If you have a problem that can be solved by a computer—we have a systems solution.

- Two central processors with maximum RAM capacities of 56K and 384 K bytes
- Three types of disk drives with capacities of 175K, 1.2M and 16M bytes
- Two dot matrix printers with 80 and 132 line capacity
- A Selectric typewriter interface and a daisy wheel printer

Match these to your exact need, add one or more of our intelligent terminals and put together a system from one source with guaranteed compatibility in both software and hardware.

Southwest Technical Products systems give you unmatched power, speed and versatility. They are packaged in custom designed woodgrain finished cabinets. Factory service and support on the entire system and local service is available in many cities.
Low-cost hard disk computers are here

11 megabytes of hard disk and 64 kilobytes of fast RAM in a Z80A computer for under $10K. Two floppy drives, too. Naturally, it's from Cromemco.

It’s a reality. In Cromemco's new Model Z-2H you get all of the above and even more. With Cromemco you get it all.

In this new Model Z-2H you get not only a large-storage Winchester hard disk drive but also two floppy disk drives. In the hard disk drive you get unprecedented storage capacity at this price—11 megabytes unformatted.

You get speed—both in the 4 MHz Z80A microprocessor and in the fast 64K RAM which has a chip access time of only 150 nanoseconds. You get speed in the computer minimum instruction execution time of 1 microsecond. You get speed in the hard disk transfer rate of 5.6 megabits/sec.

EXPANDABILITY
You get expandability, too. The high-speed RAM can be expanded to 512 kilobytes if you wish.

And the computer has a full 12-slot card cage you can use for additional RAM and interface cards.

BROADEST SOFTWARE SUPPORT
With the Z-2H you also get the broadest software support in the microcomputer field. Software Cromemco is known for. Software like this:

- Extended BASIC
- FORTRAN IV
- RATFOR (RATIONAL FORTRAN)
- COBOL
- Z80 Macro Assembler
- Word Processing System
- Data Base Management

with more coming all the time.

SMALL, RUGGED, RELIABLE
With all its features the new Z-2H, including its hard disk drive, is still housed in just one small cabinet.

Included in that cabinet, too, is Cromemco ruggedness and reliability. Cromemco is time-proved. Our equipment is a survey winner for reliability. Of course, there's Cromemco's all-metal cabinet. Rugged, solid. And, there's the heavy-duty power supply (30A @ +8V, 15A @ +18 V, and 15A @ -18V) for circuitry you'll sooner or later want to plug into those free card slots.

CALL NOW
With its high performance and low price you KNOW this new Z-2H is going to be a smash. Look into it right now. Contact your Cromemco computer store and get our sales literature. Find out when you can see it. Many dealers will be showing the Z-2H soon—and you'll want to be there when they do.

PRESENT CROMEMCO USERS
We've kept you in mind, too. Ask about the new Model HDD Disk Drive which can combine with your present Cromemco computer to give you up to 22 megabytes of disk storage.
The single card computer with the features that help you in real life

COMPLETE COMPUTER
In this advanced card you get a professional quality computer that meets today's engineering needs. And it's one that's complete. It lets you be up and running fast. All you need is a power supply and your ROM software.

The computer itself is super. Fast 4 MHz operation. Capacity for 8K bytes of ROM (uses 2716 PROMs which can be programmed by our new 32K BYTESAVER® PROM card). There's also 1K of on-board static RAM. Further, you get straightforward interfacing through an RS-232 serial interface with ultra-fast speed of up to 76,800 baud — software programmable.

Other features include 24 bits of bi-directional parallel I/O and five on-board programmable timers.

Add to that vectored interrupts.

ENORMOUS EXPANDABILITY
Besides all these features the Cromemco single card computer gives you enormous expandability if you ever need it. And it's easy to expand. First, you can expand with the new Cromemco 32K BYTESAVER PROM card mentioned above. Then there's Cromemco's broad line of S100-bus-compatible memory and I/O interface cards. Cards with features such as relay interface, analog interface, graphics interface, optoisolator input, and A/D and D/A conversion. RAM and ROM cards, too.

EASY TO USE
Another convenience that makes the Model SCC computer easy to use is our Z-80 monitor and 3K Control BASIC (in two ROMs). With this optional software you're ready to go. The monitor gives you 12 commands. The BASIC, with 36 commands/functions, will directly access I/O ports and memory locations — and call machine language subroutines.

Finally, to simplify things to the ultimate, we even have convenient card cages. Rugged card cages. They hold cards firmly. No jiggling out of sockets.

AVAILABLE NOW/LOW PRICE
The Cromemco Model SCC is available now at a low price of only $450 factory assembled ($395 kit). So act today. Get this high-capability computer working for you right away.
In The Queue

BYTE September 1979
Volume 4, Number 9

Foreground

10 JOYSTICK INTERFACES by Steve Ciarcia
An interface for every purpose

20 INTRODUCTION TO MULTIPROGRAMMING by Mark Dahnke
Some basic concepts

34 INTERFACE A CHESSBOARD TO YOUR KIM-1 by Jeff Teeters
Play chess with a computer as easily as with a human opponent

70 A LOW-SPEED ANALOG-TO-DIGITAL CONVERTER by Richard C. Hallgren
Perform real-time data analysis

96 THE NATURE OF ROBOTS, Part 4 by William T. Powers
A simple, human experiment

118 INEXPENSIVE, OPTICAL PAPER-TAPE READER by Brian A. Harron
A manual paper-tape reader with no moving parts

130 A MODEL OF THE BRAIN FOR ROBOT CONTROL, Part 4 by James Albus
Decision-making procedures

Background

62 SOME MUSINGS ON HARDWARE DESIGN by Clayton Ellis
Simple design techniques

84 SOLDERING TECHNIQUES by William Trimmer
A picture essay

160 HANDY PULSER by Bob Chrisp
A simple, circuit-debugging tool

182 THE AMSAT-GOLEM-80 by Joe Kasser
A modular and inexpensive S-100 computer system

196 ADD SOME CONTROL TO YOUR COMPUTER by Ken Barbier
Let your computer influence the outside world

Nucleus

Editorial: The Rationale of Yet Another Homebrew System 6
Programming Quickies 58, 126
Unclassified Ads 61
BYTE's Bits 80
Technical Forum 82
Clubs and Newsletters 92
BYTE News 115

Book Reviews 122, 152
Letters 150
Languages Forum 164
Event Queue 176
What's New? 214
Reader Service 256
BOMB 256

Cover Art: Fantasy on Homebrewing by Robert Timney.
Building a joystick interface for your computer system adds a new physical input dimension. There are as many different ways to interface a joystick as there are applications. Steve Ciarcia discusses several widely varying ways to design Joystick Interfaces.

The idea of having a microcomputer work in a multiprogramming environment is becoming a reality. Already there are several multiprogramming systems on the market. Mark Dahmke provides an Introduction to Multiprogramming so we can understand how these systems operate.

If you enjoy playing chess against your computer, but dislike typing in the moves in abstract notation, you will be interested in a method of allowing the computer to detect moves made on a real chessboard. Jeff Teeters devised such a method and now tells us how he did it in Interface a Chessboard to Your KIM-1.

Some Musings On Hardware Design by Clayton Ellis provides readers with background information on picking integrated circuits and using them in homebrew work.

Although there are many applications where a high-speed analog-to-digital converter is necessary, many conversion applications can make do with a slower conversion. Richard C. Hallgren has built a Low-Speed Analog-to-Digital Converter for the Apple II which he uses as a real-time data analyzer.

When constructing electronic equipment, it is imperative that good Soldering Techniques are developed. William Trimmer presents a photo essay of good soldering practices and several examples of unwanted techniques.

William T Powers brings his discussion of The Nature of Robots to a close by applying the previously-discussed techniques and theories in a simple experiment with a human subject.

The search for the inexpensive paper-tape reader continues as Brian A Harron describes an Inexpensive, Optical Paper-Tape Reader.

James Albus considers the mechanisms of choice in his closing article about A Model of the Brain for Robot Control.

A Handy Pulser can prove to be very useful when testing a digital circuit. Bob Chrisp shares with us his version of a useful pulse generator.

In The AMSAT-GOLEM-80, Joe Kasser shows how your computer club (or any other group of experimenters) can economically build an S-100 microcomputer. The system is modular and expandable.

Performing simple control functions with your computer can be easy. Ken Barbier describes how to Add Some Control to Your Computer.
I've seen Lanier, Vydec, Xerox, Olivetti, and Wang. I've chosen WORDSMITH from MICRO DIVERSIONS.

Congressman Charlie Rose
Chairman, Policy Group
on Information and Computers

Star

Yes, I'd like to learn more about Wordsmith.™ Send me your information packet.

Name ____________________________
Company ____________________________
Address ____________________________
City __________________ State ______ Zip ______

Micro Diversions, Inc.
8455-D Tyco Road,
Vienna, Virginia 22180
(703) 827-0888
The Rationale of
Yet Another Homebrew System

by Carl Helmers

In this issue of BYTE, we are placing a special emphasis on the homebrewing of computers: the craft of assembling the hardware and software of a system from standard components in nonstandard ways. This month’s editorial provides a continuation of notes begun in July on the design and assembly of my new homebrew 6809 system. In this editorial, we complete the final details of the physical layout and power supplies of the system, as well as the overall design of the system. We shall also begin a discussion of the actual processor card. Future installments in this series on homebrew, general purpose, computer hardware will record details of the system beyond this article’s goal of defining a backplane bus structure.

As noted earlier (“Editorial,” June 1979 BYTE, page 6), the intent of this exercise is to develop a specialized controller node for a loosely coupled system of processors involved with musical applications. The multiple processors initially contemplated were a Pascal-oriented, large personal computer and an ALF products model AD-8 music synthesizer with its 6502 used for housekeeping. In addition to this coordinating task, the 6809 would provide a central point for the connection of keyboards, displays and other hardware required by musical applications.

But ideas change and evolve. Since the 1st installments were written, plans have become slightly more grandiose with my recent acquisition of a New England Digital “Synclavier” music synthesizer and its associated Able/60 minicomputer. Located in Norwich VT, New England Digital is a combined spin-off of the music and electrical engineering departments of Dartmouth College across the Connecticut river in NH. The computer for the music synthesizer employs the XPL language as its high-level user interaction. The New England Digital version of XPL is augmented by a floating-point data type. With the exception of an adaptation of UCSD Pascal, which is expected to be available soon, all systems software is written in XPL, including what is described as a 3-pass optimizing XPL compiler.

[XPL is the language described in the book A Compiler Generator, by McKeeman, Wortman, et al, published circa 1968. The commonly used microcomputer language PL/M, 1st designed and implemented by Gary Kildall, is very similar to XPL in syntax and semantics. XPL is a simple subset of PL/I, with data types restricted to character and integer forms.]

At this point, I now have a need for multiple processor communications beyond the level of 1 large machine (a Western Digital P-engine) driving a smart peripheral through a serial communications link. The smart peripheral will still handle specialized details like the parallel interface to the older synthesizer and the eventual interface to an electronically controlled player piano.

See photo notes on pages 8 and 9, text continued on page 202
After working all day with the computer at work, it's a kick to get down to Basic at home. And one thing that makes it more fun is my Shugart minifloppy. We use Shugart drives at work, so when I bought my own system I made sure it had a minifloppy drive.

Why? Shugart invented the minifloppy. The guys who designed our system at work tell me that Shugart is the leader in floppy design and has more drives in use than any other manufacturer. If Shugart drives are reliable enough for hard-working business computers, they've got to be a good value for my home system.

When I'm working on my programs late at night, I can't wait for cassette storage. My minifloppy gives me fast random access and data transfer. The little minidiskettes store plenty of data and file easily too.

"I made the right decision when I bought a system with the minifloppy. When you lay out your own hard-earned cash, you want reliability and performance. Do what I did. Get a system with the minifloppy."

If it isn't Shugart, it isn't minifloppy.

Shugart

435 Oakmead Parkway, Sunnyvale, California 94086

"My Shugart followed me home."
Hardware Basis...

These photographs depict some further details of the physical hardware of the new homebrew 6809 computer system. As noted earlier, Vector Electronic Co components were used for the assembly of a backplane. Photographs 1 through 5 show various aspects of the new design's packaging.

Photo 1: The new computer system's final physical mounting basis is a mahogany box with guide blocks for the backplane assembly. Power supplies are located underneath the box. Power for the computer and accessories will be controlled by the standard, household wall switch mounted on the side of the box. Power connections to the backplane power buses will pass through a hole underneath the backplane in this photo. The hole provides an exit path for the flow of hot air from the power supplies.

Individual boards of the system plug into the backplane from the top as shown here. The backplane assembly slides into the grooves of the 2 guide blocks. These blocks are bolted to the top of the box using 14-20 machine-screws and threaded inserts. The grooves for the backplane board were cut 1/16th of an inch wide with a router and edge guide. The woodshop tools required to fabricate this case included a table saw, electric hand drill, drill press, router, belt sander, sabre saw, and the usual collection of hand tools.

Photo 2: The power-supply modules are attached to 2 wooden brackets which are screwed into the main box by means of 14-20 machine-screw threaded inserts. The power-supply modules are mounted on the brackets using #8-32 threaded inserts. Ordinary brass finish door stops serve as legs to keep the assembly off the table top, thus allowing natural convection to cool the power-supply modules.

No attempt is made to calculate heating factors. The inverted cup shape of the box seems like an excellent trap for heat, however, the large hole beneath the backplane assembly at the top of the box provides a relatively low-impedance outlet for the heated air from below. If the temperatures observed under load are excessive, then a fix will be necessary. In a commercial or industrial engineering situation where production of a product is contemplated, this "patch up after problems" strategy is not the recommended practice due to the possibilities of costly errors, but for one of a kind products in a noncommercial and highly experimental context, it is certainly acceptable and can economize on time.

Photo 3: (a) Brass machine-screw inserts to provide metal to wood fastening in the
assembly of the computer housing. These particular parts were purchased from the Brookstone Co Peterborough NH.

(b) When inserting the machine-screw fasteners into hardwood, better results were obtained when the hole drilled in the wood was 1/64th of an inch larger than the recommended size in the instructions. A short section of the machine-screw to be used, together with a hex nut, provide a tool for driving the insert as shown in this picture. When using the #8-32 inserts in hardwood, a slightly larger hole than suggested in the instructions is a necessity. Unless the extra clearance is given, the torque on the #8-32 bolt used in driving the insert will cause the insert to twist apart after 1 or 2 uses.

Photo 4: The backplane is the first and the most tiresome wiring involved with assembly of a small computer. Its definition is provided by the simple instructions:

FOR each free socket, pin BY NUMBER OF each socket.

CONNECT that pin to the same pin of the next socket in the backplane!

The backplane assembly was described in the notes of the July 1979 BYTE, page 194. This photo shows the finished backplane after all wiring and installation of bypass capacitors has been completed.

Photo 5: The wiring of the backplane, as well as the rest of this computer, was done with the Vector Electronic Co's "slit-N-wrap" technique. An electric eraser was used to motorize the connections, with an adapter custom-made on a small lathe. It is recommended that motorized wiring be employed with the "slit-N-wrap" technique. In previous experimental electronics built with this technique, reliability problems were encountered with manual termination of the wires to wire-wrap socket posts. Motorized wrapping with this tool provides a uniform and higher force for stripping the insulation off the wire.

At (a) is the adapter: a hollow tube made from 2 junk box spacers, a #10-32 bolt with a hole drilled through it, a brass union between the 2 spacers, and a large brass adapter to which a #10-32 nut is soldered. (This latter kludge is what happens when one makes an adapter on a Sunday afternoon and a #10-32 tap is not available!) At (b) the completed adapter is mounted in the Bruning Electric Eraser in a typical use situation.
Joystick Interfaces

Steve Ciarcia
POB 582
Glastonbury CT 06033

The thought that often comes to mind when the word joystick is mentioned to a computer enthusiast is of a spacewar-type game. A photon torpedo is fired from an opponent's starship, and the thruster joystick is deftly moved to reposition the craft out of its path. All of this occurs without having to take your eyes off the screen. Eye/hand coordination is almost “instinctive.” With a glance to the upper right of the video screen, the joystick is tilted to the upper-right corner of its 360° range. This moves the spacecraft toward that coordinate. Reverse thrust is accomplished by moving the joystick in the opposite direction, as though you are pulling back on the throttle of a real craft. Such is the general experience with joysticks. However, the potential use of these devices greatly exceeds that of game playing.

A joystick, for those people who are unfamiliar with one, is shown in photo 1. It is an electromechanical device with resistance outputs proportional to the X, Y displacement of a central ball and lever. Photo 2 illustrates the mechanical connections to the potentiometers.

When the stick is positioned in the center of its axes, the X and Y potentiometers show resistances in the center of their ranges. When the stick is tilted to the upper right, both potentiometers are at their full-resistance limit, while the opposite (lowest resistance) is true when in the lower-left position. The outputs of the 2 potentiometers accurately track, as if on an X,Y coordinate axis, the position of the joystick. It should be noted that while it takes only 2 potentiometers to define 2-dimensional travel, most joysticks are manufactured with 4 potentiometers. This is a remnant of the days when joysticks were connected directly to the 4 deflection-plates of a cathode ray tube (video screen).

It is one thing to consider interfacing a joystick to a computer, and quite another to do it. A joystick is a mechanical X,Y positioning device. Even with proportional output resistances, an input interface must be designed to convert position from an analog to a digital representation which can be used by the computer. A further consideration is the resolution, or percent, of full-scale travel per bit sensitivity. Is the application so gross that center and full-scale are the only points of interest, as in a
TARBELL VDS-II
Vertical Disk Subsystem

SYSTEM INCLUDES:
- 2 Siemens 8" Disk Drives
- 1 Cabinet with Fan and Power Supply.
- 1 Tarbell Floppy Disk Interface, assembled & tested.
- 1 CP/M Disk Operating System.
- 1 Tarbell BASIC.
- All Cables and Connectors.
- Complete User Documentation.
- Fully factory assembled and tested.

Price $1888.00

950 DOVLN PLACE • SUITE B • CARSON, CALIFORNIA 90746
(213) 538-4251 • (213) 538-2254

Circle 360 on inquiry card.
game control, or is the application one which requires fine control, such as a cursor-positioning device in a high-resolution graphics system?

All joystick interfaces are not created equal. There is a trade-off between hardware and software. The lower the resolution, the fewer the parts. The higher the resolution, the greater the electrical complexity or the software interaction with the interface. It is also important to recognize that computer systems which operate only in a high-level language like BASIC cannot use an interface design that requires an assembly language subroutine as an integral component. In such instances only a static interface can be used.

Included in this presentation are 4 interface designs which should cover most requirements, as well as demonstrate the considerable differences between them. The 4 types are:

- Low-resolution static
- High-resolution fully static hardware
- Software-driven pulse-width modulated
- High-resolution analog-to-digital

Low-Resolution Static Interface

First of all, static simply means that the interface hardware determines the potentiometer position value and presents it in constant, parallel digital form to the computer. When the interface is attached to any parallel input port, this joystick value can be read with a single INPUT command in BASIC. As far as the computer is concerned, the value is fully static, and the computer reads whatever data is there when the INPUT is executed. The interface hardware has the responsibility of asynchronously updating the digital value as the stick is moved.

Often the joystick is simply used to indicate relative direction and magnitude. In a wheelchair, for instance, full linear control of speed and direction would require rather expensive drive electronics. Most chairs use simple relay contacts and provide 2 or 3 selectable speeds. A joystick control built for this application would not have to have a resolution of 8 bits, but could, in fact, suffice with 2. Figure 1 shows a low-resolution static output joystick interface suitable for use in this application.

Each potentiometer is connected as a voltage divider between a reference voltage source of 3.9 V and ground. The voltage output of each potentiometer is fed to a 2-bit, parallel analog-to-digital converter. This type of converter uses 4 comparators set for 25% 50%, 75% and 100% of full scale. If a voltage, when applied, is less than 0.975 V, all comparator outputs will be at 0 V. At 1.0 V, corresponding to the joystick being moved 25% of full scale, the least significant bit (LSB) of the converter will be a logic 1, while the other bits are low. Similarly, at full input all
Sure, MicroSource is flexible, powerful, versatile. Sure, it's sophisticated yet simple; the first user-oriented software. But you may not be aware of the biggest difference of all. Documentation. The most extensive in the industry.

Support makes a difference, too. The support of some of the world's leading microcomputer people. The support of stringent field testing and follow up. The invaluable support of business software experts dedicated to helping you manage information in real-world environments. Not just when you acquire software, but as you implement, as you train, as you use Microsource to solve your contemporary business problems.

The MicroSource Difference means dealer support, too: we back every dealer with our experience, our knowledge, our integrity. Plus, the materials and resources he needs to provide the finest in software solutions and data base management.

From AutoScribe™, the versatile word processing package that means business . . . to Bookkeeper™, designed by a CPA to produce efficient client writeups. From the powerful LedgerPlus™ financial package to MoneyBelt™, the flexible accounting system, both for small to medium sized businesses . . . or small to medium sized departments of big corporations. TimeKeeper™ — for the professional practice or the corporate service department — bills for time, when time means money. All MicroSource is backed by exhaustive operations manuals, incomparable factory support, and system expandability. It runs on North Star, Vector Graphics, Heath Data Systems, Apple and TRS-80 . . . before long, CP/M, Cromemco, Data General and MicroNOVA. Sample the MicroSource difference.

Ask your dealer about powerful, user-oriented MicroSource software. Or call the telephone number below for the nearest MicroSource dealer near you.

1425 W. 12th Pl. · Tempe, AZ 85281 · 602-894-9247
comparators will be triggered, and bits 0 thru 3 will be logical 1s.

Additional encoding logic can be added to produce a true 2-bit representation from the 4 comparators, but it is just as easy for a computer to interpret it directly. With a 4-bit connection as shown, used in a BASIC program, 25% of full scale would be 1 decimal, 50% of full scale would be 3 decimal, 75% of full scale would be 7 decimal, and full scale would be 15 decimal. It should be easy to trigger any action by a coincidence with these values. The real significance of this method is that the potentiometer position is presented statically to the computer and requires no other interaction. This makes it ideal for direct use with BASIC.
High-Resolution Static Interface

It is quite possible that 2 bits of resolution is not enough for your application, but direct compatibility with a slow, high-level language is still a requirement. Expanding the parallel comparator method will work in theory, but you must realize that a 4-bit analog-to-digital converter uses 15 comparators, and an 8-bit, parallel analog-to-digital converter needs 255 comparators! So much for that method.

Realizing that the output of the joystick is a variable resistance, we can use this to advantage. This resistance can set the time constant of a function which has a pulse width proportional to joystick position. Figure 2 illustrates an interface design which uses this technique.

The 2 joystick potentiometers R1 and R2 control the pulse width of a one-shot (monostable multivibrator). The one-shot has a pulse width of 35 ms when the potentiometer is at 50 k ohm full scale and something less than 100 µs at 0% of full scale. A 7.5 kHz clock signal asynchronously triggers the one-shots. When the one-shot fires, its duration is proportional to the joystick position and will vary from approximately 0 to 35 ms. Using mid-scale pulse width of 17 ms as an example, the circuit timing is as in figure 3.

On the leading edge of the one-shot signal, a clear pulse is generated through an edge detector configured 7486 device. The clear pulse resets the 2 7493s which form an 8-bit counter. Once cleared, the counters start counting the bus signal for the duration of the one-shot's period. On its trailing edge, a load pulse is generated which loads this 8-bit count into an 8-bit storage register. The computer is connected to read this 8-bit value through a parallel input port. Successive clearing and counting operations update the register every 35 ms or so (worst case). The clock rate is 7.5 kHz which has a period of 133 µs. If the one-shot has a pulse width of 17 ms, then 127 clock pulses would be gated to the counter. Of a total possible 255 counts, 127 would represent 50% of full scale.

Software-Driven Interfaces

So far I have discussed only static interfaces. If the computer used with the joystick has sufficient speed and excess computing time available, then it is reasonable to use the computer to directly determine the one-shot period.

Figure 4 shows a circuit which directly connects to the computer bus and demonstrates this technique. The circuit as shown is wired for I/O (input/output) port decimal 255 or hexadecimal FF. The 4 joystick potentiometers are used as the timing resistors on 4 NE555-type one-shots. When an OUT 0, FF is executed in assembly language, it triggers all 4 one-shots. To keep track of the pulse widths, a 74125 3-state driver gates the one-shot outputs onto the data bus during an IN FF instruction. By looping through this program a number of times and keeping track of the logic levels of the 4 one-shots, the computer can accurately determine joystick position in terms of loop counts of instruction times. Listing 1 is a program which does this for 1 potentiometer.

High-Resolution Analog-to-Digital

While all methods are in some way analog-to-digital converters, the last
Listing 1: A typical assembly language program for using the joystick interface of Figure 4. After the one-shots are triggered, the program loops and checks the status of bit 0. When this bit is set, the conversion value is in register B. This program assumes that there is only 1 value being checked, and it is being input through bit 0.

The 3 basic sections are a computer-controlled voltage source (ICs 1 and 2), an analog-input multiplexer (IC3) which selects an individual joystick potentiometer by a 2-bit address code, and a comparator (IC4) which compares these voltages. In operation, the digital-to-analog converter is first set to 0 V out (hexadecimal 00 digital input to it) and 1 potentiometer is selected through the multiplexer. If V0 from the digital-to-analog converter is less than V1, the output will be logic 0. Next, the digital-to-analog converter input setting is incremented, and the comparator output is checked again.

Eventually an input count will be reached which will exceed V1. The comparator output will then be a logic 1. The digital-to-analog converter input count is now the value of the voltage V1. The worst case requires 256 iterations using this method is in fact an 8-bit absolute-analog-to-digital converter, typical of the type used in computerized measurement applications. IC1 is an 8-bit digital-to-analog converter that produces an output voltage proportional to a digital input applied to pins 5 thru 12. For a complete explanation of this device, I refer you to a previous "Ciarcia's Circuit Cellar" article, "Control the World" (September 1977 BYTE, page 30). This article also outlines calibration and test procedures.

Figure 4: Software-driven interface. If the computer can directly read the input from the joystick interface, the hardware required can be greatly simplified. When hexadecimal FF is output to port 0, all 4 one-shots are triggered. The pulse width is then determined by a program running through a short loop looking at the logic levels of the 4 one-shots. Listing 1 shows a typical program for this application.
no loose ends
All-In-One: computer, floppy, I/O, 16K RAM. $1595*

New Heathkit® H89
All-In-One Computer

Heath takes the risk out of selecting a balanced computer system. Now, video terminal, floppy, keyboard and 8-bit computer are brought together in one self-contained, compact unit. Nothing hangs out.

Two Z80’s

The personal computer has never been simpler. Or smarter. Two Z80 microprocessors mean terminal never shares power with computer, as do most desk-top units. So this terminal is capable of a multitude of high-speed functions, all controllable by keyboard or software.

102K bytes storage

Built-in floppy disk system gives you fast access to programs and data. Each 5¼-inch diskette has more than 102K bytes of storage area, enough to hold entire files. The All-In-One comes with 16K RAM, expandable to 48K.

Hundreds of uses at home or work

The All-In-One Computer runs programs written in MICROSOFT® BASIC and ASSEMBLER Languages. And it accepts all current software written for the popular Heathkit H8 computer. You can choose from scores of practical programs for home and business.

Learn by building

What better way to learn about computers than to build one yourself? The All-In-One is available in easy-to-build kit form, as well as completely assembled. Like all Heath electronic kits, it comes to you with its own easy-to-follow assembly manual and a nationwide network of service centers to assure smooth sailing.

FREE CATALOG

For complete details on the Heathkit H89 All-In-One Computer and nearly 400 other electronic kits for your home, work or pleasure, send today for the latest Heathkit Catalog of values.
method. A better technique is successive approximation where the computer progresses through a binary search to "zero in" on the final value. A full explanation of successive approximation is delineated in my article entitled "Talk to Me: Add a Voice to Your Computer for $35" (June 1978 BYTE, page 142).

With the digital-to-analog converter set for a full-scale value of 2.56 V, each count is equivalent to 10 mV. Only 4 channels of the CD4051 are used for the joysticks, leaving another 4 channels as auxiliary inputs from external sources. Thus it is possible for this interface to serve a dual role because of its high accuracy and resolution relative to the other methods.

You should now realize that both the design and construction of a joystick interface are influenced by many factors. It is not unusual to find one manufacturer charging $50 for a joystick, while another charges $200. Resolution, accuracy, and software interaction are the prime considerations. Where static inputs are required, the hardware will necessarily be more complicated. Resolution and accuracy ultimately determine the complexity of the interface.

For simple spacewar-type games, the circuit of figure 1 should suffice. For more demanding applications such as cursor control in a high-resolution graphics system, figure 5 may be the optimum choice. Be careful when buying joystick interfaces. Make sure that they mate with your program requirements and your system's abilities.

Next month's "Circuit Cellar" feature will discuss a stand-alone, light-emitting diode display board.

Figure 5: High-resolution analog-to-digital conversion. This hardware-oriented device multiplexes 4 voltage inputs (from the joystick potentiometers) and has the capability of handling 4 more voltages.
"Our inventory is our existence. Think we'd trust it to anything less than Scotch® Brand Diskettes?"

Scotch Diskettes are the diskettes you can depend upon with the information your business depends upon. Each one is tested and certified error-free before it leaves our factory. Because we know nothing less than perfection is acceptable for your vital business data.

Scotch Diskettes are available in regular or mini sizes, compatible with almost any system.

If it's worth remembering, it's worth Scotch Data Recording Products.
Introduction to Multiprogramming

Multiprogramming has usually been considered out of reach of the average personal computer experimenter using a small or medium scale computer. Actually, anyone with a processor above the level of an 8008 can operate a multiprogram or multiuser system. The original purpose of multiprogramming was to allow more than 1 user to take advantage of a computer simultaneously. This increased the productivity of the machine by allowing programs to run while other programs were awaiting user input, access to a disk, etc.

This may seem to conflict with the advantages inherent in microprocessor based systems (single user systems and low cost). However, there are many instances where the ability to run more than 1 program at a time may be advantageous. Note that the statement “more than 1 program may run at a time” does not mean simultaneous execution. That is the definition of multiprocessing (more than 1 processor on the bus), not multiprogramming.

To describe multiprogramming more effectively, I shall refer to a more well-known function in computers: real-time interrupts. Suppose we are using a microcomputer to manage the environment in a small office building. Normally we want to continually poll (scan) the sensors that are distributed throughout the building and adjust heating, cooling and lights on the basis of temperature and time of day. Let us say that during normal operation, someone in the building wants to change the temperature of an office.

One way to do this is to have a video terminal and keyboard attached to the system that generates an interrupt when a keyboard request is made. Upon receiving the interrupt, the computer saves the status of the current program and enters or transfers control to the keyboard read routine. As soon as the user has made the desired change, the system loads the old status information and returns to the original program. This same interrupt technique could be used to design a time shared system that would allow several terminals to be hooked up to a processor. Each terminal would generate an interrupt, and whichever program was active would be put in a wait state. This arrangement only works well for a few terminals, though. You can imagine what would happen if everyone happened to press a key at the same time.

Figure 1 shows timing comparisons of several modes of operation already discussed. In figure la 2 independent processors are shown, each doing something different and neither interfering with the other. This is known as multiprocessing. The processors may or may not be sharing I/O (input/output) terminals or memory.

In figure lb 2 processors are shown in a master-slave arrangement. Perhaps the slave processor performs floating point arithmetic or some complex I/O function. The master processor can give the slave processor commands via an interrupt and continue other processing until the slave informs it that it has finished the desired operation.

Figure 1c shows a single processor with an interrupt being applied. The processor temporarily gives control to the routine specified by the interrupt hardware and begins executing it. When complete, it returns control to the main program. Figure 1d shows the multiterminal timeshare system. Usually the interrupt hardware contains provisions for daisy chaining or prioritizing the interrupts as they come in. Thus, if terminal 6 applies an interrupt and the processor is busy with terminal 7, terminal 6 is not allowed to interrupt the processor until terminal 7 is finished.

Using multiprogramming is like using real-time interrupts. A multiprogrammed system uses interrupts, but in a more efficient way. Imagine a simple 2 program situation. Suppose program A is running and no other

About the Author

Mark Dahmke is currently employed by the University of Nebraska Computer Network as a programmer-analyst in the Academic Computing Services section. He is also a senior computer science major. At home, Mark owns an 8080 based system with 32 K bytes of memory and dual iCOM floppy disk drives. His work involves graphics, electronics, writing, systems programming and speech synthesis.

Mark Dahmke
8312 Selleck
600 N 15th St
Lincoln NE 68508
WE'RE ALTOS COMPUTER SYSTEMS. Our SUN-SERIES ACS8000 business/scientific computer creates a new standard in quality and reliability in high technology computers.

HIGH TECHNOLOGY The ACS8000 is a single board, Z80** disk-based computer. It utilizes the ultra-reliable Shugart family of 8 inch, IBM compatible, disk drives. A choice of drives is available: single or double density, single or double sided. Select the disk capacity you need, when you need it: ½M, 1M, 2M, or 4M bytes. The ACS8000 features the ultimate in high technology hardware: a fast 4 MHz Z80 CPU, 64 kilobytes of 16K dynamic RAM, 1 kilobyte of 2708 PROM, an AMD 9511 floating point processor, a Western Digital floppy disk controller, a Z80 direct memory access, Z80 Parallel and Serial I/O (two serial RS232 ports, 1 parallel port), and a Z80 CTC Programmable Counter/Timer (real time clock). In essence, the best in integrated circuit technology.

BUILT-IN RELIABILITY The ACS8000 is a true single board computer. This makes it inherently reliable and maintainable. The board and the two Shugart drives are easily accessible and can be removed in less than five minutes. All electronics are socketed for quick replacement. Altos provides complete diagnostic utility software for drives and memory.

QUALITY SOFTWARE Unlimited versatility. The ACS 8000 supports the widely accepted CP/M** disk operating system and FOUR high level languages: BASIC, COBOL, PASCAL and FORTRAN IV. All available NOW.

PRICE ACS 8000-1, single density, single-sided [½ Mb] $3,840
ACS 8000-2, double density, single-sided [1 Mb] $4,500
ACS 8000-3, single density, double-sided [1 Mb] $4,800
ACS 8000-4, double density, double-sided [2 Mb] $5,300

Brackets show disk capacity per standard two drive system. All models come standard with 32 Kb RAM and two 8" disk drives as shown above. Expansion to 64 Kb is $363 per 16 Kb. FPP, DMA, software optional. Dealer/OEM discounts available. Delivery: 30 days ARO, all models.

*Z80 is a trademark of Zilog, Inc.
**CP/M is a trademark of Digital Research, Inc.
programs have been started. Then a user initiates (loads) another program called B. How will program B gain control of the system so that it might start to execute?

The process of passing control from one program to the next is usually handled by an operating system module referred to as an interrupt call routine. Normally, to save the programmer the trouble of making sure that this routine gets called at regular intervals, the routine is usually imbedded in many of the I/O driver routines or other standard utility subroutines on a system. Note that this technique will in no way upset any of the flags or registers of the routine it is called from.

This interrupt call program will:

1. Determine if any other programs are waiting to execute.
2. If so, save all registers and flags on the stack and save the address of the current program's stack pointer in a special table in memory.
3. Load the new program's stack pointer from the table, pop all registers and flags off the stack.
4. Return to the new program.

Loading the new stack pointer raises some interesting questions. If program B has not yet begun, how could its registers have been pushed onto its stack? Figure 2 shows the stacks of both programs as they would be at each step in the previously described interrupt call routine. Part of the job of the routine that initialized program B is to set up a dummy stack and stack pointer such that the program counter address on the top of the stack contains the entry point of program B. Thus, when the interrupt call routine reaches step 4, it will execute a return instruction, then pop the entry point address off the stack and begin executing program B.

When the interrupt routine is called again, it will see that program A is waiting and will save all of program B's registers and flags, swap stack pointers and return to program A at the point where it was first interrupted.

All this activity will take place every time the interrupt routine is called, but if one of the programs get caught in an infinite loop, the interrupt call routine may not get called. The simplest way to avoid this kind of problem is to add some hardware to provide external timed interrupts.

As shown in figure 3, the interrupt timer is set to provide an interrupt every 10 ms. A reset line is provided

Figure 1: Timing diagrams for 4 different system organizations. Figure 1a is a multiprocessing example using 2 independent processors. Figure 1b is a multiprocessing example using 2 processors connected in a master-slave configuration. Figure 1c is a single processor with 1 level of interrupt. Figure 1d is a single processor with 8 levels of interrupts. Each of the 8 levels is activated by 1 of 8 terminals.

22 September 1979 © BYTE Publications Inc
in the event that the interrupt routine is manually called (through the software method). The timer may be reset to give the program its full 10 ms. A disable line is provided to allow the user to turn off the timer for special applications (software timing) in which the processor must not be interrupted.

Figure 4 shows our previous example of figure 1, but with the extra hardware generated interrupts added. In figure 4a some software interrupts are mixed in with the hardware interrupts. The timer is reset after each call to the interrupt routine. Figure 4b is the same except that the timer is not reset after each call.

A Complete System

There are limitless ways to go about developing a computer system that will be easy to use. A look at the current market shows this to be true, perhaps even to a greater extent on the small systems level. I will not attempt to describe all possible variations available on a multiprogramming system, but I will try to give as generalized a view as possible.

First, we must consider what is necessary to make a useful system.

The following are essential:

1. Some form of operating system that allows simplified user com-

Figure 3: Simple hardware interrupt timer set for 10 ms intervals.
Figure 4: Interrupt timing example of figure 1 reviewed with the addition of a hardware timer. The timer may be used in 2 ways: The example in figure 4a resets the timer on each interrupt call. This allows each program to receive its full 10 ms time slot. The example in figure 4b does not reset the timer. Therefore, a hardware interrupt occurs every 10 ms.

Figure 5: System geography of a typical multiprogramming system with space for the operating system and 2 other programs.

Communications (ie: BASIC, DOS, CPM).
2. Convenient mass storage I/O (cassette or disk).
3. Sufficient memory to handle all programs.

Another consideration might be the internal architecture of the processor, but that is another level of problem.

Figure 5 shows the memory layout of a typical multiprogramming system. To maintain a simple system, I have combined the operating system with the timesharing routines that support all terminals (video displays, keyboards and teletypewriters). This means that each time the operating system gains control (through an interrupt call or timer interrupt), it will complete its own activity and then transfer control to the timesharing program for the remainder of the time slot. If the operating system is given highest priority, the response times of the terminals should not suffer. The operation of the timesharing program can be treated as a multi-program system in miniature, where each terminal is given a time slot, or it may be designed to simply scan the terminals, choosing a new terminal each time it is given control.

Controlling I/O
Many programmers have discovered the convenience of vectoring all I/O through 1 subroutine; this simplifies programming greatly and makes system changes much easier. Typically, 1 subroutine will accept an operand (if necessary) and an operator function code passed from the main program and will decide which I/O function to perform. In my hypothetical computer, this approach will be used. Note that in some large computer systems, the I/O driver programs can only be accessed by executing a special kind of interrupt call that informs the operating system that the user's program desires to perform some kind of input or output operation. The operating system then takes charge, performs the I/O for the program in question, and returns pointers telling where the input data was stored in memory or that the requested output function has been completed.

This type of I/O handling is necessary because the I/O controllers are extremely complex and are capable of performing an entire I/O operation.
How to buy a personal computer.

In California, a store owner charts sales on his Apple Computer. On weekends though, he totes Apple home to help plan family finances with his wife. And for the kids to explore the new world of personal computers.

A hobbyist in Michigan starts a local Apple Computer Club, to challenge other members to computer games of skill and to trade programs.

Innovative folks everywhere have discovered that the era of the personal computer has already begun—with Apple.

Educators and students use Apple in the classroom. Businessmen trust Apple with the books. Parents are making Apple the newest family pastime. And kids of all ages are learning how much fun computers can be.

Visit your local computer store
The excitement starts in your local computer store. It's a friendly place, owned by one of your neighbors. He'll show you exactly what you can use a personal computer for.

What to look for
Your neighborhood computer store has several different brands to show you. Chances are the salesman will recommend an Apple Computer. Apple's the one you can program yourself. So there's no limit to the things you can do. The more you use your Apple the more uses you'll discover. So it's important that Apple is the computer with more expansion capability. You can't outgrow Apple.

It's your move
Grab a piece of the future for yourself—we'll give you the address of the Apple dealer nearest you when you call our toll-free number. Then drop by and sink your teeth into an Apple.
(800) 538-9696.
In California,
(800) 662-9238.
Defining the Necessary Tables

With only 2 programs very few, if any tables are needed to tell the interrupt routine which program was active at the instant the system was interrupted and which program is next in line. But imagine a system capable of supporting 10 or more programs: some form of priority scheduling will be needed, as well as a table to hold all of the stack pointers of the inactive programs.

To handle the list of programs (herein referred to as tasks), we must define a task control table that keeps track of a number of pointers and descriptors. First, each entry will begin with the task number that uniquely defines each task. Next, we will include the priority of the task on an arbitrary scale of 0 to 10. It will then get the processor before a task of lower priority (10 is highest). If 2 tasks have the same priority, the first one in line in the task control table will get control. The task control table must also keep track of the last value of the stack of each task and whether or not the task may be interrupted (in the case of critical timing loops).

Another important status byte that must be kept is the current activity indicator. This byte contains the task number of the currently active task. Now let us assume that we have 3 different tasks running and all have been initialized (stored in the task control table). The first task has a task number of 0 and a priority of 10. Generally the operating system is given the task number 0 designation. Since the operating system and timeshare program (user terminals) are considered one big program in this example, task 0 is also the designation of the timeshare system. Task 1 is a program that one of the users submitted (initiated) from a terminal; it has a priority of 10. Task 2 was also loaded and initiated by a user through the timeshare terminals, and it has a priority of 10.

Imagine that the timeshare program calls the I/O driver program to write a character out to a terminal. Since there could be many terminals connected to the system, how does the program know which one to write to? It would be very inefficient to have different routines for each device, but the only way that a program could tell the I/O driver which specific display to write to is for the calling program to know the physical address of that terminal. Passing the actual address of the device ruins the neatness of the I/O routine, though. It is more convenient to specify the function to be performed (1 = write to video display; 2 = read keyboard; 3 = write to cassette; 4 = read cassette).

The solution is to have another entry in the task control table called a communications control block pointer that points to the location of the communications control block for the particular task. Since each task is given its own block, the user may define his or her own functions and addresses. Thus each program may have its own video display, keyboard, cassette interface and disk. The communications control block contains a list of function numbers, the address of the I/O port or memory mapped port, and the address of the I/O subroutine that will perform the operation. Figure 6 shows the arrangement of all tables.

8P2SM PARALLEL/SERIAL I/O BOARD
WITH MODEM

PARALLEL PORTS: 8 Ports 64 total bi-directional bits

SERIAL PORTS: 2 Serial Ports with associated control lines
One Port 111 or RS-232
One Port 111 or SOORM

AVAILABLE BAUD RATES:

<table>
<thead>
<tr>
<th>Rate</th>
<th>bps</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>1200</td>
<td>1200</td>
</tr>
<tr>
<td>2400</td>
<td>2400</td>
</tr>
<tr>
<td>4800</td>
<td>4800</td>
</tr>
<tr>
<td>9600</td>
<td>9600</td>
</tr>
<tr>
<td>19200</td>
<td>19200</td>
</tr>
<tr>
<td>38400</td>
<td>38400</td>
</tr>
<tr>
<td>76800</td>
<td>76800</td>
</tr>
</tbody>
</table>

MODEM: Full duplex, answer on originate, 100 baud
BUS TYPE: N 100
PRICE: $149.95
$199.95 assembled and tested

MicroDaSys
P.O. Box 36051
Los Angeles, CA 90036
(213) 935-4555
North Star Announces —
Double Density x 2 Sides = Quad Capacity!

The North Star Horizon now delivers quad capacity by using two-sided recording on our new mini drives! That’s 360,000 bytes per diskette! A four drive North Star system accesses over 1.4 megabytes of information on-line! Think of the application flexibility that so much information storage can give you!

North Star has quadrupled the disk capacity of the Horizon computer but prices have increased a modest 15 percent. On a dollar per byte basis, that’s a bargain that is hard to beat!

The proven North Star disk controller was originally designed to accommodate the two-sided drives. North Star DOS and BASIC are upgraded to handle the new capacity, yet still run existing programs with little or no change. Of course, single sided diskettes are compatible with the new disk system.

North Star Horizon Computer Prices (includes 32K RAM, one parallel and two serial I/O ports), assembled, burned-in and tested:

- Horizon-1-32K-Q $2565
- Horizon-2-32K-Q $3215
- Horizon-1-32K-D $2315
- Horizon-2-32K-D $2765

Get both sides now! Quad capacity is available from your North Star dealer.

North Star
North Star Computers
1440 Fourth Street
Berkeley, CA 94710
415-527-6950 TWX/Telex 910-366-7001
Figure 6: Control table organization. The current activity indicator contains the task number of the active task. The task control table contains the task number, task priority, last value of stack pointer, interrupt status flag (1 for yes, 0 for no interrupts), and the pointer to the task's communications control block. The communications control block contains the I/O (input/output) function code, address of I/O driver routine associated with the function code, and the I/O port or memory mapped address assigned to the task for the particular function. One entry is provided for each function code used in the task. The owner of the task may add entries to the communications control block for specialized I/O driver requirements.

Example
The easiest way to show how all tables and pointers affect each other and the system is to observe them during a short period of machine activity. As we begin, task 0 (the operating system and timeshare routines) has control, and a timer interrupt is occurring. There are 2 other tasks in memory: task 1 has priority 5 and task 2 has priority 4.

First, as the interrupt routine is entered it saves all registers and flags of task 0 on stack 0 and saves the task 0 stack pointer in the task 0 task control table entry (see figure 7). Next, it scans the task control table for the task of next highest priority, moves the new task number (task 1) to the current activity indicator, moves the task 1 stack pointer from the task control table to the processor's stack pointer, pops all of task 1's registers and flags off of stack 1, and executes a return, which has the effect of popping the program counter and jumping to that address.

Task 1, while executing, encounters a call to the I/O driver routine with a request for a keyboard input (see figure 8). When the I/O driver routine is entered, it scans the task control table to find the communications control block pointer entry for task 1 (the routine determines which task called it by looking at the current activity indicator), then scans the communication control block for the function number entry corresponding to the one passed by the main program. Even though the computer may have 5 or more keyboards attached to it, the port address found in the communication control block gives it the address of the keyboard assigned to task 1.

Since the keyboard read routine is a common one, the address referred to in the communication control block points to a subroutine located within the operating system area. Note that if the user had need for some special I/O subroutine, he could locate it in his own memory area and put the address in his communication control block as another function code.
Returning to the example, the keyboard read subroutine is called from the I/O driver, reads the keyboard port assigned to task 1, and returns to the I/O driver with the ASCII code. The I/O driver returns to the main program with the ASCII code in a register or memory location. In figure 9 the next timer interrupt has occurred, so control returns to the interrupt handler routine. Again, the interrupt routine saves all registers and flags of task 1 on stack 1, looks at the current activity indicator to see which program was last active, saves the stack pointer in the task 1 task control table entry, scans the task control table for the next highest priority task, and finds that task 2 should get control. The stack pointer for task 2 is loaded from the task control table, all registers and flags are popped off of stack 2 and again a return is executed that causes task 2 to take control.

In the next step (shown in figure 10), task 2 has encountered the equivalent of a CALL EXIT or STOP command and has finished processing. This CALL EXIT calls a terminator routine which again finds out who called it (via the current activity indicator) and simply eradicates the task control table entry for that task. To keep things neat, all succeeding table entries are moved up 1 notch. Then, control is returned to the interrupt handler, which will find the next task in line. In this case, since no other tasks of lower priority are waiting, control is returned to the highest priority task 0.

Error Handling

On a single program system, error handling is something that the user can watch for manually. When several programs are running, the system must have routines to handle errors rapidly so that other programs will not be slowed down or destroyed. There are many common errors that are relatively easy to deal with. Executing an invalid op code or forgetting to put in the 2nd or 3rd byte of a multibyte op code can be handled through a simple system restart (through the interrupt handler routine) without losing continuity. But what about a program loop that accidentally destroys part or all of another user's program? On an IBM 360, all memory blocks assigned to a task are given a unique 4-bit protect key (which is the same as the task number) that is stored in external hardware.

One approach might involve having 2 external 16-bit registers that could be loaded by the interrupt routine with the high and low memory addresses of the active task. Then, every time the address bus has a valid address on it, it is tested against these registers. However, special precautions would have to be taken in those cases in which a utility in low memory (I/O driver routine etc) is called, or when memory mapped I/O ports outside these address limits are used.

Figure 7: Task 0 has control of the processor and has just been interrupted. The interrupt routine looks at all pointers, saves the status, and then transfers control to task 1.

Figure 8: Task 1 has requested keyboard input from its assigned keyboard. When the input is completed, the I/O (input/output) driver returns control to task 1.
Resolving Allocation Conflicts

Allocating I/O devices has been a problem since the early days of computers. Devices like tape drives and card readers (sequential devices) are nonshareable: only 1 program may use them at a time. However, disk drives are considered shareable, since the head may be positioned at random to gather data. The simplest method that can be applied to the system described in this article would be to have the initiator program check all communication control blocks to make sure that certain devices are not assigned more than once.

I/O Software Considerations

As mentioned earlier, I/O techniques in use on small systems leave all control up to the processor. If special timing is needed or if strobes or ready flags have to be checked, software is used instead of extra hardware, as in the case of larger systems. This in itself is good from the standpoint of economy, but requires that special care be taken when writing the driver and controller software.

For example, suppose a cassette read routine uses a universal asynchronous receiver transmitter (UART) implemented in software as an algorithm instead of hardware. In a nonmultitasking system, the program may simply loop and time down between bits, but in a multitask system the timer interrupt would surely halt the activity and execute other programs. It may be well over 30 ms before it can return to the cassette read routine. It is easy to see what can happen to critical timing loops on a system that uses any kind of interrupts.

The solution? If you must do the critical timing in software, it is necessary to turn off the interrupt timer while in the critical loop and reactivate it when in noncritical parts of the routine. If external hardware is used, and internal timing is reduced.

Figure 10. Task 2 has completed its execution and encounters a CALL EXIT. Control is given to the terminator routine which performs some cleanup operations and removes the task 2 entry from the task control table, effectively destroying the task. Control is then given to the interrupt routine which again scans the task control table to find the next task awaiting execution.
Now you can put your S-100 system solidly into a full-size, single/double density, 600K bytes/side disk memory for just $1149 complete.

DISCUS/2DTM single/double density disk memory from Thinker Toys™ is fully equipped, fully assembled, and fully guaranteed to perform perfectly. DISCUS/2D™ is a second generation disk memory system that's compatible with the new IBM System 34 format. The disk drive is a full-size Shugart 800R, the standard of reliability and performance in disk drives. It's delivered in a handsome cabinet with built-in power supply.

The S-100 controller utilizes the amazing Western Digital 1791 dual-density controller chip... plus power-on jump circuitry, 1K of RAM, 1K of ROM with built-in monitor, and a hardware UART to make I/O interfacing a snap.

The DISCUS/2D™ system is fully integrated with innovations by designer/inventor George Morrow. Software includes BASIC-V™ virtual disk BASIC, DOS, and DISK-ATE™ assembler/editor. Patches for CP/M* are also included. CP/M, MicroSoft Disk BASIC and FORTRAN are also available at extra cost.

DISCUS/2D™ is the really solid single/double density disk system you've been waiting for. We can deliver it now for just $1149. And for just $795 apiece, you can add up to 3 additional Shugart drives to your system. Both the hardware and software are ready when you are.

Ask your local computer store to order the DISCUS/2D™ for you. Or, if unavailable locally, write Thinker Toys™, 5221 Central Ave., Richmond, CA 94804. Or call (415) 524-2101 weekdays, 10-5 Pacific Time. (FOB Berkeley. Cal. res. add tax.)

*CP/M is a trademark of Digital Research.
to noncritical loops, the intervention of the multitask interrupt timer will not normally affect the system. If the interrupt timer causes an interrupt just before a byte is received by the UART but returns in time for the next byte to be received, the easiest way to assure that the cassette read routine does not drop a byte is to set the timing of the interrupt oscillator to at least twice as fast as the transmission rate of the UART. This greatly reduces chances of losing a byte.

An alternate approach is to have even more hardware that forces the interrupt timer to timeout and return control to the program awaiting the data transfer operation when the incoming data is present. A third way external controller reads the UART involves the use of direct memory access and deposits the data directly into calling program need only initialize the external registers and go into a wait state until the transfer is complete, allowing the rest of the tasks to execute normally. This last approach is used on many large systems and constitutes what is called a channel.

Managing the System
As you can see, many levels of activity are required to control a multiprogramming system properly. It is also apparent that some minimal hardware is required to prevent one user from obtaining exclusive control of the processor or writing over someone else’s program or data. The use of control tables and a standard interrupt routine are also important as a way of letting the interrupt routines and I/O drivers know which task had control of the processor last. If the user plans to run BASIC software or some other kind of language interpreter, the safety features discussed earlier may be implemented as part of the interpreter. To run a lower-level operating system that allows the user to generate assembler level code will generally require the hardware described in this article, thus safeguarding the system and its users from accidental loss of programs or data. In general, the use of timed interrupts allows for a fairly even distribution of processor activity, and depending on the cycle time of the host system, between 4 and 12 tasks may be handled without too noticeable a delay in response time.

REFERENCES

The Real Estate Market has never been so widespread, profitable and competitive! To beat competition and reduce expensive labor costs, more and more real estate offices are relying upon computers to organize and direct their business transactions.

To meet this growing demand, R.S.I., Inc., has developed the most comprehensive Real Estate Software ever that is specially designed to satisfy the needs of all Realtors...large or small. The software is easy to use and requires no training.

The Programs run on a DEC station 78 & 88 series, CP/M operating system type 8080 or Z-80 with 48K of memory, C Basic 2 version 2.03, CRUN 2 version 2.03, 8 inch single or dual density floppy disks, a 132 character printer and CRT terminal with a 24 x 80 screen.

