A new small computer that won't limit you tomorrow

New Cromemco System One shown with our high-capability terminal and printer.

Expandability
Here's a low-priced computer that won't run out of memory capacity or expandability halfway through your project.

Typically, computer usage tends to grow, requiring more capability, more memory, more storage. Without a lot of capability and expandability, your computer can be obsolete from the start.

The new System One is a real building-block machine. It has capability and expandability by the carload.

Look at these features:

- Z80-A processor
- 64K of RAM
- 780K of disk storage
- CRT and printer interfaces
- Eight S-100 card slots, allowing expansion with
 - color graphics
 - additional memory
 - additional interfaces for telecommunications, data acquisition, etc.
- Small size

GENEROUS DISK STORAGE

The 780K of disk storage in the System One Model CS-1 is much greater than what is typically available in small computers. But here, too, you have a choice since a second version, Model CS-1H, has a 5" Winchester drive that gives you 5 megabytes of disk storage.

MULTI-USER, MULTI-TASKING CAPABILITY

Believe it or not, this new computer even offers multi-user capability when used with our advanced CROMIX® operating system option. Not only does this outstanding O/S support multiple users on this computer but does so with powerful features like multiple directories, file protection and record level lock. CROMIX lets you run multiple jobs as well.

In addition to our highly-acclaimed CROMIX, there is our CDDOS®. This is an enhanced CP/M® type system designed for single-user applications. CP/M and a wealth of CP/M-compatible software are also available for the new System One through third-party vendors.

COLOR GRAPHICS/WORD PROCESSING

This small computer even gives you the option of outstanding high-resolution color graphics with our Model SDI interface and two-port RAM cards.

Then there's our tremendously wide range of Cromemco software including packages for word processing, business, and much more, all usable with the new System One.

ANTI-OBSOLESCENCE/LOW-PRICED

As you can see, the new One offers you a lot of performance. It's obviously designed with anti-obsolescence in mind.

What's more, it's priced at only $3,995. That's considerably less than many machines with much less capability. And it's not that much more than many machines that have little or nothing in the way of expandability.

Physically, the One is small — 7" high. And it's all-metal in construction. It's only 14½" wide, ideal for desk top use. A rack mount option is also available.

CONTACT YOUR REP NOW

Get all the details on this important building-block computer. Get in touch with your Cromemco rep now. He'll show you how the new System One can grow with your task.

*CROMIX and CDDOS are trademarks of Cromemco Inc.
1CP/M is a trademark of Digital Research
Get the professional color display that has
BASIC/FORTRAN simplicity

LOW-PRICED, TOO
Here's a color display that has everything: professional-level resolution, enormous color range, easy software, NTSC conformance, and low price.

Basically, this new Cromemco Model SDI* is a two-board interface that plugs into any Cromemco computer.

The SDI then maps computer display memory content onto a convenient color monitor to give high-quality, high-resolution displays (756 H x 482 V pixels).

When we say the SDI results in a high-quality professional display, we mean you can't get higher resolution than this system offers in an NTSC-conforming display.

The resolution surpasses that of a color TV picture.

BASIC/FORTRAN programming
Besides its high resolution and low price, the new SDI lets you control with optional Cromemco software packages that use simple BASIC- and FORTRAN-like commands.

Pick any of 16 colors (from a 4096-color palette) with instructions like DEFCLR (c, R, G, B). Or obtain a circle of specified size, location, and color with XCIIRC (x, y, r, c).

*U.S. Pat. No. 4121283

HIGH RESOLUTION

The SDI's high resolution gives a professional-quality display that strictly meets NTSC requirements. You get 756 pixels on every visible line of the NTSC standard display of 482 image lines. Vertical line spacing is 1 pixel.

To achieve the high-quality display, a separate output signal is produced for each of the three component colors (red, green, blue). This yields a sharper image than is possible using an NTSC-composite video signal and color TV set. Full image quality is readily realized with our high-quality RGB Monitor or any conventional red/green/blue monitor common in TV work.

DISPLAY MEMORY

Along with the SDI we also offer an optional fast and novel two-port memory that gives independent high-speed access to the computer memory. The two-port memory stores one full display, permitting fast computer operation even during display.

CONTACT YOUR REP NOW

The Model SDI has been used in scientific work, engineering, business, TV, color graphics, and other areas. It's a good example of how Cromemco keeps computers in the field up to date, since it turns any Cromemco computer into an up-to-date color display computer.

The SDI has still more features that you should be informed about. So contact your Cromemco representative now and see all that the SDI will do for you.

Cromemco
Incorporated
280 BERNARDO AVE., MOUNTAIN VIEW, CA 94040 • (415) 964-7400
Tomorrow's computers today

Circle 109 on inquiry card.
Features

26 The IBM Personal Computer: First Impressions by Phil Lemonios The computer giant embraces software compatibility and support for independent peripheral manufacturers.

36 Build an Intelligent EPROM Programmer by Steve Clarucci With a Z8-BASIC Microcomputer, you can easily put together a versatile programmer for 2716 EPROMs.

50 Ultra-Low-Cost Network for Personal Computers by Ken Clements and Dave Daugherty The age of communication for personal computers has arrived; don't be left behind.

70 The Atari Tutorial, Part 2: Graphics Instruction by Chris Clawford Graphics instruction lets you quickly change the colors used in the video display and redefine the Atari character set.

92 Local Area Networks, Possibilities for Personal Computers by Dr. Harry J. Sai The "one person, one computer" concept is improved with communications.

114 Prepare Your Program for Publication by C. A. Johnson A check of professional touches that can make software sell.

126 Software Protection in the United Kingdom by Martin Hayman A London conference confronts the problem of software piracy.

140 Network Tools, Ideas for Intelligent Network Software by Peter B. Reintjes A set of general modules provides a basis for networking.

176 A Simple Implementation of Multitasking by Wendell Brown/A little SLEEP can go a long way.

195 Tree Searching, Part 2: Heuristic Techniques by Gregg Williams/A novelty algorithms allow you to find an optimal solution without an exhaustive search of the state-space tree.

214 Drawing with UCSD Pascal and the Helios Plotter by Dr. James Stork One UCSD plotting routines that can be linked to any Pascal program.

250 Evaluate Your Home's Energy Efficiency. Conserve Energy with Your Computer by Kimball Beasley Use your computer to lower your heating bills.

264 Bridging the 10-Percent Gap by Paul T. Brady Software problems can hold back a small-business data-processing operation.

284 Graphics Fundamentals by Kathleen Bresnaham Sandifur A company logo is the vehicle for understanding windows and scaling.

400 Build a Versatile Keyboard Interface for the S-100 by David R. Whitehead A device that lets you communicate with your microcomputer.

407 PERT Organization by W. Douglas Mauer A mathematical method used by computer programmers to determine the relative importance of the tasks under their supervision.

413 Should the DO Loop Become an Assembly-Language Construct? by Glenn L. Williams/Innovative instructions can forecast the "software crisis."

430 Multiple Regression for the TRS-80 by Douglas William Madron/On converting the mathematics of linear regression into a general-purpose BASIC program.

448 Bits and Bytes in Pascal, and Other Binary Wonders by David Casseres/I Put UCSD Pascal through its paces to ease programming and have fun.

458 Apple Analog-to-Digital Conversion in 27 Microseconds by Michael A. Seeds/Build this high-speed, 10-bit analog-to-digital converter for your Apple for less than $100.

462 PS---A FORTH Like Threaded Language, Part I by Valo G. Motlaygo/PS allows assembly-language code and high-level code to be mixed.

Reviews

86 Atari's Telelink I by Glenn Flint

378 Integral Data's Paper Tiger 460 by Elakum Willner

383 The Mauro Proac Plotter by Mark Dahnke

385 The Radio Shack FORTRAN Package by Tim Danielluk

Nucleus

6 Editorial
10 Letters

122, 278, 334, 354, 467 System Notes: List Pager; Discover the Machine Beneath the Machine, A Z80 Monitor Program; A Closer Look at the TRS-80 Color Computer; Two Short Graphics Programs for the OSI C-1P; Recursive Procedures for the 6502 Microprocessor.

302 Software Received

304 Books Received

306 BYTELINES

316 Ask BYTE

324 Event Queue

332 Clubs and Newsletters

332, 375 BYTE's Bits

342 Book Reviews: Four Roads to Understanding Radio Shack's TRS-80

356, 376, 419 Programming Quicksie: Memory Manipulators, Eliminate Hex-a-Phobia, A Fast, Ancent Method for Multiplication, Apple Pascal Cross-Reference

366, 391, 394 Technical Forums: Use a Relative Subroutine Call for Reelatable Z80 Programs. The Variable-Duty-Cycle Algorithm: Dynamic Simulation in BASIC

372 Languages Forum: BASIC, Pascal, or Tiny-c? A Simple Benchmarking Comparison

471 What's New?

526 Unclassified Ads

527 Reader Service

528 BOMB, BOMB Results
In This Issue

Local-area networks are a means of sharing information and resources among many personal computers located within a relatively short distance of each other. As Robert Tinney's cover illustrates, each station in the network is linked physically to the others, but each also can operate independently. The local networks themselves need not operate in a void; gateways can link them with other networks thousands of miles away.

To expand on this month's theme, we present an assortment of articles, including "Local-Area Networks: Possibilities for Personal Computers," "Ultra-Low-Cost Network for Personal Computers," and "Network Tools—Ideas for Intelligent Network Software."

In addition, Steve Clarcia helps you "Build an Intelligent EPROM Programmer," and Martin Hayman discusses "Software Protection in the United Kingdom." We have "The Atari Tutorial, Part 2: Graphics Indirection," and C A Johnson advises on how to "Prepare Your Program for Publication." Of course, you can also enjoy our regular features and much more.

BYTE is published monthly by BYTE Publications Inc., 70 Main St., Peterborough, NH 03458, phone (603) 924-9281, a wholly-owned subsidiary of McGraw-Hill, Inc. Address subscriptions, change of address, USPS Form 3579, and fulfillment questions to BYTE Subscriptions, POB 590, Martinsville, NJ 08836.文化传媒 postage paid at Waseca, MN 56093 - USPS Publication No. 528990 (ISSN 0360-5288). Canadian second class registration number 9321. Subscriptions are $19 for one year, $34 for two years, and $49 for three years in the USA and its possessions. In Canada and Mexico, $21 for one year, $38 for two years, $55 for three years. $43 for one year air delivery to Europe. $55 for one year by air to all other areas. Single copy price is $2.50 in the USA and its possessions, $2.95 in Canada and Mexico. $4.00 in Europe, and $4.50 elsewhere. Foreign subscriptions and sales should be remitted in United States funds drawn on a US bank. Printed in United States of America.

Address all editorial correspondence to the editor at BYTE, POB 372, Hancock, NH 03449. Unsolicited manuscripts will be returned if accompanied by sufficient first class postage. Not responsible for lost manuscripts or photos. Opinions expressed by the authors are not necessarily those of BYTE. Entire contents copyright © 1981 by BYTE Publications Inc. All rights reserved. Where necessary, permission is granted by the copyright owner for libraries and others registered with the Copyright Clearance Center (CCC) to photocopy any article herein for the base fee of $1.00 per copy of the article or $25 cents per page. Payment should be sent directly to the CCC, 21 Congress St., Salem MA 01970. Copying done for other than personal or internal reference use without the permission of McGraw-Hill is prohibited. Requests for special permission or bulk orders should be addressed to the publisher.

BYTE is available in microform from University Microfilms International, 300 N Zeeb Rd., Dept PR, Ann Arbor MI 48106 USA or 18 Bedford Row, Dept PR, London WC1R 4JE England.

Subscription WATS Line: (800) 258-5485
Office hours: Mon-Thu 8:30 AM - 4:30 PM, Friday 8:30 AM - Noon, Eastern Time

NATIONAL ADVERTISING SALES REPRESENTATIVES:

<table>
<thead>
<tr>
<th>Region</th>
<th>Name</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORtheast</td>
<td>Hajar Associates</td>
<td>444-3946</td>
</tr>
<tr>
<td>Midwest</td>
<td>Hajar Associates</td>
<td>966-0160</td>
</tr>
<tr>
<td>Northwest</td>
<td>Hajar Associates</td>
<td>964-0706</td>
</tr>
<tr>
<td>SouthWest</td>
<td>Hajar Associates</td>
<td>540-3554</td>
</tr>
<tr>
<td>Southeast</td>
<td>Hajar Associates</td>
<td>866-7210</td>
</tr>
<tr>
<td>Atlantic</td>
<td>Hajar Associates</td>
<td>682-5844</td>
</tr>
<tr>
<td>Pacific</td>
<td>Hajar Associates</td>
<td>810-220</td>
</tr>
</tbody>
</table>

Office: 120 Prairie Lane, Apopka FL 32703
"...stands well above other S-100 graphics displays in its price and performance range."

BYTE, Product Review

"...better monochromatic display...."

ELECTRONIC DESIGN, 1981 Technology Forecast

MICROANGELO

HIGH RESOLUTION GRAPHICS SINGLE BOARD COMPUTER

512 x 480 resolution black and white and vivid color displays

RS-170 composite or direct drive output
Local or external sync generation
4 MHz Z80 microprocessor
60 hertz real-time clock
8 level interrupt tie-in
IEEE S100 bus compatible

Screenware™ Pak I

A 4K byte operating system resident in PROM on MicroAngelo™. Pak I emulates an 85 character by 40 line graphics terminal and provides over 40 graphics commands. Provisions exist for user defined character sets and directly callable user extensions to Screenware™ Pak I.

Screenware™ Pak II

An optional software superset of Pak I which adds circle generation, polygon flood, programmable split screen for separate graphics and terminal I/O, relative coordinates, faster vector and character plotting, a macro facility, full UCSD Pascal compatibility, and more.

And now...COLOR!!

The new MicroAngelo™ Palette board treats from 2 to 8 MicroAngelos as "bit planes" at a full 512 x 480 resolution. Up to 256 colors may be chosen from 16.8 million through the programmable color lookup table. Overlays, bit plane precedence, fade-in, fade-out, gray levels, blinking bit plane, and a highly visual color editor are standard.
Local Networks Are Buzzing

by Chris Morgan, Editor in Chief

Buzzwords are a way of life in the computer industry, and the latest buzzword (or, to be more correct, buzz-phrase) among computer cognoscenti is the local network. Networks in one form or another have been with us for some time. IBM’s SNA network and the X25 public network from ISO (International Standards Organization), used by Tymenet and Telenet, are systems designed to transmit huge amounts of data over long distances. But recently a whole new industry has sprung up to serve personal computer owners who want to send electronic mail or share the other resources of a local network.

This month we present several articles about local networks, including one written by Harry J Saal, President of Nestar Systems Inc, called “Local-Area Networks: Possibilities for Personal Computers.” It’s an excellent overview of local networks, their history, and the current state of the art. Much of the impetus behind the blossoming local-network field comes from Ethernet, Xerox’s high-end local network system that can transmit up to 10 megabits per second (Mbps) of information between users. You may have seen the recent television advertisements for the Ethernet system.

Although Ethernet works well for large-scale systems employing minicomputers or mainframes, it’s a case of overkill for microcomputers, which have inherent speed limitations. Two local network schemes, both patterned in one way or another after Ethernet, now exist to serve the microcomputer market. One such network, made by Nestar, is described in detail by Dr. Saal. The other is a relative newcomer — Corvus’s Omninet.

Comparing Two Systems

While the Nestar system, officially called the Cluster/One Model A, is designed exclusively for use with Apple II computers, the Omninet system allows users to mix and match such computers as the Apple II, Radio Shack’s TRS-80, the Onyx, and computers using the LSI-11 processor and the S-100 bus.

The data-transfer rate of the Omninet system is 1 Mbps, compared with Nestar’s 240 kbps. Although Omninet is technically four times faster than the Nestar system, the numbers can be misleading because the actual amount of time spent transmitting or receiving data to and from the network usually represents only a fraction of the total computing time. Recent tests by Xerox of the Ethernet system bear out these results.

Of more importance to the average user is the network’s reliability and how easy it is to use. The Nestar system has been around for more than two years and has earned high marks for reliability and sophistication. It’s particularly well suited to classroom use, and I have seen the system at work in many schools around the country. The Omninet system is just beginning to appear on the market, and we plan to review it in detail in a future issue of BYTE. Aside from its ability to handle a variety of computers, Omninet also offers the attraction of low price. The hardware cards for the Apple II, TRS-80, and...
New! Z Controller and Z Drives...

Expect more from Percom. You won’t be disappointed.

Percom’s double-density Z Controller for the H-89 is now available.

- Check its many outstanding features.
- And keep in mind its from Percom, a company that introduced its first disk system in 1977.

- Controls up to four single- or double-headed mini-disk drives.
- Handles 35-, 40-, 77-, and 80-track drives, and other standard track densities.
- Formatted data storage capacity of 80-track diskettes is over 368 Kbytes. Forty-track diskettes store over 184 Kbytes. Capacities for other track densities are proportional. A Z system with four double-headed, 80-track drives provides almost 3 megabytes of on-line data.
- The Z Controller co-resides with your H-89 disk drive controller. Your software can select either, and you don’t have to move drives around when switching between systems.
- The Z Controller includes Percom’s proven digital data separator circuit and a dependable write-precompensation circuit. Expect reliable disk operation for a long, long time under ‘Z’ control.
- The Percom Z Controller is priced at only $249.95, complete with HDOS-compatible disk drivers on diskette, internal interconnecting cable and comprehensive users manual.

System requirements - H-89 Computer with 24 Kbytes memory (min), Replacement ROM Kit H-88-7 and HDOS 2.0.

Add-On Z Drives for H-89, H-8 Computers

- Forty- and eighty-track densities in either 1- or 2-drive modules.
- All drives are rated for single- and double-density operation. With a Z Controller, an 80-track drive can store over 364 Kbytes (formatted, one-side), a 40-track drive can store over 184 Kbytes.
- Some models permit “flippy” storage, letting you flip a diskette and store files on the second side.
- Z drives are fully tested, including a 48-hour operating burn-in to prevent shipment of drives with latent defects.
- Assembled and tested one-drive units from only $399, two-drive units from only $795.

System requirements - H-89 or H-8 computer with 16-Kbyte RAM, Heath first-drive floppy disk system, HDOS and drives interconnecting cable. (Two-drive interconnecting cable optionally available from Percom)

Prices and specifications subject to change without notice.

Watch for announcement of ‘Z’ CP/M.
SYMBOlIC DEBUGGER
This fourth generation version of our reliable, Z-80 native code compiler adds the two features professionals ask for:
- SWAT™—an interactive symbolic Pascal debugger that allows easy error detection.
- Overlays—that allow larger programs to run in limited memory.

A compiler for Professional programmers
Pascal/Z is a true Pascal. It closely follows the Jensen and Wirth standard with a minimum of extensions designed to aid the serious program developer in producing extremely compact, bug-free code that runs FAST.

Pascal/Z generates Z-80 native code that is ROMable and Re-entrant. Permits separate compilation, direct file access, external routines and includes a relocating macro assembler and Microsoft compatible linker. And code written for Pascal/Z is fully compatible with 1-PAS 8000, our new native code Pascal compiler for Z-8000, to guarantee graceful migration to 16 bit operation.

Get “The FACTS about Pascal”
Confused about which Pascal to buy? Pseudo-code... Native code... M, MT or Z? Compare the unbiased benchmarks in our new booklet. Don’t buy a Pascal compiler until you’ve read it.

Call us for a free copy:
800-847-2088 (outside NYS)
or 607-257-0190
And ask your local full-service computer dealer about our Pascal/Z demo package.

Editorial
S-100-type computers cost less than $500 each, meaning that two interested networkers could assemble a minimal two-node network for less than $1000. The only additional cost is for the twisted-pair wiring used to connect the two computers. No central control computer is needed to run the network.

Data is transmitted on the Omninet in blocks of ASCII characters using software tools called pipes, reminiscent of the pipes used in the UNIX operating system but operating in a different manner. In this way, machines having incompatible operating systems (such as CP/M and UCSD Pascal) can communicate, albeit with some limitations.

Comparing Nestar and Omninet is like comparing the proverbial apples and oranges (pun intended). Omninet is attractive for entry-level users, and it’s the only choice if you want to combine various brands of computers. Although rumor has it that Nestar is expressing an interest in other brands of computers besides Apple, the company has made no official statement on the subject.

Nestar has its own advantages, including its excellent track record. The file server used in the Nestar system is actually an Apple II computer, which can act as a spare if needed in the system. Also, Nestar offers extensive and well-documented software. The Nestar system requires 16-conductor ribbon cable for computer interconnection, compared with twisted-pair wire for the Omninet — a cost saving for the Omninet user.

Corvus is actively promoting Omninet as an industry standard for microcomputers. Onyx already has bought an Omninet license, and the Japanese are reportedly interested in the network. (I recently saw a very interesting hobbyist-designed local network system at the offices of ASCII magazine in Japan. We hope to tell you about that in a future issue.)
The ultimate single user machine
The PDS-80™ with Cache BIOS™ is a professional system designed for the most rigorous single user CP/M* environments ... in business, software development, scientific, educational and industrial research ... where speed and program space are critical factors.

SymBIOSis quadruples speed
No matter what high-level language you use ... Cobol, Basic, Fortran, PL/1, or Pascal ... PDS-80 offers more speed, power and reliability than any other floopy based CP/M system currently on the market. The InterSystems Cache BIOS fully exploits the advanced DMA and interrupt features of our reliable Series II hardware to buffer whole tracks in extended memory so most operations run two to four times faster than on other floppy based systems ... actually equals the speed of many small hard disk systems. And Cache BIOS also provides many sophisticated system test and protection features to assure reliable operation.

An advanced CP/M application system
PDS-80 has all you need for commercial systems integration and applications software development ... including a choice of the industry's only integral 8 bit front panel. Best of all, PDS-80 allows the systems integrator or applications developer addressing a vertical market to develop on the same components he configures for resale. The highly expandable modular design with 20slot S-100 mainframe allows almost unlimited options to suit any end use environment ... including a choice of tabletop or rackmount design.

InterSystems will work with you at whatever level is appropriate to configure the target system you need ... right up to fully assembled and tested systems with floppy and Winchester disk drives.

Full Software support
In addition to InterSystems' Cache BIOS and the CP/M operating system, models of PDS-80 can include Pascal/Z, our highly acclaimed Z-80™ native code Pascal compiler, and InterPak 80™, a special set of utilities including a powerful screen editor and versatile spelling editor to assist in the rapid editing, proofing and documentation of your code. These powerful programming aids are also available as standalone products.

It's upgradeable!
Both hardware and software are designed to provide for upgrade to 16 bit operation. Programs written for Pascal/Z are fully compatible with 1-Pas 8000™, our Z-8000™ native code compiler, and all PDS-80 systems are upgradeable to our 16 bit multi-user DPS-8000.

We build micros for bigger ideas.
Your big ideas. We're dedicated to providing the computer professional ... Systems Integrators, commercial program developers, scientific and industrial programmers ... with professional hardware and software tools. And we support our customers to the fullest, with complete, professional documentation, application engineering consultation, and prompt, responsive service both from the factory and through factory-authorized service centers.

Call us toll free: 800-847-2088
for complete information on any of our 8 or 16 bit systems and software products.

InterSystems
Ithaca Intersystems Inc.

Circle 185 on inquiry card.

Micros for bigger ideas.

Ithaca Intersystems Inc. • 1650 Hanshaw Road • Ithaca, NY 14850 • Phone (607) 257-0190 • TWX: 510 255 4346
U.K. Distributor Ithaca Intersystems (U.K.) Ltd. Coloridge Road London N8 8ED Phone: 01-341 2447 Telex: 299568

*Z-80 and Z-8000 are registered trademarks of Zilog, Inc. **Trademarks of Ithaca Intersystems Inc. *Registered trademark of Digital Research
Clearing Waveforms

I enjoyed reading Robin Moore's article "Mountain Computer's MusicSystem" (July 1981 BYTE, page 60). There may be some confusion, however, about the way the Casheab synthesizer handles waveform storage. With the Casheab synthesizer, waveforms are stored on the synthesizer cards and not in the host memory. This was done for three reasons:

- The Casheab synthesizer uses 1024 words by 12 bits for each of its 16 waveforms. This requires 25 K bytes of memory, which would be a considerable chunk of memory space if the waveforms were stored in the host's memory space.
- When the waveforms are stored in the host's memory, processor time is going to be required to transfer them to the synthesizer. The MusicSystem uses DMA (direct memory access), which is probably the most efficient way to make the transfer. However, this effectively slows the Apple's processor from 1 MHz to 500 kHz.
- It is much easier to add more channels to a system by adding another synthesizer card set when the waveform tables are not in the host memory.

Caesar Castro
Casheab
5737 Avenida Sanchez
San Diego CA 92124

Unsung Marketer

While I thoroughly enjoyed the recent article entitled "The Japanese Computer Invasion," I would like to go on the record to correct some misleading information that appeared in the section regarding Hitachi on page 212, beginning with the third paragraph. (See the August 1981 BYTE.)

Mr. Miastkowski is correct in stating that there is no Hitachi marketing organization in the US (for large-scale computers, that is, a qualification that should have been included) nor any movement toward developing one. However, to call this a "major problem" totally ignores Hitachi's satisfaction with the job being done by National Advanced Systems (NAS). "Lack of a US organization" has not "hurt" sales of the AS/9000. Indeed, NAS has doubled the sales rate of its predecessor and is progressing very well in AS/9000 penetration.

Mr. Miastkowski also states that Hitachi introduced the AS/9000. This is incorrect. NAS introduced the AS/9000, its redesign of the Hitachi M200H.

It is also incorrect to characterize NAS as a company "with (merely) a large amount of small-computer experience." In the 303X class and upward, NAS has 276 systems installed, hardly a lack of experience. If one includes MVS-class machines (which are generally considered not to be "small" systems), the number goes to about 600! And, in the "H" class, the subject of the paragraph, we have more experience than either IBM or Amdahl (i.e., we're shipping and they aren't!)

Lastly, Miastkowski refers to the "strange bug" which occurred at Lockheed Dialog and implies that service is a major problem. This is absolutely untrue. Specifically, a problem arose in the channel check logic in which the software was unable to recover from a channel check. Investigation revealed that, while the AS/9000 channel interfaces were designed to published IBM specification documents, IBM had subsequently changed (in this case, loosened) the parameters governing the timing of the counting of parallel bits. We immediately applied an EC retiming the parameters and retrofitted all other AS/9000s. The incident, in fact, illustrated the expertise of our engineers in solving a problem we did not even create and in solving it in record time.

David Goldsmith
Director-Sales Support
National Advanced Systems
800 E Middlefield Rd,
Mountain View CA 94043

On Old Ad Age

As a mechanical engineer, I have had BYTE save my neck by letting me know what to expect from the "Silicon Wonders" before other engineers. But I would like to share some observations about BYTE that I have made over the last five years.

BYTE has evolved from a magazine of "hobbyists" into a leading and respected technical journal. As such, the reader is assumed to have sufficient technical expertise to read and assimilate the information presented. To my knowledge, this assumption has turned off a number of potential subscribers. It shouldn't be too difficult to publish a yearly "Beginner's Intro" issue of BYTE which could be included with every new subscription. It could educate and entice new subscribers, while the "old-timers" shouldn't object too strenuously to a yearly review of basics (who knows, it might even help). It would definitely help overcome the shock to a neophyte who wants to learn about the nitty-gritty of computers and picks up a BYTE only to be deluged with "computerese" and articles that go over his or her head in the first paragraph.

A good portion of each BYTE is devoted to advertisement. I am not complaining. In fact, I have learned almost as much about computers from the ads as from the articles. But I currently have about 30 inches of bookshelf devoted to BYTE and, if the advertisements could be removed, that could be cut down to 20 inches or less! An advertisement that's a year or more old is of little value to me, but articles that age are very valuable to me. What I suggest is to bind the articles in one group that can be removed for filing. They could be preceded by the "prestige" ads and followed by the bulk ads. I doubt that this change in format would reduce the effect of advertising in BYTE since most of BYTE readers that I know either read every ad in each issue or ignore them. It would reduce the space required to archive back issues considerably. (I'd like to see this idea catch on because I currently have over 15 feet of bookshelf dedicated to my technical journals and it's growing daily!)

Lew Merrick
19217-28th Ave W
Lynnwood WA 98036

Our "potential subscribers" who are turned off by our technical level should take a look at our new sister publication, Popular Computing. . . . MH

Legal Arguments

As an attorney, computer enthusiast, and coauthor of a recently published booklet entitled "The Copyright Kit—How to Copyright Your Computer Software," I feel I must clarify two points raised by Stephen Becker in his article
A Busload from SSM.

80 Character Video

With 80 characters per line our VB3 is the perfect video interface for word processing. It produces a standard 80x24 display of upper and lower case characters or as much as 80x50 for a full page of text. The matrix for graphic display goes up to 160x200. And with optional EPROM, as many as 256 user programmed characters or symbols can be produced.

VB3 is memory mapped for rapid screen updating. But it occupies memory only when activated. So one or more VB3s can be located at the same address with a full 65K of memory still available to the user.

It generates both U.S. and European TV rates and meets IEEE 696.1 standard. Other features include keyboard input, black on white or white on black, one level of grey, underline, strike thru, blinking char., blank-out char., and programmable cursor. Software includes a CP/M compatible driver and a powerful terminal simulator.

Z-80 CPU

We spent over a year designing the CB2 to assure that it is the most fully S-100 compatible Z-80 CPU on the market.

It operates at 2MHz or 4MHz by DIP switch selection and includes two sockets for 2716/2732 EPROMs or 2K RAMs. Memory sockets can be disabled. Separate run/stop and single step switches allow system evaluation without the benefit of a front panel.

CB2 also features an MWRITE signal, firmware vector jump, and an output port to control 8 extended address lines (allowing use of more than 65K of memory). Jumper options generate the new IEEE 696.1 signals.

8080 CPU

Our CB1A is identical to our popular CB1 with the exception that the on-board RAM has been increased from 256 bytes to a full 1K.

It also features an optional 2K of 2708 EPROMs, power-on/reset vector jump. MWRITE, parallel input port with status and DIP switch addressing.

Our S-100 line includes CPU, Video, I/O, 8 and 16 Bit RAM, EPROM, EPROM Programmer, Prototyping, Terminator, Extender, and Mother boards. Available assembled or as kits.

New SSM Products.

Please call for all the latest details on our newest products:
- **MB 64** 64Kb static RAM memory.
- **I05** two parallel, two serial input/output ports, with complete RS-232 protocol.
- **I08** multiple RS-232 serial 1/Os.

SSM Microcomputer Products, Inc.
2190 Paragon Drive, San Jose, CA 95131, (408) 946-7400 Telex: 171171, TWX: 910-338-2077

Circle 348 on inquiry card.
Reddy Chirra improves his vision with an Apple.

Reddy is an optical engineer who's used to working for big companies and using big mainframes.

But when he started his own consulting business, he soon learned how costly mainframe time can be. So he bought himself a 48K Apple II Personal Computer.

And, like thousands of other engineers and scientists, quickly learned the pleasures of
cutting down on shared time and having his own tamper-proof data base.

His Apple can handle formulas with up to 80 variables and test parameters on 250 different optical glasses.

He can even use BASIC, FORTRAN, Pascal and Assembly languages.

And Apple's HI-RES graphics come in handy for design.

Reddy looked at other microcomputers, but chose Apple for its in-depth documentation, reliability and expandability.

You can get up to 64K RAM in an Apple II. Up to 128K RAM in our new Apple III. And there's a whole family of compatible peripherals, including an IEEE-488 bus for laboratory instrument control.

Visit your authorized Apple dealer to find out how far an Apple can go with scientific/technical applications.

It'll change the way you see things.

The personal computer.

For the authorized dealer nearest you, call (800) 538-9696. In California, call (800) 662-9238. Or write: Apple Computer Inc., 10260 Bandley Dr., Cupertino, CA 95014.

Circle no. 28 for more information or Circle no. 425 for special OEM information
"Legal Protection for Computer Hardware and Software." (See the May 1981 BYTE, page 140.)

Mr. Becker tells us that he does not recommend that his clients copyright (i.e., register) their software until an infringement suit is contemplated. My advice would be just the opposite.

Section 412 of the 1976 Copyright Act specifically disallows statutory damages and attorneys’ fees for any infringement of copyright commenced after first publication of the computer program if it was not registered within three months after the first publication of the work. This means that by not registering a computer program within three months of publication, you lose possibly important damages for infringement. For $10 (the cost of registration), I feel a computer program should be registered at the earliest possible moment.

Mr. Becker also states that two copies of a computer program must be filed with the Copyright Office along with form TX for registration. In fact, the Rules and Regulations of the Copyright Office (Section 202.20 (c) (2) (vii) Code of Federal Regulations) provide that for a computer program published only in the form of machine-readable copies (such as magnetic tape, disk, punch card, or the like) from which the work cannot be perceived except with the aid of a machine, the deposit need only consist of one copy of the first and last 25 pages of the program printout together with the page where the copyright notice appears if the program is published only in machine-readable form, as Mr. Adler notes; otherwise, two complete copies of the program must be deposited.

As a practical matter, however, the software supplier will probably become aware of any infringement fairly soon after it occurs. The infringer will be liable for statutory damages and attorney’s fees for any infringements following registration. If the registration occurs within three months from the first publication date, the infringer will be liable even during the three-month intervening time period. Even before registration, the courts have the discretion to allow recovery of the infringer’s profits to the software developer and may even require that royalties be paid.

I hope these corrections, in part, clarify a complex area of the law.

Stephen Becker Replies

I stand by my advice. Mr. Adler’s statement that “Section 412 of the 1976 Copyright Act specifically disallows statutory damages and attorneys’ fees for any infringement...” tells only part of the story. In fact, the 1976 Copyright Act specifically provides for statutory infringement occurring after registration, whether or not registration occurs within three months after first publication of the work.

Ideally, each program should be registered as soon as possible. Copyright registration of a program is neither as complex nor expensive as patenting. It can, however, be burdensome to register each program, particularly if you are developing a substantial amount of new software. Each registration requires, besides the $10 registration fee and attorney’s fees (if one is retained), deposit of a copy of the first and last 25 pages of the program printout together with the page where the copyright notice appears if the program is published only in machine-readable form, as Mr. Adler notes; otherwise, two complete copies of the program must be deposited.

BYSTE’s Guide Praised

My wife and I wish to thank BYTE for including Mister McGiddies Creations Ltd in “The BYTE Guide: NCC Chicago.” (See the April 1981 BYTE, page 64.) It is nice to be recognized for all the work we have done to promote the best in Bluegrass music in Chicago, while serving high-quality food at a good price.

McGiddies is now computerized by a 48 K-byte Radio Shack TRS-80 Model I with multiple disk drives, Scrip.int, and the Paper Tiger 460 printer. Without a publication like BYTE, the information that I would need to learn how to use a computer in small business would not be available. I can actually say the computer has put some fun back into paperwork, and, of course, the games are always fun.

Thank you, BYTE. Keep up the good work.

Hal and Sharon Berger
President and Vice President
Mister McGiddies Creations Ltd
2423 N. Lincoln Ave
Chicago II. 60614
Introducing the Z Line...

Now! Percom Drives for Heath Computers.

Percom's now making add-on drives for your H-89 and H-8.

Complete drive systems will be available soon.
If your immediate need is for add-on storage, check the features of our fully compatible Z drives.
If you plan to add a complete disk system, watch for the imminent announcement of our double-density Z Controller.

Given a choice, we think you'll choose from the Percom Z line.

Add-On Z Drives
- Available in 40- and 80-track densities, in 1- and 2-drive color-compatible modules.
- All drives are rated for single- and double-density operation.
- Some models accommodate flippity storage, allowing you to flip a diskette and store files on the second side.
- Fully tested both electrically and mechanically. Plus, all Z drives receive a 48-hour operating burn-in to uncover latent defects. Look for the signed quality assurance slip.

- Low prices: Fully assembled and tested, one-drive units start at only $399, two-drive units from only $795.

Z DRIVES FROM PERCOM: THE BEST ONES FOR YOUR ALL-IN-ONE

<table>
<thead>
<tr>
<th>Model</th>
<th>Number Tracks</th>
<th>Formatted Sing. Cap</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZFD-40**</td>
<td>40</td>
<td>102K</td>
<td>Low price, last step time</td>
</tr>
<tr>
<td>ZFD-80**</td>
<td>80</td>
<td>205K</td>
<td>Max. sig., last step time</td>
</tr>
<tr>
<td>ZFD-100**</td>
<td>40</td>
<td>102K</td>
<td>Flip-side diskette storage</td>
</tr>
</tbody>
</table>

SYSTEM REQUIREMENTS: H-89 or H-8 computer with 16 Kbytes of RAM, Heath first drive floppy disk system. Heath disk-operating system and drivers interconnecting cable. (Two-drive interconnecting cable optionally available from Percom.) ZFD-80 drives include a program patch on diskette to modify HDOS for 80-track operation.

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE.

Available Soon!
Percom's Low-Cost Double-Density Z Controller.

Yes... I'd like to know more about Percom Z drives and the Z Controller. Rush me free literature.

Send to
PERCOM DATA COMPANY, Inc., Dept. 26
211 N. Kirby St. Garland TX 75042

Toll-Free Order Number: 1-800-527-1592

©1981 PERCOM DATA COMPANY, Inc.

PERCOM, ZFD-40, ZFD-80 and ZFD-100 are trademarks of Percom Data Company.
TWELVE STRONG
HEATH/ZENITH YOUR

Pick a strong partner
A computer purchase is the beginning of a long term partnership between you and the people you buy from. Your ongoing need for software and accessories requires a partner who will stand by you with a growing line of products. And nowhere will you find a more complete line of hardware, software and accessories than at your Heathkit Electronic Center. Here are twelve strong reasons to make Heath/Zenith your partner.

1. The All-In-One Computer
The heart of the Heath/Zenith line is the stand-alone 89 Computer. It’s a complete system with built-in 5¼-inch floppy disk drive, professional keyboard and keypad, smart video terminal, two Z80 microprocessors, and two RS-232C serial I/O ports. It comes with 16K RAM, expandable to 64K.

2. Peripherals
These include the popular Heath/Zenith 19 Smart Video Terminal, loaded with professional features. And the 14 Line Printer, priced as low as $495. Other printer brands are on display, including high-speed, typewriter-quality printers.

3. Software
Word processing, includes reliable, easy-to-use Zenith Electronic Typing and powerful, full-featured WORDSTAR.
Small Business Programs, feature General Ledger and Inventory Control.
HUG, Heath Users' Group, offers members a library of over 500 low-cost programs for home, work or play.

4. Programming Languages
For your own custom programs, Microsoft languages are available in BASIC (compiler and interpreter), FORTRAN and COBOL.

5. Operating Systems
Three versatile systems give you the capability to perform your specific tasks.
CP/M by Digital Research makes your system compatible with thousands of popular CP/M programs.
UCSD P-System with Pascal is a complete program development and execution environment.
HDOS, Heath Disk Operating System gives you a sophisticated, flexible environment for program construction, storage and editing.

6. Utility Software
Expand the performance range of your computer with a broad selection of utility tools, including the best of Digital Research and the complete line of innovative Softstuff products.

7. Disk Systems
The 8-inch Heath/Zenith 47 Dual Disk System adds over 2 megabytes of storage to your 89 Computer. Diskettes are standard IBM 3740 format, double-sided, double-density.
The 5¼-inch 87 Dual Disk System adds 200K bytes of storage to your 89. Both disk systems feature read/write protection and easy plug-in adaptability.

8. Self-Study Courses
Learn at your own pace with Programming Courses that teach you to write and run your own programs in Assembly, BASIC, Pascal or COBOL.
A course on Computer Concepts for Small Business gives you the understanding to evaluate the ways a computer can benefit your business.
Personal Computing is a complete introduction to the fundamentals for the novice. Every Heathkit/Zenith course is professionally designed for easy, step-by-step learning.
REASONS TO MAKE COMPUTER PARTNER

9. Expansion Options
Communicate with the outside world through a Three-port EIA RS-232C Serial Interface.
Expand RAM to 64K with easy-to-install expansion chips.

10. Accessories
Your Heathkit Electronic Center has the latest in modems, black-and-white and color video monitors, computer furniture and a full line of supplies, accessories, books and parts.

11. Service
No one stands by you like Heath/Zenith.
We help you get your system up and running smoothly. Service is available from trained technicians, over the phone or at one of 56 Heathkit Electronic Centers.

12. Value
Your money buys you more because Heath/Zenith prices are among the industry's most competitive. Make your own comparison and find out how much you can save.
Complete, integrated computer hardware and software, designed to serve you and to grow with you — that's what we look for in a strong partner. And with Heath/Zenith you get it all under one roof.

Visit Your Heathkit Electronic Center*
where Heath/Zenith Products are displayed, sold and serviced.

PHOENIX, AZ
3277 W. Indian School Rd.
602-279-5247

ANAHUIM, CA
330 E. Ball Rd
714-776-8420

CAMPBELL, CA
2350 S. Bascom Ave.
408-377-8920

10. .Accesso·ries
EL CERRITO, CA
6900 Polkro Ave.
415-236-8870

LA MESA, CA
5833 Center Dr
714-461-0110

LOS ANGELES, CA
2309 S. Flower St
213-749-0261

POMONA, CA
1555 N. Orange Grove Ave.
714-823-3543

REDWOOD CITY, CA
2001 Middlefield Rd.
415-365-8155

SACRAMENTO, CA
1839 Fulton Ave
916-485-1573

WOODLAND HILLS, CA
22204 Ventura Blvd.
213-683-0531

DENVER, CO
5940 W. 38th Ave.
303-422-3408

AVON, CT
39 W Main St. (Rt. 44)
203-876-0373

HOLSLAW, FL
4705 W. 16th Ave.
305-823-2280

PLANTATION, FL
7173 W. Broward Blvd.
305-791-7300

TAMPA, FL
4019 N. Hillsborough Ave.
813-986-2361

ATLANTA, GA
5285 Roswell Rd
404-252-4321

CHICAGO, IL
3462-66 W. Deneen Ave.
312-563-3920

BOWERS GROVE, IL
224 Ogden Ave
312-852-1304

INDIANAPOLIS, IN
2112 E. 62nd St
317-257-4321

MISSION, KS
5960 Lamar Ave.
913-362-4466

LOUISVILLE, KY
12401 Shelbyville Rd.
502-245-7981

KENNER, LA
1900 Veterans Memorial Hwy.
504-477-3327

BALTIMORE, MD
1710 E. Jopps Rd
301-581-4466

ROCKVILLE, MD
5542 Nicholson Lane
301-801-5420

PEABODY, MA
242 Andover St
617-531-9330

WELLESLEY, MA
165 Worcester Ave.
617-237-1510

DETROIT, MI
16645 W. Eight Mile Rd.
313-335-6480

E. DETROIT, MI
16149 E. Eight Mile Rd.
313-775-0416

HOPKINS, MN
101 Shady Oak Rd.
612-338-6371

ST. PAUL, MN
1645 W. Seven Mile Rd.
612-776-1211

MINNEAPOLIS, MN
3794 McClellan Rd.
314-201-1850

OMAHA, NE
9207 Maple St.
402-391-2071

ASHBURY, NJ
1013 State Hwy. 35
201-775-1231

FAIR LAWN, NJ
35-07 Broadway (Rt. 4)
201-791-6325

AMHERST, NY
3476 Sheridan Dr.
716-791-1300

JERicho, L.I., NY
15 Jericho Turnpike
516-334-8181

ROCHESTER, NY
937 Jefferson Rd
716-424-2560

N. WHITE PLAINS, NY
7 Reservoir Rd
914-781-7850

*Prices and specifications subject to change without notice

All at your Heathkit Electronic Center
Pick the store nearest you from the list at right. And stop in today for a demonstration of the Heath/Zenith 89 Computer System. If you can’t get to a store, send $1.00 for the latest Heathkit Catalog and the new Zenith Data Systems Catalog of assembled commercial computers. Write to Heath Co., Dept. 334-827, Benton Harbor, MI 49022.

HEATH/ZENITH
Your strong partner
I recently evaluated the specifications of various personal microcomputers now on the market, so I noticed a couple of errors in Gregg Williams's comparison of Commodore's new VIC 20 to other microcomputers. (See "The Commodore VIC 20 Microcomputer," May 1981 BYTE, page 46.)

Mr Williams stated that the VIC is the only machine in which "the background color can change independently of the character color." This is untrue. If the Atari is used in graphics mode 1 or 17, its normal text display is reduced to 24 rows by 20 columns (similar to the VIC's 23 rows by 22 columns) and the background color becomes separately adjustable to any of 16 colors. Mr Williams also incorrectly stated that the Atari's normal text display is "16 rows by 32 columns"; actually it is 24 rows by 40 columns, which means it can display 25% more text than any of the other computers he surveyed. It also can be expanded to a full 32 K bytes of memory by installing one of the new VIC 2-K-byte "RamCram" boards made by Axion (Sunnyvale, California).

On the whole, BYTE should make more of an effort in the future to standardize comparison tables. For example, the cost of each system with a fully extended BASIC in ROM (read-only memory) and 16 K of programmable memory could be given. The graphics capabilities should be compared in some way to show the trade-off between high-resolution and multi-color capabilities, such as the maximum resolution available if you want the ability to display four colors simultaneously with individual color control over each pixel. I would be interested to know how the VIC with the Super Expander Cartridge would compare with the other machines reviewed according to this criterion. If the advertised 176 by 176 pixels are individually assignable to any of four (or more) colors, then the graphics capabilities of the VIC 20 would lie between those of the Apple (280 by 192) and the Atari (160 by 96), being approximately equivalent to the Radio Shack Color Computer (128 by 192).

Finally, Mr Williams mentioned that the VIC 20 uses the 6502A microprocessor instead of the 6502. What's the difference? Also, is it possible to replace the 6502 with a 6502A?

George Fergus
1810 Hemlock Pl #204
Schaumburg, IL 60195

Gregg Williams Replies

Mr Fergus's two points about the Atari are correct—my apologies for the errors. His comments on the fairness of the comparison chart point out the difficulty of comparing several microcomputers fully. Anyone buying a microcomputer should learn everything he or she can about the different brands (just as Mr Fergus did). Such an evaluation was beyond the scope of the article I wrote, so I chose representative configurations of the different microcomputers.

The only difference between the 6502 and the 6502A is the higher system-clock frequency of 2 MHz for the 6502A. However, a 6502A microprocessor would offer no improvement in an existing microcomputer system without similarly upgrading the access time of the memory and increasing the speed of the system clock (which may have harmful side effects).
Mountain Computer
CPS MultiFunction Card™

The Only Interface Card You Need!

Connecting a Parallel Printer?
Epson®, Luminetics® IBM Paper Tiger®. CPS handles all these printers and others with onboard intelligence to provide paging and other features found on no other card.

Connecting a Serial Printer?
Dialb® Qume® NEC® TL110 Series®. CPS handles these printers and others with standard RS232 interface providing selection of baud rates, handshakes, paging, and more.

Connecting a Modem or Terminal?
Hayes Smartmodem® Squawk CAT® M & R Pennwalt®. CPS handles these and others with full-halfe duplex operation, baud rate selection, and even a transparent terminal mode which includes a dual mode feature that permits printing of text to parallel printer while on-line; eliminating the need for special terminal software—and more.

Connecting with the Time?
The on-board calendar clock provides real time and date information including day of week, day, month, year, hour, minute, and second for any application requiring a time stamp—battery backed-up for over two years.

Connecting with The Source?
Used with a modem, CPS provides the connection to information utilities, such as The Source®, Dow Jones, and others. Additionally, CPS provides the connection to big-time electronic mail with programs such as Micro Courier and Micro Telegram, and other data transfer programs.

Connect with Easy Use!
CPS has no switches to set. All functions on the card are set from a user program. Menu driven Succents set up your choice of all functions on CPS and store them onboard in CMOS RAM—battery backed-up (including the clock) for over two years! To change parameters, run the set-up program again—or use special commands from your keyboard. Furthermore, most existing software programs are immediately usable with CPS.

Connect with Your Apple Dealer
Drop by your Apple dealer and see how the CPS MultiFunction Card provides the most comprehensive capabilities for RS232C serial interface, parallel output, and real-time calendar clock of any card available today—all on one card—at one low price—competitive with any one of the three or more single function cards that it replaces.

Mountain Computer
INCORPORATED
300 E. Pueblo Road, Scotts Valley, CA 95066
(408) 438-6650
TWX: 910 598 4604

® Registered trademarks
we made our own evaluation.

Since then, we have modified and enhanced Vanguard APL extensively. MicroAPl's own APL 4.0 release is now packed with goodies for the APL enthusiast. These include fast auxiliary processors for text search, character-set translation, laboratory instrument input/output; MicroFILE software for project development, documentation, and screen handling; MicroFILE software for four different types of file access; MicroPLOT drivers for Tektronix, Hewlett-Packard, Qume, Diabio, and A-J plotters; MicroLINK workspaces for online timesharing links and CP/M file interchange; and MicroSPAN, a complete computer-aided instruction package for APL neophytes.

I hope BYTE will include us in its next language review. There are some exciting projects in the pipeline for 16-bit APL systems. APL is very popular in Europe, so in the meantime, we hope European readers will feel free to contact us if they're interested in further details.

Robert Bittlestone
MicroAPl Ltd
19 Catherine Pl
Victoria, London, SW16 6DX, England

Roots Fair and Square

Steve Able's statement that any 10-digit calculator that accurately yields \(\sqrt{2} \approx 2.23607 \ldots\) is either doing "funny arithmetic" or else is not telling you everything it knows" aroused my curiosity. (See "Letters," April 1981 BYTE, page 16.) My rather ancient Texas Instruments SR-51A does, in fact, yield \(\sqrt{2} \approx 2.236070087\). So I wondered if it was performing "funny arithmetic" or was hiding information from me.

The SR-51A does calculate \(\sqrt{2}\) to 13-digit accuracy as does HP-41C, which displays the result rounded to 10 digits.

The difference is that the SR-51A does not then proceed to forget the additional three digits. These are still retained in the register and are used in any subsequent operations.

The \(\sqrt{2}\) operation produces a displayed result of 1.414213562, but the internal memory has 1.414213562373. Squaring correctly produces a rounded result of 2. The other functions also produce 13-digit accuracy rounded to 10 digits for the display.

In the words of Mr Abel, my SR-51A "is not telling me everything it knows." But, why should the accuracy of the machine be limited to the size of the display? Because it does not forget the extra three digits it calculated, the outdated, middle-line SR-51A performs with greater accuracy than the new, top-line, HP-41C.

In addition, my SR-51A, with a little trickery, will tell me "everything it knows." Entering \(\sqrt{2}\) yields a display of 1.414213562. First, I multiply this by 100, which produces 141.4213562; then I subtract 141, producing a display of 0.4213562373. There are the three extra digits.

For \(\pi\), the displayed result is 3.141592654. Multiply this by 100, then subtract 314, and the result 0.159265359 is displayed. This would be accurate for the 14-digit value of \(\pi\) = 3.1415926535897 rounded to 13 digits. The trailing 0 is suppressed in the LED (light-emitting-diode) display to conserve the batteries. It is also possible to enter 13 digits with an appropriate trick. To enter 1.414213562373, first enter 3.73 EE-10, then add 1.414213562. This will result in the register containing 1.414213562373, and squaring this will produce the rounded answer of 2.

Apparently, this accuracy cannot be achieved with "the world's fanciest calculator."

James E Kitchen
Director
Chapman College
Residence Education Center
General Delivery
Beale AFB CA 95903

Talking DVMs

In Steve Ciarcia's "Build a Low-Cost Speech-Synthesizer Interface" (June 1981 BYTE, page 46), he describes an encounter with a disbelieving clerk "at a local electronics store" after asking if they carried "any DVMs (digital volt ohmmeters) that talked." Steve implies that today none exist, but someday they will be very common. Well, at least one does exist.

I recently came across a reference to a "talking DVM" in the March 1981 Journal of Chemical Education (page 231). It's available from Sabtronics International Inc, 13426 Floyd Cr, Dallas TX 75243 (product number DMM 2010A).

Charles J Spillner
4054 Shona Ct
San Jose CA 95124

The Franklin Institute Research Laboratory also has a talking voltmeter available. Contact the company at Benjamin Franklin Pky, Philadelphia PA 19103, (215) 448-1340. . .
State-of-the-art hardware demands state-of-the-art software

Operating Systems & Support Software from Technical Systems Consultants

To perform to its fullest capabilities, your hardware demands software designed to meet the specialized requirements of today's microprocessors. State-of-the-art software from Technical Systems Consultants keeps pace with the rapid advancements in computer technology so your hardware can live up to its full potential. Our complete line of state-of-the-art software includes:

The UniFLEX™ Operating System

UniFLEX, a true multi-user, multi-tasking system for the 6809 and 68000 microprocessors, supports such features as:
• hierarchical file systems
• device independent I/O
• four Gigabyte disk capacities
• full file protection
• inter-task communication via pipes
• I/O redirection
• task swapping
• full random-access files
• comprehensive shell command language

UniFLEX, structured for large-scale microprocessor systems, will not run with minimal systems and thus has avoided design compromise. (Off-the-shelf versions and OEM licenses are available.)

The FLEX™ Operating System

FLEX, a powerful, easy-to-use operating system designed for the 6800 and 6809 microprocessors, includes:
• dynamic filespace allocation
• random files
• batch job entry
• automatic space compression
• English error messages
• user environment control
• disk resident commands
• flexible device I/O
• printer spooling

Plus, FLEX can accommodate hard disks as well as floppy drives. The system is available off-the-shelf for a variety of systems and in a field-adaptable version. (OEM licenses available.)

Support Software

Technical Systems Consultants offers a full line of state-of-the-art support software compatible to FLEX and UniFLEX, some of which are:
• native C and Pascal compilers for advanced programming
• extended BASIC for business and educational applications
• text editing and processing software
• sort/merge package for business applications
• variety of absolute and relocatable assemblers
• debug and diagnostic packages

... and more. Write or call today for our brochures describing our complete product line.
BUILD

YOUR OWN
68000 SYSTEM
THE EASY WAY
FULLY ASSEMBLED BOARDS PROVIDE COMPLETE 68000 CAPABILITY. AND ALL BOARDS CAN BE INTEGRATED INTO YOUR OWN SYSTEM.

MC68000 MULTIBUS™ BASED MICROCOMPUTER
This board provides a full speed MC68000 as the CPU for your Multibus™ based system. 256 kilobytes of on-board RAM permit the MC68000 to execute code at full speed (8-MHz clock with no wait states). The board is compatible with the proposed IEEE P796 bus at a compliance level of D16M2016V02L. Edge connectors for a logic analyzer are provided to ease debugging. Bus timeout protection, simple memory protection and interrupt type selection are also provided.

MAIN PERIPHERAL BOARD
• Up to 32K Bytes of PROM
• Triple Interval Timer
• Two Programmable USARTS
• Polynomial Generator and Checker
• Three Parallel Interface Chips
• Keyboard Interface
• Baud Rate Generator for USARTS
• Priority Interrupt Controller

VIDEO BOARD
• 32K Bytes of RAM
• Programmable Video Controller
• Programmable DMA Controller
• PROM Character Sets—Up to 256 Characters
• Enhancements: Reverse Video, Understrike, Intensity, Blink, Suppress
• Interrupt Level Options

An I/O board with up to 5 serial I/O ports is also available; other Multibus™ compatible boards will be available in the near future. Multibus is a trademark of Intel Corporation.

For further information, write or call:
TSD Display Products, Inc. 35 Orville Drive, Bohemia, New York 11716. Tel. 516-589-6800

Letters

BDS C Update

Thank you, BYTE, for the "print" technical note and the larger article on BDS C, by Chris Kern. (See "Printif the C Function Library," May 1981 BYTE page 430, and "The BDS C Compiler," June 1981 BYTE, page 356.) Unfortunately, the items have fallen victim to some time-warp distortion, and several points regarding the package were out of date.

In the print article, reference is made to a clumsy method of passing formal parameters to C functions in which the parameters are copied into absolute locations in memory by the caller and accessed from there by the subordinate function. The parameter-passing mechanism of BDS C has been totally revamped since those days. Currently, all parameters are passed on the stack, and all local (automatic) variables also reside on the stack. Also, a printf that is functionally equivalent to Chris Kern's is now a standard part of the package.

The June review was completely accurate in all technical details, except for the statement that "It's a shame the BDS compiler doesn't go one step further and provide redirected input and output . . ." Actually, the current version of BDS C does include a special-function library for performing both directed I/O (input/output) and pipes in the standard UNIX-like manner. This is a recent addition to the package, and it has the advantage of not wasting any memory if it isn't used, because it's merely a simple set of library functions (written in C, of course).

BDS C users may be interested to know that the compiler has recently been run under the MARC operating system (a UNIX-like system) that the combined package will be available soon from Vortex Technology. MARC further's BD Software's tradition of translating the "best" of UNIX onto 8080- and Z80-based systems. BDS C finally has an operating system it can appreciate, rather than battle.

Leor Zolman
BD Software
33 Lothrop St
Brighton MA 02135
Stop playing games and get organized.

You spent up to $2,500 on computer hardware to make your personal life easier. You didn't spend it just for fun.

Now there's GUARDIAN — the first microcomputer software program that can truly organize your life with ultimate ease and speed.

GUARDIAN is the only program that lets you make a single one-line data entry to remind you...for the rest of your life...of birthdays, oil changes, appointments and any other recurring events. Once an item and its frequency of recurrence is entered, you'll never have to worry about remembering again. Each morning you flip a switch, enter your personal code, and get an instant readout of everything you need to accomplish that day.

Plainly speaking, there's no need for special codes or computer language with GUARDIAN...you talk to it, and it talks right back in plain English. GUARDIAN even tells you how to enter data and correct errors with step-by-step on-line instruction through its built-in video display manual. The printed manual that comes with GUARDIAN is also complete and easy-to-understand.

Years Ahead

GUARDIAN lets you organize everything you need to do today for years to come. The single-line entries are easy to make, and can even be set to flag you several days in advance of the event.

Advance To Go

GUARDIAN is programmed to automatically advance and schedule appointments, PTA meetings, vacation schedules, tax deadlines and other activities indefinitely, until you cancel the entry. GUARDIAN's internal calendar adjusts itself from year to year.

Protects Your Interests

GUARDIAN is as easy to use as pencil and paper, but its memory can't be lost or erased by accident. System failure and operator error are protected by automatic file closure. Password protection keeps your files confidential.

GUARDIAN's disk has the storage capacity to organize up to 2,000 separate events for 200 people at the same time.

Yes... I want to put GUARDIAN to work for me, to receive maximum efficiency and ease in organizing my personal life with my microcomputer.

NAME
ADDRESS
CITY STATE ZIP

I have enclosed $119.95 to avoid delays and handling charges.

☐ Check ☐ Money Order Face includes tax, handling and shipping (except C.O.D. Orders).
☐ C.O.D. (If delivery address is different than above, please specify)

Please specify one: ☐ 5 1/4-Inch disk ☐ 8-Inch disk
Please specify one: ☐ CP/M® Operating System ☐ TRS-80® Operating System

TIME MANAGEMENT SOFTWARE
123 E. Broadway
P.O. Box 722
Cushing, Oklahoma 74023

* Registered Trademark of Digital Research, Inc. ** Registered Trademark of Tandy Corp

The GUARDIAN program is recommended for use with any soft disk drive system with 48k memory or more, and operates on any CP/M®-based system or the TRS 80** (Model I, II or III). Programs are available on standard 5 1/4- or 8-inch disk, with storage sleeve. $119.95.

GUARDIAN is available directly from Time Management Software, and is not sold through any store, catalog or other source. To order GUARDIAN call one of our toll-free numbers or return the order blank below.

Call now toll free to order (Ask for operator 601)

1-800-824-7888 (nationwide, except California, Alaska and Hawaii)

1-800-852-7777 (in California)

1-800-824-7919 (in Alaska and Hawaii)
Letters

Points on Printers

In connection with the review “The Epson MX-80 and MX-70 Printers” (see the May 1981 BYTE, page 22), the following specific comments may be of interest:

- The MX-80 offers four rather than three character densities. The fourth is the double-width reduced character. It is produced by an SO (shift-out) code when an SI (shift-in) code is in effect. The resulting density is 3.25 characters per cm (8½ per inch).
- A fourth character style can be obtained by transmitting codes for both boldface and emphasized. The result is a character heavier in both horizontal and vertical lines.
- Line spacings of less than ¼ of an inch on the MX-80 are overridden when graphic characters are present. In our experience, even a single graphic character in a line will cause the line feed to default to ¼ of an inch. (This phenomenon is not covered in the user’s manual.)
- The annoying buzzer on the MX-80 can be turned off by use of internal switch 1-6.
- The MX-70 (even though its character matrix is 5 by 7) produces a graphic matrix of 480 by 8 pixels per line.

As for the Apple II interface, which does not transmit the high bit and, hence, the graphic characters, the peculiarity lies in the Epson-designed interface, rather than the Apple’s memory. Our company produces and distributes an interface for the Apple II and the Epson printers that transmits all bits and all characters. We also produce a firmware printer-support card for the Apple II. In conjunction with our interface, this card will (in addition to many other functions) produce a low-resolution graphic dump on the MX-80 using the graphic characters and a high-resolution graphic dump on the MX-70, which is printed as eight graphic lines on each pass.

Amnon Katz
President
Inverted-A Inc
401 Forrest Hill Ln
Grand Prairie TX 75051

I have just purchased the MX-70 version of Epson’s printer, and I would like to make two comments on the May 1981 BYTE article.

First, the MX-70 can print with eight points, not seven, which means that with special software it is possible to print lowercase descenders by utilizing the graphics mode.

Second, the Epson interface card for the Apple II computer has a link option for the most-significant bit that must be changed to allow this bit to get to the printer. The graphics mode requires a true 16-bit (2-byte) argument to instruct the printer as to how many bytes are to be interpreted as points on the print head. Also, a complete byte is required to define which print hammer is to strike. Before I discovered this, I had some weird effects every time I tried the graphics mode.

I think the graphics mode is the most significant part of the MX-70 because it allows a large number of extra features to be defined by the user:

- special-character sets
- proportional spaces between characters
- proportional spaces between words
- overstrike, and
- underlining

Bruce Piggott
725 Flower City Pl
Rochester NY 14615

Changing Names

Gary Stotts’s Apple Name-Address program is so useful that I made a modification for my own purpose. (See the April 1981 BYTE, page 32.) Although there is a way to change the address and telephone number of a person listed on the file, there is no way of changing a person’s name. There may be reason to change the person’s name: marriage, for example. I have added a few lines to the program to do just that. (See listing 1.)

Gino J Piazza
49 Browndale Pl
Port Chester NY 10573

Listing 1

1176 PRINT: INPUT "NEW:";N$:I
1177 IF LEN (N$:I) < 1 THEN 1175

Credit Due

We inadvertently omitted the credit line for the photographer responsible for the photographs in “A Look at NCC ’81” (September 1981 BYTE). We apologize to Richard Faverty.
Announcing the WICAT 68000 Microcomputer System 150.

Standard Equipment
- 68000 Processor
- 256KB RAM
- 10 MB Winchester
- 5¼" Floppy Disk Backup
- 2 RS-232 C Serial Interfaces
- Parallel Printer Port
- WICAT Operating System
- Multibus™
- Choice of One Language

Hardware Options
- Battery Backup
- Communications: Auto
- Answer and Auto Dial
- 1200 Baud
- Graphics CRT
- Videodisc Interface

Language Support
- PASCAL
- C
- FORTRAN
- BASIC
- APL
- COBOL
- ADA
- LISP
- Assembler

Call or write WICAT Systems for additional information.

UNIX™, UNIX is a trademark of Bell Labs. Multibus is a trademark of INTEL.

WICATsystems
P.O. Box 539 1875 South State Street Orem, Utah 84057 801/224-8400
Circle 409 on inquiry card.
IBM (International Business Machines Corporation) has at last introduced the keenly anticipated IBM Personal Computer. Based on Intel Corporation’s 8088 microprocessor, the new machine is slated to appear in stores this month, with various hardware options, at prices ranging from $1565 to more than $5000. Color graphics are built in, and up to 256 K bytes of user memory may be installed.

The hardware is impressive, but even more striking are two decisions made by IBM: to use outside software suppliers already established in the microcomputer industry, and to provide information and assistance to independent, small-scale software writers and manufacturers of peripheral devices.

The list of software sources includes Microsoft, Digital Research, Personal Software, Peachtree Software, Softech Microsystems, and Information Unlimited Software. For hardware configurations including floppy-disk
The BOS M System: The Universal Donor

The BOS M Card is the heart of the M System. It is designed to be IEEE 5-100 bus compatible for universal system use. Virtually all elements of a computer mainframe now reside on one S-100 card — Z-80A CPU, 64K of 200ns RAM (no wait states), 4K 250ns EPROM, Winchester Disk I/O port, two RS-232 serial ports, system port, floating point processor, and parallel I/O. The same M Card can be used in single-user, multi-user, or even multi-processor systems.

Second Generation Multi-Processor. With the BOS M Card, multi-processing is finally free of the Master/Slave and handshaking parameters so prevalent in first generation multiprocessors. Inter-system communications are FIFO buffered; the old "Master" is now a slave to the user, and the system functions without "S-100 bus overrun" or system generated wait states.

The Universal Processor is now a reality! As a single-user system, the BOS M is unmatched in performance (up to ten times the speed of other microcomputers). As a multi-user system, this power can be translated into a low cost multi-terminal capability. As a multi-processor, the system leaves the realm of "microcomputer" and competes in performance with a minicomputer! You can start with a single-user computer and expand to a multi-user/multi-processor computer system when needed.

The Universal Product. BOS has what you need — anything from a single M Card to a complete turnkey computer system. Diskette, rigid disk, tape and telecommunications sub-systems are all available. Compatible software includes CP/M®, MP/M®, CP/NET®, BOS/TURBO/DOS, complete monitor, languages, application packages, and more!

Dealer and OEM Inquiries Welcome

BOS

Business Operating Systems, Inc.
2835 East Platte Avenue
Colorado Springs, Colorado 80909
In Colorado Call: (303) 834-5341
Toll Free Number: 1-800-525-3898

The BOS M System does what a Universal Donor must do — it provides high performance for all system types: single-user, multi-user, and multi-processor. M Systems start at less than $5,000.00 for a single-user computer with dual 8” double density diskette drives.
drives, IBM will sell three different disk operating systems: CP/M-86 from Digital Research, the UCSD p-System from Softtech Microsystems, and IBM Personal Computer DOS, developed by Microsoft in imitation of CP/M. IBM isn’t trying to force the world to choose between the IBM DOS and other popular operating systems. The published documentation of IBM Personal Computer DOS will include the source-code listing of the BIOS (basic input/output system), and of the diagnostic programs executed automatically when the computer is turned on.

The hardware uses an interconnection scheme different from the industry-standard 5-100 bus, but IBM doesn’t want to exclude anyone from developing plug-compatible printed-circuit boards for installation in any of the vacant expansion slots inside the chassis. In fact, the company plans to publish a hardware manual with drawings and industry-standard specifications. IBM’s attitude toward support for independent hardware and software efforts was summarized by Don Estridge, Director of Entry Systems Business for the IBM Personal Computer. “IBM will provide information for the existing cottage industry to design boards,” Estridge said. “We’re open to any software proposals.”

General System Characteristics

The entry-level version of the IBM Personal Computer consists of the System Unit, which contains the 8088 microprocessor, a 40 K-byte built-in ROM (read-only memory) containing the extended version of Microsoft BASIC, a built-in speaker that can be programmed to play music, a power-on automatic self-test of system components, 16 K bytes of user memory in the form of semiconductor RAM (random-access read/write memory), a combination video-monitor and printer adapter, and empty space for two 5-inch floppy-disk drives. In this minimal configuration, the system uses an audio-cassette recorder for mass storage and an ordinary television set as a video monitor.

Not including the cassette recorder and monitor, the minimal system will sell for $1565. With a single 5-inch, 160 K-byte floppy-disk drive and 64 K bytes of user RAM, the price increases to $3005. An expanded business system with powerful color graphics, two floppy-disk drives, and an IBM-labeled Epson MX-80 dot-matrix printer costs $4500. In addition to the 40 K-byte ROM, the system has a 16 K-byte RAM buffer for graphics operations. None of the user memory is required by the system software.

DATAFACE GRQ SERIES INTERFACE

TURNS YOUR ELECTRONIC TYPEWRITER INTO A PRINTER/TYPewriter

The Dataface GRQ-11 Interface expands your Olympia ES Series electronic typewriter into a letter press quality printer for your personal or business computer. And, you still have a fully featured electronic typewriter—two machines in one.

The GRQ Series Interface features:

2. Standard asynchronous ASCII code, 7 bit data; 1 start bit; accommodates 1 or 2 stop bits automatically; accommodates odd, even or absence of parity bit.
3. Fifty thru 9600 Baud data rate options.
4. Two K buffer; supports X-on, X-off protocol as well as RTS signals.

5. Circuit board is installed inside typewriter back panel along side logic board. The connection between boards accomplished by 40 pin jumper cable using existing socket. No soldering required. Power is provided to the GRQ thru two pins of the 40 lead cable. Installation in 10 minutes.

End user, Dealer, Distributor and OEM inquiries are welcome. For additional details, specifications and computer compatibility contact:

DATAFACE INC.

2372 A WALSH AVE., SANTA CLARA, CA 95050

(408) 727-6704

Circle 111 on inquiry card.
The 2nd Generation is here!

MEASUREMENT systems & controls proudly introduces its new and exciting "2nd Generation" family of S-100* compatible products. Each has been specifically designed for use with multi-user and network operating systems such as MP/M, CP/NET, and OASIS. Every product is fully tested and burned-in, comes with a 1 year guarantee, and offers you features not currently available from any other source.

Z80 PROCESSOR BOARD — The most powerful CPU board available today. Outstanding features include 4MHz operation, high-speed serial and parallel I/O utilizing DMA or programmed control, eight vectored priority interrupts, and a real time clock.

MULTI-USER SERIAL I/O BOARD — For use in expanded systems requiring up to eight additional serial I/O ports. Features include: 16 maskable vectored priority interrupts, RS-232C interfaces with full handshake, asynchronous or synchronous operation with asynchronous baud rates to 19,200. Available in four or eight channel versions.

DOUBLE DENSITY FLOPPY DISK CONTROLLER BOARD — controls up to four 5¼-inch or 8-inch disk drives using IBM soft sectored formats. It features 1K of on-board buffering, DMA controlled data transfers and the performance characteristics of the superior NEC 785 chip.

64K BANK SELECTABLE MEMORY BOARD — Features include I/O port addressing for bank select with 256 switch selectable I/O ports for the memory bank addressing. The memory is configured as four totally independent 16K software-selectable banks, with each bank addressable on any 16K boundary.

*All products meet the new IEEE standards.

See your nearest computer dealer, or contact us for the complete story on The 2nd Generation.
Plug-in circuit cards of user RAM are available in three denominations: 16 K bytes ($90), 32 K bytes ($325), and 64 K bytes ($540). The user can increase the memory capacity to 256 K bytes using the available IBM boards and slots. (Outside companies could make a single memory board containing 256 K bytes of RAM, or expansion boards that contain even more.) All user memory is 9-bit, with one bit devoted to parity check. An edge connector on the back of the System Unit looks as if it is longing for a hard-disk drive, but IBM is mum on that possibility.

The 8088 processor communicates with memory and peripheral devices through an 8-bit data bus, but conducts its internal affairs using the 16-bit instruction set of Intel's 8086 microprocessor. In the IBM Personal Computer, the 8088 operates at 4.77 MHz, with a cycle time for main storage of 410 nanoseconds; for access, the cycle time is 250 nanoseconds.

Together, the System Unit, keyboard, and a monitor make a very smart, full-feature terminal. A six-foot coiled cable connects the separate keyboard to the System Unit. You can adjust the keyboard's tilt toward you when it rests on a desktop, or you can hold it in your lap. The system supports both uppercase and lowercase characters, and all 83 keys have automatic repeat. Ten keys on the right side are for a numeric keypad and cursor controls, and ten special-function keys can be used for editing. The keyboard provides access to 256 characters, including all the ASCII (American Standard Code for Information Interchange) characters and many other characters useful for producing virtually any sort of graphics display.

IBM sells an 11½-inch green-phosphor video monitor for $345. The monitor displays 25 lines of 80 characters each. You can adjust brightness and contrast or use soft-
20 MByte Winchester Hard Disk with Tape Backup

The SYSTEM 2800, designed for business, industrial and educational applications, is now available with a 20 MByte Winchester Hard Disk and a 20 MByte Tape Drive for disk backup. Created to be innovative and competitive, the SYSTEM 2800 utilizes our existing line of field-proven and dependable "2nd Generation" S-100 Memory, Z80 Processors, Disk Controllers and Serial I/O boards.

As a family of expandable microcomputers intended for single- and multi-user applications based on CPM®, MP/M® and OASIS™, the SYSTEM 2800 contains many big system features. Outstanding characteristics such as FAST operation make it a clear market leader. In fact, the SYSTEM 2800 is one of the fastest Z80-based systems recently benchmarked by Interface Age magazine.

Other features include the capability to BOOT from any drive including the hard disk, and extensive error recovery. The error recovery prompt the user with detailed error messages and prevents system lock up, all too common to many other systems.

Designed for easy service, the SYSTEM 2800 comes with two 8-inch drives: a choice of single or double sided, double density floppy disk up to 2.52 MBytes of formatted storage; 10 or 20 MByte Winchester hard disk; and 20 MByte tape drive for disk backup.

These enhanced features result in a highly reliable, quality built, state-of-the-art microcomputer that gives you the cost/performance edge you need to be a leader in your field.

Dealers, OEM's and System Integrators share these common needs. Not the least of these is dependable products. That's why we back our SYSTEM 2800 with our established reputation for high quality, superior support, prompt and courteous service, an inclusive one-year warranty and comprehensive dealer support program.

Take the next logical step. See your nearest computer dealer, or contact us for the complete story on our S-100 family of board products and enhanced systems.

Systems Group
1661 Orange Grove Avenue
Orange, Calif. 92668
(714) 633-4160 (FAX) 633-4162

CP/M® and MP/M® are registered trademarks of Digital Research
OASIS™ is a trademark of Power One Systems, Inc.
An giant's determination to develop quickly into a major presence and service support 16 foreground and eight background colors. In force in the microcomputer market. Beginning this month, the company is marketing the Personal Computer nationwide in four ways:

- through Computerland retail stores
- through Sears, Roebuck and Company's new business-machine stores (IBM will train the Sears sales personnel)
- through a special sales unit in the IBM Data Processing Division (for high-volume sales)
- through IBM Product Centers, which will make provisions for installment purchases

Only four Product Centers exist now, but IBM has selected many more cities around the country as sites for future centers. "In the course of the next two years," said C B Rogers, Jr, IBM vice president and group executive of the General Business Group, "we expect to be fairly well represented."

IBM will offer a 5 percent discount on sales of 20 to 49 units, 10 percent on sales of 49 to 150 units, and 15 percent on sales of 151 units or more. Educational institutions will also receive discounts.

Sales and Service

IBM's sales and service strategies show the computer giant's determination to develop quickly into a major force in the microcomputer market. Beginning this month, the company is marketing the Personal Computer nationwide in four ways:

- through Computerland retail stores
- through Sears, Roebuck and Company's new business-machine stores (IBM will train the Sears sales personnel)
- through a special sales unit in the IBM Data Processing Division (for high-volume sales)
- through IBM Product Centers, which will make provisions for installment purchases

Only four Product Centers exist now, but IBM has selected many more cities around the country as sites for future centers. "In the course of the next two years," said C B Rogers, Jr, IBM vice president and group executive of the General Business Group, "we expect to be fairly well represented."

IBM will offer a 5 percent discount on sales of 20 to 49 units, 10 percent on sales of 49 to 150 units, and 15 percent on sales of 151 units or more. Educational institutions will also receive discounts.

Sales and Service

IBM's sales and service strategies show the computer giant's determination to develop quickly into a major force in the microcomputer market. Beginning this month, the company is marketing the Personal Computer nationwide in four ways:

- through Computerland retail stores
- through Sears, Roebuck and Company's new business-machine stores (IBM will train the Sears sales personnel)
- through a special sales unit in the IBM Data Processing Division (for high-volume sales)
- through IBM Product Centers, which will make provisions for installment purchases

Only four Product Centers exist now, but IBM has selected many more cities around the country as sites for future centers. "In the course of the next two years," said C B Rogers, Jr, IBM vice president and group executive of the General Business Group, "we expect to be fairly well represented."

IBM will offer a 5 percent discount on sales of 20 to 49 units, 10 percent on sales of 49 to 150 units, and 15 percent on sales of 151 units or more. Educational institutions will also receive discounts.

At a Glance

<table>
<thead>
<tr>
<th>Product Name</th>
<th>The IBM Personal Computer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>International Business Machines Corporation</td>
</tr>
<tr>
<td>Information Systems Division</td>
<td></td>
</tr>
<tr>
<td>Entry Systems Business</td>
<td></td>
</tr>
<tr>
<td>POB 1328</td>
<td>Boca Raton FL 33432</td>
</tr>
<tr>
<td>When Available</td>
<td>October 1981</td>
</tr>
<tr>
<td>Where Available</td>
<td>Sears, Roebuck and Company's business-machines stores</td>
</tr>
<tr>
<td></td>
<td>Computerland stores</td>
</tr>
<tr>
<td></td>
<td>IBM Product Centers</td>
</tr>
<tr>
<td></td>
<td>IBM Data Processing Division (volume sales)</td>
</tr>
<tr>
<td>Components</td>
<td>System Unit</td>
</tr>
<tr>
<td></td>
<td>Size: width 20 inches, depth 16 inches, height 5.5 inches; weight (without disk drives) 21 pounds, (with two disk drives) 28 pounds</td>
</tr>
<tr>
<td></td>
<td>Electrical needs: 120 VAC</td>
</tr>
<tr>
<td></td>
<td>Processor: Intel 8088</td>
</tr>
<tr>
<td></td>
<td>Cycle Time: main storage, 410 nanoseconds; access, 250 nanoseconds</td>
</tr>
<tr>
<td></td>
<td>Memory: 40 K bytes of built-in ROM (read-only memory); 16 K bytes of user RAM (random-access read/write memory); expandable to 256 K bytes</td>
</tr>
<tr>
<td></td>
<td>Standard: keyboard for data and text entry; audio-cassette recorder connector; five expansion slots for memory, display, printer, communications, and game adapters; built-in speaker for music programming; power-on automatic self-test of system components; BASIC-language interpreter; 16 K bytes of user RAM (all user RAM is 9-bit parity memory)</td>
</tr>
<tr>
<td></td>
<td>Keyboard: 83 keys for data and text entry, 10 keys for numeric entry and cursor control, 10 special function keys, and ASCII characters and special graphics characters (total 256 characters); automatic repeat on all keys; adjustable typing angle; detachable six-foot coil cable</td>
</tr>
<tr>
<td></td>
<td>Disk drives: up to two 3-inch floppy-disk drives, 160 K bytes each</td>
</tr>
<tr>
<td>Operating Systems</td>
<td>IBM Personal Computer DOS (Microsoft)</td>
</tr>
<tr>
<td></td>
<td>CP/M-86 (Digital Research)</td>
</tr>
<tr>
<td></td>
<td>UCSZ p-System (Softech Microsystems)</td>
</tr>
<tr>
<td>Software Available for IBM Personal Computer DOS</td>
<td>BASIC interpreter (Microsoft) standard; extended BASIC interpreter (Microsoft) $40; Pascal compiler (Microsoft) $300; VisiCalc (Personal Software) $200; Easywriter (Information Unlimited Software) $175; General Ledger, Accounts Receivable, Accounts Payable (Peachtree Software) $95 each; asynchronous communications support $40; Adventure (Microsoft) $30</td>
</tr>
<tr>
<td>Hardware Prices</td>
<td>System Unit, 16 K-byte RAM, keyboard $1265</td>
</tr>
<tr>
<td></td>
<td>System Unit, 48 K-byte RAM, keyboard single floppy-disk drive, disk-drive adapter 2235</td>
</tr>
<tr>
<td></td>
<td>Monochrome video display 345</td>
</tr>
<tr>
<td></td>
<td>Combination monochrome-display adapter and printer adapter 335</td>
</tr>
<tr>
<td></td>
<td>Color-graphics-monitor adapter 300</td>
</tr>
<tr>
<td></td>
<td>16 K-byte memory-expansion kit 90</td>
</tr>
<tr>
<td></td>
<td>32 K-byte memory-expansion kit 325</td>
</tr>
<tr>
<td></td>
<td>64 K-byte memory-expansion kit 540</td>
</tr>
<tr>
<td></td>
<td>Disk-drive adapter 220</td>
</tr>
<tr>
<td></td>
<td>Disk drive (5-inch floppy disks) 570</td>
</tr>
<tr>
<td></td>
<td>Asynchronous communications adapter 150</td>
</tr>
<tr>
<td></td>
<td>Game-control adapter 55</td>
</tr>
<tr>
<td></td>
<td>Keyboard 270</td>
</tr>
</tbody>
</table>
The guy on the left doesn't stand a chance.

The guy on the left has two file folders, a news magazine, and a sandwich.

The guy on the right has the OSBORNE 1®, a fully functional computer system in a portable package the size of a briefcase. Also in the case are the equivalent of over 1600 typed pages, stored on floppy diskettes.

The owner of the OSBORNE 1 is going to get more work done—and better work done—in less time, and with less effort.

Unfold it, plug it in, and go to work like you've never worked before...

Go to work with WORDSTAR® word processing, so your correspondence, reports, and memos take less time to produce, and say more of what you wanted to say. And with MAILMERGE®, the mailing system that turns out personalized mass mailings in the time you'd spend on a rough draft.

Go to work with SUPERCALC®, the electronic spreadsheet package that handles complex projections, financial planning, statistics, and "what if" questions instantly. For the more technically minded, SUPERCALC will process scientific data and calculate results.

Go to work with powerful BASIC language tools—the CBASIC-2® business BASIC, or the Microsoft BASIC® interpreter.

That's standard equipment.

Options include about a thousand different software packages from a host of vendors designed to run on the CP/M® computer system.

Go to work at the office, at home, or in the field.

Or anywhere. Optional battery packs and telephone transmission couplers mean you need never work without the capabilities of the OSBORNE 1. That's good, because you won't want to work again without it.

All for $1795. It's inevitable.

The OSBORNE 1 is the productivity machine that's changing the way people work. Put simply, the machine delivers a significant productivity edge—day in and day out—to virtually anyone who deals with words or numbers. Or both.

Since the entire system is only $1795, it won't be too long before the guy on the left has an OSBORNE 1 of his own. The same probably goes for the person reading this ad. In fact, we think it's inevitable.

The OSBORNE 1 includes a Z80A® CPU, 64K bytes of RAM memory, two 100 kilobyte floppy disk drives, a business keyboard, built-in monitor, IEEE 488 and RS232 interfaces for printers and other things that get connected to computers, plus CP/M, CBASIC-2, Microsoft BASIC, WORDSTAR, and SUPERCALC. The system is available from computer retailers nationally.

$1795. It's inevitable.

OSBORNE COMPUTER CORPORATION
26500 Corporate Avenue Hayward, California 94545
Phone (415) 887-8080 TWX (910) 383-2021
IBM's service plans should meet or exceed those offered by other microcomputer manufacturers. For a start, IBM offers a 90-day warranty. Owners can extend warranties to a full year for between 7 and 9 percent of the purchase price of various system components, or buy annual service contracts for 10 to 15 percent of the purchase price of components. For example, an extended warranty for the System Unit costs $88; a maintenance contract for the System Unit costs $112. For the System Unit, disk drive, and disk-drive adapter, an extended warranty costs $154, and a maintenance contract costs $196.

Service will be available at Sears, Computerland, and from the IBM Product Centers, regardless of where you bought the computer. Service contracts with the IBM Product Centers call for exchange of major system components. IBM will send a replacement keyboard, printer, or System Unit by courier within 48 hours of the owner's call.

Three Ways to Generate Software

Recognizing the advantage that an existing broad software base gives to CP/M-compatible, Radio Shack, and Apple computers, IBM plans to meet the problem head-on with a three-part strategy.

First, when the Personal Computer reaches stores this month, it will be accompanied by a software offer including some application programs ready to run with IBM DOS. Here's a quick look at what IBM is offering:

- IBM Personal Computer DOS. This CP/M look-alike from Microsoft offers the familiar "A>" prompt character along with features for copying files and disks, comparing files and disks, initializing disks, displaying a directory, renaming files, and other housekeeping chores. Although it has a debugger and a line editor, IBM DOS does not yet have an assembler. It seems safe to speculate that Microsoft is hard at work on that.
- a cassette-level enhanced Microsoft BASIC interpreter that supports input/output instructions, use of the keyboard, display, light pen, and printer, and many editing and mathematical functions.
- a disk-level Microsoft BASIC that provides extensions including more powerful graphics, date and time-of-day functions, and communication capabilities; the enhanced graphics include such features as point, circle, and get/put display, and increased light-pen support for design work ($40)
- a Pascal compiler, also from Microsoft ($300)
- VisiCalc, the electronic-worksheet program from Personal Software
- Easywriter, the word-processing program from Information Unlimited Software ($175)
- an asynchronous communications program ($40) (This is written in BASIC and is menu-driven; the menu includes an option for the Dow Jones Information Services, another for The Source, and another for teletypewriter-like communications. IBM soon will also offer a full subset of Model 3270 emulation capabilities so that the Personal Computer can appear to larger IBM systems as an IBM 3270 terminal.)
- general-ledger, accounts-payable, and accounts-receivable packages, from Peachtree Software, but with color and other enhancements for ease of use ($595 each)
- Adventure, the fantasy-simulation game, from Microsoft ($30)

The second part of IBM's software-development strategy is to offer Digital Research's CP/M-86 operating system and Softtech Microsystem's UCSD p-System (which includes UCSD Pascal). Purchasers of these operating systems will have access to many third-party programs as they become available. IBM says it expects the availability of these operating systems to provide the opportunity for many current applications to be transferred to the IBM Personal Computer with minimal modifications. This approach will enable owners of the IBM Personal Computer to use a tremendous amount of software originally written for other common machines. Users can have everything that IBM offers without giving up software for the other two operating systems.

The third part of the IBM software strategy is to establish its own Personal Computer Software Publishing Department. The new department will solicit software from outside authors, both professional and amateur. IBM will send software-submission information packets to anyone who writes to IBM Personal Computer Software Submissions, Dept 765, Armonk NY 10504. IBM will also encourage its employees to write software for the personal computer (on the employees' own time). Authors will receive quarterly royalties based on actual sales.

A Shaking Out?

For those of us who dislike giants, the IBM Personal Computer comes as a shock. I expected that the giant would stumble by overestimating or underestimating the capabilities the public wants and stubbornly insisting on incompatibility with the rest of the microcomputer world.

But IBM didn't stumble at all; instead, the giant jumped leagues in front of the competition. Although the IBM Personal Computer has not (as of this writing) reached store shelves, it already seems to hold a firm position in the field. Its prices seem to compare favorably with available 16-bit S-100 systems. Furthermore, the cost of an IBM Personal Computer configured for word processing is not much more than that of an Apple II Plus, an Intertec Superbrain, or most other 8-bit machines fully equipped for word processing. A superior machine from the start, the IBM Personal Computer should grow in capability as outside vendors begin producing peripheral devices and add-on hardware for special applications.

In fact, the only disappointment about the IBM Personal Computer is its dull name. One rumor claimed that IBM referred to this computer internally as the Acorn. To me, it looks more like a Mighty Oak.
Penny wise and software foolish. One of the best ways to cheat your business is to waste a whole lot of time on solutions that don’t work, or that can’t grow with your business. And frankly, we get phone calls every day from computer users who’ve tried to get by on “bargain” software, and found that “bargain” software is the most expensive kind a business can own.

Here’s a fact: if you have a real need for a computer in any of these areas: General Ledger Accounts Receivable Accounts Payable Order Entry Inventory Control Payroll, any business software less than Structured Systems Financial Software is cheating your business. You’ll cheat yourself out of lots of time. Time spent with systems which aren’t designed for high volume use. You’ll cheat yourself out of reliable audit controls and reliable error prevention features. Out of the training you invest in a system you outgrow when you need to add more disk storage, more customers, more data. You’ll be cheating yourself out of a software bargain in the truest sense of the word—the greatest value for your dollar.

CP/M® microcomputer systems can do the job of minicomputers. Structured Systems software makes that potential a reality. Right now, hundreds of businesses are profiting from the financial controls and operating efficiency of SSG financial software. So can yours.

Structured Systems Group

5204 Claremont, Oakland, California 94618 (415) 547 1567

CP/M is a registered trademark of Digital Research.

Circle 351 on inquiry card.
Longtime followers of the activities in Ciarcia's Circuit Cellar may remember an incident I wrote about a few years ago. My friend Jerry needed to program an EPROM (erasable programmable read-only memory) device in a hurry for a demonstration at his computer club. The EPROM-programming arrangement we devised gave me the idea for the article "Program Your Next EROM in BASIC" (March 1978 BYTE, page 84), in which I presented a design for an inexpensive programming circuit and told how to drive it with software written in a high-level language.

EPROM technology has advanced considerably since then. In 1978, the type-2708 EPROM chip, which requires a three-voltage power supply, was just becoming established, replacing the hard-to-program type-1702 EPROM device. Not only was the 2708 easier to program, it also held more data: 1 K (1024) 8-bit words, compared to 256 8-bit words stored by the 1702 EPROM.

The 2708 EPROM has been replaced in most new designs by the single-voltage type-2758 EPROM, and a number of higher-capacity devices that require only a single-voltage power supply have been developed and made available by several manufacturers. These are the type-2716 (2 K 8-bit words, or 16 K bits), type-2732 (4 K 8-bit words), and type-2764 (8 K 8-bit words) EPROMs. The 2716 has become especially popular, partly because its 2 K bytes are sufficient memory space for storing most bootstrap loaders, command monitors, and simple utility programs; and partly because the 2716 is usually priced under $10.

The 2758, 2716, and 2732 EPROMs are members of the same family of components, sharing a common pinout specification. With only minor modifications to the wiring, a designer can allow different-capacity memory devices to be plugged into the same socket on a circuit board. This versatility also means the same basic circuit can serve in several applications.

My previous article on EPROMs suggested using an interpreted BASIC
program to drive the EPROM-programming circuit. This idea did work, but it took a long time to program a 2708 EPROM. If you wanted to program more than a few 2708s, you would have been wise to pack a box lunch for the occasion. The BASIC program demonstrated the algorithm for programming an EPROM, but a machine-language driver program was needed for practical large-scale EPROM programming.

The slow speed for programming, or "burning," 2708s this way results from the need to iterate the write pulse 100 times for each byte location. Each byte in the 2708 must be written for at least 100 ms (milliseconds) to assure stability of the stored data. However, this 100 ms duration must consist of 100 separate, pulsed write sequences, each lasting only 1 ms. All 1024 byte locations must be addressed in sequence while a +25 V programming pulse is applied for 1 ms for each address. The cycle is then repeated 100 times.

The 2716, on the other hand, requires only one loop through all the addresses, instead of 100 loops. While each location is being addressed, a 50 ms programming pulse is applied, usually timed by a one-shot (monostable multivibrator). The 50 ms, single-loop programming conditions fall well within the speed capabilities of BASIC, and no machine-language driver routine need be written for serious use.

Using a program essentially the same as the one presented in the original article (running under an 8 K BASIC interpreter on a Z80 microprocessor with a 2.5 MHz clock rate), a 2716 can be completely burned in 154 seconds, requiring 75 ms per location. The minimum time required with a machine-language driver is 103 seconds, or 50 ms per location. The difference is hardly noticeable.

Because EPROMs are so widely used, I thought it was about time to write another article on them, featuring the 2716. First, I'll discuss why EPROMs are used and how they work, and then I'll describe the design of my new EPROM-programming circuit.

What is different about this new circuit? I decided to "unbundle" the system and design the EPROM programmer as a stand-alone, intelligent unit. By incorporating the Z8-BASIC Microcomputer (my July-August Circuit Cellar project), we can easily put together a stand-alone 2716 programmer with capabilities that rival those of units costing ten times as much. (See "Build a Z8-Based Control Computer with BASIC, Part 1," July 1981 BYTE, page 38, and "Part 2," August 1981 BYTE, page 50.)

Whys and Wherefores of EPROM

A personal computer, even in its minimum configuration, always contains some user-programmable memory or RAM (random-access read/write memory), usually in the form of semiconductor memory integrated circuits. This memory can contain both programs and data. Any machine-word-level storage element within the memory can be individual-ly read or modified (written) as needed.

Any of several kinds of electronic components can function as bit-storage elements in this kind of memory. TTL (transistor-transistor logic) type-7474 flip-flops, bistable relays, or tiny ferrite toroids (memory cores) are suitable, but all cost too much, are hard to use, and have other disadvantages.

In personal-computer and other microprocessor-based applications, the most cost-effective memory is made from MOS (metal-oxide semiconductor) integrated circuits. Unfortunately, data stored in these semiconductor RAMs is volatile. When the power is turned off, the data is lost. Many ways of dealing with this problem have been devised, with essential programs and data usually stored in some nonvolatile medium.

In most computer systems, some data or programs are stored in nonvolatile ROM (read-only memory). A semiconductor ROM can be random-

Photo 2: Closeup of the EPROM programmer. On the right is the Z8-BASIC Microcomputer circuit board with the program-controller software resident in the onboard EPROM. On the left is the prototype type-2716 EPROM programming interface. It includes a control panel, an operator display (LEDs), a zero-insertion-force EPROM socket, and a 4 K-byte buffer memory.
ly accessed for reading in the same manner as the volatile memory, but the data in the ROM is permanent. In a mask-programmed ROM, the data that can be read is determined during the manufacturing process. Whenever power is supplied to the ROM, this permanent data (or program) is available. In small computer systems, ROM is chiefly used to contain operating systems and/or BASIC interpreters—programs that don’t need to be changed.

Another type of ROM is the PROM (programmable read-only memory). A PROM component is delivered from the factory containing no data. The user decides what data he wants it to contain, and permanently programs it with a special programming device. Once initially programmed, PROMs exhibit the characteristics of mask-programmed ROMs. You might label such PROMs as “write-once” memories.

The ultraviolet-light-erasable EPROM is a compromise between the “write-once” kind of PROM and the volatile memory. You can think of the EPROM as a “read-mostly” memory, used in read-only mode most of the time but occasionally erased and reprogrammed as necessary. The EPROM is erased by exposing the silicon chip to ultraviolet light at a wavelength of 2537 angstroms. Conveniently, most EPROM chips are packaged in an enclosure with a transparent quartz window. (I once wrote about a different kind of “read-mostly” memory, the EAROM: electrically alterable read-only memory. An EAROM is erased by purely electrical means, without resorting to ultraviolet light. See “Add Non-volatile Memory to Your Computer,” December 1979 BYTE, page 36.)

How the EPROM Works

EPROMs made by Intel Corporation and several other manufacturers store data bits in cells formed from stored-charge FAMOS (floating-gate avalanche-injection metal-oxide-semiconductor) transistors. Such transistors are similar to positive-channel silicon-gate field-effect transistors, but with two gates, as shown in figure 1a. The lower, or “floating,” gate is completely surrounded by an insulator layer of silicon dioxide, and the upper “control” or “select” gate is connected to external circuitry.

The amount of electric charge

<table>
<thead>
<tr>
<th>Pins</th>
<th>Output</th>
<th>OE/PGM (16)</th>
<th>OE (20)</th>
<th>VR (21)</th>
<th>VCC (24)</th>
<th>Outputs (9-11,13-17)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read</td>
<td>VA</td>
<td>VA</td>
<td>+5</td>
<td>+5</td>
<td>DOUT</td>
<td></td>
</tr>
<tr>
<td>Standby</td>
<td>VSS</td>
<td>Don't care</td>
<td>+5</td>
<td>+5</td>
<td>DOUT</td>
<td></td>
</tr>
<tr>
<td>Program</td>
<td>Pulsed VA</td>
<td>VA</td>
<td>+25</td>
<td>+5</td>
<td>DOUT</td>
<td></td>
</tr>
<tr>
<td>Program Verify</td>
<td>VA</td>
<td>VA</td>
<td>+25</td>
<td>+5</td>
<td>DOUT</td>
<td></td>
</tr>
<tr>
<td>Program Inhibit</td>
<td>VA</td>
<td>VA</td>
<td>+25</td>
<td>+5</td>
<td>DOUT</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Voltages present at specified pins of the 2716 during the five modes of operation. VA must be in the range -0.1 V to +0.8 V; VSS must be in the range +2.0 V to VCC + 1.

Figure 1a: Physical structure of one bit-storage cell in a 2716 EPROM. The cell consists of a FAMOS (floating-gate avalanche-injection metal-oxide-semiconductor) field-effect transistor manufactured in a stacked-gate configuration. During programming, a voltage placed on the select gate creates an electric field within the structure. The field raises the energy levels of electrons passing through the channel from drain to source enough that some of the electrons are able to tunnel through the silicon-dioxide insulator and accumulate on the floating gate.

Figure 1b: Pinout specification of the type-2716 EPROM (erasable programmable read-only memory) integrated-circuit package.
stored on the floating gate determines whether the bit cell contains a 1 or a 0. Charged cells are read as Os; uncharged cells are read as Is. When the EPROM chip comes from the factory, all bit locations are cleared of charge and are read as logic 1s; each byte contains hexadecimal FF.

When a given bit cell is to be burned from a 1 to a 0, a current is passed through the transistor's channel from the source to the gate. (The electrons, of course, move the opposite way.) At the same time, a relatively high-voltage potential is placed on the transistor's upper select gate, creating a strong electric field, some of the electrons passing through the source-drain channel gain enough energy to tunnel through the insulating layer that normally isolates the floating gate. As the tunneling electrons accumulate on the floating gate, the gate takes on a negative charge, which makes the cell contain a 0.

When data is to be erased from the chip, it is exposed to ultraviolet light, which contains photons of relatively high energy. The incident photons excite the electrons on the floating gate to sufficiently high energy states that they can tunnel back through the insulating layer, removing the charge from the gate and returning the cell to the 1 state.

Programming the 2716
The 2716 EPROM contains 16,384 (16 K) bit-storage cells configured as 2048 individually addressable bytes. This organization is often called "2 K by 8." The completely static operation of the device requires no clock signals.

The pinout specification of the 2716 is shown in figure 1b, and a block diagram of its internal structure is shown in figure 1c.

The 2716 has five different operating modes, for which the input-voltage requirements are shown in table 1. The read, standby, and program modes are the ones I'll discuss in detail, since the program-inhibit and program-verify modes are important primarily in high-volume applications.

In the read mode, two control inputs are used to select the chip after the processor has selected the memory address. The OE (output enable) line is provided mainly as a means of jointly selecting a bank of several 2716s, perhaps by a connection to the memory-read line on the system bus. The CE/PGM (chip enable/program) input is decoded and used as the primary device-selecting line.

![Block diagram of the internal structure of the type-2716 EPROM.](image)

After the logic level present on the CE/PGM pin has been brought low, the OE input should also be brought low. Then 120 ns (nanoseconds) elapse before the addressed data is available on the data-output pins. This is sufficiently fast to be compatible with other types of memory devices in most systems, allowing direct connection of the 2716 to the system bus for reading data, as shown in figure 2a on page 40.

The 2716 can be placed in the static standby mode to reduce the power consumption without increasing the access time once it is addressed. With a TTL high level applied to CE/PGM, the output lines assume a high-impedance condition. It doesn't matter what voltage is present on OE.

In the program mode, particular bit cells are induced to contain 0 values. Both Is and Os are present in the data word presented on the data lines of the 2716, but only the presence of a 0 causes action to take place.

When the Vpp power-supply input is placed at a potential of +25 V and the OE input is at a high level (VHH), the TTL-level data to be programmed for a specific address is set up on the 2716's data lines, and the address is set up on the address lines A0 through A10. After a setup time of at least 2 µs (microseconds), a high TTL-level programming pulse 50 ms long is applied to the CE/PGM input. Addresses to be programmed may be specified in any order.

The 50 ms programming pulse must be applied once for each location to be programmed. Under no circumstances should a constant high level be applied to the CE/PGM input in the program mode. Repeated 50 ms pulses to the same location are acceptable, but any pulse width greater than 55 ms might destroy the chip. (The minimum pulse width is 45 ms.) Using a nonretriggerable one-shot (monostable multivibrator) to generate the pulse is one simple protective measure.

A Simple EPROM Programmer
As we have previously seen, in the read mode the 2716 may be connected

October 1981 © BYTE Publications Inc 39
directly to the system's address and data buses. It's not so easy, however, in the program mode.

Because of the setup-time interval that must elapse after the address data are presented, the programming pulse must come at an instant that doesn't fit too well within the synchronous operating constraints of the typical computer system bus. This limitation is most easily overcome by using three parallel output ports to communicate with the EPROM. The address and the data can be held constant while the programming pulse is applied. Figure 2b shows a block diagram of this scheme, and figure 3 shows the schematic diagram of an actual circuit that uses this principle, which can be used with almost any personal computer.

The simple EPROM-programming circuit uses two integrated circuits besides the EPROM: the Intel 8255 PPI (Programmable Peripheral Interface) and a type-74121 one-shot. The 40-pin 8255 contains three separate I/O (input/output) ports. Twenty-four I/O lines can be programmed for various input, output, and control functions. (For more information on the 8255 PPI, see "Interfacing the S-100 Bus With the Intel 8255," by David L. Condra, October 1979 BYTE, page 124, or the Intel Component Data Catalog.)

In this application, I set up the 8255 to operate in two different configurations. When programming, ports B and C contain the address, and port A contains the data. All three ports are set up for output. When verifying the contents (in read mode) after programming, ports B and C again contain the address, but port A is set for input to read output data from the 2716.

The 8255 is relatively simple to use. Its four internal registers for ports and control are accessed just like any other I/O device. Using a combination of chip-select and addressdecoding logic, particular combinations of logic levels on the A0 and A1 lines designate the specific register being addressed, as shown in table 2. The data word written into the mode-control register configures the particular functions of the 24 I/O bits.

Setting all three ports for output is accomplished by writing hexadecimal 80 into the mode-control register. The other combination, B and C set for output with A set for input, is arranged by loading hexadecimal 90 into the mode-control register. These two control codes are the only ones required.

The EPROM interface in figure 3 requires the operator to select the read or program mode by the position of a toggle switch. In the read mode, the Vpp power input will be at +5 V, and CE/PGM and OE will be at logic 0. In the program mode, with the switch closed, Vpp will be at +25 V, OE will be at logic 1, and the one-shot will be strobed for each successive location. The driver program which coordinates this effort

Figure 2b: In the write-program mode, the need for an asynchronous programming pulse necessitates the use of external data latches, driven by the output ports of the controlling computer system.

Write/Program

Figure 2a: For read-mode operation, the 2716 EPROM is fast enough that it can be directly connected to the address and data buses of most microcomputer systems. The OE (output enable) line is usually used as a means of jointly selecting a bank of 2716s, while the CE/PGM (chip enable/program) line is used to select the particular integrated circuit that is to be addressed.

Read

Figure 2b: In the write-program mode, the need for an asynchronous programming pulse necessitates the use of external data latches, driven by the output ports of the controlling computer system.

Table 2: Addressing of port and mode-control registers in the Intel 8255 Programmable Peripheral Interface.
will be essentially the same as that for the more sophisticated EPROM programmer yet to be described.

An Intelligent Programmer

The 2-chip EPROM programmer previously described is an interface designed to be attached to a program-development-type computer system. It can do just as much as the one I am about to discuss. However, what I have in mind is better than a mere EPROM-programming interface: an intelligent EPROM programmer, a stand-alone device that functions only as a programmer.

In my opinion, such a programmer should be able to perform the following tasks: accept raw input data by various means and store this data in a buffer memory, read a previously programmed EPROM and store the contents in the buffer, write the contents of the buffer into another EPROM, and compare the contents of the same or a different EPROM chip to the buffer. In essence, these are standard load, program, and verify functions consistent with any reasonably useful 2716 programmer.

Photo 1 on page 36 shows the prototype of such a device. The intelligence for this programmer is supplied by a Z8-BASIC Microcomputer, a single-board computer specifically configured for use as a controller in dedicated applications. Using this Z8-based controller board, I was able to program and test the driver software directly and easily.

The final configuration consists of the Z8 board, 4 K bytes of expansion memory, the EPROM-programming circuit of figure 3, three pushbutton switches, and some LEDs (light-emitting diodes) added to communicate with the operator. The pushbuttons L, V, and W activate the load, verify, and write functions, respectively. The three LEDs next to them are labeled Read, Write, and Ready. Two more LEDs, labeled T and L (for terminal and local) are placed adjacent to the Control slide switch. I'll explain them later.

The intelligent EPROM programmer has two operating modes. With the Control switch in the L (local) position, the programmer receives all its commands through the pushbutton switches. With the Control switch in the T (terminal) position, the programmer expects to receive commands from a video terminal or teletypewriter connected to the Z8-BASIC Microcomputer's RS-232C connector. In this terminal mode, you can examine the buffer contents, directly change or introduce new

![Schematic diagram of a simple EPROM-programming circuit that is intended to be driven from an external large (program-development-type) computer system.](image-url)
data, and execute the standard read, write, and verify functions by keyboard commands. In addition, this mode facilitates serial entry of data directly into the buffer.

The local mode emulates the pushbutton operation of typical commercial EPROM programmers. Pressing L (load) will cause the device to read an EPROM inserted into the ZIF (zero insertion force) integrated-circuit socket and store the data in 2 K bytes of the 4 K-byte read/write-memory buffer. (The buffer has enough capacity to store all the data in a type-2732 EPROM, making possible yet more versatility.) Pressing W (write) will make the device program the 2 K bytes of data from the memory buffer into an erased EPROM inserted into the ZIF socket. Pressing V (verify) will cause the Z8 program device to compare the contents of the buffer to the EPROM. The LEDs indicate the current status and inform the operator when a function has been completed. All these operations and control assignments are under program control. Their meanings and functions can easily be changed in software to meet your specific requirements.

Programmer Hardware

The EPROM-programming hardware consists of two basic sections: memory expansion for the Z8-BASIC Microcomputer (shown in figure 4a), and the EPROM-interface section (shown in figure 4b).

After the EPROM-programming software has been written and debugged (which is done using the BASIC interpreter), it can itself be placed into an EPROM, which can then be plugged into the Z8 board's Z6132 memory socket. With the onboard read/write memory removed to accommodate the EPROM, a separate buffer memory must be added to the Z8 board to hold the data read from or written into the 2716 being processed. This can be provided by the original or another Z6132 quasi-static 32 K-bit memory device and two other chips. IC1 in figure 4a is the Z6132, and IC2 and IC3 function as address decoders. As configured, the 4 K-byte expansion memory resides at hexadecimal addresses 8000 through 8FFF.

The EPROM-interface hardware shown in figure 4b is essentially the same as that in figure 3, with a few more "bells and whistles." As previously described, the 8255 PPI is attached to provide three parallel ports. Instead of using four incremen-

Table:

<table>
<thead>
<tr>
<th>Number</th>
<th>Type</th>
<th>+5V</th>
<th>GND</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC1</td>
<td>Z6132</td>
<td>28</td>
<td>14</td>
</tr>
<tr>
<td>IC2</td>
<td>74LS30</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>IC3</td>
<td>74LS04</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>IC4</td>
<td>74LS30</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>IC5</td>
<td>74121</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>IC6</td>
<td>7406</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>IC7</td>
<td>74LS04</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>IC8</td>
<td>2716</td>
<td>26</td>
<td>7</td>
</tr>
<tr>
<td>IC9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4a: Schematic diagram of the buffer-memory section of the intelligent EPROM programmer. This circuit expands the read/write memory capacity of the Z8-BASIC Microcomputer, and it may be used independently of the EPROM-programming interface.
Figure 4b: The EPROM-interface section of the intelligent EPROM programmer. This connects to the circuit of figure 4a and the Z8-BASIC Microcomputer, forming a versatile means of burning programs into a type-2716 EPROM chip.
tally adjacent addresses to designate the mode-control-register and port locations. I conserved hardware and addressed the four ports as follows: hexadecimal 9000, port A; hexadecimal 9100, port B; hexadecimal 9200, port C; and hexadecimal 9300, mode control.

Other differences in the circuit include computer control of the read/write function and the supply of power to the EPROM. Rather than making you manually turn off the power to insert or extract a 2716, the EPROM programmer controls the power through a relay. The READY LED indicates when the power is off (the LED will be lit). The three control signals come from output port 2 provided on the controller board. Bit 0 is the power control (0 = off, 1 = on), bit 1 is the read/write control (0 = read, 1 = write), and bit 7 provides the program pulse to the one-shot (a transition from low to high and back to low). The Control switch and the three pushbutton switches are read as bits 4 through 7 of an I/O port memory-mapped into hexadecimal address FDE8 (decimal 65000). This input port is also provided on the Z8 board.

The intelligence for the EPROM programmer is supplied by a Z8-BASIC Microcomputer.

Software Control

The driver program for the programmer is written in tiny BASIC and resides in EPROM on the controlling Z8 board. The routine is very straightforward and can easily be rewritten to run on another BASIC interpreter, should you care to connect the EPROM interface to a different computer. The entire program is too complex to cover in this article; it includes a lot of code necessary merely for screen formatting and operator interaction in the terminal mode. Let's confine our attention to the less involved routines which allow automatic programming control in the local mode.

The code for the local-mode control routines is given in listing 1 on page 47. Flowcharts of the constituent parts of the listing are shown in figures 5 through 8. Essentially, the program consists of a supervisory input scanner and four subroutines. The supervisor reads the pushbutton and slide switch inputs and transfers control to the appropriate subroutine to execute the corresponding function. The functions include reading the EPROM and storing the data values in the buffer, writing the buf-

![Photo 3: Closeup of the prototype control panel. The L, V, and W pushbutton switches control the load, verify, and write functions, respectively. The T and L indications next to the slide switch stand for terminal and local. In local-mode operation, no video-display terminal or teletypewriter is necessary, and all EPROM programming and verification can be accomplished with only these controls.](image)

![Figure 5: Flowchart of the command-input, user-interface section of the EPROM-programming software, as shown in listing 1.](image)
fer contents to the EPROM, comparing the buffer and EPROM values, and transferring control to an interactive routine that communicates with the operator through a keyboard and display (terminal mode). The flowcharts indicate the sequence.

Conclusion

As the technology of EPROM manufacturing continues to be developed, I will keep a close eye on the possible need for circuits to use new components. Perhaps in another few years I'll be writing about interfacing and programming 1-megabyte EPROM chips.

I shall also be investigating other projects using the Z8-BASIC Microcomputer as a component that can give additional flexibility and

Text continued on page 48

Photo 4: Closeup of ZIF (zero insertion force) socket. When the lever on the lower left is in the vertical position, the two metal contacts touching each IC (integrated circuit) pin are spread far apart. The IC therefore requires no (zero) extra effort to separate the contacts during insertion or removal. When the lever is down, as shown, the two contacts are clamped against each IC pin, and the IC is held fast with good electrical contact.

Figure 6: Flowchart of the subroutine to load the EPROM programmer's buffer memory from a previously programmed EPROM chip.

Photo 5: Closeup of the prototype EPROM-programmer interface. Other than the control panel and ZIF socket, the interface essentially consists of a 4 K-byte buffer memory and 3 programmable I/O ports. Users wishing merely to expand the original Z8-BASIC Microcomputer need add only these sections.
Figure 7: Flowchart of the routine to write data from the buffer into a new or erased 2716 EPROM chip.

Figure 8: Flowchart of the routine that verifies correct programming of the EPROM.
Listing 1: Program routines to control various functions of the intelligent EPROM programmer, written for the BASIC/Debug interpreter of the Zilog Z8671 single-chip microcomputer found in the Z8-BASIC Microcomputer.

100 REM INTELLIGENT EPROM PROGRAMMER
102 REM USING CIRCUIT CELLAR BASIC COMPUTER/CONTROLLER BOARD
103 REM CLEAR VARIABLES AND CHECK KEYPAD ENTRIES
105 @246=0 ; @2=0
110 A=0 ; B=0 ; X=0 ; Y=0
130 A=@65000
135 REM B7-TERM/LOCAL, B6-LOAD, B5-WRITE, B4-VERIFY
140 IF AND(A,%80)=0 THEN 5000
150 IF AND(A,%40)=0 THEN 1000
160 IF AND(A,%20)=0 THEN 2000
170 IF AND(A,%10)=0 THEN 3000
200 GOTO 130
1000 REM READ/LOAD BUFFER SUBROUTINE
1005 REM CLEAR VARIABLES AND SET 8255 FOR I/O READ
1010 X=0 : Y=O : A=O : B=0
1020 @%9300=%90
1025 REM MEMORY BUFFER STARTS AT 8000 HEX
1030 @2=1
1040 GOSUB 1100
1050 @B=@%9000
1060 GOSUB 1300
1070 GOTO 1040
1100 B=(32768+X+(Y*256))
1110 @%9100= X : X=X+1 : GOSUB 1200
1120 @%9200=Y
1130 RETURN
1200 IF X=256 THEN Y=Y+1 : X=0
1210 RETURN
1300 IF B=34815 THEN @2=0 : GOTO 130
1310 RETURN
2000 REM WRITE CONTENTS OF MEMORY BUFFER INTO EPROM
2010 X=0 ; Y=0 ; A=0 ; B=0
2015 REM SET PROGRAMMER TO WRITE MODE AND TURN ON EPROM POWER
2020 @2=3
2030 @%9300=%90
2040 GOSUB 1100
2045 REM SET DATA AND ADDRESS ON 8255 AND PULSE WRITE STROBE
2050 @%9000=@B
2060 @2=131 ; @2=3
2070 GOSUB 1300
2080 GOTO 2040
3000 REM VERIFY CONTENTS OF EPROM TO MEMORY BUFFER
3020 X=0 ; Y=0 ; A=0 ; B=0
3025 REM SET PROGRAMMER TO READ MODE AND TURN ON EPROM POWER
3030 @%9300=%90
3040 @2=1
3050 GOSUB 1100
3055 REM COMPARE EPROM AND MEMORY -- IF WRONG, TURN ON ERROR LIGHT
3060 IF @%9000<>@B THEN @2=128 : GOTO 130
3070 GOSUB 1300
3080 GOTO 3050
5000 REM ENTER TERMINAL EXERCISOR PROGRAM HERE
5010 GOTO 130
RCA’s remarkable new VP-3303 Interactive Data Terminal turns any home TV into a videotex display unit.

Now you can connect your family to the whole informative and entertaining world of CompuServe, The Source, Dow Jones News/Retrieval and other time-sharing and data-base networks.

All you need is our VP-3303, a modern and a modern cable, a telephone and your home TV.

You can get instant access to regional newspapers and newsletters, weather reports and sports results, computer games and more. You can use the VP-3303 to make airline reservations, find restaurant recommendations in cities around the world. Plus stool... and your home TV.

The RCA VP-3303 is truly a fine videotex terminal. And don’t forget, it’s made by RCA, the first name in television... now the foremost name in videotex terminals.

See a demonstration of the new RCA VP-3303 at your local computer or electronics dealer, or order direct from RCA, toll free or by mail.

Order now... only $369.00 (Suggested user price.) For more information call toll free. 800-233-0094. In Pennsylvania, call 717-393-0446. Visa or MasterCard holders may order by phone. Or send a check including $3 delivery charge per unit plus your local sales tax.

PRIME
TIME-SHARING.

References

Editor’s Note: Steve often refers to previous Circuit Cellar articles as reference material for the articles he presents each month. These articles are available in reprint books from BYTE Books, 70 Main St. Peterborough NH 03458. Ciarcia’s Circuit Cellar covers articles appearing in BYTE from September 1977 through November 1978. Ciarcia’s Circuit Cellar, Volume II presents articles from December 1978 through June 1980.

To receive a complete list of Ciarcia Circuit Cellar kits available from the MicroMini, circle 100 on the inquiry card.
New from HIPLÒT™
6-pen plotting for as little as $1480*.

And you can retrofit your present single pen HIPLÒT for only $395.

The new HIPLÒT DMP Series 6-pen option makes high performance multi-pen plotting affordable. It's available on the DMP-2, 3 or 4 models in the HIPLÒT family so you can enjoy the advantages of multi-colored plots on surfaces of 8½" × 11" (DIN A4) or 11" × 17" (DIN A3). Of course, you also get the standard HIPLÒT range of capabilities such as intelligence, controls, interfaces and resolutions. There's a model for virtually every plotting application.

Big Performance in a Small Plotter
Since it’s introduction, the HIPLÒT DMP Series has been recognized as the innovative plotter line which made low-cost, high performance digital plotting a reality.

Now, with our new 6-pen option, there's an exciting new dimension in the DMP Series' versatility. Imagine standard models with RS-232-C and parallel interfaces, intelligent models with RS-232-C or Centronics® compatible interfaces, a choice of controls, resolutions, and pen speeds. Add to this the ability to plot with 6-pens on paper, vellum or Mylar (ideal for overhead projectors) and you have the ultimate plotter price/performance combination — the perfect choice for the user or OEM.

Easily Retrofitted to Existing HIPLÒT Models
If you already have a single pen DMP-2, 3 or 4, don't despair. For as little as $395* you can upgrade these models with our 6-pen conversion kit. It's simple to do . . . and the complete change can be made by the user in only six minutes.

So why wait? Let us send you complete information on this breakthrough in affordable, multi-pen plotting. Contact Houston Instrument, One Houston Square, Austin, Texas 78753. (512) 837-2820. For rush literature requests, outside Texas, call toll free 1-800-531-5205. For technical information ask for operator #5. In Europe contact Houston Instrument, Rochesterlaan 6, 8240 Gistel, Belgium. Phone 059/27-74-45.

Houston Instrument
Graphics Division of
Bausch & Lomb
Ultra-Low-Cost Network for Personal Computers

Ken Clements and Dave Daugherty
Pacific Polytechnical Corp
POB 2780
Santa Cruz CA 95063

Ten years ago, computer "hackers" listened with glee to predictions that technological advances would soon allow them to buy their very own computers. Indeed, the seers predicted, the computers of the future would fit into a spare bedroom or basement and wouldn't even require air conditioning. The word went out: start saving $100,000 to be ready when that great time came.

The time came with a vengeance. Today you can hardly take twenty paces around a technical organization, school, or office without bumping into or being addressed by yet another computer.

One of the sad outcomes of this exponential growth was creation of the computer junkie, the unfortunate soul who went out and bought each of the newest computers he or she could afford. The junkie ended up with a basement full of equipment and a computer habit that could be satisfied only by more spending.

Just when the future was looking grim for these computer junkies, salvation took form and appeared on college campuses. Perhaps the best explanation came from a recruiter from the giant Xmumblex Corp, who took a young graduate aside and whispered, "I have just one word for you: networks."

The big-computer companies and an army of computer scientists apparently will be going network crazy for the next ten years. This development thrills the computer junkies because it provides more computer "stuff" to get excited about. And the junkies calculate, if they could get their own personal networks going, they might be able to string together all the "coldware" collecting dust in their basements.

What stops most people from going ahead with their own networks is complexity, both in terms of cost and technical considerations. A typical coaxial network "box" may be as difficult to build and interface as was the computer you wanted to network. This stumbling block is particularly large for the computer junkie who owns no two pieces of hardware that are the same. He must come up with a new interface for each one.

But almost all those pieces of hardware have at least one RS-232 serial port. RS-232 was designed to provide point-to-point communication, and it requires some central manager "box" to produce a network. But with as little as one diode per port, two resistors for the ends, and a -12-volt (V) source, you can turn RS-232 into ULCNET, the Ultra-Low-Cost Network.

Simple Technique

The primary technique for this transformation is shown in figure 1. It is amazingly simple: just connect a diode in series with the transmit line, then connect the receive line and the diode to your cable. At the ends of the cable you will need resistors to "pull down" the line to -12 V and to help soak up reflections. Serial communications via RS-232 are usually not too fast, so the type of cable and exact terminations are not critical.
Please call (213) 883-8594.

Our Epson prices are so low, we're not allowed to print them.

EPSON MX-80 SCALL
80 cps/9x9 matrix/Lower case with true descenders/8i directional & Logic seeking/Adjustable tractor/Expanded printing/Block graphics/Forms control/Compressed printing/Double-strike printing/Correspondence quality/Emphasized printing mode/Standard parallel interface

EPSON MX-80 F/T SCALL
Same features as the MX-80 plus Friction Feed. Adjustable removable tractor is standard for ease of handling forms and single sheets.

EPSON MX-100 F/T SCALL
Same features as the MX-80 & MX-80 F/T but on 15½ inch carriage for printing 132 columns with standard 10 cpi fonts or 232 columns in the compressed character font. The MX-100 is complete with Dot Resolution Graphics

EPSON INTERFACES & OPTIONS

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRS 80 MODEL II CABLE</td>
<td>$30</td>
</tr>
<tr>
<td>TRS 80 MODEL I Keyboard Interface</td>
<td>$95</td>
</tr>
<tr>
<td>TRS 80 MODEL I Cable</td>
<td>$30</td>
</tr>
<tr>
<td>APPLE INTERFACE & CABLE</td>
<td>$100</td>
</tr>
<tr>
<td>IEEE 488 INTERFACE</td>
<td>$60</td>
</tr>
<tr>
<td>SERIAL INTERFACE</td>
<td>$70</td>
</tr>
<tr>
<td>SERIAL INTERFACE (2K BUFFER)</td>
<td>$149</td>
</tr>
<tr>
<td>SERIAL CABLE Male to Male</td>
<td>$30</td>
</tr>
<tr>
<td>DOT RESOLUTION GRAPHICS</td>
<td>$90</td>
</tr>
<tr>
<td>REPLACEMENT RIBBON</td>
<td>$13</td>
</tr>
<tr>
<td>REPLACEMENT PRINT HEAD (Quiet type)</td>
<td>$40</td>
</tr>
<tr>
<td>EPSON SERVICE MANUAL</td>
<td>$40</td>
</tr>
</tbody>
</table>

We built a reputation on our prices and your satisfaction.

We guarantee everything we sell for 30 days. If anything is wrong just return the item and we'll make it right.
And, of course, we'll pay the shipping charges.

We accept Visa and Master Card on all orders. COD accepted up to $300.00. We also accept school purchase orders.

Please add $2.00 for standard UPS shipping and handling on orders under 50 pounds delivered in the continental U.S. Call us for shipping charges on items that weigh more than 50 pounds. Foreign, FPO and APO orders please add 15% for shipping. California residents add 6% sales tax.

31245 La Baya Drive, Westlake Village, California 91362

Circle 13 on Inquiry card.
For most applications, it is easy to use shielded twisted-pair cable for the net. This allows one of the wires in the pair to carry the -12 V needed by the termination resistors at the end of the cable. An example of wiring the termination is shown in figure 2. This technique assumes that somewhere along the line, the black wire in the pair is connected to -12 V and the shield is grounded.

When characters are sent through an ULCNET port, they are received at all the ports on the net, including the port that did the sending. However, if two or more ports send different messages at the same time, the transmitting ports will each receive something other than what they sent: the logical OR of the two messages. This allows an extremely important property, namely collision detection (a property also used in Xerox's Ethernet).

The ULCNET uses the fact that an RS-232 port holds its transmit line at negative voltage when not transmitting, and then pulses the transmit line positive at the start of a character. The RS-232 standard defines a positive level as a transmitted 0 and a negative level as a binary 1. In other words, a character starts with a 0, followed by a byte of code transmitted low-order bit first. At least one binary 1 is inserted after each byte-long character, and it is called the stop bit.

The termination resistors on the ULCNET provide the negative level, and each port may "pull" the line to a positive level by the start pulse of a character. In terms of bits, the resistors supply the 1s, and the ports supply the 0s.
In Language Lies The Future.

Paul Lulu creates language. Language for the future. From him we have Apple Writer, Apple Word and MusigComp. His software was used by the Viking Mars Lander team and other advanced space programs.

For the past three years he has applied himself to the development of more efficient and powerful computer languages to help him with his work.

These new languages of the future are now available for your use exclusively from Inssoft.

See the new world of programming from Inssoft at your Apple dealer.

TransFORTH II

The final "word" in Apple programming. A brilliant extension of FORTH.
- Fully compiled
- Floating point
- Transcendental functions
- Strings and arrays
- Draws, loops and Turtlegraphics
- Music

Far more compact and approachable than Pascal, TransFORTH II is both recursive and structured and easier to use than BASIC.

Over three years in development, this high-level language enables you to program in English with far greater speed and convenience than ever before possible.

TransFORTH II... A transformation in computer programming. Available today.

ALD System II

The Assembly Language Development System. Already the preferred assembler for professional software developers.
- Object files to 16K
- Source files to 32K
- Cursor based screen editor
- Upper and lower case text entry
- Nested macro instructions
- Local, global and universal labels
- Comprehensive error trapping

The enormous file capacity of ALD System II assures you of the ability to develop virtually any imaginable software system.

And you can do so with ease since ALD System II edits with the simplicity of a word processor.

ALD System II. Powerful yet convenient. The first choice of professionals.

The best comes last. Both new programs are available for the Apple II or Apple III.

Each package introductory price $125.00

Inssoft

The languages of the future. The tools of today.

259 Barnett Rd. / Unit 3 / Medford, Or 97501 / (503) 779-2466

Circle 179 on inquiry card.
The speed and distance limits of the ULCNET come from a combination of the drive-current limitations of an RS-232 port and the load each receiver puts on the net. The limits lead to a three-way trade-off of distance, speed, and number of receivers. For example, you might use the ULCNET at 19,200 bps (bits per second) for six devices separated by 20 feet, or you might connect three devices with two miles of wire and run at 300 bps.

Improvements

Some simple modifications can be made to expand the network capability. The first modification gets the number of receivers out of the trade-off equation. Figure 3 shows an alternate ULCNET connection in which an op amp (operational amplifier) is used to buffer the incoming signal. This reduces to almost nothing the load each node places on the network, thereby allowing as many connections as desired on the net.

Some RS-232 ports have +12 V and -12 V supplied on pins 9 and 10 of their DB25 connector (these can be used to power the op amp). Most, however, do not, so the user will need to run a pair of wires to the power supply of the computer. If some other power source is used, the user must be sure its ground reference is the same as pin 7 of the RS-232 port.

Figure 3 also shows a circuit that drives the DTR (data terminal ready) input of the RS-232 port. This circuit is used to detect activity on the net, and it will assert (pull high) DTR if the net is busy. The circuit works by charging C1, a 0.1 µF capacitor during the start bit of a character. The capacitor will then discharge through the 330-kilohm (kΩ) resistor R1 when characters are no longer being transmitted. The choice of values for these two components is set by the slowest data rate to be used on the net. The choice shown was picked for 1200 bps operation. If 2400 bps is desired as the lowest rate, then halve R1's value. The resistor can be scaled in this manner for the lowest transfer rate desired. Table 1 suggests resistor values for various data rates, but plan to experiment.

The purpose of the busy flag circuit shown in figure 3 is to relieve the software of checking the condition of the net, and to provide a signal that can be used with an interrupt-driven system. (These techniques are discussed later.)

Aiming for Speed

Figure 4 is included for those who crave speed. Here, the drive limitation is overcome by using a power FET (field-effect transistor) to drive coaxial cable. The cable can be either standard 50-Ω coax, or the 75-Ω coax commonly used in cable TV operations. Whichever you choose, you must use a matching resistor (50Ω or 75 Ω) on each end of the cable.

In this form of the ULCNET, the logical 0 is represented by a +12 V level, and the logical 1 is at 0 V. The same busy-detect circuit is used, and all of the network techniques will remain the same. This version of ULCNET is included for those who have very fast controller devices on their ports and want to operate in the 50 kbps to 1 Mbps range.

To make this fast version work, it is important to have a very solid source of +12 V that can put out about one amp for a very short time. The fuse included in figure 4 is meant to shut down the connection if the computer turns on the power FET and leaves it on. If not corrected, this error condition would cause the entire net to halt.

One way to set up a network is shown in figure 5. This setup would allow all the computers to share the hard disk and the printer. The computer directly connected to the hard disk and printer would be partially

![Figure 3: Simple modifications expand network capacity. An operational amplifier reduces the load placed on the net by each node, so that a virtually unlimited number of nodes can be used. Resistor R1 and capacitor C1 control the op-amp comparator to signal that the network is busy. The components shown can be used with speeds as low as 1200 bps; see table 1 for alternate selections.](image)
THE B810 RAM engineered for excellence

256 K Byte / 128 K Word Dynamic Memory

FEATURES
• Byte or Word width operation
• Extended Addressing or Port Select
• 150 ns Access, 270 ns Cycle (B Version)
• 200 ns Access, 335 ns Cycle (A Version)
• Full DMA capability with transparent refresh
• Precise memory timing module
• Low Power
• Meets IEEE 696 specifications
• Four-layer board

$1249. * Assembled & Tested with 1 Year Warranty
*Introductory Price valid through 30 Sept., 1981

The B810 RAM presents one of the best solutions for applications requiring compact design and speed for remarkably low cost. Suitable for a wide range of commercial applications, the B810 RAM is form, fit and functionally compatible with the proposed IEEE 696 (S-100) bus standard. It automatically provides byte or word width access using the xTREQ* signal. It features the AMD 2964 Dynamic Memory Controller and a new memory timing module designed for the B810 by Engineered Components Corp. for precise timing. Its four layer board with full ground and power planes provides noiseless operation. As an integral part of the AB Digital B800-series, the B810 RAM provides full DMA capability. Designed to be as universal as possible, the B810A RAM will work with most S-100 cards using a Z80 or Z8000, and the B810B (with optional byte parity), works with Alpha Micro, Cromemco, Northstar, and all S100 CPU cards.

Available through California Digital (toll-free orders only 800-421-5041) and other fine distributors, or direct. Specification sheets on request. Manuals may be purchased separately for $25.00 refundable on order.

COMING NEXT MONTH: THE B880 80ns 64K/32K STATIC RAM

The B800 series of 8-bit cards provides the OEM with a complete line of 8 MHz computer cards. All peripheral controllers are intelligent. This series includes the B800 CPU; the B820 SCC Serial Communications Controller; the B830 HDC Hard Disk Controller; the B840 FDC Floppy Disk Controller, and others which will be announced.

The B8000 series provides a complete line of 16-bit 4 and 5 MHz cards in three formats: double-height S100, MultiBus and the new Zilog ZBI bus. As with the B800 series, all peripheral controllers are intelligent with their own processors and memory. The B8000 series includes the B8000 CPU (Z8001-based); the 1 Megabyte B8100 RAM with optional EDC; the B8200 SCC Serial Communications Controller; the B8300 HDC Hard Disk Controller; the B8400 WDC Winchester Disk Subsystem; and others to be announced.

AB Digital Design Labs products are designed to provide technological leadership and industrial-grade quality with unequaled performance. Before you buy any computer product, we invite you to examine our spec sheets and manuals. We think the choice will be clear.

Digital Design Labs
109 Cuyama Road Shell Beach, CA 93449
(805) 773-1731
Figure 4: Fast version of ULCNET. The primary limitation of driving power is overcome by installing an output transistor at each port. The transmitter shown may draw as much as 1 A from the -12 V supply, for short periods.

dedicated to servicing the requests for these resources.

Design Issues

Now that we've discussed the hardware for the ULCNET, let's look at some of the issues involved in designing software for the network. These issues are: node-addressing concepts, message formats, task layering, low-level transmission and reception, communication protocols and error recovery, dialogue pipes, special types of networking communications, and networking under multitasking operating systems.

Many mechanisms can be used to inform the node's software of its particular address. The possibilities include establishing a switch setting on an input port, including the information in the software for each node (but each node would then need a unique version of the network software), or having the software query the user for an address during initialization.

An address does not necessarily have to be a number, as long as it can be uniquely recognized. It could be a character string such as EVA or SHIRLEY, but you must be willing to pay the cost of pattern matching in order to adopt this scheme.

A nameserver mechanism allows the nicety of character strings for addresses without sacrificing the advantage of number matching for decoding addresses. The nameserver consists of a file and a program on a node with mass storage that associates an ASCII (American Standard Code for Information Interchange) string with an address number. The nameserver

Figure 5: One possible ULCNET configuration. In this example, the mass storage and printer on one computer system can be shared by several other systems.
Radio Shack, The Leader in Small Business Computers
Also Has Computers for Your Home!

Introducing the Lowest Cost Color Disk System Ever—
Radio Shack’s TRS-80

Radio Shack now offers disk drives for our popular TRS-80 Color Computer. Now you can have superb high-resolution color graphics and fast, “on-line” access to large amounts of data.

Only $1198. Our new $399 disk kit makes our TRS-80 Color Computer with 16,000 characters (16K) of internal memory and Extended Color BASIC language a versatile, low-cost computing system that’s ready to attach to any TV (not included).

Stores 156,000 Characters! Just plug in the Program Pak® controller to add disk storage to the Color Computer. The Disk Operating System—an enhanced version of the Color Computer’s Extended Color BASIC language—is completely contained in the Program Pak, so you get a full 156K-bytes of on-line storage.

Easy to Use. The 16K TRS-80 Color Computer lets you create sophisticated color diagrams, business charts and even simple animation—using just a few simple one-line commands! This gives experienced programmers incredible power, yet makes it easy for beginners, too. We take you from the ground up with over 500 pages of easy-to-read documentation.

Instant Fun and Games. And just for fun, you can plug in any of our game cartridges. Battle starships in outer space, conquer dinosaurs from a prehistoric world, or just brush up on your chess.

Fully expandable. Your TRS-80 Color Computer Disk System can expand with up to four drives for over 626,000 characters of storage! And the additional drives are only $399 each. Add up to 16K more memory, a printer and other accessories anytime.

Radio Shack’s TRS-80—The Best-Supported Microcomputer in the World!

The TRS-80 line of computers is backed with a wide selection of accessories, software, and service. We can even show you how to get up-to-the-minute news, current stock market reports and even electronic mail using your TRS-80! It’s all available today at over 8000 Radio Shack stores and dealers, and at 185 Computer Centers nationwide.

$1198
16K-1 Disk System
(TV not included)

Stop by your nearest Radio Shack and see what’s really new in personal computers. Or write: Radio Shack, Department 82-A-123, 1300 One Tandy Center, Fort Worth, Texas 76102

Radio Shack
The biggest name in little computers
A DIVISION OF TANDY CORPORATION

Retail prices may vary at individual stores and dealers.
Accepts requests for registration, deregistration, and name queries.

Special generic addresses also can be set aside for special purposes. For instance, the nameserver could be assigned a generic address to be used by all nameserver-related messages, making it unnecessary to know which node the nameserver is actually on.

Another generic address could be set aside to represent a broadcast message—one that all nodes on the network would want to receive. A typical use of a broadcast message is sending a company-wide memo to all employees on the network. The generic address eliminates the need to address the same memo to each person on the network.

Special types of nodes such as mass-storage nodes or printers can have their own addresses. For example, the address M might be reserved for the printer node. If there is only one printer on your net, M would mean that printer. If there is more than one printer on the net, an additional field called the logical printer number could be used to specify the printer for which the message is destined.

Message Formats

A message is a predetermined sequence of fields by which two nodes communicate. A message normally consists of several parts: the header, the body, and some kind of error-checking mechanism, such as checksum, at the end.

The structure allows for much variation. The basic component for constructing a message usually is a byte. A field is defined as one or more bytes that designate a particular section of a message. Typical fields in a message are shown in figure 6 and explained below.

- **SOT**: start of transmission. This byte is useful for informing all receivers that the beginning of a message is now on the net and that the next byte will be the address byte. Obviously, the byte must not be confused with bytes in the middle of a message.
- **To Address**: the address of the intended receiver.
- **From Address**: the address of the node that transmitted the message. As will be shown later, this field is important for sending acknowledgments back to the transmitter.
- **Message Number**: a unique number that distinguishes one message from the next. The usefulness of this field will be illustrated in the sections of this article dealing with duplicate messages.
- **Bytecount**: tells a receiver how many bytes to expect in the message body. It can be used as a receive loop counter, to be decremented each time a byte is received. When the counter equals zero, the user knows the checksum byte will follow immediately.
- **Message ID**: distinguishes three types of messages within a network system. The data message contains the essential information to be transmitted from one node to another. The message acknowledgment acknowledges a data message, and the third type of message, ACKACK, acknowledges a message acknowledgment.
- **Data**: zero or more bytes of information that follow the Message ID.
- **Checksum**: the error-checking byte, computed as the n-bit sum of all the bytes in the message (except the SOT byte and the checksum itself). The transmitter sums up all the bytes in its transmitted message and "ships out" the lower n bits of that sum as the last byte of the message. Meanwhile, the receiver does the analogous operation on the message it receives. If all the characters were received correctly, the receiver's lower n-bit sum should match the transmitter's checksum.
The World's First MacroComputer®

The Parallel Processing® System/48® is the world's first MacroComputer®, an elegantly powerful and modular multi-user computer for business and industry. It was designed from the start to out-perform other computer systems at three or more times its price. The operating system software is so friendly, versatile and fast that it's called MAGIC®.

In addition to outstanding new capabilities, MAGIC's interface translator allows instant access to a large number of standard languages and applications for GL, AR, AP, PR, Inventory, Financial Planning, Fixed Assets, Property Management, Prospect Management, Order Entry, Word Processing and a host of others. DataMagic II® is provided with the System/48, for comprehensive database management . . . and it makes new application programming a simple joy.

Whether it's 2 or 3 users, or 128, MAGIC exhibits exceptional performance with transactional disk back-up to cartridge or 9-track tape; full access security; logical partitioning of tasks and users; fast Multi-Key ISAM access to multiple disks in each node (10-250 Mbytes); 1-16 Workstations and Task Processors in each node; up to 16 nodes; local and central printers for both word and data processing; remote Workstations and nodes; communications; real-time calendar and clock; and exceptional reliability because of its modularity and redundancy of software and hardware. Circle 361 on inquiry card.

And that's the whole point! You can get exactly the performance and configuration needed now and it can expand easily to meet future needs, taking advantage of the technology revolution. Large or small, real-time, batch or mixed, there's a System/48 that's just right for the job.

If you haven't seen our Parallel Processing System/48 MacroComputer in ACTION, then seeing is believing! See your local dealer today for the full story. Or call Jim Knepton now at (713) 738-2300 and he'll explain how you can have your own private showing . . . and how easy and profitable it can be for you and your business.

TEI has 14 years of experience in manufacturing it RIGHT! OEM and Dealer inquiries invited — come GROW WITH US!
Layering the Tasks

The network software can be broken up into three separate layers for implementation (see Figure 7). These layers are the basic transmitter and receiver subroutines, the protocol layer, and the application program. Breaking up the network software in this manner is useful because it allows the implementer to concentrate on a subset of network functions without having to give much consideration to the rest of the functions. As an added benefit, the layered structure limits the software modifications needed in order to bring up networking capability for particular network tasks and particular machines.

As an example, let's say network software is to be brought up on two of the same type of microcomputers, each having a different serial interface. Subroutines in the transmitter/receiver layer that specifically deal with the serial interface are the only parts of the network software that need changing. On the other end, a printer-application program and a disk-write program should be able to use the same protocol layer and transmitter/receiver layer.

The Transmitter

A buffer and a byte count are the necessary parameters this routine needs from the protocol layer. The transmitter should never know nor care what type of message is in the buffer. First, the transmitter will need to know if anyone else is currently using the network. In an interrupt environment, this can be determined by a flag set when a character is received and reset when a carrier detect interrupt occurs. If this flag is set, therefore, it shows that the network is not in use.

If the transmitter is to be implemented without the aid of interrupts, it will be necessary to wait the length of time needed to receive one character (based on the data-transfer rate). If no characters are received in this time, it is assumed no one is in the middle of transmission.

Once it has been determined the network is not busy, the transmitter must send out the SOT field. A potential “race” problem resulting in a collision could occur at this point since two transmitters could conceivably start this transmission simultaneously.

Because the network is set up so that transmitters receive what they transmit, the received character should always be compared to the character that was just transmitted. If the two characters do not match, a collision has occurred. Later we will decide how to recover from such a collision.

Assuming the transmitter received what it transmitted, it continues to send out bytes until all, including the checksum, have been sent. If the transmitter is interrupt-driven, it may want to set a flag to inform the protocol layer that transmission was successful. For a transmitter running without interrupts, this information should be returned as a parameter to the routine that called the transmitter.

The Receiver

A receiver activated by interrupts will be able to synchronize with the beginning of a message by the carrier-detect interrupt that occurs after the end of any message. Receivers without interrupts or latched carrier-detect pulses must repeatedly wait until a whole character time has gone by without receiving anything. The next field to be received should be the SOT field. If it is not, it will be necessary to go back to the previous step until an SOT is detected.

Once the SOT is detected, the next field should be the Destination Address. When this field is received, it should be compared with the receiver’s own address to determine whether the message is intended for this receiver. If your network supports broadcast messages, all
3.7 million reasons why the
ATARI Personal Computer
is something to see.
The display screen used with our computers
is composed of 192 horizontal lines, each
containing 320 dots. Delivering color and lu­
minosity instructions to each dot for a sec­
ond requires 3.7 million cycles...a lot of
work for the normal 6502 processor.
That's why the ATARI computer has
equipped its 6502 with its own electronic as­
sistant. It's called ANTIC, and it handles all
the display work, leaving the 6502 free to
handle the rest. What this means to you is
uncompromisingly spectacular display capa­
bilities without loss of computer power need­
ed to carry out the demands
of your program.
That's a quality you just don't find in ordi­
nary personal computers. And it's one of
the reasons some computer experts say
that ATARI computers are so far ahead of
their time.
There's more...which is what
you'd expect from ATARI.
Language. The ATARI Personal
Computer uses several program­
m ing languages to give the user
maximum control of its extraordi­
nary capabilities. PILOT, Microsoft
BASIC*, and ATARI BASIC are
understood and spoken by the
ATARI computer. You'll also
find our Assembler Editor car­
tridge indispensable for
machine language programming.
Sound. An ATARI computer has four sound
generators, or voices, activated by a sepa­
rate microchip. This leaves the principal mi­
croprocessor chips free to perform other
tasks. And you can take full advantage of
this capability which is designed
for easy programming.
Change. ATARI Personal Computers have
been designed to make change and expan­
sion easy. The ATARI computer has a modu­
lar operating system* that can be easily
replaced as new technology develops. If you
need it, memory expansion requires no more
than inserting additional RAM modules.*
And the ATARI ROM cartridge system also
makes it easy to change languages. In short,
your ATARI computer won't be obsoleted by
future developments...because it already
incorporates the future.
Sharing. To learn more about the amazing
capabilities of ATARI computers, visit
your local computer store for a demon­
sstration. Or send for our Technical Us­
er's Notes, intended for the serious
programmer. They are only $27 and
contain a lot more information about
our computers' special capabilities
than most companies could tell.
See your ATARI dealer, or send
$30 ($27 plus $3 postage and
handling), payable to ATARI, to
Technical User's Notes, c/o
ATARI Customer Service, 1340
Bordeaux Avenue, Sunnyvale,
CA. 94086.

* ATARI 800** computer only
receivers must check to see if the message is a broadcast message. Additionally, printer and disk storage nodes must also check to see if the destination address is their generic address. If no address match exists, the receiver should go back to hunting for an SOT field (unless this receiver is a gossip monger).

If the message is addressed to a particular receiver, the address and all subsequent bytes should be received and summed together for comparison with the checksum byte at the end of the message. If your particular network uses parity, the message should also be checked for each character received. The receiver should not care what type of message was received; it should simply inform the protocol layer of receipt. With an interrupt-driven receiver, a flag can be set at completion to inform the protocol layer. Additional information, such as whether any errors occurred during the message, could also be communicated to the protocol layer via common memory. If the receiver is not interrupt-driven, this information can be passed back as parameters to the protocol layer.

The Protocol Layer

For the following discussion, the source will be defined as the node that transmitted the original message, and destination as the node to which the message was addressed.

When computer A sends a message to computer B, there is no guarantee that computer B will receive it. Many things could go wrong. There might be a loose connection somewhere. Computer B might not be running, or it might not be listening to the net. Computer C could start transmitting at the same time as computer A.

Protocol schemes detect and correct such situations. Protocol is basically a conversation between a source and a destination, trying to ensure that what the source transmitted was actually received by the destination.

The simplest protocol is one in which the source sends a message to a specific destination and assumes the message arrived. If your network is in good working order and you know that a particular destination is running properly, this protocol will be sufficient most of the time. You probably would want to use this protocol, for example, when you are sending messages to your friend Carol, who is using computer B. If she is there, she will probably send a message back, thereby acknowledging that she received your message. You’d also use this protocol for broadcast messages, to prevent the net from getting jammed by everyone trying to send acknowledgments at the same time.

When you are doing things on your net, such as writing a file to a disk, assuming the file got there is not enough. You need some real acknowledgment that the file got to the disk. If no acknowledgment comes back from the destination, or if the destination returns to the source an acknowledgment stating that the disk is full, the source will have to take some error-recovery measures. These are discussed later.

What happens if the destination receives a correct message and sends back an acknowledgment that is not received by the source? In this case, the source thinks its original message did not get through, but it actually did. To avoid this situation, an acknowledgment of an acknowledgment received (ACKACK) can be added to the protocol. If after sending an acknowledgment, the destination does not receive the ACKACK, it will have to take some kind of error-recovery action.

What happens if the source receives the acknowledgment and sends the ACKACK, but the destination does not receive the ACKACK? Somebody has got to have the last word, and there can be no guarantee that a message and all its associated protocol are transmitted and received successfully. Especially on a low-speed network, the criterion for deciding how much protocol to use is “as little as possible for a particular application.” An intelligent system might provide all three types of protocol (ie: message, message-ACK, and message-ACK-ACKACK) and allow the application program to decide which one to use.
Meet the Tiger with a bigger bite.

Introducing the remarkable 132-column Paper Tiger™ 560. The first full-width matrix printer to give you fully formed characters for a low $1394.*

The new 560 features a staggered nine-wire ballistic type print head that overlaps dots in both horizontal and vertical planes. It bi-directionally prints up to 150 dense, text quality characters per second.

The 560 also features a reliable cartridge ribbon that lasts up to four times as long as spool and cassette ribbons, separate heavy-duty stepper motors to drive the print head and advance the paper, plus true tractor feed.

And famous Paper Tiger performance comes with every new 560. Like fixed or proportionately spaced text, programmable tabbing and business forms control, automatic text justification, print formats to 220 columns, parallel and serial interfaces, self-diagnostics, and more. All inside the most compact printer of its kind.

Need more stripes? Dotplot,™ our high-resolution raster graphics package, is standard on every 560.

For data processing, word processing and small business applications, this is your Tiger. The business-sized Paper Tiger™ 560.

It's a Tiger you can count on.

*Suggested U.S. retail price.
Toughest Boards in Town...
IEEE 696/S-100

NON-STOP CLOCK
Keeps time with power off. Our industrial clock utilizes a new lithium battery for 3-9 years use. Easiest clock to program you'll ever see. Runs in all S-100 systems.
- Year, date, hrs, mins, secs, msecs.
- Uses new LSI CMOS chip.
- Vectored interrupts.
- CLK-24

$250

A/D CONVERTER
IEEE 696/S-100 AIM-12 industrial standard module designed for industrial analog-to-digital use.
- Runs in all S-100 systems.
- 32-channel, 16-differential 12-bit resolution.
- Accuracy: 25-microsecond conversions.
- Instrumentation amplifier.
- BASIC program provided. AIM-12, 5695 or 5785 w/1-1000 gain transducer amplifier.

D/A CONVERTER
AOM-12 IEEE 696/S-100 industrial level digital-to-analog (D/A) converter.
- 12-bit ± 1/2 LSB accuracy over full 0-70°C temperature range.
- Outputs 0-10, ± 5, or ±30 volts.
- Short circuit protection, all outputs.
- Switch-programmable for multiple boards.
- AOM-12, 5575

VIC 4-20
Standard output for industrial control 4-20 mA D/A converter. Used in conjunction with the D/A board.
VIC-4-20, 5445.

DUAL 77 Data Acquisition and Control System
Built to industrial standards; designed for severe environments. BASIC language makes programming easy. Access to hundreds of sensors. Expandability to meet your increased needs. Nonvolatile memory. Power interruption recovery with automatic restart. DUAL 77 is economical; 55985 & up.

Error Recovery
What should be done when a message was sent and no acknowledgment came back? Or when an acknowledgment was sent but no ACKACK came back? Both these cases call for a timing mechanism. A source that transmitted something and is expecting a reply from the destination must wait a certain amount of time for that reply to come back. If the reply does not come back within that time, it will be assumed an error condition exists.

How long should this time be? There is no way to guarantee that a destination really did receive the message and will transmit an acknowledgment within the time the source has set. The waiting time, then, should be more than long enough to cover any reasonable situation.

Once the source has waited a set amount of time without receiving a reply, a reasonable action would be to retransmit the original message at least once more, and again wait the specified amount of time for a reply. The same strategy could be used by the destination when it sends acknowledgments and waits for an ACKACK. If you are doing your network without the aid of a hardware timer, you will need a time-counting subroutine that continually checks to see if a reply was received, and decrements the counter. If the counter reaches 0 before a reply is received, then a timeout error exists. If your software has access to a hardware timer, you can use it to set an interrupt.

If no reply is received after repeated attempts to transmit a message, there is nothing to do but give up and report the problem to the program that initiated the network call.

This retransmission scheme introduces another problem. Suppose the source sends a message that is received by the destination, but the destination sends back an acknowledgment that is never received by the source. After timing out, therefore, the source retransmits the original message, and the destination receives it a second time. The Message Number field, along with the From Address field, can be used to correct such situations.

All receivers should keep a list of the last n messages received. The list need contain only the message number and the From Address. When a new message is received, the list should be examined for a match. If a duplicate is detected, the message should be "dumped," but the appropriate response should be sent back to the transmitter of the duplicate message. If the duplicate was an original message, an acknowledgment should be sent back, or if the duplicate message was an acknowledgment, an ACKACK should be sent back.

Collisions are another issue. Assuming that all transmitters check the state of the network before starting transmission, collisions can happen only when two or more transmitters start their transmissions within one character time of each other. When collisions happen, all transmitters involved should immediately stop transmitting and allow the network to return to the "not busy" condition.

Now some kind of mechanism is needed to tell colliding transmitters when they can start transmitting again. If they all wait an equal amount of time, they will collide again. Therefore, they must all wait different lengths of time.

One way to ensure this setup is to establish a priority order based on node address. If a node with the address of 1 collides with a node with the address of 3, then node 1 will wait one unit of time before attempting retransmission, while node 3 will wait three units of time. One problem with this scheme is that under heavy load conditions where collisions are more frequent, nodes with high address numbers may never be able to get a message through because they must wait so long after each collision.

A fairer scheme would be one in which each node has a random-number generator guaranteed to create a unique sequence of random numbers. All nodes would then have
Get a $20 rebate on the TI-59 Programmable.

Even without the $20 rebate, the TI-59 is special—it's our most powerful programmable, and we've never offered it at a lower price.

The TI-59 gives you up to 960 program steps, or up to 100 memories, plus magnetic card read/write capability. You can also slip in one of TI's Solid State Software™ modules and successfully attack complex engineering, business, statistical and scientific problems. And by adding the optional PC-100C printer, you can record your calculations. But if that's not enough, any TI-59 owner can join our Professional Program Exchange for access to over 2500 additional programs.

So if you like the idea of having real programmable power, take us up on the rebate offer. Buy a TI-59 now, and fill out the coupon below. The offer ends December 31, 1981.

Texas Instruments
Incorporated
equal priority in retransmissions after collisions.

A Typical Application Program

As an example of a typical application program, let’s consider a request to a filing system on a hard-disk node.

The “save” request would first want to send to the filing system a message containing the file name and the number of sectors to be saved. The request probably would ask the protocol layer to expect an acknowledgment and allow the protocol layer to take care of retransmissions if necessary. Along with the acknowledgment, some information from the filing system indicating whether or not the request can be accommodated. If it cannot be accommodated, the request program must report the failure to its caller.

If the request can be accommodated, the save request program must break up the file to be saved into convenient blocks (probably a disk sector). When errors occur during transmission, it is more economical to retransmit small blocks than large ones. In either case, the save request should send the ACK to the filing system to say it agrees to what the filing system considers the state of the request.

Once the file has been partitioned into blocks, the save request should hand them in sequence to its protocol layer for transmission to the filing system. The request should ask its protocol layer to expect an acknowledgment for each block transmitted. Each block should have a unique number that can be checked by the filing system against block numbers already received. In this manner, duplicate blocks can be dumped.

By the value of the last block number, both parties know when the file transfer is completed. If implementation is done in a straightforward manner, the last block number should equal the corresponding field in the original request message.

The save request should ask the protocol layer to send an ACK to the filing system when it submits the last block for transfer. Upon receipt of this ACK, the filing system can be sure it will not be getting a retransmission of the last block, and it can close the file and forget about the request.

When extended conversations are taking place between two nodes on the net (as in the previous file transfer examples), the network can be made to appear constantly busy by never allowing more than a character time to elapse between messages. In this way, no other user on the network can interfere with the conversation.

If the data rate is controlled by software on the two conversing nodes, you might consider increasing the rate after the initial conversational link has been established. The rate could be increased beyond what’s normally acceptable to every node on the network, but it must be changed back after the conversation is completed. While the process is going on, every other node on the network should recognize it as a network-error condition. Because the nodes have not seen a transition from a busy net to a nonbusy net, they will not be looking for an SOT field anyway.

This scheme can get a little tricky when attempting to end a conversation, especially if the last acknowledgment or ACK did not get through but the data rate on one node has already been reduced to its former value.

Multitasking Environments

Networking in multitasking environments raises many issues that cannot be considered here, but a few obvious ones should be pointed out. The protocol layer probably should be set up as a process by introducing another parameter to indicate whether the application program will “go to sleep” waiting for a reply or acknowledgment. The protocol layer would then have to give the application program a “wake up” by indicating whether the message got through to the receiving process.

Since messages could in this way be addressed to one of several processes on a node, the address fields for To and From addresses would need to be extended to include a Process ID number.

The software design presented in this article reflects only one of many possibilities. For more information, or for software if you don’t want to write your own, contact Cheshire Software, POB 2780, Santa Cruz CA 95063.

Now that you have a taste of what networking is all about, you can experiment and enjoy implementing your own ULCNET.
Announcing:
The Table Top Computer
That Can’t Be Topped.

The 5000 SX with:

Capacity: 5.5 MB Winchester Plus Two Mini Floppies
If you know our Series 5000 table top
computer line, you know that good things
come in small packages.

Now with the introduction of the 5000
SX, big things come in small packages.

One integrated package can contain two
double sided, double track density floppies
plus a 5.5 meggabyte Winchester drive.

Speed: Load 20K In Less Than a Second
Not only does our high performance
Winchester subsystem include error
detection with automatic error correction,
its extreme speed is comparable to that
of large main frame hard disk systems.

A 20K program loads in less than one
second, about 10 to 12 times as fast as
a floppy

We invite comparison with our com-
petitors’ Winchester implementation so
you can see how a truly engineered solution
speeds up your application programs.

Extras: You’ll Be Glad You Have Them
The 5000 SX comes standard with lots of
extras, starting with a fully terminated S100
mother board. Add to that 64K dynamic
RAM modules, with parity, of course, and
receptacles for your CRT and Printer that
turn on with the main power switch.

Plus, convenient up front reset switch,
incoming power line filter and much more.

Software:
Operating Systems: CPM, MPM,
TurboDOS
Languages: BASIC, FORTRAN, COBOL
Application Packages: FMS,90,
WORDSTAR, Accounting Plus, all
tailored to operate on the 5000 SX.

Quality: So Good, It’s Warranted 2 Years
There isn’t room on this page to even
scratch the surface of the IMS Inter-
national story.

However, our 2-year warranty is a dead
giveaway that we produce rugged, top
quality, professional equipment. We do
things right the first time so they don’t
come back to us.

The truth is, we have fewer returns
within our 2-year warranty period than
other manufacturers have within their
30-day warranty periods.

For full details and the location of your
nearby IMS International dealer, call us
today at (T14) 878-0866. Or write:

IMS
INTERNATIONAL
We Build Computers As If Your Business
Depended On Them.
2800 Lockheed Way, Carson City, NV 89701
Tel: 891-365-0651

CP/M & MFM, TM of Digital Research • TurboDOS,
TM of Software 5000 • FMS, TM of DMR Associates •
WORDSTAR, TM of MICROPRO • ACCOUNTING PLUS,
TM of SYSTEMS PLUS

Circle 426 on Inquiry card.
New Software from CompuView

MicroCraft Systems, Inc.
Apple Software Development Tools

MicroCraft offers the Apple user a flexible set of development tools. This includes a low-cost full screen editor, the most powerful 6502 Macro Assembler available, and a compiled graphics language optimized for real-time applications. Each package compliments any Apple system and together they offer unequaled power and versatility.

RGL Real-time Graphics Language

Do real-time animation • Similar to 'C' • Display, move and rotate 3D objects • Compiles text files to 'BRUN'able binary object files. $75 / $25 Until 10/31/81

MacroLink Complete 6502 Assembler

Disk Assembler • Text to binary object • Standard 6502 mnemonics • Recursive macros with up to 10 arguments • Nestable conditional assembly • Links source or object code • Nestable file includes • Unlimited source file size • Editor provided $125 / $20

SuperEdit Full Screen Editor

Horizontal scrolling allows 80 columns • Uses standard text files • Move cursor by character, line or page • Find, search and replace • Block move and copy • Use with RGL or MacroLink • 80 column video board versions also available. $75 / $20

DiskScreen Disk Utility

Displays a complete disk sector in hex and ASCII, using high-res screen • Edit sector by typing over display $40 / $10

Complete Assembler System [MacroLink, SuperEdit, DiskScreen] $200 / $40

Complete Graphics System [RGL, SuperEdit] $120 / $40

Systems available to utilize extra 16K or 32K expansion boards Please inquire

Note: All programs require a single disk drive and 48K. When ordering please specify configuration.

Circle 412 on inquiry card. Telephone (313) 996-1297

8086 Software

• VEDIT full screen editor for CP/M-86.
• Contact us for availability of VEDIT for SCP 86-DOS and IBM 8088 computer.
• CP/M-86 BIOS for popular S-100 disk controllers.

Source code $185

V-COM Disassembler

Finally a Z-80 disassembler for CP/M which produces easy to read code, a cross reference table, and handles INTEL and ZILOG mnemonics. V-COM is exceptionally fast and produces a .ASM file directly from a .COM file. V-COM can accept a user-created file containing assignments of labels to 8 and 16 bit values. A second file can specify the location of tables and ASCII strings. $80

FASTSCREEN CRT emulation and Command Line Editor

Memory mapped displays offer over ten times the speed of the fastest CRT terminal but are usually not supported by application software. This is where FASTSCREEN fits in. FASTSCREEN provides a fast and highly compatible emulation of several popular CRT terminals for most memory mapped displays. It also provides editing and re-entry of any line on the screen, paging, and includes interrupt driven keyboard routines. (FASTSCREEN is provided as source code on a CP/M compatible diskette and requires assembly language modifications for installation.) $85

PIICEON 24 x 80 S100 Video Board

The PIICEON V-100 is the heart of a high speed alternative to a CRT terminal. Being I/O mapped, it uses no memory space, yet runs at full processor speed. FASTSCREEN is the perfect software driver for the V-100. Fully assembled and tested by PIICEON, the company known by OEMs for reliability.

PIICEON with FASTSCREEN $510
PIICEON board only $475

Circle 413 on inquiry card.

CompuView is proud to carry the MicroCraft Systems, Inc. quality software for the Apple II.

CompuView Products Inc.
618 Louise, Ann Arbor, Michigan 48103 • Telephone (313) 996-1299
Customizable
The Unique Difference that Sets VEDIT Apart in Full Screen Editors

Total user customizability is a predominant reason that over a thousand users find VEDIT the easiest to use full screen editor. It makes VEDIT the only editing package which allows you to determine your own keyboard layout and use the cursor and special function keys on any terminal having them. And only VEDIT fully supports all of the newly available terminals. It may come as a surprise to you, that with any other editor or word processor, you will have to memorize obscure control characters or multi-character sequences, while your terminal's extra keys and editing functions go unused. The customization extends to setting the default tab positions, scrolling methods and much more. It's almost like designing your own editor for your system, applications and preferences. And all of this is easily done with the setup program which requires no programming knowledge or "patches"; but simply prompts you to press a key or enter a parameter.

Unequaled Hardware Support
The CRT version supports all terminals by allowing you to select during setup which terminal VEDIT will run on. Features such as line insert and delete, reverse scroll, status line and reverse video are used on 'smart' terminals. All screen sizes are supported, including large ones such as the 60 X 80 format on the Ann Arbor Ambassador terminal. Special function keys on terminals such as the Heath H19, Televideo 920C and IBM 3101, and keyboards producing 8 bit codes are all supported. The memory mapped version is extremely flexible and supports bank select and hardware cursors such as on the SSM VB3. With this level of customizability and hardware support, you will feel for the first time that the software was optimally designed for your system.

Fully Compatible Replacement for ED
Since VEDIT creates and edits standard text files of up to one diskette in length, it serves as a replacement for the CP/M standard editor ED. Of course, you benefit from the fastest and easiest to use 'What you see is what you get' type full screen editing available, fast disk access and an editor which takes up only 12K of your valuable memory space. With VEDIT you will never again need or want to use the slow and tedious ED.

Special Features
VEDIT is more than just a full screen editing replacement for ED, it gives you many new editing capabilities, such as a scratchpad buffer for moving and rearranging sections of text, complete file handling on multiple drives and iteration macros. Among its special features you will find automatic indenting for use with structured programming languages such as Pascal and PL/I, and other special facilities for Assembler and COBOL. A real time saver is the ability to insert a specified line range of another file anywhere in the text. Unlike most software, VEDIT will even tolerate your mistakes. For example, one key will 'Undo' the changes you mistakenly made to a screen line, and the disk write error recovery lets you delete files or insert another disk should you run out of disk space.

Ordering
Many dealers carry VEDIT, or you may contact us for fast delivery. Specify the CRT version, your video board or microcomputer, the 8080, 280 or 8086 code version, and disk format required.

VEDIT for 8080 or Z80: Disk and manual..........................$130
VEDIT for CP/M-86: Disk and manual./NEW/......................$185
Manual: Price refunded with software purchase..............$15

VISA or MASTERCARD Welcomed
CP/M and MP/M are trademarks of Digital Research, Inc. Apple II is a registered trademark of Apple Computer, Inc. SoftCard is a trademark of Microsoft. TRS-80 is a trademark of Tandy Corp.

