

“Individually, each of these features enhances the experience of telecomputing, but together they add up to enormous power and flexibility . . . one of the most innovative and sophisticated communications packages available . . . MEX has been greeted with universal acclaim.”

That’s how Link-Up magazine described the 8080 version of MEX last September. Now, there’s MEX-PC!

You’ve struggled with over-priced, so-called smart terminal software long enough.

Now, experience the genius, the economy, the power! of MEX-PC.

Give us a call at 1-800-NITEOWL
(in Wisconsin, call 414-563-4013)

Crosstalk XVI is a trademark of Microstuf, Inc., Atlanta, GA
MEX-PC is a trademark of NightOwl Software, Inc., Rt. 1, Box 7, Fort Atkinson, WI 53538

Inquiry 284
Each lesson takes from one to four hours to complete.

Lesson and the amount of testing we have conducted. The curriculum we have designed is shown in Table I. The system successfully tutors students through problems on lessons 1 to 10, each lesson taking from one to four hours to complete. Each topic involves a small instructional booklet and many problems practicing the skills taught in that lesson. Our goal in designing these booklets was to keep the written instruction to a minimum. There is considerable evidence that written technical instruction is most effective when it is brief (see Reference 5).

Most of the time in any lesson is spent going through problems. Listings 1 and 2 illustrate sample dialogues in which the tutor monitors the student's progress through simple problems. This does not present the tutor as it really appears. Instead, it shows essentially teletypewriter versions of the student-tutor dialogue. The actual interaction involves the use of several display windows: a code window in which the student types the code, a tutoring window in which tutoring feedback is displayed, and a goals window in which reminders are presented.

In the teletypewriter versions the tutor's output is given in normal type characters, while the student's input is shown in bold characters. These listings present "snapshots" of the interaction: each time the student provokes a response, we have listed his input along with the tutor's response (numbered for convenience). The total code as it appears on the screen is shown, although the student has added only what is different from the previous code (shown in boldface type). For example, in line 2 of listing 1 he has typed \texttt{(lessp (difference \langle NUM4\rangle \langle NUM2\rangle))} as an extension of the code in line 1.

It is important to note several things...
How many long unproductive hours have you spent “in line” for your simulation? Well, no more. MICROCAP and MICROLOGIC can put you on line by turning your PC into a productive and cost-effective engineering workstation.

Both of these sophisticated engineering tools provide you with quick and efficient solutions to your simulation problems. And here’s how.

MICROCAP: Your Analog Solution

MICROCAP is an interactive analog circuit drawing and simulation system. It allows you to sketch a circuit diagram right on the CRT screen, then run an AC, DC, or Transient analysis. While providing you with libraries for defined models of bipolar and MOS devices, Opamps, transformers, diodes, and much more, MICROCAP also includes features not even found in SPICE.

MICROCAP II lets you be even more productive. As an advanced version, it employs sparse matrix techniques for faster simulation speed and larger networks. In addition, you get even more advanced device models, worst case capabilities, temperature stepping, Fourier analysis, and macro capability.

MICROLOGIC: Your Digital Solution

MICROLOGIC provides you with a similar interactive drawing and analysis environment for digital work. Using standard PC hardware, you can create logic diagrams of up to 9 pages with each containing up to 200 gates. The system automatically creates the netlist required for a timing simulation and will handle networks of up to 1800 gates. It provides you with libraries for 36 user-defined basic gate types, 36 data channels of 256 bits each, 10 user-defined clock waveforms, and up to 50 macros in each network. MICROLOGIC produces high-resolution timing diagrams showing selected waveforms and associated delays, glitches, and spikes—just like the real thing.

Reviewers Love These Solutions


Regarding MICROLOGIC... “An efficient design system that does what it is supposed to do at a reasonable price” (Byte 4/84).

MICROCAP and MICROLOGIC are available for the Apple II (64k), IBM PC (128k), and HP-150 computers and priced at $475 and $450 respectively. Demo versions are available for $75.

MICROCAP II is available for the Macintosh, IBM PC (256k), and HP-150 systems and is priced at $895. Demo versions are available for $100.

Demo prices are credited to the purchase price of the actual system.

Now, to get on line, call or write today!

Spectrum Software
1021 S. Wolfe Road, Dept. B
Sunnyvale, CA 94087
(408) 738-4387
Inquiry 361
No. You should create a helping function for this code, rather than coding it directly. Our function, rightp, is now 4 levels of embedding deep, and the relation we are about to code—the sum of squares of two numbers—would be a useful helping function. Thus, let's code the sum of the squares of the first two sides using a helping function.

5. (defun rightp (side1 side2 side3)
    (lessp (abs (difference (sumsq side1 side2) (square side3))) (plus))
)

What do you want the helping function sumsq to do?
PRESS: IF YOU WANT TO:
1. Take 2 arguments, the square of the first side and the square of the second side. Compute their sum.
2. Take 2 arguments, the first side and the second side. Compute the sum of the squares of these numbers.
3. Have the tutor choose.

Menu choice: 1

No. We wouldn't need a helping function just to compute the sum of two numbers. You should create your helping function so that it does more than just a sum.

It would be better to define sumsq so that it takes two arguments, in this case. Let's take the first side, and [2] the second side, and computes the sum of the squares of these numbers.

Menu choice: 2

6. (defun rightp (side1 side2 side3)
    (lessp (abs (difference (sumsq side1 side2) (times))) (plus))
)

You should use a helping function that you have already coded, square. Since this function computes the square of a number, you can use it to code the square of the third side.

I don't understand that, Rob. How are you going to code 2 percent of the square of the third side?

OK. I'll explain what I wanted. You could either code this directly or create a helping function here to code 2 percent of the square of the third side. Let's create a helping function just to make things easier. We'll call this helping function percentage. We will define percentage when we are finished coding rightp.

What do you want the helping function percentage to do?
PRESS: IF YOU WANT TO:
1. Take 2 arguments, one hundredth of 2 and the square of the third side. Compute their product.
2. Take 2 arguments, 2 and the third side. Compute the given percentage of its second argument.
3. Take 2 arguments, 2 and the square of the third side. Compute the given percentage of its second argument.
4. Take 1 argument, the square of the third side. Compute 2 percent of its argument.
5. Have the tutor choose.

Menu choice: 3

Very good.

8. (defun rightp (side1 side2 side3)
    (lessp (abs (difference (sumsq side1 side2) (square side3))) (percentage 2 (square side3)))
    (plus))
)

[EXPLAIN]

(continued)
The Hard Disk With The Software Shell

Why pay more for 10 or 20 Meg drives than you have to? Our 10 Meg internal hard disk subsystem is priced at $699, with the 20 Meg model going for $1088. Our external 10 Meg goes for $849, 20 Meg for $1238.

Our drives are fully compatible with any IBM PC or PC-compatible with 64K RAM and PC-DOS 2.0 or later. Qubie's drives boot directly from the hard disk. You can power up the PC and load the system directly, without using any floppy disks. No software patches or drivers to install.

Using the same amount of power as a floppy drive, the Qubie' hard disk uses less energy than other aftermarket drives.

The drives come complete with ldir software. ldir's commands are in English, eliminating the need to type in DOS commands, and are all selected by using cursor control keys. ldir even explains commands with HELP screens that give you online advice when you need it.

Qubie' drives are made of special plated recording media. They withstand the vibration and movement that has damaged hard disks in the past. In fact, Qubie' drives have been selected by several computer makers for use in their portable computers.

Good service starts with answering your questions before and after you buy. It continues with same or next day shipment of your order. Since we only sell a few selected products, we have the information and inventory to help you fast.

We perform repairs in our own service department within 48 hours, should you ever need service during the one year warranty period.

Our price is the whole price. All prices include UPS surface charges and insurance. In a hurry? Two day UPS air service is just $12.

Corporations, dealers and institutions, call for volume purchase price information.

*Call for information.

Order Today, Shipped Tomorrow!
For fastest delivery, send cashier's check, money order, or credit card for volume purchase price information. Personal checks, allow 18 days to clear.
California residents, add 6% sales tax.
Hours: Mon.-Fri 8:00 a.m.-4:00 p.m. PST
Sat. 9:00 a.m.-1:00 p.m. PST
(800) 821-4479 Toll Free Outside California
(805) 987-9741 Inside California

© Qubie' 1984
about these dialogues. First, recall that the tutor balances parentheses and provides placeholders (e.g., `<CASE>`, `<NAME>`, `<NUM>`) for portions of code that need expanding. Second, despite the large portions of code added from one line to the next, it understands each separate word or symbol the student enters, and it responds with an error message if necessary for any of those items.

**THE rightp PROBLEM**

Listing 1 presents a dialogue from lesson 4 that focuses on decomposing a problem into a set of subfunctions. Although this dialogue contains more errors than the typical student makes, it is a good illustration of how the tutor responds to errors and requests for assistance. The student is allowed to input information until he types cond, at which point the tutor tells him that a conditional structure is not necessary. (The actual screen setup is shown in figure 1.) Next he types `(lessp (difference (line 2) and` and receives a hint: he correctly inserts the absolute value function (abs) before difference in line 3. Note that the tutor presents a menu when it doesn't know what the student will do next. For instance, since the arguments to difference in rightp can be in either order, it needs to know which one will be typed next, and it asks him via the menu following line 3.

After line 4 the tutor gives the student information about when it is useful to code a separate helping function. It queries him after line 5 to make sure they agree on what that helping function will compute. This is an example of the tutor's planning mode. In this case, the student is mistaken about what the subfunction should do; the tutor corrects him. After line 7 it determines that his code will not achieve the goal. However, this input does not match any of the buggy rules in the ideal model, so the tutor provides minimal feedback: it indicates that it cannot understand the input and queries the student to remind him about what he should be trying to code. This hint is not enough for the student, who asks for an explanation by hitting a special key, whereupon the tutor helps him specify another helping function, percentage.

The final form of rightp is displayed in line 8. In line 9 the student defines the helping function `sumsq` without error and goes on to define percent-
Why pay more for a 300/1200 baud modem than you have to? Through the use of four low-cost, state-of-the-art microprocessors, we can now offer two versions of our full featured modems at prices, hundreds less than the competition. PC212A/1200 is available for $299, the 212A/1200E for $329.

Our modems are fully compatible with all Hayes software commands. Software packages like Crosstalk™, Sidekick™ and Smartcom™ will work with our modems.

Our internal modem card, PC212A/1200, is designed specifically for the IBM PC, PC/XT or other PC-compatible units. The board occupies only one slot, since it is just 6/10" in thickness. The optional asynchronous port, available for $40, can be used for other peripherals when the modem is not being used. The modem comes complete with PC-TALK III™, modular phone cable, card edge guide, and user's guide.

Our external standalone modem, 212A/1200E, can be used with any computer or terminal that has a 232/C serial port. The modem is housed in an attractive gold anodized case and fits comfortably under a standard telephone.

An easily accessible volume control knob adjusts the modem speaker's output. The modem comes complete with modular phone cable, serial connector cable, and user's guide.

Both modems are Bell 103/212A compatible. Both feature auto-dial and can be accessed remotely through an auto-answer mode.

Good service starts with answering your questions before and after you buy. It continues with same or next day shipment of your order. Since we only sell a few selected products, we have the information and inventory to help you fast.

We perform repairs in our own service department within 48 hours, should you ever need service during the one year warranty period.

Our price is the whole price. All prices include UPS surface charges and insurance. In a hurry? Two day UPS air service is just $5.

Corporations, dealers and institutions, call for volume purchase price information.

Inquiry 328

*Call for information.
age in line 10. He is stuck as to what to do after typing the function body and requests an explanation. The tutor helps him refine his algorithm. After this he defines percentage with one error in line 12.

After the student defines rightp and its helping functions, the LISP tutor puts him into a real LISP environment where he can experiment with them and try variations. After he experiments to his satisfaction, the tutor provides the next problem in the lesson.

The fact Problem
Listing 2 illustrates how the tutor guides the coding of a recursive function such as finding the factorial of a number, an early problem in lesson 7. Although the student has some difficulty with the syntax of the conditional test in lines 1 and 2, he basically codes the terminating test correctly. Typically, we find students have little difficulty with terminating cases but great difficulty with recursive cases. The dialogue after line 3 shows how the tutor guides the student through the design of the recursive function. It leads him to construct examples of the relationship between fact(n) and fact(n-1) and then asks him to identify the general relationship. Figure 2 shows the screen image at a critical point in the design of this function.

The dialogue after this point shows two classic errors students make in defining recursive functions. The first in line 4 is to call the function directly without combining the recursive call with other elements. The second, in line 6, is to call the function recursively with the same argument rather than a simpler one.

After the student finishes coding the function, he goes to the LISP window and experiments with it. He must trace the function and the recursive calls embed and unravel. Figure 3 shows the screen image at this point, with the code on top and the trace below it.

Evaluating the LISP Tutor
We should emphasize that the tutorial knowledge in these interactions was not especially handcrafted for these problems; it shows the general approach used by the tutor. That is the power of an intelligent tutoring system. Once we have a system that can tutor recursion problems, for example, we can easily add problems on that topic. Furthermore, although some testing is necessary to build our catalog of student errors and misconceptions, once coded, the tutor can

(continued)
NEVADA FORTRAN™ DISKETTE & MANUAL

Nevada FORTRAN is based on the ANSI-66 standards (FORTRAN IV) with some 1977 level features. Advanced features include: IF...THEN...ELSE statement; COPY (include); CHAINing with COMMON; and TRACE debugging. Package includes a diskette, 214-page manual and 5 sample programs. Included also is an 8080 assembler. Requires 48K RAM.

Price: $29.95

NEVADA COBOL™ DISKETTE & MANUAL

Nevada COBOL, based upon the ANSI-74 standards, has all the popular features. Powerful level 2 features include: compound conditionals and full CALL CANCEL. This software package includes a diskette, 165-page manual, plenty of examples and 16 complete COBOL source code programs.

Price: $29.95

NEVADA BASIC™ DISKETTE & MANUAL

With the built-in, full-screen text editor, you can easily develop programs for 1/10 the cost of a comparable BASIC Interpreter. What’s more, Nevada BASIC has full Matrix operations, Single- and Multi-Line functions, and BCD math (no round-off errors). You get a diskette and a 220-page manual. Requires 48K RAM.

Price: $29.95

NEVADA PILOT™ DISKETTE & MANUAL

Nevada PILOT, written by Prof. John Starkweather, the language’s creator, meets and exceeds all PILOT-73 standards. See the review in January 1983 MICROCOMPUTING. This package includes a diskette, 131-page manual, and 10 useful sample programs.

Price: $29.95

NEVADA EDIT™ DISKETTE & MANUAL

Nevada EDIT, a full-screen, video-display text editor, is designed specifically for computer program text preparation. Nevada EDIT is completely user-changeable, can be configured to almost any terminal and takes up only 12K of disk space. This package includes a diskette and 59-page manual.

Price: $29.95

NEVADA PASCAL™ DISKETTE & MANUAL

Advanced features include: 14-Digit precision; BCD math (no round-off errors); Floating point +/−6.64; TRACE debugging; Arrays up to 6 dimensions; 64K strings; External procedures; and Dynamic Module loading. You get a diskette and a 184-page manual. Requires 60K RAM and one disk drive with at least 90K storage.

Price: $29.95

SHIPPING AND HANDLING FEES: Add $4.00 for the first package or manual and $2.00 each additional. OVERSEAS: Add $15.00 for the first package or manual and $5.00 each additional. COD's: Add $4.00.
(defun fact (n)
  (cond ((zerop n) 1)
        (t (times n (fact (sub1 n))))))

--- YOU ARE DONE. TYPE NEXT TO GO ON AFTER ---
--- TESTING THE FUNCTIONS YOU HAVE DEFINED ---

= > (trace fact)
(fact)
= > (fact 3)
1 <Enter> fact (3)
2 <Enter> fact (2)
3 <Enter> fact (1)
4 <Enter> fact (0)
= > (fact 0)
= > (fact 1)
= > (fact 2)
= > (fact 6)

THE LISP WINDOW

Figure 3: The screen configuration at the end of the dialogue in listing 2.

Subscription Problems?

We want to help!

If you have a problem with your BYTE subscription, write us with the details. We'll do our best to set it right. But we must have the name, address, and zip of the subscription (new and old address, if it's a change of address). If the problem involves a payment, be sure to include copies of the credit card statement, or front and back of cancelled checks. Include a "business hours" phone number if possible.

BYTE
Subscriber Service
P.O. Box 328
Hancock, NH 03449

lead students through a variety of correct solutions and respond to a wide range of errors. Thus, it is generative in the sense that it creates instructional interactions rather than using preprogrammed sequences.

Generally, students are happy with the tutor and rate it better than learning experiences they have had in other introductory programming courses. Their major complaints are that it uses too many menus and is sometimes slow. We are implementing optimizations and improvements to resolve both these problems. Interestingly, students are more appreciative of the tutor's guidance and more tolerant of its speed as the lessons increase in difficulty.

We have run one evaluation of the tutor, comparing it to experienced private human tutors and "on-your-own" condition. We found that the advantage of private tutoring—human or computer—over the on-your-own condition increased as the material became more difficult. The students finished lesson I basically with the same speed and success in all three conditions. However, those in the on-your-own condition often had great difficulty getting through the recursion material; in fact, some did not finish the material in the allotted time. We had to extrapolate how long it would have taken them to finish it. Averaging the actual and extrapolated times, the students took 11.4 hours with the human tutors, 15 hours with the computer tutor, and 26.5 hours "on-your-own" to learn six lessons. Polls of students in a traditional classroom suggest that it takes over 40 hours to cover the material in that situation.

We tested the three groups just before the recursion exercises. We found essentially identical performances even though they were learning at different rates. In another evaluation, we found students working with the tutor learned nine lessons of material faster and performed better on competence tests than students learning without the tutor. Thus, the basic conclusion is that the human

(continued)
Cross-Assemblers to Beat the Band!

Development Tools That Work
Avocet cross-assemblers are fast, reliable and user-proven in over 4 years of actual use. Ask NASA, IBM, Xerox or the hundreds of other organizations that use them. Every time you see a new microprocessor-based product, there's a good chance it was developed with Avocet cross-assemblers.

Avocet cross-assemblers are easy to use. They run on almost any personal computer and process assembly language for the most popular microprocessor families.

Your Computer Can Be A Complete Development System
Avocet has the tools you need to enter and assemble your software and finally cast it in EPROM:

- **VEDIT TextEditor** makes source code entry a snap. Full-screen editing plus a TECO-like command mode for advanced tasks. Easy installation - INSTALL program supports over 40 terminals and personal computers. Customizable keyboard layout. CP/M-80, CP/M-86, MSDOS, PCDOS .................. $150

- **EPROM Programmers** let you program, verify, compare, read, display EPROMs but cost less because they communicate through your personal computer or terminal. No personality modules! On-board intelligence provides menu-based setup for 34 different EPROMS, EEPROMs and MPUs (40-pin devices require socket adaptors). Self-contained unit with internal power supply, RS-232 interface, Textool ZIF socket. Driver software (sold separately) gives you access to all programmer features through your computer, lets you download cross-assembler output files, copy EPROM to disk.

- **Model 7228 Advanced Programmer** - Supports all PROM types listed. Superfast "adaptive" programming algorithm programs 2764 in 1.1 minutes.


Model 7956 and 7956-SA Gang Programmers - Similar features to 7228, but program as many as 8 EPROMS at once. 7956-SA stand-alone version copies from a master EPROM. 7956 lab version has all features of stand-alone plus RS-232 interface.

- **7228** Cross-Assembler Microprocessor CP/M-80 IBM PC, MSDOS**
  - XASM04 NEW 6804 $250.00 $250.00
  - XASM05 6805 $200.00 $200.00
  - XASM09 6809 $200.00 $200.00
  - XASM18 1802/1805 $200.00 $200.00
  - XASM48 8048/8041 $200.00 $200.00
  - XASM51 8051 $200.00 $200.00
  - XASM65 6802/65C02 $200.00 $200.00
  - XASM68 6800/01, 6301 $200.00 $200.00
  - XASM75 NEC 7500 $500.00 $500.00
  - XASM85 8085 $200.00 $200.00
  - XASM040 COP400 $300.00 $300.00
  - XASM052 28 $200.00 $200.00
  - XASM079 286 $200.00 $200.00
  - XMAC682 NEW 68020 $595.00 $595.00
  - XMAC682K NEW 68000/68010 $595.00 $595.00

**HEXTRAN Universal HEX File Converter** - Convert assembler output to other formats for downloading to development systems and target boards. Also useful for examining object file, changing load addresses, extracting parts of files. Converts to and from Intel, Motorola, MOS, RCA, Fairchild, Tektronix, TI, Binary and HEX/ASCII Dump formats. For CP/M, CP/M-86, MSDOS, PCDOS ............... $250

Ask about UNIX.

Would you hire an entire band when all you need is one instrument? Of course not.

So why use a whole orchestra of computers when all you need is one processor - to develop software for virtually any type of micro-processor?

The secret? Avocet's family of cross-assemblers. With Avocet cross-assemblers you can develop software for practically every kind of processor - without having to switch to another development system along the way!
Engineers, scientists, and statisticians are discovering the time-saving capability of Mega Math. A library of over 40 assembly language subroutines for fast numeric calculations, up to 8 times faster!

Routines use the 8087 or 80287 coprocessor for optimum performance.

Mega Math library includes:

- Matrix Operations
- Vector Operations
- Vector Scalar Operations
- Statistical Operations
- Fast Fourier Transform
- Convolution
- Solution of Linear Equations
- Transcendental Functions

Get Mega Math capability for $9900

---

**LISP TUTOR**

Listing 2: The dialogue involved in defining the function fact, which computes the factorial of the number given.

Define the function fact: It takes a number argument, n, and computes the factorial of n, which is the result of multiplying n x (n-1) x (n-2) ... x 1. For instance, (fact 3) = 3 x 2 x 1 = 6. By definition, the factorial of 0 is 1.

1. (defun fact (n)
   (cond ((equal n 0) 1)
         (< RECURSIVECASE >)))

   I assume that you are trying to test if the number argument is equal to the number zero. There is a special function for testing equivalence to zero. Try to use that function instead of equal.

   What code can you write to test if the condition for terminating case is true? Try writing a predicate.

2. (defun fact (n)
   (cond ((zero n) 1)
         (< RECURSIVECASE >)))

   Did you mean zerop (y or n)? y

3. (defun fact (n)
   (cond ((zerop n) 1)
         (< RECURSIVECASE >)))

   Is the value of fact in the recursive cases calculated by:

   PRESS: IF YOU WANT TO:
   1 Calling fact recursively with n.
   2 Multiplying n by fact of n minus 1.
   3 Getting 1 x 2 x ... n and then multiplying the results.
   4 Have the tutor choose.

   Menu choice: 3

   That is a reasonable way to think of doing factorials but it is not a plan for a recursive function. Since you seem to be having trouble with the recursive cases let us work through some examples and figure out the conditions and actions for each of these cases.

   The recursive relationship is the relationship between fact called with n and fact called with:

   PRESS: IF YOU WANT TO:
   1 n minus 1
   2 n equal to 0
   3 n plus 1
   4 Have the tutor choose.

   Menu choice: 1

   We will consider some concrete examples. We will characterize the recursive relationship between fact called with 1 and fact called with 0.

   What is the value of (fact 1)?
   Answer: 1

   What is the value of (fact 0)?
   Answer: 1

   EXAMPLES
   fact (n) = fact (n - 1)
   A. (fact 1) = 1 (fact 0) = 1

   We will consider some more concrete examples. We will characterize the recursive relationship between fact called with 3 and fact called with 2.

   What is the value of (fact 3)?
   Answer: 6

   (continued)
What is the value of \( \text{fact}(2) \)?

Answer: 2

EXEMPLARY

\[ \text{fact}(n) = \text{fact}(n-1) \]

A. \( \text{fact}(1) = 1 \) \( \text{fact}(0) = 1 \)

B. \( \text{fact}(3) = 6 \) \( \text{fact}(2) = 2 \)

Since there is only one recursive case characterized by the examples you have just worked out, the condition in this case can be just coded as T. We will focus on characterizing the action in this case.

In examples A and B what do you have to do to get the result of fact called with \( n \)?

PRESS: IF YOU WANT TO:

1. Multiply \( n \) by one less than \( n \).
2. Multiply \( n \) by fact of one less than \( n \).
3. Add \( n \) to the result of fact called with one less than \( n \).
4. Have the tutor choose.

Menu choice: 2

We have now worked through a series of examples that illustrate the recursive relation. We will now return to the goal of trying to produce LISP code that specifies the recursive relation.

4. (defun fact (n)
   (cond ((zerop n) 1)
         (t (fact)))
   You will have to use fact at some point but right now you want to multiply.

5. (defun fact (n)
   (cond ((zerop n) 1)
         (t (times <N1> <N2>)))))
   What do you want to do first?
   PRESS: IF YOU WANT TO:
   1. Write code to get the number argument.
   2. Write code to get the recursive part.
   Menu choice: 1

6. (defun fact (n)
   (cond ((zerop n) 1)
         (t (times n (fact (difference)))))
   You cannot just code \( n \) at this point. What you want to do is subtract one from \( n \).

7. (defun fact (n)
   (cond ((zerop n) 1)
         (t (times n (fact (sub1 n)))))
   \( \text{difference} \) would work in this case but it is more appropriate to use the function \( \text{sub1} \) when you are subtracting 1 from a number.

8. (defun fact (n)
   (cond ((zerop n) 1)
         (t (times n (fact (sub1 n))))))

tutor is still best, the computer tutor not that far behind (and constantly improving), and the traditional on-your-own condition much worse.

**TODAY AND TOMORROW**

Currently, we get satisfactory performance of the tutor on a VAX 725 with 3 megabytes of memory devoted to a single student. Our planned optimizations should enable it to handle a pair of students simultaneously running on the same machine. These implementations are cost-effective in expensive private schools like CMU or in industry; however, they are clearly out of range for the general public. The amount of computational power required is considerable. Even in future, more efficient implementations we estimate a minimum of 1 megabyte of memory will be necessary to tutor one student on one machine. By the late 1980s the computational power to deliver such instruction should be more generally available. For instance, in conjunction with IBM, CMU is planning to have on campus by 1986 a personal computer with 1 megabyte of memory capable of 1 million instructions per second. Such a machine will be more than adequate to implement the LISP tutor.

These technological trends encourage optimism about the future of intelligent tutoring efforts, of which the LISP tutor is one. We hope that, with continued research in domains such as high-school mathematics and college-level programming, we will soon establish the conceptual foundations to use the computational power that will be available. The prospect is great of providing every student with the educational benefits of a private human tutor. When this happens, the consequences for American education will be nothing short of revolutionary.

**ACKNOWLEDGMENT**

This research is supported by Office of Naval Research under Contract No. 00014-84-0064. We would like to acknowledge the considerable contributions of Robert Farrell, Elliot Jaffe, Beth Marvel, and Peter Pirolli to the research on the LISP tutor.

**REFERENCES**

WE'LL ALWAYS BE RIGHT WHERE YOU WANT US.

Every 7 days we open a new hotel in a place you need to be.
As the world's hotel leader, we're creating more hotels in more of the places you want...in

more than 50 Holiday Inn® hotels opening this year in the most convenient locations.

1700 Holiday Inn hotels, built right where you need them...in exciting resorts and on secluded beaches, near convention facilities, in quiet countrysides and major capitals all around the world.

We're building hotels in the best locations, making Holiday Inn® "a better place to be." Business travelers agree: when naming their first choice in lodging, they choose Holiday Inn hotels number one over all competitors. Which makes 1-800-HOLIDAY the number to call for all your travel reservations.

HOLIDAY INN® A BETTER PLACE TO BE.
With the Oberon OMNI-READER™ — the first optical character reader designed and priced for small computers.

Now you can transfer material directly from the typed page to the screen of your computer, without ever touching the keyboard — using specially designed interface software that allows input directly into your spreadsheet, database and word processing applications program.

And because the OMNI-READER uses a standard RS232 serial port hookup, it interfaces easily with your computer.

The technology is revolutionary. But what is most revolutionary is the price — under $500. IBM interface software, $50.

Find out more about the Oberon OMNI-READER. Dial 800-2-OBERON. In Texas, (214) 446-9567.

IBM is a registered trademark of International Business Machines. 

OBERON INTERNATIONAL
PROUST (Program Understander for Students) is a knowledge-based system that finds nonsyntactic bugs in Pascal programs written by novice programmers. When students compile a program successfully, PROUST is automatically invoked to analyze it. PROUST reports any bugs that are in the program to the student.

PROUST is not merely a tool that helps programmers find bugs, nor is it confined to a narrow class of bugs, such as uninitialized variables. It is designed to find every bug in most beginners' programs. PROUST is currently capable of correctly identifying all of the bugs in over 70 percent of the programs that students write when we assign them moderately complex programming problems.

When PROUST finds a bug, it does not simply point to the lines of code that are wrong; instead, it determines how the bug can be corrected and suggests why the bug arose in the first place. Our aim is to build an instructional system around PROUST that assigns programming problems to students, reads their work, and gives them helpful suggestions.

In designing PROUST we found it necessary to deal directly with the variability of bugs in beginners' programs. If a programming problem is assigned to a class of 200, the students will write 200 different programs (assuming that they do not cheat). There is variability both in their programs' designs and bugs. Some bugs, such as missing variable initializations, are accidental omissions that can be easily recognized and corrected. Other bugs result when the programmer fails to reason through the interactions between components. In isolation, each piece of the program may appear correct, but when combined, the program doesn't work. Still other bugs result from misconceptions about programming. The code may appear correct to the programmer, but it doesn't do what he or she expects, for reasons he or she does not understand. Bugs resulting from misconceptions are the most serious; students stand to benefit the most from having such problems pointed out to them.

A debugging system is to cope with the various types of errors that programmers make, it must understand what the programmer is trying to do. Debugging systems usually don't concern themselves with what the program is supposed to do, they only analyze what the program actually does (see references 1, 2, and 3). Figuring out how a program is supposed to work is not easy; to do it a debugger requires information about the programming problem and knowledge about how to write programs. Nevertheless, identifying the programmer's intentions is worth the effort, because this knowledge makes it possible to identify more bugs, as well as to understand their causes.

To show how knowledge of the problem is used, W. Lewis Johnson (POB 215B, Yale Station, New Haven, CT 06520) is a research associate at Yale. He has a B.A. from Princeton University and a Ph.D. from Yale University. His interests are artificial intelligence, software engineering, and computer-aided instruction. Dr. Johnson has been pursuing research in artificial intelligence at Yale since 1978.

Elliot Soloway (Department of Computer Science, Yale University, New Haven, CT 06520) is an assistant professor at Yale. He has a B.A. in philosophy and a Ph.D. in computer science from the University of Massachusetts at Amherst. Dr. Soloway heads a group at Yale that is exploring the cognitive underpinnings of programming.
grammer's intentions assists debugging, we will present two examples of "buggy" programs and discuss why alternative approaches to automatic debugging fail to identify such bugs. Then we will describe how PROUST analyzes such programs. Finally, we will present some statistics showing PROUST's performance on large numbers of students' solutions to a typical assignment in an introductory programming class. This will help support our claim that PROUST's approach is adequate for the majority of novice programmers' programs.

EXAMPLES OF PROGRAM BUGS

Here is a simple programming problem called the Averaging Problem:

Write a program that reads in a sequence of positive numbers, stopping when 99999 is read. Compute the average of these numbers. Do not include the 99999 in the average. Be sure to reject any input that is not positive.

The student's program must compute the average of a series of positive numbers. It must ensure that the input to the program is in fact positive. The input terminates when a specific value—99999—is read. Values such as this, which signal the end of input, are called sentinel values.

Figure 1a shows a sample solution to the Averaging Problem. This program works except for the following bug: if you type 99999 immediately after typing a nonpositive value, the program will continue to prompt for data after the 99999 is read. When the program finally does terminate, the average will be incorrect. For example, suppose that you input 5, -5, 99999. Instead of terminating when the 99999 is read, the program requests another input. If the user then entered another 99999, the program would not print the average as 5, but instead would print (5 + 99999)/2, or 50002.

The program interprets 99999 as data when the sequence 5, -5, 99999 is read because when the program reads the -5, it enters the input-validation loop, which starts with line 10, WHILE Val <= 0 DO. This loop is intended to iterate until a positive value is typed in: 99999 is positive, so when the 99999 is read, control leaves the input-validation loop. However, the program was written with the assumption that when the input-validation loop is exited, the current value of Val is valid input data. In this case, Val is not valid data: it is 99999, the sentinel value. The loop nevertheless processes 99999 as if it were data. To guard against this case, there should be a test for the sentinel after the input-validation loop.

Figure 1b is PROUST's output describing the missing sentinel-test bug. The error is described in two ways: First it is described in English; then PROUST generates an example of data that causes the program to fail.

Now look at the program in figure 2a. This is another solution to the Averaging Problem, and the bug in this program is also fairly obscure. If you type a positive value followed by a negative value, the negative value will be included in the average. Thus if you type -2, 2, 99999, the average will be 2, but if you type 2, -2, 99999, the average will be 0.

Unlike the example in listing 1a, the programmer has not left out the sentinel test but has written the test in the form of a WHILE statement instead of an IF statement. The student probably has a misconception about the distinction between the two state-
ments and does not understand how the control flow in a WHILE loop works. As long as the body of the loop is straight-line code, the student has no problem. However, if the body of the loop contains tests, the student thinks that the tests should be written as WHILE statements to ensure that they repeat when the body of the loop does. We will refer to this misconception henceforth as the WHILE-for-IF misconception. PROUST's output for this example, shown in figure 2b, takes the misconception into account and explains it to the student.

The bugs in figures 1a and 2a illustrate the following points. First, bugs frequently cannot be detected if you don't know what the program is supposed to do. Both of the programs shown run no matter what input is read: to determine that there is a bug, you must recognize that the programs output different results than they should. Bugs such as these are not unusual; the missing sentinel-test bug occurs in 18 percent of novice programmers' solutions to the Averaging Problem.

Second, novice programmers need help identifying such bugs. These bugs cause the programs to fail only after unusual inputs—ones that novice programmers are unlikely to test. In the case of the WHILE-for-IF misconception, even if the programmer tests the case in question, he or she will probably not understand why the program fails because he or she expects the WHILE statement to perform a different function than it actually does.

**ALTERNATIVES TO INTENTION-BASED DEBUGGING**

To support our claim that debugging requires knowledge of the programmer's intentions, we will examine the principal alternatives to intention-based debugging and show why they fall short. The methods we have considered are analysis of I/O (input/output) behavior, analysis of data flow, and recognition of patterns of buggy code.

Debugging by analyzing I/O behavior involves determining when the output of the program is incorrect and suggesting bugs that might have caused the faulty behavior (see reference 2). This approach treats debugging as similar to medical diagnosis (see reference 4). The faulty behavior can be thought of as the symptoms of the program, and the bugs can be thought of as the diseases. There are two problems with this approach: A program's symptoms cannot always be determined, and these symptoms cannot always be related to the bugs. The bugs in the programs in figures 1a and 2a affect the output of the program only occasionally; recognizing when this happens requires knowledge about what the output should look like. Since the WHILE-for-IF example fails to test the input for validity after the first positive value is read, it appears that this program is missing an input-validation test. It is only after inspecting the code that it becomes clear that the bug is not in the input-validation test but in the sentinel test.

Another debugging approach you might try is data-flow analysis (see reference 1). This is the approach many error-checking compilers use.
Data-flow analysis checks for clear anomalies in the pattern of data definition and for use of data in a program. It can determine when a variable is defined and never used or when a variable is never defined. However, if there are no anomalies in data flow, data-flow analysis will not detect any bugs. Neither example in the preceding section has data-flow anomalies, so this method would not detect the bugs.

You might also try analyzing the structure of the program itself to see whether it suggests the presence of bugs. You could build a library of templates for common bugs, such as missing sentinel tests or WHILE statements in place of IF statements, and then match these templates against the program to identify the bugs. The problem with this approach is that you have no way of knowing where to match the bug templates in the program. For example, the WHILE-for-IF example has three different WHILE loops. How could you tell which WHILE loop really should be an IF statement or if any of them should be an IF statement? You could try to make the bug template more specific by making it apply only when there are two loops with the same exit test, one inside the other. But that would make the template too specific; it would not apply to other cases where WHILE statements appear instead of IF statements.

All of these approaches to debugging attempt to identify bugs without any understanding of what the program is supposed to do, and any such approach does little more than make guesses as to what bug is involved. In order to do better, a debugging system has to be able to infer the programmer's intentions and relate them to the code.

PROUST'S APPROACH
PROUST is written in T, a dialect of LISP. The full system contains roughly 15,000 lines of LISP code and runs on a VAX-11/750. A stripped-down version called Micro-PROUST has been developed in conjunction with Courseware Inc., of San Diego, California (see the text box "Micro-PROUST for the IBM PC" above for more information). Micro-PROUST is capable of recognizing the kinds of bugs that are described in this article; however, there are a variety of tricky bugs that PROUST can identify but Micro-PROUST cannot. (If you are interested in PROUST's full diagnostic capabilities, consult reference 3.)

PROUST's analysis of programs is based on knowledge of the programming problem. Students may solve the problem in a variety of ways and their programs may have a variety of bugs, but they are all trying to solve the same problem. Knowledge of the problem makes the variability of novice solutions more manageable. It also provides important information about the programmer's intentions.

To provide PROUST with descriptions of the programming problems, we devised a problem-description language. We described each problem in this language and provided PROUST with a library of the descriptions. Each problem description in PROUST's problem-description language is a paraphrase of the English-language problem statement that we hand out to students.

To understand the students' programs, PROUST also needs to know how to solve the problem. Solutions to a given programming problem may be implemented in a variety of different ways. Suppose that there was only one way to test input for validity in a Pascal program, namely, to insert a WHILE loop at the top of the main loop, such as in figures 1a and 2a. Once PROUST knew that a program must validate input, it would know to look for such a loop, as well as for the sentinel test that must follow. However, there are several ways of validating input. Listing 1 shows a loop that tests input in a different way. Instead of there being one input validation loop, there are two; one is at the bottom of the loop and the other precedes the loop. No additional sentinel test is required when this method is used, because, as soon as input is validated, control flows to the main exit test of the WHILE loop. Therefore, without knowing what method the programmer is using for validating input, PROUST cannot tell whether to look for a sentinel test within the body of the loop. In figure 1a it is an error not to have such a sentinel test, but in listing 1 it is not. PROUST needs knowledge about programming so that it can understand how each student designed and implemented his or her solution. Once it understands the programmer's intentions, it can then use knowledge about common bugs to identify them in the student's program.

PROUST analyzes programs by synthesis. When PROUST examines a program, it looks up the corresponding problem description in its library. It makes hypotheses about the methods programmers may use to satisfy each requirement in the problem description. Each hypothesis is a possible correct implementation of the corresponding requirement. If one of these hypotheses fits the student's code, then PROUST infers that the requirement is implemented correctly. If PROUST's hypotheses do not fit the student's program, then PROUST checks its database of com-

MICRO-PROUST FOR THE IBM PC

Micro-PROUST is a subset of the larger implementation of PROUST. It is capable of dealing with a limited range of novice programs and is currently set up to handle only those example solutions to the Averaging and Rainfall Problems provided with it. Micro-PROUST runs in Gold Hill Computers Inc. Golden Common LISP on an IBM Personal Computer with 512K bytes of memory. The source code and example programs are available for downloading from BYTEnet Listings. The telephone number is (603) 924-9820. The file PRSTREAD.ME contains directions on how to run Micro-PROUST.
mon bugs to see if it can explain the discrepancies.

**PROUST's Problem Descriptions**

Problem descriptions in PROUST consist of programming goals and sets of data objects. Programming goals are the principal requirements that must be satisfied: sets of data objects are the data that the program must manipulate.

The first step in translating an English-language problem statement into PROUST's problem-description language is to make the various goals that are mentioned in the problem statement explicit. Recall that the text of the Averaging Problem is the following:

Write a program that reads in a sequence of positive numbers, stopping when 99999 is read. Compute the average of these numbers. Do not include the 99999 in the average. Be sure to reject any input that is not positive.

Solutions to this problem operate on a sequence of input data; let us call this sequence New. The following goals can be extracted from the problem statement:

- Read successive values of New, stopping when a sentinel value, 99999, is read.
- Make sure that the condition New <= 0 is never true.
- Compute the average of New.
- Output the average of New.

We must now take these goals and use them to generate a problem description for PROUST. Each data object that the goals refer to is named and declared. Each goal extracted from the problem statement is recorded in the problem description. The resulting problem description is shown in figure 3.

Like all the data structures that we discuss in this article, problem descriptions are in list notation and every statement and expression is enclosed in parentheses. The name of the program is indicated with a Define-Program statement. Objects are named using Define-Object statements. Goals are indicated using Define-Goal statements.

Object names are preceded by question marks. There are two objects defined in the Averaging Problem description. ?Sentinel and ?New. The question-mark notation is used frequently in artificial-intelligence (AI) programs; it indicates that the variable is not a literal value but is a parameter that must be substituted when the data structure is used. For example, the input-data object ?New will be substituted with the name of the Pascal variable that the student uses for storing the input data. The object ?Sentinel has the value 99999; wherever ?Sentinel appears in the problem description it can be substituted with 99999.

Objects can be either constant-valued or variable-valued. In this example, ?Sentinel is a constant, with the value 99999, and ?New is a variable. In PROUST's general problem-description language objects can have a variety of properties associated with them; however, we will not use any such properties in this simple example.

Goal statements consist of a name of a type of goal, followed by a list of arguments. In the form (Average ?New) for example, Average is a type of goal (to compute an average), and ?New is the argument of the goal. This form requires that the program compute the average of ?New.

Arguments to goal expressions can take a variety of forms. They can be objects, predicates, or even other goal expressions. In the expression (Input-Validation ?New (<= ?New 0)), one argument is an object (?New), and the other is a predicate ?New <= 0. In LISP, function names and operators precede their arguments, which is why the <= precedes the ?New and 0 in the expression (<= ?New 0). If goals are nested, as in (Output (Average ?New)), the outer goal refers to the value computed by the inner goal. Thus this goal requires that the program output the average of ?New.

In this example PROUST's problem descriptions are a reasonable approximation of the original English-language problem statements. These problem descriptions describe what the programs must do but not how they are supposed to do it. PROUST must analyze each individual program and determine how it is intended to satisfy the problem requirements.

**Programming Knowledge**

Programming knowledge in PROUST is frame-based (see reference 5). In frame-based systems knowledge is organized into frames, each of which corresponds to a particular concept that the system "knows" about. Frames are similar to records in relational databases, although the operations that can be performed on frames are somewhat different. Knowledge in frames is organized into slots, which function as record field names, and fillers, which are the values assigned to each slot.

The two kinds of programming knowledge that we will consider here are goals and plans (other types of programming knowledge are discussed in reference 6). Goals are problem requirements that appear in

(continued)
problem descriptions. Plans are stereotypic methods for implementing goals. A large part of writing programs consists of identifying goals that must be satisfied and selecting plans to implement these goals. Similarly, PROUST retrieves plans from its knowledge base for each goal referred to in the problem description. It compares these plans to the student's program to determine which fits the program best.

Figure 4 shows PROUST's definition for the Sentinel-Controlled-Input goal. The goal definition contains a series of slots: InstanceOf, Form, MainSegment, etc., together with fillers for each of these slots: Read&Process, MainLoop:, ?New, etc. These slots serve various functions, only some of which we will discuss here. The most important slots are the Instances and InstanceOf slots. The Instances slot lists the various plans in PROUST's knowledge base for implementing this goal. This slot's filler is a list of five items, each of which is the name of a plan. The InstanceOf slot indicates the class to which this goal belongs. The goal class in this case is Read&Process, which is the class of all goals that involve reading a sequence of values and processing them.

Figure 5 shows a plan, the Sentinel-Process-Read-While plan. This is one of the instances of the Sentinel-Controlled-Input goal. This plan is a simplified version of the one PROUST actually uses. Plans are also defined in terms of slots and fillers. The most important slot is the Template slot, which describes the form the Pascal code implementing this plan should take. Plan templates consist of Pascal statements, subgoals, and labels. The Pascal statements are written in list notation rather than ordinary Pascal syntax; for example, the form (WHILE (? * ) DO ...) in Pascal syntax would appear as WHILE (?Input < > ?Stop) DO ... Symbols that are preceded by question marks are pattern variables; these are substituted when the plan is used. ?New is substituted by a Pascal variable containing the input data, and ?Stop is substituted by a constant, the sentinel value. The ?* statement is a "wild card" pattern that can be substituted by an arbitrary sequence of Pascal statements; this is just a placeholder in the plan. Subgoals are indicated by (SUBGOAL ...) forms in the template; these are goals that must in turn be implemented using other plans.

**MATCHING PLANS**

Let's look at how plans and goals are used to understand a program. The plan in listing 1 has been implemented correctly. You will see how PROUST hypothesizes a plan that the program might use and then matches this plan against the program. In this case the match succeeds because the plan is implemented correctly. In the next section we will examine what happens when plans fail to match because the student's code has bugs. The first step, before any analysis of goals and plans takes place, is to parse the student's Pascal program. This results in a parse tree. All subsequent analysis of the program is performed on the parse tree rather than on the original program text.

When PROUST analyzes a program, it selects goals from the problem description one at a time. Let's suppose that the goal that is selected first is (Sentinel-Controlled-Input ?New ?Sentinel). PROUST substitutes any
Busy offices, take note: Our new letter-quality printer zips along at 40 characters per second and sells for only $995. Its 13" print line will handle your spreadsheets and every imaginable kind of correspondence—plus graphics! Quiet, too—less than 60 dB(A). And the 3K buffer memory (expandable to 15K) lets you use your computer for other purposes while the JUKI is printing. Compatible with most computers. (You can even get an optional tractor feed and cut-sheet feeder for it!) Now you know why JUKI printers are humming in offices all over the world!
PROUST substitutes any objects whose values are already known into the goal expression.

objects whose values are already known into the goal expression. At this point the only information available about ?New and ?Sentinel is what appears in the problem description. There the value of ?Sentinel is listed as 99999, but the value of ?New is not listed. Therefore, the value of ?Sentinel is substituted into the goal expression. But ?New is left unchanged. The resulting goal expression is (Sentinel-Controlled-Input ?New 99999).

PROUST must now retrieve from its programming knowledge base plans that could be used to implement the goal Sentinel-Controlled-Input. It retrieves the filler of the Instances slot of the definition of Sentinel-Controlled-Input shown in figure 4. This filler is a list of five items: Sentinel-Process-Read-While, Sentinel-Read-Process-While, Sentinel-Read-Process-Repeat, Sentinel-Process-Read-Repeate and Bogus-Counter-Controlled-Loop. Each of these is the name of a plan. PROUST selects the first plan from the list, Sentinel-Process-Read-While. This will be PROUST's initial hypothesis of how the program implements the goal Sentinel-Controlled-Input.

Just as known values of objects were substituted into the goal expression (Sentinel-Controlled-Input ?New ?Sentinel), these same substitutions must now be performed on the selected plan. To see what substitutions must be made, PROUST examines the Form slot of the definition of Sentinel-Controlled-Input (Sentinel-Controlled-Input ?Input ?Stop). The Form slot indicates which pattern-variable names are used in the plans that implement the goal. By comparing the Form slot to the goal being analyzed, PROUST determines that each occurrence of ?Input in the selected plan should be replaced by the value of ?New. Each occurrence of ?Stop should be replaced by the value of ?Sentinel or 99999. Because the value of ?New is not known, PROUST simply replaces ?Input with the variable name ?New. PROUST assumes that the process of matching the plan against the program will determine what the value of ?New is.

Figure 6 shows how the Sentinel-Process-Read-While plan is matched against the program example in figure 1. Matching starts with the WHILE loop. The pattern in the plan for the WHILE loop is (WHILE (< > ?New 99999) . . . ). There are two WHILE loops in this program: WHILE Val < > 99999 DO . . . and WHILE Val < = 0 DO . . . . PROUST tries to match each pattern against each of these statements. (WHILE (< > ?New 99999) . . . ) matches WHILE Val < > 99999 DO . . . provided that Val is substituted for ?New.

(WHILE (< > ?New 99999) . . . ) does not match WHILE Val < = 0 DO . . . because the statement has a < = test instead of a < > test, and because it tests against 0 instead of 99999. Therefore PROUST selects WHILE Val < > 99999 DO . . . as the match for the plan pattern. Since Val must be substituted for ?New so that the pattern matches, Val is recorded as the binding for ?New. Afterward, any component of the plan that has ?New in it will have Val substituted for ?New.

The next plan component that PROUST matches against the program is (BEGIN . . . ). There are several different BEGIN statements in the program that could be used to implement the goal Sentinel-Controlled-Input. It retrieves the filler of the Instances slot of the definition of Sentinel-Controlled-Input shown in figure 4. This

Figure 6: This shows how the Sentinel-Process-Read-While plan is matched against the program in figure 1.
Since PROUST first generates a possible implementation and then matches it against the program, it is performing analysis by synthesis.

process that it went through in selecting the Sentinel-Process-Read-While plan. It first substitutes all pattern variables in the goal expression that have bindings. Since ?New has Val as a binding, the subgoal expression becomes (Input Val). PROUST then retrieves plans from the plan database that implements Input. One such plan is the READ PLAN, which employs a Pascal Read statement to input the value. This plan matches the Read statements in the program.

This example shows how PROUST analyzes programs by predicting the plans that might be used and then testing these predictions. By selecting from a range of different plans and subplans for each goal, PROUST is able to generate a variety of different ways of implementing each goal. Since PROUST first generates a possible implementation and then matches it against the program, it is performing analysis by synthesis. In general, generating plan hypotheses and matching them against programs is rather more complex than the scenario presented here. For more information, see reference 3.

IDENTIFYING BUGS
When the Sentinel-Process-Read-While plan was matched against the program in figure 1a, the plan matched exactly. Since there were no match errors, there must not have been any bugs in that particular plan. It is frequently the case, however, that none of the plans that PROUST predicts matches the program. When this happens PROUST must look for bugs that account for the mismatches in one of the plans. In this section we will discuss one of these mismatches in connection with the WHILE-for-IF example in figure 2a and show how it leads to the discovery of a bug.

The bug in the WHILE-for-IF example is discovered in processing the Input-Validation goal. One of the plans that PROUST suggests for implementing this goal is the so-called Bad Input Loop Test plan. This plan consists of a WHILE statement that tests the input to see if it is out of range, an error message inside the WHILE loop, an Input subgoal that rereads the input if it is out of range, and a test to see if the exit condition for the main loop has been satisfied.

Listing 2 illustrates a correct implementation of this plan (solving the Averaging Problem).

The Bad Input Loop Test plan matches the WHILE-for-IF example of figure 2a in all but one respect: there is no test for the exit condition of the main loop, such as IF Val < 99999 THEN . . . . Where an IF statement is expected, a WHILE statement appears instead. PROUST has thus encountered a plan difference, i.e., a difference between the expected plan and the code. When PROUST encounters plan differences it does not give up on the plan; instead, it tries to find a way of interpreting the plan differences as bugs.

In most cases plan differences are explained by means of bug rules. Each bug rule has a test part, which examines the plan differences to see whether the rule is applicable, and an action part, which explains the plan differences.

Figure 7 shows the bug rule that is invoked to explain the plan differences in the WHILE-for-IF example. The rule is written in slot-filler notation: One set of slots constitutes the test part of the rule, and another set constitutes the action part. In the WHILE-for-IF rule the test part consists of a Statement-Type slot and an Error-Pattern slot. The Statement-Type slot indicates that the plan com-
ponent that failed to match the program must be an IF statement. The Error-Pattern slot has the value (IF , WHILE); this indicates that a WHILE statement was found when an IF statement was expected. These test conditions are both met in the WHILE-for-IF example, so the action part of the rule is activated. The action part of this rule consists of a Bug slot; the filler of this slot is a description of the bug associated with the plan difference. The bug in this case is a WHILE-for-IF confusion. PROUST's bug analyses of student programs consist of bug descriptions such as this. When PROUST presents its findings to the student, it takes each bug description and generates an English-language translation for it and, if appropriate, generates data illustrating the presence of the bug.

**TEST RESULTS**

PROUST has been tested on large numbers of beginners' programs. We assigned a class of novice programmers the Rainfall Problem (an elaboration of the Averaging Problem), which is shown in figure 8a.

We modified the Pascal compiler our students were using so that it would save copies of every syntactically correct program that they compiled. This allowed us to examine not only the final solution the students handed in, but also every intermediate version of their program. Since the first versions are likely to be the buggiest, this lets us test PROUST under the most difficult conditions possible.

Figure 8b shows the results of running PROUST on the Rainfall Problem. There are 206 different attempted solutions to the Rainfall Problem in the test set. Of these, PROUST was able to derive a complete understanding of 79 percent of the programs, identifying 94 percent of the bugs, a percentage far higher than people are able to achieve. The chart also indicates that 6 percent of the bugs were not recognized and 55 were false alarms. Bugs are counted as not recognized if they are either misdiag-

---

**(continued)**

**Figure 7:** The WHILE-for-IF bug rule invoked by PROUST to explain the plan difference between the faulty part of the program of figure 1 and the correct implementation of this part in listing 1.

**Figure 8:** (a) The Rainfall Problem was assigned to a class of novice programmers to test the effectiveness of PROUST. (b) This shows the results of running PROUST on the Rainfall Problem.
Mac Inker

Re-ink any fabric ribbon AUTOMATICALLY for less than 5¢. Extremely simple operation with built-in electric motor. We have a MAC INKER for any printer: cartridge/spool/harmonica/zip pack. Lubricant ink safe for dot matrix printheads. Multicolored inks, uninked cartridges available. Ask for brochure. Thousands of satisfied customers. $54.95+

Mac Switch

Mac Switch lets you share your computer with any two peripherals (serial or parallel), ideal for word processors—never type an address twice. Ask us for brochure with tips on how to share two peripherals (or two computers) with MAC SWITCH. Total satisfaction or full refund. $99.00

Order toll free 1-800-547-3303

Computer Friends
6415 SW Canyon Court
Suite #10
Portland, Oregon 97221
(503) 297-2321

PROUST

Ultimately, PROUST will be incorporated into a programming curriculum for students.

nosed or missed entirely. Bugs are counted as false alarms if they are either not present in the program or if they are present but misdiagnosed. Consequently, misdiagnosed bugs are counted both as false alarms and as not recognized, which inflates the total number of diagnosis errors.

When PROUST fails to understand a program completely, its ability to recognize bugs deteriorates; 17 percent of the programs were analyzed partially. In such cases PROUST deleted from its bug descriptions those bug analyses that were questionable, given that the program was only partially understood. The bug descriptions that remained were frequently wrong, but at least PROUST was able to warn the student to take the analysis with a grain of salt. The remaining 4 percent of the programs deviated from PROUST's expectations so drastically it could not analyze them at all. In these cases no bug report was generated.

We are not yet sufficiently satisfied with PROUST's accuracy to make it generally available to students. The false-alarm rate should be lower, and the fraction of programs that PROUST analyzes completely should be higher. When part of a program cannot be analyzed, PROUST should try to determine why that part of the program cannot be analyzed and try to account for the unanalyzed code. Once this is done we expect PROUST to succeed on 80 to 85 percent of the programs it analyzes. At that stage we will make it available to students on line.

CONCLUSION

PROUST is capable of high-quality analysis of bugs in novice programs. It is almost at the level where it could be incorporated into a programming curriculum and provide significant benefits to students. Here we have given a simplified view of how PROUST finds bugs. The next step is to build an automated programming course around PROUST. Such a system would not only correct students' mistakes but would also suggest additional problems for the students to solve to give them practice where they need it.

AUTHORS' NOTE

This work was cosponsored by the Personnel and Training Research Groups, Psychological Sciences Division, Office of Naval Research, and the Army Research Institute for the Behavioral and Social Sciences, under Contract Number N00014-82-0714, Contract Authority Identification Number Nr 154-492.

Additional papers dealing with bug classification, automatic debugging, and the cognitive underpinnings of programming can be obtained by writing to the following address: Cognition and Programming Project, Department of Computer Science, Yale University, POB 2158 Yale Station, New Haven, CT 06520.

Special thanks to Greg Kearsley and Leszek Izydor of Courseware Inc. and Bret Wallach of Advanced Processing for their efforts in developing Micro-PROUST.

REFERENCES

Double your IBM PC's processing speed for under $650.

AT speed for your IBM PC, with QuadSprint by Quadram.

Quadram introduces a rapid advancement in IBM PC performance. QuadSprint. The innovative expansion board that doubles the processing speed of your personal computer. Just plug the totally transparent QuadSprint into your system and watch all your PC programs (Lotus 1-2-3, dBASE III, Wordstar, and more*) run faster and more efficiently than ever before... without special commands or interface software.

But best of all, you can pick up QuadSprint without running up a huge bill. At less than $650, QuadSprint is about half the price of other accelerator (turbo) cards and turns your PC into a machine that's virtually as fast as the new PC AT.

So make your own rapid advancement. To the Quadram dealer closest to you. And see how to double the processing speed of your IBM PC. With QuadSprint by Quadram.
100 MHz scope, counter, timer, multimeter: All one integrated system.

Now make measurements faster, easier, with greater accuracy and user confidence. The Tek 2236 makes gated counter measurements, temperature, time, frequency, resistance and voltage measurements push-button easy. You see results concurrently on the 9-digit numeric readout and CRT display.

Its complete trigger system includes pushbutton trigger view, plus peak-to-peak auto, TV line, TV field, single sweep and normal modes.

At just $2650, the 2236 includes the industry's first 3-year warranty on all parts and labor, including the CRT.

Integrated measurement system. 3-year warranty. 15-day return policy. And expert advice. One free call gets it all! You can order, or obtain literature, through the Tek National Marketing Center. Technical personnel, expert in scope applications, can answer your questions and expedite delivery. Direct order's include probes, operating manual, 15-day return policy, full warranty and worldwide service back-up.

Order toll-free:
1-800-426-2200

Extension 57

In Oregon call collect:
(503) 627-9000 Ext. 57

Or write Tektronix, Inc.
P.O. Box 1700
Beaverton, OR 97075

Copyright ©1984, Tektronix, Inc. All rights reserved. TTA-324-1. U.S. Domestic price F.O.B. Beaverton, Oregon. Price subject to change.
ARCHITECTURES FOR AI

by Michael F. Deering

Hardware and software for efficient processing

As artificial intelligence software grows in complexity and as AI applications move from laboratories to the real world, computational throughput and cost are increasingly important concerns.

In general, there are two motives for increasing the efficiency of computations. One is the need to obtain faster computation, regardless of cost. This may be due to explicit real-time constraints or to current methods being taxed well beyond the limit of complexity or timely response. The other motive seeks to obtain a better cost/performance ratio. Behind both, however, is usually the imperative of real-world market pressures.

Opportunities for increased efficiency in AI computations exist at every level. Improved instruction-set designs combined with improved AI language semantics allow more powerful compiler optimization. Concurrent machines allow parallel execution of LISP and declarative constructs, raising issues of and, or, and stream parallelism. Custom VLSI (very-large-scale integration) hardware for current AI performance bottlenecks includes devices such as hardware unifiers, associative memory, and communication hardware for coordinating parallel searches. Many of these speedups are orthogonal and can potentially increase performance by several orders of magnitude. However, this is not always the case; some language optimizations have a tendency to serialize computation, thereby negating the gains of parallelism.

As part of an effort to design a massively concurrent architecture for AI computation (the Fairchild FAIM-I project—see the text box on page 202), this article examines several potential throughput increases and their interactions.

MISCONCEPTIONS

There are several misconceptions about what needs to be done to improve computational throughput for AI. Since most AI programming is done in LISP, many researchers believe the key is simply to make LISP faster. However, this approach ignores other, easily obtainable potential speedups.

Other computer scientists see no reason to concentrate on anything other than the fundamental problem of parallelism, an approach that presumes a routine solution of a very difficult problem: decomposing arbitrary AI computations to effectively use thousands of parallel processors. A problem with this approach is that most programs, even ones with a high degree of inherent parallelism, almost always have several serial bottlenecks. As an example, most parallel programs need to gather the result of one batch of parallel computations for reflection before generating the next batch. In many cases, these serial processes dominate the running time of the entire program. So you cannot ignore the issue of how to extract as much serial speed as possible from languages and machines. Otherwise, once you’ve built an expensive parallel machine hundreds of times faster than existing machines, a new compiler or microcode might make some existing serial machines even faster. The machine coded unifier in the Crystal AI language, for instance, is two orders of magnitude faster than the LISP-coded unifier in the pre-

(continued)

Michael F. Deering is a computer scientist with the Computer-Aided Systems Laboratory. He can be reached through Schlumberger Palo Alto Research, 3340 Hillview Ave., Palo Alto, CA 94304.
decssor PEARL AI language (see reference 3).

**SOFTWARE IMPROVEMENTS**

One way to improve AI language implementations would be to compile the language directly to machine code. Most AI "languages" are not computer languages but packages of routines on top of an existing language, usually LISP. While this is a great way of rapidly prototyping a language and results in considerable savings in development costs over a traditional full compiler, it does not lead to very efficient implementations. If increasing the speed of AI applications leads to the extreme of building custom parallel processors, it is silly not to compile AI languages directly onto these processors. There is a large body of computer science knowledge on compilation that can be brought to bear. and great potential for performance increases. (Consider the 100-times plus speed difference between most LISP-based Prolog interpreters and Warren's DEC-20 Prolog compiler—see reference 17.)

Make sure that the language is compilable. Because most AI languages have been interpreted, issues of compilability generally have not been thought through. Language features that seemed efficient in an interpreted environment may be very slow when compiled, if they are compilable at all.

A proper choice of features in light of a compiled environment leads to more efficient program execution.

Another problem with many AI languages is the lack of general tools to support common applications. While it can be argued that this allows users to write their own customized tools (which may be very efficient), most users will do a much worse job than the language implementor could. For example, PEARL did not directly support any particular theorem-proving or search system (such as forward and backward chaining), leaving users to their own devices. But the MRS system (reference 11), while providing a convenient meta-level control for users to write their own search systems, also provides a range of built-in search strategies, from backward chaining to full-resolution theorem proving. An extensive library of well-written routines of general use speeds the operation of typical user programs (not to mention their development).

**HARDWARE CONSIDERATIONS**

It is often claimed that conventional computer instruction sets are not well suited for AI software, but there have been few attempts to quantify the reasons why. For older-generation machines, you can easily point to severe address-space limitations and the lack of flexible pointer-manipulation facilities (reference 6). But what of the new, modern machines, such as the DEC VAX, Motorola 68000, National Semiconductor 16000, and various RISC (reduced instruction set computer) machines—how do they compare with the custom LISP machines (references 13 and 15)? To obtain insights into instruction-set design, I examined several LISP systems and the fine details of their implementation (reference 5). I learned, among other things, that it is very important to identify how rich an environment you wish to support. For example, contrary to many people's expectations, on a large application program Franz LISP (reference 8) on a DEC VAX-11/780 was not significantly slower than Zetalisp on a Symbolics 3600. The difference was that nearly all type-checking and generic-function capabilities were either turned off (by the programmer) or missing in Franz LISP, where the overall environment was much poorer. Assuming that such features are not frills, I also examined the expense of providing them on different architectures.

Flexible LISP processing depends on dynamic type checking and generic operations. Associating the data type directly with the data object means that the data type will always be at hand during processing, and this is the reason that tagged memory architectures are well suited to LISP processing. Because of this association, the speed of various processors on the generic LISP task depends on how fast the processors can effectively emulate a tagged-memory architecture.

I performed a number of experiments to compare LISP systems on different processor instruction sets. As a representative sample, table I shows the timing results for a simple aggregate function incorporating some of the most common LISP primitives—CAR, CDR, plus, and function call/return.

More extensive benchmarks have borne out roughly the same speed ratios. Not unexpectedly, the variance

<table>
<thead>
<tr>
<th>Machine</th>
<th>Zetalisp</th>
<th>Franz LISP</th>
<th>PSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAX</td>
<td>53.8 µs</td>
<td>13.9 µs</td>
<td>5.6 µs</td>
</tr>
<tr>
<td>68000</td>
<td>65.2 µs</td>
<td>43.6 µs</td>
<td>5.8 µs</td>
</tr>
<tr>
<td>68010</td>
<td>68.6 µs</td>
<td>43.6 µs</td>
<td>10.6 µs</td>
</tr>
<tr>
<td>68020</td>
<td>16.1 µs</td>
<td>19.9 µs</td>
<td>3.1 µs</td>
</tr>
<tr>
<td>MIT CADR</td>
<td>19.0 µs</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>3600</td>
<td>6.4 µs</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Table I: The timing results of the aggregate function `foo` for three LISP implementations on six different processors.

(continued)
Anything Better Would Have To Be Magic

...Easier than a File Manager and more Powerful than a DBMS!

Compare INFORMA:

- **User-Oriented** — Menu-driven - no complex commands to learn or remember; only two finger typing skills needed; information retrieval and change procedures can be mastered in less than 20 minutes. Create applications and complex reports by "painting" what you wish to see on the screen.

- **Powerful** — Create a simple contact name file in minutes or a complex point of sale inventory management database in just days. In a comparison study done by Galloway Partnership of St. Louis, Missouri, a functional, online, order entry/inventory management system was created using INFORMA in 6 hours. Creation of the same system with dBASE III took 40 hours and with RBASE 4000 it took 10 hours.

- **Flexible** — Change any database as often as your needs change. No need to worry about loss of data. INFORMA does all the work at a touch of a button.

- **Growth-Oriented** — Start with a single user version now, then later, when you expand into a LAN environment, upgrade to a LAN version of INFORMA, and all of your applications automatically become Multi-User.

<table>
<thead>
<tr>
<th>File</th>
<th>dBASE III</th>
<th>RBASE</th>
<th>INFORMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>512</td>
<td>40 IRRS</td>
<td>10 IRRS</td>
<td>8 IRRS</td>
</tr>
<tr>
<td>2048</td>
<td>60 IRRS</td>
<td>15 IRRS</td>
<td>8 IRRS</td>
</tr>
<tr>
<td>3200</td>
<td>12 IRRS</td>
<td>3 IRRS</td>
<td>8 IRRS</td>
</tr>
<tr>
<td>6300</td>
<td>2 IRRS</td>
<td>2 IRRS</td>
<td>8 IRRS</td>
</tr>
</tbody>
</table>

$2654 | $695 | $495 | $199

*Galloway Study  † Includes Pts: Report

---

**Introductory Offer**

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
<th>Regular Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-user</td>
<td>$199</td>
<td>$795</td>
</tr>
<tr>
<td>LAN/Multi-user</td>
<td>$599</td>
<td>$1495</td>
</tr>
</tbody>
</table>

*Offer Expires April 10, 1985*

---

Pics: FILE & PICS REPORT are trademarks of Software Publishing Corporation; dBASE III is a trademark of Ashton-Tate; RBASE is a trademark of MicroHIM, Inc.
Listing 1: MC68010 assembly-language code for the LISP function CAR. The code in boxes can be replaced by enhancements to the instruction set to decrease the code's execution time.

Zetalisp car for 68010

;To take the car we do a few lines of in line code and
;then index jump to a subroutine. (Space for time.)
;The cons cell to take the car of is assumed in a0.
;dispatch to CAR subr based upon the tag in upper bits of a0

4 move1 a0,d2 ;put a copy of the arg into d2
14 lsll #8,d2 ;first 8 of: shift copy over by 9 bits
10 lsll #1,d2 ;last 1 of: shift copy over by 9 bits
14 andl #0FFFFF,d2 ;and off non-tag (shifted over)
4 movel d2,a2 ;need tag in A-reg for dispatch
18 jsr CAR(a2) ;branch to car table indexed by type

;At return, the car of the object is in a2

The CAR subroutine.

CAR + DTP-CONS: CAR procedure entry point

;for normal cons cell.
;We will arrive here if the argument passed to car was of type
;"pointer to cons cell": Other objects passed to car = > error
;follow the point to the car

4 movel a0,d2 ;put a copy of the arg into d2

14 andl #0xFFFFF,d2 ;and off tag
4 movel d2,a2 ;put d2 into an address register
12 movel (a2),a2 ;follow the car pointer.

;dispatch to TRANSPORT subr based upon the tag
;in the upper bits of a2

4 movel a2,d2 ;put a copy into d2
24 lsll #8,d2 ;first 8 of: shift copy over by 9 bits

(continued)

exceeded 50 percent. Slight modifications of the compilers or instruction sets produced similarly large changes in the speeds.

Existing Franz LISP and PSL (reference 12) compilers for the DEC VAX and Motorola 68000 were used to compile foo. Type checking was turned off to obtain the fastest speeds. (Both PSL and Franz LISP were told not to verify that the arguments of + were small integers; Franz LISP did and PSL did not check for numeric overflow.) The timing figures were generated by examination of the assembly code produced and some actual machine timings. The timings of Zetalisp for the 3600 and CADR were taken by running existing systems. Zetalisp-like operations for the DEC VAX and Motorola 68000s were hand-coded, and the timings were produced in the same way as those for PSL and Franz LISP. The 68000 and 68010 were 10-MHz, no-wait-state machines. The 68000 used 24-bit addresses, leaving the upper 8 data bits free for tag values. The 68010 used 32-bit addresses and required removal of the tag bits with an AND operation before addresses could be used. The 68020 timings are estimates based upon the best "cache case" timings in the 68020 data book and are not as accurate as the timings for the other machines. The 68020 is assumed to be running at 16 MHz with an external 16K-byte memory cache and memory-management unit (MMU), giving a memory-access time of 185 nanoseconds. (The 68020 has an additional small instruction cache on board.)

Other experiments examined the architectural requirements for fast computation of some AI operations not directly supported by LISP, in particular unification and associative search. When AI languages are fully compiled, these two functions often become the computational bottlenecks. For traditional microprocessor instruction sets, the requirements of these operations turned out to be the same as for LISP primitives: fast simulation of tagged architectures. More specifically, the instructions and
capabilities that would make a conventional microprocessor better suited for LISP (along with Prolog, Krypton, MRS, PEARL, etc.) are:

- "Extract bit field and dispatch": an instruction to extract a sequence of bits from an operand, then add these bits to a dispatch table address, and jump indirect. This is necessary for rapid handling of tag values in generic operations, type checking, and for helping with unification.
- "Extract two bit fields, concatenate, and dispatch": an instruction for dispatching on the context of two operands (needed for the same reason as the one-argument version).
- The memory address system of the processor should ignore the upper address bits of data addresses that are not otherwise in use. This allows the wasted space in 32-bit pointers to be used as a tag field.

In the Zetalisp-like code, more than 30 percent of the time on the 68000s was spent in emulating the bit-field dispatch instructions. Stripping off the tag bits accounted for approximately another 10 percent. It is therefore estimated that if the existing microprocessors had hardware support for these features, full type checking LISP (like Zetalisp) could run almost twice as fast. These percentages come from hand-implementing several Zetalisp primitives on current microprocessors. As an example, listing 1 shows the 68010 assembly language code for CAR. The number of processor clock cycles per instruction is shown in the left-hand column. The boxed code can be replaced by a single instruction (see listing 2).

Listing 2 shows CAR for the 68010 recoded, assuming two architectural refinements. First, assume that the upper 7 bits of all addresses are ignored by the virtual-memory system. Second, assume one additional instruction, "extract bit field and dispatch." This instruction takes the bit field out of the second argument, as specified by the first argument (format: `<#starting-bit, field-width>`), adds it to the third argument (the jump-table...

```plaintext
TRANSPORT + NORMAL: ;jump entry point for normal
:cons cell contents
8 rts ;We're all done, return
182 clocks, @10MHz = 18.2 µs

Listing 2: The modified listing 1 code, incorporating architectural refinements to the processor's instruction set.

;Now the car routine is recoded using the new instructions:
;index jump to a subroutine.
;dispatch to CAR subroutine based upon the tag in upper bits of a0
22 extract-dispatch <#26,#6>,a0,CAR
;The CAR subroutine.
CAR + DTP-CONS: ;CAR procedure entry point for normal
:cons cell.
;follow the pointer to the car
12 moveal (a0),a2 ;the upper 6 bits of a0 are ignored.
;dispatch to TRANSPORT subroutine based upon the tag
;in the upper bits of a2
22 extract-dispatch <#26,#6>,a2,DISPATCH
TRANSPORT + NORMAL: ;jump entry point for normal
:cons cell contents
8 rts ;We're all done, return
64 clocks, @10MHz = 6.4 µs, 2.8 times faster
```
base address), and indirectly jumps through this address. (The 68020 has a fast bit-field extraction instruction. This accounts for much of its increased speed over the older 68000 on the LISP task in table 1.)

For new, fully custom machine designs that are tailored specifically for AI, such features can all be built in. With a tagged architecture, many generic operations, such as add, do not need to be dispatch subroutine calls. Rather, the processor can examine the tags of the arguments to an add instruction and, if they are simple integers, directly perform the add. If the arguments are of a more exotic numeric type, the processor can generate a software interrupt to an appropriate routine. Further, for such designs it is very helpful to have a “smart” memory subsystem capable of rapidly chaising down indirect pointers as on the DEC PDP-10 and the custom LISP machines. Additional customization of an AI instruction-set design generally falls into the category of complete, attached coprocessors rather than just additional instructions. This tactic has already been taken by many microprocessors whose floating-point instructions are handled by what could be viewed as attached coprocessors. The specific categories of important attached coprocessors include pipelined unifiers, associative-memory subsystems, multiprocessor communication packet switches and special signal-processing chips for vision and speech. Studies of a custom instruction set for the FAIM-I machine indicate that not only can a single processor be designed that is memory-bound by DRAM (dynamic random-access read/write memory) access delays but that this is the case even when a large cache is employed. This is an important fact. It means that parallel machines sharing a single large common memory are a bad idea because there isn’t enough memory bandwidth to go around.

PARALLELISM: THE GREAT HOPE

Traditional views cite concurrency as a great method of obtaining increased computational power. In practice, however, designers continue to concentrate on making faster and faster single-processor machines. Now that hard technological limits have been reached for serial processors, parallelism has become recognized as perhaps the only hope for further performance increases. Unfortunately, concurrency is not free—it brings new systems organization problems to the fore.

The first conceptual problem with parallelism is the confusion between multiprocessing and multiprocessors. There are algorithms that very elegantly express a set of cooperating processes...
Resolution That Blows You Away

Being #1 has its advantages!
Our Model 440 (720 by 400) Ultra High-Res
monitor is the World's standard for
efficiency. Its capabilities will out-rank
those of our competitors for a long time.
We won't Stop producing the finest!
You can't!
Not when you're Number One!

MODEL 440
12 inch Ultra High-Res RGB
Color Monitor
Designed for up-grading
display of IBM PC
720 x 400 line resolution in
non-interlaced mode
4000 character display
capability.
Switchable to green
character display.

MODEL 425
12 inch Super High-Res RGB
Color Monitor
Fully compatible with IBM
PC and PC Compatibles.
640 x 262 line resolution
Switchable to green
character display
Built in audio.

MODEL 420L
12 inch Super High-Res RGB
Color Monitor
Long Persistence Phosphor
Tube
Fully compatible with IBM
and most other personal
computers.
640 x 262 line resolution in
non-interlaced mode
640 x 525 line resolution in
interlaced mode
Unlimited colors available
through analog video circuit.

MODEL 411
12 inch High-Res RGB Color
Monitor
Fully compatible with IBM
PC and PC Compatibles.
510 x 262 line resolution
Switchable to green
character display
Built in audio.

MODEL 122
12 inch Super High-Res
Amber Display
Fully Compatible with IBM
TTL Monochrome Display
Horizontal scan.
Rare 8.432 KHz
Optional Tilt/Swivel Base
available (Model 110-12).
Green phosphor available
(Model 121).

The Smart Choice.
Inquiry 424 for Dealers. Inquiry 425 for End-Users.
18005 Courney Ct. City of Industry, CA 91748
(818) 810-1291
© 1985 TAXAN Corporation
*IBM is a registered trademark of International Business Machines, Inc.
Inquiry 332

**C PROGRAMMERS**

Add itional charge, when you order
MENTION THIS AD and choose any one of the following C tools from Lattice at no db VISTA with source code:

- Lattice Window Manager
- CVUE Screen Editor
- Panel Forms Manager
- Curses Unix-compatible Screen Manager
- Lattice C Compiler

Maximum data efficiency using the db VISTA, Lattice C compiler, available for including:

- Virtual memory disk accessing
- Fast s-tree indexing method
- Three month extended applications support included

**FREE OFFER**

MENTION THIS AD and choose any one of the following C tools from Lattice at no additional charge, when you order db VISTA

- Lattice C Compiler
- C-Sprite Program Debugger
- Lattice Window Manager
- Curses Unix-compatible Screen Manager (source code included)
- Panel Forms Manager
- CVUE Screen Editor

$db$ VISTA with source code: $495
$db$ VISTA without source code: $395

COMPLETE C Development package including:

- db VISTA, Lattice C compiler, C-Sprite, CVUE, & Curses
  a $1520.00 value for only $895.00

$db$ VISTA available for PC-DOS/MS-DOS, for most popular C compilers including Lattice, DeNet, Computer Innovations, AZTEC. Also available for most Unix systems and CTOS.

**ARCHITECTURES**

The true measure of parallelism is how much faster a given program will run on 10 simple parallel processors compared to how fast it would run on a single simple processor and for what ranges of this is valid. The best you can hope for in principle is a factor of 10 speedup, but in practice this is rarely reached (due to overhead and communication contention). The maximum amount of speedup attained for a given program using any number of parallel processors indicates the inherent parallelism of that program. Unfortunately, for most existing programs written in traditional computer languages, the maximum parallelism seems to be about a four-times speedup (reference 10). This surprisingly low number is due to the style of programming enforced by the traditional languages. There are special-purpose exceptions to this rule and the hope is that nontraditional parallel languages will encourage more concurrent algorithms. Compilers for parallel machines can take advantage of such techniques as and, or, and stream parallelism if AI languages support the concurrent control structures that give rise to them. But the jury is still out as to the amount of speedup such techniques can deliver.

Another problem in parallelism is failure to take the entire systems context into account. Before building a parallel machine, you must not only simulate the machine but determine how to write large programs for it. This reveals potential flaws in the machine before commencing with time-consuming hardware development. The simulation must properly take scheduling and technologically realistic hardware-communication overhead into account or the timings produced will have little or no connection to reality.

Good examples of software systems that have not taken realistic hardware considerations into account are some of the parallel LISP machines that have been proposed (reference 9). These proposals point out places in LISP-like processing where multiple processors could be exploited, but they do not analyze the overheads incurred. They usually assume that multiple processors share a single large main memory where CONS cells and other LISP objects are being stored. This is the equivalent of assuming that memory is infinitely fast, which is just as unrealistic as assuming that processors are infinitely fast. The problem is that with current technology a single well-designed LISP processor could run faster than current mass-memory technology could service it. Adding processors would thus not result in any increase in throughput.

There are several reasons why designers of parallel LISP systems have missed this fact. Perhaps one is that current 68000 LISP machines are not memory-bound. Another is the potential use of caches to reduce the required memory bandwidth to each processor. However, even with caching, the number of processors that can be added is not unlimited: a 90 percent hit-rate cache would accommodate only 10 processors.

What about the thousand-processor architectures envisioned? Experimental data shows that a single processor can run significantly faster than memory can service it. You must employ a cache just to keep a single processor running full tilt. The lesson is that processors are still much faster than memories, and any sharing of data between multiple processors (beyond a few) must be done with special communication channels. In other words, MIMD (multiple instruction, multiple data) machines with a single shared memory are a bad parallel architecture. This has important implications for some AI paradigms, such as Blackboard sys-
You want full support from your dealer, and consider the difference professionals can make. When you're ready to buy a computer, consider the CompuPro's System 816™ family and the business and scientific computers available...

**ARCHITECTURES**

operations that fit this description are symbolic matching of abstract objects, semantic associative memory, parallel-processor communication, and signal-to-symbol processing.

**MATCHING AND FETCHING**

Matching two objects is a general and pervasive operation. Most AI languages define one or more match functions on their structured data types (such as frames). Some of these match functions are very ad hoc (thus supposedly flexible), but others are subsets or supersets of unification. If significant support for matching is to be provided in hardware, the function must have well-defined semantics.

AI-language objects can be complexly structured and used to represent semantic knowledge. The objects can contain embedded pattern-matching variables that are given bindings as a side effect of the match operation. Thus the matching of these objects is complex. To give the flavor of the matching process, I'll present a short description of the unification matching function. (For a more exact description, see any good description of the Prolog language.) Matching is best described by recursively defining the semantics of the match operation:

1. If the two objects to be matched are structured (nonscalar) objects, recursively match their subcomponents (or "slots"). The two objects are said to match if and only if all pairs of slots match. Otherwise, the objects do not match, and any side effects of the matching process must be undone.
2. If the two objects to be matched are scalar objects (integers, floating-point numbers, atoms, symbols, characters, etc.), then the match function reduces to simple equality.
3. If one of the two objects to be matched is a pattern-matching variable, the match operation must check the variable's binding state. If the variable already has been bound to a value, the match operation continues using the value in place of the variable. If the variable has no current binding, it is bound to the value of the object against which it was being matched, and the match succeeds.
4. If both of the objects to be matched are unbound pattern-matching variables, then one is bound to the other as a placeholder for possible future bindings. If either variable is later bound to a "real" value, then both variables will be bound to this value.

**CUSTOM VLSI**

One of the principal hopes for more efficient future computation is the use of custom VLSI hardware to accelerate particular functions. The ideal functions for silicon implementation should be current bottlenecks in AI systems and generic to many AI tasks.

Four of the most important classes of...

**PROFESSIONALS**

From computer systems to support... Dynacomp serves Canada.

When you're ready to buy a computer, consider the difference professionals can make. You want full support from your dealer, and complete reliability from your computer. At Dynacomp, we offer both.

Dynacomp is Canada's 1st Full Service CompuPro System Center offering you the most cost-effective and advanced business and scientific computers available. CompuPro's System 816™family and the multi-user CompuPro 10 PLUS™. And we now offer UNIX™ on CompuPro, UniPlus™ + SYSTEM 5 for $1495. U.S. list™ on the CompuPro 816/EM™. Our support includes giving you the most computer for your money. Tell us what you do, and we'll put together a complete system that meets your needs... right down to the peripherals.

Our CompuPro systems include a library of the most popular and useful software. CompuPro's full year warranty and Xerox®

Inquiry 130

**DYNAACOMP**

COMPUTER SYSTEMS LTD.

210 W. Broadway Vancouver, B.C. V6Y 3W2
(604) 872-7737

74-6535 Mill Creek Dr.
Mississauga, Ont. L5N 2M2
(416) 826-8002

on-site service with designated systems.

Call Dynacomp for the professional support you expect when you buy a computer.

Since 1982, Full Service CompuPro System Center.

Dynacomp serves all Canada and parts of Asia and the Pacific Rim. Call us for details and information on our full product line including Phoenix, Microtech and Amiga.

CompuPro System 816 and CompuPro 10 PLUS are trademarks of CompuPro Xerox is a registered trademark of Xerox Corp. UNIX is a trademark of Bell Laboratories. UniPlus is a trademark of UniSoft Corp.

*Dynacomp serves Canada and parts of Asia and the Pacific Rim. Call us for details and information on our full product line including Phoenix, Microtech and Amiga.
The match operation produces a binary result: Did the two objects match successfully or not? Successful matches produce the bindings of pattern-matching variables necessary to make the two objects identical in as general a way as possible.

Many AI languages augment this match operation with checks for circularity in the list structure (the "occurrence check"), segment matches (similar to Snobol's), and the matching of sets and bags.

When a match function is applied to a database of objects, the operation is called matching. In this case matching becomes the inner loop operation, and this is a context in which matching should be optimized. An ideal solution would integrate matching circuitry with memory circuitry so that fetching would become a memory access of a content-addressable memory (CAM). The choice of match function is critical. To obtain reasonable memory densities, the relative silicon area of match circuitry cannot overwhelm that of the memory circuitry. Unfortunately, full unification and more complex match functions require too much circuitry to be built into memory cells. But if a formal subset of unification could be built in, then the CAM could act as a prefilter function for unification.

The primary source of unification complexity is the maintenance of the binding environment. The match function of mock unification resembles full unification except that all variables are treated as "don't cares" and no binders are used.

The FAIM-1 (Fairchild Artificial Intelligence Machine) is a multiprocessor system consisting of a number of identical processing elements called hectagons interconnected by a communication network. Each hectagon is a complete computer capable of sequentially executing a compiled program that is stored in its local memory. Hectagons communicate with each other via messages that are sent through communication ports. A hectagon has six ports that may be active concurrently.

The FAIM-1 architecture permits the connection of arbitrary numbers of hectagon processing elements in a hexagonal-mesh topology. The ensemble of hectagons is capable of exploiting very large levels of concurrent multiprocessing and as such should provide an extremely attractive target machine for future concurrent AI applications due to its performance. Moreover, each individual hectagon is itself a concurrent processor composed of six modular subsystems, each of which provides an important level of support for symbolic computation.

A hectagon is composed of six self-timed subsystems named FRISC, SRAM, ISM, CxAM, SPUN, and Post Office. Three of these subsystems (ISM, CxAM, and SRAM) are specialized memory systems that provide "intelligent" storage, while the other systems support inter- hectagon communication (Post Office), processing (FRISC), and unification (SPUN).

FRISC: The "fanatically reduced instruction set computer" component of the hectagon corresponds to the central processing unit in a conventional computer. It is a stack-oriented machine with a 20-bit word composed of a 16-bit data field and 4-bit tag field. Tag bits and associated tag-handling hardware support generic operations.

SRAM: The FRISC views most data structures as objects; a conventional memory with a small finite-state machine attached to it (collectively called the SRAM) provides an object-oriented memory system for the FRISC. For example, using the data tag bits the SRAM can chase a pointer chain to retrieve an object requested by the FRISC.

ISM: The "instruction stream memory" subsystem delivers instructions to the processor at high speed. Thus, the normal address calculation activities that have traditionally been the processor's responsibility are the ISM's job.

CxAM: The "context-addressable memory" subsystem provides direct hardware support for important pattern-matching functions inherent in symbolic programs. The structure of both entries and queries in the CxAM is an S-expression. Therefore, each slot can either be a structure or an atom. Atoms can be symbols, numbers, variables, or don't cares. The CxAM responds to four commands: Find Match, Give Match, Delete Structure, and Add Structure. The CxAM manages its own free space and removes garbage automatically.

SPUN: The "streamed pipeline unifier" supplies direct hardware support for logic programming. The CxAM finds the next rule or set of rules to be tried but does not perform full unification since its match function does not consider variable bindings. The SPUN unit takes the query and the streamed set of matched structures, detects which variables still need to be matched, fetches the binding in the current context from the SRAM, and completes the unification. This may entail binding a variable, in which case the SPUN unit must post this binding back in the SRAM. More complex structure manipulation requires the SPUN to interrupt the FRISC for services.

Post Office: Hectagons communicate by sending messages to each other; it is the duty of the Post Office to provide autonomous communication support for its hectagon. If a message's destination is not one of the sender's six neighboring hectagons, the Post Office will route the message to its destination by sending the message to a neighbor that is generally in the direction of the destination.

Conceptually, messages may be of arbitrary length. In fact, each message is broken up and sent as a sequence of fixed-length packets.
COLOR MAGIC: IBM-PC compatible S100 BUS graphics board.
Gives your 16 bit S100 BUS system IBM-PC compatibility.
- RGB and composite outputs
- IBM PC keyboard port
- All IBM-PC display modes plus two higher resolution modes

PRICE
16K $595.00
32K $695.00

MEGARAM: High performance high density Dynamic RAM.
Offers cost effective memory expansion in 16 bit systems.
- Only one wait state with 6MHz 80286
- Upto two Megabytes of memory

PRICE
256K $595.00
512K $1095.00
1024K $1995.00
2048K $3795.00

LIGHTNING 286: Highest performance processor available on the S100 BUS.
This 6MHz 80286 offers performance equivalent to a 14 MHz 8086.
- 16 Mbyte physical memory space
- 1 Giga byte virtual address space

PRICE
80286 $1095.00
80286/287 $1649.00

Computer Systems...
LOMAS DATA PRODUCTS offers a full line of single and multi-user computer systems, including systems compatible with the IBM-PC and PC-AT. If you have a requirement for a high performance 16 bit computer system and require IBM-PC compatibility call LOMAS DATA PRODUCTS, the only supplier of S100 BUS PC compatible systems.

Prices and specifications are subject to change.

NEW PRODUCTS!
- WINCHESTER/FLOPPY CONTROLLER
  Controls both floppy drive and Winchester drive from one board.
  Save slots and money. Features include: error correction, 16 head control, mixed 8K and 8" floppy drives.
  The price is less than one popular manufacturer charges for a floppy only controller. PRICE $649.00

- MEMORY DISK
  I/O mapped memory drive expandable to 16 Mbytes by cascading boards.
  Each board may contain up to 3 Mbytes and may be battery protected. Parity is included to insure corrupted data does not go undetected. The board is entirely COMPUPRO software compatible. PRICE $2995.00

DEALER ENQUIRIES INVITED.
In terms of the definition given above, steps 3 and 4 would be replaced with null operations—variables are just treated as "always match" objects. Mock unification is the most powerful subset of unification that is state-free. Therefore, mock unification is a suitable candidate for integration into VLSI memory. Associative-memory systems that utilize mock unification as their match function are called CxAMs: context-addressable memories.

From a hardware point of view, designing associative-memory architectures involves a resource trade-off between processing and memory: The more hardware devoted to "matching," the more data that can be examined in parallel, leading to faster search time per bit of storage. But conversely, the more matching hardware there is, the smaller the amount of hardware that can be devoted to data memory and the lower the density of the associative memory. The data-path bandwidth of the match hardware is also a factor in making these trade-offs. Therefore, associative memories can be rated by their storage density (bits stored per unit of silicon area) and search throughput (bits searched per unit of time per unit of silicon area).

I examined two classes of associative memory in which the match function is mock unification. One integrated the matching circuitry with memory circuitry, the other was hash-based. Hashing was considered because in many applications in the past software hashing has dominated CAM technology (reference 7). In more detail the two classes are:

1. Brute-force search: The contents of a memory are exhaustively searched by some number of parallel match units. For this class of search a custom VLSI mock-unification-memory architecture was designed.
2. Hashing: Objects to be fetched are hashed, and then the collision list is serially searched by a match unit. A proposed VLSI implementation of PEACE's hashing scheme (called the HCP, or hash coprocessor) served as an embodiment of hash-based searching. In this system the bit storage is conventional DRAM.

Figures 1 and 2 present graphs of CxAM design-space trade-offs. Figure 1 displays the range of bit and search-power densities. The hash-based CxAM has a single operating point because the fetch time is essentially independent of memory size, as is the density. The search-based CxAM has a variable range because one can vary the relative proportions of storage and processing in such architectures. The two lines represent two different search-based architectures. One has inherently better bit density, but over most of the design space this advantage is negated by an inherently worse search throughput. However, neither design completely dominates the other—a choice between the two will depend on the relative storage-density/match-throughput balance desired. Figure 2 displays the defect of the hashing CxAM. The minimum-usable-size system is too large for some applications.

Thus the trade-offs between these two schemes turn out to be in density and minimum usable size. As a representative data point, both techniques could perform a mock unification of their entire local memory contents for an average query (an S-expression of length 16) in 5 microseconds. The density of the search-based CxAM was about eight times worse than that of conventional single-transistor DRAM. The hashing

<table>
<thead>
<tr>
<th>Match Hierarchy</th>
<th>Object Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compare Instructions</td>
<td>32-bit data object</td>
</tr>
<tr>
<td>LISP EQ Function</td>
<td>Atomic LISP objects</td>
</tr>
<tr>
<td>LISP EQUAL Function</td>
<td>S-Expressions</td>
</tr>
<tr>
<td>Mock Unification</td>
<td>S-Expression with don't cares</td>
</tr>
<tr>
<td>Unification</td>
<td>S-Expression with matching variables</td>
</tr>
<tr>
<td>Unification &amp; Predicates</td>
<td>S-Expression with variables/predicates</td>
</tr>
<tr>
<td>Arbitrary User Code</td>
<td>arbitrary user representation objects</td>
</tr>
</tbody>
</table>
scheme used conventional DRAMs and so had high density. But the minimum configuration of a hash-based CxAM memory system using standard 256-K-byte DRAMs is 10 megabits, whereas the search-based CxAM can be configured for much smaller system storage sizes.

This extremely high speed of 5 microseconds portends greatly increased efficiency for systems bottlenecked by database fetch time. But which technique to use is very dependent upon grain size. If you are constructing a large nonparallel machine, a bank of HCPs and conventional DRAMs works well. But for an array of small-grain processors with on-chip memories, the search-based CxAM approach is more tractable.

Combining a CxAM with software-based routines provides a range of tailored matching services with sliding power/price/throughput trade-offs. The FAIM-1 machine provides an example of this design. For each of thousands of processors, there is parallel CxAM hardware for mock unification, a single, hard-wired, serial pipelined full unifier, and software post for post-unification matching features (attached predicates and demons). With such a hardware/software hierarchy, simple matches (like LISP's equal) run fast, whereas more complex matching services (such as KRL—see reference 1) cost more in time due to the software component.

In summary, matching is a common operation ripe for VLSI implementation, but the complexity of match functions varies. Table 2 arranges a simple list of match operations and data types in order of complexity. Successful high-performance AI machines will have to carefully decompose these functions into hardware and software components.

**PARALLEL-PROCESSOR ARCHITECTURES**

As already mentioned, processors working in parallel cannot communicate objects and messages by sharing a large common memory. Some sort of special message-passing (and forwarding) hardware is essential for efficient handling of the traffic. In many general-purpose parallel processors, interprocessor communication is the computational bottleneck.

**SIGNAL-TO-SYMBOL PROCESSING**

Despite all the attention given to speeding up high-level symbolic computation, within some AI applications the main processing bottleneck has been in the very-low-level processing of raw sensory data. Within many vision systems, 90 percent or more of the run time may be incurred in the initial segmentation of the visual scene from pixels to low-level symbolic constructs (reference 16). Moreover, limitations of the higher-level vision processing can usually be traced to an inadequate initial segmentation (reference 4). Similar problems arise in many speech systems. In such cases, you should look to special-purpose VLSI processors to directly attack the problem. Examples include special image-processing chips (reference 14), and speech chips (reference 2). As array processors have shown, for these special processors to be usable by programmers they need to be very well integrated with the other hardware and software components of the system and as transparent as possible. Since most AI programmers are not good microcode hackers, you are in trouble if this is the only interface with a special device.

**CONCLUSION**

Opportunities for increased efficiency abound at all levels of AI systems if we only look, but to obtain the desired throughput increases all the potential improvements outlined here must be made. We must make hard trade-offs between traditional AI programming practices and the discipline necessary to construct algorithms that can make effective use of large multiprocessors. We must compile our AI languages, and these compilers must influence instruction-set design. Key computational bottlenecks in AI processing must be attacked with custom silicon. There is a real need to use

(continued)
concurrency at all levels where it makes sense, but the overhead must be analyzed realistically.

**ACKNOWLEDGMENTS**

The author would like to acknowledge the contributions of members of the FAIM-1 project: Ken Olum for his collaboration on the instruction-set benchmarks. Ian Robinson and Erik Brunvand for their VLSI CxAM designs, and Al Davis for overall architectural discussions.

**REFERENCES**

A FEW NEAT THINGS YOU CAN DO WITH KODAK'S CAT-QUICK INSTANT SLIDE-MAKERS...

"Make your slides one by one, save on film and have some fun!"

"Correct mistakes, add new facts, give a show the punch it lacks."

"Take CRT data off the screen, edit freely in between."

"Mount your slides fast and clean—project bright hues on the screen."

"Meet tight deadlines, do a whole show, win new clients, hear 'bravo.'"

"Waste no money, waste no time, get results that are sublime."

"If you can't do without these cat-quick instant slide-makers another minute, contact your dealer in Kodak audiovisual products, listed in the Yellow Pages under 'AV Equipment and Supplies.'

Or, phone 1 800 44KODAK, Ext 293 (1 800 445-6325, Ext 293).

Tell 'em Slide Cat sent you!"
Despite the recent press notices, multiuser microcomputers aren’t anything new!

This is the first in a series of discussions with Rod Coleman, President of Stride Micro (formerly Sage Computer) on the 68000 multiuser market and its current environment.

Q: Why do you say that?
RC: “The technology to build a high performance multiuser system has been around for five years. And while some of the leaders in this industry have been pretending that micro multiuser didn’t exist, we’ve been shipping complete systems for nearly three years. The benefits of multiuser are undeniable; it is more cost effective, and offers greater flexibility and utility. But until just recently, the marketing pressure to be compatible instead of being better, has blinded the industry.”

Q: What do you mean?
RC: “Well, for example, the Motorola 68000 processor introduced 16/32-bit technology to the personal computer world about five years ago. It was fully capable of meeting high performance and multiuser design requirements in 1980. Instead of this trend taking off, most energy was spent promoting 8088/8086 products that were clearly inferior from a technical point of view. This phenomenon leads me to believe that they will soon rewrite the old proverb: ‘Build a better mousetrap and the world will beat a path to your door,’ but only if they can find the way through the marketing fog.”

Q: Are things changing now?
RC: “Yes and no. With the business world starting to take more and more interest in microcomputers, the advantages of a solid multiuser system couldn’t be kept hidden forever; companies like ours and a few others were beginning to make a dent. Instead of taking a fresh approach, some of the newest multiuser offerings will probably only give the technology an undeserved black eye! Multiuser is far more than the ability to plug in more terminals. It involves things like machine compatibility, fast processors, adequate memory, large storage capacities, backup features, networking, and operating system flexibility.”

Q: Is this what makes the new Stride 400 Series different?
RC: “Exactly. That sounds self-serving, but it’s true. Today a number of companies are introducing their first multiuser system. We’ve been building and shipping multiuser machines for almost three years. We know the pitfalls, we’ve fallen into some of them. But we have learned from our mistakes.”

Q: Give me some examples.
RC: A hard disk is almost mandatory for any large multiuser installation. Yet, backing up a hard disk can be a nightmare if you only have floppies to work with. That’s why we’ve added a tape backup option to all the larger Stride 400 Series machines. It’s irresponsible for a manufacturer to market a multiuser system without such backup. Another good lesson was bus design. We started with one of our own designs, but learned that it’s important not only to find a bus that is powerful, but also one that has good support and a strong future to serve tomorrow’s needs. We think the VMEbus is the only design that meets both criteria and thus have made it a standard feature of every Stride 400 Series machine.”

Q: What are some of the other unique features of the 400 Series?
RC: “A surprising feature is compatibility. Everybody talks about it, but nobody does anything about it. Our systems are completely compatible with each other from the 420 model starting at $2900, through the 440, on to the powerful 460 which tops out near $60,000. Each system can talk to the others via the standard built-in local area network. Go ahead and compare this with others in the industry. You’ll find their little machines don’t talk to their big ones, or that the networking and multiuser are incompatible, or that they have different processors or operating systems, and so on.”