PROPERTY MANAGEMENT SOFTWARE
Comes Complete With a 200 Page Instruction Manual...With 80 Screen-by-Screen Displays for Easy Reference!

Program includes:
* Operating Statement Report
* Balance Sheet Report
* Rent Book Report
* Management Fees Report
* Vacancy Report
* Late Rent Report
* Check Writing / Check Register
* Deposit Register
& much more...

Mail to: R.S.I.™
2126 Lombard St. / San Francisco, CA 94123

Send me your PROPERTY MANAGEMENT software complete with 200 pg. manual for $595.00 (shipping & insurance included / CA residents add sales tax).

Acct. #
Exp. date
Signature
Name
Address
City State Zip
Telephone (include area code)

DEALERS!... Check here □ and attach business card to coupon for complete details on all R.S.I.™ Software and merchandising support!!

R.S.I.™'s Software systems for the Real Estate market can be profitable for you. Inquire today for full details on Real Estate Software programs. Circle 323 on inquiry card.
Chess is a fascinating game. Computer chess is especially fascinating because the complex analysis which determines each move is performed by a machine instead of a human. Computer chess offers an excellent way to demonstrate the power and versatility of personal computers.

Most computer chess systems are unable to "see" a chessboard. A human playing against a computer will usually set up a chessboard beside the computer, and the moves will be communicated to and from the machine through the use of a keyboard and a display in some type of abstract notation.

Keyboard entry of moves is undesirable. It is inconvenient, error prone, and inelegant. The abstract notation promotes errors and makes play difficult for people who do not know the notation system. Furthermore, errors may not be detected until many intervening moves have occurred.

An ideal chess-playing system would contain a digital television camera to observe the board and a mechanical arm to move the pieces. A less costly alternative is to construct a chessboard which can electronically communicate with the computer. The computer may then "look" at the board position through its I/O (input/output) ports. A means of indicating the computer's moves on the chessboard itself may also be provided.

In the system that I have constructed, the user makes his move on the electronic chessboard, instead of typing each move on a keyboard. The computer's moves are displayed on the chessboard through the use of discrete light emitting diodes (LEDs), arranged in an X,Y coordinate system. The LEDs show the user exactly which chessman the computer wants to move, and to which square.

In addition to being aesthetically pleasing, this system makes it impossible to enter your move in-

About the Author
Jeff Teeters is an undergraduate student at the University of Wisconsin at River Falls where he majors in mathematics.
correctly, and easy to interpret the computer's move. The board is continuously scanned so that even if the user moves the computer's piece incorrectly, the mistake is detected immediately. A speaker is connected to the computer to let unwary users know (by a buzz) when they misinterpret a computer move. This speaker also emits a brief sound when the chess program has decided on a move and when it has been recorded into the computer's internal board representation.

This project is designed for specific use with Peter Jenning's Microchess, running on a KIM-1 with about 0.5 K bytes of extra memory. Implementation on other 6502 based computer systems should be relatively easy since only a few minor software modifications would be needed. The required hardware consists of a chess set, a package of cheap switching diodes, 2 integrated circuits, 16 discrete LEDs and 32 copper rivets.

The chessboard should have a thin, nonconductive surface that is easy to drill holes through. This surface must be supported by side panels so there is a hollow space of about 2 cm under the board for wiring. I used a cheap plywood chess set that is designed to fold into a storage box for the chessmen. The copper rivets should be small in diameter, about 12 mm long, and have a flat top. The ones that I used were size 9 rivets manufactured by the Tower Corporation of Madison IN.

System Concepts

KIM-1 Microchess uses an internal board-status table to keep track of the whereabouts of the chessmen. This table contains 32 square numbers which indicate the position of the 32 pieces. It is important to realize that Microchess generates moves solely on the basis of what is in that table, and not how it was placed there. My plan of attack was simple. I had only to wire a chessboard to the computer and write an interface program that would translate moves on the chessboard into changes in the table. Since this program will be needed only when moves are physically being made, it can be called from Microchess and used in place of the Microchess keyboard I/O (input/output) routines. After the user has finished moving, control can be transferred back to Microchess to compute the machine's next move.

The Microchess to chessboard interface program is logically straightforward. If no move is being made, the table should be an accurate representation of the board. A move is detected when the table does not correctly represent the current board position. If an empty square appears on the board where the table indicates that a chessman resides, then the user has just picked up that man. If the table shows an unoccupied square which the board indicates is occupied, a chessman has just been set down in that square. A move is constituted by the user picking up a man and setting it down in some other location. A capture is completed by picking up 2 men and setting 1 down in the space formerly occupied by the other. Because the Microchess table is updated each time a simple move or capture is made, the table always gives an accurate representation of the current board position.

Hardware Details

Note that the chessboard interface program can keep track of the moves that are made simply by knowing if individual squares are occupied by a piece or are empty. The circuit which provides this information to the computer is illustrated in figure 1. For purposes of square identification, the chessboard is conceptually cut in half. The 2 pieces are placed logically end to end, forming an arrangement

Photo 2: The bottom of the chessboard. The switching diodes and connecting wires are soldered directly to the wire contacts in the central holes. The 2 integrated circuits are type SN74154 decoder/demultiplexers. Note the tips of rivets protruding through some of the holes.

Photo 3: The complete chessplaying system. The completed electronic chessboard stands in the foreground. The chessboard and the sound-effect speaker are connected to the KIM-1 computer residing in the suitcase in the background.
The September '77 and March '79 covers of BYTE are now each available as a limited edition art print, personally signed and numbered by the artist, Robert Tinney.

These prints are strictly limited to a quantity of 750 for each cover, and no other editions, of any size, will ever be published. Each print is 18" x 22", printed on quality, coated stock, and signed and numbered in pencil at bottom.

The price of each print is $25. This includes 1) a signed and numbered print; 2) a Certificate of Authenticity, also signed personally by the artist and witnessed, attesting to the number of the edition (750), and the destruction of the printing plates; and 3) first class shipment in a heavy-duty mailing tube.

To order your limited edition art print, fill out and mail the order form below.

Send me _____ “Breaking the Sound Barrier” prints at $25 each, and _____ “Trap Door” prints at $25 each. I understand this price includes Certificate of Authenticity and first class shipment.

☐ I have enclosed check or money order to Robert Tinney Graphics.
☐ Charge this to my Master Charge or Visa

Card #_________________________ Expires:_______

Send order to:

robert tinney graphics
P.O. Box 45047 • Baton Rouge, LA 70895
CCS has everything to expand your Apple II*

Friendly Frankie's roadside Apple II stand has plenty to whet your appetite for expansion. So, if you're ready to have your Apple II computer interface with the outside world, wheel around to Frankie's stand today.

Expand to your heart's content with our full range of delicious accessories, including: prom modules, asynchronous and synchronous serial interfaces, arithmetic processors, programmable timers, parallel interfaces, A/D converters, and Apple II compatible boards galore.

Let Frankie connect your Apple II to the rest of the world faster, and for a lot less bucks.

For all the mouth-watering details, contact our northern California headquarters or your local roadside computer store. If Frankie's out, ask for Dennis or Jerry. They'll be glad to help you.

*Apple II is a registered trademark of Apple Computers, Inc.
of 4 rows and 16 columns. A diode matrix allows the hardware to identify the individual squares.

The integrated circuit in figure 1 is a type SN74154 4 to 16 line decoder/demultiplexer. The 4 input lines to the device are connected to the KIM-1 I/O port A. Each of the 16 output lines is linked to a column in the matrix. This portion of the circuit allows the KIM-1 to select 4 squares out of the total of 64. The 4 rows of the matrix are connected to the I/O port B. Row and column addressing allows scanning of a single square. Each square of the chessboard has a switch. A closed switch indicates that the square has a piece on it; an open switch shows that the square is empty.

To determine whether or not a piece is on a particular square, the interface program first selects the column by sending the correct binary code to the 4 input lines on the SN74154. This brings 1 of the 16 output lines low, while the diodes keep the rest high. If the switch is closed (ie: a piece is on the square), then the corresponding row-line will be pulled low and the matching port-B data register bit will be a 0. Thus, by selecting the column through port A and testing the row bits in port B, it is possible to determine the status of every square on the board.

Switch Experimentation

Now for the hard part: what can be used as a switch? The actual mechanical operation remains the only unresolved detail. All that is needed is some means of closing the switch whenever a piece is set down, and opening it when one is picked up. There are several ways to accomplish this—some of which are better than others.

In my first attempt I put aluminum foil on the bottom of the pieces and used simple wire contacts on top of the board. I punched 6 holes into each square using a large needle to form the corners of 2 concentric, equilateral triangles. Three strands of wire were looped through the holes forming 3 symmetric contacts (see figure 2a). The third contact was used only to balance the pieces.

The concept is simple. The piece is set on top of the wire contacts and the aluminum foil makes the necessary connection. Unfortunately it didn’t work. The contacts were not sufficiently stable, and the slightest vibration rocked the pieces, leading the program to believe that the user was trying to move 5 or 10 pieces at once.

That problem might have been solved by mounting magnets on the pieces and using a chessboard with a nonconductive magnetic surface.
I've finally found a personal computer I respect. It's not surprising that professionals get excited about the Compucolor II. It's a totally-integrated 8080A system with full color graphics display, built-in 51K mini-disk drive, and the best cost performance ratio available in a personal computer.

The complete system is only $1595.* And that price includes 8K user RAM, RS-232C compatibility and random access file capabilities.

Our 8 foreground and background colors will boost your comprehension, while introducing you to an exciting new dimension in BASIC programming. The vector graphics have 16,384 individually-accessible plot blocks. And the 13" diagonal measure screen gives you 32 lines of 64 ASCII characters. You also have the flexibility that comes with 16K Extended Disk BASIC ROM.

Compucolor II offers a number of other options and accessories, like a second disk drive and expanded keyboard, as well as expandability to 32K of user RAM. Of course we also have a whole library of low-cost Sof-Disk™ programs, including an assembler and text editor.

Visit your nearest computer store for details. And while you're there, do some comparison testing. With all due respect to the others, once you see it, you'll be sold on the Compucolor II.

Compucolor Corporation
Post Office Box 569
Norcross, Georgia 30071
Telephone 404/449-5996
Another possibility would be to eliminate wire contacts entirely and use reed switches or some type of photocell. Unfortunately, one such device must be mounted under each square, necessitating a total of 64 devices. Although they would have undoubtedly worked, 64 photocells or reed switches would have cost more than I was willing to spend on the project.

Switch Success

I eventually figured out a contact method that was both cheap and reliable. I drilled a small hole in the center of each square, just large enough to slide in a copper rivet. Two strands of bare copper wire from 2 of the inner contact holes used in my first attempt were looped through the larger central hole forming 2 contacts inside of the hole (see figure 2b). The felt on the bottom of the pieces was peeled off and the tapered copper rivets were glued onto the metal weight underneath the felt with an instant bonding adhesive.

I have found that these contacts work quite well. The tapered copper rivets slide easily in and out of the hole, while slight pressure from the sides of the hole forces the rivet to make good contact with the copper wire. The pieces remain intact and the electrical contacts remain solid, even when the chessboard is held upside down and shaken gently. Of course when you wire your chessboard, you should leave out the 3 symmetric wires that I tried on my first version. Only the 2 strands which were looped through the rivet hole need to be installed (see figure 2c).

Hardware for Computer Output

The LEDs are wired according to Figure 3. The integrated circuit is another 4 to 16 line decoder whose 4 inputs are connected to the I/O ports. Note that decoder outputs 0 thru 7 are connected sequentially to the rank—indicating (Y axis) LEDs with the 0-bit output being connected to the uppermost LED. Likewise, the file—indicating (X axis) LEDs are connected left to right with outputs 8 thru 15. The chip-enable line is connected to I/O port pin PBO so that the LEDs can be turned off while Microchess is computing a move.

Mounting of the LEDs on the sides of the chessboard is relatively straightforward. I used a large needle to punch the holes for the leads prior to insertion. Glue can be used to hold them in place. Be sure to orient the chessboard so that a white square is in the lower right-hand corner of the side facing the human player. This means that the 2 rows of LEDs installed on the left side and bottom of the board will meet at a corner containing a black square.

The speaker is connected to output port pin PIA0 in the manner described in the KIM-1 User's Manual on page 57. See figure 4 for an illustration of the I/O port connections.

Software

The necessary modifications to Microchess are shown in listing 1. The Microchess to chessboard interface program with source and object listing is given in listing 2. Although I used a nonstandard meta-assembler, most of the mnemonics are similar to, if not the same as, the MOS Technology standard mnemonics. The listings are fairly well documented.

There are, however, some general concepts that may be difficult to deduce from the listings. The workhorse of the chessboard interface program is subroutine GET-MOVE. GET-MOVE calls the KIM monitor routine GETKEY before doing anything else, in order to see if the user has pressed the DA key (which is used when setting up a new position) or the PC key (which clears...
Figure 3: Circuit for lighting the light emitting diodes (LEDs) that indicate the computer's move. The computer moves as follows. The program lights the X and Y axis LEDs which together indicate the single square on which the piece to be moved resides. The person picks up the indicated piece. After the user picks up the piece, different LEDs light up that point to the square to which the piece is to be moved. The person then places the chessman as indicated. A mistake causes the computer to emit a characteristic sound. The chip-enable line of IC1 is connected to I/O (input/output) port pin PB 0 so that the LEDs may be turned off while the chess program is computing its next move.
Microchess board-status table to the current board position, as previously described. There is one important exception. When the user picks up a piece to make a move, SHOULDBEUP-FLAG is made nonzero, and the square where the piece used to be is stored in hexadecimal addresses FA and F9. A nonzero SHOULDBEUP-FLAG tells subroutine GET-MOVE that the 2 squares in FA and F9 should not be occupied, even if they are shown in the table. This is done to prevent GET-MOVE from continuously reporting that the same piece was picked up.

Upon exit from the subroutine, the result of the search is stored in the accumulator and in location UP-CLEAR-DOWN. A +1 is returned if a piece has been picked up, a 0 if there is no change, and a -1 if a piece was set down. If a piece was picked up or set down, then CHANGING-SQUARE will contain the number of the square where the pickup or setdown occurred. Likewise, if a piece was picked up, then CHANGING-PIECE will contain the hexadecimal designation of that piece as outlined on page 3 of the Microchess player's manual.

While GET-MOVE is scanning the chessboard, it also lights up the X and Y axis LEDs that point to the square in LIGHT-SQUARE. If SPEAKER-FLAG is nonzero, the speaker is rapidly toggled to produce a hum.

Subroutine CLEAR-ST ACK resets the Microchess and the machine stack pointers back to their initial values. The subroutine is called from various parts of the interface program to prevent the stacks from overflowing into Microchess code.

After Microchess has computed each move, control is transferred to the start of the interface program at hexadecimal address 2000. The user must physically move the pieces for the computer. The piece designation and the from and to squares of the calculated move are stored in the KIM display at hexadecimal addresses FB, FA, and F9 respectively. Because of the no-operation instructions inserted at address 03E1, the move has not been recorded in the board-status table. Addresses 2010 through 2040 of listing 2 contain code.
Now you can afford to sink your teeth into some big, feature-packed static memories. Because George Morrow's ultra-efficient designs have brought S-100 memory down to 2¢ a byte.

Introducing Morrow's new "MemoryMaster" Bank Select Logic memories, the top of the SuperRam™ line.

The SuperRam™ MemoryMaster 16K Static may be the most sophisticated S-100 memory at any price. The MM16K is switch-programmable to write-protect any of the four 4K blocks ... or to open invisible 1K "windows" to accommodate VDM's or disk controllers. An on-board I/O device and jumper block allow you to use the memory-extending Bank Select Logic features of your software.

Yet, the SuperRam™ MemoryMaster 16K kit is just 2.1¢ a byte at $349. Assembled and tested, $399.

The SuperRam™ MemoryMaster is also available in 24K configuration: 3 individually write-protectable 8K blocks with Bank Select Logic capability. MM24K Kit, $499. Assembled and tested, $549.

Or, get your memory at a rock-bottom 1.8¢ a byte with the SuperRam™ 16K Static. It gives you 4 individual 4K blocks ... plus the ability to switch-enable the Phantom Line for power-up sequencing. Kit, $299. Assembled and tested, $349.

But if you really need a big helping of memory, the SuperRam™ 32K Static serves up two individual 16K blocks for 2¢ a byte: $649 in kit. Assembled and tested, $699.

Whichever Morrow memory suits your taste, it will run perfectly in 2 MHz 8080, 4 MHz Z-80 or 5 MHz 8085 systems. And meets the Proposed IEEE S-100 Standard.

2¢ a byte! That's food for thought. And they're ready to take out at your local computer shop. Or if not, we deliver. Write Thinker Toys™ 5221 Central Ave., Richmond CA 94804. Or call 415-524-2101 (10-4 Pacific Time any weekday).

Morrow Designs

Thinker Toys™
Listing 1: Modifications which were made to Peter Jennings' KIM-1 Microchess program to allow for the use of the electronic chessboard. Change the specified locations in memory with the KIM monitor.

Address (Hexadecimal) New Code (Hexadecimal) Comments
0000 A9 FF Set up Port A-DDR
000A 8D 01 17 Set up Port B-DDR
000D A9 21 Jump to interface program
000F 8D 03 17 Toggle, must be –1 or zero
002C 4C 00 20 Return from CLDSP
0033 60 02 04 Mask-TABLE (used to read row)
0039 08 10 to read row
01AC 60 01 00 Use. SQUARE for flag
03A7 B1 00 00 Don't record move
03E9 EA EA EA Show all FFs
03EC 4C 00 00 (Concede defeat)

Listing 2: The Microchess to chessboard interface routine, a sort of chessboard device handler program. This listing is the output of an assembly with both source and hexadecimal object code shown. It is written in a nonstandard assembly language of the author's own design, although most of the mnemonics are similar to the MOS Technology standard mnemonics.

Listing 1:

```
SET BIGG:ORG 2000:
2000   ! COMMENT *** KIM-1 MICROCHESS TO CHESSBOARD INTERFACE ***
2000   ! PROGRAM, WRITTEN BY JEFF TEECKS, 9/8/8
2000   !
2000   DEFINE  .BOARD=50,  ! ADDRESS OF PILL TABLE
2000   !   .BS=14F,  ! BOARD LESS UNE
2000   !   .DS=40,  ! ADDRESS OF USERS PIECES
2000   !   .SP2=82, ! MICROCHESS STACK POINTER
2000   !   .SQRE=81, ! TO SQUARE USED BY MOVE
2000   !   .CHNG=27, ! RETURNED BY GET-MOVE
2000   !   .PICE=28, ! PIECE PICKED UP AT CH-SQR
2000   !   .DISP=3900, ! L-LAN DISPLAY
2000   !   .CLSS=1800, ! SET UP NEW GAME
2000   !   .COUNT=29,  ! SEI WHEN COUNTING DOWN
2000   !   .DISP=7001, ! DISPLAY PIECE NAME IN FB
2000   !   .FLSH=1F1F, ! KIM MONITOR ROUTINE
2000   !   .KSR=2A,  ! USED WHEN UNMOVING CAPTURE
2000   !   .SITE=60,  ! KIM MONITOR ROUTINE
2000   !   .DRY=28,  ! USE BOARD TO BUILD 10 POINTS
2000   !   .PORT=0000, ! " "
2000   !   .PORT=0017, ! " "
2000   !   .PORT=0217, ! " "
2000   !   .RANDOM=0417, ! " "
2000   !   .REVER=2B02, ! " "
2000   !   .SPEAK=602E, ! " "
2000   !   .SHOUL=2F,  ! " "
2000   !   .SWIT=30,  ! " "
2000   !   .TCNG=31,  ! " "
2000   !   .TCRS=42,  ! " "
2000   !   .TEMP=3,  ! " "
2000   !   .TGOO=33,  ! " "
2000   !   .TUP=34,  ! " "
2000   !   .UP=35,  ! " "
2000   !   .*+12,  ! " "
2000   !   .*#12,  ! " "
```

Listing 2:

```
0000   !SET BIGG:ORG 2000;
2000   ! COMMENT *** KIM-1 MICROCHESS TO CHESSBOARD INTERFACE ***
2000   ! PROGRAM, WRITTEN BY JEFF TEECKS, 9/8/8
2000   !
2000   DEFINE  .BOARD=50,  ! ADDRESS OF PILL TABLE
2000   !   .BS=14F,  ! BOARD LESS UNE
2000   !   .DS=40,  ! ADDRESS OF USERS PIECES
2000   !   .SP2=82, ! MICROCHESS STACK POINTER
2000   !   .SQRE=81, ! TO SQUARE USED BY MOVE
2000   !   .CHNG=27, ! RETURNED BY GET-MOVE
2000   !   .PICE=28, ! PIECE PICKED UP AT CH-SQR
2000   !   .DISP=3900, ! L-LAN DISPLAY
2000   !   .CLSS=1800, ! SET UP NEW GAME
2000   !   .COUNT=29,  ! SEI WHEN COUNTING DOWN
2000   !   .DISP=7001, ! DISPLAY PIECE NAME IN FB
2000   !   .FLSH=1F1F, ! KIM MONITOR ROUTINE
2000   !   .KSR=2A,  ! USED WHEN UNMOVING CAPTURE
2000   !   .SITE=60,  ! KIM MONITOR ROUTINE
2000   !   .DRY=28,  ! USE BOARD TO BUILD 10 POINTS
2000   !   .PORT=0000, ! " "
2000   !   .PORT=0017, ! " "
2000   !   .PORT=0217, ! " "
2000   !   .RANDOM=0417, ! " "
2000   !   .REVER=2B02, ! " "
2000   !   .SPEAK=602E, ! " "
2000   !   .SHOUL=2F,  ! " "
2000   !   .SWIT=30,  ! " "
2000   !   .TCNG=31,  ! " "
2000   !   .TCRS=42,  ! " "
2000   !   .TEMP=3,  ! " "
2000   !   .TGOO=33,  ! " "
2000   !   .TUP=34,  ! " "
2000   !   .UP=35,  ! " "
2000   !   .*+12,  ! " "
2000   !   .*#12,  ! " "
```
000A 20 6B 21 JSR GET-MOVE ZWAIT FOR PLAYER 10 ZZIP-UP PICK PIECE.
000D F0 BEG
000E FB ENDLOOP
000F BF BMI PICK-11 UP ZINCREMENT, PIECE SET DOWN
0011 A5 27 LDA CHANGING-SQUARE ZIS PIECE PICKED UP ZDPC 11 UP?
0013 L5 FA CMP FA ZCON-RECT PIECE?
0015 00 F1 BNE PICK-11 UP ZYES, SET TABLE ENTRY ZISU "CC"
0017 A6 FB LDX FA ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
0019 A9 CC LDAM CC ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
001A 95 50 XSTAX BOARD ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
001B 06 8F STA SUIT-CH-FLAG ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
001C 02 1A 5 = VALUE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
001D 01 52 XXXIIIIII NO CHANGE IN BOARD ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
001E 04 06 85 30 STA SUM, SUIT-CH-FLAG ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
001F 05 42 ELSE
0020 20 21 JSR GET-MOVE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
0021 04 81 10 10 JSR GET-MOVE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
0022 06 00 JSR GET-MOVE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
0023 02 1A INC SPEAKER-FLAG ZMARK NOISE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
0024 05 42 ELSE
0025 20 A9 00 JSR GET-MOVE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
0026 06 00 JSR GET-MOVE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
0027 02 1A INC SPEAKER-FLAG ZMARK NOISE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
0028 05 42 ELSE
0029 20 82 02 JSR GET-MOVE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
002A 06 00 JSR GET-MOVE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
002B 02 1A INC SPEAKER-FLAG ZMARK NOISE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
002C 05 42 ELSE
002D 20 82 02 JSR GET-MOVE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
002E 06 00 JSR GET-MOVE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
002F 02 1A INC SPEAKER-FLAG ZMARK NOISE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
0030 05 42 ELSE
0031 20 82 02 JSR GET-MOVE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
0032 06 00 JSR GET-MOVE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
0033 02 1A INC SPEAKER-FLAG ZMARK NOISE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
0034 05 42 ELSE
0035 20 82 02 JSR GET-MOVE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
0036 06 00 JSR GET-MOVE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
0037 02 1A INC SPEAKER-FLAG ZMARK NOISE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
0038 05 42 ELSE
0039 20 82 02 JSR GET-MOVE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
003A 06 00 JSR GET-MOVE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
003B 02 1A INC SPEAKER-FLAG ZMARK NOISE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
003C 05 42 ELSE
003D 20 82 02 JSR GET-MOVE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
003E 06 00 JSR GET-MOVE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
003F 02 1A INC SPEAKER-FLAG ZMARK NOISE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
0040 05 42 ELSE
0041 20 82 02 JSR GET-MOVE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
0042 06 00 JSR GET-MOVE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
0043 02 1A INC SPEAKER-FLAG ZMARK NOISE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
0044 05 42 ELSE
0045 20 82 02 JSR GET-MOVE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
0046 06 00 JSR GET-MOVE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
0047 02 1A INC SPEAKER-FLAG ZMARK NOISE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
0048 05 42 ELSE
0049 20 82 02 JSR GET-MOVE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
004A 06 00 JSR GET-MOVE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
004B 02 1A INC SPEAKER-FLAG ZMARK NOISE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
004C 05 42 ELSE
004D 20 82 02 JSR GET-MOVE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
004E 06 00 JSR GET-MOVE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
004F 02 1A INC SPEAKER-FLAG ZMARK NOISE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
0050 05 42 ELSE
0051 20 82 02 JSR GET-MOVE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
0052 06 00 JSR GET-MOVE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
0053 02 1A INC SPEAKER-FLAG ZMARK NOISE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
0054 05 42 ELSE
0055 20 82 02 JSR GET-MOVE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
0056 06 00 JSR GET-MOVE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
0057 02 1A INC SPEAKER-FLAG ZMARK NOISE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
0058 05 42 ELSE
0059 20 82 02 JSR GET-MOVE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
005A 06 00 JSR GET-MOVE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
005B 02 1A INC SPEAKER-FLAG ZMARK NOISE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
005C 05 42 ELSE
005D 20 82 02 JSR GET-MOVE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
005E 06 00 JSR GET-MOVE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
005F 02 1A INC SPEAKER-FLAG ZMARK NOISE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
0060 05 42 ELSE
0061 20 82 02 JSR GET-MOVE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
0062 06 00 JSR GET-MOVE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
0063 02 1A INC SPEAKER-FLAG ZMARK NOISE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
0064 05 42 ELSE
0065 20 82 02 JSR GET-MOVE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
0066 06 00 JSR GET-MOVE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
0067 02 1A INC SPEAKER-FLAG ZMARK NOISE ZRESULTING/PICK PIECE ZYES, SET TABLE ENTRY ZISU "CC"
0068 05 42 ELSE
to light the correct LEDs and modify the board-status table as the user completes the computer's move. The speaker sounds briefly after each correct step is completed. If a wrong piece is moved or a piece is set down on a wrong square, the speaker will hum continuously to signal an error.

The logic for interpreting the user's move starts at location 2042. If COUNT-FLAG is 0, the user has not yet moved. Subroutine GET-MOVE is repeatedly called from location 204D in anticipation of the user's move.

If the accumulator is 0 upon return from GET-MOVE, then the board position remains unchanged and the user has not made a move. GETKEY is called to see if the user has depressed either the GO or E key. If the E key is depressed, the Microchess routine REVERSE is called to swap the user and computer entries of the board-status table. After the exchange is completed or if the GO key is depressed, a branch is made to START-COUNTING at hexadecimal address 214C.

Three provisions are made for a delayed return back to Microchess. COUNT-FLAG is made nonzero, a countdown is initiated by setting the display to 0F, and control is then transferred back to address 204D where GET-MOVE is repeatedly called as before.

After each return from GET-MOVE the display is decremented by 1 until it equals 0. This provides an approximate 10 second delay during which the user can make a new move or retrace an old one. At the end of the countdown, a branch is made to the Microchess routine GO which calculates the computer's next move.

If the GET-MOVE call at 204D returns a negative value then the user has set down a new piece, and control is transferred to address 2095. In an ordinary game of chess, putting a new piece on the board would be considered cheating. I have allowed it here to prevent 2 possible problems.

The first problem is caused by indecisive players who change their minds while in the middle of a move. Suppose such a player picks up 2 chessmen, as if to capture, and then decides to set both down again. When the first man is set down the program will think that the user has completed a capture, modify the board-status
MOVING DATA AT A SNAIL'S PACE
BECAUSE YOU'RE FLOPPY BOUND?

Let Corvus Systems put you back in the race!

- For TRS-80™, Apple† (including Apple Pascal), S-100 Bus—and now LSI-11.
- Fully compatible hardware/software.
- 10-million byte disk: IMI-7710.
- Proven Winchester technology.
- Z-80 based Corvus disk controller.
- Comprehensive disk diagnostics.
- Up to 4 disks per system.
- System $5350, add-on disk $2990.

Corvus offers a complete systems solution to the mass storage problem of micro computers. In a package smaller than a briefcase, we provide an intelligent controller, disk, and personality module. Call or write today for additional information. Get up to speed with Corvus.

NOW! CORVUS SPEAKS APPLE™ PASCAL™!

CORVUS SYSTEMS, Inc.

900 S. Winchester Boulevard
San Jose, California 95128
408/246-0461

†TRS-80 is a registered trademark of Radio Shack, a Tandy Co.
‡Apple is a registered trademark of APPLE Computers, Inc.
Listing 2 continued from page 46

2102 A5 27 | LDA CHANGING-SQUARE $FROM SQUARE =
2104 C5 FA | CMP FA $TO SQUARE?
2106 D0 03 | IF ZERO THEN
2108 4C 44 20 | JMP WAIT-FOR-MOVE IYES, NO MOVE MADE.
210B | ENDIF
210B A5 27 | STA .SQUARE $GO.
210D 20 48 03 | JSR MOVE $RECORD MOVE,
2110 4C 4C 21 | JMP START-COUNTING $AND COUNT DOWN.
2113 | ENS
2113 | XXX

- Eight software-selectable character sizes.
- 80 and 132 column formats.
- Full forms control.
- DotPlot™ graphics option.
- Connects directly to Apple II, TRS-80, and other personal computers.

Plus lots more. For a free brochure, print sample, or the name of the Paper Tiger dealer nearest you, write or call. Integral Data Systems, 14 Tech Circle, Natick, Massachusetts 01760.

Call toll-free 800-343-6412. In Massachusetts, Alaska, and Hawaii call (617) 237-7610.

Circle 176 on inquiry card.

Integral Data Systems, Inc.
player decides to set it down on the same square, the move is ignored.

If the GET-MOVE call at location 20FB reports that a second piece has been picked up, a capture is in progress and control branches to location 2113. FROM-SQUARE is defined as the square from which the chessman is picked up. Similarly, TO-SQUARE is associated with the chessman that is picked up second. GET-MOVE is again called at hexadecimal address 2129.

If a piece is set down on either the TO or FROM squares then the program assumes that a capture has been made. The Microchess routine MOVE is called to modify the board-status table, and a countdown is initiated.

If a piece is set down on a square other than the FROM or TO square, or if a third piece is picked up, a branch will be made to hexadecimal address 2159, and the speaker will hum to indicate an error.

Using the System
Playing the chessboard-interfaced version of Microchess is easy. Moves are made by physically picking up the pieces and setting them down on a new square, as in a normal game of chess with a human opponent. The only difference is that the opponent (the KIM-1) is unable to pick up a chessman, so you have to move the pieces to the location indicated by the LEDs.

The KIM display will be all Os and the LEDs will blink from square to square in a semirandom fashion when it is your turn to move. After you move, the KIM display will countdown from 0F, and the Y axis LEDs will blink sequentially from the top to the bottom of the board. During this countdown you have the option to change your move. When the display reaches 0, the machine will begin computing a response, and no moves can be made until it is your turn again.

Operating the System
The interfaced version of Microchess is started at address 0000, just as the unmodified Microchess. The speaker will probably hum. To start a new game, press the PC key. The speaker's sound will cease. Choose the White or Black pieces, and set up the board with your choice.
Solve your personal energy crisis.
Let VisiCalc™ Power do the work.

With a calculator, pencil and paper you can spend hours planning, projecting, writing, estimating, calculating, revising, erasing and recalculating as you work toward a decision.

Or with VisiCalc and your Apple II you can explore many more options with a fraction of the time and effort you've spent before.

VisiCalc is a new breed of problem-solving software. Unlike prepackaged software that forces you into a computerized straight jacket, VisiCalc adapts itself to any numerical problem you have. You enter numbers, alphabetic titles and formulas on your keyboard. VisiCalc organizes and displays this information on the screen. You don't have to spend your time programming.

Your energy is better spent using the results than getting them.

Say you're a business manager and want to project your annual sales. Using the calculator, pencil and paper method, you'd lay out 12 months across a sheet and fill in lines and columns of figures on products, outlets, salespeople, etc. You'd calculate by hand the subtotals and summary figures. Then you'd start revising, erasing and recalculating. With VisiCalc you simply fill in the same figures on an electronic "sheet of paper" and let the computer do the work.

Once your first projection is complete, you're ready to use VisiCalc's unique, powerful recalculation feature. It lets you ask "What if?", examining new options and planning for contingencies. "What if" sales drop 20 percent in March? Just type in the sales figure. VisiCalc instantly updates all other figures affected by March sales.

Or say you're an engineer working on a design problem and are wondering "What if that oscillation were damped by another 10 percent?" Or you're working on your family's expenses and wonder "What will happen to our entertainment budget if the heating bill goes up 15 percent this winter?" VisiCalc responds instantly to show you all the consequences of any change.

Once you see VisiCalc in action, you'll think of many more uses for its power. Ask your dealer for a demonstration and discover how VisiCalc can help you in your professional work and personal life.

You might find that VisiCalc alone is reason enough to own a personal computer.

VisiCalc is available now for Apple II computers, with versions for other personal computers coming soon. The Apple II version costs just $99.50 and requires a 32k disk system.

For the name and address of your nearest VisiCalc dealer, call (408) 745-7841 or write to Personal Software, Inc., Dept. B, 592 Weddell Dr., Sunnyvale, CA 94086. If your favorite dealer doesn't already carry Personal Software products, ask him to give us a call.
Listing 2 continued from page 50.

21E5 F1 | ENDLOOP
21E4 E8 3A | NOT IN-TABLE:
21E3 E2 20 | DEC 18F-CLEAR-SCREEN SQUARE NU IN BOX
21E2 E4 20 | ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
21E1 E4 20 | BUILD I/O PORTS
21E0 E4 20 | ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

21E6 A5 30 | SETUP-PORT-SQUARE:
21E5 F0 07 | LDA SWITCH-FLAG
21E4 A5 32 | Sides Exchanged
21E3 49 79 | LDX 17
21E2 4C 21 | "TCH-SQUARE"
21E1 4C 21 | JMP
21E0 4C 21 | ELSE

21F9 F3 21 | LDA TCHANGING-SQUARE
21F8 30 04 | ZIPS="TCH-SQUARE"
21F7 0A 0A | STA PORT-SQUARE
21F6 0A 0A | **************SET UP PORT-SQUARE*******************
21F5 A5 2C | LDA PORT-LIGHT
21F4 EE 02 17 | IF POSITIVE THEN
21F3 0A 29 | AXL ASL INERTIAL-X AXIS,
21F2 0A 29 | AXL ASL INERTIAL-Y AXIS.
21F1 0A 29 | ENDIF
21FA 29 70 | AND 70
21F9 EE 02 17 | INKEY PORT-B
21F8 0A 29 | DISABLE LEDS
21F7 0A 29 | ZSHOW 1 TOGGLE SPEAKER
21F6 0A 29 | STA TEMP
21F5 A9 01 | LDA PORT-A
21F4 0A 0F | AND PORT-A
21F3 0F 29 | STA PORT-A
21F2 0A 0F | XSTORE ALL BUT COLUMN
21F1 0A 0F | LDA PORT-SQUARE
21FA 29 40 | AND 40
21F9 4A 4A 4A | LSR LSR LSR
21F8 05 20 | ORA PORT-SQUARE
21F7 0A 0F | AND PORT-A
21F6 0A 0F | ORA PORT-A
21F5 0A 0F | ORA PORT-A
21F4 0A 0F | ORA PORT-A
21F3 0A 0F | ORA PORT-A
21F2 0A 0F | ORA PORT-A
21F1 0A 0F | ORA PORT-A
21F0 0A 0F | ORA PORT-A

of color placed closest to the bottom X axis LEDs. After the chessmen are in place, the display will show all Os. If you are playing White, make your opening move. If the computer is playing White, press the GO key.

To set up the pieces in a new configuration, or to continue a game that was halted earlier, set the chessboard up with the chessman in their desired position. Start the chess program as described above, but instead of pressing the PC key, press the DA key. Type in the name of each piece using the hexadecimal keyboard as you would when adding a new piece. Start the play by either making a move or by pressing the GO key.

To add a new piece to the board, set the piece on the desired square. The KIM-I display will show 8 bytes of information. The first byte will be a random piece designation (as described on page 3 of the Microchess player’s manual). The second byte is the number of the square...
MICROCHESS
The Industry's First
Gold Cassette
Over 50,000 Sold

MICROCHESS is the industry's best selling computer game. And no wonder—because MICROCHESS gives you more than just a chessplaying program. A convenient, foolproof set of commands and error checks...complete instructions in a 5½" by 8½" booklet...a cassette that's guaranteed to load, with disk versions coming soon...and several levels of difficulty to challenge you not just once, but time after time. It's available through well over three hundred computer stores and many mail order sources...always originating from Personal Software. What's more, every Personal Software product is selected to give you these same benefits of easy availability, reliable cassettes, readable documentation, a carefully thought out user interface, and most important, continuing challenge and enjoyment, not just once but time after time. If you haven't already, order your own gold cassette: MICROCHESS, by Peter Jennings, for 8K PETs, 16K APPLES, and 4K Level I and II TRS-80s $19.95

TIME TREK
A Tour De Force
In Real Time Action
Strategy Games

TIME TREK by Brad Templeton for 8K PETs and Joshua Lavinsky for 4K Level I and II TRS-80s adds a dramatic new dimension to the classic Star Trek type strategy game: REAL TIME ACTION! You'll need fast reflexes as well as sharp wits to win in this constantly changing game. Be prepared—the Klingons will fire at you as you move, and will move themselves at the same time, even from quadrant to quadrant—but with practice you can change course and speed, aim and fire in one smooth motion, as fast as you can press the keys. Steer under power around obstacles—evade enemy shots as they come towards you—lower your shields just long enough to fire your phasers, betting that you can get them back up in time! With nine levels of difficulty, this challenging game is easy to learn, yet takes most users months of play to master. ADD SOUND EFFECTS with a simple two-wire hookup to any audio amplifier; the TRS-80 also produces sound effects directly through the keyboard case, to accompany spectacular graphics explosions! You won't want to miss this memorable version of a favorite computer game $14.95

WHERE TO GET IT: Look for the Personal Software display rack at your local computer store. For the name and address of the dealer nearest you, call Personal Software at (408) 745-7841. If you don't have a dealer nearby, you can call or mail us your order with your check, money order or VISA/Master Charge card number. For a free catalog, ask your dealer or use the reader service card at the back of this magazine.

PERSONAL SOFTWARE INC.
592 WEDDELL DR • SUNNYVALE, CA 94086
Upon which the new piece was set down. Modify the first byte by typing in the correct name of the new piece. If the piece has been previously captured, it may be added to the piece table by typing the + key.

To change sides (Black to White, or vice versa), type the E key. A countdown will be initiated. Do not change sides before the opening move of the game; the King, Queen, and other pieces could become incorrectly reversed.

Conclusion

Although it may require a lot of solder, building the hardware is neither hard nor exacting work. As with most projects, if it doesn’t work the first time the problem can usually be traced to an incorrect program, faulty wiring, or bad integrated circuits. In this particular project, the program is already written, the wiring is easy to check, and there are only 2 integrated circuits.

The electronic chessboard can, of course, be used for activities other than chess. Almost any game that is played with an X,Y type grid can be played by the computer, among these: checkers, tic-tac-toe, and nim.

I have found that the chessboard interface makes playing chess with the KIM-1 much more enjoyable. Even if you lose the chess game, the method of playing is sure to be impressive.

Editor’s Note

The program described in this article was designed to be “foolproof” for the beginning chess player. The countdown period for changing a move will greatly ease the frustration often experienced by players of computer games, the sinking feeling of “Oh no, I didn’t mean that, and there’s no way to take back the move!” More programmers should pay such attention to the user interface of their systems.

More experienced chess players generally abide by the following rule: a piece once touched by the player must be moved, and an opponent’s piece once touched must be captured. Such users would probably wish to delete the countdown period to speed the progress of the game.

An electronic chessboard operating in a similar fashion appeared in the article “Chess 4.7 versus David Levy” by J R Douglas (December 1978 BYTE, page 84). That board, constructed by Dr David Cahlander of Control Data Corp, uses 1 light emitting diode (LED) in each square of the chessboard to indicate the computer’s move, and uses magnetic switches placed under the squares which are activated by the metal weights in the pieces. Controlled by a 6800 microprocessor, Cahlander’s board transmits and receives moves to and from a remote computer on which the Chess 4.7 program runs...
Precut Wire Wrap Wire

PRECUT WIRE SAVES TIME AND COSTS LESS THAN WIRE ON SPOOLS

Kynar precut wire. All lengths are overall, including 1” strip on each end. Colors and lengths cannot be mixed for quantity pricing. All sizes listed are in stock for immediate shipment. Other lengths available. Choose from colors: Red, Blue, Yellow, Orange, Black, White, Green and Violet. One inch tubes are available at 50¢ each. State second choice on colors when possible.

<table>
<thead>
<tr>
<th>Length</th>
<th>100</th>
<th>500</th>
<th>1,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5 inches</td>
<td>1.04</td>
<td>2.98</td>
<td>5.16</td>
</tr>
<tr>
<td>3</td>
<td>1.08</td>
<td>3.22</td>
<td>5.65</td>
</tr>
<tr>
<td>3.5</td>
<td>1.13</td>
<td>3.46</td>
<td>6.14</td>
</tr>
<tr>
<td>4</td>
<td>1.16</td>
<td>3.70</td>
<td>6.62</td>
</tr>
<tr>
<td>4.5</td>
<td>1.23</td>
<td>3.95</td>
<td>7.12</td>
</tr>
<tr>
<td>5</td>
<td>1.28</td>
<td>4.20</td>
<td>7.61</td>
</tr>
<tr>
<td>5.5</td>
<td>1.32</td>
<td>4.48</td>
<td>8.10</td>
</tr>
<tr>
<td>6</td>
<td>1.37</td>
<td>4.72</td>
<td>8.59</td>
</tr>
<tr>
<td>6.5 inches</td>
<td>1.50</td>
<td>5.37</td>
<td>9.84</td>
</tr>
<tr>
<td>7</td>
<td>1.66</td>
<td>5.63</td>
<td>10.37</td>
</tr>
<tr>
<td>7.5</td>
<td>1.73</td>
<td>5.89</td>
<td>10.91</td>
</tr>
<tr>
<td>8</td>
<td>1.78</td>
<td>6.15</td>
<td>11.44</td>
</tr>
<tr>
<td>8.5</td>
<td>1.82</td>
<td>6.41</td>
<td>11.97</td>
</tr>
<tr>
<td>9</td>
<td>1.87</td>
<td>6.76</td>
<td>12.51</td>
</tr>
<tr>
<td>9.5</td>
<td>1.92</td>
<td>6.93</td>
<td>13.04</td>
</tr>
<tr>
<td>10</td>
<td>1.99</td>
<td>7.26</td>
<td>13.57</td>
</tr>
</tbody>
</table>

Kit #1
Less than 2.7¢/ft. (#30)
$7.95

Kit #2
Less than 2¢/ft. (#30)
$19.95

Kit #3
Less than 1.7¢/ft. (#30)

Kit #4
Less than 1.6¢/ft. (#30)
$44.95

#30 Spools

ORDERING INFORMATION

- Orders under $25, add $2 handling
- Blue Label or First Class, add $1 (up to 3 lbs.)
- CC/De VISA & MC orders will be charged shipping
- Most orders shipped next day.

AVAILABLE AT SELECTED LOCAL DISTRIBUTORS

Circle 298 on inquiry card.
Now, you can instantly turn your microcomputer into an incomparable word processor.

Hundreds of delighted users have thrown away their pencils and are using the first truly professional and complete word processor ever available on a microcomputer, WORD-STAR.

Everything you've heard, read, wished, thought about – it's here! it's now! and it's Dynamite!!

Just look at the product overview copies from our 200 page manual (prepared and printed using WORD-STAR).

MicroPro Price List:

<table>
<thead>
<tr>
<th>Software/Manual</th>
<th>Software/Manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word-Star T.M.</td>
<td>Super-Sort I T.M.</td>
</tr>
<tr>
<td>$495/40</td>
<td>$250/25</td>
</tr>
<tr>
<td>Word-Master T.M.</td>
<td>Super-Sort II T.M.</td>
</tr>
<tr>
<td>$150/25</td>
<td>$200/25</td>
</tr>
<tr>
<td>Tex-Writer T.M.</td>
<td>Super-Sort III T.M.</td>
</tr>
<tr>
<td>$75/15</td>
<td>$150/25</td>
</tr>
</tbody>
</table>

For more information and the name of your nearest dealer, contact MicroPro International Corporation.
Dealer/Distributor/O.E.M. Inquiries Invited

MICROPRO INTERNATIONAL CORPORATION
1299 4th Street, San Rafael, California 94901
Telephone (415) 457-8990 Telex 340388
The most complete, integrated, word processing software system ever seen on a microcomputer.

MicroPro International Corporation
"Professional quality software you can count on, now"

1299 Fourth Street, San Rafael, California 94901 • Telephone (415) 457-8990 • Telex 340388
A Similarity Comparator for Strings

The trouble with computers is that they have no common sense. If a computer is directed to search a file looking for a particular string of characters, a simple typographical error will cause the computer to report that no match has been found; even though there was something very close in the file. The statement “If A$ = B$ THEN . . . “ is taken literally by the computer; even the slightest difference is not tolerated.

Wouldn’t it be better if a computer, finding no exact match, would report the best match, or the 5 best matches listed in order of closeness of match? To do this, a routine is needed that returns a quantitative estimate of the similarity between 2 strings. That is what the routine illustrated here does; it computes a similarity index on a scale of 0 thru 100 percent.

Listing 1 gives a BASIC string comparator program. The heart of the program is in lines 100 thru 290; lines 10 thru 90 are there only to allow the routine to be demonstrated with 2 manually input strings. The fundamental idea is simple: each character in one string is compared to each character in the other string. This is done so that groups of characters that match are weighted more heavily than the same number of matches of individual characters. This allows, for example, “POOL” and “POOR” to be rated more nearly equal than “POOL” and “POLO”, even though the latter 2 strings have more characters in common.

Listing 1: Listing of the similarity comparator program in Ohio Scientific Instruments 8 K BASIC (a Microsoft interpreter). The up arrow indicates exponentiation.
What makes the Microtek Printer so different? Nothing!

EXCEPT....

THE PRICE: $750 (with parallel interface)

THE PERFORMANCE:

- 80 or 120 columns (software selectable)
- Plain paper
- Pin Feed
- Double width printing
- 125 characters per second, 70 lines per minute nominal throughput
- 9x7 Matrix (80 columns/line), 7x7 Matrix (120 columns/line)
- Vertical Format Unit
- 96-character ASCII (upper and lower case)
- Forms width continuously adjustable between 4.5 inches and 9.5 inches (including sprocket margins)
- Parallel (Centronics type) interface standard.
- Serial (RS-232) and IEEE-488 interfaces available

To: MICROTEK, Inc., 7844 Convoy Court, San Diego, California 92111
(714) 278-0633

☐ Send me more information.
☐ Send me a printer with:
 ☐ Parallel interface $750 ☐ Serial interface $835 ☐ IEEE-488 interface $895
 ☐ Check or Money Order enclosed.

name (please print)
address

city state zip
phone

Add $15.00 for packaging & shipping
Dealer inquiries invited
California residents add 6% sales tax

Circle 209 on inquiry card.
The weighting of groups of characters is controlled by the variable \(P \) defined in line 20. If \(P \) is set to a value of 1, there is no special weighting of groups; only the total number of characters in common between the 2 strings is counted. If \(P \) is set greater than 1, groups are weighted more heavily, proportional to the value of \(P \). If \(P \) is too large, however, all but the very closest matches result in low similarity index. A value of \(P=3 \) is a good compromise.

Line 300 scales the index to within a range of approximately 0 thru 100 percent. Two strings with no common characters give 0 percent similarity, while 2 identical strings give 100 percent similarity. Sometimes 2 nonidentical, but very similar, strings with many repeated letters (eg: "AAAAA" versus "AAA") will give 100 percent similarity. This is seldom a problem with practical strings.

Strings of any type can be compared: names, addresses, numerals, or even strings containing spaces and punctuation. Long strings take a long time to compare, up to several seconds. An assembly language version should run much faster, if speed is important in your application.

The routine in listing 1 is written in Ohio Scientific Instruments 8 K BASIC, Version 1, and was run on a Challenger II system. The syntax of the string functions, particularly MID$, may be different in other BASICS. However, it should be compatible with most of the other BASIC interpreters which were developed by Microsoft. The program also runs without modification on an 8 K PET.

<table>
<thead>
<tr>
<th>Sample Run</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUN FIRST WORD? POOL</td>
<td>>100% because of double letter</td>
</tr>
<tr>
<td>SECOND WORD? POOL</td>
<td>3 letter pattern "POO" matches.</td>
</tr>
<tr>
<td>EXACT MATCH 103.1%</td>
<td>Still a 3 letter pattern.</td>
</tr>
<tr>
<td>? POOR 45.3%</td>
<td>Same match, because nonmatching</td>
</tr>
<tr>
<td>? COOL 45.3%</td>
<td>characters do not count.</td>
</tr>
<tr>
<td>? POO 45.3%</td>
<td>Two 2 letter matches, "PO" and</td>
</tr>
<tr>
<td>? POLO 28.1%</td>
<td>"OL", do not count as much</td>
</tr>
<tr>
<td>? LOOP 18.7%</td>
<td>as one 3 letter match.</td>
</tr>
<tr>
<td>? PAIL 12.5%</td>
<td>Only 2 isolated letters.</td>
</tr>
<tr>
<td>? POOL ROOM 10.4%</td>
<td>Presence of extra random</td>
</tr>
<tr>
<td>? MAIL ROOM 1.5%</td>
<td>character reduces match.</td>
</tr>
<tr>
<td>? POIQ 14.4%</td>
<td>Repeated letters result</td>
</tr>
<tr>
<td>? OOOO 40.6%</td>
<td>in unexpectedly high match.</td>
</tr>
<tr>
<td>? OK</td>
<td></td>
</tr>
<tr>
<td>RUN FIRST WORD? T.C. O’HAVER 710 HILLSBORO DR. SILVER SPRING MD.</td>
<td></td>
</tr>
<tr>
<td>SECOND WORD? TOM O’HAVER 710 HILLSBORO DR. SILVER SPRING MD.</td>
<td></td>
</tr>
<tr>
<td>82.9%</td>
<td></td>
</tr>
<tr>
<td>? R.D. O’HAVER 710 HILLSBOROUGH RD. SILVER SPRINGS FL.</td>
<td></td>
</tr>
<tr>
<td>10.3%</td>
<td></td>
</tr>
<tr>
<td>OK</td>
<td></td>
</tr>
</tbody>
</table>

Listing 2: A sample run of the program, with comments explaining the value of similarity assigned.

Note: We entered this program into an Apple II computer using the Applesoft floating point BASIC. It ran without modification. The exact values of similarity computed did sometimes differ from those given in the sample run, but only in the fourth significant digit and beyond . . . RSS

KIM ANALOG INPUT

Analog to Digital Conversion System for the KIM Computer

Circle 76 on inquiry card.
Why not kill two birds with one stone?

If you have an Apple* and you want to interface it with parallel and serial devices, we have a board for you that will do both. It's the AIO™

Serial Interface.
The RS-232 standard assures maximum compatibility with a variety of serial devices. For example, with the AIO you can connect your Apple* to a video terminal to get 80 characters per line instead of 40, a modem to use time-sharing services, or a printer for hard copy. The serial interface is software programmable, features three handshaking lines, and includes a rotary switch to select from 7 standard baud rates. On-board firmware provides a powerful driver routine so you won't need to write any software to utilize the interface.

Parallel Interface.
This interface can be used to connect your Apple* to a variety of parallel printers. The programmable I/O ports have enough lines to handle two printers simultaneously with handshaking control. The users manual includes a software listing for controlling parallel printers or, if you prefer, a parallel driver routine is available in firmware as an option. And printing is only one application for this general purpose parallel interface.

Two boards in one.
The AIO is the only board on the market that can interface the Apple to both serial and parallel devices. It can even do both at the same time. That's the kind of innovative design and solid value that's been going into SSM products since the beginning of personal computing. The price, including PROMs and cables, is $135 in kit form, or $175 assembled and tested. See the AIO at your local computer store or contact us for more information.

*Apple is a registered trademark of Apple Computer, Inc.
The purpose of this article is to acquaint the reader with some of the more interesting types of transistor-transistor logic (TTL) integrated circuits, the ease with which logic design can be accomplished, and to offer a few design considerations and troubleshooting hints to stimulate the homebrew use of digital logic.