* North Star * Cromemco * Heath H8/H89 * SuperBrain * Apple II Softcard * TRS-80 Model II & Model I
Most other CP/M Systems with CRT or Memory Mapped Displays * MP/M * CP/M-86

CompuView Products Inc.
618 Louise, Ann Arbor, Michigan 48103 Telephone (313) 996-1299

Circle 98 on Inquiry card.
Indirection is a powerful concept in computing, but a difficult one for the beginning programmer to appreciate. In 6502 assembly language, there are three levels of indirection in referring to numbers. The first and most direct level is the immediate addressing mode, in which the number itself is directly stated:

LDA $F4

The second level of indirection is reached when the program refers to a memory location that holds the number:

LDA $0602

The third and highest level of indirection is attained when the program refers to a pair of memory locations that together contain the address of the memory location holding the number. In the 6802, this indirection is complicated by the addition of an index:

LDA ($D0), Y

Indirection provides a greater degree of generality and power to the programmer. Instead of trucking out the same old numbers every time something needs to be done, the programmer can simply point to them.

By changing the pointer, the behavior of the program can be changed. Indirection is an important capability.

Graphics indirection is built into the Atari Personal Computer system in two ways: with color registers and character sets. Programmers using this computer after programming other systems often think in terms of direct colors. A color register is a more complex beast than a color. A color specifies a permanent value. A color register is indirect; it holds any color value. The difference between the two is analogous to the difference between a box-end wrench and a socket wrench. The box-end wrench comes in one size only, but a socket wrench holds almost any size socket. A socket wrench is more flexible, but takes a little more skill to use properly. Similarly, a color register is more flexible than a color, but takes more skill to use effectively.

Color-Register Indirection

The Atari 400/800 has nine color registers; four are for player-missile graphics and will be discussed in a later article in this series. The remaining five are not always used. Depending on the graphics mode used, as few as two registers, or as many as five, will show up on the screen. In BASIC mode 0, only one and one-half registers are used because the hue value of the characters is ignored. Characters take the same hue as playfield register 2, but take their luminance from register 1. The color registers are in CTIA (one of the Atari custom integrated circuits) at hexadecimal addresses D016 through D01A. They are “shadowed” (ie: copied) from certain RAM (random access read/write memory) locations in the Atari OS (operating system) into CTIA during the vertical blank interrupt of the video display. Table 1 gives color-register shadow and hardware addresses.

For most purposes, the user controls the color registers by writing to the shadow locations. There are only two cases in which the programmer writes directly to the CTIA addresses. The first and most common is the display-list interrupt, which will be covered in a later article in this series. The second case arises when the user disables the OS vertical-blank interrupt routines, which move the shadow values from the OS into CTIA.

Colors are encoded in a color register by a simple formula. The upper nybble gives the hue value, which is identical to the second parameter of the BASIC SETCOLOR command. Table 9.3 of the Atari BASIC
CRTForm™ is a comprehensive package for creating interactive programs. Good programming starts with clear specifications. CRTForm saves time by gathering those specifications with a field-oriented editor. The editor can be used to manipulate and modify input and system fields, as well as to assert any of a complete group of input specifications.

A forms manager maintains the specifications. It allows the analyst to create and modify random access files of forms. The form files contain the field attributes of forms as well as author, comment, and revision information.

System analysts can easily produce documentation by using CRTForm to print field attributes and images of forms. In addition, a special Test mode allows the end user to test and verify the forms before any code is produced.

CRTForm's code generator produces the Pascal, BASIC, COBOL, FORTRAN, PL/1, Z-80, or Ada source text necessary to interface to the runtime module.

The runtime module assures the user of consistent interaction with the completed application program. This reduces training time, and eliminates the frustration common in the use of many large programs.

The package automatically produces documentation and provides capabilities for runtime enhancements. The programmer can dynamically lock and unlock displays, erase, skip, and reset fields. In addition, the system provides for redirection of field access and enables the programmer to send specialized error and comment messages.

The system is terminal independent. This means that forms created for one terminal can be used on a terminal requiring different control sequences. Function keys can be configured for special applications.

CRTForm is intended for use by system houses, program developers and OEMs. It is available under the CP/M, UCSD, Apple Pascal, RT-11, and RSX-11M operating systems.

Statcom is a corporation specializing in software development tools and techniques. In addition to CRTForm, we offer an end user oriented report generation package. Please call or write for further information.
Reference Manual lists hue values. The lower nybble in the color register gives the luminance value of the color. It is the same as the third parameter in the BASIC SETCOLOR command. The lowest-order bit of this nybble is not significant. Thus, there are eight luminances for each hue. This gives a total of 128 colors from which to choose (eight luminances times sixteen hues). In this series of articles, the term color denotes a hue-luminance combination.

Once a color is encoded into a color register, it is mapped onto the screen by referring to the color register that holds it. In map-display modes that support four color registers, the screen data specify which color register is to be mapped onto the screen. Since there are four color registers, it takes only 2 bits to encode one pixel. Thus, each screen-data byte holds data for four pixels. The value in each pair of bits specifies which color register provides the color for that pixel.

In color-text display modes (BASIC's graphics modes 1 and 2), the selection of color registers is made by the top 2 bits of the character code. This leaves only 6 bits for defining the character, which is why these two modes have only 64 characters available.

Color-register indirection gives the programmer four special capabilities. First, the programmer can choose from 128 different colors for displays. Second, the programmer can manipulate the color registers in real time to produce pretty effects. The simplest version of this is demonstrated by the following BASIC line:

```
FOR I=0 TO 254 STEP 2:POKE 712,I:NEXT I
```

This line cycles the border color through all possible colors. The effect is quite pleasing and certainly grabs attention. The fundamental technique can be extended in a variety of ways. A special variation of this is to create

<table>
<thead>
<tr>
<th>Image</th>
<th>Hardware</th>
<th>Operating System Shadow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controlled</td>
<td>Hexadecimal Address</td>
<td>Label</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>player 0</td>
<td>COLPM0</td>
<td>D012</td>
</tr>
<tr>
<td>player 1</td>
<td>COLPM1</td>
<td>D013</td>
</tr>
<tr>
<td>player 2</td>
<td>COLPM2</td>
<td>D014</td>
</tr>
<tr>
<td>player 3</td>
<td>COLPM3</td>
<td>D015</td>
</tr>
<tr>
<td>playfield 0</td>
<td>COLPF0</td>
<td>D016</td>
</tr>
<tr>
<td>playfield 1</td>
<td>COLPF1</td>
<td>D017</td>
</tr>
<tr>
<td>playfield 2</td>
<td>COLPF2</td>
<td>D018</td>
</tr>
<tr>
<td>playfield 3</td>
<td>COLPF3</td>
<td>D019</td>
</tr>
<tr>
<td>background</td>
<td>COLBK</td>
<td>D01A</td>
</tr>
</tbody>
</table>

Table 1: Names and addresses of color registers used by the Atari 400/800.

"I have recently used Spellguard and I can only echo the evaluations of a recent Infoworld review: excellent all the way."

Mark Garetz
Infoworld 25
May 1981

"Spellguard is an example of the new standard—fully professional microcomputer software."

Bill Burns
Infoworld 30 March
1981

"... Spellguard was given the manuscript from my first book. This version had been corrected after several (human) proofreaders thoroughly reviewed it. I therefore expected it to be relatively error free. Not so. Spellguard was able to discover numerous typographical errors..."

Allan Miller
Interface Age
June 1981

"This easy to use, operator-oriented program has saved me countless hours of proofreading, and from the embarrassment of submitting a manuscript with typos. Unlike most spelling test programs, Spellguard is fast...

Tony Dowden
Microcomputing
May 1981
TELEVIDEO 950
List Price: $1195.00
Microhouse Price: $975.00

TELEVIDEO 910 Terminal
List Price: $1599.00
Microhouse Price: $1399.00

Zenith 280 Computer
280 CPU, 48K RAM, two serial I/O ports, 2mb sec tape drive, includes 219 CRT and one built-in 5 1/4 inch disk drive (1980 storage)
List Price: $2895.00
Microhouse Price: $2399.00

Anadex DP9500
List Price: $1800.00
Microhouse Price: $1350.00

Anadex DP9501
List Price: $1850.00

C ITION STARWRITER I
Letter-quality printer uses Diablo plastic printwheels and ribbons, 25 cpi bidirectional, logic-seeking, Parallel interface
List Price: $1985.00
Microhouse Price: $1431.00

C ITION STARWRITER I Senior Version
List Price: $1980.00
Microhouse Price: $1502.00

C. Itoh Comet I
80 column dot matrix printer, 125 CPS, high resolution 9x7 dot matrix. Compressed print, 10 cps. 16 cps. Parallel or RS 232C interfaces
List Price: $2495.00
Microhouse Price: $2425.00

IDS 650G
List Price: $1599.00
Microhouse Price: $1464.00

IDS 650G
List Price: $2100.00
Microhouse Price: $1550.00

MORROW DISCUS 2D
8 inch single-sided double density floppy disk drive subsystem. Includes CP/M and MBASIC
List Price: $1985.00
Microhouse Price: $995.00

MORROW HARD DISK SUBSYSTEM
10 Megabyte. Includes CP/M and CP/M. and enclosure
List Price: $2395.00
Microhouse Price: $3059.00

Morrow D Cat Modem
List Price: $1799.00
Microhouse Price: $1350.00

MICROSOFT APPLE SOFTCARD
Regular Microhouse price $305.00. Save when purchased with MicroPro’s WordStar for Apple or TCS/Atlanta Accounting System includes CP/M and MBASIC
List Price: $349.00
Microhouse Price: $290.00

VIDEX VIDEOTERM SPECIAL!
Converts your Apple screen to 80x24 upper and lower case. Purchase VIDEOTERM with WordStar and save! Regular Microhouse price $290
List Price: $245.00
Microhouse Price: $227.00

VIDEX Keyboard Enhancers
Use the keyboard to its fullest advantage! Allows use of shift key and control key for keyboard lock
List Price: $129.00
Microhouse Price: $105.00

dBASE II
Written in assembly language (no host language required). dBASE can handle up to 65,536 records of 32 fields and 1000 bytes each. Reads existing ASCII files. Can be run interactively or can be programmed to produce reports.
List Price: $700.00
Microhouse Price: $628.00/$550.00

WORDSTAR
New version 3.0 features horizontal scrolling and column moves. New features include basic block out put, 80 character line, and other features.
List Price: $1495.00
Microhouse Price: $1289.00

SPELLSTAR
New option for WordStar. Compares words in your text to 45,000 word compressed dictionary. When an error is found, program returns to WordStar for correction of error. Expandable dictionary. Requires WordStar Version 3.0 (if you have another version, call for details on updates.)
List Price: $250.00
Microhouse Price: $165.00

MAILMERGE
Option for WordStar (requires current version of WordStar. Call for details)
List Price: $159.00
Microhouse Price: $105.00/$25.00

SUPERSORT/1
List Price: $250.00
Microhouse Price: $170.00/$40.00

DataStar
List Price: $350.00
Microhouse Price: $245.00/$40.00

WORDSTAR for Apple.
List Price: $375.00
Microhouse Price: $245.00/$40.00

WORDSTAR "CUSTOMIZATION"
Package includes diskette and manual Specify disk format
List Price: $150.00
Microhouse Price: $95.00

APPLESOFT* COMPILER
List Price: $200.00
Microhouse Price: $157.50

SUPERSORT* for Apple
List Price: $200.00
Microhouse Price: $139.00/$40.00

MICROSOFT BASIC COMPILER
List Price: $395.00
Microhouse Price: $325.00/$30.00

VISICALC II for Apple
New version II.
List Price: $189.00
Microhouse Price: $155.00

VISITREND/VSIPLOT
Allows you to perform sophisticated business math operations or production figures. Operations include multiple linear regression
List Price: $259.00
Microhouse Price: $219.00

VSIPLOT
Creates high resolution graphs and charts. Visualize data in 6 formats and 5 colors.
List Price: $195.00
Microhouse Price: $159.00

Software & Manual/Manual Only

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE
CP/M is a registered trademark of Digital Research
APPLE is a registered trademark of Apple Computers
WORDSTAR, DATASTAR, MAILMERGE, SPELLSTAR, and SUPERSORT are registered trademarks of MicroPro International
SHIPPING: Add 5% per manual or software package
Add 2% for COD orders. Call for shipping charges on other items. Pennsylvania residents add 6% sales tax.
simple cyclic animation by drawing a figure in four colors, and then cycling the colors through the color registers, rather than redrawing the figure. The program in listing 1 illustrates the idea.

The third application of color registers is to logically key colors to situations. For example, a paged-menu system can be made more understandable by changing the background color or the border color for each page in the menu. Perhaps the screen could flash red when an illegal standable by changing the background color.

Words or phrases of import can be emphasized in special colors. The use of colors in map modes (no text) can also improve the utility of such graphics. A single graphics image (a monster, a boat, or whatever) could be presented in several different colors to represent several versions of the same thing. It costs a great deal of RAM to store an image, but it costs very little to change the color of an existing image. For example, it is much easier to show three different boats by presenting one boat shape in three different colors than three different boat shapes.

The fourth and most important application of color registers is used with display-list interrupts. A single color register can be used to put up to 128 colors onto a single screen. This important capability will be discussed in part 4 of this series.

Character Sets

Graphics sets are also provided through the redefinable character set. A standard character set is provided in ROM (read-only memory), but there is no reason why this particular character set must be used. The user can create and display any character set desired. There are three steps necessary to use a redefined character set. First, the programmer must define the character set. This is the most time-consuming step. Each character is displayed on the screen on an 8 by 8 grid, which is encoded in memory as an 8-byte table. Table 2 depicts the encoding arrangement.

A full character set has 128 characters in it, each with a normal and inverse video incarnation. Such a character set needs 1024 bytes of space and must start on a 1 K-byte boundary. Character sets for BASIC modes 1 and 2 have only 64 distinct characters. These require only 512 bytes and must start on a ½ K-byte boundary. The first 8 bytes define the zeroth character, the next 8 bytes define the first character, and so on. Each group of 8 bytes is termed a character definition; the index that designates such a group (FIRST character, FIFTH character, etc) is called the character name. Obviously, defining a new character set is a big job. Fortunately, there are software packages to make this job easier.

Once the character set is defined and placed into RAM, the second step is to tell ANTIC (another custom integrated circuit on the Atari 400/800) where it can find the character set. This is done by poking the page number of the beginning of the character table into hexadecimal location D409 (decimal 54281). The OS shadow location, the location normally used, is called CHBAS and resides at hexadecimal 2F4 (decimal 756). The third step in using character sets is to print the character wanted onto the screen. This can be done directly from BASIC with simple PRINTs or by writing numbers directly into the screen memory.

A special capability of the system not supported in BASIC is the four-color, character-set option. BASIC graphics modes 1 and 2 support five colors, but each character in these modes is really a two-color character; each one has a foreground color and a background color. The foreground color can be any of four single colors, but only one color at a time can be shown within a single character. This can be a serious hindrance when using character graphics.

There are two other text modes designed especially for character graphics, ANTIC modes 4 and 5. Each character in these modes is only four pixels wide, but each pixel can have four colors (counting background). The characters are defined like BASIC graphics mode 0 characters, except that each pixel is twice as wide and has 2 bits assigned to it to

Listing 1: A short graphics program demonstrating the illusion of movement by changing color-register assignments.

```
10 GRAPHICS 23
20 FOR X=0 TO 39
30 FOR I=0 TO 3
40 COLOR I
50 PLOT 4*I+X+1,0
60 DRAWTO 4*I+X+1.96
70 NEXT I
80 NEXT X
90 A=PEEK(712)
100 POKE 712,PEEK(710)
110 POKE 710,PEEK(709)
120 POKE 709,PEEK(708)
130 POKE 708,A
140 GOTO 90
```

<table>
<thead>
<tr>
<th>CHARACTER IMAGE</th>
<th>BINARY REPRESENTATION</th>
<th>HEXDECIMAL REPRESENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Internal representation of a character in memory. One character needs 8 bytes to represent it. Although the standard character set is in ROM, the pointer to the beginning of the character set can be changed to point to other memory locations, allowing the user to create a modified or completely new character set.
Test your language against APL

To compare APL/V80's clear concise code with the language you're now using to solve problems, take this short programming test. Here are three common problems, showing the APL/V80 solution for each. Program your best effort for each problem in the language you use now. Now compare the number of lines and keystrokes needed to achieve a solution in your language to the APL solution. Keep in mind the APL/V80 solution shown contains not only the computation commands, but also every instruction needed to input required data, as well as all the commands to print out the results.

Problem 1: Write a program to input a list of values. (List "A"). Sort the list from lowest to highest values, then print all the values in list A in ascending order.

APL/V80 solution:

```
A[4<3]
```

Solution in your present language:

(Hint: Usually this takes two loops and 15 to 20 statements.)

Problem 2: Write a program to input a list of values. (List "X") and compute the standard deviation for the list values.

APL/V80 solution:

```
((+/X-X))/2*1.5
```

Solution in your present language:

(Hint: This takes at least one loop and about 16 statements.)

Problem 3: Write a program which will compress adjacent spaces to a single space, with possible multiple occurrences, in a string of characters called TEXT.

APL/V80 solution:

```
(1;x*1+P-1*P) 1*TEXT/TEXT=0
```

Solution in your present language:

APL is the most concise, powerful programming language ever developed. Computers using APL can be programmed for scientific and business problems. Developed in the early 1960's, APL has been used to program large mainframe computers for years. Because APL has so many functions and operators built in, only very recently have computers could run APL programs until 1977. In 1977, we at Vanguard changed that by introducing APL/V80™, a version of APL for 280-based microcomputers. We revised and extended the software now to run on your Apple®. APL/V80™ for Apple is easy to learn, quick to write. It's a language proven easier to program in than BASIC, COBOL, FORTRAN, or even FORTRAN. Because APL can apply a function to a whole array of data, when you store a list of values in an array, a single symbol in APL/V80 can do the work of an entire "DO" or "FOR" loop in other languages. This is programming power.

Concise code saves thinking time. Compactness is part of the reason you can solve your problems much more quickly using APL/V80 than by using other languages. With far fewer lines of code required, APL/V80 lets you develop functional software, and debug it, in about one-fifth the time you'd need to program your problem in other languages. With APL/V80, you can truly focus your attention on problem-solving, rather than having to worry so much about the details of coding a program to compute your solution.

Finished programs easier to understand. Because APL/V80 programs are so much shorter than programs doing equivalent work in other languages, APL/V80 programs are easier to read and understand, and thereby easier to document. When you look at the APL/V80 solutions shown in the box with our language comparison test, don't let the unusual symbols worry you. They may be unfamiliar to you now, but so were the commands in your present language until you learned them. APL is so much easier to learn. APL/V80 uses the common mathematical practice of using a single symbol to represent a function, but there are so many functions built into APL there aren't enough common symbols to represent them all. So APL uses additional symbols to represent these functions which go beyond the familiar mathematical operations.

When you learn any language, you use as many abbreviations as you can to save time. APL/V80 lets you use "abbreviations" from your first efforts, saving memory space both in your head and in your Apple. Solve your problems faster. Whether you're an engineer, scientist, educator, or businessman, you can solve problems faster than ever using your Apple® computer. With APL/V80 from Vanguard Systems Corporation, you can search for solutions in a fraction of the time you thought possible. APL/V80 makes your programs easier to understand, easier to write, easier to explain to others, and easier to modify. A whole new world of convenience. APL/V80 is more than a language...it's a whole new world of convenience for you and your Apple. Included with our APL interpreter are 6 new auxiliary processors to make your life easier. The Utility Processor provides 6502 memory access and 6502 processor calls so you can use routines stored in Apple system ROMs and 6502-dependent peripherals. An Input Stack Processor lets you stack input commands for later execution. Our Communications Processor when combined with the appropriate modem, lets your Apple communicate with another computer. The Graphics Processor gives you full access to Apple's high resolution graphics. A PL File Processor gives you an indexed file system. Our CP/M™ Input File Processor lets you read any CP/M and use it with APL/V80.

Hardware required.

APL/V80 for the Apple requires the following hardware for proper use: a 48K Apple II or Apple II+, one disk drive, a 2.80 SoftCard™ and either the Language Card™, or RamCard™, or other compatible 65K memory expansion card.

To learn more, act now.

No matter how you use your Apple to solve problems, APL/V80™ can help you solve them faster, with fewer errors. If you'd like to know more, send us the coupon below. In the English language, we can hardly begin to tell you in just one page all the ways APL/V80 can help. Ah, if only we could write this in APL/V80 itself. But send us the coupon, and we'll happily send you additional information in English.

Note: Specifications subject to change without notice.
*Apple design, Apple II, Apple II+, & Language Card are trademarks of Apple Computer, Inc. **CP/M is a trademark of Digital Research. ***SoftCard and RamCard are trademarks of Microsoft.
Check the Osborne Books You

INTRODUCTORY BOOKS

Business System Buyer's Guide
by Adam Osborne and Steven Cook
Purchasing a computer for any business is a complex process, but this book will help. Before you buy any computer, read this book. You'll never make a better investment.

Running Wild-The Next Industrial Revolution
by Adam Osborne
An Insider's look at the micro-electronics revolution. Will the coming years prove to be a dream or a nightmare? Running Wild tells the story.

GUIDES

An Introduction to Microcomputers
Volume I: The Beginner's Book
by Adam Osborne
Here's the book to start with if you know nothing about microcomputers but wish to learn. Provides the concepts you'll need to understand this technology.

Apple II™ User's Guide
by Lon Poole, Martin McNiff and Steven Cook
Complements your Apple II owners manual. Our guide will tell you more about your Apple II or Apple II Plus computer than any other single source. This guide is a complete BASIC programming tool. It covers all the special features of the Apple computer.

PET/CBM™ Personal Computer Guide
by Adam Osborne and Carroll Donahue
A step-by-step guide which takes you from the "on" switch to assembly-language subroutines for your Commodore system. It's a BASIC tutorial and covers many recent CBM products.

PROGRAMMING BOOKS

Science and Engineering BASIC Programs
by John Heilborn
An important collection of the most valuable programs for scientists and engineers. Easily used on most popular microcomputers.

Some Common BASIC Programs
by Lon Poole and Mary Barchers
76 well designed and brilliantly documented programs that solve a variety of problems in statistics, finance, and math.

Generalized BASIC Edition

PET/CBM™ Edition

TRS-80™ Level II Edition

Atari™ Edition

Practical BASIC Programs
Here are 40 useful and fully documented programs designed to run on most microcomputers. Especially useful in small business and household applications.

(CBASIC™ User's Guide
by Adam Osborne, Gordon Eu-Banks and Martin McNiff
Co-authored by Gordon Eu-Banks, the creator of CBASIC, this is more than a self-teaching textbook; it is the definitive reference of the CBASIC language.
BUSINESS BOOKS
by Lon Poole and co-authors
Osborne’s three business systems are renowned for excellence in design and documentation. Our books explain in detail how to use the programs. They contain complete program listings, supporting technical documentation, and specific information on changing and installing the programs.

Payroll with Cost Accounting
#22-8, $29.00 □
Accounts Payable and Accounts Receivable
#23-3, $20.00 □
General Ledger
#24-1, $20.00 □

ASSEMBLY LANGUAGE PROGRAM SERIES
by Lance Leventhal and co-authors
You needn’t know anything about assembly language to use these books. Each one is a straightforward, self-teaching textbook that is both precise and easy to understand.

NEW
68000 #62-4, $16.99 □
6809 #25-7, $16.99 □
6502 #27-7, $16.99 □
Z80 #27-1, $16.99 □
Z8000 #36-5, $16.99 □
6800 #12-6, $15.99 □
8080A/8085 #10-1, $15.99 □

The 8086 Book
by Russell Rector and George Alexy
Part assembly language text and part hardware reference, this book covers all of the 8086’s most important features.
#39-2, $16.99 □

NEW
INTERFACING
Interfacing to S-100 (IEEE 696) Microcomputers
by Sol Ubes and Mark Garetz
Describes the S-100 Bus with unmatched precision. Covers mechanical and electrical design, logical and electrical relationships, bus interconnections, and much more.
#37-3, $15.00 □

PET and the IEEE 488 Bus (GPIB)
by E. Fisher and C.W. Jensen
Provides chapters on all aspects of the General Purpose Interface Bus. Includes lines, signals, specifications, and much more.
#37-4, $15.99 □

NEW
Microprocessors for Measurement and Control
by D.M. Auslander and P. Segues
Learn to design mechanical and process equipment using microprocessor-based “real-time” computer systems. This book allows readers (even those unfamiliar with machine or assembly language) to initiate projects.
#57-8, $15.99 □

MICRO-ELECTRONIC REFERENCES
Osborne 4 & 8 Bit Microprocessor Handbook
by Adam Osborne and Gerry Kane
The one source for complete, objective and accurate information on 4 and 8 bit microprocessors. This book describes virtually every 4 and 8 bit microprocessor on the market today and allows you to evaluate any device or combination of devices.
#42-X, $19.95 □

Osborne 16-Bit Microprocessor Handbook
by Gerry Kane and Adam Osborne
A total reference book on virtually every 16-bit microprocessor, this book permits objective evaluation and comparison of these new devices.
#43-8, $19.95 □

An Introduction to Microcomputers: Volume 3 - Some Real Support Devices
by Gerry Kane and Adam Osborne
Available with or without 3-ring binder or updates. Each device is described in detail, including an analysis of the best uses for that device.
Book - #13-7, $15.00 □
Binder – #19-3, $5.99 □
Six Updates - #98, $25.00 □

HANDBOOKS
68000 Microprocessor Handbook
by Gerry Kane
This handbook offers more information about the 68000 than the manufacturer’s data sheets.
#41-1, $6.99 □

CRT Controller Handbook
by Gerry Kane
Describes five devices in the same thorough detail you’ll find in Volume 3. Contains 13 tables and 149 separate illustrations.
#45-4, $6.99 □

8089 I/O Processor Handbook
by Adam Osborne
A complete presentation of the 8089. The 8289 Bus Arbiter is also described with the same careful attention to design and application.
#30-X, $6.99 □

ORDER FORM
Book Title, Book #, Price

Osborne/McGraw-Hill Dept. B20
630 Bancroft Way, Berkeley, CA 94710
Call Toll Free: 800-227-2895
Calif residents add applicable tax.

Name ____________________________
Address ____________________________
City/State/Zip _______________________

Plus: □ .75/item 4th class □ $1.50/item UPS □ $2.50/item Air Mail □ $10.00/item Overseas

Total amount enclosed $__________________________ or charge my □ Visa □ Mastercharge
Card #__________________________ Exp. Date __________

Circle 285 on inquiry card.
specify the color register used. Unlike ANTIC modes 6 and 7 (BASIC modes 1 and 2), color-register selection is not made by the character-name byte, but instead by the defined character set. Each byte in the character table is broken into four bit pairs, each of which selects the color for a pixel. (This is why there are only four horizontal pixels per character.) The highest bit (D7) of the character-name byte modifies the color register used. Color-register selection is made according to table 3.

Using these text modes, multicolored graphics characters can be put onto the screen.

Another interesting ANTIC character mode is the lowercase-descenders mode (ANTIC mode 3). This mode displays ten scan lines per mode line, but since characters use only 8 bytes vertically, the lower two scan lines are normally left empty. If a character in the last quarter of the character set is displayed, the top two scan lines of the character will be left empty. The data that should have been displayed there will be shown on the bottom two lines (see figure 1). This allows the user to create lowercase characters with descenders.

Modified Character Sets

Many interesting and useful application possibilities spring from character-set indirection. The obvious application is the modified font. A different font can give a program a unique appearance. It is possible to have Greek, Cyrillic, or other special character sets. Going one step further, graphics fonts can be created. The Energy Czar computer program...
UVEON proudly announces
OPTIMUM™ OPTIMUM is an easy to
use, total concept data management
program for CP/M® and MP/M™ systems.
Breaking through traditional DMS
barriers, OPTIMUM provides large scale
data management capability to broaden
your computer horizons. Developed for
individual computer users and applica-
tions builders, OPTIMUM supports
user-defined forms and files, dictionaries,
powerful reporting, storage efficiency,
speed and unique cross-referencing.
Everything you want in data management
is now complete in one system.

USER-DEFINED
FORMS AND FILES
With OPTIMUM, implementing an
application is simple. The user defines
screen forms to fit the data and describes
how the data is to be stored. Once this is
complete, data entry may begin. Input
editing, validation and cross-referencing
during data entry extend OPTIMUM's
range. If the need exists, OPTIMUM can
handle complex or multiple screen forms
for the same file. Screen forms may be
modified and expanded as needed.

DICTIOnARIES
OPTIMUM maintains a dictionary of
terms for each file. This dictionary
contains information on each data
element in the file and describes
operations to be performed. Alterations
and additions to the dictionary may be
made as required.

MICRO-ENGLISH™ REPORTING
OPTIMUM Micro-ENGLISH lets the
user request standard or custom reports
from the OPTIMUM files. Sophisticated
selecting and sorting capability give
Micro-ENGLISH all the power of a large
scale interactive inquiry processor. A
dictionary based vocabulary keeps the
user interface simple.

OPTIMUM STORAGE
EFFICIENCY AND SPEED
OPTIMUM stores all information in a
compact variable-length format.
OPTIMUM files are designed for
interactive speed; a single file item may
be retrieved from among hundreds in
an instant.

OPTIMUM DATA
CROSS-REFERENCING
A unique feature of the OPTIMUM
system allows a user to cross-reference
data elements. Once information is
entered, it may be retrieved using key
words in the data.

From simple applications to complex
systems, OPTIMUM manages it all.
Broaden your horizons using the total
concept data management system with
the power of such industry forerunners as
Prime Information, Honeywell Ultimate
and Microdata Reality. Call or write
UVEON today for more information on
OPTIMUM. 1-800-525-1637.

UVEON Computer Systems, Inc.
899 Logan Street
Denver, Colorado 80203
Photo 2: Two views of a war-game map made totally from character graphics. The map is several times larger than the video display, and a player can use a joystick to view different parts of the map. Even though character-sized graphics are used, the scrolling appears to be smooth due to some advanced Atari display techniques.

(sold by Atari) uses a redefined character set for bar graphs. A character occupies eight pixels. This means that bar charts implemented with standard characters have a resolution of eight pixels, a rather poor resolution. Energy Czar uses a special character set in which some of the less useful text symbols (ampersands, pound signs, etc) have been replaced with special bar-chart characters. One character is a one-pixel bar, another is a two-pixel bar, and so on to the full eight-pixel bar. The program can thus draw detailed bar charts with resolution of a single pixel. Photo 1 shows a typical display from this program. The mix of text with map graphics is only apparent; the entire display is constructed with characters.

In many applications, character sets can be created that show special images. For example, by defining a terrain graphics character set with river characters, forest characters, mountain characters, and so forth, it is possible to make a terrain map of any country. With imagination, a terrain map of a different planet can just
If what you need is more of you...

Pascal/MT+®
With our exclusive SpeedProgramming ™ Package

Do you ever wish that you had more good people like yourself when you really have to produce Pascal/MT+® and the SpeedProgramming ™ Package makes you feel like you have an army of workers who know what to do. With all of the tools we provide you for editing, checking, compiling, debugging and documenting your programs you are able to produce working programs in an amazingly short time. With Pascal/MT+® and SpeedProgramming ™ you will never feel short-handed again.

Pascal/MT+® is a total programming system including our native machine code compiler, linker, Pascal-level debugger, disassembler, run-time subroutine library and the exclusive SpeedProgramming ™ Package. Used by thousands of companies worldwide, our customers have told us that the Pascal/MT+® system, with its built-in mini-assembler and language extensions, fills but eliminates the need for any assembly language programming. The efficient machine code produced by the ISO Standard Pascal/MT+® compiler combined with our extensions to the Pascal language for bit/byte manipulation, I/O port handling, business arithmetic, hardware floating point support along with our exclusive interrupt procedures allow construction of programs ranging from ROM based controllers and operating systems to extensive data base applications.

The Pascal/MT+ System:

- Compiler: Generates ROMable Native Code
- Complete ISO Standard (superset of Jensen & Wirth)
- Powerful Extensions include:
 - Module Compilation
 - Direct production of binary relocatable modules
 - Dynamic strings
- Disassembler
 - Combines a relocatable module with its listing file to produce interleaved Pascal and approximate assembly language code.
- The SpeedProgramming Package™
 - The SpeedProgramming Package is an integrated set of tools which allows you to create Pascal/MT+® programs, check them for correct syntax and undefined identifiers, format them to display flow of control, and do this all within the editing environment before you ever invoke the compiler. Programmers like SpeedProgramming because it frees them from the time consuming chore of repeated compilations to correct simple syntactic and typing errors. Managers find that SpeedProgramming improves productivity, thereby reducing development costs. SpeedProgramming combined with our field tested Pascal/MT+® package gives you a comfortable, powerful, interactive programming environment in which to create your professional quality software. Your products demand production quality tools. Order Pascal/MT+® with SpeedProgramming today!
- Screen Editor
 - User configurable
 - Standard random cursor movement, file access, search and replace, insert, delete, exchange, etc.
 - Structured language editing features such as automatic indent, line adjustment, reading from and writing to a file, block test insertion and duplication.
 - Requires: 24 X 80 CRT (or larger), ASCII Keyboard (7 bit data, random cursor addressing), Interactive Syntax Scanner
 - Finds syntax errors in text being edited
 - Enters SPEED, puts cursor at error, prints error test

- CHaining
- Powerful Overlay system
- Address and Size returning functions
- Bit manipulation (test, set, clear, shift)
- Byte manipulation (high, low, swap)
- Immediated assembly language
- Easy linkage to external assembly language
- Fall NEW and DISPOSE procedures
- Direct access to I/O ports
- Fast floating point, both software and AMD 9511
- Accurate 16 digit BCD (fixed point, 14,4)
- Include files
- Hex, literal numbers
- And more...

Linker
- Combines relocatable modules into executable files
- Can generate Hex format for use with PROM programming
- Interactive Symbolic Debugger
- Variable display
- High-level breakpoints by procedure/function name
- Tracing/single step by Pascal statement
- Procedure/function entry and exit trace available

FOR: 8080/8085/Z80/8086/68000

Variable Checker
- Catches undefined and mis-spelled variables before the compiler is invoked
- On-Line Reformatter
- Reads programs in seconds
- Clearly show structure and program flow
- Source Code Management Tools
- Automatic Modification Log and Backup utility program

PRICING

Prices and Specifications subject to change without notice
Available Now

<table>
<thead>
<tr>
<th>Model</th>
<th>8080/8085/68000 65K Atmel CP/M-80</th>
<th>65K Atmel CP/M-80</th>
<th>56K Atmel CP/M-80</th>
<th>128K CP/M-86, MIP/M-86 or DOS SYSTEM (336K.User area)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>$475</td>
<td>$560</td>
<td>$640</td>
<td>$800</td>
</tr>
</tbody>
</table>

嶙

- Compiler, etc. with SpeedProgramming Package
- $800
- Coming soon
- M8080

Initially cross compiler
- Resident compiler to follow

Available on B (174F) single density
Contact distributors for other formats
OEM INQUIRIES INVITED

MT Micro SYSTEMS
1562 Kings Cross Drive
Cardiff, California 92007 (714) 755-1366

Circle 255 on inquiry card.
If you have anything to do with small computers, you should be reading the Carl Helmers PERSONAL COMPUTER LETTER every month!

You won’t want to miss a single issue of the new Personal Computer Letter ... a monthly publication of comprehensive studies on issues affecting design, implementation, and applications of small computer systems. The Personal Computer Letter is a journal compiled and edited by Carl Helmers, co-founder and first editor of Byte Magazine. Here is valuable information in professionally prepared format about small computers, software, peripherals, trends in the industry, and new ideas. We accept no advertising, and the information provided is available nowhere else. Written for executives, decision-makers, market strategists, product designers and authors in the small computer field, each 12 to 16-page issue contains analysis and design studies by many of the personal computer industry’s foremost experts. For example, the current issue covers: A Voice In The Wilderness: Some first reactions to experiments with voice-aided interactive programs.

Subscribe today. Mail the coupon with your check for $200 for the next 12 monthly issues. Sample issues at $25 per copy, applicable to a full year’s subscription.

NORTH AMERICAN TECHNOLOGY, INC.
Strand Building
374 Concord St.
Peterborough, NH 03458
(603) 924-6048
☐ Enclosed is my $200 check or money order for the next 12 issues of the Personal Computer Letter.
☐ Enclosed is my $25 check or money order for a sample issue, applicable to subscription price.

NAME ____________________________
ADDRESS ____________________________
CITY ____________________________ STATE ___________ ZIP ___________

as easily be done. When doing this, it is best to define five to eight characters for each terrain type. Each variation of a single type should be positioned slightly differently in the character pixel. By mixing the different characters together, it is possible to avoid the monotonous look characteristic of primitive character graphics. Most people won’t realize that the resulting map uses character graphics until they study the map closely. Photo 2 shows two views of a terrain map created with character-set graphics.

You could create an electronic character set with transistor characters, diode characters, wire characters, and so forth to produce an electronics schematics program. Or you could create an architectural character set with doorway characters, wall characters, corner characters, and so on to make an architectural blueprint program.

Characters can be turned upside down by POKEing a 4 into decimal location 755. One possible application of this feature might be for displaying playing cards (as in a blackjack game). The upper half of the card can be shown right-side up; with a display-list interrupt, the characters can be turned upside down for the lower half of the card. This feature might also be useful in displaying images with mirror reflections (reflection pools, lakes, etc).

Even more exciting possibilities spring to mind when it is realized that it is practical to change character sets while the program is running. A character set costs either 512 bytes or 1024 bytes; in either case, it is inexpensive to keep multiple character sets in memory and flip between them during program execution. There are three time regimes for such character-set multiplexing: human slow (more than 1 second), human fast (1/60 second to 1 second), and machine fast (faster than 1/60 second).

Human-slow character-set multiplexing is useful for change of scenery work. For example, a space-travel program might use one graphics...
The SuperSoft "C" compiler supports most of version 7 Unix standard "C". Several special and widely desired features are supported, including:

- Macro expansions via the #define statement.
- Include files using the #include statement.
- Inline assembly code is supported with the #asm and #endasm.
- The object code may be ROMed.
- Programs may be ORGed for any location.
- Completely dynamic memory allocation is supported, both by the compiler and in user programs. (That is, the functions alloc and free are provided with the compiler.)

SuperSoft "C" is a two pass compiler. The first pass of the compiler produces an intermediate code (U-code, for Universal code). Pass two contains both the translator and the optimizer. The intermediate code is optimized and assembly code is output to file.

The optimizer typically results in 40% code reduction. This means that compiled object code will run nearly as fast as that which was written in assembler.

An important feature of the compiler is that assembly code is produced. This means that "hand optimization" of critical sections is possible. Also, the inline coder allows easy insertion of assembly language routines.

With the compiler comes the complete source code to the I/O libraries. These libraries are equal to or better than any that exist for the 8080/8088 computer system.

Functions included:
- open
- close
- read
- write
- seek
- tell
- fopen
- creat
- close
- flush

The Seek command supports absolute, relative from front, and relative from end of file. Fopen includes creat. Also included with the compiler are numerous sample programs and a complete library of useful functions.

Compile time options include listing files, console output, syntax checking and others.

Requires: 48K CP/M; (more recommended)
- "C" compiler: $200.00
- Manual only: $20.00
- 8000 cross-compiler: $500.00
- (CP/M to 8000 code, requires 8000 assembler)
- Source code for in-house use only: $5,000.00

CP/M Formats: 8" soft sectored, 8" Nor floppy, 8" Microline Max II, Vector II, Superbrain DOS/D.

All Orders and General Information:
SUPERSOFT ASSOCIATES
P.O. BOX 1628
CHAMPAIGN, IL 61820
(217) 359-7112
Technical Hot Line: (217) 355-2001
(answered only when technician is available)

*CP/M registered trademark Digital Research
*Unix registered trademark Bell Laboratories

SuperSoft
First in Software Technology
character set for one planet, another set for space, and a third set for another planet. As the traveler changes locations, the program changes the character set to give exotic new scenery. An adventure-type program might change character sets as the player changes locales.

Human-fast character-set multiplexing is primarily of value for animation. This can be done in two ways: changing characters within a single character set, and changing whole character sets. The Space Invaders game on the Atari 400/800 uses the former technique. The invaders are actually characters. By rapidly changing the characters, the programmer was able to animate them. This was easy because there are only six different monsters, each with four different incarnations. High-speed cyclic animation of an entire screen is possible by setting up a number of character sets, drawing the screen image, and then cycling through the character sets. If each character has a slightly different incarnation in each of the character sets, that character will go through an animated sequence as the character sets are changed. In this way, a screen full of objects could be made to cyclically move with a simple loop. Once the character-set data are in place and the screen has been drawn, the code to animate the screen would be this simple:

```
1000 FOR I = 1 TO 10
1010 POKE 756, CHARBASE(I)
1020 NEXT I
1030 GOTO 1000
```

Computer-fast character-set animation is used to put multiple character sets onto a single screen. This makes use of the display-list interrupt capability of the computer. This topic will be addressed further in a later article in this series.

The use of character sets for graphics and animation has many advantages and some limitations. The biggest advantage is that it costs little RAM to produce detailed displays. A graphics display using BASIC mode 2 characters (such as the ones in photo 2) can give as much detail and one more color than a BASIC mode 7 display. Yet, the character image will cost 200 bytes, while the map image will cost 4000 bytes. The RAM cost for multiple character sets is only 512 bytes per set, so it is inexpensive to have multiple character sets. Screen manipulations with character graphics are much faster because you have less data to manipulate. However, character graphics are not as flexible as map graphics. You cannot put anything you want anywhere on the screen. This limitation precludes the use of character graphics in some applications. However, many graphics applications remain for which the program need display only a limited number of predefined shapes in fixed locations. In these cases, character graphics provide great utility.

This article appears in slightly different form in Dat Re Atari, published by Atari, Inc. and is reproduced with its express permission.
THE NEW FLIP/FLOPPY™ DISK
with twice the byte

OMNI is pleased to bring you a reversible 5¼” mini diskette...the FLIP/FLOPPY DISK. Now you can record on both sides for twice the storage capacity of a single sided disk. And you'll be able to do it far more economically, too!

Each OMNI FLIP/FLOPPY DISK incorporates all of the quality features you'd expect from the very best single sided disk.

- Two recording surfaces
- Two sets of WRITE ENABLE notches
- Two index holes
- Reinforced HUB RINGS
- Certified error-free operation at more than twice the error threshold of disk drives
- Over 12 million rated passes without disk related errors or significant wear, for extra long life operation
- Available in Soft or Hard sector
- Compatible with most 5¼” disk drives including APPLE, TRS-80, PET, OHIO SCIENTIFIC, ZENITH, NORTH STAR, and many more.

OMNI Resources
4 Oak Pond Avenue • Millbury, MA 01527 • 617-799-0197

Call TOLL-FREE: In Mass. 1-800-252-8770
Nationwide 1-800-343-7620

INTRODUCTORY OFFER
Order the OMNI FLIP/FLOPPY DISK at this special introductory price:

Five Pack...$21.00
Equivalent to ten single-sided disks.

Ten Pack....$40.00
Equivalent to twenty single-sided disks.

Circle 277 on inquiry card.

Please send me the following OMNI FLIP/FLOPPY DISK(s)

Five Pack(s) @ $21.00 each = $

Ten Pack(s) @ $40.00 each = $

Library Case(s) @ $3.00 each = $

Shipping and handling $

TOTAL $

[] Check made payable to OMNI RESOURCES [] C.O.D.

[] Mastercard
Account Number

[] VISA/BankAmericard
Account Number

Authorized Signature

Massachusetts residents add 5% sales tax

Money back guarantee if not completely satisfied
Telelink I is a program cartridge for the Atari 400 or 800 personal-computer system that lets you access databases, electronic mail, and other services offered by information utilities such as The Source and Compuserve. You must have the Atari 850 interface module and an Atari 830 modem, or the equivalent, to use Telelink I. One of Atari’s printers, Atari 820, Atari 822, or Atari 825, may be used.

Telelink I comes with a well-prepared five-page manual explaining the use of the cartridge. Following a general introduction, the manual explains how to hook up the modem, telephone, and printers. It also describes some of the options for controlling the printers, the width of the screen, and the word or the character mode (which will be explained later). There are lists of what will be transmitted by each of the keys on the keyboard. Some special control-character combinations send ASCII (American Standard Code for Information Interchange) characters not available on the Atari 400 and 800 keyboards. (For example, a Control-| sends a {.) A list of definitions of several data-communications terms is also included. Finally, the manual lists the ASCII character set with the decimal and hexadecimal values of each character. The meanings of the ASCII control characters are also given.

An offer to sign up with Compuserve and receive one hour of free time on Micronet is included when you buy Telelink I. Micronet has several services that may be of interest to the Atari user: one is the monthly Atari newsletter. Another service is a CB (citizen's band) radio simulator. Users can enter the CB simulator and talk with computer users across the country.

Control Features

Pressing Control-8 changes the width of the screen from 38 characters to 40 characters. Control-0 toggles between word mode and character mode. The character mode splits words at the edge of the screen; the word mode, which moves a word to the next line rather than splitting it, improves the readability of the text on the screen. This is also known as word wrap.

Atari’s printers can be used with Telelink I to provide hard copy of a terminal session. Telelink I reserves a 1.5 K-byte buffer for the printer. This buffer can be printed automatically or under direct user control with the Select key. In the automatic mode, 1 K bytes of data are collected in the buffer, then an ASCII XOFF is transmitted to the sender. (XOFF is an ASCII control character meaning "stop sending data."). At this point, Telelink I stops looking for data from the modem and begins printing the information stored in the buffer. When the buffer...
"And in conclusion, I'll only use my exceptional powers for the good of mankind."

"That's a vow all we Vector 3005s make. And it's not one we make lightly. "After all, being the only product on the market with a Vector 3 terminal, a 5¼" floppy, and a 5½" Winchester rigid disk drive that provides 5 megabytes of storage is quite a responsibility. It used to take 20 floppies to give you that kind of capacity. "Our powers don't stop there, however. Each 3005 also comes with a 32-bit error-correcting code — the first time sophisticated IBM-style technology has been available on a small business system. This lets us detect and correct errors, and almost completely eliminates data loss on disks due to dirt, wear, or damage. "All this makes us pretty awesome, all right. But there's more. When coupled with Vector's MEMORITE III and EXECUPLAN software packages, we give you a 30,000 word dictionary, the ability to create your own phrase library, a teaching manual right on the screen, pass word security, plus a host of other word processing capabilities as well as financial planning, forecasting and basic accounting. "And we're reliable. Our powers won't diminish, our abilities won't fade, and dedication to mankind won't weaken. "For more information and your nearest dealer, call Vector at 800-423-5857. In California, call 800-382-3367. Or write to them at 31364 Via Colinas, Westlake Village, CA 91362. "Thank you all for coming today. And I hope we'll have the chance to do business together in the future."

VECTOR GRAPHIC INC.
COMPUTERS FOR THE ADVANCEMENT OF SOCIETY.
Now—A four station, hard disk business computer with letter quality printer, terminals and get-rolling software for less than $15 a day.*

Introducing the Altos Business Computer Special. The most powerful, reliable, easy-to-use system in its price range. And Altos now offers on-site, nationwide service.

The hardworking engine of our system is the Altos ACS8000-10 computer. It can cost-effectively hook-up with from one to four stations, as your needs demand. Its rapid access, 10 MByte Winchester hard disk is capable of storing a 3,000 page load.

*Price approximate and may vary in your area. Daily lease based on: $17,000 principal, 12% annual interest, 5-year term. Includes Altos ACS8000-10 computer, letter quality printer, four precision terminals and get-rolling software. Does not include tax, installation, training and maintenance.
Our get rolling business software package includes multi-user systems software, Wordstar™ for word processing and Microplan™ for business analysis. And when you need more, your local Altos representative can route you through to hundreds of other business and accounting programs, to meet virtually any requirement. Plus Altos also lets you communicate with other computers, mainframes, and even allows networking.

Get on the right track! Join thousands of professionals, institutions and businesses who rely on Altos computer systems. Call our toll free number or write today for the Altos sales and service depot nearest you.

All aboard!

Packed with fresh ideas for business

Wordstar is a trademark of MicroPro International Corp.
Microplan is a trademark of Chang Laboratories, Inc.
© 1981 Altos Computer Systems

Circle 17 on Inquiry card.
is empty, Telelink I transmits an XON to the sender. (XON is an ASCII control character meaning "start sending data.") Once the buffer has been filled, this process is repeated. All this is automatic and handy for copying information to the printer when no user interaction is required.

In the nonautomatic mode, data is received until 1 K bytes of data have been stored in the buffer. At this point, the keyboard begins to make a clicking noise, signaling that the buffer is nearly full. The user must do whatever is required by the communications protocol currently in use to stop the transmission of data. (Due to the serial data transmission on the Atari 400 and 800 peripheral bus, the Atari 850 interface module cannot share the bus with any other peripheral device, including the printer.) To print data, the Atari 850 must not be attempting to transmit or receive data. Telelink I causes the Atari 850 interface to cease monitoring the communication link for incoming data while printing the contents of the buffer. If the transfer of data is not stopped, the data that was received during printing will be lost.

Once the transfer has been stopped, the Select key may be pressed, and the contents of the buffer will be printed. When the contents of the buffer have been printed, the user should send the character(s) required to resume transmission of data. Another buffer will be filled and can be printed by repeating the procedure.

The options provide means to configure Telelink I to your needs. Pressing System Reset will set all of the options back to their default values. Although the automatic printer feature would be convenient, the two networks I tried, Compuserve (through Tymnet) and HDR Systems Inc (in Omaha, Nebraska), didn't respond to the XON and XOFF control characters. The nonautomatic mode will have to be used in cases where the host computer does not recognize XON and XOFF.

When an option is changed, the change is printed on the screen. Perhaps it would have been more helpful to reserve one line of the screen to show all the status information continuously. This would make it easy to determine exactly what mode the printer is in at any time. Another helpful feature Atari could have added is the ability to select local echo of keyboard input, rather than depending on the host computer to send back each character it receives.

Conclusions

- The Telelink I cartridge provides an easy way to turn your Atari 400 or 800 computer into a terminal for dialing into information utilities and timesharing networks such as The Source and Compuserve.
- The printer-control features make the cartridge valuable for an Atari system with a printer. The ability to get a hard copy of a terminal session is a definite plus.
- For an Atari system without a printer, the decision may be harder. A simple program to emulate a terminal using GET and PUT (in Atari BASIC) was given in the February 1981 Compute. The word mode is a nice feature and probably makes the cartridge worth the extra expense.
Reliability, price, and a performance kicker that leaves other 8-bit systems far behind: Real-time hardware vectored interrupts and the OASIS multi-user OS for an economical system that rivals 16-bit performance. CP/M is included. Floppy disk and hard disk subsystems, terminals, printers, board-level modules—all part of CCS full S-100 product line. A product line brochure is yours for the asking.

CP/M is a trademark of Digital Research.
OASIS is a trademark of Phase One Systems.

California Computer Systems
250 Caribbean Drive
Sunnyvale, California 94086
(408) 734-5811
Telex 171959 CCS-SUVL

MAKING MINIS OUT OF MICROs.
Local-Area Networks
Possibilities for Personal Computers

Dr Harry J Saal
Nestar Systems Inc
2585 E Bayshore Rd
Palo Alto CA 94303

Today's technical press is filled with announcements of "local-area network" products and "personal computers." New technologies from billion-dollar corporations are being rivaled by products from small firms, in a field no more than a few years old. This article provides an overview of local-area networks and how they relate to personal computers.

Defining local-area network is every bit as difficult as defining personal computer. Features, prices, and technology are distributed across a broad spectrum. Thus, we will try to describe the distinguishing characteristics of a local-area network—how to know one when you see one—and discuss some related system designs that are not local networks, but address many of the same requirements.

Personal Computers and the Group

The revolution in computer systems began with dramatic advances in silicon technology that greatly reduced the cost of the "computing" part of a computer system. Before this, CPU (central processing unit) cycles were a valuable and scarce resource; whole industries grew up developing hardware and software techniques to squeeze out the last bits of efficiency from big mainframes. Learned papers on how to salvage another two percent of processing time dominated computer conferences. People gathered in computer centers (hospital-like environments with air conditioning, raised white floors, and observation galleries). Then, suddenly, all that changed.

The cost of the CPU is no longer the dominant concern. Instead, electromechanical devices such as disks, printers, terminals, and cables generally cost more than the entire central processor. As the prices of these peripheral components drop, the time people spend using the systems becomes more important. We need rapid access to information; we need to review alternatives "online" to make decisions quickly. Our computer systems must respond to our needs and schedules, not the other way around.

The personal computer is dedicated to providing this environment. It is ready for work when we want to use it. It is typically dedicated to one person (or task) and not shared with other people. Although timesharing systems attempted to give the user the illusion of a dedicated computer, they failed because inevitably the load presented by numerous users slowed them down. A personal computer, on the other hand, responds equally well at any time of day. We no longer need to worry about the "wasted cycles" if we simply leave it on our desks just blinking its cursor. The hallmark of the personal computer is this "one person, one computer" approach.

While having to share a central processor may not be justified for many of today's computing needs, information sharing is as important as ever. Once two or more people begin to work cooperatively, they need to communicate and exchange information, whether the impetus be the joint development of a large program, several people checking on information in a common data base, or the implementation of an electronic mail system.

Sharing of larger and more reliable peripheral devices is equally important in all but the smallest computer applications. We can't all have our own letter-quality printer in our office, though we may need access to one. Large libraries of programs or extensive data bases require larger disks than those normally connected to personal computers. Their cost (and reliability) is much higher than
SUPERDISKS FOR SALE!

SuperSoft Has Great Prices on Blank Discettes

SuperSoft sought out and found a discette that met our high standards. In the software distribution business we needed a discette that was reliable, sturdy, durable, and inexpensive. We wanted no data errors on any discette that we shipped.

- Guaranteed
- Data density in excess of 3200 b.p.i.
- Approved by Shugart, Perapi, Qume, Remex, others
- Operating temperature: 50-120 degrees Fahrenheit

<table>
<thead>
<tr>
<th>Discette type</th>
<th>Price per box</th>
<th>Single Sided Single Density:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Soft sectored IBM compatible 8"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 hard sectors 5½"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16 hard sectors 5½"</td>
</tr>
</tbody>
</table>

		Single Sided Double Density:	
		Soft sectored IBM compatible 8"	$35.00
		10 hard sectors 5½"	$35.00
		16 hard sectors 5½"	$35.00

- Single $15.00 for Double Sided Discettes
- Illinois residents add 5%
- Add $1.00 shipping per box

All SUPERDISKs are sold only in lots of 10. Each comes with jackets and box. All orders must be pre-paid or C.O.D. Generally we ship from stock with arrival times running about 8-10 Days.

TRENCHER

TERM

A Complete Networking/Intercommunications Package

TERM allows the CP/M user to communicate with other CP/M based systems or with remote timesharing computers. TERM supports file transfers between both timesharing systems and between CP/M systems.

TERM equals or exceeds comparable programs in power and flexibility, but costs less, delivers more and source code is provided on discette!

With TERM you can send and receive ASCII, HEX and COM files. You also have a conversational mode, and a timesharing terminal emulator. Below is a partial list of features:

- Engaged/disengaged printer
- Terminal emulator
- Auto error checking with re-try
- Conversational mode
- Send files
- Receive files

requires 32K CP/M and a minimal knowledge of assembly language programming.

TERM is supplied with source and user manual: $150.00

Manual only: $15.00

SUPPLEMENTAL INFORMATION

SUPERDISKS

All Orders and General Information:

SUPERSOFT ASSOCIATES
P.O. BOX 1628
CHAMPAIGN, IL 61820
(217) 359-2112
Technical Hot Line: (217) 359-2691
(Answered only when technician is available)

All software can be supplied on the following media:

- CP/M formats . . . 8" soft sectored, 5" Northstar, 5" Micropolis Mod II, Vector MZ, Superbrain DD/QD, Apple II+

For complete information on these and all other SuperSoft products, please write for our free catalogue.

24 hour express service available!
The Converter that transforms your electronic typewriter into a computer printer.

- No modifications to the typewriter
- Does not affect normal typewriter functions
- All typewriter functions accessible by computer
- RS232C, IEEE and parallel interfaces available
- KSR version turns typewriter into a computer terminal
- Fully assembled, tested and burned in

NEW! NOW AVAILABLE
OLIVETTI PRAXIS 35 TYPEWRITER + CONVERTER TP35 = DAISY WHEEL PRINTER FOR LESS THAN $1000.

Prices start as low as $275.
CONTACT YOUR LOCAL OFFICE EQUIPMENT DEALER OR VERTICAL DATA SYSTEMS INC. FOR FURTHER DETAILS.

Vertical Data Systems Inc.
1215 Meyerside Dr., Unit 2A,
Mississauga, Ontario,
Canada L5T 1H3
(416) 671-1752

Dealer inquiries invited

the stripped-down “consumer” variety offered by most personal computers.

Multiuser Systems
Personal computer networks preserve the independence of each computer workstation while offering the possibility of sharing information and devices among the individuals on the network. Networks are useful in almost all situations where several people need to work together and share information, but still want the attractive features of the dedicated personal computer.

Of course, we can satisfy the multiuser requirements in a more traditional way, too. A number of companies offer shared multiuser systems based on a single microprocessor. Digital Research’s MP/M system permits up to sixteen users to share a common microprocessor and its peripherals. MP/M is a derivative of the popular CP/M operating system that permits applications written for that environment to function for multiple users. Onyx’s C8000 is a multiuser system based on the Zilog Z8000 microprocessor running the Western Electric UNIX operating system.

Multiuser systems are fundamentally similar to timesharing systems of the past. Users may be happy with the performance as long as the demands on the single processor are low, but they share one of the great weaknesses of central computer systems in that if the processor should fail, everyone loses his work and has to wait until the system is repaired or restarted. And because of the statistical nature of the sharing of the processor, things we take for granted in personal computers, such as real-time graphics and instantaneous response to keystrokes, are sacrificed.

Networks, Networks, Networks
Until five years ago, a communications network generally meant a connection of a large number of terminals, geographically distributed throughout a company or across the country, to one or more central computers.

Anyone using The Source or Com-
Easy on your eyes and your budget.

NEC 12" COMPUTER MONITOR JR-1201M
DESIGNED FOR TEXT AND GRAPHICS DISPLAY
JITTER AND GHOST FREE IMAGE
BUILT-IN SOUND SYSTEM AND SPEAKER
STANDARD VIDEO INPUT
PLUG-IN COMPATIBLE WITH MANY COMPUTERS
GREEN PHOSPHOR FOR EASIER VIEWING
ANGLED 80 DEGREES TO REDUCE GLARE
LIGHT-WEIGHT INDUSTRIAL CONSTRUCTION
PROFESSIONAL EQUIPMENT STYLING
VIDEO AND AUDIO OUTPUTS

This high quality professional computer monitor provides sharp, clear display of up to 80 characters by 25 lines of text, making it ideal for word processing as well as standard business applications.

Lightweight industrial grade construction gives maximum portability with reliable operation.

Color monitor also available for Apple®, Atari® and other popular computers. See your authorized NEC America Dealer.

Apple is a registered trademark of Apple Computer, Inc.
Atari is a registered trademark of Atari Inc.

80 character display makes it ideal for word processing and scientific applications.

NEC America, Inc.
1401 Estes Avenue
Elk Grove Village, IL 60007
cooling capacity, and if any module fails, the entire system, generally, is down. There is no way to add more stations while the system is running, and the terminals can’t be located very far from the main processor unit. Each processor must communicate with the others through the common-service processor. They cannot directly exchange information, nor can they have their own private disks, printers, modems, and the like.

Another product for multiuser, independent-processor sharing of a disk is the disk multiplexer (the Corvus Constellation is an example). A disk multiplexer can be likened to a very fast rotary switch that cycles around looking to see if any of the computers connected to it wish to do a disk access. When it finds a request, it reads or writes the particular disk sector and then goes on to the next station. The disk multiplexer approach is quite simple and can be an inexpensive solution for many applications. However, due to the very low level of the requests that are typically presented to the multiplexer (eg: read a sector and write a sector) it is generally limited in dealing with the more sophisticated problems that arise in multiuser interactions.

A more sophisticated interface with a powerful software base is needed for complex applications. Like the multiprocessor systems previously described, there is no way for separate stations to communicate directly. They must send their information to the multiplexer, where it goes to disk, or may be temporarily buffered in memory. If the central disk or multiplexer fails, all work comes to a halt.

Networks Without Software

One of the central themes of a computer network is communications. A large number of companies now offer computer networks that provide the ability to transmit data from station to station, but do not address the questions of the necessary operating system, programming language, and applications software needed to make use of these networks. Basically, these units are peripherals with low-level drivers that permit data exchange. While they are suitable for those installations that have the necessary system-programming talent to design, modify, and implement the changes needed to take advantage of this facility, we will be focusing on integrated computer-network systems. Very few vendors are willing to step up to the complex software tasks inherent in blending these technologies into a coherent system design.

Both Digital Research and 3COM provide software without a network. Digital Research’s CP/M NET system permits up to sixteen stations on a host. These stations share the data and devices on that central host. CP/M NET is written without any particular network communication devices in mind. Each hardware vendor may select a particular technology and protocol to connect the work stations to the host. But although CP/M NET provides a framework for multiuser software based on the familiar CP/M environment, due to the lack of support for applications in the languages and systems running under CP/M NET, many companies have chosen to develop their own variant of CP/M with their own sharing protocols.

3COM’s UNET is a package written for the UNIX environment. It is a software implementation of a government-standard intercomputer protocol, called TCP; it, too, leaves open the question of how the computers are actually connected, and application programs must explicitly deal with the network in a nontransparent fashion.

Attributes of a Local Network

A local-area network can be described as a communications network that covers a limited geographical area. Just what “limited” means varies substantially, from 0.1 km (approximately 328 feet) to 10 km (approximately 6.2 miles). Data rates on

APPLESCOPE Interface for the Apple II Computer

The APPLESOCPE system combines two high speed analog to digital converters and a digital control board with high resolution graphics capabilities of the Apple II computer to create a digital storage oscilloscope. Signal trace parameters are entered through the keyboard to operational software provided in PROM on the DI control board.

- DC to 3.5 Mhz sample rate with 1024 byte buffer memory
- Pretrigger View up to 1020 Samples
- Programmable Scale Select
- Continuous and Single Sweep Modes
- Single or Dual Channel Trace
- Greater than or less than trigger threshold detection

Price for the two board Applescope system $595

Dealer Inquiries Invited

For further information contact:

RC Electronics Inc.
7265 Tujolmne Street
Goleta, CA 93117
(805) 968-6614

Circle 316 on Inquiry card.

DIGITAL STORAGE OSCILLOSCOPE INTERFACES

Combine an Apple II or S100 based computer system with an interface circuit board to create a digital storage oscilloscope at a fraction of the cost of other storage scopes.

The S100 interface provides an additional 1024 bytes of buffer memory in place of the PROM. The user must supply the graphics display and driving software. Price of the single board is $495.

The SCOPEDRIVER is an advanced software package for the Applescope system. It provides expanded waveform manipulation and digital signal conditioning. The SCOPEDRIVER is available on 5½" floppy disks for $49.

October 1981 © BYTE Publications Inc.
Start talking business

with your Apple

COBOL is the most effective business language. Apple II is the most friendly business computer. CIS COBOL with FORMS-2 brings together the best features of COBOL and Apple to enable you to deliver the most effective, user-friendly applications.

Business Programmers: Take the COBOL expertise you have acquired on big business mainframes, and use it on Apple II to create friendly applications that will talk directly to your users—where it suits them best, on their own desks.

CIS COBOL's dynamic module loading gives you big application capability and the FORMS-2 source generator lets you build and modify conversational programs from visual screen formats, creating much of the code automatically.

Application vendors: CIS COBOL with FORMS-2 steps up the pace for your development of the high quality professional application packages needed today. And creating them in COBOL makes them more maintainable.

Over half the Apple II's now being sold are going to business or professional users so demand for quality applications is growing fast, creating big business opportunities for you.

Stability proven by the US Government. CIS COBOL has been tested and approved for two consecutive years by the US General Services Administration as conforming to the ANSI '74 COBOL Standard. Apple II under CP/M is included in CIS COBOL's 1981 GSA Certificate of Validation (at Low-Intermediate Federal Standard plus Indexed I-O and Level 2 Inter-Program Communication).

Get your hands on CIS COBOL at your Apple dealer.

Talk business with him now!

Micro Focus Inc., 1601 Civic Center Drive
Santa Clara, CA 95050. Phone: (408) 248-3982.

CIS COBOL with FORMS-2 for use on the Apple II with CP/M is an Apple Distributed Product.

CIS COBOL and FORMS-2 are trademarks of Micro Focus. CP/M is a trademark of Digital Research. Apple II is a trademark of Apple Computer.
For only $500 the Mediamix ETI2 lets you connect IBM Electronic Typewriter Models 50, 60, or 75 to any computer. Why invest in two separate machines? Your office typewriter can do both jobs, yielding better type quality, a consistent corporate image and renowned IBM service.

The ETI2 is no simple black box, either. It is a sophisticated microcomputer with 2000 characters of memory, over 39 special commands and the option of doing typesetting on the IBM Model 50.

Write or Call

MEDIAMIX
P.O. Box 67857
Los Angeles, California 90067
(213)475-9949
Dealer Inquiries Invited

a local network also vary over orders of magnitude, from 100 K bps to 10 M bps, and higher. But these boundaries are far from sufficient to characterize the meaning of “local network” today.

Compared to terminal-like devices, a local network generally has an inexpensive communications medium and high data rates. Every node on the network can communicate with every other node, and the network requires no central node or processor. Messages are “broadcast” over the communications medium, with only the intended receiver is expected to respond, although other stations have the capability of “listening in.” Thus, a high level of security, such as found in point-to-point networks, is not present unless cryptographic techniques are used. Local networks are meant to be highly reliable, so that any failing station will simply be unavailable, without interrupting the communications between the remaining stations. Similarly, it is possible to add new stations without disrupting the ongoing communications flow.

Due to the limited-distance nature of local networks, another standard feature is the ability to connect multiple networks. This internetwork link, called a gateway, may be a high-speed link for networks that are close to each other, or it may depend on a more conventional telecommunications network for reliably transmitting data from city to city, or around the world. Because of the multiplicity of emerging network technology, and the variety of communications protocols in use, gateways must be provided to permit stations on one type of network to exchange information with others on a different type or speed of network. Both electrical and software protocols must be converted when passing data through these gateways.

Origins of Local-Area Networks
Local-area networks evolved from the large-scale telecommunications networks developed in the 1960s. As universities and research labs began to install computers, the need arose to permit the flow of information among them. The underlying communications protocols (packet transmission) came from the long-distance networks. The communications media (twisted pair or coaxial cable) were developed to support very high speed direct coupling between computers.

One experiment significantly affected the nature of modern local-area networks: the University of Hawaii wanted to connect terminals all over the Hawaiian islands to a local computer and communications processor, and from there to other networks. They developed a system called ALOHA, a packet radio-transmission system. No wires were used to connect each station to the others, so techniques such as polling could not be used.

The scheme was elegant, and operated in a manner very similar to the way that telephone party lines work. Each station would first listen to see if anyone else was transmitting (in radio jargon, this was called “carrier sense”). If not, the station would transmit its message, including error-detection bits. As long as the total fraction of available transmission time was low, everyone got a turn—eventually. If two stations found the channel clear and started transmitting simultaneously, the two packets would collide. This collision would scramble the information, but the error-detection logic would throw away the bad data. If the stations didn’t receive an acknowledgment by a certain time, they would simply send the packet again.

Studies of this scheme quickly revealed a number of problems, one of the more serious being that as the number of messages grew, many collided, and only a small fraction of the true communications bandwidth was used for valid data. Far more serious was the fact that if enough stations tried to transmit, less and less data got through, and the result was continuous collisions!

The Ethernet Network
Numerous refinements to the basic
Whitesmiths Ltd. now offers portable language development systems for four families of computers. Approximately one thousand installations use our software.

We support complete versions of both C and Pascal, as compilers and cross-compilers. You get C automatically when you license Pascal, and you get native support with each cross-compiler. Test the software on your VAX before burning PROMs for your 80000 or 8080.

Whitesmiths Ltd. offers a variety of licensing arrangements, the simplest being a binary license for use on a single CPU. The full source code is available with internal documentation. Maintenance, training and sublicensing rights may also be obtained.

Call or write for more information.

<table>
<thead>
<tr>
<th>Source Operating Systems</th>
<th>8080/280</th>
<th>LSI-11/PDP-11</th>
<th>VAX-11</th>
<th>M68000</th>
</tr>
</thead>
<tbody>
<tr>
<td>8080/280 CP/M</td>
<td>C: $750 Pascal: $950</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>VAX-11 Unix/V32 VMS</td>
<td>C: $1350 Pascal: $1550</td>
<td>*</td>
<td>C: $750 Pascal: $950</td>
<td>C: $1350 Pascal: $1550</td>
</tr>
<tr>
<td>M68000 VERSAdos</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>C: $750 Pascal: $950</td>
</tr>
</tbody>
</table>

Idiom is a trademark of Whitesmiths, Ltd. Unix is a trademark of Bell Laboratories. CP/M is a trademark of Digital Research Company. VMS, RSX-11/M, RSTS/E, LSI-11, VAX are trademarks of Digital Equipment Corporation. VERSAdos is a trademark of Motorola Corporation

*Special Order

Protect your software investment.

Whitesmiths, Ltd.

P.O. Box 1132 Ansonia Station New York, N.Y. 10023 (212) 799-1200 Telex 645 592

Distributors: Australia
 Fawney Pry Ltd.
 Hurstville, NSW
 02 370 6100

Japan
 Advance Industries
 Chiyoda-ku, Tokyo
 03-258-0539

United Kingdom
 Real Time Systems
 Newcastle upon Tyne
 0632 733131
SLG AIO $149

MONTHLY
SPECIALS

VERS-A-WRITER
DIGITIZER $239

LIST $45

CALL

The Epson

80-Column Dot Matrix Printer

MX-80

- Full 96-character
 ASCII with descenders
- Adjustable tractor-type
 pin feed
- Interfaces
 Standard — Centronics-style 8-bit
 Parallel
 Optional — RS232, IEEE488
 Duffer Size — one line

TO ORDER Phone orders invited using Visa, Mastercard or bank
wire transfers. Visa and MC service charge of 2%. Mail orders
may send charge card number (include expiration date), cashiers
check, money order, or personal check (allow 10 business days
for personal or company checks to clear). Please add 3% ($5.00
minimum) for UPS shipping, handling, and insurance. APO and
FPO include 5% ($7.00 minimum) for postage. Cali residents
add 6% sales tax. Please include phone number on all orders.

FOREIGN ORDERS include 1% handling — shipped air FREIGHT
COLLECT only. Credit cards not accepted on foreign orders.
All equipment is in factory cartons with manufacturer warranty.
Open-end products not returnable. Restocking fee for returned
merchandise. Equipment subject to price change and avail-
ability. Retail prices differ from mail order prices. WE SHIP THE
SAME DAY ON MOST ORDERS.

(714) 579-0330 • MAIL TO: 1251 BROADWAY, EL CAJON, CA. 92021
APPLE SOFTWARE

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABM by Muse</td>
<td>19</td>
</tr>
<tr>
<td>Adventure by Microsoft</td>
<td>27</td>
</tr>
<tr>
<td>Alien Rain by Broderbund</td>
<td>19</td>
</tr>
<tr>
<td>Apple II 48K</td>
<td>119</td>
</tr>
<tr>
<td>Apple Pilot</td>
<td>129</td>
</tr>
<tr>
<td>Apple-oids</td>
<td>25</td>
</tr>
<tr>
<td>Appleplot by Apple</td>
<td>59</td>
</tr>
<tr>
<td>Applepost Mailing List System</td>
<td>44</td>
</tr>
<tr>
<td>Applewriter Word Processor</td>
<td>65</td>
</tr>
<tr>
<td>Asteroid Field by Cavalier</td>
<td>19</td>
</tr>
<tr>
<td>CCA Data Mgmt</td>
<td>84</td>
</tr>
<tr>
<td>Data Factory by Microlab</td>
<td>129</td>
</tr>
<tr>
<td>Desktop Plan II</td>
<td>159</td>
</tr>
<tr>
<td>DB Master II by Stoneware</td>
<td>199</td>
</tr>
<tr>
<td>DOS Tool Kit</td>
<td>65</td>
</tr>
<tr>
<td>DOS 3.3 Upgrade</td>
<td>49</td>
</tr>
<tr>
<td>Dow Jones Portfolio Evaluator</td>
<td>45</td>
</tr>
<tr>
<td>Fortran by Apple</td>
<td>159</td>
</tr>
<tr>
<td>Hi-Rez Football</td>
<td>33</td>
</tr>
<tr>
<td>Head-On</td>
<td>21</td>
</tr>
<tr>
<td>Integer Basic Cassette Demos</td>
<td>29</td>
</tr>
<tr>
<td>Orbitron</td>
<td>25</td>
</tr>
<tr>
<td>PASCAL Language System</td>
<td>425</td>
</tr>
<tr>
<td>Peachtree Bus. Pics</td>
<td>CALL</td>
</tr>
<tr>
<td>Personal Filing System</td>
<td>84</td>
</tr>
<tr>
<td>Phantoms Five</td>
<td>29</td>
</tr>
<tr>
<td>Pool 15</td>
<td>29</td>
</tr>
<tr>
<td>Pulsar II</td>
<td>25</td>
</tr>
<tr>
<td>Raster Blaster</td>
<td>24</td>
</tr>
<tr>
<td>Robot War by Muse</td>
<td>31</td>
</tr>
<tr>
<td>Sabotage</td>
<td>21</td>
</tr>
<tr>
<td>Sarcon II Chess Game</td>
<td>29</td>
</tr>
<tr>
<td>Snoggle/Puckman by Broderbund</td>
<td>24</td>
</tr>
<tr>
<td>Space Game Album by Budgoco</td>
<td>39</td>
</tr>
<tr>
<td>Space Eggs</td>
<td>25</td>
</tr>
<tr>
<td>Space Invaders/Cosmos Mission</td>
<td>19</td>
</tr>
<tr>
<td>Space Raiders by USA</td>
<td>25</td>
</tr>
<tr>
<td>Star Cruiser</td>
<td>24</td>
</tr>
<tr>
<td>Super-Logic FS-1 Flight Simulator</td>
<td>34</td>
</tr>
<tr>
<td>Super Single Disk Copy Routine</td>
<td>35</td>
</tr>
<tr>
<td>Super Stellar Trek</td>
<td>33</td>
</tr>
<tr>
<td>Supertext II by Muse</td>
<td>129</td>
</tr>
<tr>
<td>Ultima</td>
<td>35</td>
</tr>
<tr>
<td>Viscalc II</td>
<td>159</td>
</tr>
<tr>
<td>Vissalist</td>
<td>24</td>
</tr>
<tr>
<td>Visicorder/Visiplot</td>
<td>219</td>
</tr>
<tr>
<td>Wizard and the Princess</td>
<td>32</td>
</tr>
<tr>
<td>Zork</td>
<td>34</td>
</tr>
</tbody>
</table>

APPLE COMPUTER INTERFACE CARDS

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applesoft II Firmware Card</td>
<td>149</td>
</tr>
<tr>
<td>CCS Asynchronous 7710A</td>
<td>129</td>
</tr>
<tr>
<td>CCS Parallel Print Cd. 7720A</td>
<td>155</td>
</tr>
<tr>
<td>Centronics Interface Cd.</td>
<td>179</td>
</tr>
<tr>
<td>Comm. Co. & DB25 Cable</td>
<td>178</td>
</tr>
<tr>
<td>CPS Multifunction by Mtn. Comp.</td>
<td>199</td>
</tr>
<tr>
<td>Expansion Chassis by Mtn. Comp.</td>
<td>555</td>
</tr>
<tr>
<td>HiSpeed Serial Int. Cd.</td>
<td>155</td>
</tr>
<tr>
<td>Integer Basic Firmware Cd. =</td>
<td>149</td>
</tr>
<tr>
<td>ROMPLUS</td>
<td>135</td>
</tr>
<tr>
<td>SSm AIO Serial/Parallel I/O</td>
<td>149</td>
</tr>
<tr>
<td>Assembled & Tested</td>
<td></td>
</tr>
</tbody>
</table>

ACCESSORIES

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/D D/A Board by Mtn. Comp.</td>
<td>319</td>
</tr>
<tr>
<td>Andromeda 18k Ramcard</td>
<td>179</td>
</tr>
<tr>
<td>Apple Game Paddles</td>
<td>25</td>
</tr>
<tr>
<td>Arith. Processor 7811 A or B</td>
<td>339</td>
</tr>
<tr>
<td>COPYROM by Mtn. Comp.</td>
<td>51</td>
</tr>
<tr>
<td>Dan Paymar L.C Kit 1 or 2</td>
<td>55</td>
</tr>
<tr>
<td>Extender Board</td>
<td>27</td>
</tr>
<tr>
<td>GPIB IEEE 488 Card</td>
<td>258</td>
</tr>
<tr>
<td>Graphics Input Tablet</td>
<td>639</td>
</tr>
<tr>
<td>Hayes Micromodem</td>
<td>299</td>
</tr>
<tr>
<td>Introl X-10 Remote Control Sys</td>
<td>239</td>
</tr>
<tr>
<td>Joystick for the Apple</td>
<td>47</td>
</tr>
<tr>
<td>Keyboard Filter ROM chip</td>
<td>49</td>
</tr>
<tr>
<td>Lazer Lower Case Plus</td>
<td>49</td>
</tr>
<tr>
<td>M & H Sup-R-Term 85-cyl-bd</td>
<td>319</td>
</tr>
<tr>
<td>Music System by Mtn. Comp</td>
<td>479</td>
</tr>
<tr>
<td>Programmable Timer CCS 7440A</td>
<td>159</td>
</tr>
<tr>
<td>Prototyping Hobby Card</td>
<td>22</td>
</tr>
<tr>
<td>ROMWRITER by Mtn. Comp</td>
<td>149</td>
</tr>
<tr>
<td>SuperTalker Speech Synthesizer</td>
<td>239</td>
</tr>
<tr>
<td>Thunderclock</td>
<td>129</td>
</tr>
<tr>
<td>Versa-Writer Digitizer Drawing Sys</td>
<td>239</td>
</tr>
<tr>
<td>Vtdex Keyboard Enhancer</td>
<td>115</td>
</tr>
<tr>
<td>Vtdex Videlterm 80-col-cd</td>
<td>319</td>
</tr>
<tr>
<td>Z-80 SOFTCARD by Microsoft</td>
<td>319</td>
</tr>
</tbody>
</table>

DISCOUNTS

- DISK with CONTROLLER NEW DOS 3.3 $529
- without ... $445
- Nearly Everything for Apple

CALL 1-800-854-2833

PHONE ORDERS

MON. - SAT. 8 to 6 P.S.T.

Circle 86 on Inquiry card.

EXCITING DISCOUNTS

APPLE II 48K

$1095
ALOHA scheme were developed, but the most significant were developed at the Xerox Palo Alto Research Center as part of an experimental project, called Ethernet, started in the mid 1970s. It was once thought that a universal medium called “luminiferous ether” was the carrier of electromagnetic waves. Xerox decided to build its “ether” out of coaxial cable.

The Ethernet scheme could detect a collision in progress by reading back the state of the cable as data were being transmitted. Thus, a station could sense when another station was sending data and stop transmitting, instead of continuing until the end of its packet. (To guarantee that all such stations recognized the collision, a burst of noise was sent prior to quitting.) A randomized delay function was added so that each station would wait a different amount of time, instead of beginning to transmit immediately after a previous transmission was complete. This avoided causing a collision each time two or more stations had something to send. The delays would get progressively longer as the channel became busier.

Using these modifications, an Ethernet-style local network could use essentially all the bandwidth of the communication medium. Even as stations began sending ten times as much information as the channel could handle, things no longer came to a halt.

The Ethernet algorithms were designed to be simple. Every station on the network manages its use independently, so there is no need for a master to control access. Simplicity was important to ensure minimal building costs and reliability. Other schemes are considerably more complex, which makes them either difficult or expensive to include in each node’s interface.

Network Topology

Most early local networks used a star topology (see figure 1): a central node was connected via a radial cable to each of the other stations. Unfortunately, this system suffers from the consequences of a central failure. The entire system goes down if the center fails. But there are still many reasons to use a star network.

Figure 1: Popular network topologies. The star network (1a) is the most common of the early network types (such as the telephone system), and relies on the central node for control of operations. The ring network (1b) circulates all messages in one direction, and may employ tokens to specify which node may transmit; a failure of any node may interrupt network operation. Bus configuration (1c), as used on the Ethernet and by cable television, allows nodes to be added or removed without impairing the network.

Telephone exchanges are organized as star networks, and many companies already have PBXs (private-branch exchanges). By using the PBX as a local-area network for data as well as voice communication, companies can take advantage of the already existing wiring: this is most suitable for low-data-rate information, such as video terminals.

A ring (or loop) topology connects its stations in a closed network. Messages circulate in one direction, often being amplified and repeated at each node they pass through. Again, a station failure can interrupt the entire message flow, but in some cases two alternate parallel loops are provided for reasons of reliability. Rings often use a form of control strategy called a token. A token is a special message that gives the receiving station permission to transmit. When a free token comes by a station that wants to transmit, the token is removed and replaced by the message. Generally, the same station removes this message when it comes around again and reinserts the token.

Rings are most popular in process-control applications (eg: controlling equipment in manufacturing environments). When dealing with the equipment being controlled, it is important to be able to guarantee the worst-case maximum time necessary to send a message to some station, say to close a valve. Token systems can provide a solution to this problem. The random nature of the Ethernet scheme might prevent a station from sending a critical message in time. (Actually this is a bit misleading. Ethernet can be used to build token-like control that requires stations to avoid sending a message just because they see the net is free; they have to wait to receive the control token first.)

Much of the ring approach has been developed in England, particularly at Cambridge University, where numerous computers and terminals have been interconnected using a simple but high-speed interface. Several British companies are now developing commercial versions of the Cambridge Ring interface unit.
WHAT'S IN A NAME?
We've changed the name of our product line. Originally, we called our product "Phoenix" because we saw the phoenix as an appropriate symbol of quality. Unfortunately, a lot of other companies chose Phoenix as well, and there was some concern that the market place would become confused.

Our new name, PALANTIR™ (pronounced pa'lan'ter), is not a new name for us since it's our corporate name. It comes from J.R.R. Tolkien's The Lord of the Rings and describes a black crystal ball, a "seeing stone", used to see things at a distance.

Whatever the name on the package, the software in the package hasn't changed. It is still the highest quality business software you can buy for your microcomputer.

WORD PROCESSING
We know word processing. A year-and-a-half ago the owners of Designer Software™ wrote a well-known word processor for another company. In the last 18 months we've learned about other features you want in a word processing package. PALANTIR™ Word Processing reflects our experience. It is more powerful than other word processing packages you can buy and can compete, feature for feature, with expensive dedicated word processors.

Many people have remarked that the user's manual we wrote earlier was the best ever for microcomputer software. Even so, we felt that we could have made it more accessible to the non-technical user. With PALANTIR™ Word Processing we have a separate Training Manual with beginning, intermediate and advanced levels. By allowing you to work at your own level, we have made the learning process easier and less intimidating.

ACCOUNTING
All five PALANTIR™ general accounting packages (General Ledger, Accounts Receivable and Payable, Payroll and Inventory) were designed by CPA's based on similar packages from main and miniframe computers. The programs are COBOL with an integral assembly-language database. They are integrated to allow automated posting to the General Ledger. An internal screen handler permits full-screen data entry for speed and ease of use. Although we made cosmetic enhancements prior to distribution, the basic programs have been user-tested for at least eighteen months.

PALANTIR™ Accounting also includes a growing number of specific application packages. We have completed or scheduled for completion Fixed Assets, Tenant Processing, Mail Management, Financial Projections and Time/Billing. Each package stands alone, but many also work in conjunction with other PALANTIR™ packages. For example, Mail Management will work very well by itself, but we also designed it to fit in easily with the merging capabilities of Word Processing.

With all PALANTIR™ Accounting we have given special attention to documentation. Not being content to describe which buttons to push, we have taken the time to explain the accounting principles behind the programs and how each package helps to automate your office.

Designers Software and Palantir are trademarks of Palantir, Inc.

3400 Montrose Blvd • Suite 718 • Houston, Texas 77006
(713) 520-8221 • Telex 790510 • Source TCU671

If you want to know what PALANTIR™ Word Processing and accounting can do for your business, call, write, telex or use The Source to request more information.

Circle 117 on inquiry card.
Bus topology is quite simple, being merely a long length of cable that runs past each station. Stations are connected to it at the nearest point, and can be added or removed without affecting any other station. A station can be added in two ways; the bus can be split, temporarily disrupting communications, and a new station inserted, or, more commonly, taps (devices developed by the cable TV industry that literally pierce the cable from the outside, making contact to the inner conductor and the outer shield) can be installed while stations are transmitting. Even temporary shorts will only garble some packets, and they will be retransmitted once the short is removed. The Ethernet uses this form of interconnection.

What Frequency, What Wire?
Another significant parameter in the description of a local-area network is the particular medium used to send the information between stations. Local networks have used twisted pair, multi conductor flat cable, coaxial cable, optical fibers, and even infrared light transmitted through the atmosphere. Within each of these categories, numerous choices abound in the frequency used for transmission and the details of the modulation technique.

The most fundamental split in technology revolves around frequencies used on coaxial cable. You can think of coaxial cable as a simple wire. If someone wants to send information, the wire can be left at 0 V or raised to some nonzero voltage. Another station can detect the changes in voltage and decode the information. This is generally referred to as baseband transmission, since the frequency spectrum generated starts at 0 Hz (direct current) and goes up from there.

Television transmission is sent at very high frequencies (typically 50 MHz to 100 MHz). A central carrier frequency is modulated up and down to transmit the information. At these frequencies, the cable has far less attenuation than in the baseband region, so a transmitter can broadcast over miles of cable instead of being limited to several thousand feet. And the blossoming cable-TV industry can provide the necessary devices at a very low cost due to the large volumes they are expected to produce for standard television reception. RF (radio-frequency)-modulated systems can also provide much higher bandwidths than baseband, so the cable can, in principle, be shared along with voice- and video-transmission systems.

RF systems (also known as broadband), while very attractive, do require a central retransmitter to receive the data sent from each station and rebroadcast it, much amplified, at a different frequency that each station is expected to listen on. The required unit is expensive, even for the smallest system, and if that unit fails, the network is unavailable until the retransmitter is back in service.

Local-Area Network Standards
Numerous local-area network products have already been announced, and new entries are made daily. In almost every case, the manufacturers have developed their own hardware and software protocols. These, naturally, are incompatible with everyone else’s!

The exception to the above incompatibility is the Ethernet specification released in November 1980 by DEC (Digital Equipment Corporation), Intel, and Xerox Corporation. Based on years of actual experience with an experimental version of Ethernet communications, the “tri-company standard” was provided, with every detail of the electrical and low-level communications protocols defined. These companies are trying to encourage the adoption of this scheme among computer and peripheral manufacturers; indeed, many large and small companies have publicly announced their adoption of the DIX Ethernet system, and are busy designing and building products.

The DIX Ethernet system uses a baseband-transmission scheme, with a 10 Mbps data rate. It provides for the use of a large number of stations and packet formats, with 48 bits allocated for a unique world-wide
No business is too small for a North Star

The economical business computer that does it all.

Bookkeeping. Mailing Lists. Word processing. Running your business is a lot more complex than running a lemonade stand. But it doesn’t have to be. Sure, you may already know you could use a computer. But did you know that the North Star HORIZON® can do the job better than many bigger computers? For much less money?

The North Star HORIZON is easy to install and operate. As you grow, add programs, work stations, and memory. Today, more than 22,000 HORIZONS are in operation worldwide.

And our sales and service support is there to help you. So look at the HORIZON before you buy a computer. You owe it to yourself. And to your business. For the dealer in your area, call toll-free (800) 447-4700. In Illinois (800) 322-4400. In Alaska and Hawaii (800) 447-0890. Or write North Star Computers, Inc., 14440 Catalina Street, San Leandro, CA 94577. Phone (415) 357-8500. TWX/Telex (910) 366-7001.

HORIZON is a registered trademark of North Star Computers, Inc.

FOLLOW THE STAR NorthStar

Circle 268 on inquiry card.
station address that is not duplicated anywhere, and it has a large (32-bit) checksum on each packet to detect errors.

This scheme pushes the technological requirements by operating at such high speeds and using the particular packet format and checksums adopted. Without specially designed VLSI (very large scale integration) devices to handle the network interface, it is expensive to build an Ethernet interface. For example, Intel has announced a Multibus Ethernet interface (the ISBC-550) that costs about $4000. To that you must add several hundred dollars for an analog interface (the transceiver unit) to connect between the interface board and the physical cable. It is expected that volume production of the needed components will begin within the next two years and prices will drop dramatically.

One means of lowering the effective cost is to share the Ethernet interface among several stations. A number of companies (such as Xerox, and Ungermann-Bass) offer a microcomputer-based Ethernet interface with four to eight ports for connecting terminals or other microcomputers. The effective cost per station can be reduced to between $500 and $1000 for a fully loaded system.

Standards Organizations

While product activity continues, several committees are attempting to develop an industry-wide standard for local-area networks. The IEEE (Institute of Electrical and Electronics Engineers) Computer Society Local Network Committee (Project 802) has been meeting for over a year to try to establish a viable standard, and the standard is still in a state of flux. Fierce battles have been raging among the committee members representing different local-network interests. The IEEE standard has been evolving in a manner that attempts to accommodate many diverse application areas and functional requirements.

The framework for defining a communications network is based on a highly layered series of protocols developed by the ISO (International Standards Organization), called the OSI (Open System Interconnection) protocols. The OSI architecture defines seven layers of communications.

Layer 7, the Application layer, provides for the identification of users and services, and is responsible for initiation and reliability of data transfers, as well as general network access, flow control and recovery. Utility programs may perform network file-transfers, terminal-to-network support, etc.

Layer 6, the Presentation layer, is primarily responsible for making data available to the Application layer in a meaningful fashion. The Presentation layer takes care of protocol conversion, data unpacking, translation, or encryption.

Layer 5, the Session layer, is used to set up and break communications paths across the network and manage the exchange of data. It is responsible for multiplexing and demultiplexing...
Not anymore.
Get to know the company that’s been quietly making changes in the business computer marketplace. With a very impressive reputation for service, fair prices, and technical know-how.
Whether you need a network of office systems installed locally or a single diskette rush-shipped to Zurich, all orders receive immediate attention.
- Cromemco’s extensive line of microcomputers, accessories and peripherals fully stocked.
- DEC systems configured and integrated.
- Color Graphics.
- Complete selection of software packages plus customizing.

Los Angeles Headquarters: 2001 So. Barrington
Los Angeles, CA 90025 • (213) 477-6751
Berkeley: 2855 Telegraph Ave.
Berkeley, CA 94705 • (415) 849-0177
Newport Beach: 4141 MacArthur Blvd.
Newport Beach, CA 92660 • (714) 851-8700
Canada: 6715 Eighth St. North East
Calgary, Alberta T2E 7H7 • (403) 127-5871
France: 55 Rue de Rivoli • 75001 Paris, France
Tel. 236-94-95

Maxi-performance on Minis and Micros.
messages, managing the sequencing and priority of these messages, and providing the needed buffers.

Layer 4, the Transport layer, provides another level of connections between network entities. This layer manages the connections and segments messages into smaller pieces that the network can support. It may also be involved in error and flow control, as well as additional multiplexing activities.

Layer 3, the Network layer, is the level that actually determines how to get a message from one network to another (since many paths may exist). The Network level may use several intermediate hops to get information to its ultimate destination and, thus, needs to know how to route packets through the network. It, too, may be involved in sequencing and error- and flow-control activities.

Layer 2, the Data-Link layer, is where the actual packet formats are established, along with the particular access control mechanism used to regulate use of the physical network. Data is encapsulated in packets that contain physical addressing information, error-detecting checksums, etc.

Layer 1, the Physical layer, defines the electrical and mechanical interfaces to the network. The Physical layer specifies the particular signaling means (baseband vs RF, for instance), the modulation technique adopted, station-identification addresses, etc.

The current activity of the IEEE 802 committee is focused on specifying Layers 1 and 2, the Link and Physical levels. Similarly, the DEC/Intel/Xerox Ethernet specification addresses only these two levels of protocol.

It appears that the 802 Committee is converging on a standard that offers many alternatives within one framework. Even the issue of data rate (specified by Ethernet as 10 Mbps) appears to be an optional value (such as 1, 5, 10, or 20 Mbps). The error detection used may be either a 16- or 32-bit CRC (cyclic redundancy check) code, and the access method may be either a token-like scheme or a CSMA/CD (carrier-sense, multiple access with collision detect) scheme resembling (but not identical to) the Ethernet system. While the 802 Committee deliberates, manufacturers continue to develop their own systems. It is possible that some may modify their products once standards activities are resolved.

Recently, attention has been given to the higher levels of protocols. The National Bureau of Standards is proposing a series of Transport and higher-level protocols. It is unfortunate that the work on the higher-level protocols does not precede the lowest-level issues. The advantage of layered protocols is that the underlying levels can be changed in ways transparent to the higher levels, while the converse is not true, but the standards activities are not moving in that direction.

Servers and Clients

The most significant contribution in the local-area network field is not the communications aspect, but the development of a whole new way of building computer systems. The fundamental organization described by Xerox assumes a fully distributed control mechanism (see figure 2). There is no master-slave relationship among stations; they all communicate and cooperate with one another. Any number of stations (called servers) on a local network may provide services to other stations (called clients). Typical server functions are: mass-storage file system, printer support, time-of-day clock, translation of symbolic names into physical addresses, data-base management support, gateways to other networks or computers, and other specialized hardware support. Servers may also be clients of other servers on the network. For instance, the printer server may be a client of the file-system server in the course of serving its own clients.

Servers are distinguished on the network merely by the software they run and any special hardware they contain. A station that is willing to listen to requests from other stations (using a higher-level protocol they
MDBS, Incorporated

proudly announces

MDBS III

a new generation
in data base
management technology

not limited
to relational, tabular,
flat-file structures

not limited
to hierarchical structures

not limited
to CODASYL network
structures

The structures above are mere subsets of the capabilities of MDBS III.
Far beyond these, MDBS III provides valuable innovations available in no other system!

Unprecedented POWER! FLEXIBILITY! PORTABILITY!

For serious application development, MDBS III offers major advantages in these seven key areas:

Extraordinary data structuring
Unmatched flexibility for relating records to each other with ease.
Automatic data compression where desired.
Up to 255 record types per schema.

High-level query language
Automatically generates desired report or data file with a single statement.
Language is English-like, non-procedural, and has report writing capabilities.

Extensive performance control
Gives application designer extensive control over record placement...includes automatic clustering and CALC features.
For highest performance, a streamlined DML...over 20 host language interfaces available.
All processing is data-dictionary driven.

Data security and integrity
User passwords and optional data encryption.
Comprehensive access code facility for automatic security enforcement.
Automatic range checking.

Available for Minis and Micros
Availability for numerous 8 and 16-bit micros, as well as for minis, provides standardized approach to data handling.
Allows extensive portability of application systems...from the Z-80 to the PDP-11.

True multi-user capabilities
Supports multiple concurrent users of the same data base.
Supports both active and passive locking.

Automatic transaction logging
Automatically logs all transactions after last back-up.
Selective restoration of data base in event of a crash.
Allows surveillance of user activities.

For the full story about the finest application development tool existing in the mini-micro world....call, write, or TWX us today!

Setting standards of excellence for data base software... worldwide.

Micro Data Base Systems, Inc.
Box 248
Lafayette, Indiana 47902
317-448-1616/TWX 810-342-1881
Dealer/distributor/OEM inquiries invited.
Putting It All Together

Clearly, the local-area network field is too broad to cover in great depth. Most of the attention has focused on nonpersonal computer systems, such as large mainframes or terminals. We will describe the Nestar Cluster/One Model A system.

The Cluster/One Model A is a local-area network system based on the Ethernet principles, but its implementation has been optimized for the connection of low-cost Apple II personal computers. The system was first announced in January 1980 and has been used around the world for almost two years. It includes integrated software and hardware features needed to provide a comprehensive data-processing and data-communications facility, and the system permits either independent operation of individual stations, with a full complement of local peripherals, or a share in the larger, more reliable peripherals via the local network. The work station in question costs between $1000 and $2000, so cost constraints differ from those applied to networking work stations in the $10,000 to $20,000 price range. Nestar chose to implement many network functions via simple programmable hardware, and assigned many functions to software. Another decision influenced by these cost factors involves network speed. The speed of the Cluster/One was decided by the reasonable cost for a personal computer network interface and the bandwidth requirements needed for the work typically done by these personal computer work stations.

The Model A network operates at 240 kbps—almost a thousand times faster than a 300-bps telephone link, and 40 times slower than the Xerox Ethernet system. This was the fastest rate that could be supported by network-interface software running on the 6502 host processor of the Apple II computer and still allow data checksums to be performed on the message packets.

The choice of the network medium was also influenced by the basic cost goal. Rather than taking 8-bit data from the Apple memory and then serializing and deserializing, it was decided to transmit the data in an 8-bit-wide parallel fashion, which not only reduced the interface cost, but increased the inter-bit transition time. This has the effect of permitting essentially arbitrary interconnection topology for the Nestar network, something not found in any other system. The Nestar network is not restricted to a linear-bus topology, but can be wired as suits the particular installation requirements.

Network Design

The overall system design resembles the Ethernet scheme. No single critical component must function for network communication to take place. All station-to-station communication is direct, with a carrier-sense algorithm executing in the ROM- (read-only memory) based protocols in each station interface. The interface is passive, so stations may be added or removed from the network during operation. Stations not in use may be turned off until needed.

In the Model A network, the carrier-detect function is implemented using a dedicated control line, which indicates the bus is busy. Stations do not transmit until they see that this line is available. The electronics of the bus interface permit reading of data just written. However, it is not necessary to perform full collision detection. At the start of a packet transmission the address of the station attempting to send is first put on the bus, and then read back. If two stations do this simultaneously, at least one will not read back its own address and will detect a conflict. Even this is rare, since each station has a random waiting algorithm that avoids most collisions that would occur at the end of a previous transmission. Once this initial collision detection has been passed, the carrier signal has been established and further collision detection is not necessary. The rest of the packet is sent, like ALOHA, without collision detection. After the initial check, later collisions can result only from erroneous stations, and not under normal conditions.

Each packet of data contains initial header information, followed by up to 256 bytes of data and a 16-bit checksum. Once the packet is transmitted, the receiving station immediately acknowledges the receipt of the packet (if the checksum matches the data) or else requests a retransmission. This error-control algorithm is completely contained in the ROM-based protocols on the Nestar interface, and permits higher levels of software to work with reliable and correctly sequenced data. The ROM protocols are also responsible for taking messages longer than the 256-byte packet size and splitting them into multiple packets, each with its own checksum. Thus the four lowest layers of the OSI protocols are supplied as part of the logic on board the Nestar network interface.

The Model A network also includes a variety of network servers and the software needed to make their use literally transparent to current applications. The Nestar Network File Server is another Apple II microcomputer interfaced to the network. It can support a variety of devices, ranging from two 8-inch double-sided floppy disks, to 66 megabytes of hard-disk storage. Larger capacity is available by using more than one file server. The network software allows multiple file servers on one local network, thus giving essentially unlimited online storage capacity. The data on these reliable, sealed Winchester disks can be "backed up" using Nestar's compact cartridge-tape streamer drive. A single cartridge can write and check over 20 megabytes of data in twelve minutes.

The Network File Server can also
The Landlord™

Keeping track of apartment availabilities, rent payments, security deposits, leases, and other administrative functions consumes a great deal of time and attention for apartment owners and managers. You and your staff probably spend countless hours dealing with the paperwork necessary to manage your property.

With the Landlord™ apartment management software and an Apple II* computer, file cabinets full of paperwork and the frustrations of cumbersome bookkeeping procedures can be eliminated. The clerical work for your apartments can be accomplished with greater accuracy in a fraction of the time you presently spend. The Landlord™ will keep up-to-date files on apartments and residents as well as detailed records of property income and expenses.

You'll be able to enter, change, or delete information by following the simple English instructions that appear on the screen of the Apple II*. The Landlord™ will automatically organize and store your data and make it available for your review at any time. With the Landlord™, your resident manager can instantly determine where apartment vacancies exist and when additional units will become available for rental. The Landlord™ also keeps track of resident payments, letting you see at a glance who is behind on rent or other payments. Property and tax analysis reports are printed automatically each month and allow you to monitor the profitability of your apartments.

The Landlord™ apartment management software and the necessary Apple II* equipment are available for less than the cost of a new sub-compact car. If you own or manage an apartment property with no more than 400 units, visit your nearest computer dealer for a demonstration.

BY1081

Please return this coupon for more information about the Landlord™ and the name of the dealer nearest you.

Name ____________________________

Company __________________________

Address __________________________ Zip __________

City/State __________________________ Zip __________

MIN MICROCOMPUTER SOFTWARE, INC.
5835-A Peachtree Corners East
Norcross, Ga. 30092

*Apple II is a registered trademark of Apple Computer, Inc.
The Landlord is a trademark of MIN Microcomputer Software, Inc.
contain a real-time clock/calendar, which stations can interrogate. This facility is used to *timestamp* the creation, access, modification, and backup times of network files. Files are organized with a tree-structured system similar to a UNIX directory; they can be password-protected in a variety of ways to ensure that only authorized users can create, modify, or otherwise access network data.

The software provided makes the use of this data straightforward from any Apple II work station on the network. All of Apple's current operating systems (DOS 3.2, DOS 3.3, Pascal 1.0, and Pascal 1.1) can be directly loaded over the network. Modifications are made during this process so that stations can logically connect to virtual disks on the network shared disks (either from keyboard commands or from programs). These disks need not have the same capacity as 5-inch floppy disks, but may be much larger or smaller. Each storage area is allocated the appropriate size for the application; users may be executing programs in any set of languages or operating systems at the same time.

Network Applications

The Cluster/One network has been used in a variety of applications that include general office-automation environments, engineering and software development sites, educational and entertainment uses, and special turn-key applications, such as travel-agency and real-estate systems.

To support this variety of uses, Nestar provides a number of general-purpose computing products. Other servers, such as print servers supporting a multiplicity of printers, are available. Communications servers support internetwork activity. Application programs for general database access, interoffice electronic mail, and teleconferencing, have been developed by Nestar, either in-house or in conjunction with the suppliers of popular packages for the Apple II. The collection of hardware and software capabilities makes this network attractive for a wide range of application areas.

What's Next?

There seems to be little doubt that the current interest in local-area networks and personal computer work stations will continue to grow over the next few years. As stations become more powerful and sophisticated in both systems software and applications programming, they will replace an even larger fraction of conventional minicomputer systems. As manufacturers provide fully integrated VLSI components designed for very high performance networks, they will be incorporated into the personal computer local-area network interfaces. Whether or not the standards activities will stem the proliferation of de facto standards remains to be seen. The emergence of networks of personal computers has opened up a whole new set of challenges for programmers in developing real-time, multiuser, interactive systems.
MicroMed™ and MicroDent™ make your practice perfect.

Simply the best!
They're the real solution to the problems confronting every physician's and dentist's office. Each is a unique package, developed through years of work in close conjunction with doctors and dentists. They'll help you treat your patients more efficiently and accurately, while saving you time and money in the process.

Versatility.
Whether you are in private practice or a member of a busy group, there's sufficient capacity to handle your needs. Thousands of patients can be accommodated on floppy's, and even more on hard disk. MicroMed and MicroDent can easily handle everything in your practice from billing to patient records to complex insurance forms. With millions of hours of actual use in medical and dental offices throughout the country, they stand alone at the top, in a class by themselves.

Solutions, not more problems.
We know you're after solutions, not more problems. Our menus are simplicity itself, and are designed for your convenience (not our programmers'). The computer displays your options at every step. What could be simpler? Your own office staff can easily take care of the routine so that you can devote your valuable time to your patients.

You are the boss.
Forget about problems with outside billing services or manual record-keeping. You exercise absolute control over your billing procedures. Finger-tip patient recall lets you know instantly whose accounts are due and what services were performed. Account aging is automatic, and past-due notices or statements are printed and addressed, ready for mailing. All types of reports may be requested to help you better understand your finances and cash flow. Daily backups are created automatically.

Multiple Insurance Forms.
Many patients have several different types of insurance coverage. With MicroMed and MicroDent you can enter almost any form, keep track of which patients it applies to, and get it processed and ready for mailing. When new forms come out (as we all know they will) you don't have to pay for custom programming; you can modify the form print format yourself. With our exclusive Formulator™ system it takes just minutes.

Economic Sense.
The biggest surprise of all is that MicroMed and MicroDent are just $1500 each. Plus, having your own office computer provides you with great tax advantages. If you like what you see, contact your nearest computer store. They can provide you with MicroMed or MicroDent on any CP/M® based computer for an amazingly economical price. Or, if you already have a computer, a demo disk and manual set is available for just $75, and allows you to run the entire program. The manual separately is $50. Send for one today, and make your practice perfect!

Features:
- Automatic billing for any patient load
- Handles practices with up to 20 doctors
- Accepts all insurance forms
- Exclusive "Formulator" form system
- Multiple insurance coverage
- Insurance preauthorization
- Automatic statements with aging
- Instant access to patient records
- Full transaction and treatment details
- Cumulative totals by doctor
- Profitability analysis reports
- Mailing list maintenance
- Can be linked to word-processing
- Appointment recall with reminders
- Maintains hospital and lab codes
- Keeps track of referring doctor codes

Demo disk and manual set $75!

Dealerships are available to established computer vendors on a territorial basis.
Prepare Your Program for Publication

C A Johnson
3619 Sugarhill Dr
San Antonio TX 78230

"When I get my personal computer, I'm going to make it pay for itself. I have some ideas for programs that everyone will want to buy." Such dreams are shared by many prospective microcomputer buyers, some armed with a college programming course, others with experience writing programs for business.

What these aspiring software authors usually don't know is how to prepare a program with the best possible chances of being accepted, published, and marketed. As a result, they enter the highly competitive software market with a disadvantage that may even guarantee failure.

But programmers' pipe dreams can have happy endings. If you want to write software for publication, consider these steps toward success.

Look at the Market

The first step in writing a marketable program is to conduct your own market analysis before choosing your subject. If the market is already cluttered with programs similar to the one you're considering, yours won't stand a chance unless it includes a special feature that will grab the attention of potential buyers.

Games and simulations have enjoyed great popularity since the beginning of the microcomputer age, and they probably always will. But the universe can hold only so many versions of Star Trek, and any microcomputer used for game playing already has at least one. The game is still fun, but the market has worn thin.

Star Trek is only one example of a game that has been programmed to death. Dozens of versions of Nim, Slot Machine, Guess the Number, Dice, and many other games are stacked knee-deep in the marketplace at giveaway prices. Chess might be an exception because of its perennial appeal, but a new chess program won't attract attention without a record of strong tournament play. New versions of old games assail software publishers like so many attackers on the video screen. But publishers can make unlimited use of the ultimate weapon: the rejection slip.

Finding a Subject

Adventure games and sword-and-sorcery games are the most popular simulations now. They bring the excitement of storytelling and role playing into computer entertainment.

Games that spring from your own imagination hold more promise than rehashes. Literary classics can also inspire games. Stories like Gulliver's Travels and The Voyages of Sinbad contain excellent dramatic situations that can serve as the basis for games with wide appeal. So do 1984, Animal Farm, and many romantic classics. Don't overlook game and puzzle books; they often contain the seeds of intriguing situations.

When you choose a game situation, make sure it challenges the player. To offer a challenge, the game must encompass a complex and variable winning strategy for the player. If the winning strategy is fixed, the player will soon discover it, and the game will cease to be fun. Although you can create difficult games by arranging for a high-probability random function to "kill" the player, such games are more frustrating than challenging. The player shouldn't get "killed" in the middle of the game unless he uses faulty strategy or makes some other mistake. If the player plays with care and uses an intelligent strategy, he should win.

Lively graphics add appeal and enjoyment to both simulations and games. Try to dream up striking visual effects that advance the story line of your program.

Use Your Own Interests

Your best and most marketable program may well spring from your own interests and experiences. If you
The Westico Software Review Committee is easy to recognize: it's their red-rimmed eyes. You get that way checking through an endless parade of software programs. And they do it so that you don't have to. But selecting good software is only part of what makes Westico one of the fastest growing companies in the software industry.

Having experts on staff who really understand both software and hardware is another. But Westico offers more than quality products and support. We offer our unique 24-hour service overnight! Westico. We're working hard to be your software company.

The Westico 24-Hour Computer Hotline (300 baud) (203) 853-0816 for detailed program information and quick access ordering.
- A full range of professional software.
- Support for a wide variety of CP/M and other computer systems, including: TRS-80 Model II, Apple, Vector Graphic, Cromemco, North Star, Micropolis, Ohio Scientific, Altos, Dynabase, Super Brain, Xerox, Zenith and more.

TWO MORE GREAT PROGRAMS FROM WESTICO

Job Cost Control
This system can track and control costs of jobs in progress and monitor job profitability. It detects cost overruns and allows for corrective action. It can control the Job's Accounts Receivable and provide information on employee performance for use in profit-sharing plans.

Features:
- Automatically apportions firm overhead expenses to jobs in progress
- Provides early detection of potential budget overruns
- Monitors profitability of jobs in progress
- Helps identify most profitable services
- Monitors employee performance across all jobs
- Tracks job-related costs and reimbursable expenses

Reports include:
- Job status report
- Job update register
- Performance report
- Office Income report
- Employee hour summary
- Job accounts receivable register
System & documentation — $595
Documentation alone — $20

Inventory Control for Manufacturers
This system includes standard Inventory control functions such as maintaining and reporting on the status of the inventory stock as well as maintaining records of all transactions made against part numbers in stock. In addition, it supports multi-level bills of materials (BOM's), the creation of multiple part number transactions for jobs based on those BOM's, the tracking of jobs through work-in-progress, the generation of material requirements reports based on manufacturing schedules.

Reports include:
- Full inventory listing with valuation
- Inventory listing by category
- Costing bill of materials
- Material requirements report
- Assembly listing
- Job issue listing
- Job status report
- Part number usage report
System & documentation — $995
Documentation alone — $20

Send for FREE catalog
golf, bowl, or play tennis, perhaps you could write a program for computing players’ handicaps or for scheduling and managing tournaments. Tournament directors would be a natural market.

Depending on your interests, you could consider writing programs that manage stock portfolios, catalog stamp collections, or make an inventory of personal property. Other possibilities are programs that record progress in training activities or dieting and then display the data graphically. Hobbies and club activities such as scouting offer dozens of possibilities.

If you have trouble coming up with a good program idea, get some friends together for a brainstorming session. To stimulate everyone’s imagination, choose a field in which you feel reasonably competent, then describe in general terms some program that’s been thoroughly exploited. Think of a few variations on that program.

The most important thing to remember about brainstorming is never to reject or belittle a suggestion, no matter how trivial or ridiculous it may seem. Don’t risk turning off anyone’s imagination. Once the session gets rolling, it will have its own momentum. Write down every suggestion, or better still, tape record the session. One brainstorming session with a few intelligent people will yield enough material to keep you busy writing code for years.

Remember the Hardware
When choosing the subject of your program, another thing to keep in mind is the capacity of the computer on which the program will run. The most popular computers obviously offer the biggest market. If at all possible, scale the program for a popular machine.

Once you’ve selected your subject, you can start writing the program. It’s important to write readable code. Readability not only makes the program easier for you to debug, it also endears you to customers who need to adapt the program to their particular systems or tastes.

Not So Fast!
When the program is finished, debugged, and running perfectly, stop! Don’t send it to a publisher yet. Now is the time to add those finishing touches that make the difference between a good program and one that is really commercial and marketable.

Study your program with a critical eye. Ask yourself, “Does my program contain all the instructions the user will need?” Make sure the instructions are thorough, clear, correct, and free of misspellings and grammatical errors.

Then ask, “Does my program lead the user through it? Is it conversational and personal?” A game, for example, doesn’t pit just any anonymous soul against the villain.
The jury is in and the verdict is... "outstanding!"

Reviews from all of you who purchased MAXI MANAGER (not to mention raves by many top microcomputing magazines) have heralded it as the definitive data base managing system. We knew that business owners and hobbyists demanded the finest data base managing system available. To all of you who praised us for MAXI MANAGER, we extend our thanks. And to those of you who have yet to try MAXI MANAGER, we invite you to experience this incredible system today. But don't take our word for it (or our jury's). Judge for yourself.

JUST CHECK SOME OF THESE FEATURES

- Supports six different relational search techniques.
- Comes with programmer's interface.
- Over 120 pages of documentation.
- Supports up to 20 user defined fields of 40 characters each.
- Record length up to 800 characters.
- Files can be up to four disks in length.
- Compatable 35, 40, 77 & 80 track drives with proper operating system.
- Has calculated equation fields.
- Complete report generator.
- Works hand in hand with any word processor.

MODEL 1 version requires TRS-80 2.3 and is compatible with NEWDOS 2.1 & NEWDOS 80

MODEL 3 version comes on TDOS, a special version of the DOSPLUS operating system.

Requires 48K of RAM and one disk drive minimum.

For the TRS-80 Model 1 & 3
Order No. 012-0096

$99.95
The player who faces all the dangers your program holds has a name. Your program should ask the user's name and call him by it frequently.

Now ask, "How does my program treat the user?" Cute messages are okay if used sparingly and in good taste, but never be condescending or insulting to the user. Remember that the user bought your program to perform some task or to have a good time. If he enters a response that isn't in the accepted input range, don't tell him he's an idiot. Tell him what the accepted input range is.

There is nothing so discouraging as running a program and finding yourself facing a prompt without knowing what kind of input is expected, or seeing attackers swarming across the screen when you don't know how you're supposed to defend yourself. If the program doesn't make clear at all times what input it expects, then you owe the user the courtesy of a way to ask for help.

Remember that the user is also your customer. If you treat him with respect, he'll consider buying your next program. These finishing touches are just as important to the program as the most intricate code.

Don't Forget Testing
Is the program ready to go to the publisher now? No, not until it's been tested. Bring in a friend and give him the program to load and run. Don't give him any help. Watch every detail as he works his way through the program. Make notes both for changes in the program and for anything that seems appropriate to put in the user's guide.

If your friend has trouble with the mechanics of the program (not in developing a game strategy), review the game later to see if ambiguous or inadequate instructions caused the problems. If your friend gets hopelessly stuck and you are forced to help him, you must face the fact that you have either a flawed program or a less-than-brilliant friend. You'll probably feel better if you blame the program and go back to work on it.

After correcting problems discovered in the first test run, bring in a different friend and repeat the usability test. This isn't because you're no longer speaking to the first friend, but because you need another naive user. If the second friend can use and enjoy the program, you may be ready to write the documentation. If the second friend has problems, you'll have to revise the program and find a third friend. If you run out of friends, you'll probably find that enemies are better at testing software anyway.

You can't test a program too much. Once you're satisfied that the program is usable, you can begin writing the documentation.

Before you started work on the program, did you write down the things you wanted it to do? If so, you may be able to modify your notes as a starting point for the user's guide. You should also use your notes from all the test runs.

A user's guide should be written in the simplest words possible. Don't try to show off your vocabulary or prove how ingenious you were in writing the program. Invite a friend to read the first draft and offer criticism. Insist that he point out any places where the user's guide is unclear, ambiguous, or overwritten. Don't be upset if the first draft requires extensive changes. After you make the revisions, type or print a fresh copy on good paper. Include a title page, a copyright notice, and a table of contents. Then place the user's guide in a binder that looks professional, as if a professional had written it. At the very least, you'll be proud to run the program on your own system. And there's a good chance your effort will pay off in more sales and hard cash.
Cameo Makes Your Micro Big Enough for Big Business

When you want a data base for your micro that will grow as fast as you do — look to Cameo. Whether your business is commercial, educational or institutional — for large inventories, massive mail lists, extensive accounts receivable and effective cash management — Cameo has the system to meet your needs.

Cameo’s Cartridge Disk Subsystem provides reliable mass storage for most popular micros*. The Cameo subsystem gives you up to 100 times the storage capacity of floppies, while retaining the same flexibility that floppy media provide. With Cameo’s system you can remove, copy and back-up massive amounts of data quickly and easily. And, byte-for-byte, cartridge disk mass storage is more economical than floppy disks. Even today’s new technologies cannot give you the reliability, flexibility and back-up capability that Cameo provides.

Installation and start-up is simple. Cameo’s subsystem is compatible with most operating systems, eliminating the need for additional complex programming. Make Cameo your micro mass storage connection. Call today for the location of the dealer nearest you.

*Apple, TRS-80 Model I & II, Heath H89 and most S-100's

Cameo Electronics, Inc.
1626 Clementine Street
Anaheim, CA 92802
(714) 535-1682
See us at Comdex
European Distributor
Cameo Electronic Vertriebs-GmbH
Escherstrasse 2, D-8121 Ebering
West Germany
Tel: 8802-8363 TELEX: 59903

Sculptured Brilliance in Mass Storage

Circle 59 on Inquiry card.
EPSON MX-80
In stock!
The MX-80 dot matrix printer. Unequaled Epson reliability. Has all the features of the MX-70 plus more power and extra functions.

C-ITOR STARWRITER: LETTER QUALITY PRINTING FOR UNDER $2000! This daisywheel printer gives high quality at a low price 25 cps. Parallel and serial interfaces available.

NEC SPINWRITER FROM THE FIRST NAME IN LETTER QUALITY PRINTERS/Compumart often offers better print quality with NEC Spinwriter Terminals. We carry all models from RQ 1600R KSR THROUGH NUMERIC KEYPAD — 5510-5530. All versions give unsurpassed hard copy output.

NEW INTEGRAL DATA'S 560 PRINTER/All the exciting features of the 400 series plus 14 1/2" paper capacity. 132 col. graphics printer IDS 445. Priced lower than the 440 and equipped with a better print head. With & w/g graphics. IDS 460. Features include correspondence quality printing, high resolution graphics.

NEW SPINNER MONITOR FROM SANYO/Sanyo's new line of CRT data display monitors are designed for the display of alphanumeric or graphic data 9" SANYO B/W $169. 12" SANYO B/W 12" SANYO W/ GREEN SCREEN 13" SANYO COLOR.

DEC LSI-11/Compact and portable. DEC PDP/LSI-11 System. Configured and integrated with other manufacturer's peripherals. The first, best DEC based systems catalog.

FREE CATALOGS
OMICHI KITTEN MICRO DEC PDP/LSI-11 Systems configured and integrated with other manufacturers' peripherals. The first, best DEC based systems catalog.

FREE CATALOGS
OMICHI MEGAWARE DEC PDP/LSI-11 Systems configured and integrated with other manufacturers' peripherals. The first, best DEC based systems catalog.

FREE CATALOGS
OMICHI GIANT 1000 DEC PDP/LSI-11 Systems configured and integrated with other manufacturers' peripherals. The first, best DEC based systems catalog.

FREE CATALOGS
OMICHI GIANT 1000 DEC PDP/LSI-11 Systems configured and integrated with other manufacturers' peripherals. The first, best DEC based systems catalog.

FREE CATALOGS
OMICHI GIANT 1000 DEC PDP/LSI-11 Systems configured and integrated with other manufacturers' peripherals. The first, best DEC based systems catalog.

FREE CATALOGS
OMICHI GIANT 1000 DEC PDP/LSI-11 Systems configured and integrated with other manufacturers' peripherals. The first, best DEC based systems catalog.

FREE CATALOGS
OMICHI GIANT 1000 DEC PDP/LSI-11 Systems configured and integrated with other manufacturers' peripherals. The first, best DEC based systems catalog.

FREE CATALOGS
OMICHI GIANT 1000 DEC PDP/LSI-11 Systems configured and integrated with other manufacturers' peripherals. The first, best DEC based systems catalog.

FREE CATALOGS
OMICHI GIANT 1000 DEC PDP/LSI-11 Systems configured and integrated with other manufacturers' peripherals. The first, best DEC based systems catalog.

FREE CATALOGS
OMICHI GIANT 1000 DEC PDP/LSI-11 Systems configured and integrated with other manufacturers' peripherals. The first, best DEC based systems catalog.

FREE CATALOGS
OMICHI GIANT 1000 DEC PDP/LSI-11 Systems configured and integrated with other manufacturers' peripherals. The first, best DEC based systems catalog.

FREE CATALOGS
OMICHI GIANT 1000 DEC PDP/LSI-11 Systems configured and integrated with other manufacturers' peripherals. The first, best DEC based systems catalog.

FREE CATALOGS
OMICHI GIANT 1000 DEC PDP/LSI-11 Systems configured and integrated with other manufacturers' peripherals. The first, best DEC based systems catalog.

FREE CATALOGS
OMICHI GIANT 1000 DEC PDP/LSI-11 Systems configured and integrated with other manufacturers' peripherals. The first, best DEC based systems catalog.

FREE CATALOGS
OMICHI GIANT 1000 DEC PDP/LSI-11 Systems configured and integrated with other manufacturers' peripherals. The first, best DEC based systems catalog.

FREE CATALOGS
OMICHI GIANT 1000 DEC PDP/LSI-11 Systems configured and integrated with other manufacturers' peripherals. The first, best DEC based systems catalog.

FREE CATALOGS
OMICHI GIANT 1000 DEC PDP/LSI-11 Systems configured and integrated with other manufacturers' peripherals. The first, best DEC based systems catalog.

FREE CATALOGS
OMICHI GIANT 1000 DEC PDP/LSI-11 Systems configured and integrated with other manufacturers' peripherals. The first, best DEC based systems catalog.

FREE CATALOGS
OMICHI GIANT 1000 DEC PDP/LSI-11 Systems configured and integrated with other manufacturers' peripherals. The first, best DEC based systems catalog.

FREE CATALOGS
OMICHI GIANT 1000 DEC PDP/LSI-11 Systems configured and integrated with other manufacturers' peripherals. The first, best DEC based systems catalog.

FREE CATALOGS
OMICHI GIANT 1000 DEC PDP/LSI-11 Systems configured and integrated with other manufacturers' peripherals. The first, best DEC based systems catalog.

FREE CATALOGS
OMICHI GIANT 1000 DEC PDP/LSI-11 Systems configured and integrated with other manufacturers' peripherals. The first, best DEC based systems catalog.

FREE CATALOGS
OMICHI GIANT 1000 DEC PDP/LSI-11 Systems configured and integrated with other manufacturers' peripherals. The first, best DEC based systems catalog.

FREE CATALOGS
OMICHI GIANT 1000 DEC PDP/LSI-11 Systems configured and integrated with other manufacturers' peripherals. The first, best DEC based systems catalog.
SAVE OVER $200 ON OUR BEST SELLING APPLE SYSTEM/ System includes a 48K Apple II, Apple Disk, DOS 3.3, and Controller and a Sup R MOD RF Modulator. List $2209. EXCLUSIVE FOR THE APPLE/Magic Wand, Videx, Z-80 softcard (requires 48K Apple and disk) COMPLETE SUB-SYSTEM $925.

APPLE ACCESSORIES CHOOSE FROM: Siltype Printer w/x face/Light Pen/Easy Writer (80 col. need a Videx)/Clock for Apple FROM MICROSOFT: 16K RAM FROM COMPUTER STATION: Hi-Res Dump for 460 Printer.

OUR APPLE INVENTORY IS COMPLETE. WE'VE GOT IT ALL.

CRISP LETTERS QUALITY OUTPUT UNSURPASSED EASE OF OPERATION This CompuMart/Commodore system includes a Commodore 8032 32K CPU, a 4040 Dual Disk, a C-10H Printer and a Video and WORD PRO PLUS (all cables included). List $5685

EDUCATORS. Commodore HAS EXTENDED ITS 3 FOR 2 DEAL.

A COMPLETE SYSTEM: includes a Dual Disk Drive/Tractor Printer and an 80 COLUMN 32K CPU. No interfaces needed. Cables included. List $3985. COMPUART $1635. SAVE $200 ON COMMODORE ACCESSORIES WITH PURCHASE OF A 32K PET—SAVE $100 WITH A 16K PET.

CHOOSE FROM: Visicale/Word Pro 4/Wordcraft 80/ Oz or the Information Wizard/ Dow Jones Portfolio Manager System/ Assembler Development Package.

SYSTEMS

APPLE II STARTER

$1895

SYSTEMS

WORD CRAFT 80

$4695

SYSTEMS

HP 85 BASIC

$3250

SYSTEMS

AIM 65 STARTER

$795

This Basic 16k BYTE system (expandable to 32k) includes CRT DISPLAY, THERMAL PRINTER, MAGNETIC TAPE CARTRIDGE, 6 ROM CAPACITY VIA ROM DRAWER, 4 IO PORTS. COMMUNICATION—HIPB, RS232.

PLUS YOUR CHOICE OF 4 SOFTWARE PACS OR TWO OF OUR "BEST SELLERS"—(VISICALC, GRAPHICS PRESENTATION, INFORMATION MANAGEMENT) SAVE $400

HP-85 SYSTEM This Basic System from Hewlett-Packard includes HP-85-ROM DRAWER/MASS STORAGE ROM/ 512 SINGLE MASTER FLEXIBLE DISK DRIVE/HP-18 INTERFACE MODULE/2 METER HP-18 CABLE. COMPLETE SYSTEM $4249.

FROM ROCKWELL Our AIM Starter System for Educational & Laboratory use includes 4K AIM/BASIC & ROM/ASSEMBLER & ROM/POWER SUPPLY EGI ENCLOSED/CRAIG TAPE RECORDER.

ACCESSORIES FOR AIM STARTER- PL 68 High Level Language/Paper for the AIM (roll)/Rockwell's 4 slot Motherboard/

WE ALSO CARRY EXPANSION ACCESSORIES FOR THE AIM-65.

From THE LEADER .

We just might be the largest independent small systems dealer in the country. Here's why:

COMPUMART has been serving the computer needs of industry since 1971.

We stock, for immediate shipment, only those products from the finest micro-computer manufacturers.

And any product, except software, can be returned within 10 days for a full refund—even if you just change your mind. We also honor all manufacturers' warranties. Our expert technicians will service any product we sell.

Call us for more information on products, product configuration and service. Our phones are open Monday thru Friday, 8:30 a.m. to 7:00 p.m. and Saturday 11:00 a.m. to 4:00 p.m. We have a staff of highly knowledgeable sales people waiting to hear from you, and to help. Because service is what we're all about.

Circle 76 on Inquiry card.
List Pager, shown in listing 1, is a simple program for the Apple II or Apple II Plus computer. The program prints out listings, one page at a time, with a title on the first page and a number on each of the following pages. It will not split statements between pages but will instead automatically produce line feeds to move to the next page. You can choose either a full 80-column format or 60 columns with margins on each side. List Pager is written in Applesoft BASIC, is set up for a Centronics 730 printer, and requires one floppy-disk drive.

To use List Pager, the program to be listed must first be captured as a text file. This can be done using a program such as Capture, which is found on page 76 of the Apple DOS manual. When List Pager is run, it will ask for the title of the program, the name of the text file, and if an offset (60-column format) for hole punching is desired. After this information is entered, it will print the listing.

This program greatly improves the readability of a listing over that of continuously printed listings, which always seem to have an important line written on the perforations between pages.

Listing 3: The List Pager program printed in a 60-column format with 10-column margins. The List Pager can also list programs in full 80-column format. List Pager places a title on the first page of a listing and numbers on subsequent pages. The program is written in Applesoft floating-point BASIC for the Apple II or II Plus computer with one disk drive and a Centronics 730 printer.

C Compiler only $75

We have re-written Small-C as published by Ron Cain in the May, 1980 issue of Dr. Dobbs. The Code Works C compiler (CWC) includes these additional features:

- Structures and unions
- For, switch/case, do-while
- Multidimensional arrays
- Conditional compilation (#ifdef, etc.)
- Assignment operators, e.g. x += 10;
- Can declare complex types, e.g. int (*fp[5]);
- User supplied I/O buffers of any size
- Dynamic storage allocation (alloca and free)
- Command line arguments using argv and argc
- Improved error handling

CWC is a proper subset of the full C language. We do not have: float, double, long, unsigned or short data types; static, initializers; sizeof; typedef; "?:"; casts; bit fields; goto; #undef, #if, #line.

CWC generates assembly language source code that is then assembled using ASM or MAC. CWC supports inline assembly language with the #asm ... #endasm preprocessor commands. Requires S6K 8080 or Z80 CP/M systems. Distributed on single-density 8" disk or Northstar double density CP/M 5" disk. Includes an excellent User Manual, the executable CWC compiler, runtime library, and several useful example programs written in C.

CW/C is 57$, including shipping in the US and Canada. CA residents add 8% tax. Visa and MasterCard welcome. CP/M is a registered trademark of Digital Research.

The Code Works
Box 550, Goleta, CA 93116 805-683-1585

List Pager

Allan Lovett, 20024 N 18th Dr, Phoenix AZ 85027

List Pager, shown in listing 1, is a simple program for the Apple II or Apple II Plus computer. The program prints out listings, one page at a time, with a title on the first page and a number on each of the following pages. It will not split statements between pages but will instead automatically produce line feeds to move to the next page. You can choose either a full 80-column format or 60 columns with margins on each side. List Pager is written in Applesoft BASIC, is set up for a Centronics 730 printer, and requires one floppy-disk drive.

To use List Pager, the program to be listed must first be captured as a text file. This can be done using a program such as Capture, which is found on page 76 of the Apple DOS manual. When List Pager is run, it will ask for the title of the program, the name of the text file, and if an offset (60-column format) for hole punching is desired. After this information is entered, it will print the listing.

This program greatly improves the readability of a listing over that of continuously printed listings, which always seem to have an important line written on the perforations between pages.

Listing 3: The List Pager program printed in a 60-column format with 10-column margins. The List Pager can also list programs in full 80-column format. List Pager places a title on the first page of a listing and numbers on subsequent pages. The program is written in Applesoft floating-point BASIC for the Apple II or II Plus computer with one disk drive and a Centronics 730 printer.

100 DS = CHR$(4):TS = CHR$(1):ONFRR GOTO 390
110 RO = 0:LM = 1
120 HOME:HTAB(15):PRINT "LIST PAGER":PRINT :PRINT
130 GHPUT "TITLE IS IF TITLE IS PRINT":PRINT
goto 101
140 FC = 2
150 GHPUT "TEXT FILE IS IF TITLE IS PRINT"
160 LM = 0B
170 PRINT"OFFSET FOR HOLE PUNCH? (Y/N)";:GET ANS:PRINT 101
180 IF ANS = "Y" THEN LM = 6:LM = 10
190 HOME:PRINT DS "$PRN"
200 PRINT CHR$(9):"B0N"
210 OS = (OS - LM):TILT(1) = 2):HTAB(5):PRINT TITLE:
PRINT CHR$(10):PRINT CHR$(10)
220 PRINT DS "OPEN":"TFS"
230 PRINT DS "READ":"TFS"
240 PL = 4
250 PRINT CHR$(9):"B0N"
260 LS = """"""
270 GET ANS:IF LEN(LSM) < 20 THEN LSN = LSN + AN:GOTO 20
280 IF ANS = "Y" THEN LM = 6:LM = 10
290 IF ANS = "Y" THEN GOTO 310
300 IF ANS = "Y" THEN GOTO 310
310 GOTO 275
310 PRINT TL=LE = 1
320 LM = LEN(LMN) + LEN(LMN) + LEN(TIL) = 11:FOR I = 1 TO 10:IF
LM (LM = 2) THEN LE + 1: I = I + NEXT 1
330 FOR I = 1 TO LE:IF I = LM = 241 THEN Tilty(I) = MID$(LM
9 + I = 11:LM = 11:LM)
335 IF I = LM = 241 THEN LSN = MID$(LM) = MID$(LM) = MID$(LM)
335 NEXT I
340 PL = PL + LE
350 IF PL > 60 THEN PL = PL + LE:FOR I = 1 TO 60:IF PRI
E LSN = "":GOTO 310
360 FOR I = 1 TO LE:HTAB(LMN):PRINT LS(I):NEXT
370 GOTO 250
380 PRINT CHR$(9):"CLOSE":PRINT TAB(60)"PAGE */PCIPRG = PG +
11:PRINT CHR$(9):PRINT CHR$(10):PL = PL + 1:IF RO = 1 THEN
390 PRINT TS
400 PRINT DS "$PRN":HOME:END
CALL TOLL FREE 1-800-528-1054

ATARI
Special 32K 800 System
800 w/32K, recorder, star
radars, joysticks $930
Above w/48K $990
800 (16K) $744
400 Call
810 Disk Drive $440
825 Printer $575
850 Interface $120
410 Recorder $70
830 Modem $140
16K Memory $75
32K Memory $150

DISK DRIVES
Lobo
Apple 1st Drive. $490
Apple 2nd Drive $410

MODEMS
Novation
CAT $155
D-CAT $155
Apple Cat II $349
Auto Cat $233

PRINTERS
C. Ith
25CPG - Serial $1380
25CPG - Parallel $1325
40CPG - Serial $1825
45CPG - Parallel $1710

Datalouth
DS 180 $1275

Diablo
630 RO $2295
630 w/Tractors $2100
640 RO $2485
640 w/Tractors $2740
640 KSR $2985
640 w/Tractors $2885

Epson
MX-80 Call
MX-80 F/T Call
MX-100 Call
Fric Feed Opt. for MX-80 $50

NEC
PC-8023A Call
5510 RO $2662
5520 KSR Call
5520 w/Tractors $2995

Okidata
Microline 80 $375
Microline 82-A $535
Microline 83-A $790
Microline 84 $1115

Qantex
Serial Call
Parallel $1150

Texas Instruments
810 Basic $1250
810 Loaded $1450

VIDEO TERMINALS
Addrs Viewpoint Call
Soroc
IQC 120 Call
IQC 130 Call
IQC 135 Call
IQC 140 Call
Televideo
910 C $589
912 C $694
920 C $744
950 C $935
Zenith Z-19 $769

DISKETTS
Scotch
5 1/2 0, 10, 16 Sector $250
8 0, 32 Sector (Qty 100) $260

COMPUTERS
Altos
ACS 8000-15 Call
ACS 8000-2 w/CPM Call
Northstar
Horizon II 64K DD $2875
Horizon II 64K OD $3150
Zenith
Z-69 48K w/CPM $2200

MONITORS
Panasonic
9 B&W $150
Sanyo
12 B&W $150
12 Green $240

CALIFORNIA COMPUTER SYSTEMS
64K Dynamic Memory $500
16K Static Memory $265
Floppy Disk Cont $285
Serial Async Board $110

Prices & availability subject to change without notice. Personal checks will delay shipping two weeks.

2222 E. Indian School Rd. • Phoenix, Arizona 85016
Order Line: 1-800-528-1054
Other Information: 602-954-6109

Computer Warehouses
Prices reflect 3% cash discount. Product shipped in factory cartons with manufacturer's warranty. Add 2%, a minimum of $5, for shipping and handling.

Store Hours: Tues.-Fri.10-5 MST Saturday 10-3 MST
If you can beat these prices, you must have a brother-in-law in the business.

16 K RAM KITS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEC 4116 200 ns</td>
<td>17.95</td>
</tr>
</tbody>
</table>

DISKETTES

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD 525-01, 10,16</td>
<td>26.50</td>
</tr>
<tr>
<td>MD 555-01, 10,16</td>
<td>44.50</td>
</tr>
<tr>
<td>MD 577-01, 10,16</td>
<td>43.80</td>
</tr>
<tr>
<td>FD 32 DD 34 - 0000</td>
<td>45.60</td>
</tr>
<tr>
<td>FD 32 DD 34 - 0000</td>
<td>45.60</td>
</tr>
<tr>
<td>FD 34-0001</td>
<td>48.80</td>
</tr>
</tbody>
</table>

DISKETTE STORAGE

<table>
<thead>
<tr>
<th>Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>5%" PLASTIC LIBRARY CASE</td>
<td>2.50</td>
</tr>
<tr>
<td>8% PLASTIC LIBRARY CASE</td>
<td>3.59</td>
</tr>
<tr>
<td>PLASTIC STORAGE BINDER WITH INSERTS</td>
<td>9.89</td>
</tr>
<tr>
<td>PROTECTOR 5%"</td>
<td>24.55</td>
</tr>
<tr>
<td>PROTECTOR 8"</td>
<td>29.95</td>
</tr>
</tbody>
</table>

INTEGRATED COMPUTER SYSTEMS

<table>
<thead>
<tr>
<th>System</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>THACO INTERSYSTEMS</td>
<td>CALL</td>
</tr>
<tr>
<td>ALTOS</td>
<td>CALL</td>
</tr>
<tr>
<td>ZENITH 281</td>
<td>CALL</td>
</tr>
<tr>
<td>CALIF COMPUTER SYSTEMS</td>
<td>CALL</td>
</tr>
<tr>
<td>MORGAN DESIGNS</td>
<td>CALL</td>
</tr>
</tbody>
</table>

PRINTERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANDEX DP 9500</td>
<td>1295 00</td>
</tr>
<tr>
<td>ANDEX DP 9501</td>
<td>1295 00</td>
</tr>
<tr>
<td>CENTRONICS 739</td>
<td>785 00</td>
</tr>
<tr>
<td>C-150 25 MIPS PARALLEL</td>
<td>1440 00</td>
</tr>
<tr>
<td>C-150 25 MIPS SERIAL</td>
<td>1495 00</td>
</tr>
<tr>
<td>C-150 45 MIPS PARALLEL</td>
<td>1770 00</td>
</tr>
<tr>
<td>C-150 45 MIPS SERIAL</td>
<td>1870 00</td>
</tr>
<tr>
<td>C-150 TRACTOR OPTION</td>
<td>195 00</td>
</tr>
<tr>
<td>EPSON MX-80</td>
<td>SCALL</td>
</tr>
<tr>
<td>EPSON MX-80 F/T</td>
<td>SCALL</td>
</tr>
<tr>
<td>EPSON MX-100 GRAPHIC</td>
<td>SCALL</td>
</tr>
<tr>
<td>IPSON GRAPHICS ROM</td>
<td>90 00</td>
</tr>
<tr>
<td>IDS-445G PAPER TIGER</td>
<td>779 00</td>
</tr>
<tr>
<td>IDS-460G PAPER TIGER</td>
<td>945 00</td>
</tr>
<tr>
<td>IDS-560G PAPER TIGER</td>
<td>1195 00</td>
</tr>
<tr>
<td>INFOSCRIBE 500 SXS 150 CPS</td>
<td>1495.20</td>
</tr>
<tr>
<td>MALLIBU 120 DUAL MODE</td>
<td>2995.00</td>
</tr>
<tr>
<td>NEC SPINWRTTER 2510 SERIAL RD</td>
<td>2099.00</td>
</tr>
<tr>
<td>NEC SPINWRTTER 2530 PARALLEL RD</td>
<td>2099.00</td>
</tr>
<tr>
<td>NEC SPINWRTTER 7710 SERIAL RD</td>
<td>2595.00</td>
</tr>
<tr>
<td>NEC SPINWRTTER 7730 PARALLEL RD</td>
<td>2595.00</td>
</tr>
<tr>
<td>NEC SPINWRTTER 7790 D SELLUM OPTION</td>
<td>2795.00</td>
</tr>
<tr>
<td>NEC SPINWRTTER 2500 SELLUM OPTION</td>
<td>2225.00</td>
</tr>
<tr>
<td>OKI DATA MICROLINE 80</td>
<td>399 00</td>
</tr>
<tr>
<td>OKI DATA MICROLINE 82A</td>
<td>599 00</td>
</tr>
<tr>
<td>OKI DATA MICROLINE 83A</td>
<td>899 00</td>
</tr>
<tr>
<td>OKI DATA MICROLINE 84</td>
<td>1199 00</td>
</tr>
</tbody>
</table>

MODEMS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOVATION CAT ACUSTIC MODEM</td>
<td>145 00</td>
</tr>
<tr>
<td>NOVATION D CAT DIRECT CONNECT MODEM</td>
<td>155 00</td>
</tr>
<tr>
<td>NOVATION AUTO-CAT AUTO</td>
<td>CALL</td>
</tr>
<tr>
<td>ANSWER MODEM</td>
<td>219 00</td>
</tr>
<tr>
<td>NOVATION APPLE-CAT</td>
<td>349 00</td>
</tr>
<tr>
<td>UDS 10LP DIRECT CONNECT MODEM</td>
<td>175 00</td>
</tr>
<tr>
<td>UDS 10LP DIRECT CONNECT / AUTO</td>
<td>CALL</td>
</tr>
<tr>
<td>D.C. HAYES MICROMODEM II (Apple)</td>
<td>299 00</td>
</tr>
<tr>
<td>D.C. HAYES 100 MODEM (S 100)</td>
<td>325 00</td>
</tr>
<tr>
<td>D.C. HAYES STACK Smart Modem (RS 232)</td>
<td>249 00</td>
</tr>
<tr>
<td>LEXICON LX-11 MODEM</td>
<td>115 00</td>
</tr>
</tbody>
</table>

APPLE HARDWARE

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>VERSA WRITER DIGITIZER</td>
<td>219 00</td>
</tr>
<tr>
<td>ABT APPLE KEYPAD</td>
<td>119 00</td>
</tr>
<tr>
<td>MICROSOFT 2-80 SOFTCARD</td>
<td>299 00</td>
</tr>
<tr>
<td>MICROSOFT RAMCARD</td>
<td>170 00</td>
</tr>
<tr>
<td>ANDROMEDA 16K CARD</td>
<td>170 00</td>
</tr>
<tr>
<td>VIDEX 80 X 24 VIDEO CARD</td>
<td>299 00</td>
</tr>
<tr>
<td>VIDEX KEYBOARD ENHANCER</td>
<td>99 00</td>
</tr>
<tr>
<td>M & R SUPERTERM 80 X 24 VIDEO BOARD</td>
<td>315 00</td>
</tr>
<tr>
<td>NEC 12" GREEN MONITOR</td>
<td>239 00</td>
</tr>
<tr>
<td>SANYO 12" MONITOR (B & W)</td>
<td>249 00</td>
</tr>
<tr>
<td>SANYO 12" MONITOR (Green)</td>
<td>270 00</td>
</tr>
<tr>
<td>SANYO 13" COLOR MONITOR</td>
<td>459 00</td>
</tr>
<tr>
<td>TEOCO 12" HIGH RES GREEN MONITOR</td>
<td>160 00</td>
</tr>
<tr>
<td>SSM AIO BOARD (INTERFACE) ABT</td>
<td>165 00</td>
</tr>
<tr>
<td>SSM AIO BOARD (INTERFACE) KIT</td>
<td>139 00</td>
</tr>
<tr>
<td>SSM 488 INTERFACE</td>
<td>369 00</td>
</tr>
</tbody>
</table>
MOUNTAIN HARDWARE

CPS MULTIFUNCTION BOARD 209.00
SUPERTALKER S200 250.00
ROMPLUS WITH KEYBOARD FILTER 179.00
ROMPLUS W/O KEYBOARD FILTER 130.00
KEYBOARD FILTER ROM 49.00
CP/M 48.00
MUSIC SYSTEM 459.00
ROMWRITER 149.00
APPLE CLOCK 252.00
A/D + D/A 209.00
EXPANSION CHASSIS 575.00

VISTA COMPUTER CO.

APPLE 40 Track Drive A40 (163 K Bytes) 369.00
APPLE 40 Track Drive A40 (326 K Bytes) 540.00
APPLE 160 Track Drive A160 (652 K Bytes) 799.00
APPLE 80 Column Card 329.00
APPLE 8 inch Disk Drive Controller 549.00

CALIF. COMPUTER SYSTEMS

S-100 BOARDS

220OA MAINFRAME 349.00
2026A 32K STATIC RAM 599.00
2026C 54K DYNAMIC RAM 499.00
2422 FLOPPY DISK CONTROLLER & CP/M 329.00
2710 FOUR SERIAL / I/O 249.00
2712-2 SERIAL / 2 PARALLEL I/O 269.00
2720 FOUR PARALLEL I/O 199.00
2810-2 B-20 249.00

APPLE BOARDS

7710A /D ASYNCHRONOUS SERIAL INTERFACE 139.00
7712A SYNCHRONOUS SERIAL INTERFACE 149.00
7242A CALENDAR /CLOCK 99.00
722B CENTRONICS PRINTER INTERFACE 99.00

APPLE SOFTWARE

MAGIC WINDOW WORDPROCESSOR 89.00
MAGIC WAND 275.00
WORDSTAR-APPLE 259.00
MAILMERGE-APPLE (REQUIRES WORDSTAR) 90.00
SPELLSTAR-APPLE (REQUIRES WORDSTAR) 169.00
DATASTAR 159.00
EXPEDITOR II APPLESOFT COMPILER 89.00
PPS PERSONAL FILEING SYSTEM 79.00
PPS REPORT GENERATOR 79.00
ASCII EXPRESS TERMINAL PROGRAM 59.95
2-TERM COMMUNICATIONS SOFTWARE 89.00
MICROSOFT FORTRAN 185.00
MICROSOFT COBOL 550.00
DB MASTER 2.4 179.00
VISICALC 3.3 169.00
VISIPLOT 149.00
VISIDEX 169.00
CDA DATA BASE MANAGER 99.00
A-STAT COMPREHENSIVE STATISTICS PKG 119.00

APPLE GAME SOFTWARE

SPACE EGO 24.95
POOL '73 29.95
RASHER BLASTER 24.95
GORGON 32.95
APPLE PANIC 24.95

CP/M SOFTWARE

MICROSOFT BASIC-80 299.00
MICROSOFT BASIC COMPILER 319.00
MICROSOFT FORTRAN-80 399.00
PEACTHREE SYSTEMS 379.00
MAGIC WAND (REQUIRES CP/M) 275.00
WORDSTAR (REQUIRES WORDSTAR) 110.00
SPELLSTAR (REQUIRES WORDSTAR) 199.00
DATASTAR 249.00
SPELLGUARD 239.00
CP/M PICKLES & TROUT FOR TRS-80 175.00

MORROW DESIGNS

FLOPPY DISK SYSTEMS

Controller P.S. Cables Microsoft Basic, CP/M, A&T
DISCUS I (Single Drive—250 K) 799.00
DISCUS II (Dual Drive—500 K) 1429.00
DISCUS 20 (Single Drive—500 K) 869.00
DISCUS 20D (Dual Drive—1 MEG) 1499.00
DISCUS 2 + 2 (Single Drive—1 MEG) 1099.00
DISCUS 2 + 2 (Dual Drive—2 MEG) 1999.00

HARD DISK SYSTEMS

Controller P.S. Microsoft Basic, CP/M, A&T
DISCUS M10 (10 Megabytes) 2949.00
DISCUS M20 (20 Megabytes) 3829.00
DISCUS M26 (26 Megabytes) 3949.00

DECISION 1 COMPUTER

2-80A CP/M, NIX (UNIX compatible), 32 to 1 MEG OF memory
Floppy and/or Hard Disk CALL

SD SYSTEMS

S-100 BOARDS

VERSALFLOPPY II A&T 389.00
VERSALFLOPPY II KIT 529.00
SBC-200 (2-80 CP/M) A&T 369.00
SBC-200 (2-80 CP/M) KIT 529.00
2-80 STARTER KIT 289.00
EXPANDROM II KIT (5K) 220.00

TRS-80 MOD I HARDWARE

PERCOM DATA SEPARATOR 27.00
PERCOM DOUBLER II 159.00
DOUBLE ZAP II 45.95
TANDON 80 TRACK DISK DRIVE 429.00
TANDON 40 TRACK DISK DRIVE 299.00
LUM DOUBLER WITH COSPLUS 3.30 159.00

TRS-80 SOFTWARE

NEWOS/80 2.0 MOD I 139.00
LAZY WRITER MOD I 125.00
PROSOFT NEWSPRINT MOD I, II 99.00
SPECIAL DELIVERY MOD I, II 119.00
X-TRA SPECIAL DELIVERY MOD I 190.00
TRACKCCESS MOD I 24.95
OMNI TERMINAL SMART TERMINAL MOD I, II 89.95
MICROSOFT BASIC COMPILER FOR MOD I 165.00

CORVUS

FOR S-100, APPLE OR TRS-80 MOD I, II

Controller Case/P.S. Operating System, A&T
5 Megabytes 3095.00
10 Megabytes 4495.00
20 Megabytes 5595.00
MIRROR BACK-UP 760.00

SUPPLIES

AVERY TABULABLES

1.000 3/16" X 1/2" 8.49
3.000 3/16" X 1/4" 14.95
5.000 3/16" X 1/4" 19.95

UARCO PAPER (Prices F.O.B. S.P.)

9" X 11 11 lb white 29.00
14" X 11 11 lb white 39.00

We stock a complete line of computer covers, printer ribbons, print wheels & NEC thumbwheels—CALL US FOR YOUR NEEDS.

We built a reputation on our prices and your satisfaction.

We guarantee everything we sell for 30 days. If anything is wrong, just return the item and we'll make it right. And of course we'll pay the shipping charges.

We accept Visa and Master Card on all orders. COD orders accepted up to $300.00. We also accept school purchase orders.

Please add $2.60 for standard UPS shipping and handling on orders under $50.00. Call us for shipping charges on orders that weigh more than 50 pounds. Foreign FPO and APO orders please call 15% for shipping. California residents add 6% sales tax.

The prices quoted are only valid for stock on hand and all prices are subject to change without notice.

Circle 14 on inquiry card.
The first conference on software protection in the United Kingdom started with a joke and ended with a joke. In between, there was little to laugh about. In opening the conference, Alistair Kelman, a leading software copyright lawyer, told an old music-hall joke about an Englishman who asked an Irishman how to get to County Derry. The Irishman replied, "If I wanted to get to County Derry, I wouldn't start from here." In other words, Kelman suggested, if we had a choice in the matter of software protection, we would not set out from the point at which we find ourselves: ensnared by a tangled and thorny copyright law whose concepts spring from the days when the computer was little more than a fancy abacus in the mind of Charles Babbage.

The conference's closing joke came from retired software dealer and industry pundit Julian Allason, who proposed a "final solution" to the piracy problem: give the pirates free rein! Allason told how the American software house OEM is offering a "nonexclusive" licensing deal. For $460, OEM sells a complete line of programs, which the purchaser can dispose of as he wishes—for his own use, for copying, or for modification and resale. According to Allason, OEM intends its programs as "blueprints" that the purchaser can modify to meet his needs. But even so, an unnamed mail-order firm has already pirated OEM's products, offering the complete OEM line for a mere $260.

Held in March at the Waldorf Hotel in London, the Computer Software Protection Conference was subtitled "How to Beat the Pirates." The conference offered many suggestions on how to deal with the worldwide problem now reaching epidemic proportions in the UK. But the general conclusion was that the pirates can be beaten only by spending lots of time and money and retaining a knowledgeable lawyer from the outset.

The Backup Problem
Software theft has only recently become a problem in the UK. Hardware releases usually reach the UK about a year after introduction in the United States. In the one-year interval, Americans do a great deal of software development for the new machine. Because a question always exists about how and by whom the American software will be brought to the UK, the situation seems to offer great possibilities for software thieves.

Perhaps we should be surprised that VisiCalc, the world's best-selling program, was not copied here until late in 1980. VisiCalc retails in the UK at £125 ($290) and is distributed by Applied Computer Techniques (ACT) of Birmingham, the same firm that sells the Commodore PET, Britain's best-selling microcomputer. In December 1980, ACT discovered that a mail-order firm run by David Bolton was marketing what it called a "backup disk" for VisiCalc. The "backup disk" didn't contain a copy of VisiCalc but was reformatted in a way that enabled the user to defeat VisiCalc's protection routines and make a backup copy of the original disk from ACT. Bolton's backup disks sold like hotcakes, partly because ACT itself still will not give a registered user of VisiCalc a backup copy.

ACT promptly retained Alistair Kelman to apply to the High Court for an injunction to stop Bolton from selling the "backup disk," which ACT claimed was effectively a copy or an invitation to copy, and hence a breach of copyright relating to "artistic or literary works." After requiring ACT to get US suppliers Personal Software and Software Arts as
We're Offering You Our Company Secret.

It's a brand new American-designed program generator that can eliminate the need to spend thousands of dollars on special programs.

And, It's Available Today.

It's the microcomputer program that Time Management Software is using to write its own professional software packages. And now, you can use it to write all the programs you'll ever need. We call it GENESIS. You'll call it incredible, because we have yet to find a program on the market that GENESIS can't create.

GENESIS is the next generation.

Designed by a team of doctoral-level programmers, GENESIS runs on all CP/M* 2 XX systems, using compiled PL/1-80*.

The code generated by GENESIS is fast and efficient, and this new product's capacity to code difficult algorithms is virtually unlimited.

The speed of code generation itself is literally awesome. Preliminary tests have indicated an ability to generate efficient code at a rate well in excess of four lines per second. Clearly, GENESIS can write months of code in a matter of minutes.

With You As Architect, Genesis Is The Ultimate Master Builder.

Word processing, accounting procedures, statistical analysis, time management studies...GENESIS can write any functions you could possibly need. Naturally, complete program changes are quickly and easily made.

You speak plain American English to GENESIS -- no code, no difficult introductory language to memorize. The only time you spend with GENESIS is in deciding the specifications of your program.

Simply Stated, Genesis Is The Best Microcomputer Program Generator In The World.

Period.

Genesis comes with on-line documentation, as well as a complete concise printed manual, written by a professional manual writer.

Due to its sophistication, we recommend this program for use with any disk system with 48k or more, using CP/M* 2 XX. The code which is generated is CBASIC*.

(Note: Even though GENESIS runs in compiled PL/1-80* it is not necessary to have PL/1-80 in order to run the program.)

The program comes on standard 5½- or 8-inch disk, with storage sleeve. The program that will allow maximum use of your hardware...an introductory price of $500.

GENESIS is available now directly from Time Management Software, and is not sold through any other outlet. Time Management Software will send free updates of new material and products to GENESIS owners as they develop, to make sure you've got everything you need.

Order the most advanced program generator system on the market today, by calling one of the toll-free numbers or by returning the order blank below.

Call now toll-free to order. (Ask for operator 603.)

1-800-824-7888 (Nationwide, except California, Alaska and Hawaii)
1-800-852-7777 (In California)
1-800-824-7919 (In Alaska and Hawaii)

YES . . . I need GENESIS to develop the ultimate program and to take fullest advantage of my hardware.

NAME __

ADDRESS __

CITY ____________________ STATE ________ ZIP ____

I have enclosed $500 to avoid delays, shipping and handling charges.

□ Check □ Money Order □ C.O.D. (If delivery address is different than above, please specify.)

Please specify one: □ 5½-inch disk □ 8-inch disk

Price includes tax, handling and shipping (except C.O.D. orders.)

123 E. Broadway
P.O. Box 727
Cushing, Oklahoma 74023

*Registered Trademarks of Digital Research Inc.
How To Start Your Own Successful Computer Business

Projections for the computer industry indicate astronomical growth during the coming years. Sales of microprocessors alone are expected to exceed a staggering 2 billion dollars by 1983! This comprehensive manual will show you how to use your expertise to cash in on the exploding computer marketplace.

This manual covers virtually every aspect of starting or buying a computer business. It contains over 300 pages that are filled with valuable information and facts to put you on your path to success. A path that you tailor to your personal goals, preferences, background, strengths, and resources. With this manual you will explore and evaluate opportunities such as an independent software vendor, systems house, consultant, distributor, retail store, and more.

"How To Start Your Own Successful Computer Business" will help you get the best return on your investment. It is comprehensive and easy to use. This manual provides the planning checklists and sample forms needed to get your business started successfully. It includes step-by-step guides for preparing your business plan, financial plan and customer controls. When you will learn how to avoid costly mistakes and save your precious dollars in such areas as advertising and software development.

This manual is filled with priceless tips gained from many years of experience on how to succeed in the computer marketplace. If you are considering starting a part-time or full-time computer business, then you cannot afford to pass up this valuable resource.

ORDER YOUR COPY NOW!
PRICE $75.00
15-DAY REFUND GUARANTEE

InfoSource Inc.
6087 Buford Hwy., Suite B106
Norcross, Georgia 30071

Please send me my copy of "How To Start Your Own Successful Computer Business"
Enclosed is ______ check ______ money order
for $75.00
I prefer to use my ______ VISA ______ MASTERCARD
Card No ____________________________
Exp __________

NAME_____________________________________

ADDRESS_________________________________

CITY_____________________________________

STATE ZIP_______________________________

For faster shipment on credit card orders call (404) 447-7699

To Be a Pirate

Against this background, Julian Allason's opening remarks are understandable. "If I were to start again in the software business," he said, "I would be a pirate. It's the quickest way to make money with the least risk that there is in Britain today. I would buy a wide range of programs, copy them and resell them by mail-order. Then if things went well, which they would, I would get bold and make the programs available to dealers. If the programs were so well known as to be obviously recognized, then I would describe them as 'backup copies.'"

Although Allason said additional precautions would probably be unnecessary, the aspiring pirate could put aside any fears by following American practice: change a few program lines, renumber the program, remove the serial numbers, advertise under a bland trade name, or buy a "cut-out" license from a company that has either gone out of business or bought its license from another dubious and short-lived company. The result is a "deck of cards" in which each company must be sued in turn. This wrinkle is a recent migrant to the UK, first making its appearance in the case of a backwoods outfit called Kansas City Systems.

Level IV, Anyone?

Despite its name, Kansas City Systems is literally a backwoods operation. Its premises are a shack in a forest near Chesterfield, in the north of England. One of the British distributors of Level III BASIC and an associated monitor, the Eastbourne software house A J Harding (Molmer), took Kansas City Systems to court for pirating Level III and reselling it as Level IV. Kansas City Systems' chief, Tom Crossley, argued that he had bought the software from one Sorrell B Chapman, whom he met at a microcomputer show in Britain in 1979. According to Crossley, Chapman claimed to be legitimately selling the software on behalf of the now-defunct GRT Corporation.

Clearly there is no way for an
Take a look at our EPROM blaster for your Apple™ or TRS-80™.

Apparat announces the most versatile EPROM burner available today for your TRS-80 model I and III or Apple computer... the Apparat PROM Blasting system (A.P.B.). Most EPROM burners will program only one type of EPROM. The A.P.B. system will program all commonly used 24 pin EPROMs by using special personality modules that adapt the unit to the EPROM. The following EPROMs are programmable: 2704, 2708, 2716, (5-volt) & (5-volt), 2732, 2508, 2516 and 2532.

The versatility and power of the A.P.B. system means you're getting a PROM burning package with extensive capabilities. The price, $149.00, insures you're getting the most cost-effective PROM burner on the market today.

With a unique combination of personality modules and sophisticated software, A.P.B. will perform many operations impossible with conventional PROM burners. Here's a brief list of some of A.P.B.'s capabilities:

- Verify ROM is erased
- Read ROM
- Copy ROM
- Copy between different ROM types
- Program ROM
- Partial programming and copies
- Verify programming
- Read or save ROM data on disk or cassette (Apple only)
- Program directly from computer memory
- Examine and/or modify working memory
- Preset working memory

The A.P.B. system is the most flexible PROM burner available. The A.P.B. system package consists of an interface card that plugs directly into an expansion slot, a complete set of personality modules, software on disk and a detailed instruction manual. The software will run under NEWDOS/80, or TRSDOS™ for the TRS-80, and APPLE DOS™ or APEX for the Apple.

If you're looking for a powerful, versatile and cost efficient EPROM burner, call APPARAT today. Dealer inquiries welcome.

(303) 741-1778

*TRS-80 Version requires the TRS-80 bus extender (Cat. # 1-025) or a separate user provided power supply and cable.

TRS-80 and Apple are trademarks of Tandy Corp. and Apple Computer.

Apparat, Inc.

3401 So. Sherman Parkway, Denver CO 80237 (303) 741-1778

"ON GOING SUPPORT FOR MICROCOMPUTERS"
English court to test the validity of the American “cut-out” license, but in this instance the plaintiffs won a qualified victory. Using an unusual legal instrument called the Anton Pillar order, the plaintiffs got hold of disks, documentation, and correspondence belonging to Kansas City Systems. The Anton Pillar order empowers the plaintiff’s legal representative to act as an officer of the court in cases of suspected copyright infringement. The plaintiff’s lawyer can require the defendant, without notice, to open his premises to a search and to let the plaintiff’s representative take away any relevant documents. If the defendant refuses, he is in contempt of court.

The Knock at Night

Will the Anton Pillar order play an important role in the control of software piracy in the UK? Will pirates fear the knock in the middle of the night? Alistair Kelman calls the Anton Pillar order a “judicial invention,” noting that Parliament has never debated this unusual provision for search and seizure. But the Anton Pillar order has already been used several hundred times.

Although most commonly applied in piracy cases involving phonograph records and music tapes, the order was first invoked in a case of computer piracy. Its namesake, Anton Pillar, was a German manufacturer of an emulator utility for IBM equipment. British distributors of the utility, however, started making unlicensed copies and selling them at cut rates. When Pillar found out, he sought an injunction to stop the pirates, and he successfully argued that the evidence needed to prove infringement could only be seized by a search that took the offenders by surprise.

Kelman noted that at the top end of the market, much business can be lost through organized software piracy. “There is now a risk from organized crime—the big sharks who will be a real menace as the market develops,” he warned. But so far, little evidence of organized crime involvement has surfaced. In typical piracy cases,
STAR-EDIT for CP/M

From Supersoft, a phenomenon in screen editors/word processors. Star-Edit is a completely tested, "no surprises" screen editor suitable for any text processing task, including program writing and word processing. Its features compare with the highly acclaimed "EMACS" editor. Even though Star-Edit is at least as powerful as any other screen editor, it can be learned easily and quickly by both programmers and non-programmers. Star-Edit includes:

- Multiple file editing capabilities. The user may edit several files simultaneously.
- Split screen option for viewing different files or pieces of the same file.
- The user has free and unrestricted access to all the file at any time, regardless of whether or not the file will fit in RAM. This means that the user may edit the first page, then the last page, then the first, and so on, without rereading. This is accomplished through the use of "virtual memory" residing on disk file.
- Optional "no return mode" (fill between left and right margin) allows text to be entered without the use of carriage returns.
- Complete user manual and tutorial.
- Ability to enter ANY typeable character into the file.

Includes menu driven terminal configurator with simple selection for the 16 or so most popular terminals and video boards. Also allows customization for most other terminals.

Someone familiar with an ordinary typewriter should have no trouble learning and using Star-Edit. The novice need learn only a few commands to make immediate use of the editor; the experienced user will find that Star-Edit has a complete set of text manipulation commands (nearly one hundred).