Q: When you were still known as Sage Computer, you had a reputation for performance. Is that still the case with the new Stride 400 Series?
RC: “Certainly, that’s our calling card. ‘Performance By Design.’ Our new systems are actually faster; our standard processor is a 10 MHz 68000 running with no wait states. That gives us a 25% increase over the Sage models. And, we have a 12 MHz processor as an option. Let me add that speed isn’t the only way to judge performance. I think it is also measured in our flexibility. We support a dozen different operating systems, not just one. And our systems service a wide variety of applications from the garage software developer to the corporate consumer running high volume business applications.”

Q: Isn’t that the same thing all manufacturers say in their ads?
RC: “Sure it is. But to use another over used term, ‘shop around’. We like to think of our systems as ‘full service’ 68000 computers.”

For more information on Stride or the location of the nearest Stride Dealer call or write us today.

We’ll also send you a free copy of our 32 page product catalog.

Corporate Offices:
4905 Energy Way
Reno, NV 89502
(702) 322-6868

Regional Offices:
Boston: (617) 229-6868
Dallas: (214) 392-7070

Inquiry 367
THE LISP REVOLUTION

by Patrick H. Winston

LISP is no longer limited to a lucky few

A LITTLE MORE than five years ago, a friend from a major computer corporation came into my office to talk about developing artificial-intelligence (AI) packages. "How should we get started?" he asked. My answer was gloomy:

First, get together a million dollars or so and buy one of Digital Equipment Corporation's (DEC's) big mainframe computers. Next, decide what dialect of LISP to run, choosing from MacLISP, InterLISP, Portable Standard LISP, Franz LISP, and many others. Then try to get a tape from somewhere and find someone who can install it. You'll probably find that the documentation is not particularly complete, and software maintenance will be a problem. And if you bet on the wrong dialect now, changing to another will certainly take a lot of work.

Today, by contrast, I wrote this article using an editor written in LISP. The editor is part of a $500 LISP system that I use on a $4000 personal computer. I wrote and tested a program in the $500 LISP that I will be able to run without change on a supersophisticated, superpowerful Symbolics 3670. Two things have made this progress possible. First, the recent availability of personal computers with 512K bytes of memory, which is enough to learn LISP and to start experiencing the excitement of its applications in AI. Second, Common LISP emerged as the heir apparent to all previous LISP dialects. The same Common LISP program you write on a personal computer can be transferred later to a heftier machine, as needs and resources permit.

Today, serious LISP programming is no longer limited to a lucky few.

LISP MEANS SYMBOL MANIPULATION

The reason that LISP is different from most other languages is that LISP focuses on symbol manipulation rather than on numbers. To highlight the difference, I'll lay out some examples of symbol manipulation taken from the Mover program, one that moves toy blocks like those shown in figure 1. Specialized problem-solving procedures inside the Mover program enable it to get rid of obstacles that are in the way. These problem-solving procedures use and maintain information about what each object supports. For example, B3 supports B1 and B4. The Mover program knows this because the symbols B1 and B4 are found in a list obtained from B3 by the get instruction:

(\(\text{get 'B3 'things-supported}\) \(\rightarrow\) (B1 B4))

Now suppose we have attached the list of things that B3 supports to a variable called obstacles. LISP's symbol-manipulation primitives allow for quick answers to basic questions:

How many obstacles are there?
(length obstacles) \(\rightarrow\) 2

(continued)

Patrick Henry Winston (MIT Artificial Intelligence Laboratory, 545 Technology Square, Cambridge, MA 02139) has a B.S., M.S., and Ph.D. from MIT. He does research on computer learning and directs the Artificial Intelligence Laboratory at MIT.
What's the first obstacle?
(first obstacles) → B1
Is B1 an obstacle?
(member 'B1 obstacles) → t
Is B4 the first obstacle?
(eq 'B4 (first obstacles)) → nil
Note that t is LISP notation for true, and nil is LISP notation for false. Other symbol-manipulation primitives facilitate changes to the list and test to see if it is empty:
Remove B4 from the list:
(setf obstacles (remove 'B4 obstacles)) → (81)
Add B7 to the list:
(setf obstacles (cons 'B7 obstacles)) → (87 81)
Is the obstacle list empty?
(endp obstacles) → nil
Once changed, the obstacle list can be reattached to the symbol B3 from which it came:
(setf (get 'B3 things-supported) obstacles)
All these questions and changes are simple, low-level examples of the symbol manipulation for which LISP is famous. Similar symbol-manipulation feats enable the Mover program to keep track of what is done. Mover's history-maintaining procedures contain instructions that examine and change symbolic expressions describing every move. Those symbolic descriptions make it possible to answer questions like: Did you move block B7? How did you move block B7? Why did you move block B7? When did you move block B7?
Thus symbol manipulation enables Mover to exhibit a humanlike, introspective ability to explain itself. Symbol manipulation is so intimately associated with AI, it's no wonder that LISP is the key language used in AI applications.

**COMPUTER PROFESSIONALS SHOULD KNOW LISP**

LISP experts argue endlessly about why LISP remains the primary language for AI and about why it is becoming a language for general-purpose programming as well. Some say LISP's primitives and features explain all. Others claim LISP owes its power to its tradition of interactive programming and powerful debugging tools. Still others cite its simple hierarchy-encouraging procedure-definition mechanism. [Editor's note: for a short introduction to LISP, see “LISP for the IBM Personal Computer” by Jordan Borts and John Diamant. July 1984 BYTE, page 281.]

Increasingly, LISP is becoming a more generally used language, not strictly limited to applications in AI. Because many of the systems of AI are large, LISP has become a language suited to large-system implementation. For example, it has been used with outstanding success in building the entire operating systems of the LISP machines now offered by a growing number of major companies.

Such successes are one reason why many computer-science educators believe that an understanding of LISP is de rigueur for computer science majors. Another is that LISP has been proven an excellent language for illustrating computing concepts. At MIT, for example, a dialect of LISP called Scheme has been used for years as the primary language in the basic introductory subject on programming languages.

**LISP IS BOTH OLD AND NEW**

Before you learn any computer language, you should ask if the language is too old to be modern or too new to be mature. What about LISP? Is it too old or too new? Many people are surprised to learn that the history of LISP goes back to the late 1950s, making LISP nearly as old as FOR-

GORILLA
210 Color RGB . .. . . . . ... 255 300 Green ... 125
ZVM 135 Composite . . 449
ZVM 133 RGB . . . . . . . . ... 389
ZVM 122B Amber . ... 86 J B 1205 Amber . 145.00
ZVM 135 Composite . 449
ZVM 135 Hi Res Color . 569
GORILLA
12" Green . $ 80.00 12" Amber . $ 88.00
SPRiT 80 . . . . . . . . . . $ 255.00
MTL-160L . $ 279.00
MTL-180L . $ 379.00
JUKI
Jul: 6100 . $ 389 Tractor Kit . $ 119
RX80 . $ 229
RX200 . $ 555
JX80 . $ 1089
LQ1000 (Includes Kit) . . $59 00
LQ1500D (Includes Kit) . . . 529

DIGITAL DEVICES
Epson
RX80 . $ 229 RX200 . $ 269 RX100 . $ 389 FX200 . $ 555 JX80 . $ 1089

LEGEND
OKI DATA
Okimate 10 . . . . . . . . . . CALL
OKI DATA
Okimate 10 . . . . . . . . . . CALL

BLUE CHIPS
M12010 . . . . . . . . . . . $ 275
M12010-C64 . . . . . . . . . $ 275
D4015 . . . . . . . . . . . . . . $1389

CARDCO
L01 Printer . . . . . . . . . . . 379.00
L03 Printer . . . . . . . . . . . 299.00
C/76 C-64 Graphics . . . . . . 65.75
C/78 C-64 Graphics . . . . . . 39.72
C/7AT Atari . . . . . . . . . . . 55.00

OKIDATA
Okimate 10 . . . . . . . . . . . CALL

SMITH CORONA
Fastest 80 . . . . . . . . . . . 169.00
D100 . . . . . . . . . . . . . . . 219.00
D200 . . . . . . . . . . . . . . . 399.00
D300 . . . . . . . . . . . . . . . 519.00
L1000 . . . . . . . . . . . . . . . 339.00

MONITORS
TAXAN
210 Color RGB . . . . . . . . . 255
100 Green . . . . . . . . . . . . . 115
105 Amber . . . . . . . . . . . . . 125
400 Color RGB . . . . . . . . . 295
410 Color RGB . . . . . . . . . 389
121 Green . . . . . . . . . . . . . 149
122 Amber . . . . . . . . . . . . . 149
ZENITH
ZVM 122A Amber . . . . . . . . 86
ZVM 123 Green . . . . . . . . . 87
ZVM 124 Amber . . . . . . . . . 129
ZVM 131 Color . . . . . . . . . 275
ZVM 133 RGB . . . . . . . . . . 389
ZVM 135 Composite . . . . . 449
ZVM 135 Hi Res Color . . . . . 569
GORILLA
12" Green . $ 80.00 12" Amber . $ 88.00

MONITORS
TEXAN
210 Color RGB . . . . . . . . . 255
100 Green . . . . . . . . . . . . . 115
105 Amber . . . . . . . . . . . . . 125
400 Color RGB . . . . . . . . . 295
410 Color RGB . . . . . . . . . 389
121 Green . . . . . . . . . . . . . 149
122 Amber . . . . . . . . . . . . . 149
ZENITH
ZVM 122A Amber . . . . . . . . 86
ZVM 123 Green . . . . . . . . . 87
ZVM 124 Amber . . . . . . . . . 129
ZVM 131 Color . . . . . . . . . 275
ZVM 133 RGB . . . . . . . . . . 389
ZVM 135 Composite . . . . . 449
ZVM 135 Hi Res Color . . . . . 569
GORILLA
12" Green . $ 80.00 12" Amber . $ 88.00

MONITORS
TAXAN
210 Color RGB . . . . . . . . . 255
100 Green . . . . . . . . . . . . . 115
105 Amber . . . . . . . . . . . . . 125
400 Color RGB . . . . . . . . . 295
410 Color RGB . . . . . . . . . 389
121 Green . . . . . . . . . . . . . 149
122 Amber . . . . . . . . . . . . . 149
ZENITH
ZVM 122A Amber . . . . . . . . 86
ZVM 123 Green . . . . . . . . . 87
ZVM 124 Amber . . . . . . . . . 129
ZVM 131 Color . . . . . . . . . 275
ZVM 133 RGB . . . . . . . . . . 389
ZVM 135 Composite . . . . . 449
ZVM 135 Hi Res Color . . . . . 569
GORILLA
12" Green . $ 80.00 12" Amber . $ 88.00

DISK DRIVES
MSD
SD1 DRIVE . . . . . . . . . . . $259.00
SD2 DRIVE . . . . . . . . . . . $475.00
INDUS
GT ATARI . . . . . . . . . . . $219.00
GT COMMODORE . . . . . . . $249.00

IBM-PC COMPATIBLE
CORONA
Z-150 . . . . . . . . . . . . . . . Call
Columbia Data . . . . . . . . . Call
Televisiono . . . . . . . . . . . . . Call

RISK FREE POLICY
In-stock item shipped within 24 hours of order. No deposit on C.O.D. orders. Free shipping on prepaid cash orders within the Continental U.S. PA residents add sales tax. APO, FPO, and International orders add $5.00 plus 3% for priority mail service. Advertised prices show 4% discount for cash, 4% for Master Card or Visa. Personal checks require 4 weeks clearance before shipping. All items subject to change without notice. For your protection, we check for stolen credit cards.

TOLL FREE 1-800-233-8760
Inquiry 244
TO ORDER or send order to Lyco Computer P.O. Box 5088
800-233-8760
Customer Service 1-717-327-1825 Jersey Shore PA 17740

CALL TOLL FREE
TRAN. Unlike FORTRAN, however, the LISP of today is much different from the LISP of 25 or even 5 years ago. Why did FORTRAN calcify while LISP continued to evolve vigorously? The principal reason is that FORTRAN was suited to commercial applications early on, whereas LISP was not. LISP requires a lot of memory, and in the days when memory was expensive, there was no commercial purpose served by early standardization of LISP. Consequently, LISP dialects proliferated. LISP innovations thrived, and cross-fertilizations from one dialect of LISP to another kept each about as powerful as any other. Now, however, memory is relatively cheap, which is attracting many commercial users to LISP, thus increasing the need for a standardized LISP for applications and instruction. Fortunately, the 25 years LISP has had to mature means that many new features have been incorporated into the Common LISP standard. Here are some of my favorites:

- a powerful structure-defining primitive that automatically generates procedures for accessing record fields
- a generalized assignment primitive that works for values, properties, arrays, and structures
- a flexible template-filling mechanism that enables complicated expressions to be constructed easily and transparently
- a strong macrocomputer capability that enables users to dream up their own syntax
- a rich variety of argument-passing options, including optional arguments with specifiable defaults as well as arguments associated with parameters by way of key words
- a modern, stream-oriented input/output (I/O) system

HOW TO LEARN LISP

I think the best way to learn LISP is interactively. There are quite a number of reasons why such interactive learning is good. For instance: It's fun to do on-line puzzles; it's boring to do exercises in a book. It's easy to demystify difficult points by trying things out immediately. It's motivating to watch interesting programs work.

In any case, one factor stands undisputed: LISP programming is fun. Let's look at a few taken from an on-line, interactive instruction package known as the San Marco LISP Explorer. [Author's note: The San Marco LISP Explorer package is sold by Gold Hill Computers Inc., 163 Harvard St., Cambridge, MA 02139.] We will examine the Mover blocks-manipulation program, the search program, the rule-based ex-

(continued)
It doesn’t take much to make your programs run up to 20 times faster.

If you’ve been writing programs for your Commodore 64, Apple IIe or Apple IIC in BASIC you can take a giant step forward in speed of execution and in programming productivity for just $49.95.

You can get program performance that you only thought possible from machine language programs. While still using a powerful, understandable high-level language. A language that’s similar to Pascal, but much easier to learn and use.

You can create programs with our advanced, full-screen editor—much like you would on a word processor, and it even locates your compilation errors.

And when you compile your programs, you have a fast one-pass compiler, a recursive descent compiler that can compile a 100-line source program in 10 seconds or less.

PROMAL™ also gives you an elegant operating system “Executive,” which includes powerful file, program and memory management commands and even I/O redirection.

You get all of that with PROMAL—improved programming productivity, faster compile and run time and power that you may never have thought possible.

PROMAL™ for the beginning or advanced programmer.

Whether you are just beginning to write or an experienced programmer, you can be more productive with PROMAL (PROgrammer’s Micro Application Language). It’s easier to learn than Pascal, C or Forth. It provides you with a full range of powerful structured statements like IF-ELSE, WHILE, REPEAT, FOR an CHOOSE. And, because indentation is part of the language’s syntax, it helps you write programs n and logically. There are no line numbers to worry about and since comments don’t take up memory space, documentation and PROMAL system diskette including sample programs for just $49.95. There’s a 15-day, no-risk moneyback guarantee. And the entire $49.95 may be credited against later purchase of the “Developer’s Version.”

The “Developer’s Version” is the only components of the “End User” system plus the “run time” object module generation capability, additional documentation and an unlimited right to sell or distribute PROMAL applications—is only $99.95.

Or—for only $10.00 plus $2.50 postage and handling you can get the PM-100 demo system. It includes a 32-page manual and all the capabilities of the PM-200 except the ability to print or save files to disk. It’s a very inexpensive way to explore the wonders of PROMAL.

Our Guarantee: Try PROMAL for 15 days. If you are not completely satisfied, return it to us undamaged and we’ll refund your money. No questions asked. Dealer inquiries invited.

For quicker response on credit card orders, call Toll Free: 1-800-762-7874

In NC: 919-787-7703.

PROMAL—a language especially for small systems.

Unlike languages developed for larger systems and squeezed into small systems environments, PROMAL was conceived and developed specifically for the small system. With PROMAL there’s finally a language created for the environment in which you work.

Speed up your programs and step up your programming productivity.

You get all of that speed and productivity—with the PROMAL PM-200 “End-User” system (220 pages of documentation and PROMAL system diskette including sample programs) for just $49.95. There’s a 15-day, no-risk moneyback guarantee. And the entire $49.95 may be credited against later purchase of the “Developer’s Version.”

The “Developer’s Version” is the only components of the “End User” system plus the “run time” object module generation capability, additional documentation and an unlimited right to sell or distribute PROMAL applications—is only $99.95.

Or—for only $10.00 plus $2.50 postage and handling you can get the PM-100 demo system. It includes a 32-page manual and all the capabilities of the PM-200 except the ability to print or save files to disk. It’s a very inexpensive way to explore the wonders of PROMAL.

Our Guarantee: Try PROMAL for 15 days. If you are not completely satisfied, return it to us undamaged and we’ll refund your money. No questions asked. Dealer inquiries invited.

For quicker response on credit card orders, call Toll Free: 1-800-762-7874

In NC: 919-787-7703.
Listing 2: A search program that finds paths through maplike nets such as the one in figure 3.

(defun start-depth (start goal))
  (depth (list (list start) goal))
  ;Make a one-partial-path queue.
  ;Pass along name of goal place.

(defun depth (queue goal)
  ;If no other partial paths, quit:
  (if (null queue)
    nil
  ;Otherwise, if goal found, quit:
  (if (equal goal (first (last (first queue))))
    (first queue)
  ;Otherwise, expand first partial path
  ;and add to FRONT of queue:
    (depth (append (expand (first queue))
      (rest queue))
    goal)))

(defun expand (path)
  (let ((reversed-path (reverse path)))
    ;Turn the new partial paths right way around:
    (mapcar 'reverse
      ;Get rid of partial paths that close on themselves:
      (remove-if '(lambda (new-path)
        (member (first new-path) (rest new-path))
      (mapcar '(lambda (neighbor) (cons neighbor reversed-path))
        ;Make one new partial path for each neighbor:
        (get (first reversed-path) 'neighbors))))

Listing 3: The expression-matching procedure in any rule-based expert system must compare expressions and produce a list of pattern-match pairs.

* (match ((> animal) is a (> type))
  ;First argument is a pattern.
  (Robbie is a Cheetah)
  ;Second argument is an assertion.
  nil
  ;Third is a list of prior pattern-matches.
  ;pairs, none in this example.

(> (animal robbie) (type cheetah))
  ;The answer—a list of pattern-matches.

Listing 4: A matcher program for a rule-based expert system.

(defun match (p d matches)
  (cond ((and (endp p) (endp d))
    ;Succeed.
    (cond ((endp matches) t)
      (t matches))
  (for (endp p) (endp d) nil)
  (equal (first p) (first d))
  (match (rest p) (rest d) matches))
  (atom (first p)) nil
  (equal (first (first p)) '>)
  (match (rest p) (rest d)
    (above-value (second (first p))
      (first d)
    matches)
  (equal (first (first p)) '<)
  ;Substitute variable.
  (continued)

pert system, and the natural-language interface.

PLANNING IN THE BLOCKS WORLD
LISP programs are generally examples of the problem-reduction heuristic; that is, to solve a hard problem you must break it up into simpler subproblems. The problem-reduction heuristic can be seen in the simple Mover program. Listing 1 is a procedure found inside the Mover program that breaks the problem of putting an object somewhere into three subproblems: grasp it, move it, and ungrasp it. Figure 2 is a graphical description of how all of the procedures in Mover work together. LISP encourages the creation of layered programs, like Mover, wherein big problems are broken down successively into smaller and smaller problems.

SEARCHING IN THE MAP WORLD
Search techniques are commonly used in AI to solve problems. Here are some examples:

- finding a route through a highway net
- finding a way to put together a motor
- understanding a written database request
- learning to recognize a plant disease

Abstractly, search problems all amount to finding a way through some sort of maplike net. Figure 3 is a sample of such a net. The goal is close to place E, but there is no direct connection; E is a dead end. There are two ways to go from B to the goal: directly, and indirectly, through C. Listing 2 shows a page of LISP defining a search program that finds paths through these maplike nets. Although you won't understand much of the program if you don't know LISP yet, you may enjoy looking at its overall structure and simplicity. With a little more effort, you can define a search
Presenting Travelshopper™
...new from CompuServe and TWA.

All Airlines Depart From This Terminal.

Now you can save time and money by getting information and reservations on virtually any flight on any airline—worldwide—from one source. It's TWA's new Travelshopper, available now through CompuServe's Information Service.

With Travelshopper, you scan flight availabilities, discover airfare bargains and order tickets...on your own personal computer...at home or in the office.

You also receive automatic membership in TWA's Frequent Flight Bonus™ program. And you can build bonus points by staying at Marriott and Hilton hotels and by using Hertz Rent-A-Car.

Besides Travelshopper, CompuServe offers an ever-growing list of other travel-oriented on-line services.

The Official Airline Guide Electronic Edition lists direct and connecting flight schedules for over 700 airlines worldwide plus over 500,000 North American fares.

A to Z Travel/News Service gives complete information for over 20,000 hotels worldwide plus latest travel news.

Discover Orlando provides complete prices, hours and features on all of Central Florida's attractions and accommodations.

West Coast Travel offers travel information for the western states.

Pan Am's Travel Guide contains up-to-date information on immigration and health requirements for most foreign countries.

And TravelVision® provides complete automotive information including road maps and personalized routing service.

Let your travel plans really take off. Use Travelshopper and lots, lots more from CompuServe.

To buy a CompuServe Starter Kit, see your nearest computer dealer. To receive our informative brochure, or to order direct, call or write:

CompuServe
P.O. Box 20292, 6000 Arlington Centre Blvd., Columbus, Ohio 43220
1-800-848-8199
In Ohio, Call 1-614-457-0002
Inquiry 77
(match (cons (pull-value (second (first p) matches) (rest p)) d matches)))

This matcher happens to use two auxiliary procedures:

(defun pull-value (variable a-list)
  (second (assoc variable a-list)))

(defun shove-value (variable item a-list)
  (append a-list (list (list variable item))))

Listing 5: A program that matches sentences against a suitable representation of semantic grammars and activates the appropriate search procedure.

(record question
  ((branch (parse present)
    (branch (THE (parse attributes) OF (parse tools)
      (parse-result-if-end
        (report-attributes attributes tools)))
      (parse tools) S (parse attributes)
      (parse-result-if-end
        (report-attributes attributes tools)))
    (HOW MANY METERS IS (parse tool1) FROM (parse tool2)
      (parse-result-if-end
        (report-distance tool1 tool2)))
    (IDENTIFY (parse tools)
      (parse-result-if-end
        (report-identity tools)))
    (COUNT (parse tools)
      (parse-result-if-end
        (report-number tools))))

Figure 6: The top level of a semantic grammar capable of handling queries about the color, weight, length, and position of some tools.

What are the weight, length, and color of the saw?

Figure 7: An example of a question that matches the top level of the semantic grammar in figure 6.

procedure that finds the guaranteed-shortest path.

ANALYSIS IN THE ZOO WORLD

Rule-based expert systems are the hottest thing in the commercialization of AI. All of them are built on the idea that some kinds of knowledge can be reduced to simple rules. Figure 4 shows one rule that is ready for inclusion in a LISP-based animal-recognition system, which expresses the fact that an animal's children are animals of the same kind. LISP does not have any built-in primitives that handle such rules, but it is a splendid language in which to embed a rule-exploiting program. LISP's symbol-manipulating power is well suited to the task of examining the symbols that make up a rule, comparing them to the symbols that make up the existing facts, and reacting accordingly.

One kind of rule-exploiting program is a forward-chaining rule interpreter, which is a program that uses rules to move forward from facts to conclusions. Figure 5 is an output fragment showing what such a program does with facts about Robbie, knowledge about the relationship between Robbie and Bozo, and a few rules. There is always an expression-matching procedure buried inside any rule-based expert system like the animal-identification procedure. While the entire system is too lengthy to show, the matcher is short and straightforward. Its task is to compare expressions and to produce a list of pattern-match pairs, as shown in listing 3. Listing 4 is the matcher program.

INTERACTION IN THE TOOL WORLD

The pattern matcher shown previously is not just an important part of a rule-based system. It is also just about all you need to make the famous Doctor program, the one that pretends it is a psychiatrist responding with apparent sympathy as you pour your heart out over family traumas. More importantly, the pattern matcher has a family resemblance to natural-lang-
Join The Leader

...and be a Leader!

MicroAge is the computer solution leader. Throughout the United States and Canada, businesspeople rely on MicroAge for advice, leading products, and service when computerizing their companies.

But remaining the leader takes talented professionals who are willing to invest in their own community. People who are willing to assume a leadership position. That's why MicroAge is meeting with individuals who want to own and operate a MicroAge sales organization.

Owning a MicroAge franchise is more than running a store. We sell multi-user systems, local area networks and telephone systems...along with personal computers. We provide service, installation and training for our customers.

If you would like to develop a long-term relationship serving the businesses in your area, let's talk business! Call or write:

MicroAge®
COMPUTER STORES
"The Solution Store"®

1457 West Alameda • Tempe, AZ 85282
1-800-245-4683

In Arizona or outside the continental U.S. call (602) 968-3168

"The Leader In Multi-User Technology"
guage interface programs built on what is called a semantic grammar. Basically, a semantic grammar is a model of what can be said in tightly constrained conversations about a narrow database. Suppose that you are interested in the color, weight, length, number, and position of some tools. The natural queries are:

- Identify the hammers.
- Count the red screwdrivers.
- Show me the color of the wrenches.
- Present the small red screwdriver's weight.
- What is the length and weight of the large saw?
- How many meters is the small red screwdriver from the big blue one?

The top level of a semantic grammar capable of handling all these queries is shown in figure 6. A semantic-grammar interpreter finds paths through such a net using input sentences as a guide. Each branch marked with a > symbol requires traversal of a subnet. Each complete path from the entry to an exit is associated with its own data-searching procedure. For example, the sentence in figure 7 matches the topmost path in the top-level net. Three subnets are traversed in addition to the top-level net. Once again, LISP's symbol-manipulating power makes it easy to write a program that both matches sentences against a suitable representation of semantic grammars and activates the appropriate search procedures. Listing 5 shows what such a representation looks like when it is rendered in LISP-oriented notation.

**CONCLUSION**

We really don't need any new examples to demonstrate why professionals need to know about LISP. The examples presented are all elementary, but they indicate the sorts of things done by their bigger brothers. LISP is the foundation for expert systems of all kinds, many of which have progressed far beyond the simple rule-based paradigm. LISP is the language for most natural-language development efforts. Indeed, LISP is the language of choice for most people working in AI—supporting work that includes learning, instruction, speech, vision, robotics, and all sorts of reasoning.

**BIBLIOGRAPHY**


The alliance of Electronic Data Systems (EDS) and General Motors is creating major career opportunities. As a SYSTEMS PROGRAMMER or PROGRAMMER/ANALYST, your skills and abilities will be challenged.

EDS is offering you IMMEDIATE opportunities to enjoy hands-on experience with truly state-of-the-art hardware and software. This state-of-the-art experience will ensure that your skills are kept as current as possible. Also, EDS offers training programs that have become models for the industry and are geared to prepare you for the performance that ensures success. As one of IBM's largest customers and one of the nation's largest hardware users, EDS is creating one of the most automated work environments in the business world today. This is your once-in-a-career opportunity to become involved in the leading edge of technology.

EDS AND GM ARE PIONEERING TECHNOLOGY. AND SO CAN YOU.

EDS and GM are world-renowned leaders in technology. EDS ensures this leadership by continually upgrading our facilities with the most advanced hardware and software available. And since we employ components that accommodate change, our operating systems are never limited by technology of the past. You benefit as a professional since you will never be hindered by out-of-date equipment. The best technology of tomorrow is built on the best technology of today. And that's all you find at EDS.

SYSTEMS PROGRAMMERS AND PROGRAMMER/ANALYSTS: OUTSTANDING CAREER OPPORTUNITIES.

We have IMMEDIATE career opportunities for professionals who are interested in moving the industry onward. If you are a SYSTEMS PROGRAMMER with two years experience in an IBM, IBM-compatible or DEC/VAX environment with a solid working knowledge of ALC or ASSEMBLER, we have challenges in the areas of VTAM, VM, IMS, IDMS, and MVS. If you are a Programmer/Analyst with two years experience in an IBM or IBM-compatible environment with a solid working knowledge of COBOL, PL/1 or ALC, EDS has the ideal environment to challenge your skills.

YOUR CAREER GROWTH: AT EDS, WE DON'T TAKE YOUR TALENT FOR GRANTED — WE CHALLENGE IT, WE RESPECT IT AND WE NURTURE IT.

EDS knows that new ideas and new technology are only as good as the people who create them. That's why developing the potential of our employees is a continuing priority. We believe our strength is enhanced when our employees develop new skills and accept greater responsibilities. Therefore, we have created an environment that lets you build your future by the knowledge and skills you acquire — not by rank or seniority. At EDS, you control your own future.

Act now, advance the industry while experiencing the technological challenges and advantages EDS can offer you. Send your resume in confidence to:

ELECTRONIC DATA SYSTEMS CORPORATION
755 W. Big Beaver
Suite 310. Dept. 08-0485-39
Troy, MI 48084

EDS
Electronic Data Systems Corporation
An Equal Opportunity Employer.
Super assemblers
plus the world’s
largest selection of
cross assemblers!

Z-80
Macroassembler
Power for larger programs! This
2500AD macroassembler includes:
• Zilog Z-80 Macroassembler (with
the same powerful features as all
our assemblers)
• powerful linker that will link up to
128 files. Com files may start at
any address
• Intel 8080 to Zilog Z-80 Source
Code Converter (to convert all
your Intel source to Zilog Syntax
in one simple step)
• COM to Z-80 source files (to convert
your object files to Z-80 for PROM
creation, etc.)
• 52 page User Manual

Z-8000 Cross Development
Package
Instant Z-8000 Software! This
package allows development and
conversion of software for the
Z8001, 8002, 8003 and 8004 based
machines on a Z-80, Z-8000 or 8086
machine. This powerful package
includes:
• a Z-80/8080 to Z-8000 Assembly
Language Source Code Translator
• Z-8000 Macro Cross Assembler
and Linker
The Translators provide Z-8000
source code from Intel 8080 or Zilog
Z-8000 source code. The Z-8000
source code used by these
packages are the unique 2500AD
syntax using Zilog mnemonics,
designed to make the transition
from Z-80 code writing to Z-8000
easy.

All 2500 AD Assemblers and
Cross Assemblers support the
following features:

Relocatable Code — the
packages include a versatile Linker
that will link up to 128 files together,
or just be used for external
reference resolution. Supports
separate Code and Data space.
The Linker allows Submit Mode or
Command Invocation.

Large File Handling Capacity
— the Assembler will process files
as large as the disk storage device.
All buffers including the symbol table
buffer overflow to disk.

Powerful Macro Section
— handles string comparisons during
parameter substitutions. Recursion
and nesting limited only by the
amount of disk storage available.

Conditional Assembly — allows
up to 248 levels of nesting.

Assembly Time Calculator —
will perform calculations with up to
16 pending operands, using 16
or 32 Bit arithmetic (32 Bit only for
16 Bit products). The algebraic
hierarchy may be changed through
the use of parentheses.

Include files supported —
Listing Control — allows listing
of sections on the program with
convenient assembly error detection
overides, along with assembly run
time commands that may be
used to dynamically change the
listing mode during assembly.

Hex File Converter, included
— for those who have special
requirements, and need to generate
object code in this format.

Cross reference table generated —
Plain English Error Messages —
System requirements for all pro-
grams: Z-80 CP/M 2.2 System with
54k TPA and at least a 96 column
printer is recommended. Or
8086/88 256k CP/M-86 or MSDOS
(PCDOS).

Cross Assembler Special Features
Z-8 — User defined registers
names, standard Zilog and Z-80
style support. Tec Hex output option.
8748 — standard Intel and Z-80
style syntax supported.
8051 — 512 User defined register
or addressable bit names.
6800 Family — absolute or
relocatable modes, all addressing
modes supported. Motorola syntax
compatible. Intel Hex or S-Record
format output.
6502 — Standard syntax or Z-80
typesyntax supported, all
addressing modes supported.
<table>
<thead>
<tr>
<th>Z80 CP/M®</th>
<th>ZILOG SYSTEM 8000 UNIX</th>
<th>IBM PC MSDOS</th>
<th>IBM PC CP/M 86</th>
<th>OLIBETTI M-20 PCOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z8000™</td>
<td>$299.50</td>
<td>$750.00</td>
<td>$299.50</td>
<td>$299.50</td>
</tr>
<tr>
<td>Z8</td>
<td>99.50</td>
<td>500.00</td>
<td>199.50</td>
<td>199.50</td>
</tr>
<tr>
<td>Z80</td>
<td>199.50</td>
<td>750.00</td>
<td>199.50</td>
<td>199.50</td>
</tr>
<tr>
<td>Z8086/88</td>
<td>199.50</td>
<td>500.00</td>
<td>199.50</td>
<td>199.50</td>
</tr>
<tr>
<td>Z8186</td>
<td>199.50</td>
<td>750.00</td>
<td>199.50</td>
<td>199.50</td>
</tr>
<tr>
<td>Z8748</td>
<td>199.50</td>
<td>500.00</td>
<td>199.50</td>
<td>199.50</td>
</tr>
<tr>
<td>Z8044/51</td>
<td>199.50</td>
<td>500.00</td>
<td>199.50</td>
<td>199.50</td>
</tr>
<tr>
<td>Z8080</td>
<td>199.50</td>
<td>500.00</td>
<td>199.50</td>
<td>199.50</td>
</tr>
<tr>
<td>Z8085</td>
<td>199.50</td>
<td>500.00</td>
<td>199.50</td>
<td>199.50</td>
</tr>
<tr>
<td>Z8096</td>
<td>199.50</td>
<td>500.00</td>
<td>199.50</td>
<td>199.50</td>
</tr>
<tr>
<td>Z8020</td>
<td>399.50</td>
<td>750.00</td>
<td>199.50</td>
<td>199.50</td>
</tr>
<tr>
<td>Z8000,08,10</td>
<td>299.50</td>
<td>750.00</td>
<td>199.50</td>
<td>199.50</td>
</tr>
<tr>
<td>Z800,02,08</td>
<td>199.50</td>
<td>500.00</td>
<td>199.50</td>
<td>199.50</td>
</tr>
<tr>
<td>Z801,03</td>
<td>199.50</td>
<td>500.00</td>
<td>199.50</td>
<td>199.50</td>
</tr>
<tr>
<td>Z804</td>
<td>199.50</td>
<td>500.00</td>
<td>199.50</td>
<td>199.50</td>
</tr>
<tr>
<td>Z805</td>
<td>199.50</td>
<td>500.00</td>
<td>199.50</td>
<td>199.50</td>
</tr>
<tr>
<td>Z809</td>
<td>199.50</td>
<td>500.00</td>
<td>199.50</td>
<td>199.50</td>
</tr>
<tr>
<td>Z890</td>
<td>199.50</td>
<td>500.00</td>
<td>199.50</td>
<td>199.50</td>
</tr>
<tr>
<td>Z32000</td>
<td>399.50</td>
<td>750.00</td>
<td>199.50</td>
<td>199.50</td>
</tr>
<tr>
<td>ZCPS400</td>
<td>199.50</td>
<td>500.00</td>
<td>199.50</td>
<td>199.50</td>
</tr>
<tr>
<td>ZNC800</td>
<td>199.50</td>
<td>500.00</td>
<td>199.50</td>
<td>199.50</td>
</tr>
<tr>
<td>Z6301</td>
<td>199.50</td>
<td>500.00</td>
<td>199.50</td>
<td>199.50</td>
</tr>
<tr>
<td>Z6501/11</td>
<td>199.50</td>
<td>500.00</td>
<td>199.50</td>
<td>199.50</td>
</tr>
<tr>
<td>Z6502</td>
<td>199.50</td>
<td>500.00</td>
<td>199.50</td>
<td>199.50</td>
</tr>
<tr>
<td>Z65C02</td>
<td>199.50</td>
<td>500.00</td>
<td>199.50</td>
<td>199.50</td>
</tr>
<tr>
<td>Z180</td>
<td>199.50</td>
<td>500.00</td>
<td>199.50</td>
<td>199.50</td>
</tr>
<tr>
<td>F8/3870</td>
<td>199.50</td>
<td>500.00</td>
<td>199.50</td>
<td>199.50</td>
</tr>
<tr>
<td>ZNEC7500</td>
<td>199.50</td>
<td>500.00</td>
<td>199.50</td>
<td>199.50</td>
</tr>
<tr>
<td>ZNC/32</td>
<td>399.50</td>
<td>750.00</td>
<td>199.50</td>
<td>199.50</td>
</tr>
</tbody>
</table>

**Subtotal** $_________ $_________ $_________ $_________

**Name** ______________
**Company** ___________________________
**Address** ___________________________________________
**City** ___________ **State** _______ **Zip** _______
**Phone** ________________________
**Make and model of computer system** ______________
**COD (2500AD pays COD charges)**
**VISA or MasterCard**
**Number** ________________________
**Expiration Date** ________________________

**TO ORDER.** Simply circle the product or products you want in the price columns, and add up your order.

**Check one:**
- [] 8" Single
- [] Osborne
- [] IBM PC
- [] Cartridge tape
- [] Apple (Softcard)
- [] Kaypro DS/DD

**Total Order $-----------**

**Total** $_________
**Shipping UPS Blue Label no charge, $15.00 International per unit $______**

**Signature** ________________________

25004ADSFTWARE INC.
P.O. Box 4957, Englewood, CO 80155, (303) 790-2588 TELEX 752659/AD
HOW TO BUY SOFTWARE
WHEN ALL THE ADS
LOOK THE SAME.

We know it's hard to choose
a software house. All
the ads say the same
thing—"Lowest prices," "fastest
delivery," "best support," "biggest
inventory."

Trouble is, although the
claims are the same, the com­
panies are very different. Which
is why we want you to know
some important facts about us:

1. 800-SOFTWARE is one of
the oldest and most repu­
table firms in the industry. Our
customers include IBM, GE,
Hewlett-Packard, Xerox, AT&T,
and thousands of other satisfied
buyers.

2. Our National Accounts Pro­
gram offers volume dis­
counts and valuable services to
large software users. We offer
incredibly low prices on large
bids!

3. We have a giant, $1,000,000
inventory. Which means we
can offer next-day delivery if
needed.

4. With every product you get
friendly, expert technical
support. Have a question?
You'll be glad you bought from
800-SOFTWARE!

5. We'll match our com­
petitors' prices on most
products. We never cut service.

6. We never charge extra for
credit card purchases, nor
do we process for payment until
the product is shipped. (Our com­
petitors don't make this claim!)

7. You'll automatically receive
our Technical Support
Newsletter—a great way to stay
up-to-date.

8. We are members of the
Better Business Bureau
and the Direct Marketing
Association.

9. We want your business.
And your repeat business.
Which is why we work so hard to
keep you happy. Give us a call and
let us prove it!

CHECK OUT ALL OUR INCREDIBLE PRICES:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lotus Symphony</td>
<td>CrossTalk</td>
<td>PFS File/Graph/Write</td>
<td>IUS Accounting</td>
</tr>
<tr>
<td>$425</td>
<td>$95</td>
<td>$49</td>
<td>$299/med.</td>
</tr>
</tbody>
</table>

SOFTWARE

ASHTON-TATE**
dBase III
Framework
Borland Software**
Sidekick
Turbo Pascal 80/857
BOURBAM* 16k
DECISION RESOURCES**
Charmmaster
Signmaster
DIGITAL RESEARCH**
FOX & GELLER**
FUNK SOFTWARE** Sideways
HARVARD SOFTWARE**
Harvard Project Manager
IMSI** PC Paintbrush
LIFEBOAT**-LATTICE C Compiler
LIFETREE**-Volkswagen Deluxe
LOTUS**
Symphony

MICROPRO®
WordStar
WordStar 2000/2000 Plus
WordStar Pro Package/P. Plus
InfoStar
MICROMIC*Mosaic 4000
MICROSOFT®
Multiplan
Word w/Mouse
Fortran
All Other Products
MICROSTUFF® CrossTalk
MULTIMATE®
NORTON UTILITIES®
ROSEGEM** Pro Key
SOFTWARE PUBLISHERS®
PFS File/Graph/Write
PFS Report
SORMICUS®

IUS Easy Business Accounting
Super Project
All Other Products

HARDWARE, ETC

AMIGA* Monitors
gate* CRTs
ATI** & COAX* TRAINING
CODE A PHONE* Tel A Modem
EPSON* PRINTERs NEW LOW PRICES!
HAYES* Smartmodem 1200/12000
HERCULES* Color Card
MICROSOFT® CRTs
MAXELL* & memorex* DISKETTES
MEMORY CHIPS
OKI DATA* PRINTERs NEW LOW PRICES!
PHILADELPHIA GRAPHICS* MONITORS
QUADRAM®
WESTERN UNION EASY LINK®

WE ALSO CARRY HUNDREDS OF OTHER PRODUCTS!

800-SOFTWARE
800-227-4587

To order call toll-free:
THE CHALLENGE OF OPEN SYSTEMS

by CARL HEWITT

Current logic programming methods may be insufficient for developing the intelligent systems of the future

SYSTEMS OF INTERCONNECTED and interdependent computers are qualitatively different from the relatively isolated computers of the past. Such "open systems" uncover important limitations in current approaches to artificial intelligence (AI). They require a new approach that is more like organizational design and management than current approaches. In this article we'll take a look at some of the implications and constraints imposed by open systems.

Open systems are always subject to communications and constraints from outside. They are characterized by the following properties:

• Continuous change and evolution. Distributed systems are always adding new computers, users, and software. As a result, systems must be able to change as the components and demands placed upon them change. Moreover, they must be able to evolve new internal components in order to accommodate the shifting work they perform. Without this capability, every system must reach the point where it can no longer expand to accommodate new users and uses.

• Arm's-length relationships and decentralized decision making. In general, the computers, people, and agencies that make up open systems do not have direct access to one another's internal information. Arm's-length relationships imply that the architecture must accommodate multiple computers at different physical sites that do not have access to the internal components of others. This leads to decentralized decision making.

• Perpetual inconsistency among knowledge bases. Because of privacy and discretionary concerns, different knowledge bases will contain different perspectives and conflicting beliefs. Thus, all the knowledge bases of a distributed AI system taken together will be perpetually inconsistent. Decentralization makes it impossible to update all knowledge bases simultaneously. This implies that it is not even possible to know what kinds of information are contained in all the local knowledge bases in the system at any one time. Systems must be able to operate in the presence of inconsistent and incomplete knowledge bases.

• Need for negotiation among system components. In a highly distributed system, no system component directly controls the resources of another. The various components of the system must persuade one another to provide capabilities. Consequently, a distributed AI system's architecture must support a mechanism for negotiation among components.

• Inadequacy of the closed-world assumption. The closed-world assumption is that the information about the world being modeled is complete in the sense that exactly those relationships that hold among objects can be derived from the local information possessed by the system. Systems that depend on the closed-world assumption make use of the principle that they can find (continued)

Carl Hewitt received his Ph.D. from the Massachusetts Institute of Technology in 1971 and since then has worked in the field of artificial intelligence on foundational issues. His outside interests include hiking and skiing. Professor Hewitt can be reached at the MIT Artificial Intelligence Laboratory, 545 Technology Square, Room 813, Cambridge, MA 02139.
all existing instances of a concept by searching their local storage. At first glance it might seem that the closed-world assumption, almost universal in the AI literature, is smart because it provides a ready default answer for any query. Unfortunately, the default answers provided become less realistic as open systems increase in size and less of the information is available locally.

Continuous growth and evolution, arm's-length relationships, inconsistency among knowledge bases, decentralized decision making, and the need for negotiation are interdependent and necessary properties of open systems.

**PARALLEL COMPUTATION IN OPEN SYSTEMS**

The theory of recursive functions (e.g., Turing machines) is based on a batch-processing model of computation. Output is obtained from a recursive function when it finally halts. Open systems require a theory of computation in which processing might never halt, may be required to provide output while still in operation, and can accept input from sources not anticipated when the computation began.

Asynchronous parallel computer systems make use of a two-input, two-output computing element called an arbiter. Arbiter are the fundamental hardware primitives that make parallel asynchronous computing different from sequential synchronous computing. Arbiter make decisions for which there is no logical justification (proof) because the decision cannot be predicted from knowledge of the structure of the computing system and its input. In a very fundamental sense, arbiters are not equivalent to Turing machines (see reference 1).

Figure 1 shows an arbiter with inputs and and and outputs .

An arbiter decides the order in which it receives requests. Thus, if inputs and and are asserted at about the same time, the result will eventually be one of the possibilities shown in figure 2.

The output of an arbiter is not a logical function of its input, in the sense that it is not a simple Boolean function, because the dimension of time enters into the semantics of arbiter modules in a fundamental way. However, the feasible sets of outputs can be described in logic using the subsequently relation (see reference 1):

\[(x=1 \text{ and } y=1) \text{ subsequently } (x'=1 \text{ and } y'=0)\]

Logic cannot be used to determine which particular eventuality will occur. Systems with arbiters are not equivalent to a nondeterministic Turing machine, since an arbiter can require an unbounded amount of time to make a decision (possibly while other computations are taking place). If a nondeterministic Turing machine is required to make a decision, there is a bound on the amount of time it can take, and this bound is determined before it starts. Each individual choice of a nondeterministic Turing machine takes one step.

In practice, the inputs to an arbiter are analog signals that vary continuously between 0 and 1. For example, if the inputs were .97 and .96, then the output might be as shown in figure 3.

The arbiter has only digital outputs (0s or 1s) even though the input is analog. It makes a definite digital choice out of the analog quantities of time and its two inputs. Because of the continuous nature of time and the analog nature of the input, an arbiter cannot be strictly modeled as a nondeterministic-state machine.

In a parallel computation, arbiters are used repeatedly so that the number of possible outcomes grows exponentially with time. Thus, the actual operation of a parallel computer system cannot be determined logically by the inputs to the system. The indeterminacy of the arbiters used in open computer systems results in their making decisions that cannot be proved from knowledge of structure of the computing system and its input.

**DECISIONS JUSTIFIED BY AGREEMENTS**

The electronic-banking system is a good example of an open system. You're probably familiar with it through the use of automated teller machines that enable you to withdraw cash thousands of miles from where you opened an account. Teller machines are continually being added to the system.

Decisions about which transactions to honor are justified on the basis of an agreement between the bank and its depositors. Often an agreement will provide that the bank does not have to honor a withdrawal if there are insufficient funds present in the
account when the withdrawal is requested. The withdrawal would be refused even though it might be covered by subsequent deposits.

The decisions of which withdrawals not to honor cannot be deduced from complete information about the structure of the bank's computers and the input from the teller machines. Thus, the decision whether or not to honor a withdrawal is not subject to logical proof. For example, suppose Account 1 has a balance of $1000. Account 2 has a balance of $2000, and they share a common reserve account with a credit limit of $3000. If two electronic withdrawals of $4000 each are attempted at about the same time from both Account 1 and Account 2, then one of the attempts will be refused and the other one will be honored, though it is impossible to deduce which one will be honored and which one refused.

The above example shows how a decision of an open system can be justified even though it does not follow from any proof. Instead, the decision is justified by an agreement to act in certain ways. We see a divergence between the theories used in the construction of open systems and their operation. Theory informs practice; e.g., the design of the banking mechanism is based on a financial theory. However, the financial theory does not determine the actual operations of the bank accounting system. The operation of the bank accounts is determined by the order in which asynchronous events occur inside the system. Each performance of a complicated open system is unique.

This illustrates the divergence between classic recursive-function theory and theories needed to model open systems. (For a further discussion of the mathematical semantics needed to model the behavior of open systems, see references 1 and 3.)

**EXPLORATION VS. SEARCH**

Searching in problem spaces is the traditional AI framework. Problem spaces and problems have been defined as follows (see reference 16):

**Problem Space**: A problem space consists of a set of symbolic structures (the *states* of the space) and a set of *operators* over the space. Each operator takes a state as input and produces a state as output, although there may be other inputs and outputs as well. The operators may be partial, i.e., not defined for all states. Sequences of operators define *paths* that thread their way through sequences of states.

**Problem**: A problem in a problem space consists of a set of *initial* states, a set of *goal* states, and a set of *path constraints*. The problem is to find a path through the space that starts at any initial state, passes only along paths that satisfy the path constraints, and ends at any goal state.

A good example of a problem space is that of the game of chess:

1. **Initial state**: chess pieces in starting position
2. **Operations**: legal moves
3. **Goal states**: checkmate, stalemate, etc.

I claim that searching through problem-solving spaces provides a narrow foundation for the analysis and synthesis of intelligent systems. The perspective must be broadened to include *exploration* that goes beyond search. An excellent perspective on some of the differences between search and exploration is provided by the means used to explore and develop the North American continent.

1. **Initial state**: There was no well-defined initial global state of the

(continued)
No matter how heavy the traffic, our new Qantex 7065 multimode printer will keep your documents flowing smoothly. At a very affordable price.

Use it for data processing, and the 7065 zips along at 300 cps bidirectionally. Both user-defined formats and six-part forms capability are standard.

Switch to word processing and the 7065 delivers near letter quality at 125 cps. Plus features such as proportional spacing, justification, auto-underline and bold.

And as a 65 cps letter quality printer, it's fast enough and quiet enough to leave the competition in the dust. You get high density double pass printing in your choice of some 20 fonts.

The 7065 is also a dot addressable graphics printer with resolution to 144 x 144 dots per inch and a full complement of line drawing graphics.

Besides being very fast, the 7065 is very compatible — with IBM, Apple, Lotus 1-2-3 and just about any other personal computer or software on the market. It offers built-in bar code capability. And its 500-million-plus character print head and industrial quality construction are designed for long, hard use.

To find out how quickly the Qantex 7065 could bring your information processing up to speed, contact Qantex for details or a demo. Qantex, 60 Plant Avenue, Hauppauge, NY 11788. Call toll-free 800-645-5292; in New York State 516-582-6060.

New Qantex 7065.
A fast printer at a slow price.
North American continent in the middle 1600s. Leif Ericson and Christopher Columbus had led some early probes, but the information was fragmentary, dispersed, and self-contradictory.

2. Operations: The set of operations used to explore the continent was not defined in advance. Instead, it was improvised dynamically and interactively in the course of initial probes. Furthermore, the explorers operated in parallel so that there is no path of states of the continent that adequately explains how it was explored. That is, the continent was not explored by finding a single path through a space of states. Exploration of the North American continent can be better modeled as a partial order of causally linked historical events than as a problem space.

3. Goal states: There was no set of immutable global goal states for the continent that the explorers set out to achieve. Rather, the explorers' goals evolved with the exploration methods as the exploration proceeded.

Searching problem spaces is limited mainly in its applicability to artificial domains like chess and mathematical theorem proving. It is not very adaptable to the hurly-burly of solving problems involving interaction with the physical world. Problem spaces do not provide sufficient flexibility to represent the problem-solving processes of communities because of the attempt to represent the problem solving of individual actors as a single global state. This limitation of problem spaces is closely related to the inadequacies of the Turing machine as a model of asynchronous distributed systems. Problem solving in open systems is more analogous to the exploration of North America than the playing of games like chess.

**PLANNER**

Planner was one of the first AI programming languages to support goal-oriented problem solving without an externally specified problem space. It was based on the following principles (see reference 6):

- **Accessibility.** Planner aims for a maximum of flexibility so that whatever knowledge is available can be incorporated into the problem-solving process even if it is fragmentary and heuristic.
- **Pattern-directed invocation:** Procedures in Planner can be invoked by patterns of what they are supposed to accomplish. Suppose that we have a stopped sink. One way we could try to solve the problem would be to know the name of a plumber whom we could call. An alternative that is more analogous to pattern-directed invocation is to advertise the fact that we have a stopped sink and the qualifications needed to fix it. In Planner this is accomplished by making the advertisement (i.e., the pattern that represents what is desired) into a goal.
- **Procedural interpretation of logical statements:** One basic idea behind Planner is to exploit the duality that we find between certain imperative and declarative sentences. Consider the statement (implies A B). The statement is a perfectly good declarative. In addition, it can also have certain imperative uses for Planner. It can say that we might set up a procedure that will note whether A is ever asserted and if so to consider the wisdom of asserting B in turn. Furthermore, Planner permits us to set up a procedure that will watch to see if it is ever our goal to try to deduce B and if so whether A should be made a subgoal. Exactly the same observation can be made about the contrapositive of the statement (implies A B). Statements with universal quantifiers, conjunctions, disjunctions, etc., can also have both declarative and imperative uses. Planner theorems are used as imperatives when executed and as
Need RGB color and TTL monochrome support from a single board?

There's only one INTELLIGENT decision!

INTELLIGENT B-450
Mono/Color Display Card

Everyone from the ordinary user to the CAD/CAM specialist will find the B-450 is just right.

Sound good? With a suggested retail price of only $294, it's nothing less than great!

IBM and IBM PC are registered trademarks of International Business Machines Corporation.

INTELLIGENT DATA SYSTEM

Inquiry 201
declaratives when used as data.

Planner represented an advance over the "uniform proof procedures" of resolution theorem-proving systems then current. The design for Planner was implemented by Sussman, Winograd, and Charniak (see references 5, 23). Winograd used it to implement his interactive natural-language program, SHRDLU, for a world with simulated toy blocks (see reference 27).

In order to understand how procedural interpretation works, consider this logical statement:

\[(\text{For All } x \ (\text{man } x) \implies (\text{mortal } x))\]

The implication has two parts: the antecedent \((\text{man } x)\) and the consequent \((\text{mortal } x)\). It says: For every \(x\), if \(x\) is a man, then \(x\) is mortal. Logical rules of inference permit certain deductions from the above statement. For instance, that Socrates is mortal can be derived from the premise that Socrates is a man as follows:

\[(\text{Man Socrates})\]
\[(\text{Mortal Socrates})\]

I proposed that logical implications like "all men are mortal" could be interpreted as procedures in a programming language. One interpretation, the belief-invoked interpretation (called the "antecedent interpretation" in Planner), provides that when the belief that \(x\) is a man is held, then the belief that \(x\) is mortal can be logically derived. We can express this as follows:

\[(\text{when (belief (man } x)) \text{ do} \ (\text{believe (mortal } x)))\]

Another interpretation, the goal-invoked interpretation (called the "consequent interpretation" in Planner), provides that from the goal that \(x\) is mortal, the subgoal that \(x\) is a man can be logically derived:

\[(\text{when (goal (mortal } x)) \text{ do} \ (\text{show (man } x)))\]

The ideas in Planner have been generalized and perfected in subsequent artificial-intelligence programming languages. However, by themselves they do not address the needs of open systems.

**LOGIC PROGRAMMING**

Logic programming has been proposed by some as the programming paradigm for the future (see reference 12). Let's focus on limitations that are inherent in the enterprise of attempting to use logic as a programming language for dealing reliably with empirical knowledge and interacting with the physical world. The remarks in this section continue a debate that begins with the genesis of AI. I recommend that interested readers consult the appendix to Marvin Minsky's frames paper (see reference 15) and the subsequent analysis of David Israel (see reference 8).

Logic programming must be based on logic. But what is logic? First-order logic, with its well-defined semantics and syntax, is the basis claimed by most of those who call themselves logic programmers. In part, the confidence of logic programmers is based on the fact that first-order logic augmented with set theory has proved to be a good foundation for mathematical semantics.

Omega-order logic is an extension to first-order logic that allows quantification over predicates and functions. It has advantages over first-order logic in that it includes the full lambda calculus as a sublanguage and has arbitrary powers of abstraction. When certain technical problems having to do with Russell's Paradox have been dealt with, omega-order logic may be the preferred logical language (see reference 19). Therefore, we should consider it to be in the mainstream of logic programming. Experts have argued that the merits of other logics can be found in first-
order logic (see references 14 and 26), so the analysis in this article is confined to first-order logic without loss of generality.

**THE INCONSISTENCY PROBLEM**

I make the following claim, which I call the Conjecture of Inconsistency: The axiomatizations of the human knowledge of all physical systems are uniformly inconsistent in practice. I've used the term *conjecture* because the above claim is in principle impossible to prove rigorously, easy to disprove by counterexample, and has a preponderance of evidence in its favor. The reasons for the inconsistency have to do with the dispersed asynchronous nature of human knowledge, including the following factors:

- **Environmental context**: The physical system being axiomatized is related to various other physical systems. For example, a diseased kidney is often related to a diseased heart. Knowledge of the kidney cannot be separated from knowledge of the heart.
- **Spatiotemporal context**: A physical system is situated in space and time. Knowledge of the physical system comprises knowledge of its history and mode of production.
- **Terminological context**: The predicates used in the axiomatization of the properties of a physical object are always somewhat problematic in practice. For example, specifying in practice what it means for a physical table to be flat raised many problematic issues.
- **Evidential context**: It is impossible to separate what we know about a physical object from how we came to know it. Axiomatization of the methods by which the axiomatized knowledge came to be known further enlarges the axiomatization.

The DEC System-20 is a good case in point. In the first place, observe that the DEC System-20 is an extremely simple system in comparison with, say, the human kidney. Furthermore, the DEC System-20 is an artificial human construct that was designed to be consistent with some simple requirements. Nevertheless, despite the best efforts of software engineers, the formal description (axiomatization of documentation and code) of the DEC System-20 remains inconsistent. There are inconsistencies in the documentation as well as inconsistencies between the documentation and the code. Although inconsistencies are continually being removed from the system, the experience is that more inconsistencies are always found immediately.

Suppose that we were given unlimited funding to undertake the job (continued)
We've Put a Local Area Network on a Disk

Corporate Information Sharing. It's been described as the key to increasing a company's productivity. It's also why large networks of PCs are becoming more and more common in the workplace...in spite of the fact that they're costly, difficult to install, and incompatible with much existing software.

Finally, there's a solution to this corporate dilemma. Its name is LANLink™

A Software-Driven LAN That Uses Standard, RS-232 Ports. A major breakthrough in local area networks, LANLink™ uses your computers' existing serial ports and runs under PC-DOS.

Because all of the intelligence the network requires is on the server and satellite diskettes, expensive network interface boards aren't required.

A Powerful Network That's Cost-Conscious. If you've been pricing board-driven LAN's, you already know that they can cost over $1,000 per workstation.

LANLink™ is different.

Boasting a data transfer rate in excess of 100,000 BPS, LANLink™ is compatible with a wide range of programs. And because special boards aren't required, installation costs are one-third that of a traditional network.

A Network Designed the Way Business Works. With LANLink™ you're able to customize your network along departmental lines using a data-sharing hierarchy and password-protected access.

Get Started With LANLink™ TODAY. Call The Software Link TODAY for complete details and the authorized dealer nearest you. The LANLink™ Starter Kit, priced at $495, comes complete with network software for both a server and a satellite computer. For a limited time, 50 feet of RS-232 cable will be included free of charge.

LANLink™ is immediately available and comes with a money-back guarantee. VISA, MC, AMEX accepted.

LANLink™
THE SOFTWARE LINK, INC.
Developers of MultiLink™ and MultiLink Advanced™
8601 Dunwoody Place, Suite 336, Atlanta, GA 30338 Telex 4956147 SWLINK
CALL: 404/998-0700
Dealer Inquiries Invited

MultiLink, MultiLink Advanced & LANLink are trademarks of The Software Link, Inc. PC-DOS is a trademark of IBM Corp.

Inquiry 354
Sweet-P Model (SP600)
A six-pen graphics plotter that's more compatible...uses more software.

Last year 430 million business slides were made at a cost of $3.2 billion. Most of these slides were manually generated.* These slides could have been made on Sweet-P® Personal Plotters. Faster and better. With a savings of millions of $!

The Sweet-P SP600 is a high quality American made precision machine. It's fast. It plots 14 inches per second. It's beautiful for office and technical work.

Over 100 graphics software packages drive the Sweet-P™ world famous packages like Lotus 1-2-3™ Framework™ and SuperCalc™ technical software like AutoCAD™ PCAD Robographics™ and dedicated business graphics software such as Micro-soft Chart, ChartStar™ Eneregraphics™ Chartmaster™ and pfs Graph™.

Pens are capped automatically when not in use, so that pens last longer and start quicker.

only $1,095

The Sweet-P easily connects to almost any computer. It has RS-232 serial and Centronics™ parallel connectors. And it supports two standard graphics languages—Sweet-P Graphics Language (SPGL™) and Hewlett-Packard Graphics Language (HPGL™).

The Sweet-P plots on almost any media. Make brilliant overhead transparencies. Plot on film, and on plain and coated papers.

Save on wiring costs too. The Sweet-P will "eavesdrop" on the RS-232 cables that connect your terminals now. (This makes it easy for Sweet-P to join local and long distance networks.)

What about support? Sweet-P customers get fast professional help with software, hardware and interface questions. And warranty and service support is quick.

Sweet-P Model 600 also comes with 18 ANSI ASCII internal Character sets.

U.S. DISTRIBUTORS

Arizona
First Source Distributing
(602) 263-1550

California
Zenith Data Systems • (415) 621-8645

Colorado
Ares Distributing • (303) 752-2972

Florida
Cain Bultman • (904) 356-4912

Illinois
PC Distributing • (312) 356-4912

Zenith Data Systems • (312) 962-7300

Kansas
Inland Computer • (913) 492-9100

Maryland
Federal Data • (301) 986-0800

Missouri
Compuvette, Inc. • (314) 891-2891

North Carolina
Allison-Erwin • (704) 334-8621

New Jersey
Data Research • (201) 569-2860

Buhl Industries • (201) 433-2800

Pennsylvania
Peirce Phelps, Inc. • (215) 879-7068

Pryor Corp • (800) 245-0209

Chessell Robocom • (215) 968-4422

Tennessee
Multi Computer Products
(615) 528-7777

Texas
AMCAD. Inc. • (214) 333-0700

National Marketing Inc.
(214) 385-8161

Washington
Comquest Systems • (206) 641-7650

Canada
Altel Data • (403) 350-7814

Interworld Electronics Inc.
(604) 984-4171

The Pringle Group
(416) 449-5540

Enter Computer Inc.
6867 Nancy Ridge Dr.
San Diego, CA 92121

619-450-0601 • 800-227-4371 CA

800-227-4375 • TELEX-181740

Come see us at these Trade Shows
March 21-24 Comdex/Anaheim
CA • Booth #1182

April 14-18 NCUGA 85/Dallas, TX
Booth #506

Trademarks: Sweet-P, Six Shooter, Personal Plotter, SPCL, Enter Computer, Inc. HPGL, Hewlett-Packard, Lotus, Lotus Development Corp; Framework™ Ashton Tate; SuperCalc, ChipSoft; MicroSoft Chart, Energraphics; Eneregraphics, Enertronics Research, Inc.; pfs Graph, Software Publishing Corp.; ChartStar, Decision Resources; Centronics, Electronics Corp.

Sew notes: • Yankee Group, The Technica.IOffice. Vol. 1111983

**Where to School Study, September 1981

Inquiry 144 for End Users.

Inquiry 144 for Dealers.
of making the description of the DEC System-20 consistent. We would have to control the process by which the system grows and evolves. In particular, we would have to handle all changes to the documentation and code in face of the following external requirements:

- Bugs in both the code and documentation must be fixed
- New functions must be incorporated to meet the customers’ changing needs
- The system must accept changing interfaces to other systems such as peripherals and networks

There is no way to prove that the process by which the DEC System-20 evolves will result in new releases with consistent formal descriptions. An axiomatization of the code and documentation of even a system as simple as the DEC System-20 is, in practice, inconsistent despite enormous efforts made to achieve consistency.

A second claim I make is that the axiomatizations of the human knowledge about any physical systems will forever be inconsistent. I call it the Conjecture of Perpetual Inconsistency: Removing some inconsistencies from an axiomatization of the human knowledge about a physical system leaves an axiomatization which is nevertheless inconsistent.

MESSAGE-PASSING SEMANTICS

Consideration of the previous claim suggests that we need to examine how logic treats inconsistency. Inconsistencies have some important implications of the utility of logic programming as a foundation for intelligent systems. The logical view of inconsistent theories is clear: They are meaningless because they correspond to no possible world. The logical account of meaning is too stringent for nontrivial empirical systems because inconsistent beliefs and descriptions are not meaningless. Inconsistency is inherent in the enterprise of expressing the human knowledge of physical systems. A theory of meaning that maintains that inconsistent descriptions are meaningless is not directly applicable to problems of empirical knowledge.

In model theory, the meaning of a sentence is determined by the models that make it true (see reference 24). For example, the conjunction of two sentences is true exactly when both of its conjuncts are true. Truth-theoretic semantics assumes that it is possible to give an account of truth in itself, free of interactional issues, and that the theory of meaning can be based on such a theory of truth.

(continued)
Message-passing semantics takes a different perspective on the meaning of a sentence: It takes the meaning of a message to be the effect it has on the subsequent behavior of the system. In other words, the meaning of a message is determined by how it affects the recipients. Each partial meaning of a message is constructed by a recipient in terms of how it is processed (see reference 12). At a deep level, understanding always involves categorization, which is a function of interactional (rather than inherent) properties using the perspective of individual viewpoints (see reference 13). Meaning is thus fundamentally interactional. The meaning of a message is open-ended and unfolds indefinitely far into the future as other recipients process the message. According to message-passing semantics, meaning is communication-based, not logic-based.

**Need for Due-Process Reasoning**

In the presence of conflicting information and contradictory beliefs, logical proof is inadequate as a reasoning mechanism. Instead we need due-process reasoning that investigates different sides of beliefs, goals, and hypotheses that arise.

Consider the following hypothesis to illustrate due-process reasoning: "Nixon was guilty of destruction of evidence in the Watergate case by erasing a portion of a tape recording." One possible approach in logic programming is to gather evidence in favor of the hypothesis and attempt to fashion the evidence into a logic proof (perhaps augmented with "certainty factors" or "default assumptions"). The other approach is to use "negation as failure" to conclude that the hypothesis is false because it cannot be proved from the available knowledge. Both of the approaches are inadequate in this case. No matter how much evidence is produced and analyzed, logical proof (either for or against Nixon's guilt) is unbalanced because it presents only one side of the case in the form of a proof. Using "negation as failure" to draw conclusions from the inability to construct such a proof is equally limited. A balanced approach requires debate between differing positions and weighing presented evidence. Debates are not structured in the same way as logical proofs.

Due-process reasoning is the process of collecting and analyzing the evidence and arguments presented by all interested parties. *Advocates* collect evidence and organize arguments in favor of the hypothesis. In parallel, *skeptics* collect evidence and organize arguments against the hypothesis. Then a debate is conducted on grounds for deciding the case in terms of motive and ability.
tion of motive is whether Nixon thought that he would benefit by erasing the tape. The question of ability is whether he could have erased the tape. Both advocates and skeptics recursively make use of due-process reasoning while investigating, organizing, and presenting their cases. The advocates and skeptics operate interdependently in collecting evidence (through discovery processes and disclosure requirements) as well as interacting by debating each others’ cases in a decision-making process that is fundamentally different from logical proof.

PROLOG
Advocates of logic programming initially developed a programming language called Prolog that was based on the goal-invoked procedural interpretation of implication discussed earlier in the section on Planner (see reference 11). The example discussed earlier to the effect that “In order to show that \( x \) is mortal, establish a subgoal to show that \( x \) is a man” is written in Prolog as:

\[
mortal(x) :- \text{man}(x)\]

The original Prolog was a much simpler language than Planner, which was a considerable advantage in terms of pedagogy and ease of implementation. But now Prolog, like the Planner-like languages before it, has fissioned into incompatible dialects based on the procedural interpretation of logic, pattern-directed invocation, message-passing theory, and description systems (see references 4, 9, and 12).

In addition to the general limitations of logic programming discussed earlier, Prolog has some idiosyncratic weaknesses all its own. The closed-world assumption is the hypothesis that the locally available knowledge is complete; i.e., if a proposition does not follow from the local knowledge base, then it is assumed to be false (see reference 18). Planner could make use of the closed-world assumption using its ability to conditionize a plan (theorem) on the exhaustive
Engineering Excellence

CROSSTALK

XVI

THE STATE OF THE ART IN DATA COMMUNICATIONS SOFTWARE

DESIGNED BY

MICROSTUF

CROSSTALK IS A TRADEMARK OF MICROSTUF, INC., ATLANTA, GEORGIA
CROSSTALK IS AVAILABLE FOR MOST SMALL BUSINESS COMPUTERS

DATE 2/16/84
failure to establish a goal. In fact, Winograd made strong use of the capability in SHRDLU. Influenced by Planner, Prolog went much further and adopted a very strong form of the closed-world assumption as a basic postulate of the programming language in incorporating negation as failure. (Relational database systems make use of a similar strong hypothesis: If an entry is not found in a relational table, then the relationship is false.) The strong use of the closed-world assumption in Prolog is incompatible with the need in open systems to allow for the open-ended incremental introduction of new beliefs and objects.

INFORMATION-PROCESSING PRINCIPLES FOR THE FUTURE

The term reflection has been much discussed in the current AI literature (see references 2, 4, 7, 22, and 26). It is universally conjectured that reflective problem capabilities will be important to improving machine problem-solving capabilities. However, a danger is developing that the important problems will be neglected unless reflective problem solving is taken to encompass the following minimum capabilities:

- **History of its own behavior:** What did you do then?
- **Representation of its own information-processing procedures:** How do you make decisions?
- **Knowledge of the relationship between its previous behavior and current procedures:** What would you do differently and why?
- **Representation of its procedures for interacting with the external world:** How do you control things?

The current state of the art in implementing reflective systems is extremely primitive. Many of the issues and questions itemized above have not yet been properly addressed.

Besides reflective problem solving, other principles should be adopted in constructing reliable systems that meet the needs of open systems.

(continued)
Your personal computer deserves the unequalled monitor quality of Sakata

Your computer deserves the most monitor quality value possible...and so do you. SAKATA CRT DISPLAY MONITORS give you more monitor quality than the most expensive monitors available. Each SAKATA MONITOR provides unequalled color reproduction; sharpest and most vivid graphics; text that you read more easily than you ever expected; and technical characteristics and capabilities that will amaze you.

Protect your personal computer's performance by utilizing SAKATA CRT MONITORS which provide the utmost in monitor value. Choose from an entire line of Composite Color; RGB High Resolution Color; RGB Super High Resolution Color and two monochromes (green and amber) that have more quality than other monochrome monitors. "We promise performance".

SAKATA CRT MONITORS are available wherever personal computers are sold or write for technical and illustrated literature and prices.

SAKATA U.S.A. CORPORATION
651 Bonnie Lane, Elk Grove Village, IL 60007
(312) 593-3211 800-323-6647 (outside Illinois)

"Serving industry worldwide since 1896"
• **Serendipity:** It is not critical whether the system learns of a result before it can be used in a problem-solving task or after work has commenced on the task.
• **Pluralism:** There is no central arbiter of truth in the system.
• **Accessibility:** All knowledge of the system (including its own procedures) should be able to be applied to any problem.
• **Parallelism:** The system should be able to mobilize its full resources in parallel instantiations for different aspects of large-scale problems.
• **Due-process reasoning:** The system collects and debates alternatives to decide among beliefs and goals.
• **Reflection in practice:** Knowledge (including self-knowledge) should inform practice, and practice should modify hypotheses, beliefs, and goals.
• **Reasonableness:** The system should perform efficiently in the face of conflicting information and inconsistent beliefs.

**CONCLUSIONS**

In practice, the human knowledge of a physical system cannot be consistently axiomatized. Every physical system is open in the sense that it is embedded in a larger physical environment with which it interacts asynchronously. In general, open systems are not totally in control of their fate. In contrast, closed systems (like Peano arithmetic and point-set topology) are exactly characterized by rules and laws.

Proponents of logic programming have maintained that it is a suitable basis for all programming and is the programming paradigm for the future. Logic programming has some fundamental limitations that preclude its becoming a satisfactory programming methodology. It is inadequate for the needs of open systems because it is based on logical operations instead of communication primitives and logical reasoning instead of due-process reasoning. Decisions in open systems are justified by agreements to act in certain ways. Justification by agreement stands in contrast to justifi-
Only from Topaz...

Powermaker® Micro UPS
Uninterruptible, computer-grade power—at half the cost

It’s in a class by itself.

For about half the cost of other Uninterruptible Power Systems, you can now get the same degree of protection with our Powermaker Micro UPS. This remarkable new system eliminates computer problems caused by blackouts, brownouts, voltage sags and power-line noise.

Providing up to 75 minutes of continuous computer-grade power, our Powermaker Micro UPS is compatible with microcomputers and PC’s. It’s fully automatic, maintenance-free, portable and compact. It fits neatly alongside or under your desk or workstation. And because you can’t always tell when you’ve lost primary power, our little UPS even features an audible line-loss alarm.

But best of all is the price. The Powermaker Micro UPS is priced right and is ready for immediate shipment. Find out more about our Powermaker Micro UPS. Call us at (619) 279-0831, or contact your local Square D distributor.
ification by logical proof; interaction with the physical world involves dealing with conflicting and contradictory information in a way that does not fall within the scope of decision making by logical proof. Prolog also suffers from the limitation of “negation as failure,” restricting it to a closed-world assumption that is incompatible with the nature of open systems.

We need foundations for intelligent systems based on principles of commutativity, pluralism, accessibility, reflection in practice, and due-process reasoning. Logical reasoning is a useful module in the repertoire of an intelligent system, but it is not the whole show.

ACKNOWLEDGMENTS
Many of the ideas in this paper have been developed jointly with the members of the MIT Message Passing Semantics Group and the Tremen Research Institute. I would especially like to express my appreciation to Gui Agha, Gerald Barber, Peter de Jong, Elilhu M. Gerson, and Susan Leigh Star for their aid and the foundational work on which this paper builds. Jonathan Amsterdam, Mike Brady, Mike Brooks, Toni Cohen, Peter de Jong, John Kam, Henry Lieberman, John Mallery, Fanya Montalvo, Karen Prendergast, Claudia Smith, and John Teeter provided valuable comments and criticisms that helped greatly to improve on earlier drafts. Over many years I have benefited from extensive interactions with Richard Weyhrauch, who has a profound understanding of the issues discussed here.

The content of this paper comes from talks I have given at Stanford University in June 1983, at panels for IFIP-83 in Paris, at the MIT Artificial Intelligence Laboratory in November 1983, at BBN, at MIT Sloan School, and at the AAAS in New York during June 1984. Comments, criticisms, and arguments developed in these seminars have been invaluable in developing this paper. I would like to express special appreciation to Bob Moore, Nils Nilsson, Steve Hardy, Richard Waldinger, and others for valuable feedback during and after the Stanford seminar; Bob Kowalski and Doug Ross at the IFIP-83 panel; Jan Komorowski at the MIT seminar; David Israel at the BBN seminar; Tom Malone and Gerald Barber at the Sloan School seminar; as well as Victor Lesser, Jerry Hobbs, and Lucy (continued)
Suchman at the AAAS session. Allen Newell took the time to give me an overview of some of the aspects of his recent work on foundations in July 1984.

This paper describes research done at the MIT Artificial Intelligence Laboratory. Major support for the research reported in this paper was provided by the System Development Foundation and Wang Laboratories. Major support for other related work at the Artificial Intelligence Laboratory is provided, in part, by the Advanced Research Projects Agency of the Department of Defense under Office of Naval Research contract N0014-80-C-0505. I would like to thank Charles Smith and Patrick H. Winston for their support and encouragement.

REFERENCES

OPEN SYSTEMS
Meet The Princeton Graphics Systems Family.

The right monitor at the right price. Princeton Graphic Systems offers you a complete family of high performance personal computer monitors. Monitors that deliver the compatibility, resolution, and reliability you need for any application and any budget: from word processing to sophisticated business graphics.

**HX-12.** High resolution RGB monitor - 690 x 240 lines noninterlaced - .31 mm dot pitch tube - Nonglare screen - $695

**HX-12E.** High resolution RGB monitor - Compatible with IBM Enhanced Graphics Adapter - Nonglare screen - $785

**HX-9/9E.** Nine inch, high resolution RGB monitor - .28mm dot pitch tube - 9E compatible with IBM Enhanced Graphics Adapter - Nonglare screen - Green/amber switch - Apple/IBM colors - Etched dark glass screen - $650/$750 (9E)

**MAX-12.** Amber monochrome - 720 x 350 lines - Enhanced to interface with IBM color or monochrome adapter card - Nonglare screen - Can display 16 shades of amber - $249

**-12P.** PGS's top of the line RGB monitor - Analog input allows for the display of 4,096 possible colors - Compatible with IBM Professional Graphics Adapter - Nonglare screen - $999

**SR-12.** Super-high resolution RGB monitor - 690 x 480 lines noninterlaced - .31 mm dot pitch tube - Nonglare screen - Requires interface card - $799

Princeton Graphic Systems. The only real choice.
For office or home use, Princeton Graphic Systems has a monitor that's right for you. Inquire at your local computer store about our complete line of high resolution color and monochrome monitors; monitors that live up to the Princeton Graphic Systems' tradition of quality, performance, and value. Princeton Graphic Systems, 601 Ewing Street, Bldg. A, Princeton, N.J. 08540. (609) 683-1660 Telex: 821402PGSPRIN (800) 221-1490. Ext. 504
Statistics, reports and plots happen magically with SPSS/PC—the Statistical Package for IBM PC/XTs.*

SPSS/PC is the most comprehensive statistical package for performing simple or complex tasks, regardless of data size. It maintains feature and language compatibility with mainframe SPSS; while optimizing for the PC environment.

Statistics range from simple descriptive to complex multivariate, including Multiple Regression, ANOVA, Factor and Cluster analysis. Loglinear and nonparametric procedures are also included.

Simple facilities allow transfer of files between SPSS/PC and programs like Lotus 1-2-3, dBase II and SAS. A complete Report Writer, Plotting facilities and a Communications program for mainframes round out a fully integrated product.

For more information, contact our Marketing Department without further ado. And see what a little stat magic can do for you.

SPSS Inc., 444 N. Michigan Avenue, Chicago, IL 60611, 312/329-3500.

In Europe: SPSS Benelux B.V., P.O. Box 115, 4200 AC Gorinchem, The Netherlands, Phone: +31183036711

TWX: 21019.

VISA, MasterCard and American Express accepted.

*SPSS/PC runs on the IBM PC/XT or AT with 320K memory and a hard disk. An 80287 co-processor is recommended. Contact SPSS Inc. for other compatible computers.

IBM PC/XT and AT are trademarks of International Business Machines Corporation. dBase II is a trademark of Ashton-Tate. 1-2-3 is a trademark of Lotus Development Corporation.

SAS is a registered trademark of SAS Institute, Inc. SPSS and SPSS/PC are trademarks of SPSS Inc. for its proprietary computer software.
VISION AND MOTOR CONTROL are such common capabilities in the animal kingdom that we do not usually associate them with intelligence. Yet vision has always been a paradigm problem for artificial intelligence (AI), since it is mysteriously difficult. Technology has mounted many responses to the biological challenge of reliable, versatile, real-time vision systems, but so far the resulting industrial systems only work in specialized settings (or domains). These systems are routinely used to inspect integrated circuits and manipulate parts but cannot be used outside of these limited contexts. For example, the systems' image input is binary (black and white), not the full gray-scale range provided by an input device such as a TV camera. Attaining such an image calls for carefully engineered lighting and imaging conditions. Also, to attain the necessary speed, the systems have simple algorithms that will not tolerate events such as parts obscuring one another or lying propped up at odd angles. A seemingly simple but elusive industrial vision task, beyond the capability of all current systems, is the “bin-picking” problem, one regularly surmounted by humans: It involves simply grasping and removing parts jumbled together in a bin, not laid out flat on a special surface.

Thus, fast, reliable computer vision is so hard that we can presently achieve it only in highly constrained and simplified domains. This makes the fast and reliable vision performed by biological systems all the more marvelous and mysterious. Somehow, humans perform recognition, description, manipulation, and locomotion in a highly complex world of moving solid objects, both rigid and nonrigid, with complex (textured, transparent, glossy, etc.) surfaces and highly variable illumination conditions.

General-purpose vision systems, which can build descriptions of their environment in general situations, remain a research goal. Today, a consensus is emerging that such systems will be designed around two central ideas, originating in biology and rediscovered by researchers in technology. The embodiment of these ideas in vision systems is a topic of much current concern and an area of rapidly expanding technological achievement and biological insight.

The first idea is that vision systems use a hierarchy of representations that develops visual information in many intermediate stages to span the gap from input signal to cognitive symbols. Computer-vision researchers found the hierarchy to be a solution to several technical problems of computing and storage efficiency. Currently, researchers in the neurosciences are studying the extent of such a functional and physiological hierarchy in biological systems, and many signs point to biological versions of the computer-vision hierarchy.

The second idea is parallel computation. Researchers have known for a long time that nervous systems compute in parallel, and they have made many attempts to model such computations. Recent work has provided new tools in these areas (see the articles in this issue “Learning in Parallel Networks” by Geoffrey E. Hinton on page 265 and “Connections” by Jerome A. Feldman on page 277) and powerful parallel computing engines are now realizable. In the remainder (continued)

Dana H. Ballard is an associate professor and Christopher M. Brown is the chairman of the Department of Computer Science, University of Rochester (Ray P. Hylan Building, Rochester, NY 14627).
of this article, we will explore the two themes of representational hierarchy and parallelism in computational and biological vision.

**HISTORY AND BACKGROUND**

The digital analysis of visual input has been a research issue since the late 1950s when computers became large enough to accommodate such data. After about a quarter of a century of development, computer vision is a large subfield of AI. Like robotic control and computer-speech analysis, computer vision often uses "real" data—that is, the raw output of sensors—as its input. However, computer vision also uses more symbolic or processed data. Thus, one vision program can have, for example, an array of gray-level intensities from a television image as input, while another program may take a symbolic description of a line drawing as input.

The goals of computer vision are also diverse but may be characterized as seeking answers to "what," "where," and "why" questions. "What" questions concern the identification of objects in a scene; "where" questions involve the perception of the environment in time and space; and "why" questions address causal relationships between objects.

True computer vision, with the goal of understanding images of complex three-dimensional scenes, was first attempted in the early 1960s by Larry Roberts at MIT (see reference 1). His goal was to "understand" a scene made up of polyhedral blocks, in the sense of being able to produce a line drawing of the scene from any viewpoint. Robert's system pioneered many fundamental techniques still in use today, not just in computer vision, but also in computer graphics. In particular, the system analyzed digitized input images by identifying "edge elements" that might line up along the polyhedral edges (see figure 3b for an illustration of this technique in another application). The system then fused these edge elements to produce longer lines that corresponded to the polyhedral edges (figure 3c again is similar) and matched the resulting line and polygon data structures against three-dimensional models of primitive blocks. This process derived the scaling, rotation, and translation of the models needed to explain the image data, and this information allowed the system to produce the final line drawings, using basic computer-graphics techniques—also first attempted by Roberts—such as hidden-line removal.

Roberts’s goal was ambitious even by today's standards: No computer vision system will perform the task of reliably identifying blocks on a table in the presence of occlusion and noise. However, such early work (continued)

Figure 1: The processes (ellipses) and data representations (rectangles) of a general computer-vision system. Processing can proceed from input data to symbolic description (a normal data-driven scheme) or in the reverse direction (where expectations guide processing). Control is most often thought to flow in both directions. Each stage of processing includes assumptions about how the image information is related to the phenomena of interest in the world. In natural systems these assumptions may be innate or learned.
3 USERS ON ONE CARD!

IF you own an S-100 system...

IF you need to expand to a Multi-User system...

IF you are using TURBO DOS or NETWORK/OS...

You can get 3 users on a single S-100 slave card! And pay the price of One!

A 16-BIT MS-DOS COMPATIBLE BOARD

Advanced Digital is proud to present its latest state of the art SUPER 16 S-100 slave board. Using intel 80186 (8MHz) and 256K Bytes of memory and 4 serial I/O ports, now each user in a multi-user environment can have a dedicated 16 bit system running. The SUPER 16 is designed to run with all of the INDUSTRY STANDARD S-100 master 8/16 Bit. Operating systems supported are TURBO-DOS & NETWORK/OS.

ADVANCED DIGITAL manufactures a complete line of S-100 Boards and Systems and PC add on products. Turbo-Dos is a trademark of software 2000. Network/OS is a trademark of CBIS. Multislave and super 16 are trademarks of ADC. MS-DOS is a trademark of MicroSoft.

Advanced Digital Corporation
5432 Production Dr., Huntington Beach, CA 92649
(714) 891-4004—Telex 183210 ADVANCED UTRH

Advanced Digital U.K. Ltd.
27 Princes St., Hanover Square
London W1R8Q—United Kingdom
(01) 409-0077/(01) 409-3351—Telex 265840 FINEST
revealed the immense computational complexity of vision and the unreliability and inadequacy of sequential control structures to allocate processing power.

Such a task requires an extraordinary amount of computation, which includes extracting physical information from an image, labeling image regions that correspond to significant objects, and symbolically describing objects in the image.

Thus the field of computer vision is quite large. It includes the aforementioned industrial inspection systems, as well as academic research efforts whose competence (what we must know to solve a problem) is often of more interest than their performance (how we actually solve the problem in real time). See the bibliography at the end of this article for more material on the field of computer vision.

In the 1970s a cognitive approach to computer vision arose, which conveniently minimized image-level computation and emphasized the symbolic manipulations to which computers are well adapted. In such "knowledge-directed" vision, processing uses facts about such phenomena as gravity, support, occlusion, or the likely spatial relations between objects in the scene. Research turned toward representing and manipulating facts about a particular setting (or domain, such as a grouping of polyhedral blocks or an office scene) and exploiting the domain-specific knowledge in vision.

However, the representation and application of knowledge is a very difficult branch of AI, and the available techniques proved inadequate to bridge the gap between the input image and the desired symbolic descriptions of it. Thus in 1974, starting with Marr at MIT and Barrow and Tenenbaum at Stanford Research Institute, attention was directed toward a collection of intermediate representations, termed intrinsic images, that would span the representation gap.

Today, the consensus of the computer-vision community is that this gap is bridged by a set of visual data representations that are arranged in a hierarchy of increasing abstraction.

VISION AND THE ABSTRACTION HIERARCHY
Our vision is quite reliable—that is, there is a good correlation between our perceptions and things in the world. Otherwise, we would not have survived as a species. How do we ignore irrelevant variations and concentrate on those that mean something?
How do we achieve the constancies whereby we recognize objects under varying illumination, or faces at different ages? How do we perform so fast and reliably? A partial answer to these questions is that of abstraction hierarchies.

Modern computer vision spans the gap between input image and object perception with a hierarchy of representations (the aforementioned intrinsic images) operated on by powerful computational processes (as shown in figure 1). These processes create representations that pass from image-like representations of physical parameters to symbolic descriptions. Constructing these intermediate descriptions is feasible and probably necessary, but it involves complex computations for a general vision system (as opposed to a highly specialized system, such as an industrial system).

At the earliest level (the input level), a general vision system derives a representation of image brightness changes that it uses for stereo disparity calculations (the difference between two views of the same setting), detecting changes in surface composition, orientation, distance, reflectance, and so forth. Perceptual phenomena (e.g., subjective contours, the ability to discern collinearity of dissimilar shapes) suggest components for the earliest image representations (e.g., locations, orientations, and endpoints of features). Feature detectors that derive these components may then be designed by humans.

Much current research is centered around the production of physical property images, which are intermediate representations that the system forms before attempting object recognition. These image-like representations are registered with the input image and contain values of physical parameters of scene points such as the distance from a sensor to the point, the albedo (reflective power) of surfaces, the objects' direction of motion, the location of shadows and light sources, and so forth. Researchers generally assume that the processes producing physical property images are part of "early vision." That is, they are not dependent on the context of the scene being viewed, much less on conscious reasoning, but are robust general processes that produce reliable output in a broad range of natural circumstances. However, these processes cannot be completely general and reliable, since the two-dimensional input image does not capture three-

Figure 2b: Shapes causing the images as derived by a computational vision process. Such processes use mathematical models of physical laws and assumptions about nature to recover physical information about scenes from input images. [Courtesy of John Aloimonis, University of Rochester.]
dimensional information directly (it can only imply it). But the usual reliability of these processes in animal vision implies that they rely on natural constraints or assumptions about the world to derive unambiguous output. Identifying and using such constraints are important goals of modern computer-vision research. This, in turn, calls for seeking out properties of the physical work that could help a visual process do useful work, making mathematical models of their interaction with visual phenomena, and implementing the mathematics in computer programs. One such result that illustrates the kind of computations at this level is the computation of relative depth from optic flow (see figure 2).

The step beyond intrinsic images is a large one; although they contain physical information, they are still image-like entities not yet described in terms of objects. Two of the most important visual phenomena are motion and texture, which transmit much information about the objects and surfaces in a scene. One of the most active areas of computer-vision research is the extraction of information from motion or from optic flow of the visual field on our retina as an object or the viewer moves. It is also a particularly good illustration of the symbiosis that can take place between psychology and computer vision. Researchers basically agree that the higher abstraction levels in a general computer-vision system must contain data structures representing aspects of the domain from which the scene originates. The resulting problems in knowledge representation are interesting in a wide variety of AI applications. For example, computer modeling of three-dimensional rigid solids is by no means a solved problem except for certain manufactured objects. Also, representing naturally occurring shapes and volumes so that they can be matched to their geometric counterparts in intrinsic images is still an open question.

High abstraction levels pose several other difficulties. Perception goes on through time, and yet representing processes through time is an area of advanced AI research. The contribution of high-level knowledge and inferential procedures to the vision process is still a mystery. It seems certain that information does not simply flow "bottoms up" (that is, sequentially, from low-level to high-level) through the visual system, as it did in Roberts's first system. Nor is vision merely controlled hallucination, with the abstract representations dictating our perceptions as they do in dreams, subject to minor corrections from incoming data. The upper levels of abstraction hierarchy must support information flow in both directions, and a bottleneck in current computer-vision research is achieving useful interaction between the lower, image-like representations and the higher, symbolic ones.

**STATE-OF-THE-ART EXAMPLES**

Two examples will illustrate the operation of computer vision in the sort of abstraction hierarchy introduced in the last section. The three-dimensional MOSAIC system at Carnegie-Mellon University, developed by Marty Herman and Takeo Kanade, can reconstruct three-dimensional representations of buildings from two aerial views—using stereo to provide depth information—or from a single view—using advance knowledge about the nature of the input scene to provide depth information. Figures 3a through 3d show the operation of the monocular version of the algorithm.

The MOSAIC system uses an edge operator to find intensity discontinuities, which contain much image information in a single input image (see figure 3a). Because the image has a baffling number of such "edge elements," the system sends the output to a post-processing routine that identifies edges that are likely to con-
tribute to interesting structures in the image (see figure 3b). Several stages of processing then link the edges into two-dimensional structures using standard edge-linking technology and information about the way lines meet to form vertices in polyhedral scenes. And then the edges are linked into three-dimensional structures—using information about gravity, support, the perspective imaging process, and other facts describing the physical scene domain and the optics of image formation. Figure 3c shows the result of this processing: a perspective view of a three-dimensional “wireframe” representation of edges in the scene.

The next stage of processing relates the wireframes to stored representations of three-dimensional solid models. In a sense, the solid models are the final output of the program, with two important additions. First, the system can relate new image information to its existing model data structures, which it can refine as it acquires the new images. Second, the system can, using standard computer-graphics technology, map the flat image onto the surfaces of the stored three-dimensional models. The system can then display three “painted” models from another angle, as shown in figure 3d.

Work continues on the extraction and identification of meaningful parts of an image. This process is called segmentation, which is typified in the VISIONS (Visual Interpretation by Semantic Interpretation of Natural Scenes) system at the University of Massachusetts. The VISIONS system’s sophisticated programs use models of a specific domain (rural, outdoor scenes of houses, trees, etc.) and knowledge about that domain.

In this work, the goal is to segment a color image (as in figure 4a) into regions that correspond to meaningful objects or substances in the image. The process involves extracting straight lines (see figure 4b), and regions of related color characteristics (see figure 4c). The VISIONS system uses interpretation rules that incorporate knowledge about the scene domain (for example, that a driveway is not found silhouetted against the sky, or that a house’s roof is above its walls) in cooperation with the image-guided segmentation processes. These interpretations make the segmentation process more reliable, by indicating, for example, when regions may be merged or should be split. For example, in figure 4c the system has colored regions that it has hypothesized, using interpretation rules, to be shutters. Foliage is an important component of these scenes, and VISIONS has a set of feature extractors and recognizers to allow reliable identification of foliage, despite its many different appearances.

Figure 5 shows the final labeling of another input scene, with regions identified as sky, foliage, grass, wall, shutters, roof, and regions (in black) that are uninterpreted due to the lack of a symbolic model in the current system or deviation of the scene’s appearance from that predicted by the model. VISIONS currently models some 20 major objects and object collections such as “house” and “house scene,” and a larger number of object parts such as “roof” and “shutters.”

The two examples of current systems show the beginning of understanding the competence issues in vision: We know what kinds of entities need to be computed. However, each of these examples requires huge amounts of computer time. Most researchers believe that the performance problem in vision will only be solved through parallel computation.

**CHALLENGES FROM ANIMAL VISION**

One of the most promising directions for the study of parallel processing has centered around studies of...
human and animal vision. Unlike robot vision, where many of the complexities of sensing the environment can be manipulated by tailoring the environment and using special imaging techniques, animal vision must somehow analyze time-varying photometric data in its full complexity in real time. Furthermore, biological systems use neural-processing elements that are six orders of magnitude slower than silicon components.

Despite all these apparent disadvantages, animal systems succeed admirably. Experiments with human subjects show that they can make a variety of behavioral responses to visual stimuli in a few hundred milliseconds. Thus, the biological system, somewhat embarrassingly, embodies solutions to problems that still plague vision researchers. This situation has lured researchers to tackle the problem of modeling the human visual system head-on, in the hopes of discovering its secrets. Such researchers typically have a wide range of cross-disciplinary interests and are joining to make progress in the separate fields of psychology, neuroscience, and computer science. We shall describe some of the more interesting of the many new results from these disciplines.

Since humans are very good at visual tasks, researchers were surprised to find that, for some tasks, information can be processed in parallel, but for rather modest increases in complexity, the processing became sequential (see reference 2). Treisman describes visual displays of letters about which subjects were asked questions of the form “Does the display contain a T?” (See figure 6.) Most subjects can answer this question in a few hundred milliseconds, independent of the number of letters displayed (see the lowest dashed lines of figure 6). However, if we change the question to “Does the display contain a red T?” the time taken to answer becomes linearly dependent on the number of letters displayed. From this we conclude that the brain processes certain primitive features in parallel but processes conjunctions of these features serially.

We still lack a detailed explanation for this result, but one hypothesis is as follows. It may be uneconomical for the visual system to check stored prototypes against spatial positions. A faster way would be for the brain to build an abstract representation that is independent of the precise point in space where the feature is located. Thus, we hypothesize that the brain builds a representation for a T if there is one or more Ts anywhere in the visual field. In a similar process, the brain builds a representation for perceived color values, such as “red.” Thus, the brain could answer questions concerning these features directly. In contrast, questions about conjunctions of features cannot be handled by this scheme, since information about spatial location is not present in the abstract representation. One idea, termed the searchlight hypothesis (see reference 3), is that the brain
True mainframe COBOL for your microcomputer. Validated by the GSA at the highest possible level of compliance with the ANSI '74 standard. With Microsoft COBOL, mainframe programmers can be productive on MS-DOS™ and Microsoft XENIX® microcomputers immediately.

**Speed and Beauty.**

High performance in a COBOL program comes mostly from the speed of the ISAM. And Microsoft COBOL 2.0 has the fastest ISAM on the market.

And our advanced screen handling capability lets you create the highly interactive programs that end users prefer.

**We wrote the book.**

It's no surprise that IBM®, DEC®, AT&T, H-P and Wang® all chose Microsoft COBOL for their MS-DOS machines. We know how to get the most out of their microcomputers. After all, we designed the operating system.

So call (800) 426-9400. In Washington State, Alaska, Hawaii and Canada, call (206) 828-8080. We'll give you the name of your nearest Microsoft dealer or help you update to Microsoft COBOL 2.0.

**Certified High Level Compiler:**
- GSA validation at the Federal High Level of compliance with the ANSI '74 standard.
- Built in sort-merge, chaining, dynamic calling, and overlays.

**Fast multi-key ISAM:**
- Split-keys and duplicate keys.
- Benchmark results of 5000 reads and writes to an ISAM file:
  - Microsoft COBOL 2.0
  - Realia COBOL
  - MicroFocus Native Code
  - Ryan-McFarland COBOL 2.0
  - Times: 1:32 1:56 2:58 3:30

**Interactive extended screen section:**
- Cursor positioning, auto skip, automatic data field formatting.
- ACCEPT and DISPLAY data by the screen full.

**Productivity utilities:**
- Interactive Symbolic Debugger.
- Rebuild file recovery utility restores corrupted ISAM files.

**Price:**
- $700 for compiler and utilities.
- No runtime royalty fees.

**Minimum System requirements:**
- MS-DOS 2.0 or later, 192K RAM, and one disk drive.
- Xenix 286, 512K RAM, and one disk drive.
sequentially focuses on spatial locations from which the features are derived. In this manner, if the “I” feature and the “red” feature occur together, then the question can be answered affirmatively. The separation of data into two different levels of abstraction (spatially organized and nonspatially organized) seems to be a fundamental design decision that allows the brain to do its job quickly.

Mishkin and colleagues performed another experiment that points to this organization (see reference 4). They made selective lesions in different parts of a monkey’s cortex. Monkeys with lesions in one area of the brain performed a feature-recognition experiment at chance levels (in a statistically random manner) but had no trouble with a spatial-location experiment. In contrast, monkeys with lesions in another area performed a spatial-location task at chance levels but had no trouble with a feature-recognition experiment. This startling result shows that an important psychophysical property may have a distinct locus in animal brains.

**CODING PHYSICAL CONSTRAINTS AS HARDWARE**

Concurrent with these biological and psychological results, researchers in computer vision have been exploring parallel models of computation that handle features in similar ways. In addition, these models have to grapple with many difficulties of noise and missing information: A shape outline or a feature like a straight line is only represented in an image by partial confusing noise.

To overcome this problem, we use the Hough transform (see reference 5). The Hough transform includes a

(continued)
The new Microsoft® Macro Assembler package. A complete development environment that makes you a more productive programmer. Whether you're using Macro Assembler or any Microsoft high level language.

A common calling convention lets you easily call assembly language routines from any high level Microsoft language to add an extra burst of blinding speed.

Better Debugging.
The new Symbolic Debug Utility lets you stay close to the source. Now you can step through your assembled or compiled code by name rather than by address. Source level display for Microsoft Pascal, FORTRAN, and C allows you to view both your original source and the resulting code.