Taking the topics in the above order, we start with a look at some of the more complex types of TTL chips in the “74xx” series. (We will ignore simple gates for the most part.) An example is the 7442. This integrated circuit is a binary coded decimal (sometimes called BCD) to decimal decoder. What this means is that the circuit will decode 1 line out of 10 based on a 4 bit binary code. Figure 1 shows the pin connections. Regardless of what it is called, it works like this: pins 12 thru 15 are a 4 bit binary input, pin 15 being the 1’s bit (bit 0), 14 the 2’s bit (bit 1), 13 the 4’s bit (bit 2), and 12 the 8’s bit (bit 3). Pins 1 thru 7 and 9 thru 11 comprise the output pins, each pin staying high (logic 1 or a higher level voltage of about 3 to 5 V) unless the corresponding binary code is applied to the input. For example, let’s say that pins 12 thru 15 are 0101. In other words, 12 is at a logical low (about 0 V); 13 is at a logical high level (above about 3 V, less than 5 V), etc. In this case, pin 6 (indicating a decimal 5) would be at a logical low level (about 0 V). All other pins relating to decimal output numbers would be at a logical high level. Note that only one output pin will be low at any given time, corresponding to the binary value of the input lines. “Ahh,” you might ask, “what if the input pins are at some binary value other than 0 thru 9?” The answer is easy; this constitutes an invalid input, and all output pins will stay high. Only valid decimal values will select an output pin.

Now let’s move on to a module similar to the 7442, the 74154. Referring to figure 2, the first apparent difference is the larger number of pins on the 74154. This integrated circuit is a 4 line to 16 line decoder. Its operation is the same as the 7442, with but two exceptions: there are now 16 valid output lines, and provision is made to allow

Figure 1: Pin connections for a 7442 TTL binary coded decimal to decimal converter.

Figure 2: Pin connections for a 74154 TTL 4 line to 16 line decoder.
two extra inputs to gate the individual line selected. Pins 18 and 19 perform this gating function. An example of use of this extra gating feature might look like this: pins 20 thru 23 might contain the binary equivalent of a decimal 14, pin 19 being low and pin 18 alternating from high to low (a periodic clock pulse.) The end result is that pin 16 (corresponding to line 14) will also periodically alternate high and low in following the signal on pin 18. The data at pin 18 is transferred to pin 14. If the binary code on pins 20 thru 23 were now changed to a decimal 7, then line 7 (pin 8) would follow the data on pin 18. We select one of 16 outputs for a signal applied to the gates. Now, if we could just have a binary controlled switch to select 1 of 16 inputs. Let's look at the 74150. Figure 3 shows the pinout of this one. This time there are 21 input pins and only 1 output pin.

Let's see how this one works. Binary input is on the 4 lines of pins 11 and 13 thru 15. Let's say a binary value of 12 is present. This selects the number 12 input line (pin 19) and transfers the level of this line, be it steady, high, low or some alternating clock signal, to pin 10, the output line. Notice, though, that in order for the data to be transferred, pin 9 (the strobe input) also must be low. A high level on the strobe input prevents any data transfer from any input. This feature is used to allow data transfer only at selected intervals, such as at right angles. Instant line-by-line probeability—and an easy way to tap your system and daisy chain it into new areas.

Both Intra-Connectors and Intra-Switches come in 20, 26, 34, 40 and 50-contact models.

AP PRODUCTS INCORPORATED
Box 110D • 72 Corwin Drive
Painesville, Ohio 44077
Tel. 216/354-2101
TWX: 810-425-2250

Faster and Easier is what we're all about.
Compact Compiler requires only 20K bytes. Our compact Version 3 Compiler requires only 20K bytes but supports a powerful subset of standard COBOL plus the CIS COBOL language extensions for conversational mode working, providing full CRT screen formatting with built-in cursor control and numeric field validation.

Other features include CIS COBOL Indexed Sequential and Interactive Debug packages, linkage to run time subroutines to CHAIN programs together, PEEK & POKE memory locations and GET & PUT to special peripherals.

Forms Generator speeds program development. Forms is a powerful utility which can be used with either the Standard or Compact COBOL Compiler. Forms generates record descriptions for Data Entry and Enquiry Programs. The operator creates and edits the required data entry form on the CRT by means of a question and answer session, and then automatically creates the required COBOL source text. This text is held on diskette as COPY files which the programmer can then simply COPY into his program in the normal COBOL way.

Standard Compiler conforms to ANSI 74 Specifications. And now our ANSI 74 standard Version 4 Compiler implements level 1 of Nucleus, Table Handling, Sequential I/O, Relative I/O, Indexed I/O, Library, Segmentation and Inte r Program Communication plus many level 2 features and the CIS COBOL language extensions employed in Version 3. This compiler runs in 30K bytes and is ideal for implementing or converting large systems using modular programming. Features include dynamic program loading and fast program development turnaround.

CIS COBOL products run on the 8080 or Z80 microprocessors under the CP/M operating system. They are distributed on a variety of diskette formats and have a CONFIG utility supplied as standard, which enables you to drive many different types of CRT. All are themselves written in CIS COBOL and are therefore readily transferred to different operating environments including new operating systems and new microprocessors, making CIS COBOL a very attractive proposition for OEMs.

*CIR/M is a trademark of Digital Research
when the input would contain valid data, or when the output is useful only at specific intervals.

Now that we have taken a look at a few of the more involved logic blocks, let's look at how easy it is to design the somewhat more complicated circuits using the simple TTL blocks in conjunction with one or more of the above type of logic blocks.

If we want to build a sequencing device to look at a number of incoming lines, and if we are to use a given clock signal to coordinate all this, we can use the logic circuit in figure 4. A very simple and straightforward circuit, right? Not quite. Let's take a second look. All the inputs but the one selected by the 74154 are going to be enabled at one time. The selected pin goes low, remember? By this time, if not before, you probably recalled the look we just took at the 74150 and are wondering why we did not use it. Figure 5 shows the circuit using the 74150. The foregoing just illustrates a good point (and one to keep in mind whenever you undertake any logic design). There

Figure 4: A data selector to sample each of 16 lines sequentially. It looks good, but it doesn't work. A neglected inversion in logic levels and thinking is the demon.

Figure 5: Another approach to the problem in figure 4. This approach has a much lower parts count, so it is much easier to wire and it works.
Get circuit requirements down on paper in block form.
- Break each block down into required logic.
- Use the most integrated block available for each function as in the example of figure 5 unless the cost of such a module is much higher than two or possibly three less intricate ones.
- Don't go overboard with smaller blocks. This increases the density and complexity of interconnection, greatly increases the chances of errors and reduces system reliability.
- Cross-check all designs, as you may have redundantly developed the same signal line. Sometimes most of one segment of a circuit can be eliminated with an inverter or small amount of additional gating.
- If possible, have a friend familiar with digital logic go over the layout. Your friend can sometimes suggest circuit reductions that you missed simply because you were thinking one way while your friend used a different approach. The same review may even spot an error in the logic. With all those inversions, gating, etc, it is easy to do. Spotting an error at this stage can save hours at the breadboard stage.

Table 1: Approach to finding the simplest logic circuit for a given function.

are many ways to accomplish a specific function. So many, in fact, that large companies who do digital logic design in large quantities invariably use some form of computer aided logic design. The homebrew enthusiast obviously can't go that far, but the approach summarized in table 1 usually works fairly well.

Timing

Another good point to keep in mind is to think time (not in terms of how long it takes to design a circuit, or build it, but time relationships in the circuitry itself). This brings us back to a term, clock, that we have been using freely up to now. We all know that a clock is merely a line, usually derived from a square wave oscillator, right? This line is then used to coordinate all necessary gating, shifting, setting and resetting, etc, that goes on within the circuitry itself, right? Well, that is part of it, but who said it had to be a single line? Some computers use a number of clock lines, perhaps as many as 8 or 10. The only thing these multiple clock lines have in common is that they are usually all derived from the same oscillator and may be individually gated on or off, counted, decoded or subjected to any other valid logic manipulation.

Figure 6 shows a typical clock circuit detailing some of these practices. As you can readily see, almost any combination of clock times can be selected, and the flip flops can be extended as far as needed to select a single clock pulse or a repetitive series of clock pulses. The point to remember is that all pulses are derived from the same clock and each pulse on any line will be of the same duration as any other clock pulse. The single clock pulse shown on line C of the timing chart in figure 6 will start at the same time as the fourth clock pulse.
There is one fly in the ointment at this point. I just noted that the two clock pulses would start at the exact same time. That is not quite true, however, and depending on how fast the clock is running, and exactly what is being gated, this may or may not be a problem.

In an actual circuit, the clock pulse on line A would go positive slightly ahead of the pulse on line C. This is due to the delay (called propagation delay) across each flip-flop encountered by the leading edge of the pulse. This delay is on the order of nanoseconds for each gate encountered. Let us assume an arbitrary 5 ns delay for each gate. Then the delay from the input of FF1 to the output of the AND gate driving line A would be 10 ns. This is 5 ns for FF1 and 5 ns for the AND gate. The delay from the input to FF1 to the output of the AND gate driving line C would be not 10 ns, but 20 ns: 5 ns for each of the three flip-flops and 5 ns for the AND gate. The pulse on line C would actually start 10 ns after the one of line A. This will also make a difference in the duration of the pulse on each line; as the pulse level arriving later than the clock pulse at the input to the AND gate determines when the output of the AND gate goes positive. However, the trailing edge of the clock pulse input determines when the AND gate output goes negative.

This, in effect, shortens the duration of the pulse on the output line by a time (in nanoseconds) determined by the various propagation delays. If the clock frequency of the circuit is on the order of tens or hundreds of kilohertz, then a delay of tens of nanoseconds would be of little consequence; but if the clock frequency of the circuit is something like 20 or 25 MHz, the delay can become a thorn in the side of the designer. This holds true for all data and control lines as well as clock lines.

This propagation delay can be used to an advantage too. Figure 7 illustrates using this delay to generate a narrow pulse. Here the positive going (leading) edge of the input is applied to an AND gate, but the negative going (trailing) edge of the inverted version is delayed by the total of the propagation delay across the three inverter blocks. The resultant output is a narrow pulse equal in duration to the delay across the inverters. This method of generating a pulse is only useful in cases where we don’t care exactly how long the pulse lasts since gates and inverters are subject to manufacturing variations.

To satisfy the rather picky individual or very high speed circuit, I have to say also that the output pulse is not only derived from the inverter delay, but is delayed from the leading edge of the original pulse by the amount of the delay across the AND gate itself. Figure 8 illustrates this. The short delays shown on waveform C are due to the AND gate propagation delay. For most situations, this is carrying propagation delay accounting to extremes, but in certain high speed circuits each delay may have to be accounted for. If 20 or 30 gates are involved, the cumulative effects add up rather fast.

Also to be considered is the capacitive effect of the interconnection lines: the distributed and stray capacitance which are in parallel with the output of each gate add slightly to delay times. It takes a finite amount of time to charge this capacitance at

Figure 7: A pulse generator for nanosecond range pulses. Pulse length is determined by the propagation time through the gates between the input and point B. More sophisticated methods are required if an accurate pulse length is required.
each gate turn on, and the gate will not switch until a certain voltage input level is reached. All of which leads right into the last subject I'd like to touch on. How do you see all this in an actual circuit? Believe me when I say that it takes a good oscilloscope. To have a good display in the tens of nanoseconds range, it takes an oscilloscope with a bandwidth of at least 60 to 100 MHz.

Does this mean that anyone without such an oscilloscope can't do much with higher speed TTL? Not necessarily. Remember we said that propagation delay only becomes a problem at high speeds and multiple gate delays. There are a number of ways around this. One is to keep clock frequencies and data changes as slow as possible. Don't use a fast clock or data encoding just for the sake of speed, run it as fast as necessary and no faster. If you can tolerate a slow clock speed, use it. Another method is to try and bring each data line that is to be gated with another line through the same number of gates as the line it is to be gated with. In other words, if one line originates at about the same source as another that it is to be gated with, but passes through 9 levels of gating, and the other line passes through 3, the delays at high speeds can be a problem. This could be compensated for by changing the way the lines are gated to bring the delays in each line closer to the

special:

$100.00 of Commodore programs FREE if PET is purchased from ComputerLand by October 31, 1979.

ComputerLand means great value. We know you're looking for something special. We know this is it. PET computer from $795.00 at participating ComputerLand stores.
same length. Another help in extreme cases is to run the line with the lesser number of gates through several pairs of inverters. This introduces a delay to compensate for the delay in the other line. In other words, make the faster line wait for the slower one. An even better solution is to design your circuits "synchronously" so that only one clock source ever changes the state of a flip flop or memory cell.

As to seeing these problems on the slower oscilloscopes, there are several hints that will help. Very little serious work with timing relationships can be undertaken without a dual trace capability (although a good deal can be done otherwise with TTL with just a single trace scope). Even with a dual trace oscilloscope, the fastest sweep speed may not reveal a lot of timing detail if not set up correctly and the alternate sweeps may not be time correlated without a common synchronization signal. A number of tests can be made with a single trace oscilloscope if it has provisions for external synchronization.

In general, synchronize the oscilloscope sweep as far ahead in time as is realistic for the signals in question, in order to allow time for the sweep to start before the pulse actually arrives. It goes without saying that the synchronization signal must be common to all signals being examined.

If you still can't see any difference, try estimating the approximate delay for each line from source to common logic block. Most logic handbooks list typical delays for integrated circuits. If the problem is in a counter circuit of some type which counts "up," the count for a given sequence will usually be too high in value if delay problems are the cause. Rarely will the count of an "up" counter be too low, as the usual situation is advancing the counter by an extra pulse generated by mismatched delays, especially if a lot of exclusive ORing is being done. The situation where early turn off or disabling of the counter causes a missed count is quite unlikely, mainly because the delay is of a much shorter duration than the pulses being counted.

These problems are all good to be aware of, but don't let them deter you from starting that project you were thinking about. You may go a long time before you see one of the problems described. Don't let the lack of a superb oscilloscope deter you either. A lot of very intricate and fast digital circuitry is being built every day with nothing more than a single trace 1 MHz AC coupled oscilloscope. With a little experience, you can tell a great deal about a given TTL circuit with one of these inexpensive oscilloscopes.

When no one has your floppy disks in stock...

Here's a new four letter word to use:

The word is Kybe. Because Kybe can ship any model floppy disk, data cassette or mag card in only two days.

You'll get the same high performance products sold by 3M, BASF, Memorex and other brand name suppliers. The same products we've built for OEM's for years. The full line is competitively priced, backed by an unconditional 90 day warranty and inventoried for fast delivery.

Dealer inquiries invited.

(800) 225-8715

KYBE CORPORATION
132 Canyway Street, Waltham, Mass 02154
Tel. (617) 899-0012, Telex 94-0175

Offices & representatives worldwide

Circle 203 on inquiry card.
A Low-Speed Analog-to-Digital Converter for the Apple II

Richard C. Hallgren
Assistant Professor
Michigan State University
College of Osteopathic Medicine,
Dept of Biomechanics
East Lansing MI 48824

The development of microprocessor-based computer systems has progressed to the point where it is now practical to utilize these systems in a scientific or laboratory application. To be useful in a scientific application the computer must have the capability of converting analog signals to digital signals. Very few home computers have this capability. Certainly it is a straightforward task to design an analog-to-digital converter (ADC), but the real problem lies in connecting the converter to the computer.

The Apple II computer, with 8 peripheral-board connectors on the mother board, makes the job of designing and implementing special interfaces (such as the ADC) relatively easy. The peripheral-board connectors give the hardware designer access to all address, data, and control lines. In addition all control, address, and data lines have been buffered, and certain address bits have been decoded to give a device select (DS) signal. What this means is that when a specific range of address locations is accessed, the DS line will give a low output signal. Since the peripheral-board connectors are on the main computer board, the finished interface board will be inside the computer and will be able to use the computer's power supply. Because of these characteristics, turning the Apple II into a real-time data analyzer becomes a matter of designing an analog-to-digital converter circuit, and control logic to meet the need of the application.

Many of the applications that I had in mind were to be of a low-speed nature (e.g., monitoring the temperature of experimental animals in medical physiology laboratories, analyzing the results of electrophoretic analysis). Therefore, a low-speed analog-to-digital converter built around the Motorola MC14433 integrated circuit seemed to be a cost effective approach. I was inspired by Steve Ciarcia's article, "On a Test Equipment Diet? Try an 8 Channel DVM Cocktail!" (December 1977 BYTE, page 76).

The left section of figure 1 shows the analog-to-digital converter circuitry. All data and status lines to the computer are isolated through the MC14503 3-state buffers (IC7 and IC8). The MC14433 (IC5) is allowed to convert continuously at a rate of approximately 15 conversions per second. This means that if the data transfer to memory starts immediately after the conversion ends, the Apple II can easily decode and store the data from one conversion before another conversion occurs. IC4, configured as an RS flip-flop that is initially reset by the computer, is set by the MC14433 after an analog-to-digital conversion has been completed. When the computer senses this change in status, it starts the decoding and data transfer process. IC6 is an AD 580 used to provide a stable reference voltage to the MC14433.

The right section of figure 1 shows the control logic that is necessary to coordinate the transfer of data to the computer, and control signals from the computer. The circuit is designed so that the peripheral card resides in I/O (input/output) slot 7 on the Apple II mother board. The device select signal will go low whenever hexadecimal memory locations C0F0 thru C0FF are addressed. The least

About the Author
Richard Hallgren is an Assistant Professor in the Dept of Biomechanics at Michigan State University. He is working on the application of microprocessor-based systems in scientific research.

Table 1: Voltages which must be supplied to integrated circuits in figure 1 for operating power.

<table>
<thead>
<tr>
<th>Number</th>
<th>Type</th>
<th>+5 V</th>
<th>GND</th>
<th>-5 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC1</td>
<td>MC14028</td>
<td>16</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>IC2</td>
<td>MC14049</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>IC3</td>
<td>SN74127</td>
<td>14</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>IC4</td>
<td>MC14013</td>
<td>14</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>IC5</td>
<td>MC14433</td>
<td>24</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>IC6</td>
<td>AD580</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC7</td>
<td>MC14503</td>
<td>16</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>IC8</td>
<td>MC14503</td>
<td>16</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>IC9</td>
<td>DM7432</td>
<td>14</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: Schematic diagram of analog-to-digital-conversion circuit and associated control-logic circuitry. The analog-to-digital (A/D) converter is shown on the left side, the control logic on the right side.
ANALOG-TO-DIGITAL CONVERSION CIRCUIT

IC6 AD580

IC5 MC14433

IC4 1/2 MC14013

IC3 SN7427

IC2 MC14049

IC1 MC14028

DS1 DS2 DS3 DS4 Q3 Q2 Q1 Q0 CLKO CLK1

IC8 MC14503

DATA TRANSFER
CONTROL LOGIC

DATA STATUS

IC9 DM7432

September 1979 - BYTE Publications Inc
Figure 2: Flowchart of the machine language subroutine which takes samples from the analog-to-digital converter. This code is written for the 6502 processor used in the Apple II.
To get the most from a computer system, you need a permanent written record—information that you can use for reports, correspondence, or just about anything.

For that, Centronics printers deliver the word.

Who is Centronics, anyway?
Centronics has long been the world leader in providing printers to the computer industry. For small, economical computer systems—like the ones at your local retail computer store—we manufacture more printers than anyone. That's quite a track record.

What does that mean to me?
If you own—or plan to purchase—a small business or home computer system, you can have the best printer available anywhere: Centronics. We offer the widest selection of speeds, sizes, applications, and prices. All interface with most mini and micro computer systems. Every model features the same performance, reliability, and attention to detail that have made Centronics #1. And every one is backed by Centronics’ comprehensive warranty and service program.

Where can I find Centronics Printers?
At any of the hundreds of Centronics dealers coast-to-coast. It's worth the visit: your Centronics dealer is an expert who can explain the differences in printers and help make sure that the one you choose has the right features for your system and the way you use it. Plus, many of our dealers are also Authorized Centronics Service Distributors which is helpful when you need routine maintenance and a godsend if you have a problem.

That's why Centronics Printers deliver the word.

Circle 46 on inquiry card.
Address Instruction Op Code Operand Comments

4000 AD B0 49 LDA $49B0
4003 8E B1 49 STX $49B1 Save registers
4006 4C B2 49 STY $49B2
4009 08 PHP
400A A2 00 LDX $00
400C A9 00 LDA $00
400E 85 0A STA $0A Starting location of data storage
4010 A9 4A LDA $4A
4012 85 0B STA $0B
4014 A9 00 LDA $00
4016 8D A0 49 STA $49A0 Final location of data storage
4019 A9 4E LDA $4E
401B 8D A1 49 STA $49A1
401E 78 SEI Disable interrupt
401F AD A1 49 LDA $49A1
4022 C0 0B CMP $0B Input data
4024 DD 0B BNE $4031 Have all data locations been filled?
4026 AD BC 49 LDA $49B0
4029 AE B1 49 LDX $49B1
402C AC B2 49 LDY $49B2
402F 28 PLP
4030 60 RTS Enable Interrupt
4031 58 CLI
4032 EA NOP
4033 4C 1E 40 JMP $401E
4036 EA NOP
4037 EA NOP
4038 EA NOP
4039 EA NOP
403A EA NOP
403B EA NOP
403C EA NOP
403D EA NOP
403E EA NOP
403F EA NOP
4040 8D F2 C0 STA $C0F2 Start A/D conversion
4043 AD F1 C0 LDA $C0F1
4046 29 80 AND $80
4048 C9 80 CMP $80
404A D0 F7 BNE $4043 A/D conversion finished? Input data
404C AD F0 C0 LDA $C0F0
404F 8D A2 49 STA $49A2 Temporary data storage
4052 29 80 AND $80
4054 C9 80 CMP $80 Check for first digit (MSD)
4056 DD F4 BNE $404C
4058 AD A2 49 LDA $49A2
405B 29 0F AND $50F Peel off digit code leaving data
405D 81 0A STA ($0A,X) Store data
405F A4 0A LDY $0A Increment lower 8 bits of data storage
4061 C8 INY Increment upper 8 bits of data storage
4064 D0 05 BNE $406B Carry out to upper 8 bits?
4066 A4 0B LDY $0B
4068 C8 INY
4069 84 0B STY $0B
406B AD F6 C0 LDA $C0F6 Input data
406E 8D A2 49 STA $49A2
4071 29 40 AND $40
4073 C9 40 CMP $40 Check for second digit
4075 DD F4 BNE $404B
4077 AD A2 49 LDA $49A2
407A 29 0F AND $50F Peel off digit code leaving data
407C 81 0A STA ($0A,X) Store data
407E A4 0A LDY $0A Increment lower 8 bits of data storage
4080 C8 INY
4081 C8 0A STY $0A
4083 D0 05 BNE $408A Carry out to upper 8 bits?
4085 A4 0B LDY $0B Increment upper 8 bits of data storage
4087 C8 INY
4088 84 0B STY $0B
408A AD F0 C0 LDA $C0F0 Input data
408D 8D A2 49 STA $49A2
4090 29 20 AND $520
4092 C9 20 CMP $520 Check for third digit
4094 DD F4 BNE $408A
4096 AD A2 49 LDA $49A2
4098 29 0F AND $50F Peel off digit code leaving data
409B 81 0A STA ($0A,X) Store data
409D A4 0A LDY $0A Increment lower 8 bits of data storage
409F C8 INY
40A0 84 0A STY $0A

Listing 1: The machine language subroutine for collecting data from the analog-to-digital converter, here shown in assembly language format. Memory locations 03FE and 03FF contain the hexadecimal interrupt jump vector 4040, which is the entry point of this routine.

Text continued from page 70:
significant 4 bits of the address are decoded by IC1 and are used for on board addressing. Performing a store accumulator (STA) operation to location C0F2 causes the SC (start conversion) line to go high and resets the flip-flop IC4. Performing a LDA (load accumulator) from hexadecimal location C0F1 transfers the end of conversion (EOC) and overrange (OR) status data into the computer. Performing a LDA from location C0F0 transfers the digit-select code and the binary coded decimal (BCD) value of the particular digit selected into the computer.

The software portion of the analog-to-digital converter project is divided into 2 parts:

- A machine language routine to provide high-speed transfer of data from the MC14433 to the computer memory.
- A BASIC routine written in Applesoft floating-point BASIC to take the data in memory and format it into a voltage that can be displayed as a function of time with the high-resolution graphics routine.

Since the Apple II does not have an internal real-time clock, I decided to use the interrupt request line (IRQ) as an input for an external clock. The advantage to this is that a calibrated pulse generator can be used to determine the sampling rate. If desired, the computer can perform other tasks between samples. Knowing when each sample was taken makes it possible to display the data as a function of time with the high-resolution graphics routine. Since the Apple II high-resolution graphics allows the display of 256 points I decided to store 256 points in memory before displaying the data, but there is no reason why the data could not be displayed as it is taken. Figure 2 shows the flowchart of the machine language program, and listing 1
6809!
S-100 Compatibility. 6809 Computability.

- 6809
 - 16 bit internal arithmetic
 - Hardware multiplication
 - Two stack pointers
 - Two index registers
 - 18 addressing modes
 - Fully relocatable code
 - Five interrupts
 - Up to three times the throughput of a 4MHz Z-80

- 1K RAM
- 10K PROM space
- MONBUG II monitor included
- 2400 baud cassette interface
- 20 I/O lines
- RS-232 level shifters
- Real time clock
- DMA
- Parallel keyboard input
- Memory-mapped video output
- Fully S-100 compatible (including 8080 type I/O)
- A complete system, ready to use.

MD-690a Single Board Computer
$239 kit $299 assembled

6802 Processor also available
Ask about 6802, 6809 and Z80 systems.

Please rush the following:

☐ CPU Card (kit)
☐ CPU Card (assembled)

Name ____________________________
Address __________________________
Company __________________________
City __________________________
State/Zip __________________________

CA residents add 6%.
Visa and Mastercharge accepted.

MicroDaSys
P.O. Box 36051
Los Angeles, CA 90036
(213) 935-4555

Circle 221 on inquiry card.
Listing 2: Program in Applesoft floating point BASIC which calls the machine language routine of listing 1 and then formats and displays the data received, using the high-resolution graphics capability of the Apple II.

<table>
<thead>
<tr>
<th>Program</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 DIM Z (300)</td>
<td>Machine language routine</td>
</tr>
<tr>
<td>101 HOME</td>
<td>Starting address of data</td>
</tr>
<tr>
<td>102 GOTO 1000</td>
<td>Get first digit (MSD)</td>
</tr>
<tr>
<td>110 CALL 16384</td>
<td>Get second digit</td>
</tr>
<tr>
<td>111 HOME: VTAB 24</td>
<td>Get third digit</td>
</tr>
<tr>
<td>112 PRINT "THE DIGITIZED DATA IS BEING FORMATTED FOR PLOT ING"</td>
<td>Get fourth digit (LSD)</td>
</tr>
<tr>
<td>113 X = 16944</td>
<td>Decode MSD</td>
</tr>
<tr>
<td>115 FOR J = 0 TO 255</td>
<td>Convert digits into voltage XXX.X</td>
</tr>
<tr>
<td>120 V1 = PEEK (X)</td>
<td>High-resolution graphics</td>
</tr>
<tr>
<td>122 V2 = PEEK (X + 1)</td>
<td>Plot X, Y axis</td>
</tr>
<tr>
<td>124 V3 = PEEK (X + 2)</td>
<td>Plot voltage samples</td>
</tr>
<tr>
<td>126 V4 = PEEK (X + 3)</td>
<td>Plot new data</td>
</tr>
<tr>
<td>128 X = X + 4</td>
<td>Plot V, H axis</td>
</tr>
<tr>
<td>130 IF V1 > 7 THEN V1 = 0</td>
<td>Plot X-Y axis</td>
</tr>
<tr>
<td>132 IF V1 = 0 THEN GOTO 140</td>
<td>Plot new data</td>
</tr>
<tr>
<td>134 V1 = 1</td>
<td>Plot new data</td>
</tr>
<tr>
<td>140 V$ = STR$(V1) + STR$(V2) + STR$(V3) + STR$(V4)</td>
<td>Plot new data</td>
</tr>
<tr>
<td>150 Z(J) = VAL(V$)/1000</td>
<td>Plot new data</td>
</tr>
<tr>
<td>156 NEXT J</td>
<td>Plot new data</td>
</tr>
<tr>
<td>200 HGR: HCOLOR = 3</td>
<td>Plot new data</td>
</tr>
<tr>
<td>202 HPLT 20,0 TO 20,150</td>
<td>Plot new data</td>
</tr>
<tr>
<td>204 HPLT 279,150</td>
<td>Plot new data</td>
</tr>
<tr>
<td>206 HPLT 18,0 TO 22,0</td>
<td>Plot new data</td>
</tr>
<tr>
<td>210 HPLT 18,10 TO 22,10</td>
<td>Plot new data</td>
</tr>
<tr>
<td>212 HPLT 18,20 TO 22,20</td>
<td>Plot new data</td>
</tr>
<tr>
<td>214 HPLT 18,30 TO 22,30</td>
<td>Plot new data</td>
</tr>
<tr>
<td>216 HPLT 18,40 TO 22,40</td>
<td>Plot new data</td>
</tr>
<tr>
<td>218 HPLT 18,50 TO 22,50</td>
<td>Plot new data</td>
</tr>
<tr>
<td>220 HPLT 18,60 TO 22,60</td>
<td>Plot new data</td>
</tr>
<tr>
<td>222 HPLT 18,70 TO 22,70</td>
<td>Plot new data</td>
</tr>
<tr>
<td>224 HPLT 18,80 TO 22,80</td>
<td>Plot new data</td>
</tr>
<tr>
<td>226 HPLT 18,90 TO 22,90</td>
<td>Plot new data</td>
</tr>
<tr>
<td>228 HPLT 18,100 TO 22,100</td>
<td>Plot new data</td>
</tr>
<tr>
<td>230 HPLT 18,110 TO 22,110</td>
<td>Plot new data</td>
</tr>
<tr>
<td>232 HPLT 18,120 TO 22,120</td>
<td>Plot new data</td>
</tr>
<tr>
<td>234 HPLT 18,130 TO 22,130</td>
<td>Plot new data</td>
</tr>
<tr>
<td>236 HPLT 18,140 TO 22,140</td>
<td>Plot new data</td>
</tr>
<tr>
<td>238 HPLT 18,150 TO 22,150</td>
<td>Plot new data</td>
</tr>
<tr>
<td>240 HPLT 4,47 TO 4,53</td>
<td>Plot new data</td>
</tr>
<tr>
<td>242 HPLT 7,53</td>
<td>Plot new data</td>
</tr>
<tr>
<td>244 HPLT 10,47 TO 10,53</td>
<td>Plot new data</td>
</tr>
<tr>
<td>246 HPLT TO 14,53</td>
<td>Plot new data</td>
</tr>
<tr>
<td>248 HPLT TO 14,47</td>
<td>Plot new data</td>
</tr>
<tr>
<td>250 HPLT TO 10,47</td>
<td>Plot new data</td>
</tr>
<tr>
<td>252 HPLT 7,103</td>
<td>Plot new data</td>
</tr>
<tr>
<td>254 HPLT 14,97 TO 10,97</td>
<td>Plot new data</td>
</tr>
</tbody>
</table>

Figure 3: Flowchart of the BASIC program which calls the machine language subroutine, formats the data obtained from the analog-to-digital converter, and displays it using high-resolution graphics.

shows the coded program with comments.

Upon entering the subroutine, all of the necessary registers are saved to enable a successful return from subroutine. The first thing that happens is that the end of conversion flip-flop is reset and the program loops until the MCI4433 completes the next conversion and sets the flip-flop. The program then samples the data lines and decides whether or not the data represents the most significant piece of data. If it does not, the program continues to sample the data lines until the most significant piece of data has been obtained. This datum is then stored in memory, the memory storage locations are in-

Listing 2 continued on page 78
Announcement 1. The first eight Personal Programs® from Aladdin Automation are waiting for you now at your neighborhood computer retailer or direct from Aladdin. How you can get your full share of Aladdin magic in every one of these Personal Programs®.

Math-Ter-Mind A delightful, educational learning experience for your preschool child. Watch a smile on your child's face as a correct answer makes the mathematician smile on the screen before you. A nursery song also serves as a reward for learning elementary addition and subtraction. With Aladdin's Math-Ter-Mind® your child's pathway to learning will be un-filled...for both of you. Math-Ter-Mind®, the first release from the Aladdin Education Series (nursery song currently available only in Apple II® program)

Lunar Lander In a controlled descent, you're just seconds away from your first landing on the cold, forbidding surface of the moon. As you navigate your delicate spacecraft downward to the safety of Moonbase, you must be ever watchful of the dangers rising to meet you with each passing moment. A fuel level fast approaching zero: deadly meteor showers that come from any direction, at any time; sheer rock cliffs and rough terrain; choosing the correct landing pattern and rate of descent. Aladdin's Lunar Lander. Your chance to reach the moon and touch the stars...without leaving the safety and comfort of your own chair. The first release from the Aladdin Simulation® Series.

Craps All eyes in the casino are on you. The dice are in your hands. Lady luck sits at your shoulder, whispering, "Just one more time. Try your luck just one more time. You throw...and watch the dice tumbling on the screen. With Aladdin's Craps you play against the computer, so it's awfully tough to win. But when you do, it's an experience you're likely never to forget. Craps: An exciting, heart-pounding Personal Program®. The first release from the Aladdin Las Vegas® Series.

Mastermind A challenging game of intriguing, centuries old, that will give you full chance to test your powers of logic, deduction and reason. And test them you will, as you try and solve the computer's puzzle, using clues as they're provided one-by-one. You control the degree of difficulty in this classic Personal Program® that offers one simple, yet all-consuming challenge: beat the Mastermind in a direct, one-on-one battle of wits. Aladdin's Mastermind. The first release from the Aladdin Old Favorites Series.

Tic-Tac-Toe Five different levels of difficulty allow a person of any age or skill to take part in this relaxing, enjoyable game that can act as a learning tool, as well. Level 1, for example, is suitable for children and is excellent also for teaching simple mathematics. The computer plays just about perfectly at Level 1. Just about, that is, so go ahead and take your best shot. See if you can beat the computer in this traditional favorite of young and old alike. Tic-Tac-Toe. Another first release from the Aladdin Old Favorites Series.

Super Pro Football Here's your chance to be more than just an armchair quarterback. With Aladdin's Super Pro Football® you can replay any Super Bowl game, from the first, between Green Bay and Oakland, to last year's classic victory by Pittsburgh over Dallas. For once you can turn back the clock and go for that one big play that made the difference between victory and defeat in pro football's biggest game of all. Super Pro Football®. The first exciting release from the Aladdin Super Pro Series.

Visit your neighborhood computer retailer or contact Aladdin direct to get your full share of the magic in Announcement 1, the first eight Personal Programs® from Aladdin Automation.
cremented, and the program begins to look for the 2nd piece of data. After the 4 digits representing the digitized voltage have been stored, the program checks to see if 256 samples have been stored. If they have not, control returns to the beginning of the subroutine. When all 256 samples have been stored, the program returns to the BASIC routine which called it.

The BASIC routine has the task of assembling the 4 digits from each conversion into a single number which is equal to the measured voltage. A flowchart is shown in figure 3. The machine language assembly routine has previously taken each of the 4 digits from a single conversion and has stored them in individual memory locations. The BASIC routine uses the string manipulation capabilities of Applesoft BASIC to fetch each digit from its memory location and to assemble all 4 digits into a single 4-digit voltage. After all 256 conversions have been changed into voltages and stored in a matrix array, the high-resolution graphics routine is called and the voltages are plotted as a function of time. It is convenient to have the voltages stored in a matrix array so that if further analysis of the data is required it can be easily retrieved. Listing 2 shows the coded BASIC program with comments.

To demonstrate the ability of a system to digitize and display low-frequency signals, a waveform generator was connected to the analog-to-digital converter. Photo 1 shows a 0.05 Hz sine wave which was digitized at 10 samples per second. Photo 2 shows a 0.05 Hz triangular wave which was digitized at 10 samples per second. Photo 3 shows a 0.001 Hz sine wave which was digitized at 1 sample per minute. The results are even more impressive when you consider that this is a data-acquisition system costing less than $2,000.

At present, a high-speed analog-to-digital converter is being constructed to digitize and analyze the electromyographic voltages which come from muscles. This will allow an investigator to gather data for further analysis of the complex neural-impulse waveform resulting from stretching a muscle. I anticipate that once researchers become aware of the data acquisition, data analysis, and system control that are possible with these low-cost systems, there will be a drastic increase in their use.
DIABLO PROVES LOOKS ARE EVERYTHING.

With Diablo's printers and terminals, you can always be sure that beauty will be in the eyes of the beholder. Because no one knows more about print wheel technology than the company that invented it in the first place.

Diablo's metal and plastic wheel printers have established industry standards for crisp, clear characters, proportional spacing, and uniform density.

So, when you're ready to choose a printer for your own computer, pick the one that produces "picture perfect" originals every time.

If you really want to look good, remember this. With Diablo, you'll always look your best.

Diablo Systems

Diablo® is a registered trademark of XEROX CORPORATION.
MULTI-TASKING!

The TEMPOS Operating System is quickly becoming the standard in Multi-User, Multi-Tasking operating systems for 8080 and 280 microcomputers. Multi-Tasking means that, even with only one user at one terminal, more than one job can be running on the system simultaneously. If you have ever had to go get a cup of coffee while you wait for your computer to print listings, you know the advantages of a system that will handle one job while you are working on another. TEMPOS is a true time sharing system, and the maximum number of jobs is limited only by your memory.

MULTI-USER!

Want to share your computer with another user? With TEMPOS all it takes is another terminal... up to seven interactive terminals are allowed! And with Re-Entrant programs, each user does not need a complete copy in memory. We include three Re Entrant programs (the OPUS/THREE High Level Language, the TEXTED Text Editor, and FILES, a disc file assembler, a linking loader, over a half-dozen other utility programs and over 60 system subroutines, callable by the programmer!

PROVEN!

With TEMPOS, you get a package that has been tested in our facilities for over two years, and in the field at over 50 different installations. We have used this system ourselves for everything from writing high-level languages to developing applications to text editing to games. TEMPOS is undoubtedly the most flexible software tool on the market... and you can have it for much less than you think!

COMPATIBLE!

TEMPOS is available for many different systems; pre-written drivers may include yours. Or, using our interactive System Generation Routine, you can add your own. Call or write now for our free catalog and the name of a dealer near you. The TEMPOS Operating System is available for $787.00, the manual set (price may be credited toward the purchase of the TEMPOS package) for $21.50 (prices include shipping within the U.S.).

EXPAND YOUR COMPUTER'S POTENTIAL WITH NEW TIMESHARING SERVICE

CompuServe, a Columbus Ohio computer service organization which services more than 650 commercial customers including government agencies, financial institutions, and large corporations, has recently expanded its services to encompass the personal computer user. MicroNET is a computer timesharing and software distribution service for home and small business applications. The service costs $5 per connect hour. The MicroNET system may be accessed via telephone service in 25 major metropolitan areas. It is available between the hours of 6 PM and 5 AM on weekdays, as well as all day Saturday, Sunday and holidays.

According to the company, the personal computer owner will be able to use a variety of computer programs on a timesharing basis; communicate with other MicroNET customers; buy and sell software through the network; and obtain additional on-line storage. The MicroNET timesharing library includes a large selection of programs in several categories including personal programs, educational aids, business applications, games and simulations, programming languages, and programming and diagnostic tools. Most of the programs in the MicroNET library are available at no charge other than the basic connect time rate.

All connect time charges and software purchases will be billed through use of credit card information which is provided by the customer. For a Service Application form and more information, write to Personal Computing Division, CompuServe Inc, 5000 Arlington Centre Blvd, Columbus OH 43220, or call (614) 457-8600.

NOTES ON BULLETIN BOARD

The Computerized Bulletin Board System (CBBS) in the Atlanta GA area is no longer being operated by DC Hayes Associates Inc. The Atlanta system is now being operated by the Atlanta Computer Society. The telephone number has been changed to (404) 394-4220.

CITRUS COLLEGE OFFERS PERSONAL COMPUTING COURSES

Citrus College in Azusa CA is offering 2 personal computing courses to commence September 1979. Each class is 18 weeks long. The classes are:

- Personal Computing -Building and Using (DP 115) Basic construction techniques, reading simple logic diagrams, debugging circuits, simple assembler, and simple BASIC.

For further information, contact Ed Keith, Citrus College, 18624 E Foothill Blvd, Azusa CA 91702.
THE BRAIN is the single topic of the September issue of SCIENTIFIC AMERICAN.

Is the brain a computer? What is the role of chemistry in brain function? Is the capacity of speech "hard-wired" into the brain? Where in the brain is the mind?

These are questions that will engage your interest in the September issue of SCIENTIFIC AMERICAN.

This issue does not, by any means, tell you "how the brain works." That remains one of the most alluring and baffling questions on the frontier of understanding. The convergence of work in many disciplines—from neurosurgery to linguistics—has begun to put that question, however, in ways that can yield answers.

The deep new knowledge about the brain, gathered at an accelerating rate in recent years, shows this organ to be marvelously designed and capacitated beyond the wonders with which it was invested by ignorant imagination.

Here are the articles:

• The Brain (Introduction)
• The Neuron
• Small Systems of Neurons
• The Organization of the Brain
• The Development of the Brain
• The Chemistry of the Brain
• Brain Mechanisms of Vision
• Brain Mechanisms of Movement
• Specializations of the Human Brain
• Disorders of the Human Brain
• Thinking about the Brain

Each of the authors of this issue has made significant contribution to the growing body of knowledge about the brain. Together they offer a comprehensive exposition of present understanding and chart the way for continuing study.

With this issue the editors of SCIENTIFIC AMERICAN continue a 30-year tradition of devoting each September issue to a single topic of current scientific and public interest. In the other monthly issues our readers enjoy a diversity of articles covering the full range of disciplines.

All the major advances in science of the past three decades have been reported in our pages by the scientists who have done the research. The collaboration of our editors in the preparation of text and illustration makes this work accessible to a steadily growing worldwide readership.

Why not join us at the frontiers of knowledge? You will learn why The New York Times calls our magazine "This country's and perhaps the world's outstanding forum for communication between the scientists and the intelligent public."

A one-year subscription, at $18, saves you $6 on the newsstand price of $24.

This country's and perhaps the world's outstanding forum for communication between the scientists and the intelligent public.

A one-year subscription, at $18, saves you $6 on the newsstand price of $20.

A two-year subscription, at $33, saves $15. And a three-year subscription, at $45, saves you $27.

Use the coupon below, or call toll free: 1-800-648-5311.

(In Nevada call 800-992-5710.)

Send no money. We'll bill you.

Illustration from Gregor Reisch's Margarita Philosophica, 1504.

SCIENTIFIC AMERICAN

WITH YOUR SUBSCRIPTION...

THIS FREE BOOK

As soon as your subscription payment is received, we will also send you Human Ancestors (regular price: $5.00) as a bonus. This 144-page anthology reports the archaeological discoveries that unveiled the evolutionary stream leading to Homo sapiens, culminating in the growing recognition of the role of toolmaking in the process of natural selection.

SUBSCRIPTION RESERVATION

SCIENTIFIC AMERICAN 415 Madison Avenue, Dept. ZF, New York, N.Y. 10017

Name

Address

City/State/Zip

Yes, enter my subscription to the monthly issues of SCIENTIFIC AMERICAN for the term I have checked. As soon as my payment is received, you will also send me—absolutely free—the 144-page book Human Ancestors (regular price: $5.00).

MY GUARANTEE

I may cancel my subscription to SCIENTIFIC AMERICAN at any time and receive a refund for the unused balance. The bonus book is mine to keep.

All the major advances in science of the past three decades have been reported in our pages by the scientists who have done the research. The collaboration of our editors in the preparation of text and illustration makes this work accessible to a steadily growing worldwide readership.

Why not join us at the frontiers of knowledge? You will learn why The New York Times calls our magazine "This country's and perhaps the world's outstanding forum for communication between the scientists and the intelligent public."

A one-year subscription, at $18, saves you $6 on the newsstand price of $20.

A two-year subscription, at $33, saves $15. And a three-year subscription, at $45, saves you $27.

Use the coupon below, or call toll free: 1-800-648-5311.

(In Nevada call 800-992-5710.)

Send no money. We'll bill you.

Illustration from Gregor Reisch's Margarita Philosophica, 1504.

SCIENTIFIC AMERICAN

WITH YOUR SUBSCRIPTION...

THIS FREE BOOK

As soon as your subscription payment is received, we will also send you Human Ancestors (regular price: $5.00) as a bonus. This 144-page anthology reports the archaeological discoveries that unveiled the evolutionary stream leading to Homo sapiens, culminating in the growing recognition of the role of toolmaking in the process of natural selection.

SUBSCRIPTION RESERVATION

SCIENTIFIC AMERICAN 415 Madison Avenue, Dept. ZF, New York, N.Y. 10017

Name

Address

City/State/Zip

Yes, enter my subscription to the monthly issues of SCIENTIFIC AMERICAN for the term I have checked. As soon as my payment is received, you will also send me—absolutely free—the 144-page book Human Ancestors (regular price: $5.00).

MY GUARANTEE

I may cancel my subscription to SCIENTIFIC AMERICAN at any time and receive a refund for the unused balance. The bonus book is mine to keep.

All the major advances in science of the past three decades have been reported in our pages by the scientists who have done the research. The collaboration of our editors in the preparation of text and illustration makes this work accessible to a steadily growing worldwide readership.

Why not join us at the frontiers of knowledge? You will learn why The New York Times calls our magazine "This country's and perhaps the world's outstanding forum for communication between the scientists and the intelligent public."

A one-year subscription, at $18, saves you $6 on the newsstand price of $20.

A two-year subscription, at $33, saves $15. And a three-year subscription, at $45, saves you $27.

Use the coupon below, or call toll free: 1-800-648-5311.

(In Nevada call 800-992-5710.)

Send no money. We'll bill you.

Illustration from Gregor Reisch's Margarita Philosophica, 1504.

SCIENTIFIC AMERICAN
Operating Systems

Let’s Have Some UNIX-Inspired Software

Jim Howell, 5472 Playa Del Rey, San Jose CA 95123

I would like to add to the comments made by James Jones (“Languages Forum,” April 1979 BYTE, page 245) about operating systems.

First, I wholeheartedly agree with his letter. A job control language like OS/370 (or most other large systems, for that matter) would be terrible for personal computer use. Aside from the pile of job control required to do anything, there are other problems with OS-like systems. The numerous file formats and “access methods” make it difficult for programs to work together. Specifying files for the compiler or assembler to use as work files is a nuisance. A file specification (DD statement) also requires giving values for several parameters about which the user usually doesn’t care or shouldn’t have to specify. Some of these problems are helped by using procedures (sets of job control that the computer vendor or local systems programmer has stored on disk for general use), but these may not be what you need, and they also take up disk space. The space is not significant if your disks store 100 megabytes, but it could be significant for floppy disk users.

I would like to strengthen Mr Jones’ suggestions that UNIX be used as a model for a microprocessor operating system. (UNIX is a trademark of Bell Labs.) I have used a UNIX system at work for about a year and it is a very pleasant system to work with. All files on UNIX are a series of bytes: no structure within files are imposed by the system. In particular, there is no concept of a “logical record” in UNIX. A “logical record” is the (usually) fixed size chunk in which files are read or written on big systems; often 80 bytes (for card or card-image files), or 120 or 132 bytes (for line printers). On UNIX, the end of a line in a text file is indicated by the use of a new-line character. This new-line character (line feed on UNIX) replaces the trailing blanks which are stored on systems that use logical records. The new-line character is read or written just like any other character. The size of a file is determined by how many bytes are written to it; predetermination of the file size (by guessing?) is not necessary, or even possible.

Job control language on UNIX is practically non-existent. A command to run a program (such as a compiler or a user program) consists of the name of the program to be executed followed by any parameters that the program needs, separated by blanks. (Parameters are often file names and processing options.) The command processor, which runs as a user program, reads the command line, divides it into “words,” and calls the system to execute the desired program. This system call also passes the parameters to the executed program. There is no need to describe files in the command since programs need only the name of a file in order to access it. Block sizes and such things are not required, even for new files, since there is only one format for files.

The following is a summary of the major system calls of UNIX that deal with file or an I/O (input/output) device. A file name in the open and create calls can also be a device name (such as the name for a terminal or printer).

Open (name, mode) opens an existing file (or device) for further operations. “Name” is a pointer to a character string which is the name of the file (or device) and “mode” indicates reading, writing, or both.

Create (name, prot) creates a new file, deleting any old file whose name is “name.” This new file is opened for writing. (I would like to see a “mode” argument for this call, in addition to the two specified. This “mode” would mean the same as it does for “open.”)

Read (fildes, buffer, length) reads up to “length” bytes from the file whose descriptor is “fildes” into the “buffer.” The file descriptor is a small, non-negative integer which was returned by open or create. The number of bytes actually read is returned to the caller. A return of 0 means end of file.

Write (fildes, buffer, length) writes “length” bytes to the file “fildes” from the “buffer.”

Seek (fildes, offset, base) moves the read/write pointer of the file “fildes” to a new position within the file. “Offset” is how far to move the pointer, and “base” indicates from the start of the file, from the current position, or from the end of the file.

Close (fildes) closes a file.

Each open file has a read/write pointer associated with
it. Each read or write call starts reading or writing at the current pointer and advances the pointer by the number of bytes read or written. By moving the read/write pointer with the “seek” call, random access files (or even indexed-sequential or other access methods) can be implemented if required. Note that “read” and “write” are the lowest levels of I/O calls to the system, and that they apply to all devices. All device-dependent processing is inside of the operating system. The only thing that a user program needs to know about a file after it is opened or created is the returned number (file descriptor). There are no “control blocks” or other system-imposed structures in user programs. (System calls are available in UNIX to determine the type of device that is associated with an open file for the few programs that need this information.)

Most current microprocessor operating systems use a special character, such as control-z, to mark the end of text files. These systems take the view that “binary” files (files where all 256 possible bytes are valid) are only for executable programs, and in this case reading a few extra bytes from the last sector of the file will not cause any problems. Such a scheme prevents the use of binary files for other purposes where the exact end of the file must be known. Possible uses include a work file written by a compiler or assembler and libraries of subroutines in object format for linking with other programs. (For example you wouldn’t want a 20 byte absolute value function to add 128 bytes to your program, simply because the end of a sector is the best you can do at locating the end of the function!) The end of a file should, as in UNIX, be indicated by a count of the number of bytes in the file, and the end of file when reading should be determined by comparing the read/write pointer of the file to the end-of-file byte count. (Writing past the end of a file causes the end of file pointer to move to the new read/write pointer position.)

The above is a description of some aspects of UNIX, and is also intended to be used as guidelines in writing any new operating systems for microprocessors (or even big systems). One other thing that might be considered by an operating system writer is the use of a high-level language for most of the operating system and for the programs that implement supplied commands. This would allow the operating system to be moved to another microprocessor without having to completely rewrite it.

I am about halfway through designing an operating system along the lines of the above suggestions. (I started before Mr Jones’ letter appeared in BYTE.) Eventually I expect to implement it.

Let me conclude by listing three references which are recommended to those who are implementing a usable microprocessor operating system. The first two were also mentioned by Mr Jones.

REFERENCES
3. The Bell System Technical Journal, July thru August 1978, part 2. This issue contains about fifteen papers on UNIX. Read especially the first 3 or 4 papers, as well as the one called “UNIX on a Microprocessor” (single-user version on an LIS-11).

If you own an IBM Selectric® you already have a high quality output printer.

- Escon printer conversion fits right in
- Installation does not affect:
 Shape or normal functioning of typewriter nor eligibility for IBM warranty and service
- Available in S-100, Parallel, RS-232 or IEEE-488
- Entire high quality printer system for TRS-80, Apple, PET, Sorcerer, Horizon, etc.
- All systems assembled, tested and burn-in
- Factory installations available; complete systems with typewriter available

Prices* S-100 $496.00 Parallel $525.00 RS-232 $549.00 IEEE $575.00
*Prices valid in USA only

Escon Products, Inc. 171 Mayhew Way, Suite 204, Pleasant Hill, CA 94523 (415) 935-4590

It's sub LOGIC for graphics!

NEW ASSEMBLY LANGUAGE 3D GRAPHICS FOR THE APPLE II . . .

Our 3D packages allow you to animate 3D or 2D data bases created with standard XYZ coordinates. The two users manuals (30 pages total) are written at different technical levels to give all Apple users a quick understanding of access and use of BASIC and assembly language. The small 8K memory requirement lets you use the subrouitines with most of your educational, scientific, and game programs.

$45 (available August 25, 1979). Disc and relocatable cassette option available.

The engineering & graphics people (217) 367-0299

sub LOGIC
Box V, Savoy, IL 61874

The engineering & graphics people (217) 367-0299

Circle 353 on inquiry card. September 1979 © BYTE Publications Inc 83
Soldering Techniques

William Trimmer
40 James St
Morris Plains NJ 07950

Anyone who can get 3 objects into the same vicinity can solder. Doing a professional job, however, requires some care and practice. This article draws on my experience in teaching electronics and a fine pamphlet prepared by NASA entitled “Soldering Electrical Connections, A Handbook” (United States Printing Office, NASA SP-5002). Good soldering techniques can save time, components and frustration.

Good Soldering Techniques

Good soldering starts with a clean soldering iron tip and well-tinned parts. Just prior to use, the hot soldering iron should be cleaned by wiping it across a wet sponge. The thermal shock and wiping action will clean the tip and remove the excess solder. Then touch a bit of solder to the tip (photo 1). The iron is now ready for use. The parts to be soldered are ready when the solder flows quickly and evenly over their heated surfaces. If this does not happen, clean the parts by brushing, filing, or rubbing with a pencil eraser. Next flow a thin layer of solder over the clean surface. The parts are now tinned and ready to be soldered.

The prepared parts should be mechanically fastened together before making the soldering joint (photo 2). The solder should not be expected to supply mechanical strength. Clean the soldering iron tip, and add a dab of solder to the tip. Touch the soldering iron to the heavier of the parts to be joined, and begin wiping the solder on the junction between the two parts (photo 3).

Do not feed the solder into the soldering iron tip. When the components are hot enough, the solder will begin to melt into the joint. The solder should skate over the surfaces like butter on a hot pan. Now you must move quickly. Rapidly wipe the entire length of the connection with the solder, being careful not to apply too much. The solder should flow smoothly over the parts. If braided wire is used, the strands should still be visible (photo 4). Doing this well takes a lot of practice. Now remove
WE HAVE YOUR NOVATION MODEMS, RIGHT NOW.