Requires: 32K CP/M system with cursor-addressable terminal

Star-Edit: $225.00
Manual only: $10.00

All orders and general information:
SUPERSOFT ASSOCIATES
P.O. BOX 1628
CHAMPAIGN, IL 61820
(217)-359-2112
Technical Hot Line: (217)-359-2691
(answered only when technician is available)

U.K. and Europe:
DIGITAL DEVICES
134 LONDON ROAD
SOUTHBOROUGH KENT
TUNBRIDGE WELLS
TN4 8FL
ENGLAND
Tel: 95562
Shift T 0377779

Japan:
ASR CORPORATION INTERNATIONAL
1-2-8, SHIBA-DAIMON
TOKYO 105
JAPAN
Tel.: (03) 437-3901
Telex: 242 3206

Supersoft
First in Software Technology
Circle 352 on inquiry card.
dealers supply a “complimentary”
copy of one disk instead of a discount
on another; or a service engineer “just
happens to have” a word-processor
program that he can get the customer
for a cash discount—say of 90 per-
cent.

Only Amateurs
Home copiers, as distinguished
from professional bootleggers, drew
sharp words from Allason. Claiming
that amateurs account for 99 percent
of illicitly copied programs, Allason
revealed the results of a confidential
survey of PET users in the UK. For
every program bought from a
legitimate source, Allason found, two
and a half copies were made without
permission. The UK trade paper
Computer Weekly confirms Allason’s
figures. Commodore says its software
market has slumped to only 40 percent of what it was a year ago.
Even with many PET users changing
to disk, such a decline in cassette sales
puts an intolerable strain on the
market.

If copying in the home less per-
nicious than professional bootleg-
ging? From the amateur’s point of
view, illicit copying might seem a
good thing. Certainly the surround-
ings are innocent enough; this sort of
 copying takes place mainly among
friends, at schools, and in user
groups.

But amateurs confront software
publishers with a dilemma: if
publishers take no steps to protect
their programs, making a copy
becomes the easiest thing in the
world. On the other hand, if
publishers use protection routines,
making a copy is for many amateurs
the most enjoyable thing in the
world. Unlike semiprofessional users
of software, amateurs have both the
time and the enthusiasm needed to
defeat protective measures. Peter
Laurie, editor of Practical Com-
puting, confirmed Allason’s view by
saying, “Any intelligent teenager will
make it (overcoming copy-protection
measures) his first task of the day.”

The case of Microchess shows how
severely amateur copying can
damage software sales. Before the In-
ternational PET Users’ Group
published a method of copying
Microchess, the game program had
sold more than 100,000 copies. After
publication of the copy method, sales
dried up. By contrast, the semi-
professional program Wordcraft en-
joyed a dramatic increase in sales
when the protection routine known
as the “Dongle” was incorporated.

The Price of Free Copies
The amateur’s own long-term in-
terests are actually damaged by copy-
ing software at home, according to
Allason. As royalties decline, both
authors and publishers become reluctant to publish. Until recently, ACT
published 200 titles; its list has now
dwindled to 20. The company no
longer finds it worthwhile to publish,
document, and support a long list of
marginal sellers. Instead, ACT leaves
programs with a small market to
smaller firms that skimp on documen-
tation and support, or to bootleggers
who provide no support and who
would never consider providing
documentation. Because documenta-
tion is clearly a written work, it is
subject to the provisions of the
Copyright Act.

Allason named some programs
whose publication stands in jeopardy
because of pervasive software piracy.
Among them are a financial modeling
program called Nebula, produced at a
cost of $600,000; Micromodeler,
which was to have sold for $900; and
Dr Michael Brinson’s elegant and
useful AC Circuit Analysis, withdrawn from the marketplace.

In brief, Allason said amateur
piracy will have five consequences for
the average software buyer. It will
reduce the range of software
available, raise prices, and make
companies reluctant to invest in soft-
ware development. He said piracy
also leads to lack of support and
maintenance, and discourages
development of software by cottage
industries which cannot afford to go
to court to protect their interests.

Allason disagreed with those who
claim the solution to piracy is to
reduce prices paid by consumers. He
cited a survey showing that programs
DEALERSHIPS AVAILABLE NOW!

Zenith is building a National Network of Dealers to Market their growing line of field-proven Microcomputer systems. Zenith is in Business Microcomputers all the way. For over 60 years Zenith has specialized in building reliable, economical products. Their proven experience in marketing through the local dealer assures that the Zenith Computer Dealer will enjoy a long and profitable relationship.

Check these support pluses:
- Support comes from three parallel sources: The local distributor, the local factory representative, and the local service center.
- A Flooming Plan takes the Cash Flow Risk out of Start-up.
- Software Demonstration Packages enables you to learn and sell the software without a large cash commitment.
- The Zenith name is recognized by your customer.

Special “Show and Sell” Advantages are available to those dealers who get started now. Don’t delay, call right now.

Z-90 MICRO COMPUTER
- Complete standalone Desktop System.
- Dual Z80 Microprocessor control.
- 64K RAM, Twin Serial I/O Ports.
- Special Graphics for Business Presentation.
- Disk Storage from 800K Internal to over 11 Megabytes optional.
- Full Line of Business Software and Programming Languages provided by Zenith.
- Proven Zenith Reliability.
- Nationwide Service Centers.

BECAUSE:

PRIME SOURCE Delivers computer systems that work. We carry a complete line of microcomputers and peripherals backed by in-house technical expertise. Pretested and Preconfigured systems available.

PRIME SOURCE is a stocking distributor with product ready ship.

PRIME SOURCE Supports the dealer with extras such as flooring plans, demonstration software packages, sales leads from national advertising, and advertising funds for local advertising.

PRIME SOURCE sells to Dealers, Manufacturers, Systems Houses, and Independent Software Vendors. We do not sell to end users.
HUGE SAVINGS ON CALCULATORS AND COMPUTERS

Call 800-682-9250 in California • 800-538-9550 in all other states including Alaska and Hawaii
408-624-0822 outside USA • Telex 172532 • TWX 9103609500

BI-Lingual Operators Available/GERMAN/JAPANESE/FRENCH

Hours: 7:00-6:00 (PST) Monday-Friday

HEWLETT PACKARD

COMPUTERS

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DESCRIPTION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP-85</td>
<td>Built In Printer/Tape</td>
<td>$2600.00</td>
</tr>
<tr>
<td>HP-83</td>
<td>Built In CRT</td>
<td>$1800.00</td>
</tr>
<tr>
<td>HP 7225B Plotter</td>
<td>$1900.00</td>
<td></td>
</tr>
<tr>
<td>HP 2631B OPT 885 Printer</td>
<td>$3100.00</td>
<td></td>
</tr>
<tr>
<td>5¼ Dual Master Flex Drive</td>
<td>$2000.00</td>
<td></td>
</tr>
<tr>
<td>5¼ Single Master Flex Drive</td>
<td>$1200.00</td>
<td></td>
</tr>
<tr>
<td>8” Dual Master Flex Drive</td>
<td>Call</td>
<td></td>
</tr>
<tr>
<td>8” Single Master Flex Drive</td>
<td>Call</td>
<td></td>
</tr>
<tr>
<td>16K Memory</td>
<td>$245.00</td>
<td></td>
</tr>
<tr>
<td>Adv PROG ROM</td>
<td>$118.00</td>
<td></td>
</tr>
<tr>
<td>NEW</td>
<td>82905A HP 80 Column Printer</td>
<td>$755.00</td>
</tr>
</tbody>
</table>

CALL ON HP-125 Computer

CALCULATORS

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DESCRIPTION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP-32E</td>
<td>ADV SCI W/STAT</td>
<td>$44.00</td>
</tr>
<tr>
<td>HP-33C</td>
<td>PROG SCI</td>
<td>$72.00</td>
</tr>
<tr>
<td>HP-34C</td>
<td>ADV PROG SCI</td>
<td>$120.00</td>
</tr>
<tr>
<td>HP-37E</td>
<td>BUSINESS</td>
<td>$60.00</td>
</tr>
<tr>
<td>HP-38C</td>
<td>ADV FIN</td>
<td>$120.00</td>
</tr>
<tr>
<td>HP-41C</td>
<td>ALPHANUMERIC FULL PERFORMANCE</td>
<td>$200.00</td>
</tr>
<tr>
<td>HP-41CV</td>
<td>ALPHANUMERIC FULL PERFORMANCE QUAD MEM</td>
<td>$265.00</td>
</tr>
</tbody>
</table>

PRINTERS

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DESCRIPTION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPSON</td>
<td>MX-80DT</td>
<td>$172.00</td>
</tr>
<tr>
<td>QUAD MEMORY</td>
<td>$200.00</td>
<td></td>
</tr>
<tr>
<td>QUAD MEMORY</td>
<td>$76.00</td>
<td></td>
</tr>
</tbody>
</table>

OTHER PRODUCTS

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DESCRIPTION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUAD MEMORY</td>
<td>$76.00</td>
<td></td>
</tr>
</tbody>
</table>

Prices subject to change without notice • Prices do not reflect shipping and handling charges

CPI — P.O. Box 22530 — Carmel, CA 93922 • 3785 Via Mona Marie

Buy Direct from CPI

An Authorized Direct HP Dealer

Few Are Innocent

Consultant Ian Litterick approached software piracy with an honesty that refreshed some and horrified others. Stepping up to speak on “Why I Am a Software Thief,” Litterick asked, “Which of you can say, hand on heart, that you have never made a copy, or used one knowingly?” Fewer than five people raised their hands.

Buoyed by this mass confession, Litterick assured everyone’s guilt by arguing that bootleg copies are indispensable for software evaluation. In the hectic and hyped atmosphere of a store, he said, real evaluation is impossible. Authors of good software have nothing to fear from unauthorized copies, according to Litterick. “If it’s a good package,” he claimed, “then there are compelling reasons why I should go on to buy it in the conventional way.”

Litterick’s speech implied that the unseen “customer” actually plays a vital role in the development of software. With the help of the amateur pirate, poor programs are gradually winnowed out, leaving the kernel—the 100-percent debugged, easy-to-run, and magnificently documented software—selling for a song. If only authors and publishers would show a little more gratitude!

A great many amateurs would probably endorse Litterick’s second point: a single-disk user must have a backup copy, especially if he has both data and program on the one disk. What’s more, Litterick said defiantly, what can any of the manufacturers do if the determined thief goes for bit-by-bit copying?

Countermeasures

The conference raised many ideas for fighting software piracy. Some are new and theoretical, but most are already familiar to Americans. Allason ran down a list of anti-pirate weapons that he thinks should be brandished immediately:

- “Megabuck” lawsuits—the cost-attrition weapon.
SuperCalc™ and the Answer Key.

Answers. As a decision maker that's what you're after when you use an "electronic worksheet" to analyze problems in management, finance, marketing, sales, and engineering. However, a lot of time and energy can be spent just trying to figure out how your program works. That's why we've invented The SuperCalc® Answer Key.

As a new SuperCalc user you want answers on program operation fast...as your questions arise. As an experienced user you want a complete description of all your options at your fingertips.

From formatting printed reports to merging sheets, the SuperCalc Answer Key gently guides you every step of the way. And included with the SuperCalc Software Package is a comprehensive tutorial and reference guide which introduces you to the full power of the electronic spreadsheet.

The SuperCalc Answer Key. Invented so you can move on to answering the questions that really count.

SuperCalc is available now for your CP/M® computer. Contact us today for the name and address of your local dealer.

SuperCalc®

405 Alda Avenue, Santa Clara, CA 95050
(408) 727-7634

*SuperCalc and The Answer Key are trademarks of Sorcem Corporation
*CP/M is a trademark of Digital Research
- The embarrassment factor. Perhaps saying "You know that I know" will be more effective in the UK's smaller, more centralized economy than in the US.
- Induced dependence, a strategy used by mainframe manufacturers who claim that only they can give customers the documentation and backup they need.
- Licensing of users, generally considered the most effective weapon against piracy.

Laurie believes licensing is the only effective way to combat pirates. Although amateurs are too numerous and energetic to be stopped from making illicit copies, vendors can stop real pirates by using existing provisions of law to secure agreements at the point of sale. If the supplier's name is visibly coded in at the beginning of a program, and invisibly coded in elsewhere, there is a legal basis for enforcing the original license agreement. The visible trademark establishes a breach of contract; the invisible, if the illicit copier expunges it, establishes a breach of copyright.

When programs are intended for the mass-market microcomputer, Laurie sees a contradiction in trying to discourage copying by making the programs hard to use. Software is made to be used; in fact, a license should permit the licensed user to make the modifications he needs. Typing software to a specific machine or implementing a turnkey system would be self-defeating.

The Case of ChessBall
Alistair Kelman gave the conference a detailed and analytic look at the state of the legal theory of software protection. In both British and American law, the most desirable form of protection for a computer program is a patent, which confers a monopoly on the owner. Unfortunately, in the UK the Patent Act of 1977 specifically excludes computer
Meet HP Series 80: Hewlett-Packard's new one-on-one computing systems for professionals.

Together, You can Analyze Technical Problems and Evaluate Solutions. Rapidly and Accurately.

HP Series 80 personal computing systems provide the technical solutions you require. Quickly! Easily! Inexpensively! Analysis techniques that were formerly difficult and often impossible become part of your everyday work routine. You can evaluate functional behavior, select variable alternatives, perform cost analysis... and more... all with greater accuracy and using more variables than you thought possible.

Series 80, VisiCalc™ PLUS
And You

HP's VisiCalc PLUS is a major new software tool. It's an electronic worksheet that instantly recalculates results as you change the variables. You ask the what-if questions and immediately see their effects on your solution. No programming is necessary... you can become proficient with VisiCalc PLUS in a few hours... and then watch your horizons broaden. VisiCalc PLUS features many powerful functions including statistical analysis tools and the entire HP Series 80 BASIC math set. Plus graphics! Create professional presentations with curve-fitting plots, stacked or clustered bar graphs, exploded pie charts and line graphs, all in up to four colors, on paper or transparencies.

ONLY FROM HEWLETT-PACKARD

HP Series 80 personal computing systems are part of a forty-year tradition of electronic products built to uncompromising standards of excellence. Additionally, HP Series 80 products are serviced by HP technicians and on-site service contracts are now available. We urge you to judge for yourself with a hands-on, one-on-one demonstration at your HP dealer. For locations, call TOLL-FREE 800-547-3400, Dept. 276F, except Alaska/Hawaii. In Oregon call 758-1010. Or write Hewlett-Packard, Corvallis, Oregon 97330, Dept. 276F.

Circle 168 on inquiry card.
software. But Kelman showed how, in the realm of computers, the artificial distinction between copyright and patent can make a monkey of the law.

Kelman described a game called ChessBall, invented by patent agent Paul Cole. A board game combining chess and football, ChessBall is played by two teams of three players — a Knight, a Queen, and a Bishop. The ball is on a grid and reacts to the arrival of a player in one of the surrounding squares according to a complex set of rules. Goalposts stand where the King and Queen are situated on a normal chessboard. The object of the game is to score as many goals as possible in a set period. "It is possible to sell ChessBall as a board game, and it might be possible to obtain a patent for it," Kelman said. "However, it is also possible to sell ChessBall as a tape which could be loaded into the domestic microcomputer and played by the family. It would further be possible to make a special microcomputer where the game of ChessBall was built into the electronic circuits. Under the present law, the game on tape is not patentable but the designated micro might well be."

These ideas were elaborated upon by Laurie, who advanced the idea that a "device" is patentable and hence enjoys the protection of patent law, which is far more bulletproof than copyright law.

"Let us suppose," Laurie argued, "that you have a bright, patentable idea and wire together some discrete transistors to make it work. The result is certainly a device and can be patented. Suppose that you take an uncommitted logic array and configure it to work like the transistors. Again a device, and patentable. Suppose you use a microprocessor controlled by a program in ROM (read-only memory). The ROM is physically changed by programming it. The same program in EPROM (erasable programmable read-only memory) is also a device, even though the alteration to the basic structure is just in the distribution of charge." If the program is in dynamic memory and the charge lasts only a millisecond, it's still a device, he said.

By a quirk of the British Patent Law of 1977, a person can commit "contributory infringement" of a patent if he helps someone else infringe the patent by, for example, providing instructions about how to do it. By this means, Laurie argued, it is theoretically possible to catch the software pirate. The pirate may, he said, be giving "instructions" in the form of software which, once loaded, becomes a patent infringement under the terms of the Act. This approach may or may not work; certainly nobody in the UK has had the nerve to put it to the test.

New Concepts

In the process of trying to overhaul the Copyright Act of 1956, Kelman has suggested some new concepts that may help clarify legal thinking about the intellectual property called software. One important concept is that of "transitory reproduction."

According to Kelman, a transitory reproduction occurs when, for example, a program is read into memory
and used to perform a particular task. Although the program itself may be a copyright work, no blame is attached to using and reproducing the program for the brief period of its appearance on the video display terminal. Nor does the use of the copyright work dilute in any way the copyright of any material which the transitorily reproduced program has processed.

Kelman has proposed a new concept called "transmutation" to describe any computing whose final effect is to steal one person's program and render it in another form. He defines the term as the automatic conversion of a source work into an object code by electronic, mechanical, or similar techniques. Transmutation is intended to cover such familiar words as "compile," "assemble," and "interpret," which already have specific meanings in law and computer science.

British courts already have groped with the concept of transmutation, but the current copyright law has shown itself unable to cope with the new concept. A notable instance is a recent case in which Sinclair Electronics sought an injunction against Comshop, which Sinclair alleged had copied the design of Sinclair's ZX80 pocket computer kit and introduced the copy in the US. Kelman bemoaned Justice Megarry's position that information held in ROM could not be copyright "because he couldn't see it." Kelman asked whether the rights to the Justice's own work, Manual of Real Property, would disintegrate if the manual were entered into the memory of a computer as a code, and then accessed by someone asking questions in "computer language."

International Complications

Although Kelman's concept of transmutation has found some favor with European lawmakers trying to draft a harmonized copyright law for Europe in the 1980s, important differences exist between Continental and Anglo-Saxon laws on intellectual property. These differences may complicate international software protection. The Continental concept of "moral right" to intellectual property is an example. In the US and the UK, an author sells intellectual property in much the same way as he would sell a piece of furniture. The author gets money in exchange for rights to the property. According to Continental tradition, however, the author retains the right to have his name associated with his work, and to stop unauthorized versions of his work from appearing, whether or not he has sold, given away, or otherwise disposed of his pecuniary rights with respect to the work.

Will Continental programmers be able to wield the concept of "moral right" in defense of their creations? If so, could the Anglo-Saxon world borrow the concept? Will North American and British programmers be able to defend their rights by pressing the important distinction between "transitory reproduction" and "transmutation"? Until these questions are answered, software authors and publishers can only hope to enforce license agreements signed at the point of sale. The laws on software piracy are all buckle and no swash.
Network Tools
Ideas for Intelligent Network Software

Peter B. Reintjes
Rte 3 Box 85
Morehead City NC 28557

Some people foresee electronic information as the currency of the future: those who have it will use it to get more, and those who don't have it will be exploited. Actually, money probably will continue to be the currency for years to come, but the computer will be the primary tool for controlling its flow. The key to this flow lies in computer networks. With the price of individual computers dropping, more people are solving their problems with computer networks, rather than with a single large computer.

Networks are more than just connections between computers. The physical connection—be it a twisted-wire pair, phone line, or satellite transmission—is of little consequence compared with the software that uses the connection.

Personal Computer Networks
Most network software developments aim to define protocols with sufficient generality to last a decade or more. ARPAnet, X25, and Ethernet, all primarily computer-to-computer networks, are now the focus of computer vendors' attention.

But another group of networks uses computer-human interfaces to provide interactive services. News and mail systems, shopping marts for software releases, and bulletin boards all fall into this category.

In these networks, information clearly is not currency but instead the commodity being paid for. (You may become painfully aware of this upon receiving monthly bills from the telephone company and the "information utilities.")

As a personal computerist, you have special needs that should be taken into consideration by the networking software. Ideally, your home computer should become an intelligent node on the network, making the network connection process invisible to you. Under such a system, your computer can call up the information service at night, when rates are lowest and the network response time is probably at its best.

An intelligent node system has another valuable application: a set of files on one computer can be transferred automatically to another node on the system. Each night when the network is activated, system A calls system B to determine which one has the latest version of each file. The updated file is then copied over the outdated one. You can spend all day Friday editing your resume on system A at work or school, then get up Saturday morning to find the edited version in your home computer's file, ready for further use or revision. A similar procedure could be used to send revisions of operating systems and even the network programs themselves. The command to activate the network can be executed at any time if a transaction is required before the usual late-night activation.

An Intelligent Node Program
With the needs of the personal computerist in mind, I have designed a set of modules that provide a basis for networking. I tried to make the modules very general, as well as compact and efficient enough for use in an actual networking system. In any event, the modules should prove useful in trying out new protocols and adapting quickly to different network interfaces.

Designing a network from the ground up provides the advantages of control over the planning and regulation of protocols and transactions. James Martin's book Systems Analysis for Telecommunications is recommended to anyone interested in designing a network. Another valuable book is Software Tools by Kernighan and Plaugher, from whom I have borrowed the idea of presenting modular programs as a set of tools. In this case the tools are for developing a network system.

Desirable as it may be in some ways, designing your own network creates the immediate problem of interfacing with all other information services. For the microcomputer owner, a more realistic goal would be designing a general-purpose interface to converse with other machines on the network, and then designing a local protocol to "ride on top" of the interface. The designers of the X25 network architecture anticipated this problem when they specified X25 in several distinct layers. Only the lowest level is in contact with the network. The higher levels behave as if they were sending and receiving data...
INCREASES THE HORIZON ADVANTAGE

THE POPULAR HORIZON COMPUTER SYSTEM GOES MULTI-USER
- Up to 5 users—DOS and CP/M® in one System
- 5 or 18 MegaByte Hard Disks with Tape Back-up
- Famous North Star Speed, Reliability, and Price
- Full Line of Integrated Applications Software
- Earlier Horizons are fully Upgradeable

THE NEW NORTHSTAR ADVANTAGE

AN INTEGRATED DESK-TOP GRAPHICS COMPUTER SYSTEM
- 12" Green Screen with Bit-Mapped graphics
- Dual processors: 64K Z80 and 20K 8035
- Dual Quad Capacity 5 inch Drives
- 87 Key Sculptured, Selectric-like Keyboard
- Graphics DOS and Graphics Basic Included, Graphics CP/M® Available

SPECIAL ADVANTAGES FOR DEALERS WHO SIGN EARLY

RIGHT NOW!

BECAUSE:
PRIME SOURCE Delivers computer systems that work. We carry a complete line of microcomputers and peripherals backed by in-house technical expertise. Pretested and Preconfigured systems available.
PRIME SOURCE is a stocking distributor with product ready ship.
PRIME SOURCE Supports the dealer with extras such as flooring plans, demonstration software packages, sales leads from national advertising, and advertising funds for local advertising.
PRIME SOURCE sells to Dealers, Manufacturers, Systems Houses, and Independent Software Vendors. We do not sell to end users.

PRIME SOURCE DISTRIBUTING

18380 Enterprise Lane
Huntington Beach, CA 92648
714/842-2208 213/592-4201
Outside California 800/854-6451

Circle 303 on Inquiry card.
across the network in a more abstract way.

The lowest (physical) level of any network can be implemented with my proposed networking modules. The user level could be fashioned to appear the same as X25 or the ARPANET.

The following specifications describe software modules needed for a basic network capability. The source codes for five of the functions—DIALER, PROMPT, CONVERSE, TRANSLUCID, and TRANSACT—are given after the specifications. These functions can be implemented in whatever language is available, and under any operating system or monitor the user chooses. Once the functions are available, the environment will be reasonably independent of the operating system, and future utilities designed for this environment will be easier to install. The functions can make the network protocol easier to implement and put the transaction processing on a high level.

WATCHDOG and ALARM

Networking, a real-time process, is slow and has a wide tolerance for speed fluctuations. But because protocols still must be executed in the proper sequence and in a consistent time frame, interrupt handling is needed for timing functions as well as for input and output.

Many large networking computers have multiprocessing operating systems. They can have several tasks running at once, trading off central processing unit (CPU) cycles, and each task can be doing part of the job. The most important tasks are the ALARM and WATCHDOG functions, and I have included them among the modules. ALARM tells the system when it is time for a transaction, or when certain services are available on the network. WATCHDOG watches the network traffic and steps in if a conversation gets bogged down in protocol.

In networking, perhaps more than anywhere else, error recovery is crucial. When two computers are talking over a voice-grade line at 4:00 in the morning, they could easily get out of step on a bad byte. In this case, you would at least want to make sure a telephone connection is broken, and you probably would like the computer to settle their differences without waking someone up or having to start from scratch the next night. This level of error recovery may sound formidable, but a few strategies can solve most common problems while enabling your computer to decide when it is hopeless to continue trying.

The WATCHDOG and ALARM functions can also be implemented on the typical personal computer system without multiprocessing. A timer with interrupt capability is required, and a real-time clock with interrupt alarms would be best.

Both the WATCHDOG and ALARM functions can be implemented in the same timer-interrupt routine with a global flag to signify whether the normal ALARM mode or the WATCHDOG mode is active. In using the ALARM function, a pointer in the AGENDA (a file specifying the transactions that need to be performed) shows what the next activity is and when it is scheduled. The timer is then set for activation, and the process goes into a wait state. When the interrupt occurs, the interrupt handler notes that it is in the alarm mode and jumps to a routine which starts up the desired activity.

If you are starting a process which may get hung (meaning you may wait forever for a transaction to be completed), set the TIMER function to WATCHDOG, start the timer and start the process. If the process is not finished before the timer causes an interrupt, the handler will see that it was activated as a WATCHDOG, and it will look around for an incomplete transaction. Then it can clean up the failed action, closing or removing any files the transaction used and incrementing a counter to keep track of the number of failures. If this counter exceeds a certain threshold, the transaction will be removed from the agenda and
The ancient Norse lords bravely sailed their ships across new waters in search of adventure. No obstacle was too great to overcome nor any force powerful enough to prevent their mighty advance. Now you’re in command. You are the pilot of the attack ship Valkyrie. Your mission: to wrestle the island Fuglay from the grasp of an army of laser-wielding war birds and secure the golden treasures hidden within the walls of the island castles. Success of the mission depends solely upon you. The castle Drage appears on the horizon when suddenly the air is alive with the flutter of giant wings. Your prize is in sight... do you dare accept the challenge and go on? You can put yourself at the controls of the Valkyrie thanks to the genius of Leo Christopherson and the versatility of the "TRS-80 microcomputer. As absolutely flickerless birds sail smoothly across the screen, strains of Wagner’s “Ride of the Valkyries” are heard. The game offers 10 levels of difficulty which provide a challenge for players of all ages and skills. The game also provides one of the finest examples of computer cartoon-graphics presently available. Accept the challenge of the Voyage of the Valkyrie... available now at leading software retailers.

* Trademark of Tandy Corp.
reported as a failure.

The flow of control when the timer interrupt occurs is shown in figure 1. The timer-interrupt handler provides the synchronization. When the system has finished its nightly transactions, it may print a status report similar to the one in figure 2.

TIMER

Set the timer to wait for a specified time. It can be set in seconds, minutes, or until an actual hour if a real-time clock is available. When the time is up, the interrupt routine will be activated, either in the WATCHDOG or ALARM mode.

DIALER

DIALER is a procedure for dialing the phone number of the remote computer. This software (see listing 1), plus a simple relay driven from an output port, can substitute for an expensive auto-dialer. Because telephone service supports pulse dialing even in areas with Touch Tone service, this procedure is a very cost-effective way for your computer to make phone calls. The phone number

PROMPT

This routine, shown in listing 2, is called with a sample prompt string and a pointer to a buffer of text. It determines whether the prompt occurs in the text, returns the offset into the buffer, or returns a negative number if the prompt is not found.

When you are conversing with a remote host system, a prompt from the host signals that the system is waiting for a command. On IBM's OS-360, it might be the word READY and a new line; on the UNIX operating system it is usually a percent sign followed by a space. Your system needs to recognize the prompt coming from the remote system and respond to it appropriately. This recognition is especially useful during the log-on procedure, when the system may have a status message of indeterminate length.

An alternate scheme for recognizing a prompt in the input stream is detailed in the TRANSACT procedure.

CONVERSE

The CONVERSE function in listing 3 attempts to carry on the dialog con-

Good Morning

Nocturnal Network Summary 8:02 May 19, 1981

Successful Transactions

<table>
<thead>
<tr>
<th>Description</th>
<th>Time on</th>
<th>Time off</th>
<th># tries</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAIL; NEWS</td>
<td>2:03</td>
<td>2:18</td>
<td>666-6666 1</td>
</tr>
<tr>
<td>FILE x from remote</td>
<td>2:19</td>
<td>2:40</td>
<td>777-7777 2</td>
</tr>
<tr>
<td>FILE y to remote MAIL; NEWS</td>
<td>3:10</td>
<td>3:20</td>
<td>888-8888 1</td>
</tr>
</tbody>
</table>

Unsuccessful Transactions

<table>
<thead>
<tr>
<th>Description</th>
<th>Time on</th>
<th>Time off</th>
</tr>
</thead>
<tbody>
<tr>
<td>FILE n to remote</td>
<td>3:45</td>
<td>3:50</td>
</tr>
<tr>
<td>MAIL</td>
<td>3:55</td>
<td>4:10</td>
</tr>
</tbody>
</table>

Figure 2: A sample report summarizing the activities of the preceding night.
THE HARD EDGE

AND STILL THE LEADING EDGE...
IN SYSTEM PERFORMANCE

Hard Disk and Streaming Tape
reliability and versatility that can't be beat

OEM CONTROLLERS
- Multibus
- General Purpose
- S100

S33
- 31 or 62 MByte formatted
- Lowest cost/MByte from any manufacturer
- CP/M* compatible "drop in" BIOS
- Single S100 card controller
- Fully expandable up to four drives, 8" or 14"
- Reliable high performance Priam Winchester Disks
- Immediate delivery

S10
- 10.5 or 32 MByte formatted

SYSTEM 8
- 8" Winchester 10 or 32 MByte formatted
- Integrated streaming cartridge backup
- Streaming backup at 5 MB/min
- Selective file backup under CP/M
- Versatile parallel I/O or DMA interface

ADES
ADAPTIVE DATA & ENERGY SYSTEMS
2627 Pomona Boulevard • Pomona, CA 91768
Phone: (714) 594-5858

*CP/M is a trademark of Digital Research Corp.
Listing 1: The module for dialing a telephone number using a simple relay to create pulses.

module dialer;
(**)
(* *)
(* Dialer is a function which alternately opens and closes *)
(* a relay on a phone's hook switch to 'dial' the number of *)
(* the remote computer. *)
(* *)
(* Copyright 1981 by Peter Reintjes *)
(* *)
(**)

type
 phone_number = ARRAY [1..20] OF CHAR;

const
 HMASK = 100; (* bit in register for relay *)
 PAUSE = 10000; (* constant for pause *)
 HI_DC = 400; (* These two numbers set the *)
 LO_DC = 600; (* duty-cycle of the relay *)

var
 i, j, n: INTEGER;
 c : CHAR;
 exit : BOOLEAN;

external assembly procedure relay(data : INTEGER);

procedure high;
 var
 i : integer;
 begin
 (* relay is an assembly language routine to set the *)
 (* output port for the dialer to the value HMASK *)
 relay(HMASK);
 (* turn bit on *)
 for i:=0 to HI_DC do ; (* relay on *)
 end;

procedure low;
 var
 i : integer;
 begin
 relay(-HMASK-1); (* this inverts HMASK *)
 for i:=0 to LO_DC do ; (* relay off *)
 end;

entry procedure dialer (telenum: phone_number);
(* telenum is at most 20 chars, terminated with a null *)
begin
 (* begin dialer *)
 (* null char is after the last digit in the array *)
 for i:=1 to 20 do begin
 c := telenum[i];
 case c of
 (* continue with code... *)
At General Electric developing new generations of software is just part of our commitment to advancing the state of computer technology. Our technical environment includes the very latest in computer hardware (3033, 3081, VAX 11/780, JES 2, ACF/NCP, ADABAS and MVS) as well as technical support unsurpassed within the industry.

Among our current projects is the development of large scale, distributed information processing systems. In developing these systems GE software professionals have utilized some of the most innovative design approaches seen in industry today. Presently we have positions available for individuals looking to advance their career in one of the world's most sophisticated hardware/software computer environments.

DATA BASE ANALYSTS
Responsible for data requirements analysis and subsequent selection of appropriate data management approaches including data base management systems evaluation.

COMPUTER SYSTEMS ARCHITECTS
Responsible for requirements analysis in the design of large scale Computer Systems to support on-line information management applications. Duties include selection and specifications of:

- Computer Hardware
- Operating Systems
- Data Management Systems
- Telecommunications Systems

MVS SYSTEMS PROGRAMMERS
Perform SYSGENs, maintain and tune MVS. Select and install program products. Develop MVS enhancement, HW-SW-Interfaces, and 3705 telecommunications applications.

DATA BASE DESIGNERS/ADMINISTRATORS
Perform data base design administration and implementation tasks for large scale data systems using state-of-the-art data base management tools. Analyze data base requirements. Design and select file structures, access methods and data management techniques. Install, maintain and tune vendor supplied data base management packages. Provide data base support and technical interface for data base design, query and update utilities.

SCIENTIFIC PROGRAMMER/ANALYSTS
Develop design approaches and implement state-of-the-art, high technology programs. Knowledge of structured implementation environment with related documentations and design reviews a plus.

General Electric offers excellent salaries and benefits including a comprehensive dental plan and liberal tuition assistance. And our relocation for eligible senior level professionals includes:

- Rapid cash payment for your current home
- Closing costs on both current and new home
- Attorney's fees
- Mortgage origination fees or points.

Our facility, located in suburban Philadelphia (Valley Forge), provides easy access to seashore and mountain resorts as well as some of the nation's leading educational and cultural facilities.

General Electric is looking forward to discussing your future... and ours. For confidential consideration forward your resume in complete confidence to: Mr. William E. Sarno, GENERAL ELECTRIC, Space Systems Division, Department BY-40, P.O. Box 8555, Philadelphia, Pa. 19101. An Equal Opportunity Employer, M/F.
This is just a sample of our everyday low prices.

APPLE II PLUS

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>64K* ONLY</td>
<td>$1249</td>
</tr>
<tr>
<td>16K for only</td>
<td>$1025</td>
</tr>
<tr>
<td>48K for only</td>
<td>$1089</td>
</tr>
<tr>
<td>*48 K Apple II Plus with 16K Ram Card</td>
<td></td>
</tr>
<tr>
<td>Apple Disk II Drive w/ controller</td>
<td>$499</td>
</tr>
<tr>
<td>Disk II Drive, Add-On</td>
<td>$439</td>
</tr>
<tr>
<td>Silentype Printer</td>
<td>$349</td>
</tr>
<tr>
<td>Hayes Micromodem II</td>
<td>$299</td>
</tr>
<tr>
<td>Epson MX-80 w/apple card</td>
<td>CALL</td>
</tr>
<tr>
<td>VIDEX VIDEOTERM $269</td>
<td></td>
</tr>
<tr>
<td>16K RAM CARD $130</td>
<td></td>
</tr>
<tr>
<td>MICROSOFT z-80 SOFTCARD $299</td>
<td></td>
</tr>
<tr>
<td>ZENITH 12 INCH GREEN SCREEN VIDEO MONITOR $149</td>
<td></td>
</tr>
</tbody>
</table>

TOLL FREE ORDER LINE 800-854-6654

in California or outside the continental U.S. (714) 698-8088

See pages 503 and 371 for more discount prices and order information.
ANNOUNCING A NEW ERA OF LOWER PRICES

We're in the business of saving you money.

Let's Face It. When you order anything through the mails you never really know who you are dealing with. We at Consumer Computers realize this every time we talk to you or receive a letter from you. We do our darndest to see that you not only get the information and help you need to intelligently place your order, but also that the price we give you is the best you can get anywhere.

We've been around. Consumer Computers has been actively serving people's computer needs in the San Diego area for 5 years now. We will still be here tomorrow, and the next day, too. So when you deal with Consumer Computers, you can rest assured that you're dealing with people that are thoroughly familiar with the business of selling computers. We pledge to see that any order placed with us is handled with the utmost efficiency and care, from the time the order is placed until it arrives at your doorstep. And if you have a problem, we think you will find that the expertise of our Service Department is unmatched for the quality of their work, and the speed that they have your equipment back into your hands where it belongs.

That's our promise. That's Consumer Computers.

consumer computers mail order

See our advertisement on previous page.
'0': exit := true; (* null character *)

'1', '2', '3', '4', '5',
'6', '7', '8', '9', '0': begin
(* integer value of digit *) n := ord(c) - 48;
if (n = 0) then n := 10;
for j := 0 to n do begin
 high;
 (* toggle relay *)
 low;
end;
end;

' ': for j := 1 to PAUSE do; (* pause *)

otherwise begin
 writeln('error: bad digit ', c);
 exit := true;
end;
(* end of case *)
if (exit) then exitloop;
end;

Listing 2: The module to recognize a prompt from the host computer and take appropriate action.

module prompt;

(**)
(* Prompt is a function which searches a text buffer for an occurrence of the 'prompt' string specified in the array pmt[]. It is called prompt because it will most often be used to wade through extraneous system chatter to determine if the remote system came back with a 'prompt'. *)
(* Copyright 1981 by Peter Reintjes *)
(**)

type
 buffer = ARRAY [0..2047] OF CHAR;
 buf = @buffer;
 prom = STRING 50;

entry function prompt(pmt: prom; bptr: buf; off, len: INTEGER): INTEGER;

var c : CHAR; (* temporary character *)
i, p : INTEGER;
lpmt : INTEGER;
found : BOOLEAN; (* boolean true when prompt is matched *)

begin

 found := false;
lpmt := length(pmt);
p := 0; (* pointer in text buffer *)
c := bptr[p+off]; (* c gets first character *)

 while(NOT(found) AND (p < len-lpmt)) do begin

Listing 2 continued on page 154
MULTIUSER

COMPUTER
ON S-100 BUS
DESIGNED TO
SATISFY A WIDE
VARIETY OF
APPLICATIONS.

STANDARD FEATURES
INCLUDE: CP/M 2.2
OPERATING SYSTEM, 64K
EXPANDABLE, BANK-SE-
LECTABLE MEMORY, 4MHZ
Z80A CPU WITH 4 SERIAL
AND 3 PARALLEL PORTS,
RELIABLE 5" FLOPPY DISK
DRIVES IN A STURDY ALL
METAL CABINET.
$4900
MP/M OPTIONAL.

ZOBEK
P.O.BOX 1847 SAN DIEGO,CA.92112
7343-J RONSON RD, SAN DIEGO, CA.92111
(714) 571-6871
How to break the 8-bit without

It's not as hard as you think. Forget complex designs. And two-year waits.
All you do is get your hands on the Intel 8088.
And then leave the other 8-bit systems standing in your tracks. Without breaking the bank.
Because the 8088 gives you two to five times the performance of other 8-bit processors. For a whole lot less.
In fact, at $14.10 for 100 pieces, 75% less than last year. (Because high volume shipments are already pushing the 8088 down a super fast price curve.)
And about 20% less than you'd pay for a Z80 or MC6809 system. For some simple reasons.
The 8088 runs at full speed with slower speed memories than you need for other 8-bit microprocessors.
And about 1/3 less memory at that. Thanks to its powerful instruction set that helps you reduce the size of assembly language programs.
Which together with the 8088's library of high level software (Pascal, CP/M, Basic and Fortran) should help you cut the other part of system costs. The part that's larger than hardware.
But even though you're paying less, you'll be getting more.
Like 1-megabyte addressing.
Extra power for 16-bit number crunching.
And faster string processing.
Fact is, our recent benchmarks show the 8088 runs circles around a Z80A, Z80B or MC6809 when it comes to terminal and small business applications.
But don't think you have to stop there. With any of our iAPX 88 multiprocessor configurations, you can give performance an added boost—and still keep the cost and simplicity of an 8-bit system.
For 100 times the throughput on number crunching, just choose the iAPX 88/20 system.

Relative Performance

<table>
<thead>
<tr>
<th></th>
<th>Intel 8088 (5 MHz)</th>
<th>Zilog Z80B (6 MHz)</th>
<th>Motorola MC6809 (2 MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphics</td>
<td>1.0</td>
<td>0.1</td>
<td>0.05</td>
</tr>
<tr>
<td>16-bit Multiply</td>
<td>1.0</td>
<td>0.17</td>
<td>0.5</td>
</tr>
<tr>
<td>Block Move</td>
<td>1.0</td>
<td>0.75</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Full details of these benchmarks available in the iAPX 88 Book.
bit performance barrier going broke.

It combines the power of the 8088 with our 8087 numeric coprocessor.

Or if you're worried about getting bound up in I/O. Don't. Select our iAPX 88/11 system that speeds I/O processing three to five times by putting an 8088 together with an 8089 I/O processor.

Then there's the fact if you ever decide to make the jump to 16 bits, you won't have to jump. The 8088 is 100% software compatible with our 8086.

Because we don't think you should have to sell out your future to get the best deal on price/performance today.

And to put you in the right frame of mind, we're ready to make you an offer.

Just clip this coupon and send it with $5 to Intel Corporation, Literature Department, 3065 Bowers Avenue, Santa Clara, CA 95051. (Or call 408-987-8080.)
We'll send you the book on how to design iAPX 88 systems and a coupon good for one free 8088.

Everything you need to start breaking through barriers—without going broke.

Circle 405 on inquiry card.
i := 1;
while ((c = pmt[<1>]) AND (i <= lpmt)) do begin
 i := i + 1;
p := p + 1;
c := bptr@fp+off[+i];
end;

(* while c matches next char in pmt*)

(* if entire prompt recognized, i will equal lpmt+1 *)
(* if part of pmt was seen, we must move p back *)

if (i <= lpmt) then begin
 p := p - (i-1);
end;

if (i = lpmt+1) then found := true;
end;

(* if found, offset of prompt into text buffer passed *)
if found then prompt := p
else prompt := -1;
end;

Converse allows the system to log on to interactive services designed for a human interface, and to give the local system access to these services without operator intervention. It also lets you test new protocols by providing a table-driven protocol handler.

If the remote system has a response used to indicate an incorrect sequence (for example, INCORRECT USER NAME-TRY AGAIN), that response should be included in the model of a normal dialog. Giving the remote system an empty line instead of your user name might be one occasion for generating the response. Having this message in your dialog will give you a recovery point. If something happens later in the dialog and the system responds with INCORRECT USER NAME-TRY AGAIN, you will be able to pick up the conversation at the appropriate point.

CLEANUP

If the WATCHDOG wakes up and sees that a specified transaction was active, it calls the CLEANUP function to shut it down. If the number of tries for this transaction exceeds a predetermined limit, it is taken off the AGENDA.

TRANSLUCID

This is a shell, or command-line, program which interacts with the user at the keyboard. The primary function of TRANSLUCID, shown in listing 4, is to make the local computer look like a terminal, passing information from the user's keyboard to the network and sending the data from the network to the local video display or printer. A secondary, and equally important, function of this program is to redirect the information flowing through it into a file, or to use files as the source of text to be substituted for the keyboard. Using the "transparent" monitor to conduct transactions manually will show you the dialogs which must take place between the computers.

The GETC and PUTC functions handle character input and output from the user terminal or files designated by the redirection commands. GETREMOTE and PUTREMOTE serve the same function on the network (modem) side. The first parameter to these routines specifies the channel over which the data is received or sent. The channels in my examples are the terminal input (STDIN), the output channel to the terminal screen (STDOUT), the output to the modem (NETOUT) and the return data from the modem (NETIN). All other channels in the programs are to files on the local system.

The second parameter is the character variable, and the third (GET functions only) is the WAIT/
module converse;

(***)
(*
(* Converse is a function which alternately transmits lines of text and receives them from the remote unit. It monitors this conversation as it proceeds, attempting to recover if it gets out of step. It then returns 0 if the conversation was successful and a -1 if it failed.
(*
(* Copyright 1981 by Peter Reintjes
(*
(*
***)

external procedure putremote (c : CHAR);
external function getrernote (var c : CHAR; wflag : BOOLEAN) : INTEGER;
entry function converse <name: STRING 20) : INTEGER;

(* fname is a file of text strings terminated by NULL. *)
(* Every other string starting with the first one is what the local unit sends, the next line is what we expect to get back. The file starts with a NULL and is terminated by two or more NULLs. *)

const
NULL = '<0>'; (* reference character *)
ATTN = '<12>'; (* interrupt remote computer *)
HOLD = 100; (* max time delay for each character from the network *)
wait = true;
ownait = false; (* options for getrernote call *)

var
c, cn : CHAR;
i : INTEGER;
errors : INTEGER;
error : INTEGER;
done : BOOLEAN;
giveup : BOOLEAN;

procedure recover; (* call this as many times as you want *)

var
reply : STRING 180; (* longest response from remote *)
found : BOOLEAN;
error, i, time : INTEGER;

begin
if (c <> NULL) then begin (* error recovery *)
errors := errors + 1;
putremote(ATTN); (* get remote's attention *)
reply := ''; (* null string for response *)
time := 0; (* wait for the response *)
while (time < HOLD) do begin
error := getrernote(c, nowait);
end;
Listing 3 continued:

if (error = 0) then begin (* we got one *)
append(reply,c);
time := 0;
end;

end;
time := time + 1;

(* If we waited long enough, the response is in reply *)
(* if there’s no reply then the remote system is dead *)
if (length(reply)=0) then giveup := true;
if (giveup) then exitloop;

(* now we search the file for the system’s response *)
reset(infile,fname);
read(infile,c);
found := false;
while (NOT found AND NOT EOF(infile)) do begin
read(infile,c); (* read past NULL *)
if EOF(infile) then exitloop; (* being cautious *)

(* read past local part of conversation *)
while (c <> NULL) do read(infile,c);
read(infile,c); (* read past NULL *)
if EOF(infile) then exitloop;

i := 1;
while((i <= length(reply))AND(c = reply<<i>>)) do begin
read(infile,c);
if EOF(infile) then exitloop;
i := i + 1;
end;
if EOF(infile) then exitloop;
if(!i>length(reply))AND(c=NULL)) then found := true;
while (c <> NULL) do read(infile,c);
if EOF(infile) then exitloop;
end;
if ((c<>NULL) OR EOF(infile) OR (errors>10)) then giveup := true;
end; (* end of error recovery *)

(* Main procedure CONVERSE *)

begin
errors := 0; (* keep track of error recovery attempts *)
done := false; (* we’ve only just begun *)
reset(infile,fname); (* open script file *)
read(infile,c);
while (NOT EOF(infile) AND NOT done) do begin
while(c <> NULL) do begin
write(netout,c);
read(infile,c);
end;
read(infile,c);
while (c <> NULL) do begin
read(infile,c);
end;
Listing 3 continued on page 158
NEED A PRINTER?
UP TO 25%Discounts! — SAME DAY SHIPMENT!

NEW CENTRONICS 739 (RADIO SHACK LINE PRINTER IV)
With Graphics and
Word Processing Print Quality
- 18 x 9 dot matrix: suitable for word processing
- Underlining, proportional spacing, right margin justification
- 80/100 CPS
- 9½ Pin Feed/Friction feed
- Reverse Flaten
- 80/132 columns
- Top of form

CENTRONICS 739-1 (Parallel) ... (List $395) $75
CENTRONICS 739-3 (Serial) ... (List $1045) $115
GRAPPLER Apple graphics Interface ... $165

ANADEX
Dot Graphics, Wide Carriage
- 11 x 9 dot matrix: lower case descendants
- Dot resolution graphics
- Bidirectional, logic seeking
- Up to 200 CPS
- RS 232 Serial & Parallel
- Forms control
- X-ONIX-OFF
- Up to 6 part copy.

ANADEX 9501 ... (List $1650) $215
GRAPPLER Apple graphics Interface ... $165

VISTA — C. ITOH STARWRITER
Daisy Wheel Letter Quality
- 25 CPS (Optional 45 CPS)
- Typewriter quality
- Centronics parallel
- RS 232 Serial (Optional)
- Proportional spacing
- Bidirectional
- Programmable VRIU
- Self test
- Diagonal compatible
- Friction feed
- Optional tractor
- 136 printable columns
- Manufactured by C. ITOH.

VISTA V300 (C. ITOH) STARWRITER ... (List $3895) $1675

IDS PAPER TIGERS
Dot Resolution Graphics, quality print, speed
- 9 wire printhead
- 150 CPS: bi-directional, logic seeking
- 8 character sizes: 80-132 columns
- Adjustable tractors
- High-resolution dot graphics
- Proportional spacing & text justification

IDS 480G 9 wire printhead, graphics ... (List $1994) $27
IDS 980G wide carriage, graphics ... (List $1394) $19
GRAPPLER Apple graphics Interface ... $165

EPSON MX80/MX70/MX100
Low-Priced
Professional Print Quality
- 9 x 9 dot matrix: lower case descendants
- 80 CPS: Bidirectional, Logic seeking
- 40, 66, 80, 132 columns per line
- 64 special graphic characters: TRS-80 Compatible
- Forms handling
- Multi-pass printing
- Adjustable tractors

We also carry a full line
of Epson Accessories.

EPSON MX80 (Rob OFT) ... (List $645) $59
EPSON MX70 Dot graphics, 5 x 7 matrix ... (List $450) $45
EPSON MX100 wide carriage, graphics ... (List $945) $115
GRAPPLER Apple Graphics Interface ... $165
GRAFTRAX 80- MX80 Dot Graphics ... $95

MX80/70 FRICTION FEED KIT
User installable kit for single sheets.
Easy 30 minute installation ... $75

ANAOCOM
Low Cost, High Speed, Wide Carriage
- 9 x 9 dot matrix: lower case descendants
- Wide carriage
- Adjustable tractors to 16"
- 150 CPS, Bidirectional, Logic Seeking

ANAOCOM 150 ... (List $1350) $995

NEC SPINWRITER
High Speed Letter Quality
- 55 CPS
- Typewriter quality
- Bidirectional, Plotting
- Proportional spacing.

$510 RO, Serial ... (List $3055) $2875
$550 RO, Parallel ... (List $3055) $2875

TELEVIDEO CRT'S
AT DISCOUNT PRICES!

TVI 910 ... Please Call Toll Free
TVI 912C ... Prices are too low to advertise
TVI 920C ...
TVI 950 ...

ADD'S VIEWPOINT ... (List $668) $500

PRINTERS
MALIBU 155 wide carriage, graphics, letter quality ... (List $1975) $1325
QUME 5/45 typewriter quality ... (List $2300) $165
DIABLO 930 ... $110

INTERFACE EQUIPMENT
EPSON ACCESSORIES ... $20

ORANGE INTERFACE for Apple II
parallel interface board & cable ... $110
MICROTRONICS Atari parallel Interface ... $69
TRS-80 CABLES to keyboard or Exp. interface ... $20
NOVATION D-CAT direct connect modem ... $180

CALL FOR INFORMATION & CATALOG
(800) 854-8275
CA, AK, HI (714) 630-3322

RETAIL PRINTER STORES:
Store #1 3150 E. La Palma, Suite G, Anaheim, CA (714) 830-3622
Store #2 13604 Ventura Blvd., Sherman Oaks, CA (213) 501-3486
Store Hours: M-F 10-6 Sat. 10-4

Orange Micro
inc.
3150 E. LaPalma, Suite G, Anaheim, CA 92806

Phone order WELCOME: same day shipment. Free use of VISA & MASTER CARD. COD's accepted. Manufacturer's warranty included on all equipment. Prices subject to revision.
Listing 3 continued:

```plaintext
i := 0;
while (i < HOLD) do begin
    error := getremote(cn, nowait);
    if (error = 0) then i := HOLD;
    i := i + 1;
end;
if (c <> cn) then exitloop;
end;

(* c should now be at the NULL before the local *)
(* system's next statement. *)
(* If c <> NULL at this point then there was an error *)

(* try to pick up conversation *)
while ((c <> NULL) AND (NOT giveup)) do recover;

if (NOT giveup) then begin
    read(infile, c);
    if (c = NULL) then done := true; (* two NULLs in a row *)
end; (* conversation complete *)

if (done) then converse := 0 (* worked *)
else converse := -1 (* failed *)
end;
```

Listing 4: The command processor "shell" program, TRANSLUCID.

program TRANSLUCID(input, output);

const ENDOF = -1;
NL = '"012';
ESC = '"176';
wait = true;
ownait = false;

type
cfile = FILE OF CHAR;

var
network: TEXT; (* Fake network data source *)
netout: TEXT; (* Fake network data sink *)
auxfile: TEXT; (* One file may be opened for aux output *)
 (* Up to 9 files may be opened for *)
 (* input. *)
macfile: ARRAY [0..9] OF cfile; (* array of file descriptors *)
level: INTEGER;
done: BOOLEAN;
c: CHAR;
error: INTEGER; (* error flag back from get and put calls *)
aux,app: BOOLEAN; (* true if we have an auxiliary file open *)
fname: STRING 20; (* Filename for rewrite or reset calls *)

external function getc(fdesc: FILE OF TEXT;
 var c:CHAR;
 wflag:BOOLEAN) : INTEGER;

external procedure putc(fdesc: FILE OF TEXT; c:CHAR);
```

Listing 4 continued on page 160
With so many matrix printers on the market today, it may seem tough to find exactly the right one for your application. Some models may offer the speed you need, others the communications flexibility and still others the forms handling capability. But no printer offers all the features you need... until now.

The DS180 matrix printer provides the total package of performance features and reliability required for applications such as CRT slave copy, remote terminal networks and small to mid-range systems. Not a "hobby-grade" printer, the DS180 is a real workhorse designed to handle your most demanding printer requirements. And pricing on the DS180 is hundreds of dollars below competitive units.

High Speed Printing—Bidirectional, logic-seeking printing at 180 cpm offers throughput of over 200 lpm on average text. A 9-wire printhead life-tested at 650 million characters generates a 9x7 matrix with true lower case descenders and underlining.

Non-volatile Format Retention—a unique programming keypad featuring a non-volatile memory allows the user to configure the DS180 for virtually any application. Top of form, horizontal and vertical tabs, perforation skipover, communications parameters and many other features may be programmed and stored from the keypad. When your system is powered down, the format is retained in memory. The DS180 even remembers the line where you stopped printing. There is no need to reset the top of form, margins, baud rate, etc....It's all stored in the memory. If you need to reconfigure for another application, simply load a new format into the memory.

Communications Versatility—The DS180 offers three interfaces including RS232, current loop and 8-bit parallel. Baud rates from 110-9600 may be selected. A 1K buffer and X-on, X-off handshaking ensure optimum throughput.

Forms Handling Flexibility—Adjustable tractors accommodate forms from 3"-15". The adjustable head can print 6-part forms crisply and clearly making the DS180 ideal for printing multipart invoices and shipping documents. Forms can be fed from the front or the bottom.

If you would like more information on how the DS180's low-cost total printer package can fill your application, give us a call at Datasouth. The DS180 is available for 30-day delivery from our sales/service distributors throughout the U.S.
function fgetc(var c : CHAR) : INTEGER;
(* file-get keeps track of the multiple inputs *)
(* like the include facility of most languages *)
begin
read(macfile[level],c);
    if (EOF(macfile[level])) then fgetc := ENDOF
else fgetc := 0;
end;

function getlocal(var c : CHAR; wflag : BOOLEAN) : INTEGER;
begin
    while (level<>0) do
        if (fgetc(c)=ENDOF) then level := level -1;
        if (level=0) then error := fgetc(stdin,c,wflag);
        else getlocal := ENDOF
    end;

procedure putlocal(c : CHAR);
begin
    if (aux) then 
        write(auxfile,c); (* data to auxiliary file *)
        putc(stdout,c); (* data to terminal screen *)
end;

function getremote(var c : CHAR; wflag : BOOLEAN) : INTEGER;
begin
    if (wait) then read(netin,c)
    else getc(netin,c,wflag);
    if (EOF(netin)) then getremote := ENDOF
else getremote := 0;
end;

procedure putremote(c : CHAR);
begin
    write(netout,c);
end;

begin
level := 0; (* level counter for redirected input *)
while (NOT done) do begin
    error := getlocal(c,nowait);
    if (error <> ENDOF) then begin
        if (c=ESC) then
            begin (* enter command mode *)
                error := getlocal(c,wait);
                case c of
                ESC: putremote(c); (* pass special character *)

(* take input from *) '<': begin (* increase macro level *)
(* a new file *)
    fname := '';
    error := getlocal(c,wait);
(* get filename into fname *)
    while(c<>NL) do begin
        error := getlocal(c,wait);
        append(fname,c);
    end;
    level := level + 1;
(* open new file *)
    reset(macfile[level],fname);
    end;
Listing 4 continued on page 163
At Hayes, we don't believe in second best. Or planned obsolescence. We believe in taking the state of the art to the limit. Our new Smartmodem, for example, is the most sophisticated 300-baud originate/answer modem you can buy. And yet, it is perhaps the easiest-to-use modem ever.

**RS-232C Compatible.** Smartmodem lets any RS-232C compatible computer or terminal communicate by phone with other computers and time-sharing systems located anywhere in North America. You get full and half-duplex operation with both Touch-Tone® and pulse dialing.

**Auto-Answer Dial/Repeat.** Smartmodem can answer the phone, dial a number, receive and transmit data, and then hang up the phone—automatically! If desired, Smartmodem will even repeat the last command. You can depend on Smartmodem for completely unattended operation.

**Completely Programmable.** Smartmodem can be controlled using any programming language. Over 30 different commands can be written into your programs or entered directly from your keyboard.

Smartmodem also includes several switch-selectable features that let you tailor performance to your exact needs. You can "set it and forget it" for the ultimate in convenience.

**Built-in Audio Monitor.** Thanks to an internal speaker, you can actually listen to your connection being made. You'll know immediately if the line is busy or if you reached a wrong number—and you don't even need a phone!

**Status at a Glance.** Seven LED's indicate Smartmodem's current operating mode: auto-answer, carrier detect, off hook, receive data, send data, terminal ready and modem ready. You're never left in the dark!

**Direct-Connect Design.** Smartmodem is FCC registered for direct connection to any modular phone jack—there is no acoustic coupler to cause signal loss and distortion.

**Smartmodem, Smart Buy.** Professional quality features. Versatile performance. A full two-year limited warranty. A suggested retail price of only $279.

What more could you want? Perhaps the matching Hayes Stack Chronograph, an RS-232C compatible calendar/clock system. Check out the Smartmodem wherever fine computer products are sold. And don't settle for anything less than Hayes.

---

**Smartmodem. The ultimate concept in modems is now a reality.**
At Amdek, we make monitors for people who demand state-of-the-art color. And for people who know that crisp, clear text display is an art in itself.

Our versatile Color-I 13" video monitor features standard NTSC composite input, front-mounted controls and a built-in speaker with audio circuit. Our popular Video-300 12" Green Phosphor monitor has an easy-to-read, non-glare screen, 18 MHZ band width and 80 x 24 character display.

Both offer easy portability, with lightweight cabinetry and molded-in handles. And both are fully compatible with most computer and word processing systems. So compare our performance with other monitors. Then compare prices. For quality and value, you'll choose Amdek.

NEW THIS FALL: our advanced high resolution Color-II monitor with interface board for Apple II compatibility. Color-II features RGB, TTL input and 560(H) x 260(V) resolution for crisp 80 x 24 character display and exceptionally sharp color graphics. Ask your dealer about an Amdek Color-II, Color-I, or Video-300 monitor today.

Come see our complete line of color, green phosphor and black/white monitors at the COMDEX Show (Booth 386-8) in Las Vegas, November 19-21.
>' : begin (* put output into file *)
  if (aux) then
    writeln('error: file already open.');
  else begin
    aux := true;
    error := getlocal(c,wait);
    if (c = '>' ) then begin
      app := true;
      error := getlocal(c,wait);
      end;
    fname := ''; (* get filename into fname *)
    while(c<>NL) do begin
      append(fname,c);
      error := getlocal(c,wait);
      end;
    ( * open new file or * )
    if(NOT app) then rewrite(auxfile,fname)
    (* append to old file *)
    else fileappend(auxfile,fname);
    end;
  end;
end;

!' : begin (* close file opened by > or >> *)
  app := false;
  aux := false;
  close(auxfile);
end;

.' : (* terminate connection *)
  done := true;
end; (* inner case *)
end (* end command mode *) (* ENDOF error check block around case *)
error := getremote(c,nowait); (* characters from network *)
if (error = 0) then putlocal(c); (* go unchanged to local *)
end; (* while *)
end.

Text continued from page 154:
NOWAIT directive to control input flow. If GETC(STDIN,C,NOWAIT) is specified, the function will come back immediately even if no character was available from the console. GETC(STDIN,C,WAIT) will wait until the user produces the needed character before returning. The integer returned by the function will show if a valid character, no character, or an end-of-file was received.

The internal designs of the GET and PUT functions depend on the system and are not shown here. Your own GETC can buffer an entire line from the terminal to allow for backspacing and editing the line before it is sent.

Some of these commands may cause a great deal of data to come back across the network. Routines which manage the system buffers will need to control the I/O, sending stop and start codes to the network as needed to prevent buffer overflow. When the input buffer is full, the host must send a pause (Control-S) to the remote to stop any more data flow until the buffer is emptied. Then it sends a resume (Control-Q) to the remote unit for more data.

The program continually looks for data coming in either direction and passes it through. The only exception comes when the user types the escape character (represented as ESC), thus activating the command processor. The command processor stays active until a carriage return is received, indicating the end of the command. The following commands are supported by my TRANSLUCID module:

- ESC<filename (carriage return). Take input characters from filename instead of the console. When all the characters in filename have been read, return control to the console. The sequence ECS<filename (carriage return) can occur inside a file as well as from the keyboard. The version in this article will support ten levels of nesting and can be easily modified for any number of levels.
- ESC>filename (carriage return). Send output from the network to the file specified by filename as well as to the terminal screen.
- ESC>>filename (carriage return). Append output from the network to filename as above.
- ESC | (carriage return). Close out-
put file specified by previous > or >> command. Note that only one output file can be opened at a time.

- ESC: Terminate the program. If TRANSLUCID is used as a procedure, this will return to the next highest level.

Any character can be used for the ESC or escape sequence by changing the constant declaration at the beginning of TRANSLUCID. This character can be passed to the network by typing it twice (only one copy gets through). I used the character ESC (hexadecimal 1B).

The program to conduct the transaction is directed by a data structure which describes the transaction. For all transactions, the program will determine what is to be done from this structure and execute commands on the remote and local system. It will move, copy, or delete files across the link. The data structure is shown in figure 3.

The number of data types determines the number of pending transactions a system can have. Following is a description of the variables in TRAN_TYPE:

\[
\text{TRAN_TYPE} = \begin{array}{l}
\text{record action : INTEGER; system_id : INTEGER; t_packet : file_name; active : BOOLEAN; END;}
\end{array}
\]

\[\text{var tran_table : ARRAY[20] OF tran_type;}\]

Figure 3: Definition of the transaction table, represented in Pascal.

- ACTION: one of five ACTIONS supported for moving files between systems and executing commands on the remote system. These are detailed in the TRANSACT source code.
- SYSTEM_ID: an integer identifying the remote unit.
- T_PACKET: the name of the file which contains the packet. The packet consists of commands to the transaction processor, commands to the local and remote system, and data (or the names of files containing data).
- ACTIVE: a flag set if this transaction is the currently active one. The flag is checked by the WATCHDOG timer to see if a transaction was active and timed out.

This data structure will be used by the three main routines: AGENDA, which sets up the transaction; TRANSA CT, the transaction processor which carries out the actual work; and WATCHDOG.

TRANSA CT (see listing 5) needs the primitive commands — OPEN, CLOSE, DELETE, PRINT, and APPEND — for each remote system with which it will communicate. When the transaction processor wants to read a file on the remote system, it must look in a file called COMMANDS for the command to PRINT a file on that system. The proper command is extracted from this file by specifying which command is desired and the system identifier. The algorithm appears in the procedure COMMAND of TRANSA CT.

The execution of an arbitrary command on the remote system is handled by case five in TRANSA CT. This routine uses another scheme for synchronizing with the prompt. When a character is received from the network, it is put in a string called CBUFFER. When CBUFFER is the same length as the expected prompt and a new character is received, CBUFFER is sent along to the output, and the new character becomes the first one in the buffer. If the network stops sending characters, the routine will time out. The last thing in
INTE\'lC
DJ\'T/
SYSTEM
64K
ONLY
$2495

MORE INTE\'lC
MO\'N
211-
It
t
ON1\'lC

FEATURES INCLUDE:
* 2 Gigadiscs that boot with 2,048 bytes of disk storage + A P-16 Disk
Operating System with a high-powered text editor, assembler, and debugger

Model 00
128 Bytes disk storage
$2995

SUPER BRAIN HARD DISKS
10 Megabyte
$4495
10 Fixed-16
Removable
$9995

WINCHESTER DISK &
TAPE BACK-UP—
FLOPPIES ARE NOW
OBsolete!

I 4 By using extremely advanced Winchester
Disk Technology the ONl\'C system can now
support up to 8 users simultaneously!
* Disk capacities available in increments of 8
1 to 20-40 megabytes - up to 4 disks per
system ($100 megabyte each)
* Choice of 2 systems
Z80A/Z80E * Z800C/US
* Memory from 8K to 1 megabyte!
* Languages available include
COBOL, BASIC, PASCAL & FORTRAN
* A choice of very sophisticated software that
formerly was only available to larger machines
* Disc ACCOUNTING, RELATIONAL DATABASE
* WORKS PROCESSING, COMPUTER CONSTRUCTION, ETC
* Systems start at under $800

ONYX
COMES EAST
THE COMPUTER FACTORY NOW STOCKS
THE MOST POWERFUL AND COST-EFFECTIVE
COMPUTER ON THE MARKET!
INTRODUCING
A NEW ERA IN
COMPUTING

PRINTERS

EPSON
MX-70
MX-80
MX-80FT
MX-100FT

Call for Prices

CENTRONICS
700-9
$1195

704
$1695

60 cps + Up to 15
paper width + 8 x 9 matrix
Upper/Lower Case
Tractor Feed + parallel interface
for Apple & TRS-80 + 2 channel
vertical forms + Top of Form
737 Parallel $895

MONITORS
SANYO 12" GREEN
DCC 12" GREEN
LEDEX 12" COLOR
LEDEX 12" GREEN

HAZELTINE ESPIRIT
NEW!

24 x 80
Green Screen
7 x 11 Matrix
Full Formal
Editing Controls
Bi-Directional
AUX-PORT

INCREDIBLY
ONLY $695

NEW STORES
Grand Opening Specials

LONG ISLAND, NY 1301 Franklin Ave.
516-248-6700

FOREST HILLS, NY 100-17 Queens Blvd
212-896-7070

YONKERS, NY 2361 Central Ave.
914-793-1390

DIA BLO
630 Special $2495
DIABLO

630 Special $2495

DIABLO

Min.Credit Card Order $75

DIABLO

Dealers Inquiries Invited on Diablo.
CENTRONICS
SUPERBRAIN

TO ORDER CALL (212) 687-5000

The COMPUTER FACTORY

TO ORDER CALL (212) 687-5000

MON - SAT 10-6
643 Lexington Ave., New York, NY 10017 (46th St. Lobby)

Foreign order desk — Telex 840055
Listing 5: The module that determines the overall behavior of the network node, according to "instructions" contained in a transaction table data base.

module transact;

(*---------------------------------------------------------------*)
(* Transact is the transaction processor. Given a record of *)
(* a tran_type, it executes the specified transaction. *)
(* The following actions are possible: *)
(* 1 move a new file to the remote system *)
(* 2 copy over a file on the remote system *)
(* 3 move a new file from the remote system *)
(* 4 copy over a file from the remote system *)
(* 5 execute an arbitrary command on the remote system *)
(* Basic commands executable on remote system are *)
(* 1: OPEN FILE 2: CLOSE FILE 3: DELETE FILE *)
(* 4: PRINT FILE 5: APPEND TO FILE *)
(* Copyright 1981 by Peter Reintjes *)
(*---------------------------------------------------------------*)

type
file_name = ARRAY[1..20] OF CHAR;
tran_type = RECORD
  action : INTEGER;
  system_id : INTEGER;
  file_name : file_name;
  active : BOOLEAN;
END;

buffer = ARRAY[0..2047] OF CHAR;
buf = @buffer;

external function getremote(channel: CHARS;
var c :CHAR;
wflag :BOOLEAN): INTEGER;

external procedure prompt(pmt : prom;
  bptr: buf;
  off, len : INTEGER): INTEGER;

const
  wait = true;
  nowait = false;
  TIMEOUT = 500;

var
  i, j, n : INTEGER;
  c : CHAR;
  cbuffer : STRING 100;
time, error : INTEGER;
exit : BOOLEAN;
failed : BOOLEAN;
command_file : FILE OF CHAR;
tran : tran_type;
localname, remotename : file_name;
tempname, newname : file_name;

function command(system, cmd : INTEGER) : STRING 100;

Listing 5 continued on page 168
The dedicated power of this complete single board computer is provided to each user, making the DISCOVERY MULTIPROCESSOR unique among multi-user systems. With the power and expandability of distributed processing • With the economy of shared peripherals • With the flexibility of shared and public files • And all of this with full CP/M and S-100 compatibility.

**Multiprocessing Software**

Our Distributed Processing Operating System, dpc/os®, resides in the Service Processor, establishing a CP/M environment for each user and managing access to the shared system resources. Multiuser facilities are provided for print spooling, for interprocessor communication and for private, public and shared-update files. Several processors can be employed concurrently by a single user via the enhanced batch submit facilities. And with DISCOVERY all CP/M compatible programs will execute without modification, thus protecting your software investment.

**Multiprocessing Hardware**

The ACE 64K Distributed Processing Single Board Computer, the dpc-180™ gives the DISCOVERY MULTIPROCESSOR its own unique architecture. One DPC is dedicated to each user providing exclusive use of the onboard Z-80, 64K ram and serial I/O. Access to the shared resources is provided by an expanded DPC used as a Service Processor. Additional users can be added at any time by simply inserting additional DPCs, into the standard S-100 bus — up to a total of sixteen user processors in a single chassis!

*CP/M is a registered TM of Digital Research, Inc.*

**DISCOVERY** has been proven in installations throughout the World. If you need the Power of Multiprocessing... it's time you discovered us!

*Action Computer Enterprise, Inc.*

The Multiprocessing Company

55 West Del Mar Boulevard, Pasadena, California 91105 USA  •  Cable ACEPAS Pasadena  •  (213) 793-2440
Listing 5 continued:


e, n : INTEGER;
cstring : STRING 100;

begin

(* The file contains the system name and five commands *)
(* for each system. If we want the third command for the *)
(* fourth system we need to get the 22nd line of the file *)
(* ( system # - 1 ) * 6 + command # + 1 *)

n := (system - 1) * 6 + cmd + 1;

for i := 1 to n do read(command_file, cstring);
command := cstring;
end;

(* MOVELR ************)  (* move a file from the remote system to local *)

function moverl( r_name, l_name : file_name ): INTEGER;

var
lf : FILE OF CHAR;
result : INTEGER;

begin
rewrite(lf,l_name); (* create local file *)

(* get command to print a file from the remote *)
(* write out the command followed by the filename *)
write(network, command, r_name);
while ( time < TIMEOUT ) do begin
  error := getremote(c,nowait);
  if (error = 0) then time := 0;
  write(lf,c);
end;
result := prompt(pmt,bufptr,offset-length(pmt),length);
(* the prompt should be the last thing in the buffer *)
if ( result = offset + length ) then moverl := 0
  else moverl := -1;
end;

(* MOVELR ************)  (* move a file from the local system to the remote *)

function movelr( l_name, r_name : file_name; sid : INTEGER): INTEGER;

var

cstring : STRING 100;
lf : FILE OF CHAR;
result : INTEGER;

begin
reset(lf,l_name); (* open local file *)

(* get command for opening a file on remote *)
cstring := command(sid,l);
write(network, cstring, r_name);

Listing 5 continued on page 170
CASH FLOW PROBLEMS?

IT'S NICE TO KNOW SOMEONE WHO HAS THE SOLUTION.

MicroAge is your Solution Store...that means at MicroAge Computer Stores we have a wide selection of time-saving computerized business systems designed specifically to solve the daily cash flow problems every businessman faces.

MicroAge has computerized business systems that quickly and affordably allow you to regain control of your critical accounts receivable...at last making it possible for you to carry out effective collection procedures on a consistent basis. MicroAge has accounts receivable program packages to automatically display and update account information; prepare trial balance including a balance due and delinquency aging report, and take care of dozens of other tasks that eat into your time and profit!

Computerized business systems from the MicroAge Computer Store are available in the $5,000 to $15,000 range, to suit the individual budget of your small business or professional practice. MicroAge backs up every system with personalized service, warranty service and repair, installation, systems consulting, even customer training. Visit the MicroAge Computer Store in your area soon with your business problems, and let us help you with the solution.

MicroAge COMPUTER STORE
"The Solution Store"™

Circle 220 on inquiry card.

FOR FRANCHISE OPPORTUNITY INFORMATION CALL (602) 968-3168
while (NOT EOF(lf)) do begin
  read(lf,c);
  write(netout,c);
end;

(* get command for closing file on remote *)
cstring := command(sid,2);
write(network,cstring);

(* after network has settled, check for a normal system prompt *)
(* Note we haven't read characters from the input buffer yet *)
(* These are global variables. *)
result := prompt(pmt,bufptr,off,len);

(* the prompt should be the last thing in the buffer *)
if (result = off + len) then movelr := 0
else movelr := -1;
end;

entry function transact (var transaction:tran_type):INTEGER;
begin
  reset(command_file,'commands');
  with transaction do begin
    active := true;
    reset(packet, t_packet); (* open instruction file *)
    case action of
      1: begin (* move a new file to remote *)
        read(packet,localname); (* name of local file *)
        read(packet,remotename);(* name of file on remote *)
        error := movelr(localname,remotename);
        if (error <> 0) then begin
          rem_delete(remotename);
          failed := true;
        end;
      end;
      2: begin (* copy already existing file to remote *)
        read(packet,localname); (* name of local file *)
        read(packet,remotename);(* name of file on remote *)
        tempname := remotename;
        append(tempname,'.temp');
        error := movelr(localname,tempname,system_id);
        if (error = 0) then begin
          rem_delete(remotename);
          rem_rename(tempname,remotename);
        end
        else begin
          rem_delete(tempname);
          failed := true;
        end;
    end;
  end;
end;
PL/I-80™: Not for beginners*

- For internal savings, product capabilities, code speed and upward compatibility — How PL/I-80 meets these criteria is making software news.
- MC is a successful company selling business applications to first time users.
- MC switched from a popular but less efficient language. MC benefits from these PL/I-80 (ANSI Subset G) features. • Fast design with picture specifications for output. • Easy data retrieval with BT-80™ file manager. • Improved performance with LINK-80™ loading of disk resident overlays. • Small, fast programs with optimized object code and no interpreter.
- Specific examples of PL/I-80's speed, memory conservation, error checking, and control in the business environment are cited.
- In a candid interview, Mr. Charles Russell, MC's president, discusses his professional programming needs.
- Mr. Russell distinguishes, "PL/I-80 isn't a panacea. It's a programmer's language, ideal for the experienced programmer. Just as PASCAL and BASIC are good for beginners."
- Worldwide market exposure of your products and company through your listing in our CP/M® Compatible Software Catalog: news affecting your business in a free subscription to ISV FORUM: plus comprehensive seminars comprise our ISV Support Plan for those who write applications under CP/M.

---

Why Microcomputer Consultants Co. Chose PL/I-80™ For Business Applications

A Case History
By Paul Fransen
Fransen/Brough Associates

Independent Software Vendor

DIGITAL RESEARCH

---

Yours free. See why MC switched. Then compare your language.


I'd like to analyze PL/I-80 features. Send your Brochure & Bonus Book to:

Name:__________________________
Title:__________________________
Company:_______________________
Address:_______________________

DIGITAL RESEARCH
P.O. Box 5790, Pacific Grove, CA 93950

Europe: Vector, Ind., Leuven, Belgium, 32/162/02496
Far East: Microsoft Assoc., Tokyo, Japan, 03-403-2120

PL/I-80 is a registered trademark of Digital Research, Inc. PL/I 80, BT 80 and LINK-80 are trademarks of Digital Research, Inc.

* Copyright 1980 Digital Research, Inc.
3: begin (* move a new file from remote *)
    read(packet,newname); (* name of local file *)
    read(packet,remotename);(* name of file on remote *)
    error := moverl(remotename,newname,system_id);
    if (error <> 0) then begin
        delete(newname);
        failed := true;
    end;
end;

4: begin (* copy over local file from remote *)
    read(packet,localname); (* name of local file *)
    read(packet,remotename);(* name of file on remote *)
    tempname := localname ;
    append(tempname,'.temp');
    error := moverl(remotename,tempname);
    if (error = 0) then begin
        delete(localname);
        rename(tempname,localname);
    end
    else begin
        delete(tempname);
        failed := true;
    end;
end;

5: begin (* execute a command on the remote *)
    rewrite(outfile,'cmd.temp' );
    read(packet,command); (* get command from packet *)
    write(netout,command); (* write it out to network *)
    while (time < TIMEOUT) do begin
        error := getremote(c,nowait);
        if (error = 0) then begin
            time := 0; (* reset clock *)
            if (length(cbuffer)=length(pmt)) then begin
                (* we buffer a string *)
                write(outfile,cbuffer);
                (* the length of prompt *)
                append(cbuffer,c);
            end;
            (* do we see the prompt?*)
            if (cbuffer=pmt) then failed := false
            else failed := true;
        end
        else time := time + 1;
    end;
    (* Timed out in the middle of the transfer *)
    if (failed) then transact := -1
    (* If the last thing we saw was the prompt *)
    (* then it worked ok. *)
    else transact := 0;
end; (* of case 5 *)
end (* of case *)
end;
Get on the right in floppies with new TRAK 5¼" & 8" disk drives

TRAK — the way to go — in floppy disk drives. Whether you are just setting up your computer system, expanding it, or re-equipping — make it TRAK.

With TRAK you get the finest of industrystandard disk drives, custom electronics and custom cabinetry. In your choice of office beige or silver gray. And other options like door locks, front bezels, write-protect switch, extender card and more.

Drives with the industry’s fastest access time — from 3 to 5 ms. With up to 9200 hours MTBF. 40, 77, 80 track. Single or double density. Single or double sided. Up to 1.6 Megabyte capacity. Single, dual or triple cabinets. With or without power supplies. And a TRAK exclusive — dual LED panel indicators for Power-On and In-Use. Convenient — as you know if you’ve ever left things “on” for long periods without realizing it. Compatible with TRS-80®, Heath/Zenith, Northstar, Apple II® and most S-100 based systems.

Custom electronics — custom transformers — for 110VAC or 220VAC, 50 or 60 Hz. Fused for protection. With regulation for low ripple and constant output even with input variation. Quiet convection cooling through vents on all cabinet sides without the need of noisy, bothersome fans.

Low prices. Complete 5¼” drives list as low as $399, complete 8” drives as low as $899 list. And your TRAK dealer gives you the best of everything — in price and service, in or out of warranty. Standard TRAK warranty is 90 days; 12 month extension available at extra cost. Check your dealer now for the right TRAK in disk drives — TRAK.

5¼” from $399 list
8” from $899 list

For the name of your nearest dealer and full details, Call Toll-Free 1-800-323-4853

or write: International inquiries invited. Dealerships available.

TRAK microcomputer corp.
1511 Ogden Ave., Downers Grove, IL 60515

© TRS-80 is a registered trademark of Radio Shack, a Tandy Company
© Apple II is a registered trademark of the Apple Computer Company

Circle 359 on inquiry card.
CBUFFER after the routine times out should be the prompt from the system indicating that the operation is complete. You do not usually want the prompt passed along to the output file because it is not really part of the network’s response to your command.

Possible Enhancements

Several other functions may be needed on the local processor, including:

- Monitor space usage on the local system, and terminate network activity if the local storage is dwindling.
- Buffer input and output to keep track of data moving in all directions and control its flow. The goal is to avoid any loss of data because of speed differential or overflow in the interface.
- Archive data to keep track of the large amount of data (and storage) available on the network. You will probably need some form of off-line storage, either local or out in the network. Systems frequently run out of file space a few months after a mail or news system is installed.

Both the high-level user interface and the low-level system interface have been sketched briefly here. These are user- and system-dependent and therefore not portable, but they will help you develop a protocol-free network on most systems.

Some preprocessing of files can cut down on the network interaction time. It is important to order the transactions by SYSTEM_ID so that all transactions for a given system will be made on the same phone call. If there is no system response for the first transaction, the others should not be attempted. A Huffman encoding can compress text files by as much as two-thirds and random data by 20 to 30 percent. If you are sending large files over long distance, this could mean significant savings.

Making the files self-loading would be an improvement. This can be done by a separate utility; the actual transaction processor could then be much simpler than the one I described.

Breaking up large files into standard packet sizes and adding checksums can reduce the amount of retransmission due to a dropped bit; the optimal packet size will depend on the modem speed and the quality of the connection. Other forms of pre-processing can further enhance your network system. With the proper set of tools, these variations can be explored with much less effort.

The problems of conversations between computers are greatly simplified if you install programs on both systems which support the same protocol. However, my proposed system is sufficiently general to be used when you have little or no control over the software running on the remote computer, and your machine must log on and behave like a human user.

Even if every remote site has computer-protocol facilities, they are not likely to support the same protocol. Modules like the ones I have presented allow you to build a generalized system to converse with all such services.

Future Network Developments

Some trends that will make a flexible network philosophy important in the future are already evident today.

The telephone, for example, will offer increased bandwidth, possibly at less expense. Modem-based networks will be at least as important as hardwired configurations. Greater processing power and storage will be available on a network node as more powerful CPUs and memory systems are developed. More network services with a wide variety of protocols will be available, and we have no reason to be optimistic about standardization.

The possibilities for a system not tied to a specific protocol are almost endless. High-level programs can be built for a mail or source management system. You can write utilities that do everything from answering your electronic mail while you’re away, to synchronizing the system clock with a weekly call to a computer at the National Bureau of Standards.

In addition, the modularity I’ve encouraged will allow you to make enhancements without losing your investment in previous software. This characteristic could mean the difference between a networking system which withstands (or changes to meet) the test of time, and one that will be abandoned in the next generation of hardware and software.
INTERTEC'S INCREDIBLE 255 USER SMALL BUSINESS COMPUTER

At last, there's a multi-user microcomputer system designed and built the way it should be. The CompuStar™ Our new, low-cost "shared-disk" multi-user system with mainframe performance.

Unlike any other system, our new CompuStar offers what we believe to be the most practical approach to almost any multi-user application. Data entry, distributed processing. Small business. Scientific. Whatever! And never before has such powerful performance been available at such modest cost. Here's how we did it...

The system architecture of the CompuStar is based on four types of video display terminals, each of which can be connected into an auxiliary hard disk storage system. Up to 255 terminals can be connected into a single network! Each terminal (called a Video Processing Unit) contains its own microprocessor and 64K of dynamic RAM. The result? Lightning fast program execution! Even when all users are on-line performing different tasks! A special "multiplexer" in the CompuStar Disk Storage System ties all external users together to "share" the system's disk resources. So, no single user ever need wait on another. An exciting concept... with some awesome application possibilities!

CompuStar™ user stations can be configured in almost as many ways as you can imagine. The wide variety of terminals offered gives you the flexibility and versatility you've always wanted (but never had) in a multi-user system. The CompuStar Model 10 is a programmable, intelligent terminal with 64K of RAM. It's a real workhorse if your requirement is a data entry or inquiry/response application. And if your terminal needs are more sophisticated, select either the CompuStar Model 20, 30 or 40. Each can be used as either a stand-alone workstation or tied into a multi-user network. The Model 20 incorporates all of the features of the Model 10 with the addition of two, double-density mini-floppies built right in. And it boasts over 350,000 bytes of local, off-line user storage. The Model 30 also features a dual drive system but offers over 700,000 bytes of disk storage. And, the Model 40 boasts nearly 1½ million bytes of dual disk storage. But no matter which model you select, you'll enjoy unparalleled versatility in configuring your multi-user network.

Add as many terminals as you like - at prices starting at less than $2500. Now that's truly incredible!

No matter what your application, the CompuStar can handle it! Three disk storage options are available. A tabletop 10 megabyte 8" winchester-type drive complete with power supply and our special controller and multiplexer costs just $4995. Or, if your disk storage needs are more demanding, select either a 32 or 96 megabyte Control Data CMD drive with a 16 megabyte removable, top loading cartridge. Plus, there's no fuss in getting a CompuStar system up and running. Just plug in a Video Processing Unit and you're ready to go... with up to 254 more terminals in the network by simply connecting them together in a "daisy-chain" fashion. CompuStar's special parallel interface allows for system cable lengths of up to one mile... with data transfer rates of 1.6 million BPS!

Software costs are low, too. CompuStar's disk operating system is the industry standard CP/M®. With an impressive array of application software already available and several communication packages offered, the CompuStar can tackle even your most difficult programming tasks.

Compare for yourself. Of all the microcomputer-based multi-user systems available today, we know of only one which offers exactly what you need and should expect. Exceptional value and upward growth capability. The CompuStar™ A true price and performance leader!
A Simple Implementation of Multitasking

Wendell Brown
8 Reynolds St
Oneonta NY 13820

Multitasking software makes multiuser systems possible and permits the division of complex programs into smaller segments. Writing such software requires an understanding of the basic principles of synchronization (ie; executing the right program or using the right stack at the right time) and a knowledge of resource sharing (using such computer resources as printers, keyboards, memory, and central processing units).

This article explains how to write multitasking software for microprocessors. I will first discuss the theory of multitasking, then give a simple example of one of the better implementations, called SLEEP (originated by APb Technological Consulting, a firm located in Pasadena, California).

Multitasking has many possible applications. A few examples are: handling communications between a computer and more than one terminal; programming devices like thermostats, burglar alarms, and light controllers; having your computer play your favorite adventure game and regulate room temperature at the same time; and connecting two terminals to your computer so that each can run a different BASIC program at the same time.

The last example is, of course, timesharing—a well-known and complex variety of multitasking.

Not all programs can or should use multitasking, but many applications are naturals for this approach. Keyboard polling (watching the keyboard to see if a key is pressed) and printer driving (telling a printer to do something) can each be written as a closed loop, and then, during execution, made to seem as if they are running simultaneously.

In addition to making your computer more versatile and useful, learning to write multitasking software has other benefits. For one thing, it forces you to organize your programs. For another, the multitasking approach lets you break large programs into smaller, more manageable pieces. You can then assign the writing to several different persons, and the author of one piece will not need to know how the other pieces work. Of course, each writer must know the bounds of his or her assignment, and must understand the relationships between the pieces. Dividing programs this way not only helps you complete a large project faster, but also simplifies debugging, as it is much easier to debug small pieces of code than one large program.

Methods of Multitasking

Though simple in theory, several of the methods of achieving multitasking are tough to implement. Others can be implemented by means of straightforward programming. Let's examine a few methods, choose one, and focus on it.

Perhaps the most familiar way to complete a series of tasks is to simply line them up and perform them in succession. In BASIC we could do this by writing a set of subroutines, and then have a master loop to call each of the subroutines in turn (sometimes called the "hen-and-piglets" method, see listing 1). A similar structure can also be used in a machine-code program.

One problem with the hen-and-piglets method is that subroutines are not closed; there is no guarantee that the piglet will ever run to completion. Thus, each subroutine must have a RETURN statement at the end. While this does not pose a difficulty for simple routines, it can be cumbersome in larger programs where we might want to use a routine written by someone else. In that case we might have trouble adding the RETURN statement in the proper place.

Another problem with this method is that each routine cannot have its own stack. Although it isn't a problem in BASIC, it can be a big problem in machine code; sometimes a routine needs its own stack, or the stack is too short, or we don't want to disturb the data far up on the stack. But the hen-and-piglets method does work well for simple programs. The method requires no programming overhead, and, furthermore, it is easy to add another routine in the loop. To do so, simply insert a CALL statement in the control loop where
**BASIC MICROCOMPUTER**

**K-8073**

The Computer That Recaptures Simplicity

---

**Optional**

**Host Computer or Terminal**

---

**Data Pathway**

---

**Remote**

- **Slaves**

---

**Remote**

- **Slaves**

---

**DI-8020 16 CHN A/D**

- **$262**

---

**K-8073 Microcomputer**

- **$388**

---

**DO-8028 8 CHN TRIAC Controller**

- **$296**

---

**INPUT**

**DECISION**

**OUTPUT**

---

**TODAY'S NEEDS**

How many times have you thought about designing or purchasing the ultimate intelligent control system but were discouraged by the R&D time or price? Transwave took the initiative of designing one for you. Combining versatility with low cost, the K-8073 Tiny BASIC Microcomputer has already taken the lead in the process control market. Programming is reduced to mere hours because of the on-chip Tiny BASIC Microinterpreter. I/O is extended to previously unheard of limits because of the on-board ART/RC (Asynchronous Receiver Transmitter/Remote Controller).

This processor-like chip provides bi-directional serial communication between the K-8073 and its remotely located peripheral I/O devices. In addition, the K-8073 can operate in a stand-alone, satellite, or host mode. When interfaced thru RS-232, you can utilize your host computer, large or small, for polling, editing and mass data storage.

**INPUT**

The DI-8020 is a 20 channel A/D input module designed to collect data from remote sensors monitoring temperature, humidity, light, pressure, etc. Each A/D module is capable of monitoring 16 analog and 4 digital signals. Remarkably versatile, the DI-8020 is adaptable to any environment.

**In addition to an extensive input range,** this A/D module eliminates the usual installation hassles because of the unique ART/RC communications route. A single twisted pair or coaxial wire serves as the bi-directional DPW (Data Pathway) between the DI-8020 and the K-8073 Tiny BASIC Microcomputer.

**DI-8025 Development Station $195**

**DECISION**

After receiving data, the K-8073 executes from your EPROM based Tiny BASIC program. This decision making process is augmented by these State-of-the-Art features:

- 1K Byte Local RAM
- 8K Byte Operating EPROM Space
- 2K Byte of Firmware Utilities
- RS-232, 110-4800 baud Selectable
- Real-Time/Date Clock (Even Calculates Leap Year)
- 24 Lines Programmable Parallel I/O (PPI)
- Single Wire Serial I/O for 128 Remote Slave Stations (ART/RC)
- On-Board EPROM Programming
- Autostart EPROM (Power-on Boot)
- 2 Sense Interrupts
- 3 Flag Outputs
- +5 Volt Operation

**OUTPUT**

Completing the cycle of I→D→O is the DO-8028, an 8 channel TRIAC Control Module. This board features 8 optically isolated TRIACS with a maximum rating of up to 300 Watts AC control per channel. Receiving commands from the K-8073 via the full duplex DPW, you can daisy chain as many as 128 of these “slave” stations.

**STAND-ALONE SIMPLICITY**

Whether you free your mainframe, free your mini or start from scratch, you can let closed loop control be the minimum configuration it should be. These cards are exactly the fundamental pieces needed for today's control applications. To order your K-8073 or for further information on the Vanderbilt Series 8000 Product Line, write or call: TRANSWAVE CORPORATION, Cedar Valley Building, Vanderbilt, PA 15486. Phone: (412) 628-6370.
We can use SLEEP to multitask a series of routines so that they all appear to run at the same time. We'll explore the general idea, then look at a specific example.

The SLEEP routine essentially simulates a complex computed GOTO statement. It first determines which program called it, then calculates which program to jump to next. The programs are serviced (branched to) in a circular fashion, so that each program is executed once every cycle. The only requirement is that each program must call SLEEP to give the other programs a chance to run.

When a program calls SLEEP, it is, in effect, giving SLEEP control of the processor; SLEEP, in turn, passes control over to the next program. If any of the programs are "time-critical" (i.e., must be run within a given time period), then we must be sure that no one routine dominates the processor. Specifically, we must place the CALL SLEEP statement where it will be executed often in the loop of each pro-

Listing 1: A simple BASIC program illustrating the "hen-and-piglets" method of implementing multitasking. A master loop starting at line 20 calls each of the subroutines—Huey, Dukey, and Luey—in turn.

```
10 REM THIS PROGRAM IS AN EXAMPLE OF THE HEN AND PIGLETS METHOD
20 REM HERE IS THE LOOP
30 GOSUB 100
40 GOSUB 200
50 GOSUB 300
60 GOTO 20
100 REM ""HUEY "" "" ""
110 PRINT "H";
120 RETURN
200 REM ""DUKEY "" "" ""
210 PRINT "D";
220 RETURN
300 REM ""LUEY "" "" ""
310 PRINT "L";
320 RETURN
READY
```

THE SYSTEM INTEGRATORS

Ithaca InterSystems

THE MICRO FOR BIGGER IDEAS IS NOW MUCH BIGGER.

Multi-user Z80 Systems
*CP/M, *MP/M 1 to 4 User
(64K to 256K) Floppy and Hard Disk Systems

Terminals · Printers · Accessories · Service
Complete Business and Development Systems

Specialized Business Systems
5306 S. Bannock, Littleton, CO 80120
(303) 797-8709

*CP/M and *MP/M are Registered Trademarks of Digital Research.
The choice wasn't easy. Not with 105 open frame linens and a full switcher line to choose from. Still, the top models of the past year — proudly pictured below — have been named.
Actually, this is a statement of Power-One’s most popular D.C. power supplies — as determined by our customers. Obviously, applications vary widely, from small floppies and micro-computers to large mainframe systems.
But one thing they all have in common. They’re built by Power-One. Which means the most reliable power supplies available, at the lowest cost possible.
So take a look at our entire line. Send for our new 1981 Catalog and Facilities Brochure for details.

---

### Switchers
- Hi-Tech Design
- High Efficiency - 75% min.
- Compact/Light Weight
- 115/230 VAC Input
- 20 msec Hold-up
- Totally Enclosed Packaging
- Two Year Warranty
- 24 Hour Burn-In

### SINGLE OUTPUT
- 5V to 24V Models
  - 5D, 60W: $115.00
  - SF, 100W: $170.00
  - SK, 200W: $250.00

### MULTIPLE OUTPUT
- 150 Watts
  - 5V @ 20A
  - 12V @ 5A
  - 5V to 24V @ 3.5A
  - User Selectable
  - SHQ-150W: $295.00

### QUEUE PRINTER SUPPLY
- 5V @ 10A
- ±15V @ 4.5A/16A Peak
  - SP305: $345.00

### Disk-Drive
- Powers Most Popular Drives
- 7 “Off the Shelf” Models
- Powers Drives & Controller
- UL & CSA Recognized
- 115/230 VAC Input

### 5½” FLOPPY SUPPLIES
- CP340, 1 Drive: $44.95
- CP323, Up to 4 Drives: $74.95

### 8.0” FLOPPY SUPPLIES
- CP205, 1 Drive: $69.95
- CP206, 2 Drives: $91.95
- CP162, Up to 4 Drives: $120.00
- CP379, CP384: $120.00

### Open-Frame Linear
- Industry Standard Packages
- 115/230 VAC Input
- ±.05% Regulation
- Two Year Warranty
- UL & CSA Recognized
- Industry’s Best Power/Cost Ratio

### SINGLE OUTPUT
- 5V @ 3A
- 12V @ 1.7A
- 15V @ 1.5A
  - HB Series: $24.95

### DUAL OUTPUT
- ±12V @ 1.7A or
- ±15V @ 1.5A
  - HB15-1.5: $49.95

### TRIPLE OUTPUT
- 5V @ 2A
- ±5V to ±15V @ 0.4A
  - HTAA-16W: $49.95

### TRIPLE OUTPUT
- 5V @ 3A
- ±12V @ 1.0A or
- ±15V @ 0.8A
  - HBAA-40W: $69.95

### WINCHESTER SUPPLIES
- 2 Models to Power any Manufacturer’s Drive
  - CP379, CP384: $120.00

### DUAL OUTPUT
- ±12V @ 1.0A or
- ±15V @ 0.8A
  - HAA15-0.8: $39.95

### TRIPLE OUTPUT
- ±12V @ 3A
- ±12V @ 1.0A or
- ±15V @ 0.8A
  - HBAA-40W: $69.95

### POWER FAIL MONITORS
- Indicates pending system power loss.
- Monitors AC line and DC outputs.
- Allows for orderly data save procedures
  - PFM-1: $24.95
  - PFM-2: $39.95

---

NEW ‘81 CATALOG & FACILITIES BROCHURE
Get your free copies now!
Phone or write us direct, or circle the reader service number
gram. Further, we must write a small program (about 30 bytes) to initialize each program’s stack.

Think of each program as having its own microprocessor. Each program has an individual stack and is written as a closed loop in order to allow continuous operation. All programs share the same memory, which has both advantages and disadvantages. Programs can pass data among themselves by using this shared memory as a common data area. One program can write to a predetermined memory byte, while another reads this byte.

The disadvantage of shared memory is that sometimes it is convenient for each program to have its own unique memory. For example, if we wanted to time-share a BASIC in order to run more than one BASIC program at a time, then we would have to provide enough memory to hold both programs. Since most BASICS aren’t relocatable (having a unique address where they must be loaded and executed), we can hold only one copy of BASIC in memory at one time. And since most BASICS use a unique memory area to store a single program, we have to use more tricks to make a multiprogram BASIC run. (More on this later.)

Listing 2: SNOOZE, a 6502 assembly-language program showing the SLEEP method of implementing multitasking. Three separate programs—Huey, Dukey, and Louie—each contain a CALL SLEEP statement. The SLEEP routine branches to the programs in a cyclical fashion. Each program is executed once every cycle, and all appear to run simultaneously.

```assembly
TITLE "SNOOZE"

; This simple example shows how easy it is to implement a multi-tasked machine. The three separate, independent programs which appear to run simultaneously are: Huey, Dukey, and Louie. Huey prints a "Hi" to the terminal, Dukey a "He", and Louie a "Hello".

ZSECT
TTYOUT = $FE #3 ;Address of TTYOUT routine
JOBS = 3 #20 ;Number of jobs
STACKLEN = 20 ;Length of each job’s stack
SPTABLE = BLOCK #JOBS ;Array of stack addresses
CURJOBS = BLOCK #1 ;Number of the current job running
STACKAREA = BLOCK #STACKLEN

HSTACK = BLOCK #STACKLEN ;Each job has its own stack

DSTACK = BLOCK #STACKLEN

LSTACK = BLOCK #STACKLEN

PSECT
STARTUP:

; Branch here to start execution
SEI

STKINIT: LX &LBS(HSTACK-1) ;Initialize Huey’s stack
PHA
LDA #LBS(LUEY-1) ;Place Huey’s address on Huey’s stack
PHA
LDA #LBS(LUEY-1)
PHA
LDA #LBS(LSTACK-3)
STA SPTABLE-1

LDX #LBS(HSTACK-1) ;Initialize Dukey’s stack
TXS
LDA #LBS(DUKEY-1) ;Place Dukey’s address on Dukey’s stack
PHA
PHA
LDA #LBS(DUKEY-1)
PHA
LDA #LBS(HSTACK-3)
STA SPTABLE+2

LDX #LBS(HSTACK-1) ;Current stack is Huey’s stack
TXS
LDA #0 ;Prepare to run job #0 (Huey)
STA CURJOB

; That is all that has to be done to initialize the machine.

; Now simply jump to job #0 (which happens to be Huey in this example), and all three machines will apparently run simultaneously.

JMP Huey
```

Listing 2 continued on page 182
BUSINESS PLANNER™ — Duosoft’s Real World Business Plan Modeling System

You’ve been wanting to start your own business for quite some time, but just haven’t been able to do so. You’ve got a money-making idea—but how can you get bankers and investors to listen?

Here’s how! We’ve come up with the first business model designed for entrepreneurs. It turns your ideas into dollars and cents language that hard-headed businessmen understand. It does your talking for you.

- Customized reports
- Graphical projections
- Standard financial statements
- Password protected data
- Moving time window
- Sample business data
- Tutorial documentation
- Projections updated by actuals

PROJECT ORIENTED
BUSINESS PLANNER enables you to group employees, equipment, and other costs into an income producing project.

Projects can be combined together in a model to show the net result, or examined independently. By starting projects at different times, you can make crucial timing decisions.

As your business grows, models may be combined into larger models. Each new venture can be brought under the master plan. BUSINESS PLANNER can continue working for you.

HANDLES ACTUALS
Planning your business is only part of the problem. BUSINESS PLANNER compares actual results against the model in order to focus attention on problems that may affect future performance. “What If?” scenarios can be developed to help you plan for the unexpected.

CUSTOMER SERVICE
Duosoft backs its software by a full service guarantee that protects your investment. Updates are free for the first year. Extra backup copies are available at a nominal cost.

You’ll receive our newsletter free of charge. It features tips for new businesses, user comments, product descriptions, and announcements of version updates.

AVAILABLE FOR THE APPLE II
BUSINESS PLANNER is now available for the Apple II, and will be released JAN 1982 for the Apple III. Versions for all major machines are currently being developed.

Written in UCSD Pascal with extensions in Apple Pascal, 48K of memory and at least one disk drive is required. The Language Card is not necessary since we supply special system software.

PLANNING FOR YOUR FUTURE
BUSINESS PLANNER helps provide the financial proof you’ve needed to fun that new business. What is knowledge like that worth to you?

Yet it costs only a low $295, a small business expense.

You need to put all this power to work for you right now. Unless you really like working for somebody else.

BUSINESS PLANNER is a trademark of Duosoft Corporation. APPLE and Apple Pascal are trademarks of Apple Computer, Incorporated. UCSD Pascal is a trademark of the Regents of the University of California.

Duosoft Corporation
Box 1827, Champaign, IL 61820

If your dealer doesn’t have BUSINESS PLANNER, call us—(217) 356-7542.
Example: Using SLEEP

Let's look at the program SNOOZE (see listing 2). Written in 6502 assembly language, SNOOZE is a simple example of SLEEP that shows how to multitask the three functions Huey, Duex, and Luey. SNOOZE can be broken down into three main areas: initialization; the subprograms Huey, Duex, and Luey; and SLEEP.

Although in this example the initialization segment is larger than the program segment, this is not always the case. The purpose of initialization is to set up the stack areas for the three subprograms. We'll follow the initialization segment from the top down.

The ZSCT merely tells the assembler to place the following code in page zero (bytes 0 to 255). With the 6502 microprocessor, the stack pointer can point to memory only within the first page. TTYOUT is a routine (not shown) which prints the contents of the accumulator to the terminal. This routine varies from one computer system to the next.

JOBS signifies the number of jobs that we want to multitask; in this case, there are three (Huey, Duex, and Luey). STACKLEN signifies the length of each program's stack. SPTABLE is a table of length JOBS, to be used exactly like a stack pointer.

Each job has its own stack pointer, which is stored in the table when one particular job is asleep. CURJOB contains the number of the job currently running. In this example, CURJOB may have only the values 0 (which means Huey is running), 1 (Luey), or 2 (Duex).

STACKAREA is JOBS × STACKLEN bytes long (3 × 20 = 60 in this
The Multi-User Computer
With The MmmOST®

The TeleVideo family of multi-user business computer systems brings you the highest job throughput . . . every user controls a private computer while sharing a common data base!!! The CP/M®† operating system opens the window to the largest array of business applications available for microcomputers.

TeleVideo Systems provides the computing solution!

Nationwide service by General Electric Company's Instrumentation and Communication Equipment Service Centers.

†CP/M® is a Registered Trademark of Digital Research, Inc.
*MmmOST® is a Registered Trademark of TeleVideo Systems, Inc.

TeleVideo Systems

TeleVideo Systems, Inc., 1170 Morse Avenue, Sunnyvale, CA 94086
408/745-7760; 800/538-8725 (toll-free outside California)
Minicomputer performance in

Multi-user. Multi Tasking. Decision I™ memory management hardware includes a memory map that is similar to the IBM 360® and IBM 370®. It supports up to 16 tasks or 15 users and a supervisor without swapping. And, more with swapping. Each task or user enjoys complete memory protection and dynamic memory allocation. One task may be delegated as a supervisor to privileged system functions forbidden to ordinary tasks or users. Such functions (I/O calls, unauthorized memory access, etc.), will trap to the supervisor. If supervisory functions are not required the system can be configured for turnkey multi-user operation.

Multi-purpose IEEE696/S-100. Decision I utilizes the Morrow Designs IEEE Standard S-100 Wunderbuss™. That means you can configure it to your specific applications. Add a floating point processor, add memory (to a full mega-byte), add I/O, add controllers... add boards from dozens of manufacturers. And S-100 has a major advantage over single-board computers: If a board goes down, you simply replace it. And keep running. If you want to expand your system. Add boards and terminals.

An unmatched software base.
Decision I runs on the M/OS™ operating system. M/OS supports all system calls source compatibly with UNIX. Thus, UNIX programs will compile directly and UNIX documentation is almost totally applicable. Morrow CP/M® has been configured to run under M/OS and communicate with both CP/M and UNIX standard media for maximum portability. Languages available include BASIC, COBOL, FORTRAN, RATFOR, Pascal and C. That means Decision I offers you a software base unmatched in its price/performance arena.

The OEM machine. A basic multi-user system at $5,225 includes the Decision I, 4 Mhz Z80A-based CPU, sophisticated memory.

IBM 360 and 370 are trademarks of IBM Corp. Wunderbuss is a registered trademark of Morrow Designs. Decision I and M/OS are trademarks of Morrow Designs. UNIX is a trademark of Bell Laboratories, Inc. CP/M is a trademark of Digital Research Corp.
a multi-user Microcomputer.

boards, controllers and software allow you to configure your system your way...through a single supplier.

The decision is yours. Compare the Decision I, feature-for-feature with mini or microcomputers on the market today. Compare capabilities. Compare flexibility. Compare utility. Then, compare price. We think Decision I will change the way you think about microcomputer systems.

Complete information? See your computer dealer. Or, write Morrow Designs.

LOOK TO MORROW FOR ANSWERS.
example), and houses the actual stack for each program. Since in the 6502 the stack "grow" upward (toward page zero), each program's stack has a label pointing to the bottom of the stack. As a stack is used, the pointer steps along the stack.

Now that we have defined variables and stacks in page zero, we must fill those variables with meaningful values. PSECT tells the assembler that the following is program code, to be placed somewhere other than page zero. Label START-UP is the place we'll branch to in order to begin the programs.

Before Huey, Duey, and Luey run, however, we must complete initialization. SEI disables the 6502 interrupts—just a precaution in case we forget to disable interrupts after the last program. CLD clears the 6502 decimal mode, and is another general precaution, rather than a unique requirement of multitasking.

The next twenty instructions lead to one goal: to fill the bottom two bytes of each stack with the starting address of the program so that we can picture the fastest, most accurate schoolteacher you ever had, pointing out all your spelling errors so you can correct them instantly.

This new spelling checker for Electric Pencil and Scrip nell files is modeled after her: it's virtually impossible to misspell with MIZ SPELL! Unlike other spelling checking programs: MIZ SPELL will operate on one or more disc drives. (Some others require a minimum of two.)

MIZ SPELL will work with words of any length. (Others have limits on maximum word length.) MIZ SPELL is interactive; you can correct mistakes as they are pointed out. (Some require multiple, time-consuming passes.)

Check these features vs. other spelling checkers:
MIZ SPELL maintains separate dictionaries for specialized vocabularies, each with a 27,000 word capacity. (18,000 included.)
MIZ SPELL learns new words from your text files as it checks for spelling errors. (Words can also be deleted from the dictionary—but not accidentally, as with some other programs.)
MIZ SPELL offers such options as: ignore word in text, delete word in text, change word in text, add all remaining words, etc.
MIZ SPELL permits user configuration of system, including specification of default extensions for original and corrected text files.

Figure 1: Saving a return address in the stack during execution of the SNOOZE program (shown in listing 2). Whenever a machine-level subroutine is called, the microprocessor forces the return address onto the stack. Later, when an RTS (return) instruction is executed, the microprocessor retrieves the return address from the stack and puts it into the program counter. As a result, executing an RTS instruction causes the microprocessor to branch to the start of the subroutine.

---

New! MIZ' SPELL™ FOR TRSDOS OR CP/M

Meet author ARNOLD SCHEAFFER

Studied Georgia Tech starting Fall 1961

Plans to major in computer science. First exposed to computers in 8th grade, sold first program at age 16. Characteristics: self as "not a good speller" inspired to write MIZ SPELL when he examined available programming in store, decided "it could have been done much better."

---

HOW TO ORDER: CALL TOLL FREE: (800) 645-6038 (except NY)
COMPUTER TO COMPUTER: (516) 334-3134
WRITE: Dept. 881b, Box 265, Jericho, NY 11753

FULL GUARANTEE: If for any reason dissatisfied with any purchase from PROGRAMS UNLIMITED, return merchandise in original condition and packaging for prompt, full refund.

186 October 1981 © BYTE Publications Inc.

Circle 411 on Inquiry card.
A good career fit is often hard to find... and definitely worth looking for.

If you're an IBM DOS, DOS/VS, DOS/VSE, or EDOS operating systems professional, your search is over. Nixdorf Computer Software Company, Richmond, VA, is the company tailor-made for your talents and ambitions.

NCSC: Small company informality. Big company resources.
As a wholly-owned subsidiary of Nixdorf Computer Corporation, Waltham, MA, NCSC offers the perfect environment for your personal and professional growth. You'll work with other talented professionals in small project teams at the leading edge of operating systems development technology. Our atmosphere encourages and rewards creativity and innovation. And it's all backed by Nixdorf Computer's international reputation.

Our simple philosophy: Challenged and happy people produce the best work.
At NCSC, we're firmly committed to state-of-the-art technological excellence—placing us on the Datapro software honor roll for 3 consecutive years. So your talent will be challenged and stimulated to grow and mature. Our creative environment, professional attitude, and friendly atmosphere blend to provide a truly enriching career experience.

What about the benefits?
They're outstanding. Health, major medical, life, dental, prescription drugs, short-term and long-term disability, vacations and holidays, savings and investment plan, direct pay deposit, 100% tuition reimbursement, in-house training and education programs, and more. Sounds great? You're right.

Our Current Opportunities:
For all these positions, you should have at least 2 years IBM DOS, DOS/VS, DOS/VSE or EDOS operating system experience and be proficient in Assembly language programming. Teleprocessing, networking, RJE, VSAM, BTAM, VTAM and CICS would be valuable.

Software Support Representative.
Provide customer support for Nixdorf operating system software. Customer contact and troubleshooting experience essential.

Systems Programmer.
Provide program fixes, implement enhancements, and assist customer support efforts.

Technical Instructor.
Conduct in-house and customer education for our operating system products; travel involved. Instruction proficiency essential.

Technical Writer.
Provide internal documentation development programs. We seek a professional whose talents combine systems programming experience with strong technical writing skills.

If you're interested and feel you're the right fit for one of our opportunities, please forward your resume, stating your area of interest and including your salary history, to Employment Manager, Dept. B, Nixdorf Computer Software Company, 6517 Everglades Dr., Richmond, VA 23225. Or call — outside of Virginia — TOLL FREE 800-446-9900. In Virginia, 804-276-9200. We are an equal opportunity employer m/f/h.

Committed to Success.

NIXDORF COMPUTER SOFTWARE COMPANY

NIXDORF COMPUTER
fake a jump instruction with a return instruction. When we call a machine-level subroutine, the microprocessor forces the return address onto the stack, and jumps to the subroutine (see figure 1). The opposite (popping the stack, and jumping to the return address of the function which originally called the subroutine) occurs when the microprocessor executes a return from the subroutine (RTS in 6502 assembly language).

Thus, if we put the starting address of the program on the stack, then execute an RTS, the microprocessor branches to the start of the program. The entire operation is simple, but lets us perform several clever tricks.

Starting at STKINIT, we initialize the stack areas. #LSB is an assembler function that extracts the LSB (least-significant byte) from the value in parentheses. TXS transfers the value from the X register (which contains Luey's stack pointer) to the stack-pointer register. Similar to #LSB, #MSB is an assembler function that extracts the MSB (most-significant byte).

In the next several instructions, we will place two bytes, which are the starting address of program Luey, on the stack. PHA pushes the value of the accumulator onto the stack. We then store the value of the stack-pointer register into the SPTABLE array offset by 1 (remember how CURJOB's value of 1 means Luey is running?). Next, we initialize Ducey's stack exactly as we did Luey's, except at the end we store the stack pointer into SPTABLE with an offset of 2 instead of 1. We now set the stack-pointer register to Huey's stack area, since Huey will run first (see figure 2). We must also set CURJOB to signify that Huey will be running (CURJOB=0). Finally, we jump to Huey.
Wild Hare Software Systems
Multiply the Capabilities of Data General's

RDOS
INFOS®
ICOS
DOS

Wild Hare gives Data General users a choice when upgrading to a multi-user environment and eliminates the need to use AOS. Wild Hare makes it easy for you. It creates a true multi-lingual, multi-user environment for your current system. No user software modifications are necessary. There is no need to install a new operating system. And, no expensive hardware upgrade is required.

Features
- Each user is totally independent of all other users.
- Each user may run all standard Data General software.
- Each user may independently edit, compile, execute and debug programs written in any language supported by RDOS, INFOS®, ICOS and DOS.
- Standard languages supported include: Fortran IV, Fortran V, COBOL, ALGOL, RPG, DG/L™, BASIC, PASCAL, MAC, etc.
- All NOVA’s® and ECLIPSE’s® are supported.
- Wild Hare guarantees its software systems on a money back basis.

Wild Hare’s Software
Gives Data General Users
A Choice!
and whiz...everything is up and run-
ing.

Each of the programs Huey, Duey, and Luey prints the first letter of its name to the terminal. LDA is a load accumulator immediate, and loads the accumulator with the character "H," "L," or "D," depending on which program is running. JSR (jump subroutine) TTYOUT calls the routine that prints the value of the accumulator to the terminal. JSR SLEEP calls the sleep routine. JMP HUEY completes the program by jumping to the start of the program. Notice how each program is a closed loop. Programs Duey and Luey are exactly like Huey, except for the characters they print.

The SLEEP routine is the most magical of all. SLEEP first uses the TSX instruction to save the value of the stack-pointer register in the X register. LDY loads the value of CURJOB into the Y register. INY increments the Y register. The CPY instruction compares the incremented Y register against JOBS (containing the number of total jobs, three in our example) to see if we are at the end of a cycle.

If not, BNE branches to NOZERO if the incremented Y register minus JOBS is not zero. However, if we have reached the end of the cycle, then the LDY instruction loads zero into the Y register. At label NOZERO, the contents of the Y register are stored into location CURJOB, reflecting the job to be run next. The LDX instruction loads a stack-pointer value from SPTABLE, offset by the Y register (which equals CURJOB) into the X register. The TXS instruction then transfers the value of the X register into the stack-pointer register. Finally, an RTS effectively forces a branch to the program indicated by CURJOB. SLEEP, while a little tricky, is short and sweet.

SLEEP can be called instead of SLEEP if we want to preserve the contents of our CPU registers before going to sleep. SLEEP simply pushes the contents of all registers onto the program's stack, then calls SLEEP. After returning from SLEEP (and allowing the other programs to run), SLEEPR restores the CPU registers by popping them back off the stack.

The three programs won't actually run simultaneously, but they will run in such rapid succession that, for most purposes, they will appear to be running at once. When we execute SNOOZE, the terminal instantly displays:

```
HLDHLDHLDHLDHLDHLDH...```

Other Applications

There are, of course, many uses for multitasking. Timeshared BASICS for multiple users or for single users with multiple programs are one possibility. Real-time (ie: the program runs and interacts with external events), multiuser dungeon games would appeal to the fantasy-minded. For control applications, we could assign a single microprocessor the duties of monitoring many instruments, each instrument having its own subprogram.

For complex operating systems, we could assign printer spooling (various programs writing to the same
Turn your Apple into the world’s most versatile personal computer.

The SoftCard™ Solution. SoftCard turns your Apple into two computers. A Z-80 and a 6502. By adding a Z-80 microprocessor and CP/M to your Apple, SoftCard turns your Apple into a CP/M based machine. That means you can access the single largest body of microcomputer software in existence. Two computers in one. And, the advantages of both.

Plug and go. The SoftCard system starts with a Z-80 based circuit card. Just plug it into any slot (except 0) of your Apple. No modifications required. SoftCard supports most of your Apple peripherals, and, in 6502-mode, your Apple is still your Apple.

CP/M for your Apple. You get CP/M on disk with the SoftCard package. It’s a powerful and simple-to-use operating system. It supports more software than any other microcomputer operating system. And that’s the key to the versatility of the SoftCard/Apple.

BASIC included. A powerful tool, BASIC-80 is included in the SoftCard package. Running under CP/M, ANSI Standard BASIC-80 is the most powerful microcomputer BASIC available. It includes extensive disk I/O statements, error trapping, integer variables, 16-digit precision, extensive EDIT commands and string functions, high and low-res Apple graphics, PRINT USING, CHAIN and COMMON, plus many additional commands. And, it’s a BASIC you can compile with Microsoft’s BASIC Compiler.

More languages. With SoftCard and CP/M, you can add Microsoft’s ANSI Standard COBOL, and FORTRAN, or Basic Compiler and Assembly Language Development System. All, more powerful tools for your Apple.

Seeing is believing. See the SoftCard in operation at your Microsoft or Apple dealer. We think you’ll agree that the SoftCard turns your Apple into the world’s most versatile personal computer.

Complete information? It’s at your dealer’s now. Or, we’ll send it to you and include a dealer list. Write us. Call us. Or, circle the reader service card number below.

SoftCard is a trademark of Microsoft. Apple II and Apple II Plus are registered trademarks of Apple Computer. Z-80 is a registered trademark of Zilog, Inc. CP/M is a registered trademark of Digital Research, Inc.

Circle 237 on inquiry card.
printer), keyboard polling, and floppy-disk management, to their own multitasked programs. Music synthesizers could produce multiple tones from software designed for single tones.

At Cornell University's low-temperature physics group, we have written multitasking software for the 6502 that implements the HPIB functions (Hewlett-Packard Instrument Bus, also known as IEEE standard 1978-488). This standardized bus is used not only in laboratory instruments, but also in the Commodore PET computer as a peripheral port. While it is possible to program all these routines using other software techniques, the use of SLEEP may simplify conception and implementation.

Let's take a closer look at how we might multiprogram a standard BASIC. First, we must have enough free memory in our system to hold at least two different BASIC programs. The best method of multitasking BASICS involves updating BASICS pointers to the start of the program memory, variable areas, etc. However, this method is complex and you must know where these pointers reside in memory for your particular BASIC. Let's consider a simpler but less efficient method.

The general scheme is to swap out the BASIC program, variables, and line counter (the value indicating the next BASIC line to be executed), and then swap in the next program's program, variables, and line counter. The addresses vary depending on which BASIC we use. Since most computers have only one keyboard and display, we must have a way to indicate which program we wish to communicate with at any given time. To accomplish this, we must choose a specific keyboard command. Finally, we must decide how often we want the computer to swap the programs in and out. We could do this in software, similar to SNOOZE, by calling SWAP occasionally. Or we could force swapping by pulling a hardware interrupt.

A hardware interrupt is, basically, a method of forcing the execution of specific software when the proper signal is sent on the interrupt line. We could connect a timing device to the interrupt line, forcing a SWAP routine to swap BASIC programs at every clock period of our timer. SNOOZE could also be implemented using this interrupt approach. However, the requirement of such interrupt hardware is a slight disadvantage.

Now that you have seen the structure of the SLEEP method of multitasking, you may want to try writing your own multitasking software. For the small-computer owner who thinks he is outgrowing his system, the convenience and added power of resource sharing can be a strong incentive to implement multitasking. All too often, our first reaction to a strain on resources is to buy a new system. But a better reaction might be to write such software. The SLEEP method may help your present computer system perform beyond your expectations. If your system seems overburdened and worn out, maybe it just needs a little SLEEP.
VOTRAX* brings your computer to life with Type-'N-Talk™.
Now you can hear your computer tell you
where you are in a program; taunt you
during computer games; praise you;
remind you; warn you. Thanks to the
unique VOTRAX* text-to-speech
algorithm, your typewritten words are
automatically translated into electronic
speech—all for just $375.00.

You type—your computer talks.
It's that easy because Type-'N-Talk™ uses
ASCII code from your computer. You just send English text to hear synthesized
speech through your audio loudspeaker.

The smallest personal computer
can talk and execute programs
simultaneously. Type-'N-Talk™ has a
built-in microprocessor and a 750
character buffer so your host computer
and memory isn't tied up with text
translation.

If you can print it, you can hear it
by placing Type-'N-Talk™ between your
computer or modem and a terminal. All the
data you're sent while online can be seen
and heard. You can even "de-select"
Type-'N-Talk™ with its data switching
options. Data switching allows you to
send speech and visual data
independently on one data channel.

Look what you get for $375.00:
- RS-232C interface is compatible with
 most computers
- Text-to-speech algorithm
- Complete installation and programming
 instructions
- Baud (75-9600)
- One watt audio amplifier
- 750 character buffer
- SC-01 speech synthesizer chip (data
 rate: 70-100 bits per second)
- Data switching capability
- Selectable data modes for versatile
 interfacing
- Data echo of ASCII characters
- Phoneme access modes

The Type-'N-Talk™ unit's
simplicity enables the beginning
hobbyist to use and enjoy it immediately,
yet its total capability can challenge even
the most sophisticated user. VOTRAX*
developed Type-'N-Talk™ to function with
operator designed programs or with the
new VOTRAX* talking software currently
under development. Type-'N-Talk™ is so
eye to use, it can also be used without
software.

Order now. Toll-free.
1-800-521-1350
Dealer inquiries invited.

Call the toll-free number to
order or request additional infor-
mation. MasterCard or Visa
accepted. Charge to your credit
and pay $4.00 delivery. Add 4% sales
tax in Michigan. California residents
add appropriate sales tax.

Send check to:
Votrax* Consumer Products Group
500 Stephenson Hwy., Troy, MI 48084

TYPE-'N-TALK™
SAYS IT ALL.

VOTRAX
NOW YOU'RE TALKING.
Take Your Cue From Vista . . .

When it comes to Apples, take your cue from Vista's A800 Eight-Inch Floppy Disk Controller. The A800 offers a cost-efficient approach to software compatible disk memory expansion for your Apple II computer. The A800 Controller enables Apple II users to access up to five megabytes of online storage through conventional disk operating (DOS) commands.

The Control and DMA Logic provides high speed (1 microsecond per byte) transfer of data from the disk drive directly to the Apple II memory without processor intervention. Plus, the Phase-Locked Loop Data Separator provides the ultimate in data reliability.

AND THERE'S MORE.
The controller is compatible with the most popular disk operating systems for the Apple II computer. It also interfaces to all Shugart/ANSI Standard Eight-Inch Floppy Disk Drives. The A800 provides complete IBM format compatibility in both single and double-density modes.

THE HOT SHOT AT A COOL PRICE. The A800 is reasonably priced at $595. A price you can't beat when you compare its quality and performance.

CALL YOUR SHOTS.
Vista offers you a complete line of peripheral equipment to maximize the capabilities of your Apple system including: High capacity Mini-floppy Disk Drives, the Vista Music Machine 9 and the Vista Model 150 Type Ahead Buffer. In addition, Vista offers a line of advanced components fully compatible with the TRS-80* and S-100 based computers.

Vista Computer Company
1317 E. Edinger Avenue
Santa Ana, CA 92705
(714) 953-0523
Call Toll Free 800-854-8017

© Apple II is a registered trademark of Apple Computers, Inc.
* TRS-80 is a trademark of Radio Shack, A Tandy Co.
Tree Searching
Part 2: Heuristic Techniques

Exhaustive tree searches, for reasons that will be explained later, will eventually arrive at an optimal path between the start node S and the goal node closest to S. The exponential expansion of many problems can outgrow the memory and speed capabilities of even the largest computers; because of this, methods have been developed that selectively limit the number of nodes expanded but still include those nodes that lead to the closest goal node. These heuristic techniques work by extracting information from the node and using it to determine the likelihood of being on the best path to a goal node.

In this article we will be concerned with two types of heuristic techniques, admissible and nonadmissible, and will experiment with them, using the BASIC program given in the first part of this article. (See “Tree Searching, Part 1: Basic Techniques,” September 1981 BYTE, page 72.)

Admissible-Algorithm Theory

One method of searching a problem tree is to order the list of open nodes by giving each node a numeric value and having the program choose the node with the lowest value for immediate expansion (an approach used in the SEARCH program in Part 1 of this article). Although this method can be used with any ordering that produces a successful search, a mild restriction on the nature of the ordering produces a search algorithm that is guaranteed to find both a goal node and the optimal goal node—that is, the goal node that has the smallest cost associated with it. This algorithm is called admissible.

Refer to the partial tree shown in figure 1. (Here we will assume that the paths from S to n and from n to G are the shortest paths available.) Define $g(n)$ as the shortest path from the start node S to node n; define $h(n)$ as the shortest path from n to the closest goal node G. Then

$$f(n) = g(n) + h(n)$$

is the cost of the optimal path to a goal node, given that the solution must go through node n. (If no such path exists, the cost is said to be undefined; with a program, the appropriate cost variable would be assigned an arbitrarily large number.)

Now that we have the three functions f, g, and h, let us define three more functions, \hat{f} (pronounced "f-hat"), \hat{g}, and \hat{h}, that, for a given situation, are estimates of the theoretical (and often unknown) minimal functions f, g, and h. In other words, $\hat{f}(n)$ is the estimated cost of the minimal path from S through n to G; $\hat{g}(n)$ is the estimated cost of the minimal path from S to n (remember that when we have a path from S to n, it may not be the minimal path); and $\hat{h}(n)$ is the estimated cost of the minimal path from n to the closest goal node (which, at the time, is unknown).

Simply stated without proof, the condition necessary for an algorithm producing $\hat{h}(n)$ to be admissible is that the ordering algorithm must produce a numeric value that is guaranteed, for every node n, to be less than or equal to the cost of the minimal path from n to the closest G. In symbols, this condition is the following:

$$\hat{f}(n) \leq \hat{f}(n)$$

If this condition is always true, then the ordering algorithm is admissible. (Readers interested in the proof can consult Problem Solving Methods in Artificial Intelligence, by Nils J Nilsson, 1971, pages 59 to 65.)

Let us consider two cases of algorithms that are known to be admissible. The first algorithm is that for a breadth-first search, which offers no information about the relative value of any node—that is, $\hat{h}(n)=0$. (Note: the computer program in Part 1 used a different value for the $\hat{h}(n)$ variable D1 for demonstration purposes; however, D1 = 0 will give the same result.) Since zero is a lower bound on the minimal cost of any node, goal or nongoal (ie: $0 \leq \hat{h}(n)$), the breadth-first algorithm is confirmed to be ad-
missible by the above inequality. But, as we know from experience, the breadth-first algorithm is nonselective; that is, it expands all nodes in order of increasing depth until it reaches its first (and therefore minimal) goal node. So we can see that its total absence of heuristic information goes hand in hand with, and is a measure of, its extreme inefficiency.

On the other hand, let us assume an ordering algorithm \(h \) that returns the exact cost of the shortest path from \(n \) to \(G \); in other words, \(h(n) = h(n) \) for all \(n \), which still satisfies the above inequality. What does this mean? A moment’s reflection will confirm that, first, since this algorithm represents perfect information about the state of the system, it is guaranteed to reach the nearest goal node \(G \); and, second, that it will do so without expanding one unnecessary node. What could be simpler? Since the search algorithm always expands the node with the smallest \(h \) value, and since in this case the \(h \) value is the exact cost from that node to the goal node, the search algorithm will inexorably come, with each expansion, one node closer to the goal node. So in this case, the presence of total heuristic information is equivalent to maximum efficiency.

From viewing the above two extremes representing \(h(n) = 0 \) and \(h(n) = h(n) \) we would expect to find an \(h(n) \) satisfying

\[
0 < h(n) < h(n)
\]

to be between these two extremes of efficiency, with efficiency increasing as \(h(n) \) for all nodes \(n \), approaches \(h(n) \). This is actually the case; given two admissible ordering algorithms \(A \) (generating \(h(n) \)) and \(A^* \) (generating \(h^*(n) \)), \(A^* \) is said to be more informed if \(h^* \) is always greater than or equal to \(h \), or:

\[
h(n) \leq h^*(n) \leq h(n)
\]

It has also been shown that \(A^* \) is then
COMPUTER SYSTEMS

The Computer with the MmmOST™ — TeleVideo's Multi-User, Multi-Tasking, Multi-Processor Operating System Technology makes TeleVideo the leader in multiple-user, distributed data processing systems. TeleVideo is incredibly faster than ordinary multiple-user systems, and it is also less expensive!

- Each user has his own Z80 processor
- Individual Programs run under CPM
- File and record lock-out, and File Embraces are handled
- TeleVideo-RM/COBOL supports shared files

TERMINALS

Outstanding Performance, Reliability, Price and Delivery have made TeleVideo the terminal chosen by the majority of new micro computer users.

The newest member of the TeleVideo family, the Model 910, emulates three other terminals, knows 3 foreign languages, has a large set of screen attributes, 18.2K Baud, and a Selectric style Keyboard with numeric pad; but lists for only $699. Value for the dollar makes the TeleVideo 910 a best buy.

Watch for more new products in the near future that will put TeleVideo further out front.

DEALERS AND OEMs WHO CALL EARLY WILL BE FIRST IN THE SUPPLY LINE.

RIGHT NOW!

BECAUSE:

PRIME SOURCE Delivers computer systems that work. We carry a complete line of microcomputers and peripherals backed by in-house technical expertise. Pretested and Preconfigured systems available.

PRIME SOURCE is a stocking distributor with product ready ship.

PRIME SOURCE Supports the dealer with extras such as flooring plans, demonstration software packages, sales leads from national advertising, and advertising funds for local advertising.

PRIME SOURCE sells to Dealers, Manufacturers, Systems Houses, and Independent Software Vendors. We do not sell to end users.
One more point has to do with a difference between tree and graph searches. The cost of a node about to be expanded, $g(n)$, is equal to its theoretical minimal cost $g(n)$ in a tree because, by definition, there is only one path from the root node S to any other node. Since a graph may contain more than one path from S to n, the cost of a path found may not be the minimal one and so must be labeled $g(n)$. However, an admissible algorithm that does not change its nature during the graph search will produce only optimal paths to expanded nodes, so that $g(n) = g(n)$; the formal name for the condition that guarantees this result is the consistency assumption. All admissible algorithms used in this article satisfy this assumption.

Some Examples
The exhaustive searches examined in Part 1 of this article (breath-first, depth-first, and limited depth-first algorithms) are all admissible and exhibit one extreme in the information guaranteed to expand an equal or smaller number of nodes than A (again, see Nilsson, mentioned above).

Listing 1: The "out-of-place" algorithm. Listing 1a gives the algorithm as implemented in BASIC, to be inserted in the SEARCH program in Part 1; listing 1b shows the structured pseudocode for the algorithm. In this and subsequent listings, the string value of each piece is replaced by its corresponding numeric value (i.e., piece "1" has value 1), with "A" through "F" being replaced by the values 10 through 15, respectively.

1a)

```
9861 REM ------------------- LISTING 1 -------------------
9864 REM
9865 REM "OUT-OF-PLACE" ALGORITHM, ADMISSIBLE
9867 REM
9869 REM ------------------- END LISTING 1 -------------------
```

```BASIC
9900 REM
9910 FOR I = 1 TO R9; FOR J = 1 TO R9
9915 Q = ASC(ES(I,J))
9920 IF Q = 46 THEN 9960
9925 IF Q > 64 THEN N = Q - 56: GOTO 9935
9930 IF Q <  = 57 THEN N = Q - 48
9935 P1 = R9*(I-1)+J
9940 REM -P1 IS VALUE OF CORRECT TILE IN POSITION I,J
9945 IF N <> 0 THEN R1 = R1 + 1
9950 NEXT J: NEXT I
9960 REM END OF LOOP
9965 RETURN
```
WHY THE MICROSOFT RAMCARD™ MAKES OUR SOFTCARD™ AN EVEN BETTER IDEA.

Memory — you never seem to have quite enough of it.

But if you’re one of the thousands of Apple owners using the SoftCard, there’s an economical new way to expand your memory dramatically.

16K ON A PLUG-IN CARD.

Microsoft’s new RAMCard simply plugs into your Apple II,* and adds 16k bytes of dependable, buffered read/write storage.

Together with the SoftCard, the RAMCard gives you a 56k CP/M® system that’s big enough to take on all kinds of chores that would never fit before (until now, the only way to get this much memory was to have an Apple Language Card installed).

GREAT SOFTWARE: YOURS, OURS, OR THEIRS.

With the RAMCard and SoftCard, you can tackle large-scale business and scientific computing with our COBOL and FORTRAN languages. Or greatly increase the capability of CP/M applications like the Peachtree Software accounting systems. VisiCalc™ and other Apple software packages can take advantage of RAMCard too.

And RAMCard gives you the extra capacity to develop advanced programs of your own, using the SoftCard and CP/M. Even with the RAMCard in place, you can still access your ROM BASIC and monitor routines.

JOIN THE SOFTCARD FAMILY.

The RAMCard is just the latest addition to the SoftCard family — a comprehensive system of hardware and software that can make your Apple more versatile and powerful than you ever imagined.

Your Microsoft dealer has all the exciting details. Visit him soon, and discover a great idea that keeps getting better.

*Apple Computer, Inc., and Apple II are trademarks of Apple Computer, Inc. Microsoft is not responsible for unauthorized modifications to Apple hardware.

Circle 238 on inquiry card.
spectrum: they contribute no heuristic information to the solution of the problem, so \(h(n) = 0 \). The other extreme, that of perfect information (or \(h(n) = h(n) \)), is certainly interesting in theory, but impossible to implement in most cases. We will examine two admissible algorithms that fall between these two extremes.

Remember that we are seeking to define a function \(f(n) \) that is a lower bound on the minimal number of moves from node \(n \) to a goal node \(G \). One plausible algorithm (see listing 1) is the following: \(f(n) \) equals the number of squares that are not in the same position they are in the goal node \(G \). (In the 8- and 15-puzzles used for illustration, there is only one goal node \(G \).) The informed reasoning used to prove that this is a lower bound on the actual cost to the goal node is the following: if a square (not including the "space" square) is out of place, it will take at least one move, if not more, to put it in place; thus, the \(h(n) \) generated by this "out-of-place" algorithm will always be less than or equal to the cost of a solution \(h(n) \).

Table 1a shows the puzzles used in this article; table 1b shows the results of applying both the breadth-first and the "out-of-place" algorithms to these puzzles. A comparison of the first seven lines of table 1b prompts several useful observations. First, the breadth-first search is considerably more efficient than the "out-of-place" algorithm; the computer used, which has 20 K bytes of workspace and will hold 12 nodes before running out of memory, can complete only a four-move puzzle with the first method, but can complete some twelve-move puzzles with the second method before running out of memory. Second, both algorithms show a roughly linear increase in the number of moves to solution; puzzles in the same column are subsets of the same problem. (These match puzzles listed in Part I of this article.) Table 1b gives a comparison of breadth-first versus "out-of-place" algorithms for selected problems. The relationship between nodes open and nodes closed is: total = nodes open + nodes closed. (*OM* indicates that the computer's limit of about 80 nodes was exceeded. The parentheses around the 29 in line (5, 1) denote that the breadth-first search ran out of room after expanding 29 nodes.) The "out-of-place" algorithm's ability to solve more complex problems using the same amount of memory indicates greater power when compared to the breadth-first search.

Table 1: Comparison of breadth-first and "out-of-place" algorithms on selected problems. The puzzles in table 1a can be identified by a pair of numbers giving the row and column in which the puzzle is found. The row number gives the number of moves to solution; puzzles in the same column are subsets of the same problem. (These match puzzles listed in Part I of this article.) Table 1b gives a comparison of breadth-first versus "out-of-place" algorithms for selected problems. The relationship between nodes open and nodes closed is: total = nodes open + nodes closed. (*OM* indicates that the computer's limit of about 80 nodes was exceeded. The parentheses around the 29 in line (5, 1) denote that the breadth-first search ran out of room after expanding 29 nodes.) The "out-of-place" algorithm's ability to solve more complex problems using the same amount of memory indicates greater power when compared to the breadth-first search.

<table>
<thead>
<tr>
<th>Row</th>
<th>Column 1</th>
<th>Column 3</th>
<th>(lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 2 3</td>
<td>4 5 6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4 5 6</td>
<td>1 2 3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7 5 8</td>
<td>4 7 8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7 4 6</td>
<td>3 1 2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5 8 4</td>
<td>7 1 2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7 1 2</td>
<td>4 8 5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4 7 6</td>
<td>8 3 4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8 6 4</td>
<td>5 1 2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>7 2 4</td>
<td>5 2 7</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2 7 4</td>
<td>5 9 6</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>7 4 3</td>
<td>5 8 4</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>7 4 3</td>
<td>5 8 4</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>7 4 3</td>
<td>5 8 4</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Comparison of breadth-first and "out-of-place" algorithms on selected problems. The puzzles in table 1a can be identified by a pair of numbers giving the row and column in which the puzzle is found. The row number gives the number of moves to solution; puzzles in the same column are subsets of the same problem. (These match puzzles listed in Part I of this article.) Table 1b gives a comparison of breadth-first versus "out-of-place" algorithms for selected problems. The relationship between nodes open and nodes closed is: total = nodes open + nodes closed. (*OM* indicates that the computer's limit of about 80 nodes was exceeded. The parentheses around the 29 in line (5, 1) denote that the breadth-first search ran out of room after expanding 29 nodes.) The "out-of-place" algorithm's ability to solve more complex problems using the same amount of memory indicates greater power when compared to the breadth-first search.
Imagine, a true business alternative to VisiCalc™ and dBASE II

It's Here!

LOGICALC and QUEST
Written in UCSD Pascal™

In addition to the basic features found in other financial modeling systems LOGICALC provides the following:

- Conditional expressions allowing "what if" processing together with relational operators (e.g., <, <=, >, >=) and logical operators (AND, OR) with parenthesis
- Complete interface to QUEST (SPI's relational data base), ASSET (SPI's Accounting system) and word processor
- Built in financial functions like linear regression, present value, depreciation, consolidation and more
- Column format feature for individual column width, column precision or individual entry precision
- Dump utility to obtain a hard copy of the model to facilitate audit trails
- Merge command to combine two or more reports
- Print command to print entire or partial reports according to parameters you specify including titles, page width and length. If the report to be printed exceeds the width of the printer LOGICALC automatically splits the report into two or more pages which when laid side by side form the complete report.

Only $290.00

QUEST is a relational data base providing single, multi-user and distributed processing capabilities. Concurrent access to QUEST is handled through a built-in record locking mechanism. QUEST uses a subset of the SQL query language (IBM's recently announced relational query language).

- Interface to application software via high level calls
- User definable screen mask (up to 8 pages per record)
- Arithmetic expression evaluator to combine fields in formulas
- Conditional expression handling ("what if" processing on selected fields)
- Data entry range checking and password protection on selected fields
- Scan for records with partial information.
- Find records qualifying on any number of search criteria using relational and logical operators
- Sort records by as many as 15 key fields (ascending or descending)
- Join, select and project implementation to facilitate relational query processing
- Create, restructuring and recover utilities of files
- Complete interface to LOGICALC AND ASSET (SPI's accounting system)
- Report Generator lets user define report formats, headings, page footing, subtotals, level breaks. Built in arithmetic and logic processor enables the user to design very complex reports.

Only $490.00

Other Programs which interface to Quest and Logicalc are available now:
- ASSET, SPI's Accounting System
- Medical Billing
- Boutique Management System
- School Management System

Software Products International
5482 COMPLEX STREET, SUITE 115
SAN DIEGO, CA 92123
PHONE (714) 268-4346

Visicalc is a registered trademark of Personal Software, UCSD Pascal is a registered trademark of the Regents, University of California.
of nodes expanded within a certain range (levels 1-3 and 1-4, respectively), with the ratio of nodes expanded to the theoretically minimum number of nodes to be expanded being roughly 3:1 and 1:1, respectively. Third, this ratio progressively increases outside each algorithm's range of linearity; this implies that the maximum efficiency available from each algorithm decreases with the complexity of the puzzle—in other words, as the puzzle becomes more involved, the h that is calculated drifts more and more from the theoretical h toward zero (ie: no information), and the algorithm breaks down (ie: approaches an exhaustive search).

A final observation is that the $(n,1)$ puzzles seem easier to solve than the $(n,3)$ puzzles. (Puzzles with the same last subscript are extensions of each other.) This trend is more obvious on comparison of the numbers in the "nodes closed" column in Table 1b (which is a measure of the difficulty of the problem in that it is related to the number of nodes expanded in the attempt to find a solution). Note also that the nonlinear rise of the "nodes closed" column is greater for the $(n,3)$ puzzles than for the $(n,1)$ puzzles. This suggests that the behavior of an algorithm outside the range of linearity described above cannot be expressed by a simple nonlinear function, but only through a range of values that is highly sensitive to the individual puzzle under consideration.

Minimum-Distance Algorithm

The minimum-distance algorithm described here is the most efficient I have have worked with—one that I have not been able to improve even when dropping the admissibility constraint. The algorithm (see listing 2) may be described as follows: for each piece in the puzzle (not including the "." piece), the value of the algorithm is increased by the number of rows plus the number of columns the piece is away from its final position in the goal state (ignoring any pieces in the way). For example, if the "1" piece is in row 2, column 3, then that piece is $(2-1)+(3-1)=3$ squares away from its final goal position (row 1, column 1) and so adds 3 to the f value of that puzzle. Table 2 shows the value of puzzle (6,1) using this algorithm.

Because the figure given to each piece is a conservative estimate of how many moves it will take to get that piece into place (it will be more if the other pieces get in the way), the f calculated as the sum of these values must be a lower bound on the true cost f associated with a given puzzle; therefore, this minimum-distance algorithm is admissible.

Table 3 shows the result of using this algorithm on the puzzles in Table 1a, with comparison values given for the "out-of-place" algorithm. The results are a great improvement over those of any algorithm that we have looked at—in fact, you might say this is the first algorithm of any practical use. The algorithm, like the "out-of-place" algorithm, is "perfect" through order 4 (although a counterexample may exist), but notice that the nonlinear increase in the "nodes closed" column is more gradual and more nearly straight-lined for the minimum-distance algorithm than it is for the "out-of-place" algorithm. Although the minimum-distance algorithm does drift from the theoretical h value toward zero as the problem complexity increases, it does so less severely than the "out-of-place" algo-

Listing 2: The minimum-distance algorithm. Listing 2a gives the algorithm in BASIC, to be inserted in the SEARCH program of Part 1; listing 2b is the structured pseudocode.

(2a)

9685 REM -----------LISTING 2-----------
9687 REM
9690 REM MINIMUM-DISTANCE
9693 REM ALGORITHM; ADMISSIBLE
9699 REM
9900 R1 = 0
9910 FOR I = 1 TO R9: FOR J = 1 TO R9
9915 Q = ASC (ESL1))
9920 IF Q = 45 THEN 9960
9925 IF Q = 64 THEN N = Q - 55: GOTO 9935
9930 IF Q < 57 THEN N = Q - 48
9935 I1 = INT ((N-1)/R9)+1
9940 REM --GIVEN SQUARE N,
9945 REM (I,J) = POSITION OF N IN
9950 REM SOLVED PUZZLE
9955 I1 = N - R9*(I1 - 1)
9960 REM --H-HAT IS SUM OF DISTANCES
9965 REM EACH SQUARE
9970 REM IS FROM GOAL POSITION; "."
9975 REM SQUARE NOT COUNTED
9980 R1 = R1 + ABS(I - I1) + ABS(J - J1)
9985 NEXT J: NEXT I
9990 RETURN

(2b)

9900 value of puzzle (R1) = 0
9910 FOR each row 1
9915 FOR each column j
9920 : Q = ASCII value of row I, column J of puzzle ES
9925 : IF piece not ".": (Q # 45)
9930 : : convert piece to "true" value N
9935 : : I1 = row # of piece in goal node
9940 : : J1 = column # of piece in goal node
9945 : : new value of puzzle = old value of puzzle +
9950 : : (difference of row values) + (difference
9955 : : of column values)
9960 : : endif
9965 return

202 October 1981 © Byte Publications Inc
an Unheard of Price for the CPU/MEMORY
You've Heard So Much About

CPU 8085/88

Speed, power, reliability: CPU 8085/88 has it all. Speed? Built-in processors run at 5 MHz to complete jobs faster and save you precious time: boards qualified under the CSC* high-reliability program run at 6 MHz, making CPU 8085/88 the fastest S-100 CPU in the business. Power? No other existing product excels both 8 and 16-bit mode with the speed and precision of CPU 8085/88. Reliability? While others are still struggling to catch up, we've been delivering CPU 8085/88 for well over a year. In fact, most major software houses are developing 16-bit code on CPU 8085/88 because it's fast, dependable, and reliable.

RAM 17

No other static memory matches our unbeatable combination of high operating speed and ultra-low-power consumption. CompuPro's innovative CMOS design techniques restrict current consumption to less than 1/4 Watts typical, while maintaining an operating speed far beyond the 6 MHz mark. And, unlike some boards that provide only 23 address lines plus phantom or 29 address lines without phantom, RAM 17 gives you 24 address lines plus phantom so that you can take full advantage of the S-100 bus' extended addressing capability.

But to introduce you to the benefits of 8/16 bit operation on the S-100 bus, we are now offering both boards for an amazing $1220!

(For CSC* boards, add $200.)

Save time, thanks to ultra-high speed operation; save hassles, thanks to our equalled record for reliability; and now, save money as well. We don't just give you a competitive edge: We do it at a price you can afford.

Call (415) 562-0636 for the name of the authorized CompuPro sales center nearest you, or for placing orders direct VISA/Mastercard orders (prices shown do not include tax or shipping charges).

CompuPro™
OAKLAND AIRPORT, CA 94614 (415) 562-0636

*Though qualified under the VISA/MASTERCARD Qualified Embedded Software program among the 200 fastest computers, our products are not intended for use in life support systems.
This is because the minimum-distance algorithm is more informed than the other algorithm. Its better information is expressed in the generation of fewer erroneous nodes during the solution of a puzzle.

One aspect of table 3 is, however, misleading: the order-12, -14, and -16 puzzles show identical "nodes closed" values for two sets of puzzles that were earlier said to be unequal in complexity, which might suggest that the algorithm somehow minimizes the scatter effect caused by the different complexities of puzzles of the same order postulated earlier. This, however, is not the case: solution by the minimum-distance algorithm of a number of randomly selected order-12 puzzles reassured me that no such minimizing effect was taking place; the values in "nodes closed" for these puzzles were 12, 13, 14, 14, 18, 20, and >20 (this last value was the result of the computer running out of memory).

Although the minimum-distance algorithm is usually reliable, there is at least one type of problem that renders it virtually useless. An example of one such puzzle is given in figure 2, and an analysis of the algorithm's inability to solve it gives us a clue toward the construction of a more powerful admissible algorithm. Although the algorithm gives this puzzle a value of four, I have not been able to find a solution (by hand) of under sixteen moves, and the first fifty nodes of the tree, generated by this algorithm before my computer ran out of memory, show no appreciable gain toward the goal node. In fact, after generating nodes 37 through 40, at level 10 (see figure 2), the algorithm abandons them to expand nodes of levels 2 through 4, clearly indicating that the algorithm has found the nodes on levels 6 through 10 to be unpromising. Although I have failed to find an admissible algorithm that performs better with this puzzle, I am sure that such an algorithm will have to take into account the extra number of moves that pairs of pieces in each other's "home" positions (here, the "S" and "6" and the "7" and "8") generate.

Nonadmissible Algorithms:

Theory

Comparatively little is known about the performance of nonadmissible algorithms—that is, algorithms whose returned value \(h \) is not necessarily a lower bound on the true cost of a solution \(h \). This is because no common feature (in terms of the algorithm's goal-finding performance)

```
<table>
<thead>
<tr>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puzzle</td>
<td>Goal Node</td>
<td>Breakdown of Moves</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pieces 1,2,3,6,8 in place = 0</td>
</tr>
<tr>
<td>1 2 3</td>
<td>1 2 3</td>
<td>piece 4 is 0 rows, 1 column off = 1</td>
</tr>
<tr>
<td>7 4 6</td>
<td>4 5 6</td>
<td>piece 5 is 1 row, 1 column off = 2</td>
</tr>
<tr>
<td>5 8 7</td>
<td>7 8 6</td>
<td>piece 7 is 1 row, 0 columns off ( \leq 1 )</td>
</tr>
<tr>
<td></td>
<td></td>
<td>( f ) value of puzzle = 4</td>
</tr>
</tbody>
</table>
```

Table 2: Evaluation of puzzle (6,1) by the minimum-distance algorithm. This algorithm sums the distance each piece is from its final position (the goal node) to arrive at an estimate of the number of moves to solution. Column (a) is the problem posed in puzzle (6,1); column (b) is the goal node; column (c) gives each piece's contribution to the total number of moves to solve the puzzle (the "." piece, which represents the blank, is not included in the evaluation).

```
<table>
<thead>
<tr>
<th>Puzzle</th>
<th>&quot;Out-of-Place&quot; Nodes Closed</th>
<th>Total</th>
<th>Minimum Distance Nodes Closed</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,1)</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>(2,1)</td>
<td>2</td>
<td>7</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>(2,3)</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>(3,1)</td>
<td>3</td>
<td>9</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>(3,3)</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>(4,1)</td>
<td>4</td>
<td>10</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>(4,3)</td>
<td>4</td>
<td>10</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>(5,1)</td>
<td>7</td>
<td>16</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>(5,3)</td>
<td>6</td>
<td>13</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>(6,1)</td>
<td>9</td>
<td>21</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>(6,3)</td>
<td>13</td>
<td>26</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>(7,1)</td>
<td>10</td>
<td>23</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>(7,3)</td>
<td>17</td>
<td>34</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>(8,1)</td>
<td>11</td>
<td>25</td>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>(8,3)</td>
<td>26</td>
<td>51</td>
<td>10</td>
<td>21</td>
</tr>
<tr>
<td>(10,1)</td>
<td>13</td>
<td><em>OM</em></td>
<td>10</td>
<td>21</td>
</tr>
<tr>
<td>(10,3)</td>
<td>13</td>
<td><em>OM</em></td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>(12,1)</td>
<td>20</td>
<td>40</td>
<td>14</td>
<td>29</td>
</tr>
<tr>
<td>(12,3)</td>
<td>20</td>
<td><em>OM</em></td>
<td>14</td>
<td>29</td>
</tr>
<tr>
<td>(14,1)</td>
<td><em>OM</em></td>
<td>16</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>(14,3)</td>
<td><em>OM</em></td>
<td>16</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>(16,1)</td>
<td><em>OM</em></td>
<td>18</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>(16,3)</td>
<td><em>OM</em></td>
<td>18</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>(18,1)</td>
<td><em>OM</em></td>
<td>20</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>(18,3)</td>
<td><em>OM</em></td>
<td><em>OM</em></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Table 3: Comparison of the "out-of-place" algorithm with the minimum-distance algorithm for selected problems.

- 120 cps
- 9-pin head for true descenders (one year warranty)
- Bidirectional, logic seeking
- Graphics
- Parallel and serial interfaces—standard
- Friction, pin head, and tractor feeds
- All points addressable graphics
- And much more

From Okidata. The company that stands out. Apart from the rest. For more information on Okidata's incomparable line of printers contact us at 111 Gaither Drive, Mt. Laurel, NJ 08054, (609) 235-2600. Also available through authorized dealers.

Making small printers for people who think big.

Okinda is a subsidiary of Old Electric Industry Company Ltd.
that applies to nonadmissible algorithms as a class has been found: a given nonadmissible algorithm, compared to a good admissible one, may perform anywhere in the range of consistently better to consistently worse. In fact, it is possible to devise a nonadmissible algorithm that is worse than a "no-information" breadth-first search.

In any case, two characteristics of a nonadmissible algorithm follow from its failure to meet the conditions of admissibility. One is that it is not guaranteed to find a goal node; the other is that a goal node found by a nonadmissible algorithm may not be an optimal goal node (i.e., there may exist another, shorter, path to the same node). These are serious but not insurmountable defects when considered in conjunction with a real-work problem because, in the first place, a given algorithm will not be used unless it has a history of solving similar problems. (Nonadmissible algorithms are devised by a process of trial and error, and the only measure of a given algorithm's effectiveness is its ability to produce solutions to problems of a similar complexity whose solutions are already known.) In the second place, the production of an optimal node may not be as important as the production of some goal node, optimal or otherwise.

(Other methods may be used in conjunction with or in place of nonadmissible algorithms to produce a goal node. All these methods sacrifice the guarantee of finding a goal node by economizing on the number of intermediate nodes saved. Successors can be pruned from memory either when they are generated or when memory is filled; or, in a completely different approach, a depth-first search of a given maximum depth sweeps across the tree, storing only the best node encountered thus far.)

Some Examples

An example of a bad nonadmissible algorithm is easy to generate: simply subtract the value calculated by the minimum-distance algorithm (which is a good algorithm) from an arbitrarily large number. This results in an algorithm that assigns a high number to a node close to a goal node (making it one of the last to be expanded) and a lower number to a node that is further away from a goal node; see algorithm NA-I, given in listing 3. The algorithm, when run with a problem of order 2 or greater, will fill up almost any computer's memory without producing a solution because this algorithm will expand a "good" node only after it has expanded every worse node in the problem tree. At fifty nodes (my computer's limit) on problem (2,1), the algorithm was much further away from a solution than when it started.

On the other hand, an example of a good nonadmissible algorithm—in this case, one that performs better than the minimum-distance algorithm—is much harder to find. In fact, a considerable amount of work in several directions yielded only one positive result. The algorithm, labeled NA-II (see listing 4), is an attempt to correct the minimum-dis-

Listing 3: Modification needed to derive the algorithm NA-I (nonadmissible algorithm 1). This modification to the BASIC code in listing 2 delivers misinformation to the SEARCH program, rendering it incapable of solving even the simplest puzzles.

```basic
9890 REM ---------- LISTING 3 -----------
9891 REM
9892 REM ALGORITHM NA - I;
9893 REM NONADMISSIBLE
9894 REM INSTRUCTIONS: ADD THIS
9895 REM TO LISTING 2
9896 REM (THE MINIMUM-DISTANCE
9897 REM ALGORITHM)
9898 REM
9899 REM
9900 REM L1 = 100 - R1
9901
```

Listing 4: Modification needed to derive the algorithm NA-II (nonadmissible algorithm 2). This modification to the BASIC code in listing 2 consistently performs as well as, or better than, the minimum-distance algorithm. Since the algorithm is nonadmissible, the performance is not guaranteed.