And we stuffed our package with a full set of the most useful utilities around. So that you can link, maintain and organize your programs like never before.

Who else but Microsoft could build so much into one package for $150?

For the name of your nearest Microsoft dealer call (800) 426-9400. In Washington State, Alaska, Hawaii and Canada, call (206) 828-8088. And if you're already using Microsoft or IBM® Macro Assembler, ask us how you can upgrade to the mightiest Macro of them all.

Microsoft Macro Assembler Package:
Macro Assembler
- For the 8086/8087/8088 and now the 186/286/287.
- Define macros.
- Conditional Assembly.
- Case sensitivity for symbols.

New Interactive Symbolic Debug Utility
- Controlled testing environment for debugging.
- Source line display of Microsoft FORTRAN, Pascal and C Programs.
- Set breakpoints on line numbers and symbols.
- Single step to follow program execution.
- Disassemble object code.
- Display values.
- Make minor changes without reassembling.

New Program Maintenance Utility
- Rebuilds your applications after your source files have been changed.
- Similar to UNIX® Make utility.

Library Manager
- Create, organize and maintain your object module libraries created with Microsoft Languages.
- Set page size (default of 16 bytes).

Object Code Linker
- Simple overlaying linker combines relocatable object modules created using Microsoft Languages into a single program.
- Load Map generation.
- Specify from 1 to 1024 segments.

Cross Reference Utility for the Macro Assembler
- Creates a cross-reference listing of the definitions and locations of all symbols used in an assembly language program.

Microsoft is a registered trademark and The High Performance Software is a trademark of Microsoft Corporation. IBM is a registered trademark of International Business Machines. UNIX is a trademark of Bell Laboratories.
DeSmet C
8086/8088 Development Package $109

FULL DEVELOPMENT PACKAGE
- Full K&H C Compiler
- Assembler, Linker & Librarian
- Full-Screen Editor
- Execution Profiler
- Complete STDIO Library (>120 Func)

Automatic DOS 1.X/2.X SUPPORT
BOTH 8086 AND S/W FLOATING POINT OVERLAYS

OUTSTANDING PERFORMANCE
- First and Second in AUG '83 BYTE benchmarks

SYMBOLIC DEBUGGER $50
- Examine & change variables by name using C expressions
- Flip between debug and display screen
- Display C source during execution
- Set multiple breakpoints by function or line number

DOS LINK SUPPORT $35
- Uses DOS .OBJ Format
- LINKs with DOS ASM
- Uses Lattice® naming conventions

Check: ☐ Dev. Pkg (109)  ☐ Debugger (50)  ☐ DOS Link Supt (35)

          256 BYTE • APRIL 1985

wide variety of clustering histogram analysis and estimation strategies, all of which transform data so that phenomena of interest form clusters.

Consider an example using the Hough transform for line detection. To detect lines in an image we must first detect local intensity differences or edges. Figure 7a shows the Hough transform applied to the image of a Rubik’s cube, in which intensity differences could be caused by an actual edge of the cube, a shadow, a label, and so on. If we call the image \( f(x,y) \) and the horizontal and vertical intensity differences \( h(x,y) \) and \( v(x,y) \), then one way to compute the intensity differences uses the values of neighboring picture elements in the (continued)

Figure 6: Reaction time in milliseconds for experiments described in text. In recognizing a single feature such as “red” or the letter “T,” a subject’s reaction time is constant if the feature is in the display (POS). If it is absent or, more importantly, if the stimulus is a conjunction (i.e., red T, depicted by a solid line), the response time increases linearly with the size of the display. [Figure taken from Treisman (see reference 2).]
HALF PRICE
Introductory Subscription Offer

If you're a technically-inclined micro user, subscribe to BYTE and cut your cost right in half. At 50% of the newsstand price, every BYTE issue will bring you stimulating, timely articles on new technology, innovative pc-applications, previews, reviews, and appraisals of major new hardware and software products. If your first trial issue of BYTE isn't everything you expected, just write "cancel" on the invoice and return it. Your first issue is FREE to keep with our thanks for trying.

☐ Bill me (North America only)
☒ Charge Visa
☐ Charge Master Card
☐ Check enclosed (U.S. only)

☐ US 1 yr. $21.00
   (12 issues)
☐ Canada or Mexico
   1 yr. $23.00 U.S.
   (12 issues)
☐ Europe 1 yr. (air)
   $69.00 U.S.
☐ Foreign Surface Delivery (1 yr.)
   $37.00 U.S.

Name ________________________
Address _______________________
City __________________________ State/Providence/Country ____________
Signature ____________________________ Card # ____________
__________________________________ Expires ____________

Please allow 8 weeks for processing.
Why your competitors want one of these.

They want the Merlin™ Communications System from AT&T, because it can give the competitive edge to any small business.

The Merlin System's more than a telephone. It's a conference caller, an intercom, a speed-dialer. It lets you call your banker, call a meeting, screen a call or recall a call, with just one touch. In short, it helps you organize all your office communications.

So you can get down to business.

Plus the Merlin System is modular. Which means you can program any of its phones with any of its features. And you can expand the system as your small business grows.

One more thing: you can get the Merlin System from AT&T's unique Small Business Connection. They'll help you design the system that best suits your business.

No matter what calling you're in, get the edge by calling the Small Business Connection. 1 800 247-7000, Ext. 12. AT&T Information Systems. When you've got to be right.
following manner:

\[ h(x,y) = f(x+1, y-1) - f(x-1, y-1) \]
\[ + 2xf(x+1, y) - 2xf(x-1, y) \]
\[ + f(x+1, y+1) - f(x+1, y-1) \]

\[ v(x,y) = f(x-1, y+1) - f(x-1, y-1) \]
\[ + 2xf(x, y+1) - 2xf(x, y-1) \]
\[ + f(x+1, y+1) - f(x+1, y-1) \]

The edge finder reports an edge if the magnitude of the intensity differences \( m = \sqrt{(h^2 + v^2)} \) is greater than a given threshold value. We will give the orientation of the edge as \( \theta \), where \( \theta = \arctan(h/v) \).

Next, we accumulate the local edges into straight lines. This accumulation is essentially a voting process, in which each edge element "votes" for the lines that could have caused it. Thus, in figure 7b, the edge element centered at the point \((x_0, y_0)\), with the orientation \( \theta \), votes for a line that we can describe as \((q, \theta)\), where \( q = x \cos \theta + y \sin \theta \).

After each edge element votes for the lines that could have caused it, the line with the most votes is presumed to be an actual line of the image, rather than an artifact or noise.

To facilitate this accumulation process, place all the values of \((q, \theta)\) into another two-dimensional array, with \( q \) and \( \theta \) as coordinate axes (see figure 7c). The brightness of each cell in figure 7c is proportional to the number of edge elements voting for a line at that particular value of \((q, \theta)\). That is, the brighter the cell, the more likely the image actually has a line with those values of \((q, \theta)\).

To sum up, suppose the feature detector applied to a point \((x,y)\) of the image responds with a local edge orientation \( \theta \) and a measure of edge contrast. Then one version of the algorithm is as follows.

For each point \((x,y)\) in the image, do the following two steps:

1. Apply the detector to get \( \theta \) at \((x,y)\).
2. If edge contrast exceeds some threshold:
   - compute \( q = x \cos \theta + y \sin \theta \)
   - increment LineParams \((q, \theta)\)

Several implementations of the Hough transform are possible (see reference 6). We have just described a straightforward sequential computer implementation that represents parameter space in an array. This representation is costly for transforms with multiple parameters, since it demands space exponential to the number of parameters—although researchers have made progress in implementations of the accumulating parameter space (described above) using hash tables or content-addressable memories, which use less space.

Finally, the Hough transform can be implemented in massively parallel computing networks in which prewiring accomplishes all the voting in one time step.

The general notion of capturing functionality in terms of connection patterns is known as connectionism and is sparking a great deal of interest in different disciplines. One issue raised is computational. How is the computation carried out in very large networks with complex constraints? Recently, progress has been made by several groups headed by Kirkpatrick, Hopfield, Hinton, Sejnowski, Geman, and Geman (see references 7 through 10 and Geoffrey E. Hinton's article "Learning in Parallel Networks" on page 265). The thrust of this work is that constraints can be cast as local changes in "energy" and that the computing units can be turned on or off to minimize energy.

The neural network also shows a general way of representing informa-

![Figure 7: (a) Results of applying a computer-vision edge operator to the image of a Rubik's cube. (b) The geometrical constraint that relates a local edge element \((x_0,y_0,\theta)\), shown by a circle, to a line, denoted by \(q\) and \(\theta\). For every edge element in an image, a unique line can be determined. (c) Each edge element "votes" for the lines that may have caused it, as shown in this plot of \(q\) and \(\theta\) values. The brightest accumulations of values for \(q\) and \(\theta\) indicate the most likely lines in the actual image.](7a)(7b)(7c)
Viasyn just lowered the cost of room and board.

<table>
<thead>
<tr>
<th>CPU BOARD</th>
<th>THEN</th>
<th>NOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>8086/8087 5 MHz</td>
<td>$1050</td>
<td>$495</td>
</tr>
<tr>
<td>8066 10 MHz</td>
<td>$800</td>
<td>$395</td>
</tr>
<tr>
<td>8087 OPTION 5 MHz</td>
<td>$495</td>
<td>$175</td>
</tr>
<tr>
<td>8085/8088 8 MHz</td>
<td>$495</td>
<td>$275</td>
</tr>
<tr>
<td>8085/8088 10 MHz</td>
<td>$545</td>
<td>$350</td>
</tr>
<tr>
<td>68000 10 MHz</td>
<td>$750</td>
<td>$425</td>
</tr>
<tr>
<td>80286 C STEP COMBO WAS</td>
<td>$1595</td>
<td>$375</td>
</tr>
<tr>
<td>68000 5 MHz</td>
<td>N/A</td>
<td>$895</td>
</tr>
<tr>
<td>Z80 6 MHz</td>
<td>$325</td>
<td>$275</td>
</tr>
</tbody>
</table>

And, as you can see from the chart, we lowered it substantially. Now you can get the finest room and board with CompuPro® CPUs, recognized as the highest-performing, most reliable products you can buy. And you can buy them at the lowest possible cost in the industry. You can even get them configured into systems to fit your exact requirements.

Each CompuPro CPU board bridges the 8- and 16-bit worlds to give you the advantages of both — and the drawbacks of neither. And Viasyn supports them with a full range of other peripherals, from memory boards, controller boards, and interface boards, to motherboards, disk storage subsystems, even enclosures.

When you buy Viasyn's CompuPro CPU boards, you also have something else in store. Like a one- or two-year warranty, backed by a nationwide Systems Center network of highly-trained, responsive service professionals.

So the next time you're searching for room and board, call us toll-free at Viasyn.

We're a nice place to visit, and you can't beat our rates.

Viasyn the CompuPro People
Where Computers Grow

3506 Breakwater Court, Hayward, CA 94545 • 800/367-7816 • In CA, 415/786-0909
CompuPro is a registered trademark of Viasyn Corporation.
tion known as value encoding. On a sequential computer, a variable can have only one value at a time. A parallel computer, however, may need to simultaneously access many values of a variable. In value encoding, we represent the different possible values of a variable as discrete cells or "intervals." The number of cells used determines the accuracy in the representation.

For example, we can represent the parameters for the edge element of figure 7b as discrete intervals centered at \((x, y)\), with a width of \((\Delta x, \Delta y)\) (see figure 8a). We can also represent the line parameters of figure 7c as discrete intervals centered at \((\theta, \rho)\), with a width of \((\Delta \theta, \Delta \rho)\) (see figure 8b). This idea was suggested by Horace Barlow at Cambridge and is being pursued by D. H. Ballard and Jerome Feldman at the University of Rochester. We can then hard-wire the accumulation (or voting) process from figure 7 directly into hardware. Thus, in figure 8a we assign a distinct processor for all the values of \((x, y)\) that fall within the boundaries \((\Delta x, \Delta y)\) and a specified range of \(\theta\). In figure 8b, we assign a distinct processor for all the values of \((\theta, \rho)\) that fall within the boundaries \((\Delta \theta, \Delta \rho)\). Each processor can either be on or off, based on a modification of the algorithm we described earlier:

For each edge unit, turn it on if its input exceeds some threshold. For each line unit \((\theta, \rho)\), turn it on if its input exceeds some threshold. That is, if enough colinear edge units are "turned on" (figure 8a), the line that encompasses all of those edges will be turned on (see figure 8b); that is, the system will draw a line with those parameters.

This realization of the Hough transformation shows how complex wiring carrying simple excitation can replace the complex information flow of voting. Nets of fairly simple computing units with highly structured connections carrying simple excitatory and inhibitory levels can provide a uniform architecture for computation at many levels of abstraction, from early vision to symbolic and cognitive levels.

We have tried to highlight some of the various issues that arise in these kinds of parallel models. However, at this point the reader may still be wondering how applicable this kind of computation is to a general vision system. The first-order answer is that generality is achieved through hierarchies. The line computation can serve as a subnetwork in a much larger network that spans the vision abstraction hierarchy (see figure 1). Hierarchies may be a ubiquitous strategy for organizing information in animals. Figure 9 shows Kiel's ontological ("related to or based upon being or existence") hierarchy of children's preferences (see reference 11). Kiel's hierarchy is also evident in eye-movement experiments, during which adult subjects showed the same kind of attential preferences. Hierarchical organization may also be traceable to brain anatomy, although data is only

![Figure 8](image-url)
available for the visual areas (see reference 12). Hierarchies may be a global organization feature of the cortex.

CONCLUSION

The most important breakthrough in computer vision in the past decade has been a broad understanding of what has to be computed and how the computations are organized. Current research is shaped by the discovery that vision primitives (intermediate images) form a natural hierarchy and that the amount of computation required to build this hierarchy is enormous. Now that we have an understanding of what to compute, the crucial issue is that of computing it in real time. Throughout the decade, there has been a close relationship between "pure" vision research, which ignores biological constraints, and that which directly attempts to explain how the animal vision system works. The underlying intent of this article has been to show that ideas connected with animal vision, contrary to many earlier expectations, are playing an increasingly compelling role in shaping computer-vision research. The current notion of hierarchy of representations was developed without direct connections to animal research, but concurrent research shows that animal brains already incorporate hierarchical representations as a fundamental design principle. Furthermore, it seems likely that the biological system has also solved the parallel-computation problem that is emerging as the issue for formal vision studies. Thus we can anticipate a profusion of cross-disciplinary research efforts in the decade ahead, in the drive to realize practical, real-time visual perception.

BIBLIOGRAPHY


REFERENCES


ACKNOWLEDGMENTS

Preparation of this paper was supported by the Defense Advanced Research Projects Agency under Grant N00014-82-K-0193 and NSF Grant MCS-8203028.
INTRODUCING Interface Technologies' Modula-2 Software Development System

The computer press is hailing Modula-2 as “the next standard in programming languages.” Modula-2 combines the strengths of Pascal with the features that made C so popular, like independent compilation and direct hardware control. But until today, no company offered a Modula-2 system that made the development of software fast, easy and efficient. Now, though, there’s a new tool at your disposal.

The fast, powerful tool for programmers

The breakthrough is here: Interface Technologies’ new Modula-2 Software Development System for the IBM® PC, XT, AT and compatible computers to give programmers the same quantum leap in productivity spreadsheets and word processors gave to end-users. It can reduce monotonous wait time, will dramatically increase speed, help stop thoughtless mistakes, and free you to become more creative in virtually all of your programming efforts.

How to speed input and eliminate 30% of errors

Thirty percent of programming mistakes are syntax errors and simple typos in the program structure. Our “syntax-directed” Modula-2 editor does away with these time-consuming headaches once and for all.

The editor locks out errors, finishing statements and procedures in perfect accord with the standardized rules of Modula-2. It also indents and formats your text automatically, making programs easy to read and maintain, an important feature on big projects.

And if you leave an undefined variable or data type, the editor detects the mistake and gives you the option of on-line “help” to correct it. No other programming text editor offers you so much innovation at any price.

How to turn “wait time” into “work time”

The vast majority of programming time is spent waiting, and the biggest slowdown is most often with compilers.

Our compiler turns wait time to work time with a new innovation that lets you compile in the “background.” With background compilation, your program is automatically compiled into object code line by line as you work, every minute you spend writing or editing a Modula-2 program!

When you’re finished editing, all that’s left for the compiler is a quick mopping up job that generates optimized native code in a single pass.

How quick is “quick”?

Thanks to background compilation and the fact that the compiler itself is so fast, Interface Technologies’ compiler turns 100 lines of typical Modula-2 text into optimized machine code in under five seconds.

Plus the Interface compiler produces compact code with execution speed superior to that produced by any other Modula-2 compiler on the market.

How to do two things at once

Along with the background compiler and syntax-directed editor, which can save you hours every day and make you more productive, Interface Technologies’ Software Development System gives your monitor...
windows so you can refer to one file while you edit another simultaneously, saving you even more time.

Concurrent editing of two or more files is especially useful when doing programming work that’s intended for separate compilation, and Interface Technologies has the only Modula-2 system on the market that provides you with this helpful benefit for developing software.

How preprogrammed modules speed development

One of the advantages of Modula-2 is that it lets you build large, reliable programs quickly, by linking together many smaller “building-block” modules. The development system’s toolkit of precompiled program modules includes the standard Modula-2 library, and adds exclusive link-and-run modules for direct calls to the operating system, sound, and color graphics support.

Plus you get low-cost updates from the Interface Technologies fast-growing library of new programming modules.

The Modula-2 development system’s toolkit of ready-made modules turns big programs into smaller projects.

Increase productivity for $249

Interface Technologies’ Software Development System is fast, powerful and unlimited. It works so well that it’s the same tool Interface Technologies is using to write business and consumer applications in Modula-2. For $249, you get the syntax-directed editor and compiler, linker, module library and tutorial that will have even modestly experienced programmers writing in Modula-2 in days. And you have full rights to your work; there’s no license fee for programs you develop with the Interface Technologies system.

You can use it on any IBM® PC, XT, AT or compatible computer with two double-sided, double-density floppy drives and 320K RAM diskette.

You get a thoroughly indexed, comprehensive user’s manual and free telephone support from Interface Technologies. But the most important thing you get is the future, and the programming language of the future is Modula-2, and now it’s easier than ever.

For more information, or to order the Modula-2 Software Development System, call 1-800-922-9049 today. In Texas, call (713) 523-8422.

You can also order or request further information by mail. Just fill out the coupon below and send it in. Act today and receive your system soon.
We Set the Standard in Prices!

For IBM PC Add-On Products.
Superior quality products and services at lowest prices.

Look at what we have to offer, before you buy any add-on products for your IBM PC.

**QIC-01.** 10 MB internal hard disk subsystem at $295. - too low to quote!

Our half-height 10 MB hard disk comes complete with controller, cables, Microscience drive and easy to follow instructions. It fits inside one of your floppy slots and draws same amount of current as a floppy. It is compatible with DOS 2.0, 2.1 and 3.0 without any patches. In fact, you can simply boot up from the hard disk. This is the same hard disk system you see advertised for hundreds of dollars more.

20 MB half-height internal hard disk **CALL.**
20 MB drive for PC at $895.
40 MB full height with controller $1495.

**QIC-02 FT.** 10 MB Floppy tape back-up drive. $575.

This half-height drive connects to your IBM floppy controller card. If your PC is running out of slot, this is a perfect solution. It backs up 10 MB in 5 minutes.

20-60 MB Cartridge tape subsystem $995.

**QIC-03.** 300/1200 baud internal modem. $275.

This auto dial/auto answer plug-in modem lets your PC talk to the world with reliable and easy operation. It is FCC certified, Bell 103/212 compatible as well as fully Hayes compatible. You can run all the popular communication programs as well as our superior QIC Com software program.

Our QIC-Com software program provides phone list management as well as powerful file transfer capabilities. You can even run any DOS programs such as WordStar concurrently without having to disconnect your line. Priced at $45.00, it is an offer you don't want to miss.

**QIC-05.** Five function card. $199. (64 K RAM Set $33.00).

Our five function card includes memory expansion from 0 to 384K, one serial port, one parallel port, one game port and one battery backup clock calendar. RAM disk, print spooler and clock utilities are also included.

Expansion box with 10 MB hard disk $1495.

**QIC-04.** Half-height floppy drive. $129.

This half-height floppy is the quietest drive on the market. It draws the least amount of current and is compatible with your PCs floppy controller card. It's double sided, double density.

**One Year Guarantee**
No Risk. All our products are guaranteed for one year. And remember, if for any reason, you are not completely satisfied within 30 days, you can return it for a full refund. Check out our competition and find out which is best. We know better.

CALL US TODAY AT 408-942-8086

QIC RESEARCH INCORPORATED
489 Valley Way
Milpitas, CA 95035

Inquiry 322
THE BRAIN is an incredibly powerful computer. The cortex alone contains over $10^{10}$ neurons, each connected to thousands of others. All of your knowledge is probably stored in the strengths of these connections, which somehow give you the effortless ability to understand English, to make sensible plans, to recall relevant facts from fragmentary cues, and to interpret the patterns of light and dark on the back of your eyeballs as real three-dimensional scenes. By comparison, modern computers do these things very slowly, if at all. They appear very smart when multiplying long numbers or storing millions of arbitrary facts, but they are remarkably bad at doing what any five-year-old can.

One possible explanation is that we don't program computers suitably. We are just so ignorant about what it takes to understand English or interpret visual images that we don't know the appropriate data structures and procedures to put into the machine. This is what most people who study artificial intelligence (AI) believe, and over the last 20 years they have made a great deal of progress in reducing our ignorance in these areas.

Another possible explanation is that brains and computers work differently. Perhaps brains have evolved to be very good at a particular style of computation that is necessary in everyday life but hard to program on a conventional computer. Perhaps the fact that brains store knowledge as connection strengths makes them particularly adept at weighing many conflicting and cooperating considerations very rapidly to arrive at a common-sense judgment or interpretation. Of course, any style of computation whatsoever can be simulated by a digital computer, but when one kind of machine simulates a very different kind it can be very slow. To simulate all the neurons in a human brain in real time would take thousands of large computers. To simulate all the arithmetic operations occurring in a Cray would take billions of people.

It is easy to speculate that the brain uses quite different computational principles, but it is hard to discover what those principles are. Empirical studies of the behavior of single neurons and their patterns of connectivity have revealed many interesting facts, but the underlying computational principles are still unclear. We don't know, for example, how the brain represents complex ideas, how it searches for good matches between stored models of objects and the incoming sensory data, or how it learns.

In this issue, Jerome A. Feldman describes some current ideas about how parallel networks could recognize objects (see "Connections" on page 277). I will describe one old and one new theory of how learning could occur in these brain-like networks. Please remember that these theories are extreme idealizations; the real brain is much more complicated.

ASSOCIATING INPUTS WITH OUTPUTS

Imagine a black box that has a set of input terminals and a set of output terminals. (continued)
Finally, a painless introduction to the C language. With RUN/C: The C Interpreter you can create and run C language programs in an environment as easy to use as BASIC. 

RUN/C is C for the rest of us. It is a robust implementation of standard K&R. RUN/C is for both the beginner and professional.

FOR BEGINNERS ...

RUN/C provides a BASIC-like user interface for C, making RUN/C the easiest bridge to proficiency in this state-of-the-art language. This is an opportunity to learn a professional language using the immediate, interactive programming environment that has made BASIC the world's most widely used computer language.

FOR PROFESSIONALS ... 

If you are a professional programmer, RUN/C is ideal for creating simple programs, such as filters, for developing and debugging functions, and for writing and testing programs of real complexity and sophistication.

RUN/C includes full floating point, 8087 support, structures, unions, initializers, casts and more than 100 built-in C functions.

With RUN/C you get all this with a command structure modeled after BASIC's using familiar terms such as EDIT, RUN, LIST, LOAD, SAVE, TRON, SYSTEM, etc.

Since RUN/C is a true interpreter it means that C programs can be written, tested and run within a single protected environment. It is a teaching tool and a source code debugger.

Here's more good news ... 

- Great documentation: a 475 page, easy-to-read manual filled with executable programs
- Array-index and pointer bounds checking
- Variable-trace and dump diagnostics PLUS an integral program profiler
- Full buffered and unbuffered file I/O
- Printer and async support
- Forking to your favorite full screen editor with automatic return to RUN/C with your edited program
- System Requirements: IBM® PC or compatible with PC-DOS 2.0 or MS™-DOS 2.0 or greater with ANSI.SYS.
- Nearly 100 sample C programs on disk

Get things right the first time with RUN/C: The C Interpreter.

For immediate delivery or more information:

Call 1-800-847-7078 
In NY, 1-212-860-0300

Lifeboat™ Associates 1651 Third Ave. New York, NY 10128

RUN/C is a trademark of Age of Reason Co.

PARALLEL NETWORKS

Ideally, the black box will capture some neat regularity in its connection strengths.

 terminals. Each terminal can be clamped into either of two states, active or inactive (1 or 0). We can show the black box what we would like it to do by repeatedly clamping a combination of 1s and 0s on the input terminals and another combination of 1s and 0s on the output terminals (each combination is called a vector). When we have done this for many I/O (input/output) pairs, we would like the black box to automatically set its output terminals into the correct state when we clamp a vector on the input terminals. Ideally, if there is some neat regularity in the mapping from input vectors to output vectors, we would like the black box to "capture" this regularity in its internal connection strengths in order to give the "correct" output vector for input vectors it has never seen before. This kind of black box would be a very useful module to have within an intelligent system.

If the black box contains only direct connections from input terminals to output terminals, there is a beautifully simple learning procedure that adjusts the weights on these connections until every input vector causes the appropriate output vector. The learning procedure has two phases that keep alternating. In phase 1, we clamp an input vector on the input terminals and an output vector on the output terminals. Then we increment by a small amount, the weights of all connections that have both their input and output terminals active. In phase 2, we clamp the same input vector, but we let the black box decide for itself what output vector to produce, using the rule that an output terminal turns on if the sum of the weights on its connections from active input terminals is positive. We then
PARALLEL NETWORKS

decrement by δ all the connections that have both their input and output terminals active. If the network produces exactly the right output, these decrements will exactly undo all the increments we made in phase 1, because exactly the same pairs of input and output terminals will be active in the two phases. If, however, the network produces the wrong output in phase 2, some of the weights that were incremented will not be decremented or vice versa, so some weights will change.

The learning procedure I have described is a version of the Widrow-Hoff or “perception convergence” procedure. It has a remarkable property: If we keep cycling through all the pairs of input and output vectors using this two-phase procedure for each pair, we will converge on a set of weights that causes the right output vector for every input vector if any such set of weights exists. The big disappointment (which led people in AI to abandon this kind of model) is that for most interesting problems there is no suitable set of weights. The relationship between the input and output vectors is just too complicated to be captured by a system that has direct connections between input and output terminals. At the very least, there must be intermediate layers within the black box, and units in these layers must learn to extract a hierarchy of “features” of the input vector that can eventually cause the right output.

Here is an example of a relatively simple task that requires intermediate units. The input consists of two 8-bit vectors, one of which is a shifted version of the other. Only shifts one unit to the left or one place to the right are allowed. There are two output terminals, one for each possible shift, and the black box must turn on the correct output terminal for any appropriately related pair of input vectors. The task sounds easy until you consider that any one of the input bits, considered in isolation, provides no information about what the output should be. Moreover, simply adding up evidence from all the separate in-

(continued)
put bits is useless. The task can be done only if you consider combinations of bits in one vector with bits in the other, which requires intermediate units that extract informative combinations. Figures Ia and Ib show a collection of useful intermediate feature detectors that work well together for performing this task.

When we try to extend the simple learning procedure to networks containing intermediate units, more complications arise because we do not know in advance how we want the intermediate units to behave. So instead of just fixing some weights that will make the output terminals behave in the way that we specify, the learning algorithm must also decide under what circumstances each of the intermediate units should be active. This amounts to creating intermediate representations. Several more recent learning procedures can do this. I shall describe one that Terry Sejnowski and I discovered. It is only guaranteed to work in networks of a rather special kind, which I will now describe.

**NETWORKS THAT MINIMIZE THEIR ENERGY**

The kind of network we have been considering so far consists of layers of units in which units in one layer are connected to units only in contiguous layers. More complex networks have cross-talk within a layer and feedback from later layers to earlier ones. It is generally very hard to analyze the behavior of such networks, but John Hopfield at Cal Tech (reference 1) has shown that there is an interesting special case that behaves in a very useful way. In a Hopfield net, the units make their decisions asynchronously, the communication between units is instantaneous, and all the connections are symmetrical: the effect of unit $i$ on unit $j$ is the same as the effect of unit $j$ on unit $i$. Given these restrictions, the various possible states of the whole network form a space like a bumpy surface and the current state of the network behaves like a ball bearing placed on this surface—it moves downhill into the nearest local minimum.

Each point in the surface corresponds to a pattern of active and inactive units in the network, and the height of the surface at that point represents the "energy" of that pattern of activity, where the energy of a pattern is defined as minus the sum of all the weights on connections between pairs of active units. Therefore, if two units have a big positive weight between them, patterns in which they are both active will have low energy: it is patterns like this into which the network will settle. Conversely, a negative weight between two units will make a big positive contribution to the energy when they are both on, so the network will tend to avoid such states.

Figure 2 shows a small network whose lowest energy state is $-8$. Can you figure out which units are on and which are off in this state? You will always end up at an energy minimum if you start with a random state and then apply the following rule to each unit in turn (in any order): If the sum of the weights on the connections to other currently active units is positive, turn it on; otherwise, turn it off. If you apply this procedure a few times, you will discover that there is another minimum with an energy of $-3$ and that once the network has settled into this state it will just stay there.

Networks of this type can be used to associate input vectors with output vectors. To provide the input, we clamp a subset of the units into their
on or off states, and, once the rest of the network has settled into an energy minimum with this input vector clamped, we treat the states of another subset of the units as the output. In figure 2, for example, we could clamp the three bottom units into the active state to represent the input vector (1, 1, 1); we would get the output vector (1, 0) by letting the network settle and then reading the states of the top two units.

To teach the network a particular set of I/O pairs, we would need to create an appropriate energy landscape—we would need to choose weights so that for each clamped input vector the system had an energy minimum that yielded the correct output vector. Choosing such weights is not an easy task, and to make matters worse, we might end up with an energy landscape in which there were many different local minima for each clamped input; each input vector might give many different outputs depending on the energy minimum into which the system happened to settle. In figure 2, for example, the input vector (0, 0, 0) can generate two different output vectors depending on the initial states of the middle units and the order in which decisions get made.

A PROBABILISTIC NETWORK

If the same input is going to produce different outputs on different occasions, we would at least like to have some control over the probabilities. It would be nice, for example, if we could guarantee that deeper minima would be found more often than shallower ones. It would be even better if we could guarantee that the relative probability of ending up in two different minima depended only on their relative depths. We could then control the probabilities of getting particular outputs by manipulating the energy landscape (i.e., by changing the weights).

Once again, a physical analogy is helpful: If we have a ball bearing on a bumpy surface and we shake the whole system up and down, the ball bearing will be able to jump over the

Figure 1b: The weights that are learned by the 12 intermediate units. The black and white rectangles in the bottom two rows of a unit represent the weights on its connections to the input terminals. The sizes of the rectangles indicate the magnitudes of the weights. Black indicates a negative weight. The two weights at the top of each unit show how it affects the two output terminals. The weights all start at 0 and change by very small steps. Notice that all 12 units detect different combinations of active input terminals and that these combinations are generally sensible predictors of the global shift for which the unit "votes."

Figure 2: A simple network with three input units at the bottom, two intermediate units in the middle, and two output units at the top. All the connections are symmetrical.
PARALLEL NETWORKS

barriers that separate shallow minima from deep ones; the ball bearing will spend most of its time in the deeper minima, even though it will occasionally sample higher energy states. If we shake for a while in just the right way, a useful simplification occurs: We approach a condition called “thermal equilibrium” in which the ball bearing is still moving from place to place, but the probability of finding it at any one place on the surface is stable and depends only on the height of the surface at that point—it doesn’t depend on where the ball bearing started or on the shape of the energy landscape. More precisely, the log of the probability ratio of finding the ball bearing in two different states is proportional to the energy difference of those two states. Scott Kirkpatrick at IBM introduced the idea of using “thermal noise” to escape from local minima and to increase the chances of finding the deeper minima (see reference 2). He has shown that for large problems in which the cost of a solution is the analog of energy, an effective method for finding low-cost solutions is to start with a lot of thermal noise and gradually reduce it—a process that he calls “simulated annealing.”

In our parallel networks it is easy to introduce the analog of thermal noise. We just modify the decision rule that is used by the individual units. They still compute the sum of the weights on the connections coming from other active units, but instead of always turning on when this sum is positive and off when it is negative (which always reduces the energy of the network), they behave probabilistically, as shown in figure 3.

Using this probabilistic decision rule, we can run networks in the following way. Clamp an input vector, let the remaining units turn on and off probabilistically until the network has reached thermal equilibrium, and then read the output vector. At equilibrium the output units will continue to change states, but each output vector will have a fixed probability that does not vary with time.

Research teams in fields as diverse as statistics (Stuart and Donald Geman), neuroscience (Terry Sejnowski), psychology (Paul Smolensky), and artificial intelligence are now investigating networks of this kind. Statisticians call them Markov Random Fields. At Carnegie-Mellon University we call our particular version the Boltzmann Machine, in honor of Ludwig Boltzmann, one of the founders of statistical mechanics.

LEARNING AGAIN

We can now return to the issue of learning. First, we redefine the learning task in probabilistic terms. For each possible input vector, we want to produce each possible output vector with a certain probability. (Generally, most of these probabilities will be close to 0 and a few will be close to 1.) We can then train the network to behave in this way by alternating between two phases that are very similar to those used in the earlier learning rule.

In phase 1 we tell the network about the desired probabilities by clamping pairs of input vectors and output vectors with the corresponding frequencies. Each time a pair of input and output vectors is clamped, we run the network until it is close to thermal equilibrium; we then run the network for a little extra time, modifying the weights in the following way: For each unit of time during which two units are both active, we increment the weight between them by δ.

In phase 2 we clamp input vectors and let the network decide for itself what output vector to give. Once it has approached equilibrium, we run a little longer, as before, and now decrement by δ the weights between pairs of active units. If we keep alternating between phase 1 and phase 2, showing the network all the various pairs of input and output vectors, the net change in the weight between any two units will be proportional to the difference between the probability that the two units are both active in phase 1 and the probability that they are both active in phase 2 (averaged over all I/O pairs). It is remarkable that when these probabilities are measured at thermal equilibrium, their dif-

Figure 3: This shows the probability $p_k$ with which the $k$th unit is active. The quantity $\Delta E_k$ is the sum of the weights on connections between the $k$th unit and other currently active units. The equation is

$$p_k = \frac{1}{1 + e^{-\Delta E_k/T}}$$

$T$ is the level of thermal noise in the network. The solid curve is for $T = 1$ and the dotted curve is for $T = 0.25$. If the value of $T$ is decreased, the unit becomes less probabilistic. When $T = 0$, the curve becomes a deterministic step function.

(continued)
Microsoft® SoftCard II is the latest high-performance CP/M® board that really juices the Apple® II, IIe and II+.

**Hard facts on SoftCard.**
The new SoftCard has a high speed (6MHz) Z-80 that runs CP/M programs up to three times faster than lesser boards. Plus 64K memory. And if that wasn’t enough, we also support the Apple Profile hard disk.

Microsoft BASIC is included so it’s compatible with more Apple CP/M software than any other board on the market. Thousands of the juiciest business programs including dBaseII™, WordStar® and sophisticated Microsoft languages like FORTRAN-80, COBOL-80 and BASIC Compiler.

Juicing up the performance of computers is nothing new for us. We invented the SoftCard and wrote Applesoft for the Apple II. In fact, our BASIC is the language spoken by nine out of ten microcomputers worldwide.

Get the Apple juicer from Washington. Call (800) 426-9400. In Washington State, Alaska, Hawaii and Canada, call (206) 828-8088 and ask for the name of your nearest Microsoft dealer.
At 80 characters per second, the DaisyMax 830 is one of the fastest letter-quality, daisy wheel printers you can buy.

And that means you no longer have to sacrifice image quality to increase productivity!

Speed and superb quality are but two of a long list of benefits you get with the DaisyMax 830.

Multiple users can share the DaisyMax 830 since it is designed for heavy volume word processing environments. Plus, you get standard interfaces for easy installation, and friction, tractor and cut sheet feeders to handle all your office forms. All these great features also are available in the DaisyMax 320, offering print speeds up to 48 cps.

And of course both printers feature rugged reliability—a hallmark of Fujitsu products earned from over 30 years as a technology leader and equipment supplier to companies worldwide. Reliability backed by TRW service nationwide.

Contact your nearest distributor for your local dealer.

Inquiry 159
PARALLEL NETWORKS

The first learning algorithm I described just changes weights to make units behave in prespecified ways. It cannot figure out what to do with internal units whose required behavior is not specified from outside. The second learning algorithm is potentially much more powerful because it is able to decide how to use the internal units to help achieve the required I/O mapping. It actually constructs simple internal representations. Unfortunately, there is a heavy price to pay for this added power. The algorithm is currently extremely slow; the example in figure 1 requires hours of computer time.

To speed things up, Blake Ward, a graduate student at Carnegie-Mellon, has built a parallel machine containing six Omnibyte 68000 boards, each of which has a copy of the entire network. Each board runs with a different input vector, and then all the boards agree on how to change the weights. This helps, but ultimately we would like to implement networks of these probabilistic units directly in silicon. Unlike current computers, these networks are rather tolerant of localized hardware failures or fabrication errors: Carver Mead has pointed out that an analog implementation of the processing elements would positively thrive on the kind of thermal noise that comes from running transistors at very low power. This might make it possible to build much larger chips than is currently feasible. However, developments like this are still a long way off, and they do not remove the need for more theoretical progress. Our current simulations are slow for three reasons: It is inefficient to simulate parallel networks with serial machines, it takes many decisions by each unit before a big network approaches equilibrium, and it takes an inordinate number of examples of I/O pairs before a network can figure out what to represent with its internal units. Better hardware might solve the first problem, but more theoretical progress is needed on the other two. Only then will we be able to apply this kind of learning network to more realistic problems.

REFERENCES

ACKNOWLEDGMENTS
I thank the members of the Boltzmann Group at Carnegie-Mellon for helpful comments.
Last year the experts tested the top-of-the-line Toshiba 3-in-One™ printer.

Here's what they said.

"When Toshiba America called to see if there were problems testing their printers, I responded, 'You bet—I can't get the P1351 off Bill Machrone's desk long enough to get its picture taken!' It's that good."

(Bill Machrone is the editor of PC Magazine.)

"It is setting new standards for quality and performance in the dot matrix arena."

PC Magazine
November 27, 1984

Computers & Electronics Magazine
November 1984
Imagine what they will say about its successor.

The New Toshiba P351 3-in-One Printer. They could say that inside the sleek new Toshiba P351 you'll find the ultimate 3-in-One printer. Because it offers a combination of:
- Letter-quality printing. Perfectly translated graphics. And speed. (100 cps letter. And draft speed improved to 288 cps.)
- They could say you'll appreciate the 24-pin dot matrix head that gives the P351 its exemplary letter and graphic quality.
- They could say the new P351 gives you an almost unlimited number of ways to express yourself. With both downloadable software fonts and new plug-in font cartridges.
- And they could say the new P351 is not only the best looking printer in the $1,000 to $2,000 range. But also the most reliable.
- Of course, we're not putting words in their mouths. Just the ultimate 3-in-One printer in their hands. And yours.
- For complete information call 1-800-457-7777, Operator 32.

In Touch with Tomorrow
TOSHIBA
TOSHIBA AMERICA, INC. Information Systems Division
MicroWay is the world's leading retailer of 8087s and high performance PC upgrades. We stock a complete selection of 8087s that run at 5 and 8mhz. All of our coprocessors are shipped with a diagnostic disk and the best warranty in the business – 180 days! We also offer daughterboards for socketless computers such as the NEC PC and PCjr, and a board which increases the clock speed to 8 mhz. Also in stock are the 87287 in the Pro AT. Our new NUMBER SMASHER™ will run the IBM PC at clock speeds up to 9.5mhz and achieves a throughput of .1 megaflops with 87BASIC/INLINE, Intel Fortran, or Microsoft Fortran. Software reviewers consistently cite MicroWay software as the best in the business. Our customers frequently write to thank us for recommending the correct software and hardware to meet their specific needs. They also thank us for our same day shipping! In addition to our own products which support the 8087 and 80287, we stock the largest supply of specialized software available anywhere. These include three FORTRANs, three PASCALs, APL, Intel's AS-M68 and PL/M-86, several Cs, 87BASIC/INLINE, 87MACRO, 87FT, and MATRIXPAK. For real time or multi-user applications we offer RTOS™ – our implementation of the IBM MS/DOS executive. Our new products include a professional debugger with 8087 support, support for Lotus 1-2-3, and a translator that converts object modules into readable assembly language files. If you have a question about which computer, language, compiler, operating system or application package is best suited to your problem, we can answer it. Just call: 617-746-7341

\[ \text{THE 8087 AND 80287 ARE IN STOCK!} \]

MicroWay

8087 Support

For the IBM PC, PC XT, PC AT and Compats.

HARDWARE AND LANGUAGES

8087-3 5mhz ... $149
8087-2 8mhz ... $275
80287-3 5mhz ... $275

For the IBM PC AT

64K RAM Set ... $20
256K RAM Set ... $125
128K RAM Set in PC AT ... $175

NUMBER SMASHER™ 9.5mhz 8087 coprocessor board for the IBM PC

LTS 1-2-3™ 8087 Support ... CALL

FORTAN and UTILITIES

Microsoft Fortran 1.2 ... $220
IBM Professional Fortran ... $250
Intel Fortran-86 ... $50
FORLIB ... $85
STRING and THINGS ... $65

C and UTILITIES

Lattice C ... $299
Microsoft C V 3.0 ... CALL
C68 ... $299

BASIC and UTILITIES

IBM Basic Compiler ... $275
FORLIB ... $85

ASSEMBLERS

IBM Assembler V 3.0 ... $150

PASCAL

Microsoft Pascal 3.2 ... $199
Borland Turbo Pascal ... $35

APL

STSC APL PLUS/PC ... $172

1-2-3 and Lotus are trademarks of Lotus Development Corporation.
A FUNDAMENTAL PREMISE of artificial intelligence (AI) is that intelligent behavior can be simulated on digital computers. Great progress has been made in AI, with far-reaching practical and scientific consequences. Despite successes with quite specific problems, however, many researchers feel that the general questions of intelligence have barely been touched. The field of AI is nowhere near possessing the ability to simulate the natural intelligence of a small child or even a simple animal. Yet the basic computing speed of modern computers is about a million times faster than the firing rate of a neuron, which is in the millisecond range.

The situation becomes even more striking when we consider the speed of human responses on simple tasks. When asked to carry out a wide range of tasks, such as naming a picture or deciding if some sound is an English noun, people can respond correctly in about half a second. This means that the brain, a device composed of neural elements with a basic computing speed of a few milliseconds, can solve difficult problems of vision and language in a few hundred milliseconds (0.5 second = 500 milliseconds), or about 100 steps. The best AI programs for these tasks are not nearly as general and require millions of computational time steps. Of course, the brain is a parallel device, while essentially all of our existing machines are sequential, executing one instruction at a time. But what are the algorithms used in this massively parallel natural computer?

The exploration of possible algorithms for this radically different architecture forms the cornerstone of a promising new branch of artificial intelligence. Workers in the field use an abstract computer that is as similar as possible to the brain in structure and performance. This approach permits AI researchers to collaborate closely with colleagues in the brain and behavioral sciences; a good algorithm for some task on a computational model can also serve as a prototype theory for the mechanisms the brain uses on the same problem. Some psychologists have found that constructing massively parallel computational models to fit their data is far easier than constructing models based on sequential machines. The cycle is complete when AI researchers use experimental results to guide the construction of parallel algorithms for various problems.

In addition to the 100-step restriction, using the brain as a model has other computational consequences. For one thing, the timing constraints limit to a few bits the information that can be sent from one neuron to another. This means that units cannot pass the large symbolic structures common in AI and that the computational richness must lie in the connections among units; this has led to the use of the term "connectionist" to characterize these models.

Using the brain as a model does allow for quite a lot of connections, up to about 10,000 per unit. The total number of neurons (about 100 billion) seems large but is actually a major limitation. Since vision has a million parallel inputs, any algorithm requiring $n^2$ units would not fit. Also, the brain grows no new units and essen-

(continued)
tially no new connections, placing severe constraints on models of learning. Even with all these constraints, connectionist models are increasingly popular in AI research.

A VISUAL MODEL

A simple example can capture some of the flavor of connectionist computation. The cube shown in figure 1 is a famous optical illusion attributed to the Swiss naturalist L. A. Necker (1832). Most people initially see the cube with the corner G closer to them, but you can also see it as a cube with vertex A closest to you. If you focus on vertex A and imagine it coming out of the paper toward you, the picture will flip to the A-closer cube. Notice that the flip takes less than a second. The Necker cube is interesting to psychologists because it will flip spontaneously between the two views if you keep looking at it. It is interesting to artificial-intelligence researchers because of what it tells us about parallel computation.

You have observed how quickly the Necker cube flips, and you know how slow the underlying human computing elements are. A sequential program running on such a slow device could probably not perform this task. But the situation is much more complex. Both human and computer vision require several levels of processing (see "Vision" by Dana H. Ballard and Christopher M. Brown on page 245). Typical levels include edge segments, lines, vertices, faces, and object descriptions. The edges and lines are the same for both the A-closer and G-closer cubes, but many other visual features are seen differently in the two views. A few of these are given in figure 2. Remarkably, our visual system simultaneously flips all these perceptual decisions from one mutually consistent reading of the cube to the other. This illustrates the key cooperative property of massively parallel computation and why it is conceptually different from von Neumann computation on standard machines.

The Necker cube also illustrates some of the details of the connectionist paradigm, as shown in figure 2. In our models each item of interest is represented as a computational unit, with connections to many other units. Each unit has a level of activity (say between -10 and +10) and automatically sends the value of this activity to all its outgoing connections. In the network of figure 2, units that are mutually consistent (for example, "H closer than G" and "G hidden") have connections to each other. Units that are mutually exclusive, such as "G hidden" and "G showing" are connected with circle-tipped links denoting negative connections.

The only other information needed for a complete model is the rule by which a unit computes its new activity from its inputs and its old activity. We can assume that the units compute the average of their positive and negative inputs. Networks like figure 2 are not very sensitive to the exact choice of unit computation rules; this is one of the reasons for their attractiveness. Units that are all mutually connected by negative links are said to comprise a "winner-take-all" network. Such networks are one of the main decision mechanisms in connectionist models and have known neurophysiological analogs.

Much of the effort in massively parallel AI is dedicated to using computational frameworks like that in figure 2 to build models of intelligent activity. Advantages of this approach include its link to natural intelligence, increased noise robustness, and ease of implementation on parallel hardware. But the main advantage of the connectionist approach is that it provides a much better way of specifying some computations. I know of no other way to describe the Necker-cube phenomenon that is as clear and concise as the model in figure 2.

A NATURAL-LANGUAGE APPLICATION

Researchers in AI and related areas of cognitive science are using connectionist models to study a variety of tasks. Vision is an area where massive parallelism fits naturally. Ballard and Brown's article describes some of the success in that area. The methodology is also effective in natural-language research. Although it is a less obvious application, researchers have had some very nice results in that domain.

(continued)
Get your Mac to open up.

Mac's a terrific machine. Versatile, industrious, understanding, easygoing, fun.

Trouble is, Mac lives in a world of his own. He doesn't communicate well with his co-workers. Doesn't work well with them.

Now there's help.
The Microsoft® MacEnhancer™ expansion system can get him out of his shell. It'll open his communications channels. Expand his horizons.

MacEnhancer simply plugs into Mac's communication port. It lets you keep that original port while adding an IBM®-type parallel connector for your printer and two IBM-type serial connectors.

So now Mac can hobnob with even the finest letter quality printers. Cope with hyperactive dot-matrix printers.

And it comes with MacEnhancer terminal software. A communications program that lets Mac use a modem to talk with other computers—from personal to mainframes.

All without losing the loveable Mac personality. Just "point and click."

Getting Mac to expand his horizons wasn't easy, but somebody had to do it. And who better than Microsoft? We've written more Macintosh® programs than any other software company. Including Microsoft Word, Microsoft File. And Microsoft BASIC, Mac's first language.

For more information, or to free associate with your nearest Microsoft representative, call (800) 426-9400. In Washington State, Alaska, Hawaii and Canada, call (206) 828-8088.

MICROSOFT
The High Performance Software

Microsoft is a registered trademark and The High Performance Software and MacEnhancer are trademarks of Microsoft Corporation. IBM is a registered trademark of International Business Machines Corporation. Macintosh is a trademark licensed to Apple Computer, Inc.
GET SERIOUS!
CHECK OUR LOW PRICES NOW

*** TAX RETURN SPECIAL ***
LOTUS 1-2-3........................ $285.00

* SYSTEMS *
IBM PC-286K
Two TEAC 360 Drs', Color/ Monochrome Graphics Board. Parallel Printer Port. TAXAN Monochrome Display. DOS 2.1. ONLY $2,145.00
IBM PC-286XK
Two TEAC 360 Drs'. Color/ Monochrome Graphics Board. AST 8-Pak Plus 64K. PRINCETON FX-12 Color Display. PANASONIC 1031 Printer. LOTUS W-2-DOS 2.1. ONLY $3,320.00
10 Meg Upgrade $160.00

* SOFTWARE *
LOTUS Symphony $645.00
dBASE III Plus $349.00
Wordstar Prof. Pack for IBM $299.00
ASCX Express for IBM $199.00
Framework $299.00
MICROSOFT Word $229.00
MICROSOFT Multiplan $120.00
PPS Write/Write Report $85.00

* HARDWARE *
AST Six Pack Plus 64K $264.00
STB Rio Plus 64K $249.00
STB Color/Monochrome Graphics $299.00
STB Monochrome Board $169.00
HERCULES Monochrome Graphics $299.00
HERCULES Color Card $179.00
TEAC SGB 3 Height Drs $129.00
TANDON TM100-2 Dr $169.00

* PRINTERS DOT MATRIX *
PANASONIC 1091 $299.00
PANASONIC 1092 $355.00
EPSON FX-80 $395.00
EPSON FX-100+ $444.00
PRINCETON MAX-12 $249.00
STB Color/Monochrome Graphics $229.00
STB Rio Plus 64K $249.00
BROTHER 2024L $199.00

* PRINTERS LETTER QUALITY *
BROTHER HR15 $369.00
BROTHER HR25 $699.00
BROTHER HR825 $899.00
BROTHER HR8925 $1,499.00
PANASONIC 3151 $495.00

* MONITORS *
TAXAN 121/122 Monochrome $145.00
PRINCETON FX-12 $469.00
PRINCETON FX-14 $499.00
ZENITH Amber/Green $85.00
NEC 1280 Green $85.00
NEC 1305 RGB TV $449.00

* MODEMS *
HAYES 1200B $399.00
HAYES Micromodem II $219.00
HAYES 2000 $299.00
ANCHOR Mark XII $239.00
PROMETHEUS Promodem 1200 $324.00

* APPLE *
80 COLUMN 64K ke only $99.00
80 COLUMN Card ke only $79.00
VIDEX Ultrastorm $179.00
APPLEMOUSE II $125.00
ASCX Express $79.00
Z-80 Card $49.00
APRICORN Serial Card $59.00
MICROSOFT Premium ke $299.00
MICROSOFT Multiplan $129.00
MAC MICROSOFT Multiplan $129.00
MAC MICROSOFT Basic $105.00
16K Card $49.00

Many items available. Please call for complete pricing.

CALIFORNIA MICRO HOUSE
1685 Altogquin Street
Huntington Beach, CA 92649

Corporate accounts welcomed. Purchase orders accepted with net 30 day terms. Subject to credit approval. All prices represent cash prices. All items shipped next day in factory sealed packages. We guarantee all items for 30 days. California residents please add 6% sales tax. Prices subject to change without notice.

714/840-4179

Inquiry 423

CONNECTIONS

Figure 3: A connectionist model for understanding the sentence “Bob threw a ball (for charity).” The model uses three levels of representation and processing.

(continued)

The new Epson® Spectrum™ LX-80 is the perfect co-star for your personal or business computer. With versatile Dual Mode operation, this dot matrix printer turns out quick, clean draft copy at a rapid 100 characters per second. Then lets you switch to "NLQ" mode for finished copy with a high quality, typewriter-style appearance. "Award-winning performance" Epson's exclusive SelectType feature makes choosing the most popular typestyles as easy as pushing a few buttons on the printer. In addition to Near Letter Quality mode, the LX-80 offers you over 160 typestyle combinations, including Elite, Pica, Italics, Emphasized and Proportional. And the LX-80 prints great pictures, charts and graphs, at five densities up to 240 dots per inch resolution. "Critics' choice" With an optional tractor feed and an automatic Single-bin Cut Sheet Feeder, the LX-80 is a highly versatile performer. Because it's an Epson—the industry standard—the LX-80 is compatible with virtually all computer systems. At one full year, the warranty is the best in the business. The sleek, contemporary style looks great in home or office. And the Spectrum LX-80 looks best where it counts most: the bottom line.

See the Epson Spectrum LX-80. Now showing in your neighborhood.

Number one. And built like it.

EPSON
EPSON AMERICA, INC.
charity” will activate the “dance” meaning of ball. This will weaken the “sphere” meaning, which will in turn reduce the activity of “propel” because the sentence no longer has a suitable object. Thus, an alternative stable coalition develops and suppresses the original interpretation. The two alternative coalitions are quite similar to the two readings of the Necker cube. This is no accident—the idea of a cooperative-competitive network pervades parallel models. Work on language problems such as disambiguation is quite advanced and offers simple explanations of many phenomena. For example, a context that biased us toward the “dance” sense of ball would be modeled as providing that meaning with a head start in its competition with “sphere.” Again, the massively parallel paradigm is the simplest way to express this idea.

KNOWLEDGE REPRESENTATION
The Necker-cube and disambiguation examples are both instances of what AI researchers call recognition problems. Several other problems are like this, but many are not. Can we apply massively parallel models to other traditional AI issues such as knowledge representation and inference? Researchers have completed much less work along these lines but have made some promising starts. The example in figure 4 should convey the flavor of this work.

The standard way to explore the issue of knowledge representation and inference is in terms of programs that can answer questions. AI approaches to the development of question-answering systems are numerous (Roger Schank and Larry Hunter present one in “The Quest to Understand Thinking” on page 143), but the approaches all have the same basic requirements: You need a way to store the knowledge, to pose questions, and to compute and register the answers. In a connectionist model, all of these aspects must be expressed in terms of activity spreading among simple units like those in the previous examples.

It is easiest to start with the recording of answers. In figure 4, the possible tastes of foods form a winner-take-all network, where each unit inhibits the others so only one answer will be active. The answer network is assumed to be part of a routine that also poses the questions and acts upon the answer. The units that make up the routine are assumed to be activated in sequence from left to right just like a standard program. The routine sends a question to the knowledge network by activating the appropriate units: figure 4 shows this as links, for example, from the hexagonal node to the nodes for “has-taste” and “ham.” The key to the operation of this network is the operation of the triangular-shaped nodes, such as “b1.” We define such a triangular unit to become active when two of its inputs are simultaneously active. In this case “ham” and “has-taste” are both on, so “b1” becomes active and activates “salty.” Now the “salty” node in the knowledge network spreads activation to the response “r-salty” back in the routine and the question is answered. The same network can answer questions such as “Name a salty meat” when activated appropriately. The answers returned by such a network will depend on context, just as people’s answers do; contextual bias is again modeled by activation.

The examples of cube perception, word disambiguation, and question answering are typical of the current applications of massively parallel computational models in AI. The examples are condensed and they omit many important considerations, but they are representative of the current level of attainment. In no case are the connectionist programs as sophisticated as conventional AI systems for similar tasks. The general notion of massively parallel models in AI is quite new, and we do not yet understand where its ultimate strengths and weaknesses will lie. We do know that the development of highly parallel computers will have a marked effect on the practicality of connectionist approaches to AI.

Even if we had discovered parallel algorithms for vision and language tasks and could run them efficiently on parallel hardware, we would be missing a crucial element of intelligence—learning. No system that cannot incorporate new knowledge and change its behavior could be called intelligent. This is an important issue (continued)
No matter how specialized your customers' business needs, Canon's new compact desktop computer is uniquely designed to accommodate them.

Because the TX-50 is a self-contained computer that can be customized for a wide range of specific business applications.

Its all-in-one design includes:
- A high-performance 16-bit microprocessor with MS-DOS® operating system. Standard 128KB memory is expandable to 256KB.
- Seven-inch high-resolution monochrome CRT display.
- Fifty-function LED keyboard plus separate ten-key calculator pad and cursor control keys.
- Three-inch compact floppy disk drive with 150 K-bytes memory capacity per side.
- Optional RS-232C serial interface and Centronics-type parallel interface available.
- Wire dot impact printer that gives a sharp 5X7 dot matrix and has a maximum 30 characters per line. It prints a black or red original on plain paper plus two copies.

With such impressive, self-contained flexibility, the TX-50 is ideal in areas such as customer operations and counter service. Especially since the TX-50 provides such a huge range of varied functions, yet takes up so little space.

Businesses such as gasoline stations, banks, mail rooms, real estate brokers and numerous others will find the TX-50 particularly useful for sales, credit, loan or general customer calculations.

So if you're dealing with business, whether large or small, and you feel they need a rather special computer, consider the new Canon™ TX-50 desktop computer.

There isn't a desk it won't fit.

For more information:
Call 1-800-323-1717, Ext. 302.
(In Illinois call 1-800-942-8881, Ext. 302.)
Or write Canon U.S.A., Inc.
Systems Division/TX-Series
P.O. Box CN 11250, Trenton, N.J. 08650

©1985 Canon U.S.A., Inc.
MS-DOS® is a trademark of MICRO SOFT.

Canon Systems Division

Inquiry 58
for all of AI but is especially critical for connectionist models. If we model our system as a set of rules, we'll have no conceptual difficulty in adding more rules, although the question of which rules to add remains unsolved. For connectionist models, the intelligence is in the connections—but we know that the brain grows essentially no new connections. How could such a system, even in principle, incorporate new knowledge?

The neural substrate of memory and learning is one of the great unsolved scientific questions for which we certainly have no definitive answers. But connectionist theories of learning are compatible with current brain research and are computational feasible. The key idea is that while new connections are rare, weight change in connections appears to be common. We also know that each unit can have thousands of incoming and outgoing connections. Our hypothesis is that most of these connections are only potentially important and that learning involves strengthening the appropriate connections. Suppose, for example, the network of figure 4 needed to learn that spinach was a salty vegetable. Our model suggests that there are uncommitted triangular nodes that are weakly connected to many combinations of objects, properties, and values. In an ideal case, one of them will be linked to "spinach," "has-taste," and "salty," among other things. This unit will become highly activated by the simultaneous activation of three of its neighbors and, by strengthening its active connections, can become dedicated to the new association. This example omits many important issues: the whole learning theory is in a very primitive stage. Geoffrey Hinton, in the article "Learning in Parallel Networks" (page 265), describes a related but different learning scheme based on the assumption that concepts are represented diffusely as the activity of many, many units. All of the connectionist AI efforts badly need more theoretical and experimental work, which leads us to an active interest in parallel computers.

PARALLEL COMPUTERS

Clearly, massively parallel AI models have a natural fit to parallel computers. The speed of our current simulations on sequential machines is slow enough to be a major bottleneck. While some kinds of programs are hard to transfer to parallel computers, connectionist simulations are straightforward to move. If we have 100 processors and a network of 20,000 units to simulate, we just assign 200 units to each processor. There are technical questions about the best way to partition the network, but the basic idea is simple. It is less clear how to monitor and modify the behavior of such systems, and this leads to basic research questions in parallel computation. A number of machines with hundreds of processors are being built in various labs. Our group at the University of Rochester is working with the Butterfly multiprocessor of Bolt Beranek and Newman: we expect to have a 128-processor system running this summer. A parallel version of our connectionist simulator is one of the major driving applications for the Butterfly. Possibly the best way to program many problems for a multiprocessor is to express them as a massively parallel network. While breaking a problem into 256 equal pieces is difficult, it may be fairly easy to express the problem's natural parallelism and let a compiler map the result onto whatever hardware is available. This seems to be the experience of the Cal Tech group on the physics problems they have attacked, and it appears to be true for many AI problems. The success of this approach could be a coincidence, but it might be related to the fact that intelligence evolved on massively parallel hardware.
The new Canon Handy Terminal 5000 is the portable unit that lets you gather and process information out of the office. With a maximum 32K internal user RAM file memory, it's perfect for jobs like retail audits, warehouse inventories, order-taking anywhere in the field or any one of hundreds of business applications.

It can be programmed to perform almost any task, adopting BASIC and Assembler languages. And can even relay information to your computer via phone hookup.

Portability is also the key word of the 5000, because Canon's Handy Terminal was especially designed for traveling light.

At a weight of less than 2 lbs., it can operate on a rechargeable battery and can be carried by neck strap or in an attache case. Yet it's highly durable, water resistant and shock resistant. Which means it can take its fair share of hard knocks.

© 1985 Canon U.S.A., Inc.

Also available is the 5000P (shown above) which has a built-in thermal dot printer that can print one original and a copy. And both terminals can incorporate an optional bar code reader.

So why not widen your computer horizons with Canon's new Handy Terminal. It lets you go as far as you like.

For more information:
Call 1-800-323-1717, Ext. 302.
(In Illinois call 1-800-942-8881, Ext. 302.)
Or Write Canon U.S.A., Inc., Systems Division/Handy Terminal, P.O. Box CN 11250, Trenton, N.J. 08638.

Canon Systems Division
Inquiry 59
Photo 1: A scanning electron micrograph of brain cells grown in tissue culture on a Motorola 68000. The center clump of balls is a group of somas, and the thin lines radiating outward from the clump are the neural processes. The IC traces are 2 to 5 microns across, and the traces on the nerve processes taper to less than 0.2 micron across.
COULD WE DEVELOP more efficient “sixth-generation” artificial-intelligence (AI) computers using circuitry copied directly from the brain, perhaps using radical new architecture, new hardware, and an entirely new logic? This question seems to have been raised about once a year for the last two decades. The answer continues to be “Probably not right away,” but as our understanding of principles used in neural processing evolves, it is a possibility that must be taken seriously. Moreover, some new digital designs such as the Boltzmann machines (see “Learning in Parallel Networks” by Geoffrey E. Hinton on page 265) closely parallel the overall architecture of the brain.

First we will review what might be called the device physics of the brain, focusing on the physical and electrical principles that optical nerve cells use to process information. Then we will discuss how silicon-based designs might be adapted to make use of the brain’s approach and how such designs might be used in some high-speed processing applications.

While today’s digital hardware is extremely impressive, it is clear that the human retina’s real-time performance goes unchallenged (table 1). Actually, to simulate 10 milliseconds (ms) of the complete processing of even a single nerve cell from the retina would require the solution of about 500 simultaneous nonlinear differential equations 100 times and would take at least several minutes of processing time on a Cray supercomputer. Keeping in mind that there are 10 million or more such cells interacting with each other in complex ways, it would take a minimum of 100 years of Cray time to simulate what takes place in your eye many times every second. How does this impressive piece of “bio-ware” work?

A BRIEF INTRODUCTION TO NERVE CELLS
The retina’s nerve cells function as complex analog processors. The connections between these cells, the characteristics of their connections, and the shape of the cells themselves all seem to play a major role in determining the basic parameters of the analog processing “program.”

Nerve cells come in many different shapes and sizes, but they can be placed into two broad categories—local processing “interneuron” cells and output cells. The local processing cells have all of their inputs and outputs limited to a very small region (usually a few hundred microns), while the output cells communicate from one part of the brain to another, from the brain to muscle, or from sensory organs to the brain.

The nerve cell, or neuron, can be thought of as a stand-alone analog-processing unit. Each cell has an inside and an outside separated by a plasma membrane. The inside of the cell and the fluid surrounding the cell have different concentrations

(continued)
THE BRAIN

charged ions, which creates a potential difference across the membrane. The concentration of the inside ions is controlled by many "ion pumps" located in the membrane itself. The ion concentration of the fluid surrounding the cell is just filtered blood and is regulated by special ion pumps found in the kidneys. These differential ion concentrations provide the electrical energy for all nerve cells and are exactly analogous to a battery. The full circuit requires a resistor in series with the battery to represent the ion leakage across the plasma membrane. The active pumps in the cell's membrane and kidneys are analogous to a battery charger, but instead of using a 110-volt wall plug, they use glucose or other nutrients as the power source.

THE SOMA

Each cell has a large round central body called a soma (photos 1 and 2, figure 1) that contains the genetic and metabolic machinery necessary to keep the cell alive. The soma takes the glucose found in the surrounding fluid and converts it to a more usable form of energy called ATP (adenosine triphosphate). The ATP drives the active pumps directly. The soma also synthesizes lipids and proteins that are used to maintain the cell's membrane, synapses, gates, and the nerve-process skeleton (cytoskeleton).

THE PASSIVE DENDRITE

Attached to the soma are long, irregularly shaped nerve processes (hair-like projections) called dendrites. These dendrites often have diameters under 1 micron and extremely complex branching shapes. Dendrites are electrically passive and can be represented as a series of capacitors and resistors. Their primary function is to receive inputs from other cells via specialized contacts called synapses or to connect other dendrites to synaptic outputs. One very important point that we will discuss in some detail is that the shape of a dendrite can have a dramatic effect upon the time course and final potential of any synaptic input. Thus, the same synaptic input on two differently shaped dendrites can have dramatically different effects. Synaptic inputs on a dendrite can either be summed and passively conducted to local synaptic outputs located on the same dendrite (in interneurons) or passively conducted back to the soma, where an action potential may be initiated in output cells.

THE ACTIVE AXON

A second type of nerve process also attached to the soma is called an axon. The axon differs from the dendrite in that it is electrically active and can
serve as the final output channel of the cell. Axons are always found on the output cells but often do not appear on interneurons, particularly on interneurons that have both inputs and outputs on dendrites. The axon is a nonlinear threshold device that produces a rapid, all-or-none voltage increase and decrease of about 1 ms duration. This voltage pulse, which is called an action potential, has a fixed amplitude and occurs when the resting potential within the soma rises above a critical threshold. The rapid changes in potential associated with the action potential are due to specialized proteins contained in the axon's membrane that selectively allow sodium and potassium ions to flow across the membrane, down their concentration gradients. You might think of these action potential gates as simply a series of interconnected one-shots.

Anatomically, the gates begin on the soma just before the actual axon leaves the cell. When the synaptic inputs located on the dendrite of a cell are activated, the potential may be passively conducted to the soma near the axon. If the sum total of all of these inputs as seen by the soma or axon is above the threshold of these gates, they will be activated and produce an action potential. Once this first group of gates has been activated, they change the internal axonal potential even more and activate the next set of gates located farther down the axon. These more distant gates raise the axonal potential again and activate even more distant gates, and so on, for the entire length of the axon, up to many feet in total length.

**Synaptic Inputs and Outputs**

Axons terminate in specialized contacts, called synapses, on other nerve cells. Synapses make contact with the dendrites of other cells and are capable of changing a dendrite's local potential in a positive or negative direction. When the potential on the axonal side (the presynaptic side) is raised, special compounds called neurotransmitters are released. Their release seems to be graded as a function of the presynaptic voltage waveform. Neurotransmitters are capable of opening gates similar to those described above for the action potential, except that these gates are located on the dendritic membrane and are activated chemically. When a synaptic gate is open, it selectively allows charged ions to flow across the membrane, either into or out of the cell. This in turn changes the internal dendritic potential. The total number of gates opened depends upon the total number of transmitter molecules released. A given synapse may excite or inhibit a cell. A single cell will always have many synaptic inputs on its dendrites and may have many synaptic outputs on its axons or dendrites to many different cells.

The output synapses from output cells are always located on the end of an axon. However, the output synapses from interneurons are located on the passive dendrites near the input synapses. Since the action potential has a fixed waveform, the synaptic outputs from the axon of an output cell will also have a fixed waveform. In contrast, since the potentials inside a dendrite are graded analog signals (due to analog summation of many different synaptic inputs), the interneuron synaptic outputs may also be graded. Thus, output cells have graded analog inputs with digital, all-or-none final outputs; interneurons have graded analog inputs but also have graded analog outputs.

**The Methods**

Advanced recording methods that depend upon submicron electrodes placed near individual cells in living brains and in tissue culture have taught us a great deal about the function or what could be called the software and hardware of brain cells. These electrodes make it possible to record action potentials and in many cases penetrate the soma and record intracellular potentials from synapses that have been activated on a peripheral dendrite. It has also been possible through other methods to measure the physical characteristics and properties of nerve cells, individual portions of cells, and even the properties of membranes and proteins embedded in the membrane.
branes. Until recently, it has been difficult to incorporate these physical parameters into a comprehensive model of submicron device physics, or what we call the design rules of the brain.

As I mentioned, the shape of nerve-cell processes plays an important role in controlling their function. Unfortunately, these processes are almost always well below 1 micron in diameter. A major difficulty has been that to accurately create an electrical or physical model of a nerve cell requires a detailed knowledge of surface area, length, and branching patterns of all processes and location of synaptic inputs. Because the cells are small and have extremely complex three-dimensional geometries, these parameters cannot be accurately obtained using the light microscope, which has a resolution of only about 1 micron. The scanning electron microscope allows us to see cells at higher resolution, but the cells must be removed from their circuit in the brain and placed on a special flat substrate or grown in tissue culture directly on the substrate.

Thus, scanning microscopes cannot be used to analyze intact three-dimensional circuits of the brain. The transmission electron microscope has more than adequate resolution. But to see the cells at high resolution, they must be sliced into very thin sections, usually less than 0.1 micron (photo 2). Thus, while the submicron structure can be resolved, the three-dimensional structure of the cells is lost.

The solution has been to simply slice the brain into thin serial sections and then, by using special computer systems, to reassemble the individual cross-sections into a full three-dimensional reconstruction of the original object (figure 2). Technological advances over the last few years have made this almost routine. so it (continued)
G U A R A N T E E D  T H E  L O W E S T !

OUR PRICE GUARANTEE – It’s Simple! We’ll beat any ad in this magazine – same terms – call TOLL FREE for details!

DISCOUNT COMPUTER CENTERS
an established mail order/retail distribution network

GUARANTEED THE LOWEST!

OUR CUSTOMER SATISFACTION GUARANTEE: If for any reason your DCC purchase fails to meet manufacturers specifications within 30 days of purchase, please return it to us for a full refund or exchange of your choice! Sorry, software excluded due to copyright laws.

TOLL FREE ORDERS ONLY! 800-631-0962 Kunden Service HOTLINE (408) 559-6555
INSIDE CALIFORNIA 800-521-6162

GUARANTEED THE LOWEST!

OUR PRICE GUARANTEE – It’s Simple! We’ll beat any ad in this magazine – same terms – call TOLL FREE for details!

DISCOUNT COMPUTER CENTERS
an established mail order/retail distribution network

GUARANTEED THE LOWEST!

OUR CUSTOMER SATISFACTION GUARANTEE: If for any reason your DCC purchase fails to meet manufacturers specifications within 30 days of purchase, please return it to us for a full refund or exchange of your choice! Sorry, software excluded due to copyright laws.
is now possible to study the structures inside the cells that control shape and thus control the device physics of the cells.

**CREATING EQUIVALENT CIRCUITS**

Each of the various nerve-cell components described above has an electrical circuit equivalent. If you combine this electrical equivalent with the submicron three-dimensional geometry of the cell, it is possible to create reasonably accurate models of nerve-cell processing. In what follows I will illustrate the principles used by nerve cells for processing signals by describing the electrical equivalents for a dendrite, the power supply, and the synaptic contact. I will also show how the shape of a cell's processes can alter inputs and outputs and how the cell's internal skeleton can alter process shape. It is also possible to create an equivalent circuit for the axon, but for the sake of simplicity I will limit myself to the passive portions of the nerve cell and will not discuss the electrical properties of the axon.

**THE FORM AND ELECTRICAL CIRCUITS OF THE PASSIVE DENDRITE**

Brain-cell dendrites have a skeleton that controls the shape and, to some extent, the branching patterns of the process. As I will discuss below, this skeleton is particularly important in controlling how a brain cell processes information. The dendrite has an outer skin, or membrane, that consists of a very thin layer of oil-like substances called phospholipids. Phospholipids have high specific resistivity and capacitance and can be thought of as insulators. The inside of the nerve-cell process is filled with a highly conducting gel, or axoplasm, that for our purposes can be thought of as a conducting wire. Thus, a nerve-cell dendrite in the most simple electrical terms is a conducting wire, the axoplasm, with an outer insulating layer, the membrane. The nerve process can be represented with simple electrical equivalents consisting of a ladder network of passive resistors and capacitors.

**THE BRAIN**

![Electrical Equivalent of a Dendritic Circuit](image)

**Figure 3:** Electrical equivalent of a dendritic circuit. The dendritic segment is about 0.1 micron in diameter. Surface area = cross-sectional area.

![Electrical Equivalent of the Power Supply of a Nerve Cell](image)

**Figure 4:** Electrical equivalent of the power supply of a nerve cell. The differences in voltages between this figure and the text reflect normal ranges of cell potentials.

A simple model of a portion of a dendrite is shown in figure 3. Below the model is the equivalent ladder network of resistors and capacitors that represent that model. The resistor labeled $r_m$ is the resistor used to represent leakage out of the membrane, while the resistor labeled $R_i$ is the resistance offered by the internal gel or cytoplasm. Finally, $C_m$ is the capacitive component of the membrane. These values are calculated from specific resistivities that have been experimentally measured for different cell types and by measuring the detailed geometry of the cell itself. The computation is virtually identical to that now used by IC (integrated-circuit) designers in calculating resistances and capacitances on a chip. IC designers know the specific resistivity of polysilicon, silicon, and metal layers. When given the geometry of a pad, they can compute its total resistance and capacitance.

The specific capacitance of the phospholipids that make up the dendrite's membrane is about 1 microfarad per square centimeter. Thus, we measure the surface area of one small region of the process and multiply it by the specific membrane capacity. The dendritic portion in figure 3 would have a total capacitance of $1.57 \times 10^{-9}$ microfarad, a membrane resistance of $1.27 \times 10^{12}$ ohms, and an axial resistance of $9.55 \times 10^4$ ohms.

**THE NERVE-CELL POWER-SUPPLY CIRCUIT**

The power supply for a cell can be represented as a series of batteries in series with a resistor (figure 4). Each battery represents the differential concentration across the cell's membrane of a specific ion. The voltage of the battery for a specific ion is determined directly by its Nernst equilibrium constant, which is given as

$$\text{millivoltage} = 61 \times \log\left(\frac{\text{OUT}}{\text{IN}}\right)$$

The concentration of the positively charged ion Na⁺ is much higher outside the cell than it is inside the cell by a ratio of about 10:1. Its Nernst equilibrium potential is therefore +61 millivolts (mV). Other ions typically found around cells in warm-blooded animals are K⁺, with a Nernst equilibrium potential of about −90 millivolts. (continued)
Which electronic mail service delivers much more than mail?

Every one of these electronic mail services does a very good job of delivering the mail.

But only one delivers so many more online services with equal expertise. The Source.

With The Source, you can have the daily news delivered along with your daily mail. Make airline reservations. Trade stocks. Hold a computer conference. Communicate with thousands of people who share your interests.

Even get the latest word on new hardware and software products, in seconds.

All this, and more, along with the electronic mail service called “the most powerful available anywhere.”

And all for just $49.95, plus reasonable hourly usage fees.

Call 800-336-3366* and you can have the power of The Source working for you in a matter of minutes.

Or for more information, visit your nearest computer dealer or mail the coupon below.

Please send me more details about The Source.

Name

Address

City State Zip

Mail to: Source Telecomputing Corp.
1615 Anderson Road
McLean, VA 22102

7804310

The Source

The most powerful resource any personal computer can have.

The Source is a service mark of Source Telecomputing Corporation, a subsidiary of The Reader’s Digest Association, Inc. The source services are offered in participation with Control Data Corporation and Source Telecomputing Corporation. All The Source and EasyLink service marks are the property of MCI Communications Corp. MCI Mail is a service mark of MCI Communications Corp. EasyLink is a service mark of Western Union.

*In Virginia or outside the continental U.S. call (703) 821-6666.
mV (minus because the concentration of K⁺ is greater on the inside of the cell), and Cl⁻, with a potential of -87 mV. The series resistors shown in figure 4 represent leakage of these ions across the membrane to charge the capacitor to its final value. Using special recording methods, it is possible to determine the value of each leakage resistor. Once that is known, we can quickly compute that the potential difference across the membrane will be about -87 mV.

Since this "resting potential" is relatively constant throughout the cell, it is usually not explicitly included in the models or computations. However, the principle of using ionic gradients and membrane resistance to create potential differences is important and will be used below in the description of synapses.

**THE SYNAPSE OR NEURAL GATE CIRCUIT**

You might think of synaptic inputs as voltage-controlled changes in the membrane resistor connected to an ionic battery. In some cases the battery may be positive and thus produce a net excitatory change inside the dendrites, and in other cases the battery may be negative and thus produce net inhibition inside the cell. Figure 5 illustrates a schematic synapse making contact with a dendrite. When the voltage inside the synapse increases, neurotransmitters are released. These neurotransmitters selectively (depending upon their chemical composition) alter the permeability of one or more ions. In effect, these neurotransmitters change the value of the resistor connected to an ionic battery that in turn leads to a change in the resting potential of the cell. A typical gate might have 5.0 x 10¹² ohms resting value and 5.0 x 10⁸ ohms during activation.

One important point is that a synapse cannot be modeled as a simple voltage input to the dendrite, nor can it be safely represented as a simple injection of current. Rather, it is a complex conductance change within a complex passive RC (resistance-capacitance) network. The final time course and potential seen across the cell's membrane will therefore not be just a function of the synaptic battery and resistor but also of the membrane resistor (r_m), axial resistor (r_i), and membrane capacitor (c_m). Since these components are controlled to some extent by the shape of the cell, the geometry of the cell can be used to control synaptic strength. This principle is illustrated below.

**THE RETINAL AMACRINE CELL ELECTRICAL CIRCUIT**

Figure 7 illustrates a retinal amacrine cell, reconstructed by the computer from serial electron micrographs. The amacrine cell is of particular interest because it has a complex geometry that includes highly irregular and varicose dendrites that attach to the soma. It is a classic interneuron with many synaptic inputs and outputs over the entire cell's surface, and no axon.

Once the surface area and volumes have been computed, the cell is reduced to a simple geometric schematic that approximates the original shape using cylinders similar to those shown in figure 5. You can then easily reduce this schematic to an equivalent circuit by using a membrane resistor, axial resistor, and membrane capacitor to create a large RC ladder network similar to that seen in figure 6. This network can be simulated using conventional linear circuit analysis (see October 1978 BYTE) on almost any small computer.

I have simulated the cell shown in figure 7 using two identical synapses placed on different parts of the cell (A and B in figure 8). I have not included the batteries and resting potential resistors since they would all be equal in this circuit. The synaptic inputs consist of a resistor and a 100-mV battery as shown in figure 5. A synaptic input is modeled as a rapid decrease in the value of the synaptic resistor for 50 ms and then a return to a very high resting value. The lower (continued)
Absolutely first class. Our Keyboard Storage Drawer is tops—it can turn your narrow credenza or typewriter return into a perfect work station. From a reinforced platform on protective felt pads, the cantilever drawer extends on industrial strength ball bearing glides and locks into working position. The scratch resistant finish matches IBM colors. Optional locking device. Also available—an under-desktop suspension model—the bottom drawer. But still "top drawer!"

MicroComputer Accessories, Inc.
5721 Buckingham Parkway
P.O. Box 3725
Culver City, California 90231
Telephone 213/641-1800
Inquiry 262 for Dealers.
In Europe:
N.V. Microcomputer Accessories Europe S.A.
Rue de Florence 37
1050 Bruxelles, Belgique
Telephone 02/538.61.73
Inquiry 263 for End Users.

These and other fine products are available at Sears Business Systems Centers, Computerland, Businessland, IBM Product Centers and other computer/software retail locations.
part of figure 8 shows the maximum peak of this response inside the cell on the graph. Each line represents the peak voltage along the dark portion of the cell during activation of the synapse.

Since this cell is an interneuron, it does not have an axon (amacrine means "without axon"), nor does it have an action potential. It does, however, have many synaptic outputs to other adjacent cells, two of which are illustrated by large arrows pointing up in figure 8. Keep in mind that the A and B synaptic inputs are identical. Yet the effects they have on the intracellular voltage for the outputs near A and B are dramatically different. The B input has a much greater effect on the A output, as compared to the effect of the A input on the B output. Thus, while the B synapse can activate both the A and B outputs, the A synapse can activate only the A output.

This simple function was created and controlled by geometry of the nerve cell itself. One can imagine other effects when both synapses are simultaneously activated or when other synaptic inputs are activated farther out on the dendrite. Thus, the specific analog-logical functions of a nerve cell can be controlled by the cell's geometry. This manipulation of cell form can be thought of as the device physics the brain uses to control logical functions.

**CAN WE ADAPT THE DEVICE PHYSICS OF THE BRAIN TO SILICON-BASED CIRCUITS?**

The tantalizing question raised by these observations is "Can we adapt this simple principle of changing three-dimensional geometry to silicon-based circuits that could simulate brain circuits?" The answer is "Yes, quite easily." Jack Kilby of Texas Instruments, whose important insight led to the first IC 25 years ago, made us realize that it was possible to control many important silicon-based passive parameters such as the value of pull-up or pull-down resistors by changing the size and shape of the etched area. While the constants for resistances and capacitances are several orders of magnitude different from brain constants, it is interesting that the circuits in figures 3 and 6 are exact equivalents of those used to simulate an interconnection within a silicon chip. The equations and software used to simulate the nerve cell above are almost identical to the software used to simulate a full IC during design.

Projects to create these silicon-based neurons, called *silicrons*, are just now getting under way. Conceptually, the shape of the cell is simply etched into silicon in place of the conventional linear interconnections. Gates are placed at locations where synaptic inputs and outputs might be located, and for output silicrons we can simulate an axon with a simple Schmitt trigger circuit or one-shot.

Unfortunately, silicrons will be only (continued)
YOUR DAYS OF BUYING TERMINALS ARE OVER!
Now there's SmarTerm terminal emulation software for your IBM* PC, XT, AT or compatible system. All SmarTerm products offer comprehensive and exact terminal emulation, powerful ASCII and binary file transfer facilities, and include TTY mode to link you to The Source, CompuServe, Dow Jones, EasyLink, Tymnet or other popular services. We've included features such as multiple setup configurations, XMODEM and PDIP* protocol support, "smart" softkeys, plus European DOS support.

SmarTerm 100 is your choice for DEC* VT100, VT102 and VT52 emulation.

SmarTerm 125 has all the features of SmarTerm 100, plus VT125 ReGIS graphics support. For Data General Dasher* D100, D200 or D400 emulation, you need SmarTerm 400.

More than 20,000 users have already "flocked" to SmarTerm. Try it for 30 days, with full refund privileges, and you will be sold too.

Persoft, Inc. - 2740 Ski Lane Madison, WI 53713
(608) 273-6000 - TELEX 759491

IDEA CREDIT: The University of Wisconsin Zoological Museum. See your name in print! The best ideas for uses of obsolete terminals replaced by SmarTerm will be used in future ads. Write Persoft, Dept. BIRDIE, 2740 Ski Lane, Madison, WI 53713.

© Persoft Inc. 1984. All rights reserved.
STATGRAPHICS®
ONE KEYSTROKE TURNS LIFELESS DATA...

Data. You live with it every day. What you need are the tools to make it come alive. Comprehensive analytical tools. Mathematical precision. And graphics capabilities to broaden your insights—to help you visualize, analyze, and communicate your findings quickly and convincingly.

And now you've got it. With STATGRAPHICS—a new PLUS® WARE™ product from STSC. STATGRAPHICS is the only PC software to fully integrate a wide variety of statistical functions with high-resolution color graphics. Giving you the power and precision you used to find only with mainframe software.

STATGRAPHICS' unique interactive environment allows you to generate graphs from within the statistical procedures. You can change a variable and see the effect—immediately. So your job is easier and you're more productive.

MORE OPTIONS FOR MORE COMPREHENSIVE ANALYSIS.
STATGRAPHICS features over 250 functions for analyzing data—including analysis of variance, regression analysis, experimental design, quality control procedures, multivariate techniques, nonparametric methods, and extensive forecasting and time series analysis.

It also lets you enter data at the keyboard, or access data stored in standard ASCII files, LOTUS® 1-2-3 worksheets, and DIF files used by other popular software packages.

TELL A CLEARER, MORE DRAMATIC STORY.
STATGRAPHICS includes a wide variety of graphics programs such as two and three-dimensional line and surface plots, bar and pie charts, histograms, time sequence plots, and quality control charts.

The graphics are supported on color and monochrome graphics boards, dot-matrix printers, and pen plotters for presentation quality graphics.

SOPHISTICATED STATGRAPHICS IS SURPRISINGLY SIMPLE TO USE.
STATGRAPHICS is completely menu-driven, and includes a comprehensive user's guide, online HELP screens, tutorial, and handy reference card. And STSC's HELP-Line is only a phone call away—giving you ready access to our staff of technical experts.

TAKE A LOOK AT STATGRAPHICS.
AND LOOK NO FURTHER.
STATGRAPHICS is the most advanced statistical graphics software available for PC's. And the complete system is just $695.

To order STATGRAPHICS, or for more information, contact your local dealer or call 800-592-0050 (in Maryland, 301-984-5123). Or write STSC, Inc., 2115 E. Jefferson St., Rockville, MD 20852. Major credit cards accepted.

Problem-solving at the speed of thought.

STSC
A Concert Company

Inquiry 368

STATGRAPHICS operates on IBM PCs and compatibles under DOS, Version 2.0 or later. A minimum of 384K RAM, a graphics adapter and compatible monitor, and two double-sided disk drives or a hard disk are required. An 8087 math coprocessor and 512K RAM are recommended.

STATGRAPHICS is a registered trademark of Statistical Graphics Corporation. PLUS® WARE™ is a trademark of STSC, Inc. LOTUS® is a registered trademark of Lotus Development Corporation.
a laboratory curiosity until one final problem has been resolved—how do we create new and arbitrary programs? There is no simple way to change or modify the strength of connections from one silicon to another. Since researchers do not really have a clear understanding of how the brain modifies its own circuits (the device physics of learning), any silicon-based solutions will be non-biological. Ongoing biological work is encouraging and suggests that in some cells active shape change of dendrites may lead to changes in synaptic strength. Nevertheless, it is safe to say that it will be some time before we will have a full understanding of perhaps the most impressive feature of neural circuits: their ability to program themselves. In the meantime, it will certainly be possible to create very fast neuronlike devices with well-defined, prewired functions such as CCD (charge-coupled device) image processing. However, it will be quite some time before we can create what could legitimately be called a sixth-generation computer based on a neurological model.

The micrograph of brain cells grown in tissue culture by Judy Trogadis (see page 286) is available as a museum-quality poster for $7 (U.S.) plus $3 for postage and handling. Phone (713) 664-7457 or 526-9617 or write Synaptic Poster, 8 Alexander St., Brampton, Ontario L6V 1H6, Canada (VISA and MasterCard accepted). All proceeds from the sale of the poster will support the research described in this article. Copyright 1983, 1985. J. Trogadis and J. Stevens.

BIBLIOGRAPHY
IBM SYSTEMS
Starting as low as $1599
386X, 1-DS/DD DRIVE

MULTIFUNCTION CARDS
IDEA
Quadboard .... $229.00
Quadboard II .... $229.00
Expanded Quadboard ... $229.00
Quad 512 .... $229.00
Quad 2 Meg .... $229.00
Memory Board .... $229.00
Quad Exp. Memory .... $229.00
Quad Memory .... $229.00
Chromag .. $229.00
Parallel Card ... $68.99

Six Pack Plus .. $329.00
Mega Plus II .. $329.00
JO Plus II .... $329.00
Memory MINI .. $329.00
Adventage-AT .... $329.00

TECMAR
Captain .. $329.00
Captain Jr .. $329.00

PAR ADISE
Five Pack Plus .. $329.00

VIDEO CARDS
Amdek .... $329.00
AST ... $329.00
Paradise .. $329.00
Quadram .. $329.00

MAINFRAME
AST 2511 .. CALL
586 .. CALL
586 .. CALL
DCA MAIN. .. CALL

KEYBOARDS
Keytronic Keyboards 510, 511, 511, Jr. 514 Jr.CALL

MEMORY CHIPS
4164 RAM Chips ... ea. $3.99

HARD DRIVES
Alloy .... CALL
IDE Associates ... 5, 10, 15, 20, 25, and 46 meg ... from $90.00
Hitachi 10, 20 meg ... from $190.00
Toshiba 20, 30, 60 meg from $200.00
Tandon 3.5" 500K Floppy ... $139.00

SOFTWARE
LOTUS
Symphony .. $499.00
1-2-3 .. $309.00

Hayes
Please (Data Base) .. $299.00

PEACETREE SOFTWARE
PeachPack (GLAVAR) $219.00

MICROPRO
WordStar 2000 .. $299.00

MICROMIM
RBase 4000 .. $299.00

MULTIMATE INT.
MultiMate .. $269.00

Crosstalk .. $99.99

MOSFROF
File Manager .. $59.99

ELECTRONIC ARTS
Get Organized .. $59.99
Cut-in Paste .. $59.99
Music Construction .. $59.99
One-on-One .. $59.99
Financial Cookbook .. $59.99

ALPHA SOFTWARE
Electronic Desk .. $219.00

BORTLAND
Turbo Pascal .. $39.99
Sidekick ... $39.99

SYNAGLE
File Manager .. $59.99

HARVARD SOFTWARE INC.
Harvard Project Manager .. $299.00

PPS
IBM/APPLE
Access (NEW) .. $89.99
Write .. $89.99
Report .. $89.99
Graph .. $89.99
Plot .. $89.99
Plan .. $89.99

HUMAN EEDGE SOFTWARE
Communication Edge .. $129.00
Management Edge .. $129.00
Negotiation Edge .. $129.00
Sales Edge .. $129.00

PC COMPATIBLES
ZENITH
PC-160 Desktop .. CALL
PC-160 Portable .. CALL

COLUMBIA
Desktops .. CALL
Portables .. CALL

APPLE
APPLE IIe
ProFESSIONAL PACK
44K Apple IIe, Dual Disk, & Controller, Expanded 80 Column Card, Monitor II & DOS 3.3 .. CALL

MONITORS
Analyseka
5C-100 Color .. $249.00
50-1000 Green .. $129.00
SA-1000 Amber .. $139.00

MODems
AST
Reach 1200 Baud Half Card .. $399.00

COMPUTER MAIL ORDER
1-800-233-8950

WEST
P.O. Box 8689, Dept. A104
Stateline, NV 89449
Order Status Number: (717) 327-9579

EAST
477 E. 3rd St., Dept. A104
Williamport, PA 17701
Customer Service Number: (717) 327-1430

CANADIAN ORDERS
Ontario/Quebec: 1-800-268-3974
Other Provinces: 1-800-268-4559

In Toronto: (416) 828-0866 Telex: 68-81089
2305 Dunwin Drive, Unit 3
Mississauga, Ontario, Canada L5L1J7

Open purchase orders accepted with net-30 days terms, subject to credit approval. Next day shipping on all stock items. No risk, no deposit on C.O.D. orders and no waiting period for certified checks or money orders. Add 3% (minimum $5) shipping and handling on all orders. Larger shipments may require additional charges. NV and PA residents add sales tax. All items subject to availability and price change. Call today for our catalog.

300 BYTE • APRIL 1985
THE TECHNOLOGY OF EXPERT SYSTEMS

by Robert H. Michaelsen, Donald Michie, and Albert Boulanger

Transplanting expert knowledge to machines

THE PURPOSE OF this article is to introduce expert systems. Initially, we'll define these systems. Next, we'll discuss methods for building them, including the advantages and disadvantages of each method. Finally, we'll review the computer resources needed to build and run expert systems.

DEFINITION

Expert systems are a class of computer programs that can advise, analyze, categorize, communicate, consult, design, diagnose, explain, explore, forecast, form concepts, identify, interpret, justify, learn, manage, monitor, plan, present, retrieve, schedule, test, and tutor. They address problems normally thought to require human specialists for their solution. Some of these programs have achieved expert levels of performance on the problems for which they were designed (see reference 6).

Experts are capable of

- Applying their expertise to the solution of problems in an efficient manner. They are able to employ plausible inference and reasoning from incomplete or uncertain data.
- Explaining and justifying what they do.
- Communicating well with other experts.

Experts engage in several different problem-solving activities. For instance, the following problem-solving activities have been identified in MYCIN (see figure 2): identify the problem, process data, generate questions, collect information, establish hypothesis space, group and differentiate, pursue and test hypothesis, explore and refine, ask general questions, and make a decision (see reference 11).

Experts are capable of

- Applying their expertise to the solution of problems in an efficient manner. They are able to employ plausible inference and reasoning from incomplete or uncertain data.
- Explaining and justifying what they do.
- Communicating well with other experts.

Robert H. Michaelsen is an assistant professor of accounting at the University of Nebraska (Lincoln, NE 68588-0488). He received his Ph.D. in accountancy from the University of Illinois. Donald Michie is Director of Research at the Turing Institute (36 North Hanover St., Glasgow G1 2AD, Scotland). Formerly a professor at the University of Edinburgh, he is the author of numerous books and articles on artificial intelligence. Albert Boulanger is a scientist for Bolt Beranek and Newman Inc. (10 Moulton St., Cambridge, MA 02238). He has a master's degree in computer science from the University of Illinois at Urbana-Champaign.
Expert systems have modeled only the first three expert capabilities to any extent. and even explanation and knowledge acquisition have just begun.

Expert systems, like human experts, can have both deep and surface representations of knowledge. Deep representations are causal models, categories, abstractions, and analogies. In such cases, we try to represent an understanding of structure and function. Surface representations are often empirical associations but are sometimes "compiled" from an understanding of structure and function. In the former case, the association between premises and conclusions of rules is based on empirical observation of past association. Causality is implicit in the rule, rather than explicit.

Deep representations enhance the explanatory powers of expert systems. With surface representations, all the system knows is that an empirical association exists; it is unable to explain why, beyond repeating the association. Where more fundamental insight is available, deep representation will enable the system to respond more substantively, if computer induction is used for knowledge acquisition, a model for understanding events in the domain (a deep representation) often guides the induction of rules from examples by distinguishing meaningful hypotheses from coincidences in the data. It is also likely that deep representation will enhance the incorporation of the last four previously listed expert capabilities into expert systems. Surface representations have offered little in this regard.

However, surface representations have their advantages if the only concern is problem-solving performance, empirical associations, or compiled understanding. They should be less costly to formulate than causal models. This lower cost can provide a reasonable level of explanation along with a primitive form of knowledge acquisition. If a domain's expertise is based on empirical association, as in many areas of medicine, surface representations are the only kind available (see reference 4).

The best approach to expert-system building is probably to use deep representations when they are cost-effective and surface representations for the rest of the system. This approach has already been explicated in a paper by Hart (reference 12) and implemented in Digitalis Advisor, a system that provided advice on digitals dosages for cardiac patients (see reference 29).

**BUILDING EXPERT SYSTEMS**

An expert system is able to make decisions on a par with an expert primarily because its structure reflects the manner in which human specialists arrange and make inferences from their knowledge of the subject. The system is driven by a database of inexact and judgmental knowledge that is typically made up of if-then rules when surface representation is used, or frames and semantic nets when deep representation is used (see "A Glossary of Artificial Intelligence Terms" on page 138). Domain knowledge is processed in a strict order of deductive inference and is invoked by a pattern match with specified features of the task environment. Figure 3 is an example of pattern matching by TAXADVISOR. Because uncertainty is usually involved in expert judgments, expert systems must allow

---

**RULE 216**

(This rule applies to clients and is tried to find out whether a short-term trust should be recommended.)

If:

1) The client and/or spouse do wish to shift property income to another (not for legal support), etc., for at least 10 years or until the death of the beneficiary,
2) The client and/or spouse do desire to eventually reclaim control of this property (for retirement, estate liquidity, etc.),
3) The client and/or spouse are in a higher income bracket than the beneficiary,
4) The client and/or spouse are willing to relinquish control of the beneficial enjoyment of the property,
5) The client and/or spouse are able to provide for their living needs without this income, even in the event of disability or unemployment,
6) The client and/or spouse do not plan to have the trust income used to pay life-insurance premiums on his/her life without the consent of an adverse party,
7) The client and/or spouse do not plan to use the trust for a leaseback of assets, and
8) A: The client and/or spouse have a person (e.g., a parent) they are supporting without legal obligation with this property income (will lose a dependent if trust is formed),
B: The client and/or spouse have a child, not a minor, that they will be putting through college with this property income (can set up and accumulate income without tax problems), or
C: The client and/or spouse are using some of their after-tax income for the benefit of some other taxpayer (child's marriage and/or home purchase, etc).

Then: It is definite (1.0) that client should TRANSFER ASSETS TO HORT-TERM TRUST.

---

**Figure 1:** An example of a TAXADVISOR rule.
conclusions to be reached with less than certainty. Figure 4 illustrates how TAXADVISOR copes with uncertainty during a consultation. (For more information on uncertainty mechanisms in expert systems, see reference 32.)

The type of computer program that is used to develop an expert system cannot have its flow of control and data utilization rigidly fixed because such a structure is ill-adapted for simulating a human's responses to a complex, rapidly changing, and unfamiliar environment. Instead, such a program must examine the state of the world at each step of the decision process and react appropriately because new stimuli continually arise. The type of program that has been developed to cope with this constant change is a loosely organized collection of pattern-directed modules (PDMs) that detect situations and respond to them (see reference 31). The rule in figure 1 is a PDM from TAXADVISOR.

Each PDM examines and modifies data structures that model critical aspects of the external environment. In TAXADVISOR, the client's financial-planning situation and objectives constitute the environment. A PDM should be written as a single and separate unit that is independently meaningful within the task domain of the program. This aids incremental program growth and debugging, since revision of one PDM does not affect the others. It also provides explanation power: a single PDM can be used to explain a recommendation by the system.

Any system composed of several PDMs, one or more data structures that may be examined and modified by the PDMs, and an executive program to schedule and run the PDMs is called a pattern-directed inference system (PDIS). In effect, a PDIS factors complex problems into manageable, largely independent subproblems.

**SURFACE REPRESENTATIONS**

Rule-based systems (RBSs) were originally used in cognitive modeling of short-term memory. Since expert

---

**Figure 2:** The MYCIN problem-solving hierarchy. Question numbers (Q2, etc.) correspond to questions asked in the consultation. Solid lines show tasks actually done, dashed lines those that might be done. (Figure used with permission; see reference 11.)