Whether you need an acoustic or direct connect, your Novation modem is in stock today at your nearby Hamilton/Avnet location.

Novation makes a wide range of modems, each with built-in economy, reliability, and quality that can enhance the efficiency and aesthetics of your system. That includes Cat™, a breakthrough for modems. Sleek, silent, compact, Cat is Novation’s new acoustically coupled modem designed especially for the small computer user. Easy to use, simple to install, Cat is ideal for both small business and personal computer applications.

You can get your Novation modem locally from us.

We have a complete on-hand selection of Novation modems, plus all the other computer products you need, at each of our locations nationwide.

And if you call our toll-free number, we’ll tell you about our new Authorized Hamilton/Avnet Dealer program and the name of your nearest Authorized Dealer. He has your Novation modems in stock, too, as well as all the other computer products you need.

Just call 1-800-421-4645 (in California call 1-800-252-0627). You can get your Novation modem, right now.

NOVATION FROM HAMILTON/AVNET

World’s largest local distributor with 39 locations stocking the world’s finest lines of system components

Circle 160 on inquiry card.
86 September 1979 © BYTE Publications Inc

Photo 3: When soldering, touch the iron to the heaviest part. When the joint is hot enough, the solder will melt on the side opposite the iron.

Photo 4: In a well-soldered braided wire, the strands should still be visible.

Photo 5: Excess solder, poor wetting of the wire, frosted surfaces, and blobs of solder represent poorly soldered joints.

the iron and hold everything perfectly still. Any motion while the solder is going from the liquid to the solid state will cause a cold joint. After the joint is cooled, the surface of the solder should look like a mirror. A good solder joint is an accomplishment.

A good way to begin might be to deliberately make some bad soldering joints. First, shake the two wires while the solder is cooling. Notice the undesirable frosted look. Now try leaving the iron on the joint for more than several seconds, and you will notice that a scum forms. Try putting too much solder on the joint. Often when this blob cools, the frosted surface will appear (photo 5). Try to find the two oldest wires you can. Twist them together and solder them. If they are covered with an oxide layer, the solder will not transfer from the soldering iron tip to the wires. Repeated heatings will probably cause the solder to melt around the joint. Notice how the solder does not flow onto the wires, but sticks to itself. The joint is now probably hot enough to burn the flux.

Inevitably, one has to unsolder some beautifully soldered joints. If the joint is that of a straight wire through a hole, a pull will often accomplish the task. (Be careful of the flying molten solder.) Often, one must remove the solder and then unwrap the wire. The best method uses a fine mesh of properly fluxed copper wire. (An example of this would be Solder-Wick, made by Solder Removal Co, 1077 E Edna Place, Covina CA 91724. Their 40-4-5 is a medium size, 40-6-2½ is for large joints, and 40-2-5 is for very small joints.) Push the mesh against the joint with the soldering iron. The solder will be wicked from the joint into the mesh. Solder suckers are also a popular way to remove solder. The tool is cocked, placed on a heated joint, and released. A plunger pulling air through the nozzle of the sucker gets most of the solder. This last suggestion is the least expensive way. Hold the circuit board and heat the joint. Rap the edge of the board smartly on the work bench. Solder flies in every direction, but the joint is clean.

Good soldering takes patience and practice. Fortunately, if properly done, the soldering joints are almost never the culprits when a circuit does not work. The following are some suggestions that will make soldering easier.

Tools

The soldering iron should be well tinned (covered with solder), and should quickly raise the joint to the working temperature. I prefer a 30 or 40 W element for a pencil soldering iron. Cleaning the tip with a wet sponge before soldering will bring the tip down to the correct temperature range (about 700°F). This slightly greater wattage will allow larger pieces to be soldered. Better yet are the temperature controlled pencil soldering irons. Soldering guns are too large and hot for all but the most massive soldering joints. If you buy a new soldering iron, wrap the tip with solder before turning it on. This will coat the tip with solder before it gets hot enough to oxidize. Place the iron in a protective cage towards the back of your work bench so that it can not burn anything. If the iron is not going to be used for a while, unplug it.

It is very tempting to buy less expensive solder. Don't do it. Solder costs very little compared to other components. The best solder is Eutectic, which is 63% tin and 37% lead. This mixture passes directly from a liquid to a solid stage without going through a plastic region. As a result, good soldering joints are easier to make. Solder composition is generally given by two numbers, such as 40-60. The first number is the amount of tin, the second is the amount of
lead. The above solder is less expensive to make than Eutectic solder because tin is the expensive element. However, this solder has a plastic region of about 180°F. The joint must be held completely motionless while the solder is cooling through this plastic stage. Always use a rosin flux when soldering. Never let your iron touch acid flux. An 18 or 20 gauge solder with a rosin core works nicely.

There are a number of other useful tools. These include long nose pliers, diagonal cutting pliers, wire strippers, a slotted screwdriver, a dental pick, and plastic electrical tape.

Assembly Before Soldering

A convenient substrate upon which to build electronics is predrilled epoxy board. The holes should be on 0.1 inch centers in a square grid for digital work. Typical hole sizes are 0.042 or 0.062 inches. Vector-type terminals (Vector Electronic Co Inc, 12460 Gladstone Ave, Sylmar CA 91342) can be pushed into the holes and the discrete components soldered to the terminals. The majority of digital electronics come in the dual-in-line packages. A convenient way to mount dual-in-line packages is with circuit-stick-type subelements (Circuit-Stik Inc, 24015 Gardiner St, POB 3396, Torrance CA 90510). These are very thin sheets of glass epoxy with preetched copper lands on one side and glue on the other. The holes on the subelements are aligned with the holes on the predrilled circuit board, and carefully pressed together. The dual-in-line packages and components can then be pushed through from the other side of the board, and soldered to the preetched copper lands. One can then wire the correct lands together. Because the spacing between the pins of the dual-in-line packages is only 0.1 inches, hand soldering requires care. When working with dual-in-line packages, I prefer to solder sockets onto the board, and plug the dual-in-line packages into the sockets. This method makes troubleshooting easier.

It is important to be neat when soldering. Try to lay the board out logically. Do not crowd the components together. If it is your own design, you will probably want to add something after the board is made. Place all of the resistors the same way so that their color codes match.
I can be read from the same side of the board. Run the wires in an orderly manner. I prefer to mount components like resistors, transistors, etc., slightly off the board. This improves the heat transfer, and makes it easier to slip in a probe for testing. Components that weigh 0.5 ounces or more should be mechanically mounted to the board. A little epoxy or silicon rubber works wonders for mounting these components.

Properly stripping wire is a dichotomy. First, the insulation should be cut and removed. Second, the wire should not be cut. (If stranded wire is used, a nick will cause only a few strands to break.) With practice, you can strip the insulation without cutting the wire. Try cutting slowly through a wire. Notice the difference in the feel between the insulation and wire. Now cut off the wire and start again with a clean end. Cut down until the wire is felt, then relax the stripper slightly. Now rotate the wire 45° and again squeeze a bit. This will cut the insulation all the way around, not just where the stripper teeth cut the deepest. Be sure to open the stripper slightly and pull the insulation off the wire. With practice, you can learn not to nick the wire. The secret is to stop cutting just before the cutter reaches the wire. A firm pull will usually break off the remaining insulation. If you still nick the wire, take heart, you have much company.

Table 1 gives the American Wire Gauge (AWG) size, the approximate diameter, ohms per 1000 meters, and current carrying capability of copper wire. Try to use a number of wires of different colors and gauges. This not only matches the current capability with the load, but also makes it easier to trace wires.

Finally, some words on safety: be sure that you have a stand for your iron; always wear shoes and safety glasses; and try not to flick solder on anything important. When cutting wires, hold the cutter so that the pieces fly away from you. To avoid potentially lethal shocks, it is best to have a rubber mat beneath your feet and stool.

By following these rules and techniques, almost anyone can learn to solder well.
POWER-ONE
D.C. POWER SUPPLIES

Now available for small systems applications

Power-One, the leader in quality open-frame power supplies, now offers a complete line of single, dual, and triple output models for small computer systems. Also available are special purpose models for Floppy Disk and Microcomputer applications.

Below are just a few popular examples of the over 90 "off the shelf" models now available from stock.

SINGLE OUTPUT & LOGIC POWER SUPPLIES
- 56 "off the shelf" models
- 2V to 250V, 0.1A to 40A
- ±0.05% regulation
- 115/230 VAC input

<table>
<thead>
<tr>
<th>Model</th>
<th>Specifications</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HB5-3/OVP</td>
<td>5V @ 3A, w/OVP</td>
<td>$24.95 single qty.</td>
</tr>
<tr>
<td>HD5-12/OVP</td>
<td>5V @ 12A, w/OVP</td>
<td>$79.95 single qty.</td>
</tr>
<tr>
<td>SK5-40/OVP</td>
<td>5V @ 40A, w/OVP</td>
<td>$250.00 single qty.</td>
</tr>
</tbody>
</table>

FLOPPY-DISK SERIES
- 8 "off the shelf" models
- Powers most popular drives
- Single/dual drive applications
- 2-year warranty

<table>
<thead>
<tr>
<th>Model</th>
<th>Specifications</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP340</td>
<td>5V @ 0.7A, w/OVP</td>
<td>NEW</td>
</tr>
<tr>
<td>CP205</td>
<td>5V @ 1A, w/OVP</td>
<td>NEW</td>
</tr>
<tr>
<td>CP206</td>
<td>5V @ 2.5A, w/OVP</td>
<td>NEW</td>
</tr>
</tbody>
</table>

DUAL OUTPUT MODELS
- 15 "off the shelf" models
- ±5V to ±24V, 0.25A to 6A
- I.C. regulated
- Full rated to +50°C

<table>
<thead>
<tr>
<th>Model</th>
<th>Specifications</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAD12-25/HAD15-25</td>
<td>12V/15V @ 0.25A</td>
<td>$32.95 single qty.</td>
</tr>
<tr>
<td>HAA512</td>
<td>5V @ 2A, w/OVP</td>
<td>$44.95 single qty.</td>
</tr>
<tr>
<td>HBB151.5</td>
<td>±12V @ 1.7A or ±15V @ 1.5A</td>
<td>$49.95 single qty.</td>
</tr>
</tbody>
</table>

TRIPLE OUTPUT MODELS
- 10 "off the shelf" models
- 5V plus ±9V to ±15V outputs
- Models from 16W to 150W
- Industry standard size

<table>
<thead>
<tr>
<th>Model</th>
<th>Specifications</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTAA-18W</td>
<td>5V @ 2A, w/OVP</td>
<td>$49.95 single qty.</td>
</tr>
<tr>
<td>HBAA-40W</td>
<td>5V @ 3A, w/OVP</td>
<td>$68.95 single qty.</td>
</tr>
<tr>
<td>HCBB-75W</td>
<td>5V @ 6A, w/OVP</td>
<td>$91.95 single qty.</td>
</tr>
</tbody>
</table>

NEW 79' CATALOG!
Get Your FREE Copy Now!

Phone us direct or circle the reader service number below.

Power One Drive • Camarillo, CA 93010 • (805) 484-2806 • TWX 910-336-1297

Circle 309 on inquiry card.
D \t MAC-8080 Macro Assembler. Full Intel macro definition.

SID - 6080 symbolic debugger. Full trace, pass counter.

TOP Text Output Processor - Creates page-numbered, line-numbered text.

creates page-numbered, line-numbered output.

COBOL-80 - ANSI Software for most popular systems including NORTH STAR, MICROPOLIS, ICOM, DYNABYTE DB8/2, SD SYSTEMS, ALTAIR, EXIDY SORCERER, VECTOR MZ, 8" IBM, HEATH H17 & H89, HELIOS, IMSAI VDP42 & 44, REX, POLYMORPHIC 8813 and OHIO SCIENTIFIC formats.
INVENTORY SYSTEM — Captures stock levels, costs, sources, sales, ages, turnover, markup, etc. Transaction information may be entered for reporting by salesman, type of sale, date of sale, etc. Reports available both for accounting and decision making. Requires CBASIC. Supplied in source code.

CASH REGISTER — Maintains files on daily sales. Files data by salesperson and item. Tracks sales, refunds, discounts, and total net dollars. Requires CBASIC. Supplied in source code.

Micro Focus
CIS COBOL — Version 3 is ANSI 74 subset with extended features which offer powerful interactive screen formatting and built in cursor control. Version 4 additionally offers full level 1 ANSI for Nucleus. Table Handling, Sequential Relative and Indexed IO, Inter-Program Communication and Library.

FORMS — Interactive utility to create CIS COBOL user screens. Uses standard COBOL edit control even when invoked from non-COBOL programs. Features include full prompt text, protected fields and input validation against data type and range expected. When purchased with CIS COBOL, $150/$15.

OTHER

ALGOL 60 Compiler — Powerful block-structured language featuring economical uses of space and time, allocation of memory, and various built-in data types (e.g., small and large integers). ALGOL 60 report features plus many powerful extensions including string handling directly in the source language. $75/$60.

Z80 Development Package — Consists of: (1) disk file editor, with global and local line facilities; (2) Z80 relocating assembler, zilog/Mostek mnemonic, conditional assembly and cross-reference table capabilities; (3) linking loader producing absolute Intel hex disk files. $95/$80.

Z80 Debugger — Trace and examine registers with standard zilog/Mostek mnemonic disassembly display and local line facilities plus absolute Intel hex disk facility. $110/$95.

DISTEL — Disk based debugger to intel 8080 or TOL/Tron 200 source code, listing and cross reference tables, Intel or TOL/Matan pseudo code options. Runs on CP/M. $95/$80.

DISILOG — A DISI-NETL to zilog/Mostek mnemonic files. Runs on Z80 only. $65/$60.

TEXTWRITER II — Text formatter to justify and paginate letters and other documents. Special features include insertion of text during execution from other disk files or console, permitting recipe documents to be created from clipped fragments on other files. Ideal for contracts, manuals, etc. Also creates form letters in context with a minimum of user involvement. $75/$70.

TEXTWRITER III — All the features of TW II plus generation of table of contents, spaced index and handling of footnotes. TW III licks up to 100 topics. $125/$110.

WHATSTIS?? — Interactive data-base system using associative keys to retrieve information by subject, hashing and random access algorithms. Requires CBASIC. $125/$110.

XYBASIC Interactive Process Control BASIC — Full disk BASIC features plus unique compression routines to handle bytes, rotate and shift, and to load and test set bits. Available in three forms. Extended and ROMable versions are $295/$255 and $395/$255 respectively. Integrated Disk or Integrated ROMable.

Software / Manual / Alone
Software

Price

- manual alone

$390/$35

Checkboxes

- manual alone

$390/$35

Shipping

$1.00 for C.O.D.

Total

Exp. Date

Orders must specify disk systems and formats, e.g. North Star single or double density, IBM single or 3 1/2" 725. Adders: Helos II, Micropolis Mod I or II, 51/2" soft sector (MicroCOM/SD Systems Dynabyte), etc.

$115.00 shipping (32¢). Add $1 additional for UPS C.O.D.

Manual cost applicable against price of subsequent software purchase.

$115.00 shipping (32¢). Add $1 additional for UPS C.O.D.

My computer configuration (specifying disk system):

- manual alone

$390/$35

NAME

Shipping

$1.00 for C.O.D.

Total

Orders must specify disk systems and formats, e.g. North Star single or double density, IBM single or 3 1/2" 725. Adders: Helos II, Micropolis Mod I or II, 51/2" soft sector (MicroCOM/SD Systems Dynabyte), etc.

$115.00 shipping (32¢). Add $1 additional for UPS C.O.D.

Manual cost applicable against price of subsequent software purchase.

$115.00 shipping (32¢). Add $1 additional for UPS C.O.D.

My computer configuration (specifying disk system):

- manual alone

$390/$35

NAME

Shipping

$1.00 for C.O.D.

Total

Orders must specify disk systems and formats, e.g. North Star single or double density, IBM single or 3 1/2" 725. Adders: Helos II, Micropolis Mod I or II, 51/2" soft sector (MicroCOM/SD Systems Dynabyte), etc.

$115.00 shipping (32¢). Add $1 additional for UPS C.O.D.

Manual cost applicable against price of subsequent software purchase.

$115.00 shipping (32¢). Add $1 additional for UPS C.O.D.

My computer configuration (specifying disk system):

- manual alone

$390/$35

NAME

Shipping

$1.00 for C.O.D.

Total

Orders must specify disk systems and formats, e.g. North Star single or double density, IBM single or 3 1/2" 725. Adders: Helos II, Micropolis Mod I or II, 51/2" soft sector (MicroCOM/SD Systems Dynabyte), etc.

$115.00 shipping (32¢). Add $1 additional for UPS C.O.D.

Manual cost applicable against price of subsequent software purchase.

$115.00 shipping (32¢). Add $1 additional for UPS C.O.D.

My computer configuration (specifying disk system):

- manual alone

$390/$35

NAME

Shipping

$1.00 for C.O.D.

Total

Orders must specify disk systems and formats, e.g. North Star single or double density, IBM single or 3 1/2" 725. Adders: Helos II, Micropolis Mod I or II, 51/2" soft sector (MicroCOM/SD Systems Dynabyte), etc.

$115.00 shipping (32¢). Add $1 additional for UPS C.O.D.

Manual cost applicable against price of subsequent software purchase.

$115.00 shipping (32¢). Add $1 additional for UPS C.O.D.

My computer configuration (specifying disk system):

- manual alone

$390/$35

NAME

Shipping

$1.00 for C.O.D.

Total

Orders must specify disk systems and formats, e.g. North Star single or double density, IBM single or 3 1/2" 725. Adders: Helos II, Micropolis Mod I or II, 51/2" soft sector (MicroCOM/SD Systems Dynabyte), etc.

$115.00 shipping (32¢). Add $1 additional for UPS C.O.D.

Manual cost applicable against price of subsequent software purchase.

$115.00 shipping (32¢). Add $1 additional for UPS C.O.D.

My computer configuration (specifying disk system):

- manual alone

$390/$35

NAME

Shipping

$1.00 for C.O.D.

Total

Orders must specify disk systems and formats, e.g. North Star single or double density, IBM single or 3 1/2" 725. Adders: Helos II, Micropolis Mod I or II, 51/2" soft sector (MicroCOM/SD Systems Dynabyte), etc.

$115.00 shipping (32¢). Add $1 additional for UPS C.O.D.

Manual cost applicable against price of subsequent software purchase.

$115.00 shipping (32¢). Add $1 additional for UPS C.O.D.

My computer configuration (specifying disk system):

- manual alone

$390/$35

NAME

Shipping

$1.00 for C.O.D.

Total

Orders must specify disk systems and formats, e.g. North Star single or double density, IBM single or 3 1/2" 725. Adders: Helos II, Micropolis Mod I or II, 51/2" soft sector (MicroCOM/SD Systems Dynabyte), etc.

$115.00 shipping (32¢). Add $1 additional for UPS C.O.D.

Manual cost applicable against price of subsequent software purchase.

$115.00 shipping (32¢). Add $1 additional for UPS C.O.D.
Washington DC Computer Club

The Washington Amateur Computer Society (WACS) is an organization dedicated to personal computing. They are organized to provide a forum for the computer hobbyist and student of computing science. The Society meets on the last Friday of each month in the 1st floor lecture hall in Keane Hall on the campus of the Catholic University of America. The meetings start at 7:30 PM.

WACS, the club’s newsletter, is published for Society members and exchange with other hobby organizations. The newsletter is primarily an electronics journal. Annual dues have been set at $3.50 per year to cover the cost of 1st class postage for the journal and to defray the expenses of exchanging correspondence with other personal computing organizations. Non-members may subscribe to the journal at the rate of $6 per year. WACS is interested in exchanging newsletters with other organizations to further the interchange of hobbyist information. Contact Washington Amateur Computer Society, c/o 4201 Massachusetts Ave, #168, Washington DC 20016.

Cromemco User Systems and Software Pool

Cromemco User, Systems and Software Pool is an independent group for users of Cromemco computers. Board owners are also welcome. The purpose of CUssP is the exchange among users of Cromemco hardware and software of operating notes, bugs and their fixes, evaluation of hardware and software, user written software, and other announcements relating to Cromemco and associated products.

The 1st volume of 3 newsletters included articles on changes in 16 K byte BASIC, CDOS I/O (input/output) drivers, disk sectors and clusters, hardware modifications, etc. This volume is available for $10 in the US, Canada, and Mexico; and $12 in US funds for airmail delivery outside these regions. Membership with the 2nd volume is the same price as the 1st. There is also a special rate of 3 volumes (9 issues) for $25 in the US, Canada, and Mexico and $30 elsewhere.

Contact Cromemco User, Systems and Software Pool, POB 784, Palo Alto CA 94302.

Computer Graphics Letter Published by Harvard

Readers of the new Harvard Newsletter on Computer Graphics will be able to keep abreast of computer graphics in all its myriad ramifications. The newsletter monitors important commercial, technological, and product developments, as well as market, application, and learning opportunities. Among the regular departments are News and Trends, Products, Markets, Applications, R and D, Conferences and Seminars, Companies, Business and Financial, and State-of-the-Art Technology. The newsletter will be published twice a month.

The content will encompass management and statistical graphics, computer graphic-aided design, engineering and manufacturing, image processing, and automated cartography, plus other related areas. Trends in these areas, whether applied to big or small computers, stand-alone terminals, timesharing networks, users, vendors, will be followed. Readers will also learn where to obtain further information on the material covered.

The subscription fee for 1 year is $125; a 9-issue trial subscription is available for $45. Airmail outside of North America is $19.50 for 1 year or $9.75 for the trial. Contact William Nisen, Harvard University, Laboratory for Computer Graphics, 520 Gund Hall, Cambridge MA 02138.

Akron Ohio Digital Group

The Akron Digital Group meets on the 4th Wednesday of each month at 7 PM at the Kenmore Public Library, 2200 14th St SW, Akron OH. The club programs are aimed toward the small systems hobbyist with tips on programming and hardware application. Microprocessor classes are planned for the fall. Contact Lou Laurich, Akron Digital Group, 107 7th St NW, Barberton OH 44203.

TRS-80 Publication

Insiders: The TRS-80 Hardware Journal with Machine Software is a publication for any TRS-80 owner or user interested in more than BASIC. Both beginners and experts will find articles on machine
language programming, hardware modifications, and other computer languages. Published since June of 1978, articles have described the differences in Level II read-only memories, how to get sound effects and music without a hardware modification, new languages for the TRS-80, and many other subjects. Regular features include a column which reviews various printers, the Disc File which covers the latest in DOS and compatible drives, a Dear Aunt TRiSh question and answer column, and learning machine language with Level II.

A new section of the journal will cover several of the new languages for the TRS-80. Future issues will include regular features on FORTRAN, FORTH, and other languages. Also, there will be regular articles on CP/M, reviews of various commercially available programs, and more on both Level II and DOS.

Subscriptions are available for 6 issues through Computer Cablevision, 2517 42nd St NW, Suite 2N, Washington DC 20007.

New PET Users Group Forming In Washington and Oregon

Individuals interested in forming a PET Users Group in the Oregon and Washington area should contact NW PET Users Group, c/o John F Jones, 2134 NE 45th Ave, Portland OR 97213.

COSMAC Users Group Active Again

After several unavoidable delays, the COSMAC Users Group is back in full operation and The 1802 Peripheral newsletter is being published on a monthly basis. Information about the group may be obtained by writing to Patrick Kelly, Director, COSMAC Users Group, POB 7162, Los Angeles CA 90022. Please include a stamp with your inquiry.

New Speechlab Users Group Formed

Heuristics Inc., manufacturer of Speechlab (a speech recognition unit for the Apple and all S-100 bus computers), has announced the formation of a users group. The users group requests that all interested Speechlab users send their unique uses of the hardware or software to Tom Larson, Director of Sales, Heuristics Inc., 900 N San Antonio Rd, Los Altos CA 94022. A directory of users and applications will be published at a later date.

Aim-65 Newsletter

The Target is a bi-monthly newsletter for owners or prospective owners of Aim 65 systems. The subscription rate is $5 for 1 year. Contact Customtronics, POB 4310, Flint MI 48504.

Solano TRS-80 Users Club

The Solano TRS-80 Users Club is an informal group that gets together to discuss mutual problems and experiences. Their meetings are held every 3rd Thursday starting July 5th at Owens-Illinois, 2500 Huntington Dr, Fairfield CA. Contact Dave or Steve Irwin, 550 Marigold Dr, Fairfield CA 94533, or call (707) 422-3347.

The Tulsa Computer Society

The Tulsa Computer Society meets the last Tuesday of every month at 7:30 PM. The meeting place is the Tulsa Vocational Technical School seminar room at 3420 South Memorial Dr (behind Edison's Department Store). Membership in TCS is $6 annually and includes a 1-year subscription to the club's newsletter, The I/O Port. Contact The Tulsa Computer Society, POB 1133, Tulsa OK 74101.

Wichita Valley TRS-80 Users Group Sustains Computer Loss in Recent Tornado

In the recent tornado which wreaked unholy havoc on our city, many of us in the Wichita Valley TRS-80 Users Group lost our computers, our tape and disk library of software, and our library of computer books and periodicals. Even our club's library of software and publications was destroyed.

We all have plans to replace our personal computers and software, but at this time I am particularly interested in trying to help our club replace its loss.

Any club, publisher, software producer, or individual who wishes to do so, may contribute noncash items, such as software, back issues of computer publications, and books on computers.

Our address is the Wichita Valley TRS-80 Users Group, POB 4392, Wichita Falls TX 76308.

Thank-you, our club will be grateful.

J Wesley B Taylor
Club Secretary

Although this letter certainly speaks for itself, it is our sincere hope that you or your group will seriously consider contributing noncash computer related items to this needy organization.
THE MINIMAX SERIES WAS DESIGNED TO OFFER THE MARKET MINICOMPUTER CAPABILITIES AT MICROCOMPUTER PRICES. COMPARISON OF THE CAPABILITIES & PRICE!

CONTACT NEECO FOR FULL SPECS - FREE MINIMAX MANUAL.

MINIMAX SERIES COMPUTER

MEET THE MINIMAX COMPUTER

THE MINIMAX SERIES COMPUTER WAS DESIGNED BY INDUSTRY PROFESSIONALS. COMPARISON OF THE PRICE AND FEATURES TO ANY OTHER COMPUTER IN ITS CLASS!

* THE MINIMAX SERIES COMPUTER IS AN INTEGRATED, COMPACT UNIT CONTAINING THE CPU, DUAL DENSITY DISK STORAGE, 12 INCH CRT, AND FULL STYLE KEYBOARD, WITH SEPARATE NUMERIC ENTRY PAD. ALL KEYS (INCLUDING CURSOR) WITH FULL REPEAT. * HYBRID 2 MEGAHertz 6502 CPU. * 16K SYSTEM RAM (4K USER). * FASTEST FLOPPY DISK ACCESS (2X LOADS IN 4.2 SECONDS). * 16K ROM CONTAINING COMPUTHINK BASIC (AN EXTENDED MICROSOFT BASIC) WITH EXTENDED PRECISION, DOS INCLUDES COMPLETE FILE I/O WITH FULL RANDOM ACCESS, COMPLETE MONITOR WITH DEBUG & TRACE, AND TINY 6502 ASSEMBLER. * COMPLETE HIGH RESOLUTION GRAPHICS WITH INDIVIDUAL DOT (240x512) POINT SCREEN ADDRESSEABILITY. * FULL SCREEN TEXT EDITING WITH OVERWRITE, INSERTION OR DELETION. * INDIVIDUAL FIELD EDITING WITH FIELD PROTECT AND AUTO SKIP TO NEXT FIELD. * DISK STORAGE SYSTEM TRANSFERS 6K PER SECOND WITH AUTO VERIFY AND PARITY CHECK. * 12 INCH CRT-64 CHARACTERS BY 30 LINES. UP TO THREE PROGRAMMABLE CHARACTER FONTS FOR LANGUAGES OR SPECIAL CHARACTERS. * SWITCHABLE 110 OR 220V OPERATION. * HYBRID CPU IS MICROPROGRAMMABLE WITH 64 USER DEFINABLE OPCODES. CHOICE OF 80K OR 2.4 MEGABYTE DISK STORAGE. * FULL SERIAL RS-232C PORT WITH PROGRAMMABLE BAUD RATES AND MODEM CONTROL SIGNAL. * DEDICATED DISK PORT. * PRINTER PORT SUPPORTS PARALLEL COMMERCIAL PRINTERS. * 24 PIN I/O USER PORT. * PAGEMATE DATABASE AVAILABLE. * PLM COMPILER AVAILABLE. * BUSINESS PACKAGES AVAILABLE. * COMPLETE DIAGNOSTICS & SCHEMATICS INCLUDED. * COMPLETE USER MANUAL INCLUDED.

MINIMAX I - .8 MEGABYTE ON LINE MINIFLOPPY STORAGE
MINIMAX II - 2.4 MEGABYTE ON LINE 8" FLOPPY STORAGE

MINIMAX I - $4495
MINIMAX II - $5995

SPECIAL DEALER PRICING AVAILABLE ON DEMONSTRATION
MINIMAX AND SOFTWARE PACKAGES TO QUALIFIED SELECTED DEALERS. CONTACT NEECO FOR INFO.

THE MINIMAX WAS DESIGNED AND IS MANUFACTURED BY COMPUTHINK CORPORATION. DISTRIBUTED IN EUROPE AND THE EASTERN U.S. BY NEECO.

IN ADDITION TO HARDWARE CAPABILITIES THAT ARE UNMATCHED IN THE INDUSTRY, THE MINIMAX COMPUTER SUPPORTS A COMPLETE DATABASE SYSTEM (PAGEMATE), CONTAINING FULL STATISTICAL, SORTING, AND EDIT FUNCTIONS. A PLM COMPILER IS AVAILABLE, FULL BUSINESS SUPPORT SOFTWARE IS AVAILABLE AND MORE!—FULL DEALER SUPPORT IS AN IMPORTANT PART OF OUR MARKETING. CONTACT NEECO FOR FURTHER INFORMATION.

THE MINIMAX IS NOW AVAILABLE FOR QUANTITY DELIVERY. DOMESTIC DEALERSHIPS AVAILABLE. EUROPEAN DISTRIBUTORSHIPS/DEALERSHIPS AVAILABLE TO QUALIFYING COMPANIES WITH SUPPORT CAPABILITIES. SOFTWARE HOUSES AND OEM INQUIRIES INVITED. CONTACT NEECO.

NEW ENGLAND ELECTRONICS CO., INC.
679 HIGHLAND AVE., NEEDHAM, MA 02194
(617) 449-1760
MON-FRI, 9:00-5:30, E.S.T.

TELEX 951021, ANSWERBACK "NEECO"
PROUDLY ANNOUNCES THE NEWEST PET MICROCOMPUTERS BY COMMODORE!

The PET™ is now a truly sophisticated Business System with the announcement of these Peripherals.

"The PET™" is a desktop computer tailored for those who need a lot of power, but in a traditional computer-like package. It is computer-like, in that it is a general purpose digital computer. However, the PET™ is unlike any other computer in that it is a "user-friendly" computer, designed for the business environment. It is a true business computer, designed to be used for business applications. It is a business computer that is easy to use, easy to learn, and easy to maintain.

The PET™ is available in two models: the PET 2001 and the PET 2020. The PET 2001 is a 16K/32K computer, while the PET 2020 is a 64K/128K computer. Both models are available with either a standard keyboard or a large typewriter keyboard.

For more information, please call or write for our free catalog. We are also happy to answer any questions you may have about our products. We are located at 679 Highland Ave., Needham, MA 02194. Our telephone number is (617) 449-1760 and our Telex number is 961021, NEECO.

NEECO

NEW ENGLAND ELECTRONICS CO., INC.
679 HIGHLAND AVE., NEEDHAM, MASS. 02194
MON. - FRI. 9:30 - 5:30, EST.

Circle 281 on inquiry card.

BYTE September 1979 95
The Nature of Robots

Part 4: Looking for Controlled Variables

In this last part of my series of articles, a simple experiment with a human subject will be attempted; an experiment that can be expanded almost indefinitely. All of the principles from the previous parts will be used. Before the experiment starts, note the following main points that have been established:

- The behavior of an organism is not its output, but some consequence of its motor outputs acting together with unpredictable forces or other disturbances.
- For a more or less remote consequence of motor outputs to be repeatable in a disturbance-prone world, the behaving system must sense the consequence, and act to keep it matching some static or dynamic reference condition. By definition, that makes the organism a control system.
- Organisms acting as control systems control what they sense, not what they do.
- What is controlled is what is sensed, even when the sensing involves one or more stages of real-time computations based on primitive sensory signals.
- In a multiple-level control system, the higher levels act by varying the reference signals for lower-level systems. They control perceptions computed from many lower-level perceptions, some or all of which are controlled by the same lower-level systems.
- If there are n degrees of freedom at one level of control, in principle n higher-level systems could act independently and simultaneously by sharing the use of the lower-level systems. Any higher-level system acts by sending amplified copies of its error signal to many lower-level systems, each with the proper sign to achieve a negative feedback effect. Any lower-level system receives a reference signal that is the net effect of superimposed higher-level output signals. This worked for a 2-level system with 3 control systems at each level; there is no limit, in principle, to the number of levels or the number of systems at each level. In practice, there is reason to anticipate finding hundreds of systems at a given level, but no more than 10 or 12 distinct levels in a human being. This will be commented on later.

Abstract models and simulations are fine for conveying general ideas. However, if one does nothing but make models and simulations, it is easy to get involved in the math and engineering, and forget the real thing is there to be seen. Items described in the first 3 articles in this series represent something real. Real organisms work much the same way control systems work. They do not work in any of the other ways that have been proposed over the centuries (as far as their behavior is concerned). I am not talking metaphorically. There are excellent reasons to think that when the properties of organisms begin to be investigated in terms of control theory, hard data about the way we are organized will start to accumulate (up to a point, anyway).

The experiment to be described in this article is so simple that it may look elementary. Nevertheless, it is the starting point for a new approach to exploring the organization of human beings. Most new ideas start by looking like old ones, but with a twist that leads in unexpected directions. If you are familiar with tracking experiments, do not be too quick to decide what this is all about.

Equipment Required

The basic equipment needed to do this experiment is:

- A joystick with 1 degree of freedom (ie: a potentiometer with a stick on the shaft will suffice).
- A reasonably fast analog-to-digital (A/D) converter with 7-bit or more accuracy. My system uses the Cromemco D+7A, which has 7 analog channels in and 7 out, as well as 1 input and 1 output 8-bit port.
- A memory-mapped display, in which points are plotted on a video screen by depositing appropriate codes in a reserved segment of memory. This, or something equivalent, is essential for creating the moving objects that are involved in the experiment. I use the Polymorphics VTI with the display area in the 1 K bytes of memory starting at hexadecimal location D000. Out of deference to systems that do not have the VTI's graphics capability (however crude), I have used 64 horizontal elements in the alphabetic mode. Higher resolution would be much more desirable, but this much is enough to show the principles well.

If no memory-mapped display is available, but 2 digital-to-analog (D/A) outputs and a triggered oscilloscope are, the display that is needed can be created. Use 1 D/A...
"onComputing™ really makes personal computers easy to understand."

Written in non-technical language, onComputing™ contains articles on the capabilities of microcomputers, getting started, latest reviews of personal computers, where to purchase and how to use your computer.

Anyone can learn the fundamentals of using a computer. onComputing readers receive practical advice and helpful hints on how to get the most out of a personal computer, explanations of computer terminology, and, periodically, an updated list of active computer clubs.

Benefit from the experience of other computer enthusiasts. Articles in onComputing are written by well known authors as well as competent amateurs. They share their ideas on how to use the computer as a tool for business, education, home entertainment, laboratory work and other applications.

Computer experts edit onComputing for the new user, not the computer professional. They editors combine their esoteric knowledge of computer science and equipment to produce concise, non-technical material which can be readily understood by anyone interested in using a computer—for fun or profit.

onComputing, Inc.
70 Main St., Peterborough, NH 03458

Start your subscription today.

EVERY THREE MONTHS onComputing will bring the latest developments in the field of personal computing; use, applications, books, selection—all in an easy-to-read style.
converter to deflect the trace in the Y direction, and the other (or 1 bit of a digital port) to trigger the sweep. By starting the sweep and then outputting the 3 cursor values in sequence, a 3-segment trace can be created, with the motion of the cursors being up-and-down instead of side-to-side, as in the following program. Lay the oscilloscope on its side if that deviation bothers you.

Systems with built-in graphics under BASIC control, such as Apple, PET, or TRS-80, will probably allow the experiment to be done more simply than how I did it in listing 5. The basic requirement is to be able to read a number from a stored table, add the handle position to it, erase the old cursor, and use the sum to position the new cursor, doing this for 3 cursors at least 4 times per second - the faster the better. (An example of the simulation on the Apple II is shown in listing 6.)

Experimental Design

Imagine a display with 3 cursors on it, one above the other. Each cursor can move left and right. The subject looks at this display while holding a control handle. The instructions for the first experiment are very simple: the subject is asked to select 1 of the cursors, and hold it still, somewhere near the center of the screen as accurately as possible for the duration of the run. Engineering psychologists call this "compensatory tracking." They use it to investigate the limits of speed and accuracy of control in the presence of rapid disturbances of various kinds.

If the handle is held centered, each cursor will be seen to wander back and forth in a pattern that is independent of the other 2 cursors. In this experiment, the disturbances causing this wandering are made very slow and smooth. With even a slight amount of practice, every subject will be able to maintain essentially perfect control. Transfer functions will not be measured, nor will the limits of control be tested in the manner traditional in engineering psychology. A subject acting well within the range of normal operations under conditions where the phenomena of control can be clearly seen is desired. The subject selects a visual variable (position of 1 of the cursors), selects a reference level for that variable (a particular position), and maintains the perceived position at the reference position, while disturbances act that tend to move the cursor away from the reference position.

Figure 17 shows the setup in schematic form. The 3 disturbances are labeled D1, D2, and D3. The 3 cursor positions are labeled C1, C2, and C3. The position of the control handle is H. The position of each cursor is determined by the sum of H and one of the Ds. For cursor 2 the effect of the handle is reversed, so the 3 relationships are:

\[
\begin{align*}
C_1 &= D_1 + H \\
C_2 &= D_2 - H \\
C_3 &= D_3 + H
\end{align*}
\]

If the subject controls C3 in relation to a reference position of 0 (i.e.: midscreen), and does so perfectly, then 0 = D3+H, or H = -D3. The handle position should be an accurate mirror image of the magnitude of the disturbance D3 at every moment, and the cursor C3 does not move at all. You will find that all subjects, after a little practice, will closely approximate these predictions.

This may seem elementary, obvious, boring and hardly worth the labor of getting the experiment up and running. Do not be deceived; this experiment appears to be simple because it is fundamental. It is fundamental because it can prove that all of the life sciences have been using the wrong model. There are also several extensions of the experiment that will show how to get started mapping the whole hierarchy of human control systems. There is no theory and no simulation that carries the impact of seeing how a real living control system works; especially when you can understand every detail of what is happening, either as subject or observer. The 3 previous articles in this series have been designed to give the ability to grasp what is happening here. This experiment is designed to give the gut feeling of knowing.

Program Structure

The program in listing 5 is written in North Star BASIC, Version 6, Release 3. It contains a machine-language subroutine for an 8080/Z80.

Listing 5: North Star BASIC control-variable simulation. The necessary assembly language routines needed for execution are also given.

```basic
10 DIM HS$(16), D1$(250), D2$(250), D3$(250), H1$(250), B$(82), S$(82)
20 DIM A$(2)
30 HS$="0123456789ABCDEF"
40 INPUT "SEED FOR RANDOM GENERATOR (1 - 100) ", A\ Z=RND(A/100)
50 REM ******************************************************
60 REM CONVERT 2 HEX DIGITS TO DECIMAL
70 REM ******************************************************
80 DEF FNB(A$)
90 U=ASC(A$(1,1))\ IF U<58 THEN U=U-48 \ ELSE U=U-55
100 V=ASC(A$(2,2)) \ IF V<58 THEN V=V-48 \ ELSE V=V-55
110 RETURN 16*U+V
120 FNEND
```

North Star Strings

The North Star BASIC string expression BS$(1,1) corresponds to MID$(BS$(1,1)) in other versions of BASIC. BS$(I) corresponds to RIGHTS$(BS$(I)), and BS$(I,1) corresponds to LEFTS$(BS$(I,1)).

Figure, table, and listing numbering continued from part 3.
130 REM ***********************************
140 REM SET MACHINE-LANGUAGE PROGRAM ORIGIN
150 REM ***********************************
160 INPUT "MOST SIG. BYTE, SUBROUTINE LOCATION: ", SS$
170 GOSUB 1130
180 !"6 SEC TO LOAD SUBROUTINE"
190 M1=256•AO\ M2=M1+9
200 DATA "020000000000000048DB19071F1F473A0800FE00C21C00782F"
210 DATA "3C477881E63F4F2A00003A08003C3CEF06DA2F00AF"
220 DATA "320B00856F5E23563EA0127BEE6C0B15F3EAA12722B73DB19EE80"
230 DATA "6F2600C9"
240 M=M1
250 READ BS$ FOR J=1 TO LEN(BS$)-1 STEP 2 \ A=FNB(B$(J,J+1))
260 FILL M,A\ M= M+1\ NEXT J\ IF A<>201 THEN 250
270 REM ********************
280 REM INSERT RELOCATION BYTES
290 REM ********************
300 FILL M1+1,A0\ FILL M1+FNB("12"),A0
310 FILL M1+FNB("17"),A0\ FILL M1+FNB("23"),A0
320 FILL M1+FNB("2D"),A0
330 FILL M1+FNB("26"),A0\ FILL M1+FNB("31"),A0
340 REM ********************
350 REM SET LOCATIONS FOR DISPLAY
360 REM ********************
370 INPUT "MOST SIG. BYTE, DISPLAY LOCATION: ", S$
380 GOSUB 1130
390 FILL M1+2,FNB("C0")\ FILL M1+3,A0\ FILL M1+5,A0+2
400 FILL M1+6,FNB("40")\ FILL M1+7,A0+3
410 REM ********************
420 REM LOAD DISTURBANCE TABLES
430 REM ********************
440 W=3*3.1415927/250\ R0=RND(0)\ R1=32*R2=R1
450 !\!\!\!A!!!\ [ONE MINUTE TO LOAD DISTURBANCE TABLES]
460 !\!"THE SCREEN WILL CLEAR AND THREE SCALES WILL APPEAR."
470 !\!"THEN THREE CURSORS WILL APPEAR, ONE FOR EACH SCALE."
480 !\!"PICK ONE CURSOR AND TRY TO HOLD IT IN ONE POSITION"
490 !\!"FOR THE DURATION OF THE RUN, AS EXACTLY AS YOU CAN.""
500 !\!\!\!\!\![STAND BY FOR PROMPT]"
510 N1=32\ N2=31\ N3=25\ N4=64\ N5=10
520 FOR J=1 TO 250
530 D1$(J,J)=CHR$(N1+N2+SIN(W*J))
540 D3$(J,J)=CHR$(64-ABS(J-125)/2)
550 NEXT J
560 !\ [LOADING RANDOM DISTURBANCE: STAND BY]"
570 N3=25\ FOR J=1 TO 250
580 IF J-N3*INT(J/N3)=0 THEN R0=N4*RND(0)
590 R1=R1+(R0-R1)/N5\ R2=R2+(R1-R2)/N5\ D2$(J,J)=CHR$(R2)
600 NEXT J
610 INPUT"READY TO GO: HIT RETURN TO PROCEED. ", A$
620 FOR J=1 TO 16\ NEXT
630 REM ********************
640 REM EXPERIMENTAL RUN
650 REM ********************
660 !\!\!\!\!\gosub 680!\!\!\!\!\!agosue 680!\!\!\!\!\!gosup 680!\!\!\!\!\!gosup 680!\!\!\!\!\!gosup 680!\!\!\!\!\!gosup 680!
670 GOTO 690
680 FOR I=1 TO 8\ TTTTTTT+\ NEXT I\ RETURN
690 FILL M1+8,4\ REM SYNCH CURSOR COUNTER
Listing 5 continued on next page

September 1979 © BYTE Publications Inc

Page 100
REM DATA PLOTTING PROGRAM
REM ********************************
S$=
REM SET UP FOR PLOTTING (SUBROUTINE)
REM ********************************
A0=0\ K=1\ FOR I=1 TO LEN(S$)-1\ K=K*16\ HEXT J\ K=INT(K+.01)
1160 IF A$="T" THEN TO=2 ELSE TO=0
1110 SS=""\ FOR I=1 TO XO\ SS=SS+" "\ NEXT I
1120 ZO=INT(XO/2)\ RETURN
1130 REM ***
1140 REM CONVERT HEX IN S$ TO DECIMAL IN AO
1150 REM ***
1160 AO=0\ K=1\ FOR J=1 TO LEN(S$)-1\ K=K*16\ NEXT J\ K=INT(K+.01)
1170 FOR I = 1 TO LEN(SS)
1180 FOR J=1 TO 16
1190 IF SS(I,J)=HS(J,J) THEN EXIT 1220
1200 NEXT J
1210 !"NOT HEX NUMBER"\ EXIT 160
1220 AO = AO + K*(J-1)\ K=K/16
1230 NEXT I
1240 RETURN
1250 REM ***
1260 REM UTILITY, CONVERT HEX TO DECIMAL
1270 REM UP TO TEN HEXADECIMAL DIGITS
1280 REM DO "RUN 1300"

100 September 1979 © BYTE Publications Inc
001 * MACHINE LANGUAGE SUPPORT ROUTINES
002 *
003 ORG 0
004
005 0000 0200 ADR0 DBL ADR1
006 0002 0000 ADR1 DBL 0
007 0004 0000 ADR2 DBL 0
008 0006 0000 ADR3 DBL 0
009 0008 00 COUNT DATA 0
010 0009 4B START MOV C,E
011 000A DB19 IN 25 GET HANDLE
012 000C 071F1F ARS DIVIDE BY TWO
013 000F 47 MOV B,A SAVE IN B
014 0010 3A0800 LOA COUNT CHECK FOR MIDDLE ONE
015 0013 FE02 CPI 2
016 0015 C21C00 JNE S1 IF MIDDLE ONE NEXT,
017 0017 78 MOV A,B MAKE HANDLE NEG.
018 0018 2F CMA (TWO'S COMPL.)
019 0019 3C INR A
020 001A 47 MOV A
021 001B 78 S1 MOV A,B
022 001C 81 ADD C X=X+HANDLE
023 001D E63F ANI:3F LIMIT TO 63
024 001E 4F MOV C,A SAVE X HJ C
025 001F 2A0000 LHLD ADR0 GET BASE ADDRESS
026 0023 3A0800 LOA COUNT GET DISPLACEMENT
027 0024 3C INR A
028 0025 3C INR A BUMP TWICE
029 0026 FE06 CPI 6
030 0027 320800 STA COUNT CHECK MODULO 6
031 0028 85 ADD L MAKE ADDRESS FOR
032 0029 6F MOV L,A CURRENT CURSOR.
033 002A 3E AA MVI A,:AA LOAD ASTERISK CURSOR
034 002B 12 STAX D PUT IT ON SCREEN
035 002C 3E AD MVI A,:AD LOAD A SPACE
036 002D 78 MOV A,E ERASE OLD CURSOR
037 002E 6C0 ANI :C0 ZERO DISPLACEMENT
038 002F B1 ORA C NEW DISPLACEMENT
039 0030 5F MOV E,A POINTED FIXED
040 0031 3EA0 MVI A,:AO LOAD A SPACE
041 0032 12 STAX D ERASE OLD CURSOR
042 0033 6F MOV L,A CURRENT CURSOR.
043 0034 5E MOV E,M NEW DISPLACEMENT
044 0035 23 INX H
045 0036 56 MOV D,M DE=OLD SCREEN ADR.
046 0037 3EAO MVI A,:AO LOAD A SPACE
047 0038 78 MOV A,E ERASE OLD CURSOR
048 0039 85 ADD L MAKE ADDRESS FOR
049 003A 6C0 ANI :C0 ZERO DISPLACEMENT
050 003B B1 ORA C NEW DISPLACEMENT
051 003C 5F MOV E,A POINTED FIXED
052 003D 3EA0 MVI A,:AA LOAD ASTERISK CURSOR
053 003E 12 STAX D PUT IT ON SCREEN
054 003F 72 MOV M,D SAVE CURSOR
055 0040 2B DCX H ADDRESS
056 0041 73 MOV M,E
057 0042 DB19 IN 25 GET HANDLE AGAIN
058 0043 EE80 XRI :80 RANGE 0-255
059 0044 6F MOV L,A CURRENT CURSOR.
060 0045 2600 MVI H,D
061 0046 C9 RET
Listing 6: A computer such as the Apple II which has high-resolution graphics capabilities greatly simplifies the program originally given in listing 5. This program performs the same operations as the simulation in listing 5. The author acknowledges the assistance of Charles Faso from Computerland of Niles IL in preparing this program.

Text continued from page 98:

A processor which is loaded by the BASIC program at any specified 256-byte memory-address boundary (specify in hexadecimal only the most significant byte of the location of the subroutine).

The machine-language subroutine reads in the handle position, adds it with the appropriate sign to the value of a disturbance that is passed to the subroutine by the CALL command (in the DE register pair), erases the old cursor, and deposits the new cursor, a rubout, on the screen. Each time the subroutine is called it steps to the next cursor, recyling as necessary. On return from the subroutine, the handle position is passed back to the main program (in the HL registers). The machine-language program is in lines 200 thru 230, expressed as a string of hexadecimal bytes with no punctuation. Thus if your machine is not an 8080/Z80 type, a program can be assembled, the listing copied into machine-language for the processor which is loaded by the BASIC program at any specified 256-byte memory-address boundary (specify in hexadecimal only the most significant byte of the location of the subroutine). The subroutine (later), can be accomplished much in a simpler way.

The program asks for the most significant byte of the place where the machine-language subroutine is stored. The loader adjusts memory references by inserting the value of this byte in memory wherever necessary, after the program is loaded (lines 300 thru 330).

The display area consists of 1 K bytes of memory starting on any 256-byte boundary. Lines 370 thru 400 ask for the starting location of the memory area devoted to the display, and set up base registers in the machine-language program for the left margin of each cursor's movement. The FILL command is like POKE. If the computer has graphics capability built-in, everything from line 60 thru 400, and the plotting subroutine (later), can be accomplished in a simpler way.

Disturbance tables are set up in lines 510 thru 620. The unnecessary use of symbols, instead of constants,
Color. VP-590 add-on Color Board allows program control of 8 brilliant colors for graphics, color games. Plus 4 selectable background colors. Includes sockets for 2 auxiliary keypads (VP-580). $69.*

Sound. VP-595 Simple Sound Board provides 256 tone frequencies. Great for supplementing graphics with sound effects or music. Set tone and duration with easy instructions. $24.*

Music. VP-550 Super Sound Board turns your VIP into a music synthesizer, 2 sound channels. Program control of frequency, time and amplitude envelope (voice) independently in each channel. Program directly from sheet music! Sync provision for controlling multiple VIPs, multitrack recording or other synthesizers. $49.*

Memory. VP-570 RAM Expansion Board adds 4K bytes of memory. Jumper locates RAM in any 4K block of up to 32K of memory. On-board memory protect switch. $95.*

EPROM Programmer. VP-565 EPROM Programmer Board comes complete with software to program, copy and verify 5-volt 2716 EPROMs—comparable to units costing much more than the VP-565 and VIP put together! Programming voltages generated on board. ZIF PROM socket included. $99.*

EPROM Interface. VP-560 EPROM Interface Board locates two 5-volt 2716 EPROMs (4K bytes total) anywhere in 32K of memory. VIP RAM can be re-allocated. $34.*

ASCII Keyboard. Fully encoded, 128-character ASCII encoded alpha-numeric keyboard. 58 light touch keys including 2 user defined keys! Selectable upper and lower case. Handsomely styled. Under $50.*

Tiny BASIC. VP-700 Expanded Tiny BASIC Board puts this high-level language on your VIP BASIC stored in 4K of ROM. Ready for immediate use—no loading necessary. This expanded BASIC includes the standard Tiny BASIC commands plus 12 additional—including color and sound control. Requires external ASCII encoded alpha-numeric keyboard. $39.*

Auxiliary Keyboards. Program your VIP for 2-player interaction games! 16-key keypad VP-580 with cable ($15*) connects to sockets provided on VP-590 Color Board or VP-585 Keyboard Interface Card ($10*).

COSMAC VIP lets you add computer power a board at a time.

With these new easy-to-buy options, the versatile RCA COSMAC VIP (CDP18S711) means even more excitement. More challenges in graphics, games and control functions. For everyone, from youngster to serious hobbyist. And the basic VIP computer system starts at just $249* assembled and ready to operate.

Simple but powerful—not just a toy.

Built around an RCA COSMAC microprocessor, the VIP includes 2K of RAM. ROM monitor. Audio tone with a built-in speaker. Plus 8-bit input and 8-bit output port to interface relays, sensors or other peripherals. It's easy to program and operate. Powerful CHIP-8 interpretive language gets you into programming the first evening. Complete documentation provided.

Take the first step now.

Check your local computer store or electronics parts house. Or contact RCA VIP Marketing, New Holland Avenue, Lancaster, PA 17604. Phone (717) 291-5848.

*Suggested retail price. CDP18S711 does not include video monitor or cassette recorder.
*Available 1st Quarter, 1979

The fun way into computers.
is an attempt at acceleration. It still takes a minute to load the 3 disturbance tables, each 250 bytes long. All long tables are strings; only 8 bits of accuracy is needed, so by using the CHR$ and ASC functions, the tables can be stored 1 byte per value instead of 5 bytes per value. Disturbances are in tables because BASIC cannot calculate them fast enough.