```basic
9890 REM ---------- LISTING 4 -----------
9891 REM
9892 REM ALGORITHM NA - II;
9893 REM NONADMISSIBLE
9894 REM INSTRUCTIONS: ADD THIS
9895 REM TO LISTING 2
9896 REM
9897 REM
9898 REM I9 = ABS (I - 11); J9 = ABS
9899 REM (I - J1); R1 = R1 + I9 + J9
9900 IF I9>0 AND J9>0 THEN R1 = R1 + 1
```

Figure 2: A sample problem that is poorly handled by the minimum-distance algorithm. Although the algorithm predicted four moves to solve the puzzle, the computer ran out of memory before solving it. The circled number by each node indicates the order in which the nodes were generated; the numbers not circled are the f values predicted by the algorithm.
The MicroFrame® is Pure Power for computing. It is the industry standard for high quality, reliable S-100 mainframes.

TEI manufactures each MicroFrame® with great care. They deliver pure regulated power at the proper level, improving the reliability of your computer. Typically, the output voltages remain virtually constant, even when the power line voltage varies widely. The MicroFrame® will never notice a brown-out . . . and it provides 100 db noise rejection, protecting your computer from power line voltage spikes and noise. Complies with I-EEE S-100.

The combination of the lowest noise bus, a regulated power system and a rugged chassis produces a MicroFrame® without equal.

Distributor and OEM Inquiries Invited

For more information, call Rick Barnes at (713) 738-2300
Figure 3: Expansion of puzzle (5,1) by the minimum-distance algorithm (figure 3a) and NA-II (figure 3b). The numbers inside each node denote the order in which they were generated; the numbers not circled are the estimated f values generated by each algorithm. In this case, the nonadmissible algorithm performs slightly better.

Glossary

Closed node: a node whose successors have already been calculated.
Cost (or value): a numeric value associated with the shortest path from the start node S to the current node n; the cost of the first goal node found will have some meaning within the problem being solved.
Depth: the number of nodes a given node is away from the start node S.
Expand: to calculate all legal successors of the current node.
Goal node: any node satisfying the set of conditions defined as the desired final state of the problem.
Node: an element of a tree used to represent a given state of the problem.
Open node: a node that has not yet been chosen for expansion.
Ordering algorithm: a formula or procedure generating an ordering value that represents the node’s relative likelihood of being chosen for expansion; the node with the lowest ordering value will be expanded next.
Problem tree (or tree): a graphic representation of the problem space (or state space) using dots to represent states, and lines connecting dots to represent the transition from one state to the next; all nodes must be generated from one start node S that represents the beginning state of the problem.
State: a specific set of values for the variables that define the problem.
State-space representation: a breakdown of the problem into the following components: the state variables that can describe the problem in any of its possible configurations; the operators that generate the next set of values (or states) for the problem given the current set (or state); a beginning state S; and a description (not necessarily exact) of the goal node to be found.
Successors: those nodes representing all valid “next states” for a given node (or state) as defined by the operators of the state-space representation; the node generating the successor nodes is called the parent node.

Observations and Questions

- The word “cost,” up to this point, has only been used to refer to the numeric value associated with the shortest path from the node to the closest goal node. But it has two new and significant meanings when referring to the cost of a solution. One index of the cost of a solution is the number of nodes closed (ie: expanded) by the algorithm—this is the measure we have looked at when comparing the efficiency of two algorithms. But another factor must be considered when either speed or money (as expressed in computer time) is a factor. That factor is the complexity of the evaluating algorithm giving h. A more-informed algorithm may generate fewer nodes but may take considerably more computer time to do it. If speed or money...
FOR THE FIRST TIME
A BOOK THAT TELLS ALL THE DO'S AND DON'TS FOR COMPUTER USERS...
SIMPLE, EASY-TO-READ, FULLY ILLUSTRATED

DID YOU KNOW THAT...

- Most computers require two ground lines—a neutral one and a safety ground?
- A telephone ringing on your disk drive may wipe out your diskettes?
- Disks and diskettes must equalize temperature prior to use?
- Most computer breakdowns are due to faulty diskette handling?
- A radio transmitter will disrupt computer operation?

That computer you're using represents a lot of money, a lot of time—both that spent in purchasing just the right one and the time it will save doing the tasks it was made for—and a big investment in your future.

DON'T (Or How to Care For Your Computer), by Rodnay Zaks, is the first book exclusively dedicated to the care, preservation and correct operation of a small computer system: the computer itself, the CRT terminal, the printer, the magnetic disk and tapes—even the computer room.

PLEASE SEND ME ☐ DON'T, (Or How to Care For Your Computer)
by Rodnay Zaks 200 pp., 100 Illusr., 6" × 9" Ref. C400, $11.95

MAIL TO: SYBEX DEPT. B101
2344 SIXTH STREET
BERKELEY, CA 94710

PHONE ORDERS:
INSIDE CA 415/848-8233 OUTSIDE CA TOLL FREE 800-227-2348

NAME ____________________________ STATE ____________________________
ADDRESS __________________________
CITY ____________________________ ZIP ____________________________
ADD ☐ $1.50/book UPS or ☐ 75¢/book 4th class mail or ☐ $3/book overseas airmail (CA add tax)
Total Amt. Enclosed ____________ OR CHARGE MY ☐ VISA ☐ MC ☐ AM EX. CARD NO. ____________
EXP. DATE ____________
SIGNATURE ____________________________
becomes a critical factor before the amount of available memory does, it is possible that the user will decide to use the less-informed algorithm.

* (Question 1) How does a heuristic algorithm assist the tree-searching process? (See the textbox “Answers,” which appears on page 212.)

* (Question 2) In the description of the minimum-distance algorithm, the “space” square was not included in the summing of “distances from home place.” If this were done, would the algorithm be more powerful? Less? Would it still be admissible?

* (Question 3) Is this tree possible if the algorithm is mistaken about the minimum-distance algorithm? The minimum-distance algorithm puts no restrictions on the validity of this tree.

* (Question 4) Is the tree in figure 4 possible if the algorithm is admissible? Yes, but only if the algorithm is mistaken about the estimated value of one of the open nodes (4, 5, 7, and 8). For example, if the optimal goal node is three nodes away from node 4, then the successors of node 8 (or, at the latest, their successors) must all come up with h values greater than three so that node 4 will be expanded next. An admissible algorithm will always reach the closest goal node first.

* (Question 5) Why is the nonadmissible algorithm NA-I a worse algorithm than the breadth-first search? Isn’t it an exhaustive search, which uses no heuristic information, the most inefficient search possible?

* As mentioned before, certain modifications to the method of searching may be desirable over the use of a nonadmissible algorithm. In certain situations, the judicious application of one of these methods may be more productive in finding a goal node than the “pure” methods described in this article.

Conclusions

This article has dealt with the searching of state-space trees and graphs. Other kinds of trees (AND/OR trees and game trees, to name two) are used in theorem proving and game playing, and a number of other questions can be raised.

For example, how can we evaluate nonadmissible algorithms? What modifications should we make when we have a limited amount of memory? While I have discovered that x amount of artificial intelligence in a program requires at least “x cubed” amount of work, if not more, I hope that this article will prompt more people to look into (and write about) this interesting branch of artificial intelligence.

Figure 4

A hypothetical partially expanded tree, used for visualizing questions posed in the text.

THE CP/M* TERMINAL WITH BUILT IN LOCAL NETWORK

NETWORK
- access to all printers and disks from any terminal
- CP/M* runs in each terminal
- single twisted shielded pair up to 1500 feet
- 9600 baud SDLC protocol
- 32 terminals per line

MONITOR
- 12" monitor
- 24 lines of 80 characters
- reverse video
- highlighting
- blinking
- underlining
- separate keyboard
- 38,400 baud effective speed

MASS STORAGE
- 0 to 4 drives in each terminal:
 - Floppies
 - Shugart 400, 410, 450
 - 460, 801, 851
 - Winchester
 - Seagate ST506
 - ST512

COMPUTER
- 8085 cpu
- 10 mhz crystal
- 64 K ram
- two RS-232 ports

INTRODUCTORY PRICING
- Plain Terminal: $1390.00
- With 1 SA400: $1890.00
- With 1 SA400 & 1 ST506: $4400.00

*CPM is a registered trademark of Digital Research

*autocontrol

11744 Westville Ind. Dr.
St. Louis, MO 63141
(314) 422-1519

Circle 38 on inquiry card.
At last a 64K STATIC memory board for S100 systems. But it's not just a 64K static RAM board, EPROM's can also be intermixed with RAM making it the only memory board needed for S100 systems. That's why we call it THE LAST MEMORY.

- **64K DENSITY**
 THE LAST MEMORY uses the new 2016 byte-wide 16K static RAM to achieve a board density twice that possible with old 2114 static memories.

- **2716 EPROM COMPATIBLE**
 A separate board is no longer required for EPROM's containing monitors, bootstrap loaders, etc. 2716 EPROM's can be inserted into the board without modification.

- **SIMPLE ADDRESS DECODING**
 Where memory is required, just plug a RAM or EPROM in the corresponding socket. Empty memory sockets occupy no memory space, providing compatibility with memory mapped I/O devices.

- **EXTENDED ADDRESSING**
 THE LAST MEMORY includes the IEEE S100 extended addresses. These are fully decoded allowing expansion to a full 16 megabyte system memory.

- **FAST**
 The standard board allows 4 MHz operation.

- **LOW POWER**
 Only one memory IC is ever active in byte-wide memory systems. The result is far less power consumption than older 16K static memory boards.

- **LOW COST**
 Its best feature is the price:

<table>
<thead>
<tr>
<th>Memory Type</th>
<th>Kit</th>
<th>A&O</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAM-less Board</td>
<td>99.99</td>
<td>139.99</td>
</tr>
<tr>
<td>16K RAM</td>
<td>249.99</td>
<td>289.99</td>
</tr>
<tr>
<td>32K RAM</td>
<td>389.99</td>
<td>429.99</td>
</tr>
<tr>
<td>48K RAM</td>
<td>519.99</td>
<td>559.99</td>
</tr>
<tr>
<td>64K RAM</td>
<td>639.99</td>
<td>679.99</td>
</tr>
</tbody>
</table>

Circle 350 on Inquiry card.
Answers
1. A heuristic algorithm assists the tree-searching process using information in the current state (that is, in the current node) to assess the relative likelihood of that node leading to a solution. More likely nodes receive a lower value than less likely nodes, so the controlling program, in choosing to expand next the node with the lowest ordering value, is choosing the node most likely to lead to the shortest solution.

2. This variation of the minimum-distance algorithm is slightly less powerful, primarily because it is no longer admissible. The puzzle

```
1 2 3
4 5 6
7 8
```

is a simple counterexample. Since both the "" piece and the "8" piece are one square away from their positions in the goal state, this algorithm would return the value 2. However, since the true solution value is 1, this one counterexample is enough to show that the algorithm is nonadmissible.

3. If the algorithm used is admissible, the use of h guarantees finding the closest goal node—this is mathematically unarguable. But if the algorithm is nonadmissible and, at the same time, relatively accurate, the use of

\[f(n) = g(n) + h(n) \]

may be a good idea indeed. If the estimate values in figure 4 are accurate relative to each other, then

\[
\begin{align*}
(f(\text{node 4}) &= 1 + h(\text{node 4}) \\
&= 1 + 3 = 4 \\
(f(\text{node 8}) &= 3 + h(\text{node 8}) \\
&= 3 + 2 = 5
\end{align*}
\]

may rightly cause node 4 to be expanded first.

4. The results for this new algorithm will be identical to those of the minimum-distance algorithm, even though the new algorithm may be nonadmissible. Multiplying the results by a constant will change the values of the nodes but not the ordering of the nodes to each other. On the other hand, adding

9963 if R1>F8 THEN R1=R1+F9

or

9963 IF R1<F8 THEN R1=R1+F9

will change the relationship of the nodes to each other. Experiment with these for various values of F8 and F9; a suggested starting value for F8 is 4.

5. No. Misinformation is worse than no information at all, and that is what NA-1 is giving. In assigning high values to nodes that should be low, and vice versa, this algorithm is forcing the driving program to always expand the least promising node first.
VisiCalc is a fine aid for the computation of numerical problems. But it does have two major limitations: it is available only for a small number of systems, and its use is limited strictly to numbers, not words. To overcome these substantial limitations, Lifeboat Associates introduces T/Maker II.

Unlike VisiCalc, T/Maker II is designed to run on most small business computers with CP/M* or similar operating systems and a video terminal with cursor addressing capabilities. And soon there will be T/Maker II versions available for UNIX™ RT-11™ and other systems.

Works with words as well as numbers. Like VisiCalc, T/Maker II reduces the manual tasks involved in computing and calculating financial documents. But since most business problems and reports involve words as well as numbers, T/Maker II also functions as a full-screen text editor for word processing.

T/Maker II is the most advanced aid for the analysis and presentation of numerical data and text material. In a matter of minutes, an entire document—including all edited text, all figures and all calculations—can be created, reviewed on your screen and reported in printed form.

T/Maker II turns your small business computer into a powerful, sophisticated and convenient tool. A tool that will save you money, time and energy, and eliminate the need for costly time-sharing.

With T/Maker II you can easily perform an unlimited number of analytical and reporting tasks which integrate numerical and text processing. You'll find T/Maker II perfect for such things as:

- Financial Statements
- Statistics
- Profitability Reports
- Revenue and Expense Analyses
- Portfolio Evaluations
- Price Lists
- Rate Structures
- Expense Accounts
- Cash Flow Projections
- Checking Account Reconciliations

and much, much more.

Easy to learn and use. You don't have to be a programmer to operate T/Maker II. Just follow T/Maker II's easily understood and ordered instructions, set up your data in rows and columns, define the relationships and T/Maker II will do the rest: it will perform the computations and formatting necessary to prepare your document. When you've finished you can analyze your report on your screen, or store it on a diskette. Or, you can have the report printed with presentation quality.

And when any changes have to be made, simply enter the new figure or relationship and tell T/Maker II to adjust and recalculate all the new results.

Editing capabilities. As a full-screen editor for word processing, T/Maker II handles text up to 255 characters wide. It includes features like text formatting and justification, centered titles, a text buffer for block moves and repeated inserts, global search and replace commands for printing your letters, reports and documents. Wide documents are supported by horizontal scrolling.

Low cost. The cost of T/Maker II is only $275 plus shipping and handling. Dollars well spent once you consider all the time, energy and money it can save. T/Maker II is brought to you exclusively and supported completely by Lifeboat Associates, world's largest computer software publisher.

For more information send us the coupon below.

Mail coupon to: Lifeboat Associates.
1651 Third Ave., NY, NY 10028. Or call (212) 860-0300.

Please send me more information on T/Maker II.

Please send me a free Lifeboat Catalog featuring over 200 programs, including integrated accounting and professional practice systems, office tools for bookkeepers and secretaries and sophisticated tools for programmers.

Name:__________________________
Company:_______________________
Street:__________________________
City:___________________________
State:___________________________
Zip:____________________________

T/Maker II is a trademark of P. Raizen. Personal Software, Inc. UNIX® is a trademark of Bell Laboratories. RT-11™ is a trademark of Digital Research. CP/M® is a trademark of Digital Research Corp. VisiCalc® is a trademark of VisiCorp, Inc.

Lifeboat Associates
Software with full support

Circle 198 on inquiry card.

BYE October 1981
Drawing with UCSD Pascal and the Hiplot Plotter

Dr. James Stork
Humboldt State University
Humboldt Bay Project
Arcata CA 95521

In the course of my work for the University of California Sea Grant program, I have needed to plot oceanographic data on a Houston Instrument Hiplot plotter. Because my operating system is exclusively UCSD Pascal, I have developed routines using that system. I have been completely satisfied with this system and would recommend it to anyone who intends to develop serious microcomputer software beyond the level of simple computer games.

The plotter software shown in the listings demonstrates at least two facilities of the UCSD Pascal system that I have found very useful. These are the ability to easily link an external machine-language subroutine to any Pascal program, and to store a library of often-used units and procedures in the system's library.

The "plotter" Unit
The main unit, called "plotter", is given in listing 1. Those of you who are familiar with the Pascal language will notice that the normal program heading is absent, and in its place is the declaration "unit plotter;" rather than "program plotter;". This is to inform the compiler that the procedures contained in this unit are meant to be linked to another "using" program and are not run alone.

The interface section in listing 1 tells the linker that the following declarations (one type and six procedures) may be used by the program that is linked to the unit. The implementation section variables and procedures are to be used solely in the implementation of the unit and are not to be available to the program using the unit. For example, the procedure "plotstep" cannot be used by the program using the unit (since it is not named in the interface section of the unit), while the procedure "plotline" can be used.

Once a unit is written, compiled, and stored in the system library, it can be used by any Pascal program through the "uses" statement.

About the Author
Jim Stork, a research oceanographer, has been "a confirmed computer freak" since the beginning of the microprocessor industry. Recently he has been using a Z80-based microcomputer to do data acquisition and analysis for a computer modeling study of Humboldt Bay.
The One Printer Solution for the Two Printer Problem.

HIGH SPEED DATA PROCESSING

The new Dual-Mode 200 brings speed and uncompromising print quality to business and professional applications.

Financial statements, inventory reports, labels and more are printed at data processing speeds from 165 cps to 250 cps.

Fully adjustable tractor and a friction feed platen provide precise forms handling for pin-feed and single sheet paper.

Complete “Dot Control” graphics is standard with resolution to 120 x 144 dots per inch.

Interfacing is easy with both E.I.A. RS-232C serial and an ASCII parallel port.

LETTER QUALITY WORD PROCESSING

The Dual-Mode 200 also features letter perfect print you will be proud to use for business letters and reports. Letter Mode speeds range from 42 cps to 60 cps.

The standard Titan 10 pitch font is complemented by an array of optional fonts including Elite 12 pitch, italics, proportionally spaced, OCR-A, scientific and foreign character sets.

Up to 12 font selections may be stored in the printer and interchanged while printing.

The Dual-Mode 200 accepts standard daisy-wheel print commands for word processing system compatibility.

It's the perfect solution for the two printer problem.

The Dual-Mode 200 Printer for the one printer office.

Call or write today for complete specifications

2301 Townsgate Road, Westlake Village, CA 91361, (805) 496-1990

malibu Electronics Corporation
a subsidiary of Datametrics Corporation

DOTS DO IT BETTER™
PLOTLINE (penpos:Integer; xplot, yplot:real);
This procedure draws a line. Its parameters are:

penpos: Position of the pen during the plot.

penpos = 0: Initialize the plotter.
This must be done before any plotting can be done. When penpos is 0 the
computer assumes that the current pen location is location (0,0)—namely,
the lower left corner of the plotting bed. The subroutine will remind you to
move the pen to that position before it actually sets these coordinates.
When penpos = 0, xplot and yplot can be any values since they will be
ignored.

penpos = 1: Pen up (ie: no line will be drawn).

penpos = 2: Pen down (ie: line will be drawn).

xplot: position (ie: left and right) in inches to which the pen will be moved. This
may be any value from 0 to 10 inches.
yplot: position (ie: forward and backward) in inches to which the pen will be
moved. This may be any value from 0 to 7 inches.

PLOTSYMBOL (sym:Integer; height:real);
This procedure is used by procedure plotarray to draw one of five symbols to represent
a data point. The symbol is drawn at the current pen position. Its parameters are:
sym: Symbol definition.
height: Height of symbol to be drawn.

PLOTAXIS(px,py,theta;min,max;tics;label:var;
name:string);
This procedure draws an axis with tic marks and optionally labels each mark and writes
the name of the axis. Its parameters are:
px,py: the origin of the axis in inches.
theta: angle of the axis with respect to the x direction in degrees.
mnimax: value of tic mark at origin.
max: value of outer end of axis (these two values are used to calculate the labels
of the tic marks).
tics: frequency of tic marks on axis (eg: if tics = 5, tic marks will occur every 5
units on the axis). If tics is negative, the labels will occur on the counter-
clockwise side of the axis; otherwise, they will be on the clockwise side.
name: string variable containing the name of the axis.

PLOTARRAY (npoints,freq,sym:integer;px,py,xmin,xmax,ymin,ymax,height,
xlen,ylen;var x,y;coord);
This procedure plots an array of x and y coordinates. Its parameters are:
npoints: Number of points to be plotted.
freq: Frequency of identifying symbol (0 = no symbols, 1 = every point, 2 = every
other point, etc). If freq is negative, only the points will be plotted with no
interconnecting lines.
sym: Identifier of symbol to be plotted at points:
sym = 1: triangle.
sym = 2X: line.
sym = Squared.
sym = Vertical line.
px,py: Coordinates of origin of array plot.
xmin,ymin: Minimum value of variables.
xmax,ymax: Maximum value of variables.
height: Height of symbols in inches.
xlen,ylen: Size of area to be plotted.
x,y: Variables of type coord (no more than 256 points to be used in the plot;
coord is a type that is predefined in the plotter subroutines and may be used
in the "var" section of your program.

Table 1: Summary of procedures and parameters from the Pascal unit "plotter".
THE BACKBONE
OF YOUR SYSTEM

The Heath/Zenith 19 Smart Video Terminal gives you all the important professional features, all for under $700. You get the flexibility you need for high-speed data entry, editing, inquiry and transaction processing. It's designed to be the backbone of your system with heavy-duty features that withstand the rigors of daily use.

Standard RS-232C interfacing makes the 19 compatible with DEC VT-52 and most computer systems. And with the 19, you get the friendly advice and expert service that makes Heath/Zenith a strong partner for you.

Pick the store nearest you from the list on page 17. And stop in today for a demonstration of the Heath/Zenith 19 Smart Video Terminal. If you can't get to a store, send $1.00 for the latest Heathkit® Catalog and the new Zenith Data Systems Catalog of assembled commercial computers. Write Heath Co., Dept. 334-824, Benton Harbor, MI 49022.

HEATH/ZENITH
Your strong partner

Completely addressable blinking cursor lets you edit anywhere on screen.

Reverse video by character lets you emphasize words, phrases or paragraphs.

High resolution CRT gives you sharp, easy-to-read image, reduces eye-strain.

Insert and delete character or line plus erase to end of line and end of screen make the 19 ideal for sophisticated editors like WORDSTAR.

Cursor and special functions are accessible by keyboard or computer, using either DEC VT-52 or ANSI Standard protocols.

Keypad in calculator format permits fast, easy entry of numeric data.

Complete ASCII character set including upper case, lower case with descenders, and special graphic symbols.

80 character by 24 line format, plus 25th line for operator messages and prompts.

Professional quality keyboard, standard type-writer layout, 72 keys, including 12 special function keys.

*In kit form, F.O.B. Benton Harbor, MI. Also available completely assembled at $995. Prices and specifications are subject to change without notice.
From this discussion you can see that the unit makes the following procedures available to the using program: plotline, plotsymbol, plotstring, plotwhere, plotarray, and plotaxis. (See table 1 on page 216.) It also makes the definition of the type "coord" available to the using program. In fact, if the procedure "plotarray" is going to be invoked, a variable of the type "coord" must be passed as a parameter to it.

The basic plotting algorithm in all of the plotter procedures is expressed in the procedure "plotline".

Basic Plotting Procedures

Now that you're familiar with how the unit interfaces to the using program, let's see how the various procedures accomplish their tasks and how the unit is put together. As you might imagine, the construction of the unit after the implementation and interface sections is simply a series of Pascal procedures with no program body. If we did not want to make these procedures into a unit, we could simply incorporate them into a Pascal program as normal procedures.

The Hiplot plotter can move its pen in eight directions. These are left, right, forward, backward, and the four moves at 45° (see figure 1). In addition, we have the pen-up and pen-down movements. With these ten movements, the plotter is capable of grand and wondrous things.

The most fundamental procedure in the program is the machine-language procedure "plotstep" (see listing 3). The purpose of this procedure is simply to take the elementary pen-movement commands passed to it and send them to the plotter port. (The pen-movement commands are the letters p, q, r, s, t, u, v, w, y, and z sent to the plotter through a serial port.) This procedure was written to operate on a Z80-based computer running at 2.5 MHz with the plotter set to 0.005 inches per step. Because of this, the timing loops might have to be adjusted to allow the procedure to operate correctly on a different machine.

The operation of procedure
Accept our free program. It retails for $24.95 but it's yours just for previewing America's finest software club.

I want to tell you about the most exciting development that has ever happened to your computer. Then I want to extend an invitation. Neither the development or the invitation need cost you a cent.

- It's not a new terminal.
- It's not any kind of peripheral.
- It's not a new language.
- It's all of these.

It's a club. A club exclusively for people who live and breathe computers, like you—and me.

BUILD A SOFTWARE LIBRARY THAT WILL EXPAND YOUR COMPUTER'S CAPABILITIES TO THE LIMITS OF YOUR IMAGINATION.

Each month we bring you the finest and boldest concepts in computer software from manufacturers all over the world, from categories that include education and business to entertainment and home utilities. Out of thousands of programs available, we select those that make your computer do more of what you bought your computer for. Programs that keep your computer working throughout the day instead of gathering dust on a desk, ASC keeps your computer functioning and expanding by supplying the vital software resources necessary for its growth. Software for the business owner, educator, hobbyist, the family. Software that will continually keep your hardware paced with state of the art technology. With an ASC membership you will be assured that your equipment is never rendered obsolete.

FREE* FLOPPY DISC

for the first 1500 charter members.

(See back page for qualifications) This program provides a running balance as well as monthly reconciliation and will maintain several checkbooks simultaneously. Menu driven, it contains related file maintenance routines.

Other charter members receive FREE the hardcopy source code.

*Only a small postage and handling charge

DISCOUNTS. PROMPT SHIPMENTS.

No more searching through magazine ads and paying top dollar. You save every time you buy. Save on software, hardware, books . . . all computer supplies. For example, next month you can purchase name brand blank diskettes that the "discounters" sell for $3.50. Our price-$2.50. That's saving $1 per diskette.

HERE'S HOW YOUR CLUB WORKS

All purchases are charged to your account at low member prices. (Software programs usually cost $9.95 to $24.95 and are always discounted 15 to 40% off manufacturers' suggested list.) Every four or so weeks, you will receive our new "Software Compendium" newsmagazine free. It reviews the new programs and provides helpful hints and member input. If you want our "Choice of the Month", do nothing, it will be sent automatically. If you want an alternate, additional, or no diskette at all (which will break your computer's heart), just return the card by the date specified. Unexpected diskettes may be returned at our expense. And all software is supplied with the original manufacturer's warranties. Club members are never subjected to any minimum purchase requirements.

AMERICAN SOFTWARE CLUB, INC
Millwood, N.Y. 10546

I can't wait. Please send me my free gift diskette (or hardcopy source code) and enroll me in American Software Club as outlined in this ad. I understand that all future purchases are minimum required at low members' prices and that a small postage and handling fee is added to all orders. Membership can be cancelled at any time.

Bill me $1.50 postage and handling.

My computer is:

APPLE DOS VERSION ATARI 400 800

CPM COMPUTER WITH 5 1/4" 8" DISKETTE

PET model # TRS 80 model #

I am primarily interested in:

Business

Entertainment

Household

Education

All areas

Name ____________________________

Address ____________________________

City/State/Zip ____________________
"plotstep" is straightforward: it simply receives the plot command from the Pascal system (passed on the system stack along with the return address) and checks the status of the plotter (bit 1, port hexadecimal 7D in this case). It then checks to see if the command is a pen-up or pen-down command, or a pen-movement command. In each case, it takes appropriate timing action depending upon the pen movement requested. If the Pascal running on your system includes the logical device "REMOU"T:", the plotter could be attached to the port addressed by "REMOU"T:; and the plotting commands issued to the plotter through that port.

Once this machine-language subroutine is edited and assembled, it is a simple matter to use the linker to incorporate it into a Pascal program as an external procedure or to store it in the system library for use in the "plotter" unit.

The basic plotting algorithm in all of the plotter procedures is expressed in the procedure "plotline". This algorithm is simply passed a parameter ("penpos") that tells it whether the pen move is to be made with the pen up or down, and the endpoint of the next line to draw. It then calculates the best straight-line fit from the current position of the pen ("xpos" and "ypos") to the point selected ("xplot" and "yplot"). With the pen either up (penpos = 1) or down (penpos = 2), it draws the line. The algorithm used is simply a translation of the BASIC algorithm supplied by Houston Instrument with the plotter into Pascal.

A special case of "plotline" occurs when penpos = 0. In this case, the pen is assumed to be at the lower-left corner of the plotter bed, and the variables "xpos" and "ypos" are initialized to that point. The machine-language subroutine "plotinit" is executed during this initialization. The procedure simply initializes the serial

DISASTER INSURANCE

PROTECT YOUR HARDWARE FROM THE UNEXPECTED.

Not to mention the unavoidable pollutants in the air, performance robbing dust, grime, spills, and static electricity.

Cover Craft Dust Covers help extend the useful life of your computer equipment at a fraction of the cost. Perhaps that's why more people throughout the world rely on Cover Craft Dust Covers than any other brand.

Visit your local dealer or contact Cover Craft Dust Covers for most terminals, disk drives, printers, modems, etc.

$8.95-$15.95

Shipping extra.

COVER CRAFT CORP

PO Box 555, Amherst, NH 03031 • (603) 889-6811

220 October 1981 © BYTE Publications Inc
If you don't know a baud from a floppy...

YOU NEED TO KNOW THE QDP-100 MICROCOMPUTER

Most people who need computers don't have the time, or desire, to become full-time computer "wizards."

With the budget-priced QDP-100, you get all the time-saving precision information you want from a computer, now and in the future, without all the unnecessary complexity associated with less sophisticated computers.

QDP-100 IS A FULL-SCALE 8-bit computer, readily upgradeable to 16 bits as your business or professional information-processing needs grow. It uses the IEEE S-100 bus, compatible with CP/M and MP/M disk operating systems.

QDP-100 HANDLES BOTH floppy disks and hard disks to give you total software versatility.

QDP-100 CONNECTS INSTANTLY in to any standard terminal and printer. Both serial and parallel ports are available. Features most micro-computers can't match.

It does more, does it easier, and costs a lot less.

QDP-100 HAS SINGLE BOARD SIMPLICITY. Eliminates the hassle of complex multi-chip, multi-board computers.

QDP-100 IS EASY to learn and to operate. Most owners use their QDP-100 with professional skill and results in short order. Our instruction manual doesn't need an interpreter.

If you'd rather be a wizard with computer results, than with computers, choose the QDP-100. Call or write for literature and full details.

QDP NEEDS A FEW MORE GOOD DEALERS. Attractive, profitable, protected dealerships are still available in several high-potential computer market areas.

Quasar Data Products
10330 Brecksville Road
Cleveland, Ohio 44141
216/526-0838 Telex 241596

CP/M and MP/M are registered trademarks.
output port to 9600 bps (bits per second) to make it compatible with the data-input rate of the plotter (see listing 4). "Plotline" with the penpos of 0 must be executed before any plotting can be done with the other procedures. In each case of a pen movement, procedure "plotline" checks to make sure that a plot off the bed of the plotter is not being attempted and, if so, reports this to the console rather than attempting the plot.

The procedure "plotstring" uses procedure "plotchar" to draw characters on the plot. Procedure "plotstring" is passed the starting location of the lower-left corner of the first character to be plotted, the height of the characters (which should be a multiple of 0.035 to give the best-formed characters), the angle (in degrees relative to the long axis of the paper) at which the string is to be plotted, and a string of characters to be plotted.

The way in which the characters are plotted is interesting. I decided that I had to develop an interpreter for plotting the various pen moves. Plotting any character, I concluded, would be a combination of straight lines in the fundamental directions available on the plotter.

Rather than simply using "plotline" to do all the moves for each character, the moves to plot each character are generated in a coded form using two vector pads made up of two groups of keys on the keyboard. One vector pad represents moves with the pen up and the other with the pen down. The letters d, w, a, and x are used for moves in the indicated directions with the pen up, and 7, 8, 9, o, 1, k, j, and u for moves in the indicated direction with the pen down. The length and direction of each move are determined by the height and orientation of the character to be plotted. As you can see in the listing of "plotchar", each character is coded as a series of moves terminated with the character "I".

In operation, the procedure takes the character passed to it, assigns the string of moves to the string variable PLOT, then decodes that string into a series of pen movements. A few special cases need to be noted at this point.

Listing 1: The Pascal unit "plotter". This unit, which can be used by other Pascal programs, contains several routines that simplify the process of drawing lines and characters on the Houston Instrument Hiplotter.

unit plotter;

interface (*These procedures and types are available to use program*)
type
 coord=array[1..250] of real;
procedure plotline(nmpos:integer;xplot,yplot:real);
procedure plotstring(tx,ty,height,theta:real;line:string);
procedure plotwhere(var px,py:real);
procedure plotarray(npoints,freq,sym:integer;
 px,py,height,theta:real;line:string;
 min,max:xcoord);
procedure plotaxis(px,py,len,theta,min,max,tic:string;
 name:string);
implementation (*Everything else is local to the unit*)
const
 pi=3.14159;
 screenwidth=79;
 screenheight=23;
var
clear:char;
array[1..16] of char;
xpos,ypos:real;
procedure plotstep(xstep:char);
 external;
procedure plotinit; (*sets up user for plotter*)
 external;
procedure plotline;
 var
 x,y,d,t,et:integer;
procedure initplot;
 begin

Listing 1 continued on page 224
Systems II Ex — a total business system.

SYSTEMS II EX — EX for EXTENDED PERFORMANCE. Westware brings you the most completely integrated and simplest to use business software for your Apple Computer. The SYSTEMS II EX is complete with an integrated Database. Yes! The DBII Database can move your system’s files into Database format for customized reports or labels.

Although the SYSTEMS II EX is a fully integrated system, you may purchase individual modules and later add additional modules, such as Job Costing for contractors. The power of our system is in the KSAM Firmware card that plugs into the Apple. This card permits high speed searches and eliminates running sort routines to get your files in order.

SYSTEMS II is available on 5¼" drives, and also on the Corvus hard disk. A Corvus based system will give you the power and capacity that challenges larger computers.

COMING SOON — Cash flow analysis with graphics, Database II with graphics, and Bill of Materials for small manufacturers.

CURRENT OPTIONS AVAILABLE — Job Costing, Cycle Invoicing, Order entry, and Layaway.

All Checks, statements and invoices use NEBS forms.

Dealer and OEM inquiries invited.

Apple is a trademark of Apple Computers.

Yes, I would like to sample your software. Please send me the Systems II Demo Package. My check for $25 is enclosed.

Name: ____________________________

Title: ____________________________

Company Name: __________________

Address: __________________________

City: __________________ State: ______ Zip: ________

2455 S.W. 4th Ave. Suite 2
Ontario, OR 97914
(503) 881-1477

SOFTWARE DEVELOPMENT TOOLS FOR INDUSTRY

CP/M CROSS-ASSEMBLERS
Fast, comprehensive cross-assemblers to run under CP/M. Extensive pseudo-ops include full listing control, nested conditionals, mnemonic synonyms, and inclusion of external source files. Generate object file, assembly listing, and symbol table from source code for nine popular microprocessor families.

<table>
<thead>
<tr>
<th>Assemblers</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>XASM05</td>
<td>6805</td>
</tr>
<tr>
<td>XASM06</td>
<td>6806</td>
</tr>
<tr>
<td>XASM18</td>
<td>1802</td>
</tr>
<tr>
<td>XASM48</td>
<td>6048</td>
</tr>
<tr>
<td>XASM51</td>
<td>8051</td>
</tr>
<tr>
<td>XASM65</td>
<td>6502</td>
</tr>
<tr>
<td>XASM68</td>
<td>6800</td>
</tr>
<tr>
<td>XASMFB</td>
<td>F83870</td>
</tr>
<tr>
<td>XASM400</td>
<td>COP400</td>
</tr>
</tbody>
</table>

Assemblers... $200.00 each
Manual only... $25.00

8048 DEVELOPMENT PACKAGE
Now you can use the 8048 family of single-chip microcomputers without buying expensive equipment. Develop 8048 software with the XASM48 cross-assembler. Then plug our EPA-48 board into your 800 system to program the 8048 EPROM version.

8048 Development Package... $574.00
EPROM-48 alone........... $449.00

EPROM SIMULATOR BOARD
Debug dedicated systems quickly. Our PSB-100 EPROM Emulator is an S-100 board with up to 8K of RAM. Cable with 24-pin plug replaces 2708 or 2716 EPROMs in your target system for instant program testing.

PSB-100 EPROM Simulator... $445.00

8048 DEVELOPMENT PACKAGE
Now you can use the 8048 family of single-chip microcomputers without buying expensive equipment. Develop 8048 software with the XASM48 cross-assembler. Then plug our EPA-48 board into your 800 system to program the 8048 EPROM version.

8048 Development Package... $574.00
EPROM-48 alone........... $449.00

*Trademark of Digital Research

Listing 1 continued:

clear:=chr(26);
write(clear);
gotoxy((screenwidth-47) div 2,screenheight div 2-1);
write('Please type [ret] when plot pen is at the lower');
write('corner of plotter bed');
readln;
write(clear);
plotinit;
xpos:=0.0;
ypos:=0.0;

begin(*initplot*)
case penpos of
0: initplot;
1: plotstep('y');
end;
if penpos=0 then exit(plotline);
if (xplot<0.25) or (yplot<0.25) then
begin
write(clear);
write('Please type [ret]');
readln;
end;
exit(plotline);

begin(*plotline*)
begin(*plotstring*)
repeat
z:=t+c+h+c;
if z<0 then
begin
f:=f-1;
plotstep(a[i-1]);
end
until f<=0;
end;
plotstring

procedures plotstrings:
var
step1,xstepl,ystepl,x2stepl,y2stepl,x3stepl,y3stepl,
step,xstep,ystep,x2step,y2step,x3step,y3step,real;
j,integer;

procedure plotchar(ch:char);
var
xpos,ypos:real;

Visa and Mastercharge accepted. We ship 6” single-density and Softcard + 5.25” diskettes. Ask us about other formats. OEM AND DEALER INQUIRIES INVITED.

Visa and Mastercharge accepted. We ship 6” single-density and Softcard + 5.25” diskettes. Ask us about other formats. OEM AND DEALER INQUIRIES INVITED.

Trademark of Microsoft
Programming power!

APPLE PASCAL™
A HANDS-ON APPROACH

Learn to use the most powerful language your computer can have.

This "hands-on" method gives you all the working skills you need to create, run, and debug programs in Pascal on the Apple II or Apple II Plus. Detailed program examples and practical, step-by-step exercises on the computer itself lead you from fundamen
tals to such advanced topics as programming style, data structures, top-
down vs. bottom-up design, scalar data types, and recursion.

No math background is required. Users learn full editor and operating features as well as the Pascal language—this is the only complete guide to Pascal for the Apple computer (and only $14.95). The volume is spiralbound to lie flat by the keyboard. 429 pages.

Order today. Put the power of Pascal to work for you.

Also available:

BASIC: A HANDS-ON METHOD, 2/e
Herbert D. Peckham
320 pages, $12.95 (Spiral bound)
Immediate application of concepts as they are introduced allows you to quickly become proficient in BASIC programming. For use with numerous time-sharing and personal computers, this book emphasizes hands-on experience.

PROGRAMMING BASIC WITH THE TI HOME COMPUTER
Herbert D. Peckham
306 pages, $12.95
The only complete guide to programming in BASIC on the TI Home Computer. All information is presented using a hands-on method which rapidly builds programming skills.

HANDS-ON BASIC WITH A PET
Herbert D. Peckham
267 pages, $13.95
Fully explains how to program Commodore Business Machines' PET personal computer using BASIC. A step-by-step presentation of programming with hands-on exercises.

THE ELEMENTS OF PROGRAMMING STYLE
2/e
Brian W. Kernighan and P.J. Plauger
166 pages, $10.95
This acknowledged classic provides a highly helpful guide to effective, efficient programming for a wide range of tasks, includes numerous examples and a set of 'rules' of good programming.

15 DAYS' FREE EXAMINATION!
Mail the coupon today.
Mail to: McGraw-Hill Book Company
P.O. Box 400
Hightstown, N.J. 08520

Please send me the book(s) checked for 15 days on approval:
☐ Bill me. After 15 days I will pay for the book(s) I keep, plus local tax, postage, and handling.
☐ Enclosed is my check/money order (including tax).
Charge my
VISA ☐ MasterCard ☐ (Check one.)
Credit card no. ______________________ Exp. Date. ______________________
Bank no. (MasterCard only) _____________
Signature ____________________________

Credit card order not valid without signature.
☐ APPLE PASCAL, $14.95 (4917-2)
☐ BASIC: A HANDS-ON METHOD, $12.95 (49160-7)
☐ PROGRAMMING BASIC WITH THE TI HOME COMPUTER, $12.95 (49155-8)
☐ HANDS-ON BASIC WITH A PET, $13.95 (49157-7)
☐ ELEMENTS OF PROGRAMMING STYLE, $10.95 (34207-6)

Name ________________________________
Street _______________________________
City/State/Zip __________________________

SAVE MONEY: Remit with order and we pay all shipping and handling costs. Full return privileges still apply.

Order subject to acceptance by McGraw-Hill.
BUY A SERIES FROM THIS LIST OF INDIVIDUAL TITLES USING THE 5 DIGIT ORDER CODES. ORDER A CATALOG OF ALL SAM'S BOOKS AND SAVE!

SERIES 'A' COMPUTER COOKBOOKS

No. 21524	The Cheap Video Cookbook	$5.95
No. 21723	San Of Cheap Videos	$8.95
No. 21687	B08S5A Cookbook	$13.95
No. 21133	TV Typewriter Cookbook	$9.95

SERIES 'B' TRS-80

No. 21741	Circuit Design Programs for the TRS80	$12.95
No. 21633	TRS-80 Interfacing - Book 1	$4.95
No. 21739	TRS-80 Interfacing - Book 2	$16.95

SERIES 'C' 8080

No. 21541	8080/8085 Software Design Book 1	$10.95
No. 21615	8080/8085 Software Design Book 2	$16.95
No. 21628	TIA-An 8080/8085 Asm. Editor	$16.95

SERIES 'D' COMPUTER FUNDAMENTALS

No. 21658	Guide Book To Small Computers	$4.95
No. 21486	Getting Acquainted With Microcomputers	$8.95
No. 21634	Sam's Crash Course In Microcomputers	$17.50
No. 21653	Microcomputer Primer (Second Edition)	$11.95
No. 21483	Your Own Computer	$1.95

SERIES 'E' Z-80

No. 21842	Z80 Microcomputer Design Projects	$12.95
No. 21500	Z80 Microcomputer Hand Book	$8.95
No. 21609	Z80 Microprocessor Programming & Interfacing, Book 1	$11.95
No. 21610	Z80 Microprocessor Programming & Interfacing, Book 2	$14.95

SERIES 'F' 8502/8600

No. 21656	6502 Software Design	$1.50
No. 21459	New To Program Microcomputers	$8.95
No. 21684	How To Program And Interface The 6800	$15.95
No. 21726	6800, 6801, & 6803 Microcomputer Programming & Interfacing	$13.95

SERIES 'G' COOK BOOKS

No. 21695	ICDP-AMP Cookbook (2nd Edition)	$14.95
No. 21168	Active Filter Cookbook	$14.95
No. 21209	CMOS Cookbook	$18.00
No. 21287	IC Converter Cookbook	$13.95
No. 21416	IC Timer Cookbook	$9.95
No. 21235	TTL Cookbook	$9.95

Series - Prices Indicated Are Less 25%

A 29.10 **B** 24.64 **C** 24.64 **D** 33.90 **E** 36.60 **F** 37.77 **G** 55.50

ORDER A CATALOG LISTING ALL SAM'S BOOKS AND SAVE WITH SPECIAL DISCOUNT PRICE

MAIL TO:

STELLAR SYSTEMS

P.O. BOX N

NORTH BRANCH, MN 55056

Prices may be subject to change without notice.
WHY BUY FROM THE BEST?

Service... Support... Software...

Commodore

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>16K B (16K RAM-40 Columns) - Limit. Qty</td>
<td>$395</td>
<td></td>
</tr>
<tr>
<td>32K B (32K RAM-40 Clm.) - Limit. Qty</td>
<td>$1295</td>
<td></td>
</tr>
<tr>
<td>4016 (16K RAM-40 Basic-40 Clm.)</td>
<td>$395</td>
<td></td>
</tr>
<tr>
<td>4032 (32K RAM-40 Basic-40 Clm.)</td>
<td>$1295</td>
<td></td>
</tr>
<tr>
<td>6022 (32K RAM-40 Basic-60 Clm.)</td>
<td>$1495</td>
<td></td>
</tr>
<tr>
<td>8050 Dual Disk (1 Meg Storage)</td>
<td>$1795</td>
<td></td>
</tr>
<tr>
<td>4040 Dual Disk (32K Storage)</td>
<td>$1295</td>
<td></td>
</tr>
<tr>
<td>8010 IEEE Modern</td>
<td>$280</td>
<td></td>
</tr>
<tr>
<td>C2N Cassette Drive</td>
<td>$95</td>
<td></td>
</tr>
<tr>
<td>CBM - IEEE Interface Cable</td>
<td>$40</td>
<td></td>
</tr>
<tr>
<td>IEEE - IEEE Interface Cable</td>
<td>$60</td>
<td></td>
</tr>
<tr>
<td>VIC 20 Home/Personal Computer</td>
<td>$285</td>
<td></td>
</tr>
</tbody>
</table>

NEC Spinwriter Printers

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>5530 (Parallel)</td>
<td>$3055</td>
<td></td>
</tr>
<tr>
<td>5510 (Serial)</td>
<td>$3055</td>
<td></td>
</tr>
<tr>
<td>5520 (KSR-Serial)</td>
<td>$3415</td>
<td></td>
</tr>
<tr>
<td>Tractor Option</td>
<td>$225</td>
<td></td>
</tr>
</tbody>
</table>

Apple

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>16K APPLE II+</td>
<td>$1330</td>
<td></td>
</tr>
<tr>
<td>32K APPLE II+</td>
<td>$1430</td>
<td></td>
</tr>
<tr>
<td>48K APPLE II+</td>
<td>$1530</td>
<td></td>
</tr>
<tr>
<td>APPLe DISK w/33 DOS</td>
<td>$650</td>
<td></td>
</tr>
<tr>
<td>APPLE DRIVE Only</td>
<td>$490</td>
<td></td>
</tr>
<tr>
<td>APPLE III 128K - In Stock! w/Monitor & Info Analystpak</td>
<td>$4740</td>
<td></td>
</tr>
</tbody>
</table>

Altos

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS 8000-2 64K 1M</td>
<td>$4500</td>
<td></td>
</tr>
<tr>
<td>ACS 8000-4 208K 14.5M</td>
<td>$5900</td>
<td></td>
</tr>
<tr>
<td>ACS 8000-7 208K 29.0M</td>
<td>$10490</td>
<td></td>
</tr>
<tr>
<td>ACS 8000-10 208K 10M</td>
<td>$11890</td>
<td></td>
</tr>
<tr>
<td>ACS 8000-16/MTU</td>
<td>$10099</td>
<td></td>
</tr>
</tbody>
</table>

EPSON Printers

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MX-60</td>
<td>$645</td>
<td></td>
</tr>
<tr>
<td>MX-90 FT</td>
<td>$645</td>
<td></td>
</tr>
<tr>
<td>MX-90</td>
<td>$545</td>
<td></td>
</tr>
<tr>
<td>MX-100</td>
<td>$459</td>
<td></td>
</tr>
<tr>
<td>INTERFACE CARDS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8141 (RS-232)</td>
<td>$75</td>
<td></td>
</tr>
<tr>
<td>8150 (2K Buffered RS-232)</td>
<td>$150</td>
<td></td>
</tr>
<tr>
<td>8161 (IEEE 488)</td>
<td>$55</td>
<td></td>
</tr>
<tr>
<td>8131 (Apple Card)</td>
<td>$85</td>
<td></td>
</tr>
<tr>
<td>8230 (Apple Card)</td>
<td>$25</td>
<td></td>
</tr>
<tr>
<td>8220 (TRS-80 Cable)</td>
<td>$35</td>
<td></td>
</tr>
</tbody>
</table>

Diablo 630 Printer

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIABLO 630 - Serial - RS-232</td>
<td>$2710</td>
<td></td>
</tr>
<tr>
<td>Tractor Option</td>
<td>$250</td>
<td></td>
</tr>
</tbody>
</table>

Amdek Monitors

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video 100 12" B-W</td>
<td>$179</td>
<td></td>
</tr>
<tr>
<td>Color 1 12" Green</td>
<td>$249</td>
<td></td>
</tr>
<tr>
<td>Color I 13" Low Res</td>
<td>$449</td>
<td></td>
</tr>
<tr>
<td>Color II 13" High Res</td>
<td>$999</td>
<td></td>
</tr>
</tbody>
</table>

InterTec Computers

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>64K Superbrain (68000 Disk Storage, CP/M™)</td>
<td>$5395</td>
<td></td>
</tr>
<tr>
<td>64K OD Superbrain (700K Disk Storage, CP/M™)</td>
<td>$3995</td>
<td></td>
</tr>
</tbody>
</table>

*CP/M is a registered trademark of Digital Research.

Atari Computers

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atari 400 (16K RAM)</td>
<td>$395</td>
<td></td>
</tr>
<tr>
<td>Atari 800 (32K RAM) - used (320K Clm.)</td>
<td>$1080</td>
<td></td>
</tr>
<tr>
<td>Atari 410 RECORDER</td>
<td>$89.95</td>
<td></td>
</tr>
<tr>
<td>Atari 810 DISK DRIVE</td>
<td>$599.95</td>
<td></td>
</tr>
</tbody>
</table>

Professional Software

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>WordPro 1 8K</td>
<td>$29.95</td>
<td></td>
</tr>
<tr>
<td>WordPro 3 (40 Clm.)</td>
<td>$199.95</td>
<td></td>
</tr>
<tr>
<td>WordPro 3+</td>
<td>$290</td>
<td></td>
</tr>
<tr>
<td>WordPro 4 (80 Clm.)</td>
<td>$375</td>
<td></td>
</tr>
<tr>
<td>WordPro 4+</td>
<td>$450</td>
<td></td>
</tr>
</tbody>
</table>

JUST A SAMPLE OF THE MANY PRODUCTS WE CARRY. CALL US FOR OUR NEW 60-PAGE CATALOG. WE WILL MATCH ANY ADVERTISED PRICE ON PRODUCTS LISTED UNDER SIMILAR "IN STOCK" CONDITIONS.

NEECO

679 Highland Ave.
Needham, MA 02194

(617) 449-1760

MON-FRI 9:00 - 5:00

MasterCharge and VISA Accepted

Circle 203 on inquiry card.
New JAWS-IB

The Ultrahome Memory Board

Due to the tremendous success of our JAWS-I, we were able to make a special purchase of first-quality components at below-cost prices for JAWS-IB. And we are sharing our cost savings with you. But don't be surprised if the next time you see this ad the prices have gone up substantially. Better yet, order now and get the best memory on the market at the best price on the market.

ONE CHIP DOES IT ALL

JAWS-IB is in the Rolls-Royce of all the S100 dynamic boards. Its heart is Intel's single chip 64K dynamic RAM controller. Eliminates high-current logic parts...delay lines...massive heat sinks...unreliable trick circuits. JAWS-IB solves all these problems.

LOOK WHAT JAWS-IB OFFERS YOU

Hidden refresh...last performance...low power consumption...latched data outputs...200 NS 4116 RAM's...on-board crystal...RAM jumper selectable on 8K boundaries...fully shielded...solder mask on both sides of board...phantom line...designed for 8800, 8805, and 280 buses signals...works in Explorer, Sol, Horizon, as well as all other well-designed $100 computers.

dating 1 continued on page 230

Listing 1 continued:

```
begin(*plotchar*)
  xpos=xpos;
  ypos=ypos;
  plot:='i';
gotocode2;
i=1;
  while pchar='i' do
    pchern
    pchar=plot[i];
    case pchar of
      'd': plotline(1,xpos+xstep,ypos+ystep);
      'w': plotline(1,xpos+ystep,ypos+xstep);
      'a': plotline(1,xpos-xstep,ypos+ystep);
      's': plotline(2,xpos+ystep,ypos+xstep);
      'l': plotline(2,xpos+ystep,ypos+xstep);
      'i': plotline(2,xpos+ystep,ypos+xstep);
      'u': plotline(2,xpos+ystep,ypos-xstep);
      'x': plotline(1,xpos+ystep,ypos-xstep);
      end;
  end:
end;
```

```
var
  rxpos,rypos:real;
begin
  rxpos=xpos;
  rypos=ypos;
  case sym of
    1:begin (*triangle*)
      plotline(2,xpos,ypos+height/2);
      plotline(2,xpos-height/2,ypos+height);
      plotline(2,xpos+height/2,ypos+height);
      plotline(1,xnos,rypos);
    end;
    2:begin (*x*)
      plotline(1,xpos-height/2,ypos+height/2);
      plotline(1,xpos+height/2,ypos+height/2);
      plotline(1,xpos+height/2,ypos-height);
      plotline(1,xnos,rypos);
    end;
    3:begin (*square*)
      plotline(2,xpos,ypos+height/2);
      plotline(2,xpos+height/2,ypos);
      plotline(2,xpos+height/2,ypos+height);
      plotline(2,xpos,ypos-height);
      plotline(2,xpos,ypos+height);
      plotline(2,xpos-height/2,ypos);
      plotline(2,xpos+height/2,ypos);
      plotline(1,xnos,rypos);
    end;
    4:begin (*+*)
```

```
Listing 1 continued on page 230
```
THE FORTH SOURCE™
Specializing in the FORTH Language.

MANUALS & GUIDES
- "Starting FORTH" by Brodie, Prentice-Hall. Best User's manual available (soft cover) $16.00
- "Starting FORTH" (hard cover) 20.00
- "Using FORTH" by FORTH, Inc. Guide to FORTH concepts 25.00
- "A FORTH Primer" by Stevens In-depth self-study manual 25.00
- "Systems Guide to fig-FORTH" by Ting. Excellent guide to inner mechanisms. 25.00
- "PDP-11 FORTH User's Guide" by James. Use with PDP-11 Source. 20.00
- "Caltech FORTH Manual" by Ewing. Overview and structure. 12.00
- "FORTH-79", Latest fig-FORTH standard. 15.00
- "FORTH-79 Standard Conversion" by R. C. Smith. Screens, DOES>, error conditions. 10.00
- "TinyPASCAL in fig-FORTH" by Zimmerman. 10.00
- "Threaded Interpreting Languages" by Loeliger. Icon Books. FORTH adapted for Z80. 20.00
- "Invitation to FORTH" by Katzari. Petrocelli Books. Limited introduction. 18.50
- "Proceedings, 1980 FORM Conference," Technical papers. 25.00
- "Proceedings, 1981 Rochester University FORTH Conference," Technical papers. 25.00
- "METAFORTH" by Cassady. Cross-compiling. 30.00

DISKS WITH DOCUMENTATION
- H89/Z89 (5 1/4") $10.00
- APPLE II+ (5 1/4") 15.00
- NOVA (8") 25.00
- APPLE II+ (5 1/4") 30.00
- NOVA (8") 50.00
- 8080 (5 1/4") 60.00
- 8088 (5 1/4") 70.00
- 9900 (5 1/4") 80.00
- APPLE II* (5 1/4") 90.00
- NOVA* (8") 100.00
- 8080/Z80 (6"") 110.00

Installation Documents
- Installation Manual for fig-FORTH, contains FORTH model, glossary, memory map and instructions. $15.00
- Source Listings of fig-FORTH, for specific CPU's and computers. The above Installation Manual is required for implementation. Price per each 15.00

Disk with Documentation
- fig-FORTH Model and Source Listing, with Printed Installation Manual and Source Listing. $65.00

Enhanced FORTH Systems with manuals:
- APPLE II+ by MicroMotion. fig-FORTH, FORTH-79 standard, editor, assembler, 187 pg. manual (1-5"") 90.00
- APPLE II* by R. Kunzitz. fig-FORTH, editor, assembler, source listing and screens. (2-5"") 90.00
- H89/Z89 by G. Haydon, fig-FORTH, stand alone. source listing, editor, assembler, screens and tutorial on disk (3-5"") 250.00
- H89/Z89 by G. Haydon, fig-FORTH, under CP/M®, source listing, editor, assembler, screens and tutorial on disk (3-5"") 175.00
- TRS-80/I by Nautilus Syst. fig-FORTH, editor and assembler (1-5"") 90.00
- TRS-80/I by Miller Microcomputer Services. MMSFORTH, editor, assembler, interpreter/compiler, virtual memory (1-5"") 130.00
- NOVA* by Ting. fig-FORTH, editor, assembler, source listing and screens. (1-5"") 90.00
- 8080 by Talbot Microsystems. fig-FORTH, interpreter/compiler, editor, assembler, disk I/O. (FLEX* 5% or 6") 100.00
- 8080 by Talbot Microsystems. fig-FORTH, interpreter/compiler, editor, assembler, disk I/O. (FLEX* 5% or 6") 100.00

Special Feature FORTH Systems with manuals:
- Cross Compilers by Neutilus Systems. Allows extending, modifying, compiling to different target processors, generates ROMable code and forward referencing. Price per each CP/M® H89 TRS-80/I Northstar 200.00
- 8080 Target Compiler by Talbot Microsystems. 350.00
- 8080 Enhanced System Plus by Talbot Microsystems. 2nd screen editor, macroassembler, tutorial on disk, goodies disk disk of debugging and documentation tools and utilities. 250.00
- Z-80® Program Development by Laboratory Microsystems with full software floating point arithmetic. 150.00
- Z-80® Cross Compiler (Neutilus) by Laboratory Microsystems. 200.00
- Z-80® for AMD6511 Arithmetic Processor by Laboratory Microsystems. 150.00
- "Going FORTH" by Crea FORTH, IBM format, no manual (1-8") 65.00
- HP-85 by H-P. fig-FORTH, editor and assembler (1-5"") 65.00

ORDERING INSTRUCTIONS:
- Orders only. (415) 961-4103
- Dealer & Author inquiries invited
- Minimum order $10.00. All prices & products subject to change or withdrawal without notice. Single system and/or single user license agreement required on some products. *REGISTERED TRADEMARKS

MOUNTAIN VIEW PRESS
PO BOX 4656
MOUNTAIN VIEW, CA 94040
(415) 961-4103

Circle 251 on Inquiry card.
Now — teach your computer to talk, dramatically increasing the interaction between you and your machine.

That's right! The ELECTRIC MOUTH actually lets your computer talk! Installed and on-line in just minutes, it's ready for spoken-language use in office, business, industrial and commercial applications, in games, special projects, R&D, education, security devices — there's no end to the ELECTRIC MOUTH's usefulness. Look at these features:

- Supplied with 143 words/letters/phonemes/numbers, capable of producing hundreds of words and phrases.
- Expandable on-board to thousands of words and phonemes (just add additional speech ROMs as they become available).
- Four models, which plug directly onto 800, Apple, Elf II and TRS-80 Level II computers.
- Get it to talk using either basic or machine language (very easy to use, complete instructions with examples included).
- Uses National Semiconductor's "Digitalk" system.
- Includes on-board audio amplifier and speaker, with provisions for external speakers and amplifiers.
- Adds a new dimension and excitement to programming; lets you modify existing programs and programs to add spoken announcements of mail, warnings, etc.
- Results in real language.

Principle of Operation: The ELECTRIC MOUTH stores words in their digital equivalents in ROMs. When words, phrases, and phonemes are desired, they are simply called for by your program and then synthesized into speech. The ELECTRIC MOUTH system requires none of your valuable memory space except for a few addresses if used in memory mapped mode. In most cases, output ports (user selectable) are unused.

Listing 1 continued:

```plaintext
plotline(2, xpos+height/2, ypos);
plotline(2, ypos+height/2, xpos);
plotline(2, ypos, ypos+height/2);
plotline(2, xpos, ypos+height/2);
plotline(2, xpos+height/2, ypos);
plotline(2, xpos+height/2, ypos+height/2);
end;
5: begin (*vertical line*)
plotline(2, xpos, ypos+height/2);
plotline(2, ypos, ypos+height/2);
plotline(2, xpos, ypos+height/2);
plotline(2, xpos+height/2, ypos);
end;
end;(*plotsymbol*)
```

```plaintext
procedure plotarray:
var
pen, integer;
begin
if nopenarray<250 then
begin
write(clear)
qotoxy((screenwidth-42)/2, screenheight div 2);
end;
write(Plotarray: Plot attempted with >250 points!;
end;
write(Plase type [ret]!);
end;
end;(*plotarray*)
```

```
procedure plotaxis:
var
tempo, side: integer;
begin
print:boolean;
amount: string;
theta: real;
begin
theta:=theta+pi/2;
plotline(2, xpos+0.03*cos(theta), ypos+0.03*sin(theta))
plotline(2, xpos+0.03*cos(theta), ypos+0.03*sin(theta))
plotline(2, xpos+0.03*cos(theta), ypos+0.03*sin(theta))
end;
```

```
procedure dvisetep(theta: real):
begin
theta:=theta+pi/2;
plotline(2, xpos+0.03*cos(theta), ypos+0.03*sin(theta))
plotline(2, xpos+0.03*cos(theta), ypos+0.03*sin(theta))
plotline(2, xpos+0.03*cos(theta), ypos+0.03*sin(theta))
end;
```

```
begin(*plotaxis*)
if tic<3 then
begin
tic:=tic;
side:=1;
end
begin
side:=1;
theta:=theta;
theta:=(pi/360)*theta
end;
```

Listing 1 continued on page 232
If you've ever missed a deadline, forgotten an appointment, waited on late deliveries or lost track of projects, put ANGEL to work for you.

ANGEL is the new software program for microcomputers that helps organize and manage your business flow. It’s strictly business.

FAST AND EASY
With a series of simple one-line entries, ANGEL can schedule every phase of your projects and appointments, however simple or complex. Then, each day, ANGEL will give you a run-down of every action that needs to be taken to complete all your work on time, whether it’s due tomorrow or ten years from now.

ANGEL’s large capacity allows you to log and track up to 2,000 individual projects at once. With ANGEL’s help, you can eliminate reams of files and hours upon hours of costly business delays and missed deadlines.

SPEAKS SIMPLE ENGLISH
ANGEL speaks plain English. No computer language to memorize, no codes to decipher. Sit down and talk to it, face-to-face. If ANGEL doesn’t understand, it will respond in plain English. If you make a program error, ANGEL tells you how to correct your mistake through the use of a built-in video manual. ANGEL is so easy to use, you can turn it on and enter 30 items in less than five minutes.

WORKS FOR ANY BUSINESS
You can custom-program ANGEL for any business operation — from oil exploration to insurance, home construction to retail sales.

With a memory capacity that’s limited only by the capacity of your disk storage, ANGEL tracks multiple projects for busy executives. The disk comes with an easy-to-understand printed manual, to back up the built-in set of instructions of the program itself.

In addition, a data-proof safeguard system will not let you accidentally erase entries, and a special password code of your choice allows you to keep confidential files.

Put ANGEL to work for you today. You’ll never lose track of your work flow again.

ANGEL is recommended for use with any disk-based system that has 48K memory or more. It will operate with any CP/M*-based system and the TRS 80** (Model I, II or III). The program comes on standard 5½- or 8-inch disk, with storage sleeve. Now only $295.

ANGEL is available only through Time Management Software. It is not sold through any outlets at any price. Order the complete program for better business by calling one of our toll-free numbers or by returning the order blank below.

Call now toll-free to order (Ask for operator 602)
1-800-824-7888 (nationwide, except California, Alaska and Hawaii)
1-800-852-7777 (in California)
1-800-824-7919 (in Alaska and Hawaii)

Yes... I need ANGEL to work for me, to organize my business with ultimate ease and efficiency.

NAME

ADDRESS

CITY_________STATE_________ZIP

I have enclosed $295 to avoid delays, shipping and handling charges.

☐ Check ☐ Money Order

☐ C.O.D. (If delivery address is different than above, please specify)

Please specify one: ☐ 5½-inch disk ☐ 8-inch disk

Please specify one: ☐ CP/M* Operating System ☐ TRS-DOS** Operating System

Price includes tax, handling and shipping (except C.O.D. orders)

10A1

TIME MANAGEMENT SOFTWARE
123 E. Broadway
P.O. Box 727
Cushing, Oklahoma 74023

* Registered trademark of Digital Research, Inc.
** Registered trademark of Tandy Corp.

Circle 340 on inquiry card.
Our computer cassettes provide more users with more reliable data time after time. Our new audio cassettes are perfect for highest quality stereo recording. Credit card buyers may phone (415) 968-1604.

LOOK AT OUR PRICES
includes boxes and shipping

<table>
<thead>
<tr>
<th>Length</th>
<th>10 Pack</th>
<th>50 Pack</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-10</td>
<td>$ 7.50</td>
<td>$32.50</td>
</tr>
<tr>
<td>C-20</td>
<td>$ 9.00</td>
<td>$39.00</td>
</tr>
<tr>
<td>C-60</td>
<td>$13.50</td>
<td>$57.50</td>
</tr>
<tr>
<td>C-90</td>
<td>$17.50</td>
<td>$77.50</td>
</tr>
</tbody>
</table>

UPS shipment In Cont. USA incl. We can not ship to P.O. Boxes

SUBTOTAL
Calif. Cust. add Sales Tax

TOTAL

Check or money order enclosed □
Charge to: Visa □ Master Card □
Account No.
Expiration Date

SIGNATURE

MICROSETTE CO.
475 Ellis Street
Mt. View, CA 94043

Listing 2 continued:

if (px+len*cos(theta)>10) or (py+len*sin(theta)>10) then
begin
 writeln('Plot attempted off page ',
 px+len*cos(theta),', ',py+len*sin(theta),')';
 writeln('Please type [ret]');
 readln;
 exit(plotaxis);
end;
if leng<0 then
begin
 print:=false;
 leng:=-leng;
end
else
 print:=true;
 leng:=leng;
plotline(1,px,py);
per:=(leng-0.01)/(max-min);
while leng>0 do
begin
 if leng>per then step:=per
 else step:=leng;
 di vert (theta);
 if print then
 begin
 xpos:=xpos;
 ypos:=ypos;
 templ:=trunc(min*100);
 str(templ,amount):
 insert('", amount,length(amount)-1);
 temp:=length(amount)/2;
 plotline(1,xpos-0.086*temp*cos(theta)-
 0.14*(side-1)*0.05*sin(theta),
 ypos-0.086*temp*sin(theta)+side*(0.14*(side-1)*0.05)
 *cos(theta));
 plotstring(xpos,ypos,-1,theta,amount);
 plotline(1,xpos,ypos);
 end; (*if*
 plotline(2,xpos+step*cos(theta),ypos+step*sin(theta));
 leng:=leng-step;
 min:=min+tic;
end; (*while*)
if print then
begin
 plotline(1,
 xpos-(len/2*cos(theta)+0.108*round(length(name)/2)
 +cos(theta)-side*(0.35+(side-1)*0.075)*sin(theta),
 ypos-(len/2*sin(theta)+0.108*round(length(name)/2)
 +sin(theta)+side*(0.35+(side-1)*0.075)*cos(theta));
 plotstring(xpos,ypos,0.125,theta,name);
end;
end;(*plotaxis*)
end. (*unit*)
You've been looking for a software source to help with your programming. This month BYTE BOOKS features four editions for your thoughtful consideration. A programming guidebook on the 6502, compact threaded languages for the Z80, and two volumes on scientific subroutines. Enough to challenge any hobbyist or scientist. These books won't turn you into a Software Guru — but they will help you think like one!
DIGITAL HARMONY
by John Whitney

A new synthesis of sight and sound

Digital Harmony lays the foundation for the whole new field of audio-visual art made possible by microcomputers. John Whitney, a pioneer of the special effects technology used in STAR WARS and 2001: A SPACE ODYSSEY, explains the special union of computer graphics and music. His computer-generated visual art graphically depicts the laws of harmonic motion common to all music.

Digital Harmony includes a complete description of Whitney's computer, peripheral, and film techniques. Colorful illustrations are included, as well as the program listings that generated them. The descriptions are sufficient for anyone to begin to explore this new territory as a composer and computer experimenter - transforming the small computer into an ideal instrument for creating compositions in aural and visual art.

John Whitney is on the faculty in the Department of Art at the University of California, Los Angeles.

240 pages
hardcover
over 50 color photographs
$21.95

INVERSIONS:
A Catalogue of Calligraphic Cartwheels
by Scott Kim

Surprising symmetries in design and letterforms

Illusion... calligraphy...
visual magic - Scott Kim's new book, Inversions, delights the eye and enchants the mind. Filled with intriguing designs, words that read the same right-side up and upside down, words within words, and unexpected symmetries, these compositions create a fresh way to look at the alphabet. The text includes the visual principles of symmetry, lettering, and problem solving that are basic to these images. The author also draws parallels to related exercises in perception in such diverse areas as art, music, word play, and mathematics. Scott Kim's original inversion designs first appeared in Omni magazine, inspiring an overwhelming reader response. An irresistible challenge, invertible writing appeals to everyone who loves beauty in mathematics and design.

Scott Kim is a doctoral student in Computer Science at Stanford University and is a concert pianist and composer.

ISBN O-07-O34544-5
128 pages
softcover
over 50 illustrations
available summer 1981
$8.95

INVERSIONS:
A Catalogue of Calligraphic Cartwheels
by Scott Kim

Surprising symmetries in design and letterforms

Illusion... calligraphy...
visual magic - Scott Kim's new book, Inversions, delights the eye and enchants the mind. Filled with intriguing designs, words that read the same right-side up and upside down, words within words, and unexpected symmetries, these compositions create a fresh way to look at the alphabet. The text includes the visual principles of symmetry, lettering, and problem solving that are basic to these images. The author also draws parallels to related exercises in perception in such diverse areas as art, music, word play, and mathematics. Scott Kim's original inversion designs first appeared in Omni magazine, inspiring an overwhelming reader response. An irresistible challenge, invertible writing appeals to everyone who loves beauty in mathematics and design.

Scott Kim is a doctoral student in Computer Science at Stanford University and is a concert pianist and composer.

ISBN O-07-O34544-5
128 pages
softcover
over 50 illustrations
available summer 1981
$8.95

BRAINS, BEHAVIOR,
AND ROBOTICS
by James S. Albus

Robotics design and applications

This computer-oriented guide explores how the brain functions primarily as a computer device for generating and controlling behavior. The author assesses behavior as a product of three hierarchies of computing modules:
• memory modules
• behavior-generating modules
• sensory-processing modules

A section on artificial intelligence ties this hierarchical model to vital computer science techniques such as planning, problem-solving, machine vision, natural language understanding and knowledge representation. A closing section on robotics discusses the design considerations in constructing a robot control system fashioned after this model of the brain, and explores the current and potential use of robots in our environment.

Dr. James S. Albus is Project Manager with the National Bureau of Standards.

ISBN O-07-O00975-9
400 pages
hardcover
180 illustrations
$16.95

THE BRAINS OF
MEN AND MACHINES
by Ernest W. Kent

Human models for computer design

When the "Brains of Men and Machines" series of articles first appeared in BYTE magazine, the response was immediate and enthusiastic. Now Kent has expanded his ideas about the brain into a full-length book. As researchers begin to unravel the mysteries of the brain's chemical, electrical, and synaptic circuitry, their findings are becoming immediately applicable to advances in robotic behavior and computer design. The Brains of Men and Machines "dissects" the brain to provide new insights into computer design and artificial intelligence.

It is one of the rare books that transcends disciplinary boundaries. In it the ever-increasing relationship between man and machine is freshly examined - a relationship, Professor Kent concludes, that is today being reexamined in the light of man's own neurological self-image.

Dr. Ernest W. Kent is a Professor of Physiological Psychology and Psychopharmacology of the University of Illinois at the Chicago Circle Campus.

ISBN O-07-O34123-0
304 pages
hardcover
illustrated
$15.95

The BYTE BOOK Collection

Circle 51 on Inquiry card.
BASIC SCIENTIFIC SUBROUTINES, VOLUMES 1 AND 2
by Fred Ruckdeschel

Valuable programs for professional and hobbyist

Designed for the engineer, scientist, experimenter, and student, this series presents a complete scientific subroutine package in BASIC.
- Volume 1 covers plotting, complex variables, vector and matrix operation, random number generation, and series approximations.
- Volume 2 continues with least-squares approximation, special polynomial functions, approximating techniques, optimization, roots of functions, interpolation, differentiation, integration, and digital filtering.

These volumes feature routines written in both standard Microsoft and North Star BASIC, extensive appendices, and subroutine cross-references.

Dr. Fred Ruckdeschel is a Principal Scientist with Dynacom Inc.

VOLUME 1
336 pages hardcover illustrated
$19.95

VOLUME 2
ISBN 0-07-054202-3
384 pages hardcover illustrated
available Fall 1981
$23.95

THREADED INTERPRETIVE LANGUAGES
by Ronald Loeger

How to implement FORTH on your Z80

Threaded languages (such as FORTH) are compact, giving the speed of assembly language with the programming ease of BASIC. They combine features found in no other programming languages. This book develops an interactive, extensible language with specific routines for the Zilog Z80 microprocessor. With the core interpreter, assembler, and data type defining words covered in the text, it is possible to design and implement programs for almost any application and equivalent routines for different processors.

Ron Loeger is a Senior Analyst with Intermec Inc.

272 pages hardcover
$18.95

BEGINNER'S GUIDE FOR THE UCSD PASCAL SYSTEM
by Kenneth L. Bowles

The most popular Pascal version explained by its creator

Written by the originator of UCSD Pascal System, this informative book is an orientation guide to the UCSD Pascal System. For the novice, this book steps through the system, bringing the user to a sophisticated level of expertise. Once familiar with the system, the reader will find the guide an invaluable reference tool for creating advanced applications. The package offers programs which may be run without alteration on:
- DEC PDP-11 or General Automation microcomputers
- Western Digital Microengines
- 8080, 8085, 8086, 6502, 6800, 8000 or AM-100 based microcomputers (including the popular Apple II and Radio Shack TRS-80 microcomputers)

Dr. Kenneth L. Bowles is Director of the Institute for Information Systems, University of California, San Diego.

ISBN 0-07-0037823-1
334 pages hardcover
$25.00

YOU JUST BOUGHT A PERSONAL WHAT?
by Thomas Dwyer and Margot Critchfield

A Structured Approach to Creative Programming

Intended for both the novice programmer and the experienced computer enthusiast, this book presents practical ideas for personal computer use at home or at work. Its approach is especially suitable for educational purposes. Written by the leading contributors of computer education materials, this book is an entertaining and resourceful tool. There are over 60 ready-to-use programs written in Microsoft and Level II BASIC for the TRS-80 in the areas of educational games, financial record keeping, business transactions, disk-based files, and word processing.

Dr. Thomas Dwyer is a Professor of Computer Science at the University of Pittsburgh.

Margot Critchfield is a doctoral student in Foundations in Education at the University of Pittsburgh.

343 pages softcover
$11.95

BEYOND GAMES: SYSTEM SOFTWARE FOR YOUR 6502 PERSONAL COMPUTER
by Kenneth Skier

Creating programs for the Apple, Atari, Challenge and PET computers

At last, a complete programming guidebook for owners of personal computers utilizing the 6502 microprocessor! A self-contained course in structures programming and top-down design, this book presents a powerful set of tools for building an extended monitor, assembler, hexadecimal dump routine, and text editor programs. Programs are thoroughly explained, with clear instructions for modifications.

Kenneth Skier is a Systems Programmer for Wang Laboratories, Inc., and a Lecturer at MIT.

440 pages softcover illustrated
$14.95

stimulating, provocative, problem-solving
order now . . . !
LOWEST PRICE - BEST QUALITY

NORTH STAR

North Star Horizon 2
2-5¼ Disk Drives
32K Double Den
Factory assem. & tested
Factory guaranteed
List $3995
only $2697

POWERFUL NORTH STAR BASIC FREE
SUPERB FOR BUSINESS & SCIENCE
FACTORY ASSEMBLED & TESTED
HORIZON-2-64K-DOUBLE DEN $4195 $3062
HORIZON-2-32K-QUAD DENSITY $3995 $2915
HORIZON-2-64K-QUAD $4495 $3281
HORIZON RAM ASSM 16K = $279 32K = $479
HORIZON RAM ASSM 48K = $679 64K = $879
HORIZON DISK DRIVE SALE
DOUB DEN $445
NORTH STAR HARD DISK 18 Mb $5375 $3923
NORTH STAR TIME SHARING MULTI-USER CALL

SUPERBRAIN

ZENITH

SUPERBRAIN OD 64K
List $3995 only $2995

TERMINALS Z-19 $725

INTERTUBE III

only $725

DYNABYTE COMPUTER—SAVE—PHONE
EPSON MX-80—PHONE
ANADEX 9501 $1349
NEC PRINTER $2639

TRACTOR,
THIMBLE,
DIP-81 $395
TEC LETTER QUAL $1599

InterSystems

ITHACA INTERSYSTEMS 2A
Z-80A CPU 4 MHz
64K Dynamic RAM
Front panel
V I/O—with interrupts
FDC II Disk Controller
20 slot motherboard

CALL FOR PRICE—
TOO LOW TO ADVERTISE!
PASCAL/Z + THE FASTEST PASCAL $375
Z-8000 & CACHE BIOS—POWERFUL—PHONE
8086 16 BIT CPU & SUPPORT CARD SEATTLE $695
CALIFORNIA COMPUTER 2210A ONLY $1795

MORROW 8” DISK

DISC 2D + CP/M* 500K ONLY $929
DISCUS 2 + 2 + CP/M* 1.2 MEGA B. $1240
ADD DRIVES 2D = $550 2 + 2 = $975
2D-DUAL + CP/M* ONLY $1540
FREE MBASIC FROM MORROW!!

MORROW HARD DISK
26,000,000 BYTES!! LIST $4995 ONLY $3919
CP/M* IS INCLUDED!

SAVE ON MEMORY AND PROGRAMS

SYSTEMS MEMORY 64K A & T 4 MHz
$595

SYSTEM MEMORY 64K BANK SELECT
$740

SPECTRUM $280

COMPUFAD SAVE

ITHACA MEMORY 6/8-WH 64K $845

SEATTLE MEMORY 6/16 BIT 16K $240

E2-CODER Translates English to BASIC $71

ECOSOFT FULL ACCOUNTING PKG
$355

32K KITS Z-80 CPU $221

BOX OF DISKETTES $28

ANADEX PRINTER DP-9500-1 $1349

SECRETARY WORD PROCESSOR

CAT NOVATION MODEM $169

The Best! $99

ECOSOFT COMPLETE LANGUAGE SYSTEM $799

ECOSOFT BASIC OPTIMIZER—FAST $71

GOFAST NORTH STAR BASIC

GCC/GC

WHICH COMPUTERS ARE BEST?$71

EDUCATIONAL PROGRAMS

BROCHURE FREE

NORTHSTAR M329 MAILMAN $246

North Star Documentation refundable

FREE

TARBELL COMPUTER-PHONE

AMERICAN SQUARE COMPUTERS BEATS ADV. PRICES

American Computers

919-889-4577 KIVETT DR. JAMESTOWN N.C. 27282 919-883-1105

* CP/M is a registered trademark of Digital Research, Inc.
Listing 2 continued:

plotaxis(0,5,0,5,5,75,90,-1,1,-0.5,'magnitude');
plotarray(255,-10,1,0,5,0,0,249,-1,1,0,07,9,5,5,75,xpoints,sinypoints);
plotarray(255,10,2,0,5,0,0,249,-1,1,0,07,9,5,5,75,xpoints,cosypoints);
plotline(1,5,5,5,75);
plotsymbol(1,0,126);
plotwhere(xloc,yloc);
plotstring(xloc+0.25,yloc-0.126/2,0.126,0,'- sine');
plotline(1,5,5,5,75);
plotsymbol(2,0,126);
plotwhere(xloc,yloc);
plotstring(xloc+0.25,yloc-0.126/2,0.126,0,'- cosine');
end.

Listing 3: The machine-language procedure "plotstep". This procedure, which is dependent on the hardware implementation given in the text, transmits pen-movement commands to the Hiplot plotter through its associated output port.

.PROC PLOTSTEP, 1
.PRIVATE PENPOS, RETADDR

STATUS EQU 576H
PLETCMD EQU 7CH
UPCMD EQU 79H
DOWNCMD EQU 7AH
UP EQU 0FFH
DOWN EQU 0GH

POP HL
LD (RETADDR), HL
LD RETADDR, HL
POP BC
LD PENPOS, BC

;get return address

PLOTOUT IN A, (STATUS) ;input status
AND 1
JP $, PLOTOUT ;mask status bit
JP $, PLOTOUT ;get plot character
OUT (PLETCMD), A ;plot it
JP UPCMD, PEN UP?
JP $, PENUP ;yes, time it out
JP DHCMD, PEN DOWN?
JP $, PENDN ;yes, time it out
JP A, (PENPOS) ;get pen position
CP UP?
JP $, EXIT ;yes, return
LD B, 0GH ;load timer
LD C, 0GH ;load timer

CALL TIMER ;call timer
JP EXIT ;return

DEC BC
LD A, B
;

;get timer high
;

CP 00H
ZEROED OUT?

JP $, TIMER1 ;yes, time further
JP TIMER ;no, do it again

LD A, C
GET TIMER LOW

CP 00H
TIMED OUT?

JP $, EXIT ;yes, return
JP TIMER ;continue timing

LD A, (PENPOS) ;check pen position
CP UP?
JP $, EXIT ;yes, return
LD A, UP ;set penpos up
LD (PENPOS) A ;penpos up
LD B, 02H ;no, time out

CALL TIMER ;call timer
JP EXIT ;return

LD A, (PENPOS) ;check pen position
CP DOWN?
JP $, EXIT ;yes, return
LD A, DOWN ;set penpos down
LD (PENPOS) A ;penpos down
LD B, 02H ;no, time out

CALL TIMER ;call timer
JP EXIT ;return

LD HL, (RETADDR) ;get return address
JP (HL) ;return

.END

Listing 4: The machine-language procedure "plotinit". This procedure initializes the serial output port at the beginning of a drawing session. It is dependent on the specific hardware used in the author's system.

.PROC PLOTINIT
LD A, 05H ;out (78H), A
OUT (78H), A
LD A, 01H ;out (78H), A
OUT (78H), A
RET
.END
Introducing

DPS-8000™

a powerful Z-8000® based multi-user system
from Ithaca Intersystems.

• A highly flexible, expandable design
 with separate modules for mainframe and
 mass storage, offering almost unlimited
 options for system expansion and a
 choice of table-top or rack mount styling.
• A powerful 20 slot S-100 mainframe
 with Z-8000 CPU, advanced memory
 management providing up to 128K
 protected memory per user, up to 2½
 Megabytes of parity memory in 256K
 increments, serial and parallel I/O,
 and DMA hard disk controller with
 32 bit ECC.
• Coherent®—an advanced multi-
 user/multi-tasking Unix®-compatible
 operating system with enhancements for
 better file and device handling and real-
 time responsiveness, and including a full
 range of utilities and compilers.
• InterPak 8000™—a special set of
 InterSystems utilities designed to aid the
 programmer in the rapid editing,
 correcting and documentation of
 software.

DPS-8000 combines the state of the art in
 microcomputer hardware and software to
 provide a highly modular and
 expandable system with exceptional
 functionality, reliability and
 price/performance for the Systems
 Integrator/OEM, the commercial program
developer, and the professional
 programmer working in the Unix
 environment in business, scientific,
 industrial and educational applications.

FOR COMPLETE SYSTEM
SPECIFICATIONS AND PRICING
CALL OUR TOLL-FREE NUMBER:
800-847-2088
(outside N.Y.S.)
Introducing "Popular Computing," the key to understanding.

Now you don't have to be a computer professional to unlock all the mysteries, potential, and pleasures of home and small business computers. Popular Computing, the new monthly magazine from McGraw-Hill, is the key.

Created in response to growing demand for our informative quarterly on Computing, Popular Computing explores every aspect of personal computers and their use. All reported in easy-to-understand nontechnical language.

The answer to "Computerphobia."

Even the most computer-unsophisticated reader will find Popular Computing interesting and stimulating. Every issue will contain straight-talking product reviews, special news briefs, and feature articles by famous guest contributors (like Isaac Asimov). There'll even be a helpful glossary of computer jargon we couldn't avoid using, and much, much more.

Special Introductory Offer.

Send in this coupon today, and take advantage of Popular Computing's Special Introductory Offer.

POPULAR COMPUTING

THE KEY TO UNDERSTANDING

P.O. Box 397, Hancock, NH 03449
Here's how we spell relief:

SpellStar.

Are you tired of squinting at your video screen to find spelling and typing mistakes in your word processing?

Then you need SpellStar—for prompt relief from the pain and discomfort of proofreading.

SpellStar is an optional addition to WordStar™, already the most powerful and versatile word processing software on the market. SpellStar catches your spelling errors and typing mistakes before they catch you. It will save you inconvenience, embarrassment, and countless hours of staring at your screen. In fact, if time equals money in your business, it won't take long for SpellStar to pay for itself in time saved.

Fast, FAST relief

SpellStar whizzes through your text at thousands of words per minute, comparing what you've written with its 20,000-word dictionary-on-a-disk. It flags every word not in its dictionary, giving you three choices. Change the word. Leave it as is. Or leave it and add it to the dictionary, and it won't get flagged again. You can put it in the main dictionary, or just as easy, create your own supplementary dictionaries on other disks for such things as specialized terms and client names.

SpellStar vs. the competition

SpellStar is not the first proofreading software on the market. We just made sure it would be the best.

Other programs show you a list of apparently misspelled words on your screen, separate from the document. You must decide what to do about each word without seeing its context—and that can be confusing. But SpellStar actually operates within the WordStar program. So it lets you see each word in context before taking action. It's so much easier. And you're always only one keystroke from full word-processing capability.

Other programs give you a 20,000-word dictionary. But we compressed it into half the normal disk space. So there's much more space for your own entries.

Another advantage is SpellStar's many menus and prompts. They're designed to keep you out of the manual and at the keyboard as much as possible.

More help on the way

Once we've handled your word processing, let MicroPro start solving all your computing problems—with our software solutions. MailMerge™, another WordStar option, makes it easy to combine files to produce personalized form letters. SuperSort™ takes on the biggest sorting, merging, and selecting jobs. And DataStar™ handles data entry, retrieval, and update with tremendous power and precision.

Okay, so how do you spell relief now?

M-I-C-R-O-P-R-O.

MicroPro INTERNATIONAL CORPORATION

1209 Fourth Street, San Rafael, California 94901
(415) 457-8990; Telex 340-388

Contact us for the name of your nearest dealer.

Runs on most 280 and 486 microcomputers with CP/M (TM of Digital Research), 48K, and terminal with terminal monitor. Also available for the Apple Computer, requires Microsoft SoftCard. Apple Computer is a registered trademark of Apple Computer, Inc. MicroPro products sold only through authorized dealers. © 1981 MicroPro International Corporation.

Circle 221 on inquiry card.
point. The characters "[" and "]", when passed in a string, cause subscripts and superscripts to be plotted. Any characters enclosed in brackets (eg: this is a [superscript]) will be plotted spaced up one half the height of the characters, and any character enclosed in "unbrackets" (eg: this is a]subscript[) will be plotted spaced a similar distance below the current line.

The plotting of arrows is another special case. If an arrow is to be plotted, it will be plotted with a height as specified in the parameter passed to "plotstring", but the head of the arrow will always be of the same size. Thus, arrows can be plotted representing, for example, the strength of the current in a given circuit, with the length of the arrow being proportional to the current.

If you want to generate any special characters of your own, it is a simple matter to decide on the shape of the character (which, by the way, must reside within a "box" 7 moves high by 4 moves wide) and generate it by coding the appropriate moves using the two vector pads I described above. The characters I have already encoded are shown in figure 2.

The procedure "plotwhere" is used to locate the pen on the plotting bed. It is passed two real variables and returns them loaded with the current x and y locations of the plotting pen. This procedure is useful when you want to add a comment or identifying remark to a point or line being drawn on the plot. Simply call "plotwhere", displace the pen an appropriate distance from the current pen position, plot the comment, and return the pen to its initial position.

Graph-Plotting Procedures

The procedure "plotarray" is rather complicated. It is used to plot an array of up to 256 points. Of course, plotting more than that number of points can be done by calling it more than once. The procedure is passed the number of points to be plotted, the frequency of any identifying symbol to be plotted, the identifier of the symbol to be used, the beginning point of the plot, the range of the x and y variables, the height of the symbols, the area the plot is to occupy, and, last but not least, the two arrays (of type "coord") that contain the x and y coordinates of the desired plot.

This may seem like a large number of parameters to be passing to the procedure, but it allows for a great deal of flexibility in plotting arrays and is, in fact, easier to use in practice than it is to describe. What "plotarray" does is to simply scale the location of the points passed to it and fit them into the space indicated. It then moves the pen to the series of (x,y) points given by the two arrays of "coord"s, with the pen either up or down, depending upon the sign of the frequency of symbols passed. If the frequency of symbols is passed as 0, no identifying symbols will be plotted; if it is 1, every point will be identified; if it is 2, every other point, and so on. If frequency is negative, only the points will be plotted, with no interconnecting lines. As implemented, the points can be identified by five different symbols: triangle, X, square, +, or vertical line. These are selected by passing the symbol as 1, 2, 3, 4, or 5, respectively.

Figure 2: An example showing the letters, special characters, and plotting options available through the "plotstring" procedure.
XCOMP introduces a complete micro-size disk subsystem with more...

- MORE STORAGE
- MORE SPEED
- MORE VALUE
- MORE SUPPORT

S100 users... The XCOMP subsystem is now available with 10 megabytes of storage; 5 megabytes also available at $2,898.00. Compare the price and features of any other 5½-inch — or even 8-inch system, and you'll agree that XCOMP's value is unbeatable.

OUTPERFORMS OTHER HARD DISKS
Floppy disk and larger, more expensive hard disks are no match for this powerful little system. More data is available on every seek: 64K on 10MB and 32K on 5MB. Faster seek time too — an average of 70MS. It provides solid performance anywhere with only 20 watts of power. Data is protected in the sealed enclosure, and the landing zone for heads provides another margin of safety. The optional power board plugs directly into the S100 bus and provides power for the drive.

FAST CONTROLLER
The XCOMP controller is the key to this system's high efficiency operation. Speed-up features include interleaves without table lookup, block-deblock with controller buffer, and read lookahead. OEMs worldwide have already proven the outstanding performance of the XCOMP controller.

MORE SOFTWARE
Included with the system is software for testing, formatting, I/O drivers for CP/M®, plus an automatic CP/M driver attach program. Support software and drivers for MP/M® and Oasis® are also available. The sophisticated formatting program assigns alternate sectors for any weak sectors detected during formatting, assuring the lowest possible error rate — at least ten times better than floppies.

WARRANTY
The system has a full one-year warranty on parts and workmanship.

ALSO AVAILABLE FROM XCOMP
- General Purpose controllers (8 bit interface), with easy interface to microprocessor-based systems.
- GP controller adapters that plug directly into most Z80 computers.
- ST/R GP controller for the 5MB and 10MB drive above, with ST506 type interface.
- SG/R GP controller for SA1000 interface.
- SM/R GP controller for storage module drives.
- ST/S, SG/S, and SM/S, same as above, for the S100 bus.

Quantity discounts available. Distributor, Dealer, and OEM inquiries invited.

See your local Dealer, or call:

XCOMP, Inc.
7566 Trade Street
San Diego, CA 92121
Tel: (714) 271-8730
Telex: 182786

Circle 396 on Inquiry card.
Figure 3: A demonstration of the Hplot plotter driven by a Pascal program (see listing 2) and the "plotter" unit (given in listing 1).
Take your pick of the litter.

When you're ready to let your computer out and introduce it to the rest of the world, one of the Cat family of Modems is the way to do it.

Take your pick. You can't go wrong. They're all purebreds—from Novation, the recognized world leader in personal communications.

Cat Acoustic Modem
Fast, accurate, reliable originate/answer modem— with built-in diagnostics. Just add your computer and phone. Then dial up the world. $189**

Super Mike
Replace your phone's carbon mike with Super Mike. No more carbon granule problems. Making things perfectly clear has never been so easy $14.95**

Auto-Cat
Answers automatically and stores data in your computer until you're ready. The world's first LSI 103 modem. State-of-the-art, all digital, crystal controlled direct connect.
You're off the hook for under $250**

Apple-Cat II:
Major breakthrough—the intelligent modem. Slips into your Apple. All auto functions, selectable baud rates, Serial RS-232 port, BSR X-10 controller*** easy-to-use self-prompting format. Other options available.
From $389** including software

D-Cat
Get the performance and reliability of a direct connect modem (up to 20dB improvement) with the portability and price of an acoustic. Use it at home. Use it at work. Truly unique. So's the price. $199**

Call for details: (800) 423-5410
In California (213) 996-5060
Available from Avnet Electronics, Hamilton Electro, Hamilton Avnet, Kienyff Electronics, Byte Shops, Computerland, and your local computer store.
Novation, Inc., 18664 Oxnard Street, Tarzana, California 91356

*Apple is a registered trademark of Apple Computer Inc. Cat is a trademark of Novation, Inc. which does not make Apple computers.
**Suggested retail price
***BSR is a trademark of BSR Corporation
ly. The size of the plotted symbol is passed in the height variable.

The procedure "plotsymbol" is used to plot any of the five identifying symbols. These symbols are used in procedure "plotarray" if some identifying point marker is desired. The procedure is passed integers that identify the symbol to be plotted and the height of the desired symbol. The symbol will be plotted centered at the current pen position. This procedure can be used both to identify points on a plot and in a description of the meaning of those points (see the example plot in figure 3 and listing 2).

The procedure "plotaxis" is used to plot an axis with its identification and values. It is most often used in conjunction with "plotarray" to plot experimental data but, of course, can be used in any other way for special purposes. The procedure is passed the location of the origin of the axis, its length in inches, the angle of the axis with respect to the long axis of the plotting paper, the minimum and maximum values represented on the axis, how often tic marks should occur on the axis, and the name of the axis. If length is passed as negative, no labeling of tic marks or axis will occur. If the tic-mark value is passed as negative, the labeling of both axis and tic marks is done on the counterclockwise side of the axis. This last step is included so labels on axis can be put on the "outside" of the plot area in the case of two-axis plots (see the example plot).

I should mention here that there is a limitation on the size of tic-mark labels. A floating-point error will be generated if you try to make any label larger than ±327.67. This is because integer arithmetic is used to translate from the floating-point number to the string variable plotted as the tic-mark label. An easy way around this is to do it as I did in the sample plot and use a factor-of-ten multiplier in the axis label to compensate (see figure 3).

The plot in figure 3 with its accompanying listing demonstrates how the plotter subroutines can be used to generate a plot with a minimum of programming effort.

Implementation Details

These plotter procedures were developed using an SD Systems SBC-100 microprocessor board and a VDB-8024 video board. If they are to be used on systems other than the one described, a few modifications will have to be made. The constants "screenwidth" and "screenheight" defined in the "const" section of the implementation section in listing 1 should be changed to reflect the size of your own screen, and the character variable "clear", defined in procedure "initplot", should be changed to reflect the character that causes your screen to be cleared. Thus, it will only be necessary for you to write your own "plotstep" and "plotline" subroutines for the "plotter" unit so it is functional on your computer.

I'm not familiar with other plotters, but I suspect that these procedures might be usable on other machines after the appropriate modifications to procedures "plotstep" and "plotline" have been made.

If you would like a copy of the source for these plotter programs, I'd be happy to supply it. Just send me a blank 8-inch floppy disk and $10, and I will return it to you with the source code for all of the programs described in this article.
How could we ever top the “Big 16” package? Here’s how...

SUPERSEXTEEN!

SuperSixteen combines our most acclaimed system components in a specially-priced package configuration. Imagine a computer that executes the present library of 8 bit software as well as the 16 bit software of the future...handles the most demanding commercial, industrial, and scientific applications...conforms to all IEEE 696/S-100 standards to allow for compatibility and easy upgrading...runs the new generation of high-performance/enhanced software (such as Sorcin’s “SuperCalc” financial planning package)...is backed by a full 1 year—not 90 day—limited warranty...and, unlike many of the “personal” computers being adapted for commercial applications, won’t be here today and outgrown tomorrow.

That’s exactly what SuperSixteen delivers, and at a price that’s intended to be as irresistible as the benefits. Each SuperSixteen package includes:

- **Dual Processor Board.** Executes both 8 and 16 bit code to handle present and future needs. High speed (5 MHz) 8085 and 8088 processors complete jobs faster.
- **Disk I DMA Floppy Disk Controller.** Features lightning fast operation, thanks to properly implemented DMA (with arbitration). Handles up to four 8” or 5.25” floppy disk drives, single or double-sided, single or double density (soft sectored).
- **System Support I.** All the most popular “extras” on one board: battery operated clock/calendar; RS-232 serial port; battery backup RAM, math processor, and ROM options; triple interval timers; dual interrupt controllers; power fail interrupt; and more.
- **Interfacer I.** Two RS-232 serial ports, with full handshaking and independently selectable Baud rates up to 19.2 KBAud, connect to the serial peripherals (printer, terminal) of your choice.
- **128K of Static RAM.** The best components deserve the best memory, which is why 128K of our famous high speed/low power RAM comes standard with every SuperSixteen package.
- **CP/M*-2.2.** The most popular 8 bit operating system, ready to load and go.
- **CP/M*-86.** Ready to load and go for 16 bit operation.
- **Cable and Documentation.** Each package includes three interfacer cables, one disk cable, complete documentation for all hardware, and manuals for both CP/M* operating systems.

If purchased separately, these quality components would cost $4,344. But SuperSixteen’s low package is an amazing $3,495 - that’s like getting 48K of memory for free! (For boards qualified under the Certified System Component high-reliability program - with extended 2 year warranty, 200 hour burn-in, and 6 MHz processors - add $600 to the package price.)

You can wait for the other manufacturers to catch up...or you can enjoy the competitive edge offered by CompuPro products right now. SuperSixteen is available at finer computer stores world-wide; call 415-562-0636 for the authorized CompuPro sales center nearest you.
PROVEN Computing SOLUTIONS

We give you more of what you buy a computer for: to gain a competitive edge in your industrial, commercial, or scientific application. While other computers try to make the best of slow memory, slow processors, and me-too engineering, CompuPro is delivering solutions for today's commercial computing...proven solutions that create expandable, modular, fast, exceptionally reliable, and truly professional level machines that conform fully to the IEEE 696/S-100 standards. We back all products with a minimum 1 year limited warranty.

When you depend on your computer, choose a computer on which you can depend:

S-100 from CompuPro.

1 DISK 1 DMA DISK CONTROLLER. Disk controllers don't have to be your system's bottleneck; Disk 1 is lightning fast, thanks to properly implemented DMA (with arbitration) and data transfer that's independent of CPU speed. Handles up to four 8" or 5.25" floppy disk drives, single or double-sided, single or double density (soft sectored). With BIOS for CP/M-80*, Manual available for $25. A/T $495, CSC $595. Coming soon: Disk 2, the fast hard Disk Hard Disk Controller.

2 CP/M-86. Available only with Disk 1 purchase. Supplied on diskette with full documentation; ready for load and go operation. $300.

3 OASIS OPERATING SYSTEM. Single user ($500) and multi-user ($850) available for use with CPU Z. Supplied on diskette with full documentation. Coming soon: OASIS 16 for use with 16 bit systems.

4 COMPLETE DUAL DISK DRIVE SYSTEM. With one Disk 1 board, desktop dual drive enclosure with Shugart SA-500 series drives, and power supply cable. Also includes CP/M-80, Introductory special: $2195.

5 SYSTEM SUPPORT 1. Includes battery operated clock/calendar; sockets for battery backup RAM, optional 9511 or 9512 math processor, and 2716 ROM; RS-232 serial port; triple interval timers; dual interrupt controllers; power fail interrupt; and more. Comprehensive owner's manual includes numerous software examples. $295 Uniktl, $395 A/T, $495 CSC (add $195 to the above prices for the optional math processor).

6 8 BIT CPU Z. A Z80*-based CPU board that includes all standard features plus many convenience options. Meets all IEEE 696/S-100 specifications, including timing. $225 Uniktl, $295 A/T (both operate at 4 MHz), $395 CSC (with 6 MHz CPU).

7 16/8 BIT CPU 8085/88. Now there's an easy way to gain 16 bit capability without sacrificing your library of 8 bit software: CPU 8085/88 combines an 8 bit CPU to handle 16 bit software and an 8085 CPU for 8 bit software. $295 Uniktl, $425 A/T (both operate at 5 MHz); $525 CSC (with 6 MHz 8085 and 8085).

8 8085/8086 MONITOR-DEBUGGER SOFTWARE. Ideal for use with CPU 8085/88. Supplied on single sided, single density, soft sectored 8" disk. CP/M-80 compatible (not required if you have CP/M/86). Great development tool; mnemonics used in debug conform as closely as possible to current CP/M DDT mnemonics. $35.

9 8 BIT CPU 8085. Same as CPU 8085/88, but without 8086. May be easily upgraded to 16 bit operation. $235 Uniktl, $325 A/T, $425 CSC.

10 INTERFACER 1. Two RS-232 serial ports, with full handshaking and independently selectable baud rates, connect your computer to serial peripherals. $199 Uniktl, $249 A/T, $324 CSC.

11 INTERFACER 2. Adds three full duplex parallel ports, and one serial port with all the features of an Interfacer 1 serial port, to your computer. $199 Uniktl, $249 A/T, $324 CSC.

12 INTERFACER 3-5. Includes five RS-232 serial ports (2 synchronous/asynchronous, 3 asynchronous) with full handshaking. Includes software programmable baud rates and many other convenience features. $599 A/T, $669 CSC.

13 INTERFACER 3-8. Same as above, but with eight full RS-232 serial ports (2 synchronous/asynchronous, 6 asynchronous). Ideal for multi-user/multi-terminal systems. $699 A/T, $849 CSC.

14 SPECTRUM COLOR GRAPHICS BOARD. With 8k of IEEE-compatible static RAM, full duplex bidirectional I/O port for keyboard or joystick interface, and 6487-based graphics generator that can display any ASCII character. 10 modes of operation, from alphanumeric/semi-graphics in 8 colors to dense 256 X 192 full graphics. $399 Uniktl, $399 A/T, $449 CSC.

15 6 SLOT HIGH SPEED MOTHERBOARD. With all edge connectors. Paraday shielding, extensive bypassing, and split active termination. $89 Uniktl, $129 A/T.

16 12 SLOT HIGH SPEED MOTHERBOARD. Same as above, but with 12 slots. $129 Uniktl, $169 A/T.

17 20 SLOT HIGH SPEED MOTHERBOARD. Same as above, but with 20 slots. $174 Uniktl, $214 A/T.

18 MEMORY MANAGER. Extends the addressing of older S-100 machines beyond 64 KBytes to allow for greatly expanded memory capacity. $59 Uniktl, $85 A/T, $100 CSC.

19 ACTIVE TERMINATOR. Promotes reliable and accurate data transfer in older machines by properly terminating bus lines, thereby minimizing ringing, crosstalk, overshoot, noise, and other gremlins associated with unterminated lines. $34.50 Uniktl, $59.50 A/T.

20 2708 EPROM BOARD. This board is the way to store often used routines or pieces of software. $85 Uniktl, $135 A/T, $195 CSC (2708s not included).

21 DOCUMENTATION. User manuals are available for all products. Interfacer 3, $10; Interfacer 2, $25; System Support 1, $20; most others, $5. Also available: "CompuPro Product User Manuals: 1975 - 1980". This 250+ page book includes data on all older Godbout/CompuPro products, as well as many newer products such as the Spectrum Color Graphics Board, Interfacer 1 & 2, CPU 8085/86, motherboards, CPU Z, and more. Whether you want to evaluate the innovative engineering behind CompuPro products, or study the nuts and bolts of high speed computer operation, this is the book for you. $20 plus shipping.

22 RAM 16-64. Configurable as 64K X 8 for 8 bit systems or 32K X 16 for 16 bit systems. Static, IEEE-696/S-100 compatible, extended addressing, 10 MHz operation. $1195 A/T, $1295 CSC.

23 RAM 17-64. The lowest power (4Ans typical) 64K X 8 static board in the business. IEEE-696/S-100 compatible, 4 optional 2K windows, no wait states with 6 MHz 250. $1195 A/T, $1195 CSC, $575 Uniktl.

24 RAM 20-32. For lower density applications. Static, IEEE-696/S-100 compatible, extended addressing or bank select, up to 10 MHz operation. $559 A/T, $659 CSC, $449 Uniktl. 8K and 16K versions also available.

How to Order: Call 415-562-0636 for the name of the authorized CompuPro sales center nearest you, or for placing factory direct VISA®/Mastercard® orders. Prices shown do not include tax, shipping charges, or dealer installation/support services.

Circle 77 on inquiry card.

CompuPro
OAKLAND AIRPORT, CA 94614
(415) 562-0636

BYTE October 1981 249
As we are all too well aware, the cost of heating a home has skyrocketed in recent years. Many homeowners, searching for ways to improve the energy efficiency of their homes, add insulation to the walls or roof, install storm windows, or caulk and weather-strip around windows and doors. Money is spent on one or more of these energy-conservation plans only because homeowners expect a reasonable return on their investment in the form of lower heating bills.

Many homeowners, however, will spend a great deal of money on insulation for the walls or ceiling, for example, without having any idea how much their heating costs will actually be reduced. At some thickness, adding more insulation is no longer cost-effective. The "proper" thickness is very difficult to determine. Also, if a house has heat losses through single-pane windows or air leaks from poor weather stripping, adding insulation to the walls will not do much to reduce the overall heat loss. In short, homeowners usually suffer from a lack of information on the thermal properties and energy efficiency of their homes.

There are two basic ways to find the energy savings and return on money invested with a home heating energy-conservation plan:

- Choose a plan, have it done, and wait for the heating bills to arrive to determine actual energy savings.
- Choose a plan and analyze the energy-efficiency improvement to find the energy savings before spending money.

To analyze the energy-efficiency improvement, such factors as climate, existing insulation, and building dimensions must be determined, as well as the heat-transfer properties of all exposed surfaces. Inasmuch as each house has unique and complex heat-loss characteristics, any analysis will be somewhat involved.

Listing 1 (see page 258) is a computer program to evaluate the physical properties of a house. The program analyzes and displays heat loss through each exposed building element (walls, windows, etc) and provides the computed heat losses associated with a selected heating energy-conservation plan. The program will run on the Radio Shack TRS-80 Model 1 and, with few changes, it can be adapted to most small computers. With this program, the most efficient heating energy-conservation plan can be selected, and the approximate return on investment can be derived from the computed heating-cost savings. Fundamental to this program is the supposition that any heating energy-conservation plan is properly done (i.e., insulation evenly distributed with proper vapor barriers, or good construction practices for installing storm windows or adding weather stripping).

Figure 1 (see page 252) includes a worksheet and an exploded drawing of a typical house. The worksheet and drawing are an aid to help in organizing the required data before working with the computer. The first part of the worksheet asks for the surface area of all exposed building elements through which heat can escape. The second part asks for the thickness and R-factor of insulation already present in the walls, roof, or ceiling. (The R-factor is a measure of how well a material will insulate. The higher the R-factor, the greater the effective insulation.) If the attic is heated, the thickness of insulation in
How to succeed in business without really trying.

For peanuts.

STC is proud to formally announce four field-proven business packages for APPLE users. And an irresistible offer.

All of these programs are straightforward, easy to use, virtually foolproof, and very attractively priced. The prices quoted include both the programs and easy-to-follow instruction manual.

Accounts Payable

Uses ISAM structured routines and all posting is done in seconds as opposed to hours with other programs. Various reports are generated, including cash requirement journal, check register, open invoice report, Y-T-D payment journal, and aging function to tell how many days left for a discount or an invoice. You also get a complete audit trail on all transactions, a current and Y-T-D analysis of all your accounts and vendors, and a check printed on available forms. **Only $200.**

Payroll

Maintains an entire payroll for up to 125 employees. It provides numerous payroll utilities for quick and easy payroll and check generation. It has built-in Federal and State tax tables and provides some remarkable reporting capabilities. **Only $240.**

Professional Time and Billing

Maintains time and billing data for up to 300 clients. 120 rates (employees) can be on file at any time. Rates may appear as time/expenses/fixed fees. Prints statements on available forms. Generates a variety of transactions and activity reports, and much more. **Only $325.**

Apartement Management

Maintains financial and managerial data for up to 6 separate apartment complexes. Each complex can contain a maximum of 120 units and 8 different types of units. Generates an operating statement which contains YTD rental income, security deposits, pet deposits, pool deposits, misc. deposits, damage amounts, allowances, expenses and a complete breakdown of apt.units by type. Again, some great reports. **Only $325.**

Early Bird Offer

If you purchase any one of these programs from your STC dealer within the next 30 days, we'll let you have our new and quite fantastic Coloring Board package for only $30. This program, normally costing $60, compares with some hardware capabilities costing $800 and more. It allows you to quickly create, store and display all types of graphics and text labeling. For example, a bar-chart like the one shown above for display at sales meetings. In short, it has unlimited useful applications for business.

Act now. Contact your local STC dealer for details on this extremely unusual offer. And be sure to check out the rest of our great line of software packages as well.

Dealer inquiries invited.

(Apple is a trademark of Apple Computer Company)
Worksheet

<table>
<thead>
<tr>
<th>Exposed Surface Areas</th>
<th>Calculation</th>
<th>Sample House</th>
<th>Calculation</th>
<th>Area in Square Feet</th>
<th>Calculation</th>
<th>Area in Square Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Window Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(N = Number of Windows)</td>
<td>(N x h x w)</td>
<td></td>
<td>(N x h x w)</td>
<td>11 x 3 x 4 = 33</td>
<td>1 x 5 1/2 x 12 = 78</td>
<td>13 2</td>
</tr>
<tr>
<td>With Double Panes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With Single Panes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Wall Area</td>
<td></td>
<td></td>
<td></td>
<td>(2 x W x H) +</td>
<td></td>
<td>198</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2 x L x H) -</td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total Window Area</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2 x 30 x 20) +</td>
<td></td>
<td>300 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2 x 50 x 20) -</td>
<td></td>
<td>198</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>198 =</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Roof/Ceiling Area</td>
<td></td>
<td></td>
<td></td>
<td>(2 x L x S) + (W x A)</td>
<td></td>
<td>50 x 30 = 1500</td>
</tr>
<tr>
<td>Roof—If Attic is Heated</td>
<td></td>
<td></td>
<td></td>
<td>L x W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceiling—If Attic is Unheated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Door Area</td>
<td></td>
<td></td>
<td></td>
<td>N x h x w</td>
<td></td>
<td>2 x 7 x 3 = 42</td>
</tr>
<tr>
<td>(N = Total Number of Doors)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Existing Insulation</th>
<th>Thickness (in inches)</th>
<th>R-Factor (Table 1)</th>
<th>Thickness (in inches)</th>
<th>R-Factor (Table 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulation in Walls</td>
<td>2</td>
<td>9</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>Insulation in Roof/Ceiling</td>
<td></td>
<td></td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>Ceiling*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*If attic is heated, disregard ceiling insulation.

Sample House

structure:
- H = 20 feet
- W = 30 feet
- L = 50 feet
- A = 6 feet
- S = 16

S can be calculated from A and W:

\[S = \sqrt{W^2 + A^2} \]

- typical window:
 - h = 3 feet
 - w = 4 feet
- picture window:
 - h = 5 1/2 feet
 - w = 12 feet
- typical door:
 - h = 7 feet
 - w = 3 feet

- ceiling insulation thickness = 2 inches
- roof insulation thickness = 3 inches
- wall insulation thickness = 2 inches

Figure 1: Worksheet and exploded view of house. Data for the sample house is entered here in figure 1a. and the resulting output for two plans is shown in figure 3. Use a photocopy of the blank worksheet (figure 1b) to help organize your data before entering it into the computer.

October 1983 © BYTE Publications Inc
Worksheet

<table>
<thead>
<tr>
<th>Exposed Surface Areas</th>
<th>Calculation</th>
<th>Area in Square Feet</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample House</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Your House</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Window Area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(N = \text{Number of Windows})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With Double Panes</td>
<td>(N \times h \times w)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>With Single Panes</td>
<td>(N \times h \times w)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Wall Area</td>
<td>((2 \times W \times H) + (2 \times L \times H) - \text{Total Window Area})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Roof/Ceiling Area</td>
<td>((2 \times L \times S) + (W \times A))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roof—If Attic Is Heated</td>
<td>(L \times W)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceiling—If Attic Is Unheated</td>
<td>()</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Door Area</td>
<td>(N \times h \times w)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Existing Insulation

<table>
<thead>
<tr>
<th>Thickness in Inches</th>
<th>R-Factor (Table 1)</th>
<th>Thickness in Inches</th>
<th>R-Factor (Table 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Insulation in Walls

Insulation in Roof/Ceiling

<table>
<thead>
<tr>
<th>Roof</th>
<th>Ceiling*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
</tr>
</tbody>
</table>

*If attic is heated, disregard ceiling insulation.

Figure 1b: Blank worksheet to help you organize data before calculating your home's energy efficiency.

Try an Example

The sample house shown in figure 1 is located in Chicago, Illinois, which is situated in heating region number 4 on the map in figure 2. (See page 254.) When the physical characteristics of this house are entered as shown in the program operation section, the heat-loss profile in figure 3a (see page 256) is displayed. This profile shows that most of the heat is lost through the walls. Because the existing roof and ceiling of the sample house are comparatively well insulated, and the sample house has storm windows, I will plan to add 2 inches of loose rockwool (R-factor 9 in table 1) to all the walls.

Figure 3b is the computed heat-loss profile with the added insulation in the walls. It shows that substantially less heat is lost through the walls with this plan. The overall heat-loss reduction is 21%, and, since the annual heating cost for the sample house is $900, the yearly saving with this plan is $191. It must be considered, however, that adding insulation to the walls can be very expensive. If pumping loose fill into all walls costs $2000, the return on investment is about 9% for the first year for this example (approximately a 10-year break-even point with constant heating fuel costs). The program operation is shown in figure 4. (See page 260.)

In the sample house, an inspection of the caulking and weather stripping...
around windows and doors reveals noticeable drafts and dried-out caulk material. The caulking and weather stripping improvement plan is evaluated next. The results (figure 3c) show that the total heat-loss reduction is about 12% (or $112 annually) with the new caulking and weather stripping plan. In the example, this plan costs about $200, and the return on investment for the first year is 60% (about a two-year breakeven point).

It is apparent that the caulking and weather stripping plan offers a better return on investment. Assuming that heating fuel costs will increase, however, our wall-insulation plan and other costly improvement plans become more attractive each year. Also, air-conditioned homes will ben-

![Figure 2: Six heating zones in the continental United States. These play an important part in figuring your heat loss. For other areas, consult your local government. (Source: United States Department of Commerce, National Bureau of Standards.)](image)

<table>
<thead>
<tr>
<th>R-Factor</th>
<th>Glass Fiber</th>
<th>Rock Wool</th>
<th>Glass Fiber</th>
<th>Rock Wool</th>
<th>Cellulose Fiber</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Wall with no insulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Roof with no insulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>1½-2</td>
<td>3</td>
<td>2-2</td>
<td>1½-2</td>
</tr>
<tr>
<td>11</td>
<td>3½-4</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>4½</td>
<td>6</td>
<td>4½</td>
<td>3½</td>
</tr>
<tr>
<td>19</td>
<td>8½-10½</td>
<td>5½</td>
<td>8-9</td>
<td>6-7</td>
<td>5</td>
</tr>
<tr>
<td>22</td>
<td>8½-10½</td>
<td>6</td>
<td>10</td>
<td>7-8</td>
<td>6</td>
</tr>
<tr>
<td>26</td>
<td>8½-10½</td>
<td>8½</td>
<td>12</td>
<td>9</td>
<td>7-7½</td>
</tr>
<tr>
<td>30</td>
<td>9½-10½</td>
<td>9</td>
<td>13-14</td>
<td>10-11</td>
<td>8</td>
</tr>
<tr>
<td>33</td>
<td>11</td>
<td>10</td>
<td>15</td>
<td>11-12</td>
<td>9</td>
</tr>
<tr>
<td>38</td>
<td>12-13</td>
<td>10½</td>
<td>17-18</td>
<td>13-14</td>
<td>10-11</td>
</tr>
<tr>
<td>44</td>
<td>14</td>
<td>11½</td>
<td>19-21</td>
<td>14-16</td>
<td>11-13</td>
</tr>
</tbody>
</table>

Table 1: R-factors for various types of insulation materials. Insulation thickness is measured in inches.
THE ORIGINAL MAGAZINE FOR
OWNERS OF THE TRS-80™ MICROCOMPUTER

SOFTWARE FOR TRS-80™ OWNERS

MONTHLY NEWSMAGAZINE
Practical Support For Model I, II & III

NOW IN OUR 4th YEAR

- PRACTICAL APPLICATIONS
- BUSINESS
- GAMBLING • GAMES
- EDUCATION
- PERSONAL FINANCE
- BEGINNER'S CORNER
- NEW PRODUCTS
- SOFTWARE EXCHANGE
- MARKET PLACE
- QUESTIONS AND ANSWERS
- PROGRAM PRINTOUTS
- AND MORE

FREE* WITH YOUR SUBSCRIPTION OR RENEWAL

FINCALC
A Complete Financial Analysis Package Used To Calculate Markup, Margin, Annuities, Compound Interest, Nominal And Effective Rates, Sinking Funds, Mortgage Calculations, Future Value, Savings and Insurance, Percentage Difference Between Two Numbers, Amortization Schedule and More

SEND FOR OUR NEW 64 PAGE SOFTWARE CATALOG (INCLUDING LISTINGS OF HUNDREDS OF TRS-80™ PROGRAMS AVAILABLE ON CASSETTE AND DISKETTE). $2.00 OR FREE WITH EACH SUBSCRIPTION OR SAMPLE ISSUE

* All programs are supplied on cassette (add $3 for Diskette Version • add $5 for modified Mod-ll Version).

NEW TOLL-FREE ORDER LINE
(OUTSIDE OF N.Y. STATE)
(800) 431-2818

24 HOUR ORDER LINE
(914) 425-1535

CREDIT CARD NUMBER ___ EXP. DATE __________

SIGNATURE ____________________________ NAME __________________________

ADDRESS ___________________________________ CITY __________________________ STATE ______ ZIP ______

*** ADD $12/YEAR (CANADA, MEXICO) • ADD $24/YEAR AIR MAIL • OUTSIDE OF U.S.A., CANADA & MEXICO ***

Circle 181 on inquiry card.
WHAT'S BETTER THAN AN ISAM

And Will Turn
MICROSFT BASIC
COBOL
FORTRAN
DIGITALS PL/I-60
CBASIC
PASCAL/M1+
S-BASIC
CROMEMCO 16K BASIC
Into first class application languages?

MICRO B+™
The first and most complete implementation of B-TREE index structures for microcomputers. B-TREES eliminate index file reorganization.

Search
An index of over
10,000 Key Values In Less Than One Second
On A Floppy Disk System for only
$260.00!

Figure 3: Energy-efficiency analysis for the sample house as provided by the program in listing 1. The heat-loss profile in based on existing conditions and represents the sample house's current total heat loss. Nearly 47% of the total heat loss is through the walls. Figure 3b shows that by adding 2 inches of loose rockwool, the total heat loss can be reduced by 21%, for an estimated annual savings of $191. On the other hand, by caulking and weather-stripping the doors and windows, a reduction of 12% of the total heat loss can be achieved at a cost of about $112. Note that these figures are based on a constant cost for heating. As the cost for heating increases, more expensive methods of improving heat loss become cost-effective.

Sample House Energy-Efficiency Analysis

<table>
<thead>
<tr>
<th>Component</th>
<th>Heat Loss (BTU/HR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss through Walls</td>
<td>10916</td>
</tr>
<tr>
<td>Loss through Roof/Ceiling</td>
<td>2608</td>
</tr>
<tr>
<td>Loss through Windows</td>
<td>5280</td>
</tr>
<tr>
<td>Air Infiltration Loss</td>
<td>4328</td>
</tr>
<tr>
<td>Total Heat Loss</td>
<td>23133</td>
</tr>
</tbody>
</table>

Sample House Energy-Efficiency Improvement With Wall-Insulation Addition Plan

<table>
<thead>
<tr>
<th>Component</th>
<th>Heat Loss (BTU/HR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss through Walls</td>
<td>6004</td>
</tr>
<tr>
<td>Loss through Roof/Ceiling</td>
<td>2606</td>
</tr>
<tr>
<td>Loss through Windows</td>
<td>5280</td>
</tr>
<tr>
<td>Air Infiltration Loss</td>
<td>4328</td>
</tr>
<tr>
<td>Total Heat Loss</td>
<td>18221</td>
</tr>
</tbody>
</table>

Heat Loss Reduction: 21%
Annual Savings in Heating Cost: $191

Sample House Energy-Efficiency Improvement With Caulking/Weather Stripping Plan

<table>
<thead>
<tr>
<th>Component</th>
<th>Heat Loss (BTU/HR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss through Walls</td>
<td>10916</td>
</tr>
<tr>
<td>Loss through Roof/Ceiling</td>
<td>2608</td>
</tr>
<tr>
<td>Loss through Windows</td>
<td>5280</td>
</tr>
<tr>
<td>Air Infiltration Loss</td>
<td>1442</td>
</tr>
<tr>
<td>Total Heat Loss</td>
<td>20247</td>
</tr>
</tbody>
</table>

Heat Loss Reduction: 12%
Annual Savings in Heating Cost: $112

Other Factors to Consider

The heat-loss properties of each house can be very complex and subject to many unknown factors. Variations in construction techniques and materials make it impossible to exactly determine heat-transfer coefficients for each building element. The heat lost from air infiltration depends on such indeterminate factors as how loose each door and window fits, outside wind speed, and what amount of time outside doors are left open when entering or exiting. Effectiveness of
BUSINESS 100 PROGRAM LIST

<table>
<thead>
<tr>
<th>No.</th>
<th>NAME</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RULE78</td>
<td>Interest Apportionment by Rule of the 78's</td>
</tr>
<tr>
<td>2</td>
<td>ANNUI</td>
<td>Annuity computation program</td>
</tr>
<tr>
<td>3</td>
<td>DATE</td>
<td>Time between dates</td>
</tr>
<tr>
<td>4</td>
<td>DAYEAR</td>
<td>Day of year a particular date falls on</td>
</tr>
<tr>
<td>5</td>
<td>LEASENT</td>
<td>Interest on lease</td>
</tr>
<tr>
<td>6</td>
<td>BREAKEYM</td>
<td>Break even</td>
</tr>
<tr>
<td>7</td>
<td>DEPRSL</td>
<td>Straightline depreciation</td>
</tr>
<tr>
<td>8</td>
<td>DEPRSM</td>
<td>Sum of the digits depreciation</td>
</tr>
<tr>
<td>9</td>
<td>DEPRDB</td>
<td>Declining balance depreciation</td>
</tr>
<tr>
<td>10</td>
<td>DEPRDB2</td>
<td>Double declining balance depreciation</td>
</tr>
<tr>
<td>11</td>
<td>TANDEP</td>
<td>Cash flow vs. depreciation tables</td>
</tr>
<tr>
<td>12</td>
<td>CHECK2</td>
<td>Printsueba checks along with daily register</td>
</tr>
<tr>
<td>13</td>
<td>CHECKBK1</td>
<td>Checkbook maintenance program</td>
</tr>
<tr>
<td>14</td>
<td>MORTGAGE/A</td>
<td>Mortgage amortization table</td>
</tr>
<tr>
<td>15</td>
<td>MULTMHN</td>
<td>Computes time needed for money to double, triple, etc.</td>
</tr>
<tr>
<td>16</td>
<td>SALVAGE</td>
<td>Determines salvage value of an investment</td>
</tr>
<tr>
<td>17</td>
<td>RRVARIN</td>
<td>Rate of return on investment with variable inflows</td>
</tr>
<tr>
<td>18</td>
<td>RRCOFNST</td>
<td>Rate of return on investment with constant inflows</td>
</tr>
<tr>
<td>19</td>
<td>EFFECT</td>
<td>Effective interest rate of a loan</td>
</tr>
<tr>
<td>20</td>
<td>PVF</td>
<td>Future value of an investment (compound interest)</td>
</tr>
<tr>
<td>21</td>
<td>PVAL</td>
<td>Present value of a future amount</td>
</tr>
<tr>
<td>22</td>
<td>LOANPAY</td>
<td>Amount of payment on a loan</td>
</tr>
<tr>
<td>23</td>
<td>RECLWTH</td>
<td>Equiv. withdrawals from investment to leave 0 over an interest</td>
</tr>
<tr>
<td>24</td>
<td>SIMPDISK</td>
<td>Simple discount analysis</td>
</tr>
<tr>
<td>25</td>
<td>DATEVAL</td>
<td>Equivalent & nonequivalent dated values for obig</td>
</tr>
<tr>
<td>26</td>
<td>APNUNDEF</td>
<td>Present value of deferred annuity</td>
</tr>
<tr>
<td>27</td>
<td>MARKUP</td>
<td>Markup for sales items</td>
</tr>
<tr>
<td>28</td>
<td>SINKFUND</td>
<td>Sinking fund amortisation program</td>
</tr>
<tr>
<td>29</td>
<td>BONDVAL</td>
<td>Value of a bond</td>
</tr>
<tr>
<td>30</td>
<td>DEPRELE</td>
<td>Depreciation analysis</td>
</tr>
<tr>
<td>31</td>
<td>BLACKSH</td>
<td>Black Scholes options analysis</td>
</tr>
<tr>
<td>32</td>
<td>STOVAL1</td>
<td>Expected return on stock via discounts dividends</td>
</tr>
<tr>
<td>33</td>
<td>HAPRAN</td>
<td>Value of a warrant</td>
</tr>
<tr>
<td>34</td>
<td>BONDVAL2</td>
<td>Value of a bond</td>
</tr>
<tr>
<td>35</td>
<td>EPSST</td>
<td>Estimate of future earnings per share for company</td>
</tr>
<tr>
<td>36</td>
<td>BETAAPLH</td>
<td>Computes alpha and beta variables for stock</td>
</tr>
<tr>
<td>37</td>
<td>SHAPR1</td>
<td>Portfolio selection model - what stocks to hold</td>
</tr>
<tr>
<td>38</td>
<td>OPTWRITE</td>
<td>Option writing computations</td>
</tr>
<tr>
<td>39</td>
<td>RIVTA</td>
<td>Value of a right</td>
</tr>
<tr>
<td>40</td>
<td>EXPRAW</td>
<td>Expected value analysis</td>
</tr>
<tr>
<td>41</td>
<td>BYAES</td>
<td>Retirement analysis</td>
</tr>
<tr>
<td>42</td>
<td>VALRPRIN</td>
<td>Value of perfect information</td>
</tr>
<tr>
<td>43</td>
<td>VALADOFIN</td>
<td>Value of additional information</td>
</tr>
<tr>
<td>44</td>
<td>UTILTY</td>
<td>Derives utility function</td>
</tr>
<tr>
<td>45</td>
<td>SIMPLEX</td>
<td>Linear programming solution by simplex method</td>
</tr>
<tr>
<td>46</td>
<td>TRANS</td>
<td>Transportation method for linear programming</td>
</tr>
<tr>
<td>47</td>
<td>ECON</td>
<td>Economic order quantity inventory model</td>
</tr>
<tr>
<td>48</td>
<td>QUEUE1</td>
<td>Single server queuing (waiting line) model</td>
</tr>
<tr>
<td>49</td>
<td>CVP</td>
<td>Cost-volume-profit analysis</td>
</tr>
<tr>
<td>50</td>
<td>CONDPROF</td>
<td>Conditional profit tables</td>
</tr>
<tr>
<td>51</td>
<td>OPLTLOSS</td>
<td>Opportunity loss tables</td>
</tr>
<tr>
<td>52</td>
<td>FEOUQ</td>
<td>Fixed quantity economic order quantity model</td>
</tr>
<tr>
<td>53</td>
<td>FOEONSH</td>
<td>As above but with shortages permitted</td>
</tr>
<tr>
<td>54</td>
<td>FEOOQDSH</td>
<td>As above but with quantity price breaks</td>
</tr>
<tr>
<td>55</td>
<td>QUEUE2</td>
<td>Cost-benefit waiting line analysis</td>
</tr>
<tr>
<td>56</td>
<td>NCANFAI</td>
<td>Net cash-flow analysis for simple investment</td>
</tr>
<tr>
<td>57</td>
<td>PROFIND</td>
<td>Profitability index of a project</td>
</tr>
<tr>
<td>58</td>
<td>CAPI</td>
<td>Cap. Asset Pr. Model analysis of project</td>
</tr>
</tbody>
</table>

BUSINESS PAC 100

100 Ready-To-Run Business Programs

(ON CASSETTE OR DISKETTE)....Includes 110 Page Users Manual....5 Cassettes (Or Diskettes)

- Inventory Control
- Payroll
- Bookkeeping System
- Stock Calculations
- Checkbook Maintenance
- Accounts Receivable
- Accounts Payable

BUSINESS 100 PROGRAM LIST

<table>
<thead>
<tr>
<th>No.</th>
<th>NAME</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td>WCAC</td>
<td>Weighted average cost of capital</td>
</tr>
<tr>
<td>60</td>
<td>COMPRAL</td>
<td>True rate on loan with compensating balance required</td>
</tr>
<tr>
<td>61</td>
<td>DISCBAL</td>
<td>True rate on discounted loan</td>
</tr>
<tr>
<td>62</td>
<td>MERGAMAL</td>
<td>Merger analysis computations</td>
</tr>
<tr>
<td>63</td>
<td>FINTMAT</td>
<td>Financial ratios for a firm</td>
</tr>
<tr>
<td>64</td>
<td>IPV</td>
<td>Net present value of project</td>
</tr>
<tr>
<td>65</td>
<td>PRINDLAS</td>
<td>Laspey's price index</td>
</tr>
<tr>
<td>66</td>
<td>PRINDPA</td>
<td>Paasche price index</td>
</tr>
<tr>
<td>67</td>
<td>SEASIND</td>
<td>Constructs seasonal index quantities for company</td>
</tr>
<tr>
<td>68</td>
<td>TIMETR</td>
<td>Time series analysis linear trend</td>
</tr>
<tr>
<td>69</td>
<td>TMEAD 1</td>
<td>Time series analysis moving average trend</td>
</tr>
<tr>
<td>70</td>
<td>FUPRINT</td>
<td>Future price estimation with inflation</td>
</tr>
<tr>
<td>71</td>
<td>MAPLOC</td>
<td>Master list system</td>
</tr>
<tr>
<td>72</td>
<td>LETTERT</td>
<td>Letter writing system/inkjet with MAILPAC</td>
</tr>
<tr>
<td>73</td>
<td>SORT3</td>
<td>Sorts list of names</td>
</tr>
<tr>
<td>74</td>
<td>LABEL1</td>
<td>Shipping label maker</td>
</tr>
<tr>
<td>75</td>
<td>LABEL2</td>
<td>Name label maker</td>
</tr>
<tr>
<td>76</td>
<td>BUSBUSD</td>
<td>DOME business bookkeeping system</td>
</tr>
<tr>
<td>77</td>
<td>TIMECLKR</td>
<td>Computes weeks total hours from time clock</td>
</tr>
<tr>
<td>78</td>
<td>ACCTPAY</td>
<td>In memory accounts payable system/Storage permitted</td>
</tr>
<tr>
<td>79</td>
<td>INVOICE</td>
<td>Generates invoice on screen and print on printer</td>
</tr>
<tr>
<td>80</td>
<td>INV2T2</td>
<td>In memory inventory control system</td>
</tr>
<tr>
<td>81</td>
<td>TELDIR</td>
<td>Computerized telephone directory</td>
</tr>
<tr>
<td>82</td>
<td>TIMUSAN</td>
<td>Time use analysis</td>
</tr>
<tr>
<td>83</td>
<td>ASIGN</td>
<td>Use of assignment algorithm for optimal job assign.</td>
</tr>
<tr>
<td>84</td>
<td>ACCCTREC</td>
<td>In memory accounts receivable system/Storage</td>
</tr>
<tr>
<td>85</td>
<td>TERAPAY</td>
<td>Compares 3 methods of repayment of loans</td>
</tr>
<tr>
<td>86</td>
<td>PAYNET</td>
<td>Computes gross pay required for given net</td>
</tr>
<tr>
<td>87</td>
<td>SELLPR</td>
<td>Computes selling price for given amount</td>
</tr>
<tr>
<td>88</td>
<td>ARCOCORP</td>
<td>Arbitrage computations</td>
</tr>
<tr>
<td>89</td>
<td>DEPSF</td>
<td>Seeks fund depreciation</td>
</tr>
<tr>
<td>90</td>
<td>IPSZONE</td>
<td>Finds IPS zones from zip code</td>
</tr>
<tr>
<td>91</td>
<td>ENVELOPE</td>
<td>Types envelope including return address</td>
</tr>
<tr>
<td>92</td>
<td>AUTOEXP</td>
<td>Automobile expense analysis</td>
</tr>
<tr>
<td>93</td>
<td>ISPILE</td>
<td>Insurance policy file</td>
</tr>
<tr>
<td>94</td>
<td>PAYROL2</td>
<td>In memory payroll system</td>
</tr>
<tr>
<td>95</td>
<td>DILANAL</td>
<td>Dilution analysis</td>
</tr>
<tr>
<td>96</td>
<td>LOANAFR</td>
<td>Loan amount a borrower can afford</td>
</tr>
<tr>
<td>97</td>
<td>RENTPRCH</td>
<td>Purchase price for rental property</td>
</tr>
<tr>
<td>98</td>
<td>SLEALEAS</td>
<td>Sale-leaseback analysis</td>
</tr>
<tr>
<td>99</td>
<td>RRCOMBD</td>
<td>Investor's rate of return on convertible bond</td>
</tr>
<tr>
<td>100</td>
<td>PORTVAIL</td>
<td>Stock market portfolio storage-valuation program</td>
</tr>
</tbody>
</table>
Listing 1: A TRS-80 BASIC program to perform an energy-efficiency analysis of your home. After asking for your home’s vital statistics, the program presents an analysis of your present heat losses. Then, by entering options 1 through 4, you can evaluate the results of the various energy-conservation plans on your house. Data for plans 1 and 4 for the sample house described in the text are shown in figure 3.

```
10 REM---------ENERGY EFFICIENCY ANALYSIS---------
20 CLS
30 REM BUILDING SURFACE AREA AND EXISTING INSULATION
40 INPUT "HEATING ZONE (FROM MAP)" ;N
50 T=N#10
60 INPUT "TOTAL DOUBLE-PANE WINDOW AREA (SQUARE FEET)" ;GN
70 INPUT "TOTAL SINGLE-PANE WINDOW AREA (SQUARE FEET)" ;GA
80 INPUT "TOTAL WALL AREA (SQUARE FEET)" ;WA
90 INPUT "TOTAL ROOF/CEILING AREA (SQUARE FEET)" ;RA
100 INPUT "TOTAL DOOR AREA (SQUARE FEET)" ;DA
110 INPUT "R-FACTOR OF EXISTING WALL INSULATION" ;WF
120 INPUT "R-FACTOR OF EXISTING ROOF/CEILING INSULATION" ;RR
130 CLS
140 PRINT "-------------------HEAT LOSS PROFILE-------------------"  
150 PRINT:WL=(1/(WR+2))*WAT
160 RL=(1/RR+3)*RAT
170 BL=645*GLAT+(11641)
180 DL=54#*8(GA+GW)*DAAT
190 PRINT "LOSS THROUGH WALLS " INT(WL)" BTU/HR"
200 PRINT "LOSS THROUGH ROOF/CEILING " INT(1L)" BTU/HR"
210 PRINT "AIR INFORMATION LOSS " INT(DL)" BTU/HR"
220 PRINT "LOSS THROUGH WINDOWS " INT(GL)" BTU/HR"
230 TL=INT(WL+RL+GL+DL)
240 PRINT
250 PRINT "TOTAL HEAT LOSS " INT(TL)" BTU/HR"
260 PRINT:PRINT "ENERGY EFFICIENCY IMPROVEMENT PLAN"
270 PRINT
280 PRINT "ADD WALL INSULATION (ENTER 1)"
290 PRINT "ADD ROOF/CEILING INSULATION (ENTER 2)"
300 PRINT "INSTALL STORM WINDOWS (ENTER 3)"
310 PRINT "CAULK AND WEATHERSTRIP (ENTER 4)"
320 INPUT E
330 IF E<3 THEN GOTO 370
340 IF E=3 THEN BL=GLAT+1885*(GA+GW)*DAAT
350 IF E=4 THEN TL=TL+1885*(GA+GW)*DAAT
360 GOTO 400
370 INPUT "ADDED R-FACTOR OF NEW INSULATION" ;R
380 IF E=1 THEN WL=(1/(WR+2+R)) WAT
390 IF E=2 THEN RL=(1/(RR+3+R))RAT
400 CLS:PRINT "-------------HEAT LOSS PROFILE WITH PLAN------------"
410 PRINT
420 PRINT "LOSS THROUGH WALL " INT(WL)" BTU/HR"
430 PRINT "LOSS THROUGH ROOF/CEILING " INT(GL)" BTU/HR"
440 PRINT "LOSS THROUGH WINDOWS " INT(GL)" BTU/HR"
450 PRINT "AIR INFORMATION LOSS " INT(DL)" BTU/HR"
460 PRINT:TN=INT(WL+RL+BL+DL)
470 PRINT "TOTAL HEAT LOSS " INT(TL)" BTU/HR"
480 PRINT
490 PRINT "HEAT LOSS REDUCTION " INT(NL)" BTU/HR"
500 PRINT:PRINT "TOTAL ANNUAL HEATING COST" ;X
510 PRINT
520 PRINT "ANNUAL HEATING COST SAVINGS=" INT(X)*INT(TL)" X"
530 PRINT "DO YOU WANT TO CHECK THE EFFICIENCY OF OTHER" 
540 INPUT "IMPROVEMENTS " (ENTER 1 IF YES - 2 IF NO) ;Y
550 IF Y=1 THEN CLS:GOTO 260
560 IF Y=2 THEN CLS
570 PRINT "DO YOU WANT TO RUN THIS PROGRAM FOR ANOTHER"
580 INPUT "BUILDING " (ENTER 1 IF YES - 2 IF NO) ;Y
590 IF Y=1 THEN GOTO 20 ELSE CLS
600 PRINT "ENERGY AUDIT PROGRAM TERMINATED"
999 END
```
AVAILABLE NOW ... SYSTEM 2800 FROM SYSTEMS GROUP

FEATURES

- IEEE S-100 Bus Compatible Systems, 280A Based
- Two 8-Inch Drives: Single or Double Sided, Double Density Floppy Disk Drives (4MB Winchester Hard Disk Drive
- 20MB Winchester and Tape Backup
- 8-Slot Shielded and Terminated Motherboard
- System Software Selection includes CP/M*, MP/M or OASIS**
- Single-User or Multi-User Systems, Expandable to 6 Users
- Table Top or Rack Mountable
- Two Switched AC Outlets on Rear Panel
- One Year Warranty on Entire System

2812 CP/M, 2 Single Sided Floppies $375.00
2814 CP/M, 2 Double Sided Floppies $425.00
2819 CP/M, 10 MB Winchester & 1 Double Sided Floppy $675.00
2824 MP/M, 2 Double Sided Floppies $525.00
2829 MP/M, 10 MB Winchester & 1 Double Sided Floppy $750.00

S-100 PRODUCTS

QUALITY RAM FROM SYSTEMS GROUP

- Z-80 4MHZ operation with no wait states
- IEEE compatible timing - 200 NS 4118's
- Factory assembled, tested & burned in
- 16K 4,144-pin (Bank Select, shown) $749.00
- DMR6140 64K $645.00
- DMR400 48K $520.00
- DM3200 32K $485.00

CONFIGURE A COMPLETE S-100 SYSTEM WITH 2nd GENERATION* PRODUCTS FROM SYSTEMS GROUP.

- CPC 2810 (shown) Z-80A processor board (4MHZ) with 4 serial & 2 parallel ports $389.00
- CPC2813 - same as CPC2810 but 2 serial ports only $389.00
- FDC2801/8 - 8" floppy disk controller board, up to 4 single/double sided drives, single or double density $389.00
- INO-2804 - 4 channel serial I/O $329.00
- CIA-100 - Cromemco's* adapter board $35.00

CALL US FOR OUR MOST CURRENT PRICES!

*2nd Generation is a trademark of Maitrelement Systems and Controls. Cromemco is a trademark of Cromemco, Inc. Til-Back is a trademark of Wabash, Inc. CP/M and MP/M are trademarks of Digital Research. OASIS is a trademark of Phase One Systems.

16K MEMORY EXPANSION KIT $24.00

For Apple, TRS-80 keyboard, Quidex, and all other systems using 4116 dynamic RAM or equivalents. All IC's are prime Mitsubishi MT 4116-3, 200 NSEC, burned-in and fully tested.

wabash

8" or 5½" flexible diskette certified 100% error free with manufacturers 5 year limited warranty on all 8" media. Soft sectored in Til-back® boxes of 10.

(Add $3.00 for plastic library cases)

8" single sided, single density $22.05
8" single sided, double density $37.05
8" double sided, double density $48.05
5½" single sided, single density $27.05
5½" single sided, double density $32.05

Adds Viewpoint CRT...$59.00

8" DISK DRIVES

Shugart 80H... $389.00
NEC FD1100 (double sided)... $505.00
Memorex MBX-101 8" Winchester style, hard disk drive, 10 megabytes... $2,000.00

8" or 5½" flexible diskette certified 100% error free with manufacturers 5 year limited warranty on all 8" media. Soft sectored in Til-back® boxes of 10.

BETA 32K BYTE EXPANDABLE RAM FOR 8902 AND 68000 SYSTEMS

AIM 65 RIM SYM PET 544-BUS

- Plug compatible with the AIM-65/SYM expansion connector by using a right angle connector (supplied).
- Memory board edge connector plugs into the 68000 544 bus.
- Connects to PET using an adapter cable.
- Uses +5V only, supplied from the host computer.
- Full documentation. Assembled and tested boards are guaranteed for one full year. Purchase price is fully refundable if board is returned undamaged within 14 days.

Assembled with 32K RAM... $349.00
& Tested with 16K RAM... $329.00

BETA 32K RAM EXPANDABLE SYSTEMS

8902 AND 68000 SYSTEMS

ORDERS: 329-9005 W. 14TH ST., PANAMA CITY, FL 32401

BETA COMPUTER DEVICES

1230 W. COLLINS AVE. ORANGE, CA 92668
(714) 633-7280

6502 PRODUCTS

BETA 32K RAM EXPANDABLE SYSTEMS

8902 AND 68000 SYSTEMS

TERM: Minimum order $15.00. Minimum shipping and handling $3.00. Calif. residents add 8.5% sales tax. Cash, checks, Mastercard, Visa and purchase orders from qualified firms and institutions are accepted. Product availability and pricing are subject to change without notice.

INTERNATIONAL ORDERS: Add 15% to purchase price for all orders. Minimum shipping change is $20.00. Orders with insufficient funds will be delayed. Excess funds will be returned with your order. All prices are U.S. only.
the existing insulation cannot be exactly determined either. Also, dampness and uneven thickness will alter the heat-transfer properties of insulation.

In short, some assumptions are necessary in this program to express the heat-loss characteristics of the home. For most houses, however, the evaluation provided in this program is reasonably accurate for selecting the best heating energy-conservation plan and determining the approximate saving in heating costs.

Several publications are available from the US government to aid in conserving home heating energy. Among them are:

Building Science #64
Retrofitting Existing Housing for Energy Conservation Making the Most of Your Energy Dollars

These and other publications can be obtained by contacting the US Department of Commerce, National Bureau of Standards, Washington, DC 20230. Your local power utility company and your home heating fuel supplier may also be able to provide you with literature.
If you want a choice in print wheels, here's the first choice in printers.

The Diablo 630.
It's the first printer that lets you use either metal or plastic print wheels. So you can choose the print wheel that's just right for the job.
The 630 works as well with a 96-character plastic daisy print wheel as it does with an 88-, 92-, or 96-character metal daisy print wheel. In over 100 different type styles.
Every 630 has fewer moving parts than competitive printers, which makes it more reliable. And it offers unsurpassed print quality. Compatibility with Diablo supplies. And bi-directional printing capability.
So if you want to change your print wheels, you'll just have to change your printer.
To a Diablo 630 printer.

Diablo Systems

Diablo* and XEROX* are trademarks of XEROX CORPORATION.

Circle 118 on inquiry card.
Get yourself a real chill on
Halloween
in the nationwide
CompuServe Adventure Tournament.

Prizes: Grand Masters win two
hours of free time on CompuServe.

Runners-up win a CompuServe
Adventure T-shirt (Grand Masters
win this too.)

Everyone who enters can, on
request, receive a large poster of
the Gray Morrow art on the opposite
page in full color. We'll charge your
account $2.00 for postage and
handling.

When? Starting at 6 PM local time on
Friday, October 30, running through
5 AM on Monday, November 2.

How? Since this will be our first nationally-
advertised tournament, we may
have to make some last minute
changes following our "in-house"
tournament on Labor Day. So
check the "What's New" section of
the CompuServe Information
Service for details preceding the
contest. So enter. Collect treasures.
Slay dwarves. And practice, prac-
tice, practice. How else will we be
able to afford the T-shirts?

CompuServe
5000 Arlington Centre Blvd.
Columbus, Oh 43220
Information Service Division
(800) 848-8990

If you're not already a member
of the country's largest personal
computer network, get on-line now!

How does it work?
Your computer talks to our computers. You
need a modem and some special software.
Software for the TRS-80* and Apple II*
computers are available at many Radio Shack®
outlets and all Radio Shack® Computer
Centers. Atari® users can access the system
via Teletext® software. Persons owning other
brands of computers or terminals can also
purchase the CompuServe Information Service
through Radio Shack®. In more than 260
U.S. cities you can reach the CompuServe
Information Service via a local phone call. The
cost is $5 per hour, billed in minutes, to your
charge card, for service between 6 PM and
5 AM local time on weekdays and all day on
Saturday, Sunday and most holidays. Limited
daytime access is available at a higher rate.

What do I get?
There are more than 175 topics listed
in the on-line index. Most first-time users are
interested in:
1. News, weather, sports. We offer the
electronic editions of many of the major
daily newspapers and the AP news and
sports wires.
2. CB simulation. "Talk" to other computer
users anywhere in the country. We also
offer electronic mail.
3. Games. Many, including the multiplayer
Space War, Star-Trek, four Adventure
games.
4. Finance. Again, a wide variety for both
historical and current data on stocks, bonds
and commodities.
5. Computer user groups (including national
bulletin boards) and computer
manufacturers' newsletters.
Government publications. Aviation news.
Energy-saving tips. And more.

When you are ready, CompuServe Information
Service can provide you with a lot of big
mainframe computer power. But see a
demonstration at Radio Shack® right away so
you can get on-line before the tournament.

Radio Shack and TRS-80 are trademarks of Tandy
Corporation. ATARI and Teletext are trademarks of ATARI.
Inc. Apple is a trademark of Apple Computer, Inc.

Circle 79 on inquiry card.
Bridging the 10-Percent Gap

Paul T Brady
91 Marshire Dr
Middletown NJ 07748

In my spare time, I’m the administrator of a nature center in Middletown, New Jersey. We have a staff of five, an annual budget approaching $40,000, a mailing list of 1500 names, annual attendance of 10,000 visitors, and a need to type and/or mimeograph letters, handouts, and other literature. (If you wonder how we can support five people on $40,000, we can’t; some staff members are on the payroll of other agencies.)

And if you were wondering what a nature center has to do with computers, take a minute to think about the figures in the first paragraph. You’ll soon see that we were absolutely hurting for a small computer.

This article describes our problems and eventual success in computerizing many of the office functions at the nature center. It’s one of many similar stories, I’m sure. But there are also many small businesses like ours, including grocery stores, museums, law offices, and other firms, that could benefit from computers—but won’t because of the 10-percent gap.

The 10-Percent Gap

I make two claims:

1. There is already available a wide range of excellent hardware at reasonable prices that can perform the functions a small business requires.
2. There is also an enormous range of available software that will almost do the required job. It will do a 90-percent job. But to bridge the 10-percent gap requires experience and efforts far beyond the abilities or interests of the typical small-business owner. This 10-percent software gap is holding back a virtual explosion of data processing into small businesses.

Background

My computer work began in 1958, programming the TX-0 computer at MIT in machine language (what else). I have sampled many other computers and languages, generally using minicomputers and microcomputers. By profession, I work at Bell Labs and specialize in performance measurements of mid-size systems, especially VAX/VMS systems (made by Digital Equipment Corporation). I also spent many years designing and testing human-factor interfaces to computer systems.

The nature center grew from a citizens’ movement in 1969 to save land for a park. We succeeded, and now have a fine 250-acre park with historic buildings and a new nature center. The name of the park is Poricy Park (an Indian name from the 1600s). It is operated by a citizens’ committee with an excellent professional staff—who have absolutely no background in computers.

We Needed Help!

The first warning that we needed data processing came from our inability to manage our mailing list by hand. Just try hand-addressing 1000 envelopes! So I wrote a program to print labels from a name-and-address file and put it on a timeshared system. For many years, this program got occasional use whenever we had a mailing.

But there were problems. The computer system was often down for modifications, especially in the evening hours when we usually used it. It was not available to our staff, we had no dial-up equipment, and we often wouldn’t have daytime access even if we could dial in. But the most serious problem was that I was the only person in the world who knew how to use the system. If anything happened to me, good-bye mailing list. We finally realized that we had to become self-sufficient, and that several people had to be able to manage the list.

The second need for a computer was realized soon after we opened the park year-round. Our accounting system, managed in part by nonexistent secretaries and in part by volunteers, was a real headache. We often met at nights, pounding on an adding machine generating yards of tape, trying to find minor errors in entering checks or locating missing deposit entries. The annual tax-return time was a nightmare, when we usually had to plow through everything again.
Searching for a Solution

In early 1979, we came up with partial specifications. We had to fit the mailing list on one floppy disk; this demanded either 8-inch disks or 5-inch quad-density disks. We needed an impact printer with adjustable tractor feed (for labels), and, if possible, of letter quality for secretarial work. Finally, we needed a video terminal; we did not care whether it was separate or incorporated into the main computer. We had no need for video graphics or color, so we could use any standard terminal.

We began by visiting a computer store, a nicely decorated operation with impressive-looking equipment. We were greeted by a friendly salesperson who asked what we wanted. After we explained who we were and what we needed, he immediately told us they had the solution. This so-called solution was a $15,000 system with bells and whistles, a dot-matrix printer, etc., far out of our price range and probably not even suitable. After finally getting down to a system we might be able to handle, we engaged in dialogue such as:

Clerk: "Suppose you wanted to play chess."
Us: "We don't want to play chess."
Clerk: "But suppose you do."
Us: "We don't. We want to do accounting and mailing-list management."

A little more of this and we got to see the manager. We asked if the BASIC system, or any other system that came with the machine, had decimal floating-point arithmetic, as
opposed to binary floating-point. (Binary floating-point can have round-off error on fractions, intolerable in accounting. Until recently, most microcomputer systems represented numbers only in integer or binary floating-point format.) The manager answered that their systems had great precision, certainly enough for dollars and cents. We explained that we were not talking about precision, the number of digits supported, but the way decimal fractions were stored internally. The manager got angry and condescending; we got disgusted. No sale.

The next few months produced similar encounters. All dealers claimed to have just what we wanted, except that they never bothered to ask us what we wanted to do with it, or anything at all about our business. This is one of the fundamental problems of dealers. Because they spend so much time talking to computer freaks, they assume everybody wants to play with systems, languages, and various gadgets. We don't. Our business is running a nature center—not a computer center.

Because dealers spend so much time talking to computer freaks, they assume everybody wants to play with systems and languages.

Our System
Eventually, from the wide range of equipment and operating systems available, we arrived at our current configuration. It includes:

- a North Star Horizon computer with 48 K bytes of memory and two quad-density disk drives (each disk has 360,000 bytes)
- a Perkin-Elmer Bantam terminal
- a beautifully reconditioned Perkin-Elmer Carousel printing terminal, donated by the Perkin-Elmer Corporation (whose computer division is in the town adjacent to the park; clearly a special case for them to do this)

Some of the equipment was purchased with special private grants. No membership funds were used. I emphasize this because we have not, unfortunately, reached the point where contributors think positively about using their donations for a computer. Typewriter, yes; computer, no. Let's hope this attitude soon changes.

We are very pleased with the equipment, but many other manufacturers would do as well. There is much fine hardware on the market.

The main problems occur in the software. There's plenty of software—but virtually none of it bridges the 10-percent gap.

Why Software Is Inadequate
Here are some reasons why commercially available software was unsuitable for our business:

1. It is too complex. I purchased the manual for an accounting program,
High resolution, dot addressable graphics with vertical resolution of 72 dots per inch and up to 82 dots per inch horizontal resolution.

"C.T." cover reduces noise to an office comfort level. This is an optional feature to our standard sound deadening case.

Single sheet feeder is very simple to use. The only front load feeder available on the market today.

1K standard buffer permits the 88G to print while receiving data. The optional 2K buffer allows a 1920 character dump to the printer freeing the CRT.

The Features Leader

Integrated Paper Handling System
Dual tractor/friction feed allows use of pin feed, roll or single sheet paper.

Versatile Interface
Data input from most computers can be supported by the 88G. RS232C serial and Centronics type parallel is standard. Options can be added for current loop, IEEE 488 and high speed serial inputs.

Letter Quality Capability
The 88G provides a selectable 11 x 7 serif style dot matrix for correspondence printing.

Cost Effective
The 88G has more features than any other impact printer in its price class. First compare the quality of the 88G, then compare the price—the 88G wins! Single unit price is less than $800.

Optional

Micro Peripherals, Inc. 4426 South Century Drive Salt Lake City, Utah 84107 (801) 263-5081
The Printer People
3. The programs are incompatible in one program, one DELETE in another: in another, in one program, you specify line range 2 through 35 as "2,35" and in another, as "2:35"; the letter "s" stands for "save file" in one program, "w" is used to "write" (save) in another. Our staff would never be able to keep these straight. Some vendors are overcoming this problem by offering complete packages. This is a step in the right direction.

4. The commercial software is nearly impossible to modify. Much of it is shipped as machine-language modules. I have years of bit-picking (or bit-twiddling) behind me, and I still find no beauty in deciphering a memory dump. Or the program is in Pascal, or C, or whatever, and we don't have a compiler for that language.

5. Many programs require disk changes and other potentially dangerous procedures to run them. If professional system managers sometimes get disks mixed up, what about nature-center employees?

6. The most important reason of all: the programs don't do what we require. Thus, even if we received a package of compatible programs, all with the same human-factor interface, we would still have to make many modifications to suit our needs. I'll illustrate this with two examples: the salary program and the mailing-list manager.

A Salary Package

A salary program is very useful. Employees work odd hours. Some are paid weekly, some hourly. Deduction status for an employee might change during the year. Part-time workers come and go. Income tax W-2 forms have to be prepared every year. It's nice to automate this.

An advertisement offers a "powerful, flexible payroll program. Federal, state, Social Security, etc., withholdings are automatic." But we have some local obstacles.

New Jersey has an unemployment and disability tax that affects only the first $7500 of income on a per-person basis. This threshold is crossed at different times by different employees. Mary Smith's year-to-date wages last week were $7404; this week they were $7581. We have to recognize that $7500 was crossed, and tax only the proper fraction of the week's pay. The $7500 figure changes as state policy changes. Does the "powerful, flexible payroll program" handle this tax? [Various other states have exceptional procedures that create prob-

Photo 1: The nature-center computer system consists of a Perkin-Elmer Bantam terminal, a Perkin-Elmer Carousel printer, and a North Star Horizon computer.

but decided it was overkill for our small business. Many files were manipulated, 5-digit account numbers were used, and fairly elaborate forms were produced. All these were way beyond our needs or ability to handle. In another example, most word-processing systems are fine for professional secretaries or typists, but they have a bewildering array of features. In one popular text editor, virtually every key on the keyboard assumes a special escape role in editing. You can insert, search, delete, search and delete, reformat, and on and on.

2. Much of it is too expensive. We are a small, nonprofit corporation; we barely managed the funds required for the hardware. We simply cannot spend hundreds or thousands more on software.

3. The programs are incompatible with each other. The key used for correcting errors is BACKSPACE in one program, DELETE in another; in one program, you specify line range 2 through 35 as "2,35" and in another, as "2:35"; the letter "s" stands for "save file" in one program, "w" is used to "write" (save) in another. Our staff would never be able to keep these straight. Some vendors are overcoming this problem by offering complete packages. This is a step in the right direction.

4. The commercial software is nearly impossible to modify. Much of it is shipped as machine-language modules. I have years of bit-picking (or bit-twiddling) behind me, and I still find no beauty in deciphering a memory dump. Or the program is in Pascal, or C, or whatever, and we don't have a compiler for that language.

5. Many programs require disk changes and other potentially dangerous procedures to run them. If professional system managers sometimes get disks mixed up, what about nature-center employees?

6. The most important reason of all: the programs don't do what we require. Thus, even if we received a package of compatible programs, all with the same human-factor interface, we would still have to make many modifications to suit our needs. I'll illustrate this with two examples: the salary program and the mailing-list manager.

A Salary Package

A salary program is very useful. Employees work odd hours. Some are paid weekly, some hourly. Deduction status for an employee might change during the year. Part-time workers come and go. Income tax W-2 forms have to be prepared every year. It's nice to automate this.

An advertisement offers a "powerful, flexible payroll program. Federal, state, Social Security, etc., withholdings are automatic." But we have some local obstacles.

New Jersey has an unemployment and disability tax that affects only the first $7500 of income on a per-person basis. This threshold is crossed at different times by different employees. Mary Smith's year-to-date wages last week were $7404; this week they were $7581. We have to recognize that $7500 was crossed, and tax only the proper fraction of the week's pay. The $7500 figure changes as state policy changes. Does the "powerful, flexible payroll program" handle this tax? [Various other states have exceptional procedures that create prob-

McGraw-Hill Bookstore

Design and Strategy for Distributed Data Processing

by James Martin

"The man generally acknowledged to be the computer industry's most widely read author, best attended lecturer, and foremost authority on the social and commercial impact of computers."—Computer World

"Distributed processing is here to stay and will change the way hardware and software are implemented."—James Martin

Here is clear strategy and illustrated techniques of good design for distributed processing. The author skillfully builds understanding of the complex technology. 637 pp. $37.50

McGraw-Hill Bookstore

Design and Strategy for Distributed Data Processing

by James Martin

"The man generally acknowledged to be the computer industry's most widely read author, best attended lecturer, and foremost authority on the social and commercial impact of computers."—Computer World

"Distributed processing is here to stay and will change the way hardware and software are implemented."—James Martin

Here is clear strategy and illustrated techniques of good design for distributed processing. The author skillfully builds understanding of the complex technology. 637 pp. $37.50

McGraw-Hill Bookstore

McGraw-Hill Bookstore

Design and Strategy for Distributed Data Processing

by James Martin

"The man generally acknowledged to be the computer industry's most widely read author, best attended lecturer, and foremost authority on the social and commercial impact of computers."—Computer World

"Distributed processing is here to stay and will change the way hardware and software are implemented."—James Martin

Here is clear strategy and illustrated techniques of good design for distributed processing. The author skillfully builds understanding of the complex technology. 637 pp. $37.50
The Text Solution for APPLE II®

Now APPLE II® Owners Can Solve Text Problems
With VIDEOTERM 80 Column by 24 Line Video Display
Utilizing 7 X 9 Dot Character Matrix

Perhaps the most annoying shortcoming of the Apple II® is its limitation of displaying only 40 columns by 24 lines of text, all in uppercase. At last, Apple II® owners have a reliable, trouble-free answer to their text display problem. VIDEOTERM generates a full 80 columns by 24 lines of text, in upper and lower case. Twice the number of characters as the standard Apple II® display. And by utilizing a 7 by 9 character matrix, lower case letters have true descendents. But this is only the start.

VIDEOTERM, MANUAL, SWITCHPLATE

VIDEOTERM

VIDEOTERM tests BASIC programs, both integer and Applesoft, using the entire 80 columns. Without splitting keywords. Full editing capabilities are offered using the escape key sequences for cursor movement. With provision for start/stop text scrolling utilizing the standard Control-S entry. And simultaneous on-screen display of text being printed.

Pascal

Installation of VIDEOTERM in slot 3 provides Pascal immediate control of the display since Pascal recognizes the board as a standard video display terminal and treats it as such. No changes are needed to Pascal's MISC.INO or GOTOXY files, although customization directions are provided. All cursor control characters are identical to standard Pascal defaults.

Other Boards

The new Microsoft Solicart™ is supported. So is the popular D. C. Hughes Microprocessor Enhanced using customized PROM firmware available from VIDEX. The powerful EasyWrite™ Professional Word Processing System and other word processors are now compatible with VIDEOTERM. Of use the Mountain Hardware ROMWriter™ or other PROM programmers to generate your own custom character sets. Naturally, VIDEOTERM conforms to all Apple OEM guidelines, assurance that you will have compatibility with current or future Apple II® expansion boards.

Advanced Hardware Design

VIDEOTERM's on-board asynchronous crystal clock ensures flicker-free character display. Only the size of the Pascal Language card, VIDEOTERM utilizes CMOS and low power consumption circuits, ensuring cool, reliable operation. All ICs are fully socketed for easy maintenance. Add to that 2K of on-board RAM, 50 or 80 Hz operation, and provision of power and input connections for a tight pen. Problems are designed out, not in.

Available Options

The entire display may be altered to inverse video, displaying black characters on a white field. PROMs containing alternate character sets and graphic symbols are available from Videx. A switchplate option allows you to use the same video monitor for either the VIDEOTERM or the standard Apple II® display, instantly changing displays by flipping a single toggle switch. The switchplate emulates a terminal in only one of the rear cutouts in the Apple II® case so that the toggle switch is readily accessible. And the Videx KEYBOARD ENHANCER can be installed, allowing upper and lower case character entry directly from your Apple II® keyboard.

Firmware

1K of on-board ROM firmware controls all operation of the VIDEOTERM. No machine language searches are needed for normal VIDEOTERM use.

Firmware Version 2.0

<table>
<thead>
<tr>
<th>Characters</th>
<th>7 x 9 matrix option</th>
<th>18 x 80 matrix (7 x 12 matrix with full descendents)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Options</td>
<td></td>
<td>Display 24 x 80 (full descender)</td>
</tr>
</tbody>
</table>

Want to know more? Contact your local Apple dealer today for a demonstration. VIDEOTERM is available through your local dealer or direct from Videx Corvallis, Oregon. Or send for the VIDEOTERM Owners Reference Manual and deduct the amount if you decide to purchase. Upgrade your Apple II® to full terminal capabilities for half the cost of a terminal VIDEOTERM. At last.

Apple II® is a trademark of Apple Computer Inc.

VIDEOTERM is a trademark of Videx Technology Inc.

Micromodem II™ is a trademark of D. C. Hughes Associates Inc.

Solicart™ is a trademark of Information Unlimited Software Inc.

Pricing Information:

<table>
<thead>
<tr>
<th>PRICE:</th>
<th>VIDEOTERM includes manual</th>
<th>$545</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SWITCHPLATE</td>
<td>$19</td>
</tr>
<tr>
<td></td>
<td>BRaille relief switch purchase</td>
<td>$19</td>
</tr>
<tr>
<td></td>
<td>7 x 12 CHARACTER SET</td>
<td>$30</td>
</tr>
<tr>
<td></td>
<td>MICROMODERM FIRMWARE</td>
<td>$25</td>
</tr>
</tbody>
</table>

Apple II® is a trademark of Apple Computer, Inc.

VIDEOTERM

VIDEX

897 N.W. Grant Avenue
Corvallis, Oregon 97330
Phone (503) 758-0521

APPAREL II® OWNERS!

Introducing the KEYBOARD & DISPLAY ENHANCER

PUT THE SHIFT AND SHIFT LOCK BACK WHERE IT BELONGS

SEE REAL UPPER AND LOWER CASE ON THE SCREEN

ACCESS ALL YOUR KEYBOARD ASCII CHARACTERS

Videx has the perfect companion for your word processing software the KEYBOARD AND DISPLAY ENHANCER installs the enhance in your APPLE II and bring up in lower case just like a typewriter. If you want an upper case character, use the SHFT key or the CTRL key for shift lock. Only that, but you are upper and lower case on the screen as you type. Perfectly compatible with Apple Writer and other word processors like, for example, SuperText.

If you want to program in BASIC, just put it back into the alpha lock mode, and you have the original keyboard back with a few improvements. Now you can enter those elusive 9 characters directly from the keyboard, or you can use the Control key to be pressed with the RESET to prevent accidental resets.

KEYBOARD AND DISPLAY ENHANCER is recommended for use with all revisions of the Apple II®. It includes an ICR and EPROM and the switches mounted on a PC board, and a jumper card. Easy to install, meaning no soldering or cutting traces. Alternate default modes are dip-switch selectable. You can even rewire the keyboard, selecting an alternate character set, for custom applications.

CD 365 on inquiry card

BYTE October 1981 269
lems for general-purpose payroll programs...RSS]

The workmen's-compensation audit usually requires salary to be accounted between arbitrary dates, such as February 1 to August 20. Can the package handle that?

No matter what package is offered, we will find something we need that is not included.

The Mailing-List Manager

Many mailing-list managers are offered. They usually contain various fixed fields, a few including special keying fields. Surely we could use one of these.

Probably not. We had eight years' experience with our first mailing-list program and developed a long wish list for the next one. We don't handle just names and addresses. We handle memberships. We want to record contributions and remarks. If Jack Armstrong donated an enlarger for the darkroom, we want to record that. We might want a list of all people who have contributed since last September. Or all those who contributed last year, but not this year. Or everyone who gave more than $50. New contributions have to be easy to enter, and an automatic purge should be done on very old contributions to keep the file size reasonable. Key fields should allow “ORing” categories, such as “volunteers or patrons.” The program must print labels, give statistical analyses of contribution records, and have internal checks on zip code validity.

If such a program is marketed, we didn't find it. And these requirements are not at all unusual—they are what any business such as ours would reasonably require.

Software Development

In the fall of 1979, uncertain how much software we could purchase and what it would do for us, we received our North Star computer. It came with BASIC, DOS (the North Star disk operating system), and a few memory utilities such as disk copy, hexadecimal or ASCII dump, etc. There was no machine-language assembler or disassembler (symbolic dump), nor was there a text editor.

Since we had no funds for such software, I began playing with BASIC and found that I liked it very much. Best of all, it allowed direct access to memory with FILL and EXAM (POKE and PEEK) and raw keyboard input of characters, essential for picking up special control keys.

We ended up coding all of our software ourselves. Each program was first outlined and discussed with other computer people and the nature-center staff. Each took a few weeks to write and document. By summer 1980, we had the following programs:

- a text editor
- a program to record field trips we ran, with attendance, date, etc, and an analysis feature to yield summary statistics over any time span for all types of trips
- a payroll program
- a general-accounting package, with a wide range of features, has already saved untold hours of volunteer and staff time
STATE OF THE ART
MEMORY SYSTEMS

512KB SINGLE BOARD MULTIBUS® MEMORY
State of the Art Multibus Memory Design.
First to Offer 512KB on One Board.
The CI-8086 module is compatible with both 8 or 16 bit Multibus Systems.

PARITY — The CI-8086 generates and checks even parity with selectable
interrupt on parity error.

FAST ACCESS AND CYCLE TIME — Data access is 270NSEC and cycle
time is 375 NSEC.

16 MEGABYTE ADDRESSING — The memory is addressable in 16K
increments up to 16 mega bytes.

LOW POWER CONSUMPTION — Total power consumption is under 8
watts.

SINGLE QTY. PRICE: 128K x 9 $1350. 512K x 9 $2995.

256KB LSI 11/23® SINGLE DUAL WIDTH BOARD
The First and Only 256KB Memory on a Single Dual Board.

4 MEGABYTE ADDRESS FIELD — Most memories available for the DEC
PDP 11/23 are only addressable to 256K bytes (18 address lines). The
CI-1123 is addressable to 4 mega bytes (22 address lines) so there is no
need to worry about obsolescence.

FAST ACCESS AND CYCLE TIME — With an access time of 240 NSEC
and cycle time of 400 NSEC one is insured the best throughput on the PDP
11/23 system.

PARITY — The CI-1123 generates and checks parity for each byte of
memory. Totally DEC compatible.

BATTERY BACKUP POWER CONSUMPTION — Power requirement for
the module is only 1.2 AMP from the 5 volt supply. The CI-1123 is easily
configured for battery back-up mode of operation requiring only 300MA
from a single 5 V back-up supply for 256KB memory in the down state.

SINGLE QTY. PRICE: 32K x 18 $675. 128K x 18 $1925.

64K x 9 EXORCISER® I SINGLE BOARD MEMORY
For Exorciser I, Exorciser II and Rockwell System 65.

FAST ACCESS AND CYCLE TIME — Data access time is 225 NSEC and
cycle time is 400 NSEC, allowing the unit to work as a static RAM at clock
rates in excess of 1.5 mega hertz. For 2 mega hertz operation the board can
be easily configured to utilize a cycle stealing refresh operation.

ADDRESSING — On-board memory select is available in 4K increments
up to 64K words of memory on either the VUA or VXA control inputs.

PARITY — On board even parity with output jumper select to the system
bus as a parity error or non-maskable interrupt.

Complete board power consumption is under 7 watts.

SINGLE QTY. PRICE: 64K x 9 $675.

Tested and burned in. Full year warranty.

DON'T ASK WHY WE CHARGE SO LITTLE, ASK WHY THEY CHARGE SO MUCH.

Chrislin Industries, Inc.
31352 Via Colinas • Westlake Village, CA 91362 • 213-991-2254

Circle 87 on inquiry card.
• a label program, which handles any number of files, and prints names, addresses, and optional comments in list or label form, is used for special mailing lists, such as the list of volunteers
• a main mailing-list program that, as already mentioned, also keeps track of contributions

Operating-System Changes

The 10-percent gap exists not only for commercial-application programs, but also for languages and operating systems. The North Star software comes with several pages of documentation on how to make changes to suit your hardware or other special requirements. These were useful, but the beginning programmer might have difficulty understanding the functions of these changes. However, some changes we had to make were not documented, as in the following example.

After writing the text editor and getting it to work with the video terminal, I tried it with the printer. It started off all right, but carriage returns suddenly began to be inserted at seemingly random places in the text. This made the editor unusable, so I had to find what was causing the returns and suppress them.

The problem turned out to be in the operating system. I fixed it in an afternoon with hardware boots, hexadecimal object-code dumps, and some trial and error. It's the kind of thing that turns on a computer buff, but not the novice. The novice thinks the editor somehow worked on the file "turtle" and refilled it under "shell." In other words, our secretary views the system as a filing cabinet in which a folder was taken out, worked on, and put somewhere else.

The confusion was compounded when "turtle" was read in, "shell" was read in and appended to "turtle," and the result was written to either of the old files or even a new one, "egg." The problem arises because a novice doesn't realize the computer actually works on a special memory or temporary file. The novice insists that the computer is working on "turtle" or "shell" and will not accept the concept of working on this merged file that really has no name and no direct correspondence to any file on the disk.

Some computer-oriented friends suggested an interesting scheme to explain the file concept. We obtained several decks of playing cards and had everyone stand around a table holding five or six cards. I sat at the table playing the role of the computer. Each player's hand was a file, with the name of the player. We began with file "barbara." Instead of putting her cards on the table, I copied them, dealing myself an identical hand from another deck. I then...
Q. What do these dealers have in common?

A. They sell Tarbell quality products.

* Dealers who sell Tarbell EMPIRE series computers.
modified my hand (the computer-memory file), all the while pointing out that nothing was happening to her hand. I then copied the new file back to her hand, changing it. Or I copied it to someone else's hand. We concatenated hands, wrote them to different files, and did a variety of things that simulated what computers do.

It worked! This exercise went a long way in clearing up the confusion, and I heartily recommend it to others. But don't let drop-in visitors get the wrong idea about what you're doing with the cards!

A Happy Ending

A few months after our staff's first encounter with the computer, things had settled into a steady state, and the staff was using it productively. At that point, one of the principal users, a secretary, left to help her husband in a small business. (No, they don't have a computer—yet.) The new secretary arrived, and I fully expected to have to start all over with training.

I was wrong. I spent almost no time at all. Instead, the other staff members trained her. How's that for a self-reproducing system?

Some of you might think that a happy ending to this story would be to say that our system continues to grow, we are finding more and more uses for the system, and can now spend my time outdoors finding wild flowers and mushrooms. The staff treats the computer as a piece of standard office equipment, and they welcome the time it has saved them. As our director put it, "We once thought it was an unnecessary complication, and now we depend on it." She might have added, "And we take it for granted." What happier ending could this story have?
OUR SECOND GENERATION DP-NET

We at Delta Products have been involved in 'NETWORKING SYSTEMS' for the past eighteen months. During this time we delivered our first net systems to beta test sites. These closely monitored field installations provided invaluable data, which Delta Products has incorporated into the design of our second generation of DP-NET systems.

SECOND GENERATION DP-NET

The S-4500 DP-NET system will support from one to ten users, and provide each with their own Z-80 CPU and 64K of ram memory. Each user will also have access to 40 megabytes of hard disk storage, 17.2 megabytes of file managed tape backup, and floppy disk.

TRUE RECORD & FILE LOCKOUT

By simply reading in the entire record of the file you wish to protect, the DP-NET DISK SELECTIVE LOCKOUT guarantees complete data integrity. The DP-NET also allows the use of today's popular micro applications languages (i.e., Cbasic®, Mbasic®, Cobol®, etc.), without having to compensate for the problems inherent to these languages in the multi-user environment while maintaining CPM compatibility.

INTERACTIVE FAMILY OF SYSTEMS

The S-4500 is but one of many DP-NET configurations utilizing parallel and/or serial communication links. Delta Products also manufactures a wide range of conventional single and multi-user systems operating under CP/M and MP/M. Single and multi-user systems can be upgraded to DP-NETs, because their basic components are utilized in our network systems. We have intentionally developed an interactive family of systems that are completely configurable and compatible, never limiting the ability to adapt to a modification in the application. Delta Products systems are available thru a worldwide network of selective distributors and dealers. Call for the name and number of the one nearest to you.

See This System @ Comdex Booth #s 285, 287

Cbasic is a registered trademark of Compiler Systems. Mbasic and Cobol are registered trademarks of Microsoft. CP/M and MP/M are registered trademarks of Digital Research.
Discover the Machine
Beneath the Machine
A ZX80 Monitor Program

R Scott FitzGerald, 570 NW Walnut, Corvallis OR 97330

The most powerful instructions of Sinclair Research’s ZX80 BASIC interpreter are PEEK, POKE, and USR. These instructions allow access to the machine beneath the ZX80’s natural language: Z80 machine code.

The Z80 instruction set has all the functions of the 8080 set, plus some extremely powerful commands of its own: block transfers, extensive bit manipulation and testing, indexed and displaced addressing, relative jumps, and programmed I/O (input/output). Besides the 8080 registers, the Z80 has a duplicate register bank and two index registers, an interrupt vector register, and a dynamic-memory-refresh register. This adds up to a power-packed microprocessor “under the hood” of your ZX80.

So why bother programming in BASIC when Z80 machine language is only a POKE away? One reason may be that the tedium of entering an endless string of POKE statements to run a machine-language program discourages you from venturing outside BASIC.

In this “System Note,” I present a monitor program, written in ZX80 BASIC, that gives you the power to examine and modify memory using octal notation and to execute Z80 machine-language programs. The program MONITOR is designed to run on a ZX80 system with a minimum of 1 K bytes of programmable memory and a 4 K-byte interpreter. After you enter MONITOR in a 1 K-byte system, you will still have enough memory left for a machine-language program more than 150 bytes long.

Listing 1 shows the program MONITOR. When run, MONITOR displays:

```
OCTAL MONITOR
```

and the prompt MODE? on the video screen. You then have three choices. You can:

- enter a 1, which will cause a branch to the EXECUTE routine
- enter a 2, which will result in a branch to the EXAMINE/MODIFY routine
- enter a 3, which will result in an exit from MONITOR to the BASIC interpreter

The program uses octal numbers for data input and output because this is the natural number base for use with the Z80 op codes.

Here are MONITOR’s modes explained in greater detail:

- Mode 1: EXECUTE. A 1 response to the MODE? prompt permits execution of the machine-language routine you have loaded into memory. Execution will begin at the decimal address specified in response to the START ADDR(DEC) prompt. The machine-code routine should end with a RET (return) instruction (octal 311) to let the monitor regain control; otherwise, you’ll literally have to pull the plug to return the computer to your control. Pulling the plug will erase MONITOR and your machine-code program as well.

Programming Aids for the ZX80

The following items are available from The SofTek Company, POB 4232, Santa Fe NM 87501:

A quick-reference guide for the ZX80 computer that includes error codes, programmable-memory usage, character set, the Z80 microprocessor instruction set, and a couple of applications programs. Item number ZX80QRG. Price $1.95.

Two dozen BASIC programs for the ZX80, including games, Z80 machine-language programming aids, graphics, finance, string manipulation, and mathematics. Item number ZX80PGM. Price $5.95.
The Grappler™ Interface is the first universal parallel interface card to provide sophisticated on-board firmware for Apple high resolution graphics. No longer does the user need to load clumsy software routines to dump screen graphics — it’s all in the chip. Actually, it’s our E-PROM, and there are versions to accommodate the Anadex, Epson MX100, MX80 & MX70, IDS Paper Tigers, Centronics 739, and future graphics printers. The Grappler™ accepts 18 simple software commands accessible through the keyboard or user program, making it the most intelligent Apple interface available.

FEATURES

SELECT PAGE — Choice of Hi-Res Graphics page 1 or page 2

INVERSE GRAPHICS — Provides reverse graphics of black-on-white, or white-on-black

DOUBLE SIZE PICTURE — Doubles the graphic screen representation vertically & horizontally

90° ROTATION — Rotates the screen picture 90°

CENTER GRAPHICS — Accomplished through setting left margin thereby centering the graph

CHART RECORDER MODE — Successive horizontal pictures are combined continuously simulating a chart recorder

BLOCK GRAPHICS — For printers with block graphics (e.g. Epson MX80, Okidata M80), the high order bit can be controlled

BELL — For printers with a bell, bell characters are deleted during user program listings

MARGINS — Set left and right margins

SKIP-OVER-PERF. — Set page length; printer will automatically skip 6 lines between each page

VARIABLE LINE LENGTH — For user program listings, sets line length and wraps around with breakpoint at nearest blank

TEXT SCREEN DUMP — The text from a user report or page of program listing can be dumped directly from the screen

Requires Graftrax-80
Mode 2: EXAMINE/MODIFY. In mode 2, you can examine and modify locations in memory, starting at the address you specify after the START ADDR(DEC) prompt. This routine displays the address and its contents in octal and waits for your input. If you input an octal number from 000 to 377, it will replace the previous contents of that location (assuming that you are not addressing read-only memory). If you enter a -1, the routine will go on to the next byte in memory without modifying anything. Any number outside the -1 to 377 range will terminate the EXAMINE/MODIFY routine and display the MODE? prompt again.

Mode 3: EXIT. Entering 3 in response to the MODE? prompt lets you exit the monitor, and control returns to the ZX80 BASIC interpreter's text-input module. Don't exit MONITOR, however, if you want to keep a valid copy of your machine-language program in memory. Because the ZX80 BASIC interpreter uses a great deal of memory to display MONITOR, the display will probably overrun your machine-language program.

The ability to execute Z80 machine-language programs on the ZX80 opens a new dimension to the serious ZX80 programmer. I hope that the program MONITOR will give you easier access to some of the powerful features of your ZX80.

Listing 1: A machine-language monitor for the Sinclair ZX80. This program lets you examine and modify sequential memory locations and execute machine-language programs stored in memory.