---

**Figure 3:** An example of pattern matching done by TAXADVISOR, performed to determine if the client should be forming a short-term trust. The Prestored Value column shows the pattern of attribute values that a client must have before TAXADVISOR will recommend a transfer of assets to a short-term trust. Since the client's pattern matches the prestored one, the trust will be recommended.
EXPERT TECHNOLOGY

—Formation of a Temporary Trust—

1) Does client wish to shift property income to another (not for legal support) for at least 10 years or until the death of the beneficiary? **YES

2) Does client desire to eventually reclaim control of the property? **YES

3) Is client in a higher income-tax bracket than the beneficiary? **YES

4) Is client willing to relinquish control of the beneficial enjoyment of the property? **WHY

This will aid in determining whether client should form a temporary trust. It has already been established that

1) Client wishes to shift property income to another (not for legal support) for at least 10 years or until the death of the beneficiary,
2) desires to eventually reclaim control of the property, and
3) is in a higher income-tax bracket than the beneficiary.

Therefore, if

1) client is willing to relinquish control of the beneficial enjoyment of the property,
2) is able to provide for his living needs without this income, even if disabled or unemployed,
3) does not plan to have trust income pay life-insurance premiums on his life without the consent of an adverse party,
4) does not plan to use the trust for a leaseback of assets, and
5) A: has a person (e.g., a parent) he is supporting without legal obligation with this property income,
   B: has a child, not a minor, that he will be putting through college with this property income, or
   C: is using some of his after-tax income for the benefit of some other taxpayer,

then

client should form a temporary trust

(back to question 4 . . . )

**YES

5) Is client able to provide for his living needs without this income, even if disabled or unemployed? **YES (8) [Whenever a response is made with less than certainty, the system user enters a number between 1 and 9 indicating his degree of certainty in that response.]

6) Does client plan to have trust income pay life-insurance premiums on his life without consent of an adverse party? **NO

7) Does client plan to use the trust for a leaseback of assets? **NO

8) Does client have a person he is supporting without legal obligation? **YES

I recommend that the client form a short-term trust.

[The degree of certainty that the system has in this recommendation is .8. This certainty factor (CF) was calculated as follows. The temporary trust rule's action CF was 1.0 and it had an "AND" premise. In such a case, the rule's CF is the minimum CF used in the responses, or .8. Since the system's threshold CF is .2, the recommendation was made.]

Figure 4: A partial interactive consultation with TAXADVISOR. The user's input is in uppercase.
most RBSs are production systems (PSs), in which matching and scheduling are explicitly defined by the operation of the executive (control) program. The control schema can be characterized as having four basic parts:

1. Selection: select relevant rules and data elements. Selection may be trivial (e.g., on each cycle all rules and all data elements can be considered) or quite complex (e.g., special filters can be designed to eliminate from consideration many rules that could not possibly match the current data). In TAXADVISOR, rules are organized in a hierarchy to narrow the rules considered.

2. Matching: compare active rules against active data elements, looking for patterns that match, i.e., rules whose conditions are satisfied. Figure 3 is an example of pattern matching.

3. Scheduling: decide which "satisfied" rule should be "fired." "Firing" consists of accessing and executing the procedures associated with the pattern elements that matched the current data. If more than one rule is satisfied, conflict-resolution heuristics are used to decide which rule to fire.

4. Execution: fire the rule chosen during the scheduling process. The result of execution is a modification of data elements or structure. With TAXADVISOR, execution results in an estate-planning recommendation for a client. This is illustrated in the test consultation in Figure 4 (see reference 31).

PSs are either consequent-driven systems or antecedent-driven systems. A consequent-driven (backward-chaining) system, which is the type used in TAXADVISOR, uses rule consequents (which represent goals) to guide the search for rules to fire (with TAXADVISOR, estate-planning actions to recommend). The system collects those rules that can satisfy the goal in question and tries to satisfy the consequents of those rules, which usually represent the values of variables. In order to find these values, the values of the rule antecedent must be found. To satisfy each antecedent, which represents a subgoal, the system collects those rules whose consequents satisfy its value. The process of working backward through the rules from consequents to antecedents searches for a causal chain that will satisfy the goal is called backward chaining. (For a simple backward-chaining program written in BASIC, see "Knowledge-Based Expert Systems Come of Age" by Richard O. Duda and John G. Gasch, September 1981 BYTE, page 238.)

With antecedent-driven (forward-chaining) systems, program execution consists solely of a continuous sequence of cycles terminating when a rule's action dictates a halt. At each cycle, the system scans the antecedents and determines all rules with antecedents that are satisfied by the contents of the database. If there is more than one such rule, select one by means of a conflict-resolution strategy. Perform all actions associated with the selected rule and change the database accordingly. For example, with R1 (XCON), you enter all the information on the problem into the database, and the system then applies the rules to reason forward from the data to the conclusions. In summary, forward chaining consists of putting the rules in a queue and then using a recognize-act cycle on them.

Some forward-chaining systems try to control the search for rules in the recognize cycle by grouping rules into packets. These rule groupings are appealing conceptual structures, since they group rules according to the subtopic that they deal with. Object-oriented programming can also be used to organize collections of rules. In object-oriented programming, we give objects behavior, and thus we can distribute the control of rules into rule, rule-packet, and domain objects. This approach, which has been taken in LOOPS, a domain-independent system (see reference 27), also allows multiple instantiations of the same set of rules to solve subproblems of the
Finally, business computer software for the hard-nosed.

No one takes a harder look at software than small to mid-sized businesses.
So take a long, hard look at The Accounting Solution, a new, totally integrated software package from Business Tools, Inc.
You'll find its breakthrough features are designed to pay off where it counts — on the bottom line.

Hard-nosed economy, $99:
Contrary to popular opinion, you don’t need a small business loan to buy quality software. Not if you’re buying The Accounting Solution. For $99, you get a language/data base manager with more hard-nose capabilities and speed than any program available at any price; $249 buys the language plus accounts receivable/payable and general ledger; $399 gets you all the above plus inventory control, sales order entry, purchase order entry and payroll. Even more good news for the budget minded — source code is included with applications.

Easy for any hard-nose.
The Accounting Solution is easy enough for the novice hard-nose to use within minutes of receiving the package. Yet it’s also sophisticated, offering unlimited flexibility and opportunity to the hot-shot hard-nose. And it’s designed to run on CP/M-80, MP/M-80, IBM PC and compatibles.

Multi hard-nose capability.
The Accounting Solution never stands in the way of progress. Thanks to multi-user capability, two or more hard-noses can use the same application at the same time.

Hard-nosed flexibility.
With The Accounting Solution, it’s easy to change your mind because the source code is so simple to modify. Ready to grow? Great. You can change hardware without spending a dime on new software.

Take it from hard-nose Phil Mickelson.
Phil created The Sensible Solution, a highly respected software package. Now he’s offering the next step, another breakthrough: The Accounting Solution. It’s simple, sophisticated, affordable. And backed by Phil’s reputation and personal service. If you’re looking for hard-nosed value and quality, you’ll agree, The Accounting Solution is the only solution.

Write or call:
Business Tools, Inc.
4038-B 128th Avenue SE
Bellevue, WA 98006
1-800-648-6258

Washington State:
(206) 644-2015
Dealer inquiries welcome.

*Suggested retail price.
**CP/M-80 and MP/M-80 are registered trademarks of Digital Research, Inc.; IBM PC is a registered trademark of International Business Machines Corporation; The Sensible Solution trademark rights are claimed by O’Hanlon Computer Systems.
same type within one session.

The primary difference between backward and forward chaining is a top-down versus bottom-up style of linking rules together. Though the most common, these are not the only control structures for rule-based systems. For example, rules are represented as an "inference" network in PROSPECTOR (see reference 5).

DEEP REPRESENTATIONS

Frame- and network-based approaches allow the implementation of "deeper-level" reasoning such as abstraction and analogy. Reasoning by abstraction and analogy is an important expert activity. You can also represent the objects (e.g., "pump" in figure 5) and processes (e.g., the "start" instructions in figure 5) of the domain of expertise at this level. What is important are the relations between objects. Deep-representation expert systems perform inference using relations represented by networks or frames. A semantic network is a graph of the relations. A frame or script system (see references 20 and 24) organize the objects and their relations into entities (recognizable collections of objects). Frame systems also provide a system to inherit attributes from a taxonomy of entities. Thus, a frame system implements the semantics of some of the relations between objects. With a semantic-net or frame system you can represent objects of the domain of expertise as well as the process, strategies, etc., that are also part of the domain. The control of frame or semantic-net systems is usually much more involved than with surface systems and is implemented in a way that an explanation facility can't get at. But surface systems are "shallow": a surface system may be viewed as a projection of deep-level knowledge of a domain for a specific

...continued...

Figure 5: Procedure steps are obtained from the subcomponents and abstractions of an object, here a main condensate pump. This example comes from Steamer, a tutorial system designed to teach operating procedures of shipboard steam plants.
Some systems have a built-in capability for taking a file of expert decisions and generalizing from this knowledge to an executable rule.

expert activity.

One type of expertise that has been represented with a deep-level approach is tutoring (see "The LISP Tutor" by John R. Anderson and Brian J. Reiser on page 159). Here we want to convey to the pupil domain knowledge that is best represented at the deep level: concepts, abstractions, analogies, and problem-solving strategies.

Steamer is a training aid developed jointly by Bolt Beranek and Newman Inc. and the Navy Personnel Research and Development Center. Its goal is to teach operating procedures of shipboard steam plants. These procedures consist of a series of steps on subcomponents of the plant. The components and procedures are represented as frames in Steamer, as are the abstractions of components and procedures that experts use in teaching steam-plant operations. The steps of a procedure come from the abstractions and subcomponents of the device the procedure applies to. The ordering of the steps comes from a third represented entity: operating principles. These principles are culled from experienced operators and represent "compiled" knowledge of steam-plant operation (although they are not represented as rules but frames).

KNOWLEDGE ACQUISITION
The following are ways of acquiring knowledge in a form that can be used by an expert system (reference 19):

- being told
- analogy
- example
- observation, discovery, and experimentation
- reasoning from deep structure

The manual acquisition of knowledge from human experts is a very labor-intensive process. There is an acknowledged need to have aids for knowledge acquisition as part of the system.

Methods to speed knowledge acquisition are now becoming available in the form of machine learning of rules from examples. Systems such as Expert-Ease have a built-in capability for taking a file of expert decisions from you and generalizing from these an executable rule. In a sense, you are able to transplant chunks of decision-making skill from your own brain to the personal computer, a possibility foreseen as early as 1966 by Earl Hunt and his colleagues.

The machine procedure that allows this skill transplant was developed from a Pascal-coded program called ID3 (Iterative Dichotomiser 3) due to Professor Ross Quinlan of the New South Wales Institute of Science and Technology.

A number of conclusions follow from Quinlan's work:

1. It is possible, using such a program, to generate machine-executable solutions for complex decision problems in a fraction of the time a programmer would need for developing a solution by conventional hand coding.
2. The resulting solutions are super-efficient as compared with those obtainable by the old hand methods.
3. It is important to make up your mind in advance whether super-efficiency is all you demand of a machine-executable solution, or whether you also want the resulting rule base to be understandable on inspection.

If the answer to the third statement above is that user transparency of induced rules is desired, then (unless it is a very small one) do not treat your problem as one big superproblem with a single associated file of examples. Instead, first break it down into a main problem and a set of sub-problems, even going further (to the level of sub-subproblems) if the complexity of the problem domain seems to call for it. The originators of this style, which is known as "structured induction," are Drs. Shapiro and Niblett (reference 25). Corporations enjoying the use of powerful inductive generators such as ITL's FORTRAN-based EXTRAN system or Radian Corporation's C-coded RuleMaster have applied the approach to the building of complex systems for troubleshooting large transformers, severestorm warning, circuit-board fault diagnosis, and user-friendly guidance to set up numerical batch jobs in seismic analysis in the oil industry. Rates of production of compact installed code in excess of 100 lines per worker day are now commonly reported.

Any robust expert system takes a tremendous amount of resources to develop. Once developed, the knowledge along with the control structure can be "compiled out"; that is, the system of rules is rewritten into a piece of code that performs the same function on a personal computer. For example, some expert systems (ADVISE, EMYCIN, OPS5—see reference 10) can generate code or other primitive forms of the knowledge for use on a personal computer. (Systems run on a personal computer are usually referred to as "delivery systems.")

KNOWLEDGE REPRESENTATION
As AI researchers point out, a robust expert system that can explain, justify, acquire new knowledge, adapt, break rules, determine relevance, and degrade gracefully will have to use a multitude of knowledge representations that lie in a space whose dimensions include deep/surface, qualitative/quantitative, approximate (uncertain)/exact (certain), specific/general, and descriptive/prescriptive. Systems that use knowledge represented in different forms have been termed multilevel systems. Steamer is an example of one such expert system.
EXPERT TECHNOLOGY

Steamer uses the following representations:

1. A graphical (icon) representation of the objects of the Steamer domain, such as valves, pumps, tanks, and systems composed of these.
2. A frame representation of Steamer objects, procedures, and operating principles. This is used for describing, explaining, categorizing, abstracting, and referring.
3. An assertional database where assertions about Steamer entities can be made and retracted.
4. A quantitative numerical simulation of the steam plant that is used in illustrating cause and effect and ramifications of the application (or misapplication) of procedures.

Work is just beginning in building such multilevel systems, and they will be a major research topic for this decade. Work needs to be done in studying and representing in a general way the different problem-solving activities an expert does (see reference 3). When you build expert systems, you realize that the power behind them is that they provide a regimen for experts to crystallize and codify their knowledge, and in the knowledge lies the power.

RESOURCES NEEDED

Before resource needs are discussed, you must precisely define the type of expert system you want to build. If you wish to build a large, “custom” model expert system (i.e., it is not feasible to use many of the smaller domain-independent systems that are available), you will need substantial resources: large memory, good language support, and fast execution of the code. You may need to develop such a system in LISP on hardware specialized to processing the language, or on time-sharing machines with a large address space. Such “custom” systems are usually referred to as “prototype” or “development” systems. They can either be developed for a specific domain (e.g., MYCIN) or be domain-independent (e.g., ADVISE).

If you are able to build a less complex expert system using an existing domain-independent system or if the system has a rule-compilation facility that allows applications to be run on personal computers, then a personal computer (preferably with 512K bytes) is sufficient. If all you need are resources to run an existing expert system, a large personal computer should nearly always be sufficient.

There is no obvious line of demarcation for a given project. However, certain barriers make personal computer use less desirable as system size and complexity increase.

SYSTEM BARRIERS

Many high-level languages do not offer the right primitives (i.e., programming-language statements) for developing expert systems. Among the desirable primitives are:

- A parser or interpreter that parses statements during program run time. Without this, you have to write a parser for the rules.
- List and nonnumeric processing primitives.
- A language design that allows incremental compilation and other fast prototyping facilities. Incremental compilation enables you to recompile a function or other portion of a file without recompiling the entire file.

The view that many people in the field are adopting is that high-level languages like Pascal, Ada, and C are acceptable for the delivery system, but for prototyping, a language like LISP or Prolog is preferred. Program-generation tools are then used to write the system in the delivery language.

The knowledge-intensive approach to expert systems implies that the memory will be highly utilized in all but the most nontrivial applications. ALX is one example that ran on a 64K-byte machine, but it was a small expert-system shell. Since memory prices have gone down and many small machines have broken the 64K-byte barrier, we can expect that more expert systems can be developed, at least for the delivery system, on per-
Some researchers predict that memory needs of advanced expert systems will drive development of encyclopedic memories.

CONCLUSION

Expert systems can be built in many ways. Involving rules, networks, frames, and combinations thereof, with all sorts of variations within these categories with respect to knowledge representation and control. We could not begin to cover all possible approaches to building expert systems, since new ones are being developed almost daily.

Even if the most efficient approach has been ascertained for the domain in question, the most cost-effective computer resource must still be determined. In most cases, approach selection at least narrows the choice for resources; in some cases, approach and resources can be selected together. However, this hardly reduces the complexity of the choice. To make matters worse, computer resources are changing as rapidly as the new system-building approaches are being developed. The best we can hope to convey is an awareness of the opportunities and complexities involved in the development of expert systems.

REFERENCES

The most advanced board available.

IBM XT COMPATIBLE

- High speed 8088-2 CPU microprocessor with 8087 co-processor optional
- 640 K (64K–640K selectable) RAM on board with parity check
- 8K X turbo BIOS
- 4 channel DMA 8237-5
- 8 channel interrupt 8259
- 8 I/O slot XT standard
- IBM pinpoint compatible power connector
- Multilayer P.C.B.
- Same dimension as IBM XT mother board
- Two 18-pin function slots
- Full IBM XT compatibility
- Full 640K RAM (maximum XT memory map RAM address) capacity on X Turbo
- High speed, high efficiency

Dealer inquiries invited. Contact Debra at (818) 289-8742.

2001 W. Chestnut Street Alhambra, CA 91803 (818) 289-8742

*IBM and IBM XT are trademarks of International Business Machines
AN EXPERT SYSTEM will allow anyone with some expertise to create an outline of the process used to solve a particular problem. This outline can be used to generate a series of questions that lead a nonexpert through the solution of similar problems. Many different techniques are used to represent an outline of expert knowledge. One method currently employed is the use of IF...THEN sentences, called rules, to make factual statements about the problem area.

In this article we will describe one way that an expert system can use a set of rules to conduct a consultation session. We will describe the mechanics of how an expert system operates by creating a "cardboard inference engine," and we'll then examine some of the programming considerations for translating the cardboard system into Pascal.

Before we begin describing how rules are used in an expert system, we should get a clearer idea of where the rules come from and the structure that they represent. Imagine for a moment that you are an expert in the field of botany, and you have just received a phone call from a woman who wants your help in identifying the botanical family of a plant that she has found. Since you can't see the specimen, you must rely on information supplied by the caller. However, since she is not an expert, it is very difficult for her to know what information will help you to make the identification. You will have to ask questions in order to get the caller to supply the facts you need to solve the problem.

Let's assume that you have asked enough questions to determine that the plant in question is a tree that belongs to the botanical class gymnosperm. Figure 1 shows one possible decision procedure that can complete the possibilities in this case. In table 1, rules 1 through 4, you can see how the diagram shown in figure 1 is represented as rules using IF...THEN statements. The set of rules in table 1 and the information in table 2 comprise an incomplete botanical knowledge base that we will use to answer questions about plant type (herb, vine, shrub, or tree), class of tree (angiosperm or gymnosperm), and family of gymnosperm (cypress, bald cypress, or pine). Because we are using an incomplete knowledge base, we can ask well-formed questions that the system cannot answer (e.g., family membership of a vine). Nonetheless, we believe that our simple example will give you some insight into what an expert system is and how it works.

THE KNOWLEDGE BASE
It is important to understand that knowledge is not a random collection of facts but a collection of facts related by some overall structure. In the example above, the IF...THEN rules provide that structure. The collection of facts used to capture all of the information in a problem area is called the knowledge base. In the system we will present, the knowledge base consists of three main elements—rules, prompts, and translations.

Each rule in table 1 is made up of a conditional part, which is preceded by the word "IF," and a conclusion part, which is preceded by the word "THEN." The rules in table 1 and the information in table 2 comprise an incomplete botanical knowledge base that we will use to answer questions about plant type (herb, vine, shrub, or tree), class of tree (angiosperm or gymnosperm), and family of gymnosperm (cypress, bald cypress, or pine). Because we are using an incomplete knowledge base, we can ask well-formed questions that the system cannot answer (e.g., family membership of a vine). Nonetheless, we believe that our simple example will give you some insight into what an expert system is and how it works.

Beverly and William Thompson (RD 2, Box 430, Nassau, NY 12123) are the founders of MicroExpert Systems, a company specializing in artificial-intelligence tools for microcomputers. In addition to writing the MicroExpert System program, they are writing a book on expert systems that will be available soon.
which is preceded by the word “THEN.” Each clause within these parts is made up of an attribute, which is a keyword or phrase that is some quality about which we are seeking information; a value, which is assigned to an attribute either as a response to a question or a conclusion to a rule; and a predicate (the word “IS” in our system), which relates the two.

Since one of the tasks of the system is to ask the caller to supply information about some of the attributes, the questions to be asked (the prompts) will have to be stored in the knowledge base. The attributes TYPE, FAMILY, and CLASS do not have questions associated with them because the user is never expected to supply any information about them.

Another item associated with the attribute is the translation. This is used to expand the keyword to make the rules more readable. There are two different ways to form translations. The following example illustrates the first of these:

**Attribute:** STEM  
**Translation:** The stem of the plant

**Rule without translation:** IF STEM IS GREEN THEN TYPE IS HERB.  
**Rule with translation:** If the stem of the plant is green, then the type of the plant is herb.

When forming a translation of this type, you must keep in mind that whatever phrase is chosen will be directly substituted for the attribute. The predicate and value will remain exactly as they appear in the untranslated rule.

If the method above is used when the value of an attribute is YES or NO, the resulting phrase is very unnatural. We can get around this problem as follows:

**Attribute:** BROAD AND FLAT  
**Translation:** The shape of the leaves is /not/ broad and flat

**Rule without translation:** IF TYPE IS TREE AND BROAD AND FLAT IS YES THEN CLASS IS ANGIOSPERM.  
**Rule with translation:** If the type of plant is tree and the shape of the leaves is broad and flat, then the class of the tree is angiosperm.

If the value had been NO, the clause would have read “the shape of the leaves is not broad and flat.” Since the predicate and value are already contained in the translation, they are not restated after the translation.

**THE CARDBOARD INFERENCE ENGINE**

Now that we have described all of the items in the knowledge base, we are ready to construct our cardboard inference engine. To make it easy to manipulate the individual items in the knowledge base, let’s think of each rule as being placed on a separate index card. Since both prompts and translations are associated with the individual attributes, we can also make an index card for each attribute that lists the keyword, the translation, and the prompt, if there is one. The rules in our knowledge base are shown in table 1; the complete set of attribute cards is shown in table 2. At this point it may be helpful to actually make this set of cards. The step numbers listed in the description that follows refer to the sample session shown in table 3.

**THE GOAL STACK**

With our knowledge base completed we can use our cards to guide us through a consultation. The first step in any consultation is to choose a goal for the session (step 1). In this example we will make FAMILY the final goal of our consultation. To begin we should set aside the attribute card for FAMILY on a separate pile called the goal stack. The attribute that appears on the top of the goal stack is called the current goal.

**THE CONTEXT STACK**

As we proceed in the consultation, we must keep track of all the facts that we discover. When an attribute is as-
signed a value we will take its attribute card and place it on a pile called the context stack. Since we must also save the value that is assigned to the attribute, a card containing the value of the attribute must be placed along with the attribute card. We will also need a discard pile for rules that we want to remove from the knowledge base. We are now ready to see how these pieces can be put together to form an inference engine. An inference engine is a method of systematically choosing goals, evaluating rules, and interacting with the user in order to obtain a value for the final goal.

**CHOOSING A RULE TO EVALUATE**

First try to find a rule card that gives some information about the current goal attribute in its conclusion part (the statements following the word "THEN" in the rule). This process of searching through the conclusions of rules to solve goals is referred to as backward chaining (also called goal-driven inference or consequent reasoning). If you find a rule that contains the attributes of the current goal in its conclusion, you can go on to "Evaluating the Rule"; otherwise, you will have to resort to the procedure described in the section "Asking the Caller for Information:"

**EVALUATING THE RULE**

Once we have chosen a rule to evaluate, we must compare the statements in the condition part of the rule, one by one, with the facts that are already known. These facts are contained on the context stack. As we make this comparison we will discover that one of three possibilities can occur:

1. **Evaluating an unknown rule:** The value of a rule is unknown when one or more condition clauses in the current rule do not appear on the context stack (as with rule 1 in step (continued)
2 of our example shown in table 3). Before this rule can be successfully evaluated the unknown information must be discovered, so the attribute card listing the first unknown attribute (CLASS in our example) will be placed on the goal list along with the rule card containing the unknown rule. The goals that go on the goal list after the final goal are sometimes referred to as subgoals. Return to “Choosing a Rule to Evaluate” and try to find a rule with CLASS in its conclusion.

2. Evaluating a false rule: A rule is false when one of the statements on the card has a clause that is contradicted by a fact on the context stack (in step 6, rule 7 has the value GREEN for the attribute STEM, which was contradicted by the user input). In this case, the current rule card is placed on the discard pile, and you must return to “Choosing a Rule to Evaluate.”

3. Evaluating true rules: A rule is said to be true when each of the clauses in the condition part of the rule matches an item on the context stack (rule 9 was established as true in step 12). When all of the clauses in the condition part are true, the statements in the conclusion part must also be true. Since this rule was chosen to be evaluated because it contained the current goal as its conclusion, you should remove the current goal from the top of the goal stack and place it on the context list. The rule card left behind on the goal stack (rule 5 in our example) should be returned to the top of the rule card pile so it can be reevaluated. The rule card we have just evaluated (rule 9) is kept with the attribute card on the context list to show the value of the attribute and how it was reached. This rule card will also be used to answer questions that the caller may later ask about this conclusion. If there are no other goals on the goal stack, the problem has been solved. If there are goals remaining, return to “Choosing a Rule to Evaluate.”

ASKING THE CALLER FOR INFORMATION

In the event that no rule can be found that can provide information about the current goal, you must turn to the caller to help provide the necessary information (in step 5, we ask the caller for information because none of the rules have STEM in their conclusion). This is where we make use of the prompts that have been placed on the attribute cards. Unfortunately, if no prompt appears on the card, it means that the caller can provide no information about the attribute in question. In this case, we have reached a dead end and will have to end the consultation without finding a solution to the problem. If this occurs, there is either some problem with our rules or this branch of the knowledge base was left unresolved.

When a prompt does appear on the current goal card, we use it to question the caller. Once the caller has supplied the missing information, we can remove the current goal card from the goal stack and place it on the context stack. If there is a rule card with this goal, it should be placed on the top of the pile of rule cards. You will also have to make a card that lists the value and place it on the context stack with the attribute card. Once this has been done we can return to “Choosing a Rule to Evaluate.”

WHY AND HOW

In the course of a consultation it is not uncommon for the caller to want to know why you are asking a certain question. In table 3, step 13, we were unable to find a rule that gave any information about BROAD AND FLAT; so

| Table 3: A step-by-step illustration of a cardboard-inference-engine consultation, showing stack volatilities. |
|---|---|---|---|---|---|
| step | evaluate rule# | value of rule | response to prompt | goal stack | context stack | discard rule# |
| 1 | yes | FAMILY | CLASS | 1 | STEM | WOODY | 7 |
| 2 | yes | unknown | CLASS | 1 | STEM | WOODY | 7 |
| 3 | yes | unknown | STEM | 7 | STEM | WOODY | 7 |
| 4 | yes | unknown | type | 5 | type | WOODY | 7 |
| 5 | yes | WOODY | WOODY | 7 | WOODY | WOODY | 7 |
| 6 | yes | unknown | POSITION | 8 | POSITION | UPRIGHT | 8 |
| 7 | yes | unknown | UPRIGHT | 8 | UPRIGHT | UPRIGHT | 8 |
| 8 | yes | unknown | type | 5 | type | WOODY | 7 |
| 9 | yes | unknown | type | 5 | type | WOODY | 7 |
| 10 | yes | unknown | type | 5 | type | WOODY | 7 |
| 11 | yes | unknown | type | 5 | type | WOODY | 7 |
| 12 | yes | unknown | type | 5 | type | WOODY | 7 |
| 13 | yes | unknown | type | 5 | type | WOODY | 7 |
| 14 | yes | unknown | type | 5 | type | WOODY | 7 |
| 15 | yes | unknown | type | 5 | type | WOODY | 7 |
| 16 | yes | unknown | type | 5 | type | WOODY | 7 |
| 17 | yes | unknown | type | 5 | type | WOODY | 7 |
| 18 | yes | unknown | type | 5 | type | WOODY | 7 |
| 19 | yes | unknown | type | 5 | type | WOODY | 7 |

(continued)
At SSI, we face a monumental challenge; living up to the name we gave our word processing software. After all, with a name like WordPerfect, the product had better measure up. Obviously it's doing just that. For good reason.

Simplicity.

Most WordPerfect functions require only one keystroke, a simple press of a finger. And comprehensive, well-written documentation makes learning a breeze.

Speed.

With WordPerfect's document orientation, you never have to wait between pages of text. No matter how fast you type, WordPerfect won't slow you down.

Features.

In addition to standard word processing functions, WordPerfect includes several comprehensive, useful features not found on many word processors. Like a 100,000-word phonetic dictionary; multi-page footnoting; and paragraph numbering; and a network version of WordPerfect.
we have just asked the caller the prompt for BROAD AND FLAT. Before answering, the caller asks why we have asked this particular question. To find the reason we need look no further than the top rule on the goal stack. The reason we are trying to find a value for BROAD AND FLAT is to get one of the pieces of information needed to solve the goal CLASS in rule 5. By fitting the information from the goal stack into the following form we will answer the question "Why?":

We are trying to find a value for the class of the tree. We already know that the type of the plant is tree. If we can show that the leaf shape is not broad and flat then we will know that the class of the tree is gymnosperm.

Notice that we have substituted the translation for each attribute to make the information more readable.

If the caller now wants to know "Why is CLASS important?" the process is repeated, moving back another item in the goal stack. This can continue until all of the subgoals on the stack are exhausted.

Returning to the example above, the caller may now be satisfied with why you have asked about BROAD AND FLAT but may ask, "How do you know that the type of the plant is tree?" This question can be answered by finding where that attribute appears on the context stack. If there is a rule card with the attribute card, the rule on that card caused the value to be placed on the context stack. To answer the question, we would use the information in the rule to form our response:

the type of the plant is tree
was proven using rule 9
This rule states that:
If the stem of the plant is woody and the position of the stem is upright and the plant does have one main trunk then the type of the plant is tree.

When no rule card is placed with the attribute card on the context stack, we can inform the caller that he or she must have supplied the fact in response to a prompt. Allowing a caller to interrupt a consultation to ask how and why makes the process more understandable and more educational to both consultant and caller.

Now that we have made a mechanical model that contains all of the pieces of our expert system, it is a fairly straightforward task to lay out program structures to automate the process. We can now introduce some Pascal (continued)
Gifford's Multiuser Concurrent DOS.
The net that works!

Gifford has the network solution. It's simple, fast, secure, complete, and it works. Multiuser Concurrent DOS is based on Digital Research's Concurrent DOS, the only major microcomputer operating system specifically designed for networking.

Users can share disks and printers transparently, and can also take advantage of true multiuser features like file and record lockout. And Gifford has added a bundle of features that makes Multiuser Concurrent DOS easy to install and use. It gets right to work.

Our net is ARCNET.™ Multiuser Concurrent DOS utilizes Datapoint's ARCNET, the most popular network hardware in the industry. It's reliable, economical, and fast - so you can add users without overloading the network.

You can network up to 255 single and multiuser systems. You can connect single or multiuser Gifford or CompuPro® systems as well as IBM PC-XTs. Dual processor Gifford and CompuPro systems can run thousands of 8 or 16 bit CP/M or MP/M applications. PC-XTs can run 16 bit CP/M and MP/M programs as well as most popular MS-DOS applications, such as Lotus 1-2-3.™

Gifford adds to your net worth.

Our enhancements of Concurrent DOS make it possible to get more and better work done in less time. Network-wide features include electronic mail, event calendar, inter-terminal communication, user time accounting and usage report generation, telecommunications, user expandable HELP facility, reminder messages, message of the day, automatic startup and shutdown procedures, and easily prepared files for initializing terminals, printers, and network nodes.

Gifford's Virtual Terminals™ increase productivity

Screen concurrence; you can run up to four programs simultaneously from one physical terminal.

The safety net.

Multiple users can mean multiple security problems. Gifford's security enhancements include login, account names and encrypted passwords to control access to the system. Users can be further restricted to specific terminals, user areas, programs, or nodes on the network. You're also safe from excessive down time, since the modular network architecture gives you immunity from single point failure.

Gifford nets a big one: Simplicity.

If you've gone through the ordeal of typing as many as seven commands just to get on and off a network, Gifford has your number. A single, menu-driven network command handles all your network options. Everything you need is right in front of you. The net effect is simplicity — and sanity.

If you'd like to see how Gifford's Multiuser Concurrent DOS can solve your networking problems, or you'd like to know about Gifford's selection of multiuser systems and software options, call (415) 895-0798. Or write us at the address below. We'll send you a free networking brochure and give you the name of the nearest dealer.

Gifford's Multiuser Concurrent DOS is a trademark of Gifford Computer Systems. Concurrent DOS is a trademark of Digital Research, Inc. ARCNET is a trademark of Datapoint Corporation. IBM PC-XT is a registered trademark of IBM Corporation. CompuPro is a registered trademark of CompuPro Corporation. Lotus 1-2-3 is a trademark of Lotus Development Corp. Virtual Terminals is a trademark of Gifford Computer Systems.
structures to aid in the construction of an expert system.

Conceptually, we can separate the knowledge-base rules and attributes from the inference engine, which employs the knowledge base to reach conclusions. Of course, we could hard-wire the knowledge base into the expert-system program, but then the program would be inflexible. If we wanted to expand the knowledge base to include family-of-vines data or to create a different expert system for insect identification, we would have to rewrite the program. Alternatively, we can make it one of the program’s duties to read the rules, prompts, and translations from a file and transform them into a form that can be operated on by the inference engine. This is the approach we will take. The translation is accomplished by means of a parser. A parser is a routine that reads statements in a given language and determines whether the statements are legal in that language. As a by-product of its activity, a parser may also produce a transformed representation of the statement for use by other parts of the program. The parser we will discuss is available for downloading from BYTEnet Listings (telephone: (603) 924-9820).

One of the decisions that must be made early in the design of an expert system is the method of entry and storage for the knowledge base. One convenient method is the use of a standard text editor to enter and store the rules, prompts, and translations as ASCII (American Standard Code for Information Interchange) text files. This can lead to difficulties in maintaining the integrity of the knowledge base, but it greatly simplifies the overall program design, since it will not be necessary to write any data-entry routines. In our text file, the rules should have the same form as on our index cards.

The Parser
The language the parser recognizes is described by a grammar. A grammar is a set of definitions that specify how the basic symbols of the language, called tokens, may be legally combined. In this case, a token is any string of characters surrounded by blanks. We can think of the rules, prompts, and translations as statements in a rule language. The first step in programming a parser is to completely describe the language that the parser will recognize. The Backus-Naur diagram in table 4 describes the grammar that the program must recognize. Backus-Naur form (BNF) is a shorthand for describing syntax. It uses two special symbols: '::=' (read as “is defined to be”) and 'I' (read as “or”). For example, the first line of table 4,

| sentence ::= rule | prompt | translation |
| rule ::= rule_no 'IF' condition 'THEN' conclusion '|
| rule_no ::= digit | digit rule_no |
| condition ::= clause | clause 'AND' condition |
| clause ::= attribute predicate value |
| attribute ::= token | token attribute |
| predicate ::= 'IS' |
| value ::= token | token value |
| digit ::= '0' .. '9' |
| token ::= (any string, up to 30 characters, surrounded by blanks) |
| prompt ::= '@PROMPT' attribute end_of_line text end_of_line '@' |
| end_of_line ::= (<RET> for UCSD, <RET><LF> for TURBO) |
| text ::= (any string, up to 80 characters) |
| translation ::= '@TRANS' attribute end_of_line text end_of_line '@' |

The first line of table 4,

| sentence ::= rule | prompt | translation |
| rule ::= rule_no 'IF' condition 'THEN' conclusion '|
| rule_no ::= digit | digit rule_no |
| condition ::= clause | clause 'AND' condition |
| clause ::= attribute predicate value |
| attribute ::= token | token attribute |
| predicate ::= 'IS' |
| value ::= token | token value |
| digit ::= '0' .. '9' |
| token ::= (any string, up to 30 characters, surrounded by blanks) |
| prompt ::= '@PROMPT' attribute end_of_line text end_of_line '@' |
| end_of_line ::= (<RET> for UCSD, <RET><LF> for TURBO) |
| text ::= (any string, up to 80 characters) |
| translation ::= '@TRANS' attribute end_of_line text end_of_line '@' |

(continued)
Imagine. You now have the capability to graphically depict your best ideas, plans, designs and proposals. In color or black & white. Accurately. Completely. Dramatically. Concepts presented so forcefully — yet so simply — that you leave that critical meeting with upper management... totally confident of success.

And you win. Your secret weapon? PC-Draw. A powerful interactive graphics program for the IBM PC or XT® — unlike anything else on the market. Using PC-Draw you create virtually anything that can be drawn with pencil and paper. Quickly. Easily. With far greater detail.

PC-Draw is ideal for presentation graphics, proposals, systems design, forms, diagrams ... and an endless variety of charts, graphs and illustrations. PC-Draw allows you to produce drawings up to 99 pages long. Several templates come with PC-Draw including Flowcharting, Electrical Design, Office Layout, and Alternate Text. In addition you create and store your own unlimited supply of user defined symbols.

PC-Draw includes an easy-to-follow interactive tutorial. Requires IBM PC or XT® or compatible, graphics adapter and graphics monitor. Version for PCjr available. Graphic boards, plotters at competitive prices.

Shhh! Don't tell your office competition about PC-Draw. They'll catch on soon enough. For free brochure or to order call 800/2PC-DRAW. In Texas or for customer service call 214/234-1769. Micrografx, Inc., 1701 N. Greenville Ave., Suite 305, Richardson, Texas 75081.

MICROGRAFX
The Picture of Success.
Many of the procedures that will make up the parser are recursive because their definitions are recursive. This technique is called recursive-descent parsing.

which we will call scanf, that will read tokens from the input file.

To write the parser, start at the first line of the grammar and write a procedure that can accept a token from a file and decide if it is the starting token of rule, a prompt, or a translation, read the next token, and call the appropriate routine to analyze the rest of the sentence. The procedure sentence in the BYTEnet program does that. The procedure rule in the same program expects to be called with the token having the value "IF" if this is true, it calls condition; if not, it calls the error routine and exits. This process continues, following the BNE until we get to the procedures attribute, predicate, and value which will save the items they recognize for later use.

The definition of value uses "AND" as a terminating token, so that attempting to use values such as "hard and woody" will cause the parser to terminate in an error. We could resolve this problem by modifying the definition of rule in the grammar to use some other keyword in place of "AND" or by building some sort of backtracking into the parser. Backtracking would allow the parser to back up to the point in a sentence that caused an error and try an alternate possibility.

All the procedures making up the parser must cooperate by the convention that when they return they will have scanned past all the tokens that they recognize, leaving the first token in the next phrase in the global variable called token.

Many of the procedures that will make up the parser, such as condition and attribute, are recursive because their definitions are recursive. This type of top-down recursive technique is called recursive-descent parsing.

Using this grammar we can mix rules, prompts, and translations together in one file. The rules illustrated in table 1 can be entered as shown. The prompts and translations in table 2 must be changed in order to match the grammar. For example:

@trans stem @
The stem of the plant
@ @
@prompt stem @
Is the stem of the plant woody or green?
@ @

(continued)
Now, brilliant, high resolution color comes standard with the new TeleVideo® Color Personal Computer. At a price that's about the same as the IBM® monochrome system.

In fact, to match TeleVideo's color on an IBM PC, you'd have to add a color monitor, plus a color and graphics adaptor board. And unlike IBM, the TeleColor PC has memory that's dedicated to the color screen. So you get a faster, flickerless image that's easier on your eyes.

What's more, the TeleColor PC also comes with the popular PC™-DOS compatible operating system and three essential business software programs—word processing, spread sheet and data base management.

It also has standard features that make it easier to use than an IBM PC. Like a tiltable monitor and a keyboard that's exceptionally comfortable to use.

And, of course, the TeleColor PC runs the same popular software as the IBM PC.

Contact the TeleVideo dealer nearest you for a demonstration of the color PC with a black and white price. Call 800-521-4897 (in California, 800-821-3774).

<table>
<thead>
<tr>
<th>Standard Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Word processing, spread sheet and data base software</td>
</tr>
<tr>
<td>• Color and graphics display</td>
</tr>
<tr>
<td>• 12 inch tilt color screen</td>
</tr>
<tr>
<td>• 256 Kbyte RAM</td>
</tr>
<tr>
<td>• Two 360 Kbyte slim-line floppy disk drives</td>
</tr>
<tr>
<td>• RS-232C serial port</td>
</tr>
<tr>
<td>• Parallel printer port</td>
</tr>
<tr>
<td>• Composite video port</td>
</tr>
<tr>
<td>• Internal expansion bus slot</td>
</tr>
<tr>
<td>• GW BASIC® programming language</td>
</tr>
<tr>
<td>• Self-running demonstration diskette</td>
</tr>
<tr>
<td>• PC-DOS compatible</td>
</tr>
</tbody>
</table>

From the Personal Mini Family of Products.
INSIDE AN EXPERT SYSTEM

To change the kind of rules recognized by the program, modify the grammar and then, using the new grammar as a guide, rewrite the routines that process the grammar.

A cross-reference program that uses the parser routines described in this article can be downloaded from BYTEnet. The source code is available in a UCSD or Apple Pascal version and a Turbo Pascal version. The set of rules used in this article is also available as a text file as well as a more complete knowledge base that identifies the genera of conifers in the northeast US. The cross-reference program will read a knowledge base from a text file and produce an alphabetized list of the attributes along with their translations, prompts, and values. The numbers of the rules containing each value will also be displayed.

While the cross-reference program represents about 16K bytes of source code, it is only part of an expert system. In the rest of this article, we will present the specifications for a full-blown program to implement the cardboard inference engine in Pascal. The specifications are based on a program we wrote called MicroExpert System, which is available on disk from McGraw-Hill for IBM and Apple computers for $39.95. The package includes full documentation and source code and is a straightforward realization of the complete cardboard inference engine. (MicroExpert is a trademark of MicroExpert Systems.) The cross-reference program on BYTEnet can be used with the MicroExpert program without modification.

DATA STRUCTURES
Parsing ensures that the rules in the file are well formed, but this is only part of an expert system. The major function of the system is to interpret the rules and find a value for the goal of the consultation. The rest of the program must be designed to support this function.

Along with parsing the rules, the program must allocate storage for prompts, translations, and rules. For rules it will be necessary not only to store attributes and values but also to represent the overall structure of the rules in a compact manner. Prompt and translation strings must be stored in a way that will allow them to be associated easily with their respective attributes.

There are numerous methods of accomplishing this association. In our system, MicroExpert, we used linked lists of records called items to store most of the data elements necessary for the operation of the inference engine. This is slightly wasteful of storage, but it simplifies the overall program design. Listing 1 shows an item as it would be defined in Pascal.

There are two basic kinds of items. The rule item contains the attribute, the value, the rule number, and the kind of item (condition or conclusion). Since in the rule description we have allowed only one kind of predicate, "IS," we have not included the predicate in the item. For each clause in the rule, an item is created. The items making up the clauses in a rule are linked together by means of a pointer. Finally, another pointer is inserted into an array that points to the first item in the rule. This structure is represented in figure 2. Each rule is thus stored in memory as a pair of linked lists, one for the condition and one for the conclusion of the rule.

Prompts and translations are also stored by means of a linked-list organization. When the parser reading the knowledge-base file encounters a prompt or translation, an item is created for the attribute, if one does not already exist. The item is inserted into a linked list of attribute items and, as prompt and translation lines are read, they are also linked together and pointed to by fields in the attribute list. This structure is diagramed in figure 3.

Linked lists are a useful programming mechanism for manipulating symbolic structures such as rules. Unfortunately, languages like Pascal provide few intrinsic routines for handling lists. In order to implement an expert system in Pascal, routines for manipulating lists and managing storage must be designed. Pascal provides intrinsic procedures for manipulating dynamic storage. Unfortunately, these routines vary somewhat among different versions of Pascal. Most versions provide a new procedure to allocate storage, but the method of releasing dynamic data when it is no longer needed differs slightly among the versions of Pascal that we wished to use.

Since we wanted MicroExpert to run under Apple and Turbo Pascal with only minor modifications, we chose not to use the Pascal intrinsic dispose, which is not included in the Apple version. Instead we maintain another list of items. When a request is made for a new item, the program first checks this list. If the list is empty, it calls the intrinsic function new to get space for the item. If the list is not empty, the top item of the list is returned and the

---

Listing 1: Pascal code to describe an item and related data types.

```
TYPE
 string80 = string[80] ;
 word = string[word_size] ;
 counter = 0 .. maxint ;
 item_type = (cond,concld) ;
 item_ptr = *item ;
 string_ptr = string_rec ;
 string_rec = RECORD
 info : string80 ;
 next_line : string_ptr ;
 END ;

 item = RECORD
 next : item_ptr ;
 attr : word ;
 CASE boolean OF
 TRUE : (val : word ;
 kind : item_type ;
 rule_no : counter) ;
 FALSE : (prompt_ptr : string_ptr ;
 trans_ptr : string_ptr ;
 val_ptr : item_ptr) ;
 END ;
```

(continued)
Figure 2: The linked-list representation of rule 8.

Figure 3: The linkages between the attribute list and the prompt and translation lists are illustrated for the POSITION attribute.
list pointer is set to point to the next item on the list. Similarly, an item can be released by making its next pointer point to the top of the list and the list pointer point to the just-released item.

Several other list-handling routines will also be necessary. A routine must be included to check to see if a particular attribute is on a given list and, if found, return a pointer to the location on the list. A routine to create a new item, put it on the front of a list, and fill in values for the fields in the item record will be needed. Similar routines will be needed to insert items at the end of a list and to insert an item in a list in alphabetical order.

Besides using these routines, the program builds several other lists that correspond to structures described in the cardboard inference engine. We must build a goal list of items that contains the main goal and subgoals generated by the inference engine. The context is also a linked list of items that is used to keep track of facts derived during processing. Although both of these structures were previously referred to as stacks, we have implemented them as linked lists. Since a stack is just a linked list that is always accessed at its first element, we will use the terms “list” and “stack” interchangeably.

In the description of the cardboard inference engine we mentioned a discard pile upon which rules were placed when they were no longer active. In the program, it is convenient to use an array of Booleans to perform the same function. Each element is initially set to the value TRUE. As the rule becomes inactive by being discovered to be true or false depending upon the current context, the corresponding element in the active-rule array is set to FALSE.

**THE INFERENCE ENGINE**

The inference engine can be implemented by following the pseudocode of table 5. This is illustrated by routine infer, shown in listing 2, which begins by calling get_main_goal to ask the user for the final goal of the consultation. It stores this in the global variable main_goal and also creates an item containing main_goal and puts it on the goal_list.

The program then begins to loop until the Boolean variable done becomes TRUE. It first uses the Boolean function found_rule to determine if a rule is available to be evaluated. This function implements the backward-chaining feature of the program and works by searching the conclusion parts of each active rule to see if there is a match for the goal on the top of the goal stack. If it finds a match, the function returns a value of TRUE and a pointer to the item in the rule that gave the match.

If a rule containing the current goal could be found, the function rule_value is called to determine the logical value of the rule with respect to the current state of the context. MicroExpert uses a tri-valued logic. A rule can be determined to be true, false, or unknown. A rule can be true, symbolized by T in the listing, if all its conditions match items on the context list. A rule is false, symbolized by F, if any attribute has a different value in the rule's condition part than it has on the context. Finally, a rule is said to be unknown, symbolically U, if a value cannot be found on the context for one of the attributes in the rule's condition. The function also returns a pointer to the context item that caused the rule to be evaluated as T, F, or U.

If the value returned by rule_value is F, the rule is marked as inactive by setting the corresponding element of active_rule to FALSE. If the value returned is U, the attribute of the first item in the rule whose value could not be determined is put on the front of the goal list.

If the value returned is T, true_rule is called to put the rule's conclusions on the context; true_rule also removes the top item from goal_list and sets the rule's element to FALSE in the active_rule table. The procedure also checks to see if the goal_list is empty, setting the done indicator to TRUE if it is.

If no rule can be found by found_rule, the program calls (continued)
Windows With A View Toward The Future

The Window Machine* occupies only 12K! Written in tight, fast Assembler, it performs like a racing engine ... with more power than you’ll probably ever need. Yet, it’s an engine designed to fit in the vehicle of your choice ... from a “stripped-down” 128K IBM PC to a fully loaded AT. The programs you write today will run on the broadest range of machines possible... now, and in the future.

Windows Bigger Than Your Screen?

Here’s where the VS! part of our name fits in. VS! means Virtual Screen Interface. Behind each window, there’s a much bigger picture. VSI defines virtual screens rather than just windows. The window itself shows whatever portion of its virtual screen you wish to exhibit at any given point in your program. Each screen can be up to 128 x 255 (columns x rows, or rows x columns). And there are more than 100 screen primitives at your command.

Multilingual Windows

You can order The Window Machine with the language interface of your choice: C, Pascal, Compiled Basic, Fortran, Cobol, or PL1. We’ve even recently completed an interface for Turbo Pascal*, so that now true, full-featured windowing can be utilized with this fine compiler. (Turbo’s own built-in “windowing” procedure is extremely limited).

Windows That Won’t Break You

We decided to save you a lot of money. So, we left behind fancy binders, monogrammed slip cases and plastic presentation boxes. Instead, you’ll find an extremely powerful tool and a 200 page manual written with an eye toward simplicity, clarity and completeness. (We figured if you wanted ribbons and bows you could always add them yourself.) And by offering you the product ourselves, we were able to cut out all the middlemen and save you a tremendous amount of money.

VSI THE WINDOW MACHINE

Available for the IBM PC, XT, AT, IBM compatibles, Wang, TIl., and HP 150

The Window Machine includes:

- Zoom Windows
- Multiple Virtual Screens (up to 255)
- Choice of Borders (including flashing borders)
- Support for all Color and Monochrome Video Attributes (no graphics card required)
- Built-in Diagnostics
- And much, much more

ORDER YOUR COPY OF VSI—THE WINDOW MACHINE TODAY

For Visa & MasterCard orders call toll free: 800-538-8157 Ext. 824 In CA 800-672-3470 Ext. 824
Call Mon.-Fri. 6A.M. to 10P.M., Sat. & Sun. 6A.M. to 8P.M. (P.S.T.)

The Window Machine* $59.95 + $5 Shipping and Handling

LANGUAGE INTERFACE:
- C
- Pascal
- Compiled Basic
- Fortran
- PL1
- Visual Basic
- Turbo Pascal

COMPUTER:

- IBM
- XT
- AT
- IBM compatibles

ADDRESS

City

State

Zip Code

CHECK OR MONEY ORDER

California residents: tax included. Orders outside US: Please add $10 for shipping and handling.

30 day Money Back Guarantee

AMBER SYSTEMS, INC. 1171 S. Saratoga-Sunnyvale Road, San Jose CA 95129

FOR DEALER INQUIRIES: CALL OUR 800 NUMBER

APRIL 1985 • BYTE 329
the function found_prompt to search the attribute list for a question to ask the user in order to get a value for the goal. The function returns a value of TRUE and a pointer to the matching element in the attribute list if the attribute has a prompt associated with it.

If a prompt cannot be found, the done indicator is set to TRUE and the loop terminates. This usually indicates some kind of inconsistency in the rule base, and the interpreter will terminate without finding a value for the main goal. If a prompt was returned, get_answer is called to display the prompt and get a value for the goal attribute from the user.

The program continues in this manner, searching for rules to evaluate and, when necessary, asking the user for information, until either the goal list is exhausted or no prompt can be found. The program then calls what to print out the contents of the context and finally checks the context list and prints a message if the main goal is not on the context.

**IMPLEMENTING WHY AND HOW**

In response to the user query "why," the program prints out the goal pointed to by why_ptr, which infer initially set to point to the current goal. It also prints the translated rule that caused the goal to be placed on the goal list. The rule number for this rule was stored in the goal item when the item was created by puL_on_goal; why_ptr is then updated to point to the next goal on the list, so that successive responses of "why" will print the contents of goal_list and the rules examined by the system in establishing the goals.

When a rule is printed, each clause is given a number, and an item for the clause is added to a list. This list is used in conjunction with the response "how." The user may respond to the prompt by typing "how" followed by a number. The number is the number of a line printed in response to the last "why."

For example, the phrase "how 3" is interpreted as "How was or can the phrase on line 3 be proven?" In response to this phrase, the program searches the context list for a match for the attribute of the phrase in question. If a match is found, the value in the phrase is compared to the corresponding value on the context. If these values match, the program prints the rule that placed the item on the context. If this rule number is 0, the program prints that the phrase was proven by user input.

Not finding the attribute from the phrase on the context indicates the logical value of the phrase has not yet been determined. In this case, the conclusion parts of the rules are searched for a match for the attribute in the phrase. If a match is found, the rule number of the matching rule is printed. If no match can be found, a message is printed indicating that the phrase can be determined only by user input.

**VARIATIONS ON A THEME**

The system we have described and our MicroExpert program are both designed for people who want to experiment with expert systems. What we have tried to provide is the bare bones of an expert system, with enough modularity and openness of design to encourage modification and experimentation. As a conclusion to our article, we would like to suggest some possible directions for variation in the design that we have presented.

As we mentioned, the structure of inference on the card-board system is backward chaining. An equally valid method of inference is the forward-chaining or data-driven engine. In this method, at any point during the consultation, the system searches the condition parts of the rules for any rule that may be true and performs their conclusion part. This adds new information to the context, and the process is repeated.

Methods can also be designed that are combinations of the two types of inference. As described, we put only the conclusion of the current rule on the context, i.e., the rule that produced the current goal. Finding a value for this goal may cause other rules to become true, but the system will ignore them. A relatively simple modification would be to search the rule base for all rules that have the current goal in their conditions and evaluate them. If any of these rules add items to the context, repeat the process until no new items are added.

Another useful modification to the inference engine would be the inclusion of new predicates such as "IS NOT" and numerical operators such as "+", "-", "/", and "/". These predicates would allow more complex relationships among attributes but will also increase the complexity of the function that evaluates the rules.

---

**Listing 2:** The procedure infer is a Pascal realization of the pseudocode in Table 8.

```pascal
PROCEDURE infer ;
BEGIN
 get_main_goal ;
 done := false ;
 WHILE NOT done DO
 IF found_rule(ptr) THEN
 CASE rule_value(ptr.rule_no,reason) OF
 T : true_rule ;
 F : active_rule[ptr.rule_no] := FALSE ;
 U : puL_on_goal(reason) ;
 END
 ELSE
 IF found_prompt(attr_list,prmp_ptr) THEN
 BEGIN
 why_ptr := goal_list ;
 get Answer ;
 END
 ELSE done := TRUE ;
 END
 THEN writeln('No value could be found for :main_goal) ;
 END ; (* infer *)
END ;
```

**VARIATIONS ON A THEME**

The system we have described and our MicroExpert program are both designed for people who want to experiment with expert systems. What we have tried to provide is the bare bones of an expert system, with enough modularity and openness of design to encourage modification and experimentation. As a conclusion to our article, we would like to suggest some possible directions for variation in the design that we have presented.

As we mentioned, the structure of inference on the card-board system is backward chaining. An equally valid method of inference is the forward-chaining or data-driven engine. In this method, at any point during the consultation, the system searches the condition parts of the rules for any rule that may be true and performs their conclusion part. This adds new information to the context, and the process is repeated.

Methods can also be designed that are combinations of the two types of inference. As described, we put only the conclusion of the current rule on the context, i.e., the rule that produced the current goal. Finding a value for this goal may cause other rules to become true, but the system will ignore them. A relatively simple modification would be to search the rule base for all rules that have the current goal in their conditions and evaluate them. If any of these rules add items to the context, repeat the process until no new items are added.

Another useful modification to the inference engine would be the inclusion of new predicates such as "IS NOT" and numerical operators such as "+", "-", "/", and "/". These predicates would allow more complex relationships among attributes but will also increase the complexity of the function that evaluates the rules.
Okay, okay, okay. If you're going to insist on specifics, we can tell you outright that The Shoebox Accountant retails for $395. We realize we can probably disclose this detail without appearing too pretentious, simply not mentioning that for this incredibly marketable price, The Shoebox Accountant offers a totally integrated small business accounting system, complete with tutorial, queuing files, and CYMA's powerful reporting capabilities, and capsulizes the complete system on a single diskette. After all, as our professional peers, you're entitled to a little inside information. But you know us: subtlety is our hallmark.

Nice Box.
Fully Integrated.
$395.
The nation's largest corporations depend on PC NETWORK!

Our corporate roster is some of the nation's largest financial institutions and professional concerns including some of the most important names in the computer industry:

AT&T  General Motors
Barclays Bank  Gillette
Bell & Howell  Hewlett Packard
Citibank  Hughes Aircraft
Columbia University  IBM

plus thousands of satisfied consulting firms, small businesses, user groups, municipalities, government agencies and value-oriented individuals across the nation! They know that purchasing or renting from PC NETWORK saves them time, money and trouble. They also count on us for product evaluation, professional consultation and the broadest spectrum of products and brands around.

In just the last few months, The NETWORK has saved its members more than $24,000,000 and processed over 100,000 orders.

Listed below are just a few of the over 20,000 products available at our EVERYDAY LOW PRICES! All software below is priced in IBM-PC format.

CALL TOLL FREE 1-800-621-S-A-V-E In Illinois call (312) 280-0026  
Your Membership Validation Number: B345  
You can validate your membership number and, if you wish, place your first money-saving order over the phone by using your VISA, MASTERCARD or AMERICAN EXPRESS. Our knowledgeable service consultants are on duty Mon-Fri 8 AM to 7 PM, Sat 9 AM to 5 PM CST.

PERSONAL COMPUTER NETWORK  320 West Ohio  Chicago, Illinois 60610  
Call now... join the PC NETWORK and start saving today!

PC NETWORK • MEMBERSHIP APPLICATION  YES! Please enroll me in the PC NETWORK!  
I can choose from 9500 software titles in the PC NETWORK catalog featuring thousands of computer products, all at just 8% above DEALER WHOLESALE PRICES. I will also periodically receive THE PRINT-OUT, a special update on merchandise at prices BELOW even those in my wholesale catalog, and all the other exclusive, money-saving services available to Members.
PC NETWORK

... WITH THESE 15 UNIQUE BENEFITS

1. **COST + 8% PRICING** — The NETWORK purchases millions of dollars in merchandise each month. You benefit in receiving the lowest price available and all at just 8% above published dealer wholesale price.

2. **OUR 600 PAGE WHOLESALE CATALOG** — Members receive our 600 page wholesale catalog containing over 20,000 hardware and software products for the IBM PC, Apple and over 50 other popular computer systems. THE NETWORK’S CATALOG IS THE LARGEST SINGLE COMPOSITION OF PERSONAL COMPUTER PRODUCTS AVAILABLE TODAY. NOW UPDATED QUARTERLY!

3. **IN-STOCK INSURED FAST HOME DELIVERY** — The NETWORK maintains a giant multi-million dollar inventory of most popular products, allowing us to ship many orders from stock. Non-stock items are typically maintained in local warehouses just days away from The NETWORK and YOU. We pay all insurance expenses on your shipment. **EMERGENCY OVERNIGHT SERVICE IS AVAILABLE ON REQUEST**.

4. **10 DAY RETURN POLICY** — If you are not satisfied, for any reason with any hardware component purchased from The NETWORK within 10 days of receipt, we will refund your entire purchase (less shipping) with no questions asked.

5. **MEMBERSHIP SATISFACTION GUARANTEE** — If for any reason you are not satisfied with your membership within 30 days, we will refund your dues in FULL.

6. **EXPERIENCED CONSULTANTS** — The NETWORK hires consultants, not order takers, to aid you in product selection. Our consulting staff possesses in excess of 150 man years of personal computer product experience. We back our consultants with our money back guarantee: **IF ANY PRODUCT RECOMMENDED BY OUR CONSULTING STAFF FAILS TO PERFORM AS PROMISED — WE WILL TAKE IT BACK AT OUR EXPENSE FOR A 100% REFUND**.

7. **FREE TECHNICAL SUPPORT** — The NETWORK supports every product it sells. Our qualified TECH-SUPPORT staff will help you with your system, interpret your documentation and get your software and hardware to work. **WE WILL GIVE YOU ALL THE HELP YOU NEED, WHEN YOU NEED IT — FREE!**

8. **OPTIONAL BUSINESS RENTAL LIBRARY** — All members can join our BUSINESS RENTAL LIBRARY featuring over 1000 available titles for just $25 PER YEAR above the base membership fee. This entitles you to rent business software at just 20% of the discount price for a 14 DAY PERIOD. If you decide to keep the software, the entire rental fee is deducted from the purchase price. VIP MEMBERS GET A FULL 30 DAYS for just $30 above the V.I.P. base fee. This also includes the game library privileges for a $5 combination savings.

9. **OPTIONAL GAME SOFTWARE RENTAL LIBRARY** — The Game Rental Library is available to members for just $10 PER YEAR and permits evaluation (or just enjoyment) of any game or educational software product as above.

10. **SPECIAL SAVINGS BULLETINS** — THE PRINTOUT — Issued Quarterly at no charge to Network members only. The PRINTOUT contains all the New Product listings and price changes you need to keep your Catalog up to date. Also, we buy excess dealer inventories, and store bankruptcy closeouts, which we turn around and make available to our members at fantastic savings via THE PRINTOUT.

11. **DISCOUNT BOOK LIBRARY** — Working with numerous publishers and distributors, The NETWORK has assembled a library of over 1000 computer related books and manuals at savings of up to 75% from the normal store price.

12. **DISCOUNT BOOK REFERRAL BONUS** — Our most valuable source of new members is you! To date almost 40% of our members have been referred by word of mouth from other satisfied members. For those of you who refer new members, The NETWORK will credit a cash bonus to your account applicable to any future purchase.

13. **CORPORATE ACCOUNT PROGRAM** — Almost 50% of The NETWORK’s members are corporate buyers and users. The NETWORK can establish open account status and assign designated account managers to expedite orders, and coordinate multiple location shipments.

14. **QUANTITY DISCOUNTS** — For large corporations, clubs, and repeat or quantity buyers The NETWORK can extend additional single order discounts, when available to us from our manufacturers and distributors.

15. **PRICE PROTECTION** — The PC Industry is crazy!!! Prices change not yearly or monthly or even weekly but often day by day. The NETWORK GUARANTEES THAT IN THE EVENT OF A PRODUCT PRICE REDUCTION, BETWEEN THE TIME YOU PLACE YOUR ORDER AND THE TIME THE PRODUCT SHIPS YOU WILL ONLY PAY THE LOWER AMOUNT!!

Inquiry 295 APRIL 1985 • BYTE 333
ARTIFICIAL INTELLIGENCE. The phrase seems randomly applied in a wide variety of contexts by a growing number of people from diverse backgrounds. This month's theme section gives you the theories and the potential as viewed by some of the world's most astute observers. "But," you ask yourself, "what can I do with it?" And in order to answer that question satisfactorily you have to know what products are available now, what they can do, and their specific approach to AI. One point you couldn't really get away from until now was the fact that most AI products were specialized and expensive. Building your own knowledge base and using the computer to help you arrive at a solution that neither you nor it knew in advance depended on custom databases and large amounts of computing power. With our first review this month, we see that things may be starting to change.

Insight, from Level 5 Research, sells for $95, is designed for IBM Personal Computers (PCs) and compatibles, and lets you build your own expert system through goal-outlining procedures and probabilistic reasoning. Reviewer Bruce D'Ambrosio doesn't give it high marks for completeness, but he notes that some of the basic tools are there. For example, while Insight gives you Boolean and numeric data types, it does not give you character data or the capability to structure variables into records or frames. Still, its inability to structure data isn't a major handicap as long as the problems are simple and you use a single kind of data. Mr. D'Ambrosio gives Insight a nod as a possible AI learning aid. Expert-system development tools are beginning to work their way down to the microcomputer level, and Insight is an example of something you can use right now. It's not fully realized in some respects, but it's not a game either.

John Unger takes a look at ITT's entry in the IBM PC-compatible sweepstakes, the XTRA. Mr. Unger notes that while the XTRA may be attractive in a lot of home or office situations, it breaks no technological ground. It uses an 8088 microprocessor at a 5-MHz clock rate, just slightly faster than the IBM PC's 4.77 MHz but not so fast that it can't run most IBM PC applications software. ITT bundles a communications package with the XTRA, which is logical enough when you think about it. Except that not every communications company thought about it. The AT&T 6300, for example, is bereft of communications software. It's an indication that the XTRAs designers and packagers used some forethought. Mr. Unger reports that the XTRA features a number of these design touches, which seem to indicate that the company made an effort to provide a product that can complement, as well as compete with, the IBM PC.

—Glenn Hartwig, Technical Editor, Reviews
THE LARGEST CAPACITY DISK EMULATOR
YOU HAVE EVER SEEN.

You know about disk emulators. They're fast semiconductor disk drives. Very fast. But until now, the most disk storage you could get on a single board was 1Mbyte. (That was from us, too.) Now we have news that'll really blow your socks off... 2 Megabytes on a single board. Available NOW. That's not a pie-in-the-sky promise. That's enough storage for dozens of large programs and hundreds of kilobytes of data files. Enough for almost anything you want to do with a disk drive. But that's not all. With SemiSpool, our CP/M print spooler, you can implement a print buffer hundreds of kilobytes long in seconds. All in software. At no extra cost.

Another thing about disk emulators. Unless they're from SemiDisk Systems, they're probably afraid of the dark: Lose power or turn the computer off, and your valuable data goes to that big backup disk in the sky. But our Battery Backup Units keep SemiDisk data flying high while your computer is off, and up to 10 hours during a complete blackout.

So remember this: SemiDisk Systems has been building dedicated microcomputer disk emulators longer than anyone. And larger. And faster. And at a much lower cost. And that's not a lot of hot air.

AT A PRICE YOU NEVER THOUGHT YOU'D SEE

<table>
<thead>
<tr>
<th>Model</th>
<th>512K</th>
<th>1Mbyte</th>
<th>2Mbyte</th>
</tr>
</thead>
<tbody>
<tr>
<td>SemiDisk I, S-100</td>
<td>$995</td>
<td>$1795</td>
<td>$2549</td>
</tr>
<tr>
<td>SemiDisk II, S-100</td>
<td>$1295</td>
<td>$2095</td>
<td>$2499</td>
</tr>
<tr>
<td>IBM PC, XT, AT</td>
<td>$945</td>
<td>$1795</td>
<td>$2499</td>
</tr>
<tr>
<td>QX-10, QX-16</td>
<td>$799</td>
<td>$1795</td>
<td>$2499</td>
</tr>
<tr>
<td>TRS-80 II, 12, 16</td>
<td>$995</td>
<td>$1795</td>
<td>$2499</td>
</tr>
<tr>
<td>Battery Backup Unit</td>
<td>$150</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SemiDisk Systems, Inc.
P.O. Box GG, Beaverton, Oregon 97075
503-642-3100

Cygnet Technologies Inc.'s Communication CoSystem is a combination of hardware and software for integrating the telephone with your IBM Personal Computer (PC) or compatible. For example, you can use it to store a 400-listing telephone directory—each number of which you can access by category, alphabetical order, frequency of use, or with a special speed-dialing code. Each desktop unit gives you one or two telephone lines that you can mix between tone dialing or rotary dialing or both. You get three-party conference calling. You can dial with the phone still on the hook: this is actually more useful than it sounds because you can listen with half an ear to a volume-controllable speaker for the other party to pick up before you have to give it your complete attention. You also get the option of connecting a microphone and using the unit for general conference calling.

If you have two or more CoSystems you get attended or unattended electronic mail. You can also exchange screens and send and receive files to disk. An electronic calendar lets you store your appointments, and it beeps when it’s time to be somewhere, call someone, or do something.

What it won’t do is let you use one telephone line simultaneously for both voice and data. I’ve heard about exotic systems that provide this kind of line sharing, and I thought CoSystem—priced at about $1800—was expensive enough to be that exotic.

Still, for an office where individuals do a lot of telephone work along with a lot of noncommunicating work on an IBM PC, the CoSystem offers a lot of useful features. Because of the price tag, I doubt if it will displace a pop-up menu program combined with a regular push-button-phone/modem-within-arm’s-reach for most BYTE readers, but I wouldn’t be surprised if I saw one in use at a car rental agency.

General Computer Company, Cambridge, Massachusetts, showed us its Hyperdrive, an internally mounted 10-megabyte hard disk for the Macintosh. The expansion package also grows the RAM to 512K bytes. What the company does is line up a dealer. You go to the dealer, who takes your Mac, opens it up, installs the hard disk and new RAM, closes it up, gives it back, and charges you $2795. Simple, except that it voids the Apple warranty. To get around this, General Computer issues you a new warranty for your Mac as well as for whatever the dealer installs (you can get the Hyperdrive without the 512K-byte expansion package for $2195 if you already have a Fat Mac, but one way or another, you have to have 512K bytes on your machine). General Computer also installs a fan with a temperature-sensor circuit that kicks into high when the temperature rises.

By mounting the hard disk internally and using a direct logic board interface to connect it to the Mac’s main circuit, General Computer has left the serial port alone. You still get to use the standard connections for the modem, printer, or Applebus. Hyperdrive comes also with extensions to the Macintosh system software. You can partition the hard disk into 32 file drawers or “virtual disks” that automatically resize themselves whenever you add or remove data. You can add password protection at the file level, and you can also encrypt your files and applications. The icon-oriented user interface stays the same, except that you get new icons for the new functions. We’re supposed to get one of these megaMacs for evaluation, and I’m looking forward to seeing how well it performs.

We’ve been running the Ericsson PC for the past few weeks as a sort of common-property IBM-compatible for those of us who need only occasional access to the 5¼-inch MS-DOS/PC-DOS format. It has a very nice amber-on-brown display, and the little stand for elevating the monitor is one of those features whose merits become increasingly appreciated. It’s supposed to have an ergonomically enhanced keyboard, and on the desk it does seem quite comfortable for laptop typing, however. I found it too light and the cord too short. Hardly major complaints, being subjective as they are. Too, I thought it curious but not horribly distressing that, while compatible with all of the application programs we have put into it, it will boot only its own version of DOS. The MS-DOS we’ve used for other IBM PC-compatibles simply won’t work. It’s not that the disk just spins forever in the drive—the screen goes dead, the drive unit goes dead, and you can’t restart it with a Ctrl-Alt-Del. However, seeing as how you get Ericsson DOS with the system, this particular curiosity is simply a curiosity and nothing more.

The Ericsson PC looks intriguing from a number of aspects. It does seem generally compatible with most standard software, and it gives the appearance of being well planned in terms of those features the user will have the most contact with, i.e., the keyboard and the screen. It has a nice small footprint for a desktop, and the evaluation unit sent to us came with a rack for housing it on edge on the floor. This is another unit I’m looking forward to reviewing.

—Glenn Hartwig, Technical Editor, Reviews

APRIL 1985 • BYTE 337
The IBM XTRA

John D. Unger (POB 95, Hamilton, VA 22068) is a geophysicist studying earthquake and the crustal structure of earthquake-prone regions for the U.S. government. He has a B.S. and an M.S. from MIT and a Ph.D. from Dartmouth. He enjoys running, skiing, and keeping a family of five organized.

The IBM Personal Computer (PC) is an easy mark for improvement, and almost every compatible today does many things faster or better than the PC. The ITT XTRA is no exception; it combines compatibility with a number of improvements on the IBM PC and some of the clones. There are, however, no important hardware innovations to differentiate it from compatible microcomputers. Rather, some other, more subtle reasons may form the basis for choosing the XTRA.

It appears that ITT is aiming the machine at business users who have an IBM or similar computer at the office and want a compatible machine at home. The communications software bundled with the XTRA suits this purpose.

A color/graphics board also allows the computer to run IBM PC game software. I reviewed an XTRA with 256K bytes of RAM (random-access read/write memory), two double-sided double-density floppy-disk drives, and a monochrome monitor and monochrome display board. This standard configuration has a list price of $2395.

HARDWARE

The XTRA (see photo 1) has the conventional three-piece grouping: a main unit that contains the processor and disk drives, the monitor, and a detached keyboard.

The ASCII (American Standard Code for Information Interchange) keyboard differs slightly from the IBM PC/XT keyboard (see photo 2). Both the Caps Lock and Num Lock keys have light-emitting diodes (LEDs). All of the keys repeat after about half a second. The keycodes are identical to those for the IBM PC.

The amber monitor measures 12 inches diagonally and produces crisp, high-quality characters in a font style that is easy to read (see photo 3). The characters, formed from a 7- by 9-pixel matrix in a 9- by 12-pixel cell, are displayed on an 80 by 25 screen. There is no blurring or distortion as the screen scrolls. The monochrome mode includes the standard attributes—reverse video, blinking, half- and high-intensity, and underlining—in various combinations and permutations. I cannot say much about the graphics capability of the system since I did not have a graphics board to test in the XTRA. However, I did note that the BIOS (basic input/output system) ROM (read-only memory) routines included interrupt-driven functions that appear identical to those used in creating medium- and high-resolution graphics on the IBM PC. And graphics video RAM is located at the same memory addresses as in the IBM PC.

STORAGE

The XTRA uses half-height double-sided double-density disk drives, each with a storage capacity of 360K bytes. The drives operate quietly. However, the slot for the lower or B: drive sits only 2 1/4 inches above the table top. If the keyboard is less than 6 or 7 inches from the front of the main unit, it is difficult to insert disks into the drive without flexing them somewhat to clear the keyboard.

The user's guide contains complete and easy-to-follow instructions for installing a half-height 10-megabyte hard-disk drive. This is a modification that requires an expansion card with a controller for the hard disk.

INTERNALS

To lift the cover off the main unit and gain access to the IBM-compatible expansion slots, the disk drives, and the motherboard, you need only remove two screws from the rear panel. The XTRA uses an 8088 microprocessor at 5 MHz, a nominally faster clock rate than the IBM PC's 4.77 MHz. Next to the 8088 is a socket for installing an 8087 arithmetic coprocessor. The motherboard can hold 256K bytes of RAM (the XTRA uses standard 4164 64K-bit RAM chips in its memory); expansion cards can bring additional memory to a total of 640K bytes. Because the XTRA performs a parity check
on its RAM, nine 64K-bit chips have to be installed for every additional 64K bytes of memory. When powered up, the system takes about 32 seconds to check the RAM with 256K bytes installed. To disable the check, you can open the case and easily set I position on one of two 8-position DIP (dual-inline package) switches. The switches also set the amount of motherboard memory, the type of monitor, the number of floppy-disk drives, a screen time-out feature, and the presence or absence of the 8087 coprocessor.

The XTRA comes with 32K bytes of ROM, most of which holds the BIOS, but the ROM also provides a set of system diagnostics. These routines are mentioned only briefly in the documentation I received, but the optional technical reference manual describes them in more detail. Pressing the Esc, Ctrl, and Alt keys at the same time runs the program. Typing H at the = > prompt gives you a menu with options for running diagnostics of the system hardware, memory, disk drives, video display, and keyboard. The menu also provides access to powerful utilities that read and modify disk sectors and memory.

INTERFACES
The main unit's back panel contains two 25-pin DB-25 connectors. One, labeled "Printer," is a female Centronics-compatible printer port; the other, marked "Comm. Line," is an RS-232C male asynchronous serial port for communications or a serial printer. An ITT-supplied communications program can configure the serial port from 110 to 9600 bps (bits per second). Both ports are "hard-wired" into the motherboard and therefore do not use the expansion slots. The optional Combo expansion board includes a second parallel printer port.

SOFTWARE
Advertisements I have seen offer the XTRA only with the standard ITTDOS 2.11 (MS-DOS 2.11) and Advanced BASIC. ITT's BASIC-language interpreter. As might be expected from a communications company like ITT, the ITTDOS disk contains an asynchronous communications program that enables you to access on-line telecommunications services as soon as you connect your modem. Or you can access a nearby computer by running a cable directly from the RS-232C communications port on the XTRA. The communications program includes options to choose parameters, to upload or download ASCII files, and to exit to the operating system without disconnecting. It is a simple, straightforward communications program, but it lacks many of the features—like providing a directory of (continued)
ITT describes Advanced BASIC as Microsoft MS-BASIC with GW-BASIC extensions. The full-screen editor and command syntax will be familiar to users of either BASICA or GW-BASIC. The graphics and music commands are identical to those of BASICA; in fact, the two chapters in the ITT BASIC manual describing these features are taken directly from Lyle J. Graham's *Your IBM PC* (Berkeley, CA: Osborne/ McGraw-Hill, 1983). Improvements in the BASIC benchmarks over those for the IBM PC must be owing to enhancements in the BASIC interpreter because the processor clock speeds are nearly identical. The user's guide suggests that the disk with the BASIC interpreter includes a number of sample BASIC programs, but the disk I received with my system did not contain these files.

I used WordStar and Multiplan written for the IBM PC to run the benchmark tests for the XTRA; both packages ran perfectly.

**DOCUMENTATION**

The user's guide provides simple, easy-to-follow instructions for setting up peripherals and the computer hardware; it also describes the MS-DOS functions that run the system software. The BASIC manual is well organized, with separate sections on file I/O (input/output) and the more complex graphics and sound commands. The third manual explains the MS-DOS commands and the more elaborate programs like EDLIN and DEBUG. The manual is quite complete and includes the DOS functions available through BIOS ROM interrupts, of considerable interest to programmers writing software for the XTRA.

**COMPATIBILITY**

I tested a few crucial pieces of IBM software, including WordStar, Multiplan, and the DeSmet C Compiler; all of them ran without problems. Perhaps more important, I examined the BIOS ROM interrupt structure and memory model. There is little to prevent almost complete compatibility with the IBM PC. The biggest difference between the XTRA and the IBM is that the IBM has part of its BASIC interpreter in ROM. Software that uses this feature directly will not run on the XTRA.

There is excellent compatibility between IBM BASIC and ITT’s Advanced BASIC. Virtually all programs written in BASIC for the IBM should run on the XTRA with little modification. The five IBM-compatible expansion slots on the XTRA enable you to add many optional features and functions. Of course, the only sure compatibility test for software and hardware is to try it on the XTRA.

**SALES AND SUPPORT**

The first XTRA advertisements I saw proclaimed a nationwide sales and service network through the ComputerLand franchise. I visited a near-

---

**Photo 2:** The ITT XTRA keyboard has LEDs on the Caps Lock and Num Lock keys and a layout that resembles the IBM Selectric.

**Photo 3:** A sample screen display on the ITT XTRA’s amber monitor.

---

(continued)
AT A GLANCE

Name
ITT XTRA

Manufacturer
ITT Information Systems
POB 52016
Phoenix, AZ 85072
(800) 321-9872

Components
Processor: 8088 at 5 MHz; socket for 8087 coprocessor
Memory: 128K dynamic RAM (standard) expandable in 128K increments to 640K; 32K ROM (BIOS, bootstrap, and self-test) expandable to 64K; 4K text video RAM on monochrome board, 16K graphics video RAM on color/graphics board
Display: monochrome is 80 columns by 25 lines
Monitor: monochrome, 12-inch diagonal, 640- by 400-pixel resolution
Keyboard: detached QWERTY with 84 keys including 10 function keys, numeric keypad, and cursor keys

Software
MS-DOS 2.11, Advanced BASIC, asynchronous communications

Expansion Capability
Five card slots (IBM PC bus)

Documentation
User's guide, 218 pages; Advanced BASIC manual, 505 pages; ITT-DOS manual, 410 pages

Prices
Model I
(128K, single 360K drive, monochrome) $1895
Model II
(256K, two drives, monochrome) $2395
Model III
(256K, single drive, 10-megabyte hard disk, monochrome) $4395
Monochrome units include monochrome monitor and monochrome expansion board

The Memory Size graph shows the standard and optional memory available for the three computers under comparison. The Disk Storage graph shows the highest capacity of a single floppy-disk drive for each system. The Bundled Software Packages graph shows the number of software packages included with each system. The Price graph shows the list price of a system with two high-capacity floppy-disk drives, a monochrome monitor, a printer port and a serial port, 256K bytes of memory (64K bytes for 8-bit systems), and the standard operating system and BASIC interpreter for each system. Note that the price of the ITT XTRA does not include the cost of the color/graphics board.
The rear panel has a Centronics-compatible printer port, an RS-232C port, and five IBM-compatible expansion slots.

Inside the XTRA. The disk drive extends toward the front of the unit. The five expansion slots and fan are evident.

<table>
<thead>
<tr>
<th>Disk Access in BASIC (SEC)</th>
<th>Basic Performance (SEC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRITE</td>
<td>READ</td>
</tr>
<tr>
<td>33</td>
<td>56</td>
</tr>
<tr>
<td>37</td>
<td>32</td>
</tr>
<tr>
<td>46</td>
<td>36</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System Utilities (SEC)</th>
<th>SpreadSheet (SEC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40K FORMAT/DISK COPY</td>
<td>40K FILE COPY</td>
</tr>
<tr>
<td>34</td>
<td>55</td>
</tr>
<tr>
<td>22</td>
<td>53</td>
</tr>
<tr>
<td>11</td>
<td>8.8</td>
</tr>
<tr>
<td>9.6</td>
<td>5.8</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The graph for Disk Access in BASIC shows how long it takes to write and to read a 64K-byte sequential text file to a blank floppy disk. (For the program listings see June 1984 BYTE, page 327, and October, page 33.) In the BASIC Performance graph, the Sieve results show how long it takes to run one iteration of the Sieve of Eratosthenes prime-number benchmark. In the same graph, the Calculations column shows how long it takes to do 10,000 multiplication and division operations using single-precision numbers. The System Utilities graph shows how long it takes to format and copy a disk (adjusted time for 40K bytes of disk data) and to transfer a 40K-byte file using the system utilities. The Spreadsheet graph shows how long the computers take to load and recalculate a 25- by 25-cell spreadsheet where each cell equals 1.001 times the cell to its left. Microsoft Multiplan was the spreadsheet used. The tests for the XTRA used MS-DOS 2.11 and ITT Advanced BASIC. Tests for the Apple Ile were done with ProDOS. The IBM PC was tested with PC-DOS 2.0.
by outlet to get some background pricing and technical information and to see what kind of support an owner of an XTRA might receive. I didn't mention that I was writing a review of the XTRA. A prominently displayed XTRA with a large "40% OFF" sign immediately caught my eye. A salesman told me that I was indeed a lucky fellow if I wanted an XTRA because the store had two hard-disk models in stock at a sale price of $2,995, marked down from the list price of $4,995. When I asked about the sale, he told me that the computer had not "moved" very well, and that they were no longer going to stock it.

I telephoned two other stores. At the first store, someone said they had never sold the XTRA. When I mentioned ITT's claim that ComputerLand franchises are selling the machine, the person said that individual store managers could decide whether to carry a given computer. A salesman at the third store said that they had stocked the XTRA for a few months but discontinued it due to poor sales.

I still needed information on the price and on the availability of hardware and software options, so I called the toll-free phone number that ITT provides. A very helpful woman described the available options but said that she "wasn't allowed" to give out prices. ITT was running a promotional rebate program for the XTRA, and each dealership could set its own price for the microcomputer in order to compete for prizes. She then gave me the phone numbers for the stores I had already contacted: when I explained my experience with these stores, she gave me the phone number of ITT's sales representative for my area, whom I then called. He informed me that he worked for the part of the ITT sales force that deals with large purchases. Nonetheless, he gave me price information and told me that he could sell at list price to individuals if they couldn't otherwise find what they wanted.

**CONCLUSION**

The machine appears to be well made and sturdy; I had absolutely no trouble with it. And if something goes wrong, the built-in diagnostics should help pinpoint problems. The documentation lets even novice computer users set up the hardware and get the system running smoothly. The XTRA should run most of the software available for the PC, and it is easy to add PC-style expansion boards. However, you should consider ITT's relationship with ComputerLand and where you would go for sales and support. ITT's toll-free telephone number ((800) 321-7661) for technical information compensates somewhat for the problem. ITT's low price, especially considering the discounts I encountered, makes the XTRA an attractive value.

---

**Learn the C Language**

**Introducing C**

*C LANGUAGE TRAINING SOFTWARE*  
IBM PC-DOS 2.0 +

**INTRODUCING C** is a C language interpreter and learning guide that teaches the fundamentals of C programming. You'll learn program structure, syntax, and all about libraries — QUICKLY and EASILY. Join the C revolution with INTRODUCING C — from Computer Innovations. Introductory price $95.

For further information or to order call 800-922-0169.

**COMPUTER INNOVATIONS, INC.**

900 Shrewsbury Avenue, Tinton Falls, NJ 07724 • (201) 542-5920

*As Fast As You Can Learn BASIC*
Alloy takes your PC to the limit.

QICSTOR-PLUS. The ultimate in PC expansion with five IBM compatible slots, hard disk storage, and streaming tape backup in one neat package.

Alloy’s QICSTOR-PLUS meets all your expansion needs. It's the ideal upgrade for a growing PC or AT system.

QICSTOR-PLUS has five full size expansion slots which are completely compatible with the IBM PC bus and they also support Alloy’s PC-SLAVE/16 multi-processor, multi-user capability. Its high performance hard disk has a capacity of 36 to 128 MBytes. And QICSTOR-PLUS has file-oriented streaming tape backup with a formatted capacity of over 50 MBytes. Alloy provides file-oriented QTIP software with a transfer rate of 2 MBytes/minute.

QICSTOR-PLUS is available right now. So call Alloy today at (617) 875-6100.
Insight—
A Knowledge System

Insight, an artificial-intelligence (AI) system developed by Level 5 Research for IBM PCs and compatibles, lets users develop expert systems at reasonable cost. Insight is a user-friendly, rule-based, knowledge system, combining IF...THEN rules with goal outlining and probabilistic reasoning. It needs 128K bytes of RAM (random-access read/write memory) and one disk drive, and it sells for $95. Upon close examination Insight is limited and lacks many facilities required for developing practical knowledge-based programs. It might be best suited for educational purposes.

Insight is a member of a growing class of programming systems that are rule-based. These programming systems include an “inference engine” capable of flexibly interconnecting facts the programmer (knowledge engineer) provides specific to the problem. This frees you from concern about the flow of control in the program and lets you concentrate on the knowledge necessary to solve the problem. Key aspects of such systems are the facilities for structuring data, the flexibility of the rule language, the efficiency of the inference engine, and the program-development environment (availability of an editor, debugger, etc.).

DATA STRUCTURING

AI systems are designed for complex problems that are not amenable to normal programming techniques, and they have generally provided highly sophisticated facilities for structuring data. Although Insight has two basic data types, Boolean and numeric, neither character data nor the simplest structuring of variables into records or frames is available. Also, variables reside in a single global context, analogous to early compilers in which no local variables existed within subroutines.

Variable names in Insight can have embedded spaces: this permits writing rules that look very advanced but have an underlying simplicity. For example, in Insight you can write

IF the animal has hair
THEN the animal is a mammal

This looks less impressive if you know that the animal has hair is simply a variable name and could just as easily have been written the-animal-has-hair.

This lack of data-structuring capability is not important for simple problems in which you never need to consider more than one of any kind of data. Imagine, however, a problem in which you need to consider several pieces of data of the same type. For example, you might need to gather information about all of an individual’s bank accounts to advise him on banking services. Or you might have a diagnostic program that needs to gather information about several occurrences of failure before reaching a diagnosis. Rule-based systems do exist that offer the ability to structure basic data into more complex units that can be referred to independently. (EMYCIN, the first general-purpose mainframe system designed for expert-system development, has such a facility called “contexts.”)

For example, you might gather all the facts about a bank account into a context called “bank account.” You would then be able to write a rule in the form

IF there is a bank account with deposits $>$ 10,000
AND that same bank account has stable months $>$ 6
THEN ....

You could achieve the same effect in Insight only by laboriously reproducing each rule and data item and adding an extra variable to record the number of accounts:

IF number of accounts $\geq$ 1
AND bank account 1 deposit amount $>$ 10,000
AND bank account 1 stable months $>$ 6
THEN ....

(continued)
**AT A GLANCE**

**Name**  
Insight

**Type**  
Knowledge system

**Manufacturer**  
Level 5 Research  
4980 South A-1-A  
Melbourne Beach, FL 32951  
(305) 676-5810

**Format**  
5¼-inch floppy disk

**Computer**  
IBM PC or compatible, DEC Rainbow, Victor 9000

**Features**  
Rule compiler, inference engine, and sample knowledge bases

**Documentation**  
44-page users guide

**Price**  
$95

**Audience**  
Those interested in AI technology and expert systems

**Comments**  
A simple system of limited utility—best as an educational tool

---

IF number of accounts ≥ 2  
AND bank account 2 deposit amount > $10,000  
AND bank account 2 stable months > 6  
THEN ... 

You have to hope that no one has more accounts than you allowed for. While you could use this technique for simple situations, you're in trouble if you need to nest such constructs (for example, if you wish to record a series of deposits for each bank account).

**RULE LANGUAGE**

Like the data-structuring facility, Insight's rule language is the minimum for a rule-based system. Unlike the data facility, however, there is no way around the limitations. The only operations available in Insight's rule language are testing a Boolean variable's truth value, comparison of a numeric variable's value to a constant, and display of recorded text. Insight provides no facilities for assigning values to numeric variables (other than by asking the user), performing the most limited forms of arithmetic computation, or modifying text in any way before display (for example, by inserting the user name or the name of the current context).

Perhaps the language's most limiting feature is that it does not provide any underlying general-purpose language into which the knowledge engineer can escape. It has been estimated that as much as 30 to 50 percent of the knowledge in a typical EMYCIN system is not in rules but is coded directly in LISP. Personal Consultant, a Texas Instruments knowledge-engineering tool for its TI PC, provides this facility with an escape into IOLISP, the underlying language. And M.I., a knowledge system from Teknowledge (Palo Alto, California) for the IBM PC, has extended the rule language into a complete symbolic-programming system, so that any arbitrary knowledge can be incorporated. Insight has provided neither of these alternatives, and this seems to be a serious limitation.

As an example, consider the following rule:

IF liquid assets + equity > $100,000  
THEN client is wealthy

Insight has no way to express this rule, except for the trivial interpretation that liquid assets + equity is a single variable.

**INFERENC ENGINE**

The inference engine in Insight, like that in many rule-based systems, is a simple backward-chaining engine. Insight also has a structured goal mechanism that provides some explicit measure of control over the running knowledge program. This facility lets you specify which problem areas in a particular Insight knowledge base interest you. And it allows construction of large multifaceted knowledge bases. I found this of limited utility.

Other facilities provided by the inference component of some knowledge systems include "why" questions that display the currently active rule, display of text that further describes the information requested, and justifications of conclusions reached. Although Insight always displays the most immediate conclusion being sought, it does not provide any facility to display the entire rule or any way to display the chain of reasoning that led it to consider that rule.

One nice feature is the ability to attach text explanations to variables. When a value is requested for a variable, say "liquid assets," you can press function key 4 to get an explanation of the term "liquid assets."

And finally, Insight has an optional report that you can produce at the end of a consultation and direct to the console or the printer; the report serves some of the purposes of justification. However, this report appears to be a randomly ordered listing of all rules considered and the conclusion reached. For one simple problem I presented (using the 15 rules for determining an animal species), Insight produced a five-page justification listing. A justification should be
a more reasoned argument, limited to those rules that directly apply to the conclusions. This report feature might be useful for debugging, but it is not of much use as an end-user facility.

ENVIRONMENT

The user interacts with Insight through a menu- and function-key-based interface. This interface is simple, easy to use, and seems well thought out. When the system can determine a list of options for a variable, it presents them, and you can scroll through the list with the cursor until you select the desired option (shown by highlighting).

You can use the function keys to select options such as restart (start the consultation over from the beginning), expand (display text explanation of this variable if one is available), and help (display Insight’s internal-help text describing what is happening, format for correct entry, and so on). The combination of user-defined expand displays, clear internal-help text, and menu-based display and input do make an Insight knowledge system easy to use.

IN GENERAL

Insight is a compiler-based system, so rules, once written, must be processed by a rule compiler before the Insight inference engine can use them. Most of the compiler/interpreter arguments apply to rule-based languages as well as procedural languages, so you would expect Insight to be fast, capable of handling large programs, but not as convenient for program development. In fact, all these expectations are correct. (Insight is memory-dependent, but on my system the compiler can compile rule bases of over 4000 rules. M.I can hold only about 200 rules, and TI PC about 400.)

Insight has shortcomings if you use it for program development. You cannot obtain displays of the currently active rule chains. Since it is the inference engine, not the knowledge engineer, that links rules together, such a display would be very helpful in understanding the relationships between rules when building a knowledge base and would help the user understand why a rule-based program is asking a particular question. Also, as is usual with compiler-based systems, you cannot interrupt a running program and inquire about the values of program variables (actually, symbolic debuggers for compiled procedural languages do offer this capability, but Insight has nothing comparable).

Insight provides no special aids for program development. The knowledge engineer must supply his own editor for constructing rule bases. Once a rule base is built as a text file, the PRGEN compiler converts the rule base into executable form. The compiler has no options, and errors detected during compiling are displayed on the console. The error display includes the text-file line number and a short error message. Although these error messages don’t always point directly to the problem in the source file, it is not too difficult to figure out what to change.

Finally, the Insight users manual (44 pages plus appendixes) is adequate for using the system but leaves many areas vague. I would like more information on such details as the algorithms used for confidence value combination or the internal structure of the inference engine. (Editor’s note: A confidence value is a method of answering an Insight question that is a numeric value between 0 and 1. Some insight users will ask for an answer to a question, and the confidence value will be between 0 and 1.)

For building rule-based systems, Insight is a product that offers a friendly user interface and a rule compiler for fast execution of large rule bases. For $95, it offers an inexpensive way to engineer a complex knowledge base.

For building rule-based systems, Insight is a product that offers a friendly user interface and a rule compiler for fast execution of large rule bases. For $95, it offers an inexpensive way to engineer a complex knowledge base.
MORE ON MULTIMATE

CJ Puotinen did not stress enough MultiMate’s problems with repagination and virtual paging in “Leading Edge and MultiMate” (November 1984, page 287). The product is a nightmare for anyone who writes more than one-page documents. MultiMate was geared toward a secretarial staff, but it’s being recommended by salespeople as a Wang clone. There is no comparison; Wang’s dedicated word processor works without a hitch. and MultiMate was geared toward a secretary staff. but it’s being recommended by salespeople as a Wang clone. There is no comparison; Wang’s dedicated secretarial staff, but it’s being recommended by salespeople as a Wang clone.

MultiMate is so unreliable that you shouldn’t trust it for important documents. It is also unbearably slow for final editing when you are switching between pages. MultiMate works so poorly that I’m reluctant to spend money on a replacement in case that doesn’t work either. Suffice it to say, I’ve learned to take the time to make backup copies so I can recover the parts of text I lose when repagination doesn’t work. And Ms. Puotinen doesn’t even mention how inconvenient it is to make a backup copy or the time it takes to proofread documents for MultiMate’s errors. Before switching to a Tandy 2000 and MultiMate, I used Microsoft Word and an IBM PC. I have regretted my switch since I made it.

MAUREEN FLEMING
Stamford, CT

SPIRIT 80

I consider BYTE to be among the best computer magazines published today. However, one problem undermines your good editorial and journalistic intentions: your reviews, and those of other magazines, are simply not to be trusted.

I have a Mannesmann Tally Spirit 80 printer, and I have just finished reading Mark Welch’s review (November 1984, page 339). Mr. Welch makes much of paper jamming but fails to point out two vital characteristics of the machine that prospective buyers need to know about.

First, the Spirit offers only elite type. Also, only its right tractor slides; the left one is fixed. Should you wish to run labels, you cannot run them in the center, but only at the left margin. For a word processor that normally starts text in column nine, the left margin default must be adjusted to zero.

SHEL KAGAN
Bristol, RI

THE TANDY 2000

I read with pleasure the articles in BYTE concerning Tandy’s computer products—particularly the review “The Tandy Model 2000” by Mark S. Jennings (December 1984, page 239). As an alternative to the IBM PC or PC XT, the Tandy 2000 is a truly exceptional machine. I would like to make some comments about Mr. Jennings’s fine review.

Mr. Jennings does not adequately explain the speed advantage of the 80186 microprocessor. Simply stating that it has a higher clock rate is not enough—the 80186 was completely re-engineered and the microcode was overhauled. An 80186 running at 4.77 MHz (standard IBM speed) is almost twice as fast as the 8088. By almost doubling the clock rate from 4.77 to 8.0 MHz, the Tandy 2000 can operate as much as four times faster than the IBM PC; some operations are even faster. In addition, the 2000 is not hampered by transferring data from the processor to memory over an 8-bit data bus—it has a true 16-bit data bus.

I must take exception to the claim that the Model 2000 does not achieve overall increased performance. I agree that the greatest improvement is achieved when running a processor-intensive application; however, the corollary is not necessarily true. Disk-based applications run faster for two reasons: ability to use the 16-bit data path and a much faster disk drive than the Teac drives used in the IBM PC. Mr. Jennings states that there is no significant difference in disk I/O (input/output) speed, yet the published benchmark times indicate approximately a 50 percent improvement.

Mr. Jennings was not nearly critical enough concerning Tandy’s manipulations of the basic input/output system (BIOS) for this machine. Fortunately, since his article was written, Tandy has released MS-DOS version 02.11.xx, which fixes many of these problems. Software that depends on the features normally available on the IBM PC now works correctly.

Several times, Mr. Jennings alludes to having to perform a two-step operation for formatting and copying a disk: Disk Copy on the IBM PC does both. He must have missed the COMPDUPE utility, which not only does both but also performs a verify and a disk byte-for-byte comparison.

Mr. Jennings correctly identifies an area that has pained us all: Color update on the monitor was terribly slow. The BIOS “error” that caused this has been corrected with the new release of MS-DOS. Also, Mr. Jennings is not entirely correct in saying that you cannot generate text in the color-graphics mode. If you are mixing text and graphics, this is true. If you want only color text, you can program the monochrome attribute ports (beginning with 0198 hexadecimal) to provide full-color attributes for your application at black-and-white speed. You can use this technique within BASIC by setting the screen into the black-and-white text mode with a SCREEN 0,0,0 statement and using OUT to set the port values.

I find that the Format command does not have extra options: In fact, several options available on the IBM PC are missing. Specifically, the options for formatting a single-sided disk, formatting with eight sectors, and allocating system file space are not available. While the first two options are not really meaningful with the 96-tti (tracks per inch) drives, the latter option is a loss. You cannot build a distribution disk with the space allocated for system files.

On the issue of software compatibility, I find that many generic MS-DOS programs will run with no changes. Unfortunately, most IBM PC programs go directly to the hardware or ROM (read-only memory) firmware to bypass the system’s slow speed. This is particularly true in most BASIC applications and I find these most incompatible with the MS-DOS machines.