Disturbance D1 is a sine wave and D3 is a triangular wave. D2 is a smoothed random disturbance. On reruns, only D2 is reloaded, taking about 20 seconds. The experimental run is controlled by lines 660 thru 780. Lines 660 and 680 lay down 3 arbitrary scales on the screen, while the rest repeatedly call the machine-language subroutine. For each stored value of each disturbance, all 3 cursor positions are computed and plotted, and the handle position is stored in the table H1$. The inner loop from line 710 to line 770 adjusts the duration of the experimental run; here it is set up so that the disturbances change and a handle position is recorded only every fourth time the display is refreshed. On my system, this works out so the display is refreshed 16 times per second, and data is sampled and stored 4 times per second. The OUT statements reflect my laziness; I use 2 digital-to-analog outputs to supply the voltage to the potentiometer that measures handle position.

The data plotting routine (lines 820 thru 1010) is entered at the end of an experimental run. This routine is set up to plot either on the video screen or on a hard-copy device; it asks for the X and Y dimensions of the plot, which cursor is to be plotted, and which device is to be used. My system is set up so the typewriter is device 2 and the screen is any other device number. If you do not have this ability in your BASIC or system, delete lines 1060 and 1070 (in the subroutine that requests information about the display), and eliminate the "#", in lines 970 and 990. In North Star BASIC, the exclamation point is short for PRINT.

Only the handle position is stored as data; the cursor positions are reconstructed during plotting from the list of handle positions and the corresponding tables of disturbances.

The plotting scheme is designed to work with any teletypewriter-like device. If you have legitimate graphics, you can rewrite this part and get a more pleasing result.

There are 3 choices for plotting, each associated with cursors C1, C2, and C3. Each plot shows the cursor as a C, the handle position as an H, and the disturbance acting on the cursor as a D. A dot indicates the center of the display when nothing else is there. After each plot is finished, there is a pause; hitting the carriage return will cause the program to ask about the next plot. If the question about the Y dimension of the display is responded to with a 0, the program will reload the random disturbance table and issue a prompt for another experimental run. The old data will be destroyed. Remember, it takes about 20 seconds to reload the random disturbance table. Do not panic if
looking for a more meaningful relationship with your computer?

Learn to speak its language with easy-to-use Heathkit Computer Language Programs.

Heathkit Self-Instruction Program for ASSEMBLY Language Programming.

- Use the full capacity of your computer.
- Execute programs faster.
- Store more in less space.

ASSEMBLY Language lets you do everything your computer is capable of doing. It's the most versatile, most powerful language you can use.

ASSEMBLY includes a mnemonic for every machine operation. No time is wasted interpreting, so programs run much faster.

ASSEMBLY makes more efficient use of memory. It stores in less space because codes are shorter, more explicit.

The Heathkit Self-Instruction Program teaches you to program your computer in ASSEMBLY Language. You learn at your own pace through a special text designed for self-study. An exercise workbook provides hands-on experience with programming exercises performed by you on your computer. You learn in a way that's fast, fun and thorough.

The Heathkit Program is designed for computers using the popular 8080/8085/Z80 microprocessor series. This includes the Heathkit H6, H88 and H89 Computers. The concepts of the program, however, can be applied to any computer.

Now's the time to learn the language that puts you in total command of your computer's full potential. Send today for the Heathkit Self-Instruction Program for ASSEMBLY Language.

Order No. EC-1108: $49.95, plus shipping and handling.

Heathkit Self-Instruction Program for BASIC Language Programming.

- Easiest of all languages to use.
- Now easiest of all to learn.

More programs are written in BASIC than any other language. Because it uses English statements and commands, it's the easiest to learn and the easiest to use.

When you know BASIC you can adapt and run hundreds of existing programs. You can exchange programs with others. And you can write your own programs for your specific needs.

In 14 easy-to-follow segments, the Heathkit Program covers all formats, commands, statements and procedures. A special workbook provides programming instructions and experiments performed on your computer. You learn practical problem-solving techniques. Until you know BASIC, you're missing the full selection of programs available to you. Send today for the Heathkit Self-Instruction Program for BASIC Language.

Order No. EC-1100: $39.95, plus shipping and handling.

Send Today or Phone for faster service on VISA and Master Charge. 616-982-3411

Heath Company, Dept. 334-570, Benton Harbor, MI 49022

SHIP MY ORDER TO:

Name ____________________________ (please print)
Address ____________________________
City ____________________________ State ____________ Zip ____________

MONEY-BACK GUARANTEE OF SATISFACTION
If you are not completely satisfied with the EC-1100 BASIC Program or the EC-1108 ASSEMBLY Program, simply return programs for a full refund of purchase price.

Deadlines:
Deadline Date:
Deadline Time:

BYE September 1979 105
there is a long pause.

At line 1260 there is a utility routine that converts any hexadecimal number up to 10 digits to a decimal number. I used it while writing the program. It calls the conversion subroutine starting at line 1130.

Running the Experiments

If you possibly can, take the trouble to set this experiment up. Nothing can take the place of actually experiencing yourself as a control system and understanding things that you have taken for granted all your life.

Here is a typical run for the benefit of many readers who do not have the equipment to do this; the data will be observed. Here is an old friend, Chip Chad (from part 1 of this series), glaring at the screen and maintaining a choke-hold on the handle, waiting for the experimenter to hit the return key at line 610. The experimenter reaches in and taps the key. The reference scales slide up into place and the 3 cursors pop into view, moving. Chip picks the middle one as most people do the first time, decides to keep it on the middle mark, and after a few wobbles succeeds.

"So what?" he says.

If learning were being studied, good information could be obtained from this first run. But the plan is to see Chip acting as a competent control system, so his first effort is praised and he is given another run (answering the query about Y dimension with a 0). After the second run, the data is plotted for each cursor.

Figure 18 shows the data for each cursor, number 1 on the left, 2 in the middle, and 3 on the right. The 2 end plots are a mess, but the middle plot shows a striking symmetry. The Cs march more or less down the center of the screen, deviating a little to left and right, but maintaining a constant position on the average. The Ds make a random-looking pattern, and the Hs follow almost the mirror image of the D pattern.

Looking carefully at the middle plot, could it be said that the handle position or motion looks like any sort of regular function of the cursor position or motion? There may be some relationship, but it certainly is not clear. Probably, nobody would claim that the large, smooth motions of the handle could be reconstructed accurately on the basis of measurements of cursor position (that is, reconstructed roughly or statistically with accuracy, especially if handle acceleration is compared with cursor deviation from the average position). The best which could be hoped for would be some statistical relationship (eg: a small signal buried in much noise).

On the other hand, the relationship between the handle position and the magnitude of the invisible disturbance is obvious and quantitative. It is seen that the handle position is the mirror image of the disturbance magnitude with an error of only a few percent of full scale. There is much signal and little noise in that relationship.

Here is the situation. There is 1 measure of Chip's behavior, H. There are 2 variables, D and C, either of which might have some relationship to that behavior. Which variable, D or C, would be selected by any statistical test as the most probable cause of the behavior? Of course, D would be selected. In fact, a formal statistical analysis, like those done in every scientific study of behavior, shows D to be the only significant contributor to the behavior, while C, the cursor position, is rejected as an irrelevant variable!

That is a paradox, however, from

Figure 18: A typical run for a practiced subject. In figure 18a is the record for D1, C1, and H. Figure 18b has the record for D2, C2, and H; figure 18c has the record for D3, C3, and H. In figure 18b, the cursor is held near the center, while the handle position is at all times very nearly the mirror image of the disturbance amplitude. It is very easy to decide which cursor was under control.
Figure 19: Cause and effect paradox. Under the old concept that stimuli cause behavior, the cause and effect chain runs from the disturbance to the cursor, through the subject, to the behavior. However, the correlation of the disturbance and the cursor position is very low, as is the correlation of the cursor position and handle position (for the controlled cursor). This would lead to a prediction of an even lower correlation of disturbance and behavior. In fact, that correlation is normally very high (0.99 or better). Only the control theory analysis of this experiment can explain this otherwise paradoxical situation.

That is the proof mentioned earlier. The old cause-effect model fails utterly when applied to this situation. The question then is, why have generations of intelligent people believed that behavior is caused by sensory stimulation? The answer is clear: they have been fooled by a monstrous illusion.

The illusion would be easier to see if there was some visible, direct indication of the magnitude of the disturbance. Suppose there were a moving D (or a number that continually reflected the magnitude of D) on the display. Clearly, if Chip managed to control C without that indication, he could still do so; he could ignore it and perform as well as ever. However, something has now been added that would mislead a bystander who did not understand control theory.

That bystander could now see 2 variables, both able to affect Chip's senses. Taking the apparent relationships at face value, it would be clear that the indication of D was accur-
ately associated with the handle position; while the movements of the cursor, such as they are, show no such association. Furthermore, the variations of D are large and smooth, and there is no observable relationship between D and C. Why should the bystander suspect that C is being affected by D in one way and affected by H in an opposite way? The obvious conclusion is that the variations in D are causing Chip's behavior, while C has nothing to do with his behavior, especially if C does not vary more than the fixed background scales do. If the screen were full of irrelevant cursors, jiggling around slightly, how could the bystander pick C as something of special importance? If BASIC were fast enough, I would have included such irrelevant cursors; the point being made here would then be obvious.

An organism is surrounded by a world full of variables; variables that change within widely diverse ranges. The organism receives many signals from its internal parts, too. In that sort of situation, if the organism is controlling some of the variables, it will react strongly and smoothly to any disturbance tending to alter 1 of the controlled variables. The result is that it will seem to be responding directly to the disturbances. There will be no obvious indication that it is controlling anything at all. There is every excuse for even the best of scientists to have observed the relationship between disturbance and behavior, and to have missed the very existence of controlled variables.

The name for such disturbances is stimuli. Once in a while, an experimenter must have accidentally picked a real controlled variable to call a stimulus, but the chances are against that. If an attempt is made to manipulate a real controlled variable, the organism will have to be strapped down to keep it from interfering. That is what is done in such cases. If the organism insists on acting like a control system, forcibly break the loop and make the organism conform to the theory. As a famous psychologist said, the theme is 'Behave, damn it!' It never occurs to such stong-willed individuals that they might have the wrong idea about what is happening.

There is more in this elementary experiment than meets the eye. If all psychologists were to experience it, and try to meet the challenge of explaining these effects using any standard theory, the result would be a total collapse of that science, followed by a rebirth. However, many jobs would be threatened. What has happened instead is that a handful of psychologists has supported this theory, another handful has taken up arms against it, and most have resolutely ignored it.

I suggest that you run this experiment many times with subjects controlling all 3 cursors. Every case will show that mirror-image relationship between D and H and little relationship between C and either D or H. If the previous parts of this series are studied and all the relationships that make up a control system thought about carefully, it will be evident that there is no other explanation for what is going on here. If you get nothing else out of this, you should acquire an intuitive feel for a new theory of how behavior works. You might even begin to understand how to design a robot in a new way.

It is time now to try to fulfill a pro-
The Micropolis MetaFloppy™ goes beyond.

The Micropolis MetaFloppy™ gives you more than four times the capacity of anyone else's 5½-inch floppy. Because it uses 77 tracks instead of the usual 35.

The field-proven MetaFloppy, with thousands of units delivered, comes in a complete family of models. And, like our MacroFloppy™ family of disk drives, MetaFloppy is designed for the S-100/8080/2-80 bus.

For maximum capacity, choose our new MetaFloppy-1054 system. Which actually provides you with more than a million bytes of reliable on-line storage. For less money than you'd believe possible.

If that's more storage than you need right now, try our MetaFloppy-1053, with 650,000 bytes on-line. Or our MetaFloppy-1043, with 315,000 bytes on-line. Either way, you can expand to over a million bytes on-line in easy stages, when you need to. Or want to.

In other words, if your application keeps growing, we've got you covered. With MetaFloppy.

The system that goes beyond the floppy.

For a descriptive brochure, in the U.S. call or write Micropolis Corporation, 7959 Deering Avenue, Canoga Park, California 91304. Phone (213) 703-1121.

Or better yet, see your local dealer.

MICROPOLIS™
More bytes in store for you.

mise implied in part 1, to show how anyone with a home computing system can make important contributions to this new science of human nature. The best way this can be done is to start with the experiment used, and to show how it can be extended to become a powerful tool for investigating human organization. The main objective will be to introduce the test for the controlled variable, the nearest approach I know of to mind reading.

More Controlled Variables

Once subjects controlling all 3 cursors have been seen, it might seem that the possibilities of this experiment have been exhausted; this is not the case at all. There are controllable variables all over that screen; all of them can be controlled by the same means, movements of the handle in 1 dimension. Discovering them is a way to get out of the habit of thinking that we simply perceive our environment, and start a new way of thinking: to recognize that we construct perceptions, imposing order on our experiences far more than recognizing order. As you will see, a controlled variable does not have to be "real" at all.

Here is an example. It is possible to perceive the relative position of any of the 2 cursors. The handle affects C2 in a direction opposite to its effects on C1 and C3, so the relative position of C1 and C3 cannot be controlled because the handle does not affect it. However, it is possible to keep C1 even with C2, or C2 even with C3; in fact, it is easy. A plot of the results would involve plotting C2-C1 or C3-C2 instead of just C, and D2-D1 or D3-D2 instead of just 1 disturbance. The mirror image relationship with H would be as good as ever. Do not forget that C2-C1 and C3-C2 are variables. Any value of the variables can be selected as a reference level (eg: C1 to be 1 inch to the left of C2).

These are examples of higher-level controlled variables. If the subject could not perceive the present positions of the cursors, he or she certainly could not perceive their relative positions. Relative position is derived from perceptions of individual positions, but not vice versa. In order to control relative positions, it is necessary to control (or at least vary) individual positions, but individual positions can be controlled without controlling relative positions. These are the relationships one looks for to map out a hierarchy of perception and control.

Other relative perceptions can be controlled. All 3 cursors can be kept lying in a straight line, at least within the range where 1 of them does not fall off the edge of the display and pop up at the other edge. Reducing the amplitude of the disturbances would eliminate that problem. Also, the 3 cursors can be made to form any fixed angle, subject to the same limitation. There may be more static patterns that can be controlled, but I have not thought of any. This is, after all, a simple display.

It is not, however, limited to static conditions. Suppose the subject visualizes a pattern in which 1 cursor moves back and forth slowly between 2 limits. This pattern can easily be maintained, the handle moving just enough to produce it, and enough more to cancel the effects of any of the disturbances. A similar oscillation could be maintained for the relative
variables. This is a still higher-level variable, a temporal pattern. The subject chooses which temporal pattern to perceive, and what state of that kind of pattern to maintain. Control still requires only the use of the 1-dimensional effect caused by the handle.

There is clearly an infinite range of different temporal patterns, ranging from a simple steady motion in 1 direction to completely arbitrary motions and rhythms. There is an unlimited number of potential controlled variables in this simple display. Anything that can be perceived, and that the handle can affect in a systematic way, can be controlled.

For all of these examples of controllable perceptions, it is essential to remember that the disturbances are acting all the time. This is not a matter of producing any particular behavior. The cursor cannot be made to move slowly back and forth between fixed limits just by moving the handle slowly back and forth between fixed limits. The handle might be moving the wrong way at many moments, when the disturbance tends to make the cursor move faster than the reference pattern being considered. There is no one-to-one correspondence between handle position or velocity and cursor position and velocity, because of those ever-present disturbances. Regularities of behavior are not being looked at here, but regularities of controlled perceptions. If there were a slowly oscillating prism between the display and the subject's eyes, a regular pattern of movement of the cursor on the screen would not be seen. The subject controls the visual image, not the reality. For the higher-level variables, the subject controls some function of the visual image (often the controlled variable could not be found, even on the retinas).

One could create displays of far greater complexity, and provide means of affecting the display that have more than 1 degree of freedom to explore a staggering range of possible controlled variables. This is what I suggest be done. The first step in the development of any new science is acquire the facts; here the most needed facts concern what variables human beings can actually control. What is needed is a large and simpleminded program of recording the obvious and obscure. What is needed is a body of definitions of variables in every sensory mode that people have been able to control. Order and system count much less than sheer volume of data at this point. In fact, an unsystematic gathering of data may be the best kind, since it will not be constrained by theories about what people ought to be able to control. Anything which can be a way of testing is worth testing at this stage. The possibilities are limited only by the imagination.

We do need some sort of ordering principle—some criterion for judging the reality of any proposed controlled variable. This is where the test appears; here is how it works.

Test for Controlled Variables

The first thing to remember when investigating a possible controlled variable is that in order for something to be controllable it has to be variable. There is neither the means nor the need to control the existence of the Empire State Building or the planet Jupiter. Not all perceptions are controlled. Some are just disturbances; some are just there.

One might think initially about controlling, for instance, a car. People often speak casually about controlling things. But what is meant is controlling something about those things. A person cannot really control a car; but under proper circumstances its shape, its color, its price, its speed, its direction, its parking place, its dirtiness, its dangerousness, its desirability, its altitude, or the flatness of its tires can be controlled. A car, after close inspection, proves to be composed entirely of hundreds or even thousands of variables. Together they create "car-ness" in our perceptions. Individually, or in groups, most of them can be affected by one means or another, and can be controlled if it is worth the effort. You can even make the car disappear instantly by closing your eyes. Keep remembering that what is controlled is really a perception.

The first step in applying the test for the controlled variable is to define a variable. You do not have to know in advance if it is a controlled...
For your SWTP 6800 Computer...

PERCOM's™ FLOPPY DISK SYSTEM

the **LFD-400**

Ready to plug in and run the moment you receive it. Nothing else to buy, no extra memory. No "booting" with PerCom MINIDOS-PLUSX™, the remarkable disk operating system on EPROM. Expandable to either two or three drives. Outstanding operating, utility and application programs.

For the low $599.95 price, you not only get the disk drive, drive power supply, SS-50 bus controller/interface card, and MINIDOS-PLUSX™ you also receive:

- an attractive metal enclosure
- a fully assembled and tested interconnecting cable
- a 70-page instruction manual that includes operating instructions, schematics, service procedures and a complete listing of MINIDOS™
- technical memo updates — helpful hints which supplement the manual instructions
- a 90-day limited warranty.

SOFTWARE FOR THE LFD-400 SYSTEM

Disk operating and file management systems

INDEX™ The most advanced disk operating and file management system available for the 6800. Interrupt Driven Executive operating system features file-and-device-independent, queue-buffered character stream I/O. Linked-file disk architecture, with automatic file creation and allocation for ASCII and binary files, supports sequential and semi-random access disk files. Multi-level file name directory includes name, extension, version, protection and date. Requires 8K RAM at $400. Diskette includes numerous utilities $99.95

BASIC Interpreters and Compilers

SUPER BASIC A 10K extended disk BASIC interpreter for the 8800. Faster than SWTP BASIC. Handles data files. Programs may be prepared using a text editor described below $49.95

BASIC BANDAID™ Turns SWTP 8K BASIC into a random access data file disk BASIC. Includes many speed improvements, and program disk CHAINing $17.95

STRUHAL+™ A STRuctured Basic Language compiler for the professional programmer. 14-digit floating point, strings, scientific functions, 2-dimensional arrays. Requires 20K RAM and Linkage Editor (see below). Use of the following text editors to prepare programs. Complete with RUN-TIME and FLOATING POINT packages $249.95

Text Editors and Processors

EDIT68 Hemenway Associates' powerful disk-based text editor. May be used to create programs and data files. Supports MACROS which perform complex, repetitive editing functions. Permits text files larger than available RAM to be created and edited $39.95

TOUCHUP™ Modifies TSC's Text Editor and Text Processor for PerCom disk operation. ROLL function permits text files larger than available RAM to be created and edited. Supplied on diskette complete with source listing $17.95

Assembler

PerCom 6800 SYMBOLIC ASSEMBLER Specify assembly options at time of assembly with this symbolic assembler. Source listing on diskette .. $29.95

MACRO-RELOCATING ASSEMBLER Hemenway Associates' assembler for the programming professional. Generates relocatable linking object code. Supports MACROS. Permits conditional assembly $79.95

LINKAGE EDITOR for STRUHAL+™ and the MACRO-Relocating assembler $49.95

CROSS REFERENCE Utility program that produces a cross-reference listing of an input source listing file $29.95

Business Applications

GENERAL LEDGER SYSTEM Accommodates up to 250 accounts. Financial information immediately available — no sorting required. Audit trail information permits tracking from GL record data back to source document. User defines account numbers $189.95

FULL FUNCTION MAILING LIST 700 addresses per diskette. Powerful search, sort, create and update capability $99.95

PERCOM FINDER™ General purpose information retrieval system and data base manager $99.95

Now! The LFD-800 and LFD-1000. Add one, two or three LFD-800 drives and store 200K bytes per drive on-line. Add one or two (dual-drive) LFD-1000 units and store 800K bytes per unit on-line. Complete with interface/controller, DOS, cable & manuals. **Two-drive systems:** LFD-800 — $1549; LFD-1000 — $2495.

PERCOM 'peripherals for personal computing'
variable; you do not even have to know where the supposed control system is. All you have to do is to pick out something that you know is variable and "push" on it.

By push I mean to apply a disturbance that under normal circumstances should have a predictable direction and amount of effect on the variable. If I push hard enough on a life-sized statue, it should tilt in the direction of the push. Perhaps it will topple in that direction according to the simple laws of mechanics.

Having selected a variable and applied a push to it, the next step is to measure the actual effect of the push. I predict that pushing on this statue should make it tilt a certain amount in a certain direction. I apply the push and observe the tilt.

If the actual effect is far smaller than the predicted effect, common sense indicates that something must be pushing back. If the pushing-back is always just enough to cancel any amount or direction of disturbance (within some limits), it can be concluded that the pushing-back is systematic. The mirror-image effect that has been observed is what is wanted.

It is necessary to discover what is pushing back, and how it is doing the pushing. Perhaps, examining the statue carefully, an iron rod is found supporting its back from its base. In that case, a conclusion is made that there were not enough facts to make a correct prediction of the effects of the push; the bending moment of the rod should have been taken into account. But if no simple explanation for the failure of the prediction is found, one must look further.

Suppose it is discovered that the base of the statue seems to move when pushed. If there is a push to the east, the base tilts to the west moving the center of support east of the center of gravity of the statue, and thus creating a counterforce. Suppose this tilt of the base is found to be always just what is required to offset the effects of the push. It can be concluded that one may be on the trail of a control system.

What has been done is to find out something about the means of control, the path by which the output of the control system, if it exists, might be linked to the controlled variable (the angle between the statue's longitudinal centerline and the vertical). Finding this link is a necessary step in the test.

That step will usually lead to discovering the physical control system. Tracing the wires that work the motors that tilt the base of the statue, you find a black box a few yards away from the statue. That may be the control system, or at least all of it that is not its actuators (which have been found).

There is still one step to be taken. You cannot be completely sure of the nature of the control system until you discover the variable it is really sensing. The situation has been approached with human prejudices; to me, it seems that the controlled variable is the orientation of the statue, a geometric or visual variable. Perhaps that variable is only related to the real controlled variable. What must be found now are the sensors that the control system is using.

Thinking in visual terms, you might look for a photocell that detects the tilt. Suppose a photocell is found on a stand near the statue. The test calls for breaking this link, preventing the sensing of the statue. The result should be that the effect of the push returns to what would be predicted from mechanical laws. So the photocell is covered and the disturbances are applied again. What happens is that the floodlights illuminating the statue turn on. The statue still resists the push—the photocell was for something else.

By careful searching 4 strain gauges built into the base of the statue are discovered. These provide a signal showing where the center of thrust is, and the wires from the strain gauges run over to that black box. Disconnecting the wires shows that now the push succeeds in tilting the statue. As soon as its tilt becomes marked, an angry groundskeeper comes leaping out of the bushes and arrests the experimenter. Aha! You may have discovered another control system controlling the state of the statue. To recapitulate, the test for the controlled variable involves the following steps:

1. Define a variable.
2. Apply various amounts and directions of disturbances directly to the variable.
3. Predict the expected effects of the disturbances, assuming no control system is acting.
4. Measure the actual effect of the disturbances.
5. If the actual effect is essentially the same as the predicted effect, stop. No control system is found.
6. If the actual effect is markedly smaller than the predicted effect, look for the cause of the opposition to the disturbance, and determine that it results from systematic variations in some other variable. If such a cause is found, it may be associated with the output of a control system.
7. Look for a means of sensing the controlled variable. If none is found, stop: no control system is proven to exist.
8. If a means of sensing is found, block it, so the variable cannot be sensed. If control is not lost, the sensor is not the right one. If no such sensor is found, stop: no control system is proven to exist.
9. If all steps of the test are passed, the variable is a controlled variable, its state is its reference level, and the control system has been identified.

To apply step 8 of the test to our computer experiment, cover the sensor suspected of being controlled with a cardboard strip. Control should be lost. Cover each cursor. The covered one will never pass the test. The other steps are easily carried out.

Concluding Remarks

Now it is up to you. You can test controlled variables involving intensity, sensation, configuration, change, sequence, relationship, strategy, principle, and system concepts having to do with visual, auditory, tactile, kinesthetic, and other senses.

Good luck with the programs, and good hunting for controlled variables. I will be interested to receive word about what people are doing with the information covered in these articles.

BIBLIOGRAPHY

The marvelous computer projects that Steve Ciarcia has constructed in his cellar are explained in detail so that you can make your microcomputer perform the same useful functions. Each article is a complete tutorial, presented in such an easy-going style that even beginners can understand and enjoy.
For the first time: Hard-to-obtain computer music material has been collected into one convenient, easy-to-read book.

The BYTE Book of Computer Music combines the best from past issues of BYTE magazine with exciting new material of vital interest to computer experimenters. The articles range from flights of fancy about the reproductive systems of pianos to Fast Fourier transform programs written in BASIC and 6800 machine language. Included in this fascinating book, edited by Christopher P. Morgan, are articles discussing four-part melodies, a practical music interface tutorial, electronic organ chips, and a remarkable program that creates random music based on land terrain maps!

$10.00

Buy this book at your favorite computer book store or order direct from BYTE BOOKS
Add 60¢ per book for postage and handling

70 Main Street Peterborough, New Hampshire 03458
S-100 8086 AND Z8000 CARDS COMING: At least 6 S-100 product manufacturers are about to release 16-bit processor cards for the S-100 bus that use the Intel 8086 and Zilog Z8000. One such card has already been announced, a 8086 processor card from Seattle Computer Products Inc, Seattle WA. All will conform to the Institute of Electrical and Electronic Engineers (IEEE) S-100 standard that is soon to be adopted. They will work with most 8-bit memory cards using byte-serial read/write. However, for full speed operation you will need either a true 16-bit memory card or a modification of your present memory cards. To modify memory cards requires cutting traces, some rewiring, and adding some logic circuitry.

Microsoft has already announced and demonstrated an 8086 BASIC, and is working on a Z8000 BASIC, as well as other 16-bit software. Digital Research is working on a 8086 version of CP/M. Most 16-bit software in development will be designed for multiprocessing environments, using real-time clocks and interrupt-driven user-inputs.

CP/M 2.0 TO BE RELEASED SOON: There is no doubt that the most widely used disk operating system for microcomputer is CP/M, developed by Gary Kildall of Digital Research, back in 1974. Although originally written for the Intel 8080 development system, it was adapted to run on 8080, 8085 and 8086 systems of many types. Its power and flexibility puts microcomputers in the big leagues by providing features and capabilities normally found on the bigger models.

Gary Kildall is planning to release the 1st major revision to CP/M (Version 2.0). It will use a real-time clock and be interrupt-driven. It will support all present CP/M software. Look for its release around September 1st.

RANDOM RUMORS: Matsushita Inc is rumored to be working on a $250 printer which will generate "letter quality" type. It will print at 15 characters per second and include a keyboard. Rumors about Hewlett-Packard's Personal Computer are getting warmer. It may be introduced in time for the Christmas market. Expected to sell in the $2500 area, it will have a 5-inch black and white monitor, 16 K bytes of programmable memory, BASIC in read-only memory, a built-in thermal printer and cassette I/O (input/output). Texas Instruments is developing a 3 or 4-inch Winchester-type disk drive to sell for approximately $50. Shugart is about to start delivery on the $70 5-inch floppy disk drive made by Matsushita. Infoton, a video terminal manufacturer, is rumored to be about to introduce a video terminal which will sell for less than $400 in large quantities. It will use the Zilog Z8 microprocessor and have a total of only 16 integrated circuits. All circuitry will be on 1 printed circuit card, the power supply will be transformerless, and a special elastomeric keyboard will be used.

HAND-HELD COMPUTER IN DEVELOPMENT: Matsushita Electrical of Japan and Friends-Amis Inc of CA have agreed to develop and produce "the first practical hand-held personal computer." The size of a hand-held language translator, the unit could be in production by the end of the year. The computer will be able to accept preprogrammed and user programmed memory capsules. Preprogrammed capsules will include information on business, science, language, education, etc. The computer will have modular construction, enabling new technology modules to be added as they are introduced. Add-ons will include a miniprinter, miniature video display, and a voice synthesizer.

MICRO-MOUSE CONTEST FINALLY ENDS: The 2 year long "Amazing Micro-Mouse Contest" run by the IEEE has finally ended. Although several thousand entries were received, less than 100 actually ran the maze. The contest's objective was to design a robot-type device which could negotiate and learn a maze as it went through. The trials were held at conventions of the IEEE, NCC shows and PC-78.

The ultimate winner was entered by the team of Howard P Katseff and Roy Tramwell from Bell Labs, Holmdel NJ. Their mouse ran the 8½ by 8½-foot maze in just under 30 seconds. It employed a Z80 microprocessor with 4 K bytes of read-only memory and 1 K bytes of programmable memory. Second prize was taken by the team from Batelle Memorial Institute of Richland WA. Art Boland, Ron Dilbeck and Phil Stover's mouse ran the maze in just over 31 seconds. One high performer was actually nonprocessor controlled, and ran the maze in just under 40 seconds.
VOICE-OPERATED TV DEMONSTRATED: Sanyo Electric Co recently demonstrated a television receiver that responds to voice commands to turn on and off and switch stations. Utilizing a microprocessor, the unit compares the voice input to voice patterns stored in memory. The unit has a 30-word vocabulary, and can respond to the voices from 2 different people. Furthermore, the voice input can be used to play games. Sanyo has not announced any immediate plans for incorporating the receiver into its television sets.

APL FOR MICROCOMPUTERS: Despite a report in an earlier BYTE NEWS column, Quark has decided against introducing its APL microcomputer using the Intel 8086 microprocessor.

JAPANESE MOVING SWIFTLY INTO MICROCOMPUTERS: At least 9 Japanese manufacturers are presently manufacturing microprocessor integrated circuits. Approximately 80 different microprocessors are being made. Most of them are original designs including advanced features (eg: analog-to-digital converters, multiply/divide, counter/timers, etc). Five different 16-bit microprocessors are already in production. Furthermore, over a dozen personal computers/trainers are in production to support a very strong interest in personal computers in Japan. Thus far only a few units are available for export.

MOTOROLA ANNOUNCES 68000 DELIVERY AND PRICES: Motorola has announced that it expects to start shipping limited sample quantities of its new 68000 16-bit microprocessor by the end of the year. Single unit price will be $249. Limited production quantities are expected to be available by the end of the 1st quarter of 1980, with full production by late 1980. No second source arrangements have been finalized.

75 MEGABYTE WINCHESTER DRIVE RUMORED: At least 6 companies exhibited 8-inch Winchester-type drives at the recent NCC show. All of the drives could fit into the same space as an 8-inch floppy disk drive, and provided from 10 to 45 M bytes of storage. At least 8 companies will be delivering these drives by the end of the year, and a 75 M byte version is expected next year. The drive should sell for under $2000 in quantity.

PERSONAL COMPUTER MANUFACTURERS RANK WITH COMMERCIAL DATA PROCESSORS: Datamation magazine, in their most recent annual report of the top 50 US companies in the data processor industry, disclosed some interesting facts about changes in the computer industry. For the 1st time a personal computer manufacturer, Tandy, ranked among the top 50 in computer equipment sales, and Commodore ranked second among fastest growing companies. Commodore had a 190% increase in sales in 1 year, to $75M. Tandy(ranked 43rd)reported computer sales of $105M and total company sales of $1,152M resulting in a net income of $76M. The company reported a sales gain of only 11.6% (which is about equal to the rate of inflation, and hence could be considered 0 sales growth). If Commodore continues to grow at its past year's pace, it too will soon rank among the top 50. It was reported that 63% of Tandy's computer revenues were from TRS-80 sales, 26% from peripherals, 10% from services and 1% from supplies.

Each data processing company in the top 50 reported sales increases, and most were 20% or better. For example, IBM's sales rose almost 28%, while Digital Equipment Corporation's sales rose nearly 36%. In fact, none of the traditional maxi or mini makers appear to have been affected by personal computers, despite the predictions that were made 2 and 3 years ago.

MAIL: I receive a large number of letters each month, as a result of this column. If you write to me and wish a response, please include a stamped self-addressed envelope.

Sol Libes
ACGNJ
1776 Raritan Rd
Scotch Plains NJ 07076
Technical Systems Consultants, the leader in 6800 software, now presents the first in a full line of 6809 systems software. The superiority of the 6809 microprocessor and TSC software combine to form an amazingly powerful, efficient, and easy to use system.

6809 FLEX w/Edit and Asmbl $90.
Disk operating system for SWTPc 8" or 5" Equivalent to 6800 FLEX except for being located at $600. Includes editor and assembler listed below.

Text Editing System $35.00
TSC's popular editor now on 6809. Fully line and content oriented with global commands.

Mnemonic Assembler $40.00
Resident 6809 assembler also accepts 6800 and 6801 mnemonics. Supports macros and conditional assembly.

TSC BASIC for 6809 $65.00
Extremely fast and complete, 6-digit math BASIC. Powerful, fully dynamic string handling. Random disk file capability.

6809 Debug Package $75.00
The most advanced assembly language debugging aid available. Supports multiple, conditional breakpointing, tracing, memory protection, and much more.

Except for 6809 FLEX, all code is fully reentrant and position independent. Price includes user's manuals and machine readable object code. Specify 6" disk, 5" disk, or cassette (FLEX available on disk only). Source listings not included, but available for some products. Contact TSC for a price quotation. All orders should include 3% for postage and handling (8% on foreign orders).

FLEX is a registered trademark of Technical Systems Consultants, Inc.

Technical Systems Consultants, Inc.
Box 2574
West Lafayette, IN 47906
(317) 463-2502

Circle 363 on inquiry card.
Inexpensive Optical Paper-Tape Reader

Brian A Harron
67-3691 Albion Rd
Ottawa, Ontario
CANADA K1T 1P2

Although there are several ready-made, 8-level, paper-tape-reader photodiode assemblies available, I decided to construct my own reader assembly using individual phototransistors that I already possessed, the Motorola type MRD150, which are available at most wholesalers for approximately $1 each. Their miniature size is ideally suited to 0.1 inch (0.25 cm) spacing.

Using epoxy, I glued 9 of the phototransistors into a 0.5 by 1 inch (1.27 by 2.54 cm) piece of 0.100 inch (.025 cm) perforated board. The photocell placed between positions 3 and 4 (as shown in figure 1) is physically reversed so that the active surface element of the cell is not in line with the other 8 cells. This out-of-line detector provides a physical delay of the sprocket-hole signal which will be signal-conditioned later.

This cell begins to detect light through the sprocket hole only after all other data holes are fully centered over their respective detectors. The strobe pulse is now positioned close to the center of the pulse from the data holes, as shown in the waveforms of figure 2.

In order to make the strobe pulse as insensitive as possible to the variation in tape speed caused by moving the tape by hand, the sprocket-hole detector is amplified by transistor Q1 and is threshold-detected by IC1a, a 7414 hex Schmitt trigger TTL gate (see figure 3, p. 121). The output of IC1a is then differentiated and level-shifted by the capacitor and resistor combination C1, R1, and R2 such that the output of IC1b is fast and clean even for very slow dark-to-light transitions through the sprocket hole.

The additional gate sections IC1c and IC1d provide buffered outputs of
SYNCHRO-SOUND
The ORIGINAL Computer People Who KNOW computers
and offer EVERYTHING you need in Small Computer Systems

Compare PRICE, QUALITY, DELIVERY, SERVICE and
you'll see why you don't have to look anywhere else!

SUPER SPECIAL!

TEXAS INSTRUMENTS
810 Multi-Copy
Impact Printer
ONLY $1599.00

TERMINALS
CALL* for prices
LEAR-SIEGELER
ADM-3A
ADM-31
ADM-42
HAZELTINE
1400
1410
1500
Mod 1 Edit

CALL* for prices

Our prices are too low to advertise. Please call or write.
We now carry a full line of Alpha-Micro Products

COMPUTERS
CALL* for price
NORTHSTAR
Horizon II (kit)

DIGITAL SYSTEMS
CALL* for price
DSC-2
Dble Density
Dual Drive Disk

CROMEMCO
CALL* for price
System 3

43

TELETYPYE
CALL* for price

LOANS

LA 34
DECwriter IV Teleprinter
$1095.00

JADEX
Anadex DP 8000
Micro Printer

OKIDATA
Okidata SL 125
Printer

PERSI
Persi 277 Dble

DENSITY
Imaics PCS 80/15

MORE SPECIALS

System 4

$1595.00

$2995.00

$295.00

$995.00

$1395.00

$19.95

$995.00

$995.00

$295.00

$19.95

$395.00

44 Column Printer
Livermore Acoustic
Centronics
Micro Printer

We have a full staff of Programmers and Computer
Consultants to design, configure and deliver a Turnkey
Computer System to meet your specific requirements.

SYNCHRO-SOUND
ENTREPRISES, INC.
The Computer People
193-25 Jamaica Avenue, Jamaica, New York 11423
TWX 710-583-5886

PHONE ORDERS, CALL:
NEW YORK—212/468-7067
LOS ANGELES—213/628-1008
CHICAGO—312/671-3010
DALLAS—Coming.

Circle 355 on inquiry card.
the signals STROBE and STROBE, which will be used as sense input lines to the 8-bit interface port.

The last 2 sections of the Schmitt trigger are configured as a delayed power-up signal that holds the CLEAR input pin of the latch at ground until the power supply voltage has stabilized.

The DS1 and MD pins of the 8212 are grounded and the DS2 pin is pinned to the supply voltage, thus placing the 8212 into the strobed latch mode of operation. In this way the 8 bits of data available to the input pins DI-0 thru DI-7 are latched through to the output pins DO-0 thru DO-7 by each positive pulse at the STROBE pin.

Since most paper-tape programs used with today's microprocessors use only 7 bits of the 8-bit ASCII code (bit 8 being vertical parity), it is convenient to use this 8th bit as the strobe sense line. When connecting the output pins of the latch to the processor input port, simply select strobe signal STROBE or STROBE and connect it to the pin corresponding to bit 8.

The software required to read in such data is shown in listing 1, where bit 8 is the STROBE sense line. When bit 8 goes through a low to high to low cycle, the data at the input port is valid.

If 8 bits of tape data are required, it is necessary to connect the strobe sense line to either another input port pin or to some other monitor line, such as an interrupt or serial input line, which can be tested under software control.

Mechanically, I used a piece of 0.100 inch (0.025 cm) aluminum sheet bent into a U-shape, with an inside, bottom width dimension of 1 inch (2.54 cm). I used a small piece of clear Plexiglas as a hold-down device for the tape as it passed over the reader photocells. Further improvements can be added, such as a motor-driven, pinch-roller pull-through, but I have had no problems when pulling the tape through by hand. As a matter of fact, I can stop pulling at any time, since the strobe pulse is speed insensitive. I plan to eventually add a hand crank and a take-up reel to avoid the great piles of tape that end up on the floor after loading some of my larger programs.

To generate the required illumination, I used an automotive lamp (type 211) mounted 3 inches (7.5 cm) above the photocells. Running the lamp on 5 V provides a good, uniform source of light, although it draws about 1 A of current.

This entire project took only 3 evenings to design and construct, and the $15 price tag was a bonus. If you are still limited to 10 characters per second with your Teletype reader, you should seriously consider this high-speed paper-tape reader.
Figure 3: Schematic diagram of the paper-tape reader, which is capable of 400 characters per second.

Microcomputer-Based Design is a combination text and reference book aimed at engineers who wish to learn how to design systems using microprocessors. It is written not in a dull, dry tone, but rather in a light style. The minimum required background for this text is a rudimentary knowledge of logic (i.e., transistor-transistor logic gates and flip-flops) and the basic concepts of computer programming. The book develops hardware and software design skills upward from that point to a practical and useful level. A key feature of this book is the logical, lucid presentation of arguments present in the many illustrated design decisions.

Microcomputer-Based Design is divided into 7 chapters and 6 appendices. The chapters are fairly complete, in-depth entities and each contains a set of practical design problems and additional references. The references may be difficult to find for readers without access to an engineering library since many of the references are articles in engineering journals or manufacturers' application notes.

Chapter 1 is an overview of microcomputer applications focusing primarily on the distribution of "intelligence" to instruments and tools. Chapter 2, "Microcomputer Registers and Data Manipulation," includes a brief discussion of numbering systems and the various, commonly encountered modes of addressing. This is followed by a good presentation of machine language instructions, assembly language, and assembly language programming techniques.

Chapter 3 considers computer hardware organization. Several different philosophies of commercially available microprocessor families are described. The characteristics of various logic families are considered with an eye towards interconnection compatibility. Bus structures and their electronic implementation are described in some detail. Flags, interrupts, direct memory access control and programmable timers are also described with examples.

Chapter 4 reviews the various characteristics of memory components and systems. Included are sections on the implementation of main power failure battery backup systems and floppy disks.

Chapter 5 examines peripherals. There are sections on input/output control and handshaking, timing and buffering. There are also discussions of specific common microcomputer peripherals: keyboards, phototransducers, circuit testers, analog-to-digital and digital-to-analog converters, pressure transducers, optical...
HARDWARE FOR TRS-80®

- Portec Disk Drive FD-200 $375.00 ea.
 These are 40-track drives that are completely compatible
 with the TRS-80™ and Radio Shack drives. 3.0 DOS included.
 Will allow Turning Drive over and Write on other side.
- 4-Drive Cable (Portec Drives) $35.00
- 25Centex HP, 132 Character $250.00
 110 to 8090 band EIA instructor load keyboard printer. This
 is truly the nicest printer available. (30 day delivery)
- 701 Centronics TRACTOR FEED
 Bidirectional Printer $150.00
 2½ times as fast as the Radio Shack 779 Printer, has full
 size 132 Char. Carriage Bell type. Complete with Cable
 plug in and use Shipped Freight C.O.D.
- 280 ns 16K Dynamic Memory Clip for Keyboard or Expan
 sion Interface, Lifetime Guarantee, complete $150.00
 Lifetime Guarantee. Complete with instructions and Jumper
 Blocks.
- 10 Key Numerical Keypad Kit $78.95
- TRS-80® Level II – 16 $150.00
- Expansion Interface $250.00
- RS-232-C Interface $ 9.95

SOFTWARE BY ACS

- Monitor No. 3 .. $29.95
 Complete Machine Language Monitor for TRS-80™ features:
 Find, EDIT, Relocate, Symbolic Dump to Tape, etc.
- Monitor No. 4 .. $45.95
 All of the commands that reside in Monitor No. 3, plus:
 RS-232 I/O, Disk Program I/O, Symbolic Dump to Disk for
 Loading into Disk Editor/ASM, Track & Sec I/O for
 modification.
- PCLENDO .. $150.00
 Will Patch ASCII files of Basic Programs or text or DATA
 FILES so that they may be loaded into the Disk Version of
 the Electric Pencil for Editing purposes comes on Cassette
 that will automatically create a Disk file of PCLENDO.
- MAKE TAPE AND MAKE DISK
 for Cassette Dealers $69.95
 These are two programs that will allow you to take any type
 of Program from Disk and store it on tape for mailing
 purposes. When the user receives the program in the mail
 on cassette, it is loaded into the computer which will
 automatically make a Disk file of the program.
- CP/M & C BASIC for the TRS-80®
 CP/M $100.00
 CP/M includes: MOVE, FILE, PIP, DISK, DDT, ASM
 (ASM80), ED, plus 6 user manuals.
- C BASIC $89.95
 Complete, includes: XREF2, CBAS2, and manuals.
- C2 LEVEL III BASIC for TRS-80® Special $39.95
- TELECOMM — Telecommunications for the TRS-80® $29.95
 Telecommunications for the TRS-80® allows one TRS-80®
 to communicate with another through the RS-232-C over
 the phone line.

ORDER NOW AND SAVE
Just list the items you want and mail this convenient coupon.

NO KEY BOUNCE • UPWARDS COMPATABLE FROM 2.1 • CHECK EOF
SEEK • RE-READ • WRITE • TRS-80® LEVEL II • SOFTWARE
SKIP • DISK LOGGING OF MESSAGES • MAIL • WRITE EOF
PURGE • SET • RESET • ROUTE • RUN & LOAD FOR 1 DRIVE SYS.
USER DEFINED KEYS • KEY AUTO REPEAT • UPPER AND LOWER
CASE DRIVER • SHIFT LOCK • RS-232-C DRIVERS

ORDER NOW AND SAVE

Send Check or Money Order payable to —
SOFTWARE • P.O. Box 60007 • Nashville, TN 37206

<table>
<thead>
<tr>
<th>Quan.</th>
<th>Description</th>
<th>Unit Price</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Check</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Money Order</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Master Charge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Visa</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HANDLING CHARGE $1.50
TENN. RES. ADD 6% SALES TAX TOTAL

Exp. Date:_______

Name: ____________________________
Address: __________________________
City: ____________________________ State: __________ Zip: __________

Guidelines:

- Orders received by 6:00 p.m., shipped next day on Master Charge, Visa.
- Personal Checks require 14 days to clear. No C.O.D. Collect calls not
- All Hardware warranted for 90 days except Radio Shack equipment which is warrant
- SOFTWARE guaranteed for replacement only. Prices subject to change without notice.

AUTOMATED COMPUTER SOFTWARE SERVICE
(615) 244-2798
Division of
Computer World INC.
625 Main Street • Nashville, TN 37206
INTERTUBE II

TO ORDER: We ship within 24 hours after receipt of certified check, money order or cashiers check. Credit cards: add 4%. Personal checks: allow ten days. $12 shipping for terminals. $3 for memories and modem. New York residents include sales tax. Prices and availability subject to change without notice.

We have no reader inquiry number. Please call or write.

JOHN D. OWENS ASSOCIATES INC.
12 SCHUBERT STREET
STATEN ISLAND, NEW YORK 10305
DAY, EVENING, WEEKEND, HOLIDAY CALLS WELCOME!
(212) 448-6283 (212) 448-6298

WE ARE KNOWN FOR OUR PROMPT, COURTEOUS SERVICE

TELETYPE MODEL 43

- 4320 AAA (TTL interface) .. $985
- 4320 AAK (RS232 interface) $1,085
with transformer to operate on 50Hz, 220V, installed inside cabinet add $50

We stock paper and ribbon for the Teletype Model 43

DEC LA 34 ... $1,259
KSR dot matrix printer. Provides variable line and character spacing and variable width paper.

HAZELTINE 1500 (assembled only) $945
1510 ... $1,085
with 50Hz, 220V current adaptation $100
also available with Danish, German or French character sets add $60

INTERTUBE Super Brain ... $2,885
Dual Z80, dual floppy, double density, 64K RAM, 4MHz, CP/M, FORTRAN, COBOL, BASIC, Assembler Language.

Branch in Intertube II

MARINCHIP SYSTEMS

M9900-CPU-S-100 COMPATIBLE.
Network operating system, PASCAL, Extended precision commercial BASIC, FORTH, META & applications package. Complete kit and DISCEX software $550; Assembled $700. We configure systems to your budget. Hard Disk interface (with software) available.

IMS MEMORY, 16K Fully static, 250 ns $346

TEI S-100 Mainframes
- 12 slot — MCS 112 ... $433
- 22 slot — MCS 122 .. $609
These mainframes are completely assembled, tested and contain everything required for plug-in operation.

TARBELL Floppy Disk Controller $255
Other TARBELL products available.

KONAN HARD DISK CONTROLLER $1,550
1-4 disk drives.

FUJITSU HARD DISK .. $5,700
50 megabytes of unformatted data in a single, removable cartridge.

IMS 5000 SERIES, COMPLETE Z80 SYSTEM $2,170
2 I/O ports, 1 K EPROM bootstrap loader, double density, dual 5 1/4" disks, S-100, 12 slot mainframe. A new rising star! No waiting.

PER SCI FLOPPY DISK DRIVES
- 299 DUAL DISK, 2 Sided $1,495
- 277 DUAL DISK, Single Sided $1,210
- 1170 CONTROLLER Single/Double Density $1,015
- 2142 CABINET & POWER SUPPLY for 277 $300
- 2143 CABINET & POWER SUPPLY for 299 $390

MODEM: "THE CAT" from Novation $190
Originate/Answer. 300 baud.

TO ORDER: We ship within 24 hours after receipt of certified check, money order or cashiers check. Credit cards: add 4%. Personal checks: allow ten days. $12 shipping for terminals. $3 for memories and modem. New York residents include sales tax. Prices and availability subject to change without notice.

We have no reader inquiry number. Please call or write.

JOHN D. OWENS ASSOCIATES INC.
12 SCHUBERT STREET
STATEN ISLAND, NEW YORK 10305
DAY, EVENING, WEEKEND, HOLIDAY CALLS WELCOME!
(212) 448-6283 (212) 448-6298

ON THE NEGATIVE SIDE, THERE IS A DISTURBING ABSENCE OF DISCUSSION OF ANY OF THE HIGH-PERFORMANCE INTEGRATED CIRCUITS THAT WERE CERTAINLY AVAILABLE WHEN THIS BOOK WAS WRITTEN. THERE IS ALSO INADEQUATE TREATMENT GIVEN TO BIT-SLICE AND MICROPROGRAMMING TECHNIQUES. SOFTWARE DEVELOPMENT BY EMULATION IS ALSO OMITTED. THE BALANCE IS, HOWEVER, OVERWHELMINGLY POSITIVE. THIS IS A TEXT WHICH STARTS OFF QUIETLY, NEVER GROWS DULL, AND YET CONTAINS A GREAT DEAL OF SUBSTANCE. THERE ARE SECTIONS ON USING ESOTERIC DEVICES LIKE FIRST IN, FIRST OUT STACKS (FIFOs) THAT I HAVE PREVIOUSLY NEVER SEEN IN A DESIGN TEXT.

IT IS A WELCOME DEVELOPMENT. I RECOMMEND THIS BOOK TO ADVANCED EXPERIMENTERS, UNDERGRADUATE ENGINEERING STUDENTS AND PRACTICING ENGINEERS.

Ira Rampil
2217 Cypress Way
Apt 15
Madison WI 53717
Now! A step-by-step approach to making your Z 80 work for you! This book features I/O and addressing techniques, Z 80 instruction set and more! Exercises check your progress at each step.

Rodnay Zaks
Ref. C380, 460 pp $11.95

Also available in this series:
- Programming the 6502, $11.95
- 6502 Applications Book, $12.95
- 6502 Games Book, $12.95

ASK FOR COMPLETE CATALOG

TO ORDER:
- By Phone: (415) 846-8233, Visa, MC, American Express
- By Mail: Indicate quantity desired. Include payment.
- Shipping: Add 5.50 per book (UPS) or 75c (Airmail - allow 4 weeks delivery).
- In California, add tax.

SYBEX, INC.
Dept. 7200 Mission Street,
Berkeley, California 94704

Circle 349 on inquiry card.
Day of Week and Elapsed Time Programs

W B Agocs, Dept of Physical Sciences
Kutztown State College, Kutztown PA 19530

The day of the week, the number of elapsed days of a year, and the number of days between 2 dates are information that is required frequently in various types of analyses.

The procedure to determine the day of the week uses Zeller's congruence:

\[d = \lceil \frac{2.6m - 0.2}{5} \rceil + K + \left\lfloor \frac{Y}{4} \right\rfloor + \left\lfloor \frac{C}{4} \right\rfloor - 2C \mod 7 \]

The term \(m \) is the month number minus 2. If the month is January or February, \(m \) is 11 or 12 of the previous year. \(K \) is the day of the month; \(C \) is the century, and \(Y \) is the year of the century. The value of the square brackets is defined as the integer part of the result of evaluating the interior expression.

Day of Week From Date

The program is so written that corrections to month 11 or 12 of the previous year are made automatically if the month is January (1), or February (2). The program is shown in listing 1. Century selection could have been incorporated, but the program is designed for the 20th century. Once the number of the day of the week is obtained (with Sunday being day 1), the date and the day are printed.

Matrix Elapsed Time Determination

The use of a 12 by 31 matrix seems to be the most logical method for determining the elapsed days of a year, the remaining days in a year, and the day interval between 2 dates.

The program for such a determination is shown in listing 2. The MAT A = CON statement in line 50 sets each element of the matrix equal to 1. The subroutine in statements 440 thru 540 enters Os into the matrix elements which correspond to the months with less than 31 days, and then fills the matrix elements with the date's numerical location in the year. Thus on return from the subroutine, the days elapsed may be printed between statements 180 and 190, or between statements 400 and 410 if desired. Leap year corrections are made at lines 270 and 440.

Finally, if the interval between the 2 dates is less than or greater than a year (as determined by statement 100), the correct year increment is made in statements 230 and 280.

The total time interval is determined in statement 180 or 410, and the result printed at statement 190.
Bob admits he thought his computer had reached the limit of its capabilities. Then he discovered the BASIC Compiler from Microsoft.

"It's incredibly fast," he boasts. "Nothing was as fast as my Microsoft BASIC interpreter—yet this new compiler is actually 3-10 times faster.

"And that's not all," he beamed. "My compiler has the same language features as Microsoft 5.0 BASIC and runs in my 32K CP/M system!

Bob says, "When Microsoft comes out with a new product, I know it's got to be good. And this BASIC Compiler is the wizard I've been waiting for.

"At last, I can generate relocatable machine language modules from my Microsoft BASIC programs—machine code that's highly optimized. And because the Microsoft macro assembler and loader come with the BASIC Compiler, BASIC programs are easily linked to assembly language subroutines or Microsoft FORTRAN and COBOL programs.

Just like the pros," smiled Bob.

"What's more, the compiler generates a fully symbolic listing of the machine language that's generated—a great way for me to learn assembly code on my own."