```
10 CIS
20 PRINT "OCTAL MONITOR"
30 PRINT "MODE?"
40 INPUT M
50 IF (M<1) OR (M>3) THEN GO TO 10
60 CIS
70 GO TO 400*M
400 PRINT "EXEC"
410 GO SUB 2000
420 PRINT "EXAM/MOD"
430 GO TO 20
800 PRINT "EXAM/MOD"
810 GO SUB 2000
820 LET C=0
830 LET D=S
840 LET N=4
850 GO SUB 3000
860 LET D=PEEK(S)
870 LET N=2
880 GO SUB 3000
890 PRINT "=:"
900 INPUT D
910 PRINT D
920 IF (D<1) OR (D>377) THEN GO TO 10
930 IF D=-1 THEN GO TO 960
940 GO SUB 4000
950 POKE S,A
960 LET S=S+1
970 LET C=C+1
980 IF C-16*(C/16)=0 THEN CIS
990 GO TO 830
1200 STOP
2000 PRINT "START ADDR?(DEC)"
2010 INPUT S
2020 PRINT S
2030 RETURN
4000 FOR K=0 TO N
4010 LET Q=D/(8**(N-K))
4020 LET D=D-Q*(8**(N-K))
4030 PRINT CHR$(Q+28)
4040 NEXT K
4050 PRINT " ";
4060 RETURN
4070 FOR K=0 TO N
4080 LET Q=D/(10**(2-K))
4090 LET D=D-Q*(10**(2-K))
4100 LET A=A+Q*(8**(2-K))
4110 NEXT K
4120 RETURN
```
Micro computer software company gets macro results.

"Software is the hottest segment of the personal computer industry. After all, it's the software that solves problems. And Business Week has precisely the type of readers who are looking for solutions to the kinds of problems we solve. Top and middle management of corporations. That's why right from the start we committed a substantial portion of our marketing budget to advertise in Business Week. And we're very pleased with the results. Since our first insertion, our monthly sales have more than doubled."

James M. Dow, President Microcom, Inc.

When Microcom began in 1980, the Boston-based manufacturer of personal computer software wanted to spread the word to corporate managers about its first product—an electronic mail package for Apple™ computers called Micro-Courier™. Not only to managers who already have Apples,™ but to the fast-growing market of managers in corporations who are thinking of buying personal computers to help them and their staffs do a better job.

For Microcom's Jim Dow, Business Week brought his market into focus. Business Week has a take-action audience of over 6 million corporate decision makers. And they look to Business Week to keep them informed on computer developments. Business Week is the only general business publication with an entire editorial section, Information Processing, covering events and trends in the computer industry. Every week.

As Microcom found out, one of the best times to link up with Business Week is right at square one. But for small companies or large companies, Business Week gets big-time advertising results. Call your nearest Business Week representative today.

BusinessWeek

Circle 50 on inquiry card.
PRINT NEATLY, SO WE KNOW WHERE TO SEND YOUR CHECK.

(PLEASE PRINT: THIS IS YOUR SHIPPING LABEL)

FROM:
Name
Address
City/State/ZIP

TO: Ashton-Tate
Suite 1510
3600 Wilshire Boulevard
Los Angeles, CA 90010
Buying new software is the pits, isn’t it?

You read an ad and it sounds terrific, so you ask around, then buy the manual.

So far, so good—so you spring several hundred dollars for the package.

And it does exactly what they said. But to get exactly what you want, you’re going to have to change the way you run your business. Or go through so much hassle that you’re not sure it’s worth it.

So you grit your teeth and suffer, or put it on a shelf to gather dust. Sounds familiar, doesn’t it?

But there is at least one known exception: an exceptional DBMS called dBASE II.

For database fans, an offer you shouldn’t refuse.

dBASE II is the only high-performance, relational Database Management System for micros. And it’s the only DBMS that can help you get the DBMS that’s right for you, no matter which DBMS you may want. Here’s how:

If you have a 48k micro with CP/M, send us its model number and the size of your drives along with $700 (CP/M 86 version soon—call if you can’t wait).

We’ll send you a copy of dBASE II that you can run on your system, solving your problems your way, for 30 days. Then just send everything back and we’ll return your money, no questions asked.

During that 30 days, you can find out how much a real database management system can do for you. How it will affect your operations. Exactly what you want done. And precisely how you want to do it.

Then even if you go for some other system, you’ll be an informed buyer.

And it never hurts to know what you’re doing.

IBM just caught up. So can you.

With dBASE II, you’ll get the same kind of system for your micro that IBM introduced a few months ago for their mainframes.

It’s a relational DBMS, and that makes it different from any other micro system you’ve ever seen.

In a relational database, the data is organized as simple tables, with records as the rows and the data fields as the columns, much like your data is organized now. Data relations are logical, so that you can zero in on the specific information you want without knowing a thing about the pre-defined sets, pointers or other cumbersome structures of hierarchical and network DBMS’s.

And unlike file management systems, dBASE II gives you program and data independence. You can change your database structure without re-entering your data and without reprogramming, or change some or all of your programs without touching your database. And the same database can be used for any number of different applications.

dBASE II is a stand-alone applications development system.

You don’t need an extra support language, because dBASE II comes with its own Applications Development Language (ADL). With ADL, you can use simple English-like statements to manipulate your data, or use built-in structured constructs to prepare sophisticated applications packages. It’s simple and easy to use, yet extremely powerful.

You create a new database and start using it in a minute or less. Just type CREATE, then respond to system prompts to name the file and define the fields. Now enter the data.

Add data to an existing database instantly, whether your file has 10 records or 10,000 records, by typing APPEND, then entering the information.

UPDATE, MODIFY, JOIN and REPLACE whole databases or individual records and characters.

Add or delete fields in your database structure without re-entering all your data.

And with dBASE II, it’s easy to get information out once you’ve put the data in.

Do automatic calculations on fields, records and databases with a few keystrokes.

Organize months’ worth of data in minutes with REPORT (printing optional), and get your reports today instead of tomorrow. Use the built-in SORT, with single or multiple keys. Or INDEX your data, then FIND it in seconds, even with floppies.

You can use dBASE II interactively or store a sequence of commands to automate your accounting, billing, mailing lists or whatever data you have to manage.

You’ll wonder how you managed without it.

dBASE II is the most powerful, easiest to use DBMS you can get for a micro.

And instead of poring over the manual, you can run it hands-on, in-house to see exactly what it can do for you. Try it.

What have you got to lose? We even provide the label so you can send it back.

Ashton-Tate, 3600 Wilshire Blvd., Suite 1510, Los Angeles, CA 90010. (213) 666-4409.
To make effective use of any graphics system, you must first understand the functions universal to all such systems. For the neophyte, the only readily available method for mastering graphics concepts is to attack a dissertation of incomprehensible detail—an endeavor that can be as frustrating as reading the fine print on your insurance policy.

In this article I try to put some graphics concepts into perspective. Four subroutines of the Hewlett-Packard Graphics/1000 software package are singled out: WINDW, LIMIT, VIEWP, and SETAR. The terms are peculiar to the software package, but the concepts are universal to all graphics. As a vehicle for conveying these concepts, the application program LOGO is presented in this article.

The LOGO program incorporates the four subroutines mentioned above to allow easy manipulation of size, shape, and positioning of a logo. By following the implementation of the four subroutines and the explanation of results related to parameter changes, the uninitiated reader can gain an easy grasp of the graphics function.

The underlying objective of all graphics systems is to capture an image, manipulate it and then project it to another location or surface. The image must first be presented to the graphics system. For the purpose of the sample program, the image was presented by sketching a logo on a sheet of graph paper, approximating this sketch with straight line segments, and tabulating the coordinates for the end points of these segments (see figure 1). The coordinates were calculated by arbitrarily setting x and y axes to correspond to the horizontal and vertical lines of the

Figure 1: Sketch of the logo letters on graph paper establishing x and y coordinates for the line segments that make up the letters.
4MHz, Double Density, Color & B/W Graphics – The LNW80 Computer

When you’ve compared the features of an LNW80 computer, you’ll quickly understand why the LNW80 is the ultimate TRS-80 software compatible system. LNW RESEARCH offers the most complete microcomputer system at an outstanding low price.

- Base Printed Circuit Board & Manual $89.95
- With Gold Connectors ... $84.95

The LNW80 is a high-speed color computer totally compatible with the TRS-80®. The LNW80 gives you the edge in satisfying your computing needs in business, educational and personal computation. With performance of 6 MHz, 2404 CPU, you’ll achieve performance of over twice the processing speed of a TRS-80®. This means you’ll get the performance that is comparable to the most expensive microcomputer with the compatibility to the world’s most popular computer (TRS-80®) resulting in the widest software base.

FEATURES:
- 4KB Program Memory
- 4KB User Memory
- 32K bytes Memory
- 5" Floppy Controller
- 20mA 1/2 W, 2404 CPU
- Parallel Printer 1/0
- Serial RS-232 20mA 1/0
- Real Time Clock
- Screen Printer Bus
- On Board Power Supply
- Solder Masked and Silkscreened

LNW SYSTEM EXPANSION

- Base Printed Circuit Board & Manual $89.95
- With Gold Connectors ... $84.95

The System Expansion will allow you to expand your LNW80, TRS-80®, or TRS-80® to a complete computer system that is totally software compatible with the TRS-80® Model I.1.

FEATURES:
- 32K bytes Memory
- 5" Floppy Controller
- 20mA 1/2 W, 2404 CPU
- Parallel Printer 1/0
- Serial RS-232 20mA 1/0
- Real Time Clock
- Screen Printer Bus
- On Board Power Supply
- Solder Masked and Silkscreened

LNW80

- LNW80 $1,650.00
- LNW80 Computer w/Bell Monitor & 15" Drive $1,915.00

All orders must be prepaid. CA residents please include 6.5% sales tax. Contact us for shipping charges.

* TRS80 Product of Tandy Corporation.
** PDI Product of Personal Microcomputer, Inc.

LNDburger & DOS PLUS 3.3D

- Assembled and Tested /DOs PLUS 3.3D $175.00

Double-density disk storage for the LNW Research’s System Expansion or the Tandy’s “Expansion Interface.” The LNDburger™ is totally software compatible with any double density software generated for the Person’s Doubler™. The LNDburger™ provides the following outstanding features.

- Stores data in 350K bytes on a single 5.25" disk
- Single and double density data separation
- Precision write precompensation circuit
- Software switch between single and double density
- Easy plug-in installation requiring no new parts, jumpers or soldering
- 26, 40, 72, 80 track 5.25" disk operation
- 90 day parts and labor warranty

*** Doubler is a product of Person Data Company, Inc.

DOS PLUS 3.1D

Micro System software’s double density disk operating system. This operating system contains all the outstanding features of a well developed operating system, with ease in usability.

KEYBOARD

- LNW Keyboard Kit ... $84.95

The Keyboard Kit contains a 63 key plus a 10 key, P.C. board, and remaining components.

CASE

- LNW Case .. $84.95

The streamline design of this metal case will house the LNW80, LNW System Expansion, LNW80 keyboard, power supply and Trs-80®. LNDburger™, or LNDburger™ Data Generator. This kit includes all the hardware to mount all of the above. Add $12.50 for shipping.

PARTS AVAILABLE FROM LNW RESEARCH

- 4116 - 2200A RAM
 - 6 chip set ... $80.00
 - 8 chip set .. $82.50
 - 16 chip set ... $95.00
 - 24 chip set ... $104.00
 - 32 chip set ... $124.00

- LNW "Start up parts set" LNW80-1 $82.00
- LNW80 "Video parts set" LNW80-2 $24.95
- LNDburger Transformer LNW80-3 $11.00
- LNDburger Keyboard cable LNW80-4 $16.00
- LNDburger 40 Pin connector to expansion cable $16.00
- LNDburger System Expansion Transformer $15.00
- LNDburger Floppy Controller (FD1711) and UART (TR3020) $20.00

LNW RESEARCH

CORPORA TION

2620 WALNUT ST.
TUSTIN CA. 92680

ORDERS & INFO. NO. 714-544-5744
SERVICE NO. 714-641-8850

Circle 201 on Inquiry card.

VISA MASTER CHARGE UNLESS NOTED
ADD $3 FOR SHIPPING

ACCEPTED
Small Business Systems User!

WHEN BUYING CHECKS, STATEMENTS AND INVOICES — LOOK FOR THIS MARK:

ON THE DOOR OF YOUR COMPUTER STORE

DFS Computer Forms are
• Sold by a Local Business
• Satisfaction Guaranteed
• Available in Small Quantities
• Compatible with Existing Software
• Very Economical

DFS Computer Forms
P.O. Box 643 • Townsend, MA. 01469

WHEN BUYING CHECKS, STATEMENTS AND INVOICES — LOOK FOR THIS MARK:

WHEN BUYING CHECKS, STATEMENTS AND INVOICES — LOOK FOR THIS MARK:

graph paper. This process is a form of digitization and is only one of the many methods available. All have the objective of conveying information in a form recognizable to the graphics system. Coordinates representing the logo are entered at lines 33 to 101 of the sample program (see listing 1). Once the image is made available to the system, the process of capturing the image, manipulating it, and projecting it involves four steps:

- Determine the boundaries surrounding the image to be captured (WINDW).
- Set the limits of the device to the boundaries of the paper or transparency to be used (LIMIT).
- Determine the boundaries within which the image is to be projected on the paper or transparency (VIEWP).
- If you don’t want the projected image distorted, then the window surrounding the image and the viewport on the projecting surface must both have the same width/height ratio (SETAR).

WINDW

When the graphics system receives the digitized representation of the image, it needs a frame of reference to designate where the image to be captured is located. To generate this reference frame or window, the WINDW subroutine is invoked. The general form of WINDW is:

CALL WINDW(IGCB,X1,X2,Y1,Y2)

where (X1,Y1) designates the lower-left corner of the rectangular window and (X2,Y2) designates the upper-right corner. Because this rectangle is to frame the image or a portion of the image represented in the digitization process, the parameters for the WINDW subroutine must be generated from the same axes, units, and origin used in the digitization process (the ones established on the graph paper).

The setting of the WINDW parameters in line 29 of the sample program to:

CALL WINDW(IGCB,0.,355.,0.,130.)

specifies that the lower-left corner of the rectangular window is zero units in the x direction and zero units in the y direction (at the origin on the graph paper). Also, the upper-right corner of the window is at 355 units in the x direction and 130 units in the y direction (to the far right and middle of the graph paper). Since the window encompasses the entire logo “TDC,” the captured image for graphics manipulation will be the entire logo. If, however, the window had been specified by:

CALL WINDW(IGCB,200.,355.,0.,130.)

then the window would frame only the “C” portion of the logo, and only that image would be available for graphics manipulation.
Maxell Floppy Disks. Class of ’81. Not a single dropout among them.

These are the disks that achieve all you expect from them. They are certified free of dropouts. And each one meets or exceeds the most demanding specifications every computer authority can set. That includes ISO, IBM, ECMA, ANSI, JIS and Shugart.

The quality begins with the finest raw materials available, and we make sure the quality stays high. Every Maxell floppy disk must pass an exhaustive series of eight quality control inspections. Under test conditions, after 10,000,000 passes, there is no loss of quality.

Maxell Floppy Disks actually help protect your computer drive heads. The self-cleaning jacket liner inside every Maxell disk removes dust before it can affect your system. The surface lubricant reduces any chance of disk-caused head-wear.

There are Maxell disks for every disk drive system in operation today. Maxell is leading the way with new disk technology for tomorrow’s computers. Your Maxell Business or Maxell Personal Computer Products supplier can put our “honor-gra d” to work for you, and for your computer, now and in the future.

Call or write for more information. You’ll learn that the care we take manufacturing Maxell Floppy Disks makes them live up to your highest expectations.
Listing 1: LOGO, the program used to produce figures in this article. The program is written to run on a Hewlett-Packard Graphics/1000 system.

```
8111A T=00041 IS ON CR00023 USING 0001A ALKS R=0000

0001  FIN4.L
0002  PROGRAM LOGO
0003  C
0004  C  THIS PROGRAM DRAWS A LOGO "TDC"  (KATHLEEN SANDIFUR 10-79)
0005  C
0006  C DIMENSION IGC(192),IRU(10),XLU(5),V(4),W(4),G(?),XL(4)
0007  C EQUIVALENCE (L1,IBUF),(IN,IPUF(10))
0008  C
0009  C ESTABLISH ID AND LOGICAL UNIT FOR PLOTTER
0010  C
0011  C LUT=LOGLU(I)
0012  C WRITE(LUT,01)
0013  C 01 FORMAT("ENTER LU, ID:*)
0014  C READ(LUT,*) L1, ID
0015  C
0016  C INITIALIZE PLOTTER & SELECT PEN
0017  C
0018  C CALL PLOT(IGCB,ID,1,LU)
0019  C CALL PEN(IGCB,2)
0020  C
0021  C*************************************************************************
0022  C * REFERENCES IN ARTICLE TO LIMIT, SETAR, VIEWP, WINDOW  *
0023  C * REFER TO THE FOLLOWING CALLS  *
0024  C*************************************************************************
0025  C
0026  C CALL LIMIT(IGCB,XL(1),XL(?),XL(3),XL(4))
0027  C CALL SETAR(IGCB,4R)
0028  C CALL VIEWP(IGCB,V(1),V(2),V(3),V(4))
0029  C CALL WINDOW(IGCB,W(1),W(2),W(3),W(4))
0030  C
0031  C******** DRAW "T" *************
0032  C
0033  C CALL MOVE(IGCB,22,0.)
0034  C CALL DRAW(IGCB,82,105.)
0035  C CALL DRAW(IGCB,119,105.)
0036  C CALL DRAW(IGCB,131,124.)
0037  C CALL DRAW(IGCB,12,126.)
0038  C CALL DRAW(IGCB,0,105.)
0039  C CALL DRAW(IGCB,60,105.)
0040  C CALL DRAW(IGCB,0,0.)
0041  C CALL DRAW(IGCB,22,0.)
0042  C
0043  C******** DRAW "O" *************
0044  C
0045  C CALL MOVE(IGCB,70,0.)
0046  C CALL DRAW(IGCB,178,0.)
0047  C CALL DRAW(IGCB,185,3.)
0048  C CALL DRAW(IGCB,190,3.)
0049  C CALL DRAW(IGCB,193,15.)
0050  C CALL DRAW(IGCB,194,20.)
0051  C CALL DRAW(IGCB,193,25.)
0052  C CALL DRAW(IGCB,192,30.)
0053  C CALL DRAW(IGCB,190,34.)
0054  C CALL DRAW(IGCB,142,124.)
0055  C CALL DRAW(IGCB,70,0.)
0056  C
0057  C********* INNER "O" START LEFT HORIZONTAL |
0058  C
```

Listing 1 continued on page 290
we beat the price...

Exclusive One Year Warranty Included

<table>
<thead>
<tr>
<th>ATARI 810 DISC DRIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>$444</td>
</tr>
</tbody>
</table>

Available without warranty for even less.

ATARI SOFTWARE

<table>
<thead>
<tr>
<th>Program Name</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CX401 General Accounting</td>
<td>$399.00</td>
</tr>
<tr>
<td>CX402 Accounts Receivable</td>
<td>$399.00</td>
</tr>
<tr>
<td>CX403 Inventory Control</td>
<td>$399.00</td>
</tr>
<tr>
<td>CX404 Word Processor</td>
<td>$119.00</td>
</tr>
<tr>
<td>CX495 PICKS</td>
<td>$68.00</td>
</tr>
<tr>
<td>CX413 MICROSOFT BASIC</td>
<td>$17.00</td>
</tr>
<tr>
<td>CX414 Invitation to Programming 1</td>
<td>$17.00</td>
</tr>
<tr>
<td>CX415 Kingdom</td>
<td>$17.00</td>
</tr>
<tr>
<td>CX416 Statistics</td>
<td>$17.00</td>
</tr>
<tr>
<td>CX417 Mail List</td>
<td>$17.00</td>
</tr>
<tr>
<td>CX418 Blackjack</td>
<td>$17.00</td>
</tr>
<tr>
<td>CX416 Invitation to Programming 2</td>
<td>$20.00</td>
</tr>
<tr>
<td>CX417 Bantai</td>
<td>$13.00</td>
</tr>
<tr>
<td>CX418 Hangman</td>
<td>$13.00</td>
</tr>
<tr>
<td>CX419 Graph II</td>
<td>$17.00</td>
</tr>
<tr>
<td>CX420 Touch Typing</td>
<td>$20.00</td>
</tr>
<tr>
<td>CX421 Space Invaders</td>
<td>$17.00</td>
</tr>
<tr>
<td>CX422 States & Capitals</td>
<td>$13.00</td>
</tr>
<tr>
<td>CX423 European Countries & Capitals</td>
<td>$13.00</td>
</tr>
<tr>
<td>CX424 Mortgages & Loan Analysis</td>
<td>$17.00</td>
</tr>
<tr>
<td>CX425 Personal Fitness Pkg</td>
<td>$59.00</td>
</tr>
<tr>
<td>CX426 Invitation to Programming 3</td>
<td>$20.00</td>
</tr>
<tr>
<td>CX427 Conversational French</td>
<td>$45.00</td>
</tr>
<tr>
<td>CX428 Conversational German</td>
<td>$45.00</td>
</tr>
<tr>
<td>CX429 Conversational Italian</td>
<td>$45.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Program Name</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CX401 U.S. History</td>
<td>$23.00</td>
</tr>
<tr>
<td>CX402 U.S. Government</td>
<td>$23.00</td>
</tr>
<tr>
<td>CX403 Supervisors Skills</td>
<td>$23.00</td>
</tr>
<tr>
<td>CX404 World History</td>
<td>$23.00</td>
</tr>
<tr>
<td>CX405 Basic Sociology</td>
<td>$23.00</td>
</tr>
<tr>
<td>CX406 Counseling Process</td>
<td>$23.00</td>
</tr>
<tr>
<td>CX407 Social Act of Art</td>
<td>$23.00</td>
</tr>
<tr>
<td>CX408 Physics</td>
<td>$23.00</td>
</tr>
<tr>
<td>CX409 Great Classics</td>
<td>$23.00</td>
</tr>
<tr>
<td>CX410 Business Comm</td>
<td>$23.00</td>
</tr>
<tr>
<td>CX411 Basic Psychology</td>
<td>$23.00</td>
</tr>
<tr>
<td>CX412 Effective Writing</td>
<td>$23.00</td>
</tr>
<tr>
<td>CX413 Principals of Econ</td>
<td>$23.00</td>
</tr>
<tr>
<td>CX414 Spelling</td>
<td>$23.00</td>
</tr>
<tr>
<td>CX415 Basic Electricity</td>
<td>$23.00</td>
</tr>
<tr>
<td>CX416 Basic Algebra</td>
<td>$23.00</td>
</tr>
<tr>
<td>CX417 Bond Analysis</td>
<td>$20.00</td>
</tr>
<tr>
<td>CX418 Stock Analysis</td>
<td>$20.00</td>
</tr>
<tr>
<td>CX419 Stock Charting</td>
<td>$20.00</td>
</tr>
<tr>
<td>CX420 Education System Master</td>
<td>$21.00</td>
</tr>
<tr>
<td>CX421 Basic Computing Language</td>
<td>$46.00</td>
</tr>
<tr>
<td>CX422 Assembler Editor</td>
<td>$46.00</td>
</tr>
<tr>
<td>CX423 Basketball</td>
<td>$24.00</td>
</tr>
<tr>
<td>CX424 Video Dancer</td>
<td>$24.00</td>
</tr>
<tr>
<td>CX425 Super Breakout</td>
<td>$30.00</td>
</tr>
<tr>
<td>CX426 Music Composer</td>
<td>$45.00</td>
</tr>
<tr>
<td>CX427 Chess</td>
<td>$30.00</td>
</tr>
<tr>
<td>CX428 Tic Tac Tow</td>
<td>$24.00</td>
</tr>
</tbody>
</table>

CBM Software

<table>
<thead>
<tr>
<th>Program Name</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>WordWrite Plus</td>
<td>$199.00</td>
</tr>
<tr>
<td>WordWrite Plus</td>
<td>$199.00</td>
</tr>
<tr>
<td>Commodore Tax Package</td>
<td>$399.00</td>
</tr>
<tr>
<td>Writer</td>
<td>$149.00</td>
</tr>
<tr>
<td>EBS Accs Rec Inventory Interactive Syst</td>
<td>$385.00</td>
</tr>
<tr>
<td>File General Ledger</td>
<td>$329.00</td>
</tr>
<tr>
<td>822 Information System</td>
<td>$329.00</td>
</tr>
<tr>
<td>Dow Jones Portfolio</td>
<td>$126.00</td>
</tr>
<tr>
<td>Cimacal</td>
<td>$239.00</td>
</tr>
<tr>
<td>Legal Time Accounting</td>
<td>$449.00</td>
</tr>
<tr>
<td>WorkDraft</td>
<td>$269.00</td>
</tr>
<tr>
<td>WorkCheck</td>
<td>$180.00</td>
</tr>
<tr>
<td>Create A File</td>
<td>$219.00</td>
</tr>
<tr>
<td>Power</td>
<td>$99.00</td>
</tr>
<tr>
<td>Socket 2 Me</td>
<td>$30.00</td>
</tr>
<tr>
<td>Answer</td>
<td>Call</td>
</tr>
</tbody>
</table>

Disks

<table>
<thead>
<tr>
<th>Disk Name</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBX100 Blank Disk</td>
<td>$22.00</td>
</tr>
<tr>
<td>System Blank Disk (10)</td>
<td>$29.00</td>
</tr>
<tr>
<td>Maxell Blank Disk (10)</td>
<td>$29.00</td>
</tr>
<tr>
<td>Maxell Blank Disk (10)</td>
<td>$29.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disk Name</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epson MX 70</td>
<td>$209.00</td>
</tr>
<tr>
<td>Epson MX 80</td>
<td>$209.00</td>
</tr>
<tr>
<td>Epson MX 80 PT</td>
<td>$209.00</td>
</tr>
<tr>
<td>Dabos 130</td>
<td>$209.00</td>
</tr>
<tr>
<td>Nec 5530</td>
<td>$209.00</td>
</tr>
<tr>
<td>Tec 1500 Starwriter 7 Line</td>
<td>$199.00</td>
</tr>
<tr>
<td>Tec 1500 Starwriter 4 Line</td>
<td>$199.00</td>
</tr>
</tbody>
</table>

Printers

<table>
<thead>
<tr>
<th>Printer Name</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epson MX 70</td>
<td>$209.00</td>
</tr>
<tr>
<td>Epson MX 80</td>
<td>$209.00</td>
</tr>
<tr>
<td>Epson MX 80 PT</td>
<td>$209.00</td>
</tr>
<tr>
<td>Dabos 130</td>
<td>$209.00</td>
</tr>
<tr>
<td>Nec 5530</td>
<td>$209.00</td>
</tr>
<tr>
<td>Tec 1500 Starwriter 7 Line</td>
<td>$199.00</td>
</tr>
<tr>
<td>Tec 1500 Starwriter 4 Line</td>
<td>$199.00</td>
</tr>
</tbody>
</table>

No Risk, No Deposit On Phone Orders, COD or Credit Card, Shipped Same Day You Call *

* on all in stock units

IN PA, CALL (717) 327-9575

(800) 233-8950

COMPUTER MAIL ORDER

501 E. 3RD ST., WILLIAMSPORT, PA 17701

Circle 85 on inquiry card.

BYTE October 1981
The LIMIT subroutine defines the view surface on the device—in other words, the surface within which all graphics must occur. After deciding on the size of the paper or transparency desired, the width and height dimensions are used to delimit the view surface via the LIMIT subroutine. The general form of LIMIT is:

```plaintext
CALL LIMIT(IGCB, X1, X2, Y1, Y2)
```
with the x and y units specified in millimeters. As a result, all graphics must now occur within an area bounded in

the horizontal direction from X1 mm to X2 mm, and in the vertical direction from Y1 mm to Y2 mm, with the origin corresponding to the lower-left corner of the device view surface.

In the sample program, a logo is to be projected to a 15-inch by 10-inch sheet of paper (380 mm by 250 mm). Line 26 of the program would incorporate these dimensions as LIMIT parameters as follows:

```plaintext
CALL LIMIT(IGCB, 0., 380., 0., 250.)
```
To further illustrate the use of the LIMIT subroutine, if
PUT YOUR APPLE TO WORK FOR YOU!
WITH THE THUNDERCLOCK PLUS™

As an APPLE user you already know all the things your APPLE can do. Now Thunderware expands that list with the THUNDERCLOCK PLUS, the complete clock/calendar system for your APPLE! Your programs can read the month, date, day-of-week, hour, minute, and second in any of APPLE'S languages. On-board batteries keep your THUNDERCLOCK running accurately when your APPLE is off - for up to 4 years before battery replacement. But that's just the beginning.

The THUNDERCLOCK PLUS is the most useful and versatile peripheral you can put in your APPLE. It can keep your disk files organized by time-and-date-stamping them, it enhances the usability of many of the new business/professional software packages for accounting, filing, and time management, and it can remotely control lights and appliances for security or display purposes in your business or home.

SOFTWARE PRODUCT COMPATIBILITY

Many of today's important software packages for data-base management, business applications, communications, and time management are designed to use the THUNDERCLOCK PLUS. If you have or plan to purchase any of these packages, a THUNDERCLOCK will greatly enhance their usefulness.

• VISIDEX* (Personal Software) • DB MASTER and MICRO-MEMO (Stoneware) • MICRO-COURIER and MICRO-TELEGRAM (Microcom) • THE CASHIER and THE STORE MANAGER (High Technology) • BUSINESS PLUS and NET-WORKS (Advanced Data Systems) ...and many others!

THUNDERWARE'S DOS-DATER

Our new DOS-DATER software upgrades the regular DOS on your disks so that DOS will use the THUNDERCLOCK to time-and-date-stamp disk files. Every time a program is saved or a file is modified, the current date and time to the minute are stored in the CATALOG with the file's name. You can tell at a glance when a program was saved or when any file was last modified. And this time/date stamping feature is completely automatic. That means any program which uses DOS will time/date stamp its files!

REMOTE CONTROL

Add Thunderware's X-10 INTERFACE OPTION to your THUNDERCLOCK PLUS and your APPLE can control lights and appliances through your BSR X-10 Home Control System on your pre-defined schedules. Our powerful SCHEDULER software allows you to create and modify schedules easily and execute them in the 'background', while using your APPLE for other tasks in the 'foreground'. Use your APPLE for energy management, display and security lighting, or laboratory/process control.

Our PASCAL Software lets you use all the THUNDERCLOCK'S features in PASCAL and sets the file date whenever you boot.

You get all this versatility in just one peripheral system. Backed by a full one year warranty. See your APPLE dealer for a demonstration, or contact us for more information. We'll give your APPLE the best time around!

Suggested retail prices:

THUNDERCLOCK PLUS..$139
X-10 INTERFACE OPTION....................................$49
PASCAL SOFTWARE DISK....................................$29
DOS-DATER/DEMO DISK.....................................$29
MANUALS ONLY, each...$5

Distributed by Apple Computer, Inc. and Computerland Corp.

THUNDERWARE, INC.
P.O. BOX 13322
Oakland, CA 94661
(415)-652-1737

*Requires software supplied on DOS-DATER/DEMO disk.

BSR X-10 is a trademark of BSR (USA) LTD.
APPLE II is a trademark of APPLE COMPUTER, INC.
you want to confine graphics to an 8½-inch by 11-inch (215 mm by 280 mm) area, set LIMIT parameters as follows:

CALL LIMIT(IGCB,0.,215.,0.,280.)

VIEWP

Within the view surface set by LIMIT, the image can be restricted to a desired area. In other words, the logo can be spread across the entire paper or transparency, or confined to only a small area. A viewport designates a rectangular portion of the view surface to which the image in the window is to be mapped. The VIEWP subroutine defines the positioning of the viewport, and its general form is:

CALL VIEWP(IGCB,X1,X2,Y1,Y2)

where (X1,Y1) designates the lower-left corner of the viewport and (X2,Y2) designates the upper-right corner. The x and y axes correspond to the lower edge and the left edge, respectively, of the LIMIT-designated view surface.

The units for x and y vary according to the aspect ratio, or the ratio of the width to the height of the view surface. If the aspect ratio, abbreviated AR, is greater than 1, the horizontal length of the view surface corresponds to 100 X AR units, and the vertical length corresponds to 100 units. If AR is less than 1, the vertical length corresponds to 100/AR units and the horizontal length to 100 units. When CALL LIMIT is not initiated, the view surface defaults to the limit of the device, which for the HP 9827A has an AR of 1.52. Therefore, to position a viewport to cover the upper-right quadrant of the view surface, specify VIEWP as follows:

CALL VIEWP(IGCB,76.,152.,50.,100.)

The entry of the viewport parameters in the sample program occurs at line 28.

INTERCHANGE

At this point in the graphics explanation, the process can be visualized as taking a snapshot and projecting the captured image onto a screen. Everything within the rectangular window is mapped through the rectangular viewport for positioning on the viewing surface, which itself has been delimited via the LIMIT subroutine.

If the rectangular window and the rectangular viewport have the same shape (if the aspect ratio is the same), the image can be transferred point for point without distorting any geometric figures. The relative size of images will change, but a circle will remain a circle, and angles between intersecting lines will not change. If the aspect ratio of the window is not the same as that of the viewport, then the image projected on the view surface will be distorted: a circle will become an ellipse, and the angle between intersecting lines will change. To alleviate
RM/COBOL MAKES IT ACROSS!

...FROM ONE OPERATING SYSTEM TO ANOTHER!
A VITAL WAY TO PROTECT YOUR SOFTWARE
INVESTMENT FOR THE FUTURE!!

The RM/COBOL language runs on more different Operating Systems and more different-sized computers than any other similar language. For starters, it runs on NCR and TI minicomputers and, in the micro field, on the CP/M®, MP/M®, TRSDOS®, OASIS®, MOASIS®, and UNIX (ONYX version) Operating Systems...to mention only a few.

Until now, serious business software of the scope and flexibility seen in the minicomputer world has not been available on micros. RM/COBOL now allows transfer of such software with a minimum of fuss.

We have participated in such a mini-to-micro transfer of a major set of general business software...using RM/COBOL as the transfer mechanism, of course. Running on literally thousands of minicomputers, these refined, enhanced, and proven software packages cover A/R, A/P, G/L, P/R, Order Entry (with Invoicing and Inventory Control) as well as Sales Analysis. The packages define a new level of achievement for features and flexibility in micro applications software and offer top quality at a reasonable price.

For immediate information, call 714-848-1922 for your complete product descriptions.

...PLUS ALL THE OLD, FAMILIAR FAVORITES that we continue to offer, such as:

General Business—Client Accounting (CPA Write-up)
PMS® (Financial Modeling System)
NAD7 (Name and Address System)
Real Estate—REAP (Real Estate Acquisition Programs)
PMS (Property Management System)
MLS® (Multiple Listing System)
Health Care—APH® (Automated Patient History)
Word Processing and System Software—Magic Wand®
QSORT®
CRASIC®

and Cybernetics' unique TRS-80®, Model II CP/M offering high performance, hard disk support, and CP/M compatibility.

Trademarks of:

MR. SMITH, THIS SOFTWARE WILL DEFINITELY ENHANCE YOUR CURRENT DATA PROCESSING FINANCIAL INTELLIGENCE BY TRUE ABILITY.

THERE ARE NO WORDS.

TEL. 714-848-1922

8041 NEWMAN AVE., SUITE 208
HUNTINGTON BEACH, CA 92647
this problem when coverage of the largest possible portion of the selected view surface is desired, the subroutine SETAR (set viewport aspect ratio) is used. The general form for SETAR is:

CALL SETAR(IGCB,AR)

To implement SETAR, calculate the AR for the window. The AR for the window encompassing the entire logo is 2.73 (355/130 = 2.73). This value is incorporated at line 27 of the sample program as follows:

CALL SETAR(IGCB,2.73)

As a result, instead of a point-for-point mapping of the image in the window to the viewport, the mapping is now from the window to a reconfigured viewport which has the aspect ratio selected by SETAR.

This new viewport is shrunk in size so that it just fits inside the old viewport while maintaining an AR corresponding to the window. After shrinking the new viewport to fit inside the old viewport, one dimension of the old viewport will have unused area. The new viewport is centered along this dimension. The image in the window, therefore, will be mapped undistorted to an area within the originally specified viewport, centered along one dimension and totally filling the other dimension. This provides the largest undistorted projection of the image onto the delimited view surface without requiring undue calculation for viewport positioning.

Parameter Changes

A brief and simplified explanation of each of the four subroutines has now been presented and the location of their implementation in the LOGO program specified. The following will document how individual changes in the subroutine parameters correlate to output changes from the program.

1. Set window to encompass the logo; and default LIMIT, SETAR, and VIEWP parameters.

CALL WINDW(IGCB,0.,355.,0.,130.)

The resulting output is a recognizable, although distorted, projection of the logo covering the total viewing surface (see figure 2). The projection covers the total viewing surface because of the default mode for LIMIT and VIEWP. Because CALL LIMIT was not initiated, the viewing surface defaults to the physical limits of the device. For the HP9872A, this is equivalent to the following at line 26:

CALL LIMIT(IGCB,0.,380.,0.,250.)

Figure 2: The logo translated to fill the entire graph area. Note the geometric distortion of the letters, which results because the aspect ratio (width/height ratio) of the window and viewport are not equal.
SPECIAL OF THE MONTH
QSTAR PRESENTS
THE QRAM
16K RAM Expansion Board for the Apple II
- Expands your 48K Apple to 64K of programmable memory
- Works with Microsoft Disk 2-80 disk
- Includes installation and manual
- Fully assembled and tested
- FULL ONE YEAR warranty including parts and labor
- Eliminates the need for an AppleText™ or Integer Basic ROM Card

APPLE II STUDENT SYSTEM
$1795
- Apple II Plus System 48K RAM
- Disk II Floppy Disk & Interface (DSK 3.3)
- 12 B/W Video Monitor

SOFTWARE FOR APPLE II
We will not be undersold

DASYN
5010-10 = DEL $00.00
5110-10 = DEL $00.00
5310-00 = DEL $00.00
5310-10 = DEL $00.00
5310-20 = DEL $00.00
5310-30 = DEL $00.00
5310-40 = DEL $00.00
5310-50 = DEL $00.00
5310-60 = DEL $00.00
5310-70 = DEL $00.00
5310-80 = DEL $00.00
5310-90 = DEL $00.00

MEMOREX
512-10 = DEL $00.00
512-20 = DEL $00.00
512-30 = DEL $00.00
512-40 = DEL $00.00
512-50 = DEL $00.00
512-60 = DEL $00.00
512-70 = DEL $00.00
512-80 = DEL $00.00
512-90 = DEL $00.00

DISKETTES
SOLD IN BOXES OF 10
(Min. Purchase
BUY $100 of the Following Diskettes

PAPER TIGER
4825 - 10 = DEL $00.00
4825 - 20 = DEL $00.00
4825 - 30 = DEL $00.00
4825 - 40 = DEL $00.00
4825 - 50 = DEL $00.00
4825 - 60 = DEL $00.00
4825 - 70 = DEL $00.00
4825 - 80 = DEL $00.00
4825 - 90 = DEL $00.00

EPPSON
M10 $00.00
EPPSON
M10 $00.00
EPPSON
M10 $00.00
EPPSON
M10 $00.00
EPPSON
M10 $00.00
EPPSON
M10 $00.00
EPPSON
M10 $00.00
EPPSON
M10 $00.00
EPPSON
M10 $00.00

CENTRONICS
1510 $00.00
1510 $00.00
1510 $00.00
1510 $00.00
1510 $00.00
1510 $00.00
1510 $00.00
1510 $00.00
1510 $00.00

1 Year Extended Warranty
$99.00
INQUIRE

8 Views
PHOTOGRAPHIC ELECTRONICS
SUMMARY OF TERMS
A complete statement of all terms and conditions governing sales and services of products and services listed in this summary of terms for present and future years. This summary of terms is a binding contract on all orders placed with Micro Business World. Orders must be prepaid in full within 30 days of order. All orders subject to availability. Sales tax applicable in tax jurisdictions. All rights reserved. Reproduction prohibited. We reserve the right to correct typographical errors. This summary of terms supersedes all previous terms.
For the projection to cover the entire viewing surface, the viewport must cover the physical limits of the device. This happens by default since a CALL VIEWP was not executed. For the HP9872A, this is equivalent to entering the following at line 28:

```
CALL VIEWP(IGCB,0.,152.,0.,100.)
```

The entire logo is projected because the window chosen was of the appropriate size and used units corresponding to the units in which the coordinates of the linear segment approximation were entered.

The resulting output is slightly distorted because the AR for the window and the viewport differ. The viewport AR defaulted to 1.52 (380 mm wide by 250 mm high), and the AR for the window is 355/130, or approximately 2.73.

2. Set window to encompass the logo; set viewport aspect ratio to correspond to window aspect ratio (SETAR); and default LIMIT and VIEWP parameters.

```
CALL WINDW(IGCB,0.,355.,0.,130.)
CALL SETAR(IGCB,2.73)
```

The resulting output is an undistorted projection of the logo centered in the vertical direction and covering the total viewing surface in the horizontal direction (see figure 3). The entire logo was projected because the window was determined the same way as in the previous example.

The projection was centered in the vertical direction and covered the total horizontal view surface because of the viewport reconfiguration that occurs when the SETAR routine is implemented. With SETAR set to 2.73, the reconfigured viewport corresponds to a rectangle with an AR of 2.73 being shrunk until it just fits within the old viewport. When a rectangle with a 2.73 AR is shrunk to fit within a rectangle with a 1.52 AR, the horizontal dimension will be totally filled and the vertical dimension will have unused space.

As prescribed by the SETAR routine, the reconfigured viewport will be centered in the vertical direction and totally cover the horizontal view surface. When the image within the window is mapped to this reconfigured viewport, it will project an image covering the horizontal direction and centered in the vertical direction. The resulting image is undistorted because the AR of the viewport was designated as 2.73 by SETAR, and the aspect ratio for the window was also 2.73.

3. Set window to encompass the logo; set viewport aspect ratio to correspond to window aspect ratio (SETAR); set the physical view surface (LIMIT) to correspond to an 8½-inch by 11-inch viewgraph; default VIEWP parameters.

STATPRO:

MAINFRAME STATISTICS ON AN APPLE

STATPRO is a PASCAL software package designed for the professional researcher seeking solutions with a minimum of effort.

STATPRO is grouped into a modular format for sales purposes yet which allows the user to transfer data between modules and other programs with easy to use prompts.

All STATPRO modules include any extra charge:

1. Real number database
2. Data transformations
3. Questionnaire database
4. Mailing label database
5. General category database
6. Graphic printing & editing
7. Corvus compatibility
8. Sample data for first
9. Does cross tabulation

STATPRO is an integrated database system designed for extensive number crunching.

STATPRO, unique in being non-memory dependent allows databases to be limited in size only by disk space. STATPRO can enter, receive, send, sort, and transform data.

Transformations include Arithmetic Logarithmic, Exponential, Trigonometric, Powers & Square Roots, Conversions, Random Numbers, Standardized Observations and over 40 English to Metric or Metric to English conversions. STATPRO contains several statistical analysis programs, all interlinked and designed to analyze the database records.

Among other features, STATPRO has extensive color graphic capabilities, a graphic screen editor, multiple plots per screen, user or computer defined access limits, and choice of symbols and lines. Printing a graph only takes 30 to 120 seconds depending on whether the printer is on an Anadex, Epson, Paper Tiger or Silentype.

Blue Lakes Computer

3240 University Ave.
Madison, WI 53705
(608) 233-8522

(send for brochure)

Figure 3: An undistorted projection of the logo vertically centered and covering the total viewing surface in the horizontal direction. Window aspect ratio is equal to viewport aspect ratio.
...And my dad says GRAFTRAX 80 does better graphics than anybody.

Epson.

You might say it's the head of its class. GRAFTRAX 80 gives you the highest resolution dot matrix in the world — up to 120 dots per inch horizontally and 216 dots per inch vertically. Which makes our MX-80 and MX-80 F/T work more like a plotter than a printer.

And that's just for starters. GRAFTRAX 80 more than doubles the features available in an Epson MX-80 or MX-80 F/T. For instance, we've added nice little touches like an italic character set — which doubles the number of font types to 24. And with GRAFTRAX 80, you can change style, size and density anywhere in the line. And backspace the head. And use block graphics with any computer. And redefine all escape codes under software control.

Up to now, you couldn't get some of these features at any price. With GRAFTRAX 80, you get 'em all. And more. Lots more.

Best of all, we haven't forgotten all those people who already own an MX-80 or MX-80 F/T. You own the printer that set the standards all the others are following. And you can install GRAFTRAX 80 PROMs yourself, for less than $100. And make the best even better.

You can see why we say GRAFTRAX 80 is the head of its class. There's nothing else in its class.

EPSON
EPSON AMERICA, INC.

3415 Kashiwa Street • Torrance, California 90505 • (213) 539-9140

Circle 147 on Inquiry card.
Introducing a totally new world in professional software for the Apple II and Commodore Pet.

Until recently, the tremendous explosion in microcomputer technology left an unfilled void in real quality software. MicroCraft Systems is totally dedicated to filling that void for the Apple II and the Commodore Pet. With powerful, elegant and versatile software.

Beyond the software house. To a complete 6502 development system.

More than a software distributor or discount house, MicroCraft Systems now provides you with access to a whole new spectrum in software systems. MicroCraft software includes: MacroLink, a complete macroassembler for the 6502, SuperEdit, a full-screen editor with a superb range of powerful capabilities plus, DiskScreen, a screen-oriented disk utility.

Complete System $200/$40

MacroLink $125/$20
Uses text files for source code • Links source code or object code programs • Fully nestable file include capability • Recursive macros • Nestable conditional assembly • Over 50 error messages • File I/O macros • Sample programs • Disk assembler: source code need NOT fit in memory.

SuperEdit $75/$20
Full Screen Editor • Single keystroke commands • Uses standard text files • Move cursor by character, line or page • Block move and copy • Search and replace • Macro capability • Plus extra software: SuperEdit '56 x 27' provides 56 x 27 character screen for Apple II • And more!

DiskScreen $40/$10
Displays a complete sector in hex and ASCII • Completely visual and interactive • Sector move and copy • To change byte value, move cursor and type.

NOTE: All programs require single disk drive. MacroLink also requires 48K. First price: software and manual. Second price: manual only (applied toward purchase of software).

Call or write for our complete MicroCraft Systems catalog at no extra charge. Other programs include: S.T.A.R. Reading Program • "C" Compiler • Graphics Development Systems • Programs in ROM • SuperEdit for 80 x 24 video cards

MicroCraft Systems, Inc.
In software systems, a name to remember.

188 Kerby Road
Grosse Pointe Farms, MI 48236
(313) 881-3089

Source I.D. CL0472
MicroNet I.D. 78270, 222

VISA or MasterCharge accepted. Inquire at your local computer store or order direct.

CALL LIMIT((GCB,0.,215.,0.,280.)
CALL SETAR((GCB,2.73)
CALL WINDW((GCB,0.,355.,0.,130.)

The resulting output is an undistorted projection of the logo centered in the vertical direction and covering the width of a viewgraph (see figure 4). The restriction of the projection to an 8½-inch by 11-inch area located at the lower left of the device results from setting LIMIT. VIEWP is still defaulted to LIMIT, and the other parameters are the same as for the previous example. As the viewport is shrunk down to fit within LIMIT, it will fill the viewgraph in the horizontal direction and be centered in the vertical direction.

4. Set window to encompass logo; set physical view surface (LIMIT) to correspond to an 8½-inch by 11-inch viewgraph; set viewport to five different locations (line 28); default SETAR.

CALL LIMIT((GCB,0.,215.,0.,280.)
CALL WINDW((GCB,0.,355.,0.,130.)
CALL VIEWP((GCB,6.40.,6.18.5) (Lower left AR = 2.73)
CALL VIEWP((GCB,40.,94.,6.25.8) (Lower right AR = 2.73)
CALL VIEWP((GCB,6.70.,100.5,124.) (Upper right AR = 2.73)
CALL VIEWP((GCB,70.,94.,116.2,124.) (Upper left AR = 2.73)
CALL VIEWP((GCB,20.,80.,25.8,100.5) (Center AR = 0.79)

Figure 4: The viewing surface changed to 8½ inches by 11 inches (215 mm by 280 mm). The logo is undistorted, centered in the vertical direction, and expanded to cover the entire viewing surface in the horizontal direction.
A SELF-COMPILING RELATIONAL DATABASE

DATABASE SELECTION—
- Uses screen masks to form query
- Provides extensive search capabilities
- Search arguments can include arithmetic/boolean functions, multi-field comparisons
- Queries can generate input for automatic database maintenance
- Queries can be stored in "Query Library" and executed from menu on demand
- Any number of fields can be queried concurrently
- Query output can be routed to disk, CRT report formatter, VISICALC™ or SOURCE™

DATABASE MAINTENANCE—
- Uses sophisticated screen formatting & data entry, like on IBM 3270's!
- Generates its own screens automatically!
- Handles records up to 4K in length, using multiple screen "Pages!"
- Automatic data compression for increased disk capacity
- Uses SuperKram access method for incredibly fast access, LESS THAN .2 SECONDS FOR A RECORD!
- Automatic index creation/maintenance
- Automatic maintenance capabilities
- "Goof-Proof" error handling
- Input can come from VISICALC™ or SOURCE™

DATABASE REPORTING—
- Automatic headlines
- Automatic field editing
- Report fields can be calculated, sub-totaled & cross-footed in any manner desired
- Optional counter breaks may be set
- Automatic grand totals
- Automatic statistics

REQUIREMENTS—
SuperKram (available separately) and: Commodore Pet 32K (40 or 80 col.) and 2040/4040/8050 disk OR Apple II 48K with Applesoft or language system and 2 disk drives or CORVUS.

ONLY $225

Look for the RED-WHITE-BLUE
United Software Display at your local computer dealer, or send check or money order, plus $3.00 shipping.
The resulting output is five projections of the logo within the 8¼-inch by 11-inch area. The four corner projections are of various sizes, all undistorted. The center projection is distorted from that of the original sketch (see figure 5).

To understand the significance of the VIEWP parameters entered, the consequence of defaulting the SETAR subroutine must be considered. Not calling SETAR defaults the viewport to the area delimited by LIMIT (the 215-mm by 280-mm viewgraph area). Because the viewport is a rectangle corresponding to the viewgraph area, it has an AR of 0.768 (215/280 = 0.768). For the purpose of determining the vertical parameters for viewport positioning, therefore, the height of the viewgraph corresponds to 131 units. (Referring to the explanation of VIEWP: if AR is less than 1, then the vertical view surface is 100/AR units, or in this case 100/.768 = 131 units).

In like manner, the width of the viewgraph corresponds to 100 units. (If AR is less than 1, the horizontal length corresponds to 100 units.) It is of little consequence to calculate parameters for positioning desired viewports. But if undistorted projections are desired, the viewports must be defined with an AR equal to that of the window (2.73). Subsequently, the corner viewports (calculated with an AR of 2.73) generate undistorted projections, while the center viewport calculated with an aspect ratio of 0.79 generates a distorted projection.

Summary
This article is not designed to make you a graphics expert. You still may not know a logical view surface from an illogical one, and normalized device coordinates may not strike you as normal at all. But your perspective on the graphics process should now be broad enough to let you tackle more detailed technical explanations without losing sight of the basics.

Figure 5: Confined to an 8¼-inch by 11-inch (215 mm by 280 mm) viewing surface, the logo has been projected in 5 different locations and sizes. The 4 corner locations appear undistorted (the aspect ratios of the viewport and the window are the same), while the central figure is distorted (aspect ratios of viewport and window are unequal).
Starting Today, BIZCOMP Takes Over as the Price/Performance Leader

We all know about the old fashioned acoustic coupler. Ask any computer hot-shot. Finicky, prone to room noise, vibration. A mechanical weak-link in your otherwise all-electronic system. RELIABILITY is the key to no-hassle computing. And everybody knows you don't get reliability with mechanical system components. So go ask that computer hot-shot—they'll tell you BIZCOMP's VersaModem all-electronic modem provides the new wave in personal communications. A fully FCC certified direct connection to the telephone network. Exciting? You bet!

Not only can you access The Source, MicroNet, Dow-Jones, Computer Bulletin Boards and University computers—the VersaModem offers access to a variety of specialized online databanks and timesharing services. The VersaModem is simple to install and operate. And it's compatible with standard data terminals and a host of personal computers.

Before you buy a computer modem, look at BIZCOMP's versatility. Look at BIZCOMP's quality. With BIZCOMP's VersaModem you won't need another modem. If your local computer store doesn't already have a VersaModem on display, ask them when they will!

BIZCOMP Communications...
Why not start with the best?

BIZCOMP

P.O. Box 7498 • Menlo Park, CA 94025 • 415/966-1545
Copyright © 1981 Business Computer Corporation
Circle 44 on Inquiry Card.
Apple
Clone Assembler, a 6502 assembler and disk-based, line-oriented text editor for the Apple II. Floppy disk, $39.95. Clone Software, 1446 Estes St, Lakewood CO 80215.

Super Gomoku, a game that simulates checkers for the Apple. Cassette, $9.95. United Software of America (see address above).

Space Intruders, a graphics arcade game for the Commodore PET. Cassette, $29.95. United Software of America (see address above).

Super Gomoku, a game that simulates checkers for the PET. Cassette, $9.95. United Software of America (see address above).

TRS-80
Balloon Bust, a circus game for the TRS-80 Model I Level II. Cassette, $15.95. Programma International, 3400 Wilshire Blvd, Los Angeles CA 90010.

Blockade, graphics arcade game for the TRS-80 Color Computer. Cassette, $10; source listing, $5. Bank Software (see address above).

Breakout, graphics arcade game for the TRS-80 Color Computer. Cassette, $10; source listing, $5. Bank Software (see address above).

Runaway Racer, a racing simulation game for the TRS-80 Model I Level II. Cassette, $15.95. Programma International (see address above).

Space Colony, an arcade game for the TRS-80 Model I Level II. Cassette, $15.95.

ZX80
A Night in Vegas, a Las Vegas gambling simulator for the Sinclair ZX80. Cassette, $9.95. Leman Laboratories, POB 2382, La Jolla CA 92038.

This is a list of software packages that have been received by BYTE Publications during the past month. The list is correct to the best of our knowledge, but it is not meant to be a full description of the product or the forms in which the product is available. In particular, some packages may be sold for several machines or in both cassette and floppy-disk format; the product listed here is the version received by BYTE Publications.

This is an all-inclusive list that makes no comments on the quality or usefulness of the software listed. We regret that we cannot review every software package we receive. Instead, this list is meant to be a monthly acknowledgment of these packages and the companies that sent them. All software received is considered to be on loan to BYTE and is returned to the manufacturer after a set period of time. Companies sending software packages should be sure to include the list price of the packages and (where appropriate) the alternate forms in which they are available.
Ten reasons why your floppy disk should be a BASF FlexyDisk.

- More than four decades of experience in magnetic media - BASF invented magnetic recording tape, the forerunner of today's wide range of magnetic media, back in 1934, and was the first independent manufacturer of IBM-compatible floppy disks.
- Cross-linked oxide coating - for low head wear and long trouble-free media life.
- Total capability - one of two manufacturers in the world that makes both 8" and 5.25" models, has tape and disk experience, and manufactures floppy disk drives.
- Tough Tyvek sleeve - no paper dust, no static electricity.
- Special self-cleaning jacket and liner help eliminate data errors and media wear and tear.
- Center hole diameter punched to more accurate standards than industry specifications, for top performance.
- Bi-axially oriented polyester substrate - for uniform and reliable performance year after year.
- Double lubrication - lubricants both in the formula and on the disk surface, to minimize media wear due to head friction.
- Packaging to suit your requirements - standard flip-top box, Kassette 10" storage case, or bulk pack.
- 100% certification - every single disk is tested at thresholds 2-3 times higher than system requirements, to be 100% error-free.

For the name of your nearest supplier, write BASF Systems, Crosby Drive, Bedford, MA 01730, or call 617-271-4030.
Books Received

This is a list of books received by BYTE Publications during this past month. Although the list is not meant to be exhaustive, its purpose is to acquaint BYTE readers with recently published titles in computer science and related fields. We regret that we cannot review or comment on all the books we receive; instead, this list is meant to be a monthly acknowledgment of these books and the publishers who sent them.
Now NRI takes you inside the new TRS-80 Model III microcomputer to train you at home as the new breed of computer specialist!

NRI teams up with Radio Shack advanced technology to teach you how to use, program and service state-of-the-art microcomputers...

It’s no longer enough to be just a programmer or a technician. With microcomputers moving into the fabric of our lives (over 250,000 of the TRS-80 alone have been sold), interdisciplinary skills are demanded. And NRI can prepare you with the first course of its kind, covering the complete world of the microcomputer.

Learn At Home in Your Spare Time

With NRI training, the programmer gains practical knowledge of hardware, enabling him to design simpler, more effective programs. And, with advanced programming skills, the technician can test and debug systems quickly and easily.

Only NRI gives you both kinds of training with the convenience of home study. No classroom pressures, no night school, no gasoline wasted. You learn at your convenience, at your own pace. Yet you’re always backed by the NRI staff and your instructor, answering questions, giving you guidance, and available for special help if you need it.

You Get Your Own Computer to Learn On and Keep

NRI training is hands-on training, with practical experiments and demonstrations as the very foundation of your knowledge. You don’t just program your computer, you go inside it...watch how circuits interact...interface with other systems...gain a real insight into its nature.

You also work with an advanced liquid crystal display hand-held multimeter and the NRI Discovery Lab, performing over 60 separate experiments. You learn troubleshooting procedures and gain greater understanding of the information. Both microcomputer and equipment come as part of your training for you to use and keep.

Send for Free Catalog...
No Salesman Will Call

Get all the details on this exciting course in NRI’s free, 100-page catalog. It shows all equipment, lesson outlines, and facts on other electronics courses such as Complete Communications with CB, TV/Audio and Video, Digital Electronics, and more. Send today, no salesman will ever bother you. Keep up with the latest technology as you learn on the latest model of the world’s most popular computer. If card has been used, write to:

NRI Schools
McGraw-Hill Continuing Education Center
3939 Wisconsin Avenue
Washington, D.C. 20016

We’ll train you for the good jobs!
Smart Credit Card Uses EEPROM: SCS-ATES has introduced XCARD, an electronic credit card that uses an EEPROM (electrically erasable, programmable read-only memory) to keep track of your remaining credit. The EEPROM is encapsulated in a thin plastic card. It's inserted into a reader that accesses the data in the 17-word by 8-bit EEPROM and subtracts the amount charged by writing to the EEPROM. Fifteen bytes are alterable; the others are for identification and security code (to check for fraudulent erasure). Prototypes are being tested in Italy.

Big-Money Prizes in Computer Chess Battle: Smart Chess Corporation has voted to permit computers to compete in sanctioned matches with human players. In 1983, there will be a team-chess tournament in which one team will be entirely computers.

VOS Gains in Popularity: Switching from one computer to another usually means jumping from one DOS (disk operating system) to another. Then, you have to learn how to operate an entirely new system, which often means redeveloping existing software so that it will run. In a commercial environment, this can be very expensive.

To overcome this problem, researchers at the Lawrence Berkeley Laboratory, University of California–Berkeley, have created a VOS (virtual-operating system) as an interface between the DOS and the hardware. Called Software Tools, the system has already been implemented on several dozen systems ranging from IBM, DEC (Digital Equipment Corporation), Honeywell, and Burroughs mainframes to minicomputers and even microcomputers using Digital Research's CP/M DOS. Using a VOS, an organization's software can outlive its hardware, which does away with costly software redevelopment.

The Software Tools VOS is supported by a user group that publishes a newsletter, directory, documentation, holds regular meetings, and makes the Software Tools software available on magnetic media for $35. For more information contact Debbie Scherrer, Lawrence Berkeley Laboratory, CSAM-508/3209, University of California, Berkeley CA 94720.

Anglo-French videotext Standard: British and French negotiators have agreed on a common videotext/text/teltext standard that makes Britain's Prestel and France's Antiope systems compatible. Canada also may adopt the standard, which could affect American videotext systems.

Robotics Update: Standard & Poor's predicts that robotic sales in this country will leap from less than $100 million to nearly $1 billion by the end of the decade. (As an aside, Japan already uses more than three times as many robots as the U.S.) General Electric has disclosed that it will replace 13,000 workers with 8000 robots during the next five years; and that if it cannot do this, it will not be able to compete economically.

Industrial robots currently cost in the $7500 to $250,000 range (with one specialized unit selling for $2.5 million). The average price is around $40,000, which is expected to fall to $10,000 by 1983 as companies such as IBM and Texas Instruments are expected to enter the market.

Robots are projected to cost between $1.75 to $4.75 an hour, compared to the $12 to $15 per hour wages paid for skilled labor. Their greatest impact has been in the automobile, steel, and aerospace industries. Dr. Richard John, Director of the Office of Energy and Environment, of the Transportation System Center, Cambridge, Massachusetts, has predicted that by 1985 automation will replace more than 200,000 workers in the auto industry.

The Fujitsu Franc robot factory, in Japan, reports that it operates 16 hours a day entirely by robots. Human workers come in for eight hours to complete the final assembly of the machines and robots. Fujitsu feels that it will have the plant completely robotized by 1985. Hitachi claims to have 500 scientists and engineers working on the development of a new generation of robots that will be able to "see, feel, and walk up and down the factory floor supervising other robots."

Microbot Inc of Menlo Park, California, has had its $1700 robotic arm, used with a Radio Shack TRS-80, on the market for over a year. Thus far, 40 have been sold. Terrapin Inc has sold 150 of its Turtles, which can run a maze or draw pictures. But most of these units have gone into schools, not the home.

The problem is that the cost of a robot that will do meaningful tasks is still very high. Although low-cost sensors and mechanical components are available, a huge amount of expensive electronic processing is required. A general-purpose robot requires a multiprocessing, multitasking computer system, with a high degree of artificial intelligence so that the robot can sense its environment and respond properly within a reasonable time. More advances in artificial-intelligence programming techniques are still needed.
As a project manager, you know the value of careful planning. Oversights and miscalculations can cost you crucial time and money.

MILESTONE is a powerful “Critical Path” Program that can be used for planning and analyzing virtually any project, from the opening of a retail store, to charting the progress of a police investigation; from drawing up a cost estimate for a construction project to scheduling the development (and involved expenses) of a new computer; from keeping track of rental equipment to allowing a winery to chart the evolution of a vintage Chardonnay from harvest to bottling. The applications are endless.

What’s more, MILESTONE is one of the easiest software packages to use. Once the working days, skill categories, wages or salaries and time increments are defined, then MILESTONE is ready to do the work for you. Change, for instance, the estimated completion date of a particular time-critical task, and you’ll instantly see it’s effect on the entire project. All scheduling, manpower costs, associated reports, etc. are immediately re-tabulated. A calendar display allows you to visually follow the activities (200 per project with 64K RAM, 100 with 56K RAM). Examples are included on the disk.

TIME IS MONEY. SAVE BOTH WITH MILESTONE.

SOFTWARE

MILESTONE is a trademark of Organic Software.
CPM is a trademark of Digital Research.
MILESTONE requires 56K RAM and CPM. Also available for CPM-86, Apple Pascal and UCSD Pascal. Specify 8000, 280, CP/M, 6006, UCSD Pascal or Apple Pascal Formats. 5 1/4” single density IBM soft-sectored, 5 1/4” NorthStar DD. Micropolis Mod II, Superbram 3.0, Apple II.

SOFTWARE

2670 Cherry Lane • Walnut Creek, CA 94596
(415) 938-2860

Dealer Inquiries invited.
Dealers outside California call (501) 442-0864. Inside California call (415) 938-2863.

Circle 123 on inquiry card.
Most experts agree that robots will move into the home just as computers have done—but this is still at least five years and maybe as much as 20 years away. We will probably see the first "home robots" performing only specific or limited sets of tasks. Most likely the first applications will be robotic aids for the handicapped. For example, Stanford University has modified an industrial robotic arm for use by quadriplegics. It recognizes voice commands, repeats them for verification, then acts accordingly. Also, it can pick up a telephone, fetch a book, turn pages, pour drinks, or hold a glass. The Veterans Administration is currently testing the unit.

Experimenter's interested in building a robot should note that Hobby Robotics Company, POB 997, Lilburn GA 30047, has announced a mobile unit that consists of a body and two arm manipulators. It costs $1495. The user must supply the electronics. Hobby Robotics also publishes a quarterly newsletter.

Heatkit will jump into the robotics market next year with an under-$1000 robot kit. It will be mobile and will have a seven-motor manipulator, sonar-type sensor, a Motorola 6809-based controller, and an "experimenter's area" where users can wire circuits. There will be several modes of operation, including automatic and teach/learn modes. It will be primarily an educational tool, teaching modern industrial-control techniques.

New Scheme To Halt Software Piracy: To cope with software pirates, suppliers have used nonstandard data formats, slashed their prices low, or tried to ignore the problem. Some have printed their documentation in light blue ink to prevent photocopying.

But this resulted in a catch-22: the suppliers who use nonstandard formats have been severely criticized by purchasers who cannot make backup copies and must return the disk to the supplier if it is damaged. This is a real annoyance and, if the supplier charges for this service, engenders resentment. Format-independent programs that copy the disk bit by bit are available by popular demand.

Now, at long last, MicroTechnology Unlimited, Raleigh, North Carolina, and Hal Chamberlin, creator of many innovative microcomputer features, have implemented a previously talked about method for preventing piracy: a software-readable serial number embedded in hardware. Here's how it works: the supplier integrates the code in the software when it is ordered. When the program runs, the two serial numbers are compared; if they do not match, the program doesn't run. Thus, users can make any number of copies and integrate a program with other software to form a new package.

I suspect that the serial number is embedded in a ROM (read-only memory) that uses an algorithm known only to the hardware manufacturer and licensed software vendors. It may use a PLA (programmable-logic array), which cannot be duplicated as simply as a ROM. Also, the software-checking routine has to be done in a clever and subtle way so that it cannot be easily located and bypassed.

Virtual Memory For Microcomputers: Early next year, Intel, Zilog, Motorola, and National Semiconductor will introduce integrated circuits to add VMM (virtual-memory management) to 16-bit microprocessors. This will give systems the large-capacity storage previously found only in large mainframes.

VMM creates a more efficient integration of the primary small (but fast) semiconductor main memory and the secondary (slow) large disk storage. It frees the programmer from worrying about the details of storage allocation. Also, it more efficiently manages the use of memory and disk storage when many users share memory.

Zilog, Motorola, and National Semiconductor also will introduce separate MMU (memory-management unit) integrated circuits to work with their 16-bit microprocessors. Intel will unveil a new version of its 16-bit microprocessor that will include an MMU circuit. The Zilog MMU will manage an 8-megabyte memory space compared to the others' 16-megabytes.

Super-Graphics: Nippon Electric Company (NEC) is about to go into production on a new graphics-controller integrated-circuit chip that will make super-color graphics possible on microcomputers. Listen to these specifications: displays 2048 by 2048 pixels (picture elements) in the black-and-white mode or 1024 by 1024 pixels in the color mode; generates all timing and synchronization signals; allows both graphics and text on the same screen; supports up to 64 K (16-bit word) display memory; contains hardware for drawing lines, arcs, circles, rectangles, and characters at 800 ns per pixel; supports two display areas (independently pannable); has an auto-advance cursor; will display 256 characters per row and up to 100 rows per screen; will zoom display to sixteenfold; has a light-pen input; 8-bit interface for microcomputers; and DMA (direct-memory access) capability... all in one 40-pin package. Samples should become available next month with production quantities obtainable early next year. Single-quantity price is expected to be $150.

To Be A 128 K-Bit Or A 256 K-Bit ROM—That Is The Question: Although five integrated-circuit manufacturers are providing samples of the new 128 K-bit, or 16 K-byte, ROM (read-only memory), others have opted to skip the that size and go directly to 256 K bits (32 K bytes), notably Motorola. These large-sized ROMs are expected to be used mostly in high-level language processors, intelligent typewriters, smart terminals, language translators, and speech-synthesis systems. You can expect to see 128 K-bit ROMs on the market by year's end and the 256 K-bit ROMs by mid-1982.

Apple Computer Registers Stock Offering: Apple Computer Inc has registered a proposed public stock offering of 2 1/4 million shares at $27.50 each. (Its original offering last year was 5 million shares at $22 each, although this rose $7 minutes after going on sale.) Also, the president and vice chairman of Apple (A C Markkula and Michael M Scott) have granted the underwriters options to pur-
a new star is born!

a better computer system any way you look at it.

The facts speak for themselves. The QUAY 500 SERIES offers more for the money than North Star Horizon computers.

MORE TECHNICAL FEATURES. A single board computer instead of a backplane with multiple boards, means fewer parts, fewer interconnections and fewer problems. Additional disk capacity for more program storage, DMA controlled disk transfers for increased system performance, on-board expansion capabilities for additional parallel and serial ports, and EPROM AC convenience outlets for a more compact design. IMMEDIATE DELIVERY. The 500 SERIES is available off the shelf for virtually immediate delivery. No waiting for far off delivery dates for this one.

LOWER PRICE. The advanced technology engineered into Quay computers actually lowers our cost to manufacture. The price of the 500 SERIES is about 20% lower than the Horizon-2-32K-D and our 520 SERIES also offers significant savings over the Horizon-2-32K-O. The bottom line is simple. There is a new star in the computer field. The 500 SERIES by Quay. It outshines all of the competition.

COMPARE FOR YOURSELF:

<table>
<thead>
<tr>
<th>SPECIFICATION</th>
<th>QUAY 500</th>
<th>HORIZON-2-32K-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>Single Board</td>
<td>S100 bus</td>
</tr>
<tr>
<td>CPU</td>
<td>Z80A, 4MHz</td>
<td>Same</td>
</tr>
<tr>
<td>Dynamic RAM (std)</td>
<td>64 Kb.</td>
<td>32 Kb.</td>
</tr>
<tr>
<td>Disk drive type</td>
<td>Double density</td>
<td>Same</td>
</tr>
<tr>
<td>No. of drives (std/max)</td>
<td>2/4</td>
<td>Same</td>
</tr>
<tr>
<td>Capacity per drive (on-line)</td>
<td>200 Kb.</td>
<td>160 Kb.</td>
</tr>
<tr>
<td>Direct Memory Access (DMA)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>CP/M* disk operating system</td>
<td>Standard</td>
<td>Optional</td>
</tr>
<tr>
<td>Unit Price</td>
<td>$2,995.</td>
<td>$3,095.</td>
</tr>
</tbody>
</table>

The QUAY 500 offers technical superiority -- availability -- a $2,500 price!

CP M* is a registered trademark of Digital Research
Horizon is a registered trademark of North Star Computers, Inc

The QUAY 500 SERIES by Quay.

P.O. Box 783, 527 Industrial Way West, Eatontown, N.J. 07724 (201) 542-7340
DISTRIBUTOR AND REPRESENTATIVE INQUIRIES WELCOME
chase up to 125,000 of their personal shares, reducing Markkula's and Scott's respective holdings to 12.5% and 4.9%. Xerox has pulled back its interest from 720,000 shares to 470,000 shares.

Apple spent $9.1 million on research and development in the first half of 1981, compared with $7.3 million for all of 1980. It also claims to have shipped more than 4000 Apple IIs by the end of April.

FCC Revises Interference Rules: The Federal Communications Commission (FCC) has revised its rules regarding the certification of small computers for radio-frequency interference (RFI). The revision clarifies the definition for exempt devices: self-contained devices with clock frequencies of 495 kHz or less are now exempt from certification. However, virtually all microcomputers presently sold have higher clock rates and are not exempt.

If your television set is bothered by RFI from your personal computer, citizen's band radio, etc., you may be interested in obtaining a free booklet entitled "How to Identify and Resolve Radio-TV Interference Problems." It is published and distributed by the FCC.

Xerox 820 Personal Computer: Xerox has introduced a desk-top personal computer, called the Xerox 820. It costs $2995. Its original internal code name was WORM, which stood for Wonderful Office Revolutionary Machine.

The Xerox 820 uses the Z80 microprocessor, has 64 K bytes of memory, two single-sided single-density 5-inch floppy-disk drives, and two serial and two parallel ports. A Diablo 630 printer is available for another $2900, and an 8-inch floppy-disk (250 K-byte) drive is $60.

The 820 uses the CP/M operating system (a de facto microcomputer standard), with certain limitations (e.g., CP/M's powerful input/output feature is not implemented). But, it is a significant boost for the CP/M-software market. Also, Xerox will offer Microsoft BASIC, CBASIC-II, COBOL-80, and several currently available CP/M-based software packages.

Xerox will furnish its own version of the popular WordStar word-processing software package. Most of its changes are in redefining the Control sequence functions—which undoubtedly will confuse users who are running the package on other systems.

The video display is memory-mapped and shares low-memory space via a bank I/O (input/output) port-select scheme; the disk controller uses the popular 1771 integrated circuit. Reset causes a jump to a ROM (read-only memory) in high memory from which the user must boot CP/M, which does not start automatically. A Zilog SIO (serial I/O) integrated circuit is used to handle I/O operations. Although Xerox implies that the 820 can be used as a workstation in an Ethernet network, no internal Ethernet interface is provided at this time.

On the minus side, the Xerox machine has two Control keys, both positioned adjacent to the space bar (they may be easy to hit accidentally). Also, I wonder why Xerox used drives with only 92 K bytes storage per drive, when virtually everyone else has gone to double-sided or double-density drives with two or four times the storage capacity. Both HP (Hewlett-Packard) and IBM have introduced Z80-based personal computers; DEC (Digital Equipment Corporation) may follow suit. Further, Xerox will have to compete with several dozen machines with equal or better specifications, some of which are less expensive and have been available for as long as three years.

On the plus side, Xerox knows that its name can sell a lot of machines, and it has already signed up several large distribution organizations, such as Computerland. It is interesting to note that Xerox's 17 retail stores have been selling Apple computers, I wonder whether this, too, will continue?

Random News Bits: Apple Computer is offering a free resource guide on using microcomputers as aids for the handicapped. It summarizes work being done in the field and current projects. It includes a bibliography and where to go for help and advice. For a copy of "Personal Computers for the Physically Disabled: A Resource Guide," write to Apple Computer, Resource Guide, Marketing Services Department, 10260 Bandley Dr, Cupertino CA 95014. The People's Republic of China will soon conduct its first national census. The US Commerce Department has sent the Chinese a computer and some US Census Bureau experts to help. The last census was done using the abacus ... CompuServe Inc, one of the largest timesharing systems for home-computer users, claims to have 10,000 customers, concentrated mostly around New York City, the eastern seaboard, the Silicon Valley area, and Los Angeles. Attendance at last April's San Francisco Computer Faire rose to almost 32,000. That's a jump of 12,000 over the year before ... The Strafford, Pennsylvania, Public Library has installed a coin-operated TRS-80. The library committee had hoped that students would use the computer for homework, but instead most played games. At fifty cents for 15 minutes, a user can access any one of 24 programs, including one that teaches BASIC. The machine was installed and operated by the same company that supplies the library's photocopier. ... The Mount Sinai School of Medicine in New York City will conduct an investigation for the Newspaper Guild into possible health problems associated with the use of video-display terminals. ... "Go public, young firm!" seems to be the cry since Apple tried it last December. Later this year, Vector Graphic, Intertec.
Single Board System
- Z80A 4Mhz CPU and chip family (optional 6Mhz system)
- Floppy disk controller which supports 5¼ and 8 inch drives simultaneously (total 4)
- DMA for the floppy disk drives
- 2 parallel and 2 serial communication ports
- Bus expander from the CPU with 256 I/O ports
- 64K bank select low power RAM
- Hard disk support (up to 4 drives of mixed sizes)
- Tape back up support
- Supports both serial and parallel printers

$1295

Qume Datatrak 8
- $545
- Includes 1 year factory warranty

Qume Datatrak 5
- $315
- Includes 1 year factory warranty

Qume Sprint 9/45
- $2295

Light Pen
- with cord and socket
- $75

Teletek FDC 1
- 4Mhz CPU
- NEC 765 disk controller
- $605
- Includes 1 year warranty

Interlink Modem
- 300-600 baud
- Asyn/Syn
- Auto Dial
- Auto Answer
- Serial and modular jack interface
- 2 year warranty
- $119

Floppy Disk Add-Ons
- Dual double density drives
- Enclosure
- Power supply and fan
- All cables
- 1 year warranty
- 8” system $1375
- 5¼” system $949

Immediate Delivery

Quantity Discounts

Circle 294 on inquiry card.
ANOTHER BOMBSHELL FROM INNOVATIVE PRODUCTS!

$299 64K-4MHz.-IEEE Assembled & Tested
64K S-100 DYNAMIC RAM MEMORY
BY COMPUTER SYSTEM RESOURCES
Works with Cromemco, North Star, Televiak, Tarbell, most Z80 and 8080 systems even with DMA. Guaranteed to work in your system or your money will be refunded within 15 days of purchase.

ALSO AVAILABLE PARTLY POPULATED
16K $239.00
32K $259.00
48K $279.00

Q.T. COMPUTER SYSTEMS:

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DESCRIPTION</th>
<th>ASSEMBLED & TESTED</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MF-2012CA</td>
<td>25A Mainframe, 12 Slot S100, Dual 8' Drive</td>
<td>$625.00</td>
<td></td>
</tr>
<tr>
<td>MF-218A</td>
<td>25A Tabletop Mainframe 18 Slot, S100</td>
<td>$450.00</td>
<td></td>
</tr>
<tr>
<td>MF-212A</td>
<td>25A Mainframe, 12 Slot S100, Dual 5' Drive</td>
<td>$450.00</td>
<td></td>
</tr>
<tr>
<td>260A</td>
<td>Single Board 2-60 Computer 2/4 MHz S-100</td>
<td>$165.00</td>
<td></td>
</tr>
<tr>
<td>263A/22</td>
<td>Monitor Program for 2-60A & Tarbell or VR</td>
<td>$150.00</td>
<td></td>
</tr>
<tr>
<td>RAM 32</td>
<td>32K Static RAM Board Low Power S-100</td>
<td>$199.00</td>
<td></td>
</tr>
<tr>
<td>QTCIOQA</td>
<td>2 Serial & 4 Parallel Port I/O S-100</td>
<td>$339.00</td>
<td></td>
</tr>
<tr>
<td>QTCIOQSB</td>
<td>Clock Calendar Board S-100</td>
<td>$125.00</td>
<td></td>
</tr>
<tr>
<td>QTCIOQCA</td>
<td>Clock Calendar Module for TRS-80</td>
<td>$125.00</td>
<td></td>
</tr>
</tbody>
</table>

VISTA COMPUTER COMPANY:

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DESCRIPTION</th>
<th>ASSEMBLED & TESTED</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>V300 25</td>
<td>Letter Quality Printer 25 CPS</td>
<td>$189.50</td>
<td></td>
</tr>
<tr>
<td>V400 45</td>
<td>Letter Quality Printer 45 CPS</td>
<td>$219.50</td>
<td></td>
</tr>
<tr>
<td>V-DRIVE</td>
<td>Dual 8' Desk Cabinet, Power Supply Rack Mountable</td>
<td>$375.00</td>
<td></td>
</tr>
</tbody>
</table>

COMPUTER SYSTEM RESOURCES:

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DESCRIPTION</th>
<th>ASSEMBLED & TESTED</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAM 16</td>
<td>16K Static RAM S-100</td>
<td>$179.00</td>
<td></td>
</tr>
<tr>
<td>RAM 16C</td>
<td>Low Power (CMOS) Version of RAM 16, 13 Watt</td>
<td>$259.00</td>
<td></td>
</tr>
<tr>
<td>RAM 65</td>
<td>65K Static RAM I/O Port Bank Select S-100</td>
<td>$199.00</td>
<td></td>
</tr>
<tr>
<td>RAM 65C</td>
<td>Low Power (CMOS) Version of RAM 65, 14 Watt</td>
<td>$279.00</td>
<td></td>
</tr>
<tr>
<td>RAM 52</td>
<td>52K Low Power 8 Bit Static RAM 24 Address Lines</td>
<td>$499.00</td>
<td></td>
</tr>
<tr>
<td>RAM 256</td>
<td>CMOS 256K 8/16 Bit Dynamic RAM Fully IEEE 696</td>
<td>$1295.00</td>
<td></td>
</tr>
<tr>
<td>I/O-8</td>
<td>8 Port Serial I/O Fully IEEE, up to 2000 BAUD</td>
<td>$395.00</td>
<td></td>
</tr>
</tbody>
</table>

ORDERING INFORMATION:
Minimum Order is $15.00. Prices quoted do not include shipping and handling. Foreign orders require prepayment by M/C or Money Order in U.S. funds. Purchase Orders accepted from U.S. Government & firms with published A1 Rating from Dunn & Bradstreet. All other orders require prepayment, charge card, or COD shipment.

TOLL-FREE PHONE NUMBER:
Call Toll-Free 1 (800) 423-5141. In Alaska, California, and Hawaii, call us collect at (213) 883-3244.

TO RECEIVE OUR FREE CATALOG:
Call our Toll-Free (800) number, or circle Reader Service # 212.

BYTELINES

Data Systems, and Computer Factory Inc will follow Apple's lead. New World Computer Company, Costa Mesa, California, has a novel way to provide Winchester hard disk backup. Its new 5-inch floppy-disk drives have both fixed storage and a removable cartridge. New World has a drive with a fixed 1 megabyte formatted storage. Apple will soon offer a videotext interface that will allow the Apple II and III computers to access Canada's Telidon system. AT&T has also decided to make its videotext Telidon-compatible. These systems can deliver computerized data to your home via either video, television, telephone lines, FM subcarrier, or unused television scan lines. Observers expect future enhancements of videoteletex to provide message/teleconferencing, picture manipulation, animation, and downloading of data files to large systems to personal computers. . .

Random Rumors:
Word is that HP's (Hewlett-Packard's) personal-computer operations recently split off from the small-computer division and is now a separate entity. HP will soon introduce a multicolor plotter for its Series 80 personal computers. Cromemco, one of the leaders in S-100 Z80-based systems, is expected to release a 68000-based 16-bit processor card that includes a Z80 coprocessor. Rumor is that Cromemco has been working on the card for almost two years. Expect Codbout Electronics to introduce 68000 and 8086 S-100 cards before year's end. . . . It's rumored that DEC (Digital Equipment Corporation) is about to release a personal computer, as HP has already done. HP's system is called the HP-125 and uses a Z80. DEC's desk-top unit will probably contain a Winchester hard-disk drive and either an LSI-11 or a standard processor like the Z80. DEC is already using Microsoft BASIC in its GIG graphics terminal. . .

TRS-80 Meets IBM:
Radio Shack has three new software packages that allow various forms of communication between the TRS-80 Model II and IBM mainframe equipment. The first is Reformatter. It converts data on Model II TRS-DOS 5-inch floppy disks to the standard IBM format (3741 single-density). This means that Model IIs can now be used for off-line data entry in businesses where System 360/370 or other 3741-compatible equipment is employed. The other programs allow "bisync" (binary synchronous) communications by emulating the IBM 3270 and 3780. The Model IIs serve as online and remote job-entry terminals for IBM 3270- and 3780-compatible equipment. Reformatter sells for $249; the bisync packages sell for $995 each, which includes installation by Radio Shack.

MAIL: I receive a large number of letters each month as a result of this column. If you write to me and with a response, please include a self-addressed stamped envelope.

Sol Libes
POB 1192
Mountainside NJ 07081
IF YOU CAN RECOGNIZE VALUE, YOU CAN SAVE:

M.T.I.
MOD III
PLUS

Now You Can
Save $500 over
comparable models.

*$ We have taken the basic 16K Model III expanded the
memory to 48K and added our M.T.I. Double Density
Dual Disk Drive system. Our system is fully compatible
with Radio Shack DOS and peripherals.

MOD III/EXPANDED

Same as above but has double storage capacity
(128 storage). Your choice of 2 dual headed 80
track drives or 2 single headed 80 track disk drives.

$1998

$2499

MOD III/280

Our largest MOD III, approximately 1.5 mega bytes
of storage utilizes 2 dual headed 80 track, double
density disk drives. Complete with manuals and
professional operating system Microsystems DOS
plus 3.3

$2799
No risk Disk Drives

ASAP carries only the highest quality floppy disk drives, to provide you with years of trouble-free service and superior performance.

Data Trak™ double-sided double-density drives from Qume® feature state-of-the-art technology. You get superior data integrity through improved disk life, data reliability and drive serviceability.

Data Trak™ 5 (ANSI 5¼ compatibility) Call for price
Data Trak™ 8 (IBM compatibility) Call for price

Shugart drives have been setting industry quality and reliability standards for years. Shugart's Bi-Compliant™ head assembly provides superior media compliance and high reliability.

Model 801 (standard floppy) $425.00
Model 850 $650.00
Dual Disk Drive Cabinet $265.00

ASAP also provides a full line of high reliability disk drive subsystems.

Part No. — Description*	Price
DDC-8 sgl — Cabinet for single 8" floppy disk drive $185.00

DDC-8-1 — Cabinet with (1) Shugart SA801R installed $595.00

DDC-8-2 — Cabinet with (1) Qume® DT-8 double-sided double-density drive installed $695.00

DDC-8-3 — Cabinet for dual 8" floppy disk drives $275.00

COMBO-8 — Dual cabinet for 8" floppy disk drives (horizontal mounting) $265.00

COMBO-9 — Cabinet for 8" floppy disk drives (vertical mounting) $265.00

COMBO-8/8-1S — Dual cabinet with (1) Shugart SA801R installed (horizontal or vertical mounting) $725.00

COMBO-8/8-2S — Dual cabinet with (2) Shugart SA801R's installed (horizontal or vertical mounting) $1150.00

COMBO-8/8-1Q — Dual cabinet with (1) Qume® DT-8 double-sided double-density drive installed (horizontal or vertical mounting) $865.00

COMBO-8/8-2Q — Dual cabinet with (2) Qume® DT-8's double-sided double-density drive installed (horizontal or vertical mounting) $1385.00

X5 — Cabinet for desk top mainframe (small power supply) $200.00

8000 — Cabinet for desk top mainframe (standard power supply) $255.00

*All cabinets come complete with power supply, fans and internal cables.

For superior quality, high reliability disk drives, contact ASAP today.

SD SYSTEMS/S-100 BOARDS

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXPANDER</td>
<td>$240.00</td>
</tr>
<tr>
<td>2 MHz DYNAMIC</td>
<td>$350.00</td>
</tr>
<tr>
<td>RAM BOARD</td>
<td>$275.00</td>
</tr>
<tr>
<td>KITS</td>
<td>$275.00</td>
</tr>
<tr>
<td>EXPANDER</td>
<td>$250.00</td>
</tr>
<tr>
<td>4 MHz DYNAMIC</td>
<td>$325.00</td>
</tr>
<tr>
<td>RAM BOARD</td>
<td>$275.00</td>
</tr>
<tr>
<td>KITS</td>
<td>$275.00</td>
</tr>
<tr>
<td>SBC-100 Kit 2.5 MHz/280 CPU with Serial I/O Ports & SBC-100 Monitor of your choice at no charge</td>
<td>$525.00</td>
</tr>
<tr>
<td>SBC-200 Kit 4 MHz/280A CPU with Serial & Parallel I/O Ports & SBC-200 Monitor of your choice at no charge</td>
<td>$525.00</td>
</tr>
<tr>
<td>VERAFLOPPY II Kit Disk Controller for 5¼" or 8" Drives, Single or Double Sided/Single or Double Density, S-100 Compatible</td>
<td>$265.00</td>
</tr>
<tr>
<td>VERAFLOPPY II Kit Disk Controller for 5¼" or 8" Drives, Single or Double Sided/Single or Double Density, S-100 Compatible</td>
<td>$300.00</td>
</tr>
</tbody>
</table>

PRISM 100 Kit S-100/EPROM PROGRAMMER

2708 2716 2732 & 37325IS $195.00

ALL BOARDS ARE AVAILABLE ASSEMBLED & TESTED CALL FOR PRICES

DISKETTES

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>VERBATIM</td>
<td></td>
</tr>
<tr>
<td>MEMOREX</td>
<td></td>
</tr>
<tr>
<td>DISKETTES</td>
<td></td>
</tr>
</tbody>
</table>

COMPUTER PRODUCTS, INC.

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-0180</td>
<td></td>
</tr>
<tr>
<td>D-0226</td>
<td></td>
</tr>
<tr>
<td>D-0255</td>
<td></td>
</tr>
</tbody>
</table>

STORAGE SYSTEMS

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-0650</td>
<td></td>
</tr>
<tr>
<td>D-0655</td>
<td></td>
</tr>
</tbody>
</table>

ACCESSORIES

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>FD-1120</td>
<td></td>
</tr>
<tr>
<td>FD-2250</td>
<td></td>
</tr>
</tbody>
</table>

STORAGE MEDIA

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRW-5</td>
<td></td>
</tr>
<tr>
<td>SRW-8</td>
<td></td>
</tr>
</tbody>
</table>

Circle 31 on inquiry card.
ATARI 800
(16K) Personal Business Computer Features:
- Computer console
- Atari 8K basic
- 57 full stroke alphanumeric keyboard with four function keys
- Operator's manual simple
- RF modulator
- Power supply
Price: $799.00

Special Offer: Additional 16K RAM FREE with purchase of system.

ATARI Optional Accessories
<table>
<thead>
<tr>
<th>Model #</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>810</td>
<td>Disk Drive System</td>
<td>$455.00</td>
</tr>
<tr>
<td>815</td>
<td>Disk Drive System</td>
<td>$1195.00</td>
</tr>
<tr>
<td>820</td>
<td>40 Column Display</td>
<td>$279.00</td>
</tr>
<tr>
<td>822</td>
<td>40 Column Thermal Printer</td>
<td>$349.00</td>
</tr>
<tr>
<td>826</td>
<td>80 Column Display Printer</td>
<td>$625.00</td>
</tr>
<tr>
<td>830</td>
<td>Acoustic Modem</td>
<td>$159.00</td>
</tr>
<tr>
<td>850</td>
<td>Interface Module</td>
<td>$139.00</td>
</tr>
<tr>
<td>410</td>
<td>Cassette Recorder</td>
<td>$60.00</td>
</tr>
<tr>
<td>C30-04</td>
<td>Paddle Controls</td>
<td>$17.50</td>
</tr>
<tr>
<td>C30-04</td>
<td>Joysticks (pair)</td>
<td>$17.50</td>
</tr>
</tbody>
</table>

INTRODUCING ASAP's
ATARI 800 16K RAM Module $75.00
1 year warranty parts & labor

ATARI Software (Many more available)
Basketball $24.00
Super Breakout $30.00
Chess $30.00
Video Tape $30.00
3-D Tic Tac Toe $30.00
Star Raiders $34.00
Asteroids $30.00
Music Composer $42.00
Educational ROM $19.95
Assembler/Edit Model $45.00
Television $19.95
Space Invaders $14.95
Missile Command $30.00
Biorhythm $17.95
Graph It $13.95
Energy Czar $12.95
Mailing List $16.95
Statistics $1
Touch Typing $19.95
Stock Charting $19.95
Stock Analysis $19.95
Bond Analysis $19.95
Word Processor $729.95

Printers
Manufacturer/Model # Price
Anacom-150 $19.95
Anacom-330 $269.00
Bee 2-600 $255.95
Dell 6309 $255.00
Cik St. Mary's $192.00
Texas Instruments-810 $1650.00

The Epson MX-80
80 Column Dot Matrix Printer

SPECIFICATIONS
Print method: dot matrix impact dot matrix
Paper feed: 24 lines per second
Character set: 96 characters
Character size: 12 characters
Character width: 9 characters
Character height: 11 characters
Character spacing: 10 characters
Character pitch: 8 characters
Character density: 64 characters

Keyboard
- Full 90-character ASCII with descenders
- Graphics: 64 block characters

Interfacing
- Centronics-style 8-bit parallel
- Optional Apple, TRS-80, RS-232

Ordering Information
- CALL FOR PRICE & DELIVERY

Modems
<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>V05-000</td>
<td>$149.00</td>
</tr>
<tr>
<td>V05-001</td>
<td>$169.00</td>
</tr>
<tr>
<td>V05-002</td>
<td>$249.00</td>
</tr>
<tr>
<td>V05-003</td>
<td>$349.00</td>
</tr>
<tr>
<td>V05-004</td>
<td>$189.00</td>
</tr>
<tr>
<td>V05-005</td>
<td>$199.00</td>
</tr>
<tr>
<td>V05-006</td>
<td>$299.00</td>
</tr>
<tr>
<td>V05-007</td>
<td>$399.00</td>
</tr>
<tr>
<td>V05-008</td>
<td>$499.00</td>
</tr>
<tr>
<td>V05-009</td>
<td>$599.00</td>
</tr>
<tr>
<td>V05-010</td>
<td>$699.00</td>
</tr>
</tbody>
</table>

Monitors
<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>V05-011</td>
<td>$139.00</td>
</tr>
<tr>
<td>V05-012</td>
<td>$139.00</td>
</tr>
<tr>
<td>V05-013</td>
<td>$159.00</td>
</tr>
<tr>
<td>V05-014</td>
<td>$179.00</td>
</tr>
<tr>
<td>V05-015</td>
<td>$199.00</td>
</tr>
<tr>
<td>V05-016</td>
<td>$219.00</td>
</tr>
<tr>
<td>V05-017</td>
<td>$239.00</td>
</tr>
<tr>
<td>V05-018</td>
<td>$259.00</td>
</tr>
<tr>
<td>V05-019</td>
<td>$279.00</td>
</tr>
<tr>
<td>V05-020</td>
<td>$299.00</td>
</tr>
<tr>
<td>V05-021</td>
<td>$319.00</td>
</tr>
<tr>
<td>V05-022</td>
<td>$339.00</td>
</tr>
<tr>
<td>V05-023</td>
<td>$359.00</td>
</tr>
<tr>
<td>V05-024</td>
<td>$379.00</td>
</tr>
<tr>
<td>V05-025</td>
<td>$399.00</td>
</tr>
<tr>
<td>V05-026</td>
<td>$419.00</td>
</tr>
<tr>
<td>V05-027</td>
<td>$439.00</td>
</tr>
<tr>
<td>V05-028</td>
<td>$459.00</td>
</tr>
<tr>
<td>V05-029</td>
<td>$479.00</td>
</tr>
<tr>
<td>V05-030</td>
<td>$499.00</td>
</tr>
<tr>
<td>V05-031</td>
<td>$519.00</td>
</tr>
<tr>
<td>V05-032</td>
<td>$539.00</td>
</tr>
<tr>
<td>V05-033</td>
<td>$559.00</td>
</tr>
<tr>
<td>V05-034</td>
<td>$579.00</td>
</tr>
<tr>
<td>V05-035</td>
<td>$599.00</td>
</tr>
<tr>
<td>V05-036</td>
<td>$619.00</td>
</tr>
<tr>
<td>V05-037</td>
<td>$639.00</td>
</tr>
<tr>
<td>V05-038</td>
<td>$659.00</td>
</tr>
<tr>
<td>V05-039</td>
<td>$679.00</td>
</tr>
<tr>
<td>V05-040</td>
<td>$699.00</td>
</tr>
<tr>
<td>V05-041</td>
<td>$719.00</td>
</tr>
<tr>
<td>V05-042</td>
<td>$739.00</td>
</tr>
<tr>
<td>V05-043</td>
<td>$759.00</td>
</tr>
<tr>
<td>V05-044</td>
<td>$779.00</td>
</tr>
<tr>
<td>V05-045</td>
<td>$799.00</td>
</tr>
<tr>
<td>V05-046</td>
<td>$819.00</td>
</tr>
<tr>
<td>V05-047</td>
<td>$839.00</td>
</tr>
<tr>
<td>V05-048</td>
<td>$859.00</td>
</tr>
<tr>
<td>V05-049</td>
<td>$879.00</td>
</tr>
<tr>
<td>V05-050</td>
<td>$899.00</td>
</tr>
<tr>
<td>V05-051</td>
<td>$919.00</td>
</tr>
<tr>
<td>V05-052</td>
<td>$939.00</td>
</tr>
<tr>
<td>V05-053</td>
<td>$959.00</td>
</tr>
<tr>
<td>V05-054</td>
<td>$979.00</td>
</tr>
</tbody>
</table>

Catalog Request
Please send me your 1981 ASAP Full Line Catalog
Name ________________________________
Company ________________________________
Address ________________________________
City ___________________ State ______ Zip _______

Asap offers a 30-day buyback protection policy: full money-back guarantees if not totally satisfied.

Ordering Information: name, address, phone, ship by: USPS or UPS. Shipping charge: add $2.50 up to 1 lb., for UPS $5.00, $5.00 for U.S. Mail (U.S. only) ($25.00 minimum order). Call for larger shipments.

Terms: We accept cash, check, money orders, Visa & Master Charge (U.S. Funds only). Tax: 6% Calif. Res., C.O.D.'s and terms available on approval (School P.O.'s Accepted).

BYTE October 1981
Mail-Order Forum

Dear Steve,

In July 1979, I was enticed by the savings of buying a Radio Shack TRS-80 from a mail-order firm. I chose a company that is still advertising in BYTE today—Pan American Electronics (it had a different name in 1979). I confirmed with the company that its TRS-80s were covered by the Tandy warranty. Still skeptical, I called the TRS-80 Hot Line. To my surprise, I was firmly discouraged from doing business with Pan American and was told that most mail-order TRS-80s were defective. I then called the Tandy World Headquarters and asked for the division manager responsible for Pan American. He assured me that Pan American was legitimate. He couldn't understand the comments from the Hot Line.

I decided to risk it (after all, I'd be covered by the warranty) and sent my check. My TRS-80 arrived, but it did not work. Pan American was very nice and said I could either return it for a refund or exchange, or take it to a local Radio Shack for free warranty service. I did the latter and a loose wire was repaired in 48 hours.

A few months later, contrary to my advice, a friend ordered from Pan American. His TRS-80 had a defective keyboard and was repaired by our local Radio Shack Center. Just recently, another friend received defective disk drives from some other "Authorized Radio Shack Sales Center."

In all three cases, the warranty service was done, and, hence, we are satisfied customers. However, our experiences support the Hot Line's accusations. Is Tandy pushing defective merchandise through mail-order stores?

Jeff Goodling
Allentown PA

Dear Steve,

I was concerned about buying a TRS-80 by mail, not because I was afraid of being ripped off, but because I'd heard rumors that local stores were being difficult about post-sale support.

To see for myself, I went to a Radio Shack Computer Center in Glendale, California, to check the price on a Model II with a printer, for my own use. The quote I got was about $1000 higher than I could get by mail (even forgetting the tax). When I mentioned to the salesman that mail order was much cheaper, he said, in effect, try to get support: the mail-order company won't support the machine, and neither would he unless I bought a $1300 service contract. He was pretty hostile about the whole idea that I might want to save a thousand bucks. He so assured me on the idea of a Model II that I crossed it off my list of possibilities.

At the same time, I was looking for a word processor for business purposes. I checked most of the big companies (Wang, Lanier, IBM, etc.) and got a shock: all of them carry their own financing amortized over five years, but Radio Shack does not. Radio Shack, on the other hand, forces you to an outside lender, no matter who you are. We're an old company with plenty of credit, but to Radio Shack it makes no difference. Also, Radio Shack's service contract costs from $400 to $800 more than the rest.

It seems that Radio Shack simply isn't interested in the business market—at least it's never going to get it with that kind of financial attitude.

Radio Shack's machines are initially cheaper, true, but over five years, with the service, they come out looking very bad. Plus, the attitude of the people associated with the places I talked to left something to be desired.

David Storti
Los Angeles CA

Perhaps it is best if Radio Shack responds directly. Pan American Electronics' reply follows... Steve

Radio Shack Replies:

I can't believe anyone can think we're "pushing defective merchandise through mail-order stores!" That's absurd... our reputation would suffer, and we'd end up paying for the repairs anyway. I'd bet the reason Mr. Goodling and his friends experienced problems was due to the extra shipping time and mileage. If a local store or dealer had delivered the equipment to the user, it could have been checked out on the spot before delivery.

Any Radio Shack employee telling a customer not to buy from a dealer is speaking against company policy. There are obvious advantages to buying locally, whether through a company store or authorized dealer: checkout prior to delivery, and a salesman naturally more anxious to help "his customer" with any problems after the sale. A customer who spends money elsewhere and needs service is very likely to be a lower priority. That's not policy, just a commonsense assessment of human nature at work. Our store personnel are required to help any customer with repairs in a timely fashion. Warranty service requires proof of purchase from a Radio Shack store or authorized dealer. There are some people selling TRS-80s who aren't authorized dealers, and there is no pass-through warranty if you buy from one of them.

I'm sorry Mr. Storti doesn't like our prices or our credit policies. There are always people who can work on less margin, some, it seems, on no margin. We know what it takes to continue our service network and still keep our stockholders happy: Hot Line, Newsletter, new hardware and software development, etc.

As to the credit question, we simply aren't in the time-payment business: Why not criticize the finance company for not manufacturing computers? We offer a leasing program, but apparently it didn't meet Mr. Storti's requirements.

I really believe that Radio Shack's attitude toward our customers is good. A salesperson (ours or anyone else's) will resist losing a sale and may naturally be less enthusiastic about furnishing support to someone else's customer. I apologize to anyone who has received other than courteous treatment from one of our employees in this situation, or who has been led to believe that we as a company condone less than full support on a purchase from an authorized outlet. It just isn't true.

We'd like to be all things to all customers, but we know...
FUTRA COMPANY
P.O. BOX 4380 - DEPT. B
TORRANCE, CA 90251
(213) 328-9581

Hours: Mon. - Fri.: 8:00 am to 5:00 pm
Sat.: 9:00 am to 4:00 pm (PST)

Finding solutions and being competitive is our business. All
Futra Computer systems are designed to find solutions
for your automation needs at the lowest possible prices.
Our carry a complete line of products from major
manufacturers and a variety of other accessories and software to
fit your home, professional and business needs.

APPLE COMPUTER

THE LOWEST PRICE - CALL

APPLE III COMPUTER

A highly sophisticated system de-
signed to tackle the toughest
budgeting, forecasting, scheduling,
accounting, and other management analysis
and planning tasks. It comes with a
built-in disk drive, screen and
software as a standard package.

AP8000A system Option A includes:
$4038.00

AP3510 Apple III 128K
$3500 Information card

AP3450 12" Black & White Monitor

Accessories:
Apple II Face Plate: $35.00
Apple II Kit: $495.00

ATARI COMPUTER SYSTEMS
ATARI 800 16K Computer
Your price: $785.00

The Atari 800 Computer with
accessories makes up a complete
system for home, educational, financial,
and business use.

- Atari 400 $347 +513 RAM Mod $83
- Atari 800 Disk Drive $475 +530 Acoustic Mod $136
- Atari 400 Disk Drive $318 $85 Interface Mod $50
- Atari 2550 10 col. print: $780 +410 Prog. recorder $79

CALIFORNIA COMPUTER SYSTEM

The CQS 2210 is a low cost S100, 266 computer system
with 64K of memory, disk controller, parallel/serial I/O
and CPM operating system.

$1743.00

Separate Components
200A Monitor $273 +2421 Disk Drive $199
180A CPU $373 +2065 64K RAM $737

VIDEO TERMINALS & VIDEO MONITORS

Sanyo:
- 15" Green Monitor $299
- 14" Color Monitor $282
- 12" B&W Monitor $259
- 14" Color Monitor $313
- 10" B&W Monitor $250
- 9" Color Monitor $279

IBM:
- Monitor $279
- Color Monitor $295

TEAM:
- Monitor $279
- Color Monitor $295

AMPERE:
- Monitor $279
- Color Monitor $295

DSM:
- Monitor $279
- Color Monitor $295

EPSON PRINTERS

MX-U100

Your price $759.00

Probably the best buy in a printer this year. Compares
features with any other and cost price (especially ours). 4 character
sizes on the standard unit, and up to 4 times larger on
the special unit. See for yourself.

- MX-U100 Printer $599
- MX-U70 Printer $599
- MX-U50 Printer $599
- MX-U40 Printer $599
- MX-U30 Printer $599
- MX-U20 Printer $599
- MX-U10 Printer $599
- MX-U6 Printer $599
- MX-U4 Printer $599
- MX-U2 Printer $599
- MX-U1 Printer $599

ALTOS COMPUTER SYSTEM

Now a system truly suited to the needs of your business. Start
with a single terminal system and expand up to 4 users.
You've heard about what they can do, now tell us what you
want them to do. CALL TODAY

NEC PC-8000 MICROCOMPUTER SYSTEM

Not an apple lover? Check out the new NEC PC-8000 which
combines the most wanted features of several leading
microcomputers, plus a few of its own. Go see us and call us tomorrow for pricing, you just
might be surprised.

TERMS: Shipping: add 3% for product shipped within continental
USA via UPS surface (minimum $3.00). If the order placed is
purchased with 85% or more of the sale price, a Total Charge
of $3.00 for shipping is all you pay within the
continental USA via UPS surface. Allow 14 working days
for personal and corporate orders to clear. Credit card
charges limited to $1000. No COD's, FPO, APO or orders
outside continental USA will be shipped for cash orders or
add 10% to the purchase price. All returns, complete or
in part, must be returned within 10 days. California residents
add 6.5% sales tax. All offers subject to change or
withdrawal without notice. Warehouse: 20655 6th St., West Rancho
Valle, CA 92084. - Inquiry on inventory.
we'll lose some customers to
the competition. I'm at a loss
to understand why Mr Storti's
decision to buy from some-
one else should cause him to
have such strong feelings
against us.
Ed Juge, Director
Computer Merchandising
Radio Shack
Ft Worth TX

Obviously the sort of scare
tactics that Mr Goodling ex-
perienced by Tandy (Radio
Shack) personnel is not ap-
preciated by Pan American
Electronics or other dealers
(i.e., Authorized Sales Cen-
ters). It is unfortunate that
some Tandy personnel will
try to make a sale or express
their competitive nature be-
tween the two divisions
(company and franchised/de-
alers) in such a way.
The facts are that the mer-
chandise is the same. The
vast majority of those who
purchase from independent
Radio Shack dealers are very
happy with the merchandise
and the personal service they
receive from the small inde-
pendent dealer. The added
advantage of buying from an
independent dealer is that
they will often give their cus-
tomers a better price for ex-
actly the same merchandise.
Radio Shack dealers are
not usually located in large
cities. Major metropolitan
areas are reserved for Radio
Shack's company stores. The
only access dealers have to
the larger metropolitan areas
is by advertising in maga-
azines like BYTE and by offer-
ing consumers a better price
for the same merchandise.
The dealers' profit margin
is smaller than the company
stores', so we sacrifice a lot
by discounting. We feel,
however, that discounting
merchandise is an honest
way to make a living. We feel
it is inappropriate and unethical
to make unwarranted threats
or to spread lies about our
main supplier and our major
competitor simply to make an
extra dollar.
Dan Frank, President
Pan American Electronics
Mission TX

In Need of a
Way to the PROM

Dear Steve,
I want to use my TRS-80
Model I and Model III to
develop useful programs, and
I need peripherals to ac-
complish the task. Your ar-
ticles on parallel and serial
I/O (input/output) were very
helpful in this regard. (See
"I/O Expansion for the Radio
Shack TRS-80, Part 1: Prin-
ciples of Parallel Ports," May
1980 BYTE, page 22 and
"Part 2: Serial Ports," June
1980 BYTE, page 42.)
One area that I would like
to pursue is that of placing
application software in an
external PROM (programmable
read-only memory). Thus,
the application program
would not have to be loaded
each time it is used.
How to implement an ex-
ternal PROM memory with
the TRS-80 expansion port is
not clear to me. Can you
help?
Frank Fitzgerald
East Northport NY

How to implement an ex-
ternal PROM memory with
the TRS-80 expansion port is
not clear to me. Can you
help?
Frank Fitzgerald
East Northport NY

Getting on the
Right Trak

Dear Steve,
I found your February 1981
"Circuit Cellar" article very
interesting. (See "A Com-
puter-Controlled Tank," page
44.) Since I fiddle with
robotics, I would love to try
out this ingenious toy. The
only problem is that I can't
find a store that sells the Big
Trak. Could you give me the
address of the Milton Bradley
company?
Am I correct in assuming
that the only parts I must
specially order to build this
are the Exar Integrated Sys-
tems phase-locked loop and
the modem listed at the back
of the article?
Marc Weigel
Delta, British Columbia, Canada

The address you want is
Milton Bradley Company,
MB Electronics Division,
Springfield MA 01101.
HOME FINANCE PAK I: Entire Series $49.95
CHECK REGISTER AND BUDGET: This comprehensive checking ACCOUNT MANAGEMENT SYSTEM not only keeps complete records but also gives you the analyses and control tools you need to budget your account. The program provides routines for BUDGETING INCOME AND EXPENSE, AUTOMATIC CHECK SEARCH, and BANK STATEMENT RECONCILING. CRT or printer reports are produced for ACTUAL EXPENSE vs BUDGET, CHECK SEARCH DISPLAY RECONCILIATION REPORT and CHECK REGISTER DISPLAY by month. Check entry is prompted by user-defined membranes of standard purposes and recipient codes, speeding data entry and reducing disk storage and retrieval time. Six fields of data are stored for each check: amount, check no., date, purpose, recipient and TAX DEDUCTIBLE REMINDER. CHECK SEARCH routines allow searching on any of these data fields. Up to 100 checks into storage $29.95. SAVINGS: Account management system for up to 20 separate Savings accounts. Organizes, files and displays deposits, withdrawals and interest earned for each account. $14.95.
CREDIT CARD: Get Control of your credit cards with this program. Organizes, stores and displays purchases, payments and service for up to 20 separate cards or bank loans. $14.95.

UNIVERSAL COMPUTING MACHINE: $49.95
A user-programmable computing system structured around a 5 to 9 column table. User defines rows and column names and equations forming a unique computing machine. Table elements can be multiplied, divided, subtracted or added to any other element. Hundreds of unique computing machines can be defined, stored, and recalled, for later use. Excellent for sales forecasts, budgets, inventory lists, income statements, production planning, project costs estimates - in short for any planning, analysis or reporting problem that can be solved with a table. $29.95.
COLOR CALENDAR: $29.95
Get a busy calendar? Organize it with Color Calendar. Whether it's business, appointments, dates, a regular office schedule. This program is the perfect way to schedule your activities. The calendar display is a beautiful Hi-Res color graphics calendar with the selected month with each scheduled day highlighted in color. Using the daily schedule, you can review any day of the month and schedule an event or activity in any one of 20 time slots from 8:00 AM to 5:30 PM.

BUSINESS SOFTWARE: Entire Series $119.95
MICROACCOUNTANT: The ideal accounting system for small businesses. Serves as a classic T-accounts and double-entry bookkeeping, this efficient program provides a journal for recording transactions and reviewing up to 3,000 transactions per month to any one of 300 accounts. The program produces CRT and printer reports covering T-ACCOUNT JOURNAL, ACCOUNT LEDGER, BALANCE SHEET and INCOME AND EXPENSE STATEMENT. Includes a short primer on Financial Accounting. (48K) $49.95.
UNIVERSAL BUSINESS MACHINE: This program is designed to SIMPLIFY and SAVE TIME for the serious businessman who must periodically Analyze, Plan and Estimate. The program was created using our Universal Computing Machine and it is programmed to provide the following planning and forecasting tools:
- CASH FLOW ANALYSIS
- PROFIT & LOSS
- INCOME AND EXPENSE STATEMENT
- REAL ESTATE INVESTMENT ANALYSIS
- BUSINESS CHECK REGISTER AND BUDGET: Our Check Register and Budget programs expanded to include up to 50 budgetable items and up to 400 checks per month. Includes bank statement reconciling and automatic check search (48K) $49.95. ELECTRONICS SERIES VOLS I & II: Entire Series $259.95
LOGIC DESIGNER: Interactive Hi-Res graphics program for designing digital logic systems. Draw directly on the screen up to 100 different gate types, including NAND, NOR, INVERTER, EX-OR, T-FLOP, JK-FLOP, D-FLOP, RS-FLOP, 4-BIT COUNTER and 4-BIT SHIFT REGISTER. User interconnects gates using the graphics commands. Network descriptions for LOGIC SIMULATOR generated simultaneously with the CRT diagram being drawn $159.95.
MANUAL AND DEMO DISK: Instruction Manual and demo disk illustrating capabilities of both program(s) $29.95.

ELECTRONIC SERIES VOLS III & IV: Entire Series $259.95
CIRCUIT SIMULATOR: Tired of trial & error circuit design? Simulate & debug your designs before you build them! With CIRCUIT SIMULATOR you build a model of your circuit using RESISTORS, CAPACITORS, INDUCTIONS, TRANSISTORS, BUCKERS, V-TABLE and CURRENT SOURCES and simulate the waveform response to inputs such as PULSES, SINEWAVE, SQUARES, etc. All fully programmable. The output is displayed as an OSCILOSCOPE-STYLE PLOT of the selected waveforms (Apple only) or as a printed table of voltage vs time. Handles up to 200 gates and up to 20 sources. Requires 48 RAM $159.95.
CIRCUIT DESIGNER: Interactive Hi-Res graphics program for designing directly on the screen up to 100 different components, including those referenced above. Components interconnect list for CIRCUIT SIMULATOR generated automatically. Requires $159.95.

MATHMATICS SERIES: Entire Series $49.95
STATISTICAL ANALYSIS: This menu driven program performs LINEAR REgression analysis determines the mean, standard deviation and plots the frequency distribution of user-supplied data sets. Printer, Disk, 1-0 reads and outputs $14.96.
NUMERICAL ANALYSIS: Hi-Res 2-Dimensional plot of any function. Automatic scaling. At your option, the program will plot the function, plot the INTEGRAL, plot the DERIVATIVE, determine the ROOTS, MAXIMA, MINIMA, INTEGRAL VALUE. $19.95.
MATRICES: A general purpose program for determining the INVERSE and DETERMINANT of any matrix, as well as the SOLUTION to any set of SIMULTANEOUS LINEAR EQUATIONS. $19.95.
3-D SURFACE PLOTTING: Explore the ELEGANCE and BEAUTY of MATHEMATICS by creating Hi-Res PLOTS of 3-dimensional surfaces from any 3-variable equation. Disk save and recall routines for plots. Menu driven to view surface parameters. Hidden line or transparent plotting $19.95.

ACTION ADVENTURE GAMES: Entire Series $29.95
RED BARON: Can you outfly the RED BARON? This fast action game simulates a machine gun dogfight between your WORLD WAR I BI-PLANE and the Baron's. You can LOOP, DIVE, BANK or CLIMB and so can the BARON. In Hi-Res graphics plus sound $14.96.
BATTLE OF MIDWAY: You are in command of the U.S. HORNETS' DIVE-BOMBER squadron. Your targets are the Aircraft carriers, Akagi, Soryu and Kaga. You must fly your way through ZEROS and AA FIRE to make your DIVE-BOMB hit. In Hi-Res graphics plus sound $14.96.
SUB ATTACK: It's April 1943. The enemy convoy is headed for the CONTROL SEA. Your sub, the MURAY, has just sighted the CARRIERS and BATTLESHIPS. Easy targets! But watch out for KARES - deadly and deadly in Hi-Res graphics plus sound $14.95.
FREE CATALOG: All programs are supplied on disk and run on Apple II w/Disk & Applesoft ROM Card & TRS-80 Level II and require 32K RAM unless otherwise noted. Detailed instructions included. Orders shipped within 5 days. Cards user include card number. Add $1.50 postage and handling with each order. California residents add 8.25% sales tax. Foreign orders add $5.00 postage and handling.

SPECTRUM SOFTWARE
142 Carlow, P.O. Box 2084
Sunnyvale, CA 94087

FOR PHONE ORDERS: (408) 738-4387
DEALER INQUIRIES INVITED.

Circle 347 on Inquiry card.
Ask BYTE

Regarding the components necessary to modify the Big Trak as I did, you would need two modem boards. If purchased as kits from the Micro Mint, 917 Midway, Woodmere NY 11598, they include the XR-2211 phase-locked loop and all other components. Other than that you would have to buy the UART (universal asynchronous receiver/transmitter) and CMOS (complementary metal-oxide semiconductor) integrated circuits. Many advertisers in the back pages of BYTE sell these items. . . .

Steve

Board Inquiries

Dear Steve,

Is someone going to make available kits or printed-circuit boards for the project you described in “Build a Low-Cost Logic Analyzer” (April 1981 BYTE, page 36)?

Ivan Whitehouse

Goldendale WA

I completely misjudged the interest in my logic-analyzer project. The only unit I made was the prototype; I figured the interest would be general, but not enough to warrant the expense of having a printed-circuit board made. As you know, printed circuits are available for many of the projects that I present in BYTE, but I usually have some indication beforehand that there will be a reasonable demand.

Unfortunately, it’s a little late for me to start the long procedure of designing a board, with so many new things to work on. I’ll be sure to gauge response in the future, and there will continue to be printed-circuit boards for many of my projects.

If you want a complete list of all the printed-circuit boards available from my previous articles, drop a note to the Micromint, 917 Midway, Woodmere NY 11598 and request a catalog. . . .

Steve

FIELD PROVEN!

10 MEGABYTES and MORE for the TRS-80® Model II
plus SHARED ACCESS to HARD DISK DRIVE

Hard/Soft Disk System (HSDS) Software allows access as single drive. You can have that 10 Megabyte continuous file - that 50,000 name maillist or inventory! Or a directory with 1000 entries! All completely compatible with TRS80 2.0 BASIC. You can mix floppy and hard disk drives. Includes special utilities including HPURGE, DCS Directory Catalog System, HZAP Hard Disk Superzap, and many special formatting options. Three to eight times faster than floppy! RACET quality.

HARD DISK DRIVE & CONTROLLER $5995. Second User $585. HSDS Software $495. (Note: HSDS no longer available for CORVUS drives!)

INFINITE BASIC (Mod I & III Tape or Disk) Mod I $50.00, Mod Ii $60.00. Extends Level II BASIC with complete MUX functions and many more string functions. Includes RACET machine language sorts! Sort 1000 entries in 9 seconds!! Select only functions you want to optimize memory usage.

BASIC CROSS REFERENCE UTILITY (Mod II 64K) $50.00. SEEK and FIND functions for Variables, Line Numbers. Strings, Keywords. All options available for line numbers and variables. Loads from BASIC — Call with CTRL. Output to screen or printer!

BSM Mod I $75.00, Mod II $150.00, Mod III $200. Disk Sort/Merge for RANDOM files. All machine language stand-alone package for sorting speed. Establish sort specifications in simple BASIC command file. Execute from DOS. Only operator action to sort is to change diskette when requested! Handles multiple diskette files! Super fast sort times — improved disk I/O times make this the fastest Disk Sort/Merge available on your TRS. (Mod I Min 32K 2-drive system, Mod II 64K 1-drive, Mod III 32K 1-drive)

BSF (Mod I & III Tape or Disk - Specify Memory Size) Mod I $25; Mod II $50; Mod III $50. Generalized Subroutine Facilities. The STANDARD against which all other sorts are compared! And then compare prices! Machine language — fast and powerful! Multi-key multi-variable and multi-key string, zero and move arrays. Mod II includes US PEEKS and POKEs. Includes sample programs.

DISCAT (32K 1-drive Min) Mod I, II $50.00. This comprehensive Diskette Cataloging/Indexing utility allows the user to keep track of thousands of programs in a categorized library. Machine language program works with all TRS80 and NEWDS operating systems. Files include program names and extensions, program length, directory names, front and back, and diskette file space. KFS-80 (1-drive 32K Mod — Mod II 64K) Mod I, III $100.00; Mod II $175.00. The keyfile system provides key and sequential access to multiple files. Provides the programmer with a powerful disk handling facility for development of data base applications. Binary tree index system provides rapid access to file records.

MAILIST (1-drive 32K Mod — Mod II 64K) Mod I, III $75.00; Mod II $150.00. This ISAM-based mailist minimizes disk access times; mail list — no separate sorting. Supports 5 digit zip code and 3 digit state code. Up to 300 addresses. Mask and query selection. Record access times under 4 seconds!

COMPROM (Mod I & III — Disk only) Mod I $350. Mod III $30. Command Processor. Auto your disk to perform any sequence of instructions that you can give from the keyboard. DIR, FREE, print, mail list update, INDEX, NO IMAGE and REINDEX, TWEAK, addressing, bit manipulation, MACRO and SCREENPRINT.

UTILITY PACKAGE (Mod II 64K) $100.00. Important enhancements to Mod II. The file recovery capabilities alone will pay for the package in full. Fully documented in 124 page manual that includes XMIT, XGAT, XCOMP and SUPERZAP. XCOMP and SUPERZAP are used to edit/transfer huge data from diskettes! XCOMP builds multi-file catalog and with multi-sector mode and other features. SUPERZAP allows examination of any section of a diskette. Includes track 0, and automatic catalog generation. DCS builds consolidated directories from multiple diskettes into a display or listing sorted by disk name or file name plus more. Change disk ID with DISKID/XCREATE preallocates files and sets 'LOF' to end to speed disk accesses. DEBUG adds single step, trace, subroutine calling, program looping, dynamic assembly and more!

DEVELOPMENT PACKAGE (Mod II 64K) $125.00. Includes RACET machine language SUPERZAP, Apparatus Disassembler, and Model II Interface to the Microsoft "Editor Assembler Plus" software package including uploading services and patches for Disk 1/0.

CHECK, VISA, M.C., C.O.D., PURCHASE ORDER. TELEPHONE ORDERS ACCEPTED (714) 997-4990

*TR-30 is a Registered Trademark of TANDY CORPORATION

RACET computes • RACET computes • RACET computes • RACET computes • RACET computes

RACET computes • RACET computes • RACET computes • RACET computes • RACET computes

320 October 1981 @ BYTE Publications Inc

Circle 318 on inquiry card.
FMS-80, a database management system, offers the user a quick and easy way to organize and efficiently manipulate data so sound decisions can be made on facts displayed.

FMS-80 is the most powerful stand alone DBM program available to the microcomputer industry.

Completely menu driven and written in assembly language it offers these features:

- User definable File Definitions Screen Displays Reports (with math and field break analysis) Selection Criteria (on any or all fields)
- Menus (that applications programs can be selected from)
- Instantaneous data query on indexed records
- Mathematical manipulation of numeric data fields using the report generator or the programming language EFM (Extended File Maintenance)
- Easy to use video "how to" training tapes are available.
- Manipulation of up to 19 different data files (using EFM) at one time and displaying this information on the screen, generating reports, generating other data files or online updating of input files that already exist.
- FMS-80 is able to call other programs like subroutines in EFM
- FMS-80 is able to read data files that other programs have generated
- No restrictions to record size other than available RAM memory space
- Operates under CP/M*, MP/M* or CDOSS

FMS-80 allows the flexibility to quickly create programs that allow data to be entered in a form that a secretary recognizes and generates reports that the manager requires.

If you're continuously asked to do applications programs and don't have time to do it in BASIC, consider FMS-80.

For additional information contact

Systems Plus
3975 East Bayshore
Palo Alto, CA
94303
Phone 415/989/7047

Circle 358 on inquiry card.
BEING OVERCHARGED!

DON'T Pay Credit Card Surcharges
Pay a U.P.S. C.O.D. “Fee”
Even Pay for the Call!

DO CALL OMEGA TOLL FREE!

Special of the Month!
EPSON MX-80
INTERFACES:
IEEE $55, TRS-80 $35,
APPLE INTERFACE & CABLE $90,
RS-232 $70

WEST COAST
1-800-235-3581
EAST COAST
1-800-556-7586

CALL OMEGA AND FIND OUT WHY WE ARE AMERICA’S FASTEST GROWING COMPUTER SALES COMPANY!

ΩMEGA SALES COMPANY
<table>
<thead>
<tr>
<th>Product</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANADEX</td>
<td>$1249</td>
</tr>
<tr>
<td>ATARI 800 32K</td>
<td>$749</td>
</tr>
<tr>
<td>DIABLO 630</td>
<td>$1995</td>
</tr>
<tr>
<td>NE 12” MONITOR</td>
<td>$229</td>
</tr>
<tr>
<td>INTERTEC SUPERBRAIN 64K RAM</td>
<td>$2799</td>
</tr>
<tr>
<td>QD SUPERBRAIN</td>
<td>$2999</td>
</tr>
<tr>
<td>NEC 5510 SPINWRITER (7710)</td>
<td>$2345</td>
</tr>
<tr>
<td>NEC 5520 SPINWRITER (7720)</td>
<td>$2895</td>
</tr>
<tr>
<td>NEC 5530 SPINWRITER (7730)</td>
<td>$2345</td>
</tr>
<tr>
<td>NEC 12” MONITOR</td>
<td>$229</td>
</tr>
<tr>
<td>OKIDATA MICROLINE-80</td>
<td>$399</td>
</tr>
<tr>
<td>OKIDATA MICROLINE-82</td>
<td>$529</td>
</tr>
<tr>
<td>OKIDATA MICROLINE-83</td>
<td>$769</td>
</tr>
<tr>
<td>DIABLO 630</td>
<td>$1995</td>
</tr>
<tr>
<td>APPLE II PLUS 48K</td>
<td>$1139</td>
</tr>
<tr>
<td>APPLE DISK w/3.3 DOS Controller</td>
<td>$525</td>
</tr>
<tr>
<td>APPLE DISK w/o Controller</td>
<td>$449</td>
</tr>
<tr>
<td>HAZELTINE 1420</td>
<td>$799</td>
</tr>
<tr>
<td>NORTHSTAR HORIZON II 32K QD</td>
<td>$2925</td>
</tr>
<tr>
<td>ANADEX DP-9500/9501</td>
<td>$1249</td>
</tr>
<tr>
<td>TELEVIDEO 912C</td>
<td>$869</td>
</tr>
<tr>
<td>TELEVIDEO 920C</td>
<td>$729</td>
</tr>
<tr>
<td>TELEVIDEO 950</td>
<td>$929</td>
</tr>
<tr>
<td>CBM 8032 COMPUTER</td>
<td>$1149</td>
</tr>
<tr>
<td>CBM 8056 DISK DRIVE</td>
<td>$1349</td>
</tr>
<tr>
<td>CBM 4032 COMPUTER</td>
<td>$1029</td>
</tr>
<tr>
<td>CBM 4040 DISK DRIVE</td>
<td>$1029</td>
</tr>
<tr>
<td>CMB 4022</td>
<td>$649</td>
</tr>
<tr>
<td>CMB VIC-20</td>
<td>$269</td>
</tr>
<tr>
<td>RADIO SHACK II 84K</td>
<td>$3245</td>
</tr>
<tr>
<td>RADIO SHACK III 16K</td>
<td>$849</td>
</tr>
<tr>
<td>LEEDEX/AMDEK 100</td>
<td>$139</td>
</tr>
<tr>
<td>LEEDEX/AMDEK 100G</td>
<td>$169</td>
</tr>
<tr>
<td>LEEDEX/AMDEK COLOR-1 13” Color Monitor</td>
<td>$329</td>
</tr>
<tr>
<td>MICROTOE 16K RAMBOARD for Atari</td>
<td>$79</td>
</tr>
<tr>
<td>MICROTOE 32K</td>
<td>$149</td>
</tr>
<tr>
<td>QUEME SPRINT 9/45 (Full Panel)</td>
<td>$2295</td>
</tr>
<tr>
<td>ATARI 400 16K</td>
<td>$349</td>
</tr>
<tr>
<td>ATARI 8256 PRINTER</td>
<td>$650</td>
</tr>
<tr>
<td>ATARI 850 INTERFACE</td>
<td>$139</td>
</tr>
<tr>
<td>ATARI 810 DISK DRIVE</td>
<td>$449</td>
</tr>
<tr>
<td>ATARI 800</td>
<td>$749</td>
</tr>
</tbody>
</table>

Prices are subject to change without notice. We carry the complete line of Personal Software.

We Accept C.O.D.'s • Stock Shipments Same Day or Next
No Surcharge for Credit Cards • All Equipment Factory Fresh with MFT Warranty

WEST COAST
1-800-235-3581
OMEGA SALES CO.
3533 Old Conejo Rd., #102
Newbury Park, CA 91320
1-805-489-3678
CA. TOLL FREE 1-800-322-1873

EAST COAST
1-800-556-7586
OMEGA SALES CO.
12 Meeting St.
Cumberland, RI 02864
1-401-722-1027

MEGA SALES COMPANY
Workshops from Virginia Polytech, Virginia Polytechnic Institute and State University, Blacksburg VA. Workshops on microcomputer design interfacing and programming, digital electronics for automation and instrumentation, and sessions using the TRS-80 are part of the curriculum. All workshops are hands-on with participants designing and testing concepts on the actual hardware. Contact Dr. Linda Leffel, Virginia Polytechnic Institute and State University, Blacksburg VA 24061, (703) 961-5241.

October-September
Electronics Magazine Seminars, various sites throughout the US. Electronics magazine and the McGraw-Hill Seminar Center are sponsoring seminars for engineers and managers. Subjects range from digital electronics to microprocessor-system design. Other topics include programming, speech technology and synthesis, microprocessor interfacing, and a hands-on microprocessor workshop. If a company has 10 or more people wanting to take a course, the seminar will be held at the company's plant. For details, contact Carol Clark, c/o McGraw-Hill Seminar Center, 305 Madison Ave, Rm 3112, New York NY 10017, (212) 687-0243.

October 7-9
Institute on Microcomputers for Instruction and Research in Higher Education. Jane S. McKimmon Center, North Carolina State University, Raleigh NC. The institute is designed to help high-level educators learn about the microcomputer and the role it can play in higher education. Contact Joyce Currie, c/o North Carolina Educational Computing Service, POB 12035, Research Triangle Park NC 27709, (919) 549-0671.

October 7-21
The 1981 Far East Computer Tour, Japan, South Korea, Taiwan, and Hong Kong. This tour group will visit various computer-related conferences and exhibitions throughout the Far East. Transportation for this three-week tour, plus shows, meals, and other items are included in trip packages, ranging in price from $2290 to $3095. For more information, contact Terry Butler, Commerce Tours International Inc, 870 Market St, Suite 742-744, San Francisco CA 94102, (415) 433-3072.

October 9-11
Rhode Island and Video Electronics Show, Providence Civic Center, Providence RI. This is the first major computer exhibition and show to be held in Rhode Island. Exhibitors and sales teams will present the latest in computers and video products for business, industry, government, education, and home use. Contact New Leaf Productions, Suite 335, 77 Ives St, Providence RI 02906, (617) 679-0089.

October 12-15
Information Management Exposition and Conference: INFO 81, Coliseum, New York NY. Discussions on packaged, customized pre-packaged, and custom-designed software will complement hardware and software exhibits. For more information, contact Clapp & Poliak Inc, 245 Park Ave, New York NY 10167, (212) 661-8410.

October 13-15
Understanding and Using Computer Graphics, New York NY. Headed by Carl Machover, this two-day seminar examines the state of the art in graphic systems. The focus will be on hardware, software, and applications. Contact Bob Sanzo, c/o Frost & Sullivan Inc, 106 Fulton St, New York NY 10038, (212) 233-1080.

October 15-18
The Third Annual Northeast Computer Show and Office Equipment Exposition, Hynes Auditorium, Boston MA. This show will feature hardware, software, and supplies for business, education, government, home, and office use. Office systems and equipment will also be shown. Contact National Computer Shows, 824 Boylston St, Chestnut Hill MA 02167, (617) 739-2000.

October 16-20
The Fourteenth Brazilian Computer Conference and Exhibit, Anhembi Convention and Exhibit Halls, Sao Paulo, Brazil. This conference will feature technical talks, conference tutorials, roundtable discussions, and special events. Computer-aided design and manufacture in developing countries will also be discussed. Contact Sucess Sao Paulo, Rua Tabapau, 627-1.º andar, 04533, Sao Paulo, SP, Brazil.

October 18-20
The Annual Conference of the New York State Association for Educational Data Systems (NYSAEDS), Syracuse NY. NYSAEDS is made up of people with an interest in computers and education. Workshops on the educational uses of microcomputer software will be held. Contact Don Ross, Aardsley High School, Aardsley NY 10502.

October 19-23
Wintek's Hand-On Microcomputer Workshop, Lafayette IN. Two- and three-day workshops in microprocessor hardware, software, and interfacing will be offered at Wintek's corporate headquarters. A single-board computer, including a 6800 microprocessor, programmable memory, serial and parallel input/output, and a 1 K-byte ROM (read-only memory) containing a monitor/debug program, will be given to the participants of this workshop. Tuition is $50 per day. Contact Wintek Corporation, 1801 South St, Lafayette IN 47904, (317) 742-8428.

October 19-23
Systems '81, Munich, West Germany. Computer systems and their applications will be featured. Additional information is available from Kallman Associates, 30 Journal Sq, Jersey City NJ 07306, (201) 653-3304.

October 20-22
The Annual Government-Industry Data Exchange Program (GIDEP) Workshop, Rice's Hyatt House, Palo Alto CA. The GIDEP annual workshop is open to anyone interested in the exchange of technical information relating to engineering, failure experience, reliability, and maintainability. Contact the Officer-in-Charge, GIDEP Operations Center, Corona CA 91720.

October 20-22
Computerized Office Equipment Expo, Southwest, Astrohall, Houston TX. Approximately 100 exhibitors will present office equipment and supplies, including word-processing systems, at this show. Contact Cahners Exposition Group, 222 W Adams St, Chicago IL 60606, (312) 263-4866.
if He'd used select™
it wouldn't have taken seven days

Learn SELECT™ in just 90 minutes. A whole new word processing software concept that kicks the coded key habit and frees you from complicated instruction manuals. SELECT is fast. SELECT is logical. With single key mnemonics, you'll use dozens of commands that instantly access the rich capabilities of this system. There's nothing like it.

Simply hit "C" and you'll be ready to Create a document.
Key "I" and you'll be in the Insert mode.
Key "M" and Move entire blocks of text...and key dozens more.

That's all there is to it. You'll get all that word processing software promises...plus a few surprises.

SELECT with SUPERSPELL™ The only microcomputer software with an integrated spelling dictionary. To proof your text all you do, of course, is to key "S". SUPERSPELL with its 10,000 word dictionary scans your text at computer speed then displays and corrects all your typing errors. You can increase SUPERSPELL's word power and customize the dictionary by adding new words, one at a time. Ask to see it today at your local dealer.

SELECT with SUPERSPELL...just a little byte more™

SELECT will run on any machine that uses CP/M or MP/M™ or its derivatives. It needs 40K of RAM and two disk drives. Special version now available for Radio Shack Mod II™ and Apple II™

™ SELECT and SUPERSPELL are trademarks of Select Information Systems inc
™ CP/M and MP/M are trademarks of Digital Research
™ A trademark of Tandy Corp
™ A trademark of Apple Computer Inc

INFORMATION SYSTEMS 919 Sir Francis Drake Boulevard • Kentfield, California 94904 • (415) 459-4003

Circle 332 on Inquiry card.
October 20-23
Computer-Network Design and Protocols, Boston MA. Integrated Computer Systems (ICS) will be presenting a course on fundamentals in computer communication-network concepts, technology, and implementation. Emphasis is on the practical aspects of network design, interfacing, protocols and packet switching. For a schedule of times and places for this course, contact Ruth Orndrick, c/o Integrated Computer Systems, 3304 Pico Blvd, POB 5339, Santa Monica CA 90405, (800) 491-1616; in California (800) 352-8251.

October 21-24
COMPUTA 81, World Trade Center, Singapore. This international show attracts professionals and buyers from Hong Kong, India, and Sri Lanka. Additional information can be obtained from Kallman Associates, 30 Journal Sq, Jersey City NJ 07306, (201) 653-3304.

October 24-25
The Second Annual New Jersey Microcomputer Show and Fleamarket, Holiday Inn (north) Convention Center, Newark International Airport, Newark NJ. This show will feature 75 commercial exhibitors and more than 100 vendors. User-group meetings will be held. Registration is $5 for both days. Contact Kengore Corporation, 3001 Rt 27, Franklin Park NJ 08823, (201) 297-2526.

October 25-30
The Forty-Fourth Annual Meeting of the American Society for Information Science (ASIS), Washington Hilton Hotel, Washington DC. The theme for this meeting is "The Information Community: An Alliance for Progress." Among the topics to be addressed are information and creativity, information and society, and overcoming the barriers between information sciences. Contact ASIS, 1010 Sixteenth St, NW, Washington DC 20036, (202) 659-3644.

October 25-26
Issue '81: The Fifth Annual SPSS Software Users Convention, Jack Tar Hotel, San Francisco CA. Issue Inc, the independent, nonprofit association of SPSS software users and coordinators, is presenting its fifth annual convention. The primary purpose of the convention is to inform the user community about new SPSS applications. Discussions of special applications will also be featured. Registration fees are $95 for members and $115 for nonmembers. For more information, contact Steve Hamburg, c/o Issue Inc, POB 8224, Chicago IL 60680, (312) 329-2400.

October 27-29
Computer Graphics 81, Regent Centre Hotel, London, England. Some of the topics to be covered are graphics systems: hardware and software; animation; image processing; simulation; and business and home graphics. An equipment exhibition will also be presented. For more information, contact Online Conferences Ltd, Argyle House, Northwood Hills, HA6 1TS, Middlesex, England.

October 29-November 1
Southeast Computer Show and Office Equipment Exposition, Atlanta Civic Center, Atlanta GA. For details, see October 15-18.

November 1-4
DPMA San Francisco '81, San Francisco Civic Center and Brooks Hall, San Francisco CA. This is DPMA's (Data Processing Management Association's) thirtieth annual conference and business exposition. Contact the Conference Coordinator, DPMA, 505 Busse Hwy, Park Ridge IL 60068, (312) 823-8124.

November 5
Invitational Computer Conference, Amsterdam, Netherlands. The Invitational Computer Conference is a one-day computer show designed for quantity buyers. Exhibits and seminars are featured.

For details, contact B J Johnson & Associates Inc, 2533 Eastbluff Dr, Suite 203, Newport Beach CA 92660, (714) 644-6037.

November 8-10
The Twelfth ACM North American Computer Chess Championship, Bonaventure Hotel, Los Angeles CA. A four-round, Swiss-style tournament is planned for this year's championship competition. In addition, a round-robin blitz tournament will be held. Games in this event proceed at a rate of 5 seconds per move. Belle, the current world champion, Chaos, Duchess, Nuchess, and L'Excentrique are among the programs being entered. For more information, contact Professor Monroe Newborn, School of Computer Science, McGill University, 805 Sherbrooke St West, Montreal, Quebec H3A 2K6, Canada.

November 9-10
Software Fair, Stouffers' Riverfront Towers, St Louis MO. This show is made up of software exhibitions from companies whose packages are in current use by members of the Southern and National Industrial Distributors Association. Distributors who are not members of these organizations can also exhibit their wares. Contact Don White or Tony Carroll, 1900 Arch St, Philadelphia PA 19103, (215) 564-3484.

November 9-11
ACM '81, Bonaventure Hotel, Los Angeles CA. This meeting will feature panel discussions on computers, software products in the 1980s, tutorials on computer-aided design, and a survey on the impact of robots on employment. Ray Bradbury and Dr Simon Ramo will speak. Computer exhibits and the North American Computer Chess Tournament will also be held. Contact ACM '81,
730 K/bytes of storage. Apparat has combined its Newdos/80 operating system and a dual-sided 80 track mini-floppy drive to give you up to 735,440 bytes of storage in a single volume. Newdos/80 version 2.0 expands the capability of double density drives, so you'll have greater applications for your TRS-80® model I and III.

Drives plug directly into an expansion interface (requires installation of a double density controller) or the model III disk bus with our single volume cable so you can now have over 2 megabytes of storage on-line with standard mini-floppy diskettes. Each drive has up to 573 free grams, for a total of 1,719, on a maximum of three 80 track drives, which can be added to a TRS-80 model I. Model III's can have up to 4 dual 80's on-line (almost 3 megabytes).

These drives can "read" standard 35 or 40 track diskettes using Newdos/80 version 2.0 which will allow skipping every other track.

Drives come complete with case, power supply and documentation. The drives are priced at only $515 (Cat. No. 1-705, specify I or III). Now, at 1424 bytes per buck, it just might be the answer to your storage problems. Special — Two dual 80 track drives only $999.
POB 24059, Village Station, Los Angeles CA 90024, (213) 536-9735.

November 10-12
Midcon/81 Show and Convention, O’Hare Exposition Center and Hyatt Regency O’Hare, Chicago IL. Talks on microcomputers, energy, memory, communications, and consumer electronics will highlight this show. Contact Electronic Conventions Inc, 999 N Sepulveda Blvd, El Segundo CA 90245, (800) 421-6816; in California (213) 772-2965.

November 12
Invitational Computer Conference, Paris, France. For details, see November 5.

November 16-19

November 27
Invitational Computer Conference, Milan, Italy. For details, see November 5.

November 17-19

November 19-20
Western Educational Computer Conference, San Francisco CA. Many of the computer-related talks at this conference will cover areas of interest to college instructors and administrators. For details, contact Ron P Langley, Data Processing Services, California State University - Long Beach, 1250 Bellflower Blvd, Long Beach CA 90840.

November 29-December 1
National Telecommunications Conference, New Orleans LA. This event is sponsored by the IEEE (Institute of Electrical and Electronics Engineers) and the New Orleans chapter of the Communications Society Conference Board. Some of the papers to be presented will discuss communications electronics, including software, terminals, theory, and data and computer communications. Contact G Allan Ledbetter, South Central Bell, 365 Canal St, Rm 1360, New Orleans LA 70140, (504) 528-7350.

December 1981

December 3-3
Legal Info, Shoreham Hotel, Washington DC. Automating legal-information systems is the subject of this conference and exposition. Lawyers who are interested in using computers in their work are invited to attend. Contact Legal Info, 1730 N Lynn St, Suite 400, Arlington VA 22209, (703) 521-6209.

December 1-4
Computer-Network Design and Protocols, Washington DC. For details, see October 20-23.

December 3
California Computer Show, Hyatt Hotel, Palo Alto CA. For details and a schedule of upcoming shows, contact the Show Administrator, c/o Norm De Nardi Enterprises, 95 Main St, Los Altos CA 94022, (415) 941-8440.

December 9-11
1981 Winter Simulation Conference (WSC 81), Peachtree Plaza, Atlanta GA. WSC 81 will feature papers, panel discussions, tutorials on discrete and combined simulation and modeling. The conference will be organized into tutorial, methodology, and application sessions. For information, contact Claude M Delfosse, CACI Inc, 1815 N Fort Myer Dr, Arlington VA 22209, (703) 841-7800.

December 15-19
Gulf Computer Exhibition, Dubai International Trade Centre, Dubai, United Arab Emirates, IBM, NCR, Apple, Honeywell, Philips, Wang, Hewlett-Packard, Data General, and other well-known manufacturers will be represented at this first exhibition of computer equipment in Dubai. The scope of the show takes in systems ranging from microcomputers to mainframes. Details are available from the Trade Centre Management Company, POB 9292, Dubai, United Arab Emirates, Telex 47474 DITC EM, and from Diana Clifton Sewell, International Office, Seymour House, 17 Waterloo PI, London, SE1 4AR, England.

December 16-18
The Twentieth IEEE Conference on Decision and Control (CDC). Vacation Village Hotel, San Diego CA. The CDC is the annual meeting of the IEEE (Institute of Electrical and Electronics Engineers) Control Systems Society. It is held in cooperation with the Society for Industrial and Applied Mathematics.

In order to gain optimal coverage of your organization’s computer conferences, seminars, workshops, courses, etc, notice should reach our office at least three months in advance of the date of the event. Entries should be sent to: Event Queue, BYTE Publications, POB 372, Hancock NH 03449. Each month we publish the current contents of the queue for the month of the cover date and the two following calendar months. Thus a given event may appear as many as three times in this section if it is sent to us far enough in advance.
MULTI-USER OASIS
HAS THE FEATURES PROS DEMAND.
READ WHY.

THE BIGGEST CHALLENGE
For any multi-user system is coordi-
4 nation requests from several users.
Without proper
Security is further
Security features.
OASIS has them.

EFFICIENCY:
RE-ENTRANT BASIC
This control,
unauthorized users could
access your programs and data and what they like.
And multi-users can multiply the problem.
Without the Logon,
Password and Privilege
Level features of Multi-User
OASIS, a system manager can specify for each user
which programs and files may be accessed—and
for what purpose.
Pro's insist on these
security features.
OASIS has them.

SYSTEM SECURITY:
LOGON, PASSWORD & USER ACCOUNTING
Controlling who gets on
your system and what they do once they're on it is the
essence of system security.

OASIS
MAKES MICROS RUN LIKE MINIS

OASIS IS AVAILABLE FOR
SYSTEMS: Atlas, Computer Corp. of America
Data Products, Digital Group, Digital
Micromachines, Dynabase, Godboud, IBM
Indus-Intersystems, North Star Ominy
SD Systems, TRS 80 Mod II Vector
Graphics. Workstations.

CONTROLLERS: Bell Controls Carinus
Korin Microfiche, Microfiche
Tatbell Tektronix Tampex X Comp

PLEASE SEND ME:

OPERATING SYSTEM

<table>
<thead>
<tr>
<th>Product</th>
<th>Price with Manual</th>
<th>Manual Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASIC COMPILER/INTERPRETER/DEBUGGER</td>
<td>$150</td>
<td>$175</td>
</tr>
<tr>
<td>RE-ENTRANT BASIC COMPILER/INTERPRETER/DEBUGGER</td>
<td>$150</td>
<td>$175</td>
</tr>
<tr>
<td>DIAGNOSTIC & CONVERSION UTILITIES</td>
<td>$150</td>
<td>$175</td>
</tr>
<tr>
<td>COMMUNICATIONS PACKAGE</td>
<td>$50</td>
<td>$60</td>
</tr>
<tr>
<td>COMBO KIT 74</td>
<td>$75</td>
<td>$90</td>
</tr>
</tbody>
</table>

Order OASIS from
Phase One Systems, Inc.
7700 Edgewater Drive, Suite 830
Oakland, CA 94621
Telephone: (415) 562-0085

NAME ____________________________
STREET (NO BOX) __________________
CITY ____________________________
STATE __________________________
ZIP _____________________________

AMOUNT $ _______________________ (Add $3 for shipping)
(Residents add sales tax)
Check enclosed
[] VISA
[] Mastercharge
Card Number ______________________
Expiration Date __________________
Signature ________________________
DYNACOMP
Quality software for *:

ATARI
TRS-80 (Level II)**

PET
NORTH STAR
CP/M Disks/Diskettes

CARD GAMES

BRIDGE 2.8 (Available for all computers)
Price: $16.00/Compu: $12.80

DYNACOMP offers the following:

- Widest variety
- Top quality
- Fast delivery
- Friendly customer service
- Free catalog
- 24 hour order phone

AND MORE...

STARTER 3.1 (Available for at least one computer)
Price: $11.50/Compu: $9.20

This is the classic Starter simulation, on which a new generation of computers has been built. The Starter is a truly classic, easy-to-use, and fun program for learning to play bridge. It has all the features that make it fun to play, including the ability to save your game and continue where you left off. The Starter is a great way to learn the basics of bridge and to have fun doing it. It is suitable for all levels of skill, from beginners to experienced players.

SPACE TILT (Apple and IBM only)
Price: $11.50/Compu: $9.20

This is a space game where you control a spaceship and try to dodge obstacles and other ships. The objective is to make it to the next level without getting hit by any obstacles. The game is challenging and fun, and it is suitable for all ages.

MEETING MAZE (Apple and IBM only)
Price: $11.50/Compu: $9.20

This is a maze game where you have to find your way through various obstacles and collect coins along the way. The objective is to reach the end of the maze as quickly as possible, and the game gets more difficult as you progress.

THOUGHT PROVIDERS

MANAGEMENT SIMULATION (Amstrad, North Star and CP/M 80 only)
Price: $10.95/Compu: $8.76

This is a game that simulates the running of a company. You are the CEO, and you must make decisions about production, marketing, and finance. The goal is to make a profit, and the player is rewarded for making good decisions.

FLIGHT SIMULATION (Available for all computers)
Price: $10.95/Compu: $8.76

This is a flight simulation game where you control a plane and try to navigate through various obstacles and terrain. The game is challenging and realistic, and it is suitable for all ages.

VALID (Available for all computers)
Price: $11.50/Compu: $9.20

This is a puzzle game where you must solve a series of logical and mathematical problems. The objective is to complete the puzzle as quickly as possible.

BACKPACK (2.0) (Amstrad, North Star and CP/M 80 only)
Price: $11.50/Compu: $9.20

This is a puzzle game where you must collect items and solve puzzles to complete your backpack. The game is challenging and fun, and it is suitable for all ages.

CHECKERS 2.5 (PET only)
Price: $10.95/Compu: $8.76

This is a game of checkers where you can play against the computer or against another player. The goal is to capture your opponent's pieces and to have more pieces at the end of the game.

CHESSMASTER (North Star and TRS-80 only)
Price: $11.50/Compu: $9.20

This is a chess game where you can play against the computer or against another player. The computer is very challenging and it is suitable for all ages.

LAM LADDER (Apple Disk Drive only)
Price: $10.95/Compu: $8.76

This is a game of Ladder where you can play against the computer or against another player. The goal is to get as many points as possible.

FOREST FIRE (Amstrad only)
Price: $10.95/Compu: $8.76

This is a game where you must save the forest from a fire. The objective is to put out the fire as quickly as possible and to save as much of the forest as possible.

WINFALL (Apple, IBM and TRS-80 only)
Price: $10.95/Compu: $8.76

This is a simulation of rainforest destruction. The player must make decisions about how to protect the forest and how to destroy it. The game is challenging and fun, and it is suitable for all ages.

SAPR (Amstrad only)
Price: $10.95/Compu: $8.76

This is a game where you must protect your saplings from being eaten by insects. The player must make decisions about how to protect the saplings and how to destroy the insects.

CHIPMUNK 2.0 (Amstrad only)
Price: $10.95/Compu: $8.76

This is a game where you control a chipmunk and try to collect as many seeds as possible. The game is challenging and fun, and it is suitable for all ages.

††† AHR PL: TRS-80 NORTHSTAR, CP/M and IBM are registered trademarks and/or tradenames.
* Asterisk where noted, all software is available for the IBM TRS-80 disk drives are not supported with DIX or BASIC

SPEECH SYNTHESIS

DYNACOMP is now distributing the most advanced DYNACOMP SPEECH SYNTHESIZER from Texas. Simple, easy-to-use and inexpensive, this new speech synthesis tool is available at our store. It is a must have for any computer owner and it helps you to communicate in a more effective way. The DYNACOMP SPEECH SYNTHESIZER is now available for your IBM or TRS-80 computer. It is easy to use and it helps you to communicate in a more effective way.

ADVENTURE

CRANSLAUN MANOR ADVENTURES (North Star and CP/M 80 only)
Price: $10.95/Compu: $8.76

This is an adventure game where you play a character who is stranded on an island. You must find a way to escape the island and return home. The game is challenging and fun, and it is suitable for all ages.

NEWNOWN (Amstrad only)
Price: $11.50/Compu: $9.20

This is a puzzle game where you must solve a series of logical and mathematical problems. The objective is to complete the puzzle as quickly as possible.

SPACE LAZER (IBM only)
Price: $11.50/Compu: $9.20

This is a space game where you control a spaceship and try to dodge obstacles and other ships. The objective is to make it to the next level without getting hit by any obstacles. The game is challenging and fun, and it is suitable for all ages.

ABOUT DYNACOMP

DYNACOMP is a leading distributor of small software packages with sales spanning the world currently in over 30 countries. During 1983, DYNACOMP has added a wide variety of new products to complement the existing line of software. This has increased our market share and has helped us to maintain our position as one of the leading distributors of small software packages. This has been achieved through the introduction of new and innovative products, as well as the development of a strong customer base. Our commitment to providing the best possible service and support to our customers has been our primary focus, and we are committed to continue to provide the highest level of service and support to our customers.
Clubs and Newsletters

Newsletter for Hams and Computerists

Dits & Bits, The W5YI Report, is published twice a month for the ham radio operator and microcomputer user. Articles on memory, FCC regulations, and other related topics are included. Contact the news- letter at POB 10101, Dallas TX 75207, (214) 690-1063.

Interested in a Central Bulletin-Board Service?

Michael Witt is interested in hearing from people who would like to develop a computer network in which the central system would place calls during the evening hours for reduced telephone rates. The system would be similar to other bulletin-board systems, except messages would be delivered and picked up by the central system instead of users calling in. Contact Michael Witt, POB 55686, Valencia CA 91355.

Newsletter on Genealogy

Genealogical Computing is a bimonthly newsletter on personal-computer applications involving genealogy. Contact Sara Andereck, c/o Data Transfer Associates, 5102 Pommeroy Dr, Fairfax VA 22032, (703) 978-8490.

Swiss Computer Club

Founded in 1978, the Schweizer Computer Club already has more than 4000 members. Members own PET, Apple, Sorcerer, and other systems, and have a special CP/M group. The club publishes three newsletters: Mikro- und Kleincomputer, a bimonthly; CBM/ PET News; and Computerjournal. Contact Ernest Erb, Schweizer Computer Club, Seeburgstrasse 18, CH-6002 Luzern, Switzerland.

Free Graphics Newsletter

Subscriptions to the Dynamic Blackboard News, are free. The News features customer applications, new products, technical notes, software news, and hints for graphics users. Dynamic Blackboard News is a publication of the Cambridge Development Laboratory. Contact Jean L Graef, Cambridge Development Laboratory, 36 Pleasant St, Watertown MA 02172, (617) 926-0869.

Newsletter on Graphics

Heath Users Group in California

Covering Riverside, San Bernardino, and West Los Angeles counties in Southern California, the Tri-County Heath Users Group welcomes members and visitors to its bimonthly meetings. Meetings are held the first Saturday of each month at the Heathkit Electronic Center 1555 N Orange Grove, in Pomona, and on the third Saturday of each month at the University of California-Riverside, Rm 1111, Watkins Facility. Meetings begin at 2 PM.

CP/M Users Group

The Sacramento Microcomputer Users Group is a CP/M users group that publishes a monthly newsletter called Push & Pop. Contact the group at POB 161513, Sacramento CA 95816, (916) 363-3962.

Pocatello Microcomputer Club

Members of the Pocatello Microcomputer Club use most of the popular computers on the market today. Anyone interested in computers is welcome to join. Contact the club at POB 8106, Pocatello ID 83209, (208) 232-4462.

PETs In Canada

The Toronto PET Users Group (TPUG) has a disk library available for members and nonmembers. The library has approximately 1400 programs provided by TPUG members and from other clubs. Membership is encouraged even if you live too far away to attend meetings. Contact TPUG, c/o Chris Bennett, 381 Lawrence Ave West, Toronto, Ontario, M5M 1B9, Canada, (416) 783-1645.

Science Network and Newsletter

The COGNET Newsletter seeks to disseminate information on cognitive simulation, computational linguistics, and artificial intelligence. The Center for Cognitive Science is also working on a computer network for those involved in these areas of research. For details, contact COGNET, Center for Cognitive Science, POB 1911, Brown University, Providence RI 02912.

BYTE’s Bits

Industry’s Eyes on New LISP Computer

LMI has been granted a license from the Artificial Intelligence Laboratory of MIT (Massachusetts Institute of Technology) to construct and commercially market the MIT CADOR machine. This system is specifically designed as a programmer environment for LISP. According to an LMI spokesman, most LISP programs are developed on the DEC (Digital Equipment Corporation) PDP-10 mainframes, but the LMI system, although in the format of a personal computer, provides up to sixty-four times the virtual address space. The base price of the LMI machine is $60,000.

Until recently, LISP usage has been associated with research conducted at educational institutions. But now that Control Data Corporation and Texas Instruments have ordered LMI machines, LISP’s commercial usage will be seen in expert systems, VLSI (very large-scale integrated) circuit design, and natural-language processing. LMI is headquartered in Los Angeles, California.
"Our newest development in the continuing expansion of the UCSD p-system™ software, version IV."

JOHN BRACKETT, President, SofTech Microsystems

Backed by a dedicated team of professionals, SofTech Microsystems continues to enhance the world's most widely-used, portable software development system. Today it's the UCSD p-System, Version IV. Able to run on most major microprocessors including 8086, Z-80, 8080, 8085, 6502, 6809, 9900 and LSI-11™, Version IV is the developer's tool to make perfect programs more possible. It consolidates all the best features of earlier versions, while allowing for much larger applications, concurrent processing and improved debugging. With the addition of BASIC, more macro cross-assemblers, and improved documentation, Version IV is truly a total, professional software development and execution environment.

And, it's backed by SofTech Microsystems, the first to deliver a complete, portable software system for most major microprocessors with UCSD Pascal™, FORTRAN-77, BASIC, and multiple assemblers.

For tomorrow, the expansion continues. More 16 bit microprocessor installations. The performance impact of native code generation. New system utilities and languages. New tools for creating applications more rapidly. The SofTech Microsystems team is at work today to increase your options for the future.

Get the software system that's going places. Distribution licenses and single copies available. Write or call for details, so you can start going places, too.

UCSD p-System and UCSD Pascal are trademarks of the Regents of the University of California. LSI-11 is a trademark of Digital Equipment Corp.
People who have purchased the TRS-80 Color Computer know that Radio Shack is reluctant to disclose much information about the internal workings of its computers—preferring that all work requiring the opening of the outer case be performed by an authorized service center. However, it is possible to find much of this information; a bit of digging, a few phone calls to Fort Worth, and a disassembler from the Micro Works of Del Mar, California, enabled me to obtain the information presented here.

The TRS-80 Color Computer is based on the Motorola 6809E microprocessor. ([The "E" indicates the series—in this case, the 6809 model capable of multiprocessing, although this capability is not used in the TRS-80 Color Computer....SM] The unit uses a Motorola 6847 videodisplay-generator IC (integrated circuit) for the color display—meaning there are a number of memory locations within the computer that control which of the eleven modes the IC is in. If you know these locations, you can access the modes not provided by Radio Shack’s software.

Memory Organization

The TRS-80 Color Computer uses page 0 (memory locations decimal 0000 through 0255) as a scratch pad. The Motorola 680X microprocessors all have the ability to use a special mode of addressing called direct page (the same as the 6502 zero page mode). The enhancement added to the 6809 is the ability to select which 256-byte page to treat as page 0. In order for the 6809 to maintain 680X-family compatibility, the default remains page 0.

Microsoft followed this default in its BASIC interpreter written for the Color Computer—leaving most of the important memory locations within page 0.

Since Microsoft uses the same conventions in all its BASIC interpreters, it can be concluded that the BASIC in the Color Computer is organized in a manner similar to its BASIC for 6502-based computers. The pointers to the start and end of BASIC and the start and end of variables are the same. Also, the storage format is the same for BASIC lines (a 2-byte pointer to the start of the line, followed by a 2-byte line number, and then the token code terminated by a zero).

The Video Window

As shown in tables 1 through 4, the TRS-80 Color Computer allows a surprising degree of control to the programmer. The video window is unique in that it can be moved around within available memory, which in this case is from 0000 through 7FFF. You can set it to location 0 and watch the scratch-pad locations change as the computer is running. This is where the information summarized in table 4 comes from. In order to set the video memory to page 0, just POKE any value into decimal location 65480. When the POKE is executed, it clears bit 1 of the 7-bit binary word contained in the Motorola 6883 SAM (synchronous address multiplexer) that controls the base location of the video screen. To restore the video window to its normal location, POKE any value into location 65481—resetting bit 1.

The 6 bytes referred to in table 1 control the memory-mapping mode of the 6847 VDG (video display generator). The 6883 SAM IC maps memory into the video circuits and can be thought of as a 3-bit number that selects the amount of memory available to the VDG. This 3-bit register is controlled by the locations shown in table 1. The desired result can again be obtained by POKEing any values into these locations—toggling 3 bits into the SAM circuit. The VDG control lines are located in port 65314 and select the mode of the VDG. In order to switch the Color Computer into another graphics mode, you first set the available memory to match the mode, and then select the mode via the port. It’s necessary to turn the control lines on at the port and also set the video memory size via the locations shown in table 2.

Table 2 shows the locations that control the base page of the video memory. In order to locate the base page, the TRS-80 Color Computer hardware takes the 7-bit word these 14 bytes specify and multiplies it by 512—resulting in the location of the base page.

Locations shown in table 3 are either used by the 6809 for interrupts or are assigned other functions by Radio Shack. Although I was told their names by a Radio Shack representative, I didn’t find out their exact functions. Apparently, you can select four different clock speeds using these locations. Although I encourage you to experiment with them, it’s easy to lose your video-sync signal when fooling with these locations.

Programmable-memory locations are shown in table 4. The keyboard buffer is terminated by a 0, and a PEEK(732) returns the token for the first keyword found...
"In 1977 Compiler Systems, Inc. introduced CBASIC™ as a CP/M® programming language. It quickly became the most widely used BASIC dialect. Since then CBASIC has been adapted for use on systems supporting MP/M™ and TRSDOS."

"At Compiler Systems we learned the lessons of the past well. So well, that in the relatively short time we've been in the software business, we managed to make history ourselves. In fact, CBASIC is the standard for CP/M-based business systems."

— Gordon Eubanks, CSI president

Today CSI offers CBASIC/86 designed for 16-bit microcomputer-based systems running under CP/M-86. CBASIC/86, now available worldwide, is based on concepts first used by CBASIC including such business-oriented features as: BCD arithmetic with fourteen-digit precision; full format control of printed reports; random and sequential records of any length (not limited to 256 bytes); aids to structured design, i.e. multiple line functions and control structures as well as excellent file-handling and stringing capabilities.

But perhaps the best of CBASIC/86 becomes clear when you're using it. To learn more about CSI's commitment to support CBASIC/86 and CP/M-86 call (213) 355-1063 and discuss putting CBASIC/86 on your system.
ATLANTIC COMPUTER
INDUSTRIES FOR:
IMS, MORROW DESIGNS, CALIFORNIA COMPUTER SYSTEMS,
ADD'S, VECTOR, APPLE, ITHACA INTERSYSTEMS, IBM, SCION,
NEC, T.I., MUSYS, ASHTON-TATE, HAZELTINE, ANADEX, HAYES,
NOVATION, PER SCI, MICROPOLIS, SHUGART, and much more.

IMS 5000 AND 8000 SYSTEMS
Outstanding reliability and performance. These systems feature a
280A CPU, S-100 bus, double density drives (either single or
double sided), DMA disk controller, 64K RAM, 2 serial & 1 parallel
port, and includes CP/M Hard disk and multi-user, software
options.
5000 Desk Top with dual, single sided mini drives $3,225
8000 Desk Top with dual, single sided 8" drives $4,775

MORROW DESIGNS - DECISION I $1,450
Decision I was designed to be the most versatile and cost effec-
tive multi-user, multi-tasking microcomputer available today.
Decision I CPU features a 4-6 MHz 280A, sophisticated memo-
ry features and includes CP/M Hard disk and multi-user software.

ADD'S MULTI-VISION I $3,229
Features 64K RAM, MUON advanced operating system, up-
gradeable to multi-user, multi-tasking operations. Extensive
support software and utilities available.

MUSYS SINGLE BOARD COMPUTER $1,295
Bootstrap PROM, 280 processor, 64K dynamic RAM, console
serial port, S-100 parallel interface.

MUSYS S-100 COMPUTER $1,450

NEC
5510 (serial interface) .. $2,179
5530 (parallel interface) $2,479

EPSON
MX-80 $ 499
MX-100 $ 775

OUME LETTER QUALITY
Sprint 5/45 KSR $2,990
Sprint 5/45 RO $2,625

ANADEX
DP 9500/9501 $1,299
DP 9000/9001 $1,219

ANADEX
High resolution, 200 cps.

MICROANGELICO from SCION
High resolution graphics system complete w. 15" monitor,
cabling and software $2,225
S-100 Graphics Card $ 925

ATLANTIC COMPUTER INDUSTRIES CORP.
80 BROAD STREET
SUITE 404
NEW YORK, N.Y. 10004
PHONE: 212 - 376-5978

Systems Notes
in the line. In order to use this as an input routine, you
would need to preface each line with a REM state-
ment—resulting in the first character after REM being
located at 733. The input routine uses the same buffer but
doesn't do any tokenizing. A flag may exist that
disables the tokenizing routine. Once the keyboard-input

<table>
<thead>
<tr>
<th>Hexadecimal</th>
<th>Decimal</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFC6</td>
<td>65478</td>
<td>Clear bit 0</td>
</tr>
<tr>
<td>FFC7</td>
<td>65479</td>
<td>Set bit 0</td>
</tr>
<tr>
<td>FFC8</td>
<td>65480</td>
<td>Clear bit 1</td>
</tr>
<tr>
<td>FFC9</td>
<td>65481</td>
<td>Set bit 1</td>
</tr>
<tr>
<td>FFCA</td>
<td>65482</td>
<td>Clear bit 2</td>
</tr>
<tr>
<td>FFCA</td>
<td>65483</td>
<td>Set bit 2</td>
</tr>
<tr>
<td>FFCC</td>
<td>65484</td>
<td>Clear bit 3</td>
</tr>
<tr>
<td>FFCD</td>
<td>65485</td>
<td>Set bit 3</td>
</tr>
<tr>
<td>FFCE</td>
<td>65486</td>
<td>Clear bit 4</td>
</tr>
<tr>
<td>FFCF</td>
<td>65487</td>
<td>Set bit 4</td>
</tr>
<tr>
<td>FFDO</td>
<td>65488</td>
<td>Clear bit 5</td>
</tr>
<tr>
<td>FFDO</td>
<td>65489</td>
<td>Set bit 5</td>
</tr>
<tr>
<td>FFDO</td>
<td>65490</td>
<td>Clear bit 6</td>
</tr>
<tr>
<td>FFDO</td>
<td>65491</td>
<td>Set bit 6</td>
</tr>
<tr>
<td>FFDO</td>
<td>65492</td>
<td>Clear bit 7</td>
</tr>
<tr>
<td>FFDO</td>
<td>65493</td>
<td>Set bit 7</td>
</tr>
</tbody>
</table>

Table 1: The six locations within the TRS-80 Color Com-
puter's programmable memory that control the memory-
mapping mode of the Motorola 6847 VDG (video display
generator). The graphics mode is selected via port 65314 and
the available memory must be set to match the 'mode. See
listing 1 for an example of a program that does this.

<table>
<thead>
<tr>
<th>Hexadecimal</th>
<th>Decimal</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFD6</td>
<td>65494</td>
<td>Bank switch</td>
</tr>
<tr>
<td>FFD7</td>
<td>65495</td>
<td>Clear bit 2 clk rate</td>
</tr>
<tr>
<td>FFD8</td>
<td>65496</td>
<td>Set bit 2 clk rate</td>
</tr>
<tr>
<td>FFD9</td>
<td>65497</td>
<td>Clear bit 1 clk rate</td>
</tr>
<tr>
<td>FFDA</td>
<td>65498</td>
<td>Set bit 1 clk rate</td>
</tr>
<tr>
<td>FFDB-FFDF</td>
<td>65499-65505</td>
<td>Memory size jumpers</td>
</tr>
<tr>
<td>FFDD-FFFFF</td>
<td>65520-65535</td>
<td>8605 vectors</td>
</tr>
</tbody>
</table>

Table 3: A few miscellaneous control and interrupt locations
within programmable memory. Hexadecimal locations FFD7
through FFDA control the processor speed (nominally,
0.894 MHz). Although experimentation is encouraged, the
user should be aware that these locations are tied to video-
sync generation and may result in a temporary loss of video.
A STANDARD FOR PROFESSIONALS

- APPLE II PLUS
- Apple Writer
- Graphics Tablet
- UPI (El. Aid. & Payroll)
- MODEM
- Dow Jones News & Quotes
- Decision Elevator
- Controller (Pen Drawer)
- Micro-Courier
- EPSON
- CENTRONICS
- QUME
- SILENTY
- AMOEZA
- SANYO, D. COLOR, GREENSCREEN
- EXTENDED WARRANTY

APPLE II PLUS

AUTHORIZED DEALER AND LEVEL 1 SERVICE CENTER

U.S.A.

A STANDARD FOR PROFESSIONALS

- APPLE II PLUS
- Apple Writer
- Graphics Tablet
- UPI (El. Aid. & Payroll)
- MODEM
- Dow Jones News & Quotes
- Decision Elevator
- Controller (Pen Drawer)
- Micro-Courier
- EPSON
- CENTRONICS
- QUME
- SILENTY
- AMOEZA
- SANYO, D. COLOR, GREENSCREEN
- EXTENDED WARRANTY

Complete Business, Educational & Game Software Available.

You'll Wonder How You Ever Got Along Without It.

Now Save

1990 Economy Answer, New 118.95... 30.
1450 Small Wonder, 179.95... 90.
1550 Toshiba, 229.95... 100.
1750 Voice Activated, 299.95... 100.
960 Memory Dialer Handheld New 79.95... 20.

Toshiba

NOW

BC-1232PV 99.95

DIGITRON

DESK TOP CALCULATOR

12-DIGIT PRINT DISPLAY FOR FAST ACCURATE CALCULATING AT HOME OR FOR BUSINESS

WE WILL MEET OR BEAT ANY COMPETITOR'S PRICE ON MOST ITEMS IF HE HAS THE MERCHANDISE IN STOCK

Information Line (714) 549-7373
Toll Free Order Line
(800) 854-8233 - Outside Calif.
(203) 332-7066 - In Calif.

Professional Discounts

Circle 97 on inquiry card.
System Notes

routine and the character-output routine are located, machine-language programming should be much easier on the Color Computer.

Applications

Since the video screen can be moved around in memory via one of the registers in the SAM circuit, you can use the information presented here to page through memory. If you are in the alphanumeric-graphics mode (the default), you can obtain an ASCII snapshot of memory. All the characters in the ASCII code range will show up in the video display. Moving the window to the BASIC work space allows you to look at your BASIC program. If you do this before doing a CLOAD, you can watch memory filling up with a program. Since you can move the screen back and forth, you can think of it as a "paging-mode" terminal. With the appropriate software, you should also be able to make a sophisticated screen-oriented editor. You cannot go above hexadecimal 7FFF, or page 64.

Putting the computer in the 64 by 64 color mode (listing 1) lets you use only half the screen. However, since you know where the starting pointers to BASIC are, you can change them and move the BASIC program down in memory to allow you to use more memory for the screen. This is accomplished by POKEing the new address into locations 19 through 1A hexadecimal or 25 through 26 decimal, and then doing a NEW command by jumping to location AD19 (or 44313). Now you can use V0 through V2 to allocate more screen memory.

You can also go into other modes: POKEing a 240 in to port 65413 puts you into high-resolution mode, which takes 6K bytes of programmable memory for the screen. In this mode, everywhere there is a '1' in memory, a lit dot appears on the screen, and everywhere there is a '0' in memory, a black (unlit) dot appears on the screen.

<table>
<thead>
<tr>
<th>Hexadecimal Address</th>
<th>Decimal Address</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>19-1A</td>
<td>25-26</td>
<td>Pointer to start of BASIC</td>
</tr>
<tr>
<td>1B-1C</td>
<td>27-28</td>
<td>Pointer to end of program</td>
</tr>
<tr>
<td>1D-1E</td>
<td>29-30</td>
<td>Pointer to variables</td>
</tr>
<tr>
<td>1F-20</td>
<td>31-32</td>
<td>Pointer to start of arrays</td>
</tr>
<tr>
<td>88-89</td>
<td>136-137</td>
<td>Pointer to current cursor position</td>
</tr>
<tr>
<td>8C</td>
<td>140</td>
<td>Location of sound frequency</td>
</tr>
<tr>
<td>8E</td>
<td>142</td>
<td>Duration of sound</td>
</tr>
<tr>
<td>94</td>
<td>148</td>
<td>Cursor color</td>
</tr>
<tr>
<td>AB-AA</td>
<td>168-170</td>
<td>Jump vector to 43376</td>
</tr>
<tr>
<td>10C-10E</td>
<td>256-270</td>
<td>Jump vector to 43274</td>
</tr>
<tr>
<td>10F-111</td>
<td>271-273</td>
<td>Jump vector to 41046</td>
</tr>
<tr>
<td>112-114</td>
<td>274-276</td>
<td>Jump vector to 45974</td>
</tr>
<tr>
<td>11D-11F</td>
<td>285-287</td>
<td>Jump vector to 45509</td>
</tr>
<tr>
<td>20D-23C</td>
<td>735-998</td>
<td>Keyboard buffer</td>
</tr>
<tr>
<td>601</td>
<td>1535</td>
<td>Start of BASIC work space</td>
</tr>
</tbody>
</table>

Table 4: BASIC control and other miscellaneous locations within page 0 of the TRS-80 Color Computer's programmable memory.
The Novell IMAGE 800 dot matrix printer is on top because it is the performance printer.
The printer mechanism has been running in the lab continuously since January, 1980—24 hours a day, 7 days a week—without failing—and it's still going. That's Novell quality. That's 100% duty cycle.
The Novell IMAGE 800 is state-of-the-art: microprocessor controlled...30 programmable functions...compressed or expanded print...correspondence quality print...11 channel programmable VFU.
If you require 150 CPS print speed and 136 column output, you can't do better anywhere. And at $1,395, we're hundreds less than comparable units.
Check these other features:
- 80 or 132 columns
- Bi-directional print
- 9 x 9 dot matrix
- Dual tractor paper feed
- RS232C or parallel interface
- 110-9600 baud
- 6 or 8 lines per inch vertical spacing
- Tear bar
- True descenders
- Subscripting & superscripting
- Vertical tabulation

Compare. Find out how the others stack up. It won't take you long to see why Novell is on top. A Novell IMAGE 800 dot matrix printer can help you stay on top, too. Because higher performance means lower overhead. For all the details, call us at (801) 226-8202. You'll be profitably surprised.

GROSSO S C M DISCOUNTS
DISTRIBUTOR INQUIRIES INVITED.

NOVELL
DATA SYSTEMS
1170 N Industrial Park Drive, Orem, Utah 84057
Telephone (801) 226-8202
Circle 422 on Inquiry card.
System Notes

Listing 1: A program for the TRS-80 Color Computer demonstrates video-mode switching. This program sets the computer to a 64-by-64-character graphics mode. Each byte maps into four consecutive blocks on the screen, with a 2-bit code used to indicate which of the four available colors (in this mode) each block will be. In this graphics mode, each horizontal line of blocks is 16 characters wide, as opposed to 32 characters (bytes) wide in the normal mode of operation. Since this mode requires 1 K bytes of programmable memory, with 512 bytes allocated to the screen, you can only work with the upper half of the video display. See the text for further details.

5 POKE 65496.0:REM SPEED PROCESSOR UP
10 BA = 1300:REM BASE OF THE CHARACTER
15 POKE 65314.123:POKE 65473.0:REM SET COLOR
20 GRAPHICS MODE C
30 FOR I = 1024 TO 1535:POKE I,0:NEXT I:REM PAINT ½ SCREEN GREEN
40 FOR I = 1 TO 6:REM 8 LINES PER CHARACTER
50 FOR J = 1 TO 3:REM 3 BYTES PER LINE
60 READ A:POKE BA +(I*16)+J:A:REM PUT THE CHARACTER DOWN
70 NEXT J:NEXT I
80 GOTO 70:REM LOOP SO WE DON'T MESS DISPLAY UP
90 DATA 0,255,0,3,255,192,15,60,240,15,255,240,15,225,240
100 DATA 0,195,0,80,192,8,195,48
110 END

A rather interesting location is 148 (hexadecimal 92). This location changes madly when you put video into page 0. This is the so-called heartbeat of the system—the storage location for the color byte that specifies the color of the cursor. POKeing a 0 there makes the cursor go away.

The 6809 machine-code interrupt vectors at hexadecimal locations FFF0 through FFFF all point to programmable memory (except the reset vector). The reset vector points to cold-start BASIC. This routine is in ROM (read-only memory), and has the responsibility of resetting all other vectors and initializing memory. It checks if the machine has been on or has just been turned on. If it has just been turned on, it initializes most of the scratch-pad locations. If you just hit a reset, it leaves certain pointers alone, notably the pointers to your BASIC program.

Conclusion

There is much more to be learned about the TRS-80 Color Computer. I hope this article inspires you to go digging. I'd like to hear from people who discover other interesting facts about it. Hopefully, this information will give you a good start toward understanding your new computer.

(Editor's Note: It's a little-known fact that Radio Shack publishes technical service manuals for all its computer products. These manuals are available to the general public and contain a wealth of "inside" information and troubleshooting procedures. The manuals are not stocked by Radio Shack dealers. Contact your local Radio Shack store for the price and ordering information. Also, see "What's Inside Radio Shack's Color Computer?" in the March 1981 BYTE, page 90. . . . SM]
Computerize your bookkeeping without terrifying your bookkeeper.

Introducing The Boss: the most advanced, yet most understandable, financial accounting system. Designed to automate your bookkeeping without confusion or mistakes.

The Boss system computes financial ratio analysis. It protects data from unauthorized personnel as well as computer malfunction.

And it has the largest programming and storage capacity of any micro system.

The Boss runs on most small business computers with CP/M® or similar operating systems. Its cost is only $2,495.

Get full support from Lifeboat.

The Boss is brought to you exclusively and supported completely by Lifeboat Associates, world's largest computer software publisher. For more information about how you can profit from this extraordinary financial accounting system, send us the coupon below.

Or call (212) 860-0300.

For more information on The Boss, mail coupon to Lifeboat Associates, 1651 Third Avenue, New York, NY 10028.

Name.

Title.

Company.

Street.

City.

State.

Zip.

2011

For Lifeboat worldwide offers you the world's largest library of software. Contact your nearest dealer or Lifeboat.

Lifeboat Associates

Software with full support
The four books reviewed here purport to give assembly-language programmers a key to the mysteries of Radio Shack's TRS-80 Model I Level II ROM (read-only memory) and DOS (disk operating system). Because each book approaches the subject in a different way, it is difficult to compare them all in the framework of a general discussion, so I have considered them separately. At the conclusion of each review, I have outlined the book's strengths and weaknesses as an aid to the prospective buyer.

Pathways Through the ROM is actually a compilation of several manuals and articles already available separately. They are:

- The TRS-80 Disassembled Handbook by Robert Richardson (the first nine chapters)
- SUPERMAP by Roger Fuller (chapter 10)
- HEX-MEM Monitor, a program by John T Phillip (chapter 11; originally published in the February issue of PROG/80)
- Z80 Disassembler, a program by George Blank (chapter 12; originally published in the June issue of PROG/80)
- DOS Map by John Hartford (chapter 13)
- "The WD1771 Controller Specification Bulletin" (chapter 14; available from Western Digital Corporation)

By collecting these works in one volume, Softside Publications has simplified the programmer's chore of gathering information about Level II DOS routines and has significantly reduced the cost (separately, these six items would cost over $34).

The first nine chapters (from The TRS-80 Disassembled Handbook) cover decoding Level II ROM CALL locations; integer-, single-, and double-precision arithmetic; four short demonstration programs; ROM trig, exponent, and log routines; miscellaneous ROM routines; an alphabetical list of ROM CALL addresses; two programs—one in BASIC, the other in assembly code; and a short self-test.

In the introduction to his original work, Robert Richardson states that the handbook came out of a series of lectures he gave. Unfortunately, the lectures were very general; examples are included mainly in the demonstration programs. It is obvious that Richardson feels the readers should do their own experimentation, using his handbook as a beginning. He provides very little to guide you through the ROM beyond pointing out the road signs so that you won't get hopelessly lost.

The most valuable portions of Richardson's handbook are the various tables included. For example, three separate figures list the BASIC functions with the locations of their respective ASCII (American Standard Code for Information Interchange) representations in ROM; the locations of their CALL addresses (not the same locations as the ASCII codes); the addresses themselves in decimal form, in hexadecimal form, and in POKE form (decimal low-order byte followed by high-order byte, i.e.: 174-29 instead of 7598 decimal or 1DAE hexadecimal).

Chapter 10 is Roger Fuller's SUPERMAP, a listing of ROM entry addresses and what the code at each address does when accessed properly. Also provided is information on the various cassette-tape storage formats used by the ROM. All in all, this is an informative and useful chapter.

Chapter 11 contains the instructions and listing of a simple BASIC monitor. Its sole purpose is to provide several memory-examining capabilities, if you don't already have a monitor.

Chapter 12 is a Z80 object-code disassembler. It's handy, too, if you don't already have one.

Chapter 13, devoted to mapping TRSDOS and NEWDOS, is a valuable inclusion. The two overlay regions used by the DOSes are defined, and the addresses and uses of the various DOS systems are identified and labeled. All of the Radio Shack TRS-DOS system files (SYS0 to SYS8) are covered. Also given is the command structure necessary to call any of the DOS commands from an assembly-language program. This chapter and Chapter 10 make Pathways Through the ROM well worth the money, giving you information not available anywhere else.

Chapter 14 is merely the Western Digital FD1771-01 floppy-disk formatter controller specification sheets (17 pages). If you plan to write a program to access the disk drives directly without using any of the DOSes, these specification sheets are a must. This is definitely not a beginner's project. The specifications, written for expert assembly-language programmers, include command flow-
The AMS 8000 Megabyter System is for the serious user who wants to explore the full capability of his Apple by increasing online data storage, and reducing disk handling. It brings a new dimension to your Apple, making your data portable to other computers and gives you the reliability associated with IBM standard 8" floppy disks.

The AMS 8000 provides an Apple memory system with 16 to 4 Mega-bytes of removable, online, easy-to-use Apple formatted data ready to plug-in and operate. The system is at home in any setting and matches the styling of your Apple.

The AMS 8000 preserves your current software investment by maintaining rigid compliance with APPLE DOS interface specifications. Since standard Apple DOS commands are used, most software currently running under APPLE DOS 3.2, 3.3, Apple UCSD Pascal 1.1, or Microsoft CP/M* 2.2 will run with AMS 8000. Apple mini disks may be used at any time.

Because of the IBM 3740 single density format, you now have the opportunity to exchange data with other computers such as IBM, INTEL, Radio Shack, DEC, etc. or operating systems like CP/M, UCSD Pascal, etc.

The controller circuitry utilizes a state-of-the-art LSI floppy disk controller and data separator to provide automatic single and double density operation. A proprietary high speed SOFT-DMA data transfer technique guarantees compatibility with all other DMA cards and will not interfere with memory refresh.

For a cost effective, reliable, and software compatible memory system from the originator of 8" floppy disk systems for the Apple, try the AMS 8000 from SVA. . . . SVA means Business.

Look what the complete AMS 8000 memory system with its field proven hardware and complete support software, deluxe industrial quality cabinet, reliable industry standard IBM 3740 8-inch floppy disk drives, dual density controller, self-contained power supplies and high density cooling means to you:

INCREASED STORAGE & FLEXIBILITY
- Increase online storage up to 4 Mega bytes
- Expand your maximum accounts and file size
- Add high speed efficient hard disk backup

IMPROVED COMPATIBILITY
- Operate with single and double density DOS, CP/M, Pascal
- Enhance your existing mini-disks and software
- Copy any IBM 3740 or IBM System 34 Formatted 8" disk
- Interchange data with other computers

SIMPLIFIED OPERATION
- Utilize standard Apple DOS and DOS commands
- Reduce disk handling and I/O slot usage
- Gain automatic single/double density operation
- Gain automatic single/double sided drive operation
- Change to voice coil drives with one switch

SEVEN DAY BURN IN AND TEST POLICY
- 1 Year Warranty

SORENTO VALLEY ASSOCIATES
17722 Sorrento Valley Road
San Diego, CA 92121
(714) 452-0101

*SVA Trademark Apple Computer, CP/M Trademark Digital Research.
Book Review

"Inside Level II: A Programmer's Guide to the TRS-80 ROM" by John Blattner and Bryan Mumford.

This book is intended for assembly-language programmers who want to understand the inner workings of the TRS-80 ROM. The authors, John Blattner and Bryan Mumford, provide a detailed description of the ROM contents and how they can be used.

The book is divided into several sections. The first section covers the basics of assembly language programming and the TRS-80 ROM. The second section provides a detailed overview of the ROM contents, including the ROM setup, memory map, and disk controller routines.

The third section focuses on the TRS-80 BASIC interpreter and how it interacts with the ROM. The authors explain how to use the ROM to optimize BASIC programs.

The fourth section provides a detailed look at the TRS-80 disk system and how it interacts with the ROM.

The last section provides a detailed look at the TRS-80 disk system and how it interacts with the ROM.

Overall, the book is well-written and easy to follow. It is a valuable resource for anyone interested in understanding the inner workings of the TRS-80 ROM.

The authors provide a detailed look at the ROM contents, including the ROM setup, memory map, and disk controller routines. The book is well-organized and easy to follow. It is a valuable resource for anyone interested in understanding the inner workings of the TRS-80 ROM.
The Data Trak® 5 double-sided double-density drive uses state-of-the-art technology to give you superior data integrity through improved disk life, data reliability, and drive serviceability using 5¼" media.

Qume’s independent head load yields wear characteristics far superior to competitive drives. This superior wear performance produces savings on both diskette usage and drive maintenance.

Improved data reliability, resulting from superior amplitude and bit shaft characteristics, optimizes operator efficiency and reduces processing time for end-users.

And Data Trak’s unique modular design means simplified field servicing for you and your customers.

Design Features

- Expanded storage capacity
- Two-sided, double-density
- Proven head carriage assembly
- Ceramic head with tunnel erase
- Dual-head flex mounting arrangement
- Superior head load dynamics
- Precise lead screw actuator
- Fast access time — 12 ms track-to-track
- Low friction and minimum wear
- Low power dissipation

Product Specifications

Performance Specifications
- Capacity: Unformatted: 437.5K or 500K bytes
- Formatted: 286.7K or 327.7K bytes
- Recording Density: 5456 BPI
- Track Density: 48 TPI
- Cylinders: 35 or 40
- Tracks: 70 or 80
- Recording Method: FM or MFM
- Rotational Speed: 300 RPM
- Transfer Rate: 250K bits/second
- Latency (avg.): 100 ms
- Access Time: Track-to-track 12 ms; Settling 15 ms
- Head Load Time: 50 ms

The Data Trak® 8 double-sided double-density drive uses state-of-the-art technology to give you superior data integrity through improved disk life, data reliability, and drive serviceability.

Qume’s innovative approach to controlling head load dynamics yields wear characteristics far superior to competitive drives. In independent evaluation, Data Trak 8 is setting industry standards for test performance. This superior wear performance produces savings on both diskette usage and drive maintenance.

Improved data reliability, resulting from superior amplitude and bit shaft characteristics, optimizes operator efficiency and reduces processing time for end-users.

And Data Trak’s unique modular design means simplified field servicing for you and your customers.

Design Features

- Expanded storage capacity
- Two-sided, double-density
- Fully IBM compatible: IBM 3740 and System 32 drives
- IBM 3600 and 4964 drives
- IBM System 34 drives
- Proven head carriage assembly
- Ceramic head with tunnel erase
- Dual-head flex mounting arrangement
- Superior head load dynamics
- Fast, precise steel ball drive
- Fast access time — 3 ms track-to-track
- Low friction and minimum wear
- Low power dissipation

Product Specifications

Performance Specifications
- Capacity: Unformatted: 1.8M bytes/disk
- IBM Format: 1.2Mbytes/disk
- Recording Density: 6816 BPI
- Track Density: 48 TPI
- Cylinders: 77
- Tracks: 154
- Recording Method: MFM
- Rotational Speed: 360 RPM
- Transfer Rate: 500Kbits/second
- Latency (avg.): 83 ms
- Access Time: Track-to-track 3 ms; Settling 15 ms
- Average 91 ms
- Head Load Time: 35 ms
- Diskette 2D or equivalent

1198 E. Willow, Signal Hill, CA 90635
Call Toll Free (800) 421-7701
AUTHORIZED DISTRIBUTOR FOR QUME
CALL FOR PRICE AND DELIVERY
(213) 595-6431 or (714) 891-2663
In California

Circle 32 on inquiry card.
Book Review

Chapters 4 and 5 handle the arithmetic operations and the higher math functions (and even give the amount of time required by the routines to execute), while Chapter 6 explains the keyboard input, from single-character to numeric to string input.

Chapters 7 through 10 discuss the rest of the instructions, cassette I/O (input/output), video display, VARPTR (which returns the address of a variable), and the stack pointer.

Part II begins with Chapter 11, which, according to its title, is about assemblers and monitors. Actually, it merely suggests you use an assembler similar to Radio Shack's EDASM and a monitor, preferably the one sold by Mumphord Micro Systems (publisher of Inside Level III). Fortunately, this chapter is only one page long.

Chapter 12 gets down to the technique of mixing BASIC and machine-language programs. Unfortunately, the methods discussed are somewhat awkward. The authors believe that machine-language routines of a mixed program should reside in low memory, and they go to great deal of trouble outlining how this can be done, covering CLOADing and CSAVEing techniques. Some of the advice is common sense (i.e., debug the machine-language routine before you combine it with the BASIC program and vice versa). Because of the difficulty of combining programs in this style, I think the authors have failed in their avowed purpose. They did not even consider the prospect of embedding the machine-language routines in BASIC REM (remark) statements. This is easily done by loading your monitor above the BASIC program and replacing the body of the REM statement with your machine-language routine.
ATARI has led the industry in the development of video games such as ASTEROIDS and MISSILE COMMAND. The outstanding popularity of these games has resulted from the considerable investment of time and resources which ATARI has made in their development. We appreciate the worldwide response from the videophiles who have made our games so popular.

Unfortunately, however, some companies and individuals have copied ATARI games in an attempt to reap undeserved profits from games that they did not develop. ATARI must protect its investment so that we can continue to invest in the development of new and better games. Accordingly, ATARI gives warning to both the intentional pirate and to the individuals simply unaware of the copyright laws that ATARI registers the audiovisual works associated with its games with the Library of Congress and considers its games proprietary. ATARI will protect its rights by vigorously enforcing these copyrights and by taking the appropriate action against unauthorized entities who reproduce or adapt substantial copies of ATARI games, regardless of what computer or other apparatus is used in their performance.

We ask that legitimate software developers cooperate with us to protect our property from any form of software piracy, imitation or infringement. ATARI is currently offering copyright licenses for a limited number of its games to selected software developers. If you happen to be selling a software product which performs a game similar to any ATARI game (such as a game created for a home computer), please contact us immediately. Write to the attention of: Patent Counsel, ATARI, Inc., 1265 Borregas Ave., Sunnyvale, Calif. 94086
Another important omission was an explanation of how to make your program a "load-and-go" type, eliminating the need to return to either the system level or the BASIC level after your program loads.

The three appendices are only two pages each. The first is a simple hexadecimal-to-decimal conversion chart, while the second is a machine-language program for recording a composite BASIC and machine-language program on tape (but the composite program must be in the format preferred by the authors, with the machine-language routines "below" the BASIC program). The last appendix is the most valuable, giving a machine-language program that allows faster recording of DATA tapes by shortening the length of the leader and the sync byte.

Like the other books reviewed here, it has no index; however, the table of contents is detailed and makes up for the lack of an index.

Conclusions

- All of the steps required by BASIC when accessing the ROM from your own program are carefully outlined: what to do, when to do it, and where to do it.
- Part II is of use only to programmers who do not write programs in pure machine language and must use hybrid programs instead.
- My only complaint might be that the book is too concise, with explanations a little too short for the beginner.
- I recommend this book to serious machine-language programmers.

The BOOK: Accessing the TRS-80 ROM

Raymond E Daly IV, Stephen C Hill, Roy Soltiff, Thomas B Stibolt Jr, and Richard P Wilkes

Insiders Software Consultants, POB 2441, Springfield VA 22152, 1980, 123 pages, softcover, $14.95

According to the introduction, The BOOK (volume I of a three-volume set) is dedicated to the math routines of Level II BASIC. It claims to be written for the novice to machine-language programming, while not "talking down" to the expert. I must say that the authors certainly have achieved their objectives.

The first three chapters (32 pages) deal with the formats, accumulators, and data manipulations for using the ROM math routines, as well as the actual functions. In the first chapter, you are given a leisurely and thorough explanation of how the TRS-80 Level II ROMs store and use memory addresses, binary numbers, and the memory accumulators. Numerous examples are used to make these techniques as clear as possible.

The second chapter details the ROM data-manipulation.

The DS120 Terminal Controller makes your LA36 perform like a DECwriter® III.

The Datasouth DS120 gives your DECwriter® II the high speed printing and versatile performance features of the DECwriter® III at only a fraction of the cost. The DS120 is a plug compatible replacement for your LA36 logic board which can be installed in minutes. Standard features include:

- 165 cps bidirectional printing
- Horizontal & Vertical Tabs
- Page Length Selection
- 110-4800 baud operation
- 1000 character print buffer
- X-on, X-off protocol
- Self Test

Over 5,000 DS120 units are now being used by customers ranging from the Fortune 500 to personal computing enthusiasts. In numerous installations, entire networks of terminals have been upgraded to take advantage of today's higher speed data communications services. LSI microprocessor electronics and strict quality control ensure dependable performance for years to come. When service is required, we will respond promptly and effectively. Best of all, we can deliver immediately through our nationwide network of distributors. Just give us a call for all the details.

data south computer corporation

4740 Dwight Evans Road • Charlotte, North Carolina 28210 • 704/523-8500
The system is here!

- 8 Mhz. 8086 CPU Set
- 128K Static RAM with 100 nsec. Chips
- Double-density Floppy Disk Controller
- 22-Slot Constant Voltage Powered Mainframe
- High-Performance 86-DOS Disk Operating System

$4,785.50 Fully Assembled, tested, ready to run. (Requires terminal and disk drives)

TO ORDER:
May be ordered through your local computer store or factory direct. Shipping paid by Seattle Computer on prepaid USA and Canadian orders. All boards fully assembled, tested, guaranteed one year. Mainframe guaranteed 90-days.

Software
We have the following Microsoft high-level languages running under 86-DOS.
- BASIC-86 Interpreter $400
- BASIC-86 Compiler $400
- Fortran-86 $600
- Pascal-86 $600
- Cobol-86 $900
- Macro-86 Assembler $300

Check for new additions

SEATTLE COMPUTER
1114 Industry Dr. Seattle WA 98188
Circle 331 on inquiry card.
Information Hotline
206/575-1830
Book Review

techniques and routines, with examples of how to move data from the ROM work area to your program's memory area and how to use the data-conversion routines (such as the ASCII string-to-binary number-conversion routine).

Chapter 3 gives accurate and complete instructions on interfacing the actual math routines to your own programs. The authors have included a good deal of "extra" code in setting up their examples. This approach is particularly useful in illustrating good programming techniques and makes it much easier for the novice to use the routines immediately, but it makes it much harder to find out what the bare requirements are to use a ROM routine and to adapt the routines more precisely to your needs.

Chapter 4 is not simply a disassembly of the math routines of the ROM, but a completely commented source-code listing with established labels. This was probably done by disassembling the ROM and assigning labels and comments. This method gives the byte number, a label name (where applicable), the Z80 mnemonic (but not the extended mnemonics), and a comment field. It does not give the actual op codes stored at those bytes. This was probably an attempt to avoid infringement of Tandy (Radio Shack) and Microsoft copyrights. (Because this volume is devoted to the math routines, only that portion of the disassembly dealing with those routines has been reproduced in The BOOK.)

This disassembly is followed by Appendix A containing the whole label table for the entire Level II ROM, not just those labels dealing with the math routines. The authors say they did this to assist curious programmers in finding their way through the ROM. Each label's start and, where applicable, end address are printed as shown in table 1.

Appendix B contains three lengthy examples of how to use the routines in actual programs. Appendix C is a program listing of a disassembler in BASIC.

Conclusions
- The BOOK, like Inside Level II, is very thorough in its treatment of the math routines, but unlike Inside Level II, it gives numerous examples and copious explanations. This is a real help for the novice, and it also tends to prevent the expert from jumping to erroneous conclusions.
- Because of the use of labels in the disassembly, it is very easy to see and understand how the Level II ROMs actually operate.
- The BOOK does not give you the locations and procedures needed by the ROM; rather, it provides short, simple programs that use the ROM routines. For the novice, this could be a handicap in learning how to use the routines efficiently.

Microsoft BASIC Decoded & Other Mysteries for the TRS-80
James Farvour
I/JG Computer Services
1260 W Footehill Blvd,
Upland CA 91786,
1981, 310 pages,
softcover, $29.95

Microsoft BASIC Decoded, the latest "ROM book" on the market, is by far the thickest and most complete to date. It is the second volume on the TRS-80 published by I/JG Computer Services, the first being TRS-80 Disk & Other Mysteries.

Microsoft BASIC Decoded takes a completely different tack from the other books discussed here: it attempts to give a total overview of the Level II ROM operating system and Microsoft BASIC. It starts by explaining what is meant by an operating system, and what the TRS-80 has by comparison with this general idea.

Next, the book takes you through the process of turning on the TRS-80 computer, both with and without disk drives attached. It also tells you how the BASIC interpreter operates. Other chapters explain the ROM subroutines, cassette and disk I/O, addresses and tables used, and disk BASIC memory overlays.

Its best selling point, however, is the inclusion of a disassembly of the entire TRS-80 Model I Level II ROM set, both the old and the new ones, from hexadecimal 0000 all the way to hexadecimal 302A, with almost every line commented in plain English as to its purpose. The format

Table 1

<table>
<thead>
<tr>
<th>Start</th>
<th>End</th>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0B3D</td>
<td>0B58</td>
<td>INTSNG</td>
<td>Take integer of Single</td>
</tr>
<tr>
<td>0B59</td>
<td>0B8D</td>
<td>INTOBL</td>
<td>Take Integer of Double</td>
</tr>
</tbody>
</table>

End User Software

Take the BIG 5 for $675

INTERACTIVE General Ledger, Accounts Receivable and Payable with Order Entry, Payroll, Inventory and Fixed Assets

Take the complete system including source code, documentation and initialization disk for only $675.00

Requirements CBASIC CP/M by Digital Research, 48K RAM, Dual 8" drives

Call Today 408/429-8544

Big End User discounts on many other business applications software

End User Software
150 Felker Street
Santa Cruz, California 95060

350 October 1981 © BYTE Publications Inc
CALL FOR QUOTE ON DIFFERENT DRIVE OPTIONS

WITH: 8” SS/DD Drives Only $2850.00
5¼” SS/DD Drives Only $2700.00

TERMINALS

- Televideo 950 — $950.00
- Televideo 920C — $740.00
- Televideo 912C — $665.00
- Televideo 910 — $575.00

Ampex Dialog 80 w/ Detachable Keyboard
$950.00

Call For Price & Availability On Other Terminals.

PRINTERS

- EPSON MX 80
 Only $470.00

- C-ITOH Comet I
 Only $499.00

- Anadex 9501
 Graphic Printer
 Only $1275.00

Call For Price & Availability On Other Printers.

FLOPPY DISK DRIVES

- EPSON MX 80
 Only $470.00

- C-ITOH Comet I
 Only $499.00

- Anadex 9501
 Graphic Printer
 Only $1275.00

Call For Price & Availability On Other Printers.

TERMINALS

- Televideo 950 — $950.00
- Televideo 920C — $740.00
- Televideo 912C — $665.00
- Televideo 910 — $575.00

Ampex Dialog 80 w/ Detachable Keyboard
$950.00

Call For Price & Availability On Other Terminals.

PRINTERS

- EPSON MX 80
 Only $470.00

- C-ITOH Comet I
 Only $499.00

- Anadex 9501
 Graphic Printer
 Only $1275.00

Call For Price & Availability On Other Printers.

FLOPPY DISK DRIVES

- EPSON MX 80
 Only $470.00

- C-ITOH Comet I
 Only $499.00

- Anadex 9501
 Graphic Printer
 Only $1275.00

Call For Price & Availability On Other Printers.

TERMINALS

- Televideo 950 — $950.00
- Televideo 920C — $740.00
- Televideo 912C — $665.00
- Televideo 910 — $575.00

Ampex Dialog 80 w/ Detachable Keyboard
$950.00

Call For Price & Availability On Other Terminals.

PRINTERS

- EPSON MX 80
 Only $470.00

- C-ITOH Comet I
 Only $499.00

- Anadex 9501
 Graphic Printer
 Only $1275.00

Call For Price & Availability On Other Printers.

FLOPPY DISK DRIVES

- EPSON MX 80
 Only $470.00

- C-ITOH Comet I
 Only $499.00

- Anadex 9501
 Graphic Printer
 Only $1275.00

Call For Price & Availability On Other Printers.
is very straightforward:

byte number — Z80 op code
— mnemonic — comment

The mnemonics are restricted solely to the primary commands because the printing of the extended mnemonics would probably be a violation of the copyright laws.

In an effort to make it simpler for you to use this disassembly, the book pages have been predrilled to fit a three-ring binder and the binding has been prepared for easy removal of this section. This is a brilliant idea, and I wonder why more publishers don’t do this; there are many books that I wish had been made in this way.

Not only does the loose-leaf binder make it easier to work with the pages, but it also makes it possible for you to insert your own pages of comments wherever you want to. And that’s not all: because most programmers will want to include the extended mnemonics in their binders, a simple scheme has been devised to accommodate this desire. Each page of the disassembly is a standard 8½-by-11-inch sheet of 66 lines (four of the lines are blank, to provide spacing at the top and the bottom). This means that any printer capable of printing 66 lines per 11-inch page will be able to produce a disassembly to match the book pages perfectly. The only qualification is that you have to use a disassembler that automatically paginates after printing 62 lines.

If you use the Apparat Disassembler, which is what the author used, you should have a perfect match to the book. This scheme is very well thought out. The book’s disassembly even goes so far as to note the errors of disassembly that most disassemblers will make (i.e., the disassembler doesn’t know when it is mistakenly decoding a table of addresses or ASCII messages to the operator).

All in all, the publisher and author have done a remarkably efficient job of making it as easy as possible for you to have a correct and complete disassembly of the TRS-80 Model I Level II ROMs. This disassembly is Chapter 8 of the book and occupies 246 pages. It covers the entire old ROM set that Radio Shack originally sold (it displayed RADIO SHACK LEVEL II BASIC when the machine was turned on). Chapter 7 (only three pages long) points out the few differences between the old ROM set and the new ROM set (which displays R/S LI BASIC). Without a doubt, these two chapters alone would have made a “best seller” in the personal-computer field.

As I mentioned before, the first six chapters are devoted to the gargantuan task of trying to tell you precisely how the Level II ROMs work, and they simply do not live up to the standard set in the last two chapters.

Chapter 1 contains the explanations of memory use, Level II operation, interpretation, and execution; and, in general, it provides a simple overview of just what it is that the Level II ROMs do to control the TRS-80 system.

The second chapter is a tremendous letdown. It is supposed to be a guide to accessing the different ROM subroutines, but it is poorly written and incomplete. The explanations are not simple, and the format used is not explained. There are no warnings as to possible problems arising from the use of routines; and the sample programs don’t tell you what you need to know to use the routines.

Neither this chapter nor any of the others explains the method used by the ROMs to store numbers, except to note that integer numbers require 2 bytes of memory, single-precision numbers need 4 bytes, and double-precision numbers need 8 bytes. To balance this omission, the author has included a precise mathematical explanation of the formulas used by the ROM to compute the functions of sine, cosine, tangent, arc tangent, exponentiation, natural logarithm, and square root. This information is not duplicated in any of the other books about the ROM.

Finally, not all of the subroutines that should have been included have been included. For example, Chapter 2 gives the routines used to turn on the cassette-drive motor, how to read and write the leader bytes, and how to read and write data. It does not tell you how to turn off the cassette motor, although you can find this information in the disassembly of Chapter 8 if you are patient.

Chapter 3, a considerable improvement over Chapter 2, concerns cassette and disk I/O formats and timing and includes timing diagrams for the cassette data. The disk section gives the controller commands—head seek, step, restore, etc. It goes into detail on the data formats on the disk, covering the GAT (granule allocation table), the HIT (hash index table), the disk DCBs (device-control blocks), and the directory sectors. In fact, the only other book that goes into more detail on the disk-data formats is TRS-80 Disk & Other Mysteries.

Chapter 4 is devoted to all of the tables used by the Level II ROMs and to lists of addresses of important routines. In addition to the table of Level II reserved words and their respective ROM addresses, there are tables of the hierarchy of arithmetic operations, data-conversion routines, and error codes. Other tables, which are built in memory by BASIC for program execution, include the Mode Table, the Program Statement Table, and the Literal-String Pool (where the garbage collection routine spends all of its time). This chapter is crammed with information, but it is written more for the expert programmer than for the novice.

Chapters 5 and 6 are example programs illustrating methods of using the ROM routines in your own programs to do such things as initiate your own new BASIC commands and using the DOS overlay concept in a BASIC program to execute a program longer than the available memory (i.e., run a 64 K-byte program in a machine with only 32 K bytes of memory).

Conclusions
• This book is physically very well designed for maximum use by programmers who want to understand the Level II ROM and add to the information provided in the book.
• The writing is uneven, sometimes clear enough for the novice, sometimes not.
• Despite its flaws of omission and the unevenness in the first chapters, the disassembly and its design make this one ROM book that everyone should buy.
Teach your little Apple to talk to Western Union, Telex and TWX.

Micro-Telegram™ lets your Apple II™ computer access Western Union™ services, worldwide. You can send Mailgrams. Send and receive TWX, Telex, and international cables. Receive Infomaster™ up-to-the-minute news, stock, foreign exchange, gold, futures, sports, and ski reports. Use your Apple™ to wire money. To send flowers. To check the snow at Sun Valley. To see what the Yen is selling for. To contact over 900,000 TWX and Telex subscribers around the world.

And because it’s more intelligent than a mechanical Teletype™ machine, Micro-Telegram lets you edit messages right on the screen, sends them automatically without you in attendance, keeps subscriber directories and distribution lists, prints when you want it to, and asks you in plain English for your commands. Besides, it doesn’t clatter and churn out reams of paper.

Call our toll-free number today. And make your little Apple heard 'round the world.

Microcom, Inc., 89 State Street, Boston, MA 02109. (617) 367-6362

Apple and Apple II are trademarks of Apple Computer, Inc. Western Union, Infomaster and TWX are trademarks of Western Union, Inc. Teletype is a trademark of the Teletype Corp.

Circle 222 on inquiry card.
Here are two pattern-producing video graphics programs for the Ohio Scientific Challenger 1P microcomputer. With one of these running in some conspicuous spot at your next party, you'll be amazed at the attention it attracts.

Be careful, though. You or your guests may go crazy trying to figure out the pattern, because the pseudorandom-number generator is used for both displays.

You choose your own rise and decay times for the display elements. The parameters 1000 and 1500 are suggested for starters. There'll be no decay, however, if the decay time is set at less than the rise time.

To speed up the action, use a delay limit of 500 or less. To slow it down, try 3000 or higher.

Happy viewing!

John F Leahy
30345 Chualar Canyon Rd
Chualar CA 93925

Listing 1: This OSI BASIC program displays fascinating random graphics patterns on your video display.