Mr. Jennings alludes to the generic nature of the software available through Tandy’s Express Order Software. This is incorrect. Each package available through...
The Handy New LogicScope™ 136

True Dual Trace • 10 MHz Real Time Bandwidth • 3 Input Channels • I/O Port
Digital Waveform Storage • Boolean Waveform Operations • Audio Functions
8.0 (L) x 4.5 (D) x 1.75 (H) Inches • 1.25 Pounds • 9 Volt Battery/AC Operation

Consider the LogicScope 136
- The LogicScope 136 is the next logical step in test instrumentation for you. It combines many of the features and capabilities of sophisticated logic analyzers and oscilloscopes... and it fits in your hand. Never before has so much technology been available in so small an instrument, at such a low price.
- The pocket-sized LogicScope 136 is made possible by a patented breakthrough in display technology. The conventional CRT has been replaced by a unique array of 400 LED's that permits simultaneous display of two digital waveforms.
- The 136 can be used for viewing single shot events, or repetitive waveforms. It can be operated in real time mode, or in memory mode which permits acquisition and storage of up to 50-100 bit waveforms. These can be recalled, logically compared (AND, OR, EXCLUSIVE OR) to other input waveforms, or output to an external device via an I/O port. This I/O port will also accept future add-on 136 Modules.
- Its very low cost, convenience and ease-of-use make the LogicScope the ideal instrument, for designing, troubleshooting or repairing digital systems. Made in U.S.A.

Consider its Engineering & Field Service Applications:
- On microprocessor-based systems, check the timing relationship of various parameters relative to the system clock and other key events. Its storage capability allows visual and logical comparison of non-repetitive waveforms to known reference signals. Output in the start-up of the digital device can be compared to reference signals to determine the operating state of the device. Questionable waveforms can be stored for analysis.
- Its light weight and small size make the LogicScope convenient to take on every service call. The 136 provides much more information for trouble shooting a digital system or peripheral than a logic probe or digital counter without having to lug an oscilloscope or logic analyzer along.

Contact us for the name of your local distributor

POCKET TECHNOLOGY, INC.
7320 Parkway Drive, Hanover, MD 21076 U.S.A.
301-796-3300  TELEX 908207
Division of Renaissance Technology Corp.

APRIL 1985 • BYTE 349
this service is completely compatible with the 2000 and generally will not work with any other IBM-type machine. Most have been fine-tuned to make use of the 2000's superior capabilities and are hardware-specific.

Mr. Jennings comments that the 2000 must be able to read IBM disks to run the software. The 2000 can read any IBM-format disk, either single- or double-sided and either eight or nine sectors per track. Many of the software packages I have received are generic IBM PC/Model 2000 and come on single-sided disks compatible with PC-DOS 1.x or 2.x. Because of the narrow disk head required for 96 tpi, the 2000 cannot write understandable data to an IBM PC disk unless it has just been formatted.

**JOHN B. HARRELL III**
Washington, DC

In regard to the 2000's processor, my article mentions that the 80186 has a 16-bit data bus and that it has a number of functions on the chip rather than in separate chips as does the IBM PC's 8086. I don't know about any overhauls of microcode. In any case, I have run a large number of programs on both machines and have yet to see any program perform more than three times faster on the 2000.

The lead to the article clearly states that the 2000 has better overall performance than the IBM PC. I correctly state that increases in performance depend on the program. Programs that are processor-intensive will show the most improvement.

You overstate any disk-access speed advantage that the 2000 might have over the IBM PC. The Disk Access in BASIC benchmark is a poor benchmark to compare pure disk-access speed because a significant amount of time is spent by BASIC interpreting the code. Please note that the 2000 is actually 41 percent slower than the IBM PC in the 40K File Copy benchmark: this benchmark is a better measure of how quickly the computer can simply read and write to disk. It might be true that the 2000 is faster in seeking random data on disk: I don't know because I haven't seen any benchmarks.

In any case, the average 2000 user is unlikely to notice improved disk performance over an IBM PC: my overall impression is that maybe it is a tad slower.

By the way, to my knowledge no IBM PC has come from the factory with Teac drives, although they are commonly fitted in the aftermarket. Tandem seems to be the most common IBM PC drive.

You are entirely correct about the COMPDUPE command. I knew about this command, but the benchmarks had been previously run by a BYTE staffer who did not know about it. This is the reason for the reference to separate commands at the bottom of the benchmark comparisons.

I think it is still correct to state that the 2000 cannot generate high-speed text in the color-graphics mode. The key point is that if you have a program that mixes color graphics and text on the same screen, you should be prepared for very slow text display.

It would have been more accurate if I had said that the Format command has different options rather than extra options. It does have one extra option (for setting skew and interleave factors) and it is missing several others. I agree that Jandy should have included the options for different disk formats.

When I stated that most of the programs available from the Express Order System were generic MS-DOS, I meant that most of them were fairly standard MS-DOS programs that the vendor could easily port over to the 2000. I did not mean to imply that they were somewhat incompatible with the 2000. As to the comment that Express Order software will not work on an IBM-type machine, I think that this is usually due to copy-protection schemes and the fact that the 80-track 2000 disks can't be read by a standard IBM PC. None of the Express Order System programs that I have seen running seem to have any special fine-tuning.

Your clarification of the 2000's capabilities to read and write IBM PC disks matches my understanding. However, I think that the article is fairly clear already in this regard.

—MARK S. JENNINGS
Durham, NC

**MacFORTH AND THE SIEVE**

I wish to submit a correction to "The First Look at FORTH on the Mac" by Gregg Williams (December 1984, page A115). In table 1 you list the time for the Sieve of Eratosthenes in MacFORTH at 36.2 seconds. The FORTH text in listing 1 at left is from block 7 of FORTH blocks included with MacFORTH I.1. If you load it, you'll find that it runs 10 iterations of the Sieve in 20 seconds.

I assume the times listed in table 1 are for one iteration with an array size of 8199.

**DAVID R. MCDONALD**
Pittsburgh, PA

The Sieve program you sent does in fact run in 20 seconds. But you miss the point of a benchmark: to run the same code (as closely as possible) under different circumstances. If you had typed in the benchmark referenced in my article, your results would be close to mine. I retimed the benchmark and got times of 36.4 and 37.0. I hope this explains the difference you found.

—GREGG WILLIAMS
Senior Technical Editor
You need a plotter that's compatible with your hardware, software and, especially, you.

More and more companies are discovering that color graphics help them communicate faster and more persuasively.

When you make this discovery, you'll want a Colorwriter™ pen plotter from Gould. Because Colorwriters are easy to use, and can meet all of your business and technical graphic needs. They'll work with virtually any computer and the most popular software packages available.

Whether you want simple bar charts or complicated CAD/CAM drawings in 8½" x 11" or 11" x 17" formats, we've got a plotter to suit your needs and your budget. Plus, we've got a unique automatic chart advance option for volume graphics applications.

When you buy a Gould Colorwriter plotter you're getting 45 years of proven experience in hard copy graphics technology. That's why you also get one of the best warranties in the business.

For more information and the name of the Colorwriter dealer nearest you, call toll free 800-447-4700, operator 99. Or write Gould Inc., Recording Systems Division, 3631 Perkins Ave., Cleveland, Ohio 44114.

Gould Colorwriter. The compatible plotters.
This is the only place you'll find Optically-Isolated Analog Modules.

Optically isolated analog input or output modules available from Opto 22.
Five years ago we introduced the industry standard optically isolated digital I/O modules. The optically isolated analog I/O modules are now ready.
Our engineers have combined signal conditioning A/D or D/A conversion and optical isolation in a single module at prices you have been waiting for, and they've designed a module for every application:
- Thermocouple input modules (Type J & K)
- Voltage input and output modules
- Current input and output modules
- Temperature sensing module with ICTD probe
All modules plug into four position or sixteen position racks with an on-board microcomputer that communicates to your host computer via a simple twisted pair.
Optically isolated analog modules — the new industry standard.
RENOVATION AT CHAOS MANOR created a surprise: a trench full of rainwater in front of Jerry Pournelle's front door. But, as Jerry points out, this obstacle didn't seem to slow down the flow of new products.

John Markoff and Phillip Robinson also write about a flood of new products from their Palo Alto perspective in BYTE West Coast.

In BYTE U.K., Dick Pountain describes I.D.E.A.S. (Inference Driven Evolutionary Applications Software), a database generator that employs AI frame theory.

Bill Raike reports on activities at the International Conference on Fifth Generation Computer Systems and other happenings in BYTE Japan.

This month, Steve Ciarcia again answers readers' questions in Circuit Cellar Feedback.

**COMPUTING AT CHAOS MANOR: OVER THE MOAT**
by Jerry Pournelle ........................................ 355

**CHAOS MANOR MAIL**
conducted by Jerry Pournelle .......................... 373

**BYTE WEST COAST:**
LASERS, OFFICE PUBLISHING, AND MORE
by John Markoff and Phillip Robinson ................. 379

**BYTE U.K.: NEW DATABASE IDEAS**
by Dick Pountain .......................................... 389

**BYTE JAPAN: THE FIFTH GENERATION IN JAPAN**
by William M. Raike ...................................... 401

**CIRCUIT CELLAR FEEDBACK**
conducted by Steve Ciarcia ............................ 408
ARTIFICIAL INTELLIGENCE


GC LISP - "COMMON LISP", Help, tutorial, co-routines, compiled functions, thorough. PCDOS $475

IQ LISP - MACLISP & INTERLISP, Full RAM. Liked. PCDOS $155

TLC LISP - "LISP-machine", all RAM, classes, turtlegraphics 8087. CP/M-86, MSDOS $225

TLC LOGO - fast, classes. CP/M $ 95

PROLOG-86 - Learn fast, Standard, tutorials, samples of Natural Language, Exp. Sys. MSDOS $125

Expert System front-ends for PROLOG: APES ($275), ES/P ($1895)

Other solid alternatives include: MulLISP-86 ($189), WALTZ LISP for CP/M ($159), MicroPROLOG ($275)

EDITORS FOR PROGRAMMING

BRIEF Programmer’s Editor - undo, windows, reconfigurable, macro programs, powerful. PCDOS $195

VEDIT - well liked, macros, buffers, CP/M-86, MSDOS, PCDOS $119

MACINTOSH

We evaluate, every available programmer product. Ask.

"C" LANGUAGE

INSTANT C - Interactive development - Edit, Source Debug, run. Edit to Run - 3 Secs. MSDOS $495

"INTRODUCING C" - Interactive C to learn fast. 500 page tutorial, examples, graphics. PCDOS $95

MEGAMAX C - native Macintosh has fast compile, tight code, K&R, toolkit, OBJ, DisASM MAC $295

CROSS COMPILERS by Lattice, CL. VAX to 8086. VMS $3000

LIBRARIES

COMMUNICATIONS by Greenleaf ($149) or Software Horizons ($139) includes Modem, interrupts, etc., Source Ask for Greenleaf demo.

C SHARP Realtime Toolkit - well supported, thorough, portable, objects, state sys. Source MANY $ 600

PORTABLE C-LIB: Same calls for IBM, Ile, CP/M, C64, more. Screen, I/O, Graphic, more. $ 125

ROMPack - special $Main .EXE editor, source, tech support, 8086. $185

DEBUGGERS

PERISCOPE DEBUGGER - load after "bombs", symbolic, "Reset box", 2 Screen, own 16K. PCDOS $285

SOURCE PROBE by Atron for Lattice, MS C, Pascal. Windows single step, 2 screen, log file. $955

OTHER LANGUAGES

"BASICA COMPILER": Better BASIC all RAM, modules, structure. $185

HS/FORTH - 78 & 83 Standards, full RAM, ASM, BIOS, interrupts, graph, multi-task, optimizer MSDOS $250

MBP COBOL has screen control, strong doc, 74 intern., fast. MSDOS $680

SUPPORT PRODUCTS

BASIC DEVELOPMENT SYSTEM (BDS) for BASICA; Adds Reum, crossref, compress. PCDOS $115

PLINK-86 for Overlays, most lang., segment control. MSDOS $325

ProYM Communications Package - All a programmer’s want. TTY, VT 100, 3,101, MODEM 7, BBS. Remote, macros, windows MSDOS $139

SCIL - Source Librarian to manage Versions, Doc, Minimize disk space, configuration. MSDOS $335

THE PROGRAMMER’S SHOP™

helps compare, evaluate, find products. Straight answers for serious programmers.

SERVICES

• Programmer’s Referral List • Dealer’s Directories
• Compare Products • Newsletter
• Help find a Publisher • Rush Order
• Evaluate Other Products • Over 700 products

BULLETIN BOARD - 7 PM to 7 AM 617-826-4086

Editorial: 617-826-8066

Call for a catalog, literature, and solid value

800-421-8006

THE PROGRAMMER’S SHOP™

122-B Rockland Street, Hanover, MA 02339

Visa  Mass: 800-442-9901 or 617-826-1531 MasterCard 6217

RECENT DISCOVERIES

FASTER C - Lattice users eliminate Link step. Normal 24 seconds, Faster C in 15 secs. MSDOS $95

FORTAN LANGUAGE

FM/FORTAN - Full ‘77, big arrays. 8087, debugging, xref, compress. MSDOS $525

DR/Fortran-77 - full ANSI 77, 8087, overlay, full RAM, big arrays, complex NUMS., CFM86, PCDOS $249

Ask about Microsoft, Supersoft, others.

OTHER LANGUAGES

ASSEMBLER - ask about Microsoft MASM-86 ($125) improvements or its new competitors.

"BASICA COMPILER": Better BASIC all RAM, modules, structure. $185

HS/FORTH - 78 & 83 Standards, full RAM, ASM, BIOS, interrupts, graph, multi-task, optimizer MSDOS $250

MBP COBOL has screen control, strong doc, 74 intern., fast. MSDOS $680

SUPPORT PRODUCTS

BASIC DEVELOPMENT SYSTEM (BDS) for BASICA; Adds Reum, crossref, compress. PCDOS $115

PLINK-86 for Overlays, most lang., segment control. MSDOS $325

ProYM Communications Package - All a programmer’s want. TTY, VT 100, 3,101, MODEM 7, BBS. Remote, macros, windows MSDOS $139

SCIL - Source Librarian to manage Versions, Doc, Minimize disk space, configuration. MSDOS $335

1985 Inquiry 317
Computing at Chaos Manor

Over the Moat

Golem Crashes
The Name Game
Copy-Protection Blues
The Elusive SI
Network Confusion
Great Software Purge
CP/M Bargains

by Jerry Pournelle

Jerry Pournelle holds a doctorate in psychology and is a science-fiction writer who also earns a comfortable living writing about computers present and future.

It's Christmastime at Chaos Manor, but you'd hardly notice it: there's a moat around my house. The City of Los Angeles has (finally) come through with the building permit that lets us add a music room where the grapefruit tree used to be and a new library/office/workshop suite upstairs. The architects and contractors lost no time in breaking ground. My front door now opens on a four-foot trench. Of course, no sooner was the trench dug than we had the worst rainstorm in four years.

Amazingly, the mailman and other delivery people have braved the moat monsters, so there's plenty to write about.

Once More into the Breach

One of the first people to find his way across the moat was someone from Federal Express: three enormous boxes from Compupro—and on a Saturday yet.

It seems I had an interesting failure. Compupro has had a small number of hard-disk drives crash. It was rare, and fixable by reformating; but it annoyed Dr. Godbout because his people couldn't make it happen in the engineering labs.

Then it happened to me. I'd backed up all the files—I'm very paranoid about that sort of thing—so all I really needed to do was reformat, but I thought I'd call Compupro first, since I had a couple of other things to talk about. I described my symptoms and lamented that I'd have to reformat.

"Don't touch it!" Bill Godbout commanded.

"Eh?"

"We've been trying to get that bug to bite something we have a complete history of. Box up the whole system, disk drives, computer, the whole works, and ship it up. Don't even turn it on again."

"Well, okay—"

"I'll swap you a new—well, nearly new—system."

That was an offer I couldn't refuse, so up it went, and on Saturday, a week before Christmas, there arrived a new System 8/16—with some differences.

My old Compupro System 8/16, the Golem, had Oume DT-8 8-inch floppy disks. I may be one of the last people in the world to use 8-inch floppies, but I prefer them; they're noisy, but they're far more reliable than 5¼-inch, and each floppy holds 1.1 megabytes, enough for a whole novel. My Oumes worked fine, and I'd just taken them out to Xerox for routine servicing—something I recommend you do every couple of years. For $60 (the minimum charge) they'll check the alignment, clean everything, and give you a complete report on any pending problems. Anyway, my disks had just returned when the Compupro boxes arrived.

Oume no longer makes the DT-8 drives. Compupro now sends half-height Mitsubishi double-sided double-density drives. They're just a little slower—4-millisecond (ms) stepping rate rather than the 3-ms rate of the Oumes—and you notice the difference, particularly when doing a Copy or Format operation. On the other hand, their major purpose is safety and backup, since the 45-megabyte hard disk is the major storage system for the 8/16.

The new Mitsubishi 8-inch floppies are incredibly quiet. Compupro is using new and different fans, too; the result is that the new System 8/16, even with hard disk, makes less noise than Zeke II, the Compupro Z80 (Oume 8-inch floppies, no hard disk) that I'm writing this on.

There were a couple of other surprises: instead of the three half-megabyte M-Drive/H RAM (random-access read/write memory) boards I used to have, there is now a single 2-megabyte RAM-disk board—and instead of two 5¼-inch disk drives, there's one 5¼-inch and one cartridge-tape backup. The cartridge will back up an incredible pile of files in a short time. If that seems vague, it's because I haven't read the specs; we simply turned it on and let fly, and as I write this it's backing up the main system track for my hard disk; the operation took about

(continued)
four minutes to store 2.1 megabytes of commands and data, a full 191 files.

Before I got the hard disk, I didn't think I needed one; now I can't imagine how I got along without it. I suspect the same will be true of the tape backup unit.

The new system came with yet another revision of the CP/M 8/16 BIOS (basic input/output system) software, which gets more sophisticated all the time. I guarantee you there will be at least one more change before you read this: just at the moment, if you try to get a "DIR L:"

of the tape backup cartridge, the machine locks up so thoroughly that not even Reset will save it: we had to turn it off and back on again. That's going to be fixed.

WRITE, the text editor I use, can automatically recover any text still in memory or on the RAM disk; but nothing unsaved will survive power-down.

Understand, there is software for getting the tape's directory: and I don't expect it to take them long to come up with a way to recover from "DIR L:"

NAMES, NAMES, NAMES

CompuPro has a problem: every now and again someone looks up the company's financial rating and mistakenly finds the entry for CompuCorp. CompuCorp is almost out of business and didn't do very well in the last year it got rated. CompuPro has actually lost sales because of this. The telephone receptionist is also getting weary of calls for "CompuPoo:

Thus began the great name hunt. CompuPro engaged consultants and did market research. Eventually they selected a name and kept it secret until they completed all the legal work to protect the trademark.

"It used to be," Bill Godbout said, "that you'd consult soothsayers and examine chicken entrails before undertaking something new like getting married or changing the company name:"

"You're doing both--"

"Yes, and now you consult lawyers. They told me I'd be crazy to marry this year. Something about taxes. Next year. They've also approved tell-
ing you the new name. CompuPro is now Viasyn:"

"Viasyn?" I asked. I didn't say it sounded like a medicine. "Why?"

"Everyone can spell it. You studied Latin. Via for way, syn for synthesis..."

CompuPro began as CompuKit back in the days when kit sales were usual in the micro business. (Ezekial, my first friend who happened to be a Z80, began life as Cromemco kits.) When Godbout began to sell assembled and tested gear, the company name was changed to reflect that.

"Why not Godbout Computers?" I asked.

"Market research says some customers think it's blasphemous."

"It's your name."

"Yeah, I know. Anyway, it's Viasyn." Oh, well. I suppose I'll get used to it.

Meanwhile, I suppose I must have collected, over the years, about a dozen letters complaining about my practice of naming my machines. Some readers are mildly annoyed, particularly if they tuned in late and can't figure out which machine I'm writing about—a legitimate complaint, and I'll try to do better in future.

Others are actually furious. One poison-pen letter—unsigned, of course—invited me to do obscene things with Adeline and dared me to print the letter.

My new 8/16 hasn't told me its name yet. I expect I'll learn pretty soon.

WHO CARES?

Suddenly everyone is talking about Framework vs. Symphony, which is better? It's the great software face-off, and every magazine I pick up has an article on the subject. The Ashton-Tate and Lotus PR people must have been working overtime to gin up all this interest.

As for me, I couldn't care less. I'm not likely to use either one. Or see below: if I do, I'm illegal.

THE COPY-PROTECTION PLAGUE

Both Symphony and Framework are copy-protected. I'm not about to entrust anything vital to a copy-pro-
**CHAOS MANOR**

I'm not familiar with Symphony's scheme; for some reason, I don't at the moment have a copy. I do have Ashton-Tate's new programs: Framework and dBASE III. They both use the Prolok copy-protection system. The company that provides it is the Vault Corporation, which is owned in part by Ashton-Tate.

The dBASE III documents come with an errata sheet that tells you: "You have been provided with two original system diskettes in your dBASE III package. Your SYSTEM diskette and its backup are not identical to each other. Each diskette has a unique identity just like a human fingerprint. Therefore, a backup copy from one original diskette will not boot up a copy you make of the other original SYSTEM diskette."

"When you boot up your system, be sure that you are using the same original diskette from which you made your backup copy."

There's also a warning: "Never use the DISKCOPY command to copy the dBASE III files to the new diskettes; use the COPY command instead. Use of DISKCOPY will result in permanent damage to your master diskette."

It does, too. You are urged by Ashton-Tate to make a "backup" copy of your dBASE III system disk; you can then use the "backup" for everything, except that when you start up dBASE III you have to have the original system disk in Drive B until the program is satisfied. If you use Diskcopy to copy the original system disk, then when you try to invoke the program your efforts are met with the message "unauthorized copy," and failure—even though you're using the original system disk. I'm not sure how Ashton-Tate's people have managed that result: one would think that a Copy utility couldn't be induced to write on to a source disk—but apparently they've done it. This makes me wonder: presumably they've come up with some way to alter the Diskcopy utility; do they then...
restore it when they're done mucking about with it? Or have they some crazy file that ought not be copied, and copying it moves it to a different location? I suppose I could figure out how they do it, but I can't make myself care enough.

Incidentally, a number of sources tell me that in PC-DOS the Copy utility is much more reliable than DiskCopy. Again, I don't know why. I find some of the "features" of PC-DOS incomprehensible anyway, and I've never understood why they don't have an obvious equivalent of CP/M's SYSGEN utility, which puts the operating system onto otherwise blank disks.

In any event, the copy-protection nonsense has kept me from experimenting with either Framework or dBASE III. One of these days, I'll get a Copy utility that will let me make backups and put dBASE III on a hard disk, after which I'll take it seriously, or else I'll get around to installing demons to defeat the Prolok scheme.

A demon is a small program that sits in high memory, watches what the Prolok scheme wants, remembers it, and later intercepts the Prolok disk calls to give Prolok what it wants to hear. Demons are not particularly hard to write, and they'll do a good job on many copy-protection schemes.

Until I get the copy protection defeated, though, those programs go back on the shelf: I'll review them some time when things are slow.

FASCINATING

One of my correspondents tells me that Prolok works in mysterious ways. It tries to conceal itself: 99 percent of the Prolok code doesn't exist until the program is loaded and running, at which time it goes through a complex process of encryption that's designed to be difficult to trace.

My correspondent, using PC Trace hardware, was able to follow what was going on—and discovered that Prolok has pulled in about 700 bytes, nearly 10 percent, of the IBM PC's ROM (read-only memory) BIOS code pertaining to disk-control functions.

Is this a copyright infringement? IBM has certainly taken action against other companies making free with its ROM BIOS code.

There's a more serious problem. Ashton-Tate has sent a notice that it expects to have a copy-protection scheme that lets you put its copy-protected software onto your hard disk.

I know of no way to "protect" code on a hard disk without reformatting one or more sectors of that hard disk; or doing something equally drastic, like hiding deleted data address markers or some such. The scheme would involve doing "secret" things to your disk that only the program knows about.

Anyone who lets Ashton-Tate, or Vault, do that to their hard disk has gotta be out of their ever-loving blue-eyed mind!

Actually, I'm not sure we wouldn't be better off if all users took the pledge except for games; we will not buy copy-protected software. If a significant number of us do that, and we can get the other writers to push this stand, we can exorcise the copy-protection devil once and for all.

Even if you're not prepared to go that far, Lotus 1-2-3 plus Borland International's Sidekick (the $79.95 version that isn't copy-protected) has most of the features of Symphony and nearly as many as Framework: and if you already have Lotus 1-2-3, it's a lot cheaper.

UNLOCK IT

There's another solution to the copy-protection plague: programs that enable you to back up copy-protected disks. The best general-purpose backup utility we've found for the PC is System Backup from Norell Data Systems. Be sure to get the latest version; the utility changes with the times. However, no general-purpose Copy scheme will defeat all the different copy-protection schemes, and the latest version of System Backup will not copy dBASE III.

However, a number of Copy utilities, including one for dBASE III, have ap-
peared on public-service electronic bulletin boards. If you have a modem, time, and patience, you can collect a fair number of them for free (except for the phone bills). You could also buy these from user groups, except that user groups put out their free software more or less in the chronological order they received it, so that you'll have to buy a number of disks in order to collect all the different copy-protection breakers. If you do buy a lot of user-group disks, be warned: an awful lot of "free" software doesn't work very well or do anythingrationally useful.

Another alternative is to buy one of Workman's utility disks. Barry Workman collects public-domain software, tests it (but not extensively), edits the documents, and collects the stuff he finds useful onto one disk. At last count he had six disks of CPM utilities and at least one disk of MS-DOS stuff.

Do understand that most of these programs are available free if you look hard enough for them.

A Z80 MODULA-2

Workman has recently concluded an agreement whereby he will be dealer for a Zurich programmer who has developed a native-code Modula-2 compiler for Z80 CP/M machines.

It is a four-pass compiler: that is, it's pretty slow. At present it has no floating point, open arrays, or built-in error procedures (that is: when an error is detected, an error-message file has to be called in to tell you what happened). There's no procedure type—i.e., you cannot pass a procedure name as a parameter in a procedure call.

If you're not a programmer, you'll hate the manual; but all the information you really need is in there. If you know what to look for.
This is a programmer's Modula-2. Unless you're a fanatic, it's not something to learn the language from. However, it is Modula-2 for the 280, and it does compile executable programs. The Zurich people are working on adding the floats. error procedures, and procedure types (in that order).

Recommended for hackers only.

**SI Exists**

For over a year I've heard stories about the SI operating system. It is supposed to be totally portable, multitasking and multiuser, and better and friendlier than UNIX. It will contain the perfect programming language, enable but not require virtual memory and memory management, control any computer, right any wrong, dream the impossible dream...

SI was said to have been created by a Princeton faculty member and would be marketed by Multi Solutions Inc. (MSI) of Lawrenceville, New Jersey. Frankly, it sounded like a scam, and my views weren't changed when I found an MSI booth at a show last year and was told they didn't have a demonstration because their computer was lost on a truck or something. They've since told me they don't really like to ship computers around to shows because the machines often don't do well after transportation; but that wasn't what I heard at the time.

Also, MSI's literature seemed outrageous. They claim: "Only SI Vendors and Users will survive the next revolution." They offer a huge range of products, languages, and compilers that I am certain do not exist. Then I met one of the company's representatives. He's one of those chaps who gets too close to you and talks 50 miles a second. He promises anything, and you don't even get Arpege. After five minutes with him, I was sure it was all a scam. Just to be safe, I sent a message through the net asking if anyone had ever seen SI in operation. None had, but some had met the sales chap who so negatively impressed me; and everyone who had met him, including senior CompuPro officials, came to the same conclusion. SI was vaporware and likely to remain so.

We were wrong. SI exists.

The SI operating system was displayed in a small booth down at the far end of the main hall at COMDEX. The instant I came around I was seized; Robert Knight, formerly of Princeton's computer laboratories, is an old fan of my books and columns as well as the creator of SI, which he had running on an IBM Instruments CS9000 (the processor is a 68000);

(continued)
smARTWORK™ lets the design engineer create and revise printed-circuit-board artwork on the IBM Personal Computer.

Forget tape. Forget ruling. Forget waiting for a technician, draftsman, or the CAD department to get to your project. smARTWORK™ software turns your IBM Personal Computer into a professional, high-quality drafting tool. It gives you complete control over your circuit-board artwork—from start to finish.

smARTWORK™ transforms your IBM PC into a CAD system for printed-circuit-board artwork. Display modes include both single-layer black and white and dual-layer color.

What makes smARTWORK™ so smart is that it understands electrical connections. Conductor spacing is always correct; lines don't become too narrow, and connecting lines do not intersect other conductors. smARTWORK™ can automatically find and draw the shortest route between two conductors. Or you can specify the route.

smARTWORK™ is the only low-cost printed-circuit-board artwork editor with all these important advantages:

- Complete interactive control over placement and routing
- Quick correction and revision
- Production-quality 2X artwork from pen-and-ink plotter
- Prototype-quality 2X artwork from dot-matrix printer
- Easy to learn and operate, yet capable of sophisticated layouts
- Single-sided and double-sided printed-circuit boards up to 10 x 16 inches
- Multicolor or black-and-white display
- 32 user selectable color combinations; coincident points can be displayed in contrasting colors.
- Can use optional Microsoft Mouse as pointing device

System Requirements

- IBM PC or XT with 192K RAM, 2 disk drives and DOS Version 2.0
- IBM Color/Graphics Adapter with RGB color or b&w monitor
- Epson MX-80/MX-100 or FX-80/FX-100 dot-matrix printer
- Houston Instrument DMP-41 pen-and-ink plotter (optional)
- Microsoft Mouse (optional)

The Smart Buy

At $895, smARTWORK™ is an exceptional value, particularly when compared to conventional engineering workstation costs.

Call or write us for more information on smARTWORK™. We'll be glad to tell you how smARTWORK™ helps us design our own circuit boards and what it can do for your business. Send a purchase order, or major credit card number, and smARTWORK™ can be working for you next week.

WINTEK CORPORATION, 1801 South St., Lafayette, IN 47904-2993, Phone: (317) 742-8428, Telex: 70-9079 (WINTEK CORP UO)

WINTEK

WINTEK CORPORATION, 1801 South St., Lafayette, IN 47904-2993, Phone: (317) 742-8428, Telex: 70-9079 (WINTEK CORP UO)

The Smart Buy

At $895, smARTWORK™ is an exceptional value, particularly when compared to conventional engineering workstation costs.

Call or write us for more information on smARTWORK™. We'll be glad to tell you how smARTWORK™ helps us design our own circuit boards and what it can do for your business. Send a purchase order, or major credit card number, and smARTWORK™ can be working for you next week.

WINTEK CORPORATION, 1801 South St., Lafayette, IN 47904-2993, Phone: (317) 742-8428, Telex: 70-9079 (WINTEK CORP UO)

WINTEK

WINTEK CORPORATION, 1801 South St., Lafayette, IN 47904-2993, Phone: (317) 742-8428, Telex: 70-9079 (WINTEK CORP UO)
The world is ready for another operating system.

running here at Chaos Manor.

Knight claims to have SI 90 percent finished. I suspect the rest will take longer to hack than he thinks. (Alex repeats an old motto: the first 90 percent of the work takes 90 percent of the time, and the last 10 percent takes the other 50 percent of the time.) However, Knight just might be able to bring it off. If he does, the potential is high. The world is obviously ready for another operating system; UNIX isn't going to do the job (it's a Thursday night so I can say that). Digital Research is in the doldrums. MS-DOS
is boring. The Modula-2 operating system is exciting, but it's taking forever to get the operating system (as opposed to the language) implemented. I reached the MSI booth just as they were announcing a very large ($40 million or so) development deal with a Japanese software consortium; that surely ought to be enough to keep Knight and his former student John Little working until they get things perfected, and it shows that some big-money people have confidence in them. Meanwhile, they're supposed to send me a copy, and Knight is working on a Modula-2 compiler to run under SI. I'm not holding my breath until MSI delivers, but I wish Knight well.

**The Network Jungle**

If you want computers to talk to each other, you could have problems because there are so many different networking systems. Corvus has Omnitex. NCR bought the Corvus Omnitex chip set, but of course its PC-to-PC net isn't compatible with Corvus Omnitex. Corvus's network for Macintoshes won't talk to regular Omnitex, although a planned higher-price adapter is coming Real Soon Now.

Meanwhile, CompuPro—oops, Viasyn—has opted for Datapoint's Arcnet. AT&T has a PC-to-PC-to-mini-mainframe network system developed largely by Locus of Santa Monica. Ethernet strides along, although the $1000 per connection hobbles it a bit. IBM has a local-area network that isn't really a network at all, but promises two more nets—details not clear to me—within two years.

If there's anything like a hardware standard developing out there, I haven't seen it. The only networking system I have any familiarity with is Corvus's; that really will let you network Apples and IBM PCs, and in theory you could also network S-100 systems like CompuPro, except that Corvus has stopped making and supporting the S-100 network card.

Viasyn makes very good use of Arcnet. I've seen as many as five different kinds of CompuPro systems, with a total of 16 different computers, networked in a very smooth system for shifting files and programs back and forth.

The moral of the story is simple. Unless you're a guru (in which case you don't need my advice), don't get involved in networking until you have to. If you need to network some systems, try hard to stay with one kind
When the going gets tough, Optimizing C86 comes through time and time again. C86 is a highly dependable C compiler that has been optimized through the years to provide the best combination of reliability, speed, and performance.

FAST, IN-LINE 8087/80287 SUPPORT

Now you can take full advantage of 8087/80287 capabilities, allowing your programs to run many times faster than possible with other C compilers. Plus the source code to all routines is included, so you have complete control over all functions.

MORE OF THE FEATURES YOU WANT

• SOURCE is provided to all libraries for total programming control. The source includes a set of standard UNIX routines plus many DOS specific functions.
• SPECIAL IBM-PC LIBRARY including communication, screen, and keyboard handling functions.

COMPUTER INNOVATIONS, INC.
980 Shrewsbury Avenue, Tinton Falls, NJ 07724

© 1984 Computer Innovations, Inc.

• COMPATIBLE WITH WIDELY AVAILABLE LIBRARIES such as HALO screen graphics and many, many others (call for list).
• TOPVIEW SUPPORT LIBRARY provides windowing capabilities.
• SPEED OPTIMIZATION — there's always room to tighten your code, and Computer Innovations has the tools to help. For example, PROFILER-86 helps identify key areas for optimization.

TECHNICAL SUPPORT. NOBODY DOES IT BETTER

Computer Innovations has earned a reputation for providing customer support that is unequaled in the industry. This includes a user's group, an on-line bulletin board, and a user's newsletter.

JOIN THE THOUSANDS OF PROGRAMMERS WHO TRUST AND RELY ON C86

For Further Information Call 800-922-0169. Technical Assistance Call (201) 542-5920. Computer Innovations features a full line of C products including C-to-dBase (dBase development tool) and Introducing C (C Interpreter Language Learning System). Call or write for a product profile.
of net and one brand of computer; if you have to connect a number of different kinds of machines, gulp hard and hire an expert.

**The Great Software Purge**

They haven't begun tearing off the top of my house, but they'll start when the rain stops. That means the attic must be emptied. Which means grief. I've lived here in Chaos Manor for 20 years, and it's a big house. Whenever we accumulated too much junk, I would go up and floor another section of the attic, briefly creating lots and lots of room; but eventually that would fill and I'd have it to do again.

Last time there was nothing left to floor. We have managed to fill 2500 square feet to a depth of three to four feet with every conceivable kind of stuff from wedding pictures to old textbooks to unpublished manuscripts to research notes on articles and books I wrote a dozen years ago. To make it worse, the downstairs is now filled with more stuff that would have been put in the attic if there were any room for it.

It all has to go somewhere else. Fortunately, I have a small pickup truck, and it doesn't cost that much to rent a large (20 by 30) public storage locker; a couple of frantic weekends filled the local school's paper drive bins and half-filled the locker; and then came the moment of truth.

Software flows in here like a river. Understand, I'm not complaining. I'd have nothing to write about without it. and I'm still excited when I open a package with something new and neat and different in it. Moreover, I feel some obligation to the people who sent it, particularly to the small outfits that can't afford advertising. When software first comes in, I try to figure out if it does anything interesting. More on that in a moment; but the bottom line is that if it doesn't look particularly interesting it goes into a holding file that tends to work like a first-in/first-out queue. It's supposed to be first-in/first-out, and it is as long as there's shelf space available; but eventually the shelves fill, the piles start, and we never reach the bottom of the pile.

Clearly, what's needed is more software shelf space—so I made some. Ruthlessly. I went through the Great Software Dumps: shelves, piles, everywhere. If it's dated prior to the spring of 1984 and I don't use it, it went. That wasn't universally true. I found a few things that looked sufficiently interesting to warrant keeping; but the rest went. The disks were stripped out and thrown into a box with a large magnet, and the documents were (continued)
Multicolour graphics on paper and overhead transparency film are now a reality at a price every computer owner can afford – with the new Facit 4550 and Facit 4551 Pen Plotters.

The 6-pen cassette design provides instant colour changes with a multitude of colour set-ups. Longlife ballpoint for paper, oil-based fibre-tip for transparencies and water-based ceramic pens for high-quality CAD drawings are available with 8 to 12 different colours. Two pen-cassettes can be stored in pockets on top of the casing. The pens are securely sealed to prevent drying.

Business graphics, CAD, CAE, science and engineering plottings are handled with a character resolution as high as 10x10 elements per character. Facit 4550 accepts media sizes ISO A4 or 8 1/2 x 11", while Facit 4551 takes media up to ISO A3 or 11x17".

FRIENDS WITH ALL MAJOR COMPUTERS

With HP-Graphic Language emulation and serial/parallel interfaces, the plotters easily make friends with all major computer models on the market.

Software packages include Lotus 1-2-3, Symphony, Fast Graphs, DR Draw/Graph, BPS, etc.

Got the picture? Get it at your nearest Facit representative!
bagged for the paper drive. The hundreds of disks that are involved will eventually be bulk-erased and donated to a school.

Understand, I didn’t like doing this. Some of the stuff was nothing more than early versions and presented no problems—how many copies of WordStar 1.6 do you really need, anyway?

There were programs dating back to 1979 in there. Some was from companies no longer in business; those deserving their fate gave me no pains. Throwing out other stuff created emotional storms. There were programs that represented a lot of work and hope for small would-be publishers; people who need reviews because they can’t afford to advertise. To them I apologize.

What To Do Now
The upshot is that if you have software you want me to look at and you haven’t sent anything since, say, July of 1984, you’d do well to send your latest copies. Whether I do anything with it will depend on a number of factors, many of them out of your control: if your program is Yet Another Example of a program I just received five versions of, you’d better have a snappy cover letter explaining why yours is best.

If you have the address of Chaos Manor, you can try sending it here and hope the most monsters don’t get at it. Otherwise, send review materials to BYTE, but be sure to mark it to my attention; and understand that sending it to me does not get your software to the BYTE New Products Review Editor. You must send two copies, one to me, one to the editorial people, if you want to be considered for both my column and a review in the magazine. BYTE selects what will be reviewed in the rest of the book by rules unknown to me; one thing is certain, they don’t consult me about what they choose. Once in a while the editors in Peterborough will direct my attention to something interesting that I haven’t seen, but otherwise I don’t consult them either.

BYTE returns unreviewed software. I’d go broke doing that, so I don’t. If I like a program and it does something I need done, I’ll use it until something better comes along. If I like it but don’t have any need for that capability, I’ll sometimes ask the publisher if I can send it along to someone who does have a need for it. Otherwise, it goes into The System, sometimes to emerge when I’m stuck for something to write about, sometimes to molder until the next Great Purge.

So Long Has It Been?
Before I get to what I think is interesting software, I need to attack a complaint.

(continued)
INTRODUCING ANTHROCART.
WORKSPACE FOR THE HUMAN RACE.

AnthroCart is a serious workstation. Designed specifically with your uses in mind, the AnthroCart takes up little space, yet expands to grow right along with you and your system. Adjustable shelves, swing-out baskets and other modular components give you the flexibility you need.

AnthroCart is also a real beast of burden, tough enough to support up to 150 lbs., yet mobile enough to roll next door or down the street. And its durable steel-base construction stands up to both human and machine (so much so, we offer a five-year, unconditional guarantee).

To order your AnthroCart, or to get more information, call toll free:

1-800-547-4000, Dept. 501
In Oregon, call (503) 684-3000, Dept. 501.

VAR and dealer inquiries welcome.

AnthroCart shown with printer basket option.
Basic AnthroCart list price $495.
Also available in Oak Finish.
I have several—well, no more than four—recent letters taking me to task for concentrating on big, expensive machines to the neglect of smaller and more affordable ones. "You're too snooty to write about Kaypro, which must be beneath your notice," one letter says. Another reader believes I ignore CP/M systems, "which are really the machines for the rest of us who can't afford the Macintosh." I haven't, he says, reviewed a new CP/M program for years.

My first reaction was a smile, but then I looked back through recent columns, and by golly I have tended to write mostly about Mac, and my CompuPro (oops, Viasyn) 8/16, and the Sage (oops, Stride Micro) 68000 systems. Not exclusively, but I suppose a CP/M enthusiast could accuse me of neglecting 8080 and Z80 stuff. That's ironic: it was only a few years ago that magazines were quoting me as having "pronounced CP/M the standard for the micro industry"; while nearly all the people associated with Kaypro credit me as having given a big sales boost to their "Chevrolet" (I compared the Osborne to the VW, Kaypro to the Chevrolet, and Otrona Attache to the BMW); while I am to this day one of the very few columnists in non-Atari magazines to review Vincent Cate's little Atari Connection that lets you run CP/M on an Atari 800; and I regularly recommend an Atari 800 (or 800-compatible machine), Rana disk drives, and Wico joystick as a good youngster's system they won't grow out of too fast.

It's true that I don't much care for the Commodore machines (even though there are, I guess, more of them than anything else except the doorstop Sinclair); but that's because I do a lot of writing, and I don't much care for any system that uses a television screen or otherwise displays fuzzy and shaky letters.

CP/M systems are a different matter.

A good Z80 CP/M system can do an awful lot; indeed, I'm writing this on a Z80. My accounting system (which I wrote in Compiling CBASIC); The Word Plus, still the best spelling checker on the market bar none; WRITE, the word-processing program I use to create nearly everything I do from books to these columns to my business and personal correspondence; the logbook program, and the index program I use to organize my log: Calendar/I, which organizes my schedule: every one of these programs runs on an 8-bit CP/M machine.

There are many bargains in good CP/M machines, and the Kaypro, with its bundled software, is certainly one of them. Three writing partners: John F. Carr, Dean Ing, and Roland Green have recently started using Kaypro systems, and a fourth, David Gerrold, now writes a column for the Kaypro magazine Profiles. They're all quite happy. Norman Spinrad loves his Kaypro 10.

I've never had a Morrow, but I hear good things about it. Barry Workman is very fond of his Lobo. The Epson OX-10 remains overpriced, but it is probably the cheapest machine you can sit down and begin using with little to no instruction, and if you add SemiDisk's RAM-disk board to the OX-10 it takes a lot of the sting out of its slow disk operations. I still use the wonderful little Otrona Attache on trips, but alas, the Otrona company seems to have made some serious mistakes. If they'd worked as hard to promote the Attache as the BMW of 8-bit systems and continued to add bundled software to their already impressive package of programs, they might well have made themselves a profitable niche.

When all is said and done, though, there isn't very much exciting new software being written for 8080 machines. The reason is easy enough to see. The Z80 has the inherent limitation that it cannot directly address more than 64K bytes of memory. You can come up with ways to get at more memory, but alas, there never developed a standard way to do that; the result is that nearly everyone tried a different

---

**ITEMS DISCUSSED**

<table>
<thead>
<tr>
<th>ITEM DISCUSSED</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 OPERATING SYSTEM</td>
<td>$250-595</td>
</tr>
<tr>
<td>Multi Solutions Inc.</td>
<td></td>
</tr>
<tr>
<td>one-time fee</td>
<td></td>
</tr>
<tr>
<td>660 Whitehead Rd.</td>
<td></td>
</tr>
<tr>
<td>Lawrenceville, NJ 80468</td>
<td></td>
</tr>
<tr>
<td>(609) 695-1337</td>
<td></td>
</tr>
<tr>
<td>SYMPHONY</td>
<td>$695</td>
</tr>
<tr>
<td>Lotus Development Corp.</td>
<td></td>
</tr>
<tr>
<td>161 First St.</td>
<td></td>
</tr>
<tr>
<td>Cambridge, MA 02142</td>
<td></td>
</tr>
<tr>
<td>(617) 492-7171</td>
<td></td>
</tr>
<tr>
<td>SYSTEM BACKUP</td>
<td>$49.95</td>
</tr>
<tr>
<td>Norell Data Systems</td>
<td></td>
</tr>
<tr>
<td>POB 7012</td>
<td></td>
</tr>
<tr>
<td>Los Angeles, CA 90010</td>
<td></td>
</tr>
<tr>
<td>(213) 257-2026</td>
<td></td>
</tr>
<tr>
<td>THE WORD PLUS</td>
<td>$150</td>
</tr>
<tr>
<td>Oasis Systems Inc.</td>
<td></td>
</tr>
<tr>
<td>7907 Ostrow St., Suite F</td>
<td></td>
</tr>
<tr>
<td>San Diego, CA 92111</td>
<td></td>
</tr>
<tr>
<td>(619) 279-5711</td>
<td></td>
</tr>
</tbody>
</table>

---

370 BYTE • APRIL 1985
method, big-memory software developed for one kind of hardware wouldn't run on anything else, debugging was costly. The market base isn't large enough, not compared to the IBM PC or the Apple II (although many Apple IIs do a splendid job of running CP/M programs; it only requires the right hardware addition, something like an Applicard or the Digital Research Gold Card).

There's still some solid progress being made. Every now and then, really good CP/M programs appear. Some, like WRITE, are really excellent—but they're seldom marketed by big concerns willing to spend lots of money on promotion. Many CP/M programs hang around for a couple of years, some never to be seen again, others to reappear in the public domain.

CP/M systems are adequate for many purposes and will be for years, but, alas, the micro industry is moving toward new standards of adequacy that will, eventually, relegate 8-bit CP/M computers to low-cost entry-level systems—or relics, like my neighbor's 1957 Studebaker.

So What Is Interesting Software?

Just at the moment I'm in a dilemma.

I have yet to see any computer system whatever that I would rather sit in front of for days on end than Zeke II, my CompuPro letter-series Z80. The reason is simple. Zeke II doesn't have a terminal. Instead, he has a memory-mapped video board, one of the very last of the boards from the days of Lee Felsenstein and the Sol computer. His video output goes onto a 15-inch white-on-black Hitachi high-resolution monitor that sits about 30 inches from my schnoz. The letters are big enough to read from across the room.

The keyboard is an ancient Archive keyboard. Archive has so thoroughly vanished that I can't find even a forwarding address—but Larry Niven and I have about four spare copies of their Hall-effect keyboards (no switch contacts; the keys may last forever), and except for the new Wico Smartline keyboard with its wonderful trackball, I haven't seen any keyboard anywhere that I'd even consider trading the Archive for.

The text editor is WRITE, which works only under 8-bit CP/M. Again, I have nearly every text editor known to humanity, and I have never found one better for just wailing away when you want to create lots of text—which is, after all, what I do for a living. There are lots of better programming editors, including WordStar (sort of everyone's second-choice editor, isn't it?), WordMaster (nearly neglected by MicroPro), Superwriter, and the EMACS-like editors sold by Mark of the Unicorn; but for just turning out 10,000 words of text in a couple of days, I've never heard of anything better than WRITE.

All my printing, spelling checking, communications with BYTE (hurray! the BYTEnet for authors seems reliable lately; we've had some problems with the local New Hampshire phone system), accounting, check writing, and such like are done on larger systems, particularly the new (not yet named) Viasyn 8/16.

WRITE will, of course, work on a System 8/16, and if need be I can probably hack up a BIOS that lets the Viasyn 8/16 or its companion Shirley (CompuPro 10, now I suppose the Viasyn 10) communicate through the VDM (video-display module) memory-map video board and the Archive keyboard. It wouldn't be easy. Maybe I can talk someone else into doing it. Failing that, I can keep Zeke II and use the new Viasyn networking system to connect up. Either way, I'll get to keep WRITE and my big screen.

Alas, that's no longer quite good enough.

It isn't that there's a better program for text creation than WRITE. It's that WRITE doesn't do a lot of the fancier things that technical books demand. The spelling checker is external; not
I don't really care to be tied to the future of UNIX.

a fatal flaw, because Word Plus is fast, but minorly inconvenient. There’s no good bibliography or footnote capability. The index capability that Peter has worked out is all right, but it is pretty slow and hard for me to use. There’s no on-board sort facility, no calculation, no spreadsheet. No graphics and no graphs. No explicit outline (idea processor) system, although WRITE does have features that, coupled with 500K bytes of RAM disk, work about as well. WRITE is great for letters and manuscripts; it will do a fair job on documents. But not a superb one.

Worse, there’s nothing like Sidekick on Zekke II. I have just got to have that program before my little green telephone index completely disintegrates. Sidekick lets me keep notes on line, calculate, look up phone numbers—not all the word-mashing things I want to do, but some of them.

Meanwhile, Tony Pietsch’s Visasyn S-100 PCompatible video board, which lets you fool the System 8/16 into thinking it’s a 98 percent compatible PCClone (and has a jack on the back into which you can plug the Wico Smartline keyboard) is now in engineering test; I’ll probably have one about the time you read this. I’ll also have, probably, an extremely fast 802.86 processor running the system and 280 slave (SPUZ) boards.

I’ve no trouble translating WRITE files into Wordstar (or any other kind) of files: thus I can, for as long as I want, continue to use WRITE to create text, pass it to some other text editor, and do extensive word processing there. I’ll have to do it for a while. But I am looking for some generic solutions; something I can begin to learn in the expectation that my time won’t be wasted. That may be one big integrated program—but I doubt it. More likely, it’s going to be a whole set of small utilities.

UNIX, of course, has a whole set of such utilities built into the operating system. The UNIX editor is lousy, but how long will it take a good programmer to do the functional equivalent of WRITE in C? A long time, if it’s done as cleverly as Tony Pietsch did it in 8080 assembler: he kept the code amazingly compact. However, the 8088 and upwards family of chips can directly address plenty of memory; there’s no need to keep the code so small.

I don’t really care to be tied to the future of UNIX.

We’ll see. Anyway, that’s some of what I find interesting just now. I suppose it will change one day...

WINDING DOWN
I’m fading fast. Roberta tells me she has the bug, and worse, so does the housekeeper. It promises to be an interesting week.

The books of the month have nothing to do with computers. I read The Roman Empire by Colin Wells (Stanford University Press). He disputes several of Gibbon’s conclusions. Second, The Great Siege, Malta 1565 by Ernie Bradford (Penguin). Finally, Skywalking, The Life and Films of GEORGE LUCAS by Dave Pollock. If you like the subjects, those are good books. Otherwise, forget it.

I’ve recently received three examples of the new Osborne Paperback Software Library, all for the PC and “close compatibles”; alas, no time even to open them. I was somewhat impressed with the packaging.

Now to collapse.
SAVE 50% *

United States □ One Year $21 □ 2 Years $38 □ 3 Years $55
Canada/Mexico □ One Year U.S. $23 □ 2 Years U.S. $42 □ 3 Years U.S. $61
Europe □ $69 (air delivery), U.S. Funds enclosed
Elsewhere □ $37 (surface mail), U.S. Funds enclosed

☐ BILL ME. If I'm not completely satisfied with my first copy, I'll simply write "cancel" across your invoice, mail it back, and my subscription will be cancelled.
☐ Check Enclosed  ☐ Bill VISA  ☐ Bill Mastercard

Please allow 6-8 weeks for processing your subscription.

* off newsstand price of $42.00

Name ____________________________
Address __________________________
City/State/Zip _______________________
Card # ___________________ Expires ______
Signature ________________________

4245
I get a lot of letters, for which I thank you all. Please don't stop writing. However, I can't answer all the letters I receive, either in the column or individually. I can't even answer all the interesting letters. Moreover, even if I select a letter for a reply, there may not be room in BYTE. I have tried in past times to send a copy of the proposed reply to everyone whose letter I selected, whether or not a self-addressed, stamped envelope was enclosed.

I can't do that any longer. If you can't send postage then you can't; but addressing envelopes is eating up too much time. Please?

BORLAND COMPLAINTS
Dear Jerry,

I am writing because, although I believe that the phenomenon represented by Turbo Pascal and Borland is all to the good, I don't think the euphoria spread by you among others, is altogether justified. My complaints follow:

The installation program for Turbo Pascal is enough to drive people like myself with a graphics card and green screen blind. The program tries to write in color and succeeds only in being illegible. There appears to be no way to turn this off. The installation program is a nuisance to use anyway. If you want to change the twenty-third item, you have to go through the previous 22. The defaults on Borland's editor make you use WordStar-type controls and I detest WordStar, so the installation was a fairly lengthy and unpleasant procedure.

The spreadsheet supplied as a sample program is useless. There appears to be no way to change a cell into a formula cell, which is the whole point of a spreadsheet. There is certainly no way documented, and after reading the code for a half hour, I still could see no way, I suppose it is churlish to complain about a free program, but anyway it is worth no more than I paid for it.

Nowhere is it mentioned in the ads that Sidekick is supplied on a double-sided copy-protected disk. So my copy of it is useless to me. I can't use it, and I can't even take it to my office and copy it onto single-sided disks.

Why does Borland International add a $15 charge for foreign orders? And why won't they accept credit-card orders from them? Other software houses accept credit-card orders on foreign orders and either add a small charge for the extra postage or don't even bother to do that. For example, Laboratory Microsystems treats foreign customers exactly the same as domestic. I actually purchased my Borland programs from Micro-Way Inc., which added a small postage charge.

You have often written about absurd software licenses. There is none worse than Borland's, which claims it is "illegal" to use their software without returning the license agreement. I have no intention of returning it under that kind of threat. On the other hand, I do feel bound not to give copies away.

MICHAEL BARR
Montreal, Quebec, Canada

Well, the "license agreement" is a bit silly; I've commented before about the absurdity of trying to cover your flanks with both license and copyright, since the rights conflict. Oh, well.

I've had other outlanders complain about the extra $15; Philippe Kahn of Borland tells me that it costs him that much to fill out all the paperwork in order to export this high-tech item; and he can't afford to pay that himself. I doubt that makes you feel better, but I have no remedy.

I still think Turbo Pascal is one of the best bargains in the business.—Jerry

Maybe It Was Dracula
Dear Jerry,

Your comments about the origin of bug and le cafard in the October BYTE (page 330) were very interesting. I've often heard the story about the dead moth in the relay. It could have happened! But I've also wondered why faulty computers couldn't be "debated."

In late 1962 or early 1963 the IBM 7010 computer was undergoing engineering tests before being released to production. It was being run 24 hours a day, seven days a week, in an attempt to make it fail (it did, numerous times, and fixes were incorporated in the design). Although I was one of the engineers on the design team, fortunately I didn't draw late-shift test duty. Therefore, I was among those who chuckled one morning when we read in the logbook that the guys on the graveyard shift had spent some time dodging a bat flitting around the machine room. We figured they hadn't been getting enough sleep.

Their reputations were restored several weeks later when the machine was being dismantled for shipment to the manufacturing plant or somewhere. Inside the power supply, where it had apparently been electrocuted, was the rapidly decomposing corpse of a bat.

WALLACE B. RILEY
San Francisco, CA

I have heard Grace Hopper tell the story of the first bug—they actually Scotch-taped the moth into the logbook—but I have never heard of bats in the computer before!

When I was an undergraduate, a small bat flew into my room and made a home inside an old Zenith mahogany high-arch vacuum-tube radio my landlady furnished with the room. He—I think he, although with bats it's hard to tell—lived there all winter, eating mostly milk and table scraps and sometimes flying out the window, presumably to hunt insects.

Come spring he left me.

If my bat would live in a radio, I suppose another might find a computer quite cozy...—Jerry

MAC AND LISA
Dear Jerry,

I just have to add my two cents to the MacDebate. As a computer user who is a systems engineer, a systems programmer, and a student of psychology (in particular ergonomics), I feel well qualified to comment on the subject of user-friendliness. However, the problem with the Mac (and with Lisa for that matter) is mostly one of nomenclature.

(continued)
It would be stretching the common definition of computer to call a Wang word processor or an arcade video game a computer, but they sure do need to compute to do their jobs. So it is with Mac and Lisa; they compute, but they are not computers. Perhaps we should call them productivity-enhancement tools.

As a programmer and engineer, I expect a lot of my machines. I expect them to do exactly what I want in exactly the way I want them to. Give me a twelfth-generation computer that reads my mind and for the computer hobbyist, but I fear I'm destined to join the dinosaurs even before the computer is being composed on my HP 110 using Memomaker and will be printed at my office in the morning using an IBM PC XT as a print spooler; I love this machine!

Until then, I'll probably program my own devices. A touch-typist keeps track of eight fingers and two thumbs on 50 keys on a typewriter, more on a terminal or other keyboard device. Does Apple really think that two buttons and two fingers would be confusing? It would also be nice if the mouse had enough mass to let you know it was there; it's just too cheap for my taste.

That's all I have to say that I haven't seen in print already. Two things in parting. First, you might be interested to know that this was composed on my HP 110 using Memomaker and will be printed at my office in the morning using an IBM PC XT as a print spooler; I love this machine! Second, I came in during the second act; could you print a Cast of Characters on occasion (e.g., the part of Zorro is played by a Z-100, etc.)? Thanks and keep up the good work; I always enjoy your column.

CHRISTOPHER NELSON
Croton-on-Hudson, NY

UNIX AND S-100

Dear Jerry,

It may seem to you that there is a future for the computer hobbyist, but I fear I am destined to join the dinosaurs even before I get my machine built. Because I'm not rich, and actually enjoy configuring a system on a board-by-board basis, that's the way I'm buying it. My interests lean toward artificial intelligence, and I want a machine with some horsepower on which I can run UNIX. Yes, I know, UNIX is easy for newcomers to get lost in. I'll be naming my machine "Two Light Zone." Now's the dilemma: CompuPro, Dual, and others make terrific 80286- and 68000-based boards. I've yet to find a manufacturer or dealer that will bundle UNIX with an S-100 processor board. I even went so far as to call Microsoft to hear about the fabled XENIX, only (continued)
SIGN-MASTER™
Number 1 in word charts for presentations and reports

Create powerful headlines using SIGN-MASTER's color, size, and font options. Here we chose Bold Roman font.

Highlight a single character, word or an entire line at the touch of a button. Here we focus attention on one number with color and underline.

Indicate source, date, author, etc. with SIGN-MASTER's footnote option. Bold Standard font was used in this example.

THE BOTTOM LINE
PROJECTED EARNINGS
(Millions of $)

<table>
<thead>
<tr>
<th></th>
<th>'78</th>
<th>'79</th>
<th>'80</th>
<th>'81</th>
<th>'82</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales</td>
<td>86.4</td>
<td>121.0</td>
<td>144.0</td>
<td>163.8</td>
<td>182.0</td>
</tr>
<tr>
<td>Net Income</td>
<td>5.9</td>
<td>8.8</td>
<td>11.4</td>
<td>13.4</td>
<td>15.7</td>
</tr>
<tr>
<td>ROS(%)</td>
<td>6.9%</td>
<td>7.3%</td>
<td>7.9%</td>
<td>8.2%</td>
<td>8.6%</td>
</tr>
<tr>
<td>Mkt. Share</td>
<td>48%</td>
<td>61%</td>
<td>65%</td>
<td>71%</td>
<td>76%</td>
</tr>
</tbody>
</table>

Capital expenditure required: $5 Million
Net present value = $24.25 Million
(opportunity cost of capital = 24%)

(Source: Annual Report)

Develop professional tables quickly and easily. Once data and text is entered, SIGN-MASTER determines the spacing and layout.

Produce SIGN-MASTER word charts on paper, overheads or slides.

With SIGN-MASTER, the possibilities are unlimited:

- Proposals
- Summaries
- Exhibits
- Schedules
- Tables
- Title Pages

SIGN-MASTER is the first program designed to allow everyone from top management on down to produce colorful, attention-gaining "word charts" and tables for presentations and reports.

Created on an IBM PC with a compatible plotter or printer, SIGN-MASTER word charts are superior in quality to typing and less expensive than typesetting or printing.

Professional Word Charts Made Easy
In just minutes, this unique menu-driven program lets you create impressive, easy-to-read documents using words, numbers, lines and SIGN-MASTER's simple-to-master Table Mode.

Number 1 in Quality Text
SIGN-MASTER offers the greatest variety of text options. In addition to 6 fonts, 16 sizes and 8 colors, you can justify text, underline, italicize, set margins, spacing, and more.

An Important Presentation Tool
With SIGN-MASTER and any one of over 40 plotters, you can produce full color originals on paper and overheads. The program also works with most popular printers to create the highest quality printer graphics possible.

Make Super Slides Quickly and Economically
Presentation-quality 35mm slides can be created in-house and inexpensively using the Polaroid Palette in conjunction with SIGN-MASTER.

For reports and presentations that get noticed, get SIGN-MASTER — Number 1 in word charts.

The retail price is $245.00. Call or write today for a complete information kit and a demonstration at your nearest dealer. Decision Resources, Inc., 25 Sylvan Road South, Westport, CT 06880 (203) 222-1974

Inquiry 112

The developers of CHART-MASTER
DecisionResources
Software Designed for Decision Makers

SIGN-MASTER™ is a trademark of Decision Resources, Inc. SIGN-MASTER is available through the following international distributors: Grafik Datentechnik (Goteborg) Scandinavia; Telecomputer Micro Shop [Basen] Germany, Austria; Software Emergents [Rotterdam] Netherlands; Edtech [Paris] France; SunBlok; Bondian [London] U.K.; Cartogram S.A. [Milos] Italy and Commodore and Ernst Werke.
to be told that it was sold to hardware manufacturers and vendors only and that I should contact a dealer with my needs. Sigh. I haven't found a dealer who will sell UNIX with a processor only.

I can't accept that my interests are so strict and narrow as to completely cut me out of the mainstream of the micro marketplace—there are just too many whole systems (68000 or 80286 running UNIX) available as business systems for those with the money to spend. What I can accept is that the market for do-it-yourself systems integrators is dwindling; people are buying more prepackaged systems and doing their own less. It is also far more lucrative to sell prepackaged systems and unbelievably easier to support the same.

It would be possible for me to finance the purchase of a PC AT and find UNIX for it, but I've no way of knowing what compromises were designed into it, nor would I know if the UNIX just transported 8086 code or an honest rewrite to take advantage of the new features in the 80286. (My feelings on the PC are quite strong—the only thing IBM did take a mediocre design and turn it into the standard for PCs, I could have done a much better job. I'd rather build my own.)

I could go on ad nauseam, but I'm sure you get the drift; we're a dying entity being replaced by the bundlers of PCs. Lotus and such. There is much being published on computing, but much on these products, rather than the internals of the machines themselves. It comes down to a definition of hobbyist.

MARK PILON
POB 105
Golden, CO 80402

You have quite a problem! I expect that Steve Ciarcia would be more help than me. Or maybe one of the readers can help.—Jerry

AWARD WINNER

Dear Jerry,

This gem accompanied the Pro-Digicalc spreadsheet program we recently bought. It's one of the more interesting software license provisions I've seen.

"You may not attempt to discern any of the software concepts or architecture from the software."

MICHAEL E. MACMILLAN

Ye gods: if the goal of Why Systems Inc. is to get people to ask "why?" on the theory that it will make their name memorable, they've succeeded. Herewith the receipt of my annual crumbled floppy award for the silliest license agreement yet. The rest of the agreement is standardly stupid: this provision is what wins for them.

Thanks.—Jerry

Computer Stores

Dear Jerry,

Your sympathy for full-price computer store owners is misplaced. As long as computer stores hire teenage technology-toters, reject shoe salesmen, hand-handed repairmen, and other incompetents, and as long as it is cheaper and more cost-effective to get unassembled components in boxes via UPS than to lug...
them home from a full-price computer store, they deserve to fail.

Other types of consumer businesses long ago developed into effective merchandisers. The result is that discounters, mail-order houses, and full-service retailers successfully coexist. When we pay full price for a stereo at Delux Sound, it is because we receive value that Curbside Discount does not offer, and it was worth the price difference. Often that difference is simply the knowledge that our needs were met by an effective product combination in an appropriate price range backed by a reputation of quality service, and that the transaction was accomplished treating us as intelligent human beings rather than suckers to be bilked.

I am a consumer who has too often found that Compu-Bilk and their ilk fail to provide the services they accuse the dis	

count stores of not providing. Often the treating us as intelligent human beings needs were met by an effective product long ago developed into effective mer	

tailers successfully coexist. When we pay discount stores and mail-order houses full price for a stereo at Deluxe Sound,

found that Compu-Bilk and their ilk fail to rather than suckers to be bilked.

Some types of consumer businesses provide a level of service that I earnestly wish I could get at my local full-price store! When full-price computer stores make it clear to consumers what they get for their money, and if that something is of value to the consumer, the full-price computer stores will survive. Too many consumer-savvy people think that consumer marketing is easy and they can make a killing selling them. Evidence of this attitude is your own lament in the same article about product pricing. Add the observation that the inexpensive Borland products were available only by mail order, in spite of strong marketing, until they became hot items and the verdict is guilty. If they fail to repent, they will continue to go out of business.

The halt, lame, and starving of the world need our sympathy and good works. Let's not waste them on the smug and greedy who don't!

Perhaps you're correct; I may have exaggerated the problem. I hope so.—Jerry

MORE ON COPY PROTECTION

Dear Jerry,

People discussing the justifications of copy protection often compare software to books. Proponents of copy protection argue that book owners hardly expect unlimited copying privileges or expect free replacements for lost or destroyed books, so why should software owners expect these privileges? What they say has an element of truth but misses an important point: books are rugged, and floppy disks are fragile. If you were to leave a book on the dashboard of your car in the hot sun for four hours, then take it out, drive over it once or twice, then dribble a little coffee on it, you could still curl up with it that night and have yourself a good read. A floppy disk would hardly fare as well under such abuse. Furthermore, if a word or two of a book were somehow smudged or made illegible, the remaining information in the book would scarcely be compromised, but a garbled byte or a bad sector on a disk could render the whole disk unreadable or ruin the program. Copy protection may or may not be defensible, but I don't think that the justification can be based on a comparison between floppy disks and books.

GARTH WARE
Encinitas, CA

Well said. I agree. Thanks.—Jerry

WORDSTAR TIPS

Dear Jerry,

You have mentioned that WordStar's global reformat command is grossly slow. There is no explicit global reformat command in WordStar (that I know of), so I presume you are using "O"QB to repeat the "B" (paragraph reform) command until interrupted by an <ESC> (or other key-

This is indeed quite slow. But part stroke). This is indeed quite slow. But part

the repetition. If there are many short paragraphs, "O"QB spends much more time pausing than reforming.

However, a digit keystroke ([1-9] following "O"QB) adjusts the duration of the pause. A "1" gives no perceptible pause and speeds global reformattting quite a bit. ("OH" is also needed to prevent hyphen-help from stopping the reformattting for hyphenation. I have patched my WordStar working copies to default to hyphen-help off to avoid this.) Global reformattting is still not blindly fast because of the screen rewrite after many "Bs. But since WordStar can handle a large document in a single file, no operator attention is needed. So when I need a global refor-

mat, I just take a break while the computer does what it's best at! If you haven't tried the speed adjustment on the "O"QB, you may be in for a pleasant surprise.

KIRK A. MATHEWS

Thanks for the tips. WordStar is a pretty good editor; at least, WordStar 3.3 with Orchid's PCturbo 186 board really zings. I still use WRITE on 8-bit for most of my work, but when I do need to use the PCturbo 186 I've actually got sort of fond of WordStar. Thanks.—Jerry

CANADIAN SANYO USER GROUP
c/o Ryte Data
Box 210 Mountain St.
Haliburton. Ontario K0M 1S0
Canada

MAC STREET JOURNAL
NY MacUsers' Group
POB 6866 Yorkville Station
New York, NY 10128

MACSAYS

null-BABEL
Independent Newsletter for CBASIC Users
c/o Ric Allen
799 Converse Dr.
Cincinnati, OH 45240

CENTRAL KENTUCKY
Computer Society
Suite 100. Security Trust Bldg.
Lexington, KY 40507

TIPC USERS GROUP (TI Professional)
4212 San Felipe Rd., #287
Houston, TX 77027

PSU INTERNATIONAL (Victor 9000)
Joe and Ann Reid
POB 3244
Scottsdale, AZ 85257

WASHINGTON AREA RAINBOW
User Group
(DEC Rainbow)
6415 Adelphi Rd.
University Park, MD 20782

CHAOS MANOR MAIL

RICHARD L. SWANSON
North Bend, WA

It depends on the store, of course; I've written my share of diatribes against the smooth-talking imbeciles who don't know a ROM from a cable designation. However, when good stores do hire knowledgeable salespeople and try to provide full service, I'd like to see them succeed.
THE WORLD OF PC UPGRADES

MT10  10 Mbyte Micro Tape Backup  “add it to your XT”  $695
XT01  Micro Tape Backup and 1/2 High Floppy  “add it to your XT”  $895
IS10  10 Mbyte Hard Disk with Controller  $795
IS10R  10 Mbyte Removable Hard Disk/Controller  $1295
IS20  20 Mbyte Hard Disk with Controller  $1095
IS33  33 Mbyte Hard Disk/Controller & Power Supply  $1995
ISPS  Power Supply "Internal" (140 watts)  $295
CC01  Floppy/Hard Disk/Controller Card (1.6 Meg Floppy Compatible)  when included in any of above Hard Disk Systems add $185

NOTE: The above pricing is for internal units. External units are available. Micro Design International has been serving the Computer Industry for over 8 years and all our products carry a one year warranty with a 30-day money back guarantee.

MAGNETIC MEMORY PRODUCTS FOR THE IBM XT/PC AND COMPATIBLES... FROM $695

FREE WITH THE PURCHASE OF ANY HARD DISK

COMMAND ASSIST $49.95
(DOS manual on disk)
...as reviewed in P.C. Week

CACHE ASSIST $49.95
(For faster disk access)

TO ORDER CALL COLLECT
(305) 677-8333
MasterCard/Visa/Check/or Money Order

Micro Design International Inc.
6566 University Blvd., Winter Park, Florida 32792
(305) 677-8333

Inquiry 259
Lasers, Office Publishing, and More

If you want to be "in," introduce something that uses both a microcomputer and the Canon laser-printer engine. That inexpensive, high-resolution, fast, and silent descendant of the copying machine is popping up everywhere. Last spring Hewlett-Packard introduced its LaserJet printer—based on the Canon engine. In January Apple unveiled the Macintosh Office (see our article "The Macintosh Office" in the February BYTE, page 120) and its LaserWriter printer—based on the Canon engine. In the meantime, several other companies have announced laser printers for the IBM Personal Computer (PC) market based on—you guessed it. Plenty of people are betting that the laser printer will take a huge bite out of the daisy-wheel market.

Another, more expensive, way to be "in" is to find an application for the Sun Microsystems workstation. As we mentioned in the January BYTE West Coast ("Light Touches," page 415), that powerful 68010-based microcomputer has impressive graphics, windows, and speed.

So what would be the ultimate "in"? Right again—combine the Canon laser printer and the Sun workstation. Interleaf's Office Publishing System (OPS-2000) and Technical Publishing System (TPS-2000) do just that. Interleaf, based in Cambridge, Massachusetts, is . . . Wait a minute. Did someone say, "Cambridge isn't West Coast?" Well, we anticipated some such opportunistic heckling, and we have some answers.

Much of the Interleaf publishing package comes from right here in Silicon Valley. Ideas and components derive from Xerox Corporation—particularly its famous Palo Alto Research Center (PARC). Alto and Star features, such as icons, windows, and object-action processes, are fundamental to the Interleaf software. And we weren't the only ones to notice: at the Interleaf system demonstration in Menlo Park, we heard a potential customer muttering, "This looks more like Xerox than Xerox." Some of the folks at Interleaf came from Kurzweil Computer Products back east (responsible for the famous reading machine), but there's even a connection there. Xerox bought Kurzweil. Finally, we're fascinated by the competition that is shaping up between the Star clones: both inexpensive machines like the Macintosh and expensive machines like these Interleaf systems.

Interleaf introduced the OPS-2000 system in the summer of 1984 and is now showing off the new, more powerful TPS-2000 system. The TPS-2000 is built around the same hardware as the OPS-2000 but it has improved software. It features new I/O (input/output) support: an optional optical scanner (to convert images into bit-map displays for editing and printing) and a phototypesetter interface. Either system lets you create text and graphics, combine them into documents, and print them on a laser printer.

In general, the idea behind both the Interleaf and Apple systems is that you won't have to take office documents outside the office to typeset them. The print quality from the laser is high enough that you can use its output for forms, reports, proposals, and manuals. (Besides, the printer can produce eight pages a minute.) The Sun workstation screen displays 75 dots per inch; the laser printer prints 300 dots per inch; and a phototypesetter produces 1000 dots per inch or more.

Does office publishing sound like a narrow, specialized field? Interleaf believes that office publishing is a billion-dollar industry that will grow to 8 billion dollars by 1988.

HARDWARE

The Sun workstation with the Sun 2 processor card runs the Interleaf shell (which is written in C) under Berkeley 4.2 UNIX. The shell has its own windows and doesn't let you run other applications concurrently. However, to run another program all you have to do is get back to UNIX. That's easy. In fact, even without any help, the system (continued)
did it several times during the demonstration.

A three-button optical mouse is used to control most of the work on the 19-inch diagonal screen. The 900-by 1152-pixel screen yields the high (75 dots per inch) resolution and a high spoilage factor. What's spoilage? That's what you feel when you play with a superb, expensive machine like this and then have to go home to a bare-bones Kaypro.

The basic Sun workstation has 2 megabytes of RAM (random-access read/write memory) and ROM (read-only memory) and is accompanied by a 42-megabyte hard disk. If the two terminals you can attach to the 42-megabyte system aren't enough, buy the 130-megabyte disk: then you can attach as many as 15 terminals (if you can afford them). Each Sun workstation costs about $22,000. The OPS-2000 system with software, one workstation, printer driver, printer, and lots of support and instruction runs about $52,000. The scanner and scanned-image editing option costs $40,000. The digital-typesetter interface that sets type and produces camera-ready pages (supporting Monotype, Compugraphic, Autologic, and Information International typesetters) begins at $7500, the laser printer at $14,500.

Although Interleaf specializes in turnkey systems, the company is happy to discuss other deals—particularly if you already have a Sun workstation. If you want to use other computers, a simplified version of the OPS-2000 software is available now for Apollo systems—both the bit-slice and the 68000 versions. According to Interleaf software engineer Roch Skelton, ports to other systems are in the works.

The Imagen printer controller accepts fonts, bit maps, and ASCII (American Standard Code for Information Interchange) characters from the Sun workstation and rasterizes them. That is, it converts them into one big bit map for the Canon printer. Skelton notes that the rasterization software is Imagen's, but "We're helping them develop and fix their software." Imagen, by the way, is another one of the many companies populated by refugees from Xerox.

The Imagen printer-controller box has about the same volume as the Canon printer but is shorter and longer. Inside it is a 68000-based computer and 1.25 megabytes of memory. It also interfaces with the new Ricoh Corporation laser-printer engine. Its specifications are about equivalent to the Canon's, but, according to Interleaf, Ricoh has a stronger market in Europe.

By summer 1985 we should see laser printers capable of 600- to 800-dot-per-inch resolution. Interleaf is using such a printer with its own systems. This resolution approaches that
at the low end of typesetting. Interleaf will use a Toshiba printer engine with a Dataproducts controller to produce up to 24 pages a minute by next year. Interleaf hopes to create its own printer controller, which it calls RIP, for Rasterizing Image Processor.

SOFTWARE

Both the OPS-2000 and the TPS-2000 accept text from IBM PCs, Wang word processors, WordStar, Scribe, Nroff, and Troff—in fact, just about any ASCII file. Interleaf has filter programs to massage text that doesn't arrive in usable condition. Documents within the Interleaf systems are saved as standard UNIX files and you can transfer them between UNIX systems using standard utilities. The attributes that dictate the document's format are stored in a separate dot file. Except for a leading period, the dot file has the same name as the ASCII file. The OPS-2000 also directly accepts Lotus 1-2-3 spreadsheet data via a special RS-232C connection and a communications program that are available from Interleaf.

The fonts occupy 2.5 megabytes of disk space and the software occupies another 5 megabytes. The basic OPS-2000 shell takes up 600K bytes of the internal memory; having it in RAM speeds up document formatting. Even 2.5 megabytes of font storage contains only two fonts: a serif style (called Classic) and a sans-serif style (Modern). And the font sizes only go up to 24 point. Future versions will include 36- and 72-point sizes, light and condensed fonts, and other improvements.

Interleaf claims to be ready to support color when the workstation and printer hardware can handle it. "It's an evolving product" was a sentence we heard repeatedly. Skelton kept referring to the many new features in the March software release—more fonts, new paint capacities, section numbering, document indexing, etc.

The OPS-2000 discriminates between four types of graphics: business graphics (charts and graphs that the OPS-2000 software produces), scanned images (input through the special optical scanner that Interleaf sells), simple created graphics (boxes, lines, circles), and Calcomp 960 plotter graphics. Eventually, all of these will be interchangeable. However, the older version of the OPS-2000 has limitations for each. For example, scanned images can't be rotated and Calcomp 960 plots can't be filled because the software doesn't recognize the edges of the figures as continuous. The Adobe PostScript/Apple LaserWriter combination and the Interleaf OPS-2000 are clearly different in that the former can print anything you draw on the screen, the latter cannot.

(continued)
The OPS-2000 includes clip art and a wish book. The clip art is a library of diagrams, mathematical symbols, and graphics that you can use directly or modify. The wish book contains examples of 50 types of business charts that the system can use as a model for your own graphics. You can add your own chart types to it.

The OPS-2000 lets you size, duplicate, move, fill, and rotate images. It uses the same cut-and-paste scheme that the Macintosh employs. The TPS-2000 adds features for typesetting such as multiple-column capability and scaling. Two of the fonts are Vector fonts that can be rotated and sized along with other diagramming objects. Scanned images can be positioned, cropped, sized, rotated, shaded, blended, merged, airbrushed, silhouetted, textured, or overlaid with text.

The Interleaf system uses a series of fixed and floating rectangular windows called frames. [Editor's note: These frames should not be confused with artificial-intelligence frames.] A fixed frame is tied to a particular spot in the text stream and moves on the page when the text is edited. A floating frame is tied to a particular location on the page called an anchor. This frame stays put and the text flows around it. The user interface depends on object-action processes: you select an object—text or graphics—and use the pop-up menus to manipulate it.

WE'RE NOT DONE YET
Will Interleaf's expensive, powerful system win the hearts of office publishers? You can have many but not all of its special features for much less money in the Apple Macintosh Office. To some extent, you can even duplicate the scanner with peripherals such as the Thunderware image digitizer described in our February BYTE West Coast ("What's Next?" page 371). Still, for now the Interleaf systems are more complete and much faster than anything based on the Mac. What happens when the Macintosh gets some publishing software more powerful than MacWrite? We'll wrestle with that question in next month's BYTE West Coast when we look at Aldus Corporation's electronic paste-up and composition program, PageMaker.

FAST FINDER: A MACINTOSH PROGRAMMERS' WORKSHOP
The Apple Macintosh software architecture is based on the concept of a visual shell that insulates you from many of the nuts and bolts of a traditional operating system. Most people are no more familiar with the widely copied, mouse-driven, bit-mapped desktop display that Apple claims offers "radical ease of use". However, much of the criticism of the Mac-
The VERSABUSINESS™ Series

Each VERSABUSINESS module can be purchased and used independently, or can be linked in any combination to form a complete, coordinated business system.

VERSARECEIVABLES™
$99.95
VERSARECEIVABLES™ is a complete menu-driven accounts receivable, invoicing, and monthly statement-generating system. It keeps track of all information related to who owes you or your company money, and can provide automatic billing for past due accounts. VERSARECEIVABLES™ prints all necessary statements, invoices, and summary reports and can be linked with VERSALEGGER™ and VERSAINVENTORY™.

VERSAPAYABLES™
$99.95
VERSAPAYABLES™ is designed to keep track of current and aged payables, keeping you in touch with all information regarding how much money your company owes, and to whom. VERSAPAYABLES™ maintains a complete record on each vendor, prints checks, check registers, vouchers, transaction reports, aged payables reports, vendor reports, and more. With VERSAPAYABLES™, you can even let your computer automatically select which vouchers are to be paid.

VERSAPAYROLL™
$99.95
VERSAPAYROLL™ is a powerful and sophisticated, but easy to use payroll system that keeps track of all government-required payroll information. Complete employee records are maintained, and all necessary payroll calculations are performed automatically, with totals displayed on screen for operator approval. A payroll can be run totally, automatically, or the operator can intervene to prevent a check from being printed, or to alter information on it. If desired, totals may be posted to the VERSALEGGER™ system.

VERSAINVENTORY™
$99.95
VERSAINVENTORY™ is a complete inventory control system that gives you instant access to data on any item. VERSAINVENTORY™ keeps track of all information related to what items are in stock, out of stock, on backorder, etc., stores sales and pricing data, alerts you when an item falls below a preset reorder point, and allows you to enter and print invoices directly or to link with the VERSARECEIVABLES™ system. VERSAINVENTORY™ prints all needed inventory listings, reports of items below reorder point, inventory value reports, period and year-to-date sales reports, price lists, inventory checklists, etc.

VERSALEGGER™
$149.95
VERSALEGGER™ is a complete accounting system that grows as your business grows. VERSALEGGER™ can be used as a simple personal checkbook register, expanded to a small business bookkeeping system or developed into a large corporate general ledger system without any additional software.

VERSAPAYROLL™
$99.95
VERSAPAYROLL™ gives you almost unlimited storage capacity (300 to 10,000 entries per month, depending on the system),

VERSARECEIVABLES™

VERSAPAYABLES™

VERSAPAYROLL™

VERSAINVENTORY™

SATISFACTION GUARANTEED!
Every VERSABUSINESS™ module is guaranteed to outperform all other competitive systems, and at a fraction of their cost. If you are not satisfied with any VERSABUSINESS™ module, you may return it within 30 days for a refund. Manuals for any VERSABUSINESS™ module may be purchased for $25 each, credited toward a later purchase of that module.

To Order:
Write or call Toll-free (800) 431-2818
(N.Y.S. residents call 914-425-1535)
* add $3 for shipping in UPS areas
* add $5 to CANADA or MEXICO
* add $4 for C.O.D. or non-UPS areas
* add proper postage elsewhere
Inquiries 177

DEALER INQUIRIES WELCOME
All prices and specifications subject to change / Delivery subject to availability.

COMPUTRONICS
50 N. PASCACK ROAD, SPRING VALLEY, N.Y. 10977

* TRS-80 is a trademark of the Radio Shack Division of Tandy Corp. • APPLE is a trademark of Apple Corp. • IBM is a trademark of IBM Corp. • OSBORNE is a trademark of Osborne Corp. • CP/M is a trademark of Digital Research • XEROX is a trademark of Xerox Corp.
tosh design has focused on this visual interface. While it protects you from operating-system complexities, it also strips away some powerful features, such as batch operations and macros.

All of this might be forgiven if the visual shell were faster than it is; however, to date, lack of speed appears to be the Macintosh Achilles' heel. If the Macintosh has a design flaw, it is that the goal of user-computer interactivity is often thwarted by performance bottlenecks that force long waits for certain operations.

The Finder, a system program that controls the Macintosh desktop, mediates user interaction with the system and displays a visual, icon-based version of files and folders. The Finder launches a program when you point at it and double-click the mouse button. Its lack of speed comes, in part, from not being coresident; each time you exit an application, the Finder must be reloaded. It also spends a lot of time recalculate the location of documents on the desktop each time it displays. These combine to make the process of switching between applications cumbersome on the Macintosh.

Although Apple hasn't chosen to improve the Finder yet, there is now an alternative. Michael Lehman has developed FastFinder, another desktop for the Macintosh, which is text-oriented rather than graphics- or icon-oriented. Lehman is a software developer and the author of Pascal/MT+. His company, MT Microsystems, was purchased a number of years ago by Digital Research. Lehman worked there for three years until leaving last year to once again form his own company, Tardis Software.

Lehman wrote FastFinder out of frustration with the Finder while developing an application for the Macintosh.

Written in Mac C from Consulair Corporation, FastFinder includes some Mac C run-time libraries that Lehman has specially tweaked. It offers a standard Macintosh display with a series of windows and a menu bar across the top of the screen. Within each window you have access to a line-oriented command processor that you can access either by typing at the keyboard or by selecting options from the pull-down menus.

Although Lehman refers to FastFinder as an "expert's alternative" and includes with it a number of features oriented toward Macintosh programmers who want to automatically link operations in the process of program development, it also should appeal to anyone who wants a faster Macintosh. Lehman claims that FastFinder runs "up to five times faster" than Apple's Finder and that it adds a number of features such as fast disk ejection. FastFinder's greater speed is evident in its ability to both load programs slightly faster and reload several times faster after exiting a program. Additionally, Lehman will soon release a desktop accessory called FastLauncher to be installed with FastFinder. FastLauncher lets you select a new program while still operating in another one and then lets you go directly to the new program without returning to the desktop.

To use FastFinder you must do without the Macintosh graphical interface. (Lehman says he has a graphical version in mind.) FastFinder directories appear as text-only in a list of those files that you can scroll in their individual windows. You can install programs as special menu items and then launch them by dragging the mouse down and clicking on menus; however, you must also give up the Macintosh document and folder metaphor for organizing files.

If you are doing program development on the Macintosh, FastFinder has a series of UNIX-like utilities that you can access from the menu or command line. Many of these commands are already available as small utility programs for the Macintosh; however, FastFinder makes them easier to use because you don't have to leave the desktop to use them. Others, such as combine, compare, and list, are not currently available.

FastFinder includes a scripting capability that you can call with the do command. The do command executes a series of FastFinder commands that can be created with a text editor or a special record command and then stored in a text file. FastFinder can also link applications under script control.

Now that he has finished FastFinder, Lehman is writing a Macintosh application generator for novice and expert programmers.
## Disk Drives

### Apple Compatible Drives

<table>
<thead>
<tr>
<th>Micro Sci A2 or A20/Full HT</th>
<th>Quantity 1</th>
<th>2</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controller</td>
<td>$175</td>
<td>$169</td>
<td>$159</td>
</tr>
<tr>
<td>Elite II</td>
<td>$210</td>
<td>$200</td>
<td>$190</td>
</tr>
<tr>
<td>Elite III</td>
<td>$255</td>
<td>$245</td>
<td>$235</td>
</tr>
<tr>
<td>Controller Controls 4 Drive</td>
<td>$75</td>
<td></td>
<td>70</td>
</tr>
</tbody>
</table>

### CCU Apple Drives

<table>
<thead>
<tr>
<th>CCU Half Height</th>
<th>Quantity 1</th>
<th>2</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>F0525A (slimline w/cable)</td>
<td>$160</td>
<td>$150</td>
<td>$140</td>
</tr>
<tr>
<td>F0525C (fordic)</td>
<td>$169</td>
<td>$169</td>
<td>$169</td>
</tr>
</tbody>
</table>

### 8" Disk Drives

<table>
<thead>
<tr>
<th>8&quot; Disk Drives Siemens</th>
<th>Quantity 1</th>
<th>2</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDD-100-8</td>
<td>$129</td>
<td>$120</td>
<td>$111</td>
</tr>
<tr>
<td>FDD-200-8</td>
<td>$180</td>
<td>$170</td>
<td>$160</td>
</tr>
<tr>
<td>Tandon MP</td>
<td>$160</td>
<td>$150</td>
<td>$140</td>
</tr>
<tr>
<td>M2894-6S, Dual/Dual</td>
<td>$540</td>
<td>$530</td>
<td>$520</td>
</tr>
</tbody>
</table>

### MP Power Supply & Cabinets

<table>
<thead>
<tr>
<th>Power Supply &amp; Cabinets</th>
<th>MP Single Cabinet w/ pwr</th>
<th>Quantity 1</th>
<th>2</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>5(1)/4&quot;</td>
<td>$70</td>
<td>$60</td>
<td>$50</td>
<td></td>
</tr>
<tr>
<td>8&quot;</td>
<td>$80</td>
<td>$70</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>

### Call Toll Free

(800) 847-1718

---

**See Us At**
Coast Computer Fair
March 30 — April 2
Moscone Center
San Francisco
**PRINTERS**

**Okidata 92**  
* NLO cps  
* NLQ Mode  
**$358**  
* FREE IBM Proms

**Printers**  
**Okidata**  
OKI B2A, 120 cps $299  
OKI B3A $549  
OKI B4P $699  
OKI B5S $749  
OKI 22P $559  
OKI 25SP $599  
Call for other Models  
FREE Plug 'n Play Roms w/92 & 93

**JUKI**  
6100, 18 cps Ltr. Quality $399  
6300, 45 cps "New" w/5k Buffer $795

**Brother Dist. by Dynax**  
HR15XL, 17 cps $398  
HR25, 25 cps $659  
HR35, 36 cps $949

**Panasonic**  
1091, 120 cps w/tractor $289  
8510AP $319  
F10, 40X $299  
Printers $1179

**C. ITOH**  

**PRINTERS**  
Epson  
RX-801120 CPS  
RX-80I  
RX-100 +  
FX-80 +  
FX-100 +  
LQ-1000  
JX-80  
**$358**  
We are an Authorized

**MONITORS**

**500A, Hi-Res Amber** $139  
510A, Monochrome $149  
300 Hi-Res ColorCon $279  
500 RGB Composite $599  
DVM Board for Apple $129

**Princton Graphics**  
MAX12, Monochrome Amber $179  
HX12, RGBColor $450  
SR-12 w/Doubler Board $899

**Hayes Modem**  
* 1200 Baud  
* Stand alone RS232  
**$389**

**DEMOEDS**

**Prometheus**  
Pro 1200A Apple Int w/sw $329  
Pro 1200B IBM Int w/sw $299  
Pro Mac w/cable & sw $299  
No. Cable $12  
Alpha Disp. $89  
Options Proc. $89

**Computer Components Unlimited**  
A California Corporation

**Customer Service & Technical**  
(213) 618-0487  
Sales Desk  
(800) 847-1718

No Surcharge for Credit Cards  
All Prices Reflect a Cash, Pre-Paid Discount  
This ad Supersedes All Others
IBM PC System
* 256K Memory
* Two 360K Drives
$1539

IBM PC System
* 256K Memory
* Two 360K 1/2 Heights
* One 10 MB Hard Disk
$2298

IBM AT System
* We have availability
Call for Lowest Quote

Apple
IEcpu ........................................ $790
Macintosh ..................................... 1695
IIc Portable .................................. 899

Kaypro
Kaypro II ..................................... Call
Kaypro IV ..................................... Call
Kaypro 10 ..................................... Call
Kaypro 10X ................................... Call

IBM
PC256K, NoDrives ............................ $1250
PC256K, 1 Drive ............................. 1599
PC256K, 2 Drives ............................. 1599
XT w/10Meg, 256K ........................... $405
Additional Memory 64K .................... 27
ATStandard Config .......................... Call
AT w/20 meg ................................. Call
PCCompatible w/Monitor .................. $1395

Sanyo
MBC550-2 ...................................... $799
MBC555-2 ...................................... 1099
Optional Serial Port ......................... 69
Optional 360K Drive ...................... 159

Compaq
Portable (PC Compatible) 2, 360K Drives
256K of Memory ............................. $2450
Call for all new Compaq's

Quadram
QuadColorCard ................................... $199

AT
Upgrade200ns .................................. $169

PC
PCPeacock ...................................... $215
Parallel ........................................ $79
Serial ......................................... $79

APPLE EXTRAS
ALS
ZEngine ......................................... $119
CPM3.0 Card ................................... 259

RF Modulator .................................. $15
Fanw/Surge .................................... 34
16k Mem. Card 1 yr war ..................... $49

Kraf
Joystick ......................................... $44

Joystick ......................................... $29

Micro Soft
Mouse ............................................ $139
Premium Soft Card IIE ...................... 369
Multiplan ...................................... 189
Soft Card 280I w/64K ....................... 279

Micro Tek
Serial Interface ............................... $89

Joystick ........................................ $39
Select-A-P ..................................... 31
Paddles ........................................ 34

MicroTek

5¼ " DISKETTES
CCU
Sgl/Dbl reinforced hub .............. $16 100 for 140
Dbl/Dbl reinforced hub ............... 19 100 for 170
Not Bulk Packed

Dysan
Sgl/Dbl ......................................... $39
Dbl/Dbl ......................................... 100 for 370

Fuji
Sgl/Dbl ......................................... $19
Dbl/Dbl ......................................... 100 for 250

Sega
Sgl/Dbl ......................................... $26
Dbl/Dbl ......................................... 100 for 340

8" DISKETTES
Dysan
Sgl/Sgl ......................................... $34
Dbl/Dbl ......................................... 100 for 320

Verbatim
Sgl/Sgl ......................................... 53
Dbl/Dbl ......................................... 100 for 480

IBM & APPLE ACCY'S

SUPER SPECIAL
64K Upgrades
* Nine Prime 4164
* 1 Year Warranty
$19 set 1000 $1.70 ea

IBM EXTRAS
Ast research ................................... $249
SixPack+ ....................................... 265
Mega+ .......................................... 49
Add on Ports ................................... 49
Color Card .................................... $185
Graphics Car .................................. 329
Hard Disk
10 Meg. External w/power supply .. $1195
IBM
Monochrome Adapter ....................... $219
Color Card .................................... 239
Paradis
Multi-display Card ......................... $329
New Modular Card ......................... 299
Modular A .................................... RR

Microtek

Quadram
QuadColorCard ................................... $199

AT
Upgrade200ns .................................. $169

PC
PCPeacock ...................................... $215
Parallel ........................................ $79
Serial ......................................... $79

APPLE EXTRAS
ALS
ZEngine ......................................... $119
CPM3.0 Card ................................... 259

RF Modulator .................................. $15
Fanw/Surge .................................... 34
16k Mem. Card 1 yr war ..................... $49

Kraf
Joystick ......................................... $44

Joystick ......................................... $29

Micro Soft
Mouse ............................................ $139
Premium Soft Card IIE ...................... 369
Multiplan ...................................... 189
Soft Card 280I w/64K ....................... 279

Micro Tek
Serial Interface ............................... $89

Joystick ........................................ $39
Select-A-P ..................................... 31
Paddles ........................................ 34

MicroTek

5¼ " DISKETTES
CCU
Sgl/Dbl reinforced hub .............. $16 100 for 140
Dbl/Dbl reinforced hub ............... 19 100 for 170
Not Bulk Packed

Dysan
Sgl/Dbl ......................................... $39
Dbl/Dbl ......................................... 100 for 370

Fuji
Sgl/Dbl ......................................... $19
Dbl/Dbl ......................................... 100 for 250

Sega
Sgl/Dbl ......................................... $26
Dbl/Dbl ......................................... 100 for 340

8" DISKETTES
Dysan
Sgl/Sgl ......................................... $34
Dbl/Dbl ......................................... 100 for 320

Verbatim
Sgl/Sgl ......................................... 53
Dbl/Dbl ......................................... 100 for 480

Lawndale, CA 90260
MULTI-USER SOLUTION for IBM PC, XT, AT

Compare the Solution!

The Multi-User Solution of the future is now available.

Convert your IBM PC, XT, AT or Compatibles to a true multi-user system while maintaining display, keyboard and software compatibility.

Since the KT-7/PC display is the same as your PC monochrome monitor, with its look-alike keyboard, operators will feel they're using an IBM PC and can also use the same software manual. Kimtron's multi-user solution includes file and record locking, shared data access, and communication between users. It is the intelligent alternative.

The KT-7/PC supports Time Sharing, Enhanced Time Sharing and Multi-Processor implementation under PC DOS, MS DOS, UNIX, XENIX, CPM 86, MultiLink, Concurrent PC DOS, and other compatible multi-user operating systems.

Kimtron's multi-user solution may be tailored for cost effectiveness; as low as $1095 for an additional user, and for speeds more than ten times faster than LAN. You can add one or as many as 31 additional users per PC. Kimtron delivers the future now by allowing an ever-widening network of multi-user PCs.

The KT-7/PC may be complemented with one (or more) I/O Card, Memory Card, 8086 Speed Enhancer Card, 80286 AT Card, 8088 Multi-Processor Card, 80186 Speed Enhancer Card, 68000 Card, and related software.

For more information about Kimtron's Multi-User Solution, or general video data terminals for other mini or micro multi-user systems, call your local computer dealers, distributors or Kimtron Corporation Today!

(408) 727-1510

1705 Junction Court
Building #160
San Jose, CA 95131

NOTE: IBM PC, XT, AT, PC DOS, MS DOS, UNIX, XENIX, CPM 86, Multi-Link, Concurrent PC DOS are registered trademarks of IBM Corporation, Microsoft Corp., Bell Labs., Digital Research Inc., Software Link Inc. respectively.
Frame theory used in a database generator

BY DICK POUNTAIN

All the research done so far in artificial intelligence (AI) points to the conclusion that if computers are to even begin to approach the capabilities of the human brain, they must store and retrieve huge amounts of context data. In humans this data appears to be a combination of innate and learned knowledge.

No one seriously suggests any longer that an intelligent computer can be realized purely algorithmically. Rather, the process will be a long and painstaking one that involves stuffing more and more facts into a machine. Some of these will be facts about the world we live in, while others will be rules about those facts. In short, the emphasis will be at least as much on smart data storage and retrieval as it is on computation and calculation.

These ruminations are prompted by a recent encounter with I.D.E.A.S. (Inference Driven Evolutionary Applications Software) from AI Software Ltd., a commercial database-generator package that uses a novel approach influenced by Marvin Minsky's theory of frames. It runs on mainframes, minicomputers, and microcomputers such as the Sage IV and the TDI Pinnacle. You can use it to create accounting, payroll, costing, stock control, and other commercial applications that use a shared database.

FRAMES

In the article "Database Types" by Rich Krajewski (October 1984 BYTE, page 137) there is a summary of six main categories of existing database software. Here's a recap of the three main types: A simple file-management system enables you to build files out of records. Records are self-contained parcels of data structured into fields that are the same for every record. In an address-book application each record would contain a complete name and address, with fields called Name, Street, City, and Phone Number, for example. However, information held in different files is totally separated and can't be related.

At a higher level of sophistication are the relational and hierarchical types. In a relational database, you can relate records from different files assuming that they have at least one field in common. If you have one file of customer names and addresses and another file with their names and credit balances, you can combine the information using Name as the common field and extract records containing name, address, and credit balance for a particular person. In other words, the links between different sets of data are made via the contents of the files, and you can define new relations while you're using the database by using the command JOIN.