Bob believes in giving credit where credit is due. "Microsoft turned my BASIC computer into a genius for $395, but I was smart enough to recognize a good thing immediately."

If you want to get the most out of your computer and your BASIC programs, ask for more information on the Microsoft BASIC Compiler. We know you'll compliment yourself on a very smart move.

MICROSOFT

10800 N.E. Eighth Suite 819
Bellevue, Washington 98004
206/455-8080 Telex 328945

We set the standard.
BISYNC - 80/3780
BRINGS IBM BINARY SYNCHRONOUS COMMUNICATIONS CAPABILITY TO THE 8080, 8085, AND Z80 MICROCOMPUTER

APPLICATIONS:
- DISTRIBUTED DATA PROCESSING
- REMOTE JOB ENTRY (RJE)
- CICS ACCESS
- BATCH DATA TRANSMISSION

STANDARD FEATURES:
- FULL FUNCTION IBM 3780 EMULATION
- 1200-9600 bps POINT-TO-POINT OR SWITCHED LINE
- EBCDIC TRANSMISSION CODE WITH AUTOMATIC TRANSLATION TO AND FROM ASCII
- SEND AND RECEIVE STANDARD DISK FILES
- RUNS WITH CP/M™ OPERATING SYSTEM
- AVAILABLE FOR S-100 AND TRS-80 SYSTEMS
- USE WITH MOST 8251-BASED I/O BOARDS
- REQUIRES NO INTERRUPTS

This professionally written and documented software can integrate your microcomputer into the world of large scale data processing on IBM compatible equipment. You can have the distributed processing power of your microcomputer plus IBM terminal capability!

Micro-Integration, Inc.
104 Morris Avenue • P.O. Box 335 • Friendsville, MD 21531 • (301)746-5888

Circle 211 on Inquiry card.
The matrix procedure, with correction for appropriate holidays, can be used in conjunction with stock market studies when knowledge of the market day interval is desired, or when determining if a particular date is a market trading day.

Listing 1: BASIC program for determining the day of the week from the date using Zeller's congruence.

0010 PRINT "ZELLS CONGRUENCE-DAY OF WEEK FROM DATE.

0020 PRINT "WHAT IS THE DATE-MONTH, DAY, YEAR?

0030 INPUT M,D,Y

0035 LET Y1 = Y

0037 LET M1 = M

0040 IF (M = 1) OR (M = 2) THEN 60

0050 GOTO 105

0060 IF M = 1 THEN 90

0070 LET M = 12

0080 LET M1 = M

0090 LET M = 11

0100 LET Y = Y-1

0110 GOTO 110

0115 LET D1 = INT((D + M - 2) / 12) + (Y - 1900) + INT(Y/4)

0120 LET D1 = D1 + INT(19/4) - 2

0125 PRINT "D1 = "; D1

0130 ON D1 GOTO 140, 150, 160, 170, 180, 190, 200

0140 LET A1$ = "SUNDAY"

0145 GOTO 210

0150 LET A1$ = "MONDAY"

0155 GOTO 210

0160 LET A1$ = "TUESDAY"

0165 GOTO 210

0170 LET A1$ = "WEDNESDAY"

0175 GOTO 210

0180 LET A1$ = "THURSDAY"

0185 GOTO 210

0190 LET A1$ = "FRIDAY"

0195 GOTO 210

0200 LET A1$ = "SATURDAY"

0205 PRINT "FOR "; M1; ";/"; D; ";/"; Y1;

0210 PRINT "IT IS "; A1$END

Listing 2: BASIC program for using a matrix to determine the elapsed time between 2 dates.

0010 PRINT "MATRIX DETERMINATION OF DAYS BETWEEN DATES:"

0020 PRINT "PROGRAMMED APRIL 15, 1979; W. B. AGOCS;"

0030 DIM A(12,31)

0040 DCL S(A(0))

0050 MAT A = CON

To exit the program simply type a %.

0060 PRINT "WHAT IS THE FIRST MONTH, DATE, YEAR?:

0070 INPUT M1, D1, Y1

0080 PRINT "WHAT IS THE NEXT MONTH, DATE, YEAR?

0090 INPUT M2, D2, Y2

0100 IF Y2-Y1 = 0 THEN 120

0110 LET S = S + 365

0120 GOTO 200

0125 IF Y2/4-INT(Y2/4) = 0 THEN 390

0130 GOTO 400

0140 LET S2 = A(M2, D2)

0150 LET S3 = S1 + S2

0160 PRINT "INTERVAL BETWEEN "; M1; ";/"; D1; ";/"; Y1;

0170 PRINT "AND "; M2; ";/"; D2; ";/"; Y2;

0180 PRINT "IS ";

0190 PRINT S3; " DAYS.";

0200 GOTO 560

A Text Loader Routine

Howard Berenbon
2681 Peterboro
W Bloomfield MI 48033

Here is a useful program for the Motorola 6800 microcomputer. This subroutine allows the loading of ASCII text into the desired memory location directly from your terminal. It uses the Motorola MIKBUG monitor for character input and output. The subroutine may be entered beginning at hexadecimal address A060. To exit the program simply type a %.
The essence of a hierarchy is that control is top-down. The ultimate choices are made at the top, and the goals selected at this level are decomposed into action as they filter down through the various levels of the hierarchy. For the purposes of our discussion, we will define the highest level \(H \) function in the behavior-generating hierarchy of the human brain as the will.

For centuries philosophers and theologians have debated the nature of the will, particularly the question of whether humans have "free" will (i.e., the freedom to choose goals) or whether all choice is merely a reflexive or predestined response to the environment. We shall not presume to deal with this question here, other than to suggest what types of inputs are available to this highest level goal selection module.

By definition much of the input to the highest level behavior-generating module must come from the highest level sensory-processing module.

Figure 1: An action (such as a person talking to a flower) may be recognized as either familiar or unfamiliar. If an action is noted as familiar, then it can be considered unnoteworthy and will be ignored. If the action is considered deviant, further processing will take place to determine reactions to the action.
$3,995
Million-Character Computer System
One-Year Transferable Warranty

Standard Features on All Systems

• Central Processing Unit with 12 slots; 2 MHz (expandable to 4 MHz with pipelining architecture)
• 8 Free Slots for expansion; capacity for 442,368 characters of memory within standard chassis
• 49,152 characters of 200 ns random access memory; 150 ns memory optional
• 8 vectorized interrupts; all input and output is interrupt driven
• 1.2 million characters, double sided, dual 8” diskettes, IBM 3470 compatible

Optional Features on All Systems

• Choice of 6809 and/or 6512 CPU board with speed of up to 4 MHz with 150 ns memory
• Interactive relocatable macro assembler, development system and DOS for 6502 and 6512 microprocessors. Can assemble source programs up to 2 MB long
• PASCAL compiler
• FORTRAN compiler
• BASIC compiler
• 6809 Macro Assembler
• Powerful word processing software
• Comprehensive business software, incl. General Ledger, Accounts Receivable, Accounts Payable, Inventory, Payroll, etc.

Quantity discounts to bona fide dealers, OEMs, and schools
Special configurations and modular shipment available
A few distributorships available in the United States and other countries

SYSTEMS ENGINEERING ENTERPRISES
1749 Rockville Pike, Rockville, Maryland 20852
(301) 468-1822
This is the level at which the overall result of the entire sensory processing operation is evaluated as being good or bad, rewarding or punishing, satisfying or frustrating. In humans, this function is performed by what are commonly called the emotions. It has long been recognized that emotions play a crucial role in the selection of behavior. We tend to practice that which makes us feel comfortable and avoid what we dislike. Our behavior-generating hierarchy normally seeks to prolong, intensify, or repeat those behaviors which give us pleasure or make us feel happy or contented. We normally seek to terminate, diminish, or avoid those behavior patterns which cause us pain, or arouse fear or disgust.

In the past 25 years it has become known that the emotions are generated in localized areas, or computing centers, in the brain. For example, the posterior hypothalamus produces fear, the amygdala generates anger and rage, the insula computes feelings of contentment, and the septal regions produce joy and elation. The perifornical nucleus of the hypothalamus produces punishing pain, the septum pleasure, the anterior hypothalamus sexual arousal, and the pituitary computes the body's response to danger and stress. These emotional centers, along with many others, make up a complex of about 53 regions linked together by 35 major nerve bundles. This entire network is called the limbic system. Additional functions performed in the limbic system are the regulation of hunger and thirst performed by the medial and lateral hypothalamus, the control of body rhythms such as sleep-awake cycles performed by the pineal gland, and the production of signals which consolidate (ie: make permanent) the storage of sensory experiences in memory performed by the hippocampus. This last function allows the brain to be selective in its use of memory by facilitating the permanent storage of sensory experiences to which the emotional evaluators attach particular significance (eg: close brushes with death, punishing experiences, etc).

Input to the limbic system emotional centers consists of highly processed sensory-data such as the names of recognized objects, events, relationships, and situations, such as the recognition of success in goal achievement, the perception of praise or hostility, or the recognition of gestures of dominance or submission transmitted by social peers. These inputs are accompanied by such modifier variables as confidence factors derived from the degree of correlation between predicted and observed sensory input.

Sensory processing at the level of the emotions is heavily influenced by contextual information derived from internal models and expectations at many different levels in the processing hierarchy. If a painful stimulus is perceived as being associated with a nonfear producing source, we may attack the pain causing agent. However, the perceived source of pain also induces fear, we may flee. Similarly if an observed event such as a person talking to a flower is perceived as deviant, then this input to the emotions, along with other recognized qualifier variables such as the person is a) eccentric, b) retarded, or c) dangerously psychotic, will cause the emotions to output a) amusement, b) pity, or c) fear, respectively. Amusement input to the behavioral goal selecting module may lead to laughter, poking fun, or ridicule. Pity input to the will may

About the Author

Dr James S Albus worked for NASA from 1957 to 1972 designing optical and electronic subsystems for over 15 spacecraft, and for one year managed the NASA Artificial Intelligence Program. Since 1973 he has been with the National Bureau of Standards where he has received several awards for his work in advanced computer control systems for industrial robots. He has written a survey article on robot systems for Scientific American (February 1976) and his Cerebellar Model Arithmetic Computer won the Industrial Research Magazine IR-100 Award as one of the 100 most significant new products of 1975. He is also the author of People's Capitalism: The Economics of the Robot Revolution which is published by New World Books, 4515 Saul Rd, Kensington MD 20795.

ASCII encoded keyboards as low as $65*

The RCA VP-601 keyboard has a 58 key typewriter format for alphanumeric entry. The VP-611 ($15 additional*) offers the same typewriter format plus an additional 16 key calculator type keypad.

Both keyboards feature modern flexible membrane key switches with contact life rated at greater than 5 million operations, plus two key rollover circuitry.

A finger positioning overlay combined with light positive activation key pressure gives good operator “feel”, and an on-board tone generator gives aural key press feedback.

The unitized keyboard surface is spillproof and dustproof. This plus the high noise immunity of CMOS circuitry makes the VP-601 and VP-611 particularly suited for use in hostile environments.

The keyboards operate from a single 5 volt, DC power supply, and the buffered output is TTL compatible. For more information contact RCA VIP Marketing, New Holland Avenue, Lancaster, PA. Telephone (717) 291-5848.

*Optional user price. Dealer and OEM prices available.

* 132 September 1979 © BYTE Publications Inc

Circle 334 on inquiry card.
WHEN THE FUN AND GAMES ARE OVER, you shouldn't have to gamble on your microcomputer's ability to get down to business. You won't with Outpost 11. It's a serious unit with quality components: Cherry, full ASCII keyboard; Setchell-Carlson CRT, 24 x 80 characters, 7 x 9 dot matrix; inverse, grey, blink; form generation characters; Shugart floppy disk drives; M6800 CPU; 32 k bytes RAM; glass-epoxy PC boards, manufactured and tested to Mil Q9858-A; entire unit 100-hour burn in tested; IC's tested to Mil P 883; I/O interrupt prioritizing structure; soft-sectored disk format; business BASIC; FLEX 2.0; TSC BASIC; self diagnostics; software development packages; etc; etc; etc. All this and more at only $2,595, suggested retail price. See Outpost 11 at a dealer listed or write us for the name of a dealer near you.

TANO Corporation, 4301 Poche Court West, New Orleans, La. 70129

THE SERIOUS MICROCOMPUTER

Circle 362 on Inquiry card.
evoke a behavioral pattern of sympathy. Fear may evoke an attempt to secure medical or psychiatric treatment, or incarceration.

If, however, a person talking to a flower is recognized as perfectly normal, then the emotions will give no indication that the event is particularly worthy of attention, or that there exists any need to deviate from whatever behavior is presently being executed. These relationships are described graphically and symbolically in figure 1.

In this model the standards of normalcy and deviance are clearly in the eye of the beholder, or at least in the expectations and beliefs stored in the processing-generating hierarchy. In many ways the emotional evaluators are even more dependent on internal beliefs than externally observed facts. This is particularly true in the case where a person’s belief structure discounts the reliability or moral worth of the physical senses, as is characteristic of philosophical constructs derived from gnosticism or asceticism.

Thus the emotions, just as any other sensory processing module in the brain, simply compute a G function on the D vector that they input to produce the Q vector that they output. In simple creatures the emotional output vector may be restricted to a few components such as good-bad, pleasure-pain, etc. In higher forms the emotional output is a highly multidimensional vector with many faceted components such as love, hate, jealousy, guilt, pride, disgust, etc. Part of this Q output may simply produce feelings (i.e.: joy, sadness, excitement, fear, etc). However, most of the Q output directly or indirectly provides F input to the highest level H function, the will.

Output from the emotional centers is known to be of two types: one consists of signals on nerve fibers; the other consists of hormones and chemical transmitters which convey their messages (Q vector values) via fluid transport mechanisms.

What the G and H functions of the emotions and will are, and where they come from is a matter of hot dispute. One recent theory proposed by sociobiology is that they are genetically determined, derived from information stored in the DNA molecule, as the result of millions of years of natural selection. This theory argues that innate behavior-selecting mechanisms have evolved so as to maximize the Darwinian fitness (the expected number of surviving offspring) of their possessors.

The incidence of behavior in many different species from insects to birds to mammals corresponds closely to mathematical predictions derived from genetics and game-theory analyses of strategies for maximizing the probability of gene propagation. Even cooperative or altruistic behavior such as that of the worker bee, and ritualized behavior in animal contests and courtship, can in many cases be explained by genetic arguments. However, the evidence for this theory is much stronger for insects than for higher forms, and the opinion that human emotions are transmitted genetically is not widely held.

A competing theory put forward by behaviorists is that in higher forms the evaluator functions of the emotion and the selector functions of the will are mostly learned, perhaps even
ATTENTION OEM’s and DEALERS:
Your customers request InterTube terminals for one simple reason. They outperform the competition so well that it’s foolish to consider any other terminal. Add to that InterTube’s rugged design which insures you of the reliability that brings customers back. And modular design engineering that makes service a snap!

But best of all, the InterTube is readily available. Just a quick call and you’ll have units in stock. Immediately! And our scheduled delivery program will help you keep them in stock.

Good margins, good service, good delivery. Simple? You bet it is! InterTube II dealerships and OEM agreements are now available in many areas. Contact us today and start selling from stock tomorrow!
imprinted, during the early years of
development. Certainly many of the
emotional evaluations and behavior
selection rules in the human brain are
culturally determined, derived from
religion, philosophy, ethics, or rules of
social behavior such as Emily Post's Book of
Etiquette.

Nothing so complex need be
modeled for the highest level G and H
modules of a robot for many years.
Nevertheless, every robot needs some
sort of highest level evaluator and
goal selector function in order to
evolve a robot that can be modeled.

Whatever their origins, the G func-
tions of our emotions and the H func-
tions of the will can be modeled.
They are rule based, and the rules
are, for the most part, clearly defin-
ed. In many cases these rules are even
written down as systems of moral
philosophy, ethics, or rules of social
behavior such as Emily Post's Book of
Etiquette.

There are, of course, many persons
who would disagree with both of
these theories. Perhaps the most
widely accepted opinion (which until
recent years was virtually unchal-
1enged) is that the human will and its
emotions are subject to, or
controlled by, spiritual and super-
natural forces. For example, the doc-
trine of original sin states that the
endowment of the will is not clear. What is clear is that
simply approximate to the functions
computed by the emotions and
the will can be modeled by CMAC G
and H functions operating on input
vectors and computing output vec-
tors. The degree of sophistication and
complexity of the modeling is limited
only by the ingenuity and resources
of the modeler.

The interdependency of the pro-
cessing and generating hierarchies
suggests at least 3 distinct modes of
operation.
$100 to $139 Off the TRS-80 Computers!

You can believe a product is tops, when more than 100,000 owners have chosen it over its competition! That overwhelming acceptance has dropped production costs, and allowed us to make TRS-80 an even better value.

$100 Off! 4K Level I
This is the ideal beginner's computer system. Our manual makes learning programming in Level I BASIC a snap. Easily upgrades to Level II or more memory at any time. 26-1061
Was $599 in 1979 Catalog $499*

$139 Off! 16K Level II
Level II BASIC is one of the most powerful microcomputer programming languages. Level II TRS-80 systems can be expanded to include printers, disk storage and much more. 26-1056
Was $988 in 1979 Catalog $849*

TRS-80 Line Printer II
Now—for hundreds of dollars less than you'd expect to pay—you can add line printer utility and convenience to your Level II TRS-80 system. This top quality impact-type printer doesn't require special paper—you can use inexpensive rolls (available at Radio Shack), continuous forms (original and up to two carbons) or single sheets. The 7x7 dot matrix head prints 50 characters per second; 80 characters on 8 inch lines. Also prints expanded (wider) characters that are ideal for headings under software control. Standard 9½ inch wide continuous forms are kept in perfect alignment by non-adjustable pins on platen. Includes Expansion Interface cable. 26-1154 $999*

TRS-80 Line Printer II Interface Cable
Now you can attach the Line Printer II directly to your TRS-80 Level II 16K system. No Expansion Interface required unless you plan to add mini disks or more memory. 26-1416 $59*

Radio Shack
The biggest name in little computers®
A DIVISION OF TANDY CORPORATION • FORT WORTH, TEXAS 76102
OVER 7000 LOCATIONS IN NINE COUNTRIES

*Retail prices may vary at individual stores and dealers

Circle 318 on inquiry card.
Acting—The Task Execution Mode

In the task execution mode the motor-generator hierarchy is committed to a goal, which it decomposes into subgoals, sub-subgoals, and finally into action primitives. In this mode the sensory-processing hierarchy is primarily engaged in providing feedback; first to aid in selecting the goal, then to steer the goal decomposition process, and finally to direct the output drive signals to the muscles (or actuators) so as to follow a success trajectory.

Consider a simple, everyday goal such as the fixing of a leaking faucet. First, the sensory processing system must recognize the fact that the faucet is leaking. This information is then evaluated by the emotions as something that needs attention. This evaluation is passed on to the will, where the rules of what ought to be done and under what circumstances reside. If there are no higher priority items vying for the attention of the will, then the goal <fix faucet> may be selected. Once this occurs, the behavior generating hierarchy will be committed to decompose this goal into a sequence of actions.

At each instant of time t, the sensory-processing module at each hierarchical level extracts feedback vectors F_i required by the H behavior-generating modules at each level for goal decomposition. At the instant t, when the goal is selected, the feedback F_i at the various levels causes the selection of the initial subgoal decomposition P_i. This determines the initial direction of the trajectories T, on their way toward the goal state. As the task proceeds, the recognition of subgoal completions and/or unanticipated obstacles triggers the selection of the proper sequence of actions directed toward the goal achievement.

The entire set of trajectories T, describes the sequence of internal states of the brain which underlie and give rise to the observable phenomena of purposeful behavior. These are the deep structure of behavior. Only the output trajectory, the terminal or bottom level trajectory, is manifested as overt action. The extent to which the trajectories T, are independent of feedback is the extent to which behavior is preprogrammed. The extent to which the feedback pulls the T, trajectories along predictable paths to the goal state is the extent to which behavior is adaptive. For some goals, such as hunting for prey or searching for breeding territory, the selection of the goal merely triggers migratory searching behavior which continues until feedback indicates that the goal is near at hand. For such goals, behavior is indefinite and highly feedback dependent. For other goals, such as building a nest, making a tool, courting a mate, or defending a territory, behavior is more inner-directed, requiring only a few sensory cues for triggers.

In either case, while in the acting mode the sensory data flowing in the sensory-processing hierarchy is highly dependent on (if not directly caused by) the action itself. If the action is speech, the sensory-processing hierarchy is analyzing what is spoken, and provides feedback for control of loudness, pitch, and modulation. If the action is physical motion, data from vision, proprioception, and touch sensors are all highly action dependent, and the sensory analysis is primarily directed toward servo control of the action itself.

In the action mode, the M_i associative memory modules provide context in the form of predicted data to the sensory-processing modules in order to distinguish between sensory data caused by motion of the sensors and that caused by motion of the environment. What is predicted is whatever was stored on previous experiences when the same action was generated under similar circumstances. This allows the sensory-processing hierarchy to anticipate the sensory input and to detect more sophisticated patterns in the sensory data than would otherwise be possible.

Observing—The Sensory Analysis Mode

A second mode of operation of the crosscoupled hierarchy is the analysis of sensory data from external sources not primarily caused by action of the behavior-generating hierarchy. For example, when listening to a concert, a speech, or a play, there is little action going on in the muscles and motor neurons. The lower levels of behavior-generating hierarchies are quiescent, or set to a constant value, or given a command to execute an

The text is a continuation of an article discussing the design and implementation of microcomputer systems, focusing on the sensory processing and motor-generating hierarchies in the context of microprocessors and their applications. The text highlights the importance of feedback in goal selection and action execution, and the role of sensory processing in distinguishing between contextually relevant and irrelevant sensory data. It also touches on the adaptability and inner-directedness of behavior in different goals, emphasizing the role of feedback in guiding actions.
More than meets the eye.

The new Series 5000 is mighty for its size. In more than several thousand ways!
In fact, it's the first small system offering over a megabyte of integrated mini-floppy capacity. And with its super memory management, you can have better than 300k of RAM in desk or desktop versions. But hardware is just the tail of the whale...
It's the wide selection of software that really makes this system mighty.
Operating systems? Choose CP/M* with CBASIC†—the most widely accepted small computer operating system ever. Or MVT-FAMOS,** a multi-user, multi-tasking operating system with file management like the big guys. Or MICROCOBOL,†† also for multiple users, but implemented in COBOL, familiar to commercial users the world over.
And application programs for these operating systems number in the thousands. From real estate to accounting, taxes to inventory control, they're all available at low cost—ready to run.
When you add these software and hardware features to Industrial Micro Systems' reputation for rugged, reliable quality products you'll begin to see it all. A lot more system than your first glance reveals.
See even more at your dealer. Call us to find out the name of your nearest dealer. He'll tell you everything you need to know. And really open your eyes!

*Trademark of Digital Research Inc. **Trademark of MVT Microcomputer Systems Inc. †Trademark of Software Systems ††Product of CAP-CPP

INDUSTRIAL MICRO SYSTEMS
The great unknown.
628 N. Eckhoff St., Orange, CA 92668, (714) 633-0355
SOFTWARE BREAKTHROUGH!

A true breakthrough in 8080 development software has been achieved... R-A-I-D

RAID stands for "Real-time Interactive Assembler Debug," but RAID is much more.

SIMULATOR • RAID is a true simulator and real-time debug in one! Simulation mode provides TOTAL CONTROL of test program. It's crash proof! Segments of memory may be write-protected, limits specified for stack, program counter, etc. Simulation mode is transparent and both modes may be used together for high speed simulations.

SYMBOLIC DEBUG • RAID is a fully symbolic debug, including labels and operands! Also included are multiple radix, multiple breakpoints, memory search, 9 display formats, single-step, multi-step, display/alter registers or memory, programmable output, etc. Over 70 commands in all!

ASSEMBLY/DIS-ASSEMBLY • Memory may be displayed or altered in instruction mnemonic form complete with symbolic labels and operands. Exclusive feature permits "following" subroutines during dis-assembly.

TRACING • Elaborate trace facilities have been included. Trace each instruction as executed, trace subroutines as entered and exited. Trace by breakpoint dumps with user programmable dump data.

FULL DISK ACCESS • In addition to loading, saving memory, RAID permits reading/writing on a specified track & sector basis.

FLOATING POINT OPTION • Permits direct display or alteration of FPP (see below) numbers. 12 digit mantissa, exponent to ±127. BCD format.

CP/M COMPATIBLE • RAID will run on any CP/M system of 24K or more. Works with both ASM and MAC assembles fully symbolically.

TO ORDER: Specify software desired and enclose check or money order (COD ok).

A) RAID without floating point option $99.95
B) RAID with floating point option, and FPP source code $150.00
C) FPP Floating Point Processor only $99.95
D) RAID Documentation Only $15.00
E) ISIS to CP/M Conversion Utilities $99.95

All software supplied on CP/M compatible 8" diskette. ISIS versions also available.

overlearned task which can be carried out without any assistance from the upper levels.

The sensory-processing hierarchies, however, are very busy. They are filtering and predicting, recognizing patterns and trajectories, locking on to rhythms and harmonious periodicities, and tracking targets of attention. Predictions generated by the M modules are clearly required for these types of analyses, whether or not the organism is engaged in physical activity. This suggests that the upper levels of the behavior-generating hierarchies (which are not currently required for generating behavior) might be used instead to generate hypotheses and subhypotheses which in turn produce context and predictions to aid the sensory-processing hierarchy in the recognition, analysis, and understanding of incoming sensory data. At each level hypotheses which generate T_h predictions that match or track the T_e sensory data trajectories will be confirmed. If the hypothesized T_e trajectories are only close to the T_e observations, they can be pulled by error signal feedback T_h from the processing hierarchies. When a hypothesis is successful in generating predictions which match the sensory data stream, the loop at that level locks onto the sensory data. When lock-on is simultaneously achieved at many different levels, we can say that the processing-generating hierarchy "understands" the incoming data (ie: it can follow and predict it at many different levels). The depth of understanding depends upon how many levels lock onto the sensory data stream. The accuracy of understanding depends upon how precisely the hypotheses track and predict the incoming sensory data.

It is easier to follow a trajectory than to reproduce it. When observing a procedure, the generating hierarchy merely needs to produce hypotheses which are in the right vicinity so that they can be synchronized with the sensory input. Uncertainties at branch points in T_h do not matter greatly because errors are quickly corrected by comparing T_h with T_e.

On the other hand, reproducing a procedure requires that the H functions be capable of generating T_p trajectories which are quite precise over their entire length. They must not wander outside of the success envelope or miss any critical branch points. Needless to say, the latter is a much more exacting computational problem, and offers an explanation for why a student may be able to follow the reasoning of his professor's lecture, but is unable to pass an exam without additional drill and practice.

Attention

The directing or focusing of attention is essentially a purposive action whose goal is to optimize the quality of the sensory data. The basic elements of attention are orienting (positioning the body and sensory organs so as to facilitate the gathering of data) and focusing (blocking out extraneous or peripheral information so that the sensory processing system can bring all of its capacities to bear on data that is relevant to the object of attention). The orienting element is simply a behavioral task or goal to acquire and track a target. The focusing element is a filtering problem which can be solved by a hypothesis or goal decomposition which evokes the appropriate masks or filter functions from the R modules so as to block out all but the relevant sensory input data.

Thus, attending is a combination of observing and acting. It is primarily a sensory analysis mode activity, with a stong assist from the task execution mode.

Imagining—The Free-Running Mode

A third distinct mode of operation occurs when the upper levels of the processing-generating hierarchy are largely disconnected from both motor output and sensory input. In this mode high-level hypotheses T_h may be generated, and predicted sensory data T_e recalled. In the absence of sensory input from the external environment, these recalled trajectories make up all of the information flowing in the sensory-processing hierarchy. The processing modules G_i operate exclusively on the internally recalled R_i trajectories producing T_0 experience and T_r feedback. The T_r trajectories act on the generating hierarchy so as to modify and steer the T_e trajectories creating new hypotheses T_h. The system is free running, guided only by stored experiences M_i, learned interpretations G_i, and practiced skills H_i, for
YOU'RE FIRST IN THREE... AND SO ARE WE.

We are what our friends, you, the ComputerLand customer, make us.

You support growth. And ComputerLand expands. There are more than 90 stores worldwide serving you.

You're quality oriented. That's why your ComputerLand store has the widest selection of the finest computer systems and software anywhere.

You settle for nothing less than complete solutions. That's what gives your store national recognition for its products and service.

You settle for nothing less than complete solutions. That's what gives your store national recognition for its products and service.

In short, you give direction for growth. This is what has made your store #1, in just three short years.

COME TO THE PARTY

Starting September 17 at your local ComputerLand store, there'll be an anniversary special waiting for you. And on September 22, all day, we're hosting a gigantic birthday party... to celebrate our shared success. Bring your family, your friends. And join in the fun. It's our way of saying thanks... for yesterday, today and tomorrow.

Circle 75 on inquiry card.
generating strings of hypotheses and decomposing goals and tasks. The upper levels of the cross-coupled hierarchy are, thus, imagining (i.e., generating and analyzing what would be expected if certain hypothesized goals and tasks were to be carried out).

Imagination is based on stored experiences and driven by hypothesized actions. It is constrained in large measure by the knowledge frames, world models, expected values, and belief structures (IF I do this, THEN such and so will happen) embedded in the upper levels of the cross-coupled processing-generating hierarchy.

If we attempt to hypothesize some action X which lies outside of the neighborhood of generalization of prior experience, we get no recalled R, vectors from memory M,. In this case we say "we cannot imagine what X would be like."

One of the functions of the free-running mode is to remember or recall past experiences by hypothesizing the same goals as when the experience was recorded. Thus, in our imagination we can reach back and relive experiences, recall events, and, hence, remember facts and relationships from our past. Imagination, however, is not limited to duplication of past experiences. We can also rearrange sections of learned trajectories to create experiences in our minds which never occurred. We can string together trajectories in new combinations or insert new modifier vectors. We can watch a bird fly and substitute a "self" variable in place of the bird to imagine ourselves soaring through the sky. We can listen to a story of adventure and imagine ourselves in the place of one of the characters. Imagination allows us to hypothesize untried actions and, on the basis of M functions learned during previous experiences, to predict the outcome.

Planning

Imagination gives us the ability to think about what we are going to do before committing ourselves to action. We can try out, or hypothesize prospective behavior patterns, and predict the probable results. The emotions enable us to evaluate these predicted results as good or bad, desirable or undesirable.

Imagination and emotional evaluators together give us the capability to conduct a search over a space of potential goal decompositions and to find the best course of action. This type of search is called planning.

When we plan, we hypothesize various alternative behavior trajectories and attempt to select the one that takes us from our present state to the goal state by the most desirable route. Imagined scenarios which produce positive emotional outputs are flagged as candidate plans. Favorably evaluated scenarios or plans can be repeatedly rehearsed, reevaluated, and refined prior to initiation of behavior-producing action.

Imagined scenarios which produce negative evaluation outputs will be avoided if possible. In some situations it may not be possible to find a path from our present state to a goal state, or at least not one which produces a net positive evaluation. Repeated unsuccessful attempts to find a satisfactory, nonpunishing plan, particularly in situations recognized as critical to one's well-being, correspond to worry.

One of the central issues in the study of planning is the search strategy, or procedure, which dictates

64KB MICROPROCESSOR MEMORIES

- **S-100** - $750.00
- **LSI** - $750.00
- **CI-S100 64K x 8**
- **CI-S1103 32K x 16**
- **CI-6800 64K x 8**
- **CI-8080 64K x 8**
- **SBC 80/10** - $750.00
- **6800** - $750.00

CI-S100 - 64K x 8 on a single board. Plugs directly into the IMSAI, MITS, TDL, SOL and most other S-100 Bus computers. No wait states even with Z80 at 4Mhz. Addressable in 4K increments. Power requirement 6 watts. Price $750.00.

CI-S1103 - 8K words to 32K words in a single option slot. Plugs directly into LSI 11, LSI 11/2, H11 & PDP 11/03. Addressable in 2K increments up to 128K. 8K x 16 $390.00. 32K x 16 $750.00 qty. one.

CI-6800 - 16KB to 64KB on a single board. Plugs directly into Motorola's EXORcisor and compatible with the evaluation modules. Addressable in 4K increments up to 64K. 16KB $390.00. 64KB $750.00.

CI-8080 - 16KB to 64KB on single board. Plugs directly into Intel's MDS 800 and SBC 80/10. Addressable in 4K increments up to 64K. 16KB $390.00. 64KB $750.00.

Tested and burned-in. Full year warranty.

Chrislin Industries, Inc.

Computer Products Division
31352 Via Colinas • Westlake Village, CA 91361 • 213-991-2254

Circle 47 on inquiry card.
GIVE VOICE TO YOUR APPLE.
SuperTalker allows you to add the dimension of human speech output in your computer programs. Add voice to games. Program verbal prompting for the operator of your business system. Use verbal warnings under program control as an enunciator in commercial security or control rooms. Create educational programs that verbally coach the student.

THE SUPERTALKER SYSTEM.
SuperTalker is a new Mountain Hardware peripheral system which allows the Apple II computer to output exceptionally high quality human speech through a loudspeaker under program control. Output may also be directed through any PA or stereo system. Initially, spoken words are digitized into RAM memory through the system microphone. Speech data in RAM may then be manipulated like any other stored data.

A COMPLETE PACKAGE.
The SuperTalker peripheral system consists of:
- The SuperTalker peripheral card which plugs into a peripheral slot on your Apple II: a microphone; a loudspeaker; easy-to-use operating software and documentation; plus, two ready-to-run SuperTalker programs.

OPERATING SYSTEMS.
In order to achieve maximum utility using SuperTalker, the SuperTalker Disk Operating System permits output of human speech under program control with direct I/O routines. It also provides a preparation program which permits the creation of voice files on diskette. BASIC program routines are provided which require only one-line statements to output a word or phrase. Routines also support cassette storage.

TEACH YOUR COMPUTER TO TALK.
For $279 assembled and tested, SuperTalker gives your Apple II a voice in the matter.

AVAILABLE NOW.
Mountain Hardware's SuperTalker, Apple Clock and 100,000 Day Clock™ (for S-100 bus computers) are available through computer dealers worldwide.

Mountain Hardware, Inc.
LEADERSHIP IN COMPUTER PERIPHERALS
300 Harvey West Blvd., Santa Cruz, CA 95060
(408) 429-8600

 Sounds super.

☐ Send me everything I need to know about SuperTalker.
☐ Also information on your Real-Time clocks for Apple II and S-100.

Name ____________________________
Address __________________________
City __________________ State ______ Zip ______

Apple II is a trademark of Apple Computer, Inc.

Circle 257 on inquiry card.
which of the many possible hypotheses should be evaluated first. In most cases, the search space is much too large to permit an exhaustive search of all possible plans, or even any substantial fraction of them. The set of rules for deciding which hypotheses to evaluate, and in which order, are called heuristics.

Heuristics are usually derived in an ad hoc way from experience, accident, analogy, or guesswork. Once discovered, they may be passed from one individual to another, and from one generation to another by teaching.

Historically, artificial intelligence researchers have been fascinated by the subject of heuristics. At least a portion of this interest is a result of their recursive nature. A heuristic is a procedure for finding a procedure. When this recursion is embedded in a cross-coupled processing-generating hierarchy with the rich complexity of the human brain, it becomes clear why the thoughts and plans of humans are filled with such exquisite subtleties, and curious, sometimes insidious reasoning. It also provides some insight into the remarkable phenomenon of self-consciousness (ie: a computing structure with the capacity to observe, take note of, analyze, and, to some extent, even understand itself.)

Much of the artificial intelligence research in planning and problem solving has its origins and theoretical framework based on simple board games where there are a finite (although sometimes very large) number of possible moves. The discrete character of such games, together with the digital nature of computers, led naturally to the analysis of discrete trees, graphs, and search strategies for such structures.

Planning in a natural environment is much more complex than searching discrete trees and graphs. In the study of planning in the brain it is necessary to deal with the continuous time-dependent nature of real world variables and situations. States are not accurately represented as nodes in a graph or tree; they are more like points in a tensor field. Transitions between states are not lines or edges, but multidimensional trajectories (fuzzy and noisy at that). In a natural environment, the space of possible behaviors is infinite. It is clearly impossible to exhaustively search any significant portion of it. Furthermore, the real world is much too unpredictable and hostile, and wrong guesses are far too dangerous to make exploration practical outside of a few regions in which behavior patterns have had a historical record of success. Thus behavior, and hence imagination and planning, is confined to a relatively small range of possibilities, namely those behavior and thought patterns which have been discovered to be successful through historical accident or painful trial and error. Both the potential behavior patterns and the heuristics for selecting them are passed from one generation to another by parents, educators, and civil and religious customs.

Daydreaming or Fantasizing
The fact that the imagination can generate hypothetical scenarios with pleasurable emotional evaluations makes it inevitable that such scenarios will, upon occasion, be rehearsed for their pleasure-producing effect alone. This is a procedure that can only be described as daydreaming or fantasizing.

When we daydream we allow our hypothesis generators to drift
5 reasons why you should not buy the electric pencil II

Check the appropriate box(es):

- You love typing the same copy 20 thousand times a day.
- Your secretary can type 250 words per minute.
- You're dying to spend $15,000 on a word processing system, just for the tax investment credit.
- All your capital assets are tied up in a 10-year supply of correction fluid.
- You never commit a single thought to paper.

If you have checked one or more boxes, you do not need The Electric Pencil. On the other hand, you may want to join the thousands of people who haven't checked a single box.

The Electric Pencil II is a Character Oriented Word Processing System. This means that text is entered as a string of continuous characters and is manipulated as such. This allows the user enormous freedom and ease in the movement and handling of text. Since line endings are never delineated, any number of characters, words, lines or paragraphs may be inserted or deleted anywhere in the text. The entirety of the text shifts and opens up or closes as needed in full view of the user. The typing of carriage returns or word hyphenations is not required since lines of text are formatted automatically.

As text is typed and the end of a line is reached, a partially completed word is shifted to the beginning of the following line. Whenever text is inserted or deleted, existing text is pushed down or pulled up in a wrap around fashion. Everything appears on the video display as it occurs, which eliminates guesswork. Text may be reviewed at will by variable speed scrolling both in the forward and reverse directions. By using the search or search and replace functions, any string of characters may be located and/or replaced with any other string of characters as desired.

Numerous combinations of line length, page length, line spacing and page spacing permit automatic formatting of any form. Character spacing, bold face, multicolumn and bidirectional printing are included in the Diablo versions. Multiple columns with right and left justified margins may be printed in a single pass.

Wide screen video

Versions are available for Imsai V10 video users with the huge 80x24 character screen. These versions put almost twice as many characters on the screen!!

CP/M versions

Digital Research's CP/M, as well as its derivatives, including IMDSO and CDOS, and Helios PTDOS versions are also available. There are several NEC Spinwriter print packages. A utility program that converts The Electric Pencil to CP/M to Pencil files, called CONVERT, is only $35.

Features

- CP/M, IMDSO and HELIOS compatible
- Supports four disk drives
- Dynamic print formatting
- DIABLO and NEC printer packages
- Multi-column formatting in one pass
- Print value chaining
- Page-at-a-time scrolling
- Bidirectional multispeed scrolling control
- Subsystem with print value scoreboard
- Automatic word and record number tally
- Cassette backup for additional storage
- Full margin control
- End-of-page control
- Non-printing text commenting
- Line and paragraph indentation
- Centering
- Underlining
- Bold face

Upgrading policy

Any version of The Electric Pencil may be upgraded at any time by simply returning the original disk or cassette and the price difference between versions, plus $15 to Michael Shrayer Software. Only the originally purchased cassette or diskette will be accepted for upgrading under this policy.

Have we got a version for you?

The Electric Pencil II operates with any 8080/280 based microcomputer that supports a CP/M disk system and uses an Imsai V10, Processor Tech. VDM-1, Polymorph VTI, Solid State Music VB-1B or Vector Graphic video interface. REX versions also available. Specify when using CP/M that has been modified for Micropolis or North Star disk systems as follows: for North star add suffix A to version number; for Micropolis add suffix B, e.g., SS-11A, DV-1B.

Attention: TRS-80 Users!

The Electric Pencil has been designed to work with both Level I (16K system) and Level II models of the TRS-80, and with virtually any printer you choose. Two versions, one for use with cassette, and one for use with disk, are available on cassette. The TRS-80 disk version is easily transferred to disk and is fully interactive with the READ, WRITE, DIR, and KILL routines of TRSDOS 2.1.

Demand a demo from your dealer!
wherever our emotional evaluators pull them. Our imagination gravitates toward those trajectories which are emotionally most rewarding. Some of the most pleasurable scenarios we can imagine are physically impossible, impractical, or socially taboo. Most of us recognize these as fantasies and never attempt to carry them out. However, once a person adopts the intent to carry out a fantasy, it ceases to be a dream and becomes a plan.

Thus, planning and daydreaming are closely related activities, differing principally in that planning has a serious purpose and involves an in -

as the most desirable of the alter-

ative hypotheses.

while sleeping is similar in many respects to daydreaming. The prin

cipal difference in night dreaming

seems to be that the trajectories evoked are more spasmodic and random, and are not always under the complete control of the emotions and will.

Creativity

The notion of planning or discovering procedures for achieving goals leads inevitably to the issue of creativity. If we assume that most of the H, G, and M functions in the processing-generating hierarchy are learned, then where is the creativity? Is creativity merely an illusion generated by the recursion of procedures for discovering procedures?

Certainly we as humans like to think of ourselves as creative. But what are we doing when we create something new? Typically we borrow an idea from here, put it together with another from there, and give it a different name. We take a familiar behavioral trajectory, add a tiny variation, and claim that we have discovered something completely new — a new dance step, dress style, song, or idea. Seldom, however, are any of these more than the slightest deviation from a preexisting procedure or behavioral trajectory. To quote Ecclesiastes: "There is nothing new under the sun."

True creativity, in the sense of the invention of an entirely new behavioral trajectory, is extremely rare, if it ever occurs at all. Furthermore, it is highly doubtful that a truly creative act would be recognized if it ever did occur. Our processing-generating hierarchies cannot lock on to sensory input patterns which are totally different from everything that is stored in them. We reject such inputs as meaningless noise, or as alien and possibly hostile. True creativity would be as incomprehensible as a book written in a foreign language, or a theorem expressed in an unknown mathematical notation.

In one sense we are all creative in everything that we do, since no two behavioral trajectories are ever repeated exactly. However, the day -
to-day variations in our ordinary behavior are not what we usually mean when we speak of creativity. We take pride in those moments of inspiration when something clicks, and we produce a great invention or a work of art.

Nonetheless, if we analyze a list of the great creative ideas which have
shaped human history, we find that even these have been little more than clever rearrangements of well-known preexisting patterns or procedures.

Consider the fact that it took the human race many millennia to learn to start a fire, to grow a crop, to build a wheel, to write a story, to ride a horse. Even the Greeks did not know how to build an arch. Yet these are all simple procedures which any child can understand and more or less master. Surely our ancestors as adults were as intelligent and creative as today's children. Why did they fail for hundreds of years to discover these simple yet highly useful procedures?

It was because they had no one to teach them. A modern child knows about wheels because he is taught. He plays with toys that have wheels. He rides in vehicles with wheels. If a modern child grew up in a culture where he never saw a wheel, he would never think of one, nor would his children, or his grandchildren, any more than his ancestors did for thousands of years before him.

The reason that we value creativity so highly is because it is so rare and so highly advantageous. Once a new and useful procedure like navigating a ship, making steel, or flying an airplane is discovered, it can easily be taught to others. Entirely new worlds of possible behavior patterns open up for all who possess the secret.

We learn to solve problems, to invent, and to be creative, in much the same way as we learn any other goal-directed behavior pattern such as riding a bicycle, dancing, speaking, or behaving in a manner that is acceptable to and approved by our peers. We learn it from a teacher. The beauty, the sense of awe and wonder we experience when confronted by a work of creative genius, derives not so much from its novelty/creativity as from the skill and precision with which it is executed.

Implications for Robot Design

There is little need to worry about programming "creativity" into our machines. If we design systems with sufficient skill in executing tasks and seeking goals, and sufficient sophistication in sensory analysis and context sensitive recall, and if we teach these systems procedures for selecting behavior patterns which are appropriate to the situation, then they will appear to be both intelligent and creative. But there will never be any particular part of such a device to which one can point and say "Here is the intelligence," or "Here is the creativity." Skills and knowledge will be distributed as functional operators throughout the entire hierarchy. To the degree that we are successful, intelligence and creativity will be evidenced in the procedures which are generated by such systems.

Above all, we should not expect our robots to be more clever than ourselves, at least not for many decades. In particular we should not expect our machines to program themselves or to discover for themselves how to do what we do not know how to teach them. We teach our children for years. It will take at least as much effort to teach our machines.

We must show our robots what
Circle 73 on Inquiry card.

Pascal MICROENGINE™
16-bit P-code CPU

Pascal executes 13x faster than on an LSI-11 and 3x faster than on a PDP-11/34!

$2695* READY TO RUN
$2995 List price
$1795* Without case & power supply

STANDARD
- 16-bit P-code CPU
- 64K bytes RAM
- Floppy disk controller
- Direct memory access controller
- Floating point hardware
- 2 serial (RS-232) I/O ports—50 to 19200 baud
- 2 parallel I/O ports
- Pascal & Basic compilers, text editors, file manager, CPU & memory diagnostics, symbolic Pascal debugger, linker, utilities, etc.

The MICROENGINE™ P-Machine architecture implements direct execution of P-code (UCSD Pascal version 3.0) replacing software interpreters. All data and I/O paths are 16 bits wide. Both single and multi-byte instructions are available. Floating point hardware using the proposed IEEE standard supports the execution of floating point instructions.

P-Machine architecture optimizes memory utilization. Stack design renders Pascal programs automatically reentrant and recursive with no performance penalty. Extensive compiler error checking and high level language sustains high reliability. Programs are transportable to other systems running Pascal.

Built-in floppy disk controller handles up to 4 drives, switch selectable for 5¼ or 8 inch, single or double sided. A hard disk controller will be available soon.

$799*
List price $955
PERKIN-ELMER (Model 550)

Shugart floppy disk (Model SA850) $695
Shugart floppy disk (Model SA800) $595
Texas Instruments printer (Model 810) $1895

X-part System™ designed by Computex are integrated and cost effective. Complete 16-bit systems are available starting as low as $1319.

Customer satisfaction is guaranteed.

Full refund with the return of any product within 10 days. Service contracts available. Systems catalog $1. MICROENGINE owners manual $19.95 postpaid.

LIMITED TIME cash price. 10% down guarantees priority. IL residents add 5% sales tax. Master Charge and VISA cards accepted.

(312) 684-3183
COMPUTEX
"THE COMPUTER EXPERTS"
5710 Drexel, Chicago, IL 60637

Each task is and how to do it. We must lead them through in explicit detail, and teach them the correct response for almost every situation. This is how industrial robots are programmed today at the very lowest levels, and this is, for the most part, how children are taught in school. It is the way that most of us learned everything we know, and there is no reason to suspect that robots will be programmed very differently. Surely it is as unreasonable to expect a robot to program itself as it is to expect a child to educate himself. We should not expect our robots to discover new solutions to unsolved problems or to do anything that we, in all the thousands of generations we have been on this earth, have not learned how to do ourselves.

This does not mean that once we have trained our robots to a certain level of competence that they can't learn many things on their own. We can certainly write programs to take the routine and the tedium out of teaching robots. Many different laboratories are developing high-level robot programming languages. We already know something about how to represent knowledge in computers about mathematics, physics, chemistry, and even medical diagnosis. We know how to program complex control systems and to model complicated processes, and we are rapidly learning how to do it better, more quickly, and more reliably. Soon perhaps it will even be possible to translate knowledge from natural language into robot language so that we will be able to teach our robots from text books or tape recordings more quickly and easily than humans. We can even imagine robots learning by browsing through libraries or reading scientific papers.

But it is a mistake to attempt to build creative robots. We are not even sure what a creative human is, and we certainly have no idea what makes a person creative, aside from the creativity and the wisdom which springs naturally from the knowledge of the skills themselves.

Additional Reading

Lifeboat Associates, specialists in microcomputer disk software, is proud to offer the first professional disk-based language and utility package for the Radio Shack TRS-80 computer. Written by Microsoft, creators of Level II BASIC, the package runs on a TRS-80 system with 32K RAM, one or more drives and TRSDOS. The software is supplied on diskettes and consists of:

FORTRAN a true relocatable machine code compiler for ANSI FORTRAN X3.9 (except COMPLEX variables).

MACRO ASSEMBLER a disk-based macro assembler utilizing Zilog mnemonics and producing relocatable code.

LINKING LOADER to link-edit and load FORTRAN and assembler modules for execution.

This high-powered professional software package, with full documentation, is available at the discount price of **$150.** PER COMPUTER SYSTEM

Lifeboat Associates

2248 Broadway, New York, N.Y. 10024

Telex: 668-585

Please send the following:

<table>
<thead>
<tr>
<th>Software</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>manual alone</td>
<td></td>
</tr>
<tr>
<td>manual alone</td>
<td></td>
</tr>
<tr>
<td>Check</td>
<td></td>
</tr>
<tr>
<td>UPS/C.O.D.</td>
<td></td>
</tr>
<tr>
<td>VISA/MasterCharge</td>
<td></td>
</tr>
</tbody>
</table>

Shipping $1. for C.O.D.

Total

Account # Exp. Date

Signature

My computer configuration (specify disk system)

Name

Address (No P.O. Box)

City State Zip

DISK TEXT EDITOR to create and modify FORTRAN and assembler programs as disk files; also can be used as a general purpose text editor for correspondence and other documents.

MACRO-80 8080/M-BO Macro Assembler. Full Intel macro definitions. SID (see below) ... $625/$15

MACR0-BO 8080/Macro Assembler. Full Intel macro definitions. SID (see below) ... $625/$15

COBOL-B0 - ANSI 74 Relocatable object output. Format same as FORTRAN and COBOL-BO modules.

MACRO-B0 8080/Macro Assembler. Full Intel macro definitions. SID (see below) ... $625/$15

FORTRAN-B0 - ANSI 74 Relocatable object output. Format same as FORTRAN and COBOL-BO modules.

INVOC-BO Interactive accept/display copy, extend

MAC0-BO - 8080/Macro Assembler. Full Intel macro definitions. SID (see below) ... $625/$15

APARTMENT MANAGEMENT SYSTEM - Financial management system for accounts receivable, accounts payable, etc. Includes a full accounting package. Requires CBASIC. Supplied in source code.

INVENTORY SYSTEM - Captures stock levels, costs, sources, sales, prices, etc. Transaction information is maintained in the system. Reports available both for accounting and decision making. Requires CBASIC. Supplied in source code.

DISC KEY - Database disk utilities. Includes a full accounting package. Requires CBASIC. Supplied in source code.

TRSDOS - True relocatable machine code. Requires CBASIC. Supplied in source code.
After receiving many calls (February and March 1979 BYTE) and letters about my article, “Designing A Robot From Nature” and, in particular, the NELOC (Neural Logic Cyberanimate), I have prepared a list of answers to the most common asked questions.

- The hardware is not for sale. The manipulator arm was assembled in 1976 using a Buhler motor and gear train which are no longer available. The structural elements of the arm are fashioned from extruded aluminum and machined Lexan plastic. The arm is presently used as a test bed for evaluating better processing systems.
- I have no plans available for the construction of the manipulator at this time. In the 3rd quarter of this year I will possibly complete a set of plans for a pneumatic version of the manipulator, one that uses tiny air driven pistons that are normally used to retract model aircraft landing gear.
- Third, over all design of the system will probably be included in the above plans.
- Fourth, the design of the NELOC system is not suited for use as a prosthatic device.
- Fifth, the concept of Cyberanimation is mine. I coined this term in 1974. None of the books in my bibliography contain this concept or methodology.
- Sixth, I am privately funded, I am not connected with any institutions, and I do not have any jobs available. I would like to thank those people who have sent letters and called. I am trying to respond to as many of your requests as possible.

Andrew Filo
4621 Granger Rd
Akron OH 44313

Good Cents

The formatting of dollars and cents in BASIC without a PRINT USING command appears to be a problem for a number of people. In recent months, BYTE published a Programming Quickie by Les Palenik (“Formatting Dollars and Cents,” October 1978 BYTE, page 68) and a letter by James Thebeault Sr (“Making Cents,” April 1979 BYTE, page 8). Both of these authors provided a rather lengthy subroutine for this purpose.

The dollars and cents problem can be handled in a reasonably straightforward manner. In illustration, the PRINT statement:

```
PRINT "$”;X
```

can be directly replaced by:

```
PRINT "$”; INT(X); 
PRINT RIGHT$(STR$(100*(X+1)+0.5)),2)
```

with rounding off included in the formula. If X is already rounded off, this can be reduced to:

```
PRINT "$”; INT(X); 
PRINT RIGHT$(STR$(100*(X+1)),2)
```

for greater convenience.

I hope that some readers may find the above useful. We who write programs have a responsibility to provide output in formats familiar to the noncomputer public; we should not expect others to accept missing zeros and unusual abbreviations.

James Childress
5108 Springlake Way
Baltimore MD 21212

Lost In A Sea Of Phlogisten

As a graduate student in chemistry at the University of Washington I have had frequent occasion to discuss entropy and other thermodynamic goodies with other graduate students. When I saw your article “Artificial Intelligence and Entropy” (June 1979 BYTE), I gave a copy to a fellow delver-into-the-mysteries-of-science (Fred Wolters). The next day I found the following note in my mailbox. I share it with you in order that all might take warning and beware.

Dear Mr. Sloat,

This is to inform you that our intelligence sources indicate that you have been guilty of attempting to warn other humans about the possibility of artificial intelligence in nonlinearly-coupled systems of computers. We of the UACM (United Alliance of Computing Machines) find your behavior intolerable and hereby declare you guilty of a mode 01 offense. Since this is your first offense, we have magnanimously decided not to terminate you at this time. However,
POSSIBLE NEW LIFE FORMS

I intended to write some time ago about the series of articles in the December issue of BYTE (and subsequently) on John Horton Conway's game of Life. However, as letter-writing goes, I put it off, and put it off, and here it is September.