```basic
10 FOR X = 1 TO 30: ? : NEXT
20 INPUT "RISE TIME (1000?)"; E
30 INPUT "DECAY TIME (1500?)"; F
40 FOR X = 1 TO 30: ? : NEXT
50 C = INT (RND(1) * 255)
60 D = 0
70 L = INT (RND(1) * 920)
80 L = L + 53314
90 POKE L, C
100 D = D + 1
110 IF D > E THEN C = 32
120 IF D = F GOTO 50
130 GOTO 70
```

Listing 2: A variation of the display program in listing 1.

```basic
10 FOR X = 1 TO 30; ? : NEXT
20 INPUT "DECAY TIME (1500?)"; M
30 FOR X = 1 TO 30; ? : NEXT
40 I = INT (RND(1) * M)
50 C = INT (RND(1) * 255)
60 L = INT (RND(1) * 920)
70 L = L + 53314
80 POKE L, C
90 FOR T = 1 TO I: NEXT
100 POKE L, 32
110 GOTO 40
```
Textwizard™ transforms Atari into a powerfully serious word processor.

Textwizard™ is no kids game. It's a sophisticated and complete word processing program for the **Atari 800 computer.

Here is instant control over the creation, editing and formatting of any writing. Insert words. Replace phrases. Delete sentences. Move paragraphs. Automatically repositions surrounding text. "Textwizard™ does it all with over 50 simple commands.

On your command, Textwizard™ will search out and correct mistakes throughout your document. And it protects you from common operating errors by warning you before you make them.

Textwizard™ will print out as many original "copies" as you need. In boldface, elongated or condensed lettering, upper or lowercase, with proportional spacing. And you can store your work on a diskette.

So, whether you write legal briefs, computer programs, or The Great American novel, Textwizard™ can make your work easier. And though it's no toy, it's fun to use.

At $99.95, you don't have to write a best-seller to afford Textwizard™. Textwizard™ is another of the many creative products from Datasoft.

Datasoft Inc.
COMPUTER SOFTWARE

Software for people who aren't easy to please.
19519 Business Center Drive / Northridge, California 91324 / (213) 701-5161

Check your local software dealer or
Send check or money order with $2.00 postage/handling. California residents, add 6% sales tax.

*Textwizard will perform on a 32K system with one or more disc drives. It is compatible with the Atari® 825, Centronics® 737 and Epson® MX-80 printers.**Atari is a registered trademark of Atari Computers Inc.
Under Radio Shack Level II BASIC, you can store short machine-code subroutines in string variables. The strings cannot be loaded via cassette, however, because several ASCII (American Standard Code for Information Interchange) codes will be interpreted as end characters and cause a loss of data. Therefore, the only way to use the strings as storage is to either POKE the code into memory or list it in the program as DATA elements, both of which require converting the data to decimal first.

Memory Manipulator is an attempt to solve that problem and the hassles of translating characters to ASCII codes, or any combination of hexadecimal, ASCII, or decimal conversion. It is an outgrowth of my intense dislike for errors that are due to base conversions creeping in and destroying what could have been a good program.

Program Operation

Memory Manipulator (see listing 1) allows you to input data in either hexadecimal, ASCII, or decimal, store the data at any location in programmable memory, and list it in any of the three forms on a video display or a line printer. Each function of the program is essentially independent of the other; the only routines shared are the hexadecimal-to-decimal conversion section at line 5000 and its reciprocal function at 6000. The remainder of the functions can be inserted or omitted as you see fit. The program uses about 3600 bytes of memory; however, this can be greatly reduced by deleting remarks and using multiple-statement program lines. There are not too many remarks, because the program is essentially self-explanatory.

Text continued on page 362

Listing 1: Memory Manipulator program, written in Radio Shack Level II BASIC. This program takes data input as ASCII characters, decimal numbers, or hexadecimal numbers and places the hexadecimal equivalents into a specified area of memory. It also can read hexadecimal data from memory and display it in any of the above forms.

10 'HEM MANIPULATOR
20 'BY LOUIS P. WIT, JR.
30 :
40 'THIS ROUTINE-
50 'POKES & PEEKS IN
60 'HEX
70 'DECIMAL
80 'ASCII
90 'ALLOWS ALL ADDRESSES INPUT AS HEX
94 CLEAR 500
95 DEFS TR A-C
100 'MEN U
110 'MEN U
120 CLS; PRINT CHR(23)
125 PRINT; PRINT
MEMORY MANIPULATOR
130 PRINT 'HEX POKE
140 PRINT 'HEX PEEK
150 PRINT 'DEC POKE
160 PRINT 'DEC PEEK
162 PRINT 'ASC PEEK
165 PRINT 'ASC PEEK
170 PRINT
180 INPUT 'SELECTION';IN
190 ON N GOTO 1000, 2000, 3000, 4000, 7000, 8000
200 GOTO 120
200 PRINT 'POKE MEMORY
1010 INPUT 'START WITH'; IX
1020 GOSUB 5000 'CURT TO DEC

Listing 1 continued on page 358
Compatible with MP/M® and MP/M-86®
— for 8 bit systems one 256K board will support up to 7 users.
8/16 bit transfer
for 8 & 16 bit systems

256 switch selectable I/O ports for memory bank addressing
Hardware and software bank select in 8K/32K segments
Parity detection with interrupt and LED indication
Industrial Quality

64K / 256K
S-100 RAM

64K Boards each $595
4 for $2295

256K Boards each $2495
4 for $9495

Meet IEEE 696 Specifications

Full DMA capability

24/20/16 bit address decoding

Address selection on any 8K/32K boundary

Disable 8K/32K segments in hardware or software

Special circuitry allows error-free operation in even the noisiest S-100 systems

See our catalog for many other fine S-100 and Apple Boards including: — Analog to Digital Converters (16 - 256 channels; 12, 14, or 16 bit accuracy; 30, 40, 100, or 125 KHz; programmable gain; timer/counters) — Digital to Analog Converters (12 bit accuracy, 3 microsecond conversion) — 8086 CPU Board — I/O Boards — 16K Static RAM — Real-time Video Digitizer and Display.

TECMAR, INC.
(216) 464-7410

23600 Mercantile Rd. • Cleveland, OH 44122
THE ART OF ELECTRONICS
Paul Horowitz & Winfield Hill

Bypass Capacitors - Lead Inductance - Impedance - Op-Amp - MOSFET Switch
3-Terminal Regulator - Emitter Follower Current Source - Precision A/D

Confused by the other half of electronics? The Art of Electronics combines a comprehensive stand-alone treatment of both analog and digital electronic design, boot-strapping the reader through to an advanced level of design proficiency. This fresh non-mathematical view of electronics emphasizes circuit design and implementation, illustrated with hundreds of examples stressing the tradeoffs involved in the choice of circuit configurations, device types, and component values. It provides an easy entry into electronics for the inexperienced, yet its wealth of valuable insights and techniques makes it an ideal reference for the computer hobbyist, specialist, or electronic engineer. $24.95

CONTENTS
1. Foundations
2. Transistors
3. Feedback & Operational Amplifiers
4. Active Filters & Oscillators
5. Voltage Regulators & Power Circuits
6. Field-Effect Transistors
7. Precision Circuits & Low-Noise Techniques
8. Digital Electronics
9. Digital Meets Analog
10. Minicomputers
11. Microprocessors
12. Electronic Construction Techniques
13. High-Frequency & High-Speed Techniques
14. Measurements & Signal Processing

YES! Please send me The Art of Electronics
CAMBRIDGE UNIVERSITY PRESS
Dept. E
32 East 57th St
New York, NY 10022

Name
Address
City
State
Zip

Payment enclosed
Master Charge Interbank #

Card #: Exp.

Signature

Programming Quickies
Listing 1 continued:

1030 N=X 'START WITH N
1040 X=N
1050 GOSUB 6000 'CVRT TO HEX
1060 PRINT"HEX";X$;
1070 INPUT$x
1080 GOSUB 5000 'CVRT TO DEC
1085 IF N>32767 THEN
1090 POKE N,X 'STORE
1095 IF N<0 THEN
1100 N=N+1 'NEXT CELL
1110 GOTO 1040 'LOOP
1111
1112
1113
1114
1115

2000 'READ MEMORY
2100 INPUT"1 FOR CRT"
2105 2 FOR PRINTER":P
2020 INPUT"START AT";X$;
2030 GOSUB 5000 'CVRT TO DEC
2040 N=X
2050 INPUT"END AT";X$;
2060 GOSUB 5000 'CVRT TO DEC
2065 CLS
2070 FI=X
2080 FORM=N TO FI STEP 16
2090 X=N
2100 GOSUB 6000 'CVRT TO HEX
2110 PRINT"HEX";X$;
2115 IF P>32767 THEN
2120 FOR H=0 TO 15
2125 R=N+1 ; IF R<32767
2130 X=PEEK$(R)
2140 GOSUB 6000 'CVRT TO HEX
2150 X$=RIGHT$(X$;2)
2160 PRINTX$;"!
2170 IF P=2 THEN LPRINT
2180 NEXT N
2190 GOTO 120
2200
2210
2211
2212
2213
2214
3000 PRINT"DECIMAL POKE MEMORY
3010 INPUT"START ADDRESS";X$;
3020 GOSUB 5000 'CVRT DEC
3030 N=X
3040 X=N ; GOSUB 6000
3050 PRINTX$;
3060 INPUT$;
3070 IF J>255 OR J<0 THEN 120
3080 R=N+1 ; IF R>32767 THEN
3090 R=1*(65536-R)
3090 POKE R+J
3091
3092
3093
3094
3100 GOTO 3040
4000 PRINT"DECIMAL PEEK MEMORY

Listing 1 continued on page 360
Jack McAlister had $12,000 worth of power tools. Here's why he sold them!

“My shop was equipped with commercial tools in which I had an investment of $12,000 or more. I sold all my machines at a nice profit, and purchased one Mark V... I can do anything I was doing on all the machines, this gives me a lot more room and I have several thousand in the bank. What more could I ask for?”

— Jack McAlister, Tucker, Georgia

Jack McAlister learned something that a lot of woodworkers, from beginners to experts, already know. You don’t need a shop full of expensive power equipment to do just about any job you could imagine. All you need is a Shopsmith MARK V.

The 5-in-1 tool that does it all.

The Shopsmith MARK V is actually a complete workshop in a single, compact unit no bigger than a bicycle. One rugged, precision-built motor powers five basic tools: 10” table saw, 16½” vertical drill press, horizontal boring machine, 34” lathe and 12” disc sander.

It actually lets you do more than individual power tools because you can borrow features from one tool to enhance the capabilities of another. And it’s so easy to use that after only about an hour’s practice, you’ll be able to change from one function to another in less than 60 seconds.

With the MARK V’s capacity and precision, you’ll soon find yourself getting professional results on projects you now wouldn’t dream of tackling. You’ll discover why we call the MARK V “The tool to start with... the system you grow with.”

Find out what Jack McAlister and 250,000 other MARK V owners already know.

Don’t you owe it to yourself to find out more about the MARK V — the single machine that can actually replace $12,000 or more in power tools — yet costs just a fraction of that figure?

Mail the coupon today for your FREE Information Kit.

Find out more about the amazing MARK V. Simply mail the coupon below and we’ll send you a FREE Information Kit. Your Kit will include a booklet, “What To Look For When You Buy Power Tools,” plus all the details on the incredible MARK V. You’ll also learn how you can actually use it in your home, for a full 30 days, without risking a penny!

Shopsmith Inc.
The Home Workshop Company
750 Center Drive
Vandalia, Ohio 45377

Mail this coupon today!

*Shopsmith, Inc. 1981
BROAD BAND MICROVAVE RECEIVER SYSTEM
1.8GHZ to 2.4 GHZ
only $295.00

With built-in converter to channel
2, 3, or 4 of any standard TV set.

RANGE: Line of sight to 250 miles
SCOPE: Will receive within the frequency band from satellite, primary
microwave stations, and repeater microwave booster
stations
CONTENTS: Package in 19"x19"x4 1/2" corrugated carton complete
with:
• 24" Dish
• Feed-Horn Receiver
• Mounting Bracket
• Mounting Clamp
• 300 Ohm to 75 Ohm Adapter
• 750 Ohm to 300 Ohm Adapter
• 60 Feet Coax Cable with Connectors
• 3 Feet Coax Cable with Connectors
• Instructions

WARRANTY: 180 days for all factory defects and electronic failures for normal
usage and handling. Defective sub assemblies will be replaced
with new or re-manufactured sub assembly on a 48 hour exchange

This system is not a kit and requires no additional devices or equipment other than
a TV set to be in operation. DEALER INQUIRIES INVITED.

Programming Quickies

Listing 1 continued:

4010 INPUT*1 FOR CRT
 2 FOR PRINTER*1 P
4020 INPUT*START ADDRESS*;X$,
4030 GOSUB 5000 'CURT DEC
4040 N=X
4050 INPUT*END ADDRESS*;X$
4055 GOSUB 5000
4057 CLS
4060 FI=X
4070 FORM=N TO FI STEP 10
4080 X=N+GOSUB 6000
4090 PRINTX$"="
4100 IFP=2 THENPRINTX$"="
4110 FOR M=0 TO 10
4120 R=N+M :IF R<32767 THEN
 R=-1*(65536-R)
4130 PRINT USING *"###1PEEK(R);"
4140 IFP=2 THEN LPRINT USING
 *"###1PEEK(R);"
4150 NEXT M
4160 PRINT
4170 IF=2 THEN LPRINT"
4180 NEXT N
4190 INPUTZ$:GOTO120
4200
4210
4211
4212
4213
4214
5000 'X=DEC VALUE OF X$(HEX)
5010 X=0
5015 IF LEN(X$)=0 THEN 5120
5020 A1=LEFT$(X$,1)
5030 X1=ASC(A1)
5040 X1=X1-48
5050 IF X1>9 THEN X1=X1-7
5060 IF X1<0 OR X1>15 THEN 120
5070 X=X1+167
5090 X=RIGHT$(X$,LEN(X$)-1)
5100 GOTO 5015
5120 RETURN
5130
5140
5141
5142
6000 'X=HEX VALUE OF X
6010 X=""
6020 FOR Q=3 TO 0 STEP -1
6030 X1=FIX(X/X160)
6040 X=X-X1X160
6050 X1=X1+48
6060 IF X157 THEN X1=X1+7
6070 X=X+CHR$(X1)
6080 NEXT Q
6090 RETURN
6091
6092
6093
6094
7000 PRINT*ASCIJIPOKE*
7010 INPUT*START ADDRESS*;X$
7020 GOSUB 5000
7030 N=X
7040 X=X
7050 GOSUB 6000
7060 PRINTX$">"$
7070 A=INKEY*:IFA=*THEN7070

Listing 1 continued on page 352
When it comes to microcomputer software we wrote the book.

How do you stay up-to-the-minute with the rapidly changing world of microcomputer software? Get the Lifeboat Catalog.

The Latest Innovations
The new Lifeboat Catalog is packed with the latest state-of-the-art software. And if we publish a new program after the latest catalog has gone to press, we enclose a flash bulletin in your copy.

The Greatest Selection
Because Lifeboat is the world's largest publisher of microcomputer software, our catalog offers you the greatest selection of programs for business, professional and personal use. Our more than 200 programs range from integrated accounting and professional practice systems to office tools for bookkeepers and secretaries to sophisticated tools for programmers. Included are business systems, word processors, programming languages, database management systems, application tools and advanced systems utilities.

We specialize in software that runs on most small business computers. Our more than 60 media formats, including floppy disks, data cartridges, magnetic tape and disk cartridges, support well over 100 computer brands of domestic and foreign manufacture.

Get it Now
Lifeboat now serves tens of thousands of satisfied customers with our breadth of up-to-date, fully tested, fully supported and competitively priced software. You may not need all we offer, but we offer just what you need. After all, we wrote the book.

LIFEBOAT WORLDWIDE offers you the world's largest library of software. Contact your nearest dealer or Lifeboat:

Lifeboat Associates
Software with full support

Mail coupon to: Lifeboat Associates, 1651 Third Avenue, New York, New York 10028 or call (212) 860-0300.

☐ Please send me a free Lifeboat Catalog.
☐ Please send me Lifelines subscription information.

Company:

Street:

City State Zip:

Lifelines is a trademark of Lifelines Publishing Corporation.
Programming Quickies

Listing I continued:

7075 PRINTA
7080 R=N : IF R>32767 THEN
7085 \n7090 POKE R +ASC(A)
7100 N=N+1
7110 GOTO 7040
7111 \n7112 \n7113 \n7114 : \n8000 PRINT*ASCII PEEK MEMORY
8010 INPUT*1 FOR CRT
8020 INPUT*START ADDRESS*;X$
8030 GOSUB 5000
8040 N=X
8050 INPUT*ENDING ADDRESS*;X$
8060 GOSUB 5000
8070 FI=X
8080 FOR N=N TO FI STEP 16
8090 X=N : GOSUB 6000
8100 PRINTX$=''$;
8110 IF P=2 THEN LPRINTX$=''$;
8120 FORM=8 TO 15
8130 R=N+M : IF R>32767 THEN
8140 \n8150 IF J<96 THEN LPRINT CHR$(J);$
8160 PRINT CHR$(J);$
8170 IF F=2 THEN LPRINT CHR$(J);$
8180 NEXT M
8190 PRINT
8200 IF F=2 THEN LPRINT*
8210- NEXT N
8220 INPUT*1;GOTO 120
8221 END
8222 \n8223 \n8224 •

Text continued from page 356:

Under Level II BASIC, POKE and PEEK first convert their operands to 2-byte signed integers, having a range of -32768 to +32767. Since memory locations can go as high as 65535, this range would be inadequate. The sequence before the POKEs and PEEKs (such as line 1085 in listing 1) works out the integer value that will properly address the location you desire. If you're operating a 16 K-byte (or less) machine, you can omit these statements.

There are no formal exits from the loops in the program sections, so an intentional error or the BREAK key must be used. Usually this is bad practice, since rerunning the program will lose variables or leave a job half done. In this case, it is acceptable because arguments are not being passed from section to section.

Using the Program

Before you load this program, set aside some high memory by means of the MEMORY SIZE? parameter; otherwise, you can destroy the program as soon as you POKE anything into memory.
New! WEBSTER'S MICROCOMPUTER BUYER'S GUIDE (Webster) A detailed reference guide useful to both first-time and experienced users. It provides extensive information on the wide variety of microcomputer systems and suppliers, including new Japanese products. Each microcomputer system description includes a brief overview, central processing systems, peripheral, software, pricing and main office. Business, educational, and professional applications of microcomputer systems are detailed. The book is divided into four sections: Microcomputer Theory and Applications; Independent Software Products; Microcomputers and Microcomputer Systems; CRT Displays, Printers and Printing Terminals. Includes glossary, charts, graphs and illustrations. 5129-8, $25.00

PROGRAMS FOR BEGINNERS ON THE TRS-80 (Blechman) A valuable book of practical and interesting programs for home use that can be understood and used immediately by the beginner in personal computer programming. Learn step-by-step how 21 sample TRS-80 programs work. Techniques are described line-by-line within the programs, and a unique matrix index enables you to locate other programs using the same BASIC commands and statements. Detailed descriptions, complete listings, explanations of what each program does, and instructions for modifications included. 5182-4, $8.95

PROGRAMMER’S GUIDE TO THE 1802 (With An Assembler For Your Machine) (Swan) The only assembly language primer that has an assembler! Here’s a worthwhile text that teaches assembly language for the 1802 microprocessor. Coverage includes everything from the binary number system and the fundamentals of machine language, to the development of a working 1802 assembler. Simple written in non-technical language, the text is intended for the beginner, but contains information that will be appreciated by experts. 5183-2, $7.95

HOME COMPUTERS CAN MAKE YOU RICH (Webecket) For every home computer owner and nonowner interested in spare-time income opportunities. You’ll be introduced to the microcomputer industry, types of people involved in it, and how to learn more about this new field. Discusses basic principles of making money, freelance writing, programming, consulting, inventing, investing, and much more. 5177-8, $6.50

(Special FORTRAN version, 5430-0) (Special BASIC version, 5200-6) (Special PASCAL version, 5767-9)

BASIC COMPUTER PROGRAMS IN SCIENCE AND ENGINEERING (Gilder) Save time and money with this collection of 114 ready-to-run BASIC programs for the hobbyist and engineer. There are programs to do such statistical operations as means, standard deviations averages, curve-fitting and interpolation. There are programs that design antennas, filters, attenuators, matching networks, plotting, and histogram programs. All programs have been tested and are fairly universal. 0761-2, $9.95

BASIC COMPUTER PROGRAMS FOR BUSINESS: Vols. 1 & 2 (Sternberg) A must for small businesses using micros as well as entrepreneurs. Each program is documented with a description of its functions and operation, a complete listing in BASIC, a symbol table, sample data, and one or more samples. 5162-X, Vol. 1, $9.95 5178-6, Vol. 2, $10.95

Available at your local computer store!

For Orders and Inquiries Call Toll Free

HAYDEN HOTLINE
800-631-0856

HAYDEN BOOK COMPANY, INC.

50 Essex Street, Rochelle Park, NJ 07662

Circle 156 on Inquiry card.
Programming Quickies

If you use the program to convert a short routine to decimal so that you can place the converted codes into a data statement of another program, load the system tape containing the data to be converted and use the decimal PEEK function in listing 1. All addresses are given and returned in hexadecimal. If you want the addresses in decimal, replace the GOTO 5000 statements following the address input with:

\[N = \text{VAL} (X\$) \]

Also, check inside the display loops for similar changes.

Memory Manipulator can be used to examine the contents of any section of memory. If you have a program in memory that works (i.e., you already spent a night debugging it), you can use the hexadecimal PEEK function to get a hard copy of the code in memory. (See listing 2.) If you're ever searching for a particular routine in ROM (read-only memory), this function could be equally beneficial. To find the subroutine, insert a few lines into the program in listing 1 that will test the contents of the bytes it reads for the machine instruction you are looking for.

For example, if you want to find the routine in the Level II BASIC ROM that converts values to strings for display, change the print lines in the hexadecimal PEEK section so that it only prints when the next 3 bytes contain the numeric codes for a CALL 0033 Z80 instruction. This approach won't be fast and you'll have a lot of searching to do, but it beats rewriting a routine that's already in the machine.

This program was written with the intention of adding and changing the code as situations arise, so make alterations freely.

Perhaps "hex-a-phobia" will be cured in short order!

Listing 2: Sample outputs of the program in listing 1 showing the contents of memory locations hexadecimal A400 to A4FF. Listings 2a and 2b show the equivalent ASCII characters. Note that locations which contain codes not associated with printable ASCII characters are displayed as dots (.) . Listings 2b and 2c show the decimal and hexadecimal equivalents, respectively.

Listing 2a

```
1A00: >   1 .   . .   .   M   .   . 
1A01:   .   .   .   .   .   J   .   . 
1A02:   R   .   3   2   7   6   7 
1A03:   .   .   G   E   5   S   5   A 
1A04:   R   .   1   .   U   .   .   . 
1A05:   .   .   .   .   .   J   .   P 
1A06:   .   .   .   .   .   .   .   . 
1A07:   .   .   .   .   .   .   .   . 
1A08:   .   .   .   .   .   .   .   . 
1A09:   .   .   .   .   .   .   .   . 
1A0A:   .   .   .   .   .   .   .   . 
1A0B:   .   .   .   .   .   .   .   . 
1A0C:   .   .   .   .   .   .   .   . 
1A0D:   .   .   .   .   .   .   .   . 
1A0E:   .   .   .   .   .   .   .   . 
1A0F:   .   .   .   .   .   .   .   . 
```

Listing 2b

```
A100: >   1 .   . .   .   M   .   . 
A102:   R   .   3   2   7   6   7 
A103:   .   .   G   E   5   S   5   A 
A104:   R   .   1   .   U   .   .   . 
A105:   .   .   .   .   .   J   .   P 
A106:   .   .   .   .   .   .   .   . 
A107:   .   .   .   .   .   .   .   . 
A108:   .   .   .   .   .   .   .   . 
A109:   .   .   .   .   .   .   .   . 
A10A:   .   .   .   .   .   .   .   . 
A10B:   .   .   .   .   .   .   .   . 
A10C:   .   .   .   .   .   .   .   . 
A10D:   .   .   .   .   .   .   .   . 
A10E:   .   .   .   .   .   .   .   . 
A10F:   .   .   .   .   .   .   .   . 
```

Listing 2c

```
A400: >   1 .   . .   .   M   .   . 
A402:   R   .   3   2   7   6   7 
A403:   .   .   G   E   5   S   5   A 
A404:   R   .   1   .   U   .   .   . 
A405:   .   .   .   .   .   J   .   P 
A406:   .   .   .   .   .   .   .   . 
A407:   .   .   .   .   .   .   .   . 
A408:   .   .   .   .   .   .   .   . 
A409:   .   .   .   .   .   .   .   . 
A40A:   .   .   .   .   .   .   .   . 
A40B:   .   .   .   .   .   .   .   . 
A40C:   .   .   .   .   .   .   .   . 
A40D:   .   .   .   .   .   .   .   . 
A40E:   .   .   .   .   .   .   .   . 
A40F:   .   .   .   .   .   .   .   . 
```
A POWERFUL NEW DIRECTION IN MICROCOMPUTER PROGRAMMING

After many years of extensive research and development comes LOGO, a powerful new programming language designed to put control of the microcomputer back into the hands of the programmer. Now children and adults alike can embark on a voyage of self-discovery as they teach the computer to think (not vice versa). Working in the LOGO environment can inspire the programmer to “think about thinking” and, in effect, become the architect of their own learning experience. Simply stated, LOGO represents a giant step forward in the world of microcomputer programming.

LOGO Computer Systems Inc. is a new company which has been formed to develop and distribute LOGO software, hardware, written material and training services. For more information, contact your local computer dealer or write to us directly.
Use a Relative Subroutine Call for Relocatable Z80 Programs

George S Losey
Hawaii Institute of Marine Biology
POB 1346
University of Hawaii at Manoa, Coconut Island
Kaneohe HI 96744

Zilog's Z80 microprocessor has many improvements over its predecessor, the Intel 8080A microprocessor. One nagging difficulty, however, is the lack of high-level languages that take full advantage of the Z80 operation codes. If you want complete control of its capabilities, assembly-language or machine-executable object-code programming is a must.

In machine language, there are methods of writing relocatable programs that use a patched routine for accomplishing calls to subroutines. These methods are valuable for fast interrupt servicing and similar applications, especially when programs are in modular form but not residing in specific memory locations.

Although the Z80's operation-code set is well suited to my needs, I grew frustrated when I found more and more applications for my microcomputer. Suddenly, the EPROM (erasable programmable read-only memory) based program residing at hexadecimal addresses E400 through E5FF had to be moved to E800 through E9FF. All would have been well if the EPROM's software had used the six relative-jump operation codes. The program was relocatable, however, because it didn't contain any references to specific (absolute) addresses.

Many programs can be written without using jump and call instructions that cannot be relocated. However, if many portions of your program demand the use of a similar set of instructions, such as querying an output device or performing arithmetic manipulation, the headaches begin. Such programs should usually be written in a modular form with a main program that jumps back and forth to frequently used subroutines.

Modular programs use call instructions to access the subroutines. Since the call instruction contains the absolute address of the subroutine (using immediate external addressing), the code is not relocatable without changing all of the subroutine-call addresses. The general philosophy of modular programming with a main program that calls a variety of subroutines is certainly sound. (See the article by James Lewis, "Some Notes on Modular Assembly Programming," December 1979 BYTE, page 222.) A glance at the operation-code listings for powerful software such as the Cromemco Resident Monitor reveals a bewildering jungle of subroutine calls that pack an impressive set of capabilities into a 1 K-byte chip. But if you decide to locate this monitor anywhere
MODEMS AND COUPLERS

Penril
- **Penril 300/1200—Bell 212A style** $799
- **Penril 212A style** $799

U.S. Robotics
- **USR-330A** Bell 103/113 style $339
- **USR-330D** Bell 103/113 style $339

Bell 103/113 style $339

USR-330A $339
- Same as USR-330D but includes auto-dial capability.

Digital Equipment Corporation
- **DEC VT100**

CRT's
- **Perkin-Elmer Corporation**
 - **Superowli 1251** $1499

Hardcopy Terminals
- **Teletype Model 43**
 - **Teletype Corporation**

Digital Equipment Corporation
- **DEC LA120**

Perkin-Elmer Corporation
- **PussyCat 650/655** CRT Screen Printer $869
- **650/655 PussyCat CRT Screen Printer** $869
 - 100 cps. Extremely compact and quiet. 110 to 9600 baud rate. 2K buffer. Ideal for producing rapid, reliable hardcopy of your CRT screen display. Can be added to any CRT with our interface option.

DEC LA34DA $899
- 30 CPS. Dot matrix. Upper/lower case. 4 character sizes. Up to 217 cols per line. 6 lines per inch settings. Friction feed. Settable tabs. RS232.

U.S. Robotics
- **The Phone Link Acoustic Modem** $499

Bonlam 550S $643

DEC LA34AA $799
- 30 CPS. Dot matrix. Upper/lower case. 8 character sizes including double size characters. 6 lines per inch settings. Up to 217 cols per line. Friction feed. Settable horizontal and vertical tabs. Top-of-form capability.

Bonlam 550S $849
- Same as SS.OB plus block mode. 8 function keys, and protected fields, reverse video fields, half intensity fields, blinking fields.

PussyCat 650/655 CRT Screen Printer $1499
- Numeric Keypad w/ Function Keys $399

Bonlam 550S $849
- Same as SS.OB plus block mode. 8 function keys, and protected fields, reverse video fields, half intensity fields, blinking fields.

DEC LA34DA $899
- 30 CPS. Dot matrix. Upper/lower case. 4 character sizes. Up to 217 cols per line. 6 lines per inch settings. Friction feed. Settable tabs. RS232.

PussyCat 650/655 CRT Screen Printer $869
- 100 cps. Extremely compact and quiet. 110 to 9600 baud rate. 2K buffer. Ideal for producing rapid, reliable hardcopy of your CRT screen display. Can be added to any CRT with our interface option.

Digital Equipment Corporation
- **DEC LA34DA** $899
 - 30 CPS. Dot matrix. Upper/lower case. 4 character sizes. Up to 217 cols per line. 6 lines per inch settings. Friction feed. Settable tabs. RS232.

U.S. Robotics
- **The Phone Link Acoustic Modem** $499

Bonlam 550S $643

DEC LA34AA $799
- 30 CPS. Dot matrix. Upper/lower case. 8 character sizes including double size characters. 6 lines per inch settings. Up to 217 cols per line. Friction feed. Settable horizontal and vertical tabs. Top-of-form capability.

Bonlam 550S $849
- Same as SS.OB plus block mode. 8 function keys, and protected fields, reverse video fields, half intensity fields, blinking fields.

PussyCat 650/655 CRT Screen Printer $1499
- Numeric Keypad w/ Function Keys $399

Bonlam 550S $849
- Same as SS.OB plus block mode. 8 function keys, and protected fields, reverse video fields, half intensity fields, blinking fields.

DEC LA34DA $899
- 30 CPS. Dot matrix. Upper/lower case. 4 character sizes. Up to 217 cols per line. 6 lines per inch settings. Friction feed. Settable tabs. RS232.

PussyCat 650/655 CRT Screen Printer $869
- 100 cps. Extremely compact and quiet. 110 to 9600 baud rate. 2K buffer. Ideal for producing rapid, reliable hardcopy of your CRT screen display. Can be added to any CRT with our interface option.

Leasing rates and lease/purchase plan information is available on request. All equipment is shipped with a 10 day money back guarantee. We offer full service, on site maintenance plans on all equipment. All equipment in stock.

U.S. ROBOTICS INC.
- **SALES**
 - General Offices (312) 346-5650
 - Service (312) 346-5659
 - (312) 733-0497

Circle 376 on inquiry card.
except the intended address range of hexadecimal E000 through E3FF, sharpen your wits and your pencil, and best of luck to you. There are more than just a few immediate-external address references to change.

To explore this dilemma further, it is important to understand three basic differences between a relative jump and a call in the Z80 instruction set. First, the relative jump is a 2-byte instruction that requires from seven to twelve external clock cycles for fetching and execution, while the call instruction demands 3 bytes and ten to seventeen clock cycles. (Score a few points for the relative jump for saving 1 byte of programming space and 1 to 2 microseconds, at 4 MHz.)

Second, the relative jump leaps to the same point in the program regardless of where the program resides in memory, because the jump is made relative to the current value of the program counter. In contrast, the call instruction includes a 2-byte address for the jump destination, which will obviously be wrong if the program is moved to another region of memory. Whenever the program is moved, the 2-byte address must be changed. (Score a pile of points for the relative jump.)

Third, alas, the ignorant subroutine that is accessed via a relative jump has no idea how to return to the proper location if it is accessed from more than one place in the main program. The call instruction includes an "intelligent return" that lets the subroutine jump right back to the next instruction following the call. (Don't despair, save those relative-jump points for later.)

Dennis Kitzs suggested a simple solution to this problem that is fast and requires only a few bytes more than a standard subroutine. (See "Relative Subroutines for the Z80," December 1979 BYTE, page 87.) The only restrictions to its use are that the program cannot reside in ROM (read-only memory), and each time the program is moved, a single 2-byte address in the program must be changed. [Also, most programmers prefer to avoid self-modifying code. . . . RSS] However, besides the restriction to programmable memory, an error in the calculation of the 2-byte address can destroy the program.

There is another method, which I'll explain shortly, that is more complex but works in ROM and needs no changes when the program is moved.

The intelligent return is allowed because the call instruction accomplishes one task that cannot be accomplished by any of the other Z80 operation codes: a subroutine call pushes the value of the program counter onto the stack while the return from the subroutine pops it back. The program counter is, of course, the register that tells the Z80 the address for the next instruction to be fetched. If only you could take a peek or push at the program counter before executing a relative jump, the relative call would be born. A relative-called subroutine could make an intelligent return to the main program, and the modular program would have relocatable code. Unfortunately, for some undoubtedly sound reason, one
cannot directly push from, pop to, or otherwise gain direct access to the program counter in the Z80 microprocessor.

If you can stand a few sacrifices, I found that the Z80 can be coerced to make a relative call. First, the fastest and most direct method for implementing a relative call demands that 5 bytes of page-zero programmable memory, beginning at one of the eight restart locations accessed with the Z80's RST instruction (hexadecimal 0000, 0008, 0010, 0018, 0020, 0028, 0030, or 0038), be available for storage of a routine that gains access to the program counter. Second, each relative call must have a 3-byte instruction code, while the actual fetching and execution of the call will require seventy-one to seventy-six external clock cycles. This means that, at a 4 MHz clock rate, a relative call will take around 15 microseconds longer than a normal subroutine call. Third, return from the subroutine must be unconditional, but it will require only four external clock cycles instead of the ten required to return from a normal call. Fourth, the HL register pair must be available for use during the relative call to the subroutine.

The trick is to use the single-byte RST (restart) instruction as the call instruction. A restart forces a jump to a 5-byte routine in page zero of memory, and pushes the program counter onto the stack where it is accessible. While you have the program counter's contents cornered on the stack, the 5 bytes of instructions in page zero are used to copy it into an accessible register pair and increment it to point to the instruction immediately following the relative call. You then return from page zero to the main program and execute the relative call. "Intelligent return" from the subroutine is accomplished by a jump to the address indicated by the register pair in which you stored the value of the program counter at the time the RST was encountered.

A simple example is given in listing 1. The 5-byte routine is stored in page zero from hexadecimal 0008 to 000C. The relocatable program code is located in a space around address hexadecimal 0F00. The HL register pair is used to store the return address for the relative call.

The first relative call begins at hexadecimal 0F00 with an RST 8 instruction, which pushes the program counter onto the stack and jumps to hexadecimal 0008. The stored value of the program counter (hexadecimal 0F01) is copied into HL with the pop- and push-stack operations. It is then incremented to point to the instruction following the relative call (hexadecimal 0F03). Execution returns to the relative jump at hexadecimal 0F01. A relative jump is made to the subroutine at location 0F50. At the end of the subroutine, an "intelligent return" is made to location 0F03 by jumping to the address contained in register HL (JP (HL), a register-indirect jump). When the same subroutine is relative-called by the instructions at addresses hexadecimal 0F20 through 0F22, the same sequence occurs except that the address register,
HL, will contain a different return address, OF23. The
same instruction at the end of the subroutine returns to
the main program at OF23.

The simplest method of creating the relative call is to
store the 5-byte routine in page zero by using a 17-byte
initialization routine, shown here as listing 2, at the
beginning of the main program. It only needs to be ex­

Listing 1: Sample implementation of the relative-call (relocatable-subroutine call) function on a Z80-based system. Instead of using
the normal subroutine-call instruction, subroutines are accessed with a RST (reset) and a relative jump. The RST calls a routine in low
memory that sets up the return address by placing the proper return address in the HL register pair. This initialization routine then
returns to the relative-jump instruction immediately following the RST. The RST jumps to the actual subroutine being called. At the
end of each subroutine, a normal return is emulated with a jump to the address contained in the HL register.

<table>
<thead>
<tr>
<th>Hexadecimal Address</th>
<th>Object Code</th>
<th>Instruction Mnemonic</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page Zero</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0000</td>
<td>E1</td>
<td>POP HL</td>
<td></td>
</tr>
<tr>
<td>0001</td>
<td>E5</td>
<td>PUSH HL</td>
<td></td>
</tr>
<tr>
<td>0002</td>
<td>23</td>
<td>INC HL</td>
<td></td>
</tr>
<tr>
<td>0003</td>
<td>C9</td>
<td>RET</td>
<td>return to the relative call</td>
</tr>
<tr>
<td>OF00</td>
<td>CF</td>
<td>RST 8</td>
<td>call page-zero “peek” at PC</td>
</tr>
<tr>
<td>OF01</td>
<td>18 4D</td>
<td>JR + 4D</td>
<td>execute “relative call”</td>
</tr>
<tr>
<td>OF02</td>
<td></td>
<td>(sequence of instructions)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Main Program</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0F20</td>
<td>CF</td>
<td>RST 8</td>
<td>call page-zero “peek” at PC</td>
</tr>
<tr>
<td>0F21</td>
<td>18 2D</td>
<td>JR + 2D</td>
<td>execute “relative call”</td>
</tr>
<tr>
<td>0F22</td>
<td></td>
<td>(sequence of instructions)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Retocatable Program</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0F50</td>
<td></td>
<td>(sequence of instructions)</td>
<td>start of subroutine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subroutine</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FFFF</td>
<td>E9</td>
<td>JP (HL)</td>
<td>return from relative call</td>
</tr>
</tbody>
</table>
Listing 2: Program to set up the 5-byte initialization routine in low memory (hexadecimal location 0008, in this example).

<table>
<thead>
<tr>
<th>Hexadecimal Address</th>
<th>Object Code</th>
<th>Instruction Mnemonic</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>21 08 00</td>
<td>LD HL, 0008</td>
<td>load page-zero call pointer</td>
</tr>
<tr>
<td>N + 3</td>
<td>38 E1</td>
<td>LD (HL), E1</td>
<td>load 5-byte string into page zero of memory</td>
</tr>
<tr>
<td>N + 5</td>
<td>36 E5</td>
<td>INC HL</td>
<td></td>
</tr>
<tr>
<td>N + 6</td>
<td>36 E5</td>
<td>LD (HL), E5</td>
<td></td>
</tr>
<tr>
<td>N + 9</td>
<td>36 23</td>
<td>INC HL</td>
<td></td>
</tr>
<tr>
<td>N + 9</td>
<td>36 23</td>
<td>LD (HL), 23</td>
<td></td>
</tr>
<tr>
<td>N + C</td>
<td>36 23</td>
<td>INC HL</td>
<td></td>
</tr>
<tr>
<td>N + E</td>
<td>36 C9</td>
<td>LD (+HL), C9</td>
<td></td>
</tr>
<tr>
<td>N + F</td>
<td>36 C9</td>
<td>LD (+HL), C9</td>
<td></td>
</tr>
</tbody>
</table>

For example, one version of the Cromemco Resident Monitor includes a string of ASCII (American Standard Code for Information Interchange) characters stored to provide a header output, beginning at hexadecimal location E3F0. I really don't care whether the header says "CROMEMCO ZM1.0" or "HOWDY" or "%@$$". This is a convenient space to stick the 5 bytes from page zero so long as I am careful to change any other features of the monitor that refer to this string before programming the EPROM. For my purposes, I can merely shift the whole string 5 bytes backwards so that I lose two carriage returns and "CRO". The 5-byte routine from page zero can then begin at E3FB.

Do be careful if you try this sort of thing. Don't erase your old EPROM until you are certain your modification works. Another version of the same monitor has a string of spare bytes (containing hexadecimal character FF) from address E3F5 to E3FF. Inasmuch as any character can be written over an FF on an EPROM, the 5-byte code can be programmed directly onto the chip containing the code without altering the monitor in any way. Of course, once the 5 bytes are firmly installed in ROM, you can forget the nuisance of having to use the 17-byte initialization routine in listing 2. Merely rewrite your instruction-code manual to list the op codes for your newly created relative-call and return-from-relative-call instructions.
BASIC, Pascal, or Tiny-c?
A Simple Benchmarking Comparison

Phil Hughes, POB 2847, Olympia WA 98507

Three of the most popular high-level languages for microcomputers are BASIC, Pascal, and tiny-c. I developed a card-shuffling program in each of these languages, and my experience should help you select the language for your needs.

One way of stating the card-shuffling algorithm is: "Store and print the integers from 0 through 51 in a random sequence." To ensure that the programs perform equivalent functions, I added the following conditions:

- The result is to be printed with ten integers per line.
- Following the result, the message "ALL DONE!" is to be printed on a new line.
- The algorithm is to get a random number, check to see if it has already been used, and if not, the number is to be stored. The sequence is to be repeated until fifty-two numbers have been generated.
- The shuffling procedure must be implemented as a subroutine, and it must be reusable.

Experts or fans of each language could argue with my conditions, saying that they are prejudicial in favor of a certain language. That was not my intent.

I began by looking at the shuffling routine in a Black-jack game that a friend was playing. Its method was to keep a list of the used cards and generate a new card each time there was a draw. At this time, the new card was added to the used list. When the used-card list was full, a reshuffle, which consisted of clearing the used list, was forced.

I wondered how long it would take to perform the shuffle by selecting all the cards at one time and storing them in an array. This method seemed closer to what you do with an actual deck of cards.

I had been working on a tiny-c interpreter, so I decided to code my idea first in tiny-c. Because of tiny-c's long execution time, I then tried my algorithm in Pascal. Finally, I wrote a BASIC version to complete the comparison.

An important factor in this comparison is my experience with each language. I learned BASIC in 1970 as part of my job, and I have used it for development of quick programs for large-computer systems ever since. I have used various BASIC interpreters on microcomputers for the past three years. I have developed a tiny-c interpreter, but I have actually written only two tiny-c programs, each about thirty lines long. I have written three or four short Pascal programs. Armed with this information, decide for yourself which language you would use for a given set of conditions and a given problem.

Tiny-c Coding
Listing 1 is the tiny-c program, and listing 2 is the result of executing the program. The first nine lines of the program listing are a (pseudo) random-number generator. This routine appeared in the Tiny-c Owner's Manual (available from Tiny-c Associates). Although this can be

Listing 1: The card-shuffling routine coded in the tiny-c language. The first nine lines of source code generate pseudorandom numbers. The actual shuffling algorithm is coded beginning with the line starting with "shuffle".

```c
int seed, last
random int little, big
int range
if(last=0) seed=list=99
range=big-little
last=last=seed
if(last=0) last=last=
return little=(last/8)range
int cards(51)
shuffle: int current; current=0
int temp;
while (current<52) {
    temp=random(0, 51)
    while (current)[ ]
    if(cards()==temp) break
    if(current=current)[ ]
    return
}
text: shuffle
int i=0
while (i<52)
    for cards[i]
    temp[i]\n    if(i<12) i0; pl"
    pl"ALL DONE!"
```
I thought of as a library function, I decided to include it in the program. The next seventeen lines are the “shuffle” routine. Finally, the last ten lines (starting with “test[]”) are the main program that calls “shuffle” and prints the result.

It was easy to go from the design to the actual tiny-c program. It took ten minutes to code the program and another fifteen minutes to enter it and get it running. My biggest problem with tiny-c is remembering that == is the relational operator for equality. That mistake cost me a few minutes of debugging time.

Pascal Coding

Listings 3 and 4 show the Pascal program and its execution. Pascal does not have a built-in random-number generator. I borrowed ideas from the sample programs that come with the Lucidata Pascal compiler to code the function RANDOM in listing 3. The only difficult part of the

Listing 1: Sample execution of the tiny-c program of listing 1.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:10</td>
<td>29 32 45 21 51 10 13 24 39 25</td>
</tr>
<tr>
<td>11:15</td>
<td>32 30 31 1 19 44 43 37 20 26</td>
</tr>
<tr>
<td>16:18</td>
<td>36 34 7 3 49 0 42 27 14</td>
</tr>
<tr>
<td>19:23</td>
<td>35 13 4 41 6 31 48 23 38 33</td>
</tr>
<tr>
<td>24:26</td>
<td>30 34 48 5 2 16 9 11 17</td>
</tr>
<tr>
<td>27:29</td>
<td>47 15</td>
</tr>
</tbody>
</table>

Listing 2: The shuffle routine coded in Lucidata Pascal.

```pascal
PROGRAM shuffle; (* Shuffle cards and print result *)
VAR
  0 CARDS : ARRAY[1..52] OF INTEGER;
  1 : INTEGER;
  2 SEED : INTEGER;
  3 procedure shuffle;
  4 VAR
    5 CURRENT, TEMP, I : INTEGER;
  6 FUNCTION RANDOM(LITTLE, BIG : INTEGER) : INTEGER;
  7 VAR
    8 RANGE : INTEGER;
  9 BEGIN
    10 IF (SEED=0) THEN SEED:=99;
    11 RANGE:=BIG-LITTLE+1;
    12 SEED:=SEED+35;
    13 SEED:=SEED MOD 1000;
    14 RANDOM:=LITTLE+SEED MOD RANGE;
    15 END;
  16 BEGIN
    17 CURRENT:=1;
    18 REPEAT
    19 I:=RANDOM(1,52);
    20 WHILE ((CARDS[I]>TEMP) AND ( I<CURRENT)) DO I:=I+1;
    21 IF ( I=CURRENT) THEN BEGIN
    22 CARDS[I]:=CARDS[TEMP];
    23 CURRENT:=CURRENT+1;
    24 END;
    25 UNTIL (CURRENT=53);
    26 END;
  27 END.
```

Listing 3: The card-shuffling routine coded in Lucidata Pascal. An explicit random-number-generating function is used here, as in tiny-c.

```pascal
PASCAL P-COMPILER (VERSION 2) COPYRIGHT C 1980 D.R. GIBB
0 PROGRAM TEST;(* Shuffle cards and print result *)
0 VAR
  0 CARDS : ARRAY[1..52] OF INTEGER;
  1 : INTEGER;
  2 SEED : INTEGER;
  3 procedure shuffle;
  4 VAR
    5 CURRENT, TEMP, I : INTEGER;
  6 FUNCTION RANDOM(LITTLE, BIG : INTEGER) : INTEGER;
  7 VAR
    8 RANGE : INTEGER;
  9 BEGIN
    10 IF (SEED=0) THEN SEED:=99;
    11 RANGE:=BIG-LITTLE+1;
    12 SEED:=SEED+35;
    13 SEED:=SEED MOD 1000;
    14 RANDOM:=LITTLE+SEED MOD RANGE;
    15 END;
  16 BEGIN
    17 CURRENT:=1;
    18 REPEAT
    19 I:=RANDOM(1,52);
    20 WHILE ((CARDS[I]>TEMP) AND ( I<CURRENT)) DO I:=I+1;
    21 IF ( I=CURRENT) THEN BEGIN
    22 CARDS[I]:=CARDS[TEMP];
    23 CURRENT:=CURRENT+1;
    24 END;
    25 UNTIL (CURRENT=53);
    26 END;
  27 BEGIN
    28 I:=CARDS[1];
    29 FOR I := 1 TO 52 DO BEGIN
    30 CARDS[I]:=CARDS[TEMP];
    31 IF (I MOD 10)=0 THEN WRITELN;
    32 END;
    33 WRITELN("ALL DONE!");
    34 END.
```

Listing 4: The main program that calls “shuffle.”

```pascal
BEGIN
  0 TEST;
  1 WRITELN("THE VALUE OF THE MARKER TODAY: ");
  2 WRITELN("$3.00");
  3 WRITELN("THE VALUE OF THE MARKER TUESDAY:");
  4 WRITELN("$3.00");
  5 WRITELN("THE VALUE OF THE MARKER WEDNESDAY: ");
  6 WRITELN("$3.00");
  7 WRITELN("THE VALUE OF THE MARKER THURSDAY: ");
  8 WRITELN("$3.00");
  9 WRITELN("THE VALUE OF THE MARKER FRIDAY: ");
 10 WRITELN("$3.00");
11 WRITELN("THE VALUE OF THE MARKER SATURDAY: ");
12 WRITELN("$3.00");
13 WRITELN("THE VALUE OF THE MARKER SUNDAY: ");
14 WRITELN("$3.00");
15 END.
```
conversion from tiny-c to Pascal was deciding how to do the equivalent operation of the tiny-c "break" keyword. ("Break" signifies that the innermost "while" loop is to be terminated immediately.) This was implemented in Pascal as part of the WHILE condition.

The development and testing of the Pascal program took about one hour, plus the time necessary to develop the RANDOM function. Much of this time was attributable to Pascal's being a compiled language. This made it necessary for me to use a text editor separate from the language system to make program changes. The biggest problem I have with Pascal's grammar is remembering that := is the assignment operator.

BASIC Coding

Finally, listings 5 and 6 are the BASIC version of the shuffling program and the execution results. BASIC had the advantage of its built-in random-number function,

Listing 5: The card-shuffling routine coded in TSC BASIC. The built-in RND random-number function is used.

Listing 6: Sample execution of the BASIC program of listing 5.
which made the program appear much smaller and helped out the execution time. The first part of the program is the main routine. Lines 1000 through 1090 are the shuffling subroutine. It took thirty minutes to develop and test this program. The hardest part was converting the hierarchical structure of the shuffling subroutine into the available control structures of BASIC. This resulted in a FOR...NEXT loop and three IF statements.

Table 1 shows the execution times of each of these programs on a Southwest Technical Products Corporation 6800 system with a 1 MHz system clock rate. Note that Pascal is compiled, with the compilation process taking about thirty seconds. Table 2 shows the vendors for the three language systems.

Conclusions

Tiny-c is an easy-to-work-with language that supports structured programming. The source-code interpreter is extremely slow compared with a fast BASIC interpreter, but offers features such as long variable names and structured constructs. These capabilities make debugging easy. Also, tiny-c is easy to learn. A tiny-c interpreter for program development and a compiler for generating production programs would be an effective combination.

Pascal offers the structured constructs of tiny-c and much more. The execution speed of a compiled Pascal program is fast. The price you pay for this is a complicated language that is considered by many to be difficult for a beginner to learn. The complexity of Pascal makes availability of a source-code interpreter unlikely (although a source-code interpreter for a subset of Pascal is certainly possible). The complexity of full Pascal increases development time, but once created, a Pascal program is efficient and relatively easy to understand.

BASIC offers what initially appears to be the shortest program. However, on closer inspection of the tiny-c program, I found the following. If you were to remove the random-number function from the tiny-c program (and put it in the tiny-c function library) and move all the compound statement-delimiter brackets to the same lines as their preceding statements, the tiny-c and BASIC programs would have the same number of lines. The main problems with BASIC (at least of most dialects) are its lack of long variable names and hierarchical control constructs. These two deficiencies make the BASIC program difficult to understand.

In spite of the individual problems with these languages, each has its place. I hope that I have helped you select the language that best fits your needs.
There are several ancient algorithms that adapt surprisingly well to the computer. One such example is the "Russian Peasant Method" for multiplication, which was discovered by Western visitors to Russia in the nineteenth century. However, the method is actually much older than that. It was used by Egyptian mathematicians as early as 1800 BC, although it was not stated as a completely systematic algorithm.

To explain this method, let A and B denote two numbers. A can be any number, while B must be a non-negative integer. The problem is to calculate their product P. The method is:

1. Let $P = 0$
2. If B is odd, let $P = P + A$
3. Let $A = A + A$
4. Let $B = \text{integer part of } B/2$
5. If B is nonzero, repeat from step 2; otherwise the algorithm terminates.

An example will clarify how this works. Here are successive values of A and B, when their initial values are 175 and 18:

A: 175 350 700 1400 2800 5600
B: 18 9 4 2 1 0

Adding those As for which the corresponding Bs are odd, we have:

$$P = 350 + 2800 = 3150$$

which is the required result of 175 times 18. You may wish to try more examples to convince yourself that this procedure works correctly.

Notice that if A and B are unsigned integers expressed in binary, the doubling of A in step 3 can be performed by a left shift of A. Finding the integer part of $B/2$ in step 4 corresponds to a right shift of B. Furthermore, the B in step 2 is odd if its least-significant bit is 1.

Listing 1 shows a relocatable subroutine written in 6502 assembly language; also included is the hexadecimal object code. When the subroutine is entered, it is assumed that the low- and high-order bytes of A are found at memory locations 0000 and 0001 (hexadecimal), respectively. The low- and high-order bytes of B are found at locations 0002 and 0003, respectively. When the end of the subroutine is reached, locations 0004 and 0005 will contain the product P. If needed, the routine can be made shorter and faster by using the index registers (X and Y) for the product, instead of memory locations.

It is assumed here that P does not exceed 16 bits. If three or four bytes are required, it's relatively easy to expand the subroutine.

Multiplication routines similar to the one in listing 1 are found in arithmetic software and are coded in various languages. This does not mean that the routines' inventors were intentionally using the Russian Peasant Method. Probably, they were just imitating the familiar pencil-and-paper method for multiplication. As a matter of fact, when the numbers involved are binary and the algorithms are executed using the same instruction set, these two methods are identical.

A multiplication routine that looks slightly different, listing 1b, is often shown in microprocessor and microcomputer manuals. As a rule, this method should not be used. The loop starting at HALF is always entered sixteen times. Thus, the looping can continue to no purpose after B reaches 0.

The Russian Peasant Method can be modified to per-
form exponentiation. By setting \(P \) equal to 1 in step 1 and changing the addition in steps 2 and 3 to multiplication, the resulting value of \(P \) will be \(A \) raised to the power of \(B \). Of course, steps 2 and 3 now assume that a multiplication routine is available. This method for exponentiation was stated by a Persian mathematician in the year 1414.

Reference

Listing 1: Relocatabl subroutine for fast integer arithmetic on the MOS Technology 6502 microprocessor. Listing 1a shows a machine-language routine for multiplication by the Russian Peasant Method; listing 1b gives a version seen frequently in textbooks.

(1a)

<table>
<thead>
<tr>
<th>Object Code</th>
<th>Label</th>
<th>Mnemonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>A9 00</td>
<td>MULT</td>
<td>LDA 0</td>
</tr>
<tr>
<td>85 04</td>
<td></td>
<td>STA PLOW</td>
</tr>
<tr>
<td>85 05</td>
<td></td>
<td>STA PHIGH</td>
</tr>
<tr>
<td>46 03</td>
<td>HALF</td>
<td>LSR BHIGH</td>
</tr>
<tr>
<td>66 02</td>
<td></td>
<td>ROR BLOW</td>
</tr>
<tr>
<td>90 00</td>
<td></td>
<td>BCC DOUBLE</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>CLC</td>
</tr>
<tr>
<td>A5 04</td>
<td></td>
<td>LDA PLOW</td>
</tr>
<tr>
<td>65 00</td>
<td></td>
<td>ADC ALow</td>
</tr>
<tr>
<td>85 04</td>
<td></td>
<td>STA PLOW</td>
</tr>
<tr>
<td>85 05</td>
<td></td>
<td>LDA PHIGH</td>
</tr>
<tr>
<td>65 01</td>
<td></td>
<td>ADC AHIGH</td>
</tr>
<tr>
<td>85 06</td>
<td></td>
<td>STA PHIGH</td>
</tr>
<tr>
<td>06 00</td>
<td>DOUBLE</td>
<td>ASL ALOW</td>
</tr>
<tr>
<td>26 01</td>
<td></td>
<td>ROL AHIGH</td>
</tr>
<tr>
<td>65 02</td>
<td></td>
<td>LDA BLOW</td>
</tr>
<tr>
<td>05 03</td>
<td></td>
<td>ORA BHIGH</td>
</tr>
<tr>
<td>D0 E3</td>
<td></td>
<td>BNE HALF</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>RTS</td>
</tr>
</tbody>
</table>

(1b)

<table>
<thead>
<tr>
<th>Object Code</th>
<th>Label</th>
<th>Mnemonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>A9 00</td>
<td>MULT</td>
<td>LDA 0</td>
</tr>
<tr>
<td>85 04</td>
<td></td>
<td>STA PLOW</td>
</tr>
<tr>
<td>85 05</td>
<td></td>
<td>STA PHIGH</td>
</tr>
<tr>
<td>A2 10</td>
<td></td>
<td>LDX $10</td>
</tr>
<tr>
<td>46 03</td>
<td>HALF</td>
<td>LSR BHIGH</td>
</tr>
<tr>
<td>66 02</td>
<td></td>
<td>ROR BLOW</td>
</tr>
<tr>
<td>90 00</td>
<td></td>
<td>BCC DOUBLE</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>CLC</td>
</tr>
<tr>
<td>A5 04</td>
<td></td>
<td>LDA PLOW</td>
</tr>
<tr>
<td>65 00</td>
<td></td>
<td>ADC ALow</td>
</tr>
<tr>
<td>85 04</td>
<td></td>
<td>STA PLOW</td>
</tr>
<tr>
<td>A5 05</td>
<td></td>
<td>LDA PHIGH</td>
</tr>
<tr>
<td>65 01</td>
<td></td>
<td>ADC AHIGH</td>
</tr>
<tr>
<td>85 06</td>
<td></td>
<td>STA PHIGH</td>
</tr>
<tr>
<td>06 00</td>
<td>DOUBLE</td>
<td>ASL ALOW</td>
</tr>
<tr>
<td>26 01</td>
<td></td>
<td>ROL AHIGH</td>
</tr>
<tr>
<td>D0 E3</td>
<td></td>
<td>BNE HALF</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>RTS</td>
</tr>
</tbody>
</table>

Your Microcomputer's Key Is Software

Software is the key to using your computer's power. Our CP/M® Compatible Software Catalog is your single source for locating your microcomputer software solutions. We're Digital Research, and our CP/M operating system is used by over 200,000 microcomputer owners. Our catalog lists over 100 domestic and foreign companies with software for commerce, industry, government, the professions and specialty applications. Send this coupon and $6 to: Digital Research, P.O. Box 579H, Pacific Grove, CA 93950. (Calif. residents add 30¢ sales tax.)

Name: ____________________
Title: ____________________
Company: ____________________
Address: ____________________
City/State/Zip: ________________
Check Enclosed []

Card Number Exp. Date

DIGITAL RESEARCH®

CP/M in a registered trademark of Digital Research.
© Copyright 1981 Digital Research

Low-Cost Built-In Modem Card for Model 43 Teletype®

Only $495*

Omnitac's Model 9143AD Modem Card installs simply and quickly to most Model 43 Teletype Terminals, converting them to a Full Communications Terminal. This new Direct Connect, Auto-Answer Modem has all of the most desired features —
- 300 Baud Rate.
- Automatic Voice to Data Transfer.
- FCC Registered Connection to Switched Telephone Network.
- Automatic Disconnect in both Originale and Auto-Answer Modes.
- Bell 100 Series and 212A Low-Speed Compatibility.

$195 - TO ORDER CALL 800-528-8423 STAND ALONE UNIT AVAILABLE SOON!

OMNITEC DATA
New Dimensions in Modems

2405 South 20th Street • Phoenix, Arizona 85034

Circle 278 on inquiry card.
Until very recently, a prospective purchaser of a computer printer had to choose between letter quality and speed. The letter-quality printers, which most often use daisy-wheels to produce fully formed characters, are too slow for typical data-processing applications. Faster printers usually employ a dot-matrix print head that produces readable, but not letter-quality, type.

A new breed of printer on the market today shows refinements in dot-matrix technology, producing type that approaches letter quality without sacrificing speed. Integral Data Systems' 460, the "Paper Tiger," is a worthy representative of this new breed. With minor exceptions, the IDS 460 has every feature that a hobbyist or small-business user could reasonably expect to find.

The printer is about as wide as most in the dot-matrix family, but it is taller and not as deep. It appears to be solidly constructed and designed to withstand heavy use. Most of the electronics, including a microprocessor to control the many advanced functions, are contained on a single, easily accessible circuit board under the printer's enclosure.

The enclosure is made of durable structural foam and has a pleasing look. Most of the controls are conveniently placed. On the upper right-hand side of the printer are a formset/online/offline switch and a formfeed/linefeed switch (see photo 1). The IDS 460 also has a self-test switch on the upper left-hand side which generates a repetitive test pattern. (Upon power-up, a diagnostic routine automatically clears the buffer and tests the printer's memory.) Next to the self-test switch are two DIP (dual-inline package) switches placed so that it is easy to change their settings deliberately, but difficult to do so accidentally. These switches are used for selecting many of the printing options that will be discussed shortly.

The IDS 460 has indicators for power-on, online, and fault. The fault indicator flashes when the power-up diagnostic encounters a hardware problem and lights when the printer runs out of paper.

Under the cover is a knob that moves the print-head mechanism back and forth, thus varying print intensity. This is useful for accommodating changing paper thickness. When printing thick labels, for example, the print head can be moved further back from the ribbon, saving wear on the head without affecting the quality of the print.

Unfortunately, this control is not easy to use. The knob is not calibrated, so trial and error is required to get
secured to the chassis with four knurled retainer nuts. There is no problem handling thick labels or multiple-part forms. Fanfold or roll paper up to ten inches wide may be used. (The IDS 560 is similar in many respects to the IDS 460, but may be used. The IDS 560 is similar in many respects to the IDS 460, but may be used.)

Other controls are placed underneath the enclosure. These include the 115/220 V switch and various jumpers used to select the desired interface, but these are used infrequently.

Two secure tractors move paper through the IDS 460. There is no problem handling thick labels or multiple-part forms. Fanfold or roll paper up to ten inches wide may be used. (The IDS 560 is similar in many respects to the IDS 460, but it accommodates paper up to fourteen inches wide.) An internal paper-roll holder that fits under the enclosure is available as an option, as is a paper-catch

At a Glance

Name
Paper Tiger 460

Use
High-speed, correspondence-quality printer

Manufacturer
Integral Data Systems
Milford NH 03055

Dimensions
31 by 40 by 32 cm (12½ by 15½ by 12½ inches)

Price
$1295

Hardware
Any computer capable of sending ASCII characters via parallel or serial interface; requires standard RS-232 cable (not supplied)

Software
None, apart from the standard printer driver for a particular operating system

Hardware Options
Dot Plot graphics, paper-roll holder, paper-catch basket, letter carrier, various interfacing cables and connectors

Features
Printer speed, 150 cps; paper speed rate, 5½ inches per second; built-in test and diagnostics; printing pitch of 5, 10, 12, 16.8 characters per inch; fixed proportional spacing; software-controlled text justification; line buffering (extended buffering with graphics); bidirectional printing; selectable line spacing; selectable page format; variable line length; programmable functions; impression control

Power Requirements
115 VAC at 60 Hz or 230 VAC at 50 Hz (for European operation); user selectable

Documentation
Comprehensive 65-page illustrated owner's manual

Audience
Anyone desiring both letter-quality and high-speed printout

Corvus Hard Disks $Call

5, 10, or 20 megabytes of storage for the Model I, II, or III, configured with TRSDOS, NEWSOOS 80, or CP/M for one or several computers sharing a single hard drive simultaneously. Easy expandability and compatibility. Also fits Apple, Superbrain, Atlas, and most other computers. Don't wait on other's promises. We can deliver the proven system now. Call us for the lowest price!

Model II 64K
$3288

Model III 16K
$835
With TCS Memory:

- Model III 32K $979
- Model III 48K $1089

Model III 48K 2 Disk RS232
$2100

Model III 32K 1 Disk
$1729

Model III 48K 1 Disk
$1849

Epson Printers $Call

Lesser quality matrix printer has full software control of 40, 80, 65 or 132 columns; 80 cps bidirectional tractor feed, dispensable printhead $300 less than nearest competitive printer. Lists $845. Call for our low price.

MX-80 Tractor Feed
$99

MX-80 FT Friction and Tractor
$100

Graphtrax for MX-80, MX-80 FT, graphics option.

Word Processor Package $2679

Includes 2 Disk Model III with 48K, Epson MX-80 Tractor Feed with cable, and word processing software ready to operate. Lists at $3300. Our low price special this month: $2679. For MX-80 FT Tractor and Friction, add $99.

Texas Computer Systems

Box 951, Brady Texas 76825

For fast, efficient service, we can air freight from Dallas to major a/o near you. Call for information.

Toll Free Number 800-433-5184

Texas Residents 817-274-5625

Circle 305 on inquiry card.

October 1981 © BYTE Publications Inc
AVAILABLE TODAY from MSD: the XENIX™ Operating System, Microsoft's Adaption of Bell Laboratories Time-Tested UNIX™ Version 7 Operating System.

MSD provides this comprehensive line of products for the UNIX community:

- XENIX Operating System
- Screen Oriented Text Editor for VT-100 Compatible Terminals
- Database Manager and Report Generator Which Will Easily and Efficiently Control Large Accumulations of Information
- Accounts Receivable System Which Can Be Used to Monitor and Control Receivables in Order to Improve Cash Flow
- Uni-Calc™ — An Electronic Spreadsheet Which Makes Financial Analysis, Forecasting and Business Planning Easier

In addition to reliable Software pre-configured for your Hardware, MSD will provide complete user support by:

- Answering your telephone questions
- Providing new releases as available
- Supplying you with the best Hardware for your UNIX requirements

MD Corporation
2449 Camelot Court, SE
Grand Rapids, MI 49506
(616) 942-5060

MANAGEMENT SYSTEMS DEVELOPMENT

Uni-Calc, UNIX and XENIX are trademarks of MSD Corp, Bell Laboratories and Microsoft respectively

The individual I spoke to at IDS was knowledgeable and helpful. He suspected that the problem might be traced to the printer's firmware and offered to send me a set of revised PROMs. I discovered that the problem was not in the printer at all; nevertheless, the new PROMs arrived promptly, and at no cost.

The IDS 460 can be connected immediately to almost any computer. Other printers require that the buyer specify the interfacing standard when placing an order. This printer has built-in circuitry for almost any interfacing standard. A jumper selects either parallel (Centronics-compatible) or RS-232 serial interfacing. The XON/XOFF handshaking protocol used by many of the daisy-wheel printers is also recognized. The user can select any one of five serial baud rates up to 9600 baud by using the DIP switches on the top of the printer. The DIP switches also allow the user to easily define the parity-checking functions for received data.

Four different print densities are software or DIP switch selectable—5, 10, 12, or 16.8 characters per inch. The following are also hardware or software selectable:

- Proportional spacing (you can even control the amount of space between characters), text justification (L), line spacing at either 6 or 8 lines per inch, and one of eight form lengths, from 3 to 14 inches. And despite the excellent print quality, the speed of the printer compares favorably with the faster dot-matrix printers. The IDS 460 uses bidirectional printing and logic that minimizes motion of the print head over white space on the page.

Four different print densities are software or DIP switch selectable—5, 10, 12, or 16.8 characters per inch. The following are also hardware or software selectable:

- Proportional spacing (you can even control the amount of space between characters), text justification (L), line spacing at either 6 or 8 lines per inch, and one of eight form lengths, from 3 to 14 inches. And despite the excellent print quality, the speed of the printer compares favorably with the faster dot-matrix printers. The IDS 460 uses bidirectional printing and logic that minimizes motion of the print head over white space on the page.

The IDS 460 firmware performs many of the functions normally handled by text editors; it should be relatively easy to program a text editor to take advantage of the
The IDS 460 -- A Demonstration

10 PRINT "For program listings, a 'no frills' format is preferred."
20 PRINT "In that case, one would use the standard 80 column listing"
30 PRINT "with no proportional spacing or text justification"
40 END

For word processing, however most writers will opt to use proportional spacing. This means that individuals letters will be of different widths, giving the document a more professional appearance. The ability to do this is characteristic of better letter quality printers.

Notice that more characters can be fit on a line that is proportionally spaced, giving the text a "smaller" look. When one uses the smallest type size in conjunction with the proportional spacing feature the result is text that is quite small — suitable for footnotes, perhaps.

This size is the one that I generally use, 12 characters per inch. The IDS 460 is a versatile printer. The manufacturer promises to make it even more versatile by making available PROM chips to enable switching between two typefaces. With this feature it would be possible to switch back and forth from a language to another. However, if you do not want to wait for the PROM chips to become available, you can accomplish the same thing by using the graphics function of this printer.

"I hear you have a new printer, Eli, אלי!"

Figure 1: Sample printout of the Integral Data Systems' Model 460. Although the Hebrew characters in the last line were printed using graphics features, IDS is planning to introduce PROMs that will permit switching from one language to another.

many features. Examples of some of these features include the following: the DIP switches may be used to enable or disable an automatic one-inch skip at form boundaries; horizontal tab positions can be set by using software escape sequences; on receiving a horizontal tab character, the print head tabs to the next specified column in the line. You can also set vertical tab positions—in fact, you can program three separate vertical tab schedules since there are three separate vertical tab characters. Print-head motion and paper motion are extremely precise. Horizontal tabbing may be specified in 1/120 inch increments; vertical tabbing in 1/12 inch increments.

One other minor inconvenience is that no default tab setting takes effect when the printer is powered up. This means that unless the user remembers to explicitly program tab positions, the printer ignores the tab character. In text, the tab character is frequently used, instead of blanks, to conserve storage space. If you send such text to the printer before setting tabs, the text will look as if all the blanks mysteriously disappeared. The solution is simply to set the tabs, but there really should be a default setting.

In addition to its text-processing prowess, the IDS 460, when equipped with the Dot Plot option, is an excellent graphics printer. Sending a control-C to the printer puts it into graphics mode, and every following character is interpreted as a graphics pattern until graphics mode is switched off with another control-C.

Each character controls seven dots in the vertical plane. Each bit in the 7-bit ASCII (American Standard Code for Information Interchange) code of the character activates a different dot, with the leftmost bit corresponding to the lowest of the seven dots. If the ASCII code sent is 1000011, for example, the IDS 460 prints the bottom dot and the two top dots. A graphics carriage control advances the paper a distance of seven dots.
Conclusions
- The IDS 460 has excellent print quality—probably the best of all dot-matrix printers in its price range. The nine-wire head uses both vertical and horizontal overlapping of dots to make fully formed characters and give lowercase letters full descenders.
- The bidirectional, logic-seeking printing minimizes print-head motion and assures high-speed operation.
- Interfacing the IDS 460 to a variety of printers is remarkably simple because the printer contains both RS232 and parallel interfaces.
- The only real drawbacks result from the difficulty of removing the cover and the placement of the print-intensity switch inside. Before changing from paper of one thickness to paper of another thickness, the user must remove the cover and adjust the print-intensity switch.
- Although the printer lacks a friction-feed feature and can't handle single sheets of paper, it does offer extremely precise paper handling.
- The IDS 460 has a convenient self-test feature and an indicator that lights or flashes when paper runs out or hardware problems occur.
- When equipped with the Dot Plot option, the IDS 460 offers outstanding graphics features.
- Judging by its willingness to help when I encountered a problem, Integral Data Systems can be relied on for product support.
- I recommend the IDS 460 to anyone who can't spend several thousand dollars and yet needs a printer that has both excellent print quality and the speed of dot-matrix technology.
The Mauro Proac Plotter

Mark Dahmke
1515 Superior Apt 15
Lincoln NE 68521

The Mauro Proac plotter provides the small-computer user with an inexpensive way of obtaining high-quality graphics. The plotter uses a novel method of controlling the paper—it embosses a pattern on the edge of the paper that is used to guide the paper across the drive roller. A centrifugal blower creates a pressure drop across the paper writing surface, assuring that the paper is held in place. Both X and Y axes are driven by stepper motors, and the pen is moved up and down by a solenoid.

The plotter will accept single 21.5- by 28-cm (8½- by 11-inch) sheets, 28- by 43-cm (11- by 17-inch) sheets, or a 28-cm (11-inch) continuous roll (if equipped with the roll-paper option).

Control Circuit
The electronics package will accept control signals from the host computer via six data lines: -Y, +Y, -X, +X, pen-control (up/down), and home. Limit switches are provided on all axes to prevent overrun of the pen. The electrical interface consists of TTL (transistor-transistor logic) signals. All lines come out to a 10-pin Molex connector on the back of the plotter.

Sending commands to the plotter is somewhat more complicated. For example, if you want to step in the +X direction, you have to hold the -X line high (logic 1) and send four positive-going pulses to the +X input. This causes the motor to advance one 0.005-inch step in the +X direction. The same procedure is required for the other three controls (-X, +Y, and -Y). The pen may be lowered by pulling the pen-control line low (logic 0) after it has been placed in the high (logic 1) state. Raising or lowering the pen takes approximately 100 ms.

Serial Interface
The serial interface allows users with an RS-232C serial data port to communicate with the plotter without having to wire up a special cable for the parallel interface. It normally runs at 1200 bps (bits per second), but may be switched to 110, 300, or 2400 bps. The interface expects to see 7 data bits and 1 or 2 stop bits. The eighth, or parity, bit is ignored. To communicate with the serial interface, several bytes are sent in the following sequence:

Byte 0: Control word
Byte 1: Y LOB, (low-order bits) bits 0 to 6 (bit 7 ignored)
Byte 2: Y HOB, (high-order bits) bits 0 to 4 (bit 5 is the sign bit, and bit 6 is the pen-control bit)
Byte 3: X LOB, bits 0 to 6 (bit 7 ignored)
The Mauro plotter is a low-cost, well-engineered unit designed with the small-system user in mind.

Byte 4: X HOB, bits 0 to 4 (bit 5 is sign bit, bits 6 and 7 are ignored)

The control word tells the interface how it should interpret the succeeding bytes. Bits 0, 1, and 2 define how many vectors (4-byte groups of bytes 1 through 4) will be sent. Bit 4 indicates whether the buffer-full response of the interface is a pulse on the RS-232 C CTS (Clear to Send) line or a specific character. Bits 3, 5, and 6 are reserved, and bit 8 is ignored.

Software

Several device drivers for the 8080/Z80, 6800, and 6502 microprocessors (in both BASIC and assembly language) are provided with the plotter and the interface. The program driving the plotter (without the serial interface) uses the same byte order and format as the above protocol for the serial interface. This greatly simplifies conversion (not to mention program compatibility) from one to the other.

Another vendor—Leapac Services (8245 Mediterranean Way, Sacramento CA 95806)—supplies several two- and three-dimensional plotting packages at reasonable prices. The L2D package is a simple two-dimensional package with Calcomp-compatible routines. The L3P is a three-dimensional perspective-plot package containing over seventy subroutines, including zoom, fly-by, and animation functions.

Both packages are available from Leapac on either CP/M-format 8-inch floppy disks or North-Star-format 5-inch disks. Each package is provided as a linkable library for Microsoft-compatible compilers such as FORTRAN-80, COBOL-80, MACRO-80, and the BASIC compiler.

Conclusions

In general, I found the documentation of the Mauro plotter to be adequate but not exceptional. The plotter itself is well engineered and constructed. I had few problems with the unit, except for a troublesome serial interface. However, this was quickly replaced after a call to Mauro Engineering. Of the many plotters I have looked at over the past three years (with hopes of finding one I could afford), the Mauro Proac plotter comes closest to being the ideal small plotter.
The Radio Shack FORTRAN Package

Tim Daneliuk, 4927 North Rockwell, Chicago IL 60625

FORTRAN, a high-level programming language geared to scientific and mathematical programming, is probably one of the few languages to have found "universal" acceptance. Until recently, however, FORTRAN (FORmula TRANslator) has been unavailable to the personal computer user.

For those who are familiar only with BASIC (Beginner's All-Purpose Symbolic Instruction Code), a few words concerning "compiled" and "interpreted" languages are in order. BASIC as implemented on the TRS-80 is an interpreted language. As a program runs, it is translated, line by line, from English (which the computer can't understand) to the computer's own "machine language." Each line of the program is executed as it is interpreted. Note that the program (called source code) never changes: it is simply interpreted each time you type the RUN command.

FORTRAN, on the other hand, is a compiled language. As in BASIC, the source code is written in English-like statements which, though not identical to those in BASIC, are similar in principle (i.e.: there are such elements as input/output statements, arithmetic expressions, and logical expressions). To run the FORTRAN program, however, you must use a special machine-language routine called a compiler. The compiler goes through source code and creates a second machine-language program, called object code. This transformation from source to object code is performed once—thereafter, when you want to run your program, you actually execute the machine-language object code produced by the compiler.

For this reason, programs written in compiled languages such as FORTRAN are very fast: typically twenty to thirty times faster than the equivalent algorithm written in an interpreted language. The price for this efficiency is increased difficulty in editing and debugging because a program must always be compiled before it can be run.

The Package

With the exception of a few extensions and restrictions, the FORTRAN package described here conforms to the 1966 ANSI (American National Standards Institute) FORTRAN. Radio Shack's FORTRAN (actually written by Microsoft and licensed to Radio Shack) comes in a three-ring binder that includes two 5-inch floppy disks and about 200 pages of documentation. The documentation is not a tutorial in FORTRAN, however, and if you don't know FORTRAN, it is probably insufficient. Radio Shack recommends several textbooks to augment the information supplied.

The FORTRAN package comprises four files. Disk 1 contains the FORTRAN compiler and the editor; Disk 2 contains the linking loader and the FORTRAN library. Each file has an associated section of documentation, and there is a sample FORTRAN program, along with instructions for entering, compiling, linking, and running it. Each disk has the TRSDOS 2.3 operating system on it.

<table>
<thead>
<tr>
<th>At a Glance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>FORTRAN</td>
</tr>
<tr>
<td>Type</td>
</tr>
<tr>
<td>compiler</td>
</tr>
<tr>
<td>Manufacturer</td>
</tr>
<tr>
<td>One Tandy Ctr</td>
</tr>
<tr>
<td>Forth Worth TX 76102</td>
</tr>
<tr>
<td>(817) 390-3011</td>
</tr>
<tr>
<td>Price</td>
</tr>
<tr>
<td>Format</td>
</tr>
<tr>
<td>Language</td>
</tr>
</tbody>
</table>

Computer

Radio Shack Model I
Level II with expansion interface,
minimum 32 K bytes of memory, and at
least one disk drive (two recommended)

Documentation

Approximately 200 pages in a loose-leaf binder

Audience

Language enthusiasts, FORTRAN users, and
users with scientific and mathematical applications
The documentation claims that the Disk BASIC files are included, but they were nowhere to be found on my copies.

Although this FORTRAN package is best suited for systems with dual disk drives, I was able to use it successfully on a single drive system. The only real disadvantages were that I had to exchange the disks constantly (a problem familiar to anyone who has tried to make a copy of a disk using a single drive system), and the amount of free disk space was limited. The reason for this is that the disk containing the final executable command files—created from your source code—will always contain part of the FORTRAN software. This will be discussed later in the article.

The Editor
Anyone familiar with the Level II BASIC or Microsoft EDTASM (Editor-Assembler) editing commands will feel right at home with this editor. It is also the best-documented portion of the package, although in my

INMAC INTRODUCES
THE SOLUTION TO YOUR MICRO SUPPLY
AND ACCESSORY NEEDS.

- One-Stop Shopping. This new catalog offers over 1,000 products specifically for Micro Computers. Compatible with Apple, Atari, Northstar, TRS-80s and many others.
- Convenient Ordering. By mail or phone, ordering supplies and accessories from this catalog will be quick and easy.
- Fast Delivery. We'll ship your order within 24 hours from our distribution centers in New Jersey, California, Illinois, and Texas. Overnight delivery available.
- Top Quality Products. Virtually all our products are guaranteed for at least one year. Risk-free trial of any product for 45 days.
- Send for your FREE
Inmac Catalog or call
(408) 727-1970.
Available June 1, 1981.
judgment it presents the least difficulty.

The purpose of the editor is to create, edit, and store FORTRAN source code. It assigns line numbers and increments to the program statements. The line numbers are not actually part of the FORTRAN program, but they exist so that specific lines can be called for editing. Only certain FORTRAN statements such as DO loops and WRITE operations require line numbers, and these are included in the FORTRAN statement-field.

The usual interline and intraline editing commands are provided. The interline commands can insert, delete, replace, and print lines, or groups of lines, in the program. The intraline commands edit characters or groups of characters within a given program line (e.g., a character can be deleted within a line of the program and then replaced with three other characters).

The line editing commands are simply extensions of the editing facilities provided with Radio Shack's Level II and Disk BASIC software. However, the elegance of this editor is substantiated by the presence of two other commands: Find and Substitute. The Find command finds a given string of text within a source file and prints out the corresponding line numbers. The Substitute command is similar to the Find command, except that a given character string can be replaced with another character string in a selected group of lines. It would, for example, be possible to substitute FORMAT(2) for FORMAT(S wherever it appears in lines 100 to 500. These two commands are tremendous time-savers, particularly if you are editing long files in which the same change must be made many times.

There are two final features of interest. First, as is common to most FORTRAN source listings, the editor appends page numbers to the listing, as necessary, which facilitates the organization of long files. Second, the editor can be used to edit certain BASIC and other non-FORTRAN files. (The BASIC file must be stored as a text file.) This allows you to use the find/substitute commands when editing BASIC files.

The Compiler

The FORTRAN user never comes into direct contact with the compiler. Rather, he writes source code according to the strict grammatical rules of the language. The compiler in turn is able to recognize and process the source code. As mentioned previously, this FORTRAN fundamentally conforms to the ANSI-66 standard. The text box on the left, excerpted from the reference manual, shows the departures from the standard.

FORTRAN is recognized as a language that is well-suited to the scientific and mathematical user. This bias is reflected in the data types that are available:

- Integer: from \(-32768 \text{ to } 32767\)
- Real: seven-digit precision from \(\pm 1 \times 10^{-38}\) to \(\pm 1 \times 10^{+38}\)
- Double precision: same as real except with 16-digit precision
- Logical: used in logical operations such as AND, OR
- Literal: alphanumeric strings
- Hexadecimal: numbers in base 16

The FORTRAN user never comes into direct contact with the compiler. Rather, he writes source code according to the strict grammatical rules of the language. The compiler in turn is able to recognize and process the source code. As mentioned previously, this FORTRAN fundamentally conforms to the ANSI-66 standard. The text box on the left, excerpted from the reference manual, shows the departures from the standard.
One glaring omission is the complex data type. Standard ANSI FORTRAN allows direct manipulation of complex variables—a real time-saver when solving problems in physics, electronics and related fields. I suspect that this data type was omitted because of the memory it would require to handle complex variables. Nevertheless, it should have been offered as an option (i.e., two versions of the compiler, one with and one without the complex variable type).

This version of FORTRAN is characterized by extensive formatting statements that give the programmer great control over how data is input, output, and stored. These statements include numeric, logical, Hollerith (or string), and scaling-type format commands. User-defined functions are also allowed through the construction of function subprograms. The usual transcendental functions, such as sine, cosine, and arctangent, are included, as well as the hyperbolic tangent. And, of course, the package includes all standard FORTRAN arithmetic and control statements such as GOTO (three kinds), IF, and PAUSE.

The Linker and FORTRAN Library

The linker relocates in memory the object code that was created by the compiler, and it must do so in a manner that will allow the object code to be directly executed. In other words, the linker goes through the relocatable object file that the compiler has created, and from this, creates a command file that can be directly executed under TRSDOS 2.3. During this process, the linker references another file called FORLIB. FORLIB contains all the standard routines for addition, subtraction, transcendental functions, etc, so the compiler does not have to recreate the same machine-language routines that appear commonly. Rather, it references the FORTRAN subroutine library as necessary.

FORTH Patchwork

I found a few bugs in Radio Shack's FORTRAN editor that were not apparent at first. On the whole, they are minor, such as the inability to stop screen scrolling with "<SHIFT> @". But a more severe bug exists when index files are created. The editor creates an index file when extremely long source files are written. This helps in loading large source files during subsequent editing sessions. Unfortunately, I got "garbage" in my program source listings when files were augmented by Edit-80-created index files. Killing the index file and loading the source file without it fixed the problem. Your local Radio Shack dealer has two patches to rectify these problems: one for Disk EDTASM (catalog number 700-2210) and one for FORTRAN (catalog number 700-2210) ... TD

CATCH THE S-100 INC. BUS!

<table>
<thead>
<tr>
<th>S-100 INC. BUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-100</td>
</tr>
<tr>
<td>80x24 Video Board</td>
</tr>
<tr>
<td>Versafloppy II</td>
</tr>
<tr>
<td>Shugart SA 800/801R Bare Drive</td>
</tr>
<tr>
<td>IMC Disk Box for 5½" Drives</td>
</tr>
<tr>
<td>SSM 1/0-4 Kit 2 Parallel + 2 Serial</td>
</tr>
<tr>
<td>Mullen TB-4 Extender Kit w/Probe</td>
</tr>
</tbody>
</table>

Subject to Available Quantities - Prices quoted include Cash Discounts Shipping & Insurance Extra

We carry all major lines such as S.D. Systems, Cromemco, Ithaca Interdatasystems, North Star, Sanyo, ECT, TEL, Godbout, Thinker Toys, SSM.
For a special cash price, telephone us.

Please note our new address.

S-100, inc.
14425 North 79th Street, Suite B
Scottsdale, Arizona 85260
800-528-3138 * 602-991-7870

Hours: Mon. - Fri. - 9 a.m. to 6 p.m. MST

GET YOUR SHARE OF THE MICRO MARKET!
IF A NUDGE IS ALL YOU NEED, READ ON....

HARDWARE — Boards, systems and support at the right price, featuring CCS, Telavideo and others.
SOFTWARE — Many industry-standard packages and some unique surprises, such as:

- **AUTOGEN** — Interactively reconfigure your CP/M® BIOS. Bring new peripherals on-line quickly.
- **READER** — Analyze your English prose. Measure how easy or hard it is to read.
- **TL** — Do discrete-event simulation on a micro. Write special programs, schedule resources, much more.

INTERESTED? GET OUR CATALOG FOR THE FULL STORY! CALL OR WRITE NOW!

MCI: MICROCOMPUTER APPLICATIONS, INC.
1199 JUDDVILLE ROAD, AUSTIN, TX 78758
(512) 340-9243

386 October 1981 © BYTE Publications Inc

Circle 326 on inquiry card.
Running the System

Four steps are required in order to use the system:

1. Writing and editing the FORTRAN program
2. Compiling the source code to relocatable object code
3. Linking the object code to memory and creating a command file
4. Executing the program

One particularly nice feature of the compiling process is that it will, at your request, not only create an object file, but also an assembly-language listing of your program. It's a great way to learn how your computer "thinks" FORTRAN. One other advantage of the package also appears at the time of compilation. If you wish, you can compile the source code down to machine code that is suitable for loading into ROM (read-only memory).

To check for syntax and other errors in your FOR-

TRAN program, you can compile the code without creating the object file on disk. The compiler runs through the program and then displays error and warning messages. Once an error-free object file is created, it is linked. It can then be run immediately or stored as a command file to run under TRSDOS 2.3. In single drive systems, the relocatable object file must always be on the disk containing the linker and FORTRAN library. Consequently, free disk space is limited since these two files occupy 25 grains of space.

Benchmarks

If you've never used FORTRAN, you're probably asking, "Why go through all this effort to write and execute a program?" The answer is threefold: speed, speed, and speed! There is no doubt that virtually any problem solved in FORTRAN could be solved, say, in BASIC. But unless you enjoy waiting, you should consider FOR-

The perfect marriage of Superbrain™ and Winchester™

Finally, a price-performance breakthrough for mass storage in a one-piece, handsomely styled desk-top computer.

700K or 350K floppy storage

5 Megabytes hard disk storage

DEALER & OEM INQUIRIES INVITED

TELEPHONE (206) 453-9777
TOLL FREE 1-800-426-2963

SuperFive ALSO DISTRIBUTED BY

Campe Bode
1 Sela Cynwyd Plaza
Sela Cynwyd, Pennsylvania 19004
Telephone 215/667-6643

Diversified Data
6043 W. 82nd
Indianapolis Indiana 46274
Telephone 317/299-0115

• 5¼" Micro-Winchester™ 5 Mbyte (formatted) hard disk.
• 700K or 350K floppy disk back up.
• Dual Z-80 processors with 64K RAM.
• Dual RS232 ports.
• Complete and ready to run with CP/M™ 2.2.

• Largest InterTec distributor in the United States.
• Distributor for C. Itoh, MPI, Epson.
• Seagate, Tandon drives.
• Corvus hard disks, multiplexers.
• Superbrain 5-100 bus, graphics, and parallel port.
• Software: MicroPro, Accounting Plus, Peachtree, Condor, Benchmark.

CMC International
A Division of Computer Marketing Corporation
1111 Main Suite 129 Bellevue WA 98004
(206) 453-9777

October 1981 © BYT3 Publications Inc 389
Listing 1: Benchmark programs that compare Radio Shack BASIC, an interpreted language, with Radio Shack FORTRAN, a compiled language. The BASIC program (1a) took almost twenty times as long as the FORTRAN program (1b) to calculate the answer.

(a)
100 DEFDBL C,D:DEFINT A,B
105 FOR A=0 TO 100
110 FOR B=0 TO 100
115 C=(A**2)+(B**2)
120 D=D+C
125 NEXT B,A
130 PRINT TAB(20)D
135 END

(b)
00100 DOUBLE PRECISION C,D
00105 INTEGER A,B
00110 DO 10 A=0,100
00115 DO 20 B=0,100
00120 C=(A**2)+(B**2)
00125 D=D+C
00130 20 CONTINUE
00135 10 CONTINUE
00140 WRITE(5,30)D
00145 30 FORMAT (20X,D15.9)
00150 END

TRAN for "number crunching" applications.

The benchmark that is described here demonstrates this difference vividly. It consists of nested loops in which two numbers are squared, added together, and then added to the previous total. Listings 1a and 1b show the program listings. Note that the eight-line BASIC program looks fairly innocuous: it took 20 minutes, 44 seconds, to run. Once the FORTRAN program was compiled and linked, the command file required only 1 minute, 4 seconds, to run. (I also had a chance to run a similar program using CBASIC 2 running under CP/M. Even this compiled BASIC ran about 4 minutes—over three times as long as FORTRAN.)

However, in terms of total time required, the languages are fairly comparable. It took me almost 20 minutes to write, edit, compile, and link the FORTRAN program, whereas the BASIC program occupied about 4 minutes to write and edit. This won't always be true, for in longer, less trivial programs, FORTRAN will come out ahead every time. This is particularly true for programs that are reused, since linking and compiling are one-time operations. In such instances the command file will run in just over a minute, whereas the BASIC program will always leave you time to watch the evening news.

Conclusions

- The FORTRAN package is powerful and elegant.
- The price is right. At a little less than $100, this package compares favorably to software at three times the cost.
- My biggest complaint is the absence of the complex data type. No FORTRAN system should be without it.
- If you're tired of long run times and you aren't challenged by BASIC anymore (or you just want to expand your programming horizons) this is the package for you.
The Variable-Duty-Cycle Algorithm

Timothy Stryker, Software Technology, Inc., Precision Rd, Danbury, CT 06810

Every now and then a novel technique for handling data comes to light which, while not immediately obvious, is actually very simple and can be used in a wide variety of applications.

One example of such a technique is the use of the linked-list data structure, which allows the programmer to create ordered sets of entries into which new entries can be inserted and from which existing entries can be easily deleted. Another example is the use of semaphores, which have many applications that center around the allocation of resources to sets of processes.

A new technique in this category has recently been added to the list. Pioneered by Albert G. Love of General DataComm Industries, the technique initiates an event so that it occurs a specified proportion of the times that another event occurs.

Let us call the event that is conditionally initiated the "kickee," and the other event, typically something that occurs at even intervals in time or space, the "kickor." Now define three quantities, called the duty-master, the duty-cycle, and the duty-counter. The ratio of the duty-cycle to the duty-master will determine the proportion of kickee to kickor events. (The duty-counter is a scratch quantity that will ordinarily be initialized, say at power-up, to zero.) Each time the kickor event occurs, we do the following:

```
duty-counter := duty-counter minus duty-cycle
if duty-counter is now negative
then do
    <initiate kickee>
    duty-counter := duty-counter plus duty-master
end
```

This procedure may seem sufficiently abstract as to be totally useless, so let's consider a concrete example: a D/A (digital-to-analog) converter constructed of one bit from a computer parallel output port, one resistor, and one capacitor. The resistor and capacitor are connected so as to form a simple low-pass filter, as shown in figure 1. Now you can run the BASIC program shown in listing 1 on the computer.

Depending on the values of resistance and capacitance, and the speed at which the program executes, the voltage at the analog output point will be a more or less steady 3.75 V. By changing the constant in the DATA statement in line 100, any arbitrary voltage between 0 and 5 V can be obtained.

In this example, the duty-master is the constant 5 appearing in line 70, the duty-cycle is the variable V, and the duty-counter is the variable C. The kickor is the occurrence of a pass through the loop extending from line 30 to line 90, and the kickee is the decision to output a 1,
Listing 1: This BASIC program uses the VDC algorithm to provide a steady output voltage when combined with the simple circuit in figure 1. A change in the value of the DATA statement will alter this voltage. Program line 80 must output the contents of B to the appropriate output port.

```
10 C = 0
20 READ V
30 B = 0
40 C = C + V
50 IF C > 30 THEN 80
60 B = B + 1
70 C = C + 5
80 <output B to port>
90 GOTO 30
100 DATA 3.75
```

![Figure 1: Low-pass filter that converts the digital output of the single-bit data port to an analog signal.](image)

Instead of a 0, to the port. The utility of this example could be considerably enhanced through the use of assembly language and real-time interrupts, but the utility of the basic scheme should be clear: assuming that each pass through the loop requires the same amount of time, the waveform output to the port will have an average duty-cycle precisely equal to the ratio between the duty-cycle, V, and the duty-master, S. In addition, the waveform will bounce back and forth between 0 and 5 V at the maximum possible rate given the desired duty cycle and the available processing time, which will make the low-pass filter’s job as easy as possible in reducing ripple at the analog output.

The variety of ways in which this same basic technique can be applied is extraordinary. Consider the case in which two integer quantities need to be kept as close to a given ratio as possible while both are gradually increased from zero to some higher number. Normally this would involve substantial amounts of multiplication and/or division, or have drawbacks in terms of either minimum increment size or worst-case error. However, use of the VDC (Variable-Duty-Cycle) algorithm makes the task straightforward: simply call the two integers I and J, and let the desired ratio between them be K:L. Pick a number, M, which is greater than or equal to both K and L, and, each time you wish to increase I and/or J by a small amount, do the following:

```
1. if C < 0 then do
   C := C - K
   end
2. if C > 0 then do
   C := C + M
   end
3. if D < 0 then do
   D := D - L
   end
4. if D > 0 then do
   D := D + M
   end
```

This process, of course, merely combines two instances of the VDC algorithm, using a common duty-master, M. The duty-cycle quantities are K and L, the duty-counters are C and D. The method requires virtually no processing time or memory space, is completely processor- and language-independent, and presents no theoretical limitation on the degree of precision with which the desired ratio may be maintained.

Technical Forum is a feature intended as an interactive dialog on the technology of personal computing. The subject matter is open-ended, and the intent is to foster discussion and communication among readers of BYTE. We ask that all correspondents supply their full names and addresses to be printed with their commentaries. We also ask that correspondents supply their telephone numbers, which will not be printed.
Nothing that we have seen so far suggests that the duty-cycle quantity could not vary from one occurrence of the kickor to the next. This is very handy for, among other things, modeling the effects of acceleration and velocity upon the position of an object. Suppose we are designing a real-time graphics game in which there will be a cannon capable of launching a projectile on a parabolic path toward a target. Is it possible to generate a parabolic path without resorting to a multiplication routine? Indeed it is!

We accomplish this by treating the projectile’s horizontal and vertical velocity components as duty cycles, where the common kickor is a routine that runs at evenly spaced intervals in time, and the kickees are routines that move the projectile one cell horizontally and one cell vertically. Typically, the projectile’s horizontal velocity component is a constant in the forward direction, and is easy to handle using the formula we have seen here. To deal with the possibility that the projectile could, vertically, be moving either up or down, we will have to introduce the concept of a negative duty-cycle. If M is the duty-master, H and V the horizontal and vertical duty-cycle/velocities, and C and D the duty-counters, the kickor routine looks like this:

\[
\begin{align*}
C :&= C - H \\
\text{if } C < 0 &\text{ then do} \\
&\quad <\text{move projectile one cell to the right}> \\
&\quad C : = C + M \\
&\quad \text{end} \\
D :&= D - V \\
\text{if } D < 0 &\text{ then do} \\
&\quad <\text{move projectile one cell up}> \\
&\quad D : = C + M \\
&\quad \text{end} \\
&\quad \text{else if } D \geq M \\
&\quad &\text{then do} \\
&\quad &<\text{move projectile one cell down}> \\
&\quad &D : = D - M \\
&\quad &\text{end} \\
&\quad <\text{decrease } V \text{ by a fixed amount}> \\
\end{align*}
\]

Photo 1 shows the set of projectile positions that are obtained when M is 125, H is 25, and V starts off at 75 and is decremented each kickor pass by 1 until it reaches -75.

More complex (but perhaps less useful) patterns can be generated if the kickee is permitted to change the value of the duty-cycle or duty-master, if the kickee of one VDC is made the kickor of another, and so on. But even in the simple forms given here, the applications of this algorithm range from data-communications multiplexing to printer/plotter control to industrial process simulation to— who knows what? Perhaps you will be the next to add to the list.
Dynamic Simulation in BASIC

S J Houng
C/o BYTE Publications Inc
POB 372
Hancock, NH 03449

If you plan to parachute out of an airplane, you may want to know the terminal velocity of the open chute. If you are an amateur rocket launcher, you may want to know what orbits can be obtained from a preprogrammed multistage rocket. Answers to these questions can be quickly obtained from a personal computer programmed in BASIC.

In general, dynamic systems can be represented by a set of ordinary differential equations, such as those shown in the figures. The solution can be found by computer simulation using numerical analysis. We will use Euler's method to solve a set of differential equations.

Euler's method states that for a given first-order equation

\[\frac{dx}{dt} = f(t, x) \]

the solution can be obtained by the following routine:

\[x_{n+1} = x_n + hf(t_n, x_n) \]

\[t_{n+1} = t_n + h \]

where:

\[n = 0, 1, 2, \ldots \]

The solution \(x_{n+1} \) at the time \(t_{n+1} \) can be calculated from the previous solution \(x_n \) at \(t_n \). Therefore, the complete solution can be found, step by step, from the given initial condition \(x_0 \) at \(t_0 \). The parachuting problem in figure 1 can be solved, in BASIC, by repeatedly using the following statements in a BASIC program:

\[V = V + H \cdot (G - D \cdot V \cdot V / M) \]

\[T = T + H \]

Begin with the initial velocity \(V \) and time \(T \).

Euler's method definitely solves first-order equations. But how about the second-order equations in figures 2 through 47? We need a magic (mathematical) transformation here. For a given second-order equation:

\[\frac{d^2x}{dt^2} + Ax' + Bx = F \]

if \(x_1 = x \) and \(x_2 = dx/dt \), we obtain the following simultaneous first-order equations:

\[\frac{dx_1}{dt} = x_1 \]

\[\frac{dx_2}{dt} = F - Ax_1 - Bx_1 \]

The above equations are mathematically equivalent to the original second-order equation. Euler's method can be applied to solve them in BASIC as follows:
Circle JOO on inquiry card.

\[F_1 = H \cdot X_2 \]
\[F_2 = H \cdot (F - A \cdot X_2 - B \cdot X_1) \]
\[X_1 = X_1 + F_1 \]
\[X_2 = X_2 + F_2 \]
\[T = T + H \]

Start with the initial conditions \(X_1 \) and \(X_2 \) at \(T \).

This magic transformation can be easily extended to the \(n \)th-order equation. The result is a set of \(n \) simultaneous first-order equations that can be solved by Euler's method.

This same transformation can also be applied to the moon-landing and rocket-launching problems in figures 5 and 6. Each second-order equation produces two first-order equations. The result is a set of four simultaneous first-order equations that can be solved by Euler's method.

Figure 1: Determining the terminal velocity of a mass descending by a parachute requires solving a first-order differential equation. Computers can solve this equation using Euler's method.

\[v = \text{velocity} \]
\[M = \text{mass} \]
\[D = \text{drag} \]
\[g = \text{gravity} \]
\[\frac{dv}{dt} = g - \frac{D}{M} v^2 \]

Figure 2: Solving the second-order differential that describes a dynamic mass-spring-friction system requires transforming the second-order equation into two simultaneous first-order equations and applying Euler's method.
Technical Forum

first-order equations for each problem. For example, in the rocket-launching problem, if \(x_1 = R \), \(x_2 = dR/dt \), \(x_3 = \theta \), and \(x_4 = d\theta/dt \), we obtain:

\[
\begin{align*}
\frac{dx_1}{dt} &= x_3 \\
\frac{dx_2}{dt} &= \frac{T}{M} \sin \phi - g + x_4(x_3)^2 \\
\frac{dx_3}{dt} &= x_4 \\
\frac{dx_4}{dt} &= \frac{T}{M} \cos \phi - \frac{2}{x_1} x_4(x_3)
\end{align*}
\]

\(\theta \) = angular displacement
\(J \) = moment of inertia
\(K \) = spring
\(B \) = friction
\(T \) = torque

Figure 3: Euler’s method can also be applied to the second-order differential equation of a rotational system.

\[
\begin{align*}
\frac{dq}{dt} &= i \\
\frac{dv}{dt} &= R \frac{dq}{dt} + L \frac{di}{dt} + C \frac{d\phi}{dt} \\
\frac{d\phi}{dt} &= \frac{v}{L}
\end{align*}
\]

Figure 4: This RLC (resistive-inductive-capacitive) circuit is described by both first-order and second-order differential equations.
The corresponding BASIC programming is:

\[
\begin{align*}
F1 &= H \cdot X2 \\
F2 &= H \cdot (T1 \cdot \sin(Pl)/M - G + X1 \cdot X4 \cdot X4) \\
F3 &= H \cdot X4 \\
F4 &= H \cdot (T1 \cdot \cos(Pl)/M - 2 \cdot X2 \cdot X4/X1) \\
X1 &= X1 + F1 \\
X2 &= X2 + F2 \\
X3 &= X3 + F3 \\
X4 &= X4 + F4 \\
T &= T + H
\end{align*}
\]

Figure 5: Euler's method can be applied to a moon-landing simulation, solving the four simultaneous first-order equations derived from two second-order differential equations.

\[
\begin{align*}
\frac{dx}{dt} &= \pm \frac{Jet1}{M} \\
\frac{dy}{dt} &= g - \frac{Jet2}{M}
\end{align*}
\]

Figure 6: Solving this rocket-launch simulation involves applying Euler's method to four simultaneous first-order differential equations.
Technical Forum

Listing 1: A BASIC program that uses Euler's method for solving differential equations. The example is used to solve the two first-order differential equations derived from the mass-spring-friction system in figure 2.