In a hierarchical database, you can predefine a tree-like structure of relationships between different files that doesn't depend at all on the record contents. For instance, a file called Customers could own subfiles called Address and Credit Balance. A more complex form of this database allows any file to own any other, so the result looks more like a network than a simple tree.

The I.D.E.A.S. program doesn't fit comfortably into any of these categories. Data is related neither by the contents of data fields nor by a predefined file structure, but by a system of coordinates abstracted from the structure of the real world.

I.D.E.A.S. was conceived about five years ago by a group of commercial programmers who happened upon Minsky's 1974 paper "A Framework for Representing Knowledge," dealing with the AI problem of computer vision. Impressed by the methods expounded there, the group decided to try to set up such a framework for the world of commerce and manufacturing.

In a nutshell, Minsky's frame is a data structure for representing a state of affairs or an activity. The frame has slots that are filled with specific instances, while the frame itself represents the archetypal state. For example, a frame describing a house might have...
Table 1: The prime dimensions used by I.D.E.A.S. to distinguish one piece of data from another.

1) Time. A date or time of day.
2) Financial. A relationship to the accounting system.
3) External trading. A relationship with someone or something outside the enterprise.
4) Batch identity. An identifier for a particular batch of products.
5) Commodity. An identifier of a particular product type.
6) Internal organization. An identifier of a particular department or other subgroup inside the enterprise.
7) Personnel. The people involved.

slots called Living Room, Bathroom, Kitchen, Garage, etc. The contents of these slots might also be frames; the Kitchen frame could have slots Stove, Sink, Waste Disposal, and Freezer. To describe a particular house you fill in these slots with specific makes of appliances and furniture. Equally important, slots can have default values, so partial descriptions can be allowed and reasonable guesses made in the absence of complete information. Groups of frames can share slots, thus relating different classes of objects (as in the relational database); as an example, an Office frame might share the slots Table and Chair with the House frame.

**Prime Dimensions**
The authors of I.D.E.A.S. studied their previous accounting, stock control, payroll, and other programs to see if they could create a frame that would describe all the various kinds of data used. Through trial and error they identified a set of seven dimensions that they claim effectively define any piece of data used in a commercial/manufacturing enterprise. Define in this sense means that a set (between one and seven) of these types (or dimensions) is sufficient to distinguish one piece of data from another. The prime dimensions are shown in table 1.

To see how this works let's look at some examples. You can uniquely define a product's list price using only the commodity dimension (the product code). However, if you have different price lists for different kinds of customers, you need to specify both the external and the commodity dimensions (customer name or code and product number). If prices change (continued)
SuperSoft Languages
When Performance Counts

A programmer’s most important software tool is the language compiler or interpreter he uses. He has to depend on it to work and work well.

At SuperSoft, we believe it. That’s why we offer three excellent compilers: SuperSoft FORTRAN, SuperSoft C, and SuperSoft BASIC. They answer the programmer’s need for rock solid, dependable performance on microcomputers.

SuperSoft FORTRAN
With large code and data.
SuperSoft FORTRAN version 2.0 with large code and data space is now available under MS DOS and PC DOS. It gives you the power to compile extremely large FORTRAN programs on micros. It allows double precision and complex numbers, full IEEE floating point, and a full range of other important features for the serious FORTRAN programmer. Both 8087 support and a RATFOR preprocessor are optionally available.

FORTRAN (CP/M-80 & 86, MS DOS, PC DOS): $325
8087 support: $50 RATFOR: $100

SuperSoft A
A true Ada* subset
SuperSoft A is a completely standard subset of the Ada language, incorporating approximately 63% of the standard Ada syntax and including such important features as packages and separate compilation. For CP/M-80 microcomputers: $300.

SuperSoft C
SuperSoft C is a high-powered, full-featured C compiler designed for serious C applications. It is fast – both in compilation and execution, and it is packed with more than 135 library functions (all delivered in source code form). SuperSoft C produces optimized assembly code, and object code can be ROMed.

SuperSoft C (for CP/M-80, CP/M-86, MS DOS, PC DOS): $350

To order call: 800-762-6629
In Illinois call 217-359-2112

SuperSoft BASIC
The SuperSoft BASIC compiler lets you get serious with business and financial programs. It uses BCD math to give you highly accurate results for demanding applications. SuperSoft BASIC is a true native code compiler that is generally compatible with Microsoft's BASIC interpreter. And an additional bonus – no run time license fee is required.

SuperSoft BASIC Compiler (for MS DOS, PC DOS, and CP/M-86): $300

Also available for programmers:
Star-Edit, a full-featured programmer’s text editor: $225.00
Disk-Edit, an invaluable programmer’s disk data editor: $100.00

SuperSoft, Inc., 1713 S. Neil St., P.O. Box 1628, Champaign, IL 61820

*Ada is a trademark of the Department of Defense
PC DOS is a trademark of International Business Machines
MS DOS is a trademark of Microsoft
CP/M-80 and CP/M-86 are trademarks of Digital Research, Inc.
frequently, you might want to date price lists, adding the time dimension, too.

Take another example. The value of an item dispatched could involve the external (who is the customer?), financial (how is it accounted for?), commodity (what product?), batch id (what order number?), and time (what is the date of dispatch?) dimensions. In a large company the department (internal) could be relevant, too.

Prime elements are those data elements for which only one dimension is relevant (e.g., a customer code, a product code). They behave more or less like keys in a conventional database, but they are special because you can organize them into hierarchical sets. For example, Customer codes can be made a subset of County codes, which are themselves a subset of Region codes. So Fred Bloggs can be situated in Yorkshire, which is situated in Northern England. More than one superset can also exist: Customer code can come under Industry code as well, allowing Fred Bloggs to belong in Heavy Chemicals.

When you create a new data element (e.g., Value of Item) in the I.D.E.A.S. data dictionary, you must fill in a primitive frame that identifies which prime dimensions are relevant for this element. In addition you must specify whether the dimension is fixed—constant data that goes into the dictionary—or floating—data provided at run time. For instance, the name of the department that makes widgets is fixed (unless there's a major company reorganization), but the customer's name is floating (you want to search for customers at run time).

Once you define such a frame, then I.D.E.A.S. knows where to store that type of item. In other words, you can represent every different kind of data object by a point in seven-dimensional space, or if you prefer, you can map individual records into eight-dimensional space—the eighth being an implicit record number. In physical terms, I.D.E.A.S. uses a multitude of single-key indexed-sequential files to represent this multidimensional space, but these files are completely hidden; indeed, the concept of a file name doesn't exist in I.D.E.A.S. The advantage of this sort of organization is that relationships between data items follow automatically; only data items that share at least one prime dimension can be related at all, and the relationship is forged as soon as the items are defined.

When the database is in use, the slots in the frames are filled with real instances of customer names, product numbers, etc., just as the fields of a record would be in a more conventional database.

This approach seems to me to have
TRANSTECTOR Has A Better Way
To Eliminate Computer Malfunctions.

Computer foul-ups are enough to bring out the beast in even the most patient of individuals. But when random logic errors, memory loss, software damage or component failures have driven you to the brink, don’t resort to wielding a sledgehammer. Fight back with TRANSTECTOR SYSTEMS.

TRANSTECTOR is the world’s leading manufacturer of transient overvoltage protection systems for sensitive electronics. In fact, many FORTUNE 500 companies, such as NCR, General Electric Medical Systems and Johnson Controls, have chosen TRANSTECTOR to safeguard equipment they sell.

Now, that same famous technology is available to you. Ask your dealer for details on how TRANSTECTOR protectors can save you money—not to mention your mental health.

TRANSTECTOR

10701 Airport Dr.
Hayden Lake, ID 83835
(208) 772-8515

For the name of the
TRANSTECTOR SYSTEMS
authorized dealer nearest you,
call toll-free:
800-635-2537

©1985 Transector Systems • TRANSTECTOR is a registered trademark of
Transector Systems, Inc.

FREE POSTER!

If you can empathize with the poor soul in this photo, you’ll
want an attractive color poster of it. Just mail us
your name, address, and $1.50 for the poster. (The
poster is a token of this magazine’s appreciation for
your patience.)
tremendous virtues. The structure of the database is formed by factors relating to the real-world domain being dealt with, not by machine- or program-related constraints of the computer. Though l.D.E.A.S. was designed to reflect only the world of commerce and manufacturing, a different set of prime dimensions could easily adapt the concept to another domain. In fact, if you study the I.D.E.A.S. prime dimensions carefully, you'll find that, renamed to be more general in scope, they apply rather well to other activities already. Could a computer scientist prove theorems about the number of dimensions needed for a given domain, or is that to usurp the role of philosophy? How about a database manager called K.A.N.T.?

**PROCEDURE FRAMES**

If you want to actually do something with the data stored in I.D.E.A.S., you must define some elements called *procedural frames*. They are equivalent to programs written in a command language but are produced by an integral program generator after an interactive question-and-answer session.

To produce, for example, an invoicing or stock-control system, you need a collection of data elements and a collection of procedural frames to work on those elements. Typical procedures might be Add Customer Orders or Update Stock Levels. The primitive operations available for use in procedural frames are all prefixed by a $ sign and called $commands. They include commands for formatting input and output screens, repetition and branching, conditionals and subroutine calls—in fact all the elements you'd expect to find in a database command language.

The most important $commands are $LOCATE and $SCAN. These are the high-level instructions that actually traverse the complex network of database relationships and retrieve items for you. Let's say that we have defined a data element called Customer Order that requires a customer code (external), an order number (batch id), and a product code (commodity). If you give $LOCATE those three constraints, it will find a unique order. If you give it only a product code, it will find all customers that include that product. $LOCATE and $SCAN will then retrieve all orders by that includes this product, and $SCAN will then retrieve all orders by all customers that include that product. $LOCATE and $SCAN issued without any constraints will retrieve all customer orders.

$LOCATE really emphasizes the power of the prime-dimensions concept. Since every piece of data knows how it relates to the others, you can do a lot with very little: if, for example, you use $LOCATE to find a date, you can pull out everything that hap-
"I was very impressed with its overall performance and features... excellent interactive and data quality assurance capabilities... relatively easy to master..."

Bill Jacobson
From a feature article in BYTE, October 1984
pended on that day. An Order system with parts explosion is merely a matter of a couple of $LOCATE and $SCAN commands in a loop.

The $NEWLVL and $OLDLVL commands allow you to move up and down between children and parents in a hierarchical set. $CALL allows one procedure to call another, and control returns automatically when the called procedure finishes. Calls can be nested in up to nine levels. And calculation is possible in a procedure, although it's currently restricted to four-function arithmetic on 11-digit floating-point numbers.

Since I.D.E.A.S. is an interactive system, you can create new procedures at any time, or modify existing ones, without necessarily altering any data element definitions at all. This makes testing and maintenance a fairly straightforward proposition. Built-in utilities provide cross-referencing of both procedure calls and data element references by procedures.

THE I.D.E.A.S. SYSTEM

I tested I.D.E.A.S. running on a TDI Pinnacle microcomputer with a Wyse WY-50 terminal. This new machine is similar in many ways to the Sage IV—it's a single-box 68000-based machine with 512K bytes of memory, one 800K-byte floppy-disk drive, and a 21-megabyte Winchester. It runs its 68000 at 12 MHz with no wait states and is normally supplied with a multi-user version of the UCSD p-System and on-board support for up to seven terminals. It's like having a mainframe on your desk, which is just as well since I.D.E.A.S. was born on a mainframe and needs plenty of memory and disk space. The version I tested runs under the alternative mutiuser BOS (basic operating system) and is written in RM COBOL. You can port it to any operating system that compiles RM COBOL, which includes MSDOS and CP/M.

The system consists of three modules, the data dictionary, solution generator, and run-time interpreter, all of which are menu-driven. These modules are entered from a main menu so you never need to exit to the operating system.

In the dictionary you create new data elements or inspect existing ones. When you enter a new name, the system presents you with a blank frame, dimension by dimension, to fill in with float, fix, or irrelevant. And you can list all the elements that use a particular combination of prime dimensions with a menu selection called frame analysis. When searching for existing data elements in the dictionary, you can type part of a name and the system will show you all the entries containing that part.

Data names can consist of up to 20 characters (including spaces), which allows you to use readable English. You may also have several names for one object (aliases) so different departments can employ their own uses; for example, the machine shop and the accounting department might have different terms for talking about batches. The system keeps track of such aliases and prevents them from clashing with the names or aliases of other data items.

You can define a data item as numeric, text, or date type, and you can give it a class. The classes are Journal, Ledger, Property, and Transaction, and they determine what you can do to such an item. For example, if you declare an item as Journal class then you can never delete or alter it, but you can annul it by a later entry, thus preserving a coherent audit trail. You can add to or subtract from Ledger entries but you cannot overwrite them. Properties are ordinary data items with no use restrictions.

In the generator you create procedural frames by first naming them and then roughing them out. Since the target is merely a matter of a couple of $LOCATE and $SCAN commands in a loop. An Order system

and disk space. The version I tested runs under the alternative mutiuser BOS (basic operating system) and is written in RM COBOL. You can port it to any operating system that compiles RM COBOL, which includes MSDOS and CP/M.

The system consists of three modules, the data dictionary, solution generator, and run-time interpreter, all of which are menu-driven. These modules are entered from a main menu so you never need to exit to the operating system.

In the dictionary you create new data elements or inspect existing ones. When you enter a new name, the system presents you with a blank frame, dimension by dimension, to fill in with float, fix, or irrelevant. And you can list all the elements that use a particular combination of prime dimensions with a menu selection called frame analysis. When searching for existing data elements in the dictionary, you can type part of a name and the system will show you all the entries containing that part.

Data names can consist of up to 20 characters (including spaces), which allows you to use readable English. You may also have several names for one object (aliases) so different departments can employ their own uses; for example, the machine shop and the accounting department might have different terms for talking about batches. The system keeps track of such aliases and prevents them from clashing with the names or aliases of other data items.

You can define a data item as numeric, text, or date type, and you can give it a class. The classes are Journal, Ledger, Property, and Transaction, and they determine what you can do to such an item. For instance, if you declare an item as Journal class then you can never delete or alter it, but you can annul it by a later entry, thus preserving a coherent audit trail. You can add to or subtract from Ledger entries but you cannot overwrite them. Properties are ordinary data items with no use restrictions.

In the generator you create procedural frames by first naming them and then roughing them out. Since the target is merely a matter of a couple of $LOCATE and $SCAN commands in a loop.

and disk space. The version I tested runs under the alternative mutiuser BOS (basic operating system) and is written in RM COBOL. You can port it to any operating system that compiles RM COBOL, which includes MSDOS and CP/M.

The system consists of three modules, the data dictionary, solution generator, and run-time interpreter, all of which are menu-driven. These modules are entered from a main menu so you never need to exit to the operating system.

In the dictionary you create new data elements or inspect existing ones. When you enter a new name, the system presents you with a blank frame, dimension by dimension, to fill in with float, fix, or irrelevant. And you can list all the elements that use a particular combination of prime dimensions with a menu selection called frame analysis. When searching for existing data elements in the dictionary, you can type part of a name and the system will show you all the entries containing that part.

Data names can consist of up to 20 characters (including spaces), which allows you to use readable English. You may also have several names for one object (aliases) so different departments can employ their own uses; for example, the machine shop and the accounting department might have different terms for talking about batches. The system keeps track of such aliases and prevents them from clashing with the names or aliases of other data items.

You can define a data item as numeric, text, or date type, and you can give it a class. The classes are Journal, Ledger, Property, and Transaction, and they determine what you can do to such an item. For instance, if you declare an item as Journal class then you can never delete or alter it, but you can annul it by a later entry, thus preserving a coherent audit trail. You can add to or subtract from Ledger entries but you cannot overwrite them. Properties are ordinary data items with no use restrictions.

In the generator you create procedural frames by first naming them and then roughing them out. Since the target is merely a matter of a couple of $LOCATE and $SCAN commands in a loop.
modern microcomputer software.

In addition to trivial but irritating details like its refusal to accept menu selections in lowercase, I.D.E.A.S. is designed around a teletypewriter-style terminal, with a crude line editor for procedural frame construction and no support for modern terminal facilities like cursor addressing or screen highlighting. Much of this is probably due to COBOL's limitations.

The difficulties I had using the program had more to do with this spartan user interface than with the system's underlying concepts. On-line help is minimal and the menus tend to be phrased in I.D.E.A.S. jargon, which is less than clear to a first-time user. And the documentation had few examples, although it is being revised.

There are also some gaps in the specification at the moment, most notably in the area of sorting. There is no provision for lexical or numeric sorting in the procedure generation module. This is not as big a problem as it might appear because I.D.E.A.S. holds and retrieves data already sorted on the prime dimensions. However, it would be better if you could override this with an explicitly requested order in some cases.

I should point out that AI Software doesn't consider I.D.E.A.S. static and is working on a variety of extensions, including a query language (independent of the procedures) and a graphics module. A rewrite (in C) for UNIX systems is also planned; this should provide an opportunity to polish the user interface a little. It is important to note that I.D.E.A.S. is being sold as a tool for systems houses to produce applications for sale on a license basis. It was never intended as an end-user system.

CONCLUSIONS

The concept underlying I.D.E.A.S. seems to me to be a fruitful one. The notion of using dimensions abstracted from the problem domain to structure a database, rather than relationships suggested by the form of data representation (often chosen more by the computer than the user), seems very much in line with the new directions being explored in declarative programming languages.

It would be very interesting to see how well the I.D.E.A.S. concept would translate into Prolog; I suspect that it would go rather simply, since equivalents of $LOCATE and $SCAN are built-in functions of Prolog. I doubt, however, that Prolog is sufficiently known or accepted yet in commercial programming circles for such an experiment to be attractive.

FOR MORE INFORMATION

I.D.E.A.S.
AI Software Ltd.
Park Lorne
111 Park Rd.
London NW8, England

In addition to trivial but irritating details like its refusal to accept menu selections in lowercase, I.D.E.A.S. is designed around a teletypewriter-style terminal, with a crude line editor for procedural frame construction and no support for modern terminal facilities like cursor addressing or screen highlighting. Much of this is probably due to COBOL's limitations.

The difficulties I had using the program had more to do with this spartan user interface than with the system's underlying concepts. On-line help is minimal and the menus tend to be phrased in I.D.E.A.S. jargon, which is less than clear to a first-time user. And the documentation had few examples, although it is being revised.

There are also some gaps in the specification at the moment, most notably in the area of sorting. There is no provision for lexical or numeric sorting in the procedure generation module. This is not as big a problem as it might appear because I.D.E.A.S. holds and retrieves data already sorted on the prime dimensions. However, it would be better if you could override this with an explicitly requested order in some cases.

I should point out that AI Software doesn't consider I.D.E.A.S. static and is working on a variety of extensions, including a query language (independent of the procedures) and a graphics module. A rewrite (in C) for UNIX systems is also planned; this should provide an opportunity to polish the user interface a little. It is important to note that I.D.E.A.S. is being sold as a tool for systems houses to produce applications for sale on a license basis. It was never intended as an end-user system.

CONCLUSIONS

The concept underlying I.D.E.A.S. seems to me to be a fruitful one. The notion of using dimensions abstracted from the problem domain to structure a database, rather than relationships suggested by the form of data representation (often chosen more by the computer than the user), seems very much in line with the new directions being explored in declarative programming languages.

It would be very interesting to see how well the I.D.E.A.S. concept would translate into Prolog; I suspect that it would go rather simply, since equivalents of $LOCATE and $SCAN are built-in functions of Prolog. I doubt, however, that Prolog is sufficiently known or accepted yet in commercial programming circles for such an experiment to be attractive.

FOR MORE INFORMATION

I.D.E.A.S.
Al Software Ltd.
Park Lorne
111 Park Rd.
London NW8, England

In addition to trivial but irritating details like its refusal to accept menu selections in lowercase, I.D.E.A.S. is designed around a teletypewriter-style terminal, with a crude line editor for procedural frame construction and no support for modern terminal facilities like cursor addressing or screen highlighting. Much of this is probably due to COBOL's limitations.

The difficulties I had using the program had more to do with this spartan user interface than with the system's underlying concepts. On-line help is minimal and the menus tend to be phrased in I.D.E.A.S. jargon, which is less than clear to a first-time user. And the documentation had few examples, although it is being revised.

There are also some gaps in the specification at the moment, most notably in the area of sorting. There is no provision for lexical or numeric sorting in the procedure generation module. This is not as big a problem as it might appear because I.D.E.A.S. holds and retrieves data already sorted on the prime dimensions. However, it would be better if you could override this with an explicitly requested order in some cases.

I should point out that AI Software doesn't consider I.D.E.A.S. static and is working on a variety of extensions, including a query language (independent of the procedures) and a graphics module. A rewrite (in C) for UNIX systems is also planned; this should provide an opportunity to polish the user interface a little. It is important to note that I.D.E.A.S. is being sold as a tool for systems houses to produce applications for sale on a license basis. It was never intended as an end-user system.

CONCLUSIONS

The concept underlying I.D.E.A.S. seems to me to be a fruitful one. The notion of using dimensions abstracted from the problem domain to structure a database, rather than relationships suggested by the form of data representation (often chosen more by the computer than the user), seems very much in line with the new directions being explored in declarative programming languages.

It would be very interesting to see how well the I.D.E.A.S. concept would translate into Prolog; I suspect that it would go rather simply, since equivalents of $LOCATE and $SCAN are built-in functions of Prolog. I doubt, however, that Prolog is sufficiently known or accepted yet in commercial programming circles for such an experiment to be attractive.

FOR MORE INFORMATION

I.D.E.A.S.
Al Software Ltd.
Park Lorne
111 Park Rd.
London NW8, England
"JUST WHEN I GET A GREAT IDEA, THE DICTATING MACHINE BREAKS!"
SEE LANIER.


FOR YOUR INFORMATION, WE'RE NOW PART OF HARRIS.

"In Georgia call 404-321-1244 collect.

Lanier, A Harris Company—Thought Processing Division
For more information on the Lanier Pocket Caddy II", circle # 219
Why people choose an IBM PC in the first place is why people want IBM service...in the first place.

After all, who knows your IBM Personal Computer better than we do? That's why we offer an IBM maintenance agreement for every member of the Personal Computer family. It's just another example of blue chip service from IBM.

An IBM maintenance agreement for your PC components comes with the choice of service plan that's best for you—at the price that's best for you.

Many customers enjoy the convenience and cost of our carry-in service. That's where we exchange a PC display, for example, at any of our Service/Exchange Cen

And for those customers who prefer it, we offer IBM on-site service, where a service representative comes when you call.

No matter which you choose for your PC, an IBM maintenance agreement offers you fast, effective service.

Quality. Speed. Commitment. That's why an IBM maintenance agreement means blue chip service. To find out more about the specific service offerings available for your PC, call 1 800 IBM-2468, Ext. 104 and ask for PC Maintenance.

Inquiry 193

Blue chip service from IBM
The Fifth Generation in Japan

BY WILLIAM M. RAIKE

The International Conference on Fifth Generation Computer Systems was held in Tokyo in early November 1984. Over 900 participants, representing 32 countries, each paid about $400 for the privilege of attending. Researchers from all over the world presented 62 research papers, and there were a couple of interesting panel discussions in addition to a highly informative nontechnical lecture by Ezra Vogel (“The Changing Nature of Information Societies”).

The objectives of the conference were twofold: to provide an international forum for the exchange of information, ideas, and research in areas related to “new-generation computing,” and to present to the world a summary of the achievements of the Japanese government-sponsored Institute for New Generation Computer Technology (ICOT) at the end of the first of its three phases. The second phase of the 10-year project will last four years and the third phase, three years.

To gain perspective on what the Japanese have thus far accomplished in their fifth-generation efforts, you first have to look at the objectives for the project. Note that the buzzwords “fifth-generation computing” and “new-generation computing” are recent additions to computer jargon: they’re catchall terms that include such topics as parallel computer-hardware architectures, artificial intelligence, so-called “expert systems,” and “logic programming”—a term used to refer to programming languages such as Prolog.

Started by the Ministry of International Trade and Industry three years ago, ICOT is headed by soft-spoken but intense Dr. Kazuhiro Fuchi. He provides something of a bridge between ICOT’s highly technically oriented people, who live in abstract worlds of “parallel data-flow architectures” and “OR-parallel functions of the KLI kernel language,” and the bureaucrats in the Ministry who fund ICOT’s research.

Members of the Ministry support such general objectives as giving computers a more direct role in “improving management decision making” as opposed to “mere data processing,” providing more “user-friendly interfaces” (including natural-language processing), and “automating software development,” etc. They stress the importance of office automation (word processing, filing, etc.), in which Japan lags behind the U.S. by several years (despite its first-class, inexpensive hardware), and would like to see applications of computers in the medical field, which are nearly unheard of here in Japan. These worthy objectives are not tied exclusively to the Fifth Generation Project, but it is important to note that they have been pursued actively outside Japan for years (and not just by computer scientists). Operations-research specialists and “quantitative-management” people were emphasizing these themes as far back as the 1960s. The Japanese computer industry seems remarkably oblivious to the progress that’s been made in such areas, primarily in software, over the last 15 years; I’ll say more about this observation later.

Dr. Fuchi’s views on the priorities of ICOT are more illustrative of what is actually going on at the Institute. He insists that the Fifth Generation Project is not intended to produce commercial benefits—a claim that is met with skepticism by just about everyone. In his opinion, ICOT’s focus is on basic technological research and development over the long range—10 to 20 years. He doesn’t deny that individual companies might spin off segments of the technology before then, but he disavows that as a goal. He says that ICOT has “no intention of getting involved in the artificial-intelligence business,” although ICOT’s close relationship to AI and expert systems is clearly the basis for the choice of a language like Prolog, a so-called “logic programming” language, as the point of departure for the “kernel language” of the Fifth Generation Project.

The kernel language, which is not supposed to be viewed as a user language, pro-
vides both the theoretical and practical interface between the fifth-generation hardware and software. For the first of ICOT’s three phases, the kernel language (called KLO) is implemented as a macro language called ESP (extended self-contained Prolog). On one hand, it provides a specific machine language used to define the capabilities of specific fifth-generation hardware. On the other hand, ESP, best described as a macro assembly language for KLO, has been used to write the operating system for the “sequential inference machines” (dubbed PSI machines, for “personal sequential inference machines”) that the ICOT researchers will use as basic building blocks to experiment with parallel machine architectures during the second phase of the project. The operating system, called SIMPOS (sequential inference machine programming and operating system), is still incomplete, although enough exists to provide a practical demonstration and research tool.

Interestingly enough, although the PSI machines (six of them exist now, and another dozen or so are scheduled to be completed) are also intended to be used as primary software-development tools for the parallel inference machine (which will be the focus of ICOT’s second phase), software development to date has been done on a DEC 2060 and assorted VAX-11 machines.

Dr. Fuchi is concerned about widespread misunderstanding of the role of Prolog (versus LISP) as the basis for the kernel language; he emphasizes that the concept of a kernel language is distinct from that of a user language, and that, while he feels the decision to go with Prolog has been justified by the first-phase results, there is no need to view that choice as static. In fact, one of the outcomes of the research so far has been to point out areas in which Prolog needs to be extended and modified. ESP is one of the results of that process. When I asked Dr. Fuchi whether he felt ICOT’s commitment to Prolog-like languages might have been too narrow and whether there would be any changes in that commitment in the future, he replied that, if anything, there would be an expanded effort in that direction. The kernel language for the “parallel inference machine” under development in the second and third phases of ICOT is called KL1; it’s going to be based on Concurrent Prolog.

It’s never easy to evaluate the results of basic research and development projects. By the time the dust settles, it’s hard to remember what was new, what was useful, and what just (continued)
CA$HCOM

Stand Alone or Multi-User
POINT OF SALE SYSTEMS

IBM PC/XT
CAN FUNCTION AS
THE SYSTEM'S MASTER

AS A COMPUTER
The stand alone system can be upgraded into a multi­user system to meet growing business needs.
Uses CP/M or MS-DOS (multi-user system only) to run thousands of dedicated software packages available to users.
Displays transactions on a 9" CRT utilizing large characters for easy customer viewing.
Utilizes two way data communications allowing quick and accurate price changes, order processing and file updates.
Can be programmed using familiar languages for easy customization of vertical markets.
Utilizes a database management system to produce meaningful reports on demand.
Can be configured with floppies or Winchester drives (storage capacity-640KB to 80MB).

AS A CASH REGISTER
• Its flexibility in function use exceeds industry standards for E.C.R.’s.
• Uses a programmable, buffered keyboard.

IT IS CAPABLE OF:
• error correct, void, return, refund, entire ticket voiding, manual discount by $ or %, mark down, mark up, coupons, food stamps.
• payment by cash, cheques or credit cards.
• charge and payment posting to in-house accounts.
• black list and credit authorization.
• electronic funds transfer.


In Canada:
4088 Sandwich Street, Windsor, Ontario N9C 1C4 (519) 255-9199
In U.S.A.:
P.O. Box 32524, Detroit, Michigan 48232 (313) 961-3406
Inquiry 11
Back, by popular demand.

Just a few years ago, illegal hunting and encroaching civilization had all but destroyed the alligator population in the south. They were added to the official list of endangered species in the United States. Now alligators have made a comeback.

Conservationists intent on preserving this legendary reptile helped the alligator get back on its feet. Once again some southern swamps and marshes are teeming with alligators.

With wise conservation policies, other endangered species have also made comebacks—cougar, gray whale, Pacific walrus, wood duck, to name a few. If you want to help save our endangered species, join the National Wildlife Federation, Department 106, 1412 16th Street, NW, Washington, DC 20036.

didn't work. I can see two notable successes, though, for the first phase of ICOT's efforts. No matter where the research goes from here, it's plain that a lot of new hardware, a new operating system, and some demonstration applications are up and running together, all based on logic programming. Even though the demonstrations seemed a bit lame to me—mostly rehashed versions of various puzzles, textbook problems, and very small-scale expert systems—no one can say "It'll never get off the ground." The other success, easy to overlook, is that Japan, often criticized for copying, adapting, and perfecting existing technology instead of starting something of its own, has made the world sit up and take notice of the fifth-generation project. Efforts like the European Economic Community's ESPRIT (European Strategic Program for Research in Information Technologies) project, Great Britain's Alvey project, and projects in West Germany and France, not to mention the defense-oriented U.S. Strategic Computing program, have all been undertaken and funded in response to the Japanese initiative.

Another remarkable aspect of the Japanese program is that it's being done in the open, accessible to the rest of the world. With the exception of the U.S., all of the representatives of the various international fifth-generation computing projects urged greater international research cooperation. (The U.S. has strongly oriented its efforts toward goals framed in terms of its national security, and even the budget figures since 1982 are not in the public domain.) Whether this cooperation will amount to anything remains to be seen; the U.S.'s David Brandin, former president of the Association for Computing Machinery, quipped: "Everyone's talking about it, but they all want the other guy to go first." Be that as it may, the Japanese, simply by having held this conference, have set an example of openness that deserves to be imitated.

During the week following the conference, ICOT held an open house for participants at its headquarters in Mita, in central Tokyo. The atmosphere at the open house was much less formal than the conference sessions. We were able to ask the ICOT staff about specific details in their specialties, although we had a few language problems because of the low skill level of the Japanese-English interpreters who were available.

During the open house one of the demonstrations of the PSI machine revealed an interesting aspect of Japanese computerdom. This particular demonstration was intended to illustrate a limited English-language parsing (grammatical-analysis) system. Rather than using the keyboard to type in the sample sentence to be analyzed, the operator used a mouse to select individual words from among 30 or so choices that appeared on a menu. One of the reasons the Japanese are so interested in mice is that few of them ever learned to type—in English or Japanese—except for professional typists and the rapidly expanding ranks of word-processor operators.

Conference participants were also invited to participate in "technical visits" to the facilities of various computer and electronics manufacturers in and around Tokyo. A group of us visited the Hitachi Central Research Laboratory (located in the middle of several acres of beautiful woods near Kokubunji on the western fringe of the Tokyo megalopolis), where we got a close look at the Hitachi S-810 supercomputer.

In contrast to the Fifth Generation Project, the S-810 is Hitachi's entry in the commercial competition for the fastest very-large-scale scientific computer. The S-810 has a peak processing rate of over 600 megaflops (million floating-point arithmetic operations per second), somewhat faster than the U.S.'s mammoth Cray-I. It achieves its speed by using a "pipeline" architecture, in which certain operations can be carried out simultaneously on large volumes of data. The Central Research Laboratory uses the S-810 mainly for VLSI (very-large-
For organizing and protecting your diskettes, the Amaray Media Mate™ is the best file you can own. And you can buy it for just $15.95.*

So be sure you don't settle for less. Or pay more.

The Media Mate from Amaray. Available in two sizes to hold up to fifty 5¼" diskettes, or thirty 3½" diskettes. Ask for it anywhere floppy disks are sold. Or call 800-4-AMARAY for the dealer nearest you.

Amaray International Corporation, 14935 N.E. 95th Street, Redmond, WA 98052.

*Amaray International Corporation, 14935 N.E. 95th Street, Redmond, WA 98052.

*Amaray International Corporation, 14935 N.E. 95th Street, Redmond, WA 98052.

*Amaray International Corporation, 14935 N.E. 95th Street, Redmond, WA 98052.
scale integration) circuit-design studies and for large-scale simulation studies in solid-state physics.

The software for the S-810, however, is pathetically unsophisticated. Other than assembly language, the only language available at the laboratory is FORTRAN. Now, I don't want to put down FORTRAN: it was the second computer language I ever learned (back in the days of FORTRAN II), and it is still one of the best tools around for handling complex numbers and other kinds of heavy-duty number crunching. And there are some fine optimizing compilers for FORTRAN (largely because of some of the main weaknesses of the language, like its lack of structure). But since the supercomputer group is supposed to be on the leading edge of the push for improvement in software productivity, I asked the Hitachi researchers what kinds of software tools were used to speed up program development and improve maintainability. I got blank stares. I then asked if they used something like a RATFOR (Rational FORTRAN) preprocessor. I got more blank stares. I was obviously talking about something completely unknown to them. RATFOR is a preprocessor whose use is essentially free: the source code appears, for example, in the book Software Tools by Brian W. Kernighan and P. J. Plauger, and the actual preprocessing is very fast, even on personal computers. The benefits, in terms of development speed and program maintainability and readability, are enormous. Even more to the point, such programs have been available and widely known in the U.S. and elsewhere for more than 10 years.

Despite the existence of what was supposed to be an "optimizing vectorizing" compiler that would produce machine code to take the best advantage of the S-810's parallel architecture, the Hitachi research lab people admitted that if they simply ran the same FORTRAN code used previously on their M-280 mainframe, a fast but conventional computer, the supercomputer was no faster! To gain any significant speed advantage from the S-810, they needed to manually "tweak" the code. The conclusion from this and other similar experiences: The Japanese computer industry doesn't yet have its act together in the software department and won't, unless a lot more people in the industry sit up and take notice of how to get things done.

COMING UP

Next month I'll tell you about IBM Japan's test production of 1-megabit dynamic RAM chips and about several new computers on the market here.
Fast Cash For Your Slow Modem.

During Hayes Modem Trade-Up Days
Now through April 30, 1985

If your old modem is costing you too much in time and telephone charges, now’s the time to trade up to the industry leader—Hayes Smartmodem 1200™ (operates with the IBM® PC and many other personal computers, including Macintosh™) and Hayes Smartmodem 1200B™ (plug-in board modem for the IBM PC and compatibles).

Cash saving rebate: During Hayes Modem Trade-Up Days, bring in your old modem (any speed, any make) to a participating dealer. And Hayes will send you a cash rebate when you purchase a new Smartmodem 1200. If your used modem is a Hayes, we’ll send you $50; if it’s some other brand, we’ll send you $25. It’s that simple.

What’s more, we’ve just reduced the price of Smartmodem 1200 and 1200B, so you’ll actually save two ways!

Get on-line with the leader. Don’t miss this special opportunity to dramatically increase the speed and performance of your communications. While cashing in on some great savings from Hayes, the telecomputing leader.

Call right away for the name of your nearest participating dealer. And get fast cash for your slow modem.

1-800-255-2550 (In the Continental U.S.).
(Call 1-800-447-0890 in Alaska and Hawaii).
Remember. Our modem trade-up offer is only good through April 30th. So call today.

Hayes Microcomputer Products, Inc.
5923 Peachtree Industrial Blvd.
Norcross, Georgia 30092

Inquiry 181 APRIL 1985 • BYTE 407
Conducted by Steve Ciarcia

STEVE ON MOVs

My Circuit Cellar article in the December 1983 BYTE, "Keep Power-Line Pollution Out of Your Computer," generated a large number of questions relating to various applications of metal-oxide varistors (MOVs). While letters I've answered in BYTE have addressed some of these specific questions, it seems worthwhile to present some additional information.

I chose the Radio Shack MOV because it was easily obtainable, but there are several other sources. The V130LA10A is manufactured by General Electric and should be available from any local GE parts distributor or electronic parts supply house. In addition, General Instrument and Panasonic manufacture similar units. The equivalent Panasonic part number is ERZ-C14DK201 and is available from a local Panasonic stocking distributor or from

Digi-Key Corporation
Highway 32 South
POB 677
 Thief River Falls, MN 56710
(800) 346-5144

The part number is P7063.

The General Instrument equivalent part number S14K130, is available from

Active Electronics
POB 8000
Westborough, MA 01581
(800) 343-0874

The V8ZAI MOV shown in the article is designed for 5-volt DC circuits; the V130LA10A is designed for 130-volt AC circuits.

The maximum continuous AC or DC voltage rating of an MOV should be about 10 percent greater than the line or system voltage for which suppression is desired. A general rule is to select the lowest-value MOV that is equal to or greater than the maximum line voltage. For example, if the line voltage is 120 volts AC, 120 x 1.1 = 132 volts, and a 130-volt MOV should be the value selected. This is true for line-to-line, as well as line-to-ground, applications. Remember, if a possibility exists that any line connections can be made backward, they will (Murphy's law), so consider this in your selection. Also, the V130LA10A MOVs mentioned in my article can be used for the common mode clamping (line-to-ground) on a 220-volt AC line (providing that a polarized plug is used to ensure proper connections) but will be underrated for the differential mode clamping (line-to-line). A General Electric V230LA20A, or equivalent, is a suitable unit.

The energy rating for an MOV should be as high as practical and is often limited by physical space or economic considerations. When surges beyond their ratings are impressed, MOVs usually fail by short-circuiting. If there is no current-limiting protection, large amounts of energy are absorbed, and the MOV can explode. This potential hazard can be minimized by the addition of a fuse, as shown in figure 1, and physically shielding the MOV from surrounding circuits. The fuse should be placed to open the circuit when the device fails, so that loss of transient protection is known.

Device that connect across the power line at the service entrance to reduce the amplitude of large transients and lightning surges are available. They are two-pole, three-wire units that are designed for 120/240-volt single-phase service and are designed to mount in a 1/2-inch knockout in the service entrance box or at the weatherhead. Such devices are available at local electrical supply houses and are in the $20 range. They clip at voltages higher than the MOVs described in my article, so the MOVs should still be used. The General Electric Home Lightning Protector GE Thyrite 9L15BC002, Square D Model J9200-10, and Delta Lightning Arrestor (POB 1084, Big Spring, TX 79720, (915) 267-5268) are suitable units.

All of the sockets on the power strip are in parallel, so it does not make any difference where the MOVs are placed. They can be placed across one socket or spread out for ease of assembly. Should a transient appear on the line, the MOVs will clamp it to a safe level. The important thing is to keep the lead length short so that the clamping voltage is not compromised.

If your power strip contains a line filter, it is desirable to place the MOVs downstream (equipment side) of the filter. The filter will attenuate some transients and may possibly extend the life of the MOV. Several companies manufacture power-line filters that are suitable for such applications. They include

Corcom Inc.
1600 Winchester Rd.
Libertyville, IL 60048
(312) 680-7400
Type 5VK1 or 5VK3

Corinell-Dubilier Electronics
150 Avenue L
Newark, NJ 07105
(201) 589-7500
Type APFS11L

Delta Electronic Industry USA
1355 Yosemite Way
Hayward, CA 94545
(415) 785-5231
Type OSDBAG5

Potter Company
POB 337
Wesson, MS 39191
(601) 643-2215
Type 600A5

These filters are equivalent to the Radio Shack part number 273-100 listed in my article, which is no longer being stocked. Write the manufacturers for additional information and the address of your nearest supplier.—Steve

TELEPHONE-LINE PROTECTION

Dear Steve,

I enjoyed your article on the musical telephone bell greatly (July 1984). It's a

(continued)
Equipping a PC for business takes a hard disk. Turn to SYSGEN™ when you want the best.

Smart disk users insist on tape for data file back-up. SYSGEN is the leader.

And, if your needs begin to exceed the limits of PC memory and slot expansion, SYSGEN has the solution.

18 Megabytes and 6 expansion slots for the PC, XT, or AT™. $1995.

For demanding PC owners who need more versatility and memory, Sysgen introduces a powerful, reliable, and unique solution: The DISK I/O™.

It includes 6 new expansion slots for your choice of plug-in boards, plus, an 18 MByte hard disk—all for slightly more than a hard disk alone.

Sysgen offers the full range of expansion, storage, and tape back-up solutions with the best performance ratings for the IBM® PC, XT, AT and compatibles.

For more information on the Sysgen family of expansion products contact your local dealer.
nice project, and I plan to construct one.

Two questions. You mentioned that the telephone company occasionally puts a 200V test signal on the line. Doesn't this have an adverse effect on modems and electronic equipment such as Demon Dialers?

Also, as a practical matter, what are the risks from lightning to equipment connected to the telephone system? Again, I'm concerned about modems and electronic dialers. I have seen protection devices marketed for telephone equipment, but I don't know if they're really needed and if they really work.

Thanks for the information. I always look forward to your articles as the highlight of BYTE!

CHARLES J. OKSTEIN
Willimantic, CT

Commercial telephone equipment is designed to survive all normally occurring voltages on the telephone line. In the case of the Whimsi-Bell, the TCM1202A has the protection built into it, and none of the other components are connected to the line. In some cases, a DAA (data-access arrangement) is required to provide protection for both the equipment and the telephone lines.

The telephone company incorporates lightning protection into the telephone-line system to protect its own equipment, so customer equipment that meets the telephone company's specifications is pretty safe. Lightning arrestors are installed where the lines enter customer buildings to protect equipment within. Of course, there is always the possibility of damage from a lightning strike on the lines in your immediate vicinity. Local protection in addition to the normal arrestors might be justified in some cases.

---Steve

TRUMP CARD FOR TRS-80?

Dear Steve,

I read with interest your pair of articles on adding the Z8000 coprocessor to the IBM PC. I do not have an IBM PC or any of the umpteen PC-compatible computers. I'm still stuck in the 8-bit world with a TRS-80 Model I and a Big Board II. I was wondering if you would consider (if it is possible) rewriting the loader program for Z80 machines. I am sure that there would be a large market for the board and software in the 8-bit market.

If the above is not possible, would it be feasible to buy a Co-Power 88 (an 8088 coprocessor) for the Big Board II and redesign the Z8000 board a little for use in my STD bus connector? I would think that the loader program for the Z8000 would have to be modified, but not as extensively as rewriting the loader for use on a different processor.

Now, down to the business end. How much would it cost to buy the software mentioned in your article? And where can I find the following integrated circuits?

Z8001 Processor
Z8581 Clock Generator
Z8030 Serial Communications Controller
Z8036 Counter/Timer and Parallel I/O Unit

MARK HAMPTON
Cocoa, FL

(in continued)
Dear Subscribers & Advertisers,

April 1985

Byte has upgraded the Reader Service benefit by offering TIPS, Telephone Inquiry Processing System, to better service both our subscribers and our advertisers. TIPS is a subdivision of AIMS, Automated Inquiry Management System.

TIPS expedites the Reader Service process by enabling our subscribers to directly input their Reader Service request into our Reader Service computer. Subscribers use TIPS as an alternative to the Reader Service postcard. TIPS eliminates the mailing and handling delays of the Reader Service postcard inquiry, and any additional delays at the fulfillment house. Overall, TIPS cuts Reader Service response time by ten business days, so that subscribers get their requests to the advertisers faster.

Using TIPS is fast, efficient and easy. Subscribers with touch tone phones access our Reader Service computer using their personal subscriber I.D. number. They then key in their requests for additional information pertaining to advertised products. Every issue of Byte provides subscribers with TIPS instructions below our Reader Service index.

Advertisers benefit too. The direct inquiry requests through TIPS enable advertisers to receive requests from consumers more quickly. Advertisers responding via TIPS are active, interested prospects. They want your product information fast. They pay for the phone call in order to obtain the information they need as soon as possible. Advertisers can easily identify the TIPS requests because all TIPS leads are marked.

We at Byte believe access to TIPS is an excellent benefit. We are pleased to be able to offer such a state-of-the-art system to our subscribers and to our advertisers. The implementation of TIPS and the use of the standard Reader Service postcard will continue to develop and maintain solid communications between our readers and our advertisers. We feel that this is very important as we remain the leader of consumer computer magazines.

Sincerely,

Cynthia D. Sands
Cynthia D. Sands
Reader Service Coordinator

P.S. Look for further information on TIPS.
Since the Trump Card articles appeared, I have had many requests to modify the Trump Card hardware and software to operate on different machines. Unfortunately, each system would require a slightly modified hardware and software interface. The hardware and software design time to do this would severely cut into my other Circuit Cellar software design time to do this would be worth the system.

The Trump Card has been tested on several PC-compatible systems using MS-DOS and has worked fine. Since the Co-Power 88 operates under MS-DOS, it is possible that the Trump Card software will work with the system. However, since I have never tried this configuration, I cannot guarantee that it will work.

Under my "Reward for Diligence" program discussed in the first part of the Trump Card article, I will send you the Trump Card software and the Trump Card manual for the cost of duplicating and mailing ($30), if you send me a picture of your Trump Card project.

The Zilog chips can be obtained from any of the Zilog distributors near you. In California, the Zilog sales offices are Dynex-A-Mark Corp. in Clearwater and Palm Bay and Technical Center-Zilog Corp. in Clearwater.—Steve

EMI

Dear Steve,

Because I live in a metropolitan area, EMI is a problem. Within a few blocks of my apartment are a 10-KW (100-kW ERP) FM transmitter, about six microwave relays, and possibly other transmitters. I want to retrofit an old TRS-80 Model I, printer, video display, and other peripherals. What regions of a computer are most susceptible to EMI? Would replacing LS ICs with HCT or HC ICs increase immunity to effects of EMI?

JAMES HAWKINS
Kansas City, MO

Electromagnetic-interference problems in microcomputer systems can come from any number of sources. Usually, electrical noise from an outside source is induced into cables that lead into (and out of) the computer. Sensitive circuits in the computer can also be affected if they are not properly shielded.

Since the subject of electromagnetic-interference elimination is too long to be properly discussed in a letter, I will refer you to an article I wrote that covers the subject in depth. The article, appropriately called "Electromagnetic Interference," can be found in the January 1981 BYTE.

—Steve

Over the years I have presented many different projects in BYTE. I know many of you have built them and are making use of them in many ways.

I am interested in hearing from any of you telling me what you've done with these projects or how you may have been influenced by the basic ideas. Write me at Circuit Cellar Feedback, POB 582, Glastonbury, CT 06033 and fill me in on your applications. All letters and photographs become the property of Steve Ciarcia and cannot be returned.

CIARCIA FEEDBACK

---

412 BYTE • APRIL 1985
At $105, Micromint's System Controller is a dirt cheap development tool without equal.

It'll turn your IBM PC into a design laboratory that saves your company thousands of dollars and months of evaluation. You'll save headaches, too. When you tell your boss the first phase of your pet project is only going to cost $105, watch the relief begin.

Micromint's Z8 System Controller, the tiny computer on a board, is the cornerstone of an entire family of integrated, intelligent products from AC/IO to smart terminals. Able to speak three languages (BASIC, FORTH and Assembly), this tiny 4" x 4 1/2" computer supports 6K bytes of EPROM or 4K bytes of RAM, two parallel ports and an RS-232 serial port.

If learning a new language isn't in your future, no problem. WRITE YOUR PROGRAMS IN BASIC AND TRANSLATE THEM INTO FORTH WITH A SINGLE KEY STROKE. Our specially masked chip will let you know in an instant whether your program is operational. You'll be building before the competition is de-bugging.

For OEM Orders and Customer Assistance Call Our Toll Free Line 1-800-521-0044

ORDER PRODUCT CODE BCC99.
BOOKS RECEIVED


(continued)
There's only one segment of business which has the expertise to decipher reams of information on micro technology. They are the only individuals qualified to advise their companies on micro purchases. They are the elite who buy and influence billions of dollars in business micro purchases.

They are The BYTE Group. Even as you read this ad, thousands of them are quietly making recommendations in companies all around the world. You should keep them up to date on what you have to offer.

Call us. We’ll lend you their ear. Because BYTE is business. And the business is micros. If you want to reach the business professional who is at the leading edge of micro technology, advertise in BYTE. For more information, call (603) 924-9281.
Announcing

INTERACTIVE VIDEODISC WEST

May 15-17, 1985

Los Angeles Airport Hilton

This conference includes presentations on Interactive Videodisc covering:

Technologies
- Level IV Videodisc
- Sound over Still Frame
- Compact Disc/Read Only Memory (CD/ROM)

Applications
- Education and Industrial Training
- Job Performance Assistance
- Public Information
- Archival Storage

Program Design
- Authoring Systems
- Effectiveness Criteria
- Courseware Transportability

Pre-conference tutorials are scheduled for May 14.

Exhibits by Pioneer, Sony, JVC, 3M, EECO, DEC, and other leading suppliers of hardware, software, and interface systems will be available to conference registrants in an adjacent exhibit area.

For further information contact:
Society for Applied Learning Technology
50 Culpeper St., Dept. B
Warrenton, VA 22186 (703) 347-0055

PC/MS-DOS, CP/M (Apple and Macintosh formats slightly more expensive) Add $2 per book for shipping and handling.

VISA, MasterCard, AMEX, Check
P.O. Box 379, ALBURG, VT 05440
(514) 933-4918

BOOKS RECEIVED

THE DESIGNER'S GUIDE TO DISK DRAVES. Edward R. Teja. Reston Publishing. 1985:
142 pages. $29.95.

DESIGNING APPLE GAMES WITH PIZAZZ. Greg Minter and John Ruffner. Datamost. 1984:
328 pages. $14.95.

232 pages. $24.50.

DIGITAL SYSTEMS, PRINCIPLES AND APPLICATIONS. 3rd ed. R. Tocci. Prentice-Hall. 1985:
608 pages. $29.95.

DISCOVERING SCIENCE ON YOUR ADAM WITH 25 PROGRAMS. John Pellino, Mary Ellen Adamo, Sandra Dobrowsky, and Donald P. Lasalle. lab Books. 1984:
192 pages. $9.95.

ESSENTIAL APPLICATIONS FOR THE IBM PC AND XT. Patrick Plemmons and the editors of PC World. Simon & Schuster. 1984:
256 pages. $16.95.

FINANCIAL DECISION MAKING WITH YOUR TRS-80 MODEL 100. Leslie Sparks. lab Books. 1984:
142 pages. $9.95.

THE FIRST BOOK OF ADAM THE COMPUTER. Arthur Dent. lab Books. 1984:
208 pages. $9.25.

FUN. GAMES & GRAPHICS FOR THE APPLE II, IIE & IIC. Paul Garrison. lab Books. 1984:
316 pages. $13.95.

THE FUTURE OF SEMICONDUCTORS, COMPUTERS, ROBOTICS, AND TELECOMMUNICATIONS. Metropolitan Books. 1984:
254 pages. $19.95.

GAMES & UTILITIES FOR THE TRS-80 MODEL 100. Ron Kart. Petrocelli Books. 1984:
204 pages. $16.95.

GETTING THE MOST FROM YOUR POCKET COMPUTER. Stephen F. Nowak. lab Books. 1984:
236 pages. $13.95.

GETTING STARTED IN PASCAL PROGRAMMING. J. Camera and F. Puccetti. lab Books. 1984:
204 pages. $12.95.

HANDBOOK OF BAR CODING SYSTEMS. H. E. Burke. Van Nostrand Reinhold. 1984:
240 pages. $42.50.

HIDDEN POWERS OF THE TRS-80 MODEL 100. Christopher L. Morgan. New American Library. 1984:
254 pages. $19.95.

300 pages. $19.95.

THE HOME COMPUTER WARS. Michael S. Tomczyk. Greensboro, NC: Compute! Publications. 1984:
318 pages. $9.95.

HOW TO COPYRIGHT SOFTWARE. M. J. Salone with Stephen Elias. Nola Press. 1984:
256 pages. $21.95.

HOW TO PROGRAM YOUR IBM PC COLOR & GRAPHICS. Carl Shippman. HPBooks. 1984:
320 pages. $21.95.

(continued)
RUSH POSTAGE-PAID CARD FOR YOUR FREE CATALOG

- **COMPUTER ELECTRONICS** total computer system training includes powerful computer, disk drive, printer, test equipment and Discovery Lab.
- **TV/VIDEO/AUDIO SERVICING** includes training with 25" color TV, VCR, videotaped lessons.
- **ROBOTICS & INDUSTRIAL CONTROLS** training features remote controlled mobile programmable robot you build, experiment with and keep.
- **DATA COMMUNICATIONS** includes computer, modem, and exclusive NRI training network to put you on-line in one of today's fastest growing fields.
- **INDUSTRIAL ELECTRONICS** prepares you to service and maintain computer-controlled industrial systems. Includes color computer, diagnostic equipment and Discovery Lab.

Accredited by the National Home Study Council

All career courses approved under G.I. Bill.  □ Check for facts.
NRI Schools
McGraw Hill Continuing Education Center
3939 Wisconsin Avenue
Washington, D.C. 20016-9973
Train for the Fastest Growing Job Skill in America

Only NRI teaches you to service and repair all computers as you build your own 16-bit IBM-compatible micro

As computers move into offices and homes by the millions, the demand for trained computer service technicians surges forward. The Department of Labor estimates that computer service jobs will actually double in the next ten years—a faster growth than any other occupation.

Total System Training

As an NRI student, you'll get total hands-on training as you actually build your own Sanyo MBC-550-2 computer from the keyboard up. Only a person who knows all the underlying fundamentals can cope with all the significant brands of computers. And as an NRI graduate, you'll possess the up-to-the-minute combination of theory and practical experience that will lead you to success on the job.

You learn at your own convenience, in your own home, at your own comfortable pace. Without classroom pressures, without rigid night-school schedules, without wasted time. Your own personal NRI instructor and NRI's complete technical staff will answer your questions, give you guidance and special help whenever you may need it.

The Exciting Sanyo MBC-550-2—Yours To Keep

Critics hail the new Sanyo as the "most intriguing" of all the IBM-PC compatible computers. It uses the same 8088 microprocessor as the IBM-PC and the MS/DOS operating system. So, you'll be able to choose thousands of off-the-shelf software programs to run on your completed Sanyo.

As you build the Sanyo from the keyboard up, you'll perform demonstrations and experiments that will give you a total mastery of computer operations and servicing techniques. You'll do programming in BASIC language. You'll prepare interfaces for peripherals such as printers and joysticks. Using utility programs, you'll check out 8088 functioning. NRI's easy step-by-step directions will guide you all the way right into one of today's fastest growing fields as a computer service technician. And the entire system, including all the bundled software and extensive data manuals, is yours to keep as part of your training.

100-Page Free Catalog Tells More

Send the postage-paid reply card today for NRI's big 100-page color catalog, which gives you all the facts about NRI training in Microcomputers, Robotics, Data Communications, TV/Video/Audio Servicing, and other growing high-tech career fields. If the card is missing write to NRI at the address below.

Your NRI Course Includes

A Sanyo MBC-550-2 Computer with 128K RAM, Monitor, Disk Drive, and "Intelligent" Keyboard; The NRI Discovery Lab®, Teaching Circuit Design and Operations; a Digital Multimeter; Bundled Spread Sheet and Word Processing Software Worth $1500 at Retail—and More.

NRI is the only home study school that trains you as you assemble a top-brand microcomputer. After building your own logic probe, you'll assemble the "intelligent" keyboard... then install the computer power supply, checking all the circuits and connections with NRI's Digital Multimeter. From there you'll move on to install the disk drive and monitor.

McGraw-Hill Continuing Education Center
3939 Wisconsin Avenue, NW
Washington, DC 20016

We'll Give You Tomorrow.

IBM is a Registered Trademark of International Business Machine Corporation.
WIRELESS FILE TRANSFER.

APPLE TURNOVER™

A "wireless file transfer" package for the IBM PC to Apple II and back, and back again. Apple turnover is a firmware board which fits into any slot in the IBM PC or compatible, and software running under MS-DOS®. No modems, no serial links, no hassles. no problems. APPLE TURNOVER™ will format Apple CP/M® and Apple DOS 3.3 disks. Leave your IBM and Apple computers where they are. Simply bring your Apple disk to work and transfer your file to an MS-DOS disk. Allows for minor modifications to test and data files. It's a simple, inexpensive, fast high performance alternative to complicated serial links and modems.

XENO-COPY PLUS™

A "wireless file transfer" software program for your IBM PC and most PC compatibles. XENO-COPY PLUS™ copies files between IBM-PC® and many CP/M® and foreign MS-DOS disk formats. An uncomplicated and inexpensive way to transfer text and data files. XENO-COPY PLUS™ allows you to format, copy from and write to nearly eighty different formats. Also, allows for minor modifications to text and data files. XENO-COPY PLUS™ can be upgraded to XENO-DISK™ for the price difference.

XENO-DISK™

The high performance model of XENO-COPY PLUS™. XENO-DISK™ formats, writes to, and copies from over 100 different disk formats including 40 and 80 track 5½" disks. XENO-DISK™ supports the use of several 8" disk formats. XENO-DISK™ contains a powerful table driven text translator, "F&H". For low volume disk production, XENO-DISK™ includes a track-by-track disk duplicator (which is faster than file by file duplication). Gives you the option to input disk format parameters which allows you to utilize uncommon disk formats. XENO-DISK™ includes a boot-up disk and one free update.

80Mate™

A CP/M® 80 emulation for MS-DOS® computers. After programs have been transferred onto PC/M® DOS® disks with XENO-COPY PLUS™, XENO-DISK™, or APPLE TURNOVER™, 80Mate™ lets you emulate multiple CP/M® systems on your MS-DOS® computer. Includes all internal CP/M® commands and many available functions. 80Mate™ includes a terminal emulator for 7 predefined terminals including APPLE/CP/M® You can also input parameters for other terminals that need to be emulated, without additional Apple hardware.

BOOKS RECEIVED


The cornerstone of a program is its compiler; it can make the difference between a good program and a great one. The Lattice C compiler features:

- Full compatibility with Kernighan and Ritchie’s standards
- Four memory model options for control and versatility
- Automatic sensing and use of the 8087 math chip
- Choose from the widest selection of add-on options
- Renowned for speed and code quality
- Superior quality documentation

“Lattice C produces remarkable code . . . the documentation sets such a high standard that others don’t even come close . . . in the top category for its quick compilation and execution time and consistent reliability.”

Byte Magazine

Lattice Library source code also available.

**Language Utilities**

- **Pfix 86/Pfix 86 Plus** — dynamic and symbolic debuggers respectively, these provide multiwindow debugging with breakpointing capability.
- **Plink 86** — a two-pass overlay linkage editor that helps solve memory problems.
- **Text Management Utilities** — includes GREP (searches files for patterns), DIFF (differential text file comparator), and more.
- **LMK (UNIX “make”)** — automates the construction of large multi-module products.
- **Curses** — lets you write programs with full screen output transportable among all UNIX, XENIX and PC-DOS systems without changing your source code.
- **BASTOC** — translates MBASIC or CBASIC source code directly to Lattice C source code.
- **C Cross Reference Generator** — examines your C source modules and produces a listing of each symbol and where it is referenced.

**Editors**

- **Pmate** — a customizable full screen text editor featuring its own powerful macro command language.
- **ESI/P for C** — C program entry with automatic syntax checking and formatting.
- **VEDIT** — an easy-to-use word processor for use with V-PRINT.
- **V-PRINT** — a print formatting companion for VEDIT.
- **CVUE** — a full-screen editor that offers an easy way to use command structure.
- **EMACS** — a full screen multi window text editor.
- **FastC** — speeds up the cycle of edit-compile-recompile.

**Graphics and Screen Design**

- **HALO** — one of the industry’s standard graphics development packages. Over 150 graphics commands including line, arc, box, circle and ellipse primitives. The 10 Fontpack is also available.
- **Panel** — a screen formatter and data entry aid.
- **Lattice Window** — a library of subroutines allowing design of windows.

**Functions**

- **C-Food Smorgasbord** — a tasty selection of utility functions for Lattice C programmers; this is also a library of over 200 routines.
- **C Programmers.**
- **Run/C** — finally, a C interpreter for all levels of use asynchronous communications library.
- **C Power Packs** — sets of functions useful for a wide variety of applications.
- **BASIC C** — This library is a simple bridge from IBM BASIC to C.

**Database Record Managers**

- **Phact** — a database record manager library of C language functions, used in the creation and manipulation of large and small databases.
- **Btrieve** — a sophisticated file management system designed for developing applications under PC-DOS. Data can be instantly retrieved by key value.
- **FABS** — a Fast Access Btree Structure function library designed for rapid, keyed access to data files using multipath structures.
- **Autosort** — a fast sort/merge utility.
- **Lattice DB-C ISAM** — a library of C functions that enables you to create and access dBase format database files.

**Cross-Compilers**

- **For programmers active in both micro and mini environments we provide advanced cross-compilers which product Intel 8086 object modules. All were developed to be as functional and reliable as the native compilers. They are available for the following systems:**
  - **VAX/VMS, VAX/UNIX, 68K/UNIX-S, 68K/UNIX-L**
- **Also, we have available:**
  - **Z80 Cross-Compiler for MS- and PC-DOS — produces Z80 object modules in the Microsoft relocatable format.**

**New Products**

- **Run/C** — finally, a C interpreter for all levels of C Programmers.
- **C Sprite** — a symbolic debugger with breakpoint capability.

**Productivity Tools from the Leading Publisher of C Programs.**


[Inquiry 427]
Sailing on the changing tides of business, there is no room for uninformed decisions.

You don't go sailing without the right navigational instruments. And you don't make business decisions without the right information.

With Dow Jones Straight Talk™ and your Macintosh™ personal computer, you have the right information to make seaworthy business decisions.

Widgets, Inc.: To Acquire or Not?

Let's say you need to know everything you can about Widgets, Inc. and the entire miniwidgets industry. You're thinking about an acquisition. You need solid research. And you need it for the important meeting at 4 p.m.

Dow Jones Straight Talk: Helping You Make Informed Decisions

Straight Talk can help. Straight Talk could even make you a hero. Here's how: Two clicks of the mouse and you're logged on to the information you need with Dow Jones News/Retrieval, the foremost electronic resource for business and financial information, and other communications services.

With pull-down menus, you can move easily between databases, checking current news and stock quotes, reviewing exclusive stories from the up-to-date file of The Wall Street Journal, searching out financial information on a specific corporation or industry.

Now use your Clipboard, Note Pad and Scrapbook to save it.

Since Straight Talk supports MacWrite™, you can thread all this data together with your own informed comments.

Now the final report: Use the different type sizes and styles to highlight special sections for your boss. Your conclusion: Don't acquire the company. It's on thin ice.

With Straight Talk, hours worth of research can be condensed into just minutes.

And, as the meeting ends, you can barely hold back that big grin.

From now on your career should be smooth sailing.

A World of Information on Your Desk

At $79, Dow Jones Straight Talk is the least expensive, most diligent researcher and electronic know-it-all you'll ever come across.

Dow Jones Software. For informed decisions.
In addition to business and financial information, you can click into world and national news, sports, weather, an encyclopedia, airline schedules and fares, movie reviews and MCI mail.

And Straight Talk is from Dow Jones, publisher of Barron's and The Wall Street Journal, and for over 100 years a standard in timely, reliable information.

Dow Jones Straight Talk for the Macintosh. A precision instrument designed to make sure your ship comes in.

To obtain a free brochure and information on where you can conveniently purchase Dow Jones Straight Talk, fill out the coupon or call:

1-800-345-8500 ext. 272

(Alaska, Hawaii and foreign call 1-215-789-7008 ext. 272)

Inquiry 127
Inquiry 104

COMPUPRO USERS

Accelerate Your Compupro
with a free
CPU UPGRADE BOARD
call for details
provided with a DATABANK SMD subsystem
DATABANK SMD DISK STORAGE SUBSYSTEMS
Torrey Systems - Desktop Enclosure
Controller, Drive, MP/M 816 Concurrent DOS.
84 MBYTE 168 MBYTE 300 MBYTE
FUJITSU FUJITSU PERTEC
$9,950.00 $10,950.00 $12,950.00

Databank is your single source supplier for 8-100 systems, subsystems and board-level products from leading hardware manufacturers as well as our own DATABANK SMD storage subsystems. Periphery by FUJITSU, PERTEC, ALLOY and CONTROL DATA.

Databank SMD/Disk Subsystems are also available for PC bus network applications. DEALER INQUIRY INVITED

For further information call or write:

DATABANK
2284 West Carrillo
Santa Barbara, CA
805 965-3404

LEARNING COMMODORE 64 LOGO TOGETHER, Kenneth P. Goldberg

LOGO FOR APPLE COMPUTERS: A SELF-TEACHING GUIDE, R. W. Haigh and E. R. Radford

MACINTOSH: THE APPLIANCE OF THE FUTURE, Gerard Lewis

MASTERING BASIC ON THE TRS-80 MODEL 100, Bernd Enders

MASTERING MULTIPLEX, David Bolocal, Saehin Kim, Ray King, and Lauren Singer

MASTERING THE TANDY 2000, Dan Keen and Dave Dischart

McGRAW-HILL, DILCATION OF ELECTRONICS AND COMPUTER TECHNOLOGY, Sybil P. Parker, ed.

METHODS AND TOOLS FOR COMPUTER CONSTRUCTION, B. Laro.

MICRO ACCOUNTING, Steven E. Yoder and Sherry D. Knight

MOD4 by Jack J. Klein

MODULA-2 FOR PASCAL PROGRAMMERS. Richard Geaves

MORE BASIC: A GUIDE TO INTERMEDIATE-LEVEL COMPUTER PROGRAMMING, Shelley Lipson.


PAYCALC: HOW TO CREATE CUSTOMIZED PAYROLL SPEER SHEETS, Thomas E. Toijle.

PERFECT SOFTWARE 2.0 FOR YOUR IBM PC & COMPATIBLES, Howard H. Wade and Martin Lensk.

PRACTICAL FINANCE ON THE TRS-80 MODEL 100, S. Vinit and Diane Burns.

PROGRAMMING LANGUAGES: FEATURING THE IBM PC AND COMPATIBLES, Marc Stieger and Bob Hansen.

PROGRAMMING LANGUAGES AND THEIR DEFINITION: Lecture Notes in Computer Science #177.

PROGRAMMING YOUR OWN ADVENTURE GAMES IN PASCAL, Richard C. Vile Jr.

(continued)
THE IBM AT:
ENHANCE IT RIGHT, RIGHT NOW.

With The Bernoulli Box™ Winchester Performance And Reliability. Cartridge Economy And Versatility.

Now is the time to harness all of the potential of the new IBM AT to the growing demands of your business.

And with The Bernoulli Box, now you can. This unique cartridge data management system, attached to a standard IBM AT without the hard disk, creates a powerful processing package that only mass storage capabilities can make possible. A package with all of the performance and reliability you only thought possible with a Winchester-enhanced IBM AT, but with dramatically more versatility and dramatically less cost per megabyte.

The secret is virtually indestructible, go-anywhere, 10-megabyte cartridges whose proprietary technology has proven The Bernoulli Box the superior storage solution for a whole range of business micros from the IBM PC to the Macintosh,™ from the XT to the AT&T.

And remember this. The Bernoulli Box has been designed for all versions of the IBM AT. Which means it will give you virtually unlimited cartridge-based primary storage as well as unparalleled backup capabilities.

That's The Bernoulli Box. From IOMEGA. Call 1-800-556-1234, ext. 215 for the dealer nearest you. In California, call 1-800-441-2345, ext. 215.

IOMEGA Corporation
1821 West 4000 South
Roy, Utah 84067

THE BERNOLLI BOX™
A 1200 bps modem, complete with software!
The INFO-MATE 212PC modem is a complete
data communications solution for your IBM®
or compatible computer. Simply plug into any
of the computer's expansion slots, boot up
MODEM-MATE, communications software in­
cluded with the modem, and you're ready to
communicate with all commonly used 1200
or 300 bps modems.
Cermetek, a pioneer in the modem and
modem component business, now offers a
complete line of advanced communications
products. We want to make our name known
with PC users and believe no one could forget
this tremendous buy! So, act now! Send in
your order today. You'll never get an offer
like this again.

INFO-MATE
212 PC Features:
• 1200/300/110 bps, full duplex
• Bell 212A and 103 compatible
• MODEM-MATE software included
• Auto-dial, Auto-answer
• Tone or rotary dialing, auto-selected
• Call progress monitoring
• 8 Diagnostic test modes
• Asynchronous data format
• 1 year limited warranty

YES! Send me an INFO-MATE 212PC
___ I have included a check for $149.00 plus
$4.00 per modem for shipping and handling.
(CA residents must add $9.69 for sales tax.)
___ Please charge my modem on my:
    ___ VISA    ___ MasterCard
Account No._________________ Exp. Date_______
Signature___________________
SEND TO:
Name_______________________
Address______________________
City_________________ State ___ Zip_______
Daytime Phone______________
Sorry No COD's. Please allow 4 weeks for delivery.
Buy with Confidence... Our Record Is Clean!

IBM/PC SOFTWARE

Alpha Software  
Data Base Mgr II .... $179
Electric Desk (JR) .... 199
Arrays, Inc.  
Home Acct. + .... $ 90
Home Acct. w/ Tax Agency .... $139
Central Point  
Copy II PC ... $34
CompView ... See Special
Connecticut Software  
Printer Basis w/ Letter Basis ... $ 79
Above w/ Side Kick .... 119
Creative Software  
Creative Bundle Box (Filcr, Calcr, Writer) .... $109
Dow Jones  
Market Analyzer ... $229
Dow Jones  
Market Analyzer w/ Plotter Option ... 279
Dow Jones  
Market Analyzer w/ Plotter Option ... 279
Details

Gary F. Hannigan
1711 W Cortland St.
Chicago, IL 60622

(312) 224-1200

Prices good thru 1985

ST. PATRICK'S DAY SPECIAL

CompView Products, Inc.
Powerful productivity pkg including:

> Vedit - Full screen editor, Multiple-file editing, sort files, arithmetic operations, etc.
> V-Print - Print formatter
> V-Spell - Spelling corrector w/10,000 word dictionary

Special pricing on
3 packages .... $299

OTHER SPECIALS

Vedit .... $119
Vedit+ .... $159
V-Print .... $89
V-Graph .... $89

Prices good thru
March 30, 1985

Digital Research

Display Mgr 86 .... 279
Pascal MT+ 80 .... 199
Pascal MT+ 86 .... 349
CP/M 86 .... 99
C Basic Comp 86 .... 349
PL/I 86 .... 399
Access Mgr 86 .... 239
C Compiler

Language 86 .... 199
Fortran 77 86 .... 199

Infocom

Deadline ... $ 49
Starcross, Suspended, Zork I, II, III ... $ 39
Micro Pro

Wordstar .... $250
InfoStor .... 265
Pro-Pak (WS, MM, SI) ... $359
All Others .... $ Call

Microsoft

Call
Microsoft

Call

Microsoft

Call

tersoft, Inc.

Microstar .... $239

Enertronics

Energaphic .... $219
w/ Plotter Option .... 279

Fastware Thor .... 245

Financier, Inc.

Financier II .... $119
Tax Series .... 105

Fax & Geller

Grafax .... $159
RGraph .... 159

FYI

Superfile .... 139
FYI 3000 .... 259
Sort .... 250

Harvard Software

Project Manager .... 249

Lifetree

Volkswriter Deluxe .... $155
Volkswriter Scientific ... 359

Living Videotext

Think Tank (256K) .... 119

Mercom Corp.

In Search .... $279

Micropro

Wordstar ProPak
(WS, CS, MM, SI) .... 275
Wordstar 2000 .... 289
DOSProPak Plus (WS, CS, MM, ST, TM) .... 369

Microrim

R-base 4000 ... $265
R-base Clout (V 2.0) .... 139
R-Writer .... 95
Prog Interface .... 259

Microsoft

Flight Simulator II .... $ 39
Project 1.01 .... 169
C Comp .... 319
Basic Comp .... 249
Word 11.5 .... 229

Microsoft

Crossing

Crostalk .... $ 99

Morgan Computing

Prof Basic .... $ 79
Trace 86 .... 99

Morgan Computing

Multimate (V 3.3) .... 239
Trace 86 .... 99

Multimate

Northwest Analytical

Statpak .... $365

Open Systems

Acctg Programs .... eo $419
Buy 3 or more .... eo 399

Peter Norton Computing

Norton Utilities .... $ 50

Peachtree

Series 5 Accounting Modules .... 359

Peachtree

Scriptacorp

Scriptacorp .... 349

Satellite Software

Word Perfect w/ Sp ... $255

Software Arts

Spotlight .... $109

Software Arts

Publishing

(Pc J Crmpatible)

PFS: File, Graph
Write, Plan .... eo $ 89
PFS: Report .... 79
PFS: Access, Proof .... 59

Sorcom

Supercalc III .... $249

Star Software Systems

Acctg Partner .... $219
Acctg Partner II .... 599

SuperSoft

Call

Warmer Software

Softcorp (PC Jr Crmparible)

Desk Organizer .... 129

Westminster Software

Pertmaster .... Call

...and many more
### POLICY:
- Wisconsin residents add 5% for sales tax.
- Minimum $4.00 for shipping, handling and insurance for orders to $200.
- For orders over $200, add 2 1/2% for shipping, handling and insurance.
- For cash prepayment of orders $300 or more, add only 1% for shipping, handling and insurance.
- Foreign — either add 15% handling & shipping (incl money order or inquire).
- Prices are subject to market fluctuations.
- All items subject to availability.

### WE WELCOME:
- Visa, MasterCharge and American Express. (No charge for credit cards.)
- Corporate, government or educational volume purchases, please ask for special accounts desk for additional discount. (1-715-848-1374)
- COD (Add $2.00 per box/parcel. Cash or certified check required.)
- Checks. (Allow 1-2 weeks for clearing.)

### WORKING HOURS:
Monday - Friday 8:30 - 6:00 • Saturday 10:00 - 3:00 (Ordering Lines only) • Central Time
For tech. support, order status and customer service, call (715) 848-1374 (M-F, 8 am to 5 pm)
Inquiry 420 for Hardware. Inquiry 421 for Software. Inquiry 422 for April Specials.

### MISC.
- Alpha-Delta "MACC II" Surge Protector $99
- Computer Accessories
  - Power Directors
  - P2-M Bus $109
  - P12 IBM PC $145
  - P22 Stand Alone 75
- Electronic Protection Devices
  - Lemon / EC II 55
  - Orange / EC IV 75
- Hauppauge
  - 8907 w/ MHS $149
  - 9807 w/ MHS $255
  - 8907/AT Chip w/ MHS $289
- Other Products Call
  - Kensington
    - Masterpieces $109
  - Keytronic
    - KB 520 $169
    - KB 5150 $175
    - KB 5151 Dvorak $175
    - KB 5150 Jr $159
    - KB 5151 Jr $175
    - KB 5149 (Jr)
  - Tandy 100
  - Touchstone Technology Touchstone II
    - Touchstone II (Keypad) $169
  - Upro Systems
    - PC Mouse $1.59
  - Taskon
    - T-315 - Dot Matrix $399
  - T-316 - Dot Matrix $369

### DISKETTES
- 3M, Maxell, Verbatim
  - Ultra Magetics $25

### PRINTERS
- C. Itoh Electronics, Inc.
  - Starwriter F10-40P (40cps) $99
  - F10-240 (240cps) $59
  - Diablo
    - 630 ECS $399
    - 6400 $399
    - 6410 $399
  - Juki Industries
    - 6000 $399
  - NEC
    - 1200 $399
    - 1160 $399
  - Okidata B2-93 $79
  - Okidata B2-93 $109
  - 5020 $109
  - 80287 $109
  - 80287 Cheque $109
  - Other Products Call

### PLOTTERS
- Amdesk
  - DXY-100 $599
  - DXY-200 $799
  - Starwriter
    - 100 $799
    - 315 - Dot Matrix $399
  - Panasonic
    - VX601P Plotter $1379

### DISK DRIVES
- CDC 1800 $179
  - Corvus Hc $179
  - Datamac
    - 104 (for
      - Macintosh, Ile, Ile) $179
  - Davong Hc $179
  - I-Omegah
    - 1200 $179
    - 1200 $179

### ORYX SYSTEMS, INC.
- CRAFTSMEN OF THE NEW TECHNOLOGY

### ADDRESS:
1 800 826-1589
425 First Street • PO Box 1961
Wausau, Wisconsin 54401
INTL TELEX: 260181 ORYX SYS WAU
The Byte covers shown below are available as beautiful Collector Edition Prints. Each full color print is 11 in. x 14 in., including a 1 1/2 in. border, and is part of an edition strictly limited to 500 prints. Each print is faithfully reproduced from the original painting on museum quality acid-free paper, and is personally inspected, signed and numbered by the artist, Robert Tinney. A Certificate of Authenticity accompanies each print attesting to its quality and limited number.

Collector Edition Prints are carefully packaged flat to avoid bending, and are shipped UPS. The price of each print is $30, plus $3 per shipment for postage and handling ($8 overseas). If four or more prints are ordered, the price of each print is only $25.

To order your own favorite Byte cover as a beautiful Collector Edition Print, use the convenient coupon below. Visa or MasterCard orders may call 1-504-272-7266.

Mail this coupon to:

robert tinney graphics
1854 N. Pamela Drive
Baton Rouge, LA 70815

For Visa or MasterCard orders or for more information

Call 1-504-272-7266

Daytime or Evenings
LOAD ASSEMBLER ROUTINES FROM BASIC

by Douglas F. Yriart

This method enhances the maintainability of your programs

MICROSOFT BASIC-80, version 5.x for CP/M, includes a number of statements and functions for calling machine-language subroutines from BASIC and defining their starting addresses. It does not, however, include a statement for loading these subroutines. This article presents a way to automatically assemble and load them. BASIC-80 includes all the tools you need to reserve memory for your subroutines and to load them from the hexadecimal-format file put out by Digital Research's assembler, ASM.COM. The BASIC program doesn't need to know anything about the subroutine except the name of the .HEX file in which it is stored. This file contains all the necessary information for the load, including how much memory is needed.

With this method of loading assembly-language subroutines, you don't need to modify the BASIC program every time you change, add, or delete a few bytes in the assembly-language subroutine. In addition, you can use the same BASIC routine in numerous programs to load assembled subroutines. This method brings significant benefits in simplicity and maintainability.

ASSEMBLY-LANGUAGE SUBROUTINE

First, you need an assembly-language subroutine for the BASIC program to call. For example, TESTASM (see listing 1) draws an outline of the starship Enterprise and then returns control to the calling program. [Editor's note: The unassembled source code for TESTASM is available from BYTEnet Listings. The telephone number is (603) 924-9820.] Two important points should be considered about the assembly-language subroutine. The first one is its origin. You need to start at as high an address in memory as possible so that the BASIC program will have sufficient room for its execution. Second, the subroutine must exit through an RET instruction if you want control to return to the BASIC program. After you assemble the subroutine with ASM.COM, you don't need to make it into a machine-code file with LOAD.COM. The BASIC program works with the .HEX file. And, if you try to create a runnable .COM file, you will need a lot of disk space. LOAD.COM will attempt to create a file the size of the entire memory taken up by the subroutine, including any unused space below the origin.

Table 1 contains TEST.HEX, produced by assembling TESTASM. Notice in listing 1 that the program arbitrarily starts at location 9C40 hexadecimal (in the leftmost column on the line with the ORG statement). This same number appears in positions four through seven on the first line of table 1. LOAD.COM uses the first nine positions and the last two positions of each record or line of the .HEX file for its own purposes. The remaining pairs of hexadecimal digits are the instruction, operand, and data bytes you want to load into memory. The first two positions after the colon at

(continued)
Listing 1: TEST.PRN, a listing of the assembled routine, TEST.ASM. This test program is for use in developing a BASIC program to read and POKE the .HEX file of assembly-language routines into memory. This program draws a picture of the starship Enterprise.

<table>
<thead>
<tr>
<th>EQUATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>0009 = pbuff equ 9 :BDOS print buffer</td>
</tr>
<tr>
<td>0005 = bdos equ 5 :location of BDOS</td>
</tr>
<tr>
<td>000D = cr equ 0dh :carriage return</td>
</tr>
<tr>
<td>000A = If equ 0ah :line feed</td>
</tr>
<tr>
<td>0009 = tab equ 9 :horizontal tab</td>
</tr>
</tbody>
</table>

START OF PROGRAM

9C40
org 40000d

9C40 114C9C
start:

9C43 CD479C
call print ;display it

9C46 C9
ret ;...done

9C47 0E09
print:

9C49 C30500
jmp bdos ;do it

STORAGE AREA

note: DATA is made up of any printable or control characters that will draw or write an appropriate display for user to look at.

The display is "plain vanilla" characters that can be found on any CP/M machine; no special screen control or graphics characters are used for portability.

Figure 1 provides a memory map of CP/M-80 version 2.2. It is important to notice the number of bytes added to the address of the CCP (console command processor) to find the BDOS (basic disk operating system) and BIOS (basic input/output system) areas. (Addresses are hexadecimal.)

The address of the CP/M BIOS is the beginning of each record tell LOAD.COM how many bytes of data are in the record.

THE BASIC PROGRAM

Let's look at the BASIC program itself. READASM.BAS (see listing 2 or BYTEnet Listings (603) 924-9820). It accomplishes four tasks:

1. It finds out where to load the assembled subroutine and reserves enough memory for it.
2. It loads the subroutine.
3. It passes control to the subroutine, executing it—if instructed to do so.
4. It restores the subroutine's reserved memory for use by the BASIC program before ending. First, the program must find the top of the TPA (transient program area)—the area of memory available for user programs that is not taken up by CP/M—so that it can restore the full amount of memory to the BASIC program at the end of the run.

Figure 1 provides a memory map of CP/M-80 version 2.2. It is important to notice the number of bytes added to the address of the CCP (console command processor) to find the BDOS (basic disk operating system) and BIOS (basic input/output system) areas. (Addresses are hexadecimal.)

The address of the CP/M BIOS is
stored in bytes one and two of the base page (BP). Intel 8080 machine code stores the least significant byte (LSB) of the memory address first, followed in byte two by the most significant byte (MSB). Starting at line 140, the program captures this byte by executing a PEEK at location two. The beginning of the CCP is found by subtracting 16 hexadecimal from the MSB of the BIOS address.

In lines 150–170, the starting address of BIOS, the top of the TPA, is found by doing some string arithmetic on the MSB of the CCP address. The VAL() function evaluates strings that start with &H as hexadecimal numbers. The HEX$( ) function returns a character string containing the hexadecimal digits of the number evaluated. You can use this to build a string composed of &H, the MSB of the CCP address, and an LSB of 00. The VAL() function turns this character string into a number to be assigned to the variable TOP. By adding 800 hexadecimal to TOP, you have the address of the beginning of the TPA. The addresses found in high memory are numbers beyond the range of BASIC-80's valid integers. Therefore, you can't use integer variables to hold addresses in the program.

RESERVING SUBROUTINE MEMORY
To reserve memory for the assembled subroutine, you use the CLEAR, ADDRESS statement, which sets aside memory starting at the ADDRESS parameter. The CLEAR statement zeros all numeric variables and sets all string variables to null. Any value that you need to use after clearing memory must be saved in an area unaffected by the CLEAR, so that you can retrieve it later. In this example you need to save the name of the .HEX file, the value of TOP, and the loading address for the subroutine.

Lines 240–300 read the first record of the .HEX file and extract the address needed to load the subroutine. This starting address is in positions four through seven of the record (lines 280–300). Notice the use of string
arithmetic to convert the text number to hexadecimal so the program can use it.

In order to protect the information needed after the CLEAR, you must store it somewhere outside of the BASIC program's normal workspace. This program uses the buffer area that CP/M uses for passing commands to the CCP. This buffer area begins at memory location 80 hexadecimal. Lines 370-470 build a 20-character string of data and use POKE to put it into the buffer area. You must store memory addresses as character strings because they are too large to store in a single byte.

Line 520 reserves the memory needed for the subroutine by doing a CLEAR of memory up to 1 byte below the subroutine's starting address. The data is retrieved from the CCP buffer in lines 570-650. Lines 670 and 680 serve the cosmetic function of trimming trailing blanks off the filename.

**SUBROUTINE USAGE**
The BASIC program reads the .HEX file one record at a time, captures the data from position 10 to 2 bytes from the end of each record, and uses a POKE to put 1 byte at a time into memory. This is accomplished by two nested WHILE/WEND loops. Two variables control the operation: BYTE contains the next address on which the POKE statement operates, and COUNT is the data-string position of the next byte to be extracted.

The outer loop (lines 790-940) reads records until it encounters the end of the file. Line 830 extracts the data portion of each record for processing by the inner loop (lines 860-920). The inner loop steps through the data string two characters at a time—two hexadecimal digits make up one byte. Line 880 converts the string data into values that can be put into memory with a POKE.

Once the BASIC program has read the last record from the .HEX file, the worst is over. The subroutine is in reserved memory above the BASIC work area. All that remains to be done is to test it out, restore the top of

```
260 OPEN "I",#1,HEX.FILES$
270 IF EOF(1) THEN 1170 ' test for empty file
280 LINE INPUT#1,A$ ' read the first record
290 CLOSE 1
300 START.ADDRESS = VAL("&H" + MID$(A$,4,4))
310 PRINT "Loading will start at ":HEX$(START.ADDRESS);
320 PRINT " hex;"
330 ' Build a string out of the name of the HEX file, the top of TPA address, and the loading address.
340 SAVE.IT$ = SPACE$(20)
350 MID$(SAVE.IT$, 1,12) =HEX.FILE$
360 MID$(SAVE.IT$, 13,4) = HEX$(TOP)
370 MID$(SAVE.IT$, 17,4) = HEX$(START.ADDRESS)
380 ' Store the 20 bytes of data in the CCP buffer at 80h.
390 FOR R%= 1 TO 20
400 BYTE = ASC(MID$(SAVE.IT$,1%, 1))
410 POKE &H7F + R%,BYTE
420 ' Set top of memory available to BASIC 1 byte below the loading point. CLEAR zeros all variables.
430 CLEAR,(START.ADDRESS - 1)
440 SAVE.IT$ = SPACE$(20)
450 FOR R%= 1 TO 20
460 MID$(SAVE.IT$,1%, 1) = CHR$(PEEK(&H7F + R%))
470 NEXT R%
480 ' Recover the name of the HEX file, the top of TPA address, and the starting address for loading.
490 SAVE. IT$ = SPACE$(20)
500 FOR R%= 1 TO 20
510 MID$(SAVE. IT$,1%, 1) = CHR$(PEEK(&H7F + R%))
520 NEXT R%
530 HEX. FILE$ = MID$(SAVE.IT$, 1,12)
540 TOP = VAL("&H" + MID$(SAVE.IT$, 13,4))
550 START ADDRESS = VAL("&H" + MID$(SAVE.IT$, 17,4))
560 ' BYTE = INSTR(1,HEX.FILE$,CHR$(32)) ' trim blanks off
570 HEX.FILE$ = LEFT$(HEX.FILE$,BYTE - 1) ' filename
580 ' Read in the HEX file one record at a time. Break it into bytes and POKE them into memory.
590 OPEN "I",#1,HEX.FILE$
600 BYTE = START ADDRESS ' first address to POKE
610 ' Begin processing each record here.
620 PRINT "HEX.FILE$;" is being loaded now;"
630 OPEN "I",#1,HEX.FILE$
640 FOR R%= 1 TO 20
650 POKE &H7F + R%,BYTE
660 ' As long as there is another record
670 WHILE NOT EOF(1)
680 A$ = MID$(A$,10,LEN(A$) - 11) ' just the bytes to POKE
690 COUNT = 1 ' byte position in record
700 WHILE COUNT < LEN(A$) ' while there are bytes
710 BS = MID$(A$,COUNT,2) ' get a "text" byte
720 VALUE = VAL("&H" + BS) ' convert it to hex
730 NEXT COUNT
740 NEXT R%
750 ' While there is another record
760 ' line 830 reads the next record
770 PRINT "HEX. FILE$;" is being loaded now;"
780 OPEN "I",#1,HEX.FILE$
790 FOR R%= 1 TO 20
800 POKE &H7F + R%,BYTE
810 ' As long as there is another record
820 WHILE NOT EOF(1)
830 A$ = MID$(A$,10,LEN(A$) - 11) ' just the bytes to POKE
840 COUNT = 1 ' byte position in record
850 WHILE COUNT < LEN(A$) ' while there are bytes
860 BS = MID$(A$,COUNT,2) ' get a "text" byte
870 VALUE = VAL("&H" + BS) ' convert it to hex
880 NEXT COUNT
890 NEXT R%
```

**ASSEMBLER ROUTINES**

**POKE BYTE, VALUE**
**COUNT = COUNT + 2**  ' increment position
**BYTE = BYTE + 1**  ' increment address
**WEND**  ' process another byte
**WEND**  ' loop back to process next record

The **HEX** file has been loaded into memory, now it can be **CALLED**.

**CLOSE 1**
**PRINT BYTE-START.ADDRESS;"Bytes were loaded."**
**INPUT "DO YOU WANT TO TRY CALLING THE ROUTINE " ; A$**
**IF A$ = "Y" THEN CALL START.ADDRESS ELSE GOTO 1110**
**PRINT:PRINT**
**PRINT "!!! IF YOU SEE THIS MESSAGE THINGS PROBABLY "**
**PRINT "RAN RIGHT !!!"**

**Error traps**
**PRINT "THE FILE IS EMPTY"**
**CLOSE 1**
**END**
**CLEAN, TOP**
**PRINT TAB(10);"*** END OF DEMO ***"**
**END**

**REFERENCES**
STAR'S NEW PRINTERS WORK 20% FASTER. COST 20% LESS. ARE 100% CERTAIN TO CHANGE YOUR MIND ABOUT PRINTERS.
No printer could be more appealing than one you design yourself.

And, in effect, that's what you've done. The new "S" series printers from Star Micronics have been designed not to our specifications, but to yours. With values that confound our accountants but will make great sense to you.

These printers are faster than ever. More compatible and reliable. With more added in and fewer add-ons.

And yet they cost less.

Don't try to figure it out. Just enjoy.

Because we've increased our printing throughput by 20%, you can now finish 6 pages in the time it used to take to print 5. And even though we've upped our speed, we've kept up our quality.

In fact, on three of our new models, both draft and near-letter-quality are standard (no extra charge). A fourth model, the SB-10, prints draft and letter-quality standard (again, not extra).

So now, with just one printer, you're ready for data processing and word processing. That's like owning two printers for the price of just one.

The new Star "S" series printers are fully compatible with even the most fickle of personal computers.

And they're especially friendly with IBM®-PC, Apple®, Commodore®, and all compatibles.
sophistication in the manner that past Apple customers have. Hence, there is no reason to widely disseminate technical information to the customers.

The dominant theory in the industry during the last 18 months seems to be that the age of the hacker is over. I belong to this endangered species. I make just Apple customers have. Hence, there is no past. I have bought two Apple IIs in the past six months (the IIc personally and a IIe at work). I am often asked to advise people about what computer to buy.

In the past I have been able to recommend Apple because there was so little likelihood that my friends could possibly outgrow the company. They might become more accomplished hackers than I am, but they could not plumb the depths or exhaust the expansibility of their Apples. Every change in Apple policy that I have observed during the past year has made this less true.

JOHN R. RAINES, M.D.
St. Paul, MN

WHO PAYS FOR COPY PROTECTION?

As a composer of music that incorporates much synthesizer work, I have seen the development of MIDI as a real and practical boon. In my own studio I now use a microcomputer with a Passport MIDI interface (Apple-compatible version) to control Yamaha synthesizers (DX-9 and RX-15).

Frankly, the available software, and most specifically its copy protection, is working against its own benefits.

I use MIDI4 from Passport as a sequence recorder and player. I would like to use DX-Pro from Yamaha (yes, it works after a fashion on the DX-9) as a patch editor and recorder. A session with both the other day proved unmanageable. Since both are severely copy-protected, to use one right after the other requires a cold boot for each. This takes time and requires powering down the computer. It seems to me that in the real, working world of synthesis it would be sensible if both programs could be copied onto the same disk (or hard drive or RAM disk) and accessed back and forth. Well, copy protection renders this impossible. The Passport software, by the way, comes with a backup disk. The DX-Pro from Yamaha does not! Disks do not hold up well to the rigor of travel, which means that one blown sector and...

There is a legitimate need for protecting the interests of software writers and vendors. However, if this occurs at the expense of the end users in the form of diminished usefulness, it is protecting the interests of no one. I am frankly not interested in generating a long and philosophical debate on these issues. I am interested in getting my system up and running efficiently so I can get on with making music.

MICHAEL W. GILBERT
Amherst, MA

COMPUTER VS. HUMAN RESPONSIBILITY

The January BYTE editorial ("Autonomous Weapons and Human Responsibility" by Phil Lemmons, page 5) makes the important point that humans are responsible for the act of their computers, including the act of computer-generated war. In this context, however, your stinging attack on Walter Mondale—for his alleged ignorance or demagoguery in opposing "Star Wars" technology—is both surprising and unfair.

Because nuclear weapons in orbit around the earth could more rapidly reach their targets, the time for an offensive or defensive response would be reduced to a very few minutes. Even if the initial space system is defensive in nature, it is naive to think that the inevitable countermeasure would not be an offensively oriented one.) The potential, then, for contemporaneous human intervention in the response decision—let alone for the somber human reflection most of us would wish for such a fateful decision—is effectively eliminated. In other words, and disregarding the responsibility issue for the moment, the act of making nuclear war from space would of necessity be relegated to computers.

None of this is to say that the computer would be "responsible" for the resulting devastation. A nuclear villain we should fear and abhor. As you stated, "Computers follow sequences of human instructions." But is it ignorant or demagogic to suggest that the nuclear hair trigger not be split to the point where only a computer has the time to effect, or avoid, our annihilation? I think not, and I think this was Mr. Mondale's well-taken point.

At the risk of sounding anticomputer, which I earnestly am not, a further point must be made about the reliability of computers. Computers, including lovingly attended micros and NASA's multi-million-dollar systems, do, at times, screw up.

Chips do fail and programs do have bugs. Sometimes the things just shut down, other times, to our horror, they continue to run and produce spurious or confounding results. Sure, humans (designers or engineers or programmers or manufacturers) are again responsible. And certainly the politician who, knowing these unfortunate facts of technological life, consigned our fate to such systems could not deny culpability. But, again, is it ignorant or demagogic to oppose entrusting civilization to these all too fragile machines?

I agree that BYTE is not the place, and that neither I nor most BYTE readers are the people to discuss the technical merits of the "Star Wars" proposal. But, similarly, I don't think BYTE is the place to dismiss concerns about this proposal as senseless computer phobia or worse.

It is ironic and unfortunate that you chose Walter Mondale as the object of your venom. For, indeed, it was Mr. Mondale who suggested that a human being remain directly, consciously, and personally responsible for the ultimate human decision. His notion that President Reagan's proposal, which would necessitate that this decision be made by a computer, endangers us is neither frivolous nor an abdication of human responsibility for computer actions. But it is both presumptuous and irresponsible when we, as computer devotees, assume a shrilly defensive posture that fails to acknowledge the limits of our technology or knowledge.

SEAN BLECK
New York, NY

Regarding your January editorial, I believe you have not given Mr. Mondale enough credit.

To make the Strategic Defense Initiative work, enemy missiles would have to be struck within the first five minutes of their launch, thus not leaving enough time to have the President decide whether or not to respond, for reasons I will be happy to detail at your request.

For one am not ready to change the decision-making process on whether to start shooting at the Russians from a Conference of the President, SAC and a Congressional Committee to a preprogrammed computer.

How can aerospace programmers "assume responsibility" for the decision that only the President of the United States should make? Even if they're "will ing to," I for one am not willing to give them that responsibility, even if you are.

Further, the most brilliant programmers...
working 1000 years could not possibly foresee all possible scenarios. Only human judgment has the flexibility to deal with all possible new original situations, at least at the present. A computer may be programmed by human beings, but a computer is not a human being. Human beings should use computers to aid calculation, information gathering, and for advice. They should never turn control of their destinies over to computers, however, no matter how well programmed. In any event, we have not yet amended the Constitution to give aerospace-company programmers and computers the power to declare or initiate war. I for one am not in favor of any move to change it to let such happen.

DON SLAUGHTER
Seattle, WA

A very big WELL DONE to Phil Lemmons for his editorial on "Autonomous Weapons and Human Responsibility.

Phil pointed out that we must take responsibility for our decisions, even if it appears that a computer made the decision for us. This is an important lesson for all of us. We must not avoid responsibility for our decisions.

Beyond the specific issue addressed, I was delighted to see BYTE addressing moral and social issues as well as technical ones. During this past century, our technology has leapt far ahead of our morality. Vigorous dialogue in our journals is one good way to help close this gap.

BYRON WEBER-BECKER
Goshen, IN

Having heard Walter Mondale use the word "computer" in an attack on President Reagan, you snapped back a reply without having thought through Mondale's complaint. When liberals do this, it is called a "knee-jerk reaction."

Mondale's point was that for Reagan's "Star Wars" defense plan to work, incoming missiles would have to be shot down before they spew their multiple, independently targeted (MIRVed) nuclear bombs. Thus, there would be only a few minutes between detection, identification, and confirmation of the launch and the time when the decision to attack should be made or not. It would not be feasible to get this information to the president (any president) and have her analyze it and make an informed decision in time. The decision would have to be left up to the computers.

Why is this a problem? Not because computers can make mistakes. Perish the thought. Has a computer really never made a mistake? Are electronic components really infallible? Rather, human programmers make mistakes. The problem Mondale was pointing to about "Star Wars" (only one of many problems) is that programmed computers make mistakes. Only a computer fanatic would have taken this as an attack on computer hardware as opposed to software.

The mistake you have made is similar to the following: Jane says, "We ought to have tough drunk-driving laws because weaving, lane-hopping cars can do terrible damage." Phyllis (editor of a major automobile magazine) replies, "There she goes again. Cars aren't malevolent. It's the people driving the cars that are at fault." But we all know that Phyllis has simply missed the point.