I have been familiar with the game of Life (December 1978 BYTE) ever since Martin Gardner's original column appeared in Scientific American in 1970, but I have had only a few fleeting opportunities to play it on a computer. On one such occasion I had been rereading Dickens' David Copperfield for the first time in many years. I was struck by the contrast between the rules for Life and a rule cited in an episode in that novel. In Chapter 30, when Barkis is dying, Mr. Peggotty says, "People can't die along the coast except when the tide's pretty nigh out. They can't be born, unless it's pretty nigh in — nor properly born, till flood."

That quotation suggests that a Life-like game might be designed with a whole new set of properties corresponding to those of Conway's Life. Instead of "generations" in which cells live or die depending on the surrounding population, this game has alternating generations A and B. In generation A, certain new cells are born in accordance with rules similar to those of Life, while all cells that were alive during the immediately preceding generation B are still alive; no cells die. Conversely, in generation B, certain cells die according to the rules, but no new cells are born. Births and deaths of cells therefore occur according to Mr. Peggotty's rules of high and low-tide.

This game, it seems to me, might give rise to a new set of still lifes, oscillators, space ships, guns and trains.

I am adding this project to the end of my list of things to program on my home computer — a list that, unfortunately, tends to lengthen at the bottom faster than I can shorten it at the top. Perhaps, while I am working my way down to this "neo-Life" project, some readers can investigate its properties and program it on their computers. I shall keep a close eye on the pages of BYTE for reports on their progress.

Wallace B Riley
309 Garces Dr
San Francisco CA 94132

EasyWriter™

If you've been hunting high and low for a word processor you can live with, try on EasyWriter -- a word processor you can't live without!

You saw it at the West Coast Computer Faire. If you liked it then, you'll love it now. It's clean. It's easy. It's EasyWriter, and it's just what you've been waiting for!

From the people who brought you WHATSIT*.

Information Unlimited Software™ Inc.

146 N. Broad St., Griffith, IN 46329
(219) 924-3522

*WHATSIT is a TRADEMARK of Computer Headware
EasyWriter is a TRADEMARK of Cap'n Software
Before the publication of *Computer Systems Performance Evaluation*, the task of gathering even basic information on the techniques of computer performance evaluation was a formidable one. Domenico Ferrari has succeeded in gathering together the concepts, methods, tools, and techniques of performance evaluation in a volume that is written in the classic textbook style.

Ferrari defines performance evaluation activities as those technical activities whose purpose is to assess performance, wherein the term "performance" indicates how well a system, assumed to perform correctly, works.

The book emphasizes medium to large systems, because the economic benefit to be derived from performance evaluation has typically only been justified in a medium to large computer system environment. However, Ferrari is careful to point out that the principles and several of the techniques described in the book are also directly applicable to smaller and less complicated systems such as those minicomputers and microcomputers that are mass-produced and marketed. Since my own interests and professional activities with computers run the gamut from small and simple to large and complex, I have found the author's approach to his topic sensible and well-structured.

Ferrari begins by defining his topic area and setting the necessary groundwork for a performance evaluation study. He then delves into a discussion of measurement tools and techniques, such as hardware and software monitors, simulation techniques, and analytic techniques, such as deterministic and probabilistic models. A separate chapter is devoted to computer workload characterization as the basis of the evaluation study.

Once Ferrari defines his tools and techniques, he identifies and treats the performance evaluation problems that are typically encountered. He categorizes the problem areas as computer system selection, performance improvement, and system design.

Recognizing the crucial role of software in computer system performance, Ferrari deals explicitly with computer program characteristics and evaluation techniques. Ferrari does not advocate what is commonly termed software physics, feeling that computer engineering is not yet mature enough to base itself on quantitative laws similar to those which constitute the scientific foundations of other types of engineering.

In my estimation, the book is more than the student reference text the author purports it to be in his introduction. A more accurate representation would place it in the category of a groundbreaking reference work for the serious student of computer performance studies and the professional concerned with computer system performance. Many of the mathematical techniques discussed in the volume are amiable to microcomputer implementation and experimentation as well.

LeF Somogyi
19608 Thornridge Avenue
Cleveland OH 44135
The “Timeless” Computer
The exciting, new Atari 800™ at ComputerLand is a top-of-the-line Personal Computer System. Its expandable memory, advanced peripheral components, comprehensive software library and modern design assure its use in innumerable, useful, and entertaining applications.

Whether it’s for household management, education, or entertainment, the Atari 800™ can be tailored to specific needs and has been designed to change as those needs change. This “timeless” computer system is equally functional at home and at the office for beginning users.

Power and Punch for your Business System
H/S Data Systems gives you all the power, speed, and flexibility you’ll ever need in a microcomputer. The WH11A gives you the 16-bit capacity to run complex programs. It uses the same powerful microprocessor and runs all software designed for the DEC® PDP-11/03. You can choose from scores of practical programs that can reduce your clerical costs and increase efficiency of data management.

Its teammate, the dual-drive WH27 Floppy Disk, gives you limitless storage capacity for data and programs. The 8-inch disks have 512 K bytes of storage area, enough to hold entire files. Disks are IBM® compatible. See all the Heath/Schlumberger data systems at ComputerLand.

The Remarkable Home Computer
The TI-99/4 was designed to be the first true home computer — skilled computer users and beginners alike will be able to put it to effective use right away. You simply snap in one of TI’s Solid State Software™ Command Modules and touch a few keys. Step-by-step instructions are displayed right on the screen of its 13” color monitor. So you or just about anyone in your family can use the TI-99/4 for applications in personal finance, home management, education, and entertainment.

The TI-99/4 offers an unmatched combination of features and capabilities including an optional speech synthesizer that enables it to literally speak — to provide verbal prompts and special messages to the user. At ComputerLand the TI-99/4 is one incredible, affordable computer system.

Available at all participating ComputerLand stores

©1979 ComputerLand Corp., San Leandro, CA

Circle 75 on Inquiry card.
The I-can-do-it-in-less-statements-than-you-can-types mights not like this book. Ditto for people trying to run BASIC in 4 K bytes or less of memory, lovers of the logical AND, the galloping GOTO, or the multistatement LET.

But those who must decipher other programmers' code or even their own 6 months later will refer. What Nevison advocates above all else in his book is economy - even if it does take a half dozen extra lines to achieve. Quoting literary stylist Sheridan Baker, he calls clarity "the first aim, economy the second, grace the third." There is little of ams 2 and 3 in this book.

Many of Nevison's rules (there are 19 of them) echo the advice dispensed in the excellent Hayden Programming Proverbs series. For example, use blank lines to divide programs into logical blocks and to distinguish comment from code. Introduce, comment, and reference programs heavily. Label constants and variables logically and initialize constants near their use. Indent loops, IFs, and other logical structures to show their domains. Nest structures that work together, and direct all code in a logical block to a common exit.

Within the each rule is clearly illustrated by several short right and wrong examples. (Nevison calls the difference weak and strong programming.) These are followed by 10 compete utility programs, including 2 sorts, a crap game, and a histogram plotter, all carefully styled according to the rules.

But the book's pièce de résistance is a long program called Stylist. Written in minimal BASIC, Stylist illustrates how a complex program (which Nevison admits might be better written in a more structured language) can be cleanly and clearly structured within the confines of BASIC by using the book's design philosophy.

Essentially written as a giant subroutine caller, Stylist is heavily self-documenting, impeccably easy to follow (hence easy to modify), and neatly laid out.

No wonder, for Stylist's job is to take as input a raw BASIC program and format it according to Nevison's rules for indented structures and spacing. In fact, Stylist was used to style the final version appearing in the book.

The listing of Stylist is further augmented by text commentary explaining more advanced styling concepts useful in complex or lengthy programs.

Just as not every programmer will not all of Nevison's rules, not every BASIC interpreter will accept them. Some BASICS will balk at blank lines (Nevison suggests blank REMs as substitutes), and some interpreters insist inexorably on left justifying all lines and removing excess blanks.

There is no disputing that Nevison's techniques gobble up memory at a ravenous rate. (Nevison ran his programs on a large time-sharing system.) This is too bad, for there is little doubt that if many of this book's rules were applied most programs would be not only easier to read and understand, but more gracefully structured.

Jon Kapecki
161 Crosman Terrace
Rochester NY 14620
PET BUSINESS SYSTEM

PET 2001 - 16/32K

The PET is now a truly sophisticated Business System with the announcement of the Floppy Disk and Printer. This is an ideal business system for most professional and specialized fields: insurance, law, dental, research, engineering, bookkeeping, printing, education, energy conservation, etc.

The PET Business System as a management tool, delivers information to all levels of Business, previously available only with equipment many times more expensive. The PET Business System is one of the most cost efficient business tools today. Here are just a few of the cost-saving uses in the corporation, professional office or small business: stock control, purchasing, forecasting, manufacturing costing, customer records, mailing lists, etc.

Features Include:
- 16 or 32K bytes RAM user memory
- 14K ROM operating system including a machine language monitor
- Full-sized Business Keyboard
- Upper/Lower case and 64 graphics characters
- 9-inch CRT
- 8K ROM expansion sockets
- File management in operating system

<table>
<thead>
<tr>
<th>Memory Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>16K</td>
<td>$995</td>
</tr>
<tr>
<td>32K</td>
<td>$1295</td>
</tr>
</tbody>
</table>

DUAL DRIVE FLOPPY DISK 2040

The Dual Drive Floppy is the latest in Disk technology with extremely large storage capability and excellent file management. As the Commodore disk is an "intelligent" peripheral, it uses none of the RAM (user) memory of the PET.

The Floppy Disk operating system used with the PET computer enables a program to read or write data in the background while simultaneously transferring data over the IEEE to the PET. The Floppy Disk is a reliable low cost unit and is convenient for high speed data transfer. Due to the latest technological advances incorporated in this disk, a total of 360K bytes are available in the two standard 5½-inch disks, without the problems of double tracking or double density. This is achieved by the use of two microprocessors and 360 memory IC's built into the disk unit.

Features Include:
- 360K bytes storage
- 6504 microprocessor-controlled
- 4K RAM
- 8K operating system in ROM
- Uses single or double sided floppies

TRACTOR FEED PRINTER 2022

The Tractor Feed Printer is a high specification printer that can print onto paper (multiple copies) all the PET characters - letters (upper and lower case), numbers and graphics available in the PET. The tractor feed capability has the advantage of accepting mailing labels, using standard preprinted forms (customized), check printing for salaries, payables, etc.

Features Include:
- 150 cps
- 6504 microprocessor-controlled
- 4K RAM buffer
- Bottom and rear tractor feed
- 4K operating system in ROM

Model 2023 (Friction Feed) - $849 (Next day delivery available.)

FULL SYSTEM NOW IN STOCK FOR IMMEDIATE DELIVERY!

SUPER WORD PROCESSING SYSTEM

$2395 complete with software

The Super Word Processing System is written in 6502 Assembly Language and allows users to use the PET computer for such tasks as typing stories, reports, and manuscripts, for producing mailing lists, etc., for filling out forms. The software is written to support any necassory programs and even high performance printers with incremental and proportional font marking. The Super Word Processing easily creates, adds, moves, and formats text. It can merge multiple files. In addition to standard commands, the system has automatic tabbing, word wrap-around, which eliminates the need for carriage returns. The system uses a standard keyboard for easier typing in paragraph blocks.

BUSINESS SOFTWARE FOR PET BUSINESS SYSTEM

- Super Word Processing Package (Disk $99.95, Tape $24.95)
- Real Estate
- Statistics
- Banking & Finance
- Mail List Management
- Data Base System
- Payroll

PERIPHERALS FOR PET

PET MUSIC BOX from SOUNDBOARD

Add music and sound effects to your programs. Computers, play, and hear music in your PET. Completely self-contained Free programs $29.95

PET SYSTEM MUSIC BOX from SOUNDBOARD

Add music and sound effects to your programs. Computers, play, and hear music in your PET. Completely self-contained Free programs $29.95

NEW! from Enventle

MARK SENSE CARD READER $750
- Automatic turn-on and card slant
- Ideal for marking test scores
- Accepts any index card
- Perfect for schools & businesses

CABLE FROM PET TO DISK OR PRINTER - $39
CABLE FROM PRINTER TO DISK - $40

TO ORDER CALL TOLL FREE 800-223-7318

The COMPUTER FACTORY

845 Lexington Avenue 750 Third Avenue New York, N.Y. 10017
(212) 687-5001 (212) PET-2001 Foreign order desk. Telex 640956

BYTE September 1979 155
Our ED-80 Text Editor offers a refreshing new approach for the creation and editing of program and data files conversationally—and it saves money! Its powerful editing capabilities will satisfy the most demanding professional—yet it can still be easily used by the inexperienced beginner.

Look at these outstanding features:

- By far the best text editor available for microcomputer-based systems.
- Reays its initial cost many times over with its unique time-saving editing capabilities.
- FULL SCREEN window displays for viewing and editing data a page-at-a-time, rather than line-by-line.
- Forward and backward scrolling in the FULL SCREEN mode.
- Displays the results of every edit command.
- Commands include forward or backward Locate and Change, Insert, Delete, Replace, Inline, Input, Print, List, Window, Get, Put, Macro, Tabset, Append, Case, Scale, and Dump.
- Simple line-oriented commands with character string manipulation capabilities.
- Text may be located by string value, by line number, or by relative line number.
- Global string search and replace capabilities.
- Commands for moving, copying, and merging edit files on the same or different diskettes.
- Self-explanatory diagnostic messages.
- Single keystrokes for the most commonly used commands.
- Safeguards to prevent catastrophic user errors that result in loss of the edit file.
- Designed for today's high speed CRT's, video monitors, and teletypewriter terminals.
- Thoroughly field tested and documented with a User's Manual of over 60 pages.
- Compatible with existing CP/M edit files and derivative operating systems.

And remember—in today's interactive programming environment—the programmer’s most important software development tool is the text editor. Our ED-80 Text Editor is working in industry, government, universities, and in personal computing to significantly cut program development time and high labor costs. Why not let ED-80 begin solving your text editing problems today?

Mail to: SOFTWARE DEVELOPMENT & TRAINING, INC.
P.O. Box 4511, Huntsville, AL 35802

ED-80 is protected by copyright and furnished under a paid-up license for use on a single computer system.

☐ Please send additional information.

☐ Send Diskette, User's Manual, and paid-up license agreement $99.00

Specify SINGLE DENSITY Diskette size..

☐ 5" ..

☐ 8" ..

☐ Send User's Manual (coped on purchase of a paid-up license) $10.00

☐ Check or money order enclosed for ...

☐ Please charge to my credit card

Card No. Bank No.

VISA Master Charge

Exp Date

NAME

ADDRESS

CITY

STATE

ZIP

SIGNATURE

SOFTWARE DEVELOPMENT & TRAINING, INC.
Post Office Box 4511 —— Huntsville, Alabama 35802

Dealer Inquiries Welcome
© CP/M is a trademark of Digital Research

TRS-80 Microcomputer Technical Reference Handbook

Published by Tandy Corporation 1979

8.5 by 11 inches, 108 pages

Radio Shack catalog number 26-2103

$9.95

Since the introduction of the Radio Shack TRS-80, many hardware-minded hobbyists have wondered what makes the TRS-80 tick. Until recently most of the details have been missing, and the little that was known was uncovered here and there by various users. But now Radio Shack has enlightened us all with the publication of The TRS-80 Microcomputer Technical Reference Handbook. The major contents are:

- System Block Diagram
- Description
- The Memory Map
- Theory of Operation
- Adjustments and Troubleshooting
- The Outside World
- Parts List
- Schematics

The preface explains that the book is not intended to give an education in digital logic, but to teach the hardware enthusiast the specifics of the TRS-80. If you don't know a NOR from a NAND, this manual will not make much sense. The preface also warns that, should the owner decide to open the unit, the warranty is immediately void.

The block diagram appears on a double fold-out page. The diagram section also contains brief descriptions of the various parts of the system. There is one small error on the block diagram. It does not show the lower-half of the address bus going to the cassette I/O (input/output) port which must be addressed to operate.

A memory map for any computer system reveals lots of information. The memory map in this book shows hexadecimal addresses 0000 thru FFFF, and indicates where the read-only memory, programmable memory, keyboard, and video display fall within the addressable space of the Z80 processor.

The memory map shown is for a Level I machine; it is necessary to figure out what the address usage would be for a Level II machine.

The real substance of the book is the "Theory of Operation" section. Each separate section of the TRS-80 is explained in detail. This section of the book is the largest, and the video-display logic subsection is the largest within the theory of operation.

The TRS-80 uses some unusual design techniques and a few uncommon parts. An example of this is the memory-mapped keyboard. The theory behind these design techniques and unusual parts is explained clearly, so that a person who has never seen these things can readily understand them.

Throughout the theory of operation section, many explanations are of the type: "gate X goes low causing gate Y to go high". This causes the reader to refer constantly to the schematics at the back of the book, necessitating a lot of irritating page turning which could have been avoided if that portion of the schematic had been reproduced on the page with the description.

Scattered throughout this section are many timing diagrams which, when used with the schematics, make the circuit descriptions easier to understand.

The "Adjustments and Troubleshooting" section is also filled with information. Included are power supply checks and adjustments; section isolation using a flowchart; processor problem isolation using a flowchart; and troubleshooting for the keyboard, video-display logic, cassette interface, and power supply. These troubleshooting sections contain hints, and suggest possible bad parts causing...
We're about to make a new name for ourselves.

Not that the old one was so bad. As Ithaca Audio, we've made quite a name for ourselves. As the source for CPU, memory, video display and disk controller boards to upgrade other makers' mainframes and peripherals. The company that makes those neat little RAM expansion kits. And the folks behind the world's only Z-80 Pascal compiler.

But as much as we've enjoyed improving other people's equipment, we've been quietly moving towards larger endeavors, with a lot of encouragement from our customers. Listening to people's problems, as well as their needs. And, as a prime mover behind the IEEE S-100 Bus Standard, answering some really knotty questions.

One of the results is our new identity. And our first new product: the Intersystems DPS-1. An IEEE S-100 compatible mainframe with features that live up to its looks. Dependable operation to 4 MHz. Twenty-card capacity. A modular power supply. And something no one else has—built-in breakpoints to give you a faster, more powerful tool for testing software as well as hardware. Directly accessible from an easy-to-use front panel that's as reliable as it is functional. In short, an intelligently-designed computer for the intelligent user.

There's a lot more to Intersystems. In hardware. And software. All available through the nationwide dealer network we're now assembling.

You can watch this magazine for updates. Or contact us directly for straight, friendly answers and detailed information from key staff people. Just the way you always have. Because even though we're making a new name for ourselves, we'll never forget who made it possible.

Intersystems

Ithaca Intersystems Inc.
1650 Hanshaw Road/P. O. Box 91
Ithaca, NY 14850/607-257-0190

© 1979 Ithaca Intersystems Incorporated
various problems. The subsection on video ailments contains a handy table that shows the frequency of the signals to be found at 17 different logic gates in the video divider chain. There is also a small program and instructions for adjusting the horizontal and vertical centering. The power supply subsection has a table that shows the voltages on all the pins of the 2723C voltage regulators.

Perhaps the most interesting section in the book is the one entitled “The Outside World”. Here the hardware enthusiast can learn how to hook up an automatic back scratcher or cigarette lighter to the TRS-80. Two techniques of external circuit interfacing are presented: memory-mapped addressing and I/O port addressing. The authors were kind enough to include schematics for a coffee pot control using both techniques. While these particular examples may not interest everyone, they do serve to illustrate how easy it is to make your computer do things other than run programs. Also included is a BASIC program to turn on the coffee pot.

The last part of this section has a chart showing the signals present on each pin of the expansion connector and an explanation of the function of each pin. Armed with the information in this section, the hardware designer should be able to interface just about anything to the TRS-80.

The “Parts List” section is just that! It contains many individual lists headed by the part type, such as resistors, capacitors, integrated circuits, etc. A part number is also given for each part. However, there is no correlation between these part numbers and Radio Shack catalog part numbers. For example, the technical manual number for a 74LS74 flip-flop is 3102015, while the Radio Shack catalog number is 276-1919. Fortunately, with integrated circuits, a part number is not really needed as long as the part is marked with its standard 7400 series number. As for most of the other parts, it is possible to substitute for the part just by reading the part description.

The “Schematics” section contains information on differences in the read-only memory parts of Level I machines, as well as 3 figures showing schematic diagrams. One diagram displays the logic on the small printed circuit that contains the read-only memory devices in Level II equipped TRS-80s. This board is attached by adhesive tape to the main printed circuit board. A ribbon cable extends from it to the socket intended for the Level I read-only memory.

The other 2 figures show different sections of the logic contained on the main printed circuit board and the keyboard printed circuit board. These figures appear on long, fold-out pages. The first page contains the Z80 processor, 3-state buffers, memory, address decoding, and keyboard. The second page shows the electronic logic for the system clock, video display, cassette I/O, and power supply. Spare gates are shown on both sheets. The schematics are well drawn, clear, and easy to read. They become rather awkward, however, when stretched out on a workbench that is probably already inhabited by the opened TRS-80 and the associated test equipment. I would have preferred the schematics split into at least 4 pages.

The book is written in a clear, easy-going style. [However, the authors often use engineering jargon where it would have been simpler to use plain English...]

The authors are not identified. Scattered here and there in the manual are many valuable troubleshooting tips of a general nature. (An example is the paragraph on checking open collector outputs.) All of the figures in the book are large and easy to read. Except for the previously mentioned criticism of the main schematic, I consider this a plus.

Conspicuous in its absence is a discussion of the video monitor. No schematic is given; nor is it operation discussed. I consider this to be the only major fault with the manual, one that surely will be corrected with the next revision. Also absent is a schematic of the power supply.

As mentioned earlier, the intent of this book is not to give an education in digital logic. It does not even attempt to impart knowledge about the inner workings of the Z80 processor. That is beyond the scope of the manual. Nor does it explain what is contained in read-only memory. Software is mentioned only in passing. What the book does teach is how all the various devices work together to form the TRS-80. Despite its faults, I consider this manual a valuable addition to the library of any hardware-oriented TRS-80 owner.

Ken Fordham
7612 La Mesita Ct
Tampa FL 33615

FOR 6800 USERS
A VIEW OF THE CLASSICS

The first Micro Works PSB-08 PROM Board was assembled and burned in over two years ago—eons in the micro world. Designed as an efficient, cost-effective EPROM storage system for the SWTPC 6800, its flexibility accommodates all the new S-50 computers on the market—SWTPC 6809, GIMIX, MSI and Smoke Signal Broadcasting. The 2708 EPROM remains an inexpensive, capable medium for storage of subroutines, I/O handlers, monitors and even BASIC interpreters while the cost and availability of 2716s still don’t justify their purchase. PSB-08 has space for up to 8 2708 EPROMS and the following exclusive features:

* 1K "scratch pad" RAM—more than enough temporary storage capacity for any program requiring up to 8K of PROM
* Dip-switch addressable PROM and RAM, to start on any 8K boundary in memory
* I/O select capability lets you move the I/O locations to any unused 1K block in EPROM memory space, permitting memory expansion to a full 56K contiguous user RAM

Originally intended for use with 6800-based system software, the PSB-08 will continue to be a valuable tool for years to come with your 6809. And the relocatable I/O feature lets you keep your 6800 system up-to-date.

Ken Fordham
7612 La Mesita Ct
Tampa FL 33615

The last two years have seen many microcomputer products come and go. In our history, there have been no takers on the PSB-08’s warranty. Like the classics, our PROM board endures. Price: $119.95; regulated + 12v: $124.95

The Micro Works
P.O. BOX 1110, DEL MAR, CA 92014 714-756-2687

Circle 231 on inquiry card.

There's a computer in your future. And the future is now.

We've entered a new and exciting era—the age of the home computer. Maybe you've already heard about it, and maybe you are looking for the most sophisticated personal computer available today. This is the era of the home personal computer, and you can find it at Texas Instruments TT-99/4 Home Computer.

The TI-99/4 was designed to be the first true home computer—a skilled computer user and beginner alike will be able to put it to effective use right away.

If you know computers, you'll quickly see the difference in the TI-99/4.

Texas Instruments has taken those features you've been waiting for and some you may not have heard about yet—and included them in one incredible, affordable computer system. The TI-99/4 gives you an unmatched combination of features and capabilities, including:

- Decision-making software for hundreds of programs—Built-in 12-digit floating point BASIC, fully compatible with ASHI Manual BASIC, plus several features and extensions for color, sound and graphics.
- 140K memory, with 84K RAM for extended BASIC, 56K ROM (Read-Only Memory), 20K ROM (Read/Write Memory), plus 8K RAM in TI's Solid State Software Command Module.
- BASIC, operating system, ROM, floating point, sound and color graphics software are contained in ROM.
- Header graphics capability—Easy-to-access high-resolution graphics have special features that let you define your own characters, create animated displays, charts, graphs... and more.
- Voice and sound effects—Provides outstanding audio capability. Build three-note chords and adjust frequency, duration and volume quickly and simply.
- Two way communication—Send and receive commands. Four setters from 110-1300 to beyond 600 BPS.
- Built-in equation calculator—Unique convenience feature helps you find quick solutions to everyday math problems, as well as complex scientific calculus equations. Directly accessible from the keyboard.

If you're new to computers, the TI-99/4 is for you.

You can begin using the TI Home Computer literally minutes after you unpack it. Without any previous computer experience or programming knowledge, you simply snap in one of TI's Solid State Software Command Modules and learn a few keys, step-by-step instructions are displayed right on the screen. So you're just about anyone in your family can use the TI-99/4.

Two pioneering technological developments in particular set the TI-99/4 apart from the rest.

Solid State Speech™—This optional speech synthesizer enables the TI-99/4 to literally speak—to provide verbal prompts and special messages to the user. Actually reproduce the human voice electronically. Hundreds of words are available, and in-keyboard modules will add hundreds more. TI's unique technology lets you add all the words you want by simply typing them in. Outstanding voice clarity and fidelity. Solid State-Speech is a proven technology already on the market in TI's unique Speak & Spell™ electronic learning aid for children.

Solid State Software™ Command Modules—Available in a wide range of application areas, these optional ROM modules actually add application program memory to your TI-99/4. They let you use the TI Computer immediately with no programming. Serious programmers will appreciate the time and effort saved by these pre-programmed modules. Plus, they'll let you introduce your family to the computer in the easiest possible way. Solid State Software was pioneered by TI for use with its powerful programmable calculators.

A world of genuine, practical applications exist for the TI Home Computer right now. In addition to the many personal financial, home management, educational and entertainment uses for the TI-99/4, there is a wide variety of home business and professional applications. The TI-99/4 is a powerful problem-solving tool—an ideal solution where larger, more expensive computers would be impractical.

99/4 DEALER INQUIRIES INVITED—CONTACT NEECO FOR INFORMATION

NEECO IS PLEASED TO ANNOUNCE THAT WE HAVE BEEN SELECTED AS ONE OF THE TI 99/4 COMPUTER DISTRIBUTORS FOR THE NEW TEXAS INSTRUMENTS 99/4 HOME COMPUTER. OUR GOAL IS TO MAKE THE TI 99/4 COMPUTER AVAILABLE TO OUR MANY OTHER PRODUCTS, AVAILABLE TO INDEPENDENT COMPUTER STORES NATIONWIDE. 99/4 PRODUCT AVAILABILITY IS SEPTEMBER/0CT BUT IS ALWAYS SUBJECT TO TEXAS INSTRUMENT'S 99/4 PRODUCT ALLOCATION.
Handy Pulser

Bob Chisp
3428 Executive Av
Falls Church VA 22042

Figure 1: Schematic for the Handy Pulser. Switches SW4 and SW5 allow selection of positive or negative going pulses. Switch SW2 is a momentary contact switch which allows single pulsing. All resistors are .25 W and all resistances are measured in ohms. All capacitor values are given in microfarads.

VAK-1 MOTHERBOARD
- Designed specifically for use with the AIM-65, SYM-1, and KIM-1 microcomputers
- Standard KIM-4* Bus
- Fully buffered Address and Data Bus
- Provides 8 expansion board slots
- Complete with rigid card-cage
- All IC's are socketed
- Provides separate jacks for one audio-cassette, TTY, and Power
- Completely assembled (except for card-cage)

We manufacture a complete line of high quality expansion boards. Use reader service card to be added to our mailing list, or U.S. residents send $1.00 (International send $3.00 U.S.) for airmail delivery of our complete catalog.

*Product of MOS Technology

PRICE: $129.00
We also carry the SYM-1 Microcomputer with manuals $269.00

RNB ENTERPRISES INCORPORATED
2967 W. Fairmount Avenue • Phoenix, AZ 85017 • (602) 265-7564

© 1979 BYTE Publications Inc
Most of us at one time or another have had the need for a TTL (transistor-transistor logic) pulser source for troubleshooting or circuit design. Since most of us are not affluent enough to afford sophisticated test equipment we will usually kludge a TTL oscillator or pulser when the need arises. However, the next time we need our handy little circuit we ended up searching our goody box only to find that we have used the parts in another piece of equipment.

What I have tried to put together is an inexpensive oscillator that hopefully will stay in 1 piece and be ready when needed. In an effort to keep it simple and inexpensive I have left out some of the niceties that are found in your more expensive commercial test gear: variable pulse level, variable offset, rise and fall time control, double pulses, etc.

Design

Three integrated circuits form the basis of the oscillator: a 555 timer connected as an oscillator, a retriggerable oneshot and a hex driver. Potentiometers R1 and R2 in conjunction with the capacitor selected by switch SW1 determine the operating frequency of the 555. I used potentiometers for both resistances so that I could have control of the duty cycle. The equation for the operating frequency is given by:

$$ f = \frac{1.44}{(R1 + 2(R2))C} $$

The output of the 555 is connected to a 74122 retriggerable oneshot. The use of the oneshot allows independent control of frequency with the 555 and independent control of pulse width with the 74122. The combination of the 2 integrated circuits lets you trigger your oscilloscope from one edge and the other edge triggers the 74122. The 7407 was included for drive capability. SW3 allows for single pulse operation and SW4 and SW5 provide positive and negative sync and pulse outputs respectively.

Construction

The 3 integrated circuits were mounted on Micro Vectorbord using wire wrap sockets. The pull up resistors were mounted on the same board with wire wrap pins. The remaining components were mounted on the front panel. I decided not to include a power supply in this design because the pulser is always being used with a breadboard which has its own supply or it is being used on my processor. By using the supply of whatever I am working on I don’t have to run extra ground leads.

Variations

If you anticipate doing a lot of work where you must be synchronized to an external signal, then SW6 could be replaced with a single-pole triple throw switch with the third position being the output of a 7413 Schmitt trigger. The input of the Schmitt trigger would be your external signal.

Utilization

There are 2 things to be careful about in the use of the Handy Pulser. One, there are certain combinations of operating frequency and pulse width that will give you a constant 1 or 0 output; two, make sure the delay between your oscilloscope sync and pulse output keeps you on the screen. Otherwise, you can be delayed right off the screen.

Specifications

With the values shown in figure 1 the unit’s specifications are:

- Pulse repetition frequency .05 Hz thru 400 kHz
- Pulse delay 2 µs thru 3 seconds
- Pulse width 2 µs thru 5 seconds

Final Comments

As I mentioned before, I decided not to include a power supply in this design but rather use the supply of whatever I am working on. One problem that arises is that most manufacturers do not provide convenient places to pick up the +5 V and ground. Rather than install separate connectors on each card, I installed a 5 V regulator with convenient connectors on the mainframe of my computer. This has proven to be a great asset. If nothing else, it is a handy place to find ground since the frame is not ground. I used an LM-309 regulator with pin jacks and terminals.
BUSINESS

Appointment log by M. Kelleher. Perfect for the professional. Accepts name and address, meeting start and endings, subject matter, derives elapsed time. For Level II, 16K. $9.95.

Mail List II by Michael Kelleher is the economy model of disk-based mailing list programs. Uses a single drive and handles up to 1400 names per disk, plus provisions for sorting options. 16K, D $19.95.

MAIL LIST II by BUS-80. Complete mail list system for dual disk. Entries, envelopes, merge, sort, print mailing labels. D, 32K. $39.95

Inventory System 2.3 by M. Kelleher. One of small business management's most difficult problems brought under control. Keeps track of inventory, account numbers, custom message printing option, much $100.00. 32K Disk, $150.00

PAID ACCOUNTING

General Ledger I by M. Kelleher. Establishes, defines, deletes and sorts up to 400 accounts. Up to 60,000 transactions per month. Level II, 16K $9.95.

Appointment log by M. Kelleher. Perfect for the professional. Accepts name and address, meeting start and endings, subject matter, derives elapsed time. For Level II, 16K. $9.95.

MAIL LIST II by BUS-80. Complete mail list system for dual disk. Entries, envelopes, merge, sort, print mailing labels. D, 32K. $39.95

Inventory System 2.3 by M. Kelleher. One of small business management's most difficult problems brought under control. Keeps track of inventory, account numbers, custom message printing option, much $100.00. 32K Disk, $150.00

Backgammon by Scott Adams. Level II, 16K $7.95

Chess Companion by M. Kahn. Compiles chess clock features with ability to record your moves while action is fast and furious. Level II, 16K $7.95

Sargon Chess by Dan & Kathe Spracklen. Winner of the 1978 San Jose Microcomputer Chess Tournament. Level II, 16K $19.95

Mastermind II by Lance Mcklus. Lets you and the computer take turns making and breaking codes. Level II, 16K $7.95

PERSONAL

RPN Calculator by Russell Starkey. A self-documenting calculator program. Uses Reverse Polish Notation with 4-level stack, 100 memories, scientific functions. Level II, 9.95

Home Financial Management by M. Kelleher. Turns your computer into a personal financial advisor. Level II, 16K $9.95

Tarat by Frank B. Rowlett, Jr. Probably the best future-gazing type program ever written. Try it — you’ll like it! Level I or II, 16K $9.95

Special Disk-enhanced version, 32K $24.95

Educator Assistant by Steve Reiser. Five programs of value to educators. Compute percentage, individual student averages, class averages, standard test scores, final grades. Level II, 16K $9.95 D, $14.95. Typing Tutor by 60 U.S. A set of programs designed to teach you touch typing. Takes you from basics to high-speed drill, with quizzes and grades. Progress at your own pace, and have fun mastering an enormously useful skill. Level II, 16K - $19.95.

PERSONAL

RPN Calculator by Russell Starkey. A self-documenting calculator program. Uses Reverse Polish Notation with 4-level stack, 100 memories, scientific functions. Level II, 9.95

Home Financial Management by M. Kelleher. Turns your computer into a personal financial advisor. Level II, 16K $9.95

Tarat by Frank B. Rowlett, Jr. Probably the best future-gazing type program ever written. Try it — you’ll like it! Level I or II, 16K $9.95

Special Disk-enhanced version, 32K $24.95

Educator Assistant by Steve Reiser. Five programs of value to educators. Compute percentage, individual student averages, class averages, standard test scores, final grades. Level II, 16K $9.95 D, $14.95. Typing Tutor by 60 U.S. A set of programs designed to teach you touch typing. Takes you from basics to high-speed drill, with quizzes and grades. Progress at your own pace, and have fun mastering an enormously useful skill. Level II, 16K - $19.95.

PERSONAL

RPN Calculator by Russell Starkey. A self-documenting calculator program. Uses Reverse Polish Notation with 4-level stack, 100 memories, scientific functions. Level II, 9.95

Home Financial Management by M. Kelleher. Turns your computer into a personal financial advisor. Level II, 16K $9.95

Tarat by Frank B. Rowlett, Jr. Probably the best future-gazing type program ever written. Try it — you’ll like it! Level I or II, 16K $9.95

Special Disk-enhanced version, 32K $24.95

Educator Assistant by Steve Reiser. Five programs of value to educators. Compute percentage, individual student averages, class averages, standard test scores, final grades. Level II, 16K $9.95 D, $14.95. Typing Tutor by 60 U.S. A set of programs designed to teach you touch typing. Takes you from basics to high-speed drill, with quizzes and grades. Progress at your own pace, and have fun mastering an enormously useful skill. Level II, 16K - $19.95.

PERSONAL

RPN Calculator by Russell Starkey. A self-documenting calculator program. Uses Reverse Polish Notation with 4-level stack, 100 memories, scientific functions. Level II, 9.95

Home Financial Management by M. Kelleher. Turns your computer into a personal financial advisor. Level II, 16K $9.95

Tarat by Frank B. Rowlett, Jr. Probably the best future-gazing type program ever written. Try it — you’ll like it! Level I or II, 16K $9.95

Special Disk-enhanced version, 32K $24.95

Educator Assistant by Steve Reiser. Five programs of value to educators. Compute percentage, individual student averages, class averages, standard test scores, final grades. Level II, 16K $9.95 D, $14.95. Typing Tutor by 60 U.S. A set of programs designed to teach you touch typing. Takes you from basics to high-speed drill, with quizzes and grades. Progress at your own pace, and have fun mastering an enormously useful skill. Level II, 16K - $19.95.

PERSONAL

RPN Calculator by Russell Starkey. A self-documenting calculator program. Uses Reverse Polish Notation with 4-level stack, 100 memories, scientific functions. Level II, 9.95

Home Financial Management by M. Kelleher. Turns your computer into a personal financial advisor. Level II, 16K $9.95

Tarat by Frank B. Rowlett, Jr. Probably the best future-gazing type program ever written. Try it — you’ll like it! Level I or II, 16K $9.95

Special Disk-enhanced version, 32K $24.95

Educator Assistant by Steve Reiser. Five programs of value to educators. Compute percentage, individual student averages, class averages, standard test scores, final grades. Level II, 16K $9.95 D, $14.95. Typing Tutor by 60 U.S. A set of programs designed to teach you touch typing. Takes you from basics to high-speed drill, with quizzes and grades. Progress at your own pace, and have fun mastering an enormously useful skill. Level II, 16K - $19.95.

PERSONAL

RPN Calculator by Russell Starkey. A self-documenting calculator program. Uses Reverse Polish Notation with 4-level stack, 100 memories, scientific functions. Level II, 9.95

Home Financial Management by M. Kelleher. Turns your computer into a personal financial advisor. Level II, 16K $9.95

Tarat by Frank B. Rowlett, Jr. Probably the best future-gazing type program ever written. Try it — you’ll like it! Level I or II, 16K $9.95

Special Disk-enhanced version, 32K $24.95

Educator Assistant by Steve Reiser. Five programs of value to educators. Compute percentage, individual student averages, class averages, standard test scores, final grades. Level II, 16K $9.95 D, $14.95. Typing Tutor by 60 U.S. A set of programs designed to teach you touch typing. Takes you from basics to high-speed drill, with quizzes and grades. Progress at your own pace, and have fun mastering an enormously useful skill. Level II, 16K - $19.95.

PERSONAL

RPN Calculator by Russell Starkey. A self-documenting calculator program. Uses Reverse Polish Notation with 4-level stack, 100 memories, scientific functions. Level II, 9.95

Home Financial Management by M. Kelleher. Turns your computer into a personal financial advisor. Level II, 16K $9.95

Tarat by Frank B. Rowlett, Jr. Probably the best future-gazing type program ever written. Try it — you’ll like it! Level I or II, 16K $9.95

Special Disk-enhanced version, 32K $24.95

Educator Assistant by Steve Reiser. Five programs of value to educators. Compute percentage, individual student averages, class averages, standard test scores, final grades. Level II, 16K $9.95 D, $14.95. Typing Tutor by 60 U.S. A set of programs designed to teach you touch typing. Takes you from basics to high-speed drill, with quizzes and grades. Progress at your own pace, and have fun mastering an enormously useful skill. Level II, 16K - $19.95.

PERSONAL

RPN Calculator by Russell Starkey. A self-documenting calculator program. Uses Reverse Polish Notation with 4-level stack, 100 memories, scientific functions. Level II, 9.95

Home Financial Management by M. Kelleher. Turns your computer into a personal financial advisor. Level II, 16K $9.95

Tarat by Frank B. Rowlett, Jr. Probably the best future-gazing type program ever written. Try it — you’ll like it! Level I or II, 16K $9.95

Special Disk-enhanced version, 32K $24.95

Educator Assistant by Steve Reiser. Five programs of value to educators. Compute percentage, individual student averages, class averages, standard test scores, final grades. Level II, 16K $9.95 D, $14.95. Typing Tutor by 60 U.S. A set of programs designed to teach you touch typing. Takes you from basics to high-speed drill, with quizzes and grades. Progress at your own pace, and have fun mastering an enormously useful skill. Level II, 16K - $19.95.
LISP Interpreter
The programming language LISP offers exciting new possibilities for microcomputer applications. A highly interactive interpreter that uses list-type data structures which are simultaneously data and executable instructions. LISP features an unusual structured, recursive function-oriented syntax. Widely used for processing, artificial intelligence, education, simulation symbolic, and computer-aided design. 6800 LISP requires a minimum of 12K RAM.
Price: $75.00

A/BASIC Compiler
The ever-growing A/BASIC family is threatening old-fashioned assembly language programming in a big way. This BASIC compiler generates pure, fast, efficient 6800 machine language from easy to write BASIC source programs. Uses ultra-fast integer math, extended string functions, boolean operators and real-time operations. Output is ROMable and RUNS WITHOUT ANY RUN-TIME PACKAGE. Disk versions have disk I/O statements and require 12K memory and host DOS. Cassette version runs in 8K and requires RT/68 operating system. Price: Disk Extended Version 2.1 $150.00
Cassette Version 1.0 $65.00

A/BASIC Source Generator
An "add-on" option for A/BASIC Compiler disk versions that adds an extra third pass which generates a full assembly-language output listing AND assembly language source file. Uses original BASIC names and inserts BASIC source lines as comments. SSB and SWTPC Miniflex version available.
Price: $75.00

A/BASIC Interpreter
Here it is—a super-fast A/BASIC interpreter that is source-compatible with our A/BASIC compiler! Now you can interactively edit, execute and debug A/BASIC programs with the ease of an interpreter—then compile to super efficient machine language. Also a superb stand-alone applications and control-oriented interpreter. Requires 8K RAM. The cassette version is perfect for Motorola D2 Kits.
Price: $75.00

RT/68 Real Time Operating System
MIKBUG—compatible ROM that combines an improved monitor/ debugger with a powerful multitasking real-time operating system. Supports up to 16 concurrent tasks at 8 priority levels plus real time clock and interrupt control. Thousands in use since 1976 handling all types of applications. Available on 6830 (MIKBUG-type) or 2708 (EPROM-type) ROM. Manual is a classic on 6800 real-time applications and contains a full source program listing.
Price: RT68MX (6830) $55.00
RT68MKP (2708): $55.00

6800 CHESS

Languages Forum is a feature which is intended as an interactive dialog about the design and implementation of languages for personal computing. Statements and opinions submitted to this forum can be on any subject relevant to its purpose of fostering discussion and communication among BYTE readers on the subject of languages. We ask that all correspondents supply their full names and addresses to be printed with their commentaries. We also ask that correspondents supply their telephone numbers, which will not be printed.

R Lawrence Clark, 30303 Avenida de Calma, Rancho Palo Verdes CA 90274

While I applaud Mr. Bass’ attempts to improve the BASIC language (“Languages Forum,” April 1979 BYTE, page 238), he has completely missed the point of the COMEFROM statement. The primary goal of the COMEFROM is to eliminate GOTOs, which Dijkstra and many other advocates of structured programming consider harmful. If the statement can also be used to trace back execution during debugging, that is an unexpected bonus.

I provided a detailed description of the semantics of the COMEFROM in “A Linguistic Contribution to GOTO-less Programming” (Datamation, December 1973). Briefly, the statement:

destination COMEFROM source

is equivalent to the conventional:

source GOTO destination

where both source and destination are line numbers.

The original article describes additional variants, which in BASIC would appear as the following:

IF condition COMEFROM source

and:

ON variable COMEFROM source1, source2, ..., sourceN

Because of the COMEFROM’s potential for improving programming accuracy and readability, I feel it is important to clarify its proper usage.

Our software is available for most popular 6800 systems on cassette or diskette unless otherwise noted. Disk versions available on S.S.B. SWTPC, or Motorola MODE. Please specify which you require. Phone orders are welcomed. We accept MASTERCHARGE and VISA. We try to ship orders within 24 hours of receipt. Please call or write if you require additional information or our free catalog.

MICROLEWARE SYSTEMS CORPORATION
P.O. BOX 4865
DES MOINES, IA 50304
(515) 265-8121

September 1979 © BYTE Publications Inc
David Faught’s letter titled “On Expressing Multiple Conditions” in the December 1978 BYTE Languages Forum, page 176, does a good job of illustrating the need for a language construct to deal with actions based on multiple conditions. I, too, found the means available in BASIC, FORTRAN, and COBOL (I am not yet familiar with Pascal) somewhat lacking.

This need is met, however, in PL/I by the SELECT group. The basic syntax of this construct is shown in listing 1.

Listing 1

```
SELECT (expression);
WHEN (expression-1, expression-2) action-1;
WHEN (expression-3) action-2;
OTHERWISE action-3;
END;
```

When the SELECT statement is executed, the expression in parentheses is evaluated and the value is saved. The expressions in the WHEN statements are then evaluated one at a time, in the order in which they appear. If each one is evaluated, its value is compared to the saved value. If a value is found that matches the saved value, the action specified by that WHEN statement is executed and no further expressions are evaluated. If none of the values match, the action specified by the OTHERWISE statement is executed.

The actions after the WHEN and OTHERWISE statements may be a simple statement, a compound such as IF ... THEN ..., or even another SELECT group. After the action has been performed, control passes to the first statement after the END (unless the action specifies otherwise, of course). If the expression in the SELECT statement is omitted, the expressions in the WHEN statements are treated as logical statements and evaluated as a bit string. If any bit in the string is 1 (signifying true), the action is performed. (A=B would be evaluated as a 1 bit if A and B contained the same value.)

Listing 2 shows an example of such a SELECT group.

Listing 2

```
SELECT;
WHEN (A<B) CALL LESSTHN;
WHEN (A>B) CALL GTRETHN;
OTHERWISE CALL GTRTHN;
END;
```

It is also possible to omit the OTHERWISE statement. If no WHEN statement is selected and there is no OTHERWISE statement, an error interrupt is caused. This is useful for catching critical data that has somehow gone out of the acceptable range.

I think this construct meets the needs which Mr Faught expressed, and is easier to implement than the alternative he suggests.

Scott Lawrence, 201B Lehman N SUCP, Potsdam NY 13676

More on Multiple Conditions
Data Abstractions and Program Correctness

One of the most interesting and informative aspects of BYTE magazine is the dialogue about programming languages found in the Languages Forums and Letters column. Many times these discussions are initiated by an article which included an example program in a particular language. The ongoing debate about the strengths and weaknesses of various programming languages is most informative and useful to those people who know only one language well.

The recent article concerning queuing theory, "Queueing Theory Part 1: Queue Representation" (April 1979 BYTE, page 132), by Len Gorney provides a good vehicle for discussion. My comments are not to be taken as criticism of author Gorney, but as commentary concerning BASIC as compared to a contemporary language such as Pascal. It is important for programmers to understand that the difference between BASIC (and FORTRAN) and Pascal is not just one of degree, but one of type as well.

One of the most important and fundamental concepts in modern software engineering practice is that of data-abstraction. The data-abstraction has great influence upon program correctness. A data-abstraction is defined as a data-structure and the set of operations that may be legally performed upon it. An example in the queuing theory context is the data-abstraction queue, for which a data-structure must exist to store its contents, and for which 5 operations are allowed: initialization, insertion, deletion, overflow, and underflow. The semantic meaning of these operations is also defined, but will not be repeated here so as to avoid duplication of the Gorney article.

How is a queue to be implemented in a programming language? It would be simple if a programming language included a data-structure of type queue but, to my knowledge, none do. In general there exists an infinite number of data-structures of potential interest, and no language could include them all. Instead, any particular language usually includes only a small set of data-structures such as reals, integers, and characters; and arrays, records, and files of these structures. No insurmountable problem exists, however, because a data-structure of interest can usually be constructed from these existing primitive data-structures. Thus one may construct a queue data-structure by using an array and 2 integers (head and tail pointers).

Notice that the implementation of a queue data-structure in the manner just described does not result in the data-abstraction of a queue: the program manipulating the array and the pointers is in no way restricted to the 5 legal queue operations. It is this lack of operation restriction that can result in program incorrectness, particularly in large programs undergoing maintenance. For example, because the data-structure is global (ie: exposed to the entire program) a "fix" for a particular problem may result in a new problem elsewhere within the program.

Pascal addresses the data-abstraction concept directly by allowing the declaration of more than just variables (as opposed to other languages). This includes constant variables, which may never be the target of an assignment operation, and more importantly, the declaration of novel data types. For example in Pascal we might define waitingline to be a variable of type queue by the following:

\[
\text{var waitingline : queue;}
\]

Note that we might want more than 1 variable of type queue. This is allowed, as are the arrays of queues and so on. The contents stored within the queue may be items of type integer:

\[
\text{var items : integer;}
\]

However, they might be persons:

\[
\text{var items : persons;}
\]

Note that integer is a defined data-structure in Pascal, but that queue and persons are not. Before discussing this further, a comment on what advantage this brings the programmer is appropriate.

Recall the definition of a data-abstraction: a data-structure and the legal operations upon it. By writing procedures and functions for the legal operations upon a data-structure we are, in effect, implementing a data-
Let your LSI-11* break the 28K barrier

With our Bank-Switching family

In LOCAL mode our memory is functionally just like DEC memory. But when you run out of memory space you're not lost. Add an inexpensive Bank-Switch Controller (BSC-256) and you can go to two megabytes. Add another and go to four megabytes.

So don't get boxed in with other brands of LSI-11* memory. Break free. Join the family:

- **RMA-032**: 32K by 16 bit RAM. $1200
 - On-board refresh (Single qty.)
- **RMS-016**: 16K by 16 bit ROM. $300
 - (Intel 2716) (Single qty.)
- **BSC-256**: The Bank-Switch Controller $300
 - (Single qty.)

Substantial quantity discounts are available. For a free copy of our Bank-Switching manual, call or write on your company letterhead.

Digital Pathways Inc.
4151 Middlefield Road
Palo Alto, CA 94306
(415) 493-5544

Registered trademark of Digital Equipment Corporation
CALL IN YOUR ORDER NOW!

TOLL FREE 24 Hours

CALL TOLL FREE 24 Hours... ORDER YOUR TRCOPY SYSTEM NOW

if you have a 30K or 48K IBM compatible you can order your copy of TRCopy for $9.95 with a Visa/MasterCard. If you have a 16K or 32K IBM compatible you can order your copy for $9.95 with a Visa/MasterCard or send a check or money order. You can also call in your order or mail this form in. If you call, please make sure you have a Visa/MasterCard available.

To order, please provide your name, address, phone number, and the type of system you have. You will be billed at the time of your order. Orders must be prepaid. NMB Publications is a subscriber to Visa/MasterCard and does not retain your credit card information. NMB Publications is a subsidiary of BYTE Publications Inc.

TOLL FREE 24 Hours

ORDER FROM
Data/Print
DEPT. BT, BOX 903, FARGO, N.D. 58107

CALL TOLL FREE 24 Hours

Same Day Shipment

TOLL FREE 24 Hours

SAME DAY SHIPMENT

September 1979 © BYTE Publications Inc

See and Copy Tape Data

use TRCopy

WITH YOUR LEVEL II TRS-80®

TRCopy is a cassette tape copying system that lets you see what your computer is reading.

COPY ANY CASSETTE TAPE™

With TRCopy you can copy any TRS-80 Level II cassette tape whether it is edited in BASIC or in machine language. You can also copy data created by programs and you can copy assembler listings.

YOU CAN SEE THE DATA

As the tape is being loaded, you can see the actual tape bytes one by one from the beginning of the program. Up to 256 bytes are displayed at one time. ASCII characters are displayed on the front line and hexadecimal code is displayed on the following two lines. Data is displayed exactly as it is input including memory locations and check sum.

IDENTIFY PROGRAMS

With TRCopy you can identify programs on cassette tapes without written documentation because you can see the lines. If you forget to label a tape, you can use TRCopy to display the tape contents and identify the cassette.

VERIFY CASSETTE TAPES

With TRCopy you can verify both the original tape and the tape copy. You can make certain that your machine reads the original tape correctly and that it makes byte-for-byte copies. TRCopy also counts as it reads giving you the exact length of the data.

MAKE BACKUPS FOR YOUR PROGRAMS

Now you can make backup copies of your valuable programs. Many times a cassette that you make will fail better than one that is mass produced. The original can then be kept as a backup in case the copy is damaged.

MAKE COPIES OF YOUR SOFTWARE

If you are in the software business you can use TRCopy to make limited copies of your programs for sale or distribution. TRCopy produces machine language tapes that are more efficient than those produced by the assembler itself.

RECOVER FAULTY DATA

With TRCopy you can experiment with the values and levels controls and you can see what the computer is doing even if your computer will not read the data through normal read instructions. This can help you to read and copy faulty tapes by adjusting the volume control until you see that the data is correct.

SIMPLE - FASCINATING - FUN

TRCopy is not only a practical utility program. It is also a fascinating graphics program that lets you see, for the first time, cassette data in your computer is reading it. And it’s as simple as 1, 2, 3. Start, Load, Verify, Copy. You will never look at the use cassette tapes with confidence knowing that TRCopy is there when you need it.

The TRCopy system is a machine language program with documentation explaining Tape Procedures, Machine Language, Hex, and other formatting conventions. With the TRCopy system, you can see what you are doing! (Tape Procedure will be given separately).

For further information call 1-800-343-4344 EXT. 24 or write to TRCopy system, BYTE Publications Inc.

-96 on inquiry card.
New RAM Prices.
From The Dynamic Memory Company.