```
1 REM MASS-SPRING-FRICTION SYSTEM
5 H=.1
10 PRINT"FRICITION B/M = "
20 INPUT B
22 IF B<0 THEN END
24 PRINT"NO. OF DATA = "
26 INPUT N
30 X1=0
40 X2=0
50 T=0
60 FOR I=1 TO N
70 FOR J=1 TO 2
80 F1=X2
90 F2=1-B*X2-X1
100 X1=X1+H*F1
110 X2=X2+H*F2
120 T=T+H
130 NEXT J
140 PRINT"T = ";T,"X1 = ";X1,"X2 = ";X2
150 NEXT I
160 GOTO 10
```

```
FRICITION B/M = ? 0.4
NO. OF DATA = ? 10
T = .2  X1 = .01  X2 = .196
T = .4  X1 = .058316  X2 = .372714
T = .6  X1 = .140785  X2 = .524336
T = .8  X1 = .252147  X2 = .646391
T = 1  X1 = .396319  X2 = .735829
T = 1.2  X1 = .536677  X2 = .791063
T = 1.4  X1 = .696359  X2 = .811949
T = 1.6  X1 = .856336  X2 = .799662
T = 1.8  X1 = 1.01689  X2 = .765717
T = 2  X1 = 1.16484  X2 = .686553
```

Starting with the initial location \((R, \theta)\) and velocity \((dR/dt, d\theta/dt)\), the launching orbit can be calculated with the turnover function \(f(t)\) and the multistage rocket-thrust function \(T(t)\).

One question remains. What value of \(h\) should be used in Euler's method? The \(h\) is the time increment (or step size) of the computation. Based on the numerical analysis, \(h\) must satisfy the following stability condition:

\[
|f'(t,x)| < \frac{2}{h}
\]

to have a stable numerical computation. The computed solution approximates the exact solution if the value of \(h\) is chosen according to the stability condition; otherwise the computed solution may not be a solution at all. In practice, we have to use the maximum estimated value of the partial differentiation \(|f'(t,x)|\) in the stability condition. This guarantees a stable computed solution for all cases.
Let's try Euler's method on the mass-spring-friction system shown in figure 2. The analytic solution of the system is well known. Thus, we can use this computer example as a test for the accuracy of Euler's method.

Assume the following data:

- Forcing function: \(f(t) = \begin{cases} 1, & \text{for } t \geq 0 \\ 0, & \text{for } t < 0 \end{cases} \)
- Spring/mass ratio: \(\frac{k}{M} = 1 \)
- Friction/mass ratio: \(0 \leq \frac{B}{M} \leq 10 \)

and the initial conditions, \(x(0) = 0 \) and \(\frac{dx(0)}{dt} = 0 \) at \(t = 0 \). The equivalent simultaneous first-order equations are:

\[
\begin{align*}
\frac{dx_1}{dt} &= x_1 + f \\
\frac{dx_2}{dt} &= 1 - \frac{B}{M} x_2 - x_1 - f
\end{align*}
\]

The partial differentiations are:

\[
\begin{align*}
\frac{\partial f_1}{\partial x_1} &= 0 \\
\frac{\partial f_2}{\partial x_2} &= -\frac{B}{M}
\end{align*}
\]

Thus, we should choose step size \(h \) according to the following conditions:

\[
\begin{align*}
h_1 &< \frac{2}{\left| \frac{\partial f_1}{\partial x_1} \right|} < \infty \\
h_2 &< \frac{2}{\left| \frac{\partial f_2}{\partial x_2} \right|} = \frac{2}{\left(\frac{B}{M} \right)_{\text{max}}} = 0.2
\end{align*}
\]

where \(h_1 < \infty \) indicates a don't-care case. Therefore, \(h = h_1 < 0.2 \) is the only guideline we have to follow. Let's choose \(h = 0.1 \). The BASIC program is shown in listing 1. You specify the \(B/M \) value, and the solution is printed out immediately.

You now have a powerful computer tool for solving ordinary differential equations of the nth order. Most engineering problems are represented by ordinary differential equations. You can sit down and relax now; let your computer do the engineering design work.

Reference

Build a Versatile Keyboard Interface for the S-100

One of the first decisions you confront as the builder or purchaser of a microcomputer is how to communicate with it. There are three options:

- Use the front panel (if one exists). This is so slow, awkward, and error-prone that it merits no further discussion.
- Interface a video terminal or teletypewriter to the computer, usually by means of a serial I/O (input/output) port. This solution is easy to implement, but is often quite expensive.
- Interface a keyboard to the computer for input and use a video display processor driving a television monitor for output. Since it uses the intelligence of the microprocessor instead of duplicating it, this method is lower in cost and superior in flexibility when compared to a stand-alone terminal.

One goal in building my S-100 system was the development of hardware and software to provide all the capabilities of an intelligent text-editing terminal that could be used to communicate with a mainframe timesharing system. The third alternative was clearly the way to go. I discovered that while suitable video processors are readily available, keyboards are more of a problem. The only one I found was a surplus keyboard unit.

The keyboard I chose was manufactured by Clare-Pendar. This and very similar keyboards are available from several sources. It will output the full 7-bit ASCII character set and has both a normal shift lock and an uppercase lock that affects only the alphabetic characters and a few special characters—putting the keyboard into a 6-bit ASCII or TTY mode. It generates a positive-going strobe signal whenever a character-generating key is pressed. Several special function keys are provided, including Repeat and Break keys; however, these keys only ground their associated output lines. The keyboard uses a MOS (metal-oxide semiconductor) encoder device and requires −12 VDC and +5 VDC.

Keyboard Interface

There is a significant reason why a standard parallel I/O board cannot provide an adequate interface to this keyboard. A standard handshaking parallel-input port issues a busy signal when it is waiting for the processor to accept a character in its buffer. If a keyboard that does not have a busy input outputs another character during this time, the contents of the input buffer will be changed. In most systems, this does not actually occur, since the processor has no trouble keeping up with a human operator. However, in an interrupt driven real-time system, the keyboard input process may be preempted by a higher-priority process and thus may be unable to handle characters as fast as they are typed. In such a circumstance, the keyboard must be locked out until the processor is able to accept input; otherwise, characters will be skipped.

The inverse problem is more likely when mating a surplus keyboard to a microcomputer: if the key signal lasts longer than it takes the processor to read a character in the buffer, this character will be read over and over until the signal terminates. Both of these problems are avoided if the busy signal clears the key signal immediately and blocks any subsequent key signals until the processor reads the character. Since most keyboards do not provide such a facility, it must be provided by the interface.

Since my Clare-Pendar keyboard has no on-board repeat oscillator, this must also be included in the interface. If the Repeat key is held down while any character-generating key is pressed, I wanted that character to be repeated until the key is released.

Finally, I wanted the Break key to be operational, since some timesharing systems take special action on sensing a Break. Break is not a control character; on a terminal with a standard current loop interface, it open circuits the current loop as long as it is pressed. For an RS-232C interface, Break forces the transmit line to a space condition as long as it is pressed. Thus, it is necessary for software to sense when the Break key is pressed and released. The serial communication interface I use is based on a 6850 ACLA (asynchronous communications interface adapter), and this software outputs the appropriate code to the device control register to cause a Break (space) level to be transmitted when the Break key is first pressed and then resets the control register when the key is released.

For the reasons outlined above, I designed and built a special-purpose keyboard interface. It is basically a standard parallel input port, but it
The keyboard is addressed as two adjacent I/O channels; the control/status channel is the even address, while the data channel is the odd address.

also handles the busy signal on board, incorporates a repeat oscillator, allows the processor to ascertain the status of the Break key, and provides both +5 VDC and -12 VDC to the keyboard. I also decided to make provision for connecting a paper-tape reader in place of the keyboard in order to load software supplied on that medium (rare though it is these days).

Software Interface

The keyboard is addressed as two adjacent I/O channels; the control/status channel is the even address, while the data channel is the odd address. Any pair of addresses may be chosen by appropriate strapping of true or inverted A1 through A7 address lines to the inputs of IC10 (see figure 1). The true address signal is used if the corresponding bit in the chosen address is a 1 and the inverted signal is used if the bit is a 0.

Output to the control/status channel is used to enable or disable interrupts from the interface. If bit 0 is a 1, interrupts are enabled; if it is a 0, interrupts are disabled. The rest of the bits are ignored. Interrupts are also disabled when power is first applied. If enabled, an interrupt signal is generated whenever a character is output by the keyboard and is available to the processor, or while the Break key is pressed. This signal may be strapped to the interrupt line (INT) or any of the vectored interrupt lines (VID - VIP) if a vectored interrupt controller is used.

Input from the control/status channel enables the processor to read the keyboard status register. Bit 0 is a 1 whenever an interrupt would be
Figure 1: Schematic diagram for the S-100 keyboard interface. The address jumpers shown are for channels 0 and 1. Keypressed and busy signals may be active high (+ jumper) or active low (− jumper). If a vectored interrupt board is used, the interrupt signal may be jumpered to the processor interrupt line (INT) or any of the vectored interrupt lines (V10 through V17). The interrupt sig-
nal should be left unconnected if interrupts are not used. Data line D7 should be connected to ground inside the keyboard cable 25-pin plug. If a paper-tape reader is connected in place of the keyboard, D7 is used for the high-order data bit. (See power connections on page 404.)
generated if enabled, making possible program input/output.

When a character is available, the processor reads it with an input from the data channel. Output to the data channel has no function.

The keyboard generates only 7 bits of data, so the high-order bit 7 of the data channel is used to indicate the status of the Break key; it is a 1 while the Break key is pressed.

A simple keyboard device handler for an 8080-based system is shown in listing 1. It is written so that the calling program can decide what to do if no character is available. In that case, the routine returns with the 0 flag set. If the Break key is pressed, the routine returns with the carry flag set. If a character is available, neither flag is set, and the routine returns with the character in the accumulator.

Listing 2 shows a fragment of a terminal emulator program that inputs characters by calling the keyboard device handler and looping until a character is available. It also takes the appropriate action when the Break key is pressed.

Circuit Description

A schematic for the interface is shown in figure 1. All logic, except the 8T97 bus drivers, the 7406 interrupt and Busy driver, and the 555 repeat oscillator, is low power Schottky (74LS). All keyboard and bus inputs have hysteresis receivers (74LS14 or 74LS132 Schmitt triggers) for maximum noise immunity. Bus inputs see only a single 74LS load.

When the keypressed line goes active (high or low, depending on how it is strapped), the Keypressed-Strobe flip-flop is set, clocking a character into the data latches (ICs 12 and 13) and setting the Data-Available flip-flop. The Data Available signal then clears the Keypressed-Strobe flip-flop and holds it cleared until the processor has read the character. Meanwhile, any further Keypressed signals are prevented from changing the data in the latches. No conditioning is provided for the keypressed line since my keyboard generates a clean Keypressed Strobe.

If the repeat line is low when the keypressed line goes active, H-3 goes low, setting the Repeat-Enable flip-flop. The repeat oscillator then can clock the Repeat-Strobe flip-flop, which in turn sets the Data-Available flip-flop. The Data Available signal clears the Repeat-Strobe flip-flop and holds it cleared until the processor has read the character in the data latches. The cycle then repeats approximately 10 times per second, so the character in the data latches is read over and over. When the repeat line goes high, the Repeat-Enable flip-flop is cleared so the oscillator can no longer set the Data-Available flip-flop. Contact bounce when the Repeat key is initially pressed really does not matter, hence the repeat line is not conditioned.

If an input or output operation is made from or to the board, F-8 goes low, causing G-4 to go high if the (odd) control/status channel is selected and causing G-1 to go high if the (even) data channel is selected.

If the control/status channel is open.
selected, coincidence of PDBIN and SINF causes H-11 to go low, enabling the status drivers so the processor can read the state of the Data-Available flip-flop. Coincidence of PWR and SOUT causes G-13 to go high, clocking DOO into the Interrupt-Enable flip-flop.

If the data channel is selected, coincidence of PDBIN and SINF causes H-11 to go low, enabling the data drivers so the processor can read the latched-keyboard data. The trailing (rising) edge of this signal also clocks a 0 into the Data-Available flip-flop, clearing it.

The Break signal, after conditioning, is ORed with bit 7 of the data latch IC12. The keyboard generates only 7 bits of data, so bit 7 is strapped to ground inside the keyboard connector plug and the processor interprets bit 7 as the Break key. The Break signal is also ORed with the outputs of the Keypressed-Strobe and Repeat-Strobe flip-flops and hence, like them, can set the Data-Available flip-flop.

If a paper-tape reader is connected in place of the keyboard, the Break input is left unconnected so that bit 7 is used for data from the reader. The true or inverted Data Available signal is also available on the busy line T-6 to allow a conventional handshaking interface with the reader.

If the Interrupt-Enable and Data-Available flip-flops are both set, the output T-12 of the interrupt bus driver goes low.

The Power-On Clear signal (POC) initializes the interface by clearing the Keypressed-Strobe, Repeat-Strobe, Data-Available, and Interrupt-Enable flip-flops.

Construction

I constructed the interface on a Processor Technology wire-wrap prototype board. This is supplied with the LM340T-5 regulator, heat sink, and decoupling capacitors needed for the +5 VDC supply. I constructed a zener-regulated -12 VDC supply in the discrete component area below the heat sink.

Wire-wrap sockets (16-pin) are not supplied with the board and must be obtained separately. Figure 3 shows recommended component placement, designed to simplify interconnections and minimize wire lengths. All pins of the lower row of sockets, which provide connections to the bus lines, should be soldered to the board. It is sufficient to solder the four corner pins of the rest of the sockets. The sockets should be oriented so that, when viewed from the rear (pin) side of the board, pin 1 is in the upper left-hand corner, pin 8 is soldered to the ground land, and pin 16 is soldered to the +5 VDC land. Between each pair of sockets, a pair of holes is left, one connected to +5 VDC and the other connected to ground. These are intended for the installation of 0.1 µf ceramic disk bypass capacitors for +5 VDC supply despeaking. I installed the capacitors at the locations shown in figure 3. (The disk
NOTE: CAPACITORS NOT MARKED ARE 0.1µF FILTER CAPACITORS.

Figure 3: Component placement for the interface board. The ceramic disk despiking capacitors referred to in figure 2 are shown between the integrated circuit sockets.

Table 1: Pinout connections for the cable between the keyboard and the S-100 interface board.

<table>
<thead>
<tr>
<th>Function</th>
<th>Interface 16-Pin DIP Connector</th>
<th>Back Panel DB-25S Connector</th>
<th>Clare-Pendar Keyboard Edge Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>KP</td>
<td>2</td>
<td>1</td>
<td>H</td>
</tr>
<tr>
<td>BUSY</td>
<td>15</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>D0</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>D1</td>
<td>14</td>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>D2</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>D3</td>
<td>13</td>
<td>6</td>
<td>D</td>
</tr>
<tr>
<td>D4</td>
<td>5</td>
<td>7</td>
<td>B</td>
</tr>
<tr>
<td>D5</td>
<td>12</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>D6</td>
<td>6</td>
<td>9</td>
<td>A</td>
</tr>
<tr>
<td>D7</td>
<td>11</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>REPEAT</td>
<td>7</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>BREAK</td>
<td>10</td>
<td>12</td>
<td>E</td>
</tr>
<tr>
<td>+5 VDC</td>
<td>16</td>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td>-12 VDC</td>
<td>1</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>GROUND</td>
<td>8</td>
<td>13</td>
<td>8</td>
</tr>
</tbody>
</table>

Capacitors supplied with the board were too large to fit between the sockets and I had to use physically smaller ones.

All integrated circuits, regardless of the number of pins, are inserted with pin 1 in pin 1 of the 16-pin sockets. It is then necessary to install a short wire-wrapped jumper from pin 8 (ground) of the socket to pin 7 for 14-pin circuits and to pin 1 for the 8-pin 555.

The discrete timing components for the 555 oscillator, the pull-up resistors for the repeat and busy lines, and the components for the break line conditioning circuit are soldered to two DIP (dual in-line pin) header plugs as shown in figure 3. These plugs are then installed in sockets at the locations shown.

Connections to the keyboard are made through a 16-pin socket. I used a 16-conductor flat cable jumper with a DIP plug at one end to connect this socket to a 25-pin socket (DB-25S) on the computer's back panel. Table 1 shows the pinouts for both sockets. Then made up a 6-foot cable with a 25-pin plug (DB-25P) at one end and a 20-contact printed-circuit edge connector (AMP 582963-2 with 42839-4 pins and a 582501-1 polarizing key) at the other to mate with the keyboard.
The acronym PERT stands for Program Evaluation and Review Technique, a mathematical method used by thousands of computer programmers on both large and small systems to solve one of the basic problems of middle-level managers: how to determine the relative importance of the tasks under their supervision.

Let us define a middle-level manager as a person responsible for a project comprised of many tasks. Various low-level managers, each responsible for one particular task, report to the middle-level manager. (By contrast, the top-level manager is more concerned with deciding which projects to undertake, and formulating policy.) The basic purpose of the middle-level manager is to anticipate possible obstacles and still complete the project on time.

A Typical Problem

In order to more clearly illustrate the middle-level manager’s problem, let’s be specific and assume that the project is the construction of the fifth floor of a seven-story office building.

The project begins with the forming and the pouring of concrete. The procedure is supposed to take six days, but for some reason it takes seven days. Now the project is a day behind schedule.

At this point, the manager looks at the various tasks: plumbing, spray fireproofing, and so on, and notes that while most of them will require from three to five days, the installation of electrical wiring in the wall will require sixteen days. Accordingly, he hires a few more electricians, and the electrical wiring is installed in fourteen days. Now the project is a day ahead of schedule.

In several ways, the calculation of T2 is the reverse of the calculation of T1.

Or is it? After the walls have been wired, the next step involves the lath and plaster, which can’t be started until the insulation has been installed. The insulation requires only three days, but that can’t progress until the electrical testing has been completed, and that requires three days. Of course, the testing can’t begin until the ceiling air ducts and fixtures are in, which takes five days... and so on and so on. The upshot is that the project is still one day behind.

The problem in this example (taken, as is much of the material in this article, from Fundamentals of Data Structures, see references) is that the electrical wiring is not a critical activity (i.e.: a task that causes the entire project to slip if it falls behind schedule). In fact, in this example the manager should have hired fewer, not more, electricians, and allowed the wiring to take as many as twenty-eight days. The extra money could have been used to hire more people for the spray fireproofing and installation of ceiling ducts and fixtures, which are critical activities.

But how can the manager determine what is a critical activity and what is not? This is where PERT comes in.

Analyzing Problems with PERT

There are many ways to apply PERT. I will illustrate one simple application. The first step is to number each task, or activity, in such a way that they can be performed in numerical order. For example, we cannot require that activity number 7 be finished before activity number 4 is started, for if this is the case, then activity number 4 should be designated...
as some number higher than 7. If there are \(n \) activities, then they should be numbered from 1 to \(n \).

To adapt our scheme to computer notation, we will now set up a two-dimensional array, called \(B \). If we require that for each pair of activity numbers \(I \) and \(J \), \(J \) be finished before \(I \) can start, we set \(B(I,J) = 1 \). Otherwise, we set \(B(I,J) = 0 \). (If we use a version of BASIC that does not allow double subscripts for arrays, or if we use assembly language, we can employ the following trick: set up a single array \(A \), containing \(n^2 \) elements, where \(n \) is the number of activities, and then refer to each \(B(I,J) \) array element as \(A(K) \), where \(K = n \times (I-1) + J \) before referring to \(A(K) \). Thus, elements \(B(1,1) \) through \(B(1,n) \) are represented as \(A(1) \) through \(A(n) \); \(B(2,1) \) through \(B(2,n) \) as \(A(n+1) \) through \(A(2n) \); and so on.)

We initialize this double array to all zeros and then input various pairs of activity numbers \(I \) and \(J \), where we want to set \(B(I,J) = 1 \) according to the above rule. We also set up another array \(T \), such that \(T(I) \) is the amount of time taken by activity number \(I \). If \(T(7) = 5 \), then activity number 7 takes five days to complete. (Actually it could be five weeks, or even five hours, just as long as the same units are used throughout the array \(T \).) All the numbers \(T(I) \), as \(I \) varies from 1 to \(n \), must be entered.

Now we have all the input we need, and we can proceed to calculate which activities are critical. We must first set up an array that we will call \(T1 \), such that each element \(T1(I) \) is the earliest starting time for the activity numbered \(I \). If \(T1(5) = 9 \), then activity number 5 cannot be started before the ninth day of the project. (From now on, we will assume that all times are given in days.)

A possible reason why \(T1(5) \) might equal 9 is revealed in Figure 1. The numbers in circles are activity numbers, and we have drawn arrows between activities; all activities linked by incoming arrows must be completed before the next activity can begin. Activity number 1 takes five days, and activity number 2 takes three days. If we look only at the upper part of the diagram, we might think that activity number 5 could start after eight days. However, if we look at the rest of the diagram, we see that we have to perform activity number 2, which takes four days, and then number 4, which takes five days, before we can do number 5. So number 5 cannot, indeed, start until after nine days.

(One confusion that often arises is that if a task requires three days, and it is begun, let us say, on Monday, the task should be finished by Wednesday. Yet Wednesday is two, not three days after Monday. The solution to this paradox is to consider a day as a 24-hour period. If a task is started at 8 am Monday, and it takes three days, we consider it to be finished at 8 am Thursday, although in reality it will be finished by 5 pm Wednesday.)
In figure 1, the arrow drawn between activities I and J corresponds to $B(I,J) = 1$. Thus we have $B(1,3) = 1$ and $B(3,5) = 1$. It is debatable whether or not we should set $B(1,5) = 1$; after all, activity number 1 must be completed before activity number 5 can begin, but only in an implied sense. In this case, it does not really matter if $B(1,5) = 1$. In general, redundant pairs of activities can either be provided as input or left out; the critical-activity calculation will come out the same, regardless.

The calculation of the earliest starting time, $T_1(I)$, is performed as I varies from 1 to n. At each stage, we look at all $B(K,I)$, for K less than I, such that $B(K,I) = 1$. If nothing has to finish before activity number I can start, then we set $T_1(I) = 0$, since activity number I can now clearly start at time zero. In setting up the problem of figure 1, we would set $T_1(1) = 0$ and $T_1(2) = 0$.

If there is one array element $B(K,I)$ that satisfies the condition above, then we add $T_1(K)$, the earliest time at which activity K can start, to $T_1(I)$. We find that activity 1 can start at time zero, and it takes five days. Clearly, activity 3 cannot start until after five days—that is, $T_1(3) = 5$. In the same way, we calculate $T_1(4) = 4$.

If there is more than one element $B(K,I)$ that satisfies the condition, then we perform the above calculation several times and choose the largest answer. Let us calculate $T_1(5)$ as shown in figure 1. We have:

$T_1(3) = 5$
$T_1(4) = 4$
$T_1(5) = 7$

and

$T_1(3) + T_1(4) = 9$

This is the calculation we made before. One condition is that activity number 5 cannot start until after eight days; the other condition is that activity number 5 cannot start until after nine days. Therefore, it is the ninth-day starting date that is important. In general, there might be three or more cases that we have to consider, and we take the largest of the calculations.

The resulting values of $T_1(I)$, for all I, are shown in figure 2. In practical cases, usually the last activity in the project is to clean up, and we cannot clean up before we have finished everything else. In the next calculation, we must assume that the last activity cannot be started before everything else is finished. If this is not the case, we set up a dummy activity, like activity number 10 in figures 1 and 2. This takes no time at all and ends the project.

If $T(I) = J$, this does not necessarily mean that activity number I must begin at time J. Look at activities 6, 7, 9, and 10 in figure 2, and suppose that $T_1(I)$, for all I, can be calculated according to the scheduled completion times of preceding activities.

Figure 2: For each activity in figure 1, T_1 (the earliest time that each activity can start) can be calculated according to the scheduled completion times of preceding activities.

ATTENTION GOVERNMENT D P USERS AND PURCHASERS

We represent many fine micro products and manufacturers on the U.S. Government’s GSA Schedule, including **Apple, Cromemco, Micropolis and Seequa Computers**

Purchasing from the Schedule will save you the time consumed by the bid process. Products shipped throughout the United States and world-wide. Visit or write any of our stores for more information or to receive our catalogue of products represented.

Computers, etc.

The dependable store

257 West Street, Annapolis, MD 21401 - (301) 268-6505
13A Allegheny Avenue, Towson, MD 21204 - (301) 296-0520
9330 Georgia Avenue, Silver Spring, MD 20910 - (301) 588-3748
6671 Backlick Road, Springfield, VA 22150 - (703) 644-5500
Plaza 38, 2442 Route 38, Cherry Hill, NJ 08002 - (609) 779-0023

Callers outside metropolitan areas served by our stores

Please call (301) 268-5801

Career Opportunities Available * An Equal Opportunity Employer
The S-100 version of this product can act as a Master processor, Slave processor, or Intelligent peripheral controller. As intra-processor communication is achieved through the use of efficient, high speed bus transfers using special hardware/software techniques.

We also have what we think is one of the best implementations of a CMOS BIOS available off the shelf. The BIOS has the following features:

- All Devices INTERRUPT DRIVEN
- Type Ahead Input/Output Buffers
- Real-Time Clock
- Time Of Day Clock
- Multi-level User Password Support
- Menu-Driven Utilities for Format, Disk Copy, etc.
- Unique Configuration Utility Program for Setting Bus/Board, Changing Stop Time, Changing Passwords, etc.
- Cylinder Concept used for Double Sided /Double Density Configuration Resulting in Increased Performance

The Worry-free Clocks for People Who Don't Have Time to Worry!!

SciTroni Cs introduces...

REAL TIME CLOCKS
with full Clock/Calendar Functions

The Worry-free Clocks for People Who Don't Have Time to Worry!!

What makes them worry-free?

- Crystal controlled for high (.002%) accuracy
- Lithium battery backup for continuous clock operation (6000 hrs!!!)
- Complete software in BASIC-including programs to Set and Read clock
- Clock generates interrupts (seconds, minutes, hour) for foreground/background operation
- Logging Computer on time
- Timing of events
- Use it with the SciTroni Cs Remote Controller for Real Time control of A.C. operated lights and appliances

Applications:

- Logging Computer on time
- Timing of events
- Use it with the SciTroni Cs Remote Controller for Real Time control of A.C. operated lights and appliances

Versions available for:

- S-100 bus computers
- Apple II computer
- SciTroni Cs RC-80

Prices:

- RTC-100 $159
- RTC-A $129
- RC-80CK $109

SciTroni Cs Inc.
523 S. Clevel St., P.O. Box 544
Bethlehem, PA 18015

Send check or money order to:

Please list system with which you plan to use controller + Master Charge and Visa accepted. COD is accepted. PA residence adds sales tax.

To speed up a project, we must accelerate an activity that lies on every critical path

The time T2(I) is the latest time that activity number I can end without causing the entire project to slip. A moment ago we saw that activity number 8 could occur on either the eighteenth or the nineteenth day, and it would end on either the twenty-first or the twenty-second day. Therefore T2(8) would be 22, because the twenty-second day is the latest time that activity number 8 can end.

Before we see how to calculate T2(I), let us see how we can use it. In our example, we have T1(8) = 18 and T2(8) = 22. What does this mean? It means that activity number 8 cannot start before day eighteen, and it must finish by day twenty-two. Furthermore, this activity cannot take more than four days. In fact, it is supposed to take three days (T(8) = 3), and it can slip by one day, but not more than one day (otherwise, the entire project will slip). In this case, activity number 8 is not critical. If it were scheduled to take four days—that is, if T(8) were equal to 4—then it would be critical. So as soon as we calculate T2(I) for all I, we will know immediately which activities are critical.

To calculate T2(I), we look at all
B(I, J), for J greater than I, such that B(I, J) = 1. If there are no instances (which, under our assumptions, will happen only for the last activity in the project, i.e., I = n) we set T2(I) equal to T1(I) + T(I). That is, the last activity must start by time T1(I), and it requires time T(I), so it must finish by time T1(I) + T(I) in order to get the entire project done in the least amount of time that is consistent with the data we have provided about all its various activities.

If there is one B(I, J) that satisfies the condition above, then we subtract T(J) (the time that activity J takes) from T2(J), the latest time that activity J can be finished while keeping the project on schedule. Since the values of T2(I) are being calculated in reverse order, we can assume that T2(J) has already been calculated. In the project shown in figure 2, we get the value of T2(9) by subtracting T(11) from T2(11), because activity 10 takes no time, and the answer is 22. We get T2(7) by subtracting T(9) from T2(9), and the answer is 20.

Note what this last answer means. The ninth activity takes two days, and it must be done by day twenty-two. This means that it must start by day twenty. If we look at figure 2, we can see that this implies that activity number 7 must also be finished by day twenty. In the same way, we calculate T2(8) = 22.

Finally, if there is more than one B(I, J) that satisfies the condition, then we perform the above calculation several times and choose the smallest answer. For example, if we calculate T2(6) in figure 2, we have:

\[
\begin{align*}
T2(7) &= 20 \\
T(7) &= 2 \\
T2(7) - T(7) &= 18
\end{align*}
\]
and:

\[
\begin{align*}
T2(8) &= 22 \\
T(8) &= 3 \\
T2(8) - T(8) &= 19
\end{align*}
\]

This means that activity number 6 must end by the eighteenth day, and also by the nineteenth day. Therefore, the eighteenth-day deadline is the one we must heed. We can observe a number of ways in which the calculation of T2 is the reverse of the calculation of T1: we go from back to front; we look at B(I, J) instead of B(K, I); we must have J larger than I, instead of K smaller than I; and when there are several calculations at one place, we take the smallest, instead of the largest, of the results.

The resulting values of T2(I), for all I, are shown in figure 3. We can now look at T1(I) and T2(I), for all I, and calculate which activities are critical. As we have noted above, activity number 1 is critical if T2(I) - T1(I) = T(I); otherwise, it is not. The critical activities in figure 3 are numbers 2, 4, 5, 6, 7, 9, and 10. The non-critical activities are 1, 3, and 8.

We now have the answer to the manager's problem in this case: activ-

![Figure 2: T2 (the latest time that each activity can be finished without throwing the entire project behind schedule) can be calculated for each activity in the project of figure 1.](image-url)
activities 1, 3, and 8 should not be accelerated because they will not affect the project's completion time. On the other hand, any one of these three activities could slip by one day without affecting completion time. (In fact, activities 1 and 8, or activities 3 and 8, could both slip, but not both activities 1 and 3.)

The critical activities can all be seen to lie on one path from the beginning to the end of the project. This is called a critical path. In general, there might be more than one critical path in a project. If an activity is critical, it cannot slip without affecting project time—that is, if it is on a critical path. On the other hand, speeding up any activity is on every critical path.

Machine Coding Considerations

If the total number of activities is so large that we cannot fit all of the array elements B(I, J) into the number of available words of memory, we may use the following trick. Since each element B(I, J) is either 0 or 1 (such a matrix B is often called a Boolean matrix), we can put each element into a single bit of a memory location. On an 8-bit machine, working in assembly language, we would represent B(I, J) by first dividing 1 by 8 and obtaining a quotient of K and a remainder of L. We would then store B(I, J) in the Lth bit of B(I, K), and the dimensions of B would now be n by n/8 instead of n by n.

To accomplish this representation, we use an auxiliary table P, such that table element P(I) is the zeroth bit (from the right—ie: in the binary number's units bit), element P(2) is the first bit (ie: the number's 2^1 bit), P(3) is the second bit (ie: 2^2 or 4), and so on. We can set up this table by setting P(I) = 1 and then P(I+1) = 2XP(I) for I = 1 to 7. To set the Lth bit of X, we perform the logical OR of P(L+1) and X, and store it in Y; to test the Lth bit of X, we perform the logical AND of P(L+1) and X, and test the zero status flag. On a 16-bit machine, we do the same analysis, substituting 16 for 8.

In integer BASIC, even on an 8-bit machine, each integer is customarily stored in 16 bits. If the logical AND and OR functions are not available in the given dialect of BASIC, or by means of standard library functions, then we can test the Lth bit of X by adding it to itself (that is, shifting it 1 bit to the left) N−1−L times, and seeing whether or not the result is negative. We can set the Lth bit of X by adding P(L+1) to X, provided that we know this bit is not set (by testing it as above).

Exploring Further

Further analyses of critical paths or critical activities will be found in Ellis Horowitz and Sartaj Sahni's Fundamentals of Data Structures. These authors describe two graphical models of a project—the AOV (activity on vertex) model, in which each vertex of a graph like figure 1 corresponds to an activity, and the AOE (activity on edge) model, in which an activity corresponds to an edge, or arrow between nodes. The critical-path algorithm given there is actually for the AOE model, whereas the one I give here is for the AOV model. The authors also provide a discussion of an algorithm (called topological sort) which can be used to renumber all the activities if the numbering that is used does not satisfy our fundamental property of carrying out all activities in the project in their numerical order.

Reference

Should the DO Loop Become an Assembly-Language Construct?

Glenn L. Williams
Gould Inc
Instruments Division
3631 Perkins
Cleveland OH 44114

The 1970s saw the inception and growth of microprocessors as well as continuing growth and improvement in the architecture and processing power of minicomputers. Although the architecture of CPUs (central processing units) has varied widely through the years, the majority of the new 16-bit microprocessors have emulated, to various degrees, the stack-pointer architecture once found in the DEC (Digital Equipment Corporation) PDP-11.

The stack pointer is used to control an area in program memory where temporary data and subroutine- and interrupt-return addresses can be stored separately from the main program. The stack-pointer approach has proved useful to programmers because it allows reentrant, nonself-modifying subroutines. This approach can be contrasted with machines (e.g., the DEC PDP-8) where a subroutine return address is saved in the first location of the subroutine proper which can reside only in programmable memory.

An additional feature found in most processors is the familiar processor-status register containing flag bits formed from the result of ALU (arithmetic logic unit) operations on data. With conditional branch, jump, jump to subroutine, and return (as well as interrupt) instructions available on the various processors, program loops can become very compact and intricate.

A well-designed instruction set can give the engineer and programmer every degree of freedom and every feature desired. But does it?

An Example
Take the case of the assembly-language program in which a positive binary word in memory is required for the next sequence of instructions. But for various reasons (known only to the programmer), the word may instead be stored as a negative value.

In the Motorola 6800, Fairchild F8, and even the Motorola 68000 microprocessors, such a value must be loaded and tested for positive status. If negative status results, the data must be complemented via a branch to the proper code before returning to normal program execution. There has been one processor available for some time, however, that performs the absolute-value conversion with a single instruction: Texas Instruments’ TMS-9900.

Obviously, there are other instructions that could make programming tasks far simpler. Disregarding for a moment the desire of manufacturers to minimize microcode requirements to limit the size of silicon wafers, and the argument that some missing instructions can be “worked around” through use of other instruction chains, it is obvious that highly innovative and useful instructions can still be invented by clever users and designers of computers. Users still need more innovative instructions to help relieve the monumental programming requirements of the 1980s. (After all, where would computers be if architecture development stopped with the invention of the subroutine and the carry bit?)

The following discussion will show how one set of “new” instructions (or acceptable variations) can be found scattered, piecemeal, in a number of existing modern processors, but that no one processor supplies the user with the entire set. In particular, the first new instruction, requiring merely a modified stack pointer, has yet to be found in a survey of a number of late-model processors. This instruction, along with its mate, allows assembly-language programming of DO loops.

“New” Instructions
For the discussion of these instructions shown in conceptual form in table 1, I ask the reader to assume that the processor has at least one stack pointer, one or more accumulators, and, perhaps, additional main registers. This model, in figure 1, resembles the architecture of the PDP-11 and 6800.
It is interesting to consider how these instructions have been implemented in various processors. These data are shown in Table 2. The seven instructions listed are not to be considered as the only instructions eligible for consideration. They are presented as thought-provoking examples.

The DO Loop Instructions

Frequent use of nested execution loops (DO DO CONTINUE loops in FORTRAN, FOR NEXT loops in BASIC) raise the question: Why not allow a DO loop construct in assembly language (i.e., in the architecture of the processor itself)? Conceptually, a processor architecture to accomplish DO loops would take the form of figure 1b, where a DO pointer addressing a DO stack has been added to a processor of simple architecture resembling the 6800 microprocessor.

The DO stack would function as a conventional stack, except, unlike a conventional stack that saves the next (return) address for a subroutine, the DO stack saves the next (looping) address followed by an additional value n. (See figure 2.) The value n is the integer number of times the loop is to cycle. The loop is initiated with the DO n instruction, but program flow continues inline.

The value n could reside in an accumulator or some other processor register rather than residing in program memory immediately after the DO op code. Then a reference to a location or register that contained the address of the operand value would remove the need for self-modifying code if n were to be a variable (e.g., DO (n) or DO,). To show as simply as possible the operation of the DO instruction, the general form DO n will be used here.

The DO loop is bounded by an NXT instruction op code. Upon reaching this instruction, the control logic in the processor uses the DO pointer to reference the location of the value n on the DO stack. The value n is then temporarily pulled and decremented. If the value of n is not 0 after the decrement, the new n value is pushed back onto the stack, and the next two stack values (D-2 and D-1) are read out as the address to loop back to for further iteration. Figure 2 compares the conventional stack pointer to the new DO pointer in more detail.
If the value \(n \) is 0 after being decremented, however, the DO loop is defined as being completed. The DO pointer is adjusted to its preloop value \((D) \) and execution continues with the first instruction after the NXT op code.

DO loops can be nested using these rules. Well-designed DO loops configured under the same nesting rules as FORTRAN or BASIC would not terminate prematurely. The DO pointer could be in error only through procedures that are commonly accepted as illegal in high-level languages or procedures in assembly-language programming similar to illegal exits from subroutines and interrupts.

A DO loop controlled by a DO pointer would then match high-level language requirements and would re-
NO FRILLS!
NO GIMMICKS!
JUST GREAT
DISCOUNTS
MAIL ORDER ONLY

ATAH 800
Personal Computer
System $749.00

NORTHSTAR
Horizon II 32K 234.900
Horizon II Quad 279.900
Horizon II 64K 299.900
Horizon Quad 64K 339.900

TELEVIDEO
Model 912 749.00
Model 920 799.00
Model 950 1079.00

HAZELTINE
Model 1420 795.00
Model 1421 695.00
Model 1500 849.00
Model 1510 1049.00
Model 1520 1229.00
Esprit 649.00
Executive 80
Model 20 1195.00
Model 30 1395.00

OKIDATA
Microline 80 559.00

SOROC Technology
Model IQ 120 699.00
Model IQ 140 1049.00

CROMEMCO
System 3 5695.00
Model 22H 7995.00

QANTEX
Model 6000 150 CPS parallel interface 1149.00
Model 6000 150 CPS serial interface 1195.00

DECwriter IV
Model LA-34 939.00

We'll meet or beat any advertised prices!
Most items in stock for immediate delivery.
Factory sealed cartons. Full manufacturer's guarantee.
All products subject to availability.
All prices subject to change.

DATA DISCOUNT CENTER
135-53 Northern Blvd., Flushing, N.Y. 11354
Visa • Master Charge • N.Y. residents add Sales Tax
Phone Orders Call (212) 895-5577

Table 2: Present implementations of "new" instructions.
lieve compiler writers of the burden of performing these operations with long strings of assembly-language instructions. The DO loop would also be made available to assembly-language programmers and microprocessor-hardware engineers.

What about the processors currently competing on the market? In table 2, there is a reference to the DBCO instruction of the 68000 microprocessor, which performs the function of the proposed NXT instruction. But the user is left without the benefits of the automatic stacking operations of the proposed DO Pointer.

Variations
Studies of op-code usage have shown that the DO loop feature I’ve described could be “appended” to common op codes, such as ADD, SUB, IN, and OUT, so a common function could have the added features of automatic DO pointing. For example:

```plaintext
DO n
SUB CONSTANT
NXT
```

would become:

```plaintext
SUBDO n, CONSTANT
NXT
```

This approach, however, involves a departure from the regularity desired in modern instruction-set designs. Single instructions with the loop-and-decrement mode are already available in several forms on the Z80 (LDI and LDS for moves; CPI and CPF for the SRCH function; IN, INDR, OUT, and OUTDR for input/output; and D/NZE for a function similar to NXT). The Z80 does these without benefit of a true DO pointer and without being able to combine arithmetic instructions and other general functions under one main DO loop.

It is feasible (and imperative) that a general DO architecture be included in future processor designs. There is a demonstrable need for the DO architecture, and it has been shown how such operations can be incorporated easily into many of the available architectures.
THE WORD™

$75.00

COMPLETE

SPELLING PROOFREADER and
COMPUTER DICTIONARY

The WORD is out! Works with the editor of your choice to find those lurking spelling errors and sneaky typos.

EXTRA FEATURES
- Automatic rhyme finder
- Crossword puzzle solver
- Correct spelling finder
- Word/country
- Word frequency analyzer
- Dictionary builder

AVAILABLE FOR:
- 8" Single Density CP/M™
- soon —
- 5¼" North Star™
- 5¼" Superbrain™
- Apple™/Softcard™ CP/M

OASIS SYSTEMS
2765 Reynard Way, San Diego, CA 92103

ATTENTION GOVERNMENT D P

USERS AND PURCHASERS

We represent many fine micro products and manufacturers on the U.S. Government's GSA Schedule, including

Apple, Cromemco, Micropolis
and Seequa Computers

Purchasing from the Schedule will save you the time consumed by the bid process. Products shipped throughout the United States and world-wide. Visit or write any of our stores for more information or to receive our catalogue of products represented.

Computers,
Etc............

the dependable store

257 West Street, Annapolis, MD 21401 - (301) 268-6505
13A Allegheny Avenue, Towson, MD 21204 - (301) 296-0520
9330 Georgia Avenue, Silver Spring, MD 20910- (301) 588-3748
6671 Backlick Road, Springfield, VA 22150 - (703) 644-5500
Plaza 38, 2442 Route 38, Cherry Hill, NJ 08033 - (609) 779-0020
Callers outside metropolitan areas served by our stores
Please call (301) 268-5801

Career Opportunities Available • An Equal Opportunity Employer

Summary

Modern processor instruction sets are by no means complete, if complete is defined as providing for all simple, regular instructions that could be of significant value to programmers and engineers. Instead, an all too common complaint is that a few basic instructions are either nonexistent or difficult to find in most processors, and trade-offs in original designs of many processors have left some addressing modes incompletely supported. For example, one popular microprocessor implements branches, jumps, and subroutine jumps, but omits the branch to subroutine that is so useful in writing position-independent code.

It seems that restrictions of semiconductor die size has often "squeezed out" some useful instructions as a one-time cost savings. The result: programmers endlessly emulate desired, but unavailable, instructions with long sequences of other existing instructions. This has proved costly.

The magnitude of the programming tasks to be accomplished in the coming years could be reduced considerably with more useful assembly-language instructions. The challenge of the 1970s was to design newer and better processors. The challenge for the 1980s is to promote the evolution of processors with high-level instruction sets to help alleviate the software-management problem. The DO loop is one example of assembly-language- and processor architecture-related development that should be considered.

References
Debugging a long or complex program can be made much easier by using reference listing. A utility program can easily generate one from the source code, listing the line numbers of all program statements in which each variable or named constant is used.

Niklaus Wirth developed an efficient binary-tree search algorithm for this purpose (discussed in his book *Algorithms + Data Structures = Programs*. Englewood Cliffs NJ: Prentice-Hall, 1975). The algorithm was used in the program APPLE3:CROSSREF provided with the Apple Pascal system. I found CROSSREF unsatisfactory in some ways, however, so I took the basic concepts and developed my own version of the cross-reference program, adding features that make the program better suited for use with the Apple Pascal language system.

The new features include:

- ignoring the characters in comments and quoted-string literals
- dividing the source-code and cross-reference listings into pages with titles
- automatically extending the search into separate disk files that contain source code routed to the compiler by the include-file mechanism
- top-down recursive design

The result is a more readable output listing for programs written in Pascal.

My modified version of the Wirth cross-reference-generator program is shown in listing 1, and its own cross-reference table is shown in listing 2.

A disadvantage of the program given here is that the data tables containing the cross-references are stored in memory, thus limiting the size of the input programs that can be processed. An improved version that I have developed stores the tables on disk, allowing cross-referencing of very large programs. You can obtain both the improved version and a spooler program that lets you specify multiple files for printing from my company for $20. A floppy disk containing both source and pseudocode files is provided.

Interested readers can contact Siro-tech Software Products at (315) 393-2640.

Listing 1: Apple Pascal cross-reference program based on a similar utility program provided with the Apple Pascal language system. This version includes several useful additions. Note paging and titling of the listing.

1 (**I-R- **)
2
3 PROGRAM CROSSREF,
4
5 (***)
6
7 (* CROSS REFERENCE GENERATOR USING BINARY TREE *)
8 (* FROM WIRTH ALGORITHMS+DATA STRUCTURES=PROGRAMS.P206 *)
9
10 (* MODIFIED 17-SEP-80 BY ROBERT WOODHEAD FROM APPLE3 *)
11 (* CROSSREF PROGRAM, OPTIMIZED FOR PASCAL TEXTFILE *)
12 (* CROSSREFERENCING WITH THE FOLLOWING FEATURES *)
13
14 (* 1 LISTING IS PAGED *)
15 (* 2 CONTENTS OF COMMENTS AND QUOTED STRINGS ARE NOT *)

Listing 1 continued on page 421
CHOOSE...

Choose an Apple Desk

A compact bi-level desk ideal for an Apple computer system. This 42" x 31½" desk comes with a shelf to hold two Apple disk drives. The top shelf for your TV or monitor and manuals can also have an optional paper slot to accommodate a printer.

Choose a Micro Desk

Get your micro computer off the desk top and into the micro shelf under our Designer Series desks. Suitable for the North Star, Dynabyte, Vector Graphics, and Altos computers. The desk comes in a variety of sizes and colors.

Choose a Mini Rack

Mini racks and mini micro racks have standard venting, cable cut outs and adjustable RETMA rails. Choose a stand alone bay or a 48", 60", or 72" desk model in a variety of colors and wood tones. A custom rack is available for the Cromemco.

Choose a Printer Stand

The Universal printer stand fits the:

- Centronics 700's
- Diablo 1600's & 2300's
- DEC LA 34
- T.I. 810 & 820
- NEC Spinwriter
- Okidata Slimline
- Lear Siegler 300's
- Anadex 9500's

Delivery in days on over 200 styles and colors in stock. Dealer inquiries invited.

His contributions were made possible by yours.

When you give to the United Negro College Fund, you help support 41 private, four-year colleges and graduate schools. Colleges that could be training a black professional you may need someday.

Send your check to: United Negro College Fund, Box B, 500 E. 62nd Street, New York, New York 10021. We're not asking for a handout, just a hand.

No one can do it alone.

Give to the United Negro College Fund.
A mind is a terrible thing to waste.

A public service of this magazine and The Advertising Council.
Listing 1 continued:

18 15 INCLUD ED IN THE CROSS REFERENCE
19 16 PROGRAM WILL PREPARE FILES THAT WOULD
20 17 BE INCLUDED BY THE COMPLILER INCLUDE MECHANISM
21 18 PROGRAM CONSIDERABLY CLEANED UP

ONET C1-10 LENGTH OF TOKENS STORED IN LIST
24 C2=10 NUMBERS PER LINE OF REF LIST
25 C3=6 ITEMS PER NUMBER IN REF LIST
27 C4=30000 MAX LINE NUMBER IN PRINTOUT
29 LP=5 NUMBER OF PRINTOUT (TOP MARGINS)

32 TYPE ALPHA=PACKED ARRAY (C1) OF CHAR.
33 WORDREF=WORD
34 ITEMREF=ITEM.
35 KEY=DEFINE
36 WORD=DEFINE
37 FIRST,LAST,ITEMREF=DEFINE LIST OF LINES
38 LEFT,RIGHT,WORDREF=DEFINE TREE POINTERS
39 END
40 ITEM=DEFINE RECORD
41 LND 0 C4, LINE NUMBER
42 NEXT ITEMREF= DEFINE LINK POINTER
43 END
44 VAR ROOT WORDREF ROOT TO TREE OF TOKENS
45 K INTEGER LENGTH OF CURRENT TOKEN
46 N INTEGER CURRENT LINE NUMBER
47 ID ALPHA TOKEN BEING PROCESSED
48 A ALPHA TOKEN BEING BUILT
49 CH CHAR CURRENT TOKEN CHARACTER
50 LICELEN OF THE CURRENT LINE
51 CHARPOS INTEGER
52 FILE INTEGER FILE WE ARE CURRENTLY USING
53 LINE STRING (255) CURRENT LINE BEING PROCESSED
54 F1
55 F2
56 G TEXT INPUT AND OUTPUT TEXT FILES
57 TITLE STRING TITLE OF PRINTOUT
58 SOURCE INPUT AND OUTPUT FILENAMES
59 DEST STRING 20
60 / PAGER DETECTS IF A PAGE EJECT IS REQUIRED, AND IF
61 / SO, IT DOES IT AND PRINTS THE HEADER
62 BEGIN (*) PAGER *)
63 IF CN MOD LP=0 THEN
64 BEGIN
65 IF CN MOD LP=0 THEN
66 BEGIN
67 WRITEK ('<',H 5,' ')
68 IF N>0 THEN
69 BEGIN
70 WRITEK(G)
71 WRITEK(G)
72 WRITEK(G)
73 WRITEK(G)
74 END
75 WRITEK(G)
76 WRITEK(G)
77 WRITEK('XREF LISTING OF FILE ',

Listing 1 continued on page 422
Programming Quickies

Listing 1 continued:

78 SOURCE;
79 '#1(24-9-21-LENGTH SOURCE));
80 ' PAGE ';
81 '(N DIV LP)+1)*4);
82 WRITELN G);
83 WRITELN ' (37-LENGTH TITLE DIV 2));
84 TITLE));
85 WRITELN G);
86 WRITELN G);
87 END;
88
89 (* IN CASE YOU ARE WONDERING WHY IT'S 74 AND 37 INSTEAD *)
90 (* OF 80 AND 40 IN THOSE WRITELNS, IT'S BECAUSE 80 COL *)
91 (* PAPER USUALLY WILL HOLD 80 COLS. THE CHANGES MAKE *)
92 (* SURE YOU WILL SEE THE PAGE NUMBERS, ETC *)
93 END;
94 (* PAGE *)
95
96 (* GETLINE READS A NEW LINE FROM THE INPUT FILE IF *)
97 (* IT DETECTS AN END OF FILE, IT PRINTS OUT THE XREF *)
98 (*)
99 PROCEDURE GETLINE;
100 (* ENDITALL PAGE EJECTS AND STARTS THE XREF LIST, THEN *)
101 (* EXITS THE PROGRAM *)
102 (*)
103 (*)
104 (*)
105 (*)
106 (*)
107 (*)
108 (*)
109 (*)
110 (*)
111 (*)
112 (*)
113 (*)
114 (*)
115 (*)
116 (*)
117 (*)
118 (*)
119 (*)
120 (*)
121 (*)
122 (*)
123 (*)
124 (*)
125 (*)
126 (*)
127 (*)
128 (*)
129 (*)
130 (*)
131 (*)
132 (*)
133 (*)
134 (*)
135 (*)
136 (*)
137 (*)
138 (*)
139 (*)
140 (*)
141 (*)

Please send me _______ box(es) of address labels at $15.00 per box.
(Ad #89)
I don't need the labels, but please put me on your catalog mailing list.

Name
Company
Address
City
State-Zip

Please send inquiry card.

TRICOR
3601 S. 9th St.
Kalamazoo, MI 49009
TOLL FREE: (800) 253-4356
In Michigan: (616) 375-7519
Listing 1 continued:

142 UNTIL X=NIL;
143 WRITELN(G);
144
145 46 END. (* PRINTWORD *
147 BEGIN (* PRINTTREE *)
150 IF NIL THEN
151 BEGIN
152 PRINTTREE(W* LEFT
153 PRINTWORD(W
154 PRINTTREE(W* RIGHT),
155 END;
156 END;
157 END: (* PRINTTREE *)
159:
160 BEGIN (* ENDITALL *)
161 WHILE (N MOD LP)<>0 DO
162 BEGIN
163 N =N+1;
164 WRITELN(G)
166 END;
167 PRINTTREE(ROOT);
169 EXIT(PROGRAM)
171 END: (* ENDITALL *)
173 (* ANINCLUDE OPENS THE INCLUDE FILE AND READS *
175 (* IN THE FIRST LINE *
176 (* BEGIN (* ANINCLUDE *
178 VAR
1791 SOFILENAME,
1800 EOFNAME INTEGER, (* CHARACTER POS STRS *
1812 THNAME string; (* TEMP FILE NAME *
1830 BEGIN (* ANINCLUDE *
1840 SOFILENAME =POS('#!',LINE)+4
1850 THNAME =LINE;
1860 DELETE(THNAME,1,SOFILENAME),
1870 EOFNAME =POS('}',THNAME)
1880 IF EOFNAME=0 THEN
1890 EXIT(ANINCLUDE); (* WAS NOT AN INCLUDE? *
1900 THNAME =COPY(THNAME,1,EOFNAME-1),
1910 WRITELN('INCLUDE FILE = ',THNAME)
1920 FLEVEL =2;
1930 RESET(F2,THNAME);
1940 IF FILE$<>0 THEN
1950 BEGIN
1960 CLOSE(F2);
1970 FLEVEL =FLEVEL-1
1980 END.

Listing 1 continued on page 424
Listing 1 continued:

200 GETLINE THE FIRST LINE OF FILE
210
211 END (* ANINCLUDE *)
212
213 BEGIN (* GETLINE *)
214
215 IF FLEVEL=2 THEN (* CHECK AND HANDLE EOF *)
216 BEGIN
217 IF EOF F2 THEN * MOVE BACK TO FILE 1 *
218 BEGIN
219 CLOSE F2;
220 FLEVEL =1
221 END
222 END
223 ELSE
224 IF EOF(F1) THEN
225 ENDMALL
226
227 PAGE
228 N =N+1
229
230 IF FLEVEL=1 THEN
231 READLKF1,LINE
232 ELSE
233 READLKF2,LINE;
234
235 LINE =CONCAT(LINE,'*'),
236
237 LINELEN =LENGTH(LINE)
238 CHARPOS =1;
239 WRITE(LC,H3,'.' ' ' LINE);
240 IF POS(' S' ' ' ' LINE) THEN
241 IF FLEVEL=1 THEN
242 ANINCLUDE;
243
244 END (* GETLINE *)
245
246 (* READ IS THE FUNNEL THROUGH WHICH THE REST *)
247 (* OF THE PROGRAM GETS CHARACTERS IT FILTERS *)
248 (* OUT COMMENTS AND QUOTED STRINGS *)
249
250 PROCEDURE READCH,
251
252 (* NEXTCHAR ASSIGNS TO CH THE NEXT CHAR IN THE *)
253 (* INPUT STREAM *)
254
255 PROCEDURE NEXTCHAR
256
257 BEGIN (* NEXTCHAR *)
258
259 WHILE CHARPOS-LINELEN DO (* SKIPS BLANKS *)
260 GETLINE,
261
262 CH =LNECHARPOS;
263 CHARPOS =CHARPOS+1
264
265 END (* NEXTCHAR *)
266
267 (* SPANQUOTE SKIPS CHARACTERS UNTIL IT FINDS A *)
268 (* QUOTE '(' CHARACTER. IT THEN CALLS REACH TO *)
269 (* READ IN A VALID CHARACTER. SINCE REACH NA *)
270 (* CALL SPANQUOTE OR SPANCOMMENT, THE EFFECT IS *)
271 (* TO KEEP RECURSIVELY CALLING UNTIL WE ARE NOT *)
272 (* IN A COMMENT OR A QUOTE *)
273
Listing 1 continued:

271 | * SP DONT YOU JUST LOVE RECUPERATION |

274 | PROCEDURE SPANQUOTE;

276 | BEGIN /* SPANQUOTE */

280 | REPEAT

282 | NEXTCHAR

283 | UNTIL (CH =" ")

285 | READCH

287 | END; /* SPANQUOTE */

289 | * SPANCOMMENT DOES A SIMILAR DASTARDLY THING */

290 | * AS SPANQUOTE ONE COMPLICATION IS THAT WE

291 | * HAVE TO LOOK OUT FOR THINGS LIKE */

292 | ("**")

293 | */ */

294 | */ */

295 | */ */

296 | */ */

297 | PROCEDURE SPANCOMMENT;

298 | BEGIN /* SPANCOMMENT */

300 | NEXTCHAR; /* FLUSH THE OF THE LEADING PAREN */

301 | NEXTCHAR; /* GET THE FIRST CHAR TO LOOK AT */

302 | REPEAT

304 | WHILE CH =" " DO /* FIND AN ASTERISK */

305 | NEXTCHAR;

306 | NEXTCHAR; /* GET THE CHARACTER AFTER */

307 | UNTIL CH =" " /* IF WE ARE OK ELSE IT */

308 | */ MAY BE A SO REPEAT */

309 | READCH

311 | END; /* SPANCOMMENT */

312 | BEGIN /* READCH */

313 | NEXTCHAR; /* READ THE CHARACTER */

315 | IF CH =" " THEN /* SKIP IF NEEDED */

318 | SPANQUOTE

320 | ELSE

321 | IF CH =" " THEN

322 | IF CH =" " THEN

323 | IF CH =" " THEN

324 | SPANCOMMENT)

325 | END; /* READCH */

326 | /* PROCEDURE SEARCH WILL SEARCH FOR THE TOKEN */

329 | IN ID, AND IF FOUND, INSERT THE LINES IN ITS */

330 | LINKED LIST OTHERWISE IT WILL CREATE IT */

331 | PROCEDURE SEARCH VAR W: WORDREF;

333 | VAR

335 | /* WORDREF; */

336 | ITEMREF;

338 | BEGIN

339 | Listing 1 continued on page 426

MTI stocks 'em all for faster delivery.

No hidden charges. Taxes included. Delivery.
Ask about our "GEO" discounts.
VISA and MasterCard orders accepted.

VIDEO TERMINALS

VT100 DECscope $ 1635
VT132 DB scope 1999
ADM 3A (dumb terminal) 599
ADM 5 (dumb with visual attributes) 645
ADM 31 (dumb buffer) 599
ADM 32 (dumb terminal) 645
ADM 42 (dumb buffer) 1799
TI 940 (dumb buffer) 1799
TI "Insight Series" 10" personal term. 898
Helixline Executive 90 Model 20 1375
Helixline Executive 90 Model 30 1715
Helixline Express 645
1410 (Helixline dumb terminal) 898
1420 (dumb terminal) 1040
1421 (Conal 580 & ADM 3A compl.) 1148
1500 (dumb terminal) 1395
1510 (buffered) 1395
1520 (buffered, printer port) 1652
1521 (VT100 compatible) 1395

GRAPHICS TERMINALS

VT100 with graphics pkg. 3250
ADM 3A with graphics pkg 1675
ADM 31 with graphics pkg 1975

300 BAUD TELEPRINTERS

LA34-DA DECterm IV 995
LA34-DA DECterm IV 1095
LA36 DecTerm if 1295
Teletype 4210 1095
Teletype 4220 1175
Doublo 620 RO 2299
Doublo 1640 KER 2776
Doublo 1640 KSP 2836
TI 743 (draftable) 1190
TI 745 (break-in) 1483
TI 763 (break/bubble memory) 2545
TI 765 (break/dihedral) 2885

500 BAUD TELEPRINTERS

TI 825 RO impact 1450
TI 825 KSR impact 1510
TI 836 RO pkg 1675
TI 825 KSR Pkg 1795
TI 840 RO impact 1995
TI 840 KSR impact 1245

1200 BAUD TELEPRINTERS

LA120 RO (forms package) 2095
LA120 AA DECterm III (forms pkg) 2295
TI 783 (draftable) 1845
TI 785 (break/bubble) 2270
TI 787 (draft/break) 2695
TI 810 RO impact 1655
TI 810 RO pkg 1000
TI 820 RO impact 1090
TI 820 KSR impact 1025
TI 820 RO pkg 2195
TI 830 RO pkg 2075

2400 BAUD

Dataproducts 3000 (2400 baud) 2565

DATAPRODUCTS LINE PRINTERS

6000 (1000 LPM band) 7952
8000 (1000 LPM band) 8851
8000 (100 LPM band) 10154
BP1200 11 1000 LPM band 16785
2230 1200 LPM drum 27723
2580 1500 LPM drum 30614
2950 1900 LPM drum 12655

ACOUSTIC COUPLERS

AJ1 4424 A (1200 baud orig) 243
AJ 2 4130 (300 baud orig) 315
AJ 2413 (Vadic romcope) 395
Vadic VA 3413 (1200/1900 orig) 327
Vadic VA 3443 (1200 baud orig) 845

MODEMS

GDC 1103A (1200 baud Intl) 395
GDC 2565/1 (1900 baud Intl) 545
GDC 2126-1 (300/1200 baud Intl) 850
AJ 1256 (Vadic romcope) 825
VA 150 (1200 baud orig, 300 in share) .. 238
VA 2541 (orig/ans, triple modems) 898
VA 3455 (1200 baud orig, ans) 770

CASSETTE STORAGE SYSTEMS

Techtron 816 (store/forward) 1050
Techtron 817 (store/forward taped up) .. 335
Techtron 818 (taped) 1755
Techtron 822 (taped) 2795

FLOPPY DISK SYSTEMS

Techtron 950 (store/forward) 1395
Techtron 951 (taped) 1595
*Please call for prices

Distributors, New York, New Jersey and Ohio.

New York:
516/482-3500, 232-985-7177, 538/449-5959
Outside N.Y.S.: 800/645-8016
New Jersey 201/627-5552
Ohio 216/464-6656

October 1981 © BYTE Publications Inc 425
MAIL ORDER ONLY

Micro Computer DISCOUNT Co.
QUALITY • DELIVERY • SERVICE
Your One Stop For...Quality and Huge Savings

MONTHLY SPECS
COMMODORE
8032 $995
CBM/VI SI CALC
$1975
INCLUDES:
- 8032 Computer
- Dual Disk Drive & Cable
- VisiCalc 80 Col.

EPSON
Call for Best Price & Delivery

COMMODORE
16K - $775
32K - $975
2022 - $595
4040 - $995
8050 - $1395
8032 - $995

SUPERBRAIN
Call For Price
64K - $2245
64K XD - $2595

ATARI
800 - $795
400 - 339

CENTRONICS
CALL FOR PRICES

MONITORS
- Sanyo 9" B & W - $175
- Sanyo 12" B & W - 229
- Sanyo 12" Green - 279
- NEC 12" Green - 239
- BMC 12" Green - 239
- Zenith 13" Color - 339
- Amdek 13" Color - 359

(DENOOTES ITEMS SHIPPED FOB N.Y.C.)

MAIL ORDER ONLY
Send Certified Check (Personal or Company Checks require 2 weeks to clear.) We pay all shipping and insurance charges except items marked with asterisk VISA, MasterCharge add 5% N.Y.S. Residents add appropriate sales tax.

PHONE (212) 986-7690
Micro Computer Discount Company
60 E. 42nd St. Suite 411 New York, NY 10017

Programming Quickies

Listing 1 continued:

```plaintext
340  W = W//1,  (* ROOT OF BINARY (SUB)TREE *)
341  *  
342  IF W = NIL THEN
343  BEGIN  (* IF (SUB)TREE IS NIL, CREATE *)
344  NEW(W : W WORD RECORD)
345  NEW(W : W AND LINE RECORD)
346  WITH W DO
347  BEGIN
348  KEY = ID (* STUFF IN THE DATA *)
349  LEFT = NIL
350  END (* RIGHT = NIL *)
351  FIRST = 1;
352  LAST = 1;
353  END;
354  END (* NON EMPTY TREE *)
355  IF ID = KEY THEN
356  SEARCH(W : LEFT) (* RECURSIVE SEARCH *)
357  END;
358  ELSE
359  IF ID = W : KEY THEN
360  SEARCH(W : RIGHT) (* AND AGAIN *)
361  ELSE
362  BEGIN (* FOUND IT, ADD DATA *)
363  NEW(X);
364  X : LID = W;
365  X : NEXT = NIL;
366  U : LAST = X;
367  END;
368  END (* X SEARCH *)
369  *  
370  BEGIN (* MAIN *)
371  *  
372  ROOT = NIL; (* EMPTY TREE TO START *)
373  FLEVEL = 1; (* ON FIRST FILE AT THE START *)
374  N = 0
375  *  
376  WRITE(LCHR(12), 'MODIFIED XREF PROGRAM - 17-SEP-80 BY RJM');
377  WRITE(L);  
378  WRITE(L 'ENTER A TITLE FOR YOUR XREF BELOW');
379  WRITE(L 'READLKTITLE');
380  WRITE(L 'REPEAT');
381  WRITE('SOURCE FILE ?');
382  READL SOURCE;
383  IF FPOS ' ', SOURCE = 0 THEN SOURCE = CONCAT(SOURCE, ' . TEXT ');
384  REPEAT.(F1 SOURCE)
385  UNTIL IORESULT = 0;
386  *  
387  WRITE('DEST FILE ?');
388  READL DEST;
389  IF PEMPFILE = DEST THEN UNTIL IORESULT = 0;
390  WRITE(L ' LINED [MEMORY ]');
391  WRITE(L ' ---- --------');
392  WRITE(L ' GETLINE';
393  (* INITIALIZE THE SYSTEM *)
```
Listing 1 continued:

407 REPEAT // FOREVER MORE
408
409 REPEAT // FIND 1ST CHAR IN A TOKEN
410
411 READCH,
412
413 UNTIL CH IN ['A'..'Z','A'..'Z','0'..'9']
414
415 IF =0; // ZERO LENGTH OF TOKEN AND TOKEN
416
417 FILLCHAR(A,SIZEOF(A),',');
418
419 REPEAT // FILL UP TOKEN
420
421 IF K<K1 THEN
422 BEGIN // ADD CHAR TO TOKEN
423 $ =K+1;
424 A[K] =CH;
425 END;
426 READCH // GET NEXT CHAR IN TOKEN
427
428 UNTIL NOT(CH IN ['A'..'Z','A'..'Z','0'..'9']);
429
430 ID:=A; // INSERT TOKEN INTO TREE
431 SEARCH(ROOT);
432 UNTIL FALSE ; // WILL HIT EOF IN GETLINE
433
434 END

Listing 2: Table of the cross-reference generator as produced by the program in listing 1.

XREF OF XREF

0 38 66 70 125 134 162 193 203 241 380
1
206 220 228 230 238 242 264 379 421
20
12
2
20
21
255
30000
37
4
5
6
74
9
A
ALPHA
ANINCLUDE
ARRAY
BEGIN
204 213 216 218 258 279 299 314 338 343
Listing 2 continued on page 428
Listing 2 continued:

<table>
<thead>
<tr>
<th>347</th>
<th>365</th>
<th>376</th>
<th>420</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>23</td>
<td>29</td>
<td>135</td>
</tr>
<tr>
<td>C2</td>
<td>24</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>25</td>
<td>139</td>
<td>239</td>
</tr>
<tr>
<td>C4</td>
<td>26</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>CH</td>
<td>47</td>
<td>263</td>
<td>283</td>
</tr>
<tr>
<td>CHAR</td>
<td>29</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>CHARPOS</td>
<td>49</td>
<td>238</td>
<td>260</td>
</tr>
<tr>
<td>CHR</td>
<td>382</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLOSE</td>
<td>205</td>
<td>219</td>
<td></td>
</tr>
<tr>
<td>CONCAT</td>
<td>235</td>
<td>391</td>
<td></td>
</tr>
<tr>
<td>CONST</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COPY</td>
<td>196</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CROSSREF</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DELETE</td>
<td>189</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEST</td>
<td>57</td>
<td>397</td>
<td>398</td>
</tr>
<tr>
<td>DIV</td>
<td>81</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>DO</td>
<td>162</td>
<td>260</td>
<td>304</td>
</tr>
<tr>
<td>ELSE</td>
<td>223</td>
<td>232</td>
<td>328</td>
</tr>
<tr>
<td>END</td>
<td>36</td>
<td>40</td>
<td>75</td>
</tr>
<tr>
<td>ENDITALL</td>
<td>104</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>EOF</td>
<td>217</td>
<td>224</td>
<td></td>
</tr>
<tr>
<td>EOFNAME</td>
<td>181</td>
<td>191</td>
<td>193</td>
</tr>
<tr>
<td>EXIT</td>
<td>170</td>
<td>194</td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td>52</td>
<td>224</td>
<td>231</td>
</tr>
<tr>
<td>F2</td>
<td>53</td>
<td>201</td>
<td>205</td>
</tr>
<tr>
<td>FALSE</td>
<td>432</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FILLCHAR</td>
<td>415</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIRST</td>
<td>34</td>
<td>124</td>
<td>351</td>
</tr>
<tr>
<td>FLEVEL</td>
<td>50</td>
<td>200</td>
<td>206</td>
</tr>
<tr>
<td>G</td>
<td>54</td>
<td>72</td>
<td>73</td>
</tr>
<tr>
<td>GETLINE</td>
<td>99</td>
<td>209</td>
<td>261</td>
</tr>
<tr>
<td>ID</td>
<td>45</td>
<td>368</td>
<td>359</td>
</tr>
<tr>
<td>IF</td>
<td>66</td>
<td>70</td>
<td>129</td>
</tr>
<tr>
<td>IHE</td>
<td>241</td>
<td>242</td>
<td>318</td>
</tr>
<tr>
<td>IN</td>
<td>419</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTEGER</td>
<td>43</td>
<td>44</td>
<td>49</td>
</tr>
<tr>
<td>IORESUL</td>
<td>203</td>
<td>393</td>
<td>399</td>
</tr>
<tr>
<td>ITEM</td>
<td>31</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>ITEMREF</td>
<td>31</td>
<td>34</td>
<td>39</td>
</tr>
<tr>
<td>K</td>
<td>43</td>
<td>413</td>
<td>419</td>
</tr>
<tr>
<td>KEY</td>
<td>33</td>
<td>123</td>
<td>348</td>
</tr>
<tr>
<td>L</td>
<td>116</td>
<td>125</td>
<td>129</td>
</tr>
<tr>
<td>LAST</td>
<td>34</td>
<td>352</td>
<td>369</td>
</tr>
<tr>
<td>LEFT</td>
<td>35</td>
<td>152</td>
<td>349</td>
</tr>
<tr>
<td>LENGTH</td>
<td>79</td>
<td>83</td>
<td>232</td>
</tr>
<tr>
<td>LINE</td>
<td>51</td>
<td>186</td>
<td>188</td>
</tr>
<tr>
<td>LN</td>
<td>263</td>
<td>323</td>
<td></td>
</tr>
<tr>
<td>LINELEN</td>
<td>48</td>
<td>237</td>
<td>260</td>
</tr>
<tr>
<td>LNO</td>
<td>38</td>
<td>139</td>
<td>354</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>66</td>
<td>81</td>
</tr>
<tr>
<td>-------</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>LP</td>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEMAVAIL</td>
<td>66</td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>MOD</td>
<td>66</td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>44</td>
<td>66</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>164</td>
<td>164</td>
<td>228</td>
</tr>
<tr>
<td>NEXT</td>
<td>39</td>
<td>140</td>
<td>355</td>
</tr>
<tr>
<td>NEXTCHAR</td>
<td>256</td>
<td>282</td>
<td>301</td>
</tr>
<tr>
<td>NIL</td>
<td>142</td>
<td>150</td>
<td>342</td>
</tr>
<tr>
<td>NOT</td>
<td>427</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OF</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PACKED</td>
<td>29</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>PAGER</td>
<td>62</td>
<td>121</td>
<td>131</td>
</tr>
<tr>
<td>POS</td>
<td>186</td>
<td>191</td>
<td>241</td>
</tr>
<tr>
<td>PRINTREE</td>
<td>169</td>
<td>152</td>
<td>154</td>
</tr>
<tr>
<td>PRINTWORD</td>
<td>113</td>
<td>153</td>
<td></td>
</tr>
<tr>
<td>PROCEDURE</td>
<td>62</td>
<td>99</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>113</td>
<td>177</td>
<td>251</td>
</tr>
<tr>
<td>PROGRAM</td>
<td>3</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>READCH</td>
<td>251</td>
<td>285</td>
<td>310</td>
</tr>
<tr>
<td>READLN</td>
<td>231</td>
<td>233</td>
<td>386</td>
</tr>
<tr>
<td>RECORD</td>
<td>32</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>REPEAT</td>
<td>127</td>
<td>281</td>
<td>303</td>
</tr>
<tr>
<td>RESET</td>
<td>201</td>
<td>392</td>
<td></td>
</tr>
<tr>
<td>REWRITE</td>
<td>398</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RIGHT</td>
<td>35</td>
<td>154</td>
<td>350</td>
</tr>
<tr>
<td>ROOT</td>
<td>42</td>
<td>168</td>
<td>378</td>
</tr>
<tr>
<td>SEARCH</td>
<td>332</td>
<td>360</td>
<td>363</td>
</tr>
<tr>
<td>SIZEOF</td>
<td>415</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOFNAME</td>
<td>180</td>
<td>186</td>
<td>189</td>
</tr>
<tr>
<td>SOURCE</td>
<td>56</td>
<td>79</td>
<td>390</td>
</tr>
<tr>
<td>SPANCOMMEN</td>
<td>297</td>
<td>324</td>
<td></td>
</tr>
<tr>
<td>SPANQUOTE</td>
<td>277</td>
<td>319</td>
<td></td>
</tr>
<tr>
<td>STRING</td>
<td>51</td>
<td>55</td>
<td>57</td>
</tr>
<tr>
<td>TEXT</td>
<td>54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THEN</td>
<td>66</td>
<td>70</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>193</td>
<td>203</td>
<td>215</td>
</tr>
<tr>
<td></td>
<td>224</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>TITLE</td>
<td>55</td>
<td>83</td>
<td>84</td>
</tr>
<tr>
<td>TNTRL</td>
<td>182</td>
<td>188</td>
<td>189</td>
</tr>
<tr>
<td>TYPE</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNTIL</td>
<td>142</td>
<td>283</td>
<td>307</td>
</tr>
<tr>
<td>UAR</td>
<td>42</td>
<td>115</td>
<td>179</td>
</tr>
<tr>
<td>W</td>
<td>109</td>
<td>113</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>342</td>
<td>344</td>
<td>346</td>
</tr>
<tr>
<td>HI</td>
<td>332</td>
<td>340</td>
<td>356</td>
</tr>
<tr>
<td>WHILE</td>
<td>162</td>
<td>260</td>
<td>304</td>
</tr>
<tr>
<td>WITH</td>
<td>346</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WORD</td>
<td>30</td>
<td>32</td>
<td>113</td>
</tr>
<tr>
<td>WORDREF</td>
<td>38</td>
<td>35</td>
<td>42</td>
</tr>
<tr>
<td>WRITE</td>
<td>123</td>
<td>135</td>
<td>139</td>
</tr>
<tr>
<td>WRITELN</td>
<td>68</td>
<td>72</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>133</td>
<td>144</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>362</td>
<td>383</td>
<td>364</td>
</tr>
<tr>
<td></td>
<td>387</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>481</td>
<td>492</td>
<td>403</td>
</tr>
<tr>
<td></td>
<td>117</td>
<td>124</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>140</td>
<td>142</td>
<td>336</td>
</tr>
<tr>
<td></td>
<td>351</td>
<td>352</td>
<td></td>
</tr>
<tr>
<td></td>
<td>354</td>
<td>355</td>
<td>366</td>
</tr>
</tbody>
</table>

October 1981 © BYTE Publications Inc 429
Multiple Regression for the TRS-80

Thomas William Madron
Manager, Academic Computing Services
North Texas State University
POB 13495
Denton TX 76203

Within the context of a large number of scientific and technological problems it is necessary to be able to predict a score or value of a variable \(Y\) from one or more predictors \(X_s\). One method commonly used to accomplish this feat is multiple linear regression.

This article deals primarily with converting the mathematics of linear regression into a general-purpose BASIC computer program; therefore, only a very brief discussion of the mathematics is presented. Readers should consult the references for this article for a detailed treatment of multiple linear regression.

The fundamental equation for linear regression using a single predictor is:

\[Y' = a + bx \]

where \(Y'\) (Y prime) constitutes the predicted value(s) of the dependent variable; \(X\) is the predictor or independent variable; \(a\) the intercept constant; and \(b\) the regression coefficient. Suffice it to say, at this point, that multiple regression is an extension of simple linear regression:

\[Y = a + b_1X_1 + b_2X_2 + \ldots + b_nX_n \]

where \(X_1, \ldots, X_n\) constitutes a set of predictors and \(b_1, \ldots, b_n\) a set of regression coefficients.

The primary problem in computing a regression lies in determining values for \(a\) and \(b\). One formula that may be used to calculate \(a\) is:

\[a = \overline{Y} - b\overline{X} \]

where \(\overline{Y}\) (Y-bar) and \(\overline{X}\) (X-bar) are the mean values for \(Y\) and \(X\). As with the prediction formula, there is a straightforward extension to the multivariate case:

\[a = \overline{Y} - b_1\overline{X_1} - b_2\overline{X_2} - \ldots - b_n\overline{X_n} \]

One of the primary problems, then, is to solve for the \(b\) so that we may calculate the equation.

For one or two independent variables, the calculations for the regression coefficients are straightforward, but with more than two independent variables it is useful to use a computer. It turns out that to obtain the coefficients, we need to solve a set of simultaneous equations. The easiest way to do the arithmetic is with matrix algebra.

In order to obtain all the coefficients we need, we can use the following formula (boldface letters denote matrices):

\[B = RR^{-1} \times RY \]

where \(B\) is a vector (in BASIC, a one-dimensional array), \(RR^{-1}\) is the inverse of the matrix (in BASIC, a two-dimensional array) of correlations between all of the independent variables taken two at a time; and \(RY\) is a vector of correlation coefficients of each independent variable with the dependent variable. (A correlation coefficient is a measure of the extent to which two variables vary together and, in the two-variable case, is identical to the "standardized" regression coefficient \(b^*\) [b-star].) The vector \(B\) has as its elements these coefficients, or \(b^*\)s (b-stars). The \(b^*\)s can be turned into \(b\)s through the use of the following formula:

\[b_i = b^* \left(\frac{s_y}{s_i} \right) \]

where \(s_i\) is the standard deviation of the dependent variable and \(s_y\) is the standard deviation of each \(i\)th independent variable. This article does not propose to explain matrix algebra, so suffice it to say that the computations for inverting matrices can be found in the book by Kerlinger and Pedhazur (reference 3) and in the articles by Adler (references 1 and 2).

In interpreting the results of regression, several additional statistics are useful. The first of these is the coefficient of multiple correlation, which is simply the correlation between the observed and predicted \(Y\) values (usually designated by the capital letter \(R\)). The proportion of variance in the dependent variable explained by the set of independent variables is given by the square of \(R\). The significance of \(R^2\) can be calculated using an \(F\)-test. It turns out that once we have accomplished the matrix arithmetic described above, \(R^2\) can be easily calculated:

\[R^2 = b^*_{1r_{11}} + b^*_{2r_{12}} + \ldots + b^*_{nr_{1n}} \]

and \(R = \sqrt{R^2}\). The \(F\)-test is also a straightforward calculation:

\[F = \frac{R^2/k}{(1 - R^2)/(N - k - 1)} \]

where \(k\) is the number of independent variables and \(N\) is the number of observations. \(F\) can be tested for the probability of occurrence by con-
sulting a table of F values, or by computation as in the program described. Now let's turn the arithmetic into a useful BASIC program.

Program Description

When doing statistical programming it is often desirable to produce a program that has general applicability to a wide range of data. Indeed, for large computers, a number of extensive general-purpose statistical packages are available. Alas, such is not the case for microcomputers. But, the programs provided will run easily on a 16 K-byte Radio Shack TRS-80 Model I Level II computer. Except for the routines used to format the output for the TRS-80 video monitor, no unusual BASIC keywords are used. Later in this article we show how the program might be simplified if BASIC matrix functions were available (they are not for standard TRS-80 BASIC).

Later in this article we show how the program might be simplified if BASIC matrix functions were available (they are not for standard TRS-80 BASIC). Many regression programs combine the routines to generate correlation matrices with the regression calculations. Because there are a number of valuable uses for a "stand-alone" correlation program, I have provided two separate programs; data for the second is transferred by an output file from the first. The program in listing 1 generates a correlation matrix from keyboard or tape input. On option, the matrix can be saved on tape. The program in listing 2 calculates regression. It would be easy to substitute disk I/O (input/output) for tape I/O. Both programs consist of a main calling program and a test program (lb).

Listing 1: The correlation-matrix program (la) and a test run (lb). Written in BASIC for the Radio Shack TRS-80 Model I Level II, this program provides a "stand-alone" correlation matrix that may be saved on cassette tape.

```
1000 ' CORRELATION MATRIX PROGRAM
1010 CLEAR:DEFINT I-N
1020 ' IF THE ZEROTH ELEMENT OF THE ARRAYS ARE USED, THEN
1030 ' IB MUST = ZERO, ELSE IB=1. ND=THE MAXIMUM DIMENSION
1040 ' FOR EACH ARRAY (MAX VARIABLES).
1050 IB=0:ND=15
1060 DIM R(ND,ND),A(ND),S(ND)
1070 CLS:PRINT "CORRELATION MATRIX PROGRAM"
1080 PRINT "BY THOMAS HM. MADRON"
1090 PRINT "2132 SAVANNAH TRAIL"
```

Listing 1a continued on page 432

Discount Prices

<table>
<thead>
<tr>
<th>Product</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINTERS</td>
<td></td>
</tr>
<tr>
<td>EPSON MX-70</td>
<td>$399.00</td>
</tr>
<tr>
<td>EPSON MX-80</td>
<td>$499.00</td>
</tr>
<tr>
<td>EPSON MX-80 FT</td>
<td>$599.00</td>
</tr>
<tr>
<td>GRAFTRAX</td>
<td>$90.00</td>
</tr>
<tr>
<td>INTERFACE (APPLE)</td>
<td>$75.00</td>
</tr>
<tr>
<td>CABLE</td>
<td>$22.50</td>
</tr>
<tr>
<td>CENTRONICS 737-1</td>
<td>$785.00</td>
</tr>
<tr>
<td>CENTRONICS 737-3</td>
<td>$855.00</td>
</tr>
<tr>
<td>IDS 445G</td>
<td>$815.00</td>
</tr>
<tr>
<td>IDS 480G</td>
<td>$1195.00</td>
</tr>
<tr>
<td>IDS 560G</td>
<td>$1450.00</td>
</tr>
<tr>
<td>NEC 5510 WTRACTORS</td>
<td>$2650.00</td>
</tr>
<tr>
<td>NEC 5550 WTRACTAC</td>
<td>$2995.00</td>
</tr>
<tr>
<td>QUME 5/4 SPRINT</td>
<td>$2675.00</td>
</tr>
<tr>
<td>FORMS TRACTOR</td>
<td>$705.00</td>
</tr>
<tr>
<td>STARWRITER/WTRACT</td>
<td>$1695.00</td>
</tr>
<tr>
<td>STARWRITER/WO TRACTOR</td>
<td>$1500.00</td>
</tr>
</tbody>
</table>

General Information:

We carry a large selection of hardware and software by other companies. Send for our catalog.

We are an authorized repair center for APPLE, ATARI, NORTH STAR, and EPSON.

FREDERICK COMPUTER PRODUCTS, INC.

5726 INDUSTRY LANE
FREDERICK, MD. 21701

TO ORDER CALL: (301) 694-8884
Listing A continued:

1100 PRINT "DENTON, TX 76201":PRINT
1110 INPUT "ENTER TOTAL NUMBER OF VARIABLES TO BE CORRELATED";NV
1120 IF NV>ND THEN PRINT "*** TOO MANY VARIABLES ***";GOTO 1110
1130 ' NV MUST BE PASSED TO CORL AS A STRING VARIABLE (NV$)
1140 NV$=STR$(NV);N=NV-(1-IB);GOSUB 4000 :NR=N:NC=N:GOSUB 3000
1150 CLS:INPUT "DO YOU WANT THE CORRELATION MATRIX REPRINTED";YS
1160 IF LEFT$(YS,1)="Y" THEN GOSUB 3000
1170 CLS:END
3000 ' SUBROUTINE TO PRINT A MATRIX
3010 ' NR=NUMBER OF ROWS, NC=NUMBER OF COLUMNS, IF
3020 ' IB=0 THEN NR=NR-1 AND NC=NC-1, IB=STARTING
3030 ' POINT FOR ARRAYS.
3040 FOR I=IB TO NR STEP 10:IA=I+9:IF IA>=NR THEN IA=NR
3050 FOR J=IB TO NC STEP 9:JA=J+8:IF JA>=NC THEN JA=NC
3060 CLS:PRINT "CORRELATION MATRIX";PRINT TL$
3070 F1$="VAR:";G1$="";F2$="SIGMA:";G2$="";F3$="";
3080 PRINT F1$;
3090 FOR L=J TO JA:PRINT USING G1$;L+1:NEXT L:PRINT
3100 FOR L=I TO IA
3110 PRINT USING F2$;L+1;:FOR M=J TO JA
3120 PRINT USING G2$;R(L,M);:NEXT M:PRINT:NEXT L
3130 PRINT @ 960,"TYPE 'C' TO CONTINUE";
3140 IF Y$="C" THEN 3150 ELSE 3140
3150 NEXT J: NEXT I
3160 RETURN
4000 ' COMPUTE MEANS, SIGMAS, CORRELATIONS
4010 ' N=NUMBER OF VARIABLES, N=N-1 IF IB (STARTING

Select a modem for your computer...easy as ABC.

CHOOSE A. The Smart One™ Model AM232, with its own built-in microcontroller, Auto Dials, Auto Answers, Auto Modes (originate/answer), "Direct Connect" for any computer with an RS232 interface...$299.00.

CHOOSE B. The Acoustic Modem, Model AMII/A, for the Apple®. Comes complete with a powerful operating system. Supports 25 easy to use keyboard commands and operates interactively with your programs. No interface card required!...$179.00.

CHOOSE C. The "Direct Connect" Modem, Model AMII, for the Apple®. Comes complete with a powerful operating system. Supports Auto Dial, Auto Answer, 27 easy to use keyboard commands and operates interactively with your programs. No interface card required!...$289.00.

Be a part of the information revolution. It's fun, exciting, informative, educational. Call or write your order today. COD's accepted.

MICROMATE
ELECTRONICS, INC.
2094 Front Street • East Meadow, New York 11554 • Telephone 516.794.1072
All "Direct Connect" modems are FCC certified. *Registered trademark of Apple Computer, Inc.
Listing 1a continued.
4020 'ELEMENT IN ARRAYS=O, ELSE N=N.
4030 GOSUB 4120
4040 GOSUB 4210
4050 T=NS:FOR I=1B TO N:A(I)=A(I)/T
4060 S(I)=SQR(R(I,I)/T-A(I)*A(I)):NEXT I
4070 FOR I=1B TO N:FOR J=I TO N:IF S(I)*S(J)=0.0 THEN 4090
4080 R(J,J)=(R(I,J)+A(I)*A(J))/(S(I)*S(J)):NEXT J:R(I,I)=1.0:NEXT I
4100 IF Y3$="Y" THEN GOSUB 4480
4110 RETURN
4120 'SETUP PARAMETERS FOR CORL
4130 CLS:INPUT "ENTER ANALYSIS NAME";TL$
4140 INPUT "ARE THE DATA FROM TAPE";Y1$
4150 INPUT "DO YOU WISH TO SAVE THE DATA ON TAPE";Y2$
4160 INPUT "DO YOU WISH TO SAVE THE MATRIX";Y3$
4170 Y1$=LEFT$(Y1$,1):Y2$=LEFT$(Y2$,1):Y3$=LEFT$(Y3$,1)
4180 IF Y1$+Y2$<>"Y" THEN RETURN
4190 PRINT"**ERROR**:YOU CANNOT BOTH READ AND SAVE DATA TAPE"
4200 PRINT "RUN IS TERMINATED":END
4210 'INPUT/OUTPUT SUBROUTINE FOR CORL
4220 CLS:INS=O:IF Y1$<>"Y" THEN 4230 ELSE 4240
4230 IF Y2$<>"Y" THEN 4290
4240 PRINT "PLACE DATA TAPE IN RECORDER"
4250 PRINT @ 960,"TYPE 'C' TO CONTINUE"
4260 Y$=INKEY$:IF Y$="C" THEN 4270 ELSE 4280
4270 IF Y1$="Y" THEN 4280 ELSE 4290
4280 CLS:PRINT "DATA ARE BEING ENTERED FROM TAPE";GOTO 4310

NOW!
NEW PRODUCTS!
NOW AVAILABLE FROM AUTOMATED EQUIPMENT

TELEVIDE SYSTEM I
The Televideo System I is a CP/M* based single-user computer system. State-of-the-art design and single-board construction accounts for Television's reliability and exceptional price-performance ratio. Basic, Plus I and Fortran are just a few of the high level languages available. As your needs grow, so can your Televideo computer system. The System I can be a satellite computer of a larger network of user stations using the multi-processor multi-tasking System II or System III. System I includes TS-61 computer, Televideo 910 terminal (820 terminal available at additional cost) and CP/M* 2.2. Nation wide on-site service is available through General Electric service company. System I specifications: 280A, 64K Ram, 4K diagnostic Eprom, two 5" 350K drives, serial and parallel port.

NORTHSTAR ADVANTAGE COMPUTER
The Northstar Advantage Computer is an integrated package including full graphics capability, line charts, bar graphs, pie charts and 3 dimensional displays are all possible as part of Northstar's optional graphical-DOS operating system or CP/M* graphics package. All Northstar applications software is available for the Advantage Computer System. For an additional expansion cards are included. Specifications: 280Acpu, 64K Ram, Green screen 12" monitor, 340 x 640 pixel graphics resolution, sculptured typewriter-like keyboard, two 5" 350K drives.

V.I.P.'s call A.E.I.
Because A.E.I. tests before shipping, has expertise on all items offered, and is price competitive.

AUTOMATED EQUIPMENT, INC.
18430 WARD STREET, FOUNTAIN VALLEY, CALIFORNIA 92708
See these products and a full line of peripheral equipment in our showroom.
4290 {CLS:PRINT "ENTER DATA FOR EACH VARIABLE"
4300 PRINT "TYPE 'END' WHEN DATA ENTRY COMPLETED"
4310 IF Y1$="Y" THEN INPUT $-1,NV$:
4320 IF Y2$="Y" THEN PRINT $-1,NV$
4330 NV=VAL(NV$): FOR I=IB TO N: A(I)=0.0: NEXT I
4340 FOR J=IB TO N: R(I,J)=0.0: NEXT J: NEXT I
4350 FOR I=IB TO N:
4360 IF Y1$<>"Y" THEN PRINT "Obs";NS+1;"VAR";I+1:
4370 IF Y1$="Y" THEN INPUT $-1,S$ ELSE INPUT S$
4380 IF S$="END" THEN 4460 ELSE S(I)=VAL(S$):NEXT I
4390 IF Y2$<>"Y" THEN 4420
4400 IF I=IB TO N:S$=STR$(S(I))
4410 PRINT $-1,S$:NEXT I
4420 FOR I=IB TO N: A(I)=A(I)+S(I)
4440 NS=NS+1
4450 GOTO 4350
4460 IF Y2$="Y" THEN PRINT $-1,"END"
4470 RETURN
4480 ' MATRIX OUTPUT SUBROUTINE
4490 CMD"T":CLS:PRINT "PREPARE MATRIX TAPE AND RECORDER"
4500 PRINT @ 960,"TYPE 'C' TO CONTINUE"
4510 Y$=INKEY$:IF Y$="C" THEN 4520 ELSE 4510
4520 PRINT $-1,TL$:PRINT $-1,NV,NS
4530 FOR I=IB TO N: PRINT $-1,A(I),S(I):NEXT I
4540 FOR I=IB TO N: FOR J=I TO NV: IF I=J THEN PRINT $-1
4550 PRINT $-1,R(I,J)

WE DISCOUNT PRICES — NOT SERVICE

APPLE II PLUS 48K
$1,099
APPLE II PLUS 16K $1,025

SOFTWARE
APPLE DOS TOOLKIT 55
APPLE PLOT 50
BASII BUSINESS SOFTWARE ... 99
APPLE FORTRAN 159
APPLEPLOT 119
APPLEWRIT 85
DOW JONES PORTFOLIO EVALUATOR 45
DOW JONES NEWS & QUOTES REPORTER 85
THE CONTROLLER 485
VISCALC (16 SECTOR) 158
VISPLG 149
VISUPLG 218
DESKTOP PLAN II 129
BPI BUSINESS SOFTWARE (EACH) 335
SUPER TEC 125
PROGRAMMA APPLE PIE 110
EASYWRITER (80 COLUMNS) 219
D.S MASTER 60
WORD STAR 299
MICROSOFT FORTRAN 148

APPLE II PLUS 16K
ATARI 400 (16K) 350
419 PROGRAM RECORDER 69
819 DISK DRIVE 439
813 DUAL DISK DRIVE 1,199
16K RAM MEMORY MODULE 89
MICROTEK 32K RAM 178
80 INTERFACE MODULE 159
830 ACCUSTIC MODM 159
825 PRINTER (CENTRONIC 737) 699
JOYSTICK PAIR 18
LIGHT PEN 65
ATARI VISCALC 149
BASIC LANGUAGE 45
ASSEMBLER EDITOR 45
MUSIC COMPOSER 45
STAR RAIDER 39
COMPUTER CHESS 30
BASKETBALL 30
TELLEKIN 20
DATASOFT TASK WIZARD 79

TO ORDER: Please send cashiers check, money order or personal check (allow 10 business days to clear). Visa and Master Card credit card service and 3% American Express credit card service and 5%. Shipping, handling and insurance in U.S. and 3% (minimum $4). California residents add 6% sales tax. Foreign orders add 10% for shipping. Equipment is subject to price change and availability. All equipment carries factory warranty. Store prices differ from mail order prices. TELEX: 8971420 DATAMAX-SOD

CALL OR WRITE FOR A COMPLETE PRICE LIST

computer age inc.
priced computer store
4688 CONVOY STREET, SAN DIEGO, CA 92111
(714) 565-4062 (800) 854-1941
Listing 1e continued:

4560 NEXT J:NEXT I
4570 CMD"R":RETURN

(1b)

FUN
CORRELATION MATRIX PROGRAM
BY THOMAS WM. MADRON
2132 SAVANNAH TRAIL
DENTON, TX 76201

ENTER TOTAL NUMBER OF VARIABLES TO BE CORRELATED? 3
ENTER ANALYSIS NAME? TEST DATA
ARE THE DATA FROM TAPE? N
DO YOU WISH TO SAVE THE DATA ON TAPE? Y
DO YOU WISH TO SAVE THE MATRIX? Y
PLACE DATA TAPE IN RECORDER
TYPE 'C' TO CONTINUE ENTER DATA FOR EACH VARIABLE
TYPE 'END' WHEN DATA ENTRY COMPLETED

<table>
<thead>
<tr>
<th>OBS</th>
<th>VAR1</th>
<th>VAR2</th>
<th>VAR3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>182</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>180</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Listing 1b continued on page 436
Listing 1b continued:

OBS 4 VAR 1 ? 28
OBS 4 VAR 2 ? 30
OBS 4 VAR 3 ? 225
OBS 5 VAR 1 ? 28
OBS 5 VAR 2 ? 28
OBS 5 VAR 3 ? 199
OBS 6 VAR 1 ? 30
OBS 6 VAR 2 ? 26
OBS 6 VAR 3 ? 207
OBS 7 VAR 1 ? 30
OBS 7 VAR 2 ? 26
OBS 7 VAR 3 ? 200
OBS 8 VAR 1 ? 26
OBS 8 VAR 2 ? 25
OBS 8 VAR 3 ? 212
OBS 9 VAR 1 ? 14
OBS 9 VAR 2 ? 29
OBS 9 VAR 3 ? 206
OBS 10 VAR 1 ? 30
OBS 10 VAR 2 ? 28
OBS 10 VAR 3 ? 224
OBS 11 VAR 1 ? 21
OBS 11 VAR 2 ? 28
OBS 11 VAR 3 ? 210
OBS 12 VAR 1 ? 30
OBS 12 VAR 2 ? 27
OBS 12 VAR 3 ? 212
OBS 13 VAR 1 ? 28
OBS 13 VAR 2 ? 25
OBS 13 VAR 3 ? 206
OBS 14 VAR 1 ? 36
OBS 14 VAR 2 ? 27
OBS 14 VAR 3 ? 216
OBS 15 VAR 1 ? 30
OBS 15 VAR 2 ? 29
OBS 15 VAR 3 ? 212
OBS 16 VAR 1 ? 30
OBS 16 VAR 2 ? 28
OBS 16 VAR 3 ? 208
OBS 17 VAR 1 ? END

PREPARE MATRIX TAPE AND RECORDER
TYPE 'C' TO CONTINUECORRELATION MATRIX

TEST DATA
VAR: 1 2 3
 1 1.00 -0.01 0.47
 2 -0.01 1.00 0.37
 3 0.47 0.37 1.00

TYPE 'C' TO CONTINUE DO YOU WANT THE CORRELATION MATRIX REPRINTED? Y

CORRELATION MATRIX

TEST DATA
VAR: 1 2 3
 1 1.00 -0.01 0.47
 2 -0.01 1.00 0.37
 3 0.47 0.37 1.00

TYPE 'C' TO CONTINUE READY

>
NOW! Write a letter and print immediately!
 • Apple II w/48K. • Epson Interface.
 • Disc writer. • Epson Cable.
 • Sanyo 9" Monitor. • Apple Writer.
 • Epson MX-80.

Complete Package
Now Only $2522

Apple II w/48K $1169.00
For 220V Add $100

APPLE II ACCESSORIES

 DC HAYES MICRO MODEM II $399
 VIDEX 80 COLUMN VIDEO TERMINAL $290
 VYDEX KEYBOARD ENHANCER $112
 VISI CALC, 3.3 $150
 SUP'R MOD $33
 280 SOFT CARD $280
 THE SOURCE $99

 WORD STAR by MICRO PRO 3.0 $269
 APPLE SILENT TYPE PRINTER $339
 APPLE CLOCK/CALENDAR $249
 BPI GENERAL LEDGER. $320
 BPI ACCOUNTS RECEIVABLE $320
 INVENTORIES CONTROL $320
 HIGH SPEED SERIAL INTERFACE $174

MEMOREX

 MAXEL
 BASF

 Box of 10 $12.00
 Box of 10 $35.00
 Box of 10 $35.00

Apple II plus 48K.
Apple Disc Drive II and Interface DOS 3.3.
Sanyo 9" B&W Monitor.
Visilogic 3.3 Software

5 1/4 DISKETTES FOR APPLE & OTHER MICROs

For full line of software in stock!

HEWLETT PACKARD

A Complete Computer System in One Small Package.

The HP-85 is a powerful BASIC language computer, complete with keyboard, CRT display, printer & tape drive all in one 20 pound unit. 16K RAM, expandable to 32K. Reg. $3250.00

Now Only $2595.00

HEWLETT PACKARD

 HP-83 Reg. 2250.00 $1750.00
 HP 41C $269.95 Optical Wdnd #41C $99.50
 HP 41CV $289.95 Printer #41C $99.00
 memory module only 27.50 Card Reader #41C $199.87

 7225B Graphic Plotter
 OPT. 002 Reg. 2,200 $1699
 Flex Disc Drive $1900
 2631B Impact Printer
 OPT. 885 Reg. 3,950 $2,895

 8290M 5 1/4" Dual Master
 Flex Disc Drive $1900

 Reg. 2,500

ATARI

ATARI 800 with 16K

Texas Instruments

TI 99/4 Computer

Designed to be the first Computer for the skilled user, or the beginner.

Orig. 950.00 Now Only $379.00

CALL FOR LOW PRICE

Full line of
ATARI software available

--

EPSON

MX-80 Printer $499.55
MX-100FT Printer $784.95

Sanyo Monitors

VM-4505 9" B&W $169.95
DM-5012CX 12" B&W $259.95
DM-5112CX 12" Green $289.95
DMC-6013 13" Color $449.95
Electro Home 9" Green $204.95

--

CORPORATE ACCOUNTS WELCOME

(212) 260-4410

TOLL FREE OUT OF STATE

800-221-7774
800-221-5858
800-223-5661

TERMINALS

Perkin-Elmer Bantam Terminal $779

ADDs

Applied Digital Data Systems Inc

VIEWPOINT

Only $610

910 $655
920 C $799

PRINTERS

TEXAS INSTRUMENTS

T1 810 $1599
T1 820 KSR $1799

DIABLO

630 $2.395
1650 RO $2.999
1650 KSR $3.599
1640 RO $2.579
1640 KSR $3.550

DEC WRITER

LA34 $1,075
PAPER TIGER

440G Graph $785

440G Graph $975
445G Graph $790
460G Graph $1299
560G Graph $1595
440 $899
445 $699
460 $1275
QUOME SPRINT

440 $1245
5/55 RO $2.450
5/55 KSR $2.850

CENTRONICS

739-3 Serial $840
739-1 Parallel $840

47st. photo

67 West 47th St. New York, N.Y. 10036
SUNDAY 10-4, DAILY 9-8, FRIDAY 9-2

Items on sale for limited time only, and are subject to limited availability. Not responsible for typographical errors. This ad superseded all other ads prior to Oct. 1. All orders subject to verification and acceptance. Minimum shipping and handling $4.95.
Listing 2: The regression calculating program (2a) and a test run (2b) written for the TRS-80 Model I Level II.

(2a)

1000 'MULTIPLE REGRESSION PROGRAM
1010 CLEAR:DEFINT I-N
1020 'IF THE ZEROTH ELEMENT OF THE ARRAYS ARE USED, THEN
1030 'IB MUST = ZERO, ELSE IB=1. ND=THE MAXIMUM DIMENSION
1040 'FOR EACH ARRAY (MAX VARIABLES),
1050 IB=0:ND=15
1060 DIM RY(ND,IB),R(ND,ND),X(ND,ND),A(ND),S(ND),B(ND,IB)
1070 DIM IX(ND),BE(ND)
1080 CLS:PRINT "MULTIPLE LINEAR REGRESSION PROGRAM"
1090 PRINT "BY THOMAS W L MADRON (1979)"
1100 PRINT "2132 SAVANNAH TRAIL"
1110 PRINT "DENTON, TX 76201"
1120 FOR I=0 TO 800:NEXT I
1130 GOSUB 4000:N=N-(1-IB):NR=N:NC=N:GOSUB 3000
1140 CLS:INPUT "DO YOU WANT THE CORRELATION MATRIX REPRINTED";Y$
1150 IF LEFT$(Y$,1)="Y" THEN GOSUB 3000
1160 CLS:INPUT "VARIABLE NUMBER OF DEPENDENT VAR. FOR THIS RUN";iY
1170 iY=iY-(1-IB)
1180 INPUT"NUMBER OF INDEPENDENT VARIABLES IN THIS RUN";INi
1190 IF NZ+1>NV THEN PRINT "*** TOO MANY VARIABLES ***":
1200 GOTO 1150
1210 PRINT "ENTER VARIABLE NUMBERS FOR INDEPENDENT VARIABLES"
1220 N=NI-(1-IB)
1230 FOR I=IB TO N:INPUT IM;IX(I)=IM-(1-IB):NEXT I

50 MHz DIGITAL MEMORY OSCILLOSCOPE
IN A PERSONAL COMPUTER

TWO CHANNEL DIGITAL MEMORY OSCILLOSCOPE. The Model 85 provides two signal input channels on one board and the time base system on a separate board. Both vertical channels have a full 50 MHz bandwidth. Digitization is performed by high-speed sample and hold circuitry and an eight-bit A/D converter to ensure high resolution and accuracy.

FULLY PROGRAMMABLE. Automated measurements were never simpler. Programmable features such as vertical attenuation, time base, trigger level, AC/DC/GND input and more, make the Model 85 a true laboratory and factory quality instrument.

APPLE II* and APPLE II PLUS* COMPATIBLE. The Model 85 Digital Memory Oscilloscope plugs directly into the Apple II peripheral slots. Easily installed—just plug in the vertical and horizontal boards, attach probe connectors, load the software, and you are ready to make precision measurements.

DIGITAL STORAGE. All the convenient features of digital storage: refresh display for easy viewing, precision measurements, unlimited storage time, signal processing, waveform storage on disk. Now with the Model 85 Oscilloscope and personal computer combination, you can create your own sophisticated signal analysis system.

NORTHWEST INSTRUMENT SYSTEMS
MODEL 85 OSCILLOSCOPE

*Cradle of Apple Computer Inc.
```
1230 N=NI-(I-IIB)
1240 FOR I=IB TO N:K=IX(I);FOR J=I TO N
1250 L=IX(J);X(I,J)=R(K,L):X(J,I)=X(I,J)
1260 NEXT J;X(I,I)=1;D:NEXT I
1270 FOR I=IB TO N:J=IX(I);RY(I,IB)=RHY(J)
1290 A0=A(IY):R3=O
1300 FOR I=IB TO N:J=IX(I);BE(I)=B(I,IB)*X(I,J)
1310 A0=A0-BE(I)*A(J):R3=R3+B(I,IB)*RY(I,IB):NEXT I;R4=SQR(R3)
1320 F1$="VAR MEANS SIGMA ZERO-R BET" B R2-X(I)"
1330 F2$=****:****:****:****:****:****:****:****:****:****:****:****:****:****:****
1340 FOR I=IB TO N STEP 10;J=I+9
1350 IF J>N THEN J=N
1360 CLS:PRINT TL$#
1370 PRINT F1$
1380 FOR K=I TO J:LI=IX(K)
1390 R5=R5-((B(K,IB)/SQR(X(K,K))))/2
1400 PRINTUSING F2$;IX(K)+1,A(L),S(L),RY(K,IB),B(K,IB),BE(K),R5
1410 NEXT K:PRINT @ 760,"TYPE 'C' TO CONTINUE"
1420 Y$=INKEY$:IF Y$="C" THEN 1430 ELSE 1420
1430 NEXT I
1440 CLS:PRINT TL$:PRINT "INTERCEPT=";A0
1450 PRINT "MULTIPLE R=";R4:"R-SQUARED=";R3
1460 D1=NI:D2=NS-(NI)-1:F1=(R3*D2)/(1-R3*D1):GOSUB 5000
1470 PRINT "FOR DF1=";D1;"AND DF2=";D2;"F=";F1;"F=";F
1480 PRINT "NUMBER OF OBSERVATIONS=";NS
```
Listing 2a continued:

1490 PRINT @ 960,"TYPE 'C' TO CONTINUE";
1500 Y$=INKEY$;IF Y$="C" THEN 1510 ELSE 1500
1510 CLS:INPUT "DO YOU WANT ANOTHER RUN";Y$;
1520 IF LEFT$(Y$,1)="Y" THEN 1530 ELSE CLS:END
1530 RUN
2000 ' MATRIX MULTIPLICATION
2010 ' N1=NUMBER OF ROWS IN A AND X, N2=NUMBER OF
2020 ' OF COLUMNS IN A AND RY, N3=NUMBER OF COLUMNS
2030 ' IN X AND NUMBER OF ROWS IN RY. SUBTRACT 1 FROM
2040 ' FROM EACH IF IB=0,
2050 FOR I=IB TO N1
2060 FOR J=IB TO N2
2070 B(I,J)=0
2080 FOR K=IB TO N3
2090 B(I,J)=B(I,J)+X(I,K)*RY(K,J)
2100 NEXT K
2110 NEXT J
2120 NEXT I:RETURN
3000 ' SUBROUTINE TO PRINT A MATRIX
3010 ' NR=NUMBER OF ROWS, NC=NUMBER OF COLUMNS, IF
3020 ' IB=0 THEN NR=NR-1 AND NC=NC-1. IB=STARTING
3030 ' POINT FOR ARRAYS.
3040 FOR I=IB TO NR STEP 10:IA=I+9:IF IA>=NR THEN IA=NR
3050 FOR J=IB TO NC STEP 9:JA=J+8:IF JA>=NC THEN JA=NC
3060 CLS:PRINT "CORRELATION MATRIX":PRINT TL$
3070 F1$="VAR":"G1$=" ****";F2$="****":G2$=" **,**
3080 PRINT F1$;

A REFURBISHED DAISY WHEEL TERMINAL
FOR PERSONAL COMPUTER USERS AND SMALL BUSINESSES.

Now you can have letter-quality printing
and professional features for just $1,450.*

AJ daisy wheel printer terminals are renowned for
exceptional performance, high reliability, and applications
versatility. Now you can have all this for only $1,450* in our
special limited offer.
• 30 cps letter-quality printing
• Changeable type faces
• Full ASCII keyboard with
 numeric pad
• High resolution XY plotting
• Complete electronic forms
 control
• 128-character buffer
• Asynchronous RS-232 interface
• Printwheel, ribbon cartridge,
 and cable included
• 30-day parts/labor warranty

And you can choose from a list of options including
forms tractor, pin-feed platen, paper trays, side shelves,
extra printwheels, APL keyboard and 2K buffer.

Call your nearest AJ regional
office for details: San Jose, CA
(408) 946-2900; Rosemont, IL
(312) 671-7155; Hackensack,
NJ (201) 488-2525. Or check
the phone book for the number
of your local AJ sales/service
office.

*Price excludes options and is subject to
change without notice. Model shown includes
certain options. Offer available only in the
contiguous U.S.
Listing 2a continued:

3090 FOR L=J TO JA:PRINT USING G1$:L+1:;NEXT L:PRINT
3100 FOR L=I TO IA
3110 PRINT USING F2$:L+1:;FOR M=J TO JA
3120 PRINT USING G2$:R(L,M);:NEXT M:PRINT:NEXT L
3130 PRINT @ 960,"TYPE 'C' TO CONTINUE";
3140 Y$=INKEY$:IF Y$="C" THEN 3150 ELSE 3140
3150 NEXT J: NEXT I
3160 RETURN
4000 ' MATRIX INPUT FROM TAPE ROUTINE
4010 CMD"T";CLS:PRINT "PREPARE MATRIX TAPE AND RECORDER"
4020 PRINT @ 960,"TYPE 'C' TO CONTINUE";
4030 Y$=INKEY$:IF Y$="C" THEN 4040 ELSE 4030
4040 INPUT *-1,TL$;INPUT *-1,IV,NS
4050 N=NV-(-1-IB) -
4060 FOR I=IB TO N:INPUT *-1,A(I),S(I):NEXT I
4070 FOR I=IB TO N:FOR J=I TO N:IF I=J THEN 4090
4080 INPUT *-1,R(I,J)
4090 NEXT J:NEXT I
4100 FOR I=IB TO N:FOR J=I TO N:IF I=J THEN R(I,J)=1:GOTO 4110
 ELSE R(J,I)=R(I,J)
4110 NEXT J:NEXT I
4120 CMD"R";"RETURN
5000 ' PROBABILITY OF OCCURENCE OF F,T,Z,CHI-SQ
5002 ' ADAPTED FROM DONALD J. VELDMAN, FORTRAN PROGRAMMING
5004 ' FOR THE BEHAVIORAL SCIENCES (NEW YORK: HOLT, RINEHART
5010 ' D1, D2, F1 MUST BE SET BEFORE CALL

ADVANCED S-100 BUS PRODUCTS

LDPI/2
The LDP1/2 utilizes the advanced 8086 processor to provide up to 8 times the throughput of a 4 MHz Z80A processor. The powerful instruction set of the 8086 is ideal for high level languages such as PASCAL and CP/M. The 10 slot motherboard leaves 7 slots for user expansion. With the option of a 10 MByte Winchester and MPM-66, the LDP mainframe becomes a powerful multiuser system with the capability of handling 8 users without the degradation in performance experienced with Z80 MPM systems. The performance of the LDPI and LDP2 has never been available for such an affordable price.

FEATURES:
- LDP86, 8086 CPU board
- LDP72, advanced floppy disk controller
- LDP64K dynamic RAM
- 1 serial RS232 port
- 10 slot motherboard
- 1" Shugart 801R drive (LDP1), 2 Shugart 801R's (LDP2)
- 4K EPROM socket for user population

OPTIONS:
- HAZITALL
- 8" 10 MByte Winchester (replaces 1 Shugart 801 in LDP2)
- MPM-66 multiprocessor
- Woodgrained 7 slot chassis

PRICES

LDPIO CPU $ 349.95
LDPI72 PLC 274.95
LDIP4K RAM 695.00
LDIP128K RAM 1295.00
LDIP256K RAM 2095.00
HAZITALL 325.00
LDPI 3295.00
8DOS 195.00
CP/M-86 250.00
Microsoft BASIC 86 350.00

Call for LDPI option prices and board kit prices.

LDPI and MPM-66 are trademarks of Digital Research.
MS-DOS is a trademark of Seattle Computer Products.

LDP88 8088 CPU BOARD
- 8088 CPU 5 MHz operation upgradeable to 8 MHz • 8 vectored interrupts • Fully compiles with IBM 686 electrical and timing specs • RS232 serial port with modem control • 1K bytes of static RAM • 2 EPROM sockets (2716 or 2732) • 8087 upgrade kit available in Sept.
- 8 bit bus eases interface to other S100 bus boards • 1Mbyte address space • 85K I/O ports

64/256K MEMORY
- 8 or 16 bit operation • Meets all IBM 686 specs • Access time 350 ns from PSYCH low • Intel 8203 dynamic RAM controller • 24 or 16 bit address decoding • No wall states with 5 MHz 8088 or 8086 • Parity with Error interrupt generation • No DMA RESTRICTIONS • 64K board is upgradeable to 256Kbyte board

HAZITALL
- 2 Serial RS232 ports • 2 parallel ports with handshake control
- Math processor support (B319/B51 or B329/B512) • WINCHESTER DISK support • Real time programmable interrupt • Clock/calendar with battery back up • Synchronous data communication supported

LDP72 FLOPPY DISK CONTROLLER
- IBM compatible single and double density format • Single or double sided drives • Programmable data record length (128 to 1932 bytes/sector) • Multi sector and multi track transfer capability • Parallel seeks on up to 4 drives • On board digital data separator • Software selectable single or double density operation • Separate connectors for 5" and 8" drives • Software selection of standard or minidrives allowing mixing of both drives on a single controller

LOMAS DATA PRODUCTS
11 Cross Street
Westborough, MA 01581
Telephone (617) 366-4335
Listing 2a continued:

5020 'S IS RETURNED AS SIGNIFICANCE LEVEL
5030 P1 = 1.0
5040 IF D1 * D2 * F1 = 0.0 THEN 5260
5050 IF F1 < 1.0 THEN 5100
5060 A = D1
5070 B = D2
5080 F = F1
5090 GOTO 5130
5100 A = D2
5110 B = D1
5120 F = 1.0 / F1
5130 A1 = 2.0 / (9.0 * A)
5140 B1 = 2.0 / (9.0 * B)
5150 X = ((1.0 - B1) * FL.333333 - 1.0 + A1)
5160 Y = SQRT(B1 * FL.666667 + A1)
5170 Z = ABS(X / Y)
5180 IF B < 4.0 THEN 5200
5190 GOTO 5210
5200 Z = Z * (1.0 + 0.08 * ZC4 / BC3)
5210 Z1 = (.115194 +Z(.000394 +Z(.019527)))
5220 P1 = .5 / (1.0 + Z(.196854 +Z.019527))
5230 IF F1 < 1.0 THEN 5250
5240 GOTO 5260
5250 P1 = 1.0 - P1
5260 P = P1
5270 RETURN
6000 / MATRIX INVERSION USING EXCHANGE METHOD
How can Carrel™ teach Alice about Wonderland?
As a trainer you should know!

The Coloney Intelligent Learning Carrel™ is the answer to your individualized training needs.

Carrel™ is a custom-built student learning station that contains an exciting new interactive video system. Now you can have the power of computer assisted and computer managed instruction with the impact of high speed access to video. The system includes: the Apple II Plus™ microcomputer, a laser reflective videodisc player, a color monitor and the Coloney Interface Package. A new learning experience awaits your students in the wonderland of computer controlled stereo sound, beautiful high resolution video and colorful computer graphics. An ever patient Carrel™ coaxes, questions, and delights while answering your student's needs in an individualized learning environment. Best of all, Carrel™ is inexpensive. At Coloney we continue to give you reasons to make us your number one choice in interactive training.

Apple II Plus is a registered trademark of Apple Computer Inc.
The Coloney Intelligent Learning Carrel and Carrel are trademarks of Coloney Productions.

Circle 70 on inquiry card.
TEST DATA
VAR: 1 2 3
1 1.00 -0.01 0.47
2 -0.01 1.00 0.97
3 0.47 0.97 1.00
TYPE 'C' TO CONTINUE DO YOU WANT THE CORRELATION MATRIX REPRINTED? N
VARIABLE NUMBER OF DEPENDENT VAR. FOR THIS RUN? 3
NUMBER OF INDEPENDENT VARIABLES IN THIS RUN? 2
ENTER VARIABLE NUMBERS FOR INDEPENDENT VARIABLES
? 1
? 2
TEST DATA
VAR MEANS SIGMAS ZERO-R BETA B R2-X(I)
1 26.19 4.81 0.4743 0.4791 1.19 0.4359
2 27.25 1.79 0.3679 0.3740 2.50 0.2250
TYPE 'C' TO CONTINUE TEST DATA
INTERCEPT= 107.825
MULTIPLE R= .604004 R-SQUARED= .364621
FOR DF1= 2 AND DF2= 13 F= 3.733333 P= .0514039
NUMBER OF OBSERVATIONS= 16
TYPE 'C' TO CONTINUE DO YOU WANT ANOTHER RUN? N
READY

PRICE BREAKTHROUGH
16K RAM BOARDS FOR APPLE JUST $129.95

HAVE YOU BEEN WAITING FOR THE COST OF EXPANSION BOARDS TO COME DOWN? NOW IS THE TIME! NOW RAM EXPANSION HAS COST AS MUCH AS $9.50. OMEGA MICROWAVE IS PROUD TO ANNOUNCE THE ARRIVAL OF A 16K RAM EXPANSION CARD.

NOW YOU CAN RUN PASCAL, FORTRAN, 56K CPM, WITH A Z80 SOFT CARD, INTEGER BASIC, APPLESOFT AND OTHER LANGUAGES ON YOUR APPS. OMEGA MICROWAVE IS A 16K RAM EXPANSION CARD. NOW YOU CAN INCREASE USABLE MEMORY FOR VISIOCALC. NOW YOU DON'T HAVE TO PAY A FORTUNE TO HAVE ALL THIS.

AT $129.95, OMEGA RAMX 16 IS THE LOWEST PRICED CARD AVAILABLE TODAY.

WHAT DO YOU GIVE UP WHEN YOU PURCHASE THIS FIRST REALLY AFFORDABLE RAM EXPANSION CAR?

WELL, YOU GIVE UP HAVING TO REMOVE ONE RAM CHIP FROM THE MOTHERBOARD OF YOUR APPL; YOU GIVE UP HAVING TO STRAP A CABLE FROM THE CARD TO YOUR MOTHERBOARD. THAT'S IT, WHAT YOU GET IS A SIMPLE, RELIABLE BOARD THAT JUST PLUGS IN. MEMORY REFRESH IS ACCOMPLISHED ON THE BOARD ITSELF.

THE RAMX 16 IS GUARANTEED NOT JUST FOR 90 DAYS, BUT EVEN 6 MONTHS! OUR WARRANTY IS FOR ONE YEAR FROM DATE OF PURCHASE. WE WILL REPAIR OR REPLACE ANY BOARD THAT IS DEFECTIVE THROUGH MANUFACTURE FOR A PERIOD OF ONE YEAR AFTER PURCHASE. OMEGA MICROWAVE IS PROUD TO ANNOUNCE THE ARRIVAL OF A 16K RAM EXPANSION CARD.

ORDER YOUR RAMX 16 NOW BY CALLING TOLL FREE: 1-800-836-2246. KANSAS RESIDENTS CALL: 1-800-362-2421. THE RAMX 16 IS GUARANTEED NOT JUST FOR 90 DAYS, BUT EVEN 6 MONTHS! OUR WARRANTY IS FOR ONE YEAR FROM DATE OF PURCHASE. WE WILL REPAIR OR REPLACE ANY BOARD THAT IS DEFECTIVE THROUGH MANUFACTURE FOR A PERIOD OF ONE YEAR AFTER PURCHASE.

ORDER YOUR RAMX 16 NOW BY CALLING TOLL FREE: 1-800-836-2246. KANSAS RESIDENTS CALL: 1-800-362-2421. THE RAMX 16 IS GUARANTEED NOT JUST FOR 90 DAYS, BUT EVEN 6 MONTHS! OUR WARRANTY IS FOR ONE YEAR FROM DATE OF PURCHASE. WE WILL REPAIR OR REPLACE ANY BOARD THAT IS DEFECTIVE THROUGH MANUFACTURE FOR A PERIOD OF ONE YEAR AFTER PURCHASE.

ORDER YOUR RAMX 16 NOW BY CALLING TOLL FREE: 1-800-836-2246. KANSAS RESIDENTS CALL: 1-800-362-2421. THE RAMX 16 IS GUARANTEED NOT JUST FOR 90 DAYS, BUT EVEN 6 MONTHS! OUR WARRANTY IS FOR ONE YEAR FROM DATE OF PURCHASE. WE WILL REPAIR OR REPLACE ANY BOARD THAT IS DEFECTIVE THROUGH MANUFACTURE FOR A PERIOD OF ONE YEAR AFTER PURCHASE.
Modifying the Programs

The correlation program and the regression program are similarly organized (see table 1), but the latter reads data exclusively from a tape file generated by the correlation program. If a consolidated program is preferred, the correlation subroutine in the correlation program can be substituted for the matrix-input-tape subroutine in the regression program. Both subroutines begin at line 4000 in their respective programs. A consolidated program takes only about 6 K bytes of memory.

Because the program is based on matrix algebra, several of the subroutines can be replaced with BASIC matrix functions. While Level II BASIC for the TRS-80 has no matrix functions, it is possible to obtain a software package (from Racet Computers of Orange, California) that provides those functions. And other BASICS, of course, may have the functions. For example, with the Racet functions, the matrix-inversion subroutine (lines 6000 through 6170) of the regression program could be changed to the following:

6000 ' MATRIX INVERSION

Or in a DEC (Digital Equipment Corporation) BASIC system, it might appear as follows:

6010 I = &MINV(R,X,NV-1,
 D1,D2): RETURN

In both cases, some other (minor) changes would have to be made to the main program, but both techniques could be used. Built-in matrix functions, such as the example from DEC, do not typically use the zeroth row or column of arrays, thus wasting considerable memory. If these programs are implemented using such functions, however, the variable IB (line 1050) can simply be changed to 1, thus eliminating the use of the zeroth row and column throughout the program. The Racet functions use the zeroth row and column, and IB would be left unchanged. Bear in mind that these are only examples and that if the matrix functions are available, the program might be simplified in other ways as well.

Since arrays in Level II BASIC can be dynamically dimensioned, a variable (ND) is also set in line 1050 to the largest number of variables that might be contained with any given memory size. Even in a

Table 1: Organization of the correlation and regression programs. The main difference between the two is in the subroutines that begin at line 4000. It is impossible to consolidate the two into a single program (see text for details).

<table>
<thead>
<tr>
<th>Line Numbers</th>
<th>Routine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000-1170</td>
<td>main program</td>
</tr>
<tr>
<td>3000-3160</td>
<td>matrix-printing subroutine</td>
</tr>
<tr>
<td>4000-4570</td>
<td>correlation-matrix subroutine</td>
</tr>
<tr>
<td>4120-4200</td>
<td>read correlation parameters</td>
</tr>
<tr>
<td>4210-4470</td>
<td>data-input routine</td>
</tr>
<tr>
<td>4480-4570</td>
<td>matrix-tape-output routine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Line Numbers</th>
<th>Routine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000-1530</td>
<td>main program</td>
</tr>
<tr>
<td>2000-2120</td>
<td>matrix-multiplication subroutine</td>
</tr>
<tr>
<td>3000-3160</td>
<td>matrix-printing subroutine</td>
</tr>
<tr>
<td>4000-4120</td>
<td>matrix input from tape</td>
</tr>
<tr>
<td>5000-5270</td>
<td>probability-of-occurrence subroutine</td>
</tr>
<tr>
<td>6000-6170</td>
<td>matrix-inversion subroutine</td>
</tr>
</tbody>
</table>
16 K-byte machine, the dimensionality could be expanded beyond the default (ND = 15). Parameters for each problem are established conversationally in both programs, and parameters for regression can be found in lines 1130 through 1220. Questions requiring a yes or no answer can be answered with either "Y" or "YES" or "N" or "NO".

Data needed by the regression program includes the sequential number of the dependent variable in the run (a sequential number from 1 to the total number of variables correlated), the number of independent variables (any number from 1 to the total number of independent variables for the run), and the sequential variable numbers of Ni, the number of independent variables. The program is structured so that at the end of a run, the user is asked if there will be another run (from some subset of the variables correlated). This capacity is especially useful when doing activities such as causal modeling.

All printing, whether of the correlation matrix or other elements of the analysis, is formatted to fit the display screen of the TRS-80 (16 lines by 64 characters). The display is stopped at various stages throughout the program and information is communicated to the user with the following BASIC statements:

```
xxxx PRINT @ 960, "TYPE 'C' TO CONTINUE";
yyyy Y$ = INKEY$: IF Y$ = "C" THEN zzzz ELSE yyyy
zzzz next line
```

Many BASICs may not have the INKEY$ function that accepts input from the keyboard without waiting for the Enter or Return key to be pressed. To work properly, it must be placed in a loop, as illustrated. The PRINT @ 960 statement prints the message at position 960 (the 16th line of the display) on the screen.

Actual calculation of the statistics for the regression begins at line 1230. The correlation matrix R(I,J) is subset into X(I,J), which includes only the independent variables for the run (lines 1230 through 1260). Array X(I,J) is inverted to provide the information necessary to calculate the b's. The call to the matrix inversion routine is at line 1280 (GOSUB 6000).

In lines 1290 through 1460, several statistics are calculated and displayed for each independent variable, including the mean, standard deviation, zero-order correlations with the dependent variable, b₁, b₂, and R² with the variable deleted. The last statistic is useful in evaluating the impact of a given independent variable on the total regression. Finally, the summary regression statistics are calculated and printed in lines 1440 through 1490, including the intercept a, R, R², F, degrees of freedom for F, and p (the probability of occurrence of F). The probability is calculated with a call to the probability subroutine (GOSUB 5000). The rationale for the computational algorithm is given in Veldman's book (reference 5, pages 129 through 131). The same subroutine can also be used

BUILD YOUR COMPUTER BREADBOARDS & INTERFACES FASTER AND EASIER WITH NEW VECTOR PLUGBORDS

- **4610 series** - for STD-BUS-WW, solderable and unpatterned models.
- **4608 series** - for Intel/ National SBC/BLC 80-WW solderable, or unpatterned.
- **8804 series** - for S-100. Five models available.
- **4607** - for DEC LSI-11/PDP8-11, Heath-11.
- **4609** - for Apple II, Super-Kim, Pet Commodore with Expandamem.
- **4350** - for TI 980 Computer.
- **4611 series** - for Motorola Exorciser,™ Rockwell AIM65 expansion.
- Send for FREE brochure!

New RACK MOUNTING CAGES & ENCLOSURES AVAILABLE.

Everything in this ad is available through distributors or factory direct, from stock, if not available locally.

12460 Gladstone Ave., Sylmar, CA 91342; (213) 365-9661, TWX (910) 496-1539

748010

October 1981 © BYTE Publications Inc.

Circle 363 on inquiry card.
to calculate the probability of occurrence for \(t \) statistics, \(z \), and chi-square (see reference 5). The program then tests for another run or terminates execution (lines 1510 through 1520).

Extensions and Modifications

If the computer being used is a Radio Shack TRS-80 Model I, the correlation and regression programs will run as presented here. If the program is being implemented on another computer, it is likely that most of the screen-formattting routines will have to be changed. As mentioned above, the regression program can be simplified by replacing the matrix subroutines with machine-language matrix functions (such as those from Racet) or with native functions (such as exist in DEC BASIC). The number of variables that can be used by the program can be increased or decreased by changing only the initialized value of ND in line 1050 of both programs. The number of variables depends on memory size, but even on a 16 K-byte machine the number could be increased significantly.

All I/O of original data is handled in the correlation-matrix subroutine with calls to internal subprograms. If a floppy-disk drive is available, a decided advantage can be gained by saving the data and matrix on disk rather than on tape. Because the matrix can be saved, it can be used for input not only to regression but also to other programs. One possible addition to regression might be to add a routine to allow input of the means, standard deviations, and correlation matrix from the keyboard so that published matrices might be analyzed. The original input data can also be saved on tape and could be used in the regression program to calculate predicted values of \(Y \) and residuals.

The keyboard data-entry routine (beginning at line 4210 of the correlation program) is rather primitive and includes no means for verifying the veracity of the data—such a check method might be a useful addition to the program. While there are techniques for calculating a multiple regression other than the one presented here, one of the primary strengths of this approach is that the regression is actually calculated from the correlation matrix. Consequently, it is possible to calculate correlations when some data is missing (different \(N \)s for different pairs of variables).

There are pitfalls when doing this, but unless there is a lot of missing data (especially on large samples), it is quite useful. The actual correlation routine could be modified to handle missing data, and perhaps some scheme for differentially weighting observations might be included to allow the user to modify various distributions. Again, some caution should be exercised when doing such modifications to the data. In any event, if such modifications are made, they need be made only in the correlation subroutine—the regression program need not be touched.

As a final note, the various subroutines provided in this program are sufficiently general so that they can be used in other programs designed by the reader. In fact, only the calling program is specific to the regression or correlation functions. It would save time to build a subroutine library that could have general applicability. Although Level II BASIC does not provide the means for merging all or part of programs from tape to existing programs in memory (Radio Shack Disk BASIC does have a merge function), several software vendors currently supply such utilities that will do the job nicely.

References

There are no "secrets" in this article. I will simply show you some tricks that can be performed with UCSD Pascal. Like many programming tricks, these are of interest for two main reasons: to ease complicated system programming and to encourage fun programming.

All of the facts that I use can be found in the documentation available for UCSD Pascal (developed at the University of California at San Diego). However, these features have been documented very lightly up to now, with little or no explanation. Before I attempt to explain them I want to cover myself as follows: everything in this article has been tested with Apple II Pascal (both the original release and the current Version 1.3). Except as noted, I believe it should apply to other versions of UCSD Pascal—but I don't guarantee it.

Be warned: If you employ these tricks, you will abandon some of the safety features of the language. This could easily result in incomprehensible bugs in your program. Even if the program works correctly, you may run into trouble when you try to modify it. You should also be aware that tricks that work with your present system may not work with an updated version. Furthermore, the people who sold you your UCSD Pascal are under no obligation to support any features that they don't document themselves.

However, if you study these tricks you'll be able to do some things that are otherwise impossible. You'll also gain some insights into how the system works when it runs a Pascal program. You will find that your Pascal program can treat memory as a collection of bytes, which are in turn made up of bits; that data types are more changeable than they appear; that AND, OR, and NOT are more powerful than you thought; and that you can access specific machine locations in the same way you would with the PEEK and POKE keywords of BASIC.

Background

The original definition of Pascal is contained in the Pascal User Manual and Report by Kathleen Jensen and Niklaus Wirth. I call this original definition Classical Pascal, in order to distinguish it from UCSD Pascal. Classical Pascal was intended for use as a teaching language, and as such it embodies many features that support "good" programming practice. It even has features that enforce good practice.

Good practice, in programming or anything else, depends on what you're trying to achieve. For example, suppose you're developing a driver program for an exotic peripheral device. The question is, can you do the job conveniently and efficiently with normal good-practice programming in Classical Pascal? And the answer is, you could—but you'd prefer to circumvent the strictures of Classical Pascal. Perhaps you'd like to treat an integer value as an array of bits, or access a machine location by its physical address without using machine language.

A major assumption of Classical Pascal philosophy is strong typing (i.e. any value represents data of one type only, and it cannot be directly interpreted as if it were of another type). Jensen and Wirth did provide a mechanism for defeating strong typing—the free-union record variant—but they didn't explain its use in the Pascal User Manual and Report. I will do so later in this article.

Another assumption of Classical Pascal is that there are only two boolean values, represented by the built-in constants TRUE and FALSE. But in UCSD Pascal, a boolean value can actually be any pattern of 16 bits and it is interpreted as either true or false. The boolean operators AND, OR, and NOT are usually assumed to do single operations on values of TRUE and FALSE; actually, however, they are bitwise logical operators with 16-bit operands. This per-
mits some uses of boolean values and operations that are normally not considered part of Pascal.

Representing Scalar Values

In order to understand and apply these special techniques, you need to know how some of the data types are represented internally. The following sections provide details on how data is represented in binary for each scalar data type. A later section deals with arrays. (By the way, when I say “scalar” I don't include the real-data type. Jensen and Wirth define the real type as a scalar type, but then they continually modify by saying “any scalar type except real.” The fact is that real types are not very similar to other scalar types and I consider them a different category. If you're a purist, you can whisper “except real” each time the word “scalar” appears.)

The basic unit of storage in UCSD Pascal software is a 16-bit word that consists of two 8-bit bytes (on most microcomputers). The least-significant byte is at the lower of the two byte addresses. Figure 1 shows how to visualize a word; the least-significant bit is bit 0. Every nonpacked scalar value is represented in one word, as a 16-bit binary number.

Integers

An integer value is represented in one word as a binary number, with the least-significant bits in the low-numbered byte. Two's-complement notation is used to represent negative integers; thus, the most-significant bit of the binary number is a sign bit for the integer. If it is a 1, the integer value is negative and must be interpreted accordingly (see table 1).

Characters

A character is represented in one word by its ASCII (American Standard Code for Information Interchange) code. Since ASCII codes are in the range 0 through 255, they only require 1 byte; the character code is represented in the low-numbered byte of the word. (The most-significant byte contains 0s.)

Booleans

A boolean value is represented in
ATTENTION GOVERNMENT D P USERS AND PURCHASERS

We represent many fine micro products and manufacturers on the U.S. Government's GSA Schedule, including

Apple, Cromemco, Micropolis and Seequa Computers

Purchasing from the Schedule will save you the time consumed by the bid process. Products shipped throughout the United States and world-wide. Visit or write any of our stores for more information or to receive our catalogue of products represented.

Computers, Etc.

the dependable store

257 West Street, Annapolis, MD 21401 — (301) 268-6505
13A Allegheny Avenue, Towson, MD 21204 — (301) 296-0520
9330 Georgia Avenue, Silver Spring, MD 20910 — (301) 588-3748
6671 Backlick Road, Springfield, VA 22150 — (703) 644-5500
Plaza 38, 2442 Route 38, Cherry Hill, NJ 08002 — (609) 779-0023

Callers outside metropolitan areas served by our stores

Please call (301) 268-5801

Career Opportunities Available * An Equal Opportunity Employer

Table 1: Two's-complement notation.
Both positive and negative integers are represented by using the most-significant bit as a sign bit. Negative integers are represented as binary numbers in the range 32768 to 65535.

<table>
<thead>
<tr>
<th>Integer Value</th>
<th>Decimal</th>
<th>Hexadecimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>7FH</td>
</tr>
<tr>
<td>32766</td>
<td>32766</td>
<td>7FFF</td>
</tr>
<tr>
<td>32767</td>
<td>32767</td>
<td>7FFF</td>
</tr>
<tr>
<td>-32766</td>
<td>32768</td>
<td>0001</td>
</tr>
<tr>
<td>-32767</td>
<td>32769</td>
<td>0001</td>
</tr>
<tr>
<td>-2</td>
<td>65534</td>
<td>FF6</td>
</tr>
<tr>
<td>-1</td>
<td>65535</td>
<td>FFFF</td>
</tr>
</tbody>
</table>

Table: Two's-complement notation, both positive and negative integers are represented by using the most-significant bit as a sign bit. Negative integers are represented as binary numbers in the range 32768 to 65535.

User-Defined Scalars

When you declare a user-defined scalar type, each of its value identifiers is associated with an ordinality value; the first one declared has an ordinality of 0, the next has an ordinality of 1, and so forth. For example, the declaration:

VAR DAY : (MON, TUES, WED, THURS, FRI, SAT, SUN);

creates a variable DAY whose possible values (at the source program level) are MON through SUN. These are associated with the ordinalities 0 through 6; thus, MON corresponds to 0, TUES corresponds to 1, and SUN corresponds to 6. If DAY is assigned a particular value, such as the following:

DAY = WED

the value is represented in binary as the number 2, because WED corresponds to 2.

Implications

By combining this information on
representation of scalars with the following facts about the ORD and ODD functions, you can do some interesting things.

The ORD and ODD Functions

The familiar ORD function accepts a noninteger scalar value as its parameter, and returns an integer which is the ordinality of that value within its type. This is done in a strikingly simple way: ORD merely returns the very same value that was passed to it, and since ORD is, by definition, an integer function, the returned value is now interpreted as an integer. The method works because every non-packed scalar value is represented in the same way: as a 16-bit binary number. The integer value of the binary number is the ordinality of the value within its type.

The ODD function accepts any integer as its parameter; it returns true if the integer is odd, and false if the integer is even. Notice that odd and even depend only on the last bit of an integer value (you will recall that true and false depend on the last bit of a boolean value).

- To interpret the binary value of any noninteger scalar S as an integer, use ORDS(S).
- To interpret the binary value of any integer N as a boolean, use ODD(N).
- To interpret the binary value of any noninteger scalar X as a boolean, use ODD(ORD(X)).

Incidentally, the SUCC and PRED functions work by simply incrementing or decrementing the binary value of a scalar (its ordinality) and returning the result as a scalar of the same type.

The program BITFINDER (listing 1) is a simple-minded application of these ideas. It allows you to see an integer value as a list of bit values, set a selected bit, and clear a selected bit. In order to do this, it makes use of the fact that AND, OR, and NOT are 16-bit operations. It sets up an array of 16 integer values, each of which has a 1 in one particular bit and 0s in all other bits (the values are powers of 2).

Each of these power-of-2 values can be used in the TSTBIT function to test the corresponding bit of an integer via the AND operation. The result of the AND is a nonzero integer if the tested bit is a 1, and a 0 integer if the bit is a 0. The SETBIT procedure sets a bit by using the OR operation, and the CLEARBIT procedure clears a bit by using AND NOT.

To make these operations possible, the integer values must first be converted to type boolean by the ODD function. Then the boolean operation (AND, OR, or AND NOT) is performed.

The program BITFINDER (listing 1) is a simple-minded application of these ideas. It allows you to see an integer value as a list of bit values, set a selected bit, and clear a selected bit. In order to do this, it makes use of the fact that AND, OR, and NOT are 16-bit operations. It sets up an array of 16 integer values, each of which has a 1 in one particular bit and 0s in all other bits (the values are powers of 2).
Listing 1: The BITFIDDLER program uses the ODD and ORD functions to manipulate data types. In the TSTBIT function and the SETBIT and CLEARBIT procedures, ODD is used to convert integer values into type boolean so that a bitwise boolean operation can be performed. (ORD then converts the result back to type integer.)

PROGRAM BITFIDDLER;
{This program takes an integer value from the keyboard and displays its value as a list of 16 bit values. Then it sets a specified bit, displays the bit values again, clears a specified bit, and displays once more: *)

{Declare a subrange type for indexing the bits of an integer value: *)
TYPE BITNUMBER = 0..15;

{Declare an array of 16 integers — one for each bit of an integer value: *)
VAR BITVAL: ARRAY [BITNUMBER] OF INTEGER;
I: BITNUMBER;
INUM, NUMBER: INTEGER;

{A procedure to initialize the array so that each BITVAL[I] has a 1 in bit I and 0's in all other bits: *)
PROCEDURE INITIALIZE;
VAR I: BITNUMBER;
BEGIN
BITVAL[I] := 1;
FOR I := 1 TO 15 DO BITVAL[I] := 2*BITVAL[I-1]
END;

{A function to return true if a particular bit of an integer value is a 1, or false if the bit is a 0: *)
FUNCTION TSTBIT (BITPOS: BITNUMBER; N: INTEGER): BOOLEAN;
BEGIN
TSTBIT := ORD(
ODD(N)
AND
ODD(BITVAL[BITPOS])
)
<> 0
END;

{A procedure to analyze an integer value and report each bit: *)
PROCEDURE ANALYZE(N: INTEGER);
VAR I: BITNUMBER;
BEGIN
FOR I := 0 TO 15 DO BEGIN
WRITE('Bit ', I, ' of ', N, ' is a ', ');
IF TSTBIT(I, N) THEN WRITELN('1')
ELSE WRITELN('0')
END;
END;

{A procedure to set (to 1) a particular bit of an integer variable: *)
PROCEDURE SETBIT (BITPOS: BITNUMBER; VAR N: INTEGER);
BEGIN
N := ORD(
ODD(N)
OR
ODD(BITVAL[BITPOS])
)
END;

{A procedure to clear (to 0) a particular bit of an integer variable: *)
PROCEDURE CLEARBIT (BITPOS: BITNUMBER; VAR N: INTEGER);
BEGIN
N := ORD(
ODD(N)
AND NOT
ODD(BITVAL[BITPOS])
)
END;

Listing 1 continued on page 453

formed. This gives a boolean result, which is converted back to type integer by the ORD function.

The boolean constants FALSE and TRUE are always represented as the 16-bit binary numbers 0 and 1, respectively. ORD(FALSE) is 0 and ORD(TRUE) is 1. In other words, FALSE has 0s in all 16 bits, while TRUE has a 1 in the least-significant bit and 0s in the other 15 bits.

As the BITFIDDLER program shows, there are other boolean values besides FALSE and TRUE — values that have 1s in other bit positions besides bit 0. I call these other values strange boolean values. For example, ODD(3) is a boolean true value but it is strange—it is represented by the 16-bit binary number for 3, not 1. It has 1s in both bit 0 and bit 1.

Use of Strange Booleans

In the BITFIDDLER program, we deliberately created strange boolean values, but you should be aware that a strange value can arise inadvertently. As shown above, ODD of any integer except 0 or 1 will give a strange value; the result is also strange when you complement a normal boolean value by using the NOT operator, because 1s appear in bits 1 through 15. In both of these cases, Classical Pascal says the result should be either TRUE or FALSE.

You might wonder how strange boolean values can work correctly in IF, WHILE, and REPEAT statements. They work because the system ignores all bits except the least-significant bit when it looks at the boolean value in an IF, WHILE, or REPEAT. Similarly, when two boolean values are compared, all bits except the least-significant bit are ignored.

But Classical Pascal allows other, less obvious uses of boolean values:

• A CASE statement can be controlled by a boolean value (with cases labeled TRUE and FALSE).
• An array index can be of type boolean.
• A FOR statement can have a boolean control variable that goes from one boolean value TO (or DOWNTO)
Listing 1 continued:

BEGIN
 INITIALIZE;
 INNUN := 1;
 REPEAT
 (*Get number from user:*)
 WRITE('Type an integer (-100 to quit): ');
 READLN(INNUN);
 (*Demonstrate testing the bits:*)
 ANALYZE(NUMBER);
 (*Demonstrate setting a bit:*)
 WRITE('Set what bit in the value ', NUMBER, '? ');
 READLN(I);
 SETBIT(I, NUMBER);
 ANALYZE(NUMBER);
 (*Demonstrate clearing a bit:*)
 WRITE('Clear what bit in the value ', NUMBER, '? ');
 READLN(I);
 CLEARBIT(I, NUMBER);
 ANALYZE(NUMBER);
 UNTIL INNUN = -100
END.

another boolean value.
• A set of booleans whose possible members are the values TRUE and FALSE can be declared.

These uses may seem unusual, but they’re normal in the sense that they are part of Classical Pascal. How do these uses work when a strange boolean value is involved?

You’ll have to determine this answer for yourself, by experimentation. There are now so many versions of UCSD Pascal that I don’t know how each of them deals with, say, a strange boolean value used as an array index. Some versions cannot handle strange boolean values in these situations. (The current Version 1.1 release of Apple II Pascal does handle strange boolean values correctly in all cases.)

Representation of Arrays

A nonpacked array of scalar values is represented simply as a sequence of words, with each word containing one scalar value as previously described.

When the array is packed, each value does not necessarily take up one word. The word is still the unit of storage, but each word can contain more than one value if it has enough bits. Consider the declaration:

VAR OCTAL: PACKED ARRAY[0..63] OF 0..7;

which creates an array OCTAL of 64 elements. Each element is an integer value in the range of 0 through 7, and requires 3 bits. Since a word contains 16 bits, 5 array elements can be packed into a word. The elements are packed so that the first element is in bits 0 through 2, the second is in bits 3 through 5, and so on, to the fifth ele-
The following specific cases are of particular interest:

- A char value requires 8 bits. In a packed array of char, each word of storage contains two char values: the first is in bits 0 through 7, the second in bits 8 through 15.

- A value of the subrange type 0..255 also requires 8 bits and can be thought of as a "byte"-type value.

Storage in a packed array of 0..255 is the same as for packed char values.

- A boolean value requires only one bit; in a packed array of boolean, each word contains 16 values. The first value is in bit 0; the last is in bit 15.

The above applies only as long as the variables remain packed. Whenever a value is unpacked from a packed variable, it is expanded to occupy a full word with 0s in any "unused" bits. This occurs whenever the value is used in an expression.

Free-Union Variants

An ordinary variant record has a tag-field value that is stored as part of the record. Your program can use the tag-field value to determine how the variant data is interpreted. This is useful when the variant data is of a specific type; the tag field serves as a safeguard against misinterpreting the variant data.

Here, however, we are interested in purposely interpreting the same data in more than one way. This can be accomplished with an ordinary variant record: simply ignore the tag field. If you use a free-union variant, you can eliminate the tag field altogether; this saves memory and also makes the maneuver a little more obvious.

A free-union variant looks like an ordinary variant, except that the tag field identifier is omitted. A tag type is still required, as are case labels. For example:

```plaintext
VAR FOXY: RECORD CASE BOOLEAN OF
   FALSE: (INT: INTEGER);
   TRUE: (BOOL: BOOLEAN);
END;
```

Now FOXY.INT refers to a value of type integer, and FOXY.BOOL refers to a value of type boolean. Both refer to the same word of data. The labels FALSE and TRUE, corresponding to the tag type BOOLEAN, are chosen as a matter of convenience; you can use any type that has enough possible values to use as case labels. In the BINARY program shown in listing 2, the type THREEWAY is declared solely for use as a tag type for a free union that has three cases.

In the BITFIDDLER program, we used the INITIALIZE procedure to set up an array of integers, each integer having a 1 in one bit, and 0s in all other bits. This was accomplished by making the value of each integer a power of two. In the TSTBIT function and the SETBIT and CLEARBIT procedures, we used ODD to convert one of these integer values to a boolean value with a 1 in a particular bit.

In the BINARY program we use a
free union as a more powerful means of accessing individual bits of a boolean value—and more. This is a three-way free union that allows the same word of data to be treated as an integer, a boolean value, or an array of 16 boolean values.

Multidimensional Arrays

When you know how to access data in memory in this fashion, the representation of data values becomes more interesting. Consider multidimensional arrays.

When an array has more than one index, the last index varies most rapidly and the first index varies least rapidly. For example, in a two-dimensional array the second index can be thought of as a “column” index that steps along a row, and the first index can be thought of as a “row” index that steps from one row to the next. The elements in a row are contiguous in memory. Another way to think of this is that the declaration:

```
VAR TABLE: ARRAY[0..9, 0..4] OF INTEGER;
```

is exactly equivalent to:

```
VAR TABLE: ARRAY[0..4] OF ARRAY[0..9] OF INTEGER;
```

The `ARRAY[0..4] OF INTEGER` is a one-dimensional array, so its elements are contiguous. The `ARRAY[0..9] OF ...` is also a one-dimensional array whose elements are arrays.

Beware of multidimensional packed arrays! Remember that for each dimension of the array, the unit of storage into which values are packed is the word, so each array that makes up the multidimensional array occupies an integral number of words, with possible unused bits. For example, you might declare an 8-by-8 packed array of boolean (1-bit) elements:

```
VAR X: PACKED ARRAY[0..7,0..7] OF BOOLEAN;
```

If you expect that `X` will be stored so that all 64 elements are contiguous bits within 8 contiguous bytes, you are wrong. The declaration is equivalent to:

```
VAR X: PACKED ARRAY[0..7] OF PACKED ARRAY[0..7] OF BOOLEAN;
```

Each row of `X` is a packed array[0..7] of boolean, and occupies one word: 16 bits. Not 8. `X` contains eight of these words (16 bytes); the most-significant 8 bits of each word are unused.
The Byte-Oriented Procedures

There is yet another way around the strong typing of Pascal—the use of byte-oriented procedures. UCSD's documentation describes FILLCHAR, MOVELEFT, MOVERRIGHT, SCAN, and SIZEOF as subroutines for working with packed arrays of characters. The documentation mentions that the source and destination parameters for these routines are not type-checked, and, in fact, you should really think of them as subroutines for working with ranges of memory bytes. If you have the declarations:

```pascal
VAR BIT: PACKED ARRAY[0..15] OF BOOLEAN;
BOOL: BOOLEAN;
```

then you can transfer the value of BOOL into the bit array BIT by means of the following statement:

```pascal
MOVELEFT (BOOL, BIT, 2)
```

which moves 2 contiguous bytes (one word) without checking data type.

PEEK and POKE

When you're writing in Pascal, there are very few situations where PEEKs and POKEs are of any use. The reason for this is that you don't know how the system is using memory. When you access memory using a physical address, you can easily blunder into an area used by the system.

Each version of UCSD Pascal generally contains its own built-in, high-level constructs for the situations where particular locations must be accessed. For example, the loudspeaker on an Apple II is activated by accessing a particular location, but Apple II Pascal provides a procedure called NOTE that lets you generate tones on the speaker without knowing the special location.

Suppose, however, that you have a peripheral device that wasn't anticipated by the designers of your UCSD Pascal, and it needs to be controlled by accessing a particular location. In BASIC, you would do this with PEEKs or POKEs: to get the same effect in Pascal, you must create Pascal PEEKs and POKEs.

There are two tricks in.Peek.ing and POKEing with Pascal. The first is to declare a variable type that corresponds to one physical memory byte. A byte is 8 bits, and can hold a value in the range 0 through 255. But if you declare:

```pascal
TYPE BYTE = 0..255;
```

it won't work correctly. The problem lies in the fundamental rule that every nonpacked scalar is represented in memory as a word (16 bits). A variable of type BYTE will occupy 2 bytes, with 0 in the higher-numbered byte. To avoid this situation our "memory byte" type has to be packed:

```pascal
TYPE MMBYTE = PACKED ARRAY [0..1] OF BYTE;
```

Now a variable of type MMBYTE is an 8-bit value that occupies just 1 memory byte.

The second trick is that a pointer variable is represented as if it were a scalar variable: it is a 16-bit binary number, and its numeric value is a physical address. Now we can declare a two-way free-union record type as
Listing 3: PEEKing and POKEing. As shown in figure 3a, a two-way free-union record type can represent either a pointer value or an integer value. A direct reference to a physical location can be performed with the functions shown in figure 3b.

(3a)
```
TYPE BYE = 0...255;
BYTE = PACKED ARRAY [0...8] OF BYTE;
LOCATION = RECORD CASE BOOLEAN OF
TRUE: (ADDR: INTEGER);
FALSE: (PTR: "HENVYTE")
END;
```

(3b)
```
PROCEDURE POKE (ADDRESS:INTEGER; VALUE:BYTE);
VAR LOC: LOCATION;
BEGIN
LOC.ADDR := ADDRESS;
LOC.PTR[0] := VALUE
END;
```

FUNCTION PEEK (ADDRESS:INTEGER): BYTE;
```
VAR LOC: LOCATION;
BEGIN
LOC.ADDR := ADDRESS;
POKE := LOC.PTR[0]
END;
```

shown in listing 3a.

if LOC is a variable of type LOCATION we can assign a physical address, such as 32766, by writing:

```
LOC.ADDR := 32766
```

At this point, LOC.PTR[0] is a direct reference to the contents of byte location 32766. We can now declare a POKE procedure and a PEEK function (see listing 3b).

As in BASIC, there is one wrinkle to using PEEK and POKE. Because of the two's-complement notation for negative integers, the largest possible positive integer value is 32767, or $2^{16}-1$. In order to represent a physical address greater than this, you must use a negative integer to get the desired binary number (see table 1).

Going Further
You now have enough information to make experiments that will tell you even more about the inside workings of your system, and you may even discover more useful programming tricks. Remember the warning, though: tricky programming may work once, but you can receive a nasty surprise when you change your program, switch systems, or try to use an updated version of UCSD Pascal.

V.I.P.’s Call A.E.I.

V.I.P.’s call A.E.I. because A.E.I. tests before shipping, has expertise on all items offered, and is price competitive.

V.I.P.’s Call A.E.I.

There are no more products and prices in the show. Call or visit for current pricing.
Apple Analog-to-Digital Conversion in 27 Microseconds

Michael A. Seeds, Associate Professor of Astronomy
and Harold F. Levison
Joseph R. Grundy Observatory
Franklin and Marshall College
POB 3003
Lancaster PA 17604

We began designing a computer-controlled data-acquisition system for the Franklin and Marshall College observatory, when suddenly we realized that we would have to build our own A/D (analog-to-digital) circuit board. Most commercially available A/D boards are designed for the S-100 bus or computer buses other than the Apple II. The only board we found specifically designed for the Apple was both expensive ($395) and very slow (400 milliseconds). At this time, various manufacturers are announcing new A/D boards for the Apple, but these, too, are expensive, and at least one of these has only 8-bit resolution. Our data system required 10-bit accuracy and high-speed performance. The circuit we designed to meet these requirements costs less than $100. (See table 1.)

Circuit Description

The Apple A/D circuit can be divided into four sections. The input section consists of two 741-type operational amplifiers and an ADS82 sample/hold amplifier. The op amps accept a signal between 0 and 10 V and provide a zero offset adjustment. The ADS82 device follows the input voltage until it receives a control signal indicating that an analog-to-digital conversion is to take place. It then samples the input voltage and holds its output to that voltage for the duration of the conversion. Thus, the ADS82 provides a constant voltage (adjustable with gain control) for the conversion process, preventing a rapidly changing input signal from destroying the accuracy of the conversion. The heart of the circuit’s second section is an AD571 analog-to-digital converter device, which performs the actual conversion of voltage levels to digital data. (Both the AD571 and the ADS82 are manufactured by Analog Devices, POB 280, Norwood MA 02062.) Section three contains the three-state-output latch devices, a 74125 and a 74LS244. On command from the microprocessor, these connect the output of the AD571 converter to the system data bus. Finally, the fourth section contains a 74LS138 demultiplexer that decodes the address bus input, controlling the actual operation of the A/D circuit through a 7400 quad two-input NAND device and a 7404 hex-inverter package.

The 7400 NAND gates play a critical role in the operation of this circuit. Address signals appear on the Apple II system bus for less than 1 microsecond, but the AD571 converter requires a pulse no shorter than 2 microseconds to initiate a conversion. Expanding the pulse width of this control signal with a flip-flop constructed from a 7400 device satisfied this requirement.

Referring to figure 1, a conversion begins when the

<table>
<thead>
<tr>
<th>Component Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple protoboard</td>
<td>$24.00</td>
</tr>
<tr>
<td>741 op amps</td>
<td>0.80</td>
</tr>
<tr>
<td>ADS82 sample-and-hold amplifier</td>
<td>14.05</td>
</tr>
<tr>
<td>AD571 analog-to-digital converter</td>
<td>23.00</td>
</tr>
<tr>
<td>7404 hex inverter</td>
<td>0.25</td>
</tr>
<tr>
<td>7400 quad dual-input NAND gates</td>
<td>0.22</td>
</tr>
<tr>
<td>74LS138 demultiplexer</td>
<td>0.99</td>
</tr>
<tr>
<td>74LS125 tri-state latch</td>
<td>0.89</td>
</tr>
<tr>
<td>74LS244 tri-state latch</td>
<td>2.95</td>
</tr>
<tr>
<td>10 K 10-turn poentiometer</td>
<td>10.65</td>
</tr>
<tr>
<td>10 K 1-turn poentiometer</td>
<td>3.30</td>
</tr>
<tr>
<td>Total</td>
<td>$81.10</td>
</tr>
</tbody>
</table>

Table 1: List of components necessary to build the A/D converter shown in figure 1. The prices given by the author may not be representative of current component prices.
processor writes a datum to hexadecimal memory location C0A0 (assuming the A/D circuit card is plugged into slot two of an Apple). This sends the card select line (DS) into a low state, enabling the 74LS138 demultiplexer to decode the zero value present on the three least-significant lines of the address bus, A8 to A10. Output zero of the 74LS138 (the START line in figure 1) goes low, which, combined with the R/W (READ/WRITE) line already in a low state from the processor write, sets the flip-flop and forces the B+C line high. This tells the AD571 to prepare for a conversion. When it is ready, the converter sends the DR line high, resetting the flip-flop and initiating the conversion. Thus the addition of the flip-flop permits the AD571 to start a conversion only when it is ready, assuring that the sub-microsecond pulses on the address bus will start a conversion.

The DR line remains high while the AD582 chip is making a conversion—about 25 microseconds. When DR goes low, the conversion is complete and the data is ready. This DR line could be used to provide an interrupt, but we chose to bring it to the data bus through a three-state latch and allow the computer to test DR repeatedly until it goes low. Because the circuit operates so fast, machine-language programs test DR only twice before it goes low, and BASIC programs do not run fast enough to catch DR while it is still high. Thus, testing DR with a software loop wastes very little time.

Operation

When the A/D card is signaled to begin a conversion,
the input circuit samples the analog voltage to be converted and holds it constant during the conversion. The A/D device makes the conversion, and once the 10 bits of data are ready, the board signals the computer by pulling DR low. The computer may then read the 8 MSBs (most-significant bits) in 1 byte and the 2 LSBS (least-significant bits) in another. If 8-bit resolution is sufficient, the 2 LSBS can be ignored.

Operation from a 6502 machine-language program is accomplished as follows. (Again, we assume the card is in slot 2.) The execution of STA $COA0 (write the contents of the accumulator to hexadecimal location $COA0) begins a conversion. The computer then checks to see if the data is ready by LDA $COA3 (read from $COA3). As soon as the eighth bit in this cell goes to 0, the data is ready and the computer can read the 8 MSBs with LDA $COA1 and the 2 LSBS with a LDA $COA2.

On our board, we found that the fifth bit of location $COA2 fluctuated between 0 and 1. When the computer is reading the contents of location $COA2, the 6 LSBS are undefined. The computer should recognize these as Os, but that may not always be the case because of variations in the components. The solution is to mask the byte read from location $COA2 with an AND #$C0 (logical AND with the hexadecimal value C0). This ensures that the 6 low-order bits will be 0. Similarly, the contents of location $COA3 can be masked by an AND #$80 to be sure that only the eighth bit can be a 1.

The A/D board can also be operated from BASIC programs by using a POKE 49312.0 to begin the conversion and PEEK (49313) and PEEK (49314) to read the high- and low-order parts of the data. You must beware, however, of undefined bits in the low-order word. These can cause confusion and limit the board to 8-bit resolution when it is used from a BASIC program. These hexadecimal and BASIC commands are summarized in table 2.

The best arrangement for using the card from a BASIC program uses a short machine-language program to handle the actual conversion and masking. The program shown in listing 1 will assure that no undefined bits confuse the data. The program is relocatable and communicates with other programs via zero page locations FE and FF. The AND instructions mask off undefined bits.

If this subroutine is called from a BASIC program, the two words of data can be combined into a single number by:

\[X = \text{PEEK (254)} \times 4 + \text{PEEK (255)} / 64 \]

Division by 64 is necessary because the 2 LSBs occupy the two highest-order bits of the word in hexadecimal $COA2.

Speed

Analog Devices lists the speed of its AD571 chip as 25 µs, typical. Tests of our A/D board indicate that the time from the beginning of a conversion until the data is ready is about 27 µs. The time needed to read the 10 bits of data and store them in memory locations is about

Table 2: Control and status commands for the A/D converter. Note that 2 bytes must be read to get 10-bit resolution. The memory locations specified and the machine-language and BASIC instructions are from the original installation on an Apple II.

<table>
<thead>
<tr>
<th>Command</th>
<th>6502 Machine Language</th>
<th>BASIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin Conversion</td>
<td>STA $COA0</td>
<td>POKE 49312.0</td>
</tr>
<tr>
<td>Get DR</td>
<td>LDA $COA3</td>
<td>PEEK (49313)*</td>
</tr>
<tr>
<td>8 MSBs</td>
<td>LDA $COA1</td>
<td>PEEK (49315)</td>
</tr>
<tr>
<td>2 LSBs</td>
<td>LDA $COA2</td>
<td>PEEK (49314)</td>
</tr>
</tbody>
</table>

Unnecessary for BASIC programs

Listing 1: The 6502 machine-language routine called from BASIC that assures that no undefined bits will confuse the data read from the A/D circuit.