(continued)

Faster CAD Input

The GTCO DIGI-PAD is a fast tracing device, a function the mouse can't perform at all. It's an absolute screen pointing device for direct cursor control. It can also provide direct, simple menu selection. The GTCO DIGI-PAD is a digitizer tablet in sizes including 12"x12", 11"x17", 20"x20", 24"x36", 36"x48" and 42"x60".

The DIGI-PAD is easily interfaced to PCs and is compatible with most PC/CAD software, such as AutoCAD™ and CADPLAN™.

The digitizer surpasses all other input devices for tracing and pointing and menuing. GTCO digitizers use patented electromagnetic technology for years of silent, maintenance-free operation.

Ask your dealer about the GTCO DIGI-PAD.

DIGI-PAD and Micro DIGI-PAD are registered trademarks of GTCO Corporation.

AutoCAD is a trademark of Autodesk Inc.

CADPLAN is a trademark of Personal CAD Systems, Inc.

Inquiry 175
Finally, it is worth noting that the mistake Phil Lemmons and Phyllis have made is the same mistake made by those who say "Guns don't kill people; people kill people" as if that were disputed by those in favor of rational gun-control laws.

Phil Lemmons replies:
It makes little sense to argue against orbital weapons on the ground that they would have to be controlled by computers. It makes much sense to reject orbital weapons because they put terrible destructive power only minutes from our cities. No control, human or artificial, could make us feel comfortable with devastation constantly poised above. Those who oppose orbital weapons should concentrate on resisting the weapons rather than the control system.

Regardless of the components of the control system, humans would bear responsibility, including responsibility for computer malfunctions.

TRAVESTY IN B

My colleagues and I were interested to see the article "A Travesty Generator for Micros" by Hugh Kenner and Joseph O'Rourke (November 1984, page 129), since we've had a similar program running here for a couple of years, written not in Pascal but in the new language B. The interesting thing about the B version of the program is that it is only 24 lines long, compared with the 284 lines of Pascal. Consequently, we thought that other BYTE readers might like to see our version.

B is a very simple language, about as easy to learn as BASIC. But the big difference is that B has very powerful data types, and it's thanks to these that programing in B is so easy.

To understand the program you have to know a little about these data types. B has texts, which are strings of characters. For instance, "hello" is a text. There is no character data type; you just use a text of length one, such as 'a' or 'b'. There are operators on texts: a+b joins the two texts a and b, a*n repeats the text a n times, and a' gives the tail of text a starting at the nth character.

B also has lists, which are sorted lists of elements. For instance, { "B": "Pascal": "Smalltalk" } is a list of texts, as is { "a": "b": "c" }, and { "z" } is the empty list. You can insert a new element e in a list A with INSERT e IN A. Although lists are kept sorted (alphabetically in the case of texts), the program doesn't use this fact.

The program deals with what the original article calls n-grams; that is, groups of n letters from a text. The B program works by associating with each group of n-1 letters a list of letters that may follow it. Thus, when dealing with trigrams for the sentence "Nonsense imitation can be disconcerting" for the letters "on" you get the list { "n": "on": "c" }, and for "ns" you get { "n": "s": "s" }.

This association is done using the table data type, which is a generalization of arrays: in most other languages, you may index only arrays with integers (or similar), while in B you can use any type. In this program a table called followers is used, indexed by texts and giving lists of characters, so that with the above sentence you get followers["ns"] = { "n": "s": "c" } for instance. You can find out which indexes have been used for a table: "keys followers" gives the list of such indexes.

Another interesting feature of the program is that it is trivial to modify so that it works with words instead of characters. For instance, UPDATE would remain identical.

B is an interactive language, and there are implementations for machines with UNIX available at the cost of the media, and shortly for the IBM PC. Anyone who would like to know more about B or its implementations is welcome to write to me.

STEVEN PEMBERTON
B Group
CWI
Postbus 4079
1009 AB Amsterdam
The Netherlands

CIRCUIT-BOARD CATASTROPHE

I have become the victim of an event, totally beyond my control, that has nothing less than shut down my computer services.
I own an LNW Model II microcomputer—a powerful work-alike of the TRS-80 Models I and 3. In late June of this year my expansion board developed a problem, rendering the facilities on the board useless. This system-expansion circuit board includes half of the system memory, serial and parallel interfaces, floppy-disk controller, and clock circuits. Because the problem (I suspected the floppy-disk controller) developed and was reported less than one year after purchase, the computer was still covered by warranty.

On July 7, 1984, after telephoning LNW Research, I was given a "return authorization number." As instructed by Technical Services at LNW Research, removing the factory-built expansion board from the computer unit would not void my warranty. I then removed the circuit board, as instructed, and had it packaged and shipped to LNW Research via United Parcel Service. The "return authorization number" was clearly labeled on the package and also taped directly onto the circuit board.

After about 10 days and several follow-up telephone calls, LNW finally acknowledged receipt of my circuit board. I made repeated telephone inquiries (never receiving a reply) after that to check on the progress of the repair. Finally, after amassing a rather large telephone bill, about 2½ weeks ago I was told, rather unwillingly, that my expansion board had not been touched. I was also told that many of LNW's repair technicians had been on vacation and that repairs on units under warranty were backlogged. I was asked to call back in two to three weeks, or if I wanted my circuit board sent to Wilson Technical Services. Mr. Wilson, I was told, had formerly been employed by LNW Research and was doing part of LNW's warranty repair work. I elected to leave the circuit board with LNW.

After a two-week wait, I tried contacting LNW by telephone again but received no answer. I then called Wilson Technical Services and was told that LNW had gone out of business! All of LNW's warranty work, I was told, had been turned over to Wilson Technical Services. My expansion board, however, was not on the list of units turned over to them. Wilson Technical Services said that it would check further. I telephoned Wilson Technical Services again, and the woman to whom I spoke before confirmed that my expansion board was not on the list of units turned over to Wilson Technical Services.

No person seems to know the present location of my essential and relatively expensive circuit board. I, therefore, have found it necessary to contact the Attorney General's office of the State of California to begin proceedings against Wilson Technical Services and LNW Research (if it can be located). This is in addition to contacting all magazines and users groups that I can think of. I am also contacting the Better Business Bureau and the Chamber of Commerce of Tustin, California.

I am not the only LNW 80 computer owner involved in this aggravating situation. Wilson Technical Services informed me that I am only one of several in the same predicament. So here I sit, out of business, awaiting the outcome of due process.

JEFFREY W. COX
New Albany, IN

---

Prices include postage in the US. Please add $0.50 per copy for Canada and Mexico; and $2.00 per copy to foreign countries (surface delivery).

☐ Check enclosed
Payments from foreign countries must be made in US funds payable at a US bank.

☐ VISA ☐ MasterCard

Card # ____________________________
Exp. ____________________________
Signature ________________________

Please allow 4 weeks for domestic delivery and 12 weeks for foreign delivery.

NAME ____________________________
ADDRESS ____________________________
CITY ____________________________
STATE ____________________________ ZIP ____________________________

CIRCLE AND SEND REQUESTS WITH PAYMENTS TO:
BYTE Back Issues
P.O. Box 328
Hancock, NH 03449

APRIL 1985 • BYTE 439
Data-Compression Unit

The Accelerator Series 31 asynchronous data-compression unit from Telebyte can be installed in existing networks. The Accelerator provides 3-to-1 data acceleration and supports synchronous and asynchronous modems. It can handle terminal data rates up to 9600 bits per second and modem data rates up to 2400 bps.

During operation, encoded bit strings are transmitted between Accelerator units using a modified X.25 protocol. This method limits data errors and increases data security. Also, you can improve security by assigning a four-digit Network Security Code to each Accelerator in the network.

The Accelerator's front panel includes touch-sensitive keys, status lamps, and display digits so you can program permanent options from the front panel. The unit contains no internal DIP switches or jumpers.

Prices for the Accelerator Series 31 products range from $695 for a unit with a data-compression ratio of 2 to 1 and a modem data rate of 1200 bps to $1095 for the maximum configuration with a data-compression ratio of 3 to 1 and a modem data rate of 2400 bps. For more details, contact Telebyte Corp., 215 Oak St., Natick, MA 01760. (617) 653-3995.

Inquiry 615.

Mac Hard-Disk Drives

Davong supplies multiple-volume hard-disk drives for the Macintosh with four amounts of storage: 10, 21, 32, and 43 megabytes. Mac Disks are partitioned into two volumes and initialized when shipped. Each disk-drive system features Davong's Volume Manager software. Average Mac Disk access time is 100 milliseconds with the 10- and 21-mega-byte systems and 40 milliseconds with the 32- and 43-megabyte models. Mac Disk connects to either RS-422 port on the Macintosh.

The Volume Manager program lets you add, delete, and activate volumes. It also can gather free space on Mac Disk so you can compress space to create an additional volume. This release of the software lets you connect Mac Disk to the Macintosh's modem or printer port for use in telecommunications.

Prices for the Mac Disk line depend on amount of storage: $1990 for 10 megabytes, $2795 for 21 megabytes, $3395 for 32 megabytes, and $3995 for 43 megabytes. For complete details, contact Davong Systems Inc., 217 Humboldt Court, Sunnyvale, CA 94089. (408) 734-4900.

Inquiry 617.

Hard-Disk System for the AT

Internal hard-disk drives specially designed for the IBM PC AT are available in 20-, 33-, and 117-megabyte models from PC's Limited. The disk-drive systems are compatible with DOS 3.0 and 3.1.

The full-height 5.25-inch hard-disk drives run off the IBM-installed PC AT controller. The units come complete with the necessary cables and mounting hardware, and they install easily, dropping directly into the existing PC AT box.

Prices for the hard-disk drives are $795 for the 20-megabyte model, $1195 for 33 megabytes, and $3995 for 117 megabytes. For further information, contact PC's Ltd., 7801 North Lamar #E-200, Austin, TX 78752. (512) 452-0323.

Inquiry 616.

PCjr Numeric Data-Entry Pad

KeyTronic's numeric data-entry pad for the IBM PCjr includes all mathematical function keys. It also features cursor-control, Tab, Backspace, and Enter keys. The user can convert the numeric pad to the function mode without returning to the PCjr keyboard. The keypad facilitates efficient data entry for number-intensive applications such as spreadsheets and accounting systems.

Suggested manufacturer's retail price for the IBM PCjr numeric keypad (model KB 5149jr) is $99.95. For more information, contact KeyTronic Corp., POB 14867, Spokane, WA 99214. (800) 262-6006; in Washington, (509) 928-8000.

Inquiry 618.
WHAT'S NEW

3Server Network Server

A dedicated multifunction network server is available from 3Com. You can use 3Server with 3Com’s Ethernet-based EtherSeries network products to combine personal computers and host systems in a local-area network (LAN). 3Server supports simultaneous communication over telephone lines for electronic mail and direct communication with IBM mainframes using SNA protocols.

The 3Server can accommodate up to 50 individuals in a network. It uses the Intel 80186 and the 82586 Ethernet controller with a 36-megabyte (formatted capacity) fixed-disk drive.

You can add a tape backup unit of 60 megabytes to the 3Server. You can also use up to six external disk drives to expand disk storage to more than 250 megabytes per 3Server.

Suggested retail price for the 3Server is $7495. Add-on 36-megabyte disk drives cost $3995 each, and the 60-megabyte tape backup unit costs $2995. A $995 384K-byte memory option for expansion of disk cache will bring total memory to 896K bytes.

EtherShare, a 3Server software package that provides shared disk capabilities, costs $695. EtherPrint, a shared printing program, sells for $395, and EtherMail gives you electronic-mail capability for $995.

Contact 3Com Corp., 1365 Shorebird Way, POB 7390, Mountain View, CA 94039. (415) 961-9602.

Memory Upgrade for the Mac

MicroGraphic Images has released the MegaMac, a memory upgrade for Apple’s Macintosh. MegaMac hardware provides 1024K bytes of memory, partitioned into two sections: 512K bytes of core memory and 512K bytes used as a RAM disk.

Reportedly, the MegaRAM software package sold with the upgrade board lets you load any file or application program from the RAM disk into the core memory three to six times faster than from a disk drive.

The suggested retail price for the MegaMac upgrade board is $1395. (You must return the Macintosh’s original 128K-byte motherboard to MicroGraphic Images.) The price for a complete 1024K-byte system including the Macintosh computer is $3495. For further technical information, contact MicroGraphic Images Corporation, 19612 Kingsbury Street, Chatsworth, CA 91311. (818) 368-3482.

IBM PC UNIX Coprocessor

The Opus516 Personal Mainframe is a UNIX coprocessor subsystem that converts an IBM PC or plug-compatible to a 32-bit UNIX workstation. Opus516 consists of a complete port of AT&T UNIX System V (release 2.0) and a 32-bit coprocessor.

The UNIX coprocessor is based on National Semiconductor’s 32016 processor and includes the 32082 memory-management unit and 32081 floating-point unit. On-board memory is expandable to 2 megabytes. Included with UNIX System V and its utilities are C and FORTRAN-77 compilers, an assembler, and a debugger. Opus516 supports UNIX and PC-DOS.

In OEM quantities, a 1-megabyte configuration is $3140 with a single-user object license. Multiuser licensing is available as an option. Contact Opus Systems, Suite 120, 960 San Antonio Rd., Los Altos, CA 94022. (415) 941-7201.

Multiuser Database Environment

Sentinel Computer’s SMX for the IBM PC, XT, or AT is a combination of a four-channel serial-interface board and a multiuser executive software package. Its multiuser database-oriented operating environment accommodates up to five terminals and five printers.

The interface board for SMX uses standard RS-232C serial ports. It supports port speeds ranging from 300 to 9600 bps.

The SMX-Executive software is menu-driven and has a help facility. It includes an integrated database manager, interactive on-line operations, multitasking, virtual memory, a print spooler, and multiple language/character capability.

SMX sells for $1495. For further details, contact Sentinel Computer Corporation, 9902 Carver Rd., Cincinnati, OH 45242. (513) 984-6622.

RAM Card for the Chameleon

An expansion board for the Chameleon and Chameleon Plus portable is available from Seequa Computer. The Chameleon RAM Plus Card comes with 128K, 256K, or 384K bytes of RAM. The 384K-byte version gives you 640K bytes of total RAM, the maximum on the Chameleon or Chameleon Plus.

The Chameleon RAM Plus Card comes standard with a real-time clock and a print spooler. It lets you create a RAM disk as a third disk drive. The card requires DOS 2.0 and 256K bytes of RAM resident on the main logic board.


Inquiry 623.

(continued)
Sprite, a Multiuser System, Features the 80286

Jarogate Limited’s Sprite is a multiuser microcomputer designed with Intel’s 6-MHz 80286 microprocessor and featuring Digital Research’s Concurrent CP/M 3.1 on its main processor and CP/M Plus on a slave. Ethernet capabilities are built in. Standard system hardware is made up of a 5¼-inch 790K-byte floppy-disk drive, a 21-megabyte hard disk, and a five-slot S-100 bus.

Sprite, which comes with a keyboard and a high-resolution green or amber monitor mounted on a tilt-and-swivel base, has its central processor, an interrupt controller, two serial and three parallel I/O bidirectional ports, and a socket for an optional 80287 mathematics coprocessor on its main printed-circuit board. Its serial ports have full handshaking and can operate at speeds of up to 38,400 bps. S-100 support logic and connectors for memory boards also reside on the main PCB.

Sixty-four dynamic RAM chips of either 64,000 or 256,000 bits can be installed on the Sprite’s memory boards, thereby offering RAM capacities ranging from 512K bytes to 2 megabytes. An 8027 memory-management unit polices operations while providing automatic refresh and full-speed memory access without wait states. The standard Sprite chassis can accommodate 6 megabytes of RAM.

The OWI, or outside world interface, board carries out high-speed disk I/O for the Sprite. The OWI board has a 6-MHz Z80B, 256K bytes of RAM, a hard- and floppy-disk controller, DMA, and the Ethernet controller with support logic and battery-backed real-time clock. The disk controller gives you a SASI (Shugart Associates Standard Interface) connection for your drives, and the RAM serves as an I/O buffer and cache memory.

The basic Sprite has two RS-232C serial ports for a pair of workers, and additional ports will expand Sprite for as many as 18 employees. Such options as IBM PC-compatible color graphics and an 8-port I/O board can be purchased. Many specialized S-100 boards from third-party vendors reportedly work with Sprite. UNIX System V and Concurrent DOS IV are planned.

Pricing for the Sprite was unavailable at press time. For further information, contact Jarogate Ltd., 197-213 Lyham Rd., Brixton, London, SW2 5PY, England: tel: 01-671 6321; Telex: 895094 JAROG.

Inquiry 624.

68000 Micros from England

U-Microcomputers, Warrington, England, has launched a line of microcomputers built on the 32/16-bit 68000 microprocessor. The U-Man Series 1000 is centered around a basic 128K-byte microcomputer that features on-board RAM expansion to 1 megabyte. dual 800K-byte floppy-disk drives, monochrome and RGB outputs, and a 97-key keyboard.

Graphics resolution is said to be 270 and 680 pixels, depending upon operating mode and configuration. External connections comprise a pair of serial ports, a Centronics parallel port, a general-purpose 16-bit outlet, and a 10-bit A/D jack for joysticks. The U-Man Series 1000 also has a speech synthesizer, sound generator, and a 6809 chip to supervise I/O operation.

Two operating systems, CP/M-86K and UCSD p-System, are offered. With CP/M-86K, the U-Man Series 1000 will support Digital Research’s CBASIC, Pascal MT+, C, and 68000 assembler packages as well as SVC FORTRAN and Cambridge LISP, BASIC, FORTRAN, and 68000 assembler work with the p-System.

A hard-disk option will be available. Pricing for the U-Man Series 1000 begins at £2499. Contact U-Microcomputers Ltd., Winstanley Industrial Estate, Long Lane, Warrington, Cheshire WA2 8PR, England; tel: (0925) 54117; Telex: 629279 UMICRO G.

Inquiry 625.
**WHAT'S NEW**

**NEW SYSTEMS**

**HP 260: Line of Small Business Computers**

Hewlett-Packard's HP 260 family of multiuser, small-business computers is presently made up of three models: the 15, 24, and 55. The Model 260 family, whose introduction represents the next step in the evolution of HP's Model 250 microcomputer, is fully compatible with hardware and software created for its primogenitor. It can handle HP plotters and the ThinkJet and LaserJet printers. The manufacturer says that the HP 260 is its first computer, other than its personal computers, to support these printers.

All units measure 29 inches tall, 15 inches wide, and 28½ inches deep. A 14-inch monitor and a keyboard are supported as a workstation alternative.

The entry-level HP 260 Model 15 has 256K bytes of RAM, a 15-megabyte hard-disk drive, and a 3½-inch microfloppy-disk drive. It lists for $10,900:

- With 512K bytes of RAM, a 24-megabyte hard disk, and streaming-tape backup, the Model 24 can be expanded to provide 190 megabytes of disk storage. Pricing begins at $16,300.

The top-of-the-line Model 55 can be enhanced to support as many as 18 users. It comes with the same amount of RAM as the Model 24, a streaming-tape backup, and 55 megabytes of hard-disk storage. The Model 55 begins at $20,500.

For more information, contact your local Hewlett-Packard sales office. Inquiry 626.

**SOFTWARE • APPLE**

**Mix Arabic, English, and Graphics on Ilc**

A multilingual word-processing system for the Apple Ilc has been created through the joint efforts of DIWAN Science and Information Technology and Attar Computers Limited. The system uses the Ilc's bit-mapped display to print Arabic and English text in either high resolution (40 columns) or double high resolution (80 columns).

Supplied utility programs let you mix high-resolution graphics with text. Graphics can also be manipulated and enhanced with Apple's Mousepaint program. Arabic and English texts can have independent windows, each of which supports independent scrolling.

This word processor supports two Arabic fonts as well as English, French, and German fonts. It's supplied with both Arabic fonts and the English font, a bilingual notepad program, an address program, and Image-writer bilingual driver routines. The Arabic text supports full vowel points and fully conforms with the ASMO 449 standard.

Winows, English, and Arabic displayed on the Ilc.

The word processor is £295. Contact DIWAN Science and Information Technology, London House, 271 King St., London W6 9LZ, England; tel: (01) 741 8011; Telex: 261507 MONREF G (quote reference number 2785). Inquiry 627.

**Personal Income Planning Set**

A set of programs for the Apple Ilc and Ille, Plan Ahead comprises applications that help you plan your retirement income, life-insurance coverage, and college-fund savings. Published by Advanced Financial Planning, Plan Ahead modules are designed to work alone or in conjunction with one another.

Each module lets you account for inflation and print out its various components, such as budget statements and year-by-year itemizations. Financial data can be swapped between modules, all of which are menu-driven and fully documented.

The Retirement Planning module helps create a total retirement plan in light of your particular circumstances. It details the inflation rate applicable to your budget, the funds that will be required at retirement, the amount of your retirement fund covered by your current assets, and other data. This program can analyze your plan, determine if changes are necessary, and suggest where changes might be made.

Life Insurance Planning aids in the determination of the amount of insurance needed for your family in the event of your sudden death. It considers such expenses as daily living, college fees, and funeral charges and ciphers them with hoped-for income from Social Security, current assets, and the projected income of your spouse.

College Funding calculates savings in two ways: lump-sum investment in the first year or yearly amounts to accumulate the necessary funds.

Single modules are $29.95. Two together are $49.95, and the entire set is $59.95. Contact Advanced Financial Planning, 20922 Paseo Olma, El Toro, CA 92630. Inquiry 628.

(continued)
Compiled Logo Runs on Mac

A compiled version of the Logo language, ExperLogo, is available for Apple’s Macintosh microcomputer. ExperLogo uses the Mac’s user-interface conventions and has been enhanced with such features as array processing and data-file handling. The publisher says that it is the only compiled version of Logo available and that it is the first Logo to process items and lists using arrays.

ExperLogo’s turtle graphics reportedly operate at speeds up to 100 times faster than that of other Logos. Its Bunny Graphics feature gives you bunnies that move about the screen in three-dimensional space. The bunnies respond to such navigation commands as yaw, roll, and pitch, and they can reside in cubes and spheres.

Its data-file handling abilities lets ExperLogo programs create and read their own files. Programs can be accessed from other applications through the Mac’s standard text and graphic interfaces. A few of the list-processing features are said to be adapted from LISP.

ExperLogo programs are not limited to 128K bytes of RAM because of a feature known as load-on-call. This means that procedures are stored on disk and automatically loaded when called if they are not already present in memory.

The suggested retail price is $149.95. A French version of ExperLogo is available. Contact Experelligence Inc., 559 San Ysidro Rd., Santa Barbara, CA 93108, (805) 969-7874. Inquiry 629.

Full Database Lets You Customize Applications

Helix, a data-based information-management and decision-support system, gives your Apple Macintosh full database capabilities and allows you to customize applications development. This program performs traditional database-management tasks, such as filing, sorting, and data retrieval, yet it can be used for complex data analyses and task modeling.

Helix lets you devise your own task-specific applications. Data needs only to be entered once for use with a variety of jobs, and database structures are easily modifiable. Helix works with both text and numbers.

The Helix user interface employs icons for each of its functional operations. You can link the icons together in a flowchart with data from any related file. This gives you a quick way of setting up relationships and calculations that you can tailor to specific applications. All the Mac’s user-interface conventions, including the mouse, windows, and pull-down menus, are used by Helix.


MacChoice Helps Make Decisions

MacChoice from Superex Business Software lets you use the Macintosh for making comparisons. MacChoice lets you compare and rate two, three, or four items simultaneously using as many as 20 categories. Categories are listed in order of importance, and each item is rated by its categories. This program tabulates each individual item’s ratings and displays the results in a bar graph. The chart provides a visual representation of each item’s ratings, which simplifies your decision-making process.

MacChoice costs S49.95. For more information, contact Superex Business Software, 151 Ludlow St., Yonkers, NY 10705, (800) 862-8800; in New York, (914) 964-5200. Inquiry 631.

Database Manager for Applications Development

A database-management system designed for applications development, Progress is intended to replace traditional languages and the development methods built around them. The system consists of five key components: a data dictionary, an application language, a screen and report formatter, a procedure editor, and a relational database manager.

The Progress language has a library of operators and functions, including square root, logarithm, concatenation, and string-matching operations. The syntax-checking editor positions the cursor on the incorrect word or phrase, and a help facility provides error explanations and access to definitions in the data dictionary.

The relational database manager supports databases of more than 5 billion bytes, and up to 1000 files and indexes can exist in each database. Each record can contain an unlimited number of fields within a maximum record size of 2000 bytes. Because all fields occupy only the number of bytes needed to hold the data, the vendor said, storage requirements on disk are generally reduced 30 to 60 percent.

Progress for the IBM PC costs S695; versions for UNIX machines range from S2450 to S4450. For more information, contact Data Language Corp., 5 Andover Rd., Billerica, MA 01821, (617) 663-5000. Inquiry 632.
Have a Talk with Your Computer

Racter is a program that engages in conversation ranging from serious discussion to small talk. The program also tells jokes and stories and can recall and refer to conversations it has had. (Racter is reportedly the first program to author a book. *The Policeman's Beard Is Half Constructed,* published by Warner Books last year, is a collection of stories, poems, essays, and limericks created by Racter.)

According to the developers, Racter never repeats itself because, unlike programs like Eliza, it contains no stock responses and has its own "eccentric personality." The vendor touts the program as a mix of educational and entertainment software and notes that Racter is being used as a tool to sharpen the interviewing skills of psychiatric interns. No technical knowledge is needed to use the program.


Large Print for the Visually Impaired

Computer DiskCourse has developed several programs for people with poor vision. Lyon Large Print is a screen-review package that provides nine print sizes, three space settings, and, on color machines, 16 foreground and background colors for applications software running on the IBM PC and compatibles. You can generate large-print hard copy with an IBM dot-matrix printer. Lyon Large Print is designed to work with other packages for the visually impaired, including the PC Talking Program. The software costs $490 and includes a text editor; a demo disk costs $20.

WordLyon is a specially configured large-print version of WordStar. Letters range in height from 2 to 4½ inches. The program costs $150.

LargeLotus, an interactive large-print driver for Lotus 1-2-3, costs $200.

The company will customize other software to work in large-print format. Contact Computer DiskCourse, 4546 John St., Vancouver, British Columbia V5V 3X2, Canada, (604) 876-1287. Inquiry 634.

Three for Digital Research Products

CBC Tools is a function library for use with Digital Research's CBASIC compiler. It has more than 100 functions to perform string manipulation, sorting, radix conversion, bit and byte manipulation, and interfacing with the operating system. Most of the program was written in assembly language; you can develop libraries of your own in compiled CBASIC. CBC Tools is available for CP/M-80 and CP/M-86 at a price of $100 (plus $5 for shipping).

CBCKREF is a cross-reference utility for the CBASIC compiler. Its user options let you set page length and width and sort output. The utility can find unreferenced variables and labels and identify unused variables and labels. CBCKREF is available for CP/M-80 and CP/M-86 at a price of $80 (plus $3 shipping).

MBPASLIB is a replacement library for PASLIB (used with Pascal MT+). According to the vendor, programs using MBPASLIB are typically 4K to 5K bytes smaller and up to 100 percent faster than those using PASLIB. The library is available for CP/M-80 and costs $75 (plus $3 shipping). Contact Minnow Bear Computers, POB 2233, Station A, Champaign, IL 61820-8233, (217) 398-6883. Inquiry 635.

Artificial Intelligence at Home

Dynamic Master Systems has developed an AI programming system for CP/M and MS-DOS environments that gives home computer users the tools to create their own expert systems. TOPSI is a native-code version of OPS-5, a high-order language for development of expert programs. To make TOPSI efficient on its microprocessor hosts, DMS has added several enhancements to the OPS-5 language definition and placed a few restrictions on the sizes of data structures.

TOPSI, which costs $75 (plus $5 shipping), is available for most 280 CP/M systems with 65K-byte memory and most IBM PC-compatible systems with at least 128K bytes. Contact Dynamic Master Systems Inc., POB 566456, Atlanta, GA 30356, (404) 565-0771. Inquiry 636.

Business-Applications Language

A high-level language for business applications. Lucid is reportedly easier to learn and use than conventional programming languages because it has special business features and a database system built in. Functions include data conversion, string manipulation, form input, screen handling, report generation, and math operations. Programmers can define their own functions, and the language supports all C statements except GOTO.

Lucid can read dBASE files directly. It can access data from Framework, Symphony, Lotus 1-2-3, and all spreadsheets.


(continued)
**Database Management System**

Datamaster is an information system designed to provide on-line information retrieval and update of single or multiple database sources. Through its modules and sub-modules, you can make or modify a record structure or a data-screen entry and generate reports to your specifications.

The program allows mixed fields on the same screen from a single or multiple database. You can retrieve relative information from one or several databases and update one or more databases from the same screen. You can also link screens from one to another; the vendor claims there is no limit to the number of screens you can link.


**Half-Duplex Communications**

Intended primarily for use with the existing radio telephone network, HCOM is a half-duplex communications package for PC-DOS, MS-DOS, and CP/M-80 systems. The program provides all the logic necessary to support CRC 16 error checking, half-duplex link control, and user-configurable help screens and menus. Remote-site or mobile users can log on to any HCOM system and send or receive files.

HCOM can also be used in full-duplex mode and still support all the services provided in half-duplex mode. Additionally, it can be used as a terminal emulator to access bulletin-board systems or other non-HCOM systems. XON/XOFF protocol is supported. On dedicated links, HCOM operates at up to 9600 bps.

The software costs $42.5 (Canadian). The AR&T 202-compatible modem, the CD-2, sells for $62.5. Contact Craigfield Digital, 107 Abadan Crescent NE, Calgary, Alberta T2A 6P1, Canada, (403) 273-9738. Inquiry 639.

**Screen Dump from MBC 550**

Snapshot allows Sanyo MBC 550 screen dumps at any time. It also lets you zoom in on smaller areas of the screen. It has three operating modes: character, color graphics, and high-resolution black-and-white graphics. The character mode can be used for fast printing of screen data; the color-graphics mode prints a side view of the screen with colors shown as distinguishable dot patterns.

Snapshot works with any dot-matrix printer with graphic capabilities and a parallel port. Horizontal and vertical scaling, color-to-dot pattern representation, and the keystrokes used to invoke its operations can be modified. Snapshot is preconfigured for various printers. It runs on versions of MS-DOS that occupy under 2.5K bytes of main memory. It costs $34.95, plus $1 shipping. Contact Key Software Products, 440 Ninth Ave., Menlo Park, CA 94025, (415) 364-9847. Inquiry 640.

**Structured Programming Language Released for Commodore**

A high-level, structured programming language similar to C and Pascal, PROMAL runs on the Commodore 64. Systems Management Associates says that PROMAL's fast compiler and a highly efficient run-time environment let you write applications for the Commodore 64 in a high-level language, where once such programs had to be written in assembly language.

PROMAL (Programmer's Micro Applications Language) comes with a one-pass compiler, a full-screen editor, a command executive, and a library of predefined utilities. The PROMAL executive provides file, memory, and program management as well as I/O redirection. A full-screen, cursor-driven editor helps you enter and edit your source program rapidly.

The library of machine-language subroutines supports the PROMAL run-time environment with optimized routines for file I/O, string handling, formatted output, and data conversion. Benchmarks that reportedly show PROMAL to be from 70 to 200 percent faster than BASIC, COMAL, FORTH, and Pascal are available from the manufacturer.

PROMAL is $49.95 factory-direct. A developer's version with an unlimited run-time distribution license is $99.95. Contact Systems Management Associates, 3700 Computer Dr., POB 20025, Raleigh, NC 27619, (919) 787-7703. Inquiry 641.
Communications Software for Portable

Geneva Connection is a ROM-cartridge telecommunications program that lets users of Epson's Geneva portable computer communicate directly with external storage units or by modem with other computers. It can handle communications with remote computers by means of add-on or external modems and through acoustic couplers. Data can also be sent or retrieved from a floppy disk, RAM disk, or microcassette.

Geneva Connection offers two means of transferring files: XON/XOFF flow control and a block protocol with error detection and correction. It works with either pulse or tone dialing and is capable of automatic dialing.

Other features are English-language command structures, automatic-answer capability for preset time periods, full range of communication speeds, and selective filtering and replacement of characters for such applications as file transfers between word processors.

The retail price for the Geneva Connection is $79. Contact Epson America, 2780 Lomita Blvd., Torrance, CA 90305, (213) 539-9140. Inquiry 642.

Utilities for LaserJet

JetSet, a pair of utilities for Hewlett-Packard's LaserJet printer, runs on the HP 150 touch-screen computer, the IBM PC, and PC-compatibles. Both utilities interface transparently with each other and can be used with any text editor or word processor.

SetLaser, the first utility, executes a string of commands that initializes the LaserJet and directs its output to the communications port. It provides access to the LaserJet's formatting capabilities, including typefaces, lines per inch, number of copies, and page length. Multiple formats can be saved for use with different documents.

The second utility is Runoff. It lets you set tab stops, margins, and page feeds from within the document being printed. It can be used for generating headers, footers, and page numbers and underlining portions of text.

JetSet is $79. Contact Datamate Co., Suite 128, 4135 South 100 East Ave., Tulsa, OK 74146, (800) 262-7276; in Oklahoma, (918) 664-7276. Inquiry 644.

CP/M Plus for Cromemcos

Super BIOS Plus is a revised version of CP/M Plus for Cromemco computers said to incorporate a memory-management method that uses interbank memory moves and banking of disk drivers to achieve a 60K-byte program area. Its file system features hashed directory access, record buffering, and multisecteded disk I/O.

Super BIOS Plus is upward-compatible with CP/M 2.2 for applications programming, and it supports up to 16 hard disks.

Console I/O redirection utilities are available for applications programming transparency. Extended system utilities include programs that list file directories and transfer files. A batch facility is provided.

A CDOS emulator for running Cromemco software under CP/M and MP/M. Expand is a supplied system extension. Super BIOS Plus also incorporates a component that allows Cromemcos to read data disks created on the IBM PC.

Super BIOS Plus with Expand costs $375. It supports single- or double-sided, 5¼- and 8-inch disks. Source code and copy and disk-formatting programs are supplied. Contact Micro Applications & Hardware, 15 Princess St., Sausalito, CA 94965, (415) 331-6422; east of the Rockies, (314) 434-1896. Inquiry 643.

WHERE DO NEW PRODUCT ITEMS COME FROM?

The new products listed in this section of BYU are chosen from the thousands of press releases, letters, and telephone calls we receive each month from manufacturers, distributors, designers, and readers. The basic criteria for selection for publication are: (a) does a product match our readers' interests? and (b) is it new or is it simply a reintroduction of an old item? Because of the volume of submissions we must sort through each month, the items we publish are based on vendors' statements and are not individually verified. If you want your product to be considered for publication (at no charge), send full information about it, including its price and an address and telephone number where a reader can get further information, to New Products Editor, BYTE, POB 372, Hancock, NH 03449.

MSX Source Code Manual

Quest Publishing has released a complete BIOS manual for the MSX standard.

MSX BIOS: The Complete MSX BASIC I/O Listing contains the full source code for MSX BASIC. This soft-cover book retails for $69.95. Contact Quest Publishing Inc., Suite 800, 39 West 32nd St., New York, NY 10001, (212) 564-0749. Inquiry 645.
CCT-4 SYSTEM SERIES

The latest CCT implementation of the new generation Intel 16-Bit Processor technology. This means extreme speed, unequaled power, and the ultimate in reliability, and of course, the innovators at CCT behind it.

This series in the CCT line exploits the speed and power of the Intel 80286 and Zilog Z-80H (8MHz), on the 2862 CPU board. This combination, along with CompuPro OMA controllers and I/O boards, yields a dramatic improvement in system throughput speeds, from basic CP/M operation, up to large powerful multi-user/multi-tasking machines. The CCT-4 represents the most advanced hardware presently available in a microcomputer to run the thousands of CP/M type software programs on the market, and with CONCURRENT DOS 8-16 and the CompuPro PC Graphics board (when available), all software written for the IBM PC machines. This series is for the serious business/scientific user.

CCT-4A State-of-the-art power in its basic form. Consists of CCT-286Z CPU board and CCT-M256 (256K), along with CompuPro: Enclosure 2 Desk (21 slot MF), Disk 1A, System Support 1, Interfacer 4, the CCT-286 floppy drive system, and CP/M 80 and CP/M 86, and with SF-200 surge suppressor system. $5,995.00

CCT-4B Single-user/hard disk power. As the 4A, except priced without the CCT-2.4, to add in your choice of CCT hard/floppy combination drive subsystem, at the published pricing. (Example: CCT-4B Mainframe with CCT-10/1 = $7,244.00) $4,895.00

CCT-4C Multi-user/hard disk power. As the 4B, with the CCT-M512 (512K static RAM board) instead of M256; Interfacer 3 instead of Interfacer 4; SF-400 instead of SF-200, plus Concur. DOS 8-16 O.S. (6 user system) $6,695.00

NEW RAM BOARD Limited Time Offer - FREE Supercalc 86 with any CCT-4

The above systems include all necessary cabling, assembly, testing, minimum 20 hour burn-in, and the CCT unconditional 12 month direct warranty.

CCT-M512 CCT introduces its 512K static RAM board. IEEE Standard 12MHz. 512K in one slot! Introductory Price: $1,995

CCT-M256 256K version of M512 upgradeable to full 512K. Perfect 256K RAM board for any CompuPro system $1,029

HIGH REL. SWITCHING POWER SUPPLIES LOW COST

<table>
<thead>
<tr>
<th>ITEM</th>
<th>FOR</th>
<th>+5V</th>
<th>-5V</th>
<th>+12V</th>
<th>+24V</th>
<th>+8V</th>
<th>+16V</th>
<th>W x D x H in.</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW40W</td>
<td>TERM. &amp; 2 ALPS DRIVES 2.5A</td>
<td>-</td>
<td>-</td>
<td>2.5A</td>
<td>pk.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3A</td>
</tr>
<tr>
<td>SW70W</td>
<td>APPLE II, IBM PC-1, II</td>
<td>7A</td>
<td>3A</td>
<td>2.5A</td>
<td>3.5A</td>
<td>pk.</td>
<td>2.5A</td>
<td>pk.</td>
<td>3A</td>
</tr>
<tr>
<td>SW80W</td>
<td>PC WITH SOFT DRIVES</td>
<td>8A</td>
<td>3A</td>
<td>2.5A</td>
<td>3.5A</td>
<td>pk.</td>
<td>3A</td>
<td>pk.</td>
<td>3A</td>
</tr>
<tr>
<td>SW138</td>
<td>IBM PC-XT/PS/PC/XT 15A</td>
<td>10A</td>
<td>4.5A</td>
<td>pk.</td>
<td>3A</td>
<td>pk.</td>
<td>10.5A</td>
<td>25A</td>
<td>5A</td>
</tr>
<tr>
<td>SW160</td>
<td>PC WITH HARD DRIVES</td>
<td>12A</td>
<td>3A</td>
<td>4.5A</td>
<td>pk.</td>
<td>25A</td>
<td>5A</td>
<td>pk.</td>
<td>3A</td>
</tr>
</tbody>
</table>

SPECS. OF ABOVE SWITCHERS: 117/220 VAC SELECTABLE. INPUT 90-132 VAC/180-275 VAC, EFFIC. 75% TYPICAL, LINE REGUL. 0.3%, LOAD REGUL. 1% ON +5V, 5% ON OTHER VOLTAGES, 62 OVP SETTING ON +5V, OVERLOAD & SHORT CIRCUIT PROTECT, LOW OUTPUT RIPPLE & NOISE, 1% MAX, 50,000 HRS. MTBF RELIABILITY, UL, FCC & VDE SAFETY & NOISE STANDARDS.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>PRIMARY</th>
<th>SECOND. #1</th>
<th>SECOND. #2</th>
<th>SECOND. 3</th>
<th>W x D x H in.</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>110/120 VAC</td>
<td>2 x 8 VAC/7A</td>
<td>28 Vac, CT, 2A</td>
<td>-</td>
<td>34 x 34 x 34</td>
<td>$15.95</td>
</tr>
<tr>
<td>T2</td>
<td>110/120 VAC</td>
<td>2 x 8 VAC/7A</td>
<td>28 Vac, CT, 2A</td>
<td>-</td>
<td>34 x 34 x 34</td>
<td>21.95</td>
</tr>
<tr>
<td>T3</td>
<td>110/120 VAC</td>
<td>2 x 8 VAC/7A</td>
<td>28 Vac, CT, 2A</td>
<td>-</td>
<td>34 x 34 x 34</td>
<td>23.95</td>
</tr>
<tr>
<td>T4</td>
<td>110/120 VAC</td>
<td>16 VAC, CT, 4A</td>
<td>28 Vac, CT, 15A</td>
<td>-</td>
<td>34 x 34 x 34</td>
<td>23.95</td>
</tr>
<tr>
<td>T4-1</td>
<td>110/120 VAC</td>
<td>16 VAC, CT, 4A</td>
<td>28 Vac, CT, 15A</td>
<td>-</td>
<td>34 x 34 x 34</td>
<td>17.95</td>
</tr>
<tr>
<td>T4-2</td>
<td>110/120 VAC</td>
<td>16 VAC, CT, 4A</td>
<td>28 Vac, CT, 15A</td>
<td>-</td>
<td>34 x 34 x 34</td>
<td>14.95</td>
</tr>
<tr>
<td>T4-3</td>
<td>110/120 VAC</td>
<td>16 VAC, CT, 4A</td>
<td>28 Vac, CT, 15A</td>
<td>-</td>
<td>34 x 34 x 34</td>
<td>11.95</td>
</tr>
</tbody>
</table>

SHIPPING: FOR EA. POWER SUPPLY: $6.00 IN CALIF.; $8.00 IN OTHER STATES; $10.00 IN CANADA. FOR EA. TRANSFORMER: $6.00 IN ALL STATES; $12.00 IN CANADA. CALIF. RESIDENTS ADD 6.5% SALES TAX.

IBM PC/PC XT; APPLE II/II+; COMMODORE 64C/64C+4* ARE TRADEMARKS OF IBM CORP. APPLE COMPUTER INC. & COMMODORE BUSINESS MACHINES, RESPECTIVELY

SUNNY INTERNATIONAL IN BUSINESS SINCE 1975
(213) 328-2425 MON-FRI 8:30-5:30
FOR TECHNICAL SUPPORT:
- FOREMOST QUALITY • ADVANCED SUPPORT • REASONABLE COST •

from Macrotech. It features the super
for the Ml-286 dual processor board
8085/88
high speed combination of Z-80H and

Science/Business user. Mini-enclosure ac­
CCT S-100/PC is a break-through for the

200· 14" GREEN-80/132 Super Deluxe . $569

110·14" GREEN-80/132 Column .... $499

100-12" GREEN-25 X 80 . . . $399

93 -132 Col. ... $569

84 - 132 Col/200cps—Top of the Line . $799

WE HAVE ALL SOFTWARE—CALL

 Prices & availability subject to change. All products new, and carry full manufacturer's warranties. No credit card. Free technical help to anyone. All products we sell are CCT individually tested and set up for your system - Plug-In & Go! Arizona residents add sales tax. 

NEW TRUE
IBM PC INTERFACE
ULTRA HI-RES GRAPHICS!

CCT DISK DRIVE SYSTEMS ROLLS ROYCES OF THE INDUSTRY

S-100 HARD DISK SUBSYSTEMS

Professionally engineered ST-506 type systems for the business market S-100 Computer user. Includes industry top quality drives, CompuPro Disk 3 DMA controller, all cabling, A&T, formatted, burned-in. Provisions for up to two hard disks in each system. We include operating system update.

CPU-Z - $229 • Disk 1A - $519 • Disk 1A w/CP/M - $619 • CPU 8086/88 - $349 • CPU 8086 - $559/10Mhz - $599 • CPU 68K - $519/10/Mhz - $599

PC Graphics - $399 • Disk 3 - $499 • Interfacer 3 - $499 • Interfacer 4 - $349 • System Support 1 - $329

CP/M 8-16 (CCTCMX) - $199 • CP/M 86 (CCTCMX) - $279 • Operating System Updates/Remakes - $30

CCT-4 • Dual 8" DSDD

CCT-2.4 • Dual 8" DSDD

Mitsubishi 2.4 Megabyte in Extra Heavy horizontal enclosure, removable filter air system, all cabling, A&T, Burned-in. The fastest system available: . . . . . . . .. $1029

NEW - M-Drive/H - 512K - $599 / 1 Meg - $1149 / 2 Meg - $2099 / 4 Meg - $3799

Enclosure 2 Desk - $649/Rack - $999 • Interfacer 3 - $499 • Interfacer 4 - $349 • System Support 1 - $329

Concurrent DOS 8-16 (CCTCMX) - $309 • CP/M 80 (CCTCMX) - $125 • CP/M 86 (CCTCMX) - $175

CP/M 8-16 (CCTCMX) - $199 • CP/M 86 (CCTCMX) - $279 • Operating System Updates/Remakes - $30

16 Bit Upgrade Kit: CP/M 86, RAM 23, System Support 1, Cable $759 • CP/M 8-16 - Kit - $783

CCT-1 — ENTRY LEVEL S-100 BUSINESS SYSTEM

- Enclosure 2-Desk-21 Slot Mainframe - CPU 8086/88 - 6MHz 8086/88/586/686
- Disk 1A - DMA Floppy Disk Controller
- RAM 23-64K Static RAM - 12MHz
- Interfacer 4 - 3 Serial/2 Parallel I/O

RUNS ALL STANDARD 8" CP/M SOFTWARE—INCLUDES OUR EXCLUSIVE 12 MONTH DIRECT WARRANTY

SPECIAL PRICE $3,559

CCT® CUSTOM COMPUTER TECHNOLOGY

1 CCT PLAZA — P.O. BOX 4160 — SEDONA, ARIZONA 86340

800-222-8686

FOR TECHNICAL SUPPORT /
SERVICE IN ARIZONA:
602-282-6299

80286 NOW!

CCT-286Z is our model designation for the MI-286 dual processor board from Macrotech. It features the super high speed combination of Z-80H and 80286, with provision for the 80287 math chip. Directly replaces 8085/88 and 8086 CPUs running CP/M, MP/M Concurrent DOS, and MS-DOS, at throughput increases of 3X to 5X!

SPECIAL PRICE - $1099

80287 Option - Installed - $395

SEE THE CCT-S SERIES USING THIS BOARD
DETAILED ON THE FACING PAGE

NEW—TRUE
IBM PC INTERFACE
ULTRA HI-RES GRAPHICS!

CCT S-100/PC is a break-through for the Science/Business user. Mini-enclosure ac­
CCT S-100/PC is a break-through for the

200· 14" GREEN-80/132 Super Deluxe . $569

110·14" GREEN-80/132 Column .... $499

100-12" GREEN-25 X 80 . . . $399

93 -132 Col. ... $569

84 - 132 Col/200cps—Top of the Line . $799

WE HAVE ALL SOFTWARE—CALL

Prices & availability subject to change. All products new, and carry full manufacturer's warranties. No credit card. Free technical help to anyone. All products we sell are CCT individually tested and set up for your system - Plug-In & Go! Arizona residents add sales tax. 

NEW TRUE
IBM PC INTERFACE
ULTRA HI-RES GRAPHICS!

CCT S-100/PC is a break-through for the Science/Business user. Mini-enclosure ac­
CCT S-100/PC is a break-through for the

200· 14" GREEN-80/132 Super Deluxe . $569

110·14" GREEN-80/132 Column .... $499

100-12" GREEN-25 X 80 . . . $399

93 -132 Col. ... $569

84 - 132 Col/200cps—Top of the Line . $799

WE HAVE ALL SOFTWARE—CALL

Prices & availability subject to change. All products new, and carry full manufacturer's warranties. No credit card. Free technical help to anyone. All products we sell are CCT individually tested and set up for your system - Plug-In & Go! Arizona residents add sales tax. 

NEW TRUE
IBM PC INTERFACE
ULTRA HI-RES GRAPHICS!

CCT S-100/PC is a break-through for the Science/Business user. Mini-enclosure ac­
CCT S-100/PC is a break-through for the

200· 14" GREEN-80/132 Super Deluxe . $569

110·14" GREEN-80/132 Column .... $499

100-12" GREEN-25 X 80 . . . $399

93 -132 Col. ... $569

84 - 132 Col/200cps—Top of the Line . $799

WE HAVE ALL SOFTWARE—CALL

Prices & availability subject to change. All products new, and carry full manufacturer's warranties. No credit card. Free technical help to anyone. All products we sell are CCT individually tested and set up for your system - Plug-In & Go! Arizona residents add sales tax. 

NEW TRUE
IBM PC INTERFACE
ULTRA HI-RES GRAPHICS!

CCT S-100/PC is a break-through for the Science/Business user. Mini-enclosure ac­
CCT S-100/PC is a break-through for the

200· 14" GREEN-80/132 Super Deluxe . $569

110·14" GREEN-80/132 Column .... $499

100-12" GREEN-25 X 80 . . . $399

93 -132 Col. ... $569

84 - 132 Col/200cps—Top of the Line . $799

WE HAVE ALL SOFTWARE—CALL

Prices & availability subject to change. All products new, and carry full manufacturer's warranties. No credit card. Free technical help to anyone. All products we sell are CCT individually tested and set up for your system - Plug-In & Go! Arizona residents add sales tax. 

NEW TRUE
IBM PC INTERFACE
ULTRA HI-RES GRAPHICS!

CCT S-100/PC is a break-through for the Science/Business user. Mini-enclosure ac­
CCT S-100/PC is a break-through for the

200· 14" GREEN-80/132 Super Deluxe . $569

110·14" GREEN-80/132 Column .... $499

100-12" GREEN-25 X 80 . . . $399

93 -132 Col. ... $569

84 - 132 Col/200cps—Top of the Line . $799

WE HAVE ALL SOFTWARE—CALL

Prices & availability subject to change. All products new, and carry full manufacturer's warranties. No credit card. Free technical help to anyone. All products we sell are CCT individually tested and set up for your system - Plug-In & Go! Arizona residents add sales tax. 

NEW TRUE
IBM PC INTERFACE
ULTRA HI-RES GRAPHICS!

CCT S-100/PC is a break-through for the Science/Business user. Mini-enclosure ac­
CCT S-100/PC is a break-through for the

200· 14" GREEN-80/132 Super Deluxe . $569

110·14" GREEN-80/132 Column .... $499

100-12" GREEN-25 X 80 . . . $399

93 -132 Col. ... $569

84 - 132 Col/200cps—Top of the Line . $799

WE HAVE ALL SOFTWARE—CALL

Prices & availability subject to change. All products new, and carry full manufacturer's warranties. No credit card. Free technical help to anyone. All products we sell are CCT individually tested and set up for your system - Plug-In & Go! Arizona residents add sales tax.
HARD_DISK™

5 and 10 megabyte Removable 30, 55, 88, and 119 megabyte Fixed

Selected as the best buy for Apple and IBM PCs by Popular Computing Magazine, Digital Electronics Systems offers the most flexible HARD_DISKS for Apple and IBM PCs. A mixture of Removable and Fixed HARD_DISKS allows virtually unlimited storage capacity. Backed by direct and immediate engineering support, each customer can now enjoy carefree usage of high performance mass storage devices. Software developed by DES was designed to allow easy quick installation and to work transparently without changing any existing operating system. Wordstar, Lotus 1-2-3, and Access applications are available for use.

Apple

*User-selectable volume sizes as follows:

DOS to 400K, PRODOS to 2 Mbytes.
CPM to 150 megabytes.
Up to 130 watt, 254 DOS volumes, 63 CPM volumes, 64 PASCAL volumes, and 63 PRODOS volumes per drive.
Split file entries between HARD_DISK and floppy drives.
Boot into any operating system and between operating systems.
Up to 12 drives per Apple.

Apple

*User-selectable format interleave for maximizing performance.
*HARD_DISK can be used in any slot (except 0).
*2 drive controller handles any combination of Removable and/or Fixed Drives.
*Complete information on directly accessing the HARD_DISK including direct access using your own drivers.
*Transparent operation using each operating system's present commands.
*Comprehensive manual.

<table>
<thead>
<tr>
<th>Removable</th>
<th>Fixed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple, external</td>
<td>5mb</td>
</tr>
<tr>
<td>Zenith 100 external</td>
<td>1295</td>
</tr>
<tr>
<td>2nd Drive</td>
<td>1450</td>
</tr>
<tr>
<td>IBM PC, XT, AT - internal</td>
<td>1095</td>
</tr>
<tr>
<td>IBM PC, XT, AT - External</td>
<td>1295</td>
</tr>
<tr>
<td>2nd Drive</td>
<td>1295</td>
</tr>
<tr>
<td>Annual Maintenance Contract</td>
<td>150</td>
</tr>
</tbody>
</table>

CASH PRICES, Inquire about CREDIT CARD and PURCHASE ORDER PRICES.
615-649-5137

DIGITAL ELECTRONICS SYSTEMS
302 South Main, Estill Springs, Tennessee 37330
Serving the Electronics Industry since 1978.

SOMEBODY Has To Have The Lowest Prices!

<table>
<thead>
<tr>
<th>MONITORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMDEK 300</td>
</tr>
<tr>
<td>PG S-12</td>
</tr>
<tr>
<td>PG S-16</td>
</tr>
<tr>
<td>TAXAN COLOR</td>
</tr>
<tr>
<td>TAXAN AMBER COMPOSITE</td>
</tr>
<tr>
<td>TAXAN AMBER W/T/TPLUS</td>
</tr>
<tr>
<td>TAXAN AMBER W/TTLESS</td>
</tr>
<tr>
<td>IBM MONOCHROME DISPLAY</td>
</tr>
<tr>
<td>IBM COLOR DISPLAY</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRINTERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPSON FX 80</td>
</tr>
<tr>
<td>EPSON FX 100</td>
</tr>
<tr>
<td>EPSON FX 90</td>
</tr>
<tr>
<td>EPSON FX 850</td>
</tr>
<tr>
<td>OKIDATA 82A</td>
</tr>
<tr>
<td>OKIDATA 83A</td>
</tr>
<tr>
<td>OKIDATA 89A</td>
</tr>
<tr>
<td>OKIDATA 89B</td>
</tr>
<tr>
<td>OKIDATA 92A</td>
</tr>
<tr>
<td>OKIDATA 93A</td>
</tr>
<tr>
<td>OKIDATA 93B</td>
</tr>
<tr>
<td>OKIDATA 93P</td>
</tr>
<tr>
<td>OKIDATA 94P</td>
</tr>
<tr>
<td>OKIDATA 2410P</td>
</tr>
<tr>
<td>TOSHIBA 1351</td>
</tr>
<tr>
<td>NEC SPINNER 3550</td>
</tr>
<tr>
<td>NEC PRINTER 80 COL</td>
</tr>
<tr>
<td>NEC PRINTER 128 COL</td>
</tr>
<tr>
<td>BROTHER HR-25</td>
</tr>
<tr>
<td>BROTHER HR-35</td>
</tr>
</tbody>
</table>

(Prices & availability subject to change without notice—IBM is a registered trademark of IBM Corporation.)
What the world really needs is a 99 cent Double Sided, Double Density Diskette with a LIFETIME WARRANTY!

And DISK WORLD! has it.

Introducing Super Star Diskettes: the high quality diskette with the lowest price and the best LIFETIME WARRANTY!

In the course of selling more than a million diskettes every month, we've learned something: higher prices don't necessarily mean higher quality. In fact, we've found that a good diskette manufacturer simply manufactures a good diskette—no matter what they charge for it. (By way of example, consider that none of the brands that we carry has a return rate of greater than 1/1,000th of 1 percent.)

In other words, when people buy a more expensive diskette, they aren't necessarily buying higher quality. The extra money might be going toward flashier advertising, snazzier packaging or simply higher profits.

But the extra money in a higher price isn't buying better quality. All of the good manufacturers put out a good diskette. Period.

How to cut diskette prices... without cutting quality.

Now this discovery posed a dilemma: how to cut the price of diskettes without lowering the quality. There are about 35 companies claiming to be "diskette" manufacturers. Trouble is, most of them aren't manufacturers. Rather they are fabricators or marketers, taking other company's components, possibly doing one or more steps of the processing themselves and pasting their labels on the finished product.

The new Eastman Kodak diskettes, for example, are one of these. So are IBM 5¼" diskettes. Same for DYSAN, Polaroid and many, many other familiar diskette brand names. Each of these diskettes is manufactured in whole or in part by another company! So, we decided to act just like the big guys. That's how we would cut diskette prices... without lowering the quality.

We would go out and find smaller companies to manufacture a diskette to our specifications... specifications which are higher than most... and simply create our own "name brand" diskette.

Name brand diskettes that offered high quality at low prices.

Boy, did we get lucky. Our Super Star Diskettes are the same ones you've been using for years... without knowing it. In our search for the low priced, high quality diskette of our dreams, we found something even more interesting.

We found that there are several manufacturers who don't give a hoot about the consumer market for their diskettes. They don't spend millions of dollars in advertising trying to get you, the computer user, to use their diskettes.

Instead, they concentrate their efforts on turning out the highest quality diskettes they can... because they sell them to the software publishers, computer manufacturers and other diskette marketers, not the consumer market.

After all, when a software publisher or computer manufacturer puts their name on a diskette, they want it to work time after time, everytime. (Especially software publishers who have the nasty habit of copying-protecting their originals.)

Super Star Diskettes. You already know how good they are. Now you can buy them... cheap.

Well, that's the story. Super Star diskettes don't roll off the boat from Pago-Pago or emerge from a basement plant just east of Nowhere. Super Star diskettes have been around for years... and you've used them for years as copy-protected software originals, unprotected originals. Sometimes, depending on which computer you own, the system master may have been on a Super Star diskette. And maybe more than once, you've bought a box or two of Super Star diskettes without knowing it. They just had some "big" company's name on them.

Super Star Diskettes are good. So good that a lot of major software publishers, computer manufacturers and other diskette marketers buy them in the tens or hundreds of thousands. We buy them in the millions. And than we sell them to you.

When every little bit counts, it's Super Star Diskettes.

You've used them a hundred times... under different names. Now, you can buy the real McCoy, the same diskette that major software publishers, computer manufacturers and diskette marketers buy... and call their own.

We simply charge less.

Super Special!

Order 50 Super Star Diskettes and we'll be happy to sell you an Amaran Media-Mate 50 for only $8.75, shipping included... a lot less than the suggested retail price of $15.95.

Regular DISK WORLD! price:$10.95 ea.
$2.00 Shpng.

The Super Star LIFETIME WARRANTY!

Super Star Diskettes are unconditionally warranted against defects in original material and workmanship for as long as owned by the original purchaser. Returns are simple: just send the defective diskettes with proof of $15.95.

ORDERS ONLY:
1-800-521-6527 (In Illinois: 1-312-944-2788)
INQUIRIES:
1-312-944-2788

FOR FASTEST SERVICE, USE NO-DIST. MCI MAIL:
Our address is DISK WORLD. It's a FREE MCI MAIL letter. No charge to you. (Situation permitting, we'll ship these orders in 24 hours or less.)

SHIPPING: 5¼" or 3½" DISKETTES—Add $3.00 per each 100 or fewer diskettes. OTHER ITEMS: Add shipping charges as shown in addition to other shipping charges. PAYMENTS: VISA, MASTERCARD and Personal checks accepted. COD ORDERS: Add additional $5.00 special handling charge. FPO, APO, HI & PR ORDERS: Include shipping charges as shown and additional 5% of total order amount to cover PAC and insurance. No shipping to United States addresses, except for those listed above. TAXES: Illinois residents add 8% sales tax.

MINIMUM ORDER: $35.00 or 20 diskettes.

WE WILL MEET OR BEAT ANY NATIONAL ADVERTISED PRICE ON THE SAME PRODUCTS AND QUANTITIES SUBJECT TO THE SAME TERMS AND CONDITIONS.
### IBM XT Compatible Products

<table>
<thead>
<tr>
<th>Product Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU Board (w/128K)</td>
<td>$399.00</td>
</tr>
<tr>
<td>Computer Cabinet</td>
<td>$69.00</td>
</tr>
<tr>
<td>83 Key Full-Function Keyboard</td>
<td>$99.00</td>
</tr>
<tr>
<td>Monochrome Graphic Card (w/parallel printer port)</td>
<td>$210.00</td>
</tr>
<tr>
<td>130 Watt Power Supply</td>
<td>$129.00</td>
</tr>
<tr>
<td>135 Watt Power Supply</td>
<td>$135.00</td>
</tr>
<tr>
<td>150 Watt Power Supply</td>
<td>$140.00</td>
</tr>
<tr>
<td>Color Graphic Card</td>
<td>$49.00</td>
</tr>
<tr>
<td>FDD Controller Card</td>
<td>$99.00</td>
</tr>
<tr>
<td>Parallel Printer Card</td>
<td>$59.00</td>
</tr>
<tr>
<td>ASYNG &amp; RS232 Card</td>
<td>$75.00</td>
</tr>
<tr>
<td>360KB DSDD (Slimline) Disk Drive</td>
<td>$119.00</td>
</tr>
<tr>
<td>IBM Parallel Cable</td>
<td>$19.00</td>
</tr>
<tr>
<td>IBM Prototype Board</td>
<td>$39.00</td>
</tr>
<tr>
<td>Apparat EPROM Blaster</td>
<td>$129.00</td>
</tr>
<tr>
<td>MicroLog Z-80B Baby Blue II Co-Processor, Multi-Function</td>
<td>$499.00</td>
</tr>
<tr>
<td>IBM Up-Grade Kit (4164-150NS)</td>
<td>$19.50 per kit</td>
</tr>
<tr>
<td>10MB Hard Disk (w/Controller)</td>
<td>$675.00</td>
</tr>
<tr>
<td>IBM PC Mouse</td>
<td>$147.00</td>
</tr>
<tr>
<td>Quad Board II</td>
<td>$249.00</td>
</tr>
<tr>
<td>Quad 512 (w/64K RAM)</td>
<td>$259.00</td>
</tr>
<tr>
<td>Koala Graphics Table (w/Software)</td>
<td>$105.00</td>
</tr>
<tr>
<td>Keyboard Extension Cable</td>
<td>$9.00</td>
</tr>
</tbody>
</table>

### Apple Compatible Products

<table>
<thead>
<tr>
<th>Product Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun 280 Card (w/Software APPLE II II + only)</td>
<td>$49.00</td>
</tr>
<tr>
<td>Sun 80 Column Card (w/Soft Switch)</td>
<td>$85.00</td>
</tr>
<tr>
<td>Power Supply (3 Amp)</td>
<td>$59.95</td>
</tr>
<tr>
<td>Cooling Fan</td>
<td>$42.00</td>
</tr>
<tr>
<td>Floppy Disk Controller</td>
<td>$42.00</td>
</tr>
<tr>
<td>16K RAM Card</td>
<td>$49.00</td>
</tr>
<tr>
<td>128K RAM Card</td>
<td>$159.00</td>
</tr>
<tr>
<td>Parallel Printer Card</td>
<td>$49.00</td>
</tr>
<tr>
<td>Serial Printer Card</td>
<td>$89.00</td>
</tr>
<tr>
<td>RS232 Card for modem</td>
<td>$39.00</td>
</tr>
<tr>
<td>EPROM Programmer (2716, 32, 64)</td>
<td>$75.00</td>
</tr>
<tr>
<td>Apple Disk Drive (Full height)</td>
<td>$159.00</td>
</tr>
<tr>
<td>Apparat EPROM Blaster</td>
<td>$119.00</td>
</tr>
</tbody>
</table>

---

### WAVE MATE BRINGS MUSCLE TO YOUR IBM PC/XT WITH IT'S 80286 MOTHERBOARD

**BULLET-286 makes the XT perform with greater power and speed than the IBM PC/AT**

It's the new BULLET-286 motherboard for the IBM PC/XT marketplace. This advanced-technology product utilizes the Intel microprocessor 80286 while maintaining both hardware and software compatibility with the IBM PC/XT. By simply replacing the existing XT board with our new BULLET-286, you get greater power and speed than the IBM PC-AT. Thus, existing PC/XT users can preserve their investment in hardware and software while moving a quantum leap beyond PC-AT performance.

The BULLET-286 contains a 6 megahertz no wait state 80286 microprocessor in place of the XT's 4.77 MHz 8086. There is an 80287 math co-processor option, 8 IBM expansion slots, and enhanced ROM BIOS. The BULLET-286 is equipped with 256K bytes of memory, expandable to 1 megabyte on-board.

The BULLET-286 is compatible with the IBM PC/XT to a degree far beyond the IBM PC-AT product. Application programs and operating systems (PC-DOS, CP/M, UCSD-Pascal, Pick, Oasis, Unix-derivatives) available for the XT, can run without incompatibilities on the BULLET-286.

You can order now. The BULLET-286 is available with 256K RAM, with options to full megabyte. Prices start at $1,995.

Quantum discounts available. OEM and dealer inquiries welcome.

**APOLLO MARKETING**

(a division of Cal. Digital)

22048 Sherman Way #316
Canoga Park, CA 91303
Tel: (818) 883-8390 Telex: 194369

In Europe call: Brussels 649-1070

Telex 61828
ALL PRICES
20% - 40% OFF LIST

PRINTERS

OKIDATA
ML32.7A, Replaces 82A "New" $299
ML33A, 15" Para. & Ser. $459
ML92 IBM Graphic Comp. $359
ML92 IBM Graphic Comp. $499
ML92 Apple Mac.2K Graphics $479
ML8P, 1090, 1092 $579
ML81 IBM Graphic Comp. $579
ML82 160, 200ps $799
ML4P, 200ps $799
ML84S, 200ps $799

STAR MICRONICS
SG-10, 120cps, 2K buffer $299
SG-15, 160cps, 10" carriage $399
SG-20, 240cps, Cor. Qual. $499
SB-10 Draft & NLQ 24 pin print $799

C. ITOH
7500AP w/Tractor. (Better than RX80) $225
SD-10, 160cps, Corr. Qual. $999

PANASONIC
St a r w r i t e r A 10·30 . . . . . . . 499
TM1CXJ.2 for IBM PC $499

ALPHA OMEGA
100cps, does graphics. 3 in 1 printer $1199

BROTHER
55S Double sided 360K .. . . . . . $ 78

TOSHIBA
1550SP, 180cps $525
1550EP (IBM Compatible) $445

HR35, 36cps $109
P1340 same as above but 10" carriage $685
P1351 Dot Matrix, 192cps, letter quality $789

 Elite I .. . . . ... .
Prowriter I/1550BCD, 15" 120cps $499

Prowriter 8510BC2, 120cps $299

TOSHIBA
1091w/Tractor, 120cps, 1 yr. war $279

DYNAX
DX15XL, 20cps By Brother $399

SF-15, 120cps, 10" carriage $369

SG-15, 120cps, 2K buffer $369

SD-10, 160cps, 10" carriage $369

ASTRONIC
120AF w/Tractor, 120 cps, 1 yr. war $119

880, 80cps, FT & Graphics $229

P1351 Dot Matrix, 192cps, letter quality $789

DYNAX
DX15XL, 20cps By Brother $399

IBM PC ACCESSORIES

IBM
IBM Dos.0 $69
IBM Tech Ref. for PC $109
Paradise
Modular Graphics Card $299
Modular Module B $199
64K MEMORY UPGRADE
Quad Color 1 Board $199
Quad Color 1 Board $199
Quad, 300PS for Apple III/SPIII $399

APPLE
Kensington System Saver $69
Fan for Apple II & III w/tripower $37

MICROSOFT
Excel $239
Works $239
Works $239

APPLE & FRANKLIN ACCESSORIES

APPLE
Keyboard Xpress $69
Apple II Privacy Card $135

FRANKLIN
RF Modulator $15

ADVANCED LOGIC SYSTEMS
ZEngine 2.2 $119

MICROMAX
Vapron 1200 w/attached 60 col. card for Apple II $124
80col. card for Apple II & III $119

MICRO-SCI
84K, 80Col. Card $85

DISPLAY MONITORS

QUADRUM
Amdek IBM compatible $175

AMDEK
V300 $125
V300A $125
V310A for IBM $159
Colorplot $699
Colorplot $549

TAXAN
IBM Green Monochrome $129
Black & White Monochrome $129
RGB IBM w/Cable $419
RGB Super Hi-Res $499
RGB/Com, Med. Res. $299

PRINCETON GRAPHICS
HX-1000w/IBM $455
SR 12 Super Hi-Res $395

CABLE
Plug and Play for IBM $49
Okigraph for 82A/83A $49

OKIDATA
Tractor for 62A & 92 $49

JUKar
Tractor Directional $125

Serial Interface $65

Serial Cable $18

EASTER SPECIALS!!

APPLE PROF. SYSTEM
All Apple $1375

BUFF. GRAPPLER + $159

MICRO-SCI 2-2 $175

APPLE SUPER SERIAL $135

ANCHOR MARK XII $218

IBM PC ACCESSORIES

IBM
IBM PC w/64K, 2 Drives $1499

OKIDATA ML92 IBM $355

HAYES 1200 $435

TAXAN NO. 440 $449

MPI DRIVE FOR IBM $78

SOFTWARE

LOTUS DEVELOPMENT CORP.
Lotus 1-2-3 $295
Symphony $437

ASHTON TATE
Basis III $419

PRINTER SWITCH BOX

EXPONENT
Centronics Two Switch $89
Central Two Switch $79
Serial Two Switch $79
Serial Four Switch $115

MODEMS

ANCHOR
Mark XII $225
Volkswagen $185

HAYES MICRO
300 Baud Smart Modem $205
1200 Baud Smart Modem $379
2400 Baud Modem Modem IIE $599

MODERN slicing $189

DISKETTES

PC DISKETTES
Sgl./Dbl. (Box of 10) $15

Dbl./Dbl. (Box of 10) $18

IBM PC w/64K, 2 Drives $1499

DISKETTES
Sgl./Dbl. (Box of 10) $15

Dbl./Dbl. (Box of 10) $18

IBM AT Enhanced $1075

1200 Baud Smart Modem $379

2400 Baud Modem $599

Micro Modem IIE $259

Mr. Microwave $189

PAYMENTS

Subject to a 5% restocking charge 30 days. Prices subject to change without notice. This is a wholesale price to all others.

ORDER LINE
(800) 732-0304

(Outside California)
(213) 635-2809

Monday - Friday, 9 a.m. to 5 p.m.

ORDER LINE
(213) 635-2809

Saturday 11 a.m. to 3 p.m.

CUSTOMER SERVICE:
(213) 635-5065

Monday - Friday, 9 a.m. to 5 p.m.
## CONFIGURED SYSTEM SPECIALISTS

**ALL SYSTEMS INCLUDE NECESSARY CABLES AND ALL ARE TESTED BEFORE SHIPPING**

*Please specify type of drives, speed of RAMs, type of monitor interface when ordering*

### IBM PC
- 2 55B Teac ½ High Drives
- 256K, BMC 13” Amb Mon.
- Monitor Interface

$1895

### IBM EXECUTIVE SYSTEM
- IBM PC w/256K
- 2 Half High Drives
- 8087-3 Math Coprocessor
- Monochrome Monitor
- Mono Card w/Par Port
- DOS 2.1 Operating System
- Okidata 92P Dot Matrix Printer [160cps]

$2399

### IBM PC
- 2 Half High Epson Drives
  - with 2 Year Warranty
- 256K [150ns] Memory
- Color Monitor w/Interface

$2399

### IBM PRO EXECUTIVE SYSTEM
- IBM PC w/256K
- 2 360K ½ High Dr w/Cont
- 10 Meg Internal Hard Disk
- Monochrome Monitor
- Mono Card w/Par Port
- DOS 2.1 Operating System
- Juki 6100 Letter Quality Printer [18cps]

$3495

---

Sav-On May Have Lower Over All Prices But No One Can Save You More On These Selected Items Than Coastline Computers

### INTEL
**Math Coprocessor**
- 8087-3
  - For IBM PC and Compatibles

$109.00

Call for 8087 for IBM AT

### IBM CABLE
- Computer to Par Printer
- 6 Foot Long

$14.50

### AST SIXPAC +
- Comes with 384K
- Expandable
- Clock Calendar, Par/Ser Port
- Plus Software

$239.00

### IBM Memory Upgrade
- For IBM & Compatibles
- 9 - 4164
- 64K Upgrade $19.95
- 128K Upgrade $40.95

### IBM DOS 2.1
- IBM PC & XT Operating System

$54.99

### HERCULES GRAPHICS CARD
- Monochrome w/Par Port
  - For IBM & Compatibles

$319.00

### BMC
- 13” Amber Monitor

$89.00

### HERCULES
- Princeton Graphics
- Techmar
- Teac
- Compag
- Tandon
- NEC
- Intel
- Okidata
- Quadram
- Hayes
- Alpha Omega
- Anchor
- Bicomp
- Juki
- Epson
- Plus More

### INQUIRY
- Mail Orders To: 1956 W. 153 St., Gardena, CA 90247
- Terms: Visa, Mastercard, COD’s and Wire Transfers. No surcharge for credit cards. UPS, Federal and Emery shipping available. Calif. residents add 6½% sales tax. Prices subject to change without notice. Not responsible for typos.
**PRICE WAR**

**CALL US LAST WITH YOUR BEST QUOTES**

**PRINTERS**

- **EPSON**
  - RX-80: $329
  - FX-80: $389
- **IBM PC**
  - 486SX: $1399
- **OKIDATA**
  - 190P/290P: $399
- **SHARP**
  - 2024: $429

**HARD DISKS/BACKUP**

- **IBM PC**
  - 10MB: $999
  - 20MB: $1999
  - 30MB: $3999
- **OKIDATA**
  - 12MB: $1299

**TALL GRACE NEW PC/FORMAT**

- 25MB: $999
- 30MB: $1499
- 40MB: $1999

**QUBE**

- 10MB: $999

**CAMERAS**

- **QUICK**
  - 600: $429
  - 710: $699

**QUBE**

- 10MB: $999

**IBM PC 20MB SYSTEM**

- Basic system includes 256K, one floppy drive, keyboard, 20MB Hard Disk with controller (boots from hard disk)

**IBM PC 30MB SYSTEM**

- Basic system includes 256K, one floppy drive, keyboard, 30MB Hard Disk with controller (boots from hard disk)

Choose from the widest selection of enhancement products for your IBM PC system at the best prices. Start with the Basic system and configure it according to your needs. All Hard Disk systems are available with 2 floppy drives. All IBM Systems come only with COMPUMAIL's 90 day warranty.

---

**COMPUMAIL**

805-498-6635

3541 OLD CONEJO ROAD, SUITE 102, THOUSAND OAKS, CA 91320

Ad #8796
### Monitors

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEC MICROMAX</td>
<td>12&quot; Green Composite, Monitor Interface</td>
<td>$129</td>
</tr>
<tr>
<td>TANDEM Full Height 320K</td>
<td></td>
<td>$179</td>
</tr>
<tr>
<td>MEGA PLUS (64K)</td>
<td></td>
<td>$269</td>
</tr>
<tr>
<td>MEGA PLUS (128K)</td>
<td></td>
<td>$299</td>
</tr>
<tr>
<td>OTHER AST BOARDS AVAILABLE</td>
<td></td>
<td>$399</td>
</tr>
</tbody>
</table>

### Printers

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAR MICRONICS</td>
<td>Gemini 10X (120cps)</td>
<td>$265</td>
</tr>
<tr>
<td>OKIDATA</td>
<td>82A (120cps, 10''), par_ser.</td>
<td>$64</td>
</tr>
<tr>
<td>93A (160cps)</td>
<td></td>
<td>$79</td>
</tr>
<tr>
<td>OKI PLUG &amp; PLAYS AVAILABLE</td>
<td></td>
<td>$99</td>
</tr>
<tr>
<td>EPSON</td>
<td>RX80 Call Prices</td>
<td>$139</td>
</tr>
<tr>
<td>JUKI</td>
<td>6100 (180cps &amp; let. quality)</td>
<td>$149</td>
</tr>
<tr>
<td>BROTHER</td>
<td>6300 (40cps, 16''), comes with 3K buffer, Upgrade to 15k</td>
<td>$179</td>
</tr>
<tr>
<td>NEC</td>
<td>Call</td>
<td>$199</td>
</tr>
</tbody>
</table>

### Diskettes

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>DYSAN</td>
<td>5½ DS/DD (Box of 10)</td>
<td>$28</td>
</tr>
<tr>
<td>NOVATION</td>
<td>ACCESS 123</td>
<td>$129</td>
</tr>
<tr>
<td>AMDEK</td>
<td>300 (13' Color Composite, 300x260 Lines, 4MHz)</td>
<td>$259</td>
</tr>
<tr>
<td>LEADING EDGE</td>
<td>GORILLA 12' Green</td>
<td>$59</td>
</tr>
<tr>
<td>ZENITH</td>
<td>ZVM122 12' Amber, ZVM122 12' Green</td>
<td>$99</td>
</tr>
<tr>
<td>TAXAN</td>
<td>121 (12' Green)</td>
<td>$108</td>
</tr>
<tr>
<td>NEC</td>
<td>122 (12' Amber)</td>
<td>$109</td>
</tr>
<tr>
<td>iMAC</td>
<td>300 (13' Color Composite, 300x260 Lines, 4MHz)</td>
<td>$259</td>
</tr>
<tr>
<td>LEADING EDGE</td>
<td>GORILLA 12' Green</td>
<td>$98</td>
</tr>
<tr>
<td>TAXAN</td>
<td>121 (12' Green)</td>
<td>$108</td>
</tr>
<tr>
<td>NEC</td>
<td>122 (12' Amber)</td>
<td>$109</td>
</tr>
<tr>
<td>MEGA PLUS (64K)</td>
<td></td>
<td>$269</td>
</tr>
<tr>
<td>MEGA PLUS (128K)</td>
<td></td>
<td>$299</td>
</tr>
<tr>
<td>OTHER AST BOARDS AVAILABLE</td>
<td></td>
<td>$399</td>
</tr>
</tbody>
</table>

### Printers Interface and Peripherals

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM PC SYSTEMS</td>
<td>IBM PC w/o Drives, 64k and Drive Controller</td>
<td>$1299</td>
</tr>
<tr>
<td>IBM PC 64K</td>
<td>1.360K Drive, Controller (Handles)</td>
<td>$1450</td>
</tr>
<tr>
<td>IBM PC 256K</td>
<td>2.360K Drives and Controller</td>
<td></td>
</tr>
<tr>
<td>IBM PC 64K</td>
<td>All IBM's include keyboards, all necessary cables, manual warranty</td>
<td></td>
</tr>
<tr>
<td>IBM PC XT 128K</td>
<td>IBM PC XT 128K, 1.360K Dr and 1 Internal 10M Hard Disk</td>
<td>$3395</td>
</tr>
<tr>
<td>IBM PC 256K</td>
<td>IBM AT (Base Model) 256K, 1.2M Floppy, Clik Cal, 6 Exp Slots + more</td>
<td>$3849</td>
</tr>
<tr>
<td>IBM (Enhanced)</td>
<td>IBM AT (Enhanced) 1.2K, 1.2M Floppy, 20M Hard Drive, Ser/Par Ports</td>
<td>$4995</td>
</tr>
<tr>
<td>IBM PC JR</td>
<td>IBM PC JR (All IBM Product Drive, Monitor, RAM)</td>
<td></td>
</tr>
</tbody>
</table>

### RAM Chips — 64K $29.55

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>All RAM Chips are compatible</td>
<td>1000pcs $1.90 with IBM XT/compatible machines, 5000pcs $1.85</td>
<td>$29.55</td>
</tr>
</tbody>
</table>

### Disk Drives

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEAC 55B 360K</td>
<td>High DS/DD Drives for IBM</td>
<td>$24.95</td>
</tr>
<tr>
<td>TANDON 100-2 360K</td>
<td>High DS/DD Drives for IBM</td>
<td>$50.00</td>
</tr>
</tbody>
</table>

### Other Products

- **financing available** — with approved credit
- **dealers:** Open Accounts available, call for applications
- **Terms:** We accept Visa, Mastercard, CODs, and Wire Transfers. UPS, Federal Express and United shipping available. California residents please add 6.5% sales tax to order. Prices are subject to change without notice. Not responsible for typographical errors.

---

**Sav-On Computers, Inc.**

12595 Crenshaw Blvd., Hawthorne, CA 90250

**Open:** 7:30am to 6:00pm Monday-Friday and 9:00am till 2:00pm Saturday

**inquiry 344**
DISK DRIVES

Half Height IBM Compatible

ONE YEAR WARRANTY

40 ir. DS/DD $115.00
80 ir. DS/DD $139.00
1.2 meg. floppy CALL

Enclosures and mounting kits Special bracketed pair pricing

IN STOCK 2 DAY SHIP

ALLIED MICRO DEVICES
2809 Boardwalk, Ann Arbor, MI 48104
(313) 996-1287 (MX) 250770 7919 A

*Manufactured by SANYO

IBM COMPATIBLE

DYNA PC 64K BASIC UNIT
* 64K system board
* 110W switching power supply
* 3 IX made Bkta Keyboard
* Case with flip-up top cover

$650.00

DYNA PC 256K COMPLETE SYSTEM
* 256K system board
* Keyboard IBM compatible power supply
* 36H, 300X, enhanced matrix
* AST 6-PACK compatible board
* Hercules compatible board
* Color graphic board
* Monochrome monitor

$1495.00

DYNA XT 256K COMPLETE SYSTEM
* DYNA PC 256K complete system
* IBM 2048K hard disk $2145.00

DYNA SYSTEMS

1800 Weyt Drive Suite 8, Santa Clara, CA 95054

IBM PC/VT100

EM100

for IBM PC, XT, AT

APRicot and Victor 9000

VT102 emulation, 110-9600 baud ASCII file transfer, Modem 7 binary transfer, 132 columns, soft keys, and more! Optional Tektronix 4010 emulation.

Multifunction discounts

Diversified Computer Systems, Inc.
100 Arapaho, Boulder, CO 80302
(303) 447-9251

Dealers inquired invited

IBM PC/VT100 DATA SECURITY

FXT end boot hazzles stops data thieves

DATAMAC, DAVYON
GREAT LAKES, JOMEGA
XEBOE, ZOBEX, others.

No-Slot installation for

IBM PC/XT, COMPAC, COLUMBIA

$70 - $85 + tax/sgpa

GOLDEN BOW SYSTEMS
Box 3039, San Diego, CA 92131
(619) 298-9349

ROSE DATA SWITCHES

SHARE computers, printers, etc parallel or serial device ELIMINATE cable swapping MEASURE network with no software required. Parallel or Serial 4 channels - $500 8 channels - $795

MANUAL - HARDSWITCH is ideal for a business or school to share a printer or modem among many computers. Operation is fully automatic with no software required. Parallel or Serial 4 channels - $500 8 channels - $795

AUTOMATIC - CARETAKER is ideal for a business or school to share a printer or modem among many computers. Operation is fully automatic with no software required. Parallel or Serial 4 channels - $500 8 channels - $795

REMOTE - TELEPATH connects multiple computers to multiple printers. A select at each computer or terminal chooses up to 4 peripherals and displays busy status.

MICROPROCESSORS UNLIMITED

*Manufactured by IGMA Microprocessors Unlimited

VICTOR 9500+ Micro Technologies COMPAC Computers Inc.
Santa Clara, CA 95054 Telex 317994 Dyna Systems

DYNA PC 256K COMPLETE SYSTEM
* IBM hard disk 20MB optional $2145.00

DYNA SYSTEMS

1800 Weyt Drive Suite 8, Tel: (415) 748-9821
Santa Clara, CA 95054

IBM PC/XT, AT, AT compatible boards

* IBM hard disk controller

INQUIRY 62

DISK DRIVES

INQUIRY 265

IBM PC/VT100

INQUIRY 142

IBM PC/XT, AT

INQUIRY 171

INQUIRY 265

IBM PC/XT, AT

INQUIRY 197

INQUIRY 265

IBM PC/XT, AT

INQUIRY 125

IBM PC/XT, AT

INQUIRY 197

INQUIRY 265

IBM PC/XT, AT

INQUIRY 125

IBM PC/XT, AT
The Perfect S-100 Team!

**CPU-Z**
The Z800 Standard
6MHz Z80D CPU
24 Bit Addressing

** BOTH BOARDS **

** PURCHASED TOGETHER:**
BPVIAOX (Sh wt. 3 lbs.)
BPGBT160A CPU Board Only:

$179.00

BPCEO64RAM 64K RAM Only:

$179.00

---

**MODEMS**

- 1200 baud standard 4 wire
  - IBM 5250 compatible
  - S-100 RAM Board
  - PROMETHEUS
  - PROMETHEUS
  - PROMETHEUS

**PRINTER & DIVERS**

- 5" x 3.5" label printer (GMPR100)
- 5" x 3.5" label printer

**STORAGE**

- 5" x 3.5" label printer
- 5" x 3.5" label printer

**MEMORY**

- 64K RAM ONLY:

**PRICES**

- **$299**

---

**S-100 CPU BOARDS**

- **$1595.00**

---

**S-100 RAM BOARDS**

- **$495**

---

**S-100 I/O BOARDS**

- **$495**

---

**FOR HARD DISK**

- **$399**

---

**DISK DRIVE ENCLOSES**

- **8" ENCLOSES**

**$995**

---

**PRIME ELECTRONICS**

961 Deering Ave., Chatworth, CA 91311-5887

**ORDER TOLL FREE (800) 423-5922 - CA, AK, HI CALL (818) 709-5111**

**PRIORITY ONE ELECTRONICS**

NOW OPEN - SAN JOSE (408) 946-7010

**VIASYN**

**COEX**

**BKP PRECISION**

**100MHz Dual Trace Dual Time Base**

**PRICE BREAK THROUGH!**

**STORAGE SPACE**

- PROBES INCLUDED!

---

**PRIORITY ONE ELECTRONICS**

961 Deering Ave., Chatworth, CA 91311-5887

**ORDER TOLL FREE (800) 423-5922 - CA, AK, HI CALL (818) 709-5111**

**PRIORITY ONE ELECTRONICS**

961 Deering Ave., Chatworth, CA 91311-5887

**ORDER TOLL FREE (800) 423-5922 - CA, AK, HI CALL (818) 709-5111**

**VIASYN**

**COEX**

**BKP PRECISION**

**100MHz Dual Trace Dual Time Base**

**PRICE BREAK THROUGH!**

**STORAGE SPACE**

- PROBES INCLUDED!
**NEC PRINTERS**

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2050</td>
<td>$655</td>
</tr>
<tr>
<td>3550</td>
<td>$1315</td>
</tr>
<tr>
<td>6850</td>
<td>$1685</td>
</tr>
<tr>
<td>2010/15/30</td>
<td>$625</td>
</tr>
<tr>
<td>3510/15/30</td>
<td>$1185</td>
</tr>
<tr>
<td>8810/15/30</td>
<td>$1625</td>
</tr>
<tr>
<td>ELF 360,370</td>
<td>$399</td>
</tr>
</tbody>
</table>

**Pinwriter P-2**

Terms: PREPAID — FREE SHIPPING!!

**QUALITY PRINTERS**

8415 Cement City Rd.
Brooklyn, Michigan 49230
Phone: 517-592-3749

---

**DISKS**

$1.00

**IBM PC 25% off**

**SAVE! SAVE! SAVE!**

**IBM PC 25% off**

**256K, 1 Floppy Drive**

**Disk Controller Keyboard**

**WE CUSTOMIZE IBM PC SYSTEMS**

**HERCULES COLOR CARD** $168

**AST SIXPACKPLUS W/64K** $250

**PAS-MAX 12** $169

**EPSON FX-10** $395

---

**MAPIT**

**MAPS ON YOUR PRINTER**

**OUTLINE SHAD ED BY REGION**

**INTERPOLATED CONTOURING**

**TREND SURFACE**

**MAP FILES FOR AMERICAS, ASIA, AFRICA & EUROPE**

**FOR IBM PC & COMPATIBLES**

**ONLY $95**

**QSC BOX 777**

E. LANSING, MI 48823

(517) 641-4428

---

**IN STOCK**

**MODEMS**

All modems listed are Hayes compatible with Free Communications Software

**RACAL-VADIC**

**MAXWELL**

**300PC** $210

**500 V 300, RS232C External** $219

**1200 PC 300/1200, PC Internal w/soft** $337

**1200 V 300/1200, RS232C External** $389

**Hayes SmartMODEM External** $440

**GEORGE COMMUNICATIONS SOFTWARE**

**U.S. ROBOTICS**

**Password** $305

**PROMETHEUS**

**Promodem 1200** $334

**Options Processor** $79

**DIRECT CONNECT DEVICES**

P.O. Box 13255, San Luis Obispo, CA 93406

**FREE CATALOG**

**CALL TO ORDER**

(805) 543-6368

Dealer Inquiries Invited — Many Items Not Listed.
ALL PRICES INCLUDE FREE SHIPPING IN USA.
Call for latest prices.

COMPAQ®

256K, 1/360K drive,
10 Meg Internal

$2995

Functional equivalent to Compaq Deskpro™
Model 4.

$3895

Includes Monitor

640K, One 360K Drive,
One 10 Meg Internal Hard Drive,
Tape Backup Unit.

$995

XT™ POWER 135W

Solve your power problem.
Fully XT® compatible.
One Year Warranty.
Directly Replaces Power Supply in PC.

$119

Also available with 2 half-height drives and 10 Meg Internal.

Inquiry 300

MITSUBISHI

Disk Explorer .................. CALL

Zero Disk .......................... CALL

Sideways ...................... $39

Thinktank ..................... $19

10, 20, 33 AND 42 MEG INTERNAL AND EXTERNAL HARD DISK SYSTEMS

20 MEG 33 MEG 42 MEG

Internal $695 $1395 $1595

External $895 $1495 $1695

42 MEG Internal Hard Disk $1195

TAPE BACKUP SYSTEM

$595

- Half Height
- Low Power
- Uses Floppy Controller Card

Same as Okiock 5A-45S

Teac 5.25, Half Height, DD/DDO

$109

MITSUBISHI

8.25, Half Height, DD/DDO

$99

10 Meg Internal

$549

64K RAM $19

Set of 9 chips

$17 per set $14 each

256K RAM $95

Ferrum-mounted independent power supply and bus. Fully DOS 2.1 or 3.0 compatible. Dual internal and external busses from hard disk. 40 and 42 Meg Internal Hard Disks include extended power supply. The system comes complete and ready to install with the hard disk, controller, cabling, manual, software, and mounting hardware. One year warranty.

Microscience International Corporation.

5-10 Meg Internal

$695

20 Meg Internal

$895

33 Meg Internal

$1495

42 Meg Internal

$1695

SOFTWARE

Borland®

Internationa

FREE SHIPPING IN USA.
Call for latest prices.

3% surcharge on American Express

Microscience International Corporation,

IRWIN

Teac 5.25, Half Height, DD/DDO

$99

MITSUBISHI

8.25, Half Height, DD/DDO

$99

PANASONIC

JA552-2, Half Height, DD/DDO

$99

64K RAM $19

Set of 9 chips

$17 per set $14 each

256K RAM $95

Lotus Symphony ............ $429

Lotus 3-2-1 .................. $369

Lotus Symphony .......................... $429

COPYRIGHT 1985 BY BYTE MAGAZINE
**FoxBASE™**
**Interpreter/Compiler**

- dBASE II® source compatible
- Runs 3-20 times faster than dBASE II
- 8087 coprocessor support
- 14 digit precision
- Up to 48 files per record
- Full type-ahead capabilities
- Provides compact object code and program security
- Twice as many memory variables as dBASE II

**FOX SOFTWARE INC.**
13330 Bishop Road, P.O. Box 265
Bowling Green, OH 43402
419-354-3981

**Portable Expansions**

8K Memory Modules
$44.95

For your Model 100 & NEC PC-8201
Field proven and fully supported.

**TTXpress Model 1280**
Portable Thermal Printer $170
Bat. operated, 2.2 lbs, 8 1/2" paper, 40 cps

Just for your NEC-8201

**The SideCar $199**
32K RAM cartridge/expandable to 128K

**Free Shipping, Handling & Ins.**
For Cont. USA.
Orders shipped UPS next business day. 30-day satisfaction money back guarantee. Accept VISA, MC & Amer. Exp.
Checks held 18 days.

**Purple Computing**
420 Constitution Ave.
Camarillo, CA 93010
(805) 732-5012
(805) 987-4788

**Save Time and Money with Low Cost Pi-Switch Boxes.**

Starting at $59.95

- Quickly shares your computer among multiple terminals, printers, modems, etc., with just a flick of the wrist.
- Compact black & beige aluminum enclosure features a high quality rotary switch with rear mounted connectors.
- Serial RS-232 Models have fem. 25-Pin Conn.
- Parallel models have fem. 36-Pin cent. conn.
- PI02-S switches 2 to 1 ........................................ $59.95
- PI03-S switches 3 to 1 ........................................ $79.95
- Parallel models have fem. 36-Pin cent. conn.
- PI02-P switches 2 to 1 ........................................ $94.95
- PI04-P switches 4 to 1 ........................................ $154.95
- Dealers, schools, & custom inquiries welcome.
- One Year Warranty. CCID, WISC, WIC.
- Shipping UPS $2.00/ea. AIR $4.00/ea.

**Station Master**
GAS STATIONS
Need Specialized Bookkeeping Software

Over 135,000

Vertical Mkt.

Complete integrated system with quick, easy data entry to automatically create daily accounting. Reports, shift, check-out, TBA, profit & margins. Has full inventory control, AR, Payroll, P/L, many other features. MS DOS & CPM versions, fully working demo available.

**Small Business ComputerSystems, Inc.**
3131 Llewellyn Rd., Ambler, PA 19002
215-542-3639

**8051 Simulator**

for the IBM-PC or Z80 CP/M UC

$199

SIM51 is a screen oriented program that simulates the Intel 8051 family of single chip microcomputers. It accepts Intel 8051 files (produced by most cross assemblers) and features both a menu and a command driven user interface.

Call today for complete information.

**HiTech Equipment Corporation**
9560 Black Mountain Road
San Diego, CA 92126
For Immediate Action Call:
(619) 566-1892

---

**NOW C HERE! CROSS SOFTWARE for the NS32000**

Also Available for IBM PC INCLUDES:
- Cross Assembler
- Cross Linker
- Debugger
- N.S. ISE Support
- Library
- Pascal Cross Compiler
- C Cross Compiler

U.S. prices start at $8000

**SOLUTIONWARE**
1283 Mt. View-Arviso Rd.
Suite B
Sunnyside, CA 94089
408-745-7818 • TLX 4894204

**GO FORTH, UNIX! . . . . with u4th UNIX/XENIX/FORTH DEVELOPERS**

Are you interested in improving your software productivity? Do you have a UNIX system or engineering work station? Now you can select the exceptional capability of moving your Fort applications to the world of UNIX and XENIX. Experience the productivity enhancement of an interactive programming environment and still code in C when necessary! Ubiquitous Systems announces with the first Fort completely tailored for UNIX, with is a fast direct-threaded Fort written in portable C. Yet capable of execution speeds comparable to many assembler Forts. Great for all research and delivery. Some features are: Access to UNIX utilities and calls / Ability to incorporate C preprocessor / Object-Oriented Fort included Bravy License. Xenix $395. 00. Plexus 5985.00. Call about others. OEM's Special terms.

**Ubiquitous Systems**
13333 Bel-Reed Road N.E. Bellevue, WA 98005
(206) 641-8030
9:00-noon Weekdays

**Your floppy disk should be a BAFS Flexidyisk®**

5 1/4" $1.39
5 1/4" sold in boxes of 100 only $1.69
3 1/2" $2.59
3 1/2" sold in boxes of 50 only $3.99

**Software for IBM PC**

- Multimania ................................................. $269
- Framestore ................................................. $349
- Symphony .................................................. $419
- Home Asst, Plus ......................................... $97
- Wordwriter .................................................. $279
- WordWriter Pro Plus .................................... $499
- WordWrite Pro Fast ..................................... $249

**ABC data products**
31155 SW 84th, Kenmore, WA 98028
(206) 283-5488 • 800-854-1555

---

**CNC VERSION $1950**
CNC Manual · $12
Stepping Motor Tips Cookbook $8

**STATION MASTER**
GAS STATIONS
Need Specialized Bookkeeping Software

Over 135,000

Vertical Mkt.

Complete integrated system with quick, easy data entry to automatically create daily accounting. Reports, shift, check-out, TBA, profit & margins. Has full inventory control, AR, Payroll, P/L, many other features. MS DOS & CPM versions, fully working demo available.

**Small Business ComputerSystems, Inc.**
3131 Llewellyn Rd., Ambler, PA 19002
215-542-3639

**8051 Simulator**

for the IBM-PC or Z80 CP/M UC

$199

**Sim51** is a screen oriented program that simulates the Intel 8051 family of single chip microcomputers. It accepts Intel 8051 files (produced by most cross assemblers) and features both a menu and a command driven user interface.

Call today for complete information.

**HiTech Equipment Corporation**
9560 Black Mountain Road
San Diego, CA 92126
For Immediate Action Call:
(619) 566-1892

---

**NOW C HERE! CROSS SOFTWARE for the NS32000**

Also Available for IBM PC INCLUDES:
- Cross Assembler
- Cross Linker
- Debugger
- N.S. ISE Support
- Library
- Pascal Cross Compiler
- C Cross Compiler

U.S. prices start at $8000

**SOLUTIONWARE**
1283 Mt. View-Arviso Rd.
Suite B
Sunnyside, CA 94089
408-745-7818 • TLX 4894204

**GO FORTH, UNIX! . . . . with u4th UNIX/XENIX/FORTH DEVELOPERS**

Are you interested in improving your software productivity? Do you have a UNIX system or engineering work station? Now you can select the exceptional capability of moving your Fort applications to the world of UNIX and XENIX. Experience the productivity enhancement of an interactive programming environment and still code in C when necessary! Ubiquitous Systems announces with the first Fort completely tailored for UNIX, with is a fast direct-threaded Fort written in portable C. Yet capable of execution speeds comparable to many assembler Forts. Great for all research and delivery. Some features are: Access to UNIX utilities and calls / Ability to incorporate C preprocessor / Object-Oriented Fort included Bravy License. Xenix $395. 00. Plexus 5985.00. Call about others. OEM's Special terms.

**Ubiquitous Systems**
13333 Bel-Reed Road N.E. Bellevue, WA 98005
(206) 641-8030
9:00-noon Weekdays

**Your floppy disk should be a BAFS Flexidyisk®**

5 1/4" $1.39
5 1/4" sold in boxes of 100 only $1.69
3 1/2" $2.59
3 1/2" sold in boxes of 50 only $3.99

**Software for IBM PC**

- Multimania ................................................. $269
- Framestore ................................................. $349
- Symphony .................................................. $419
- Home Asst, Plus ......................................... $97
- Wordwriter .................................................. $279
- WordWriter Pro Plus .................................... $499
- WordWrite Pro Fast ..................................... $249

**ABC data products**
31155 SW 84th, Kenmore, WA 98028
(206) 283-5488 • 800-854-1555

---
Add $9 handling on prepaid orders only. Most items in stock for immediate delivery in factory sealed cartons with full factory warranty.