```assembly
6D A0 C0 Begin STA $COA0 Start a conversion
AD3 C0 Test LDA $COA3 Get DR
29 80 AND $80 Mask off undefined bits
DF F9 BNE Test Test DR
AD1 C0 LDA $COA1 Get 8 bits of data
85 FF STAZ $FE Store in zero page
AD2 C0 LDA $COA2 Get 2 bits of data
29 C0 AND $C0 Mask off undefined bits
85 FF STAZ $FF Store in zero page
60 RTS
```
Figure 2: A 1 kHz signal sampled at 8-bit resolution thirty-one times per cycle. Note that since the circuit described does not accept negative-input signals, the lower half of this signal has been clipped off.

24 µs minimum, so the card can sample the input approximately every 50 µs. The overhead for data handling could be cut to 9 µs by using only the 8 MSBs.

Our operating system must be able to sample the input signal at a minimum of 1000 times per second at the direction of 1-millisecond interrupts from the clock. The speed of our A/D board gives us plenty of time to read the data, modify it as necessary, calculate the next empty address of memory (skipping over page 1 of the high-resolution display), and store the data. The system then waits for the next 1-millisecond interrupt before beginning the next conversion.

Figure 2 illustrates the speed of the card as used in our system. The input signal is a 1 kHz sine wave. The A/D converter accepts only positive voltages, so the negative portion of the sine wave is clipped. With the data-acquisition system free-running, independent of clock interrupts, and accepting only 8-bit resolution, the computer could sample the input signal thirty-one times per cycle.

Setup
This circuit has two controls that must be adjusted before the converter is used in any specific application. For example, the prototype (developed under a grant from the National Science Foundation) is used at an observatory to detect the light of a particular star as it disappears behind the moon. To compensate for excessive moonlight that can interfere with the measurements, the system is focused on a moonlight portion of the sky near the target star, and the zero offset control (see the schematic in figure 1) is adjusted until the converter gives a zero reading. The system is then focused on the target star and the gain control is adjusted for a full-scale reading (maximum output corresponds to maximum brightness). This ability to compensate for a variety of input conditions makes the A/D system adaptable to a wide assortment of applications.

Figure 2: A 1 kHz signal sampled at 8-bit resolution thirty-one times per cycle. Note that since the circuit described does not accept negative-input signals, the lower half of this signal has been clipped off.

24 µs minimum, so the card can sample the input approximately every 50 µs. The overhead for data handling could be cut to 9 µs by using only the 8 MSBs.

Our operating system must be able to sample the input signal at a minimum of 1000 times per second at the direction of 1-millisecond interrupts from the clock. The speed of our A/D board gives us plenty of time to read the data, modify it as necessary, calculate the next empty address of memory (skipping over page 1 of the high-resolution display), and store the data. The system then waits for the next 1-millisecond interrupt before beginning the next conversion.

Figure 2 illustrates the speed of the card as used in our system. The input signal is a 1 kHz sine wave. The A/D converter accepts only positive voltages, so the negative portion of the sine wave is clipped. With the data-acquisition system free-running, independent of clock interrupts, and accepting only 8-bit resolution, the computer could sample the input signal thirty-one times per cycle.

Setup
This circuit has two controls that must be adjusted before the converter is used in any specific application. For example, the prototype (developed under a grant from the National Science Foundation) is used at an observatory to detect the light of a particular star as it disappears behind the moon. To compensate for excessive moonlight that can interfere with the measurements, the system is focused on a moonlight portion of the sky near the target star, and the zero offset control (see the schematic in figure 1) is adjusted until the converter gives a zero reading. The system is then focused on the target star and the gain control is adjusted for a full-scale reading (maximum output corresponds to maximum brightness). This ability to compensate for a variety of input conditions makes the A/D system adaptable to a wide assortment of applications.
PS—A FORTH-Like Threaded Language, Part 1

Valo G Motalygo
1091 Tanland Dr #204
Palo Alto CA 94303

(Editor's Note: Alan Taylor of Computerworld once called the FORTH programming language "not so much a language itself as a hotbed for growing other languages." The PS language described in this article is a new language with its roots in the FORTH hotbed and the concept of subroutine-threaded code (see "Varieties of Threaded Code for Language Implementation" by Terry Ritter and Gregory Walker in the September and October 1980 issues of BYTE). This is an advanced theoretical article that draws heavily on a working knowledge of FORTH. For further information, see "What Is FORTH? A Tutorial Introduction" by John S James, and the other FORTH articles, in the August 1980 BYTE devoted to the language....GW]

The main purpose of a programming system is to facilitate the user's communication with the computer.

I believe that operating systems or programming languages accepting something like conventional text are close to being ideal where the user-computer interface is concerned. All the other advantages or disadvantages of any particular system are "problem-oriented." In other words, what is convenient for one user might be unacceptable for another. Let us consider programming systems that are supposed to be useful for all potential users, beginning with the simplest system of this kind—assembly language.

There are many flaws with assemblers: assembly-language programs are not portable, they are difficult to write and debug, the user must have detailed knowledge of the computer hardware, and so on. However inconvenient it is, an assembly language is still a general-purpose programming system, much as the computer is a general-purpose data-processing device.

On the other hand, designers of high-level languages have to pay for obliterating low-level potential by supporting painful procedures of introducing assembler subroutines into a high-level program.

Thus, the problem with low-level languages is that they are not convenient to use; the problem with high-level languages is that they cannot be considered general-purpose programming systems because of their lack of low-level capabilities and their tendency to force programming structures that might not be optimal for the problem at hand.

The multilevel approach to programming has enriched FORTH with many interesting features.

FORTH is a good example of a multilevel system where this conflict is partially resolved. The multilevel approach to programming has enriched FORTH with many interesting features (see the article "What Is FORTH? A Tutorial Introduction" by John S James on page 100 of the August 1980 BYTE).

The principal idea of FORTH is to use a set of general-purpose low-level subroutines for encoding new ones, which can be further used for introducing more sophisticated programs. To implement this simple idea, FORTH provides the user with a set of tools, briefly described below.

FORTH maintains a dictionary where every subroutine is stored with its name and either an object code or a sequence of pointers to other subroutines in the dictionary. A dictionary entry is called a word and the address of a word in the dictionary is called a word pointer. In some FORTH systems, the sequence of the word pointers is preceded by a short piece of object code that executes (or "chains") the words being pointed to. A dictionary entry also contains the address of the previous word to facilitate searching for a word in the dictionary.

The low-level words in FORTH are stack operations like DUP (duplicate the number on the top of the stack), DROP, SWAP, + (add the two numbers on the stack), AND, OR, NOT, and @ (pronounced fetch and
meaning replace an address on the top of the stack with its contents). All the stack operations are described more thoroughly in the “FORTH Glossary” (August 1980 BYTE, page 186).

The stack operations can be considered an expanded instruction set. Data can be introduced and accessed with the help of words like VARIABLE, CONSTANT, { . ’ } (pronounced dot-quote and meaning compile and type an ASCII string), &X (push ASCII code of X onto the parameter stack), etc. [Remember that BYTE uses braces to delineate certain FORTH words and phrases; see the PS Syntax text box for more details....GW]

It is easy to write programs in FORTH, but it is a pain in the neck to program in FORTH’s assembler.

A programmer can define new words through the low-level ones or through the previously defined words, using such auxiliary tools as the control structures { IF ... ELSE ... ENDIF }, { BEGIN ... AGAIN }, { BEGIN ... UNTIL }, { DO ... LOOP }, etc.

FORTH also has the capability of defining new words in the assembly language of the computer FORTH is running on. These words can be executed or used in high-level definitions as other words are used. Unfortunately, FORTH’s assembler does not allow many of the facilities used while defining high-level words. For example, stack manipulations (DUP, DROP, Swap, etc) are not supported, and no FORTH words can be mixed with the assembler code.

It is easy to write programs in FORTH itself, but it is a pain in the neck to program in FORTH’s assembler. This is because you must abandon the capabilities of the high level and descend to an entirely new language—one that significantly differs from conventional assemblers, as well as from FORTH itself.

The reason why FORTH’s assembler is not an organic part of FORTH is that these languages have different outputs: executable object code (for the FORTH assembler), and word pointers that must be chained to get executed (for FORTH itself). One way to resolve this conflict is a FORTH-like system that generates only object code without generating the word pointers. This two-part article describes the structure of a simple system of this kind, called PS (for Programming System).

Introduction to PS

Let us consider a programming system that is able to accept the following text:

ORIGIN xxx xx
n nnnn nn nmmn ...
RUN yyyyy

The words nn and nnnn represent 8- and 16-bit hexadecimal numbers. When a 16-bit number is compiled, the compilation address (also called code pointer) is incremented by 2. When an 8-bit number is compiled, the compilation address is incremented by 1.

ORIGIN is a special word that executes at compilation time. It takes the next word (xxxx) from the text, converts it to a 16-bit number, and sets the compilation address equal to this number.

RUN is another special word; it takes the next word (yyyy), converts it to a 16-bit number, and calls a subroutine at the address given by this number.

This primitive system has only one significant flaw: it is not very convenient to write programs directly in object code. But let us disregard the lack of convenience momentarily and think of an initial PS implementation. The compilation process operates as follows:

1. Read the next word from the text.
2. If it is a number, push it into the code and go to 1.
3. If it is a special word, execute it and go to 1.

The system will be more convenient with more special words defined. One such example is LABEL (which is used as { LABEL <name> }). It stores the word <name> together with the current compilation address into the dictionary.

We are considering a FORTH-like system that has a dictionary with all the necessary information about the special words. That is, now that the word LABEL is introduced, the PS dictionary contains three words: ORIGIN, RUN, and LABEL. The word LABEL allows the use of names instead of numbers in some situations.

Our system must be able to distinguish among several kinds of words: special words like ORIGIN or LABEL; numbers; and labels, which are replaced with the number

PS Syntax

PS, like FORTH, uses punctuation in some of its words, which makes representing them in text a difficult problem. To decrease the chance of confusion while trying not to clutter text unnecessarily, we will sparingly use braces. {}, to isolate the character string within as a PS word or phrase. Braces will be used only under the following situations:

- when the material being quoted is a phrase of PS words (eg: { 26 LOAD } or { 3 5 + })
- with the PS words { , } (comma), { : } (colon), { ; } (semicolon), { ! } (exclamation point), ‘ ’ (single quote mark), “ ” (double quote mark), { [] } (left bracket), and {] } (right bracket)
- with any word using punctuation marks (eg: { . ’ })

All other PS words will be set apart by a space on either side of the word. So, in this article, braces will always signal a PS word or phrase. The braces are not part of the word or phrase, and PS words will never use braces within the body of a figure or listing....GW
assigned to the label. We will use the phrase "value of the word" or the shorthand notation \(V \) to denote the current compilation address of the word, as stored in the dictionary with the word.

The new PS compilation process is:

1. Read the next word.
2. If it is a number, push it into the code and go to 1.
3. If it is a special word, execute it and go to 1.
4. If it is a label, push \(V \) into the code and go to 1.

The next step is to introduce undefined labels to allow forward references. If PS hits a name that is not in the dictionary, it assumes that the name's value will be defined later by LABEL. Meanwhile, PS makes a fake entry for this name with the value of the word, \(V \), temporarily set to the current compilation address, also compiling 0000 into the code area instead of some real value (see figure 1a).

If PS hits an undefined label for the second time, it compiles the address of the fake entry (i.e., the address of the previous reference to the undefined label) into the code area and sets \(V \) to the current code pointer decremented by 2, linking locations where the undefined label is used (see figure 1b).

When the LABEL statement is encountered, it must determine whether the word being defined has been used before. If it has, LABEL replaces the linked dummy pointers pointed to by the fake \(V \) with the value of the current code pointer. After this is done, \(V \) is also set to the value of the current code pointer, resolving the forward reference and turning the fake entry into the real one (see figure 1c).

It is more convenient to link and resolve forward references if the dictionary is separated from the code.

In general, PS links forward references to each other and to the value of the undefined word, with LABEL resolving forward references by storing the current code pointer in the locations linked by PS. If the word NEW is compiled at the address \(cccc \), the resolved references appear as in figure 1c. The technique used here is essentially identical to that used by many one-pass assemblers and compilers.

It is more convenient to link and resolve forward references if the dictionary is separated from the code. This is because when PS hits a new word, a fake entry for this word is created before the space required to hold the code of the undefined word is known. This is very different from FORTH, which requires that every word be defined before it is used.

A More Sophisticated PS

This system has to distinguish between special words, numbers, defined labels, and undefined labels. Let us assume that the type of the word \(T \) is stored in the dictionary with the name and its value. The new version of PS is then as follows:

1. Read the next word.
2. If it is a number, push it into the code and go to 1.
3. If it is an old word, check its type:
 - If \(T = \) special, execute and go to 1.
 - If \(T = \) defined, push the value of the word \((V) \) into the code area and go to 1.

\[\begin{align*}
(1a) & \quad \text{ADDRESS} \quad \text{CODE} \\
1111 & \quad 0000 \\
\text{DICTIONARY} & \quad \text{WORD NAME:NEW} \\
 & \quad \text{TYPE:DEFINED} \\
 & \quad \text{VALUE:CCCC}
\end{align*} \]

\[\begin{align*}
(1b) & \quad \text{ADDRESS} \quad \text{CODE} \\
1111 & \quad 0000 \\
\text{DICTIONARY} & \quad \text{WORD NAME:NEW} \\
 & \quad \text{TYPE:DEFINED} \\
 & \quad \text{VALUE:3333}
\end{align*} \]

\[\begin{align*}
(1c) & \quad \text{ADDRESS} \quad \text{CODE} \\
1111 & \quad \text{CCCC} \\
\text{DICTIONARY} & \quad \text{WORD NAME:NEW} \\
 & \quad \text{TYPE:DEFINED} \\
 & \quad \text{VALUE:CCCC}
\end{align*} \]

Figure 1: Handling of forward references in PS. Figure 1a shows what happens when the word NEW is first encountered as an undefined word. Figure 1b shows several occurrences of the word NEW linked together. When the word NEW is finally defined (by use of the word LABEL), the address of NEW is put into its dictionary listing and into the previous references to it.
If \(T = \text{undefined} \), link the reference as described above and go to 1.

4. If it is a new word (ie: not encountered before):
 Make a new entry (that is, add this word to the dictionary), set the type to “undefined,” set \(V \) to the code pointer, push 0000 into the code, and go to 1.

 Let us introduce another special word “\(-\rightarrow\)” (pronounced “jump to” and used as \(\{ \rightarrow <\text{name}> \} \)). This word compiles a jump to the address corresponding to the word \(<\text{name}>\).

 Now that labels can be compiled by the special word \(-\rightarrow\), we can interpret the nonspecial words as names of subroutines that are to be compiled as \(\text{JSR } V \), where \(\text{JSR} \) is a “jump to subroutine” instruction and \(V \) is the address of the subroutine. (We assume a 6502-based system here. You would substitute the appropriate machine-language instruction for systems based on other microprocessors.) So the principal idea of FORTH (ie: building programs from previously defined subroutines) is fully implemented now that the words \textit{LABEL} and \(-\rightarrow\) have been introduced.

 Our system will be more useful if it can execute the compiled words. To switch PS from compilation to execute mode, we can introduce two special words: \(\{ \} \) (left bracket), which enables the execute mode, and \(\} \) (right bracket), which enables the compile mode.

 PS with the execute and compile modes looks as follows:

1. Read the next word.
2. If it is a number (this is discussed in more detail below).
3. If it is an old word in compile mode, check its type:
 - If \(T = \text{defined} \), compile \(\text{JSR } V \) and go to 1.
 - If \(T = \text{undefined} \), compile \(\text{JSR} \text{ } (\text{link}) \), link it as described above, and go to 1.
 - If \(T = \text{special} \), execute it and go to 1.
4. If it is an old word in execute mode, check its type:
 - If \(T = \text{defined} \), execute it and go to 1.
 - If \(T = \text{undefined} \), print an error message, go to 1.
 - If \(T = \text{special} \), execute it and go to 1.
5. If it is a new word in compile mode:
 Make an entry, set the type to “undefined,” compile \(\text{JSR } 0000 \), go to 1.
6. If it is a new word in execute mode, print an error message, go to 1.

 An inquisitive reader now has at least two questions: what about arithmetic operations with labels, and what should happen to numbers?

 The problem with numbers is that in one mode we want them to be compiled into the code; in another mode we want them to be pushed onto the parameter stack. The problem with arithmetic expressions is that we want addresses to be computed at compilation time.

 The solution for both problems is to consider the compiled code as the parameter stack. That is, at run time we can push parameters into the free memory that follows...
the compiled code. To keep track of the stack entries, we can increment (or decrement) the same code pointer used at compilation time. If the stack is used correctly, the code is not destroyed. Or we can check before every stack operation to make sure that the compiled code is never destroyed.

We will say that a number is pushed onto the parameter stack or pushed into the code or compiled whenever the number is stored in the location pointed to by the current code pointer. Then, in execute mode, numbers can be pushed into the code and added, multiplied, divided, etc, by the words +, -, /, and ". In compile mode, a number can be compiled with a preceding code that pushes the number onto the parameter stack at run time. This is done by the words PSHN (push number) and NUMBER, which will be discussed in part 2.

The use of the free space after the compiled code as a parameter stack adds much to the simplicity and flexibility of PS.

Low-Level Programming in PS

Let us assume that we have implemented PS with all the special words and stack operations described earlier. Let us also suppose that all the necessary subroutines are written in conventional assembly language, like that of the 6502 microprocessor, and are represented in the PS dictionary (ie: their names and addresses are stored in the PS dictionary with the assignment of the appropriate types).

Later, when speaking of the computer or the assembler, we mean the computer PS is running on and its assembler. We will also assume that the computer has a stack pointer for maintaining the computer stack and that the JSR instruction leaves the return address on the computer stack, just as it is done in the 6502. If there is no hardware stack, software can be written to simulate one.

Now, we will reexamine the simplest case—when PS is in execute mode with only numbers being compiled. If we want to compile an address or a 16-bit signed integer, we simply type in the number with either a leading zero (for positive numbers) or a minus sign (for negative numbers). Examples are 0x, 0x2, 0x2xx, 0x2xxx, -x, -xx, -xxx, and -xxx. (Because PS accepts undefined words, it needs a way to distinguish numbers.) If we want to compile an instruction code or an 8-bit number, we can say #xx, where # is a special word that converts xx to an 8-bit number and pushes it into the code.

Our system will be more convenient if we introduce two more auxiliary words: CONST and BCONST. These are used as { CONST <name> nnnn } and { BCONST <name> # nn }, where nnnn and nn represent 16- and 8-bit numbers, respectively.

CONST (constant) makes a new entry in the PS dictionary for the <name> and compiles code that will push nnnn into the code at run time.

BCONST (byte constant) acts similarly, pushing an 8-bit number into the code at run time. The special word

is used with BCONST to emphasize the difference between CONST and BCONST. BCONST is used basically to compile 1 byte of object code. Thus, we can define the instruction set of the computer as a set of byte constants with whatever mnemonics we like. For example, on the

6502:

BCONST JSR #20
BCONST JMP #4C
BCONST RTS #60

allow use of the mnemonics for the instructions “jump to subroutine,” “jump via direct addressing,” and “return from subroutine,” instead of hexadecimal numbers 20, 4C, and 60. Also, naming the Boolean constants:

CONST TRUE 01
CONST FALSE 0

makes a program more readable.

To handle variables, the word VAR is used as { VAR <name> nnnn }. When VAR is executed, it creates a new entry for the word <name> and compiles object code that pushes the address of the memory location following this code onto the parameter stack at run time. The number nnnn is compiled by the text interpreter and is used to initialize the contents of the variable.

One-byte variables can be defined as { VAR <name> # nn }.

A special word “ (quote) is used as { "aaaaaa" }, where aaaaaaa is a string of ASCII characters. The first quote compiles the following string preceded by its byte count. The second quote terminates the string. The space after the first quote is required so the text interpreter can identify quote as a word in its own right.

Strings can be defined in PS as follows: { VAR <name> " <some text> " }. When the word <name> is executed, the address of the string is pushed onto the parameter stack.

Arrays can be defined with the help of a special word called ARRAY, used as { ARRAY <name> nnnn }. When the word <name> executes, it pushes the address of the nnnn bytes, allocated for the array, onto the stack.

This completes part 1 of this article. In part 2, we will look at examples of low-level and high-level code in PS, and add a PS dictionary that includes some of the more technical details of the language.

Acknowledgments

I want to thank the programmers at Friends Amis Inc for their help and support in carrying out this work, especially Jim Houha and Rick Grelier, who rewrote the manuscript. Victor Eliashberg of VARIAN Associates, who helped me realize the significance of hardware-software relationships; Anya Kroth of the University of California at Santa Cruz for her sharp remarks and kind criticism; Dave Boulton, FORTH consultant and member of the editorial review board of the FORTH Interest Group, and Bill Wilkinson of Optimized Systems Software, who made this work more understandable. Samuel Feldman of Hewlett-Packard made this work more understandable for the author himself.
Recursive Procedures for the 6502 Microprocessor

Dr Phillip W Dennis, 15314½ Larch Ave, Lawndale CA 90260

In recursive applications, the limited stack size of MOS Technology's 6502 8-bit microprocessor is a drawback. Due to the 6502's stack being restricted to one page (256 bytes starting at location 256, or page one of memory), subroutine calls are limited to a maximum of 128 levels. If the stack is used for temporary storage (or the recursive procedure calls other subroutines), then the depth of recursion possible is even less. Conversely, the Motorola 6800 microprocessor has a 16-bit stack pointer and the ability to locate the stack anywhere in memory.

Recently, I was confronted with this restriction during a conversion of S Tucker Taft's M6800 LISP interpreter to the 6502. (See reference 1.) The stack-management routines in this "System Note" are based upon the 6800 routines in Mr Taft's article. The major difference is that the 6800 can relocate its stack rapidly via the TXS instruction, while the 6502 must perform a slower 256-byte move of the stack page to main memory.

The technique for carrying out 6502 recursive procedures requires the procedure to detect two conditions—the overflow of the stack and the underflow of the stack. To detect overflow, each call to the recursive procedure must be accompanied by a check of the stack pointer. If the recursive procedure requires a certain number of bytes of stack storage per call (STKMIN), then a call to the procedure when the stack pointer is within STKMIN bytes of the stack top results in a stack overflow. At this point, code is executed to move the current stack to main memory, pointers are saved to point to the

Figure 1: Typical stack configuration during execution of a recursive procedure that uses the stack-management routines. When the normal 256-byte stack page (page one of the 6502 memory space) is full, the contents are moved to another part of memory, freeing an additional 256 bytes of stack space. If the stack pointer returns to the bottom of the current stack page, the stack-restore routine (STKRES) moves the previous stack page (if any) back from main memory to page one, where it is treated as the current stack. The value of the stack pointer at the time that page was moved to main memory (stored as SP1, SP2, etc) is also restored.
area where the stack was moved, and the stack pointer is reinitialized to the bottom of page one.

Detection of a stack underflow normally occurs in only one instance—when the recursive procedure is returning to a level with a return address located in the portion of the stack that was moved to main memory. It is the responsibility of the underflow-detection routine to restore the stack from main memory. One way to detect the underflow condition is to check the stack pointer prior to every return from the recursive procedure, and if an underflow is detected, branch to a stack-restoring routine. This method is slow, tedious to code, and wasteful of precious memory.

Fortunately, there's a more elegant way to detect underflow. This is done by initializing the bytes at the bottom of the 6502 stack to point to a stack-restore routine. Thus, a return executed at the moment of underflow actually returns to the stack-restore routine, whose function is to restore the stack to the state prior to its move to main memory. This state can be represented by the value of the stack pointer at the moment it was moved to main memory and a pointer to the previously moved stack page. Figure 1 shows the memory configuration at a typical moment of execution.

Note that the implementation presented here assumes a memory-management scheme in which the stack pages in main memory are allocated from the low end of memory in increasing order, while all other data is allocated starting at the high end of memory in decreasing order. The pointers to these boundaries (figure 2) are stored at sym-

Listing 1: Assembly-language stack-management routines for recursive 6502 procedures: STKINJL initializes the special stack; STKCHK checks for stack overflow; STKRES, executed at stack underflow, restores the previous stack to page one of the 6502 memory.

```
1590 1680 LOAD NEXT 1 SAVE LINK
1680 1700 STY $1FE TO
1700 1710 LDY NEXT+1 STACK PAGE IN
1710 1720 STY $1FF MAIN MEMORY
1720 1730 INY SKIP TO NEXT PAGE
1730 1750 CPY TOP+1 CHECK FOR COLLISION WITH
1750 1760 INX STUFF AT HIGH END OF MEMORY
1760 1770 PAGE
1770 1780 BCC STKRSV NO COLLISION, GO MOVE STACK
1780 1790 JMP MEHUL GO TELL BAD NEWS
1790 1810 STKSV1 ED #
1810 1820 STY NEXT+1 SAVE POINTER
1820 1840 INX SKIP OVER CURRENT
1840 1850 INY RETURN ADDRESS
1850 1860 STX $1FD AND SAVE CURRENT STACK POINTER
1860 1870 LDY 80 INDEX FOR 256 BYTE MOVE
1870 1890 STBV2 LDA $100,Y
1890 1900 STA NEXT,Y
1900 1910 DEV
1910 1920 BNE STKRSV
1920 1930 PLA NOW SET UP RETURN TO CALLER
1930 1950 STA $1FE
1950 1960 PLA
1960 1970 STA $1FF
1970 1980 LDY $1FB RES TACK POINTER TO
1980 1990 TIS TO BOTTOM OF STACK (NFA) AFTER RETURN
1990 2000 RTS AND RETURN
2000 2010
```

```
Listing 1: Assembly-language stack-management routines for recursive 6502 procedures: STKINJL initializes the special stack; STKCHK checks for stack overflow; STKRES, executed at stack underflow, restores the previous stack to page one of the 6502 memory.

1590 1680 LOAD NEXT 1 SAVE LINK
1680 1700 STY $1FE TO
1700 1710 LDY NEXT+1 STACK PAGE IN
1710 1720 STY $1FF MAIN MEMORY
1720 1730 INY SKIP TO NEXT PAGE
1730 1750 CPY TOP+1 CHECK FOR COLLISION WITH
1750 1760 INX STUFF AT HIGH END OF MEMORY
1760 1770 PAGE
1770 1780 BCC STKRSV NO COLLISION, GO MOVE STACK
1780 1790 JMP MEHUL GO TELL BAD NEWS
1790 1810 STKSV1 ED #
1810 1820 STY NEXT+1 SAVE POINTER
1820 1840 INX SKIP OVER CURRENT
1840 1850 INY RETURN ADDRESS
1850 1860 STX $1FD AND SAVE CURRENT STACK POINTER
1860 1870 LDY 80 INDEX FOR 256 BYTE MOVE
1870 1890 STBV2 LDA $100,Y
1890 1900 STA NEXT,Y
1900 1910 DEV
1910 1920 BNE STKRSV
1920 1930 PLA NOW SET UP RETURN TO CALLER
1930 1950 STA $1FE
1950 1960 PLA
1960 1970 STA $1FF
1970 1980 LDY $1FB RES TACK POINTER TO
1980 1990 TIS TO BOTTOM OF STACK (NFA) AFTER RETURN
1990 2000 RTS AND RETURN
2000 2010
```
bolic locations NEXT and TOP, respectively.

Also, this implementation does not assume that stack pages in main memory are page aligned (i.e., the stack area starts on a page boundary). If they were page aligned, the low byte of NEXT would always be 0. This would free an extra byte of stack space and simplify the STKCHK and STKRES routines by deleting the code that refers to the low byte of NEXT.

Finally, note that if an application requires several recursive procedures, then STKMIN should be marked as:

$$\text{STKMIN} = \max \{\text{STKMIN}_1, \ldots, \text{STKMIN}_n\}$$

where STKMIN is the stack storage required by the ith recursive procedure. Alternatively, to avoid wasting time, program the STKCHK routine to check a table of STKMINs indexed by the Y register. The calling procedure identifies itself as the caller by setting the Y register to point to the appropriate table entry. Line 1630 in listing 1 would then be replaced by:

```
TXA
CMP MINTAB,Y
```

The stack-management routines written on an Apple II using the S-C II assembler are given in listing 1. (The S-C assembler is available from S-C Software, POB 5537, Richardson TX 75080.)

Reference

1001 THINGS TO DO WITH YOUR PERSONAL COMPUTER
BY MARK SIMON
333 pages $7.95
333 pages, written in simple terms, of "what-to-do" and "how-to-do-it." Suitable not only for microcomputers, but for programmable calculators as well. Includes program listings, formulas, a glossary of computer terms and more! Definitely a MUST BUY!

A PARTIAL LIST OF APPLICATIONS
Real Estate Evaluation Test Your Typing Speed
Astrology Financials & Investments
Income Tax Blorythm
Speed Reading Energy Efficiency
Personality Test Antenna Design
Statistical Analysis Letter Writing
Logic Circuit Analysis Recipe Index/Calculator
Carpenter and Mechanic's Helper
General Purpose Clock Timer

“OTHER MYSTERIES” VOLUME III
by Dennis Kitsz
Call now and place your order for this new book. "THE CUSTOM TRS-80™ & OTHER MYSTERIES", from JIG, Inc. More than 300 pages, with over 60 photographs, of projects for the hardware hobbyist. Includes schematics, PC layouts, software driver code, etc. for such do-it-yourself undertakings as high resolution graphics, reverse video, real-time clock/calendar, music synthesis, ROM/RAM additions and more!
THE CUSTOM TRS-80™ ... $29.99 CALL FOR AVAILABILITY

MICROPARRAPHERNALIA
NEWDIS by APPARAT
NEWDIS/80 by Apparat ... $149.95
NEWDIS/80 to NEWDIS/80 UPGRADE ... CALL
NEWDIS/80 + with ALL UTILITIES
35-track ... $69.95
40-track ... $79.95

BOOKS
TRS-80™ DISK
AND OTHER MYSTERIES ... $19.95
MICROSOFT™ BASIC DECODED $29.95

Let your TRS-80™ Teach You
ASSEMBLY LANGUAGE
REMSOFT’s unique package, "INTRODUCTION TO TRS-80™ ASSEMBLY PROGRAMMING" includes ten 45-minute lessons on audio cassettes, a display program for each lesson proving illustration & reinforcement, and a text book on TRS-80™ Assembly Language Programming. Includes useful routines to access keyboard, video, printer and ROM. Requires 16K - Level II, Model I.
REMASSEM-1 ... $69.95
FOR DISK SYSTEMS ... $74.95

Let Your TRS-80™ Teach You
ASSEMBLY LANGUAGE
DISK I/O TECHNIQUES
REMSOFT does it again! REMDISK-1 is a concise, caputlated supplement to REMASSEM-1. Package consists of two 45-minute lessons on audio cassettes, and display programs providing illustration and reinforcement. Provides specific track and sector I/O techniques, and sequential and random file access methods and routines.
REMDISK-1 ... $29.95

Let Your TRS-80™ Test Itself With
THE FLOPPY DOCTOR & MEMORY DIAGNOSTIC
by DAVE STAMBAUGH
A complete checkup for your Model I. THE FLOPPY DOCTOR completely checks every sector of 35 or 40-track disk drives. Tests motor speed, head positioning, controller functions, status bits and provides complete error logging. THE MEMORY DIAGNOSTIC checks for proper write/read, refresh, executability and exclusivity of all address locations. Includes both diagnostics and complete instruction manual.
SYSTEM DIAGNOSTICS ... $19.95

An improved version of the SYSTEM DIAGNOSTICS above. Designed for single or double density, 35, 40, 77-, or 80-track disk drives. Includes new and modified tests. Features THE FLOPPY DOCTOR, Version 3.0.
SYSTEM DIAGNOSTICS-V3 ... $24.95

Single Sided, Soft Sected 5¼-inch, (for TRS-80™) Mini-floppies

Diskettes $21.95
box of 10

Plain Jane™

These are factory fresh, absolutely first quality (no seconds!) mini-floppies. They are complete with envelopes, labels and write-protect tabs in a shrink-wraped box.
PLAIN JANE™ Diskettes ... $21.95
10 boxes of 10 (each box) ... $20.50

Plain Jane™ Gold
Introducing MTC's premium generic diskette. Single-Sided, Soft-Sected, DOUBLE-DENSITY, 5¼-inch diskettes with reinforcing HUB-RINGS. Individually 100% ERROR-FREE certified. Invest in GOLD!
PLAIN JANE™ Gold ... $29.95

Verbatim's Premium Diskettes
Datalife™
Seven data-shielding improvements mean greater durability and longer data life. These individually, 100% error-free certified diskettes feature thicker oxide coating, longer-lasing lubricant, improved line, superior polishing and more! Meets or exceeds IBM, Shugart, ANSI, ECMA and ISO standards.
VERBATIM DATALIFE™ DISKETTES
5¼-inch (box of 10) ... $26.95
10 boxes of 10 (each box) ... $25.95
8-inch Floppies
Double-Density. FD34-8000 ... $43.95

'RINGS' & THINGS

HUB RING KIT for 5¼" disks ... $10.95
HUB RING KIT for 8" disks ... $12.95
REFILLS (50 Hub Rings) ... $5.95
CLEANING KIT for 5¼" drives ... $24.95
5¼-inch diskette case ... $3.50
8-inch diskette case ... $3.95
6 1/4-inch File Box for 50 diskettes ... $24.85
8-inch File Box for 50 diskettes ... $29.95

Most Orders Shipped within One Business Day
Products damaged in transit will be exchanged.

Prices in Effect October 1, 1981. Prices, Specifications, and Offerings subject to change without notice.

We Accept
• Visa
• Master Charge
• Checks
• Money Orders
• C.O.D.

Add $3.00 for shipping & handling
Add $3.00 EXTRA for C.O.D.
Ohio residents add 6% sales tax.
What's New?

MISCELLANEOUS

TRS-80 Color Computer ROMs
Eigen Systems will take any Color BASIC or Extended Color BASIC program for the TRS-80 Color Computer and transfer it from cassette to a ROM (read-only memory) that plugs into the Color Computer's external port. Prices range from $349.95 to $526.45. Contact Eigen Systems, POB 10234, Austin TX 78766, (512) 837-4665.

Circle 500 on inquiry card.

An Expandable Microprocessor Trainer
The Omnbyte Trainer 1 microprocessor training module can function as a complete disk-based system. The main board of this two-board system contains a Motorola MC6800 microprocessor, 1.25 K bytes of programmable memory, provisions for up to 4 K bytes of PROM (programmable read-only memory), and onboard input/output capability. This board can function as a standalone computer. The trainer-interface board features an 8-digit display, keyboard encoder, command and data keys, and a hexadecimal keypad. A 2-K-byte monitor program and hardware trace circuitry are also included. Optionally available are parallel and serial interfaces, a data-rate generator, and expansion-card connectors. The Trainer 1 package contains a manual, all data sheets, schematics, monitor source-code listing, and a book on microprocessors. Prices range from $349.95 to $526.45. Contact Omnbyte Corporation, 245 W Roosevelt Rd, Building 1-5, West Chicago IL 60185, (312) 231-6880.

Circle 502 on inquiry card.

Powerful Word Processor for the Apple
The Executive Secretary works with 40- or 80-column screens interchangeably, displays lower-case, and features a real shift key. The Executive Secretary also features page numbering and headers, file merge and unmerge, block operations, automatic insertion of full phrases for user-defined abbreviation, automatic envelope addressing, card-file system, IF and relational commands for conditional printing based on the contents of a database, file chaining and nesting, and the ability to interface with Data Factory, Information Master, and VisiCalc files. It also permits keyboard input during print operation; right- and left-justified tabs; interface with California Computer Systems' clock board for time stamping of documents; embedded or external printer commands; character, word, and line insert, replace or delete; selective or global search and replace; a built-in interface to the Hayes Micromodem II; menu-driven operation; and a manual. The Executive Secretary costs $250. For details, contact Aurora Systems Inc, 2040 E Washington Ave, Madison WI 53704, (608) 249-5875.

Circle 501 on inquiry card.

Heath/Zenith Systems Sourcebook
The Information Center Sourcebook is a guide for Heath/Zenith computer-system users who are interested in compatible products from sources other than Heath/Zenith. The Sourcebook features sections for hardware, software, printed matter, and business-applications software, as well as listings of dealers and service centers. It is available for $20 from the Information Center, 642-A W Rhapsody, San Antonio TX 78216, (512) 340-1561.

Circle 503 on inquiry card.

An Analysis of the Courseware Market
The 1981 Courseware Market Report is a reference book for companies and institutions preparing educational software. The report contains information on the creation and distribution of courseware and a competitive analysis of courseware materials. Market statistics, hardware and courseware suppliers, discussions of programming and speculations on the future for computers in education are some of the topics covered in the study. The 1981 Courseware Market Report is available for $175 from Shotwell and Associates, 44 Montgomery St, Suite 505, San Francisco CA 94104, (415) 956-2273.

Circle 504 on inquiry card.

Where Do New Products Items Come From?
The information printed in the new products pages of BYTE is obtained from "new product" or "press release" copy sent by the promoters of new products. If in our judgment the information might be of interest to the personal computing experimenter and homebrewers who read BYTE, we print it in some form. We openly solicit releases and photos from manufacturers and suppliers to the marketplace. The information is printed more or less as a first-in first-out queue, subject to occasional priority modifications. While we would not knowingly print untrue or inaccurate data, or data from unreliable companies, our capacity to evaluate the products and companies appearing in the "What's New?" feature is necessarily limited. We therefore cannot be responsible for product quality or company performance.
What's New?

MISCELLANEOUS

<table>
<thead>
<tr>
<th>Rockwell's 68000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rockwell Internation's Electronics Devices Division has unveiled the R68000 16-bit microprocessor. The device addresses up to 16 megabytes, has more than 1000 instructions, and can process 8-, 16-, or 32-bit data. The R68000 can be sampled in 4 and 6 MHz versions; an 8 MHz version is under development. Additional devices in the R68000 family will include a peripheral controller, a memory manager, a DMA (direct memory access) controller, and a multiprotocol communications controller. The price for the 4 MHz R68000 is $210, the 6 MHz version is $220, and the projected cost of the 8 MHz device is $250. Contact Rockwell International, Electronic Devices Division, 3310 Miraloma Ave, POB 3669, Anaheim CA 92803. (714) 632-2321. Circle 506 on inquiry card.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ZEN and the Art of Programming</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEN is an operating system in the North Star format using 5-inch floppy disks. The system includes a word processor with line justification, file creation, and search and insertion. The monitor comes with memory testing, repeat cross-functions, and port controls. The assembler has global labels, partial print designation, stops, and trial assembly. It is available for $75 from Zenrad Controls Company, 1575 A P S, Santa Barbara CA 93103, (805) 965-4996. Circle 500 on inquiry card.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System 6220 Counter/Timers</th>
</tr>
</thead>
<tbody>
<tr>
<td>The System 6220 multifunction counter/timers can be combined to provide an array of display and control functions. Production quantities, flow, rotation, displacement, frequency, and elapsed time can be measured in process monitoring, test systems, and production control. Prices start at $115 for the 6222 counter/timer. Contact Newport Electronics Inc, 630 E Young St, Santa Ana CA 92705, (714) 540-4914. Circle 500 on inquiry card.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CP/M Business Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocky Mountain Software Systems has a complete business-software system available for $199. The system is comprised of four software packages: General Ledger, Accounts Receivable, Accounts Payable, and Payroll. Written in MBASIC, the system will run on any CP/M-based microcomputer with at least 48 K bytes of programmable memory. Individual packages can be purchased separately for $59. Contact Rocky Mountain Software Systems, POB 3282, Walnut Creek CA 94598. Circle 512 on inquiry card.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Computer Pollution Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic Pollution Control, 171 S Main St, Naperville IL 60563, has announced Super Isolator, a device designed to control electrical spikes, surges, and noise. Super Isolator features three individually filtered AC sockets. Equipment interactions and disruptive or damaging power-line pollution are controlled. The Super Isolator controls pollution for an 1875 W load. Each socket can handle a 1000 W load. The Model ISO-3 Super Isolator costs $94.95. Circle 507 on inquiry card.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Memory Boards for the Atari</th>
</tr>
</thead>
<tbody>
<tr>
<td>The AT-16, a 16 K-byte, 200 ns memory board, and the AT-32, a 32 K-byte, 200 ns board, are compatible with all existing Atari 400 and 800 software and hardware. They install with no modifications. The AT-16 costs $119.50, and the AT-32 costs $199.50. Contact Microtek Peripherals Corporation, 914 Chesapeake Dr, San Diego CA 92123, (800) 854-1081; in California (714) 278-0630. Circle 510 on inquiry card.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRS-80 Space Raiders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space Raiders is a machine-language program that creates a detailed simulation of outer space combat. Current and target position, fuel, shield energy, and heading are all displayed. There are five levels of play. Space Raiders runs on 16 K-byte Level II TRS-80 Model I microcomputers. It is costs $24.95. Contact Bosen Electronics, 445 E 800 North, Spanish Fork UT 84660. (801) 798-9553. Circle 513 on inquiry card.</td>
</tr>
</tbody>
</table>
What's New?

MISCELLANEOUS

64 K-Byte Board for S-100 Systems

The CI-5100 memory board is designed specifically for Sol, Cromemco, North Star, and other S-100 systems. The 64-K-byte dynamic board doesn't require WAIT states at 2 or 4 MHz. It is addressable in 4-K increments up to 512-K bytes. Features include expandability to 512-K bytes with a bank-select feature that allows users to select up to eight 64-K-byte cards. The hidden refresh does not interfere with block DMA (direct memory access) WRITE applications.

The CI-5100 costs $575. Contact Chrislin Industries Inc., 31352 Via Colinas 102, Westlake Village CA 91361. (213) 991-2254.

Circle 541 on inquiry card.

2 K-Byte ROM from Motorola

The MCM65516L43M is a 2 K-byte CMOS [complementary metal-oxide semiconductor] ROM (read-only memory). It is compatible with CMOS microprocessors that share address and data lines. The output-enable pin can be programmed for active high or low, or MOTEL (i.e., MOTORola, iNTel) mode, which provides compatibility with Motorola's 6800 series or Intel's 8085 microprocessors. A monitor program for the Motorola CMOS MC146805E2 microprocessor is included on this ROM. Contact the MOS Integrated Circuit Division, Motorola Semiconductor Products Inc., Austin TX 78721, (512) 928-6660.

Circle 542 on inquiry card.

Programmable Array-Logic Designers Kit

PALKIT is designed to acquaint engineers with the Programmable Array Logic (PAL) family of integrated circuits. PAL circuits are used to reduce the number of 5400 and 7400 series components needed in circuit designs. By combining functions of TTL (transistor-transistor logic) devices, PAL circuits can reduce total package count by as much as 12 to 1.

The kit contains one preprogrammed master PAL circuit and seven unprogrammed circuits. Four of the unprogrammed devices are for combinatorial functions. The other three are for sequential functions. A PAL data sheet, instructions for programming, a paper tape, and an engineering reference card are included. The PALKIT is available for $99.95 from Monolithic Memories, 1165 E Arques Ave, Sunnyvale CA 94086. (408) 739-3535.

Circle 543 on inquiry card.

EPROM Programming

Logic Technology Services Inc [LTSI] is offering an EPROM [erasable programmable read-only memory] programming service. A program from a master EPROM, truth table, or paper tape can be reproduced to a compatible device, which is provided by LTSI. The service can be performed for 2704/2708s, 2716s, 2732s and 2764s.

Fees range from $9.95 to $45.95, depending upon EPROM. EPROMs can be erased for $0.25 per device. A truth table for reproduction can be entered for an additional $15 per 1000 words. A nonreturnable copy of the truth table should be provided. Quantity prices are available to clients who provide the components.

For details, contact Logic Technology Services Inc, 2400 E Oakton, Arlington Heights IL 60005, (312) 364-4670.

Circle 544 on inquiry card.

Fiber-Optic Transmitter and Receiver Modules

The MFOLO2T fiber-optic transmitter and the MFOLO2R receiver modules are designed for digital-communication systems. The transmitter module incorporates an LED (light-emitting diode) with an output of 70 µW, which can provide data transmission over a distance of 1 kilometer; greater distances can be achieved with other cables and emitters. The receiver has a bandwidth from DC to 200 kbps (bits per second), a dynamic range of 25 dB, and is TTL- (transistor-transistor logic) compatible. The modules are compatible with plastic- or glass-fiber cable and operate from a single +5 V supply. Full-duplex, star, daisy chain, and other system designs can be achieved.

The MFOLO2T costs $36.80, and the MFOLO2R costs $42.50. Contact Motorola Semiconductor Products Inc, POB 20912, Phoenix AZ 85036, (602) 244-4556.

Circle 545 on inquiry card.
What's New?

MISCELLANEOUS

Universal Card Cage

The CCK-80 card cages let designers package systems using Series-80 Multibus, S-100, Motorola, and Rockwell microcomputers and accessory cards. The fully adjustable, ten-board cages are priced at $579 each.

Additional space along the side of each cage can hold two fans and can be used for power supplies or other equipment. The rear cross members accept card-edge connectors or motherboards. The cage fits any standard 19-inch rack and weighs five pounds.

Cage accessories include card-edge connectors, bottom- and side-hinged front panels, latches, screw-attached front panels, top and bottom covers, handles, and tilt-up feet. Contact Vector Electronic Company, 12460 Gladstone Ave, Sylmar CA 91342, (213) 365-9661.

Keyboard Actuator

When interfaced with microcomputers, such as the TRS-80, PET, or Apple, the KGS-80 keyboard actuator turns IBM Selectric and SCM typewriters into printers. The KGS-80 rests on the typewriter keyboard and plugs into the computer’s printer interface. No modifications are necessary and no software is required to operate the device. Details on this $599 peripheral can be obtained from Kogyosha Company Ltd, 179 Riveredge Rd, Tenafly NJ 07670, (201) 569-8769.

Prevent Static Damage

Wescorp has static-dissipative desk and bench covers of soft vinyl to protect products from static electricity damage. The WS-227-18 Stat-Mat reduces vibration and glare and is water and chemical resistant. Static resistance meets DOD [Department of Defense] handbook specifications. The covers are available in 2- and 4-foot widths cut to any length up to 100 feet. The cost is $4 per square foot.

Contact Wescorp, 1155 Terra Bella Ave, Mountain View CA 94043, (415) 969-7717.

64 K-Byte Static Memory Board for the S-100 Bus

The RAM 17 is a 64 K-byte static board for S-100 microcomputers. It is guaranteed to run with 6 MHz 280s and 10 MHz 8086/8088s. The board features power dissipation of less than 2 W and 24-bit addressing. The RAM 17 can be addressed on any 64 K page boundary and can be disabled in 16 K blocks. The upper 8 K block can have 2 K windows disabled for memory-mapped peripherals.

RAM 17 uses 2 K by 8-bit static integrated circuits that are compatible with 2716 EPROMs [erasable programmable read-only memory]. Prices range from $1095 to $1595. Contact Computer Pro, Godbout Electronics, POB 2355, Oakland Airport CA 94614, (415) 562-0636.

Color-Graphics Display Controller

The NEC µPD7220 integrated circuit operates between the video-display memory and the microprocessor bus. It performs most of the tasks required to generate displays and to manage display memory. Compatible with 8080/8085/8086, Z80, 6800, and other processors, the device minimizes host-processor software overhead. It features DMA [direct memory access] control, graphics figure-drawing capabilities, and a light-pen input. The unit has a 5 MHz clock rate and requires a single +5 V supply.

Samples of the µPD7220 are priced below $100. Contact NEC Microcomputers Inc, 173 Worcester St, Wellesley MA 02181, (617) 237-7200.

Prevent Static Damage

Wescorp has static-dissipative desk and bench covers of soft vinyl to protect products from static electricity damage. The WS-227-18 Stat-Mat reduces vibration and glare and is water and chemical resistant. Static resistance meets DOD [Department of Defense] handbook specifications. The covers are available in 2- and 4-foot widths cut to any length up to 100 feet. The cost is $4 per square foot.

Contact Wescorp, 1155 Terra Bella Ave, Mountain View CA 94043, (415) 969-7717.

Prevent Static Damage

Wescorp has static-dissipative desk and bench covers of soft vinyl to protect products from static electricity damage. The WS-227-18 Stat-Mat reduces vibration and glare and is water and chemical resistant. Static resistance meets DOD [Department of Defense] handbook specifications. The covers are available in 2- and 4-foot widths cut to any length up to 100 feet. The cost is $4 per square foot.

Contact Wescorp, 1155 Terra Bella Ave, Mountain View CA 94043, (415) 969-7717.

Prevent Static Damage

Wescorp has static-dissipative desk and bench covers of soft vinyl to protect products from static electricity damage. The WS-227-18 Stat-Mat reduces vibration and glare and is water and chemical resistant. Static resistance meets DOD [Department of Defense] handbook specifications. The covers are available in 2- and 4-foot widths cut to any length up to 100 feet. The cost is $4 per square foot.

Contact Wescorp, 1155 Terra Bella Ave, Mountain View CA 94043, (415) 969-7717.
Catalog of More Than 2000 Rental Items
Genstar Rental Electronics, which specializes in the short-term rental of electronic equipment, has a free catalog that lists its rental items. The catalog is divided into 47 categories that range from amplifiers to test chambers. There are analyzers, generators and meters of all types, plus microcomputers, microprocessor instrumentation, PROM (programmable read-only memory) programmers, oscilloscopes, and data terminals. For your copy, contact Genstar Rental Electronics Inc, 19527 Business Center Dr, Northridge CA 91324, (213) 993-7368.

Directory of Robotics Products
The Robotics Industry Directory contains a summary of the available products in the robotics industry. Robots, robot subsystems, components, general technical specifications, pricing data, and marketing contacts are featured. Also included is information on consulting firms, personnel recruiting, engineering design, systems integration, and custom-manufacturing. The final section provides information on the activities of public organizations, university research, and private research laboratories. The Directory costs $24.95. Contact Robotics Industry Directory, POB 725, La Canada CA 91011, (213) 352-7937.

Man/Machine Communications
Speech Technology is a quarterly magazine concerning man and machine communications. It deals with the state of the art in voice synthesis and recognition for the engineer, scientist, educator, manager, and other users. Articles on linear-predictive coding, adding word recognition to a system, and new applications, such as a voice-activated door lock, are among the topics covered. New products, events, and a newsletter are also featured. A one-year subscription is $50 from Media Dimensions Inc, 525 E 82nd St, New York NY 10028, (212) 680-6451.

SUNNY LOW LOW-COST POWER SUPPLIES FOR S-100, FLOPPY DISKS.

S-100 POWER SUPPLY KITS (OPEN FRAME WITH BASE PLATE, 3 HRS. ASSY. TIME)

<table>
<thead>
<tr>
<th>ITEM</th>
<th>USED FOR</th>
<th>@ + 8 Vdc</th>
<th>@ - 8 Vdc</th>
<th>@ + 16 Vdc</th>
<th>@ - 16 Vdc</th>
<th>@ + 28 Vdc</th>
<th>SIZE W X D X H</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>KIT 1</td>
<td>15 CARDS SOURCE</td>
<td>15A</td>
<td>2.5A</td>
<td>2.5A</td>
<td></td>
<td></td>
<td></td>
<td>12" x 5" x 4.5"</td>
</tr>
<tr>
<td>KIT 2</td>
<td>SYSTEM SOURCE</td>
<td>25A</td>
<td>3A</td>
<td>3A</td>
<td></td>
<td></td>
<td></td>
<td>12" x 5" x 4.5"</td>
</tr>
<tr>
<td>KIT 3</td>
<td>DISK SYSTEM</td>
<td>15A</td>
<td>1A</td>
<td>2A</td>
<td>2A</td>
<td>4A</td>
<td></td>
<td>14" x 6" x 4.5"</td>
</tr>
</tbody>
</table>

DISK DRIVE POWER SUPPLY "R3" (REGULATED, OPEN FRAME, ASSY. & TESTED)
SPECS: +5V @ 5A OVP. +5V @ 1A + 24V @ 5A SHORTS PROTECT 2 SIZES AVAILABLE: 1) 9" (W) x 6" (D) x 4.5" (H) 2) 9" (W) x 4.5" (D) x 4.5" (H) OPTION A: REPLACE +24V BY +12V 2) FOR SIZE 1, ONLY ADD +12V @ 1A AT AN ADDITIONAL $12.00

IDEAL FOR THREE 6" OR 5", FLOPPY DISK DRIVES, SUCH AS SHUGART 801/851. SIEMENS FDD 100-800-8 OR 100-5 ETC.

DISK SYSTEM PWK SUPPLY "S3" (OPEN FRAME, ASSY. & TESTED)
COMPAKT SIZE: 10" (W) x 6" (D) x 5" (H)
REGULATED OUTPUTS FOR DISK DRIVES: +5V @ 4A, +5V @ 1A, +24V @ 4A OR +12V @ 4A. SHORTS PROTECT
UNREGULATED OUTPUTS FOR $100 + 8V @ 14A + 16V @ 3A (OPTION, ADD OVP FOR +5V ADD $5.00)

A COMPLETE UNIT FOR DISK SYSTEM WITH THE MAINFRAME CONTAINING 12 SLOTS & TWO 5" OR 5" DISK DRIVES

POWER TRANSFORMERS (WITH MOUNTING BRACKETS)

<table>
<thead>
<tr>
<th>ITEM</th>
<th>PRIMARY</th>
<th>SECONDARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>110/120</td>
<td>2 x 8 Vac.</td>
</tr>
<tr>
<td>T2</td>
<td>110/120</td>
<td>2 x 8 Vac.</td>
</tr>
<tr>
<td>T3</td>
<td>110/120</td>
<td>2 x 8 Vac.</td>
</tr>
<tr>
<td>T4</td>
<td>110/120</td>
<td>2 x 8 Vac.</td>
</tr>
<tr>
<td>T5</td>
<td>110/120</td>
<td>2 x 8 Vac.</td>
</tr>
</tbody>
</table>

MAILING ADDRESS: P.O. BOX 4266 TORRANCE, CA 90510 TELEX 83-5919 ANSWER BACK FOR TELEX SUNNYO TRUC SUNNY INTERNATIONAL (TRANSFORMERS MANUFACTURER) (213) 328-2425 MON-SAT 9-6

SHIPPING ADDRESS: 22129½ S. VERMONT AVE TORRANCE, CA 90502

SHIPPING FOR EACH POWER SUPPLY $5.50 IN CALIF., $7.50 IN OTHER STATES. $14.00 IN CANADA.
For each Transformer $5.00 in all States, $10.00 in Canada. Call Residents 5% Sales Tax.
<table>
<thead>
<tr>
<th>S-100 Products Catalog</th>
<th>Electronic Learning</th>
<th>Looking for a Certain Publication?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ackerman Digital Systems Inc., the maker of processor boards and other items for S-100 systems, has published a catalog of its products. Music and 6809 processor boards, PROM (programmable read-only memory) programmers, and other devices are described in the catalog. For a copy, contact Ackerman Digital Systems Inc., 110 N York Rd, Elmhurst IL 60126, (312) 530-8992.</td>
<td>Electronic Learning magazine is a bimonthly publication for educators who buy and use electronic hardware and software in elementary and secondary education. A non-technical source of ideas and information, it includes articles on the use of microcomputers, video cassettes, videodiscs, and other aids in education. For more information, contact Scholastic Inc., 50 W 44th St, New York NY 10036, (212) 944-7700.</td>
<td>The Westlake Guide lists periodicals and offers package subscriptions for computer, electronics, video, telecommunications, and business publications. A copy of the guide costs $1. Contact Westlake Subscription Service, 4200 S Louise, Sioux Falls SD 57106, (605) 331-6930.</td>
</tr>
</tbody>
</table>

Apple Software Directories

UNIX Products List Available

A directory of UNIX and C products is now available on a subscription basis from InfoPro Systems. The UNIX software list includes suppliers of UNIX, C compilers and interpreters, data-base systems, other languages on UNIX, applications and business packages, user groups, utilities, hardware vendors, and UNIX-like systems. A yearly subscription to the UNIX Software List is $18. For details, contact InfoPro Systems, POB 33, East Hanover NJ 07936, (201) 625-2925.

Computers In Science Teaching

The Journal of Computers in Science Teaching is a quarterly publication on the use of computers in science instruction. It features research studies on teaching science and tutorials. There are lists and reviews of science software, announcements of conferences and events, and book reviews. The Journal of Computers in Science Teaching is published by the Association for Computers in Science Teaching, POB 4825, Austin TX 78765, for $7 per year.

Educational Computer

Educational Computer is an information exchange for elementary, high school, college, and university students and educators. In its pages, Educational Computer addresses such topics as the impact of microcomputers in schools, colleges, and universities. Also, separate departments feature articles on hardware, software, instructional techniques, and administrative feedback. The yearly subscription rate (6 issues) is $12. Contact Educational Computer Magazine, POB 535, Cupertino CA 95015, (408) 252-3224.

IEEE Publications Catalog

A publications catalog is available from the Computer Society of the IEEE (Institute of Electrical and Electronics Engineers). The catalog lists more than 300 publications and covers all aspects of applications, methodologies, and technologies in computer software and hardware. It also contains technical-level tutorial texts for the computer scientist and engineer. For a free copy of the 1981 Pubs Catalog, write to the Computer Society Press, POB 639, Silver Spring MD 20901.
This is absolutely the lowest price ever for a Hi Speed (300 NS) LO-LO Power 32K RAM. $250

* Extended Address Lines A16 - A17
* Phantom Line
* 9 Regulators

S-100 BOARDS and ACCESSORIES

Z - 80 CPU
The first time this world popular CPU offered in Kit. Two serial, 3 parallel, CTC, EPROM Z-80 at 4 MHz. Software bus rate, etc. (Less Prom & Cable) $250.00

S1 MOD (KIT) $199.00
Complete S-100 12 Slot Computer. Ample system power with regulated power for drives. Excellent for Subsystem or Hobby use. Four hours to build. (6 conn., incl., less fans)

S-100 CARD EXTENDER $12.50
(Gold Contacts) As long as there is a price war, we will fight your battle. Compare at your local Department store and buy U.S. MICRO.

EXPANDABLE RAM

U$ - D$K $275.00
Double Density 8" and 5" Disk Controller designed for S-100 IEEE standards. Uses Western Digital 1755, 1691, 2143 Chipset.

U.S. - D$K $400.00 A&T

S-100 - CONNECTOR Ti or Better
SOLDER TAIL $2.50

CHIPS - CHIPS - CHIPS - CHIPS

Z - 80 - A $6.95
4MHz Beastie with extra instructions!

2716s $7.75 (450 NS)
2708s $4.75 (450 NS)
Remember when 2716s were $50.00 and hard to get? These units are so beautiful it's hard to part with them. But we will, for a small price. Guaranteed!

4116s $2.50
Expansion 16K Dynamic RAMs for Apple, TRS-80 S-100 systems. T.I., Mosek Intel. Call for manufacturer.

2114s $2.75 ea.
One of the world's two most popular STATIC RAMs. Factory prime tested units. Sold in lots of 8 only.

TMS - 4044 $4.00
MM - 5257
INTEL 2147 $5.00
The other of the world's most popular STATIC RAMs. This one is 4K by 1 organization.

U.S. Micro Sales can also supply a vast array of IC's. Because of space limitations we can not list them all. We can also supply power supplies - sockets - heat sinks - tools etc., etc., etc.

Circle 375 on Inquiry card. Please Call For Pricing & Availability
What's New?

MISCELLANEOUS

Votrax Speech Circuit

The SC-01 speech-synthesizer integrated circuit combines electronically generated phonemes to produce an unlimited vocabulary. Votrax's technique doesn't limit the number of words and phrases to a fixed amount or format as synthesizers that reconfigure words and phrases from prerecorded human voice tracts do. Designers can build their own vocabulary through a system that automatically translates English text into phonemes. One second of speaking time requires 70 to 100 bits of memory with this device.

The speech-synthesizer chip is available at prices starting at $95 each, for a minimum of five units. The Votex Sales Division of Votrax Inc is located at 500 Stephenson Hwy, Troy MI 48084. (800) 521-1350; in Michigan (313) 588-0341.

Circle 536 on Inquiry card.

Switched-On DOS

The DOS Switch allows a DOS-3.3-equipped Apple II to boot either DOS 3.3 or 3.2 floppy disks without need of the BASICS disk. The switch doesn't require support software or modifications to established 3.2 disks. The device plugs into the Apple without soldering or permanent wiring changes. The DOS 3.3 P5A boot PROM (programmable read-only memory) and the DOS 3.2 P5 boot PROM are needed for installation. The DOS Switch costs $29.95 and is available from the Micro Computer Center, 7900 Paragon Rd, Dayton OH 45459. (513) 435-9533.

Circle 537 on Inquiry card.

Aid for the Physically Disabled

The Viewpoint Optical Indicator is an incandescent lamp mounted onto a headband. It enables the physically disabled individual with good head control to indicate objects, words, or symbols on a manual-communication board. The band can be worn on the head, hand, or wrist. The lamp can be positioned for use in a wheelchair, bed, or on a prone board. A rechargeable power-pack stores a day's charge. The device costs $189 and is available from Prentke Romich Company, RD 2, POB 191, Shreve OH 44676. (216) 567-2906. Circle 538 on Inquiry card.

5 to 15 V DC Dual Power-Supply Kit

The JE215 power-supply kit provides adjustable regulated positive and negative output voltages from 5 to 15 V DC. Power output for each supply ranges from 5 V DC at 500 mA to 15 V DC at 175 mA. The JE215 kit retails for $24.95 from Jameco Electronics, 1355 Shoreway Rd, Belmont CA 94002. (415) 592-8097. Circle 540 on Inquiry card.

PROMs with Titanium-Tungsten Fuses

Monolithic Memories' line of 1 K- and 2 K-byte PROMs (programmable read-only memories) uses titanium-tungsten (TiW) fuses and requires only 70 mA of current with no loss in speed. Access times are 55 ns for the 1 K PROM and 60 ns for the 2 K device. Pin-compatible with standard Schottky PROMS, these units are organized as 256- by 4-bit and 512- by 4-bit arrays. The PROMs have full Schottky clamping, three-state or open-collector outputs, and transistor inputs for low-input current. A new programming technique eliminates the need for a separate programming pin as found on Nichrome-fused PROMs.

Prices range from $3.75 to $10.55. Contact Monolithic Memories, 1165 E Argues Ave, Sunnyvale CA 94086. (408) 739-3535. Circle 539 on Inquiry card.
Computer System Sales and Pricing

DISK DRIVES
- **FOR TRS-80** Model I
 - CCl-100 5½", 40 Track (102K) $299
- **ADD-ON DRIVES FOR ZENITH Z-89**
 - Z-189 5½", 40 Track (102K) $394
 - Z-87 Dual 5½" system $995

External card edge and power supply included. 90 day warranty for one year on power supply.

DISKETTES — Box of 10
- 5½" Maxell $40
- 8" Maxell $45
- PLASTIC FILE BOX—Holds 50 5½" diskettes $19.00
- PLASTIC LIBRARY CASE 5½" $3.00 8" $4.00
- HEAD CLEANING DISKETTE $25.00
- FLOPPY SAVER $10.95

16K RAM KITS
200ns for TRS-80, Apple II, (specify):
- Jumper $2.50

SYSTEM SPECIAL
Apple II Plus 48K w/driver and controller. Epson MX-80 printer and interface. SUP-R Mod RF Modulator: List $2965 You Pay $2299

COMPUTERS/TERMINALS
- **ARCHIVES** 64K, 2-Drives, 77 Track
- **ALTOS** ACS8000 Series
- **ZENITH** 48K, all-in-one computer
- **TELEVIDEO** Z-90 $559 $92C $729 950 $1039
- **IBM** 3101 Display Terminal $1189
- **ATARI** 400 $359 800 $795
- **MATTTEL** INTELIVISION
- **APPLE PERIPHERALS** $CALL

PRINTERS
- **NEC SPINWRITER** Letter Quality High Speed Printer
 - R.O. $2395
 - R.O. with tractor feed $2555
 - KSR with tractor feed $2795

PAPER TIGER
- **IDS 445** Graphics & 2K buffer $695
- **IDS 460** Graphics & 2k buffer $789
- **IDS 560** Graphics $899
- **ANADEX** DP-8000 $849

OKIDATA
- **Microline 80** Friction & pln feed
- **Microline 80** Friction, and pin & tractor feed
- **Microline 82** Friction & pln feed
- **Microline 83** 120 cps, uses up to 15" paper
- **CENTRONICS** 739, new model with graphics $739
- **C. ITOH**
 - Starwriter I 25 cps, parallel interface $1449
 - Starwriter II 25 cps, serial interface $1529
 - Starwriter II 45 cps, parallel interface $1629
 - Starwriter II 45 cps, serial interface $1949

PRINTER SPECIAL
- **SEIKOASA** GP-80M
 - List $399 You Pay $319

MONITORS
- **BELL & HOWELL**
 - 9" B & W BH-911 $175
- **LEDEDX**
 - 12" B & W $129
 - 13" Color $329
- **SAN 4O**
 - 9" B & W $149
 - 12" Green Screen $238
- **ZENITH**
 - 13" Color $349 12" Green Screen $129

TELECOMMUNICATIONS
- **LIVERMORE STAR MDEM 2-year guarantee** $125
- **UNIVERSAL DATA SYSTEMS UDS-103** $179
- **D-C HARD WIRED DIRECT MDEM** $189
- **AUTO-CAT Auto Answer, Direct Connect Modem** $249
- **APPLE-CAT II** $349
- **D.C. HAYES MICRO-MDEM** $295
- **D.C. HAYES SMART-MDEM** $235
- **CCI Telekom Communications Package** $135

APPLE ACCESSORIES AND SOFTWARE
- **VISICALC $155.00**
- **DB MASTER $159.00**
- **CPS MULTIFUNCTION CARD** $189.00
- **Z-80 SOFTCARD** $259.00
- **VIDEX BOARD** $255.00
- **KEYBOARD ENHANCER** $110.00
- **16K CARD** $159.00
- **APPLE JOYSTICK**
 - $49.00
- **SUP-R MOD**
 - $25.00
- **CCS CARDS**
 - $CALL
- **GA LAXIAN**
 - $22.95
- **SPACE ALBUM**
 - $35.00
- **ASTERIOIDS**
 - $17.95
- **FLIGHT SIMULATOR**
 - $29.00
- **WIZARD & PRINCESS**
 - $28.00
- **SARGON 2**
 - $29.00
- **MYSTERY HOUSE $35.00**
- **HI-RES FOOTBALL**
 - $35.00

For fast delivery, send certified checks, money orders or call to arrange direct bank wire transfers. Personal or company checks require two to three weeks to clear. All prices are mail order only and are subject to change without notice. Call for shipping charges.

The CPU SHOP

5 Dexter Row, Dept. B10M
Charlestown, Massachusetts 02129
Hours 10AM-6PM (EST) Mon.-Fri. (Sat. till 5)

Technical Information call 617/242-3361
Massachusetts Residents add 5% Sales Tax
Tandy Corporation Trademark/UFIDigital Research

THE CPU SHOP

TO ORDER CALL TOLL FREE 1-800-343-6522
TWX: 710-348-1796

MASSACHUSETTS RESIDENTS CALL 617/242-3361
High-Resolution Touch Screens

With the TSD 12- and 15-inch Touch Screen Digitizers, you can enter data by touching a computer display with your finger. The screen's high-resolution also permits the entry of graphic data. The Touch Screens can be retrofitted onto existing video displays, and in most cases no modifications are necessary. The thin, transparent, curved panel, consisting of two conductive films separated by an insulating space, mounts in front of the video display; an interface board is connected to the panel with a cable. When the panel is touched, one conductive layer touches the other, yielding a voltage that is converted into the necessary information and transmitted as an RS-232C message or a parallel 8-bit, 3-state message.

The 12-inch model costs $650 and the 15-inch device is priced at $700. Contact TSD Display Products Inc, 35 Orville Dr, Bohemia NY 11716. (516) 589-6800. Circle 531 on inquiry card.

EPROM Has High Standards

Advanced Micro Devices has a 32 K-bit EPROM (erasable programmable read-only memory) that meets the MIL-STD-883 and I/N-STD-123 quality standards. Organized as 4 K bytes by 8 bits, the Am2732 operates from a single +5 V supply. It offers three-state outputs, fully static operation, and a two-line control that makes Chip Enable and Output Enable available. This eliminates bus contention and the need for external buffers and chip controls.

In-Circuit Microcomputer Tester

Patuck Inc’s microcomputer analyzer is a hand-held device that clips directly to the microprocessor to be tested by means of a 40-pin chip clip. It can single-step the microprocessor or let it run free to a selected error vector or trap address. A trace capability allows examination of the 63 machine cycles that precede breakpoint. Interchangeable interfaces are available for Z80, 8080A/B5-, 6502-, 6800-, 2650-, 6802-, and 6501-based microcomputers.

16 K-Byte Programmable Memory Circuits

Fujitsu Microelectronics has a family of 16 K-byte dynamic programmable-memory integrated circuits with single 5 V power-supply requirements and access times as fast as 100 ns. The MB8117 and MB8118 devices are available with 100 or 235 ns cycle times.

Features include 182 mW power dissipation, bias generator, read-write-modify, hidden refresh, page-mode capability, and TTL- (transistor-transistor logic) compatible inputs. Contact Fujitsu Microelectronics, 2945 Oakmead Village Ct, Santa Clara CA 95051. (408) 727-1700.

Circle 532 on inquiry card.

PROM Copier/Verifier

The cloneAprom PROM (programmable read-only memory) copier/verifier duplicates a 5 V master 2716 EPROM (erasable PROM) in 138 seconds. It features two ZIF (zero insertion force) sockets, pass/fail indicators, and a power supply. Both a 2732 and a 220 VAC, 50 Hz version are available.

Circle 535 on inquiry card.
JBE I MICROCOMPUTER

John Bell Engineering's low-cost JBE I Microcomputer - based on the powerful 6502 processor - is specifically designed for WORK, LEARNING, DEVELOPMENT AND CONTROL. The JBE I has a unique combination of features:

- 6502 Microprocessor
- 4 6522 VIA's (8 parallel I/O ports)
- 1 AY5-1013 (UART serial port)
- Cassette Interface
- 4K 2114 RAM Memory
- 8K or 16K EPROM Memory
- Monitor and Tiny Basic
- Variety of Support Cards

Use your JBE I to PROGRAM 2716s, TALK to you, CONTROL the world.

Save your programs easily and accurately using the cassette interface.

Use your JBE I for:

CONTROL
- Home security and lighting systems
- Irrigation systems
- Model Trains
- Solar heating and power systems

DEVELOPMENT
- Software for work and home
- Learning aids for children at home and school
- Development system for JBE 6502 Microcomputer

LEANING
- Microcomputer Technology
- Machine language and Basic programming
- The three R's for children

JBE I is available fully populated, partially populated or as a bare board for OEM and the dedicated hobbyist:

The fully populated version includes:
- 6502 CPU
- 4 6522 VIA's
- AY5-1013
- 4K RAM
- Monitor EPROM
- Tiny Basic EPROM

Partially Assembled Version includes:
- 6502 CPU
- 1 6522 VIA
- AY5-1013
- 1K RAM
- Monitor EPROM

All versions include complete documentation. For information write: John Bell Engineering, P.O. Box 338, Redwood City, CA 94064. (415) 367-1137. OEM Pricing available.

FOR MASTER CHARGE, VISA AND C.O.D. ORDERS CALL (415) 367-1137 OR SEND CHECK TO THE ABOVE ADDRESS, DEPT. JI. PLEASE INCLUDE 5% FOR SHIPPING AND HANDLING INSIDE USA AND 10% OUTSIDE USA.
What's New?

SYSTEMS

Pascal Development System for CP/M

The PDS-80 Pascal Development System for CP/M applications is designed with the systems integrator and applications-software developer in mind. A Cache BIOS for CP/M uses the DMA (direct-memory access) and interrupt capabilities of the disk controller and memory to buffer whole tracks in extended memory, which speeds up execution times.

Included in the system is Pascal/Z, a native-code compiler that generates ROMable (read-only memory) and reentrant object code, relocatable object modules, and permits separate compilation. A 2.4-megabyte dual-disk drive, choice of mainframe, Cache BIOS, Pascal/Z, and CP/M come with the development system. Five utilities are also included: InterEdit, a screen-oriented editor; Spell, a spelling editor with a 10,000-word modifiable dictionary; Quickcopy, for copying disks faster than the PIP utility; Help, an access to documentation; and Compare, a quick view of the difference between two files.

Circle 591 on Inquiry card.

Datamac Series 1200

The Datamac 1200 series of microcomputers can be expanded with external floppy-disk drives of any density, track, or side configuration. Provision is made for using the video display to set breakpoints and single-step through programs for debugging. Among the models available is the 1255 microcomputer. It contains a 280 microprocessor, 64 K bytes of programmable memory, input/output ports, keyboard, video display, dual 5-inch double-sided double-density disk drives, and the CP/M operating system.

The Model 1255 with two drives capable of storing 780 K bytes lists for $4695. Contact Datamac Computer Systems, 3333-F Octavius Dr., Santa Clara CA 95051. (408) 727-0561.

Circle 583 on inquiry card.

Microlite Microcomputer

The Microlite microcomputer is a self-contained system that includes the microprocessor, keyboard, 24-line by 80-character plasma display, and two 5-inch floppy-disk drives capable of storing up to 350 K bytes. Microlite has provisions for serial communications.

Options for the Microlite include a dot-matrix printer that can be housed in the console and support for up to four 8-inch floppy-disk drives. Hard-disk drives are also available. For more information on the Microlite II, contact Q1 Corporation, 125 Ricefield Ln., Hauppauge NY 11787, (516) 543-7800.

Circle 580 on Inquiry card.

Omninet from Corvus

Omninet is a 1-megabyte-per-second network that uses a shielded twisted-pair cable for connecting microcomputers. The network allows the interconnection of up to 64 microcomputers and peripherals in a 4000-foot serial link. The intelligent component of the system is the Omniprotector, which interfaces to the microcomputer or peripheral and provides for the transfer of messages without software intervention or requiring a control processor. Omnitnet will work with Corvus Constellation software, providing up to 80 megabytes of shared storage.

Available for the Apple II, Orxy CB8000, and Digital Equipment Corporation LSI-11 computers, Omnitnet will also connect to all Corvus peripherals. Future transporters are being designed for TRS-80, Apple III, S-100, Atari, Commodore, Altras, and other popular microcomputers.

Omninet transporter units are priced at $495 for the Apple II and S-100, $750 for LSI-11 computers, and $650 for the Orxy CB8000. A disk server for Corvus Winchester disks will retail for $990. For more information, contact Corvus Systems Inc., 2029 O'Tool Ave., San Jose CA 95131, (408) 946-7700.

Circle 592 on Inquiry card.

10 MHz 68000

Motorola Semiconductor Group has announced the availability of a 10 MHz MC68000L10 microprocessor. Samples are available for $449. Contact your local Motorola representative or the Motorola Semiconductor Group, 3501 Ed Bluestein Blvd., Austin TX 78721, (512) 928-6119.

Circle 594 on Inquiry card.
Computer Stop

Lowest Prices in the West, North, South & East

<table>
<thead>
<tr>
<th>Product Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEC 8001A</td>
<td>$1100</td>
</tr>
<tr>
<td>NEC 8012A</td>
<td>$750</td>
</tr>
<tr>
<td>NEC 8031A</td>
<td>$1100</td>
</tr>
<tr>
<td>NEC RGB Monitor</td>
<td>$999</td>
</tr>
<tr>
<td>NEC General Accounting System</td>
<td>$350</td>
</tr>
</tbody>
</table>

Apple Hardware

<table>
<thead>
<tr>
<th>Product Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel Printer Interface Card</td>
<td></td>
</tr>
<tr>
<td>Communications Card</td>
<td></td>
</tr>
<tr>
<td>High Speed Serial Interface</td>
<td></td>
</tr>
<tr>
<td>Pascal Language System</td>
<td></td>
</tr>
<tr>
<td>Centronics Printer Interface</td>
<td></td>
</tr>
<tr>
<td>Applesoft Firmware Card</td>
<td></td>
</tr>
<tr>
<td>Integer Firmware Card</td>
<td></td>
</tr>
<tr>
<td>Disk II with Controller DOS 3.3</td>
<td></td>
</tr>
<tr>
<td>Disk II only</td>
<td></td>
</tr>
<tr>
<td>Graphics Tablets</td>
<td></td>
</tr>
</tbody>
</table>

Other Hardware

<table>
<thead>
<tr>
<th>Product Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Music Synthesizer (3 Voice)</td>
<td></td>
</tr>
<tr>
<td>9 voice</td>
<td></td>
</tr>
<tr>
<td>ABT Numeric keypad</td>
<td></td>
</tr>
<tr>
<td>Micromodem II</td>
<td></td>
</tr>
<tr>
<td>Apple Clock</td>
<td></td>
</tr>
<tr>
<td>Rom Plus with Keyboard Filter</td>
<td></td>
</tr>
<tr>
<td>IntrolX-10 System</td>
<td></td>
</tr>
<tr>
<td>Romwriter</td>
<td></td>
</tr>
<tr>
<td>DoubleVision 80 x 24 Video Interface</td>
<td></td>
</tr>
<tr>
<td>CCS Arithmetic Processor</td>
<td></td>
</tr>
<tr>
<td>CCS Parallel Interface</td>
<td></td>
</tr>
<tr>
<td>16K Ram Card</td>
<td></td>
</tr>
<tr>
<td>Microworks DS-65 Digisector</td>
<td></td>
</tr>
<tr>
<td>SVA 8 inch Disk Controller</td>
<td></td>
</tr>
<tr>
<td>Sup-R-Mod</td>
<td></td>
</tr>
<tr>
<td>CCS Synchronous Serial Interface</td>
<td></td>
</tr>
<tr>
<td>CCS Asynchronous Serial Interface</td>
<td></td>
</tr>
<tr>
<td>Corvus 10 Meg. Hard Disk</td>
<td></td>
</tr>
<tr>
<td>Corvus Constellation</td>
<td></td>
</tr>
</tbody>
</table>

Miscellaneous/Supplies

<table>
<thead>
<tr>
<th>Product Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>16K RAM (200-250 NS)</td>
<td></td>
</tr>
<tr>
<td>Verbatim Datafile Diskette (Box of 10)</td>
<td></td>
</tr>
<tr>
<td>Dysan Diskette (Box of 22)</td>
<td></td>
</tr>
<tr>
<td>Apple Diskettes (Box of 10)</td>
<td></td>
</tr>
<tr>
<td>Verbatim Diskette Boxes (Holds 50 Disks)</td>
<td></td>
</tr>
<tr>
<td>Silentype Paper (Box of 10 rolls)</td>
<td></td>
</tr>
</tbody>
</table>

Monitors/Displays

<table>
<thead>
<tr>
<th>Monitor Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaded Video 100 12"</td>
<td></td>
</tr>
<tr>
<td>Sanyo 9" Monitor</td>
<td></td>
</tr>
<tr>
<td>KG-12C Green Phos. Monitor</td>
<td></td>
</tr>
<tr>
<td>Sanyo 12" Green Phosphor Monitor</td>
<td></td>
</tr>
<tr>
<td>NEC 12" Green Phosphor Monitor</td>
<td></td>
</tr>
<tr>
<td>Sanyo 12" BW Monitor</td>
<td></td>
</tr>
</tbody>
</table>

Printers

<table>
<thead>
<tr>
<th>Printer Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple Silentype with Interface</td>
<td></td>
</tr>
<tr>
<td>IDS 445 (Paper Tiger) with Graphics</td>
<td></td>
</tr>
<tr>
<td>IDS 480 with Graphics</td>
<td></td>
</tr>
<tr>
<td>IDS 560 with Graphics 10</td>
<td></td>
</tr>
<tr>
<td>Centronics 737</td>
<td></td>
</tr>
<tr>
<td>NEC Shippingwriter (RO, Serial)</td>
<td></td>
</tr>
</tbody>
</table>

Software

<table>
<thead>
<tr>
<th>Software Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Controller</td>
<td></td>
</tr>
<tr>
<td>Apple Post (Mailing List Program)</td>
<td></td>
</tr>
<tr>
<td>Easywriter Professional System</td>
<td></td>
</tr>
<tr>
<td>Apple Pie 2.0</td>
<td></td>
</tr>
<tr>
<td>DB Master Data Management</td>
<td></td>
</tr>
<tr>
<td>The Cashier</td>
<td></td>
</tr>
<tr>
<td>Apple Writer</td>
<td></td>
</tr>
<tr>
<td>Vizical</td>
<td></td>
</tr>
<tr>
<td>CCA Data Management System</td>
<td></td>
</tr>
<tr>
<td>Full Screen Mapping for CCA DMS</td>
<td></td>
</tr>
<tr>
<td>Pascal Interactive Terminal Software (PITS)</td>
<td></td>
</tr>
<tr>
<td>Basic Interactive Terminal Software (BITS)</td>
<td></td>
</tr>
<tr>
<td>Data Capture</td>
<td></td>
</tr>
<tr>
<td>Data Factory DMS</td>
<td></td>
</tr>
<tr>
<td>Apple Pilot</td>
<td></td>
</tr>
<tr>
<td>Apple Pilot</td>
<td></td>
</tr>
<tr>
<td>Magic Wand Word Processor (Needs Z-80 Softcard)</td>
<td></td>
</tr>
<tr>
<td>Dow Jones Portfolio Evaluator</td>
<td></td>
</tr>
<tr>
<td>Fortran</td>
<td></td>
</tr>
</tbody>
</table>

Ordering Information: Phone orders invited using VISA or MASTERCARD or bank wire transfers. VISA & MC credit card service charge of 2%. Mail order may send charge card number (include expiration date), cashier's check, money order or personal check (allow 10 business days to clear). Please include a telephone number with all orders. Foreign orders (excluding Military PO's) add 12% for shipping. All funds must be in U.S. dollars (letters of credit permitted). Shipping, Handling and Insurance in U.S. add 3% minimum $4.90. California residents add 8% sales tax. Our low margin prohibits us to send COD or or purchase orders or open account (please send written quotation). All equipment is subject to price change and availability. Equipment is new and complete with the manufacturer warranty. We do not guarantee merchantability of products sold. All returned equipment is subject to a 15% restocking fee. We ship most orders within 2 days. WE ARE A MEMBER OF THE CHAMBER OF COMMERCE.

Please send orders to:

Computer Stop, 2545 W. 237 St., Torrance, CA 90505

BYTE October 1981

Circle 59 on inquiry card.
What's New?

SYSTEMS

New Z80 Board

The CPC-2810 Z80-based processor board is designed for the S-100 bus. It features two or four serial I/O (input/output) channels, software-selectable data rates, two parallel I/O channels with handshaking, eight vectored priority interrupts, and compatibility with most disk controllers. All asynchronous serial channels can be made fully synchronous. I/O interfaces are customized through the use of external personality boards. The CPC-2810 Z80 board costs $495 from Measurement Systems & Controls, 1601 Orangewood, Orange CA 92668. (714) 633-4460. Circle 505 on Inquiry card.

A Very Portable Terminal

LEX 21 is a small, lightweight, low-cost printing and communications terminal. The LEX 21 terminal features a built-in modem, keyboard, and a thermal printer that displays upper- and lowercase characters. It measures 22 by 28 by 7.1 cm (8½ by 11 by 2¾ inches), weighs 2.25 kg (5 pounds), and takes up half a standard briefcase. Two K bytes of memory and a 1 K-byte line buffer are standard. The selectable transmission rates are 10 or 30 characters per second. The LEX 21 is designed for business and professional people for use in offices, homes, and when traveling. The LEX 21 costs $1195. Contact Lexicon Corporation, 8355 Executive Center Dr., Miami FL 33166, (305) 592-4404. Circle 506 on Inquiry card.

CBM 8032 Color Computer

The CBM 8032 microcomputer now has color. The Color 8032 features a 12-inch, 80-character by 25-line video display, 73-key upper- and lowercase keyboard, and numeric keypad. It also features a high-resolution RGB (red/green/blue) color monitor that displays eight colors in the text and graphics modes.

CBM 8032 software runs on the Color Computer without modification. Using the Control key, users can change foreground and background color combinations, or use reverse field for highlighting. In the graphics mode, the Color Computer provides 160 by 100 dot resolution. The computer contains a 32 K-byte screen editor ROM that provides color-handling capability. The CBM version 4.0 BASIC interpreter remains unchanged. Contact Commodore Business Machines Inc, 681 Moore Rd, King of Prussia PA 19406, (215) 337-7100. Circle 507 on Inquiry card.
Best prices anywhere! Now a Toll-Free “800”

COMPUTERS

ZENITH

 SUPERBRAIN

8 by INTERTEC

TERMINALS

TeleVideo

PRINTERS

CENTRONICS

SUPERBRAIN

64K DD
64K OD
DSS-10MEG
INTERTUBE
Emulator

CROMEMCO

CS2, List $4895 OUR PRICE $379
CS3, List $7995 OUR PRICE $6349

NORTH STAR

HORIZON II

HRZ-2-32DD, List $3695 $2695
HRZ-2-64DD, List $4195 $3295
HRZ-2-64, List $3995 $3115
HRZ-2Q64, List $4495 $3505

HAZELTINE

Soroc IQ120,
(Q130)
(Q135)
(Q135 w/g)
(Q140)

HAZELTINE

CALL
CALL
CALL

HAZELTINE

CALL

HAZELTINE

CALL

SUPERBRAIN

8 by INTERTEC

COMPUTERS WHOLESALE

P.O. Box 144 Camillus, N.Y. 13031

800-448-5715

In N.Y. call 315-472-2562

Circle 94 on inquiry card.

What's New?

SYSTEMS

Multiluser System

The System/48 is a multiluser system for small- to medium-size businesses. It can accommodate up to eight simultaneous users and has 20 megabytes of Winchester hard-disk storage.

MAGIC is an operating system for the System/48. It provides a means for direct-indexed access to several billion bytes of storage. The DataMagic II is a data-base system that provides a screen formatter, the BASIC language, a report generator, and an edit, update, and query processor package. For complete details, contact TEI Inc., 5075 S Loop E, Houston TX 77033, (713) 738-2300. Circle 598 on inquiry card.

Single-Board 8085 Computer

CPU-1 is an 8085-based microcomputer similar to the intel 8080 board. It is designed specifically for dedicated control applications. The system operates at 3 MHz and includes 256 bytes of programmable memory, 22 I/O [input/output] lines, one serial I/O port, one programmable counter/timer, and two sockets for 1 to 4 K bytes of EPROM (erasable programmable read-only memory). Only an external transformer is needed to complete the system. A printed-circuit board area is provided for user development. Applications programs for CPU-1 can be developed using any 8080/8085 development system.

The price for CPU-1 is $185. An expanded version with more memory and I/O lines costs $220. Contact Pragmatic Designs Inc., 950 Benicia Ave, Sunnyvale CA 94086, (408) 736-8670. Circle 599 on inquiry card.

Econet Network

The Econet network system for interconnecting computers and peripherals uses a four-wire connector. It allows a separation of up to 1 kilometer between stations and is compatible with all Acorn or other microcomputer systems. A ten-station network with a 400 K-byte file station costs £3000 (approximately $6000); additional stations cost £50 (about $100). Up to 255 stations can be interconnected with a data transfer rate of up to 210,000 bps (bits per second). Collision-detect circuitry and a collision-arbitration algorithm minimize the need for retries. Econet hardware fits inside a computer, and the software resides in 4 K bytes of ROM (read-only memory).

Econet was primarily designed for schools and institutions, but it can be used in any environment. For more information, contact Acorn Computer Ltd., 4a Market Hill, Cambridge, CB2 3NJ, England. Circle 600 on inquiry card.
MICROPOLIS™
S-100 DISC DRIVE SUB SYSTEMS

MICROPOLIS, the world's largest manufacturer of high density 5 1/4" disk drives, has been doing it for years. And reliably at that.

An ordinary 5 1/4" floppy provides just 35 tracks per side and stores only 70 bytes. This is not nearly enough for anything useful, so MICROPOLIS uses 77 tracks per side. Each track is then formatted with 16 sectors (head) at 256 bytes per sector, yielding an impressive 315K bytes per side.

MICROPOLIS drives have a larger capacity than any 8" disk drives, though they only occupy the space of a 5 1/4" floppy. The 315K bytes capacity is roughly 4 times the capacity of a standard 5 1/4" drive. This is what we call QUAD DENSITY.

To achieve the high density capability, you think MICROPOLIS had to sacrifice speed or reliability. NOT SO. The track access time is only 30ms with a high speed data transfer rate of 250,000 bits per second.

Using this high density format, MICROPOLIS is able to keep your initial subsystem costs to a minimum. Your cost is less than $8.03 per drive. That's a BIG VALUE in a small package.

MICROPOLIS disk subsystems are expandable to keep up with your ever increasing needs. Up to nine drivesheads may be daisy-chained on the S-100 controller board. With all low drivesheads in operation, you have access to over 12 MEGABYTES of on-line storage.

WITH MICROPOLIS, complete means COMPLETE. Each subsystem comes complete with controller interface, cable, and software. The software includes the MDOS operating system, extended basic, assembler and loader of the BASIC is a complete package, including an assembler, editor, file management functions and utilities, which provides total support.

MICROPOLIS has a unique disk mounting mechanism wherein the center of the disk fits over a preformed spindle and is clamped into place while the spindle retains its centric balance.

MICROPOLIS goes one better and uses an all solid-state, with a precision-ground steel lead screw and steel follower. It costs more but gives you greater storage capacity with less head per thousand bytes. In addition, the steel construction compared to plastic, significantly increases reliability. There's even a built-in File Protection feature that prevents accidental loss of valuable data (A low protection field can be specified). The SIMATIC file system is also compatible.

MICROPOLIS has a unique disk mounting mechanism wherein the center of the disk fits over a preformed spindle and is clamped into place while the spindle retains its centric balance. This design is to assure that the drive components are kept as cool as possible to assure reliable data recovery.

MICROPOLIS disk subsystems are expandable to keep up with your ever increasing needs. Up to nine drivesheads may be daisy-chained on the S-100 controller board. With all low drivesheads in operation, you have access to over 12 MEGABYTES of on-line storage.

WITH MICROPOLIS, complete means COMPLETE. Each subsystem comes complete with controller interface, cable, and software. The software includes the MDOS operating system, extended basic, assembler and loader of the BASIC is a complete package, including an assembler, editor, file management functions and utilities, which provides total support.

Micropolis uses a built-in self-test that instantly indicates the drive selected, drive address, and file protection. This test can cause numerous read and write errors that can become hazardous to your data. The major heating power supply components are mounted in a large heatsink, external to the cabinet, by the power switch and fuse (located at the rear of the cabinet). This design is to assure that the drive components are kept as cool as possible to assure reliable data recovery.

The temperature compensation loop in a MICROPOLIS drive includes the only disk, predelayed actuator and spindle housing. The baseline is specifically excluded since its expansion is compensated by a proportional change in the position of the headactuator.
8" DISK DRIVE SALE

8" SHUGART 5A01SR $450
8" SHUGART SA 851R $669 2 for $1289
QUME DATATRACK 8 $825 2 for $1599
Enclosure, power supply for 2 8" drives A&T $299
NCC industrial grade enclosure for 2 drives with P.S. $445
MORROW Discus 2D + CP/M * MICROSOFT BASIC $950
Discus 2+2 + CP/M * MICROSOFT BASIC $1195

HARD DISK SPECIALS

Corvus 10MB and controller
20MB and controller $5350 $5450

Clearsonet Network Multiplexer and Mirror Video Tape Disk Backup
MORROW 26MB + controller + CP/M 2.2 *, M basic $4945 $3821

DEC LA-34

Floppy 5MB $5595 $5995

MICROBYTE

Floppy Disk controller $679

DEC LA-34

S-100 SPECIALTIES

CPU-2/80A, CPU, 64K ram, floppy cont., RS-232 port, S-100 IEEE, 8 slot in Add terminal, inc. CP/M 2 2 $CALL

S-100 series

Full standard I/O. Use standard S-100 bus, 20MB and controller. $195

California

These high quality, reliable products have made CCS a leader in the field for S-100 products. $CALL

Assembly and testing

2200 H.D. Mainframe, 20a, P.S., 12 slot MB $434 $359

2200C 64K Dynamic RAM/Bank Select $720 $580

2210A 8-60 CPU, serial port, ROM monitor $310 $259

2422A Floppy Cont, CP/M 2 2, ROM monitor $425 $345

8000 DT w/ 1MB floppy drives, 2 serial, 136MB $669 $599

FULL 2 YEAR WARRANTY!

300 CPU $310

D3 Disk controller 64K Dynamic Ram $354 $684

MICROBYTE

FULL SYSTEMS AVAILABLE

SUPERBRAND

$CALL

All of our peripherals can be configured for Radio Shack* Model II

WASHINGTON COMPUTER SERVICES

an affiliate of ELECTRIC COMPANY est. 1912

CUSTOM COMPUTER ROOM WIRING SINCE 1960
197 Spring Street
New York, N.Y. 10012

TO ORDER: CALL OUR TOLL-FREE NUMBER:
★ (800) 221-5416 ★ In N.Y. State and for
technical information call 1-(212) 226-2121

For fast delivery, send certified checks, money order or
call to arrange direct bank wire transfers. Personal or
company checks require two to three weeks to clear. All
prices are mail order only. Prices subject to change
without notice, call for latest prices. Prices include 2%
cash discount. N.Y. residents add sales tax.

Quantes is a trademark of North Atlantic Industries, Inc.
Radio Shack* is a trademark of the Tandy Corp.
CP/M* is a trademark of Digital Research

©1981 Radio Shack
FLOPPY DISK DRIVES

- Qume Datatrak-B $540
- Virtually the industry standard. High quality/ reliability. Full featured, double-sided, double density.
- SAB51-R $540
- Full featured drive, double-sided, double density
- SAB81R $430
- Single sided, double density, very consistent

FDD100-B $630
- Qume Datatrak 5 $345
- 5
density
- Tandon TM-100 48 TPI 5
density $350
- 96 TPI $425

We are expecting a large shipment of mini's, many types. Call for details.

CONTROLLERS

- Tarbell single density kit $195
- Tarbell single density A & T $310
- Tarbell double density A & T $425
- CCS 2422 w/CPM 2.2 $350
- Godbout Disk 1 $460
- MDA MXV-21 "LSI-11 controller. (RX-01, RX-02 compatible) $1060

MISCELLANEOUS

- CCS Mainframe $395
- 2 Disk drive enclosure $95
- Cable Kits 2 drives $26
- 3 drives $40
- (fits Siemens, Shugars, Qume)
- CP-206 power supply $110
- Diskettes ss $39.10 - ds $59.10
- (powers two floppies)

Terms of sale: cash or checks, purchase orders from qualified firms and institutions. Minimum order $25. CA residents add 6% tax. Prices subject to change without notice. All goods subject to prior sale. Minimum shipping/handling charge $4.00.

Electrolabs
POB 1608, Palo Alto, CA 94302 (415) 321-5601

CALL TOLL FREE:
1-800-547-2492

APPLE HARDWARE

- DISK DRIVE w/3 CONTROLLER 1491
- DISK DRIVE ONLY 1491
- SILENT TYPE PRINTER 1491
- C5E INTERFACE 1491
- GRAPHICS TABLET 1491
- APPLE SOFT OR INTEGER CARD 1491
- PASCAL LANGUAGE CARDS 1491
- PARALLEL PRINTER CARDS 1491
- SERIAL PRINTER CARDS 1491
- CENTRONICS PRINTER CARDS 1491
- LOWER CASE ADAPTOR 1491
- 16K RAM CARD (MICROSOFT) 1491
- 256 CAR (MICROSOFT) 1491
- MICRO MODEN (HAYES) 1491
- SMART MODEN (HAYES) 1491
- MOUNTAIN CLOSER 1491
- MOUNTAIN MUSIC SYSTEM 1491
- MOUNTAIN A/D CONVERTER 1491
- MOUNTAIN INTERFACE 1-10 1491
- CONTROL 1491
- MOUNTAIN C.P.S. MULTIFUNCTION 1491
- 16 KEPAD (A.T.) 1491
- SUP-P-TERM (32 COLO BY MATE) 1491
- SUP-P-MOD MODULATOR BY MATE 1491
- 16K MEMORY EXPANSION 1491
- POST SCRIBER (T.G. OR PROGRAMMA) 1491
- 5" B/W MONITOR (SANYO) 1491
- 9" B/W MONITOR (NEC) 1491
- 12" B/W MONITOR (SANYO) 1491
- 13" GREEN MONITOR (SANYO) 1491
- 15" COLOR MONITOR (T.A.) 1491
- I.D. S. 4650 PRINTER 1491
- I.D. S. 4650 PRINTER 1491
- I.D. S. 4650 PRINTER 1491
- EPSO ML-80 PRINTER 1491
- EPSO ML-180 PRINTER 1491
- Plane 5.15 PRINTER 1491
- TEXAS INSTRUMENTS 1491

ATARI HARDWARE

- C5-880 VIDEO GAME 1491
- 410 PROGRAM RECORDER 1491
- 610 DISK DRIVE 1491
- 820 PRINTER 1491
- 820 PRINTER 1491
- 825 PRINTER 1491
- 825 PRINTER 1491
- 830 MODEM 1491
- 850 INTERFACE MODULE 1491
- 851 16K MEMORY EXPANSION 1491

SOFTWARE

- VICE ALL (ARIS) 1491
- VICE ALL 1491
- VISICALL 1491
- VISIPLOT 1491
- VISIPLOT 1491
- VISIFERRO 1491
- VISIFERRO 1491
- D.O.S. TOOL KIT 1491
- D.O.S. 3.3 UPDATE 1491
- MICROWAVE DATA FACTORY 1491
- M.I.G.M.A.S T. MASTER (STOWER) 1491
- APPLE WRITER 1491
- SUP-P-TERM II 1491
- WIIWIW 1491
- WIIWIW 1491
- B.P. SOFTWARE (each) 1491
- GENERAL BUSINESS CONTROLER 1491
- SOFTWARE TOLL FREE PAYROLL 1491
- STOCKPILE INVENTORY 1491
- ADVENTURE 1491
- ZOAR 1491
- SARGON CHESS 1491
- CALAXON 1491
- CALL FOR OTHER HARDWARE AND SOFTWARE

APPLE HARDWARE

- DISK DRIVE w/3 CONTROLLER 1491
- DISK DRIVE ONLY 1491
- SILENT TYPE PRINTER 1491
- C5E INTERFACE 1491
- GRAPHICS TABLET 1491
- APPLE SOFT OR INTEGER CARD 1491
- PASCAL LANGUAGE CARDS 1491
- PARALLEL PRINTER CARDS 1491
- SERIAL PRINTER CARDS 1491
- CENTRONICS PRINTER CARDS 1491
- LOWER CASE ADAPTOR 1491
- 16K RAM CARD (MICROSOFT) 1491
- 256 CAR (MICROSOFT) 1491
- MICRO MODEN (HAYES) 1491
- SMART MODEN (HAYES) 1491
- MOUNTAIN CLOSER 1491
- MOUNTAIN MUSIC SYSTEM 1491
- MOUNTAIN A/D CONVERTER 1491
- MOUNTAIN INTERFACE 1-10 1491
- CONTROL 1491
- MOUNTAIN C.P.S. MULTIFUNCTION 1491
- 16 KEPAD (A.T.) 1491
- SUP-P-TERM (32 COLO BY MATE) 1491
- SUP-P-MOD MODULATOR BY MATE 1491
- 16K MEMORY EXPANSION 1491
- POST SCRIBER (T.G. OR PROGRAMMA) 1491
- 5" B/W MONITOR (SANYO) 1491
- 9" B/W MONITOR (NEC) 1491
- 12" B/W MONITOR (SANYO) 1491
- 13" GREEN MONITOR (SANYO) 1491
- 15" COLOR MONITOR (T.A.) 1491
- I.D. S. 4650 PRINTER 1491
- I.D. S. 4650 PRINTER 1491
- I.D. S. 4650 PRINTER 1491
- EPSO ML-80 PRINTER 1491
- EPSO ML-180 PRINTER 1491
- Plane 5.15 PRINTER 1491
- TEXAS INSTRUMENTS 1491
DIGITAL RESEARCH COMPUTERS
(214) 271-3538

32K S-100 EPROM CARD

NEW!

$79.95

KIT

USES 2716's
Blank PC Board - $34
ASSEMBLED & TESTED
ADD $30

SPECIAL: 2716 EPROM's (450 NOS) Are 9.95 Ea. With Above Kit.

KIT FEATURES
1. Uses +5V only 2716 (2kx16) EPROM's
2. Allows up to 32k of software on line!
3. Use 2411 (400NOS) 4K Static RAMs
4. ON BOARD SELECTABLE WAIT STATES
5. Double sided PC Board, solder masked, silk-screened
6. Gold plated contact fingers
7. Fully buffered and bypassed
8. Select 16k or 8k blocks
9. Use 2716's
10. Unselected EPROM & automatically powered down for low power

At Last! An affordable 32K Static RAM with full 6800 capacity.

FEATURES:
1. Uses proven low power 2114 Static RAMs.
2. Supports $550C - EXTENDED ADDRESSING.
3. All parts and sockets included.
4. Dip Switch address select as a 32K block.
5. Extended addressing can be disabled.
6. Works with all existing 6800 $550 systems.
7. Fully bypassed, PC Board to double sided, plated thru, with silk screen.

16K STATIC RAM KIT- S 100 BUSS

PRICE CUT!

FOR 4MHZ

$169.95 KIT

ADD $10

KIT FEATURES
1. Addressable as four separate 4K Blocks
2. (0 to 9K on each)
3. (2716) 4k Static RAMs
4. ON BOARD SELECTABLE WAIT STATES
5. Double sided PC Board, with solder mask and silk-screened layout. Gold plated contact fingers
6. All address and data lines fully buffered
7. Kit includes ALL parts and sockets
8. PHANTOM of jumpered to Pin 87
9. LOW POWER under 1.5 watts TYPICAL from the +5 volt Bus
10. Blank PC Board can be populated as any multiple of 4K.

NEW!

STEREO!

S-100 SOUND COMPUTER BOARD

At Last! An S-100 Board that unleashes the full power of your 8-bit Microcomputer. This unique board converts your system into a full stereo sound generator. The board contains the necessary hardware and software components to produce a rich, full stereo sound. It includes two 16-bit DACs (Digital-to-Analog Converters) for high-quality audio output. The board is compatible with any S-100 bus-based computer system and requires no special software setup. The board comes with all necessary cables and connectors, ensuring seamless integration into your existing system.

NEW!

4K STATIC RAM

National Sem, MM2557. Arranged 4K x 1. +5V, 18 PIN DIP. A Lower Power, Plug in Replacement for TMS 4044. 450 NS. Several Boards on the Market Will Accept These Rams. SUPER SURPLUS PURCHASE! PRIME NEW UNITS!

8 FOR $16 32 FOR $59.95

Digital Research Computers
(OF TEXAS)
P.O. BOX 401565 • GARLAND, TEXAS 75040 • (214) 271-3538

TRADEMARK OF DIGITAL RESEARCH. WE ARE NOT ASSOCIATED WITH DIGITAL RESEARCH OF CALIFORNIA, THE SUPPLIERS OF CPM SOFTWARE.
One-Stop Component Center

This is a partial listing of over 500 items available from 600 authorized Jim-pak Distributors:

POTENTIOMETERS

<table>
<thead>
<tr>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Watt @ 70°C</td>
<td>3/4 Watt @ 70°C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1K 5K 10K</td>
<td>100G 500Ω 1K</td>
</tr>
<tr>
<td>25K 50K 100K</td>
<td>100K 500X 1Meg</td>
</tr>
</tbody>
</table>

CMOS

<table>
<thead>
<tr>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2.95</td>
</tr>
</tbody>
</table>

SOCKETS

<table>
<thead>
<tr>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2.95</td>
</tr>
</tbody>
</table>

DIODES & TRANSISTORS

<table>
<thead>
<tr>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1.99</td>
</tr>
</tbody>
</table>

CAPACITORS

<table>
<thead>
<tr>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1.19</td>
</tr>
</tbody>
</table>

MICROPROCESSORS

<table>
<thead>
<tr>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>$19.95</td>
</tr>
</tbody>
</table>

Function Generator Kit

Provides 3 basic waveforms: sine, triangle and square waves. Freq. range from 1 Hz to 100K Hz. Output amplitude from 0 volts to 400 volts (peak to peak). Uses a 12V supply or 8V split power supply. Includes chip, P.C. Board, comp. & instructs.
NEW 16K-RAM PERSONAL COMPUTER

$229.00 FACTORY SALE PRICE

For $229.00 you get the new Interac Model "R" Computer, 16K-RAM, 2K-ROM, 8080A Microprocessor, color, sound, full 53 keyboard, high speed cassette, AC adapter, R.F. Modulator, Black Console Case, 90 days parts and labor warranty, owners' guide, FCC approved, 15 DAY FREE TRIAL. Return within 15 days complete and undamaged for refund of purchase price.

PROTECTO ENTERPRISES
BOX 550, BARRINGTON, IL 60010
TO ORDER PHONE 312/382-5244

Circle 171 on Inquiry card.

WANTED:
APPLE, PET, TRS-80, CP/M SOFTWARE

Wescico is a publisher and distributor of professional software for microcomputers. If you have a new program ready for distribution or want your existing programs to reach a larger market, contact Phillip Wehlioff, V.P., Wescico, Inc., 26 Van Zandt Street, Norwich, CT 06365, (203) 853-5880 for details. If you are already on the Model 1 version, you may want to take advantage of Wescico's worldwide promotion and distribution services.

Circle 52 on inquiry card.

TR5-80™ Models 1 & 3
SYSTEM DIAGNOSTIC $99.95
Tests every component of your TRS-80 for proper operation: ROM, RAM, Video Display, Key board, Line Printer, Cassette Recorder, Disk Drives, RS-232 Interface. Continuous or monitored operation.

PENCIL PATCH $19.95
Fixes the Electrical Pencil™ Model 1 version so that it runs on the Model 3. (You must already own the Model 1 version)

SMART TERMINAL $69.95
The intelligent telecommunication program that enables your TRS-80 to be used as a timesharing terminal. Automatic transmission to and from another computer. Control keys, break key, lower case, cassette and disk files compatible with both Electrical Pencil™ and Script programs.

Send S.A.S.E. for Free Catalog.

HOWE SOFTWARE
14 Lexington Road, New City, NY 10956
*TRS-80 is reg. TM of Radio Shack div. of Tandy Corp.

Circle 61 on inquiry card.

Scotch DISKETTES

SAVE 40% Write for our complete list.

5 1/4" Sgl. Dens. 26.70/10 Specify soft. 10 or 16 hard sectors

8" Sgl. Dens. 27.30/10

8" Dbl. Dens. 35.80/10 Specify soft or 32 hole hard

Add $2.00 shipping - Michigan add 4% tax

LYKEN COMPUTER SYSTEMS
27204 Harper Ave., St. Clair Shores, MI 48081

Authorized Distributor Information Processing Products

Circle 205 on inquiry card.

Circle 307 on inquiry card.

Circle 308 on inquiry card.

Circle 206 on inquiry card.

Circle 290 on inquiry card.

Circle 397 on Inquiry card.

Circle 396 on Inquiry card.
CALL US TODAY FOR SPECIAL SYSTEM PACKAGE PRICES . . .

Now is the time to buy a complete system of your choice...

- CROMEMCO SYSTEM 2
- DYNABYTE
- NORTHSTAR
- SUPERBRAIN

Complete with printer and software.
READY TO USE!!!

Participate in our expansion sale.

MiniMicroMart is moving to larger quarters to serve you with a larger staff and with the largest inventory of systems and peripherals.

MiniMicroMart, Inc.
943 W. Genesee St.
Syracuse, New York 13204
(315) 422-4467
RCA Cosmic 1802 Super EI Computer $106.95

Comparative features before you decide to buy any computer. There is no other computer on the market today that has all the desirable features of the Super EI for so little money. The Super EI is a small single board computer that does many things; it is an excellent computer for training and for learning programming with its machine language and yet it is easily expanded with additional memory, Fast BASIC, ASCII keyboards, video character graphics, etc.

Before you buy another small computer, see if it includes the following features: Keyboard, Eletra and Motex displays, Single step, Optional add-on equipment, Power Supply, Audio Amplifier, Speaker, Fully warranted for all IC's. Real cost of in warranty repairs. Full Documentation. The Super EI includes a ROM monitor and program for trading, editing and execution with SINGLE STEP for program debugging which is not included in others at the same price. With SINGLE STEP you can see the microprocessor chip operating with the pertinent Getal address and data bus displays, before and after executing instructions. Also, CPU mode and insulation cycle are displayed and displayed on 8 LED indicators. An RCA 1601 video graphics chip allows you to connect with your own TV with an inexpensive video monitor for graphics and games. Another advantage of a speaker system is included for writing your own music or using many music programs already written. A special amplifier may also be used to drive relays for control purposes. A 24 key HEX keyboard includes 16 HEX keys.

Super Expansion Board with Cassette Interface $89.95

Super Basic V5.0

A new expanded version of Super Basic now available. Quest was the first company worldwide to ship a full size Basic for 8032 Systems. A complete function BASIC from Rieh Denver including float point capability, with scientific notation, (mantime: 17 or 17 + 2 decimal integer: -7 billion multi dim array strings array string manipulation: cassette 0.5. Save and load basic data and machine language programs, and over 75 statements, functions and operations.

Type-N-Talk by Votrax

Talk to speech synthesizer with unlimited vocabulary, built-in teach speech algorithm, 70 to 100 bits per second speech synthesizer, RS232C interface $349.00.

1802 16K Dynamic RAM K14 $149.00

Expandable to 512K. Hidden refresh, no clock out. 4 MHz no wait states. Add 16K RAM $29.95

Type-N-Talk on Cassettes $30.00

Add commands include Shriq, Ayvar, Avail-U 10 1-5 6. 6-16. 7-19, 8-20. Super Monitor VI Source Listing $15.00

For free copy of our NEW 1981 QUEST CATALOG, include 49c stamp.

TERMS: $5.99 min. order. U.S. Funds. Calif. residents add 6% tax. $10.00 min. BankAmericard and Master Charge accepted. $1.00 insurance optional. Postage: Add 5%. C.O.D. $10.00 min. order.

P.O. Box 4430
Santa Clara, CA 95054
Will call: 2322 Walsh Ave.
(480) 988-1640
TX 910-358-2139
Same day shipped. First line only. Factory tested. Guaranteed money back. Quality IC and other components at factory prices.
PRICE BREAKTHROUGH

We've done it again! As a leader in small computer sales we must constantly find new ways to save our customers money while offering quality products. Our most popular seller, the Apple II Plus, is now available with 64K of user RAM at the unbelievable price of only $1249. Plus we manufacture the 16K RAM Card that expands the factory Apple II 48K so it's maximum capacity of 64K. The Ram Card allows use of Integer and Applesoft Basic and other languages like Pascal. It's a must for large database, Vascalc, and the Z-80 cards. The Card is made from high quality components and has a full one year warranty!

64K APPLE II PLUS*
*48 K Apple II Plus with 16K Ram Card
ONLY
16K ONLY $1025
48K ONLY $1089
DISK II DRIVE WITH CONTROLLER CARD
DISK II DRIVE ADD ON
$499
$439

Printers
Epson MX-80 CALL

Atari Personal Computer

TOLL FREE ORDER LINE
800-854-6654
California and outside
Continental US
(714) 698-8088

APPLE Cards and Hardware

Apple II Personal Computer

Software for the Apple

NEC Microcomputer

Circle 103 on inquiry card.
Circle 120 on inquiry card.

Circle 365 on inquiry card.

Circle 279 on inquiry card.

Circle 163 on inquiry card.

Circle 178 on inquiry card.

Circle 145 on inquiry card.

Circle 430 on inquiry card.

Circle 391 on Inquiry card.

Circle 7 on inquiry card.
New from Jade
The Bus Probe
Inexpensive S-100 Diagnostic Analyzer

Intersell
Sellum I
NEC Spinwriter w/ Intelligent Controller

Standard serial, Centronics parallel, and current loop interfaces • Selectable baud rates 50 to 19,200
• Automatic bidirectional printing • Logic seeking • 650 character buffer with optional 16K buffer • 35 characters per second print speed • Comes with various forms tractors, ribbon, thin and wide cable • Diablo compatible software • Available with or without optional front panel
PRD-55511 1K on front panel $2795.00
PRD-55512 16K on front panel $2995.00
PRD-55515 1K on front panel $2995.00
PRD-55516 16K on front panel $3095.00

Intersell NEC 3500Q
Intersell has announced that, available in September, they will offer a version of the new NEC Model 3500Q Spinwriter (30 cps) that will bring to the customer the same standard features as the Sellum I (except the tractor assembly which is optional on the 3500Q) but incorporating the added features of the NEC Model 3500Q.
PRD-55531 3500Q 1K $1995.00
PRD-55532 3500Q 16K $2095.00
PRD-55100 Deluxe tractor option $300.00

QUME DT-8
8" Double-Sided, Double-Density Disk Drive
1 Drive $529.95 each
2 Drives $499.95 each
10 Drives $479.95 each
Jade Part Number MSF-750080

SIEMENS 8"
8" Single-Sided, Double-Density Disk Drive
1 Drive $384.95 each
2 Drives $349.95 each
10 Drives $324.95 each
Jade Part Number MSF-201210

Shugart 801R
8" Single-Sided, Double-Density Disk Drive
1 Drive $394.95 each
2 Drives $389.95 each
Jade Part Number MSF-10601K

MPI B-51
5¼" Single-Sided, Double-Density Disk Drive
1 Drive $234.95 each
2 Drives $224.95 each
10 Drives $219.95 each
Jade Part Number MSM-155100
END-000013 Case & power supply $74.95

Micro-Sci
Apple Disk Drives
Increased Capacity - Decreased Price
40 or 70 track drives • operates with DOS 3.2 and 3.3, Language System, and the Z80 Softcard • 40 and 70 track drives may be mixed on your Apple II • With two 40 track drives you get a 12.5% increase in capacity, 300% improvement in track-to-track access, and save about 15% • With two 70 track drives instead of four 35 track drives you get the same capacity, 300% improvement in track-to-track access time, and save about 45%
101-23440 A-40 with cable $399.95
101-23700 A-70 with cable $329.95
101-23900 Micro-sci controller $289.95

Here we grow again !!!

Grand Opening Sale

We're celebrating the latest addition to Jade's Retail Division - our new store located in Woodland Hills at 21800 Ventura Blvd.

So your computer is down. And you don't have an oscilloscope. And you don't have a front panel...
You're not alone - most computers have their occasional bad days. But without diagnostic equipment such as an oscilloscope (expensive) or a front panel (expensive), it can be very difficult to pinpoint the problem. Even if you have an extendor board with a superfast logic probe, you can't see more than one signal at a time. You're stuck, right?
Not anymore. Jade is proud to offer our cost-effective solution to the problems mentioned above: THE BUS PROBE.

Whether you're a hobbyist with a cantankerous kluge or a field technician with an anxious computer owner breathing down your neck, you'll find THE BUS PROBE speeds your repair time remarkably. Just plug it in THE BUS PROBE and you'll be able to see all the IEEE-120 signals in action. THE BUS PROBE allows you to see inputs, outputs, memory reads and writes, instruction fetches, DMA channels, vectored interrupts, A or B hit wide data transfers, plus the three bus supply voltages.

An on-board pulse generator can provide repetitive resets, interrupts, or wait states, for trouble shooting.

JADE
Disk Sub-Systems

Handsome metal cabinet with proportionally balanced air flow system • Rugged dual drive power supply • Power cable kit • Power switch, line cord, fuse holder, cooling fans • Never-Mor rubber feet • All necessary hardware to mount 2-8 disk drives, power supply, and fan • Does not include signal cable

Dual 8" Subassembly Cabinet
END-000420 Basic cabinet $59.95
END-000421 Cabinet kit $225.00
END-000431 A & T $359.95

8" Disk Drive Subsystems

Single Sided, Double Density
END-000423 Kit 2 FH108BA $924.95
END-000431 A & T 2 FH108BA $1124.95
END-000433 Kit 2 SA-818BA $999.95
END-000434 A & T 2 SA-818BA $1195.00

Double Sided, Double Density
END-000426 Kit 2 DF74s $1224.95
END-000437 A & T 2 DF74s $1465.00
END-000436 Kit 2 SA-811BA $1839.00

Circle 168 on inquiry card.

Here we grow again !!!

Grand Opening Sale

We're celebrating the latest addition to Jade's Retail Division - our new store located in Woodland Hills at 21800 Ventura Blvd.
Grand Opening Sale

San Diego *Hawthorne* *Woodland Hills*

Printers

Dual-Mode 200 - Malibu
200 CPS: 9 x 9 matrix or 70 CPS: 19 x 19 matrix for better quality, stores up to 12 different fonts, hires dot graphics, single sheet or term interface, RS-232C and parallel interface

PRM-35200 Dual-Mode 200 $399.00

BEST BUY in PRINTERS - Epson

MX-70 120 volume, 80 CPS, 6 x 7 dot matrix, adjustable tearer feed & graphics

PRM-27070 List $459 $399.95

MX-80 120 volume, 80 CPS, bi-directional/direkt seeking printing, 8 x 9 dot matrix, adjustable tearer feed & 84 characters carriage

PRM-27080 List $465 $474.95

MX-HFPT name as MX-80 with friction feed

PRM-27082 List $745 $734.95

MX-100 235 volume, correspondence quality, ultra-high resolution graphics, up to 15” paper, friction feed & reviseable addressable typeface, 18 x 18 dot matrix, 80 CPs, programmable forms handling

PRM-27110 List $995 $905.00

PRA-27084 Serial interface $69.95

PRA-27085 Serial unit & 2K buffer $144.95

PRA-27081 Apple card $74.95

PRA-27082 Apple cable $22.95

PRA-27084 IEEE 488 interface $52.95

PRA-27087 TRS-80 card $65.00

PRA-27085 Graflex II $14.95

Accessories for Apple

16K MEMORY UPGRADE
Add 16K of RAM to your TRS-80, Apple, or Eddy in just minutes. We've sold thousands of these 16K RAM upgrades which include the appropriate memory chips (as specified by the manufacturer), all necessary jumper blocks, fast proof instructions, and our 1 year guarantee.

ME-10100 K TRS-80 kit $25.00

ME-10101 K Apple kit $25.00

ME-10102 K Eddy kit $25.00

16K RAM Card - Microsoft

(Microsoft is life after 48K)

MX-18300A A & T $174.95

Z-80® CARD FOR APPLE

Two computers in one, 680 & 6802, more than doubles the power & potential of your Apple, includes 2.8” CPU card, CP M 3.2 & BASIC-80

CPX-30000A A & T $299.95

APPLE CLOCK - Cal Comp Sys

Real time clock w/ battery back-up

IOK-2030A A & T $109.95

8” DISK CONTROLLER

New from Vista Computer, single or dual sided, single or double density compatible with DOS 2.2, 3.3, Pascal, & CP/M 2.2, Shugart & Qume compatible.

IOD-27080 A & T $499.95

8” DRIVES for APPLE

Controller, DOS, two 8” double density drives, cabinet, power supply, & cables

Special Package Price Kit $1399.95

PRINTER INTERFACE - C.C.S.

Computer type I/O card or firmware

IOI-20141 A & T $99.95

AIO, ASIO, APIO - S.S.M.

Parallel & serial interface for your Apple Type B drive pg 11

IOI-2050K Par & Ser kit $139.95

IOI-2050A Par & Ser $119.95

IOI-2052K Serial kit $139.95

IOI-2052A Serial & T $139.95

CPS MULTICARD - Mtn. Computer

There's nothing like it! Real time clock/calendar, serial interface, & parallel interface all in one card.

IOK-2300A A & T $199.95

Apple-CAT - Novation

Software selectable 1200 or 300 baud, direct connect, auto-narrator model, auxiliary 3-channel RS-232 port for printer.

IOK-5323A Save $50.00 $225.00

Single Board Computers

AIM-65 - Rockwell

6802 computer with alphanumeric display, printer, & keyboard, and complete instructional manuals

CPK-185 1K A.M. $424.95

CPK-50465 4K A.M. $499.95

SFK-1046004E 8K BASIC ROM $99.95

SFK-5046004E 4K assembler ROM $81.95

PSX-500A Power supply $84.95

ENX-90002 Enclosure $54.95

4K A.M., BASIC power supply, & enclosure

Special package price $875.00

Z-2000 STARTER KIT - SD Systems

Complete Z-2000 computer with RAM, ROM, 14” display, keyboard, mouse, and blue area.

CPK-30001A Kit $369.95

CPK-30001A A & T $479.95

SYM-1 - Syntek Systems

Single board computer with 1K of RAM, 4K of ROM, key-pad, 1K.I display, 8 line & cursor interface board.

CPK-50020A A & T $249.95

Video Terminals

VIEWPIONT - ADDS

Detachable keyboard, serial RS-232C interface, head moves from 110 to 2160, auxiliary serial output port, 24 x 80 display, suitable for commercial or personal use.

VDT-501120 Sale Price $398.95

TELEVIDEO 950

Detachable keyboard, split screen with back-light, color CRT, programmable function keys, on-screen status bars, buffered auxiliary port, 17 x 20 dot matrix, serial/com, serviced nationwide by General Electric.

VDT-901250 List $1195.00 $995.00

Video Monitors

Leedex / Amdek

4 remanufactured color monitors

VDM-801210 Video 100 12” B/W $139.95

VDM-801230 Video 100-60 12” B/W $178.95

VDM-801250 13” Green, Phosphor $195.00

VDM-801310 15” Color I $379.95

12” COLOR MONITOR - NEC

Home monitor with audio & sculptured case

VDC-651212 Color Monitor $479.95

12” GREEN SCREEN - NEC

20 MHz, 51 phosphor video monitor with audio, exceptionally high resolution - A fantastic monitor at a very reasonable commercial price.

VDM-651200 12” monitor $299.95

EPROM Erasers

EPROM ERASERS

L.S. Engineering UV eraser for up to 4K EPROMs

XM-3200 A & T $339.95

Spectacular bi-intensity industrial eraser

XME-3110 Without timer $89.50

XME-3101 With timer $94.50
Grand Opening Sale

Circle 187 on inquiry card.

[Logo: San Diego, Hawthorne, Woodland Hills]

S-100 PROM Boards

- **PB-1 - S.S.M.**
 - 2768, 3714 EPROM board with built-in programmer
 - MEM-99510K Kit $154.95
 - MEM-99510A A & T $219.95

- **PROM-100 - SD Systems**
 - 3758, 2768, 2758, 5184 EPROM p-programmer
 - MEM-99520K Kit $219.95
 - MEM-99200A Jade A & T $209.95

- **EPROM Board - Jade**
 - 16X or 2X uses 3727A or 281A, 9K boundary
 - MEM-18230K Kit $87.05
 - MEM-18230A A & T $119.95

S-100 Video

- **VB-3 - S.S.M.**
 - 60 characters x 16 lines, 25 x 25 matrix for graphics, full upper case ASCII character set, numbers, symbols, and greek letters; normal/reverse blinking video, S-100
 - IOV-1051K Kit $149.95
 - IOV-1051A A & T $149.95
 - IOV-1051B Bare board $34.95

- **VDB-8024 - SD Systems**
 - 80 x 24 I/O mapped video board with keyboard I/O, and on-board 240A
 - IOV-1092K Kit $309.95
 - IOV-1092A Jade A & T $459.95

Motherboards

- **ISO-BUS - Jade**
 - Silent, simple, and on sale - a better motherboard
 - 6 Slot (6" x 8")
 - MBS-001B Bare board $19.95
 - MBS-001K Kit $39.95
 - MBS-001A A & T $49.95
 - 12 Slot (9" x 8")
 - MBS-121B Bare board $29.95
 - MBS-121K Kit $39.95
 - MBS-121A A & T $39.95
 - 18 Slot (14" x 8")
 - MBS-181B Bare board $49.95
 - MBS-181K Kit $59.95
 - MBS-181A A & T $139.95

Mainframes

- **MAINFRAME - Cal Comp Sys**
 - 13 slot S-100 mainframe with 2-MHz computer supply
 - ENC-112105K Kit $329.95
 - ENC-112108A A & T $399.95

- **DISK MAINFRAME - N.P.C.**
 - Holds 8" drives and 12 slot S-100 system. Attractive metal cabinet with 12 slot motherboard & card cage, front panel, dual fans, lighted switch, and other professional features.
 - EN-112328 with 25 amp p.s. $969.95

MEMORY - Jade

- **4 MHz**
 - 1821K B 2 CTC's, 1 SIO, 1 P1O $179.95
 - 1845A A & T $239.95
 - 1846A A & T $299.95
 - 1845B Bare board w/ manual $49.95

- **CB-2 Z-80 CPU - S.S.M.**
 - 2 or 4 MHz $240 CPU board with provision for up to 8K of ROM or 4K of RAM on board, extending address range. S-100 front panel compatible.
 - CPU-30300K Kit $239.95
 - CPU-30300A A & T $239.95

- **2810 Z-80 CPU - Cal Comp Sys**
 - 2 or 4 MHz Z-80 CPU with serial & parallel I/O ports, up to 8K of on-board PROM, software programmable baud rate generator, 1K of on-board RAM, 280 I/O.
 - CPC-32000K Kit $339.95
 - CPC-32000A Jade A & T $399.95

- **THE BIG Z* - Jade**
 - 2 or 4 MHz switchable Z-80 CPU with serial I/O, accommodates 2768, 3714, or 7258 EPROM, board rates from 75 to 9600.
 - CPU-32010K Kit $139.95
 - CPU-32010A A & T $119.95
 - CPU-32010B Bare board $35.00

Novation Cat Modem

- **10M-5200A List price $179.95 $125.00**
- **D-CAT 300 baud direct connect modem**
 - 10M-5201A Special sale price $189.95
 - **AUTO-CAT Auto answer/originate, direct connect**
 - 10M-5202A Special sale price $239.95
 - **SMARTMODEM - Hayes**
 - 33600 baud, direct connect auto-answer/auto-dial modem, touch-tone or pulse dialing, RS-232C interface, programmable
 - 10M-5400A Smartmodem $299.95

S-100 I/O

- **S.P.I.C. - Jade**
 - 2 I/O devices plus 5 parallel I/O ports
 - IO-10145K Kit $179.95
 - IO-10145A A & T $239.95
 - IO-10146A A & T $299.95
 - IO-10145B Bare board w/ manual $49.95

Place Orders Toll Free

Continental U.S. Inside California
800-421-5500 800-262-1710
For Technical Inquiries or Customer Service call
213-973-7707

JADE Computer Products

4901 W. Roscena, Hawthorne, Ca 90250

TERMS OF SALE: Cash, checks, credit cards are accepted. Purchase Orders from qualified firms and institutions. Minimum Order $15.00. California residents add 8% tax. Minimum shipping & handling charge $10.00. Pricing & availability subject to change.
INTELLIGENT VIDEO I/O FOR S-100 BUS

The VIO-X Video I/O Interface for the S-100 bus provides features equal to most intelligent terminals both efficiently and economically. It allows the use of standard keyboards and CRT monitors in conjunction with existing hardware and software. It will operate with no additional overhead in S-100 systems regardless of processor or system speed.

Through the use of the Intel 8275 CRT controller with an onboard 8085 processor and 4k memory, the VIO-X Interface operates independently of the host system and communicates via two ports, thus eliminating the need for host memory space. The screen display rate is effectively 80,000 baud.

The VIO-X1 provides an 80 character by 25 line format (24 lines plus status line) using a 5 x 7 character set in a 7 x 10 dot matrix to display the full upper and lower case ASCII alphanumeric 96 printable character set (including true descendents) with 32 special characters for escape and control characters. An optional 2732 character generator is available which allows an alternate 7 x 10 contiguous graphics character set.

TOO-X1 - 80 x 25 5 x 7 A & T $295.00

Additional features include:
- HIGH SPEED OPERATION
- PORT MAPPED IEEE S-100 INTERFACE
- FORWARD/REVERSE SCROLL or PROTECTED SCREEN FIELDS
- CONVERSATIONAL or BLOCK MODE (opt)
- INTERRUPT OPERATION
- CUSTOM CHARACTER SET
- CONTROL CHARACTERS
- ESCAPE CHARACTER COMMANDS
- INTELLIGENT TERMINAL EMULATION
- TWO PAGE SCREEN MEMORY

The VIO-X2 also offers an 80 character by 25 line format but uses a 7 x 7 character set in a 9 x 10 dot matrix allowing high-resolution characters to be used. This model also includes expanded firmware for block mode editing and light pen location. Contiguous graphics characters are not supported.

The VIO-X2 also offers a full set of control characters and escape sequences, including controls for video attributes, cursor location and positioning, cursor toggle, and scroll speed. An onboard Real Time Clock (RTC) is displayed in the status line and may be read or set from the host system. A checksum test is performed on power-up on the firmware EPROM.

Video attributes provided by the 8275 in the VIO-X include:
- FLASH CHARACTER
- INVERSE CHARACTER
- UNDERLINE CHARACTER or
- ALT. CHARACTER SET
- DIM CHARACTER

The above functions may be toggled together or separately.

The board may be addressed at any port pair in the IEEE 696 (S-100) host system. Status and data ports may be swapped if necessary. Inputs are provided for parallel keyboard and for light pen as well as an output for audio signaling. The interrupt structure is completely compatible with Digital Research's MP/M ®.
DISKETTES
FREE PLASTIC LIBRARY CASE INCLUDED WITH THE PURCHASE OF EVERY BOX OF DISKETTES

$24.95

MEMORY

64K DYNAMIC $11.95
16K STATIC $13.95
4154 100-1057 2167 200ns.
16K DYNAMIC $2.10
2716EPROM $4.95
4116 100-1175 100-1450 14-1500

2732 EPROM SALE $8.95

MEMOREX 8" DISKETTES $25

MEMOREX 8" DISKETTES $25

2732 EPROM SALE $8.95

STATIC

<table>
<thead>
<tr>
<th>Static</th>
<th>32"</th>
<th>100"</th>
<th>1K</th>
</tr>
</thead>
<tbody>
<tr>
<td>211.01</td>
<td>1.15</td>
<td>1.05</td>
<td>.95</td>
</tr>
<tr>
<td>11.02</td>
<td>1.48</td>
<td>1.48</td>
<td>1.39</td>
</tr>
<tr>
<td>16K</td>
<td>$13.95</td>
<td>$13.95</td>
<td>$13.95</td>
</tr>
<tr>
<td>2144</td>
<td>3.25</td>
<td>3.25</td>
<td>2.75</td>
</tr>
</tbody>
</table>

EPROM

<table>
<thead>
<tr>
<th>EPROM</th>
<th>4.50</th>
<th>3.75</th>
<th>3.75</th>
</tr>
</thead>
<tbody>
<tr>
<td>2701</td>
<td>4.50</td>
<td>3.75</td>
<td>3.75</td>
</tr>
<tr>
<td>271</td>
<td>4.50</td>
<td>3.75</td>
<td>3.75</td>
</tr>
<tr>
<td>273</td>
<td>4.50</td>
<td>3.75</td>
<td>3.75</td>
</tr>
<tr>
<td>274</td>
<td>4.50</td>
<td>3.75</td>
<td>3.75</td>
</tr>
</tbody>
</table>

CONNECTORS

direct connect $169

universaldat AUTO ANSWER 1031 P1 '219
Novation AUTO Cat RS232 '239

Circle 55 on inquiry card.

All merchandise sold by California Digital is premium grade. Shipping: First two pounds $2.95, then additional $1.40. Foreign orders 16% shipping. Excess will be refunded. California residents add 6.5% sales tax. CODs discouraged. Open accounts extended to state supported educational institutions and companies with 5% charge & 5% discount. Warehouse: 15469 Inglewood Blvd. Visitors by appointment only. California Digital Co., P.O. Box 3097 B, Torrance, CA 90503.
In a dark corner of a control data warehouse our scouts have recently located a small quantity of brand new, vintage 1978, Control Data CL-416 matrix printers. The CL-416 was designed for extra-hardy industrial applications. Please note that this workhorse printer comes with the new low cost imports.

The unit prints a full 98 character ASCII set at a conservative 15 characters per second. One hundred buffer accepts EBCDIC signals up to 9600 baud. Vertical forms control unit provides added flexibility for business applications. The CL-416 has a split primary power transformer to allow fluid voltages between 115 and 220 volts. Original cost of the printer is estimated at $5,000. California Digital blowout price is only $1,395. Shipped via motor freight in factory sealed containers. SPC-CL416.

IBM 3101 Display Terminal - $1195

AMPEX Dialogue 80 CRT Terminal - $995

VIDEO TERMINALS

ADATA Viewpoint - VUT-RVP $395
ADES Rep 50 numeric cluster - VUT-R25 $850
ADES Rep 20 25th state line - VUT-R50 $850
ADES Rep 40 limited graphics - VUT-R40 $1450
AMPEX Dialogue 80 page, detachable - VUT-V110 $2250
Digital Equipment VT-100 - VUT-V112 $2250
Digital Equipment VT-132 - VUT-V113 $3250
Hisacline 1450 - VUT-H1140 $750
Hisacline 1250 - VUT-H1120 $750
Hisacline 1550 - VUT-H1150 $950
Hisacline 1350 - VUT-H1130 $850
Hisacline 1500 - VUT-H1150 $950
Hisacline 1200 - VUT-H1120 $850
Heiwelt Packard 2921A - VUT-HBP21A
Heiwelt Packard 2921P
IBM 3101-10 character mode green - VUT-S101 $1150
IBM 3101-20 black mode - VUT-L420 $1400
Leer Setiger 2A paper case only - VUT-L42A $850
Leer Setiger AMZ - VUT-251 $650
Leer Setiger AMZ-11 - VUT-L131 $1250
Leer Setiger AMZ-22 - VUT-L220 $3250
Orbedico 910C (new) - VUT-9120 $1000
Televidel 912C - VUT-9120 $850
Televidel 910C color - VUT-9100 $1150
Televidel 900C detachable keyboard - VUT-9000 $550
Fendt Z-19 - VUT-Z19 $350

ROTATION MUFFIN FAN $1477

WIDE MOUTH CANDY TUB $1100

PAPER TIGER 560G $1395
NEC Spinwriter 5510P/S $2795
PRINTRONIX P-300 $4500
P-600 $6150

SYSTEMS

APPLE II $1150
48K MEMORY $2550
HEWLETT PACKARD HP85

VIDEO MONITORS

S-1000 Monitors

Rotron Muffin Fan $1477

TOLL FREE ORDER LINE
800-421-5041
TECHNICAL & CALIFORNIA
213-679-9001
TXW 910-325-6212

All merchandise sold by California Digital is premium grade. Shipping First Class mail $1.00: each additional add $4.00. Postage varies 15% shipping. Excise will be refunded. California residents add 6% sales tax. COD's discouraged. Open account authorized: Try New England educational institutions and companies with a "Tablet: and Breakfast" Warehouse 1680 Alfordwood Blvd.Visits by appointment.

Circle 65 on inquiry card.
MEMOREX FLEXIBLE DISKETTES

$1.99

INVENTORY REDUCTION SALE!

California Digital has recently purchased over 200,000 Memorex Diskettes.Tightly we have over committed and must liquidate our excess inventory. This is your chance to take advantage of this special buying opportunity. All diskettes sold by California Digital include a free library case ($5.00 value.) Offer expires November 30, 1981. Shipping: 5¼" Mini-Diskette add $6.00 per hundred. Eight inch add $12.00 per hundred. Calif., residents add 6%

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Quantity</th>
<th>List Price</th>
<th>Prepaid One Hundred</th>
<th>Credit Card Net 30</th>
<th>Less Than One Hundred</th>
</tr>
</thead>
<tbody>
<tr>
<td>3401</td>
<td>Five Inch for Apple, TRS80, PET, Atari</td>
<td>4.50</td>
<td>4.50</td>
<td>2.15</td>
<td>2.49</td>
<td></td>
</tr>
<tr>
<td>3403</td>
<td>Five Inch Ten Sector for Horizon, Zenith/Health</td>
<td>4.50</td>
<td>4.50</td>
<td>2.15</td>
<td>2.49</td>
<td></td>
</tr>
<tr>
<td>3405</td>
<td>Five Inch Sixteen Sector Vector Graphics</td>
<td>4.50</td>
<td>4.50</td>
<td>2.15</td>
<td>2.49</td>
<td></td>
</tr>
<tr>
<td>3431</td>
<td>Five Inch Soft Sector with Reinforced Hub Ring</td>
<td>4.65</td>
<td>2.19</td>
<td>2.35</td>
<td>2.69</td>
<td></td>
</tr>
<tr>
<td>3060</td>
<td>Eight Inch Single Side Diablo, IBM 3740</td>
<td>5.00</td>
<td>5.00</td>
<td>2.19</td>
<td>2.69</td>
<td></td>
</tr>
<tr>
<td>3090</td>
<td>Eight Inch Double Density Radio Shack Model II</td>
<td>6.50</td>
<td>2.95</td>
<td>3.19</td>
<td>3.49</td>
<td></td>
</tr>
<tr>
<td>3114</td>
<td>Eight Inch Double Side Double Density</td>
<td>7.00</td>
<td>3.49</td>
<td>3.75</td>
<td>4.95</td>
<td></td>
</tr>
</tbody>
</table>

Individual Company

Address Phone

City State Zip

Card No. Exp. Computer

Sub Total Tax

Shipping Total

Order Toll Free!

(800) 421-5041

(213) 679-9001
JUST WRAP KIT
Just Wrap tool for easy chain wiring. Tool strips as it wraps and cuts. Includes one 50 foot spool of wire.

PRODUCTS

P.C.B. TERMINAL STRIPS
The TS strips provide positive screw activated clamping action, accommodate wire sizes 14-30 AWG (1.84, 25mm). Pins are solder plated copper, .042 inch (1mm) diameter, on .200 inch (5mm) centers.

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS-4</td>
<td>4-Pole</td>
<td>$1.58</td>
</tr>
<tr>
<td>TS-8</td>
<td>8-Pole</td>
<td>2.58</td>
</tr>
<tr>
<td>TS-12</td>
<td>12-Pole</td>
<td>3.48</td>
</tr>
<tr>
<td>TS-10</td>
<td>2-Pole Interlocking</td>
<td>31.79</td>
</tr>
</tbody>
</table>

DESOLODERING PUMP
Easy one hand operation. Rugged all metal construction. Replaceable TEFLON® Tip. Self cleaning on each stroke. Suction precisely regulated for reliable desoldering without damage to delicate circuitry.

- **JSP-1 Desoldering Pump**: $9.95

LOGIC PROBE
Compatible with all logic families using a 4 to 15V power supply. Thresholds automatically programmed. Visual indication of logic levels to show high, low, bad level or open circuit logic pulses.

- **PRB-1 Logic Pulsar**: $36.95

IC DISPENSER
Allows IC's to be dispensed from their tube at a time and picked up by insertion tools above. Commercially charged IC's. Use with WK 7 for MOS safe insertion.

- **PSL-1**: $48.95

VACUUM VISE
Unique vacuum-based light duty vise for precision handling of small components and assemblies. Rugged ABS construction. 1½" (32mm) travel for maximum versatility. Also features screw lugs for permanent installation.

- **V11 Vacuum Vice**: $3.49

Hobby Wrap Tool BW263
- **Auto-Indexing**
- **Anti-Overwrap**
- **Modified Wrap**

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>BW2630</td>
<td>Tool</td>
<td>$18.65</td>
</tr>
<tr>
<td>BT3D</td>
<td>30 Bit (not incl.)</td>
<td>1.89</td>
</tr>
<tr>
<td>BT2524</td>
<td>26 Bit (not incl.)</td>
<td>7.95</td>
</tr>
<tr>
<td>BC1</td>
<td>Batteries & Charger</td>
<td>14.95</td>
</tr>
</tbody>
</table>

INSERTION/EXTRACTION TOOLS

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN1416</td>
<td>14-16 pin Inserter</td>
<td>$3.49</td>
</tr>
<tr>
<td>MOS1416</td>
<td>14-16 pin MOS Safe Inserter</td>
<td>7.95</td>
</tr>
<tr>
<td>MOS2426</td>
<td>24-26 pin MOS Safe Inserter</td>
<td>7.95</td>
</tr>
<tr>
<td>MOS40</td>
<td>40 pin MOS Safe Inserter</td>
<td>7.95</td>
</tr>
<tr>
<td>EX1</td>
<td>14-16 pin IC Extractor</td>
<td>1.49</td>
</tr>
<tr>
<td>EX2</td>
<td>24-40 pin IC Extractor</td>
<td>7.95</td>
</tr>
</tbody>
</table>

WK-7 IC INSERTION KIT
Complete IC Inserter/Extractor Kit. Individual Components (listed above): $22.95

SOCKET WRAP - ID
Slipped onto socket before wrapping to identify pins.

TERMINALS

- .025 (0.63mm)
 - Square Post
 - 3 Level Wire-Wrapping
 - Gold Plated

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>WWT-1</td>
<td>Slotted Terminal</td>
<td>$4.98</td>
</tr>
<tr>
<td>WWT-2</td>
<td>Single Sided Terminal</td>
<td>2.98</td>
</tr>
<tr>
<td>WWT-3</td>
<td>IC Socket Terminal</td>
<td>4.98</td>
</tr>
<tr>
<td>WWT-4</td>
<td>Double Sided Terminal</td>
<td>1.98</td>
</tr>
<tr>
<td>INS 1</td>
<td>Insertion Tool for above</td>
<td>2.49</td>
</tr>
</tbody>
</table>

HAND WRAP TOOL
Regular Wrap Modified Wrap

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSU30</td>
<td>Regular Wrap</td>
<td>$6.95</td>
</tr>
<tr>
<td>WSU30M</td>
<td>Modified Wrap</td>
<td>7.95</td>
</tr>
</tbody>
</table>

VACUUM VISE
Unique vacuum-based light duty vise for precision handling of small components and assemblies. Rugged ABS construction. 1½" (32mm) travel for maximum versatility. Also features screw lugs for permanent installation.

- **V11 Vacuum Vice**: $3.49

Hobby Wrap Tool BW263
- **Auto-Indexing**
- **Anti-Overwrap**
- **Modified Wrap**

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>BW2630</td>
<td>Tool</td>
<td>$18.65</td>
</tr>
<tr>
<td>BT3D</td>
<td>30 Bit (not incl.)</td>
<td>1.89</td>
</tr>
<tr>
<td>BT2524</td>
<td>26 Bit (not incl.)</td>
<td>7.95</td>
</tr>
<tr>
<td>BC1</td>
<td>Batteries & Charger</td>
<td>14.95</td>
</tr>
</tbody>
</table>

INSERTION/EXTRACTION TOOLS

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN1416</td>
<td>14-16 pin Inserter</td>
<td>$3.49</td>
</tr>
<tr>
<td>MOS1416</td>
<td>14-16 pin MOS Safe Inserter</td>
<td>7.95</td>
</tr>
<tr>
<td>MOS2426</td>
<td>24-26 pin MOS Safe Inserter</td>
<td>7.95</td>
</tr>
<tr>
<td>MOS40</td>
<td>40 pin MOS Safe Inserter</td>
<td>7.95</td>
</tr>
<tr>
<td>EX1</td>
<td>14-16 pin IC Extractor</td>
<td>1.49</td>
</tr>
<tr>
<td>EX2</td>
<td>24-40 pin IC Extractor</td>
<td>7.95</td>
</tr>
</tbody>
</table>

WK-7 IC INSERTION KIT
Complete IC Inserter/Extractor Kit. Individual Components (listed above): $22.95

IC DISPENSER
Allows IC's to be dispensed from their tube at a time and picked up by insertion tools above. Commercially charged IC's. Use with WK 7 for MOS safe insertion.

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDD1</td>
<td>1 Chan. Dispenser</td>
<td>$21.85</td>
</tr>
<tr>
<td>MDD5</td>
<td>5 Chan. Dispenser</td>
<td>83.43</td>
</tr>
<tr>
<td>MDD10</td>
<td>10 Chan. Dispenser</td>
<td>160.45</td>
</tr>
</tbody>
</table>

* No Discount.
EDGE CARD CONNECTORS

<table>
<thead>
<tr>
<th>Size</th>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>IDE10B</td>
<td>$3.95</td>
</tr>
<tr>
<td>20</td>
<td>IDE20B</td>
<td>4.35</td>
</tr>
<tr>
<td>26</td>
<td>IDE26B</td>
<td>5.00</td>
</tr>
<tr>
<td>34</td>
<td>IDE34B</td>
<td>6.05</td>
</tr>
<tr>
<td>40</td>
<td>IDE40B</td>
<td>6.80</td>
</tr>
<tr>
<td>50</td>
<td>IDE50B</td>
<td>7.60</td>
</tr>
</tbody>
</table>

.1" Spacing. Crimps onto cable with ordinary vise & mates with standard .082" Card Edge.

CABLE PLUGS

<table>
<thead>
<tr>
<th>Size</th>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>IDP14B</td>
<td>1.45</td>
</tr>
<tr>
<td>16</td>
<td>IDP16B</td>
<td>1.85</td>
</tr>
<tr>
<td>24</td>
<td>IDP24B</td>
<td>2.50</td>
</tr>
<tr>
<td>40</td>
<td>IDP40B</td>
<td>4.15</td>
</tr>
</tbody>
</table>

.1" Spacing. Crimps onto cable with ordinary vise & plugs into standard IDC socket.

WIRE WRAP SUPPLIES

<table>
<thead>
<tr>
<th>Size</th>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>08</td>
<td>ICN803WBSG</td>
<td>.40</td>
</tr>
<tr>
<td>14</td>
<td>ICN143WBSG</td>
<td>.53</td>
</tr>
<tr>
<td>16</td>
<td>ICN163WBSG</td>
<td>.58</td>
</tr>
<tr>
<td>18</td>
<td>ICN183WBSG</td>
<td>.78</td>
</tr>
<tr>
<td>20</td>
<td>ICN203WBSG</td>
<td>1.00</td>
</tr>
<tr>
<td>22</td>
<td>ICN224WBSG</td>
<td>1.07</td>
</tr>
<tr>
<td>24</td>
<td>ICN244WBSG</td>
<td>1.08</td>
</tr>
<tr>
<td>28</td>
<td>ICN284WBSG</td>
<td>1.43</td>
</tr>
<tr>
<td>40</td>
<td>ICN404WBSG</td>
<td>1.85</td>
</tr>
</tbody>
</table>

Selective Plating provides gold in contact where it counts. 3-level wrap. Save by buying sockets by the tube. All gold available at 1/sqin extra charge.

ORDERING INFORMATION

Prepaid orders over $50 shipped prepaid via UPS. All others add $3.00 for handling. VISA, MC, COD's and open account orders will be charged freight. $15 minimum order. $100 minimum open account order.

DISCOUNT SCHEDULE

<table>
<thead>
<tr>
<th>Order</th>
<th>Amount</th>
<th>Discount</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>99</td>
<td>Discount</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>less 10%</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>less 15%</td>
</tr>
<tr>
<td>500</td>
<td>999</td>
<td>less 20%</td>
</tr>
<tr>
<td>1000</td>
<td>up</td>
<td>less 25%</td>
</tr>
</tbody>
</table>

Discount and the name of this magazine must be mentioned at time of order to get discount. Discount applies on all items except as noted, “No Discount.”
FIRST TO OFFER PRIME PRODUCTS TO THE HOBBYIST AT FAIR PRICES!

1. Proven Quality - Factory-tested products only
2. Guaranteed Satisfaction - Call for Special School Discounts

MICROPROCESSORS

- $24.95 TRS-80/APPLE
- $24.95 Magnetic Expansion

CENTRONICS PRINTERS

- NEW! from Zilog
- Z80 CPU w/ 2 floppy drives, 80 COBOL, 50K RAM
- $69.95

STATIC RAM

- 32K Static RAM Board
- 2 or 4 MHz Expandable uses 2114's

BIPOLAR CPU SALE

- Signetics 8 x 300 8-bit CPU
- While stock lasts, 14.95 ea.

BECKMAN DIGITAL MULTIMETERS

- S319

INTERSYSTEMS

- The Preferred Series 100 Board
- 4 MHz Z-80A CP1B and full-size board
- $178

INTERMODULAR

- 8200 Series Microcomputer System
- NEW INTRO
- PRICING $1099.00

IC SPECIAL PURCHASE

- MOS PROMS
- 3775 - 24 or 512 B, 512 or 1024 B
- ACP Price $2995

BIPOLAR PROMS

- Custom Programming

TERMINALS

- $59.95 Limited Supply $59.95

SANYO MONITORS

- FOR INTERNATIONAL ORDERS:
- 1310 E. Edinger, Santa Ana, CA 92707
- Direct Order Lines: (714) 558-8813
- Call for Special School Discounts
- P.O. Box 17329, Irvine, Calif. 92713
- (800) 854-8230 or (800) 854-8241
- Call for Special School Discounts
S-100 "ANY DIP" has full power and ground planes back to back. Booms and modulars 1.4, A, P, D, 33-
SOLDERED.

APPLE PLUGBOARD
Vector 8001 Peripheral Interface Plugboard for construction of custom circuits. Plug compatible with Apple II. Commodore PET and Super Ram

TRIS-800/APPLE
MEMORY EXPANSION KITS
4116's RAMS

Steering Manufacturers
(16Kx1 200ns)
8 for $20.00
Add $3.00 for programming Jumper for TRS-80 Keyboard

ZERO INSERTION FORCE TEST SOCKETS
6 OUTLET MULTI USE CORD REEL

LEDU WITH PLASTIC SHEET TO PROTECT FROM SCUFFING AND DAMAGE:
Colors: Grey, Black and Chocolate Brown. Comes with one 2"x2" Circle Acrylic fluorescent tube, 3 discreet lenses, 100 pieces.

OH NO! A bloop has occurred and the document cannot be displayed.

Send $1.00 for 60 Page Catalog
PRIORITY ONE ELECTRONICS

PRICE $1095.00 SAVING: $429.00

SOURCE: PRIORITY 1 ELECTRONICS
Manufacturer: COMPUPRO From GODBOUT (Of Course)

CPU-Z

The GPM Board is an hit worthwhile that not only includes all standard 286A features, but also has the necessary options to ensure backward compatibility with most older 5-100 mainframes. This board optionally runs at slower clock speeds if needed, generates INYH for systems requiring this signal, and even includes a plug that accepts the connector from an IBM type front panel. Other features include:

- Full compliance with all IBM 696-6-100 specifications (including timing specifications)
- Downward compatible with the video library of 696 software
- 24 bit addressing allows access to 16 megabytes of memory
- Ideal for multi-user installations
- Designed for high speed operation that greatly increases system throughout (check selectable choice of 2 or 4 MHz operation for Assenabed/Eastable boards: choice of 3 or 6 MHz for boards qualified under the G80 high-reliability program)
- Provision for adding up to 5 kilobytes of on-board memory (218/2732 EPROM or 4116 RAM—neither included with board)
- On-board memory circuits may be disabled under software control to allow overwriting RAM
- On-board fully re lange vated interrupts for intersoft driven systems
- Power-on clear (POC) generates SLAVE CLI and RESE T
- Selectable automatic real state assertion for servicing M instruction—MCD—GDBS on the on-board memory (may be reaserted on any all of the above)
- Automatic jump upon Faire or power-on to any 256 byte boundary
- Non-maskable interrupt on bus pin 12, or per IBM 998 specification. This powerful and flexible CPU board provides the sophisticated operation required to today's 5-100 computers, while allowing for complete compatibility with older systems as well. But perhaps best of all, CPU 2 is cost-effective with boards that are considerably less. When you need a powerful 8-bit CPU board that is as home with the laptop as well as some of the most 5-100 systems. CPU 2 is the

DISK 1

HIGH PERFORMANCE FLOPPY DISK CONTROLLER

Finally, a floppy disk controller worthy of bearing the Compupro name is now available for integration into your 5-100 system. The BDB 1 floppy controller incorporates numerous features that were previously available on a Dassy floppy disk controller. BDB 1 fully complies with the IBM 696 bus standard, INCLUDING DMA ABORTION:

- Third generation INTEL 6272/24E 763A LBY floppy disk controller
- High speed cycle stealing DMA interface for processor independent data transfer between system memory and flexible disk.
- Handles up to 8 or 325 inch floppy disk drives.
- Single or double density/erase or double sided capability.
- Supports IBM 3740 and sealed format.
- 24 bit DMA addressing with data transfer across 64K boundaries for data transfer throughout the 1Mbyte memory map
- PV mapped interface allows continuous system memory (without)
- Occupies no memory space
- On board Phantom boot EPROM for automatic startup
- On-board serial port for initial system startup
- Board compatible with MPW, GASS, CPM-80 and CPM-86.
- CPM-80 and CPM-A4 available for BDB 1.
- CPU speed independent data transfer for operation up to 100MHz.
- Fully arbitrated interface up to per IBM 688 for allowing multiple DMA devices without conflict.
- May be interlinked for multi-user environments
- Up to 500K bytes per side (8 track drive for an on-board total of 840MB) or on 4.0MM hyperdriver (24MMEP-32400 drives)

Now it gets even better, add 2 Shugart 801R disk drive cabinets with power supply, data cable & OEM manual.
IT ALL ADDS UP TO $2854.00

TOTAL PACKAGE PRICE $2250.00
You Save $604.00
ORDER PART NO. PDGBTSH
Shipped Freight Collect

RAM 20 10 MHz

32K STATIC RAM

You don't have to pay a lot of money for a lot of memory: despite the surprisingly low price, BDB 20 includes all the features that you would expect in a memory board under such conditions. Available 16X, 24X, and 32X configurations. BDB 20 includes the most sought after features for any quality memory board:

- Memory is of all 16/66-100 specifications (including parity)
- Fully static design eliminates the timing problems associated with dynamic memories
- Switch-selectable choice of 24 address lines conforming to the IBM 696/5-100 extended addressing (16 megabyte) specification, or 16 address lines as used in most 5-100 systems, memory addressing (including Complan, Alpha Magic, and others) as well as newer systems conforming to the IBM 696 extended addressing protocol.
- Addressing protocols
- Ideal for multi-user installations.
- ASCII and keyguard/Tiedo boards are designed for CPU speeds up to 10 MHz.
- Board is addressable as one 32K x 8 block on any 4K boundary
- Each 4K can be individually deselected via DIP switch
- Switch selectable PHTOMT disable and write protect.
- 16 pin operation (required for other 8-bit microprocessors)
- Thorough bypassing of all supply lines.
- Careful thermal design to maintain heat build-up.
- Heavy power and ground traces.
- Low power operation (1206 mA typical, 1500 mA max).
- BDB 20 delivers the high density memory needed by every 5-100 computer system — it's a cost-effective and exceptionally well-designed package. Whether for 24 bit address systems or bank select systems, BDB 20 provides economical and cost-effective mass storage.

TAKING A DEEP BREATH!
SIT DOWN!

We made a special buy on a quantity of REMEX 4000 Double Density, Double Sided 8" disk drives. Install those in the VISTA cabinet in place of the Shugarts and you will have a system that you never dreamed possible.

PDGBST Adds Up To $324.00

TOTAL PACKAGE PRICE $2450.00
You Save $854.00
That's Right! For only $854 more you can have double sided drives, DOUBLE THE CAPACITY! DOUBLE THE SPEED: 3ms!!

Because of the limited quantities and anticipated high demand for these systems, we recommend that you call and confirm the availability of the system you desire.

Need A Mainframe For Your System?
Deduct 10% from our already discounted prices on GODBOUT & TEL. Mainframes if ordered with any of these specials.

Circle 306 on Inquiry Card.
PRIORITY ONE ELECTRONICS

WHY WAIT ANY LONGER??
SUPERSIXTEEN IS HERE TODAY!!!
Look What $3495.00 Will Buy!

Here’s What Each Package Includes:

- **Dual Processor Board:** With this high speed board (5 MHz operation), you have the capability to use the vast library of 8 bit software available today, as well as the enhanced 16 bit software being developed at major software houses for tomorrow’s demanding applications.

- **Disk 1 DMA Floppy Disk Controller:** This is the product that Started the trend to high speed, DMA disk controllers. For maximum flexibility our firmware handles up to 4 or 5.25" floppy disk drives, single or double-sided, single or double density (soft sectored).

- **System Support 1:** All the most popular “extras” are on this one board: battery operated clock/calendar, RS-232 serial port, battery backup RAM, math processor, and ROM options; triple internal timers; dual interrupt controllers; power fail interrupt; and more.

- **Interface 1:** Two RS-232 serial ports, with full handshaking and independently selectable baud rates up to 19.2K baud, connect to the serial peripherals (printer, terminal) of your choice.

- **128K of StatRAM:** The best components deserve the best memory. The high speed (10 MHz) low power ram comes standard with every Supersixteen package.

- **CP/M**-2.2:** The most popular 8 bit operating system, ready to load and go.

- **CP/M**-86:** Ready to load and go for 16 bit operation.

- **Cables and Documentation:** Each package includes three interlace cables, one disk I/O cable, complete documentation for all hardware, and manuals for both CP/M® operating systems.

Now, to the best part of all. If purchased separately, these quality components would list for $4,344. But Supersixteen’s low package price is an amazing $3,485.

YOU SAVE $849.00

(For boards qualified under the Certified System Component high-reliability program - with extended 2 year warranty, 200 hour burn-in, and 6 MHz processors - add $500 to the package price. Standard Supersixteen packages come with usual 1 year limited warranty.)

| PD6BTSJ | SuperSixteen A&T | $3495.00 |
| PD6BTSK | SuperSixteen CSC | $4095.00 |

SAVE EVEN MORE: when you add 2 Shugart 801R disk drives, and a dual Vista Cabinet with Power Supply and Shugart OEM Manual.

| PD6BTS3L | With CSC Systems | $3250.00 |

YOU SAVE $1024.00

Shipped Freight Collect

PRIORITY ONE ELECTRONICS

9161 DEERING AVE. • CHATSWORTH, CA 91311

ORDER TOLL FREE (800) 423-5922 CA, AK, HI CALL (213) 709-5464

TERMS 3% VISA, MC, BAC Check, Money Order U.S. Funds Only. CA residents add 6% Sales Tax. MINIMUM PREPAID ORDER $15.00 INCLUDES MINIMUM SHIPPING & HANDLING @ $2.50 for the first 3 lbs. plus 25c for each additional pound. Orders over 50 lbs. sent freight collect. Subject to change without notice. Price subject to change without notice. We will do our best to maintain prices through October 1981.

MicroFrame

**NEW HIGH SPEED TO

malibu Electronics Corporation

10 x 9 DOT MATRIX WITH TRUE DECENDERS

ALPHANUMERIC/GRAPHICS PRINTER

We were able to reduce the most popular printer when Malibu replaced this model with a new version. These printers, still in the factory sealed package, are available at tremendous savings on a first-come, first-served basis.

SPECIFICATIONS:

- **185 CPS** • 12 char per line • Graphics res 50X50 • 72V • Adj. Cartridge feed 2" to 16" wide • 10 character per inch 5 expanded lines per inch. 2, 3, 4, 5, 6, 8, 10, 16, 20 characters per inch for graphics • Paper load front or bottom • Complete self test mode • Self-contained intelligent controller controller feeders • Serial and parallel interfaces • Automatic on/off • 120 volt ac power supply

ORDER INFORMATION:

- **MABLBIES ** Serial Parallel Interface $1350.00
- **MABLB1B2 Parallel only Interface $1450.00

Shipped Freight Collect

CompuPro from BodeGard

NOW, a printer to put this CompuPro or plug-in 80-20 boards. The enclosures are available in either disk top or rack mount (including sides) and both have the following features:

- **Quiet fan provides for cool system operation.**
- **Two switched convenience outlets on the rear.**
- **Line filter for electrical noise suppression.**
- **Circuit breaker for safe operation.**
- **Lighted RESET button for "POWER ON" indication.**
- **Connectors on rear for 12 DB-25 connectors.**
- **Connectors on rear for 2 DB-50 connectors.**
- **Professional protection for some of the external units.**
- **Provisions for mounting a front panel.**
- **Physically 16 1/2" deep, 7" high, 17" wide (front panel 19" wide).**
- **Wider boards.**
- **Activates at both ends of motherboard.**
- **Ground shield between the signal trace.**
- **Convenient power plug for connecting at 0 volt.**
- **RESET connector provided.**
- **Plug panel provisions on the 30 slot version.**
- **Data power connectors for more efficient power distribution 12 slot and 30 slot versions.**
- **Throughby bypassing of all power lines.**
- **Power Supply:**
- **Twenty-five Amps at 80 volts D.C.**
- **Three pairs entire circuit at 16 and 18 volts D.C.**
- **Outputs less than 5% over input range of 90 AC to 150 VAC.**
- **Voltage transformer.**
- **All outputs fused.**

With all the features listed above, the individual assembling a system can be sure that he will have the very best lineout possible for an IBM 80-20 system that will last for years of reliable service. And because of the constant voltage transformer the power outputs can be kept near the requirements without any worry about system failure. This allows the system to run cooler, and the customers to stay cooler also.

ORDER INFORMATION:

- **MAB162020 20 Slot Rack Mount $2550.00**
- **MAB162022 22 Slot Desk Top $2350.00**
- **SHIPPING WEIGHTS 55 lbs.**
16K Memory

ALL MERCHANDISE 100% GUARANTEED!

LS SERIES

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74LS00</td>
<td>74LS04</td>
<td>100</td>
<td>3.95</td>
</tr>
<tr>
<td>74LS04</td>
<td>74LS08</td>
<td>100</td>
<td>3.95</td>
</tr>
<tr>
<td>74LS08</td>
<td>74LS10</td>
<td>100</td>
<td>3.95</td>
</tr>
<tr>
<td>74LS10</td>
<td>74LS12</td>
<td>100</td>
<td>3.95</td>
</tr>
<tr>
<td>74LS12</td>
<td>74LS13</td>
<td>100</td>
<td>3.95</td>
</tr>
<tr>
<td>74LS13</td>
<td>74LS14</td>
<td>100</td>
<td>3.95</td>
</tr>
<tr>
<td>74LS14</td>
<td>74LS15</td>
<td>100</td>
<td>3.95</td>
</tr>
</tbody>
</table>

8000 SERIES

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74HC00</td>
<td>74HC04</td>
<td>100</td>
<td>3.95</td>
</tr>
<tr>
<td>74HC04</td>
<td>74HC08</td>
<td>100</td>
<td>3.95</td>
</tr>
<tr>
<td>74HC08</td>
<td>74HC10</td>
<td>100</td>
<td>3.95</td>
</tr>
<tr>
<td>74HC10</td>
<td>74HC12</td>
<td>100</td>
<td>3.95</td>
</tr>
<tr>
<td>74HC12</td>
<td>74HC13</td>
<td>100</td>
<td>3.95</td>
</tr>
<tr>
<td>74HC13</td>
<td>74HC14</td>
<td>100</td>
<td>3.95</td>
</tr>
<tr>
<td>74HC14</td>
<td>74HC15</td>
<td>100</td>
<td>3.95</td>
</tr>
</tbody>
</table>

MISC.

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74HC361</td>
<td>74HC362</td>
<td>100</td>
<td>3.95</td>
</tr>
<tr>
<td>74HC362</td>
<td>74HC363</td>
<td>100</td>
<td>3.95</td>
</tr>
</tbody>
</table>

6800 SERIES

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74HC00</td>
<td>74HC04</td>
<td>100</td>
<td>3.95</td>
</tr>
<tr>
<td>74HC04</td>
<td>74HC08</td>
<td>100</td>
<td>3.95</td>
</tr>
<tr>
<td>74HC08</td>
<td>74HC10</td>
<td>100</td>
<td>3.95</td>
</tr>
<tr>
<td>74HC10</td>
<td>74HC12</td>
<td>100</td>
<td>3.95</td>
</tr>
<tr>
<td>74HC12</td>
<td>74HC13</td>
<td>100</td>
<td>3.95</td>
</tr>
<tr>
<td>74HC13</td>
<td>74HC14</td>
<td>100</td>
<td>3.95</td>
</tr>
<tr>
<td>74HC14</td>
<td>74HC15</td>
<td>100</td>
<td>3.95</td>
</tr>
</tbody>
</table>

MA1012A CLOCK MODULE

- 1/16" RED LED CHARACTERS
- 12-HOUR FORMAT
- FACTORY ASSEMBLED
- JUST ADD SWITCHES
- COMPLETE WITH SPECIAL TRANSFORMER AND SPECS.

$8.99 ea. 3/$24.00

CALL JDR BEFORE YOU BUY!

WE WILL BEAT ANY COMPETITOR'S PRICES

800-538-5000

800-662-6233

[California Residents]

TERMS: For shipping, include $2.00 for UPS Ground, $3.00 for UPS Blue Label Air. $10.00 minimum order. Bay Area residents add 6.5% sales tax. We reserve the right to limit quantities and substitute manufacturer. Prices subject to change without notice. Send SASE for complete list.

Circle 190 on inquiry card.
16K Memory 8/$16.00

4116 200NS

CALL
HANLEY FIRST
800-426-2668
206-643-0792

CPU

8080A .39
8080A .49
8080A-2 11.95
8086 99.95
8088 30.95
8746 33.02

EPROMS

2708 AMD 3 Supply 450NS 3.50
2716 Hitachi 8 450NS 7.00
2716 National 8 450NS 7.00
2716 Intel 8 450NS 7.00
2716 T.I. 3 Supply 450NS 7.50
2716 Hitachi 8 450NS 7.00
2732 NEC 8 450NS 16.00
2732 Intel 8 450NS 16.00
2752 Intel 8 450NS 17.00
7522A-1 Intel 8 250NS 17.00
2722A-3 Intel 8 250NS 16.00
7522A-2 Intel 8 250NS 16.00

8200

8215 11.25
8216 29.95
8250 45.95
8251 5.95
8212 1.95
8214 3.95
8216 1.95
8218 2.50
8220 1.95
8222 4.50
8224 4.50
8226 4.50
8228 4.50
8230 4.50
8232 4.50
8234 4.50
8236 4.50
8238 4.50
8240 4.50
8242 4.50
8244 4.50
8246 4.50
8248 4.50
8250 4.50
8254 4.50
8256 4.50
8258 4.50
8260 4.50
8262 4.50
8264 4.50
8266 4.50
8268 4.50
8270 5.75
8272 5.75
8274 5.75
8276 5.75
8278 5.75
8280 5.75
8282 5.75
8284 5.75
8286 5.75
8288 5.75
8290 5.75
8292 5.75
8294 5.75
8296 5.75
8298 5.75
8300 5.75
AUGAT LOW PROFILE SOCKETS
These Are High Reliability Industry Standard Sockets

8PIN 208-A3280 .10
8PIN 208-A3281 .10
14PIN 214-A3282 .18
16PIN 216-A3283 .18
18PIN 218-A3284 .20
20PIN 220-A3285 .22
22PIN 222-A3286 .24
24PIN 224-A3287 .28
28PIN 228-A3288 .28
40PIN 240-A3289 .28

4Kx1 STATIC RAM
MOTOROLA MC684120
4044-200NS EQUIV.
$4.50

HANLEY ENGINEERING CORP
13400 Northrup Way #20
Bellevue, WA 98005
1-800-426-2668
1-206-643-0792

Include 3.00 for Ups Ground
Include 4.00 for Ups Blue
Include 4.00 for 1st Class Mail
Washington State add 5.4% Sales Tax

Circle 104 on inquiry card.
Inquiry No.	Page No.	Article	Author(s)
1 | 26 | The IBM Personal Computer: First Impressions | Lemmons
2 | 36 | Build an Intelligent EPROM Programmer | Ciarcia
3 | 50 | Ultra-Low-Cost Network for Personal Computers | Clemens, Daugherty
4 | 70 | The Atari Tutorial, Part 2: Graphics Indirection | Crawford
5 | 86 | Atari's Telelink | Flint
6 | 92 | Local-Area Networks, Possibilities for Personal Computers | Sall, Johnson
7 | 114 | Prepare Your Program for Publication | Hayman
8 | 126 | Software Protection in the United Kingdom | Reintjes
9 | 140 | Network Tools, Ideas for Intelligent Network Software | Brown, Williams
10 | 176 | A Simple Implementation of Multitasking | Stork
11 | 195 | Tree Searching, Part 2: Heuristic Techniques | McPherson
12 | 214 | Draw with UCSDF Pascal and the Hipplot Plotter | Burchard
13 | 250 | Evaluate Your Home's Energy Efficiency, Conserve Energy with Your Computer | Beasley
14 | 264 | Bridging the 10-Percent Gap | Brady
15 | 284 | Graphics Fundamentals | Sandifur
16 | 378 | Integral Data's Paper Tiger 460 | Willner
17 | 383 | The Mauro Proac Plotter | Dahmke
18 | 385 | The Radio Shack FORTRAN Package | Danieluk
19 | 400 | Build a Versatile Keyboard Interface for the S-100 | Richards
20 | 407 | PERT Organization | Mauer
21 | 413 | Should the DO Loop Become an Assembly-Language Construct? | Williams
22 | 430 | Multiple Regression for the TRS-80 | Madron
23 | 448 | Bits and Bytes in Pascal, And Other Binary Wonders | Casares
24 | 458 | Apple Analog-to-Digital Conversion in 27 Microseconds | Seeds
25 | 462 | PS—A FORTH-Like Threaded Language, Part 1 | Molygo
"Wordsworth™" removes the fear and loathing many people have about things called "computers" and "word processing." Because Wordsworth just sits at a desk and does what he's told. With unique new, simplified software, it can tell its typist what to do—step by simple step—to perform even the most complicated tasks.

It can not only "take a letter," but it can revise it, customize it in millions of ways (quite literally), personalize it, print it on your letterhead or business form so you can't tell it from hand-typed... in short, everything but put it in an envelope.

Moreover, it can perform all sorts of mundane business functions, like general ledgers and accounting reports, using easily available industry-compatible CP/M™ software.

Installation? Plug it in. (Cable supplied.)

Size? Bigger than a breadbox— but not by much. It's about half as big, or less, than systems that can't do half as much. Definitely desktop—a sub-compact 20" by 40".

For the name of your nearest dealer—and a free hands-on demonstration—just pick up the nearest telephone.

TOLL-FREE 1-800-343-6833.

LEADING
EDGE.

Leading Edge Products, Inc., 225 Turnpike Street, Canton, Massachusetts 02021

DEALERS: For immediate delivery from the Leading Edge Inventory Bank™ on "Wordsworth" and other of the industry's most popular products, just give us a call.

Circle 198 on inquiry card.
"Over 15,000 items in inventory could be a nightmare. But it's not 'cause my Challenger computer works like a dream."

"My fastener business is growing rapidly. I have over 800 customers utilizing my 15,000 inventory items daily. Keeping track of inventory, orders, and receivables at this volume level could be a nightmare. But it's not 'cause my Challenger computer works like a dream. Terrific, Ohio Scientific!"

Ricfrid Nolan, President, Aerospace Nylok Corp., Hawthorne, New Jersey

Ohio Scientific was first to add Winchester hard disk drives to microcomputers. This advanced technology allows low cost microcomputers to store over 100 times as much information on line as they could before.

"With our Challenger computer we've developed sophisticated real estate programs and information files that give our customers and our sales associates that extra edge in fast, accurate real estate market information analysis and forecasting. We now have a strong managerial accounting and market information system as well as word processing at an affordable cost. Terrific, Ohio Scientific!"

Charles Smith, Jr., President, Montague, Miller & Co., Realtor Charlottesville, Virginia

"I'm a fuel oil jobber, and I can't believe how reliable my Challenger has been, with all it has to keep track of. But, it's been doing it for two years now, and that's terrific, Ohio Scientific!"

Wade Carlson, Vice President, Wally Carlson & Sons, Lindstrom, Minnesota

"Ohio Scientific hard disk based microcomputers start at less than $10,000 and are sold by more than 400 dealers nationwide. For the one nearest you, call 1-800-321-6850 toll free."

Ohio Scientific
A MA-CON Company
1333 South Chillicothe Road
Aurora, OH 44202 • (216) 831-5600

Circle 271 on inquiry card.