315-676-3004 Box 160 Brewerton, N.Y. 13029

We pay UPS shipping charges on prepaid orders.

--- PRINTERS ---

ANADEX
DP-95018 .................................. $1049
DP-9601B .................................. $1099
DP-9625 .................................. $1129
DP-6500 .................................. $2299

TEXAS INSTRUMENTS
TIB55 w/Tract. ................................ $939
TI-810R0 Pkg. ................................ $1099

EPSON
RX-80F .................................. $329
FX-100 .................................. $589

STAR MICRONICS
Gemini 10X ................................ $259
Gemini 16X ................................ $389

MANNESSAN TALLEY
MT-1601 .................................. $529
MT-160 L .................................. $579
MT-160 L .................................. $599

DIABLO
620 RO 25 CPS ................................ $679
630 RO 40 CPS ................................ $706

OKIDATA
ML-82A ................................ Call
ML-93A ................................ Call
ML-92 Par ................................ Call
ML-92 Ser ................................ Call
ML-92A (APPLE) .......................... Call
ML-93 Par ................................ Call
Paceman 2300 Ser .......................... $1699

PANASONIC
KX-P1900 ................................ $279
KX-T9191 ................................ $279

NEC
NEWNEC 2050 ................................ $979

IBM
2550 ...................................... $3530
3510 ...................................... $1219
3550 ...................................... $1499
8027 ...................................... $359

JUKI
Daisywheel ................................ $409

QUME
Sprint 11/40 ................................ $1299
Sprint 11/55 ................................ $1499
Sprint 11/90 ................................ $1499

RITEMAN Infomrunner ................... $299

--- MONITORS ---

AMDEK
300 G 12" green .......................... $135
300 A 12" black .......................... $145

IBM 1401 .................................. $165

BMC
500 ......................................... $449

NEC
JB-12 12" green .......................... $155
JB-1205 12" black ......................... $155
JC-1212 12" color ........................ $399
JC-1216 12" RGB ........................ $439

PANASONIC
12" Green Monochrome .................. $139
12" Amber Monochrome .................. $149
13" RGB .................................. $379

PRINCETON
SR-12 ...................................... $625
Scan Doubler ................................ $205

SAGATA
5G-1000 12" Green ......................... $106
5G-1000 12" Color ......................... $269
SG-200 12" RGB .......................... $599

TAXAN
KG-12N (13" green) ....................... $99
210 (13" color) ............................ $299
400 (13" RGB color) ..................... $299
410 (13" RGB color) ..................... $379

ZENITH
Z-122 (12" amber) ......................... $99
Z-122 (12" green) ......................... $99

--- DISKETTES ---

CORVUS
20Mg. IBM or Apple ...................... $3035

TALLGRASS TECHNOLOGIES
20MB Harddrive Disk ...................... $2395

GREATSCAT
Teletype ................................. $2395
Turbo-10 5/16 height ...................... $2395

--- HARD DISKS ---

EDUCATOR
Lifetime Warranty ........................ $11.95
51/4" MD1 ................................. $19.95
3M/Scotch ................................. $24.95

51/4" SSDD ................................. $18.95
51/4" DDS ................................. $22.95

--- BOARDS ---

IBM PC BOARDS
AST Sixpak plus 64k ..................... $299
AST Megaplex 256k ....................... $569
Microsoft 256K RAM Board ............ $299
Plantronics Color + Board .............. $399
Quadram New Quadboard ............... Call
Quadram Quadlink ....................... Call
Teckar 1st MATE Board ................. $299
Teckar Graphics Master Board ........ $299
Peacock Graphics Board ............... $299

--- SYSTEMS ---

ALTOS .................................. Call

COLUMBIA
VP Portable 256k ........................ $1895
NRC 1600 ................................ $1395
MPC 1600-4 .............................. $2895

CROMEMCO ................................

IBM .................................. Call

SOFTWARE DISCOUNT PRICES ON MOST POPULAR MANUFACTURERS!

MORROW
NEW Pivot ................................. $1927
2 drives, 256K, Monoprinter, LCD ........ $1927

NEC
PC-8201 Portable ......................... Call
PC-8800 Smallbus System ............... $1669
PC-8800 16-Bit System .................. $1999
PC-SS800 just-unimated Drive ........ $2299

ORTHSTAR
Advantage ................................ Call

SANYO
MBC 660-2 ................................ $999
MBC 660-3 ................................ $1139

APPLE
APPLE II-C w/ drive, 228KX1036 ........ $999

TELEVIDEO
Tele-PC .................................. Call
Tele-X .................................. Call
TPC II Portable .......................... Call

ZENITH
151-23 w/2 Drives ....................... $2239
151-52 w/Hard Disk ..................... $3599
161-52-Portable ......................... $2399

--- TERMINALS ---

ESPRIT SYSTEMS
Esprit ................................ $475
Esprit III (detachable keyboard) .... $675

NEW
Television Personal Terminal ...........
Personal Terminal ........................ $399
Personal Terminal w/300 baud modem $529
Personal Terminal w/1200 baud modem $849

TELEVIDEO
910 .................................. $439
914 .................................. $579
924 .................................. $695
926 .................................. $899
960 .................................. $970
970/60 .................................. $949

QUME
102 Gr. or Amb ......................... $4299
108 Gr. or Amb .......................... $509

WYSE
50 .................................. $529
300 Color ................................ $915

ZENITH
Z-29 .................................. $699
Z-10 .................................. Call
ZT-11 .................................. Call

HAYES
Smartmodem 300 ......................... $215
Smartmodem 1200 ....................... $479
Smartmodem 1200B ...................... $429
Micromodem II-E ......................... $249

NOVATION
D-Cat ................................ $149
J-Cat ................................ $109

APPLE II ................... Call

AIC Smart Cat .......................... $249
AIC Smart Cat+ ......................... $179
103/212 Smart Cat ...................... $339
212 Auto Cat .......................... $489
Access 1-2-3 .................. Call

SIGNALMAN
Mk VII ................................ $129
Mk XII ................................ $279
Volksmodem 69 ......................... $129

Mk VII ................................ $95

U.S. ROBOTICS
300 Baud Password ..................... $149
1200 Baud Password .................. $289
PC1200 Baud Modem ................. $329
S 100 1200 Baud Modem ............ $329

N.Y. residents add appropriate sales tax. We accept Visa, Master Card, Personal and company checks. Allow 2 weeks to clear. C.O.D.'s require a 25% deposit. All prices and offers may be withdrawn without notice.
In inquiry 255, there is a listing for IBM PC Compatible products, including various configuration options and prices. For example, there is a listing for an IBM® PC Compatible 4164-250 hard disk drive for $599.00. The text also mentions options like PROFIBUS, PROTOCOL, and drivers, and specifies contact information for orders and inquiries.

In inquiry 298, there is a listing for Lotus User? with a free mail order catalog for Lotus related products. The catalog includes Lotus Programs, Lotus Enhancement Software, Books and Training Aids, and Hardware and Utilities. The catalog is available for free, and the contact information is provided, including a phone number and a toll-free number for orders.

In inquiry 296, there is a listing for Maxell Floppy Disks, which provides a maximum quality guarantee. It mentions dealer inquiries invited and provides a toll-free number for free (800) 235-4137. The catalog includes various disk drive options and prices.

Inquiry 295 contains the same content as inquiry 255. There are listings for IBM PC Compatible products, Lotus User? with a free mail order catalog, and Maxell Floppy Disks with a maximum quality guarantee, including dealer inquiries invited.

Inquiry 38 contains a listing for Custom Wire Your RS-232 Interface. It includes a model number, 232DJB, and details about the interface's compatibility with various systems, such as B&B's RS-232 Interface. The listing provides contact information for inquiries and order placement.

Inquiry 293 also lists the same content as inquiry 255 and inquiry 38. There are listings for IBM PC Compatible products, Lotus User? with a free mail order catalog, and Maxell Floppy Disks with a maximum quality guarantee, including dealer inquiries invited.

Inquiry 333 contains the same content as inquiry 38. There is a listing for Custom Wire Your RS-232 Interface with a model number, 232DJB, and details about the interface's compatibility. The listing provides contact information for inquiries and order placement.

Inquiry 24 contains the same content as inquiry 3. There is a listing for Lotus User? with a free mail order catalog for Lotus related products, which includes Lotus Programs, Lotus Enhancement Software, Books and Training Aids, and Hardware and Utilities. The catalog is available for free, and the contact information is provided, including a phone number and a toll-free number for orders.

In inquiry 24, there is a listing for Lotus User? with a free mail order catalog for Lotus related products. The catalog includes Lotus Programs, Lotus Enhancement Software, Books and Training Aids, and Hardware and Utilities. The catalog is available for free, and the contact information is provided, including a phone number and a toll-free number for orders.

Inquiry 24 also contains the same content as inquiry 293 and inquiry 3. There is a listing for Lotus User? with a free mail order catalog for Lotus related products, which includes Lotus Programs, Lotus Enhancement Software, Books and Training Aids, and Hardware and Utilities. The catalog is available for free, and the contact information is provided, including a phone number and a toll-free number for orders.

Inquiry 3 contains the same content as inquiry 24. There is a listing for Lotus User? with a free mail order catalog for Lotus related products, which includes Lotus Programs, Lotus Enhancement Software, Books and Training Aids, and Hardware and Utilities. The catalog is available for free, and the contact information is provided, including a phone number and a toll-free number for orders.

Inquiries 333, 38, and 295 contain the same content as inquiry 3. There is a listing for Lotus User? with a free mail order catalog for Lotus related products, which includes Lotus Programs, Lotus Enhancement Software, Books and Training Aids, and Hardware and Utilities. The catalog is available for free, and the contact information is provided, including a phone number and a toll-free number for orders.

Inquiries 293 and 24 contain the same content as inquiry 3. There is a listing for Lotus User? with a free mail order catalog for Lotus related products, which includes Lotus Programs, Lotus Enhancement Software, Books and Training Aids, and Hardware and Utilities. The catalog is available for free, and the contact information is provided, including a phone number and a toll-free number for orders.
I'*U*CO is the best thing to happen to personal computing since the personal computer.

I'*U*CO is an idea whose time has come.

I'*U*CO is the International Union of Computer Owners, an organization designed to protect the interests of computer owners and users against those who take their money...and then deliver less than they promised.

Here's an overview of some of the vital services I'*U*CO provides:

1. Access to the lowest priced, reputable vendor for nearly every computer related need...and;
2. Protection from the rip-off artists, vaporware specialists, false advertisers and other creepy, cracy creatures who have been attracted to the computer industry by the scent of your money...and;
3. Constantly updated information on software and hardware releases, bug reports, fixes and other data individually tailored to your needs through I'*U*CO's exclusive Computer Registry...and;
4. Finally, a chance to get even with those characters out there who promise a lot, take your money and then deliver less than they promised.

I'*U*CO: a lynch mob with a purpose.

Every computer owner has been ripped off at least once. Or maybe a dozen times might be a more appropriate number.

In any event, we've all been victimized by the computer industry. And it wasn't accidental: today's computer industry is filled with hypesters, rip-off artists, vaporware specialists and others whose sole function in life is to part you from your money...while delivering less than you bargained for.

The rip-off might have been your computer that wasn't quite as "compatible" as claimed. Or a computer that didn't quite get delivered at the same time as the hundreds of new programs that would support it.

Or it might have been a software package that didn't quite live up to its advertising hype. Possibly, you've been had by a software manufacturer who continuously upgrades their software...charging you a pretty penny for an updated version that simply gets rid of the bugs that shouldn't have been there in the first place.

In a few cases, it might even have been a vendor who took your money...and never quite got around to delivering what they promised.

In any event, owning a computer has become an open invitation to getting ripped-off in one way or another.

Until now.

I'*U*CO: means protection.

I'*U*CO subscribes to some very ancient wisdom: in numbers, there is strength.

Labor unions learned it a long time ago. An individual worker had no bargaining power. All the workers in a factory, however, had a lot of muscle. Automobile owners learned it early on. The American Automobile Association was originally organized to bring motorists together in order to lobby for new roads and highways.

Even the computer industry has learned it: computer manufacturers, software publishers and others in the industry have banded together in order to lobby for new laws and regulations.

But, as a group of software publishers recently announced, we're ready to sue. For example, what do you do in a situation where you run out of software and you can't get your computer to work? In the early days of personal computers, hardware, software and peripheral manufacturers used to be pretty good about sharing information. Today, they're not.

In the last few weeks, I've personally learned: a) MicroPro Micro was supposed to be a new computer for the Macintosh 512K upgrade is defective and won't work with MacPaint under certain circumstances; b) the ROMS in my Macintosh 128K are the wrong version; c) the ROMS in my Macintosh 128K are the wrong version; d) MicroPro eliminated the copy protection on my version of WorldStar Wordstar 2000 Plus; e) MicroPro had a bug in InfoStar for more than 18 months...and didn't tell anyone.

I'*U*CO membership would have avoided these unpleasant surprises.

With I'*U*CO, you get the information you need on an individualized basis...and you get it fast.

You don't have to tear your hair out wondering about a problem. You might even find out about the problem before you encounter it.

I'*U*CO: the iron fist.

The best part of I'*U*CO has been saved for last. Yes, I'*U*CO will get you lower prices and will give you sold information about the integrity and usefulness of products and vendors.

But, more immediately, your membership in I'*U*CO gives you the power of belonging to a community...a community of computer owners and users who need to protect their rights.

For instance, a group of software publishers recently announced that they're ready to sue the Macintosh 128K. They've learned it a long time ago. A community of computer owners and users who need to protect their rights.

And, in this case, the members are the victims. the members are powerless.

The people who, until now, have been powerless.

1·u·co subscribes to some very ancient wisdom: in numbers, there is strength.

Labor unions learned it a long time ago. An individual worker had no bargaining power. All the workers in a factory, however, had a lot of muscle. Automobile owners learned it early on. The American Automobile Association was originally organized to bring motorists together in order to lobby for new roads and highways.

Even the computer industry has learned it: computer manufacturers, software publishers and others in the industry have banded together in order to lobby for new laws and regulations.

But, as a group of software publishers recently announced, we're ready to sue. For example, what do you do in a situation where you run out of software and you can't get your computer to work? In the early days of personal computers, hardware, software and peripheral manufacturers used to be pretty good about sharing information. Today, they're not.

In the last few weeks, I've personally learned: a) MicroPro Micro was supposed to be a new computer for the Macintosh 512K upgrade is defective and won't work with MacPaint under certain circumstances; b) the ROMS in my Macintosh 128K are the wrong version; c) the ROMS in my Macintosh 128K are the wrong version; d) MicroPro eliminated the copy protection on my version of WorldStar Wordstar 2000 Plus; e) MicroPro had a bug in InfoStar for more than 18 months...and didn't tell anyone.

I'*U*CO membership would have avoided these unpleasant surprises.

With I'*U*CO, you get the information you need on an individualized basis...and you get it fast.

You don't have to tear your hair out wondering about a problem. You might even find out about the problem before you encounter it.

I'*U*CO: the iron fist.

The best part of I'*U*CO has been saved for last. Yes, I'*U*CO will get you lower prices and will give you sold information about the integrity and usefulness of products and vendors.

But, more immediately, your membership in I'*U*CO gives you the power of belonging to a community...a community of computer owners and users who need to protect their rights.

For instance, a group of software publishers recently announced that they're ready to sue the Macintosh 128K. They've learned it a long time ago. A community of computer owners and users who need to protect their rights.

And, in this case, the members are the victims. the members are powerless.

The people who, until now, have been powerless.

The best part of I'*U*CO has been saved for last. Yes, I'*U*CO will get you lower prices and will give you sold information about the integrity and usefulness of products and vendors.

But, more immediately, your membership in I'*U*CO gives you the power of belonging to a community...a community of computer owners and users who need to protect their rights.

For instance, a group of software publishers recently announced that they're ready to sue the Macintosh 128K. They've learned it a long time ago. A community of computer owners and users who need to protect their rights.

And, in this case, the members are the victims. the members are powerless.

The people who, until now, have been powerless.

The best part of I'*U*CO has been saved for last. Yes, I'*U*CO will get you lower prices and will give you sold information about the integrity and usefulness of products and vendors.

But, more immediately, your membership in I'*U*CO gives you the power of belonging to a community...a community of computer owners and users who need to protect their rights.

For instance, a group of software publishers recently announced that they're ready to sue the Macintosh 128K. They've learned it a long time ago. A community of computer owners and users who need to protect their rights.

And, in this case, the members are the victims. the members are powerless.

The people who, until now, have been powerless.
Inquiry 141
Inquiry 140
Inquiry 366

BLUE BOOK

Prices shown for thousands of computers, software, and peripherals.
Each listing includes suggested list, avg. retail, wholesale, and used prices for all the geographical regions of the United States.

Send $12.95 + $.50 postage to:
NCD
National Computer Dealers Association
5420 Hwy. 6 North
Houston, Texas 77084

Inquiry 74
Inquiry 296
Inquiry 121

DUST COVERS

For Personal Computers and Small Business Systems, Peripherals, Game Units - Protective, Long-Lasting Vinyl
Resists Both Dust and Liquids.

CHOICE OF COLORS:

- Amdek
- Apple
- Atari
- BIC
- Columbia
- Commodore
- Corona
- Eagle
- Epson

GROUP/VOLUME DISCOUNTS AVAILABLE
FOR FREE BROCHURE WRITE:
ENCHANTED FOREST
P.O. Box 5261, Newport Beach, CA 92662

Dealer Inquiries Invited

Inquiry 128

Data Acquisition to Go
Interface for Any Computer


SPECIALISTS IN PORTABLE APPLICATIONS
(201) 299-1615
P.O. Box 246, Morris Plains, NJ 07950

Inquiry 40

Big Discounts on Little Boards™ & Accessories

- VARIOUS LITTLE BOARD D-94K, 8034 CPU, DRAM, 1 parallel port, 5V controller supports both
- vrai and/or 80286 with extra 2.0 and 2.32
- A.T.
- SYSTEM SUPPORT P/N - Manuals, source code
- schematics, components & case
- COMBOOK (IBM compatible hard disk interface)
- ECS PLUS - IBM hard disk interface
- TECH MICRO-DISK 68K 1/2 th drive
- TECH MICRO-DISK 128K 1/2 th drive
- IBM 48K floppy, 1/2 th drive
- INTEGRAL Computer with 5 amp power supply & 8m cables
- IBM MATE - Cabinet for 1/2 th DRIVE
- IBM MATE - Cabinet for 1/2 th DRIVE
- ALL CABLES & SUPPLIES - CALL

Call or write:
Combilni Package - 5199
ELEXOR
PO. Box 3253 714-637-5362

Inquiry 141

Verbatim Flexible Disks

Call Free (800) 235-4137 for prices and information. Dealer inquiries invited. C.O.D. and charge cards accepted.

PACIFIC EXCHANGES
100 Foothill Blvd.
San Luis Obispo, CA 93401
In Cal. call
(800) 592-5935 or (805) 543-1037.

Inquiry 296

PRINTER RIBBONS

PRICE PER PER
RIBBON RIBBON

ANADEX 6000 10.50 30.80
APPLE DMP 5.50 50.80
BROTHER HR-1525 MS 5.50 58.40
C. IVON P277 5.50 58.40
COMMODORE 850-80 8.00 90.00
EPSON MX-70/80 6.50 68.00
EPSON MX-80/90 6.50 75.00
IBM 3000 4.50 45.00
IOMQ-3500 9.75 111.00
GEMINI 10-LOR 15X-3X 2.50 23.40
HYNIX 4 PC-122 12.75 180.00
IDES MICROFRESH 480 5.75 58.00
NEC-3500 M/S 6.25 69.00
NEC-3500 NYLON 9.00 96.00
NEC-3820A 5.50 58.80
OKIDATA 80/82/83/85 2.50 23.40
RADIO SHACK DMP-2000 7.50 87.00
RADIO SHACK DMP-2000 7.50 87.00
SITEMAN 8.50 96.00
SILVER REED EX 550 M/S 8.50 90.00
SILVER REED EX 550 NYLON 6.50 75.00
TALLY SPINT-66 M/S 6.50 75.00
TALLY SPINT-66 M/S 6.50 75.00
TALLY 140 8.50 96.00
TALLY 140 8.50 96.00
TOSHIBA 1300/1333 7.50 87.00

Add $3.00 Ship. & Hand. - To Order Call Toll Free 1-800-742-1122
In MN (312) 592-3218 or Write for our Catalog

DWIGHT COMPANY, INC.
15005 Northland Drive - West Tower
Southfield, Michigan 48075-6495

Inquiry 128

Data Acquisition
and control for any computer

The Model 1232 communicates via RS-232, and has 8 analog inputs (+4 VDC, 12 bits), 8 digital inputs, 8 digital outputs, and a 2000 point buffer. Suitable for field data logging or lab use, the 1232 costs only $990. Details manual, $25. Phone our applications engineer at 617-899-8629 or write:

225 Crescent St., Waltham, MA 02154

Inquiry 120

STARBUCK DATA COMPANY

C SOFTWARE

DEVELOPMENT
PC/XT/PCDS/MDSOS

- FULL C COMPILER PER K&R
- Deluxe B0107 or Assembler
- Floating Point
- Full 1MB Addressing for
- Code or Data
- Transcendental Functions
- MDSOS 1, 2, 0 LIBRARY SUPPORT
- Program Memory using Exec
- Environment Available to Main
- c-window™ SOURCE CODE
- Debugger
- Various Keypads & Alteration
- Using C Expressions
- FAST B088/B088 ASSEMBLER

Combined Package - $199
Call for write:
c-systems
Fullerton, CA 92634
PO. Box 3235
714-577-5362
TM c-systems
**FC 135-40 Features:**

- Full Replacement to your regular IBM® PC
- 65 W. Power Supply
- 4 Disk Drives Connectors
- Built-in High Air Flow High Quality Cooling Fan
- Schematics included
- One year Warranty
- +5V/15A, +12V/4.2-8.5A (peak), -12V/1A, -5V/1A. (max. outputs)
- 110-230 VAC Convertible

**For "Build Your Own Computer" and OEM's Convenience, we also carry:**

<table>
<thead>
<tr>
<th>Product</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC 427 Keyboard</td>
<td>For IBM® or its compatible products</td>
<td>109.00</td>
</tr>
<tr>
<td>FC 630A-2 Cabinet</td>
<td>IBM identical</td>
<td>99.00</td>
</tr>
<tr>
<td>FC-330 Hard Disk Controller</td>
<td>Fully Buffered I/O Bus</td>
<td>239.00</td>
</tr>
<tr>
<td>FC-630 Cabinet</td>
<td>On-off switch, built-in ECC</td>
<td>99.00</td>
</tr>
<tr>
<td>FC-230 Floppy Disk Controller</td>
<td>Drivers 4 x 5¼&quot; FDD</td>
<td>99.00</td>
</tr>
<tr>
<td>FC-730 Multifunction Card, Expandable to 384K</td>
<td>From 64 to 384K</td>
<td>199.00</td>
</tr>
<tr>
<td>FC-930 RS232 Printer</td>
<td>Fully IBM Compatible</td>
<td>99.00</td>
</tr>
<tr>
<td>FC-940 RS232 Calendar</td>
<td>One RS-232 port</td>
<td>99.00</td>
</tr>
<tr>
<td>FC-830 32K RAM Card</td>
<td>From 64K to 512K</td>
<td>159.00</td>
</tr>
<tr>
<td>FC-800 Multifunction Card, Expandable to 384K</td>
<td>From 64K to 384K</td>
<td>199.00</td>
</tr>
<tr>
<td>FC-930 512K RAM Card</td>
<td>Expandable to 128K</td>
<td>199.00</td>
</tr>
<tr>
<td>FC-930 DRAM</td>
<td>64K DRAM</td>
<td>25.00</td>
</tr>
<tr>
<td>FC-930 EPROM</td>
<td>2764 EPROM</td>
<td>5.25</td>
</tr>
</tbody>
</table>

**SALES & TERMS:***

- 1. Shipping & Handling charge $6.00 minimum. Check with us for actual charges
- 2. CA add 6.5% tax
- 3. Restocking charge 15%
- 4. RMA # is required for all return merchandise
- 5. Prices subject to change without notice

**IDEAL FOR:**

- Upgrade IBM® PC
- OEM Manufacturer
- Do it yourself an IBM® PCXT Compatible

Please do not confuse this high quality product with the cheap imported units sold by others because of same outlook.

**Dealers/OEMs are Invited**

**Check with us for PC/AT Power Supply**

**IDEAL FOR:**

- IBM model
- IBM compatibles

For IBM® PC or its compatible products.
**A Spooler that will Spoil You**

Addmaster Paper Tape Handler with Big New 7/4" Reels


**CHIPS 'n DIPS**

**MEMOREX**

Special Offer on Data Reliable Discs

Memorex seals its floppy discs with a process it developed, called Solid-Seam Bonding. This seals shut every inch of every seam of every Memorex floppy disc. PLUS, if you call, write, or utilize reader service in response to this ad—we'll send you our full-range catalog of computer supplies with Special Offers good for further savings on Memorex disks and many other quality products.

**EPROM PROGRAMMER**

APPROTEK 1000

$249.95

Complete with Personality Module

117 AC POWER-RS232

8 BAUD RATES HANDSHAKE TO HOST

ALLOWS READ, WRITE, VERIFY & COPY

Comes complete with CP/M & BASIC Drive Program Listings for most small micros

Full 1 Year Warranty

Programs the following: 5 volt 24 or 28 pin devices 2Kx4 pins through 2766, 256x series. 6502 plus others

Specific Personality Module desired order Additional Personality Modules only $15.00 ea

TO ORDER CALL OR WRITE

APROPOS TECHNOLOGY

10711 A VIA VENICE

Add CAMARILLO, CA 93010

54.00 Shipping USA

VISA or MC Add 3%
Inquiry 221

GROUP SPECIALS

74 Series
- 74XX .25
- 741XX .35
- 742XX .49
- 743XX .49
- 74LS Series
  - 74LSXX .25
  - 74LS1XX .35
  - 74LS2XX .49
  - 74LS3XX .49
- 74S Series
  - 74SXX .35
  - 74S1XX .45
  - 74S2XX .59
  - 74S3XX .59

OUR POLICY

Delivery: Orders normally shipped within 2 business days. Add $3 for UPS ground-5# & under; Add $4 for UPS Blue (air), 5# & under; for each additional air pound add $1. Arizona residents add 6% sales tax.

Payment: Visa, MC, cashier's check, money order, personal check accepted. (Allow 10 days for personal checks to clear.) No surcharge on credit card orders. CODs welcome with cash, certified check, cashier's check or money order. Add $3 COD handling charge.

Pricing: Minimum order $20. 30% discount on orders over $500. Minimum order $20. 30% discount on orders over $500.

NOTE: This is just a sampling of our 6 million IC inventory.

Inventories

2219 South 48th Street, Tempe, AZ 85282
800-245-2235

HOURS: 8 a.m.-5 p.m. (Mountain Time)
Monday thru Friday

APRIL 1985 • BYTE 473
CONVERSE WITH YOUR COMPUTER

AT LAST A FULL IMPLEMENTATION of the original ELIZA program is now available to run on your microcomputer.

Created at M.I.T. in 1966, ELIZA has become the world's most celebrated artificial intelligence demonstration program. ELIZA is a non-directive therapeutic aid who analyzes each statement you type to him and then responds with each of his own, generating an automated empathetic conversation.

ELIZA is now run on a large mainframe. ELIZA has never before been available to personal computer users except in greatly stripped-down versions lacking the sophisticated programs which made the original program so fascinating.

NEW! A new microcomputer version appears to run on the FULL power and range of expression of the original at being offered at the introductory price of only $25! And if you ever find out that she is good for her, you have your microcomputer on a microcomputer.

Order your copy of ELIZA today and you'll never again wonder how to respond to or computer you type at. Well, she's written this computer's output and you can actually see her on the screen.

ELIZA is AVAILABLE in the FOLLOWING FORMATS

- 1 1/4 inch disk or tape cassette for the Commodore 64 (specify which)
- 4 Standard 5 1/4 inch disk for the 64K IBM Personal Computer
- 251/2 inch disk for the 8086 IBM Personal Computer
- 251/2 inch for IBM BASIC Support Version
- 5 1/4 inch disk or tape cassette for the Commodore 64 (specify which)
- 25 1/2 inch for IBM C-64 BASIC Source Version
- Standard 5 1/4 inch disk and tape cassette for all IBM/compatible computers
- 25 1/2 inch for IBM C-64 with Microsoft BASIC-80 Source
- 5 1/4 inch disk for most IBM-based computers (specify computer)

S-25 for Protected Version - S-45 for Apple II, II Plus, IIc or IIe

Please add $2.00 shipping and handling to all orders.

We accept C.O.D., MasterCard and Visa. Add $3.00 per 100 or part to each order for U.S.P.S. shipping charges.

NJ Residents add 6% sales tax.

PCiariccii iLi'is aI the D aTAMARKET HOME-office who analyzes each statement as you type in and then responds with each of his own, generating an automated empathetic conversation.


DSY:otherapist who analyzes each statement as you type in and then responds with each of his own, generating an automated empathetic conversation.

NOW, our new microcomputer version possesses the FULL power and range of expression which made the original program so fascinating.

ARTIFICIAL INTELLIGENCE RESEARCH GROUP

178 Route 206 South, P.O. Box 993
Department B
Somerville, N.J. 08876  (201) 874-5050

NEW! NEW! NEW!

IBM-PC $1699
256 K 2 DS/DD DRIVES
Other Configurations Available

EPSON FX-80/100...Best Price $1495
OKIDATA 82/333...Brother $395
BROTHER HR-15...$365
HR-25...$365
P.G.S. MAX-12...$155
TANDO (360 K)...$155
TEAC 558 (360 K)...$132

We carry a large selection of hardware and software

CALL US

COMPUTERLANE UNLTD. INC.
Exporting Div. Telex: 682641 SK COMP
901 North La Jolla Avenue, Dept B
Los Angeles, CA 90046

IBM EXPANSIONS

Qume 142A...$189
Taecc FDD55...$189
Tandon TM100-2...$129
Tandon TM101-4...$239
CDC 9409...$199
Maynard Disk Controller...$118
SandStar Series...$299
Internal/External Dsk System W5...$139
W5...$139
Maynard Stream tape backup...$129
Quadboard (64K)...$254
Quadboard (384K)...$399
Quadboard...$189
AST SuxPak Plus (64K)...$269
SuxDiskPlus (384K)...$339
MegaDisk (64K)...$269
MegaBus...$339
Advantage...$269
I/O Plus...$129
PCnet - starter kit...$89
HERCULES graphics board...$199
Color Card with PP...$199

SERVICE

YAHAYA...$129
Smartboard 2.5MB...$249
Smartboard 1.2MB...$199
Set of 3 chips (64K)...$25
256K chip (each)...$25
8087 chip...$129

NON-RUNNING.. $495

Includes TurboDos drivers (a $100 value) and TurboSlave I with 128K ram

THE WORLD'S FASTEST
S-100 Z-80 SLAVE PROCESSOR
TurboSlave I

5-1/4"  

51/4"

1.35 ea

1.55 ea

Single side
double density

Minimum Order 20

Double side
double density

Hard media in Library box only. 

IMMEDIATE SHIPMENT

Certified Check - Money Order - Personal Check

MasterCard and Visa. Add $3.00 per 100 or part to each order for U.P.S. shipping charges.

NJ Residents add 6% sales tax.

Inquiry 31

Inquiry 163

Inquiry 296

Inquiry 305

Inquiry 133

Inquiry 90

Inquiry 105

Inquiry 397
Now, the lowest prices ever on
3M Scotch® DISKETTES
LIFETIME WARRANTY!

FANTASTIC LOW PRICES ON
BASF
QUALIMETRIC DISKETTES!
LIFETIME WARRANTY!

$129 ea.
5 1/4" SSDD
$149 ea.
5 1/4" SDSK

PACKED IN CARDBOARDS CASES!
BASF QUALIMETRIC DISKETTES come with a LIFETIME WARRANTY!
You've used these diskettes hundreds of times...as copy-protected originals on some of the most popular software packages. They're packed in poly-bags of 25 with Tyvek sleeves, reinforced hubs, user identification labels and write-protect tabs.

MEMOREX DISKETTES come with a LIFETIME WARRANTY!

DISKETTE STORAGE CASES
AMARY MEDIA-MATE 50: A REVOLUTION IN DISKETTE STORAGE

If someone made the simple and makes it easier. This unit holds 50 3.5" diskettes, has grooves for easy stacking, and is made to keep diskettes from slipping and other features. We like it.$10.95 ea.

DISKETTE 70 STORAGE: STILL A GREAT BUY.

Disk Caddy: The original recipe for 70 5 1/4" diskettes. Six dividers included. An excellent value.$11.95 ea.

DISK CADDEY 70:
The original design for 70 5 1/4" diskettes. Black or gray.$1.65 ea.

FOR ORDERS ONLY:
INFORMATION & INQUIRIES:
(1-800-621-6827)
HOURS: 8AM-5PM Central Time, Monday-Friday
WE WILL BEAT ANY NATIONALLY ADVERTISED PRICE ON THE SAME PRODUCTS AND QUANTITIES!
DISK WORLD, Inc.
Suite 4806 • 30 East Huron Street • Chicago, Illinois 60611

DISKETTES

PRINTER RIBBONS:
at extraordinary prices!

Brand new ribbons, manufactured to Original Equipment Manufacturer's specifications, in housings. (Not re-inked or spools only.)

MEMOREX DISKETTES come with a LIFETIME WARRANTY!

Nail down great prices on
MEMOREX diskettes!
LIFETIME WARRANTY!

$170 ea.
5 1/4" SSD
$178 ea.
5 1/4" SSDU

NASHUA Diskettes

INCREDIBLE VALUE!
NASHUA Diskettes
LIFETIME WARRANTY!

$105 ea.
5 1/4" SSD
$115 ea.
5 1/4" SSDU

These are poly-bagged diskettes packaged with Tyvek sleeves, reinforced hubs, user identification labels and write-protect tabs. NASHUA Corporation is a high-technology corporation and a recognized leader in magnetic media.

DISK ORDER SYSTEM!

FOR ORDERS ONLY:
INFORMATION:
(1-800-621-6827)
HOURS: 8AM-5PM Central Time, Monday-Friday
WE WILL BEAT ANY NATIONALLY ADVERTISED PRICE ON THE SAME PRODUCTS AND QUANTITIES!
DISK WORLD, Inc.
Suite 4806 • 30 East Huron Street • Chicago, Illinois 60611

DISK WORLD!
Turbo + PC Tools = Programs
Tools for Turbo Pascal™ on the IBM™ PC
Window Management = menus, help files ...
- Unlimited windows • Window overlay & recall
- Cursor save & jump • Access all colors & chars
- Window Compiler/Librarian manages window files
Graphics Drawing = HiRes plotting power!
• Ellipses, polygons • Region fill and clear & more

String Formula Evaluator = easy calculation
• 22 functions with nesting and implicit multiplication
• Won't bomb on overflow or division by zero
System Check and Control = max flexibility!
• Time & date access • Get disk types & room
• Get & set default • 80 information drive
All this for only $39.95* ... incredible!
* Please include $2 for postage and handling ($4 if outside of USA). Californians add 6%.

Paragon Courseware
4954 Sun Valley Road
Del Mar, CA 92014
(619) 481-1477

Turbo Pascal is a trademark of Borland International
IBM is a trademark of the IBM Corporation

Inquiry 297
Buy direct from PROGRESSIVE MICRO DISTRIBUTORS and you'll discover that low prices together with a knowledgeable sales staff can make a surprising difference.

You'll be shocked by the lucrative prices PROGRESSIVE MICRO DISTRIBUTORS can offer on one of the largest selections of PC products anywhere. But you won't be surprised by our limitless supply of expert advice, support, service and information. After all, you expect these services from your computer supplier.

But did you expect same day insured shipping, complete product warranties (some up to 5 years), and no surcharge on most credit cards? All this combined with over 25,000 square feet of computerized warehouse space assures you prompt and efficient service.

Look Us Over and Compare.

Send for PROGRESSIVE MICRO DISTRIBUTORS Free catalog. You'll find that our catalog prices are discounted even lower than our advertised prices in national magazines. Once you start receiving our FREE catalog, you'll be entitled to free product literature and reviews by prominent industry sources at your request, as well as our monthly PRICE HOT LIST.

MAIL in your coupon TODAY to start receiving PROGRESSIVE MICRO DISTRIBUTORS monthly PRICE HOT LIST immediately. ORDER TODAY if you're ready to cash in on the savings right away. Call TOLL FREE 1-800-446-7995 for a quote on any of the thousands of PC products you need.
<table>
<thead>
<tr>
<th>Product Details</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Mouse by MOUSE SYSTEMS</strong></td>
</tr>
<tr>
<td><strong>PC Mouse with Pop-ups</strong></td>
</tr>
<tr>
<td><strong>PC Mouse with Paint</strong></td>
</tr>
<tr>
<td><strong>Field Mouse (male or female)</strong></td>
</tr>
<tr>
<td><strong>PC Paint Software</strong></td>
</tr>
<tr>
<td><strong>Mouse Window Software</strong></td>
</tr>
<tr>
<td><strong>Mouse-Up Menu Software</strong></td>
</tr>
</tbody>
</table>

| **MICROSOFT for IBM PC** |
| **Mouse with Word** | $495 |
| **Mouse a la carte** | $199 |

| **QUADRAM for IBM PC** |
| **Quadboard No RAM** | $269 |
| **Quadboard 64K** | $195 |
| **Quadboard 128K** | $299 |
| **Quadboard 256K** | $499 |
| **Quadlink** | $699 |
| **Quad S1 Plus 64K** | $225 |
| **Quad S1 Plus 256K** | $499 |
| **Quadcolor I** | $209 |
| **Quadcolor II** | $209 |
| **Quad 2 MEG w/12K** | $1195 |
| **Quad 2 MEG w/1 MByte** | $1995 |
| **Quad 2 MEG w/2 MByte** | $2995 |
| **Palette Master 256 colors** | $599 |
| **Quadgraph Graphics Card** | $199 |
| **Quad universities, IS, IP, C, monochrome** | $345 |
| **Asher Voice & Data** | $695 |

| **BERNOMILL Boxes from IOMEGA** |
| **5,10 or 20 megsayte removable cartridge mass** | **$1886** |
| **5 megsyte system/Macintosh** | **$1699.95** |
| **10 megsyte system/IBM** | **$2695** |
| **20 megsyte system/IBM** | **$3895** |
| **Extra 10 megsyte card** | **$109** |

| **Hi-Res Monitors** |
| **Amdek 300G** | $179 |
| **Amdek 30CA** | $230 |
| **Amdek 310A** | $230 |
| **Amdek Color 300** | $349 |
| **Amdek Color 500** | $525 |
| **Amdek Color 600** | $650 |
| **Amdek Color 710** | $799 |
| **PGS MAX-12** | $209 |
| **PGS HX-12 640x240** | $699 |
| **PGS SR-12 720x480** | $799 |
| **PGS Scan-Doubler** | $299 |
| **14 inch Quadchrome III** | $499 |
| **Taxan 440 Ultra Hi-res RGB** | $799 |
| **Taxan 210 RGB/Composite** | $299 |
| **Taxan TV Tuner for RGB Monitor** | $99 |

| **PERSYST Boards** |
| **Mono display adapter** | $225 |
| **Mono display adapter w/parallel** | $350 |
| **BoB Hi-res display adapter** | $595 |
| **Time Spectrum SB 384 w/64K** | $395 |

| **High Speed 8087 APU** |
| **LIST PRICE $293** | **SALE PRICE $179.95** |

| **APPLE Accessories** |
| **Full Height Disk Drive** | $1299 |
| **Half Height Disk Drive** | $999 |
| **Disk Drive for Apple IIC** | $1299 |
| **Dual Disk Controller** | $1000 |
| **CP/M 3.0 Card with 64K** | $249 |
| **ALS Z Engine** | $1999 |
| **16K RAM Card** | $199 |
| **Best 80 Column Card** | $199 |
| **Printer Card & Cable** | $1999 |
| **Fan with Surge Protection** | $199 |
| **Koala Pad** | $125 |
| **Grappler Plus** | $175 |
| **Buffered Grappler Plus** | $249 |

| **IBM PC** |
| **256K of RAM** | **$1695** |
| **63 Watt Power Supply** | **$469.95** |
| **IBM PC** | **$1295** |
| **256K of RAM** | **$2395** |
| **140 Watt Power Supply** | **$499** |

| **JADE XPC** |
| **256K of RAM** | **$1295** |
| **63 Watt Power Supply** | **$469.95** |
| **IBM PC** | **$1295** |
| **JADE XPC** | **$1695** |

| **OPTION #1** |
| **256K of RAM** | **$1995** |
| **Two 360K Drives** | **$1995** |
| **Hercules Card** | **$1995** |
| **IBM PC** | **$2395** |

| **OPTION #2** |
| **256K of RAM** | **$2995** |
| **Two 360K Drives** | **$2995** |
| **Hercules Card** | **$2995** |
| **IBM PC** | **$2995** |

| **OPTION #3** |
| **256K Expands to 640K** | **$2995** |
| **10 Megabyte Hard Disk** | **$2995** |
| **One 360K Drive** | **$2995** |
| **130 Watts of Power** | **$2995** |
| **Multipurpose Card** | **$2995** |
| **Hercules Card** | **$2995** |
| **Amdek 300** | **$2995** |

**Place Orders Toll Free!**

Continental U.S.A. Inside California Los Angeles Area
(800) 421-5500 (800) 262-1710 (213) 973-7707

JADE
Computer Products
4901 West Rosecrans Ave. Hawthorne, California 90250
Continental U.S.
800-421-5500
Inside California
800-262-1710
For Technical Inquiries or Customer Service call:
213-973-7707

PRINTERs ON SALE !!!

EPSON Printers
New Plus Series in Stock!
EPSON P501 45 cps Thermal  220  209.95
EPSON RX-80 100 cps  229.95
EPSON RX-80/FT+ 100 cps  269  279.95
EPSON RX-100F/FT 100cps  249  249.95
EPSON RX-100/FT 100cps Color  279.95
EPSON FX-80FT+ 160 cps  309.95
EPSON FX-100FT+ 160 cps  319.95
EPSON LF-1500 200 cps  329  329.95
EPSON/LM/FX 200 cps  349.95
EPSON Hi-80 4 Pin Plottter  359.95
4K Serial Board RX/FX  469  469.95
NLO Board for RX/FX  479  479.95
FX-40 Tractor  109  109.95
LQ-1500 Tractor  149  149.95
LQ-1500 Sheet Feeder  199  199.95

OKIDATA
Prices Slashed
*Free IBM ROMS

160 CPS, Correspondence Quality

OKIDATA 92 Parallel  150  150.95
OKIDATA 93 Parallel FREE tractor  180  180.95
OKIDATA 93 Parallel FREE tractor  180  180.95
2K Serial Board  120  120.95
IBM PC ROMS for 92  159  159.95
IBM PC ROMS for 93  169  169.95
Extra 82/93 Ribbon  19.95  19.95
82/92 Tractor  35  35.95

120 CPS & 200 CPS OKIDATA

OKIDATA 82 Parallel/Serial  649  649.95
OKIDATA 83 Parallel/Serial  775  775.95
OKIDATA 84 Parallel 200 CPS  945  945.95
OKIDATA 84 Serial 200 CPS  1150  1150.95
2K Serial Board  550  550.95
IBM PC ROMS for 82/83  149  149.95
IBM PC ROMS for 84  99  99.95

*FREE! Plug-n-Play option with purchase of 92, 93 or 84

A-B Printer Switch

Fully bi-directional switch allows your computer to
run either of two prinaters, or allows two computers
to share one printer, standard parallel switch box.

Printer Switch  119  119.95
Extra Cable  240  240.95

C ITIZEN Printers
Best Near-Letter-Quality printers for under $1000!!!

CITIZEN MSP-10 FT 160 cps  1499  1499.95
CITIZEN MSP-20 FT 160 cps  1799  1799.95
CITIZEN MSP-25 FT 160 cps  1949  1949.95
CITIZEN MSP-25 FT 200 cps  1749  1749.95
CITIZEN MSP-25 FT 200 cps Color  2249  2249.95

Printer Accessories

IBM PC style cable  154  154.95
Standard parallel cable  140  140.95
Dual Printer Switch Box  1149  1149.95
Apple Card & cable  109  109.95
RS-232 serial cable  130  130.95

Letter Quality Printers On Sale!

Diablo 630 40 cps  2340  2340.95
Tractor for 630  250  250.95
Conexx CR-PC  199  199.95
Tractor for CR-PC  199  199.95
Keyboard for CR-PC  119  119.95
Sheet feeder for CR-PC  119  119.95
Juki 6100 18 CPS  799  799.95
Tractor for 6100  799  799.95
NEC 3550 33 CPS  2250  2250.95
Tractor for 3550  2250  2250.95
Toshiba P1351  1195  1195.95
P1351 Tractor  1195  1195.95
P1351 Sheet Feeder  1905  1905.95

Ultra-Violet EPROM Erasers

Eclipse Electronics with out Timer  99  99.95
Eclipse with Timer  139  139.95

The LITTLE BOARD with
FREE! CP/M 2.2
Miniature single board CP/M computer designed to
mount directly on top of a 5 1/4" floppy disk drive
(7.75" x 5.75"). Contains Z80A CPU, 64K RAM,
Boot EPROM, terminal port, modem port, parallel
printer port, floppy disk controller, and CP/M 2.2
included FREE!

Little Board with CP/M  440  440.95
Support Package  150  150.95
Serial Cable  113  113.95
Diskless Monitor Eprom  130  130.95

QUADRAM MICROFAZER Buffers
Expandable to 64K (parallel model expands to 512K)

8K Parallel in/Parallel out  1169  1169.95
32K Parallel in/Parallel out  1225  1225.95
128K Parallel in/Parallel out  1445  1445.95
8K Serial in/Serial out  1199  1199.95
32K Serial in/Serial out  1269  1269.95
128K Serial in/Serial out  1445  1445.95
8K Serial in/Serial out  1199  1199.95
32K Serial in/Serial out  1269  1269.95
128K Serial in/Serial out  1445  1445.95

PRACTICAL PERIPHERAL MICROBUFFERS
Stand alone Microbuffers for Printers & Modems

32K Parallel in/Parallel out  1299  1299.95
64K Parallel in/Parallel out  1349  1349.95
32K Serial in/Serial out  1299  1299.95
64K Serial in/Serial out  1349  1349.95
42K Add-on Board  179  179.95

We accept cash, checks, credit cards, or purchase orders from qualified firms and institutions.
Minimum prepaid order $15.00 California residents add 8 1/2% tax. Export customers outside the US or Canada please add 10% to all prices. Prices and availability subject to change without notice. Shipping and handling charges via UPS Ground 50c/lb. UPS Air $1.00/lb. minimum charge $3.00

JADE
Computer Products
<table>
<thead>
<tr>
<th>TMS4027</th>
<th>4095</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMS4044</td>
<td>1-20</td>
</tr>
<tr>
<td>TMS2532</td>
<td>1-20</td>
</tr>
<tr>
<td>TMS2516</td>
<td>1-20</td>
</tr>
<tr>
<td>TMS12716</td>
<td>1-20</td>
</tr>
</tbody>
</table>

**LP** = Low Power  
**Ootat** = Output Static

<table>
<thead>
<tr>
<th>STATIC RAMS</th>
<th>EPROMS</th>
</tr>
</thead>
</table>
| LP = Low Power  
**Ootat** = Output Static |

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>71045</td>
<td>71045</td>
</tr>
<tr>
<td>79045</td>
<td>79045</td>
</tr>
<tr>
<td>79145</td>
<td>79145</td>
</tr>
<tr>
<td>79245</td>
<td>79245</td>
</tr>
</tbody>
</table>

- **DIP SWITCHES**
- **EXPANSION KIT**
- **UV ERASERS**
- **MEMORY KIT**
- **VOLTAGE REGULATORS**
- **CRYSTALS**
- **CRYSTAL CLOCK OSCILLATORS**
- **IC SOCKETS**
- **ZIF SOCKETS**
ROBOT KITS!
PIPER·MOUSE

Controlled by sound sensor and 1-channel electronic circuit. Use the whistle in this kit and Piper·Mouse follows your commands. When front sensor contacts an obstacle or hears a loud noise (hand-clap), Peppy automatically turns to the left.

MV-915 $44.95

ROBOT KITS!
PEPPY

2-way sensor detects noise or solid objects in its path. When front sensor contacts an obstacle or hears a loud noise (hand-clap), Peppy automatically turns to the left.

MV-916 $24.95

APPLE & IBM
ACCESSORIES

80 Column Apple II+ ... 149.95
80 Column Apple III ... 119.95
Z80 Apple II+ ... 89.00
Z80 Apple IIE ... 89.00
16K Card ... 36.95
Cooling Fan ... 38.95
Power Supply ... 74.95
Joystick ... 29.95
RF Modulator ... 13.95
Disk Drive ... 169.95
Controller Card ... 59.95
Paddles ... 7.95

APPLE or IBM JOYSTICK
$29.95

Compatible for either:
APPLE II and APPLE IIe
OR
IBM-PC, JR., & IBM-XT

MULTIFUNCTION CARD

VIEWMAX-80 149.95
80-Column card for Apple II series
- Video Soft Switch
- Inverse Video
- VIDEAX's Videoterm compatible

VIEWMAX-80e 119.95
80-Column extended video card for Apple IIe
- 64K RAM, expandable to 128K
- Double High-resolution circuit
- Compatible with Pascal & CP/M

PRINTMAX 59.95
Parallel printer card, Apple II series
- Centronics compatible
- Variable print widths
- Up to 5000 characters/second

APPLE & IBM Compatible
DISK DRIVES

PRINTMAX

MEMORY CARD

VIEWMAX-80e 119.95
80-Column extended video card for Apple IIe
- 64K RAM, expandable to 128K
- Double High-resolution circuit
- Compatible with Pascal & CP/M

PRINTMAX 59.95
Parallel printer card, Apple II series
- Centronics compatible
- Variable print widths
- Up to 5000 characters/second

APPLE & IBM Compatible
DISK DRIVES

PRINTMAX

MEMORY EXPANSION KIT

4164 200ns 9 for 19.98

DISKETTES

5¼" Secure label diskettes

ATHANA: ( w/Hub Ring )
25 per package
SS/DD ... 29.75 or 1.19 ea.
DS/DD ... 34.75 or 1.39 ea.
LIFETIME WARRANTY ON ALL ATHANA DISKETTES

NO LABEL: ( w/Hub Ring )
25 per package
SS/DD ... 24.75 or .99 ea.
DS/DD ... 29.75 or 1.19 ea.
2-YEAR WARRANTY ON ALL BULK DISKETTES

RESISTORS

1/4 WATT 5% CARBON FILM
ALL STANDARD VALUES
FROM 1 OHM-10 MEG OHM
10 PCS ............ 1.25
50 PCS ............ 2.00
1,000 PCS ........ 15.00

Checkmate Technology, Inc.

APPLE II Special
Extended 80-Col. VIDEO CARD
$69.95
★ 64K to 128K ★
ULTIVIEW 80/160 249.00
3-160 columns with any monitor!
SCRENS: 80x24, 80x32, 80x48,
90x24, 132x24, 132x30, 160x24
On-screen BOLD and Underline
Reverse scrolling
Easy-to-read Wide-angle mode
Apple II and IIe compatible
Prompt lines
Upper & lowercase letters
Assembled & Tested ... 39.95

VIEWMAX-80e

249.95

MEMORY CARD

VIEWMAX-80e

$249.95

- 64K to 384K RAM
- Parallel Port
- Serial Port
- 1-Year Warranty

MEMORY CARD

VIEWMAX-80e

$199.95

- Expandable to 512K
- Fully compatible with IBM software
- Fully compatible with Apple diagnostic utilities
- 1-Year Warranty

KEYBOARD (99/4)

48 keys 4" x 10" 6.95

TERMS: Minimum order $10.00
For shipping and handling, include $2.50 for UPS ground or $3.50 for UPS Blue (air). For each additional pound, add $1 for UPS Blue shipping and handling. California residents must include 6% sales tax. Bay area and LA residents include 0% sales tax. Prices are subject to change without notice. We are not responsible for typographical errors. We reserve the right to limit quantities and to substitute manufacturers. All merchandise subject to prior sale.

CALL for VOLUME Quotes
HOURS: Mon. - Fri. 10:00 to 3:00
Saturdays 10:00 to 2:00
VISIT OUR RETAIL STORE
2100 De La Cruz Blvd.
Santa Clara, CA 95050
(408) 988-0697

ALL MERCHANDISE IS
100% GUARANTEED

Inquiry 120

APRIL 1985 • BYTE 483
The NEC JC-1401D is a 13" medium-high resolution RGB monitor available for use with the Sanyo NEC-55555 or the EMPC. The monitor features a resolution of 400 dots by 240 lines. Colors available are Red, Green, Blue and Black and White.

These monitors are currently being used in applications for more critical than micro computers. The NEC monitor carries the Lutron-Morinco label and was originally scheduled for use in their Office of the Future equipment. A change in Morinco's marketing strategy has made these units excess inventory which will be sold at a deep discount. We are offering these proven new RGB monitors at a fraction of their original cost. Sanyo.computer NEC-140/15, IBM-PC compatible NEC-140/15.

TERMINALS

The Comrex Comscriber I is ideal solution to make short work of translating financial and numeric data into a graphic presentation.

Many ready to run programs such as Lotus 1-2-3, VisiCalc Spreadsheets and business graphics already support this plotter.

The Comscriber I features programmable paper sizes up to 8½ by 12 inches, 6 inches per second plot speed and 0.004" step size. Easy to implement Centronics interface allows the Comscriber I immediate use with the printer port of most personal computers.

The Comscriber I is manufactured for Comrex by the Enter Computer Corporation. The plotter is marketed by Heath Kit and also sold under Eners own "Sweet P" label. This is your opportunity to purchase a graphic plotter which was originally priced at $795 for only $219. Also available is a support package which includes demonstration software, interface cable, amulcolor pen assortment and a variety of paper and transparency material.

RETURN OF A SMASH HIT SALEOUT DRAGON $139

Compatible with most Radio Shack Color Computer software. The world famous Dragon computer is now available in the United States. Manufactured by the Tico Corp., under license of the British Broadcasting Company. The Dragon computer is complete with 64K, Bytacard memory, serial port, modem port along with a Centronics printer interface. This unique microcomputer includes a modem and microphone and comes standard with Microsoft Color Basic, Basicware, and a complete word processing package. The color output is color compatible with many of today's most popular computer systems.

For more information call (800) 421-5041 or (213) 217-0500.

TOLL FREE ORDER LINE
(800) 421-5041

TECHNICAL & CALIFORNIA
(213) 217-0500
C. Itoh’s STARWRITER F-10 is the answer for the perfect daisy wheel printer. The F-10 produces letter quality printing at 40 characters per second. Auto installs with Wordstar and Perfect Writer. Features extensive built-in word processing functions that allow easy adaptability and reduced software complexity. Industry standard Centronics interface provides instant compatibility with all computers equipped with a parallel printer port. The Starwriter F-10 accepts paper up to 15 inches in width. These printers were originally priced to sell at over $1400. Through a special arrangement California Digital has purchase these units from a major computer manufacturer and is offering these printers at a fraction of their original cost.

Options available include tractor feed, buffered memory and an assortment of printer cables for a variety of computers.

When the March Issue of Byte Magazine went to press California Digital was negotiating for the purchase of several thousand 10 Megabyte Winchester disk drives. The Manufacturer has asked not to advertise their name. Please telephone for details.

<table>
<thead>
<tr>
<th>Your Choice</th>
<th>TEAC 55B-55F 48TPI 96TPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>One Two Ten</td>
<td>$119</td>
</tr>
</tbody>
</table>

Five Inch Double Sided Drives

- **SHUGART 604** 6-7 Meg. $149
- **TANDON 100-2** full height $149
- **TANDON 101-4 96TPI** full ht. $299
- **SHUGART 465 ½ HT 96 TPI** $119
- **MITSUBISHI 4851 half height** $139
- **MITSUBISHI 485396 TPI HT 155** $149
- **MITSUBISHI 48548 in. 142 half height** $259

Eight Inch Single Sided Drives

- **SHUGART 801 R** 159
- **SIEMENS FDD 100-8** 119
- **TANDON 848E-1 half height** 369

Eight Inch Double Sided Drives

- **SHUGART 848 E-2** 329
- **SHUGART 848 E-1** 289
- **SHUGART 848 E-3** 289
- **SHUGART 848 E-4** 279

Shipping: First five pounds $3.00, each additional pound $.50.
Foreign orders: 10% shipping, excess will be refunded.
California residents add 6.5% sales tax. C.O.D.'s discouraged.
Open accounts extended to state supported educational institutions and companies with a strong "Don & Bradstreet" rating.
NEW!!

MEGA-CASE™

IDEAL FOR OEM MANUFACTURERS, UNIVERSITIES, RESEARCH LABS ETC.

THE ULTIMATE PC COMPATIBLE ENCLOSURE

IDEAL FOR MEGA-BOARD™ XT OR ANY IBM-PC PC-XT COMPATIBLE BOARDS

OEM AND DEALER QUANTITY DISCOUNTS AVAILABLE

EASY ACCESS!!
FLIP-TOP-CASE™ OPENS FOR EASY ACCESS TO INSIDE!!

EXCLUSIVE FLIP-TOP-CASE™
Overcomes Problems With PC Case

Bus Expansion Slot
Allows External Access To PC Bus

Mounts Standard Power Supply

Blank Label Inset
For Your Company Or University Name Here

Mounts Standard Half or Full Height Floppy Disk or Hard Disk Drives

Rugged Heavy Gauge Steel Construction

ADVANCED KEYBOARD

FEATURES: • Horizontal Return Key
• Caps Lock and Num. Lock Indicators
• Enter Key for Numeric Keypad

Full PC Compatibility

Full PC Compatibility

Fully Assembled and Tested with One Year Limited Warranty

ONLY $99.95

FULLY ASSEMBLED AND TESTED WITH ONE YEAR LIMITED WARRANTY

EXCLUSIVE FLIP-TOP-CASE™
Overcomes Problems With PC Case

Bus Expansion Slot
Allows External Access To PC Bus

Mounts Standard Power Supply

Blank Label Inset
For Your Company Or University Name Here

Mounts Standard Half or Full Height Floppy Disk or Hard Disk Drives

Rugged Heavy Gauge Steel Construction

ADVANCED KEYBOARD

FEATURES: • Horizontal Return Key
• Caps Lock and Num. Lock Indicators
• Enter Key for Numeric Keypad

Full PC Compatibility

Full PC Compatibility

Fully Assembled and Tested with One Year Limited Warranty

ONLY $149.95

TERMS: We accept cash, checks, money orders, or purchase orders from qualified firms and institutions. Prices and availability subject to change without notice. Shipping and handling charges via UPS ground 500/lb. UPS air $1.00/lb. Minimum charge $2.00.

© 1984 Display Telecommunications Corporation
FULL IBM PC-XT* COMPATIBILITY!
FULL MEGA-BYTE RAM CAPACITY ON MOTHERBOARD!
THOUSANDS SOLD WORLD WIDE!

DEALERS AND OEM MANUFACTURERS QUANTITY DISCOUNTS AVAILABLE

Eight Compatible I/O Interface Connectors
(Full PC compatible)
(Compatible with all IBM-PC* plug-in cards)

Special J1 Interface
(Allows horizontal mounting of compatible expansion cards for easy bus expansion and custom configuring) (Board has 62 pin gold plated compatible connector)

Extended ROM Capability
(Runs all compatible PC ROMS) (Jumper programmable to accommodate all popular 8K, 16K, 32K and 64K ROM chips and NEW EE ROMS! VPP power pin available for EP ROM burning!) (External VPP voltage required)

Full Mega-Byte Ram Capacity!
On board!
(With parity)
256K Bytes using 64K chips
1 Mega bytes using 256K chips

MEGA-BOARD™ Evaluation Board Kit
(Blank board with full assembly instructions and parts list.)

Evaluation Board Kit
Includes highest quality PC board with gold plating, silk screen, solder mask

Board Size 10.5 inch X 13.5 inch

FREE!
Displaytel™ Exclusive.
Our Commitment to Microcomputer Education!

FREE! Intel 8088 Data Book with each MEGA-BOARD™ Order!

ORDER NOW!!!
CALL 214-991-1644

FREE OFFER
100% SATISFACTION GUARANTEE
Immediate shipment! Most in stock items shipped same or next day!

10 Day money back guarantee if not completely satisfied!

10 MEGA-BIOS™ X 2764 ROM, FULLY XT COMPLETE
PC DOS $29.95

MEGA-BOARD™ — XT
BARE BOARD KIT $99.95
ASSEMBLED AND TESTED SOCKET KIT $199.95
(LESS C/F SOCKETS)
ASSEMBLED AND TESTED COMPLETE $499.95
(INCLUDES USERS MANUEL AND MEGA-BIOS ROM)

USERS MANUAL WITH THEORY OF OPERATION, SCHEMATICS, BLOCK DIAGRAM, APPLICATION NOTES $19.95

MEGA-BOARD™ — XT
BARE BOARD KIT $99.95
ASSEMBLED AND TESTED SOCKET KIT $199.95
(LESS C/F SOCKETS)
ASSEMBLED AND TESTED COMPLETE $499.95
(INCLUDES USERS MANUEL AND MEGA-BIOS ROM)

MEGA-BOARD™ — XT
BARE BOARD KIT $99.95
ASSEMBLED AND TESTED SOCKET KIT $199.95
(LESS C/F SOCKETS)
ASSEMBLED AND TESTED COMPLETE $499.95
(INCLUDES USERS MANUEL AND MEGA-BIOS ROM)

MEGA-BOARD™ — XT
BARE BOARD KIT $99.95
ASSEMBLED AND TESTED SOCKET KIT $199.95
(LESS C/F SOCKETS)
ASSEMBLED AND TESTED COMPLETE $499.95
(INCLUDES USERS MANUEL AND MEGA-BIOS ROM)

MEGA-BOARD™ — XT
BARE BOARD KIT $99.95
ASSEMBLED AND TESTED SOCKET KIT $199.95
(LESS C/F SOCKETS)
ASSEMBLED AND TESTED COMPLETE $499.95
(INCLUDES USERS MANUEL AND MEGA-BIOS ROM)

MEGA-BOARD™ — XT
BARE BOARD KIT $99.95
ASSEMBLED AND TESTED SOCKET KIT $199.95
(LESS C/F SOCKETS)
ASSEMBLED AND TESTED COMPLETE $499.95
(INCLUDES USERS MANUEL AND MEGA-BIOS ROM)

MEGA-BOARD™ — XT
BARE BOARD KIT $99.95
ASSEMBLED AND TESTED SOCKET KIT $199.95
(LESS C/F SOCKETS)
ASSEMBLED AND TESTED COMPLETE $499.95
(INCLUDES USERS MANUEL AND MEGA-BIOS ROM)

MEGA-BOARD™ — XT
BARE BOARD KIT $99.95
ASSEMBLED AND TESTED SOCKET KIT $199.95
(LESS C/F SOCKETS)
ASSEMBLED AND TESTED COMPLETE $499.95
(INCLUDES USERS MANUEL AND MEGA-BIOS ROM)

MEGA-BOARD™ — XT
BARE BOARD KIT $99.95
ASSEMBLED AND TESTED SOCKET KIT $199.95
(LESS C/F SOCKETS)
ASSEMBLED AND TESTED COMPLETE $499.95
(INCLUDES USERS MANUEL AND MEGA-BIOS ROM)
### Static RAMs

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Capacity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2101</td>
<td>256x4</td>
<td>5.95</td>
</tr>
<tr>
<td>2110</td>
<td>1024x4</td>
<td>14.55</td>
</tr>
<tr>
<td>2111</td>
<td>2048x4</td>
<td>24.5</td>
</tr>
<tr>
<td>2112</td>
<td>4096x4</td>
<td>39.5</td>
</tr>
</tbody>
</table>

### Dynamic RAMs

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Capacity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2141</td>
<td>65536x1</td>
<td>9.95</td>
</tr>
<tr>
<td>2142</td>
<td>131072x1</td>
<td>25.00</td>
</tr>
<tr>
<td>2143</td>
<td>262144x1</td>
<td>39.95</td>
</tr>
</tbody>
</table>

### EPROMs

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Capacity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1702</td>
<td>256x8</td>
<td>4.95</td>
</tr>
<tr>
<td>1703</td>
<td>8192x4</td>
<td>12.05</td>
</tr>
<tr>
<td>1704</td>
<td>32768x4</td>
<td>24.05</td>
</tr>
</tbody>
</table>

### PROMs

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Capacity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2129</td>
<td>512x4</td>
<td>4.55</td>
</tr>
<tr>
<td>2130</td>
<td>1024x4</td>
<td>9.95</td>
</tr>
<tr>
<td>2131</td>
<td>2048x4</td>
<td>14.55</td>
</tr>
<tr>
<td>2132</td>
<td>4096x4</td>
<td>24.5</td>
</tr>
</tbody>
</table>

### Crystals

<table>
<thead>
<tr>
<th>Type</th>
<th>Frequency</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMS2516</td>
<td>32768 kHz</td>
<td>1.95</td>
</tr>
<tr>
<td>TMS2016</td>
<td>4.0 MHz</td>
<td>2.00</td>
</tr>
</tbody>
</table>

### Crystal Oscillators

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74LS192</td>
<td>8 MHz</td>
<td>9.95</td>
</tr>
</tbody>
</table>

### Floppy Disk Controller

- **$19.95**
- Single or double density, single or double sided, DMA or non-DMA operation
- Supports up to 5 V or 9 V disk drives

### Order Toll Free

- **800-538-5000**
- **800-662-6279** (California Residents)

### CRT Controllers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Frequency</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74LS421</td>
<td>2.5 MHz</td>
<td>6.06</td>
</tr>
<tr>
<td>74LS422</td>
<td>1.0 MHz</td>
<td>3.25</td>
</tr>
<tr>
<td>74LS423</td>
<td>750 kHz</td>
<td>3.00</td>
</tr>
<tr>
<td>74LS424</td>
<td>500 kHz</td>
<td>2.20</td>
</tr>
</tbody>
</table>

### Generators

<table>
<thead>
<tr>
<th>Bit Rate</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>256 KB/s</td>
<td>7.95</td>
</tr>
<tr>
<td>512 KB/s</td>
<td>12.95</td>
</tr>
</tbody>
</table>

### Inquiries

- 213-495-5765

---

**JDR Microdevices**

1224 S. Bascom Avenue, San Jose, CA 95128

800-538-5000 • 800-662-6279 (CA) • (408) 995-5430

Fax: (408) 275-8415 • Telex: 171-110

Copyright 1985 JDR Microdevices
I'm writing to thank you again for the outstanding service of people with whom you handled our telephone order today. The high level of service you rendered in our order was not unexpectedly found, as you have always been a preferred supplier.

...It is gratifying to find you as a supplier who stocks electronic components that we often find difficult to obtain...we will surely look on you as a preferred supplier.

*Copyright 1965, JR Microelectronics*
### Component Carries

- **PC SOLDER OX: 6.19 (DIP HEADERS)**
- **ICC**

### Description

- **Hood:**
  - IDEC
  - LED's
  - Illuminated

### Prices

- **$17.95**
- **$3.25**
- **$6.95**
- **$9.95**
- **$14.95**

### Contact Information

- **JDR Microdevices**
  - 1224 S. Bascom Avenue, San Jose, CA 95128
  - Phone: 800-538-5000 • 800-662-6279 (CA) • (408) 995-5430
  - Fax: (408) 275-8415 • Telex 171-110

### Capacitors

- **Value:**
  - $1.00
  - $1.25

### Electrolytic

- **Value:**
  - $1.00
  - $1.25
  - $1.50
  - $1.75

### Resistors

- **Value:**
  - $1.00
  - $1.25
  - $1.50
  - $1.75

### Diodes

- **Value:**
  - $1.00
  - $1.25
  - $1.50
  - $1.75

### Solder Cables

- **Value:**
  - $1.00
  - $1.25
  - $1.50
  - $1.75

### LED Displays

- **LED**
  - **$0.49**
  - **$0.98**

### Textolene Zero Insertion Force (TIF)

- **Available in:**
  - **40,000 VA**
  - **450 VA**
  - **500 VA**

### Contact Information

- **JDR Microdevices**
  - 1224 S. Bascom Avenue, San Jose, CA 95128
  - Phone: 800-538-5000 • 800-662-6279 (CA) • (408) 995-5430
  - Fax: (408) 275-8415 • Telex 171-110

### Copyright

© 1985 JDR Microdevices

---

### Order Information

- **Inquiry 214**
- **Shipping Information**
  - Domestic: $5.95
  - International: $10.95
- **Return Policy**
  - 10% restocking fee
  - No returns on chips, capacitors, or resistors.
FOR APPLE COMPUTERS

**RP525**
$79.95
- Low cost!
- Duplicate or burn any standard 27xx series EPROM
- Easy to use menu-driven software included
- Menu selection for 2716, 2732, 2732A, 2764 & 27128
- High speed write algorithm
- LED indicators for activity
- No external power supply required

**TEAC FD65B**
$129.95
- Disk drives for IBM
- TANDON TM100-2
- $159.95
- MPI Model B52
- $109.95
- IBM Accessories
  - MAXIMIZER Sigma Multifunction Card $259.95
  - HAYES SMARTMODEM 1200B for IBM
  - PRINTER CABLE parallel 6" shielded cable
  - KRAFT JOYSTICK $39.95

**DISKETTE FILE**
$8.95
- If purchased with 50 diskettes or more
$9.95 if purchased alone
- Holds 70 5¼ diskettes, with room to spare

**IBM ACCESSORIES**
- DISK CONTROLLER CARD
- VIEWSWITCH $49.95
- VIEWSWITCH 80 $129.95
- THUNDERCLOCK
- POWER SUPPLY $49.95

**16K RAM CARD**
$39.95
- Bare PC card and instructions $9.95
- 2 year warranty
- Expand your 48K APPLE to 64K
- Use in place of APPLE language card

**DISK DRIVES FOR APPLE COMPUTERS**

**BAL-525**
$139.95
- ½ height-ALPS mechanism
- 100% APPLE compatible
- Full 1 year warranty

**BAL-500**
$169.95
- TEAC mechanism-direct drive
- 100% compatible-35 track
- 40 track when used with optional controller

**NASHUA DISKETTES**
- 5¼" SOFT SECTOR DS/DD WITH HUB RINGS
- BULK PACKAGED IN FACTORY SEALED BAGS
- 91, INCLUDES DISKETTE SLEEVES AND WRITE PROTECT TABS
- Ideal for schools, clubs, and users groups
- This is a special purchase, SO Quantities are limited
- There is a 5 year warranty
- $1.39 ea.
- $1.49 ea.
- $1.59 ea.

**IBM COMPATIBLE POWER SUPPLIES**

**130 WATT**
$159.95
- XT compatible
- +5 @ 15A, -12 @ 4.2A
- +5 @ 5A, -12 @ 2A
- Upgrade your PC, powers hard disk
- 3 years warranty
- Switch on side (fits IBM case)

**100 WATT**
$99.95
- Switch on rear
- For use in other IBM type machines
- Available in 100W
- One year warranty
- 90 day warranty

**VIEWMAX-80**
$159.95
**VIEWMAX-80c**
$129.95
**GRAPHMAX**
$129.95
**THUNDERCLOCK**
$129.95
**KRAFT JOYSTICK**
$39.95
**POWER SUPPLY**
$49.95

**IBM ACCESSORIES**
- DISK CONTROLLER CARD
- VIEWSWITCH $49.95
- VIEWSWITCH 80 $129.95
- THUNDERCLOCK
- POWER SUPPLY $49.95

**NASHUA DISKETTES**
- 5¼" SOFT SECTOR DS/DD WITH HUB RINGS
- BULK PACKAGED IN FACTORY SEALED BAGS
- 91, INCLUDES DISKETTE SLEEVES AND WRITE PROTECT TABS
- Ideal for schools, clubs, and users groups
- This is a special purchase, SO Quantities are limited
- There is a 5 year warranty
- $1.39 ea.
- $1.49 ea.
- $1.59 ea.

**IBM COMPATIBLE POWER SUPPLIES**

**130 WATT**
$159.95
- XT compatible
- +5 @ 15A, -12 @ 4.2A
- +5 @ 5A, -12 @ 2A
- Upgrade your PC, powers hard disk
- 3 years warranty
- Switch on side (fits IBM case)

**100 WATT**
$99.95
- Switch on rear
- For use in other IBM type machines
- Available in 100W
- One year warranty
- 90 day warranty

**VIEWMAX-80**
$159.95
**VIEWMAX-80c**
$129.95
**GRAPHMAX**
$129.95
**THUNDERCLOCK**
$129.95
**KRAFT JOYSTICK**
$39.95
**POWER SUPPLY**
$49.95

**JDR Microdevices**
1224 S. Bascom Avenue, San Jose, CA 95128
800-538-5000 • 800-662-6279 (CA) • (408) 995-5430
FAX (408) 275-8415 • Telex 171-110

Copyright 1985 JDR Microdevices
WANTED: Children’s Service Society of Wisconsin seeks tax-deductible donation of Apple lie or II+ for information management. Carole Monterminay, Children’s Service Society, 2059 Atwood Ave., Madison, WI 53704, (608) 249-8900.


WANTED: Donations of any personal computer, peripherals, and supplies to advance work of stuttering help organization. Tax-deductible will pay shipping. Speak Easy Int’l Foundation, 233 Concord Dr., Paramus, NJ 07652. (201) 262-0895.


AVAILABLE: Free to all MS-DOS PC-DOS, and Z/2OS users: disk containing 5-page book about techniques for structured programming, plus demo programs. Send disk, mailer, and stamps to Dennis Baer, 25 Miller Rd., Farmingdale, NY 11735, (516) 678-8397.

WANTED: Nonprofit antabuse group needs computer equipment and peripherals for national office. TWIP, 100 South Orchard Dr., Park Forest, IL 60466, (312) 747-0348.

NEEDED: Information about Systems Engineering Enterprise (SEE) Corp., their users, technicians, or employees. My SEE 6684 System lost IPL PROM in information. Last address was in Rockville, MD; telephone disconnected. Miguel Martinez, Puerto Rico PO Box 418, Leon, Granadillo, Mexico 03700.

IMPLEMENTATION: Implementation of a computer-driven database on a one-time basis. Alf requests for donated computer hardware, operating system software, and training. Contact with HP 85/86/87 users for club.


FOR SALE: Radio Shack Monitor 1600, 16K RAM, 80-column by 30-line display, 20-megabyte disk. $699. No trade, but will negotiate. Steve Cartwright, 2545 N. Prospera Dr., Fort Walton Beach, FL 32545.

FOR SALE: Sony TC-820J, 18K60k, 50-channels tape recorder and information on start-up. Bruce Turner, Systems and Controls Inc., 64 K dynamic RAM board. (818) 234-5010.

FOR SALE: John D8002 computer with 40-megabyte hard disk, 512K main memory, and peripherals. Wallace Landholm, 520 Superior Avenue, #303, New York, NY 10013.

FOR TRADE: IBM 5150 with 20-megabyte hard disk, all manuals: S200 or best offer. Isaac David, 998-1259.


FOR TRADE: I need information on starting a BBS. Any helps appreciated. Interested in sharing music, literature, and electronic mail. Wanda B. Haddox, 214 7 Linton Blvd., Youngstown, OH 44501.

NEEDED: Analog voltmeters to work with Tektronix 2270 and other oscilloscopes. William C. Youngberg, 1240 Main St., Barre, VT 05641.

NEEDED: Assembled S-100 motherboard, 64K dynamic RAM on board, 128K EPROMs. Andrew N. Warner, 1728 N. Leota Lane, Canoga Park, CA 91304.

NEEDED: IBM 5150 with 20-megabyte hard disk. John E. Galler, 8580 W. 140th St., Oak Lawn, IL 60453.

NEEDED: IBM 5150 with 20-megabyte hard disk. John E. Galler, 8580 W. 140th St., Oak Lawn, IL 60453.

NEEDED: Donations of any personal computer. The Pro-Life Brotherhood, 350 South Orchard Dr., Lake Forest, IL 60045.

NEEDED: Donation of any personal computer. The Pro-Life Brotherhood, 350 South Orchard Dr., Lake Forest, IL 60045.

NEEDED: Computing power for use on a college project to write a compiler for a language. Charles E. Brown, 12426 New Haven Rd., Kingwood, TX 77339.

NEEDED: Charitable nonprofit organization seeks donations of any personal computer, peripherals, and supplies to advance work of stuttering help organization. Tax-deductible will pay shipping. Speak Easy Int’l Foundation, 233 Concord Dr., Paramus, NJ 07652. (201) 262-0895.


FOR SALE: Donations of any personal computer. The Pro-Life Brotherhood, 350 South Orchard Dr., Lake Forest, IL 60045.

FOR TRADE: Assorted S-100 boards: SD Systems Express 150 64K dynamic RAM board, Model DME-6400, Rev. B. Hall Arthurs, Bloomfield. Street, Prince Edward Island C0B 1E0, Canada. (902) 828-7-4884.


WANTED: I need information on starting a BBS. Any helps appreciated. Interested in sharing music, literature, and electronic mail. Wanda B. Haddox, 214 7 Linton Blvd., Youngstown, OH 44501.

WANTED: I need information on starting a BBS. Any helps appreciated. Interested in sharing music, literature, and electronic mail. Wanda B. Haddox, 214 7 Linton Blvd., Youngstown, OH 44501.

WANTED: Symphony computer with 40-megabyte hard disk, 512K main memory, and peripherals. Wallace Landholm, 520 Superior Avenue, #303, New York, NY 10013.

WANTED: Assorted S-100 boards: SD Systems Express 150 64K dynamic RAM board, Model DME-6400, Rev. B. Hall Arthurs, Bloomfield. Street, Prince Edward Island C0B 1E0, Canada. (902) 828-7-4884.


WANTED: Symphony computer with 40-megabyte hard disk, 512K main memory, and peripherals. Wallace Landholm, 520 Superior Avenue, #303, New York, NY 10013.
## BYTE's ONGOING MONITOR Box

<table>
<thead>
<tr>
<th>ARTICLE #</th>
<th>PAGE</th>
<th>ARTICLE</th>
<th>AUTHOR(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>96</td>
<td>What's Not</td>
<td>BYTE staff</td>
</tr>
<tr>
<td>2</td>
<td>102</td>
<td>Clariac's Circuit Cellar: Build the Home Run Control System. Part 1: Introduction</td>
<td>Claria</td>
</tr>
<tr>
<td>3</td>
<td>113</td>
<td>Coprocessing in Modula-2</td>
<td>Wilson</td>
</tr>
<tr>
<td>4</td>
<td>120</td>
<td>A Million-Point Graphics Tablet</td>
<td>Hawley</td>
</tr>
<tr>
<td>5</td>
<td>126</td>
<td>Communication with Alien Intelligence</td>
<td>Minsky</td>
</tr>
<tr>
<td>6</td>
<td>143</td>
<td>The Quest to Understand Thinking</td>
<td>Schank</td>
</tr>
<tr>
<td>7</td>
<td>159</td>
<td>The LISP Tutor</td>
<td>Anderson, Hunter</td>
</tr>
<tr>
<td>8</td>
<td>179</td>
<td>PROUST</td>
<td>Johnson, Soloway</td>
</tr>
<tr>
<td>9</td>
<td>193</td>
<td>Architectures for AI</td>
<td>Deering</td>
</tr>
<tr>
<td>10</td>
<td>209</td>
<td>The LISP Revolution</td>
<td>Winston</td>
</tr>
<tr>
<td>11</td>
<td>223</td>
<td>The Challenge of Open Systems</td>
<td>Hewitt</td>
</tr>
<tr>
<td>12</td>
<td>245</td>
<td>Vision</td>
<td>Ballard</td>
</tr>
<tr>
<td>13</td>
<td>265</td>
<td>Learning in Parallel Networks</td>
<td>Hinton</td>
</tr>
<tr>
<td>14</td>
<td>277</td>
<td>Connections</td>
<td>Feldman</td>
</tr>
<tr>
<td>15</td>
<td>286</td>
<td>Reverse Engineering the Brain</td>
<td>Stevens</td>
</tr>
<tr>
<td>16</td>
<td>303</td>
<td>The Technology of Expert Systems</td>
<td>Michaelson, Michie, Boulanger</td>
</tr>
<tr>
<td>17</td>
<td>315</td>
<td>Inside an Expert System</td>
<td>Thompson, Thompson</td>
</tr>
<tr>
<td>18</td>
<td>338</td>
<td>The ITT XTRA</td>
<td>Unger</td>
</tr>
<tr>
<td>19</td>
<td>345</td>
<td>Insight − A Knowledge System</td>
<td>D'Ambrosio</td>
</tr>
<tr>
<td>20</td>
<td>355</td>
<td>Computing at Chaos Manor</td>
<td>Steinberg, Pournelle</td>
</tr>
<tr>
<td>21</td>
<td>379</td>
<td>BYTE West Coast: Lasers</td>
<td>Steinberg, Pournelle</td>
</tr>
<tr>
<td>22</td>
<td>389</td>
<td>BYTE U.K.: New Knowledge Systems</td>
<td>Robinson</td>
</tr>
<tr>
<td>23</td>
<td>401</td>
<td>BYTE Japan: The Fifth Generation in Japan</td>
<td>Raine</td>
</tr>
</tbody>
</table>

### BYTE ADVERTISING SALES STAFF

J. Peter HOUSTS, Advertising Sales Manager, 70 Main Street, Peterborough, NH 03458, tel. (603) 924-9281

**NEW ENGLAND**

ME, NH, VT, MA, RI

Paul MCPherson Jr (617) 262-1160

McGraw-Hill Publications

575 Boylston Street

Boston, MA 02116

**ATLANTIC**

NY, N.Y., CT, NJ, NORTHERN CT.

Dick McGurk (212) 512-5588

MCKaugh-Hill Publications

1221 Avenue of the Americas—39th Floor

New York, NY 10020

**EAST**

PA (EAST), NJ, SOUTH, MD, VA, W.V.A, DE, D.C

Daniel Ferro (215) 496-3833

McGraw-Hill Publications

Three Parkway

Philadelphia, PA 19102

**SOUTHEAST**

NC, SC, GA, FL, AL, TN

Maggie M. Downe (404) 252-0626

McGraw-Hill Publications

4700 Ashford-Dunwoody Road—Suite 420

Atlanta, GA 30319

**MIDWEST**

IL, MO, KS, IA, ND, SD, MN, WI, IN

Bob Demond (312) 791-3740

McGraw-Hill Publications

Blair Building

645 North Michigan Ave.

Chicago, IL 60611

**GREAT LAKES, OHIO REGION**

MI, OH, PA (ALLEGHENY)

Kissebeh (313) 352-9760

McGraw-Hill Publications

4000 Town Center—Suite 770

Southfield, MI 48073

**SOUTHWEST**

UT, CO, WY, NM, LAS VEGAS

Jack Anderson (714) 557-6927

McGraw-Hill Publications

3001 Red Hill Ave

Building #1—Suite 222

Costa Mesa, CA 92620

Karen Niles (213) 480-5249, 487-1160

McGraw-Hill Publications

3335 Wilshire Boulevard #407

Los Angeles, CA 90010

**SOUTHWEST, ROCKY MOUNTAIN**

UT, CO, WY, AZ, NM, LAS VEGAS

Peter McPherson Jr (303) 791-3740

McGraw-Hill Publications

1500 Elwell Center—Suite 225

Palo Alto, CA 94303

**SOUTH PACIFIC**

SOUTHEAST, ROCKY MOUNTAIN

H. W. OR, ID, MT, NORTHERN CA.

NY, except LAS VEGAS, W. CANADA

David Ierm (415) 462-6600

McGraw-Hill Publications

475 Battery Street

San Francisco, CA 94111

Bill McGurk (415) 964-0624

McGraw-Hill Publications

1000 Eleventh Street—Suite 225

Palo Alto, CA 94303

**WEST COAST SURPLUS**

SAN FRANCISCO

Tom Harvey (415) 924-6771

McGraw-Hill Publications

3463 State Street—Suite 236

Santa Barbara, CA 93105

**NORTH PACIFIC**

H. W. OR, ID, MT, NORTHERN CA.

NY, except LAS VEGAS, W. CANADA

David Ierm (415) 462-6600

McGraw-Hill Publications

475 Battery Street

San Francisco, CA 94111

**POST CARD MALLINGS**

National

Bradley Brown (603) 924-6166

BYTE Publications

70 Main Street

Peterborough, NH 03458

Seavex Ltd.

103 Wilson House

1-27 Wyndham St.

Central, Hong Kong

Tel: 5-601049

Telex: DE200 SE1X

Hiro Morita


Overseas Corp.

Room 1528

Kasumigaseki Building

3-2-5 Kasumigaseki

Chiyoda-ku

Tokyo 100, Japan

3-534-9811

---

### LINEAR RELIABILITY

TO GET FURTHER information on the products advertised in BYTE, either pick up your touch-tone telephone and use TIPS if you are a subscriber, or fill out the reader service card. Either way full instructions are provided following this reader service index which is provided as an additional service by the publisher, who assumes no liability for errors or omissions. *Correspond directly with company.
<table>
<thead>
<tr>
<th>Inquiry No.</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>297</td>
<td>476</td>
</tr>
<tr>
<td>298</td>
<td>466</td>
</tr>
<tr>
<td>299</td>
<td>476</td>
</tr>
<tr>
<td>300</td>
<td>463</td>
</tr>
<tr>
<td>301</td>
<td>297</td>
</tr>
<tr>
<td>302</td>
<td>137</td>
</tr>
<tr>
<td>303</td>
<td>349</td>
</tr>
<tr>
<td>304</td>
<td>48, 89</td>
</tr>
<tr>
<td>305</td>
<td>233</td>
</tr>
<tr>
<td>306</td>
<td>233</td>
</tr>
<tr>
<td>307</td>
<td>476</td>
</tr>
<tr>
<td>308</td>
<td>459</td>
</tr>
<tr>
<td>309</td>
<td>460</td>
</tr>
<tr>
<td>310</td>
<td>457</td>
</tr>
<tr>
<td>311</td>
<td>461</td>
</tr>
<tr>
<td>312</td>
<td>349</td>
</tr>
<tr>
<td>313</td>
<td>391</td>
</tr>
<tr>
<td>314</td>
<td>347</td>
</tr>
<tr>
<td>315</td>
<td>17</td>
</tr>
<tr>
<td>316</td>
<td>226</td>
</tr>
<tr>
<td>317</td>
<td>31</td>
</tr>
<tr>
<td>318</td>
<td>477</td>
</tr>
<tr>
<td>319</td>
<td>476</td>
</tr>
<tr>
<td>320</td>
<td>461</td>
</tr>
<tr>
<td>321</td>
<td>51</td>
</tr>
<tr>
<td>322</td>
<td>464</td>
</tr>
<tr>
<td>323</td>
<td>468</td>
</tr>
<tr>
<td>324</td>
<td>462</td>
</tr>
<tr>
<td>325</td>
<td>465</td>
</tr>
<tr>
<td>326</td>
<td>467</td>
</tr>
<tr>
<td>327</td>
<td>463</td>
</tr>
<tr>
<td>328</td>
<td>462</td>
</tr>
<tr>
<td>329</td>
<td>461</td>
</tr>
<tr>
<td>330</td>
<td>468</td>
</tr>
<tr>
<td>331</td>
<td>464</td>
</tr>
<tr>
<td>332</td>
<td>231</td>
</tr>
<tr>
<td>333</td>
<td>462</td>
</tr>
<tr>
<td>334</td>
<td>354</td>
</tr>
<tr>
<td>335</td>
<td>391</td>
</tr>
<tr>
<td>336</td>
<td>349</td>
</tr>
<tr>
<td>337</td>
<td>347</td>
</tr>
<tr>
<td>338</td>
<td>347</td>
</tr>
<tr>
<td>339</td>
<td>349</td>
</tr>
<tr>
<td>340</td>
<td>346</td>
</tr>
<tr>
<td>341</td>
<td>341</td>
</tr>
<tr>
<td>342</td>
<td>342</td>
</tr>
<tr>
<td>343</td>
<td>343</td>
</tr>
<tr>
<td>344</td>
<td>344</td>
</tr>
<tr>
<td>345</td>
<td>345</td>
</tr>
<tr>
<td>346</td>
<td>346</td>
</tr>
<tr>
<td>347</td>
<td>347</td>
</tr>
<tr>
<td>348</td>
<td>348</td>
</tr>
<tr>
<td>349</td>
<td>349</td>
</tr>
<tr>
<td>350</td>
<td>350</td>
</tr>
<tr>
<td>351</td>
<td>351</td>
</tr>
<tr>
<td>352</td>
<td>352</td>
</tr>
<tr>
<td>353</td>
<td>353</td>
</tr>
<tr>
<td>354</td>
<td>354</td>
</tr>
<tr>
<td>355</td>
<td>355</td>
</tr>
<tr>
<td>356</td>
<td>356</td>
</tr>
<tr>
<td>357</td>
<td>357</td>
</tr>
<tr>
<td>358</td>
<td>358</td>
</tr>
<tr>
<td>359</td>
<td>359</td>
</tr>
<tr>
<td>360</td>
<td>360</td>
</tr>
<tr>
<td>361</td>
<td>361</td>
</tr>
<tr>
<td>362</td>
<td>362</td>
</tr>
<tr>
<td>363</td>
<td>363</td>
</tr>
<tr>
<td>364</td>
<td>364</td>
</tr>
<tr>
<td>365</td>
<td>365</td>
</tr>
<tr>
<td>366</td>
<td>366</td>
</tr>
<tr>
<td>367</td>
<td>367</td>
</tr>
<tr>
<td>368</td>
<td>368</td>
</tr>
<tr>
<td>369</td>
<td>369</td>
</tr>
<tr>
<td>370</td>
<td>370</td>
</tr>
<tr>
<td>371</td>
<td>371</td>
</tr>
<tr>
<td>372</td>
<td>372</td>
</tr>
<tr>
<td>373</td>
<td>373</td>
</tr>
<tr>
<td>374</td>
<td>374</td>
</tr>
<tr>
<td>375</td>
<td>375</td>
</tr>
<tr>
<td>376</td>
<td>376</td>
</tr>
<tr>
<td>377</td>
<td>377</td>
</tr>
<tr>
<td>378</td>
<td>378</td>
</tr>
<tr>
<td>379</td>
<td>379</td>
</tr>
<tr>
<td>380</td>
<td>380</td>
</tr>
<tr>
<td>381</td>
<td>381</td>
</tr>
<tr>
<td>382</td>
<td>382</td>
</tr>
<tr>
<td>383</td>
<td>383</td>
</tr>
<tr>
<td>384</td>
<td>384</td>
</tr>
<tr>
<td>385</td>
<td>385</td>
</tr>
<tr>
<td>386</td>
<td>386</td>
</tr>
</tbody>
</table>

**TIPS**

**SUBSCRIBERS ONLY!**

Use BYTE's Telephone Inquiry Processing System

Using TIPS can bring product information as much as 10 days earlier.

**SEND FOR YOUR SUBSCRIBER I.D. CARD**

1) If you are a new subscriber or have lost your I.D. card, circle #1 on the Reader Service Card. We will immediately send your personal TIPS subscriber card.

**GET PREPARED**

2) Write your Subscriber Number, as printed on your Subscriber I.D. Card, in boxes in Step 5 below.

(Do not add 0's to fill in blank boxes)

3) Write numbers for information desired in boxes in Step 7b below.

(Do not add 0's to fill in blank boxes)

**CALL TIPS**

4) Now, on a Touch Tone telephone dial: (413) 442-2668 and wait for voice commands.

**ENTER YOUR SUBSCRIBER AND ISSUE NUMBERS**

5) When TIPS says "Enter Subscriber Number" (Enter by pushing the numbers and symbols [# or * enclosed in the boxes] on telephone pad ignoring blank boxes)

Enter # # # # # # # # # # #

6) When TIPS says "Enter magazine code & issue code" Enter # # # # # # # # # # #

**ENTER YOUR INQUIRIES**

7a) When TIPS says "Enter (next) Inquiry Number" Enter one inquiry selection from below (ignore blank boxes)

b) Repeat 7a as needed (maximum 17 inquiry numbers)

<table>
<thead>
<tr>
<th>Inquiry No.</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>387</td>
<td>341</td>
</tr>
<tr>
<td>388</td>
<td>342</td>
</tr>
<tr>
<td>389</td>
<td>343</td>
</tr>
<tr>
<td>390</td>
<td>344</td>
</tr>
<tr>
<td>391</td>
<td>345</td>
</tr>
<tr>
<td>392</td>
<td>346</td>
</tr>
<tr>
<td>393</td>
<td>347</td>
</tr>
<tr>
<td>394</td>
<td>348</td>
</tr>
<tr>
<td>395</td>
<td>349</td>
</tr>
<tr>
<td>396</td>
<td>350</td>
</tr>
<tr>
<td>397</td>
<td>351</td>
</tr>
<tr>
<td>398</td>
<td>352</td>
</tr>
<tr>
<td>399</td>
<td>353</td>
</tr>
<tr>
<td>400</td>
<td>354</td>
</tr>
<tr>
<td>401</td>
<td>355</td>
</tr>
<tr>
<td>402</td>
<td>356</td>
</tr>
<tr>
<td>403</td>
<td>357</td>
</tr>
<tr>
<td>404</td>
<td>358</td>
</tr>
<tr>
<td>405</td>
<td>359</td>
</tr>
<tr>
<td>406</td>
<td>360</td>
</tr>
<tr>
<td>407</td>
<td>361</td>
</tr>
<tr>
<td>408</td>
<td>362</td>
</tr>
</tbody>
</table>

8) End session by entering # # # # # # # # # # # # # # # # #

9) Hang up after hearing final message

If you are a subscriber and need assistance, call (603) 924-6281.

Available 24 Hours. 7 Days a Week

---

If you are not a subscriber fill out the subscription card found in this issue or, call BYTE Circulation 800-258-5485.
**BYTE READER SERVICE**

Fill out this coupon carefully. PLEASE PRINT. Requests cannot be honored unless the zip code is included. This card is valid for 6 months from cover date.

<table>
<thead>
<tr>
<th>Name</th>
<th>(Title)</th>
<th>(Company)</th>
<th>Address</th>
<th>Telephone</th>
<th>City</th>
<th>State</th>
<th>Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>(Title)</td>
<td>(Company)</td>
<td>Address</td>
<td>Telephone</td>
<td>City</td>
<td>State</td>
<td>Zip</td>
</tr>
</tbody>
</table>

Fill out this coupon carefully. PLEASE PRINT. Requests cannot be honored unless the zip code is included. This card is valid for 6 months from cover date.

<table>
<thead>
<tr>
<th>Name</th>
<th>(Title)</th>
<th>(Company)</th>
<th>Address</th>
<th>Telephone</th>
<th>City</th>
<th>State</th>
<th>Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>(Title)</td>
<td>(Company)</td>
<td>Address</td>
<td>Telephone</td>
<td>City</td>
<td>State</td>
<td>Zip</td>
</tr>
</tbody>
</table>

To get further information on the products advertised in BYTE, fill out the reader service card with your name and address. Then circle the appropriate numbers for the advertisers you select from the list. Add a first-class stamp to the card, then drop it in the mail. Not only do you gain information, but our advertisers are encouraged to use the marketplace provided by BYTE. This helps us bring you a bigger BYTE. The index is provided as an additional service by the publisher, who assumes no liability for errors or omissions.
SUBSCRIPTIONS

For a subscription to BYTE, please complete this card.

Name ____________________________
Address __________________________
City ________________________________
State ______ Zip ______ Country ______
Card No. _____________________________
Expiration date _______________________
Four digits above name—Master Charge only, ____________________________
Signature __________________________ Date ______________

Please allow eight weeks for processing. Thank you.

Note our special offer! Send cash with your order and receive 13 issues for the price of 12 for each year you subscribe. (North America only, please.)

Don't Miss An Issue!

Have BYTE delivered to your door.

Each month BYTE will bring you the latest in microcomputer technology. DISCOVER and IMPLEMENT new ideas. Don't miss the original information presented in the pages of BYTE.

With BYTE you'll always be among the first to know about the important breakthroughs, worthwhile new equipment, and innovative projects in the world of computing.

CHALLENGE US to deliver the very best idea in microcomputers and advanced technology to you. Return the attached card today!

Subscribe to BYTE—the world’s leading computer magazine.
The reason most people buy a dot matrix printer is for versatility. And that's exactly why you should buy an NEC Pinwriter™ printer. Pinwriters are the final word in versatility. The Pinwriter lets you do more than any other dot matrix printer. Three different speeds cover all your needs—300, 900 or 1800 words per minute. Pinwriter printers also let you create unbelievably clear graphics. In black and white. Or in seven crisp colors. But that's not all. Every Pinwriter gives you a choice of 8 different type styles. Plus, you can choose from a wide range of easy-to-use NEC forms handlers. Pinwriter printer. Not so. Pinwriter prices are also easy to handle. For more information, call 1-800-343-4418 (in MA call 617-264-8635). And find out why more and more PC owners are saying, "NEC and me."
TANDY... Clearly Superior™

Just look what the experts said about the new Tandy 1000.

On DeskMate™ software:
"It's hard to place a cash value on DeskMate, because it is included in the system price. However, it is fair to say that it takes the place of literally hundreds of dollars of separately purchased software. In fact, we believe that many people will make DeskMate their most-used program."

—Popular Computing

"It is truly integrated and easy to use, and it truly allows you to get your Tandy 1000 up and productive the moment you set it up. It is the crowning achievement of an extremely impressive system."

—Creative Computing

On value:
"Separately, either the Tandy 1000 or DeskMate would be worthy of serious consideration. Combined, they make a powerful, cost-effective package. Moreover, the Tandy 1000 offers substantial price and feature benefits over its biggest competitors—the IBM PC and PCjr. Clearly, the Tandy 1000 wins this battle in the computer marketing war."

—Popular Computing

On price:
"... the Tandy 1000's price can't be beat ... businesses with several IBMs already installed can add units for about two-thirds the cost of a PC."

—80 Micro

See the Tandy 1000 today. It's the best $2000 computer you can buy...for only $1199*.

Available at over 1200 Radio Shack Computer Centers and at participating Radio Shack stores and dealers.

TANDY 1000 with DeskMate

*Price does not include monitor. Tandy1000 prices apply at Radio Shack Computer Centers and at participating Radio Shack stores and dealers. Reprinted with permission from December, 1984, Creative Computing, pp. 44-45; December, 1984, 80 Micro, pp. 44-46, 48-51; and Dennis Allen and Frederic S. Lange, pp. 64-68, 70; ©Tandy Corporation. Popular Computing. IBM® registered TM International Business Machines Corp.