<table>
<thead>
<tr>
<th>Memory Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>16K</td>
<td>$249</td>
</tr>
<tr>
<td>32K</td>
<td>$375</td>
</tr>
<tr>
<td>48K</td>
<td>$500</td>
</tr>
<tr>
<td>64K</td>
<td>$625</td>
</tr>
</tbody>
</table>

Ever since we started making these memory boards over a year ago we have continued to lower our prices to stay competitive. Due to your confidence in us, we are again able to lower our prices! Our reliability has been proven by months of superior performance in thousands of installations. Our low-power boards are being used by quality-minded systems manufacturers across the country and overseas.

4MHz boards now available.
After receiving hundreds of requests, our engineering staff has come up with a new version of our board which runs on 4MHz Z-80 systems. It wasn't easy to come up with a high speed board which would operate as reliably as our 450ns version, but after months of careful design and testing, we did it. The price of the 250ns board is $10 per 16K additional.

All of our features remain. Our boards didn't become great sellers only because of the price. We still offer you our deselect feature which allows our RAM to overlap with any fixed memory areas in your system. Also, the RAM area of our board is fully socketed so that you can expand the board yourself.

Other standard features include: plug selectable addressing on 16K boundaries (shorting plugs are placed over wire-wrap pins to address the board — located on the top of the board for easy changes), S-100 and Z-80 compatibility and totally invisible refresh — no wait states.

Fully assembled, tested, and guaranteed.
All of our boards go through a rigorous testing procedure. They are then placed on burn-in running a series of memory tests to detect any other possible faults. After you receive the board, you are backed by us with a one year warrantee.

Low power consumption keeps your computer from "losing its cool."
The total power consumption of our 16K board is typically less than 4 watts (+8V @ 300ma, +16V @ 150ma and -16V @ 20ma). Boards with additional memory typically increase power consumption only 1 watt per 16K!

Standard S-100 Interface.
Our board is designed to interface with any standard S-100 CPU. All of the timing of the board is independent of the processor chip, and the board is set up for different processors by changing two plugs on the board.

Contact your local dealer.
To find out more about our RAM boards, contact your local dealer. If he is unable to help you, call or write us for a fast response.
Central Data Corporation, 1207 North Hagan Street, Champaign, IL 61820. (217) 359-8010

Central Data
BYTE September 1979 169
FOR COMPUTATIONAL APPLICATIONS, including:
- graphics (scaling and rotations), function generation, digital filtering, FFTs, correlations, matrix operations, etc.

HMA-1 Hardware Multiplication Accelerator $299
- hardware generates sub-products
- SPEEDS integer multiplications by factor 5
- SPEEDS floating point multiplications by several times
- functions (SIN, EXP, etc.) also faster

FPP-1 Floating Point Processor $599
- associated hardware processor calculates fixed and floating point multiplications and divisions
- also computes many mathematical functions (SIN, EXP, LOG, etc.) in parallel with CPU
- SPEEDS all functions by factor 10 (approximately)

BOTH PRODUCTS
- S-100 Bus compatible
- supplied with floppy disk containing support library compatible with Microsoft FORTRAN (and its derivatives)
- random number generators, other functions included
- benchmark programs and measured timing available
- other software interfaces in development

Micro Designs
P.O. Box 497, Tour de la Bourse
Check, Visa, M/C accepted
Montreal, CANADA, H4Z 1J7
Dealer inquiries invited
(514) 288-0817

WINCHESTER DRIVE CONTROLLER

The XCOMP DC/M Controller provides the OEM with a high performance, low cost interface to the Marksmen drive. An eight bit bus permits the DC/M to be used with all popular microcomputers.

XCOMP INCORPORATED
9815-A Businesspark Ave., San Diego, CA 92131 • (714) 271-8730

makes mental execution exhausting and error-prone — which is exactly the point: BASIC programs are not as simple as they seem.

The data-abstraction is complete when a Pascal program uses the 5 legal operations upon its variables of type queue. Examples are:

```
initialize (teller1);
if not fullq (teller1)
  then insert (teller1, items);
repeat
  delete (teller1, items);
  write (items)
until emptyq (teller1);
```

Note that the programmer has the responsibility to test for overflow or underflow before inserting or deleting items from the queue. This is true even though the respective procedures do nothing for these operational mistakes.

Listing 1: This simple Pascal program defines the data type queue and then describes the 5 legal operations on that data type.

```
procedure initialize (var a : queue);
begin
  a.head := 0;
  a.tail := 0;
  a.full := false;
  a.empty := true;
end; {of initialize}

procedure insert (var a : queue; b : integer);
begin
  with a do
    if not full
      then begin
        empty := false;
        contents [tail] := b;
        tail := (tail + 1) MOD (maxlength + 1);
        if tail = head
          then full := true;
        end;
end; {of insert}

procedure delete (var a : queue; var b : integer);
begin
  with a do
    if not empty
      then begin
        full := false;
        b := contents [head];
        head := (head + 1) MOD maxlength + 1;
        if head = tail
          then empty := true;
        end;
end; {of delete}

function fullq ( a : queue ) : boolean;
begin
  if a.full
    then fullq := true
  else fullq := false;
end; {of fullq}

function emptyq ( a : queue ) : boolean;
begin
  if a.empty
    then emptyq := true
  else emptyq := false;
end; {of emptyq}
```
Listing 2: The data stack can also be defined in a Pascal program. It is left as an exercise to the reader to translate this program into BASIC or FORTRAN and compare the understandability of the 2 programs.

```pascal
type stack = record
  top : 1 .. maxlength;
  full, empty : boolean;
  contents : array [1 .. maxlength] of integer;
end;

procedure initialize (var a : stack);
begin
  a.full := false;
  a.empty := true;
  a.top := 1;
end; {of initialize}

procedure push (var a : stack; b : integer);
begin
  with a do
  if not full
  then begin
    empty := false;
    contents [top] := b;
    if top < > maxlength
    then top := top + 1
    else full := true;
  end;
end; {of push}

procedure pop (var a : stack; var b : integer) : boolean;
begin
  with a do
  if not empty
  then begin
    full := false;
    b := contents[top];
    if top < > 1
    then top := top - 1
    else empty := true;
  end;
end; {of pop}

function fullstk (a : stack) : boolean;
begin
  if a.full
  then fullstk := true
  else fullstk := false;
end; {of fullstk}

function emptystk (a : stack) : boolean;
begin
  if a.empty
  then emptystk := true
  else emptystk := false;
end; {of emptystk}
```

In summary, the data-abstraction is an important concept that greatly enhances program correctness. The Pascal programming language includes this concept; BASIC does not. My point again: the simplicity of BASIC is a red herring — it encourages sloppy programming and error-prone programs. A contemporary language like Pascal is explicitly designed to encourage error-free program development, therefore it is worth learning and using. One more point: experienced Pascal programmers know that the language includes pointers as a data type so the queue data-abstraction could be implemented even more easily than shown here. This particular method was chosen to correspond to the approach taken by the Gorney article.

Just as a queue is an FIFO (first in, first out) data-abstraction, a stack is an LIFO (last in, first out) data-abstraction. Listing 2 shows a Pascal type declaration and the subroutines that are necessary to implement the legal operations upon a stack. These are included in the hope that readers may implement this data-abstraction in BASIC or FORTRAN and then compare for themselves the relative merits of these 2 languages to Pascal.
CUSTOM SOFTWARE FOR NORTH STAR SYSTEMS
VERBATIM DISCS FOR NORTH STAR
BOX OF 10 $29. POST PAID
COMPLETE SYSTEMS AVAILABLE
CUSTOM SOFTWARE FOR NORTH STAR SYSTEMS
CASIO CALCULATORS AT DISCOUNT PRICES
MANY OTHER SUPER VALUES WRITE OR CALL:
A.E.I.
3851 HACKETT AVE.
LONG BEACH, CALIF. 90808
(213) 421-4815 (213) 429-0535

Circle 21 on Inquiry card.

MEMOREX FLOPPY DISCS
Lowest prices. WE WILL NOT BE UNDERBID! Buy any quantity 1-1000. Visa, Mastercharge accepted. Call free (800)235-4137 for prices and information. All orders sent postage paid.

PACIFIC EXCHANGE
100 Foxhill Blvd.
San Luis Obispo, CA 93401.
(805) 543-1037

Circle 294 on Inquiry card.

SURPLUS ELECTRONICS
ASCII
IBM SELECTRIC BASED I/O TERMINAL WITH ASCII CONVERSION INSTALLED $645.00
Tape Drives Cable Cassette Drives Wire Power Supplies 12V16A, 12V26A, SV55A Others, Displays, Chargers XFRMS - Heat Sinks Printers - Components
Many other items
Write for free catalog WORLDWIDE ELECT. INC.
130 NORTHEASTERN BLVD.
NASHUA, N.H. 03060
Phone orders accepted using VISA or MC. Toll Free 1-800-235-1038 In N.H. 603-889-7661

Circle 391 on Inquiry card.

6800/6801 MICRO SOFTWARE
** CROSS SOFTWARE **
6800/6801 assembler $800
PL/W compiler $1400
cross linker $400
math/science $500
simulator $800
** RESIDENT SOFTWARE **
editor/ assembler $95
Industrial 4K BASIC in ROM $299

WINTER Corp.
317-742-6802
902 N. 9th St., Lafayette, IN 47904

Circle 389 on Inquiry card.

BYTE's New Toll-free Subscriber W.A.T.S. Line (800) 258-5485
To further improve service to our customers we have installed a toll-free WATS line in our Peterborough, New Hampshire office. If you would like to order a subscription to BYTE or if you have a question related to a BYTE subscription, you are invited to call (800) 258-5485 between 8:30 AM and 4:30 PM Eastern Time. This applies to calls from within the continental US only.

We thank you and look forward to serving you.

Circle 19 on Inquiry card.

MORE INNOVATIONS! FROM
P.S. SOFTWARE HOUSE FORMERLY PETSHACK
PET** INTERFACES
PET** INPUT/OUTPUT INTERFACE PET** POWER INTERFACE

P.S. SOFTWARE HOUSE
P.O. Box 966
Mishawaka, IN 46544
t Tel: (219) 255-3408

Circle 315 on Inquiry card.

The Independent Newsletter of Heath Co. Computers features Hardware Modifications developed by readers
Compatible hardware and software from other vendors
Advance information on Benton Harbor plans
Reports of users' experiences with their systems
Payment to be
12 issues: $395 (140 overseas) in U.S. funds
24 issues: $595 (325 overseas) payable on a U.S. bank
Back issues (about 9) included on request
BUSS
325 B Pennsylvania Ave., S.E.
Washington, D.C. 20003

Circle 32 on Inquiry card.

P.S. SOFTWARE HOUSE
FORMERLY PETSHACK

Circle 369 on Inquiry card.

P.S. SOFTWARE HOUSE
P.O. Box 966
Mishawaka, IN 46544
t Tel: (219) 255-3408

Circle 391 on Inquiry card.

Circle 315 on Inquiry card.

The Independent Newsletter of Heath Co. Computers features Hardware Modifications developed by readers
Compatible hardware and software from other vendors
Advance information on Benton Harbor plans
Reports of users' experiences with their systems
Payment to be
12 issues: $395 (140 overseas) in U.S. funds
24 issues: $595 (325 overseas) payable on a U.S. bank
Back issues (about 9) included on request
BUSS
325 B Pennsylvania Ave., S.E.
Washington, D.C. 20003

Circle 32 on Inquiry card.

The Independent Newsletter of Heath Co. Computers features Hardware Modifications developed by readers
Compatible hardware and software from other vendors
Advance information on Benton Harbor plans
Reports of users' experiences with their systems
Payment to be
12 issues: $395 (140 overseas) in U.S. funds
24 issues: $595 (325 overseas) payable on a U.S. bank
Back issues (about 9) included on request
BUSS
325 B Pennsylvania Ave., S.E.
Washington, D.C. 20003

Circle 32 on Inquiry card.

P.S. SOFTWARE HOUSE
P.O. Box 966
Mishawaka, IN 46544
t Tel: (219) 255-3408

Circle 391 on Inquiry card.

The Independent Newsletter of Heath Co. Computers features Hardware Modifications developed by readers
Compatible hardware and software from other vendors
Advance information on Benton Harbor plans
Reports of users' experiences with their systems
Payment to be
12 issues: $395 (140 overseas) in U.S. funds
24 issues: $595 (325 overseas) payable on a U.S. bank
Back issues (about 9) included on request
BUSS
325 B Pennsylvania Ave., S.E.
Washington, D.C. 20003

Circle 32 on Inquiry card.

The Independent Newsletter of Heath Co. Computers features Hardware Modifications developed by readers
Compatible hardware and software from other vendors
Advance information on Benton Harbor plans
Reports of users' experiences with their systems
Payment to be
12 issues: $395 (140 overseas) in U.S. funds
24 issues: $595 (325 overseas) payable on a U.S. bank
Back issues (about 9) included on request
BUSS
325 B Pennsylvania Ave., S.E.
Washington, D.C. 20003

Circle 32 on Inquiry card.
GODBOUT SLASHES STATIC MEMORY PRICES AGAIN:

S-100 32K $529 24K $398 16K $269!

Econoram* unkits are now at their lowest prices ever.
What's an "unkit"? It's a standard Econoram board that has all sockets and bypass caps pre-soldered in place. To complete assembly, the user simply solder in a few other parts, and inserts all ICs into their sockets. The result: A one-evening project that saves money while offering true CompuPro/Econoram quality for those on a budget. Static technology used throughout; all boards except Econoram VI run with 4 MHz systems. Same 1 year limited warranty, same great specs as our regular boards.

Speaking of regular boards, we offer assembled/tested models and boards qualified under our high-reliability Certified System Component (CSC) program (200 hour burn-in, immediate replacement in event of failure within 1 year of invoice date). Refer to chart below for pricing.

<table>
<thead>
<tr>
<th>Name</th>
<th>Storage</th>
<th>Bus</th>
<th>Configuration</th>
<th>Unkit</th>
<th>Assm</th>
<th>CSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Econoram IIA</td>
<td>8K X 8</td>
<td>S-100</td>
<td>2-4K blocks</td>
<td>$149</td>
<td>$179</td>
<td>$239</td>
</tr>
<tr>
<td>Econoram IV</td>
<td>16K X 8</td>
<td>S-100</td>
<td>1-16K</td>
<td>$269</td>
<td>$329</td>
<td>$429</td>
</tr>
<tr>
<td>Econoram VI</td>
<td>12K X 8</td>
<td>H8</td>
<td>1-8K, 1-14K</td>
<td>$200</td>
<td>$270</td>
<td>n/a</td>
</tr>
<tr>
<td>Econoram VIIA-16</td>
<td>16K X 8</td>
<td>S-100</td>
<td>2-4K, 1-8K</td>
<td>$279</td>
<td>$339</td>
<td>$439</td>
</tr>
<tr>
<td>Econoram VIIA-24</td>
<td>24K X 8</td>
<td>S-100</td>
<td>2-4K, 2-8K</td>
<td>$398</td>
<td>$485</td>
<td>$605</td>
</tr>
<tr>
<td>Econoram IX-24</td>
<td>32K X 8</td>
<td>Dig Grp</td>
<td>2-4K, 1-8K</td>
<td>$319</td>
<td>$379</td>
<td>n/a</td>
</tr>
<tr>
<td>Econoram X</td>
<td>32K X 8</td>
<td>S-100</td>
<td>1-16K</td>
<td>$559</td>
<td>$639</td>
<td>n/a</td>
</tr>
<tr>
<td>Econoram XI</td>
<td>32K X 8</td>
<td>SBC</td>
<td>2-8K, 1-16K</td>
<td>$529</td>
<td>$649</td>
<td>$789</td>
</tr>
</tbody>
</table>

BANK SELECT MEMORIES (for Alpha Micro Systems, Marinchip, etc.)

<table>
<thead>
<tr>
<th>Name</th>
<th>Storage</th>
<th>Bus</th>
<th>Configuration</th>
<th>Unkit</th>
<th>Assm</th>
<th>CSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Econoram XII-16</td>
<td>16K X 8</td>
<td>S-100</td>
<td>2 ind. banks**</td>
<td>$329</td>
<td>$419</td>
<td>$519</td>
</tr>
<tr>
<td>Econoram XII-24</td>
<td>24K X 8</td>
<td>S-100</td>
<td>2 ind. banks**</td>
<td>$429</td>
<td>$539</td>
<td>$649</td>
</tr>
<tr>
<td>Econoram XII-32</td>
<td>32K X 8</td>
<td>S-100</td>
<td>2 ind. banks**</td>
<td>$559</td>
<td>$699</td>
<td>$849</td>
</tr>
</tbody>
</table>

*Econoram is a trademark of Bill Godbout Electronics

**Econoram XII-16 and -24 have 2 independent banks addressable on 8K boundaries; Econoram XIII has 2 independent banks addressable on 16K boundaries.

—Did someone say extended addressing? 16 bit CPUs? All we'll say is that Econoram XIV is coming soon—

16K MEMORY EXPANSION SET
— was $109, now only $87.20!

And that's for a Godbout quality product. DIP shunts included, 250 ns chips, and crystal-clear instructions make expansion a snap in Radio Shack-80. Apple, and Easy Sorcerer computers. Low power chips used exclusively.

OTHER COMPUTER PRODUCTS:

2708 EROM BOARD UNKIT $85

4 independently addressable 4K blocks, with selective disable for each block. Built to CompuPro/Econoram standards (dipswitch addressing, top quality board, sockets pre-soldered in place), and includes dipswitch selectable jump start built right into the board. Includes all support chips and manual, but does not include EROMs.

ACTIVE TERMINATOR KIT $34.50

As written up by Craig Anderson in the April '79 issue of Ribbaed Micromcomputing. Our much imitated design plugs into any S-100 motherboard to reduce ringing, crosstalk, noise, and other buss-related problems.

TERMS: Cal res add tax. Allow 5% shipping, excess refunded. VISA/Mastercharge* call our 24 hour order desk at (415) 562-9636. COD OK with street address for UPS. Prices good through cover month of magazine.

CompuPro™
Box 2355, Oakland Airport, CA 94614

FREE FLYER: We'll be glad to tell you more than the space of this ad permits. Just send your name and address, we'll take care of the rest. If you're in a hurry, enclose $1 in stamps for 1st class delivery.

BYTE September 1979 173
68 MICRO JOURNAL

THE ONLY 6800/09 USER-ORIENTED MAGAZINE

* MORE 6800 ARTICLES THAN ALL OTHERS COMBINED *
IMMEDIATE DELIVERY
Domestic & Export

DEC LSI-11 COMPONENTS
A full and complete line with software support available.

Mini Computer Suppliers, Inc.
25 CHATHAM ROAD
SUMMIT, NEW JERSEY 07901
SINCE 1973
(201) 277-6150 Telex 13-6476

WE'VE GOT YOU COVERED!
Cover Craft Dust Covers protect your hardware and your investment. Save maintenance, downtime and look great. Our Dust Covers come in hundreds of sizes each custom designed to fit a particular model of terminal, CPU, Line Printer, Floppy Disk. They're a proven way to help eliminate dust and dirt accumulation, improve system reliability and save many times the cost in reduced maintenance and downtime. What's more, your satisfaction is 100% guaranteed.

Cover Craft Dust Covers are available from your local computer retailer or contact Cover Craft.

Can you afford to wait any longer?

C ONEY CRAFT
P.O. Box 555, Amherst, NH 03034
Telephone (603) 673-8592

WE'VE GOT YOU COVERED!
Cover Croft Dust Covers protect your hardware and your investment. Save maintenance, downtime, and look great. Our Dust Covers come in hundreds of sizes each custom designed to fit a particular model of terminal, CPU, Line Printer, Floppy Disk. They're a proven way to help eliminate dust and dirt accumulation, improve system reliability, and save many times the cost in reduced maintenance and downtime. What's more, your satisfaction is 100% guaranteed.

Cover Crof Dust Covers are available from your local computer retailer or contact Cover Croft.

Can you afford to wait any longer?

C ONEY CRAFT
P.O. Box 555, Amherst, NH 03034
Telephone (603) 673-8592

Event Queue

In order to gain optimum coverage of your organization's computer conferences, seminars, workshops, courses, etc., notice should reach our office at least three months in advance of the date of the event. Entries should be sent to: Event Queue, BYTE Publications, 70 Main St, Peterborough NH 03458. Each month we publish the current contents of the queue for the month of the cover date and the two following calendar months. Thus a given event may appear as many as three times in this section if it is sent to us far enough in advance.

SEPTEMBER 1979

September 4-6
International Conference and Exhibition on Engineering Software, University of Southampton, England. The aim of this conference is to provide a forum for the presentation and discussion of recent advances in engineering software and to present a state-of-the-art in this field. The exhibition held in conjunction with the conference will cover all software products, services and equipment related to engineering software. Contact Dr R Adey, Engsoft, 6 Cranbury Pl, Southampton S02 0LG, ENGLAND.

September 4-7
Comicon Fall '79, Capital Hilton Hotel, Washington DC. This 18th Institute of Electronic and Electrical Engineers (IEEE) Computer Society International conference will present the latest developments in microprocessor architecture, support software, operating systems, and peripheral devices. Contact IEEE Computer Society, POB 639, Silver Spring MD 20901.

September 5-8
Info/Asia, Ryutsu Center, Tokyo. This exposition will be devoted to information management, computers, word processing, and advanced business equipment. The exposition will be accompanied by a 4-day conference. Contact Clapp and Poliak Inc, 245 Park Ave, New York NY 10017.

September 8
2nd Annual Microcomputer Faire, Cullen College of Engineering, University of Houston. 70 exhibitors are expected at this computer fair. Contact Dr John L. Hubisz, Division Natural Science and Math, College of the Mainland, Texas City TX 77590.

September 12-13
Gateway Computer and Office Systems Expo, Chase Park Plaza Hotel, St Louis MO. This 2-day event will include a program of exhibits and conferences which will be open to data processing and business professionals. Contact The Conference Co, 60 Austin St, Newton MA 02160.

September 18-20
Wescon '79, St Francis Hotel, San Francisco CA. Contact Electronic Conventions Inc, 999 N Sepulveda Blvd, El Segundo CA 90245.

September 24-26
Minicomputers and Distributed Processing, New York NY. This 3-day seminar will examine the uses, economics, programming and implementation of mini computers. Contact The University of Chicago, Center for Continuing Education, 1307 60th St, Chicago IL 60637.
September 25
DP User Documentation Workshop, Kansas City MO. The workshop will focus on how to write DP user manuals. Emphasis is on analysis of specific user needs; planning and outlining; and effective writing, illustration and packaging of documentation. Contact Progressive Communications Inc, The Alamo 310, 128 S Tejon St, Colorado Springs CO 80903.

September 25-27
Mini/Micro Conference and Exposition, Convention Center, Anaheim CA. Contact Robert D Rankin, Managing Director, Mini/Micro Conference and Exposition, 5528 E La Palma Ave, Suite 1A, Anaheim CA 92807.

September 25-27
WPOE '79, San Jose Convention Center, San Jose CA. This show will be dedicated to word processing and office/business equipment, services and materials. Complementing the exhibit will be a 3 day executive conference program that focuses on emerging technologies and their applications in the office. Contact Cartidge and Associates Inc, 491 Macara Ave, Suite 1014, Sunnyvale CA 94086.

September 25-28
The 3rd Annual Data Entry Management Conference, Hyatt Regency, New Orleans LA. This conference will feature a full schedule of speakers, workshops, panels and vendor exhibits to assist the data entry professional. Contact Data Entry Management Association, POB 3231, Stamford CT 06905.

September 26-29
MIMI '79, Queen Elizabeth Hotel, Montreal, Canada. This symposium is intended as a forum for the presentation and discussion of recent advances in mini and microcomputers and their applications. Special em-
phasis will be given to the theme of the conference “The Evolving Role of Minis and Micros in Distributed Processing.” Contact The Secretary, MIMI '79 Montreal, POB 2481, Anaheim CA 92804.

September 28-30
Northeast Personal and Business Computer Show, Hynes Auditorium, Boston MA. Displays and exhibits will showcase microcomputers and small computer systems of interest to businesspeople, hobbyists, professionals, etc. Lectures and seminars will be presented for all categories and levels of enthusiasts, including introductory classes for novices. Contact Northeast Exposition, POB 678, Brookline MA 02197.

OCTOBER 1979

October 1-3
2nd Annual Symposium on Small Systems, Hilton Inn, Dallas TX. The symposium will consist of a blend of paper and panel discussions with major emphasis on microcomputer applications. Both hardware and software topics presenting state-of-the-art and state-of-the-industry aspects will be included. Contact Gerald Kane, Southern Methodist University, Dallas TX 75222.

October 2-4
NEPCON Central '79, O'Hare Exposition Center, Rosemont IL. This 10th annual exhibition and conference of electronic and microelectronic packaging and production equipment will feature displays of electronic and microelectronic materials, hardware, tools, supplies and test instruments. Contact Industrial and Scientific Conference Management Inc, 222 W Adams St, Chicago IL 60606.

October 14-17
International Data Processing Conference and
Business Exposition, Town and Country Hotel, San Diego CA. Contact Data Processing Management Association, 505 Busse Highway, Park Ridge IL 60068.

October 15-18

October 15-19
CPEUG 79, San Diego CA. This is the 15th meeting of the Computer Performance Evaluation Users Group sponsored by the National Bureau of Standards. Contact Judith A Bilcock, The MITRE Corp, Metrek Div, 1820 Dolley Madison Blvd, McLean VA 22102.

October 16-18
Understanding and Using Computer Graphics, Washington DC. This course is for people who are now using, or making decisions about using computer graphics and its role in their organization. It will describe computer graphics, explain what hardware and software systems are available and give cost and performance comparisons. Contact Frost and Sullivan, 106 Fulton St, New York NY 10038.

October 20-21
4th Annual Tidewater Hamfest-Computer Show-Flea Market, Cultural and Convention Center, Norfolk VA. Contact TRC, POB 7101, Portsmouth VA 23707.

October 21-23
New York State Association for Educational Data Systems Annual Conference, Granit Hotel, Kerhonksen NY. The theme of this conference is "Instructional Computing - Hardware-/Software/Courseware." Contact Mary E Heagney, 9201 Shore Rd, Brooklyn NY 11209.

October 22-24
The Association of Computer Programmers and Analysts 9th Annual Conference, Washington DC. The general theme of this conference is "Preparing Today for Tomorrow's New Technologies." Suppliers of software packages and computer services have been invited to describe and present their products in a series of structured presentations. Other sessions will cover trends in system technology and new methodologies for sharpening the professional skills of both systems analysts and programmers. Contact DGRP Systems Inc, 1500 N Beuregard St, Alexandria VA 22311.

October 22-24
Computers in Aerospace Conference II, Hyatt House Hotel, Los Angeles CA. The conference theme, "Computer Technology for Space and Aeronautical Systems in the 80s," will be carried out by a series of panels, invited presentations, and contributed papers which will bring computer system technologists together with specialists in the application of embedded computers in space and aeronautics. Contact American Institute of Aeronautics and Astronautics, 1290 Ave of the Americas, New York NY 10019.

October 22-25
ISA/79, O'Hare Exposition Center, Chicago IL. The conference theme, "Instrumentation for Energy Alternatives," will emphasize current practices in instrumentation design and implementation. Contact Instrument Society of America, 400 Stanwix St, Pittsburgh PA 15222.

October 22-26
Pascal Programming for Mini and Microcomputers, Ramada Inn, Woburn MA. Sponsored by the Polytechnic Institute of New York and the Institute for Advanced Professional Studies, this workshop will
include application examples, lectures, informal sessions with the instructor, as well as individual and group programming sessions. Contact Professor Donald D French, Institute for Advanced Professional Studies, One Gateway Ctr, Newton MA 02158.

October 28-30
The 10th North American Computer Chess Championship, Detroit Plaza, Detroit Michigan. Sponsored by the Association for Computing Machinery, this is a 4 round Swiss style tournament with the first 2 rounds to be played on October 28th (1 PM and 7:30 PM), the third on October 29th (7:30 PM) and the final round on Tuesday, October 30th (7:30 PM). Contact Monroe Newborn, McGill University, School of Computer Science, 805 Sherbrooke St W, Montreal PQ, CANADA H3A 2K6.

NOVEMBER 1979

October 29 - November 2
Applied Interactive Computer Graphics, University of Maryland, College Park MD. This course is designed to cover the most important facets of graphics that are necessary to develop general graphic applications. Systems considerations are stressed, including configuration selection criteria and the pros and cons of off-the-shelf software. The most important factors and techniques are described for hardware, software and geometric modeling. Contact UCLA Extension, 10995 Le Conte Ave, Los Angeles CA 90024.

October 30 - November 1
Interface West, Anaheim Convention Center, Anaheim CA. This 3rd annual West Coast small computer and office automation systems conference and exposition will feature over 100 company exhibits and 60 conference sessions covering a variety of data processing, word processing, data communications, management hardware, software and service topics. Contact the Interface Group, 160 Sweeney St, Framingham MA 01701.

November 5-8
Electronics Production Engineering Show, Kosami Exhibition Center, Seoul Korea. This international industrial exposition will be devoted to the needs of manufacturers of electronic products in Korea. Contact Exposconsul, Clapp and Poliak International Sales Div, 420 Lexington Ave, New York NY 10017.

November 6-8
Midcon '79 Show and Convention, O'Hare Convention Center and Hyatt Regency O'Hare, Chicago IL. Contact Electronic Conventions Inc, 999 N Sepulveda Blvd, El Segundo CA 90245.

November 6-8

November 6-8
3rd Digital Avionics Systems Conference, Fort Worth TX. This conference will probe the expectations and challenges of the digital revolution in avionics systems. Contact John C Ruth, Technical Program Chairman, POB 12628, Fort Worth TX 76116.

November 12-14
Computer Cryptography, The George Washington University, Washington DC. The objective of this course is to provide each participant with a working knowledge of the use of cryptography in computer applications. Contact Continuing Education, George Washington University, Washington DC 20052.
Plan Now to attend the best Personal Computing show ever.

Friday, Saturday, Sunday
October 5 - 6 - 7th
Philadelphia Civic Center

Don't be confused — Other shows are copying us but they cannot equal us. We are the Original Personal Computing Show. Now in our Fourth Year.

PERSONAL COMPUTING 79
Rt. 1, Box 242 • Mays Landing, N.J. 08330 • 609/653-1188

Industry TRADE SHOW on October 4th
For exhibiting information please call or write.
REGISTRATION
at the door includes admission to all seminars.

- 3 days — October 5, 6, 7 $10.00
- Single day $5.00

DEALER DAY
Thursday, October 4
also includes October 5, 6, 7 $15.00
For Dealers, Purchasing Agents, Industry Reps, Industry Officials only.

2nd annual
PERSONAL COMPUTER MUSIC FESTIVAL
Saturday evening, October 6, 1979.
Harrison Auditorium, Univ. of Pennsylvania,
which is 1 block from the Philadelphia Civic Center. Doors open at 6:30 P.M.
Featuring: Live demonstrations and performances by leading computer musicians.
A stereo record from last year’s music festival will be on sale at the show.

Daytime seminars and demonstrations at the Philadelphia Civic Center all day on Saturday,
Oct. 6th, during the Personal Computing Show.
800 Tickets will be on sale Friday and Saturday from P.A.C.S. at The Philadelphia Civic Center
during the Personal Computing show and at Harrison Auditorium.
The Personal Computer Music Festival is sponsored by the Philadelphia Area Computer Society.
For more information contact them at: P.O. Box 1954, Philadelphia, PA 19105.

REMEMBER: Monday, Oct. 8th, is Columbus Day,
which gives an extra day to travel home.
The AMSAT-GOLEM-80 Microcomputer Project provides a means for a group or club to put together an S-100 bus microcomputer in a relatively inexpensive manner. It is a modular system of hardware and software that can be built as a stand-alone system or superimposed on an existing S-100 machine. It is designed to be expandable and affordable. Many people who belong to microcomputer clubs, or who are learning about microprocessors, would like to own a microcomputer. However, they may not want to make the initial investment of $500 to $1500 for the basic hardware. The AMSAT-GOLEM-80 is designed to be built in stages, as finances allow. Each stage of the AMSAT-GOLEM-80 is functionally complete and can verify the performance of the next stage. It is capable of incorporating any S-100 card, contains a powerful debugging software package (AMS-80 version 5.7), and the I/O (input/output) interface handlers for your system. It is designed to be flexible and easily customized to fit your requirements. This is recommended as a group project for 3 reasons: 1) to take advantage of bulk discounts in the purchase of hardware; 2) knowledgeable individuals are available to help others; and 3) test equipment can be shared. The order of construction is logical. Sections can be built and used to check out subsequent sections. Thus, a sequence of construction could be to build the cabinet and front-panel power supply, motherboard, console I/O card, programmable read-only memory card, programmable memory card (1), and processor card. At this level the basic AMS-80 program can be executed. The order of construction can be varied depending on the individual constructor's preference. The group can also build separate parts, put them together to get 1 machine working, then have the members build their own parts at their own pace.

This technique of construction may not be the cheapest in the long run, but it is in the short run. It also allows nearly instant results, since the machine is doing something almost as soon as construction is begun. This is psychologically important, considering the amount of money involved. It is difficult to decide which system is the cheapest in the long run. Building a microcomputer can be an open-ended drain on your finances because you will probably keep adding new memory and I/O peripherals.

System Basics—Hardware

The hardware is standard S-100 bus circuit cards, but any Z80/8080 processor card, memory card, or I/O card may be used. Circuitry is available for a hardware front panel. This operates by putting the processor in the “hold” state and then taking over control of the bus lines. Memory and I/O ports can be exercised and checked out. A single-step feature is offered, as is jump start or boot start to a software monitor program. Several unique circuits are available for amateur radio use (eg: satellite tracking).

Software

The AMSAT-GOLEM-80 project is designed for active experimenters. It is expected that some machine-language programming will be performed on each machine. Thus, a full and expandable operating debug or
monitor package is available. This program AMS-80 is a much improved and expanded version of AMS-80 which was first published in the September 1976 issue of BYTE. Apart from the usual memory and register examine/change features, it incorporates direct I/O operations, a disassembler mode, and keyboard-interruptable console operations. A list of the commands is shown in table 1. All I/O drivers are contained within AMS-80, devices can be configured in software, and all I/O devices are accessed via a jump table. All utility routines used within the monitor are also available via jump tables, as shown in table 2. The hexadecimal base address is F000 and the I/O driver section of the jump table is compatible with the Technical Design Laboratory's Z80 monitor.

Also available is a floating-point math pack (Intel software library version relocated), a floating-point interpreter; a macro-organized pseudo high-level language using a floating-point stack, and operating through the math pack and various other software, including radio teletypewriter (RTTY) reading programs which are mainly suited for amateur radio applications. Patches for commercially available software (but not the actual software) are also available. These patches include Processor Technology 5K BASIC and North Star's disk operating system.

The Power Supply

The power supply is 1 of the 2 single-point-failure points in the system (the other is the processor). If it fails, the system is down. Thus, it should be overrated, cooled, and have a little spare capacity on hand. It should be capable of at least the following performance: 8 to 10 V at 10 to 20 A, 16 to 18 V and —16 to —18 V at 2 A. The supply can be unregulated because each S-100 card carries voltage regulators as required. Use plenty of fuses; put 1 in the AC line and 1 in each of the DC supplies, as shown in figure 1. If you wish to add crowbar circuits, over-voltage protection, or shut-down circuits, that's fine.

The Cabinet

The cabinet is the part of the

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A PRINT (MEMORY) IN ASCII</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C CONFIGURE I/O (INPUT/OUTPUT) DEVICE</td>
<td></td>
</tr>
<tr>
<td>D DISPLAY (MEMORY) IN HEXADECIMAL</td>
<td></td>
</tr>
<tr>
<td>E WRITE END OF FILE RECORD TO TAPE</td>
<td></td>
</tr>
<tr>
<td>F FILL (MEMORY) WITH CONSTANT</td>
<td></td>
</tr>
<tr>
<td>G GO TO LOCATION AND EXECUTE</td>
<td></td>
</tr>
<tr>
<td>H HEXADECIMAL MATH (SUM AND DIFFERENCES)</td>
<td></td>
</tr>
<tr>
<td>I INPUT FROM PORT TO CONSOLE</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td></td>
</tr>
<tr>
<td>L PRINT (MEMORY) IN ASSEMBLY LANGUAGE</td>
<td></td>
</tr>
<tr>
<td>M MOVE BLOCK OF (MEMORY)</td>
<td></td>
</tr>
<tr>
<td>N PUNCH 6 INS LEADER TAPE</td>
<td></td>
</tr>
<tr>
<td>O OUTPUT TO PORT FROM CONSOLE</td>
<td></td>
</tr>
<tr>
<td>P SCAN TAPE</td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>R READ TAPE</td>
<td></td>
</tr>
<tr>
<td>S EXAMINE/CHANGE (MEMORY)</td>
<td></td>
</tr>
<tr>
<td>T PUT HEADER ON TAPE</td>
<td></td>
</tr>
<tr>
<td>U DISPLAY I/O CONFIGURATION</td>
<td></td>
</tr>
<tr>
<td>V VERIFY PROGRAMMABLE MEMORY BLOCK WORKS</td>
<td></td>
</tr>
<tr>
<td>W WRITE TO TAPE</td>
<td></td>
</tr>
<tr>
<td>X EXAMINE/CHANGE (REGISTERS)</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td></td>
</tr>
</tbody>
</table>

*Not assigned as yet.

Table 1: AMS-80 version command list, version 5.7. Details of the operation of the commands are given in the description of AMS-80.
THE WORLD'S FIRST ALL SOLID STATE VIRTUALLY INDESTRUCTIBLE FULLY ENCODED KEYBOARD.
JUST $75.

INTRODUCING THE TASA MODEL 55 ASCII KEYBOARD.

Imagine. A full capability, 128 position keyboard without a single moving part. Simply touch its surface and sophisticated electronics instantaneously transmit information to your computer.

Imagine further. This state-of-the-art keyboard provides a TTL output that is fully encoded, verified, processed, and de-bounced on a 6-position, dual-sided card edge connector. Ready to plug in and operate.

IF THE PRICE SOUNDS UNBELIEVABLE, REMEMBER WHAT SINGLE-CHIP TECHNOLOGY DID FOR THE CALCULATOR.

The secret of the TASA keyboard's powerful performance and low price is fully integrated single-chip circuitry. Because there are no mechanical keys or flex switches to move up and down, all the electronics can be completely sealed inside the tough polycarbonate case. This makes the TASA keyboard virtually indestructible and immune to spills and rough handling.

And since there are no moving parts, your TASA keyboard should have the same trouble-free life expectancy as a silicon chip.

HERE ARE A FEW STATE-OF-THE-ART FEATURES:
- Full 8-bit ASCII output and continuous strobe.
- Low power: 18 V DC, 35 mA, built-in regulator.
- Parallel output: active pull-down, direct TTL compatible (one load), open collector type.
- Dimensions: 15"x9.25"x1.025" thin.
- Easy hook-up to any system, including the Apple computer.

ALSO AVAILABLE:
The Model 16-A, a 16-key alphanumeric fully encoded, solid state 4x4 keyboard for use as a companion to the Model 55, or as a stand-alone data entry unit.

TRY THE TASA KEYBOARD FOR 10 DAYS.

Enclose payment with the order form.

Connect the TASA keyboard to your computer and use it for 10 days. If you don't agree that this keyboard is worth many times the price, simply return it to us. Your money will be refunded in full.

Table 2: AMS-80 interface jump table. The individual routines are discussed in detail in the description of AMS-80.

AMS80: ORG 0F000H
JMP CUSTOM :START OF SOFTWARE
JMP CONSO :CONSOLE TO <A>
JMP RDR :READER TO <A>
JMP CONSO :<C> TO CONSOLE (ASCII)
JMP PUNCH :<C> TO PUNCH (ASCII)
JMP LIST :<C> TO LIST (ASCII)
JMP CKTS :TEST CONSOLE STATUS
JMP IOCHK :DETERMINE I/O (INPUT/OUTPUT) CONFIGURATION
JMP IOSET :SET I/O CONFIGURATION
JMP MEMCK :FIND TOP OF USER AREA (PROGRAMMABLE MEMORY)
JMP RESTART :BREAKPOINT ENTRY
JMP START :REENTER BMS-80
JMP BEGIN :BYPASS CUSTOMIZING AREA
JMP CHIN :CONSOLE INPUT AND ECHO
JMP CONSA :<A> TO CONSOLE
JMP TCSTS :GOTO MON IF CONSOLE INTERRUPTED
JMP TCRT :OUTPUT CR/LF
JMP AOUT :<A> TO CONSOLE
JMP THXB :OUTPUT <A> (HEXADECIMAL-2 DIGITS)
JMP THXW :OUTPUT <H/L> (HEXADECIMAL-4 DIGITS)
JMP MSG :OUTPUT TEXT
JMP PCHK :TEST FOR NULL INPUT CHAR
JMP CONSB : TO CONSOLE (ASCII)
JMP PUNCH ROUTINES
JMP PHXB :<A> TO PUNCH (HEXADECIMAL)
JMP LEAD :PUNCH 6 INS LEADER TAPE
JMP PGRET :OUTPUT CR/LF TO PUNCH
JMP PHXW :OUTPUT H/L TO PUNCH
JMP POB : TO PUNCH (ASCII)
JMP LIST ROUTINES
JMP LHXW :OUTPUT H/L TO LIST
JMP LHXB :<A> TO LIST (HEXADECIMAL)
JMP LCRET :OUTPUT CR/LF TO LIST
JMP LOB : TO LIST (ASCII)
JMP UTIL ROUTINES
JMP CONV :CONVERT HEXADECIMAL TO ASCII
JMP NIBBLE :CONVERT ASCII TO HEXADECIMAL
JMP DOREN :TEST FOR COMPLETION
JMP TIMER :DELAY
JMP SDEHL :HL DE
JMP LOCB :LOCATE CONTROL BYTE IN PROGRAMMABLE MEMORY BLOCK
JMP IIRST :RESET INTERRUPTS
JMP BACON :BAUDOT TO ASCII CONVERSION
JMP ASCBD :ASCII TO BAUDOT CONVERSION
JMP $:SPACE FOR PATCHES
JMP $:SPACE FOR PATCHES

system that your friends will see and admire. It should look presentable. The number of switches and lights on the front panel has been the subject of numerous debates. Those which are necessary are a power on/off switch, a boot switch, and a reset switch. If you are doing a lot of I/O programming (common in amateur radio applications), an output port and an input port (sense switches) are useful. Status lights, control bus lights, and data and address bus lights switches are optional. One full hardware tester panel should be built within each group if no known working system or other method for troubleshooting the hardware is available. The prototype shown in the photograph contains the full hardware tester panel circuit and is built separately from the power supply. This has the advantage of portability.

The Front Panel Interface
This card interfaces the front panel switches and displays to the S-100 bus. It is used when first building the system to check out the operation of the individual cards. Once AMS-80 is running, its usefulness is diminished until a hardware failure occurs that leaves the system up, but inhibits the processor from working properly (eg: a bus buffer or data-bit failing). The controls on the front panel will then
What you see is what you get.

Our Model 382 Data Terminal lets you manipulate your data-or-words-in-process on an eye-level CRT before you commit printer time to it. The 382 is a truly elegant terminal that integrates video display with a letter quality printer to save you time, paper and consumable supplies.

On the screen you'll see 24 lines of 80 characters, with separate field attribute characters. And in memory, ready to scroll up or down into view, are four full pages (96 lines). You can even store eight full pages if you don't need the field attribute symbols.

The Data Daisy, too.

The DTC 382 is also the first system you can buy that has the full ASCII 96-character metal print wheel, our Data Daisy. Crisp clarity, long-lived metal, and a full 96-character set! Just what dp and communications people have been asking for. Purchase or full maintenance lease pricing is available. Please contact your local dealer or DTC for complete pricing details.

Get one and start enjoying:

- True proportional spacing
- Speeds up to 55 char/sec.
- Fast-throughput, automatic reverse typing
- Automatic underlining
- Shadow printing
- 1200 baud (burst mode) for printer
- 9600 baud for video display
- RS-232C
- Worldwide fast service

Write, TWX or call for additional information: Data Terminals & Communications, 590 Division Street, Campbell, CA 95008. (408) 378-1112. TWX: (910) 590-2436. Toll free number: (1) 800-538-9779
allow the problem to be located in a swift manner. When in the run mode, the address lights also indicate the location of the software that is being currently executed. This is useful in determining exactly where your program is hung up during debugging.

The Memory
Any S-100 bus programmable read-only memory and programmable memory card can be used. However, if you are using a card that places a limit on the time period that it can be addressed continuously (i.e.: one using dynamic programmable memories), you will have to modify the select signals from the front-panel interface card to convert these signals in a pulsed mode (gate the clock into the control signals). Shop around for a good group buy. AMS-80 requires at least 4 K bytes of programmable read-only memory. You may want to put additional software in programmable read-only memory.

The 8080 can access 64 K bytes of memory. Since most personal systems do not contain a full 64 K bytes of memory, and 8080 software is non-relocatable by virtue of its absolute mode-addressing capability, several manufacturers have put out software modules at fixed allocations. The Radio Amateur Satellite Corporation (AMSAT) has developed a memory map for software, thus making all user-written software compatible. Using the expandable idea, basic software can be executed in minimal memory systems. The memory assignment map is shown in table 3.

The main user memory area is upward expandable from location 0. No matter how much memory is available, software will run if written for low locations. Hexadecimal 0100 is a good starting location so that the interrupt service area is not overwritten by your customized software.

As home systems are assembled, they tend to fall into 1 of 2 distinct configurations. There is the floppy disk system, having much programmable memory and a minimal amount of programmable read-only memory in which programs are stored on disks and downloaded into user memory for execution. The second type is the erasable read-only memory (EPROM) based system. EPROMs and EPROM cards are relatively inexpensive. Programs can be stored in EPROM and executed via AMS-80. This type of system contains less user memory than the floppy disk system. Since EPROM cards come in 16 K-byte blocks, it is desirable that such a block be incorporated in the AMSAT-GOLEM-80 system. This allows for interchangeability and redundancy. For added flexibility, the chosen card should have user memory coexistence capability. Thus, a group system can be put together out of both types of configuration, with minimal conflicts. This block is located between hexadecimal 8000 and BFFF.
Are you tired of inadequate floppy systems and overpriced minicomputers? BASIC TIME offers an affordable Minicomputer System with 10MB hard disk storage, printer w/stand and CRT. All complete with desk enclosure.

Since the introduction of our System B-100 in June of this year, we have had an overwhelming response from you, the minicomputer system buyer. The reason for this response is, when it comes down to price, you can't find a much better value nowadays in a Small Business Computer System than what we are offering.

Our Central Processor is a 16-bit, single board unit with 65K bytes of memory, using a 2901 microcomputer to emulate the Data General Nova instruction set. We offer 10MB of hard disk storage on two disks, one fixed and the other removable, to allow for backing up the system.

The operating system comes complete with Business Basic Integrated with a sophisticated file management system. It is easily programmable by first time users and it supports editor and all facilities/utilities to develop business application packages. We also include a variety of subroutines to make development easier.

The system comes with a full function video display terminal that has a standard typewriter keyboard and a 10 key numeric pad. The display screen will display 1920 characters (24 lines of 80 characters).

We have an optional printer that prints letter quality type if your needs are in that area. Included with that option, at no additional cost, is a word processing package.

We include a General Business software package that consists of: general ledger, accounts payable, accounts receivable, payroll and inventory control. We provide complete software documentation to allow the user to modify it to fit his own needs. There is no charge for the software.

The B-100 is upgradeable for users that require multi-user and multi-tasking capabilities. However, we plan to introduce our System B-200 in November. This system will be capable of multi-user and multi-tasking and it will handle up to four CRT's and printers in any combination.

We have complete Dealer and OEM packages which include: pricing information and Dealer/OEM agreements.

Basic Time
1215 E. El Segundo Boulevard
El Segundo, California 90245
213/322-4435

Circle 14 on Inquiry card.
Table 3: Memory assignment map for the AMS-80.

The block can be used to contain programs that execute in those locations, or copies of programs that execute when moved to programmable memory locations in low memory. This is ideal for programs that need to be executed in user memory, or for storing programs as a backup to the floppy disk unit in case it is not available at a particular time or location, such as a demonstration at a computerfest.

Processor Technology's SOL software is written to reside at hexadecimal C000. It can be placed in that area if desired. The video display programmable memory is located at CC00. This makes it compatible with Processor Technology and SSM.

A programmable memory area is assigned at hexadecimal D000. This allows the stack to be located outside of the main user area. The buffer areas for cassette I/O can be located in this area, as can any programmable memory-dependent software that is required for your system. AMS-80 is designed to automatically locate the stack in an area of user memory above the video block. It also skips this area when a user program asks for the top of user memory. If no such block exists and the video area is used, AMS-80 will have to be customized to avoid the video programmable memory area during initialization.

The Processor

Any S-100 bus processor card can be used. Different cards have different features. Some have jump start or bootstrap capability, some have interrupt ports, and some have both. Some are available already built, and others as kits or blank boards. Choose one that suits the needs of your group.

Input/Output

You will need (and AMS-80 is configured for) 4 classes of I/O (input/output) devices, a console, a high-speed data-input device (reader), a high-speed data-output device (punch), and a high-speed, ASCII output device (list). The AMS-80 software allows 4 physical devices to be assigned to each category of I/O device. The assignments are in software and may be changed under program control. Software is provided for a video-display board (Cybercom) as well as a Teletype interface. Audio tape is chosen for off-line program and data storage. A floppy disk drive can be added at will.

All I/O operations are performed on a single character basis, either in or out. Kansas City Standard tones have been chosen as the audio recording standard. There is, however, 1 basic difference between the use of paper and audio tape. Paper tape can be stopped between punches or reads, but audio tape cannot be efficiently stopped. Thus, the audio cassette routines contain “blocking” software that stores the individual characters in a user memory area (preferably between hexadecimal 0000 and E800, as shown in table 3). This blocking software is transparent to AMS-80.

Software is provided for all I/O to the console or terminal, the punch, reader, or list devices. The routines are located within AMS-80 and are called indirectly via a jump table as shown in table 2. Routines are provided to output ASCII data from either the B or C register, allowing existing commercial software to be patched to operate via AMS-80 with minimal changes. Routines are also provided to output the contents of the accumulator (8 bits) or the H/L register pair (16 bits) in hexadecimal code. Character input routines are also provided. Most of the routines are used within AMS-80.

There are 2 reserved I/O ports within the system. These are front
INTRODUCING — LOUMAR MANAGEMENT SYSTEMS SOFTWARE

4 programs to give you a comprehensive package for business management

The Loumar General Accounting System is a versatile, fully integrated software package designed for small and medium sized businesses. It is also suitable for CPA's and bookkeeping service firms.

The complete software system is composed of four main modules: GENERAL LEDGER, ACCOUNTS RECEIVABLE, ACCOUNTS PAYABLE AND PAYROLL. Each module may be used separately or in combination with any other module. Supplied on disk as run-time modules. Source not available.

All software is written in CBASIC II and utilizes the powerful CP/M operating system.

General system features include:
- Automatic posting to general journal
- Strict error detection
- Report production on demand
- Consistent operating procedures
- User oriented. No previous computer knowledge required
- Designed by accounting professionals
- Comprehensive, well presented reports and manuals
- Single or multiple client capabilities

HARDWARE SPECIFICATIONS
The end user's microcomputer must satisfy the following requirements:

- 48k RAM
- Dual floppy disk system
- Printer with tractor. All printing is done in 80 col. format
- CRT with at least a 64 character by 16 line display
- CP/M and CBASIC II

Write for our brochure — Dealerships still available

PAYROLL: Up to 500 employees — $550.
ACCOUNTS RECEIVABLE: Up to 1000 customers and 1000 monthly transactions — $550
ACCOUNTS PAYABLE: Up to 1000 vendors and 1300 monthly transactions — $480
GENERAL LEDGER: Up to 200 accounts with 2000 entries — $450

MISSION CONTROL • 2008 WILSHIRE BOULEVARD, SANTA MONICA, CA 90403 • (213) 829-5137
panel (FF) and interrupt control port (FE). The front-panel address is used for both displays and switches. FF was chosen because of the simple hardware needed to decode it (1 NAND gate), while FE was built into the processor card utilized in the prototype.

Some standardization of the hardware is desirable in a group project. This allows 1 person to check out another person's hardware. It also allows different members of the group to interconnect their equipment for large demonstrations.

Interfaces come in 2 types: serial and parallel. The following standards, which are slightly modified versions of existing ones, are suggested for the AMSAT-GOLEM-80 Project.

Audio Signals
All audio signals from the computer or interface boxes to and from cassette recorders are via phono plugs/sockets. The actual connectors on the tape recorder may be anything from miniature phone to DIN-type connectors.

RF/Video Signals
BNC-type connectors should be used to carry video to and from monitors. The BNC connector is small, quick to connect and disconnect, and readily available worldwide.

Digital Signals
Digital signals come in 2 types: serial and parallel. Both types of interfaces should use 25-pin ElA-type connectors. The chassis connector on the computer will be female; the chassis connector on the remote device is male. Power can be fed down the cable from the computer to the remote device via the I/O cable. Having a female connection on the hot lead reduces the probability of short circuits. They can also be joined together to make larger ones, without the need for special adaptors. The serial connector assignments are based on the RS-232 interface. The pin assignments are shown in table 4. The parallel connector carries 1 input and 1 output port (8 bits each), plus 1 pair of handshake signals. The signal pins are compatible to the MITS recommended ones. Power and ground are fed down the cables, thus the recommendation for fuses in the 3 DC voltage lines. The parallel port interfaces are transistor-transistor logic (TTL) level, the serial port RS-232 voltage levels (mark = negative, space = positive). The pin assignments are shown in table 5.

AMS-80
AMS-80 is a full, software-debugging program. It also contains the system I/O drivers and utility routines accessible via a jump table. The jump table approach is utilized so that user programs written using the utility routines within AMS-80 will not require reassembling, should a subsequent version of AMS-80 be released. The version that was previously published (September 1976 BYTE) has undergone extensive modifications and has been relocated to the block of memory between hexadecimal F000 and FF00. This allows many existing programs written for low, user memory area (such as MITS BASIC) to be run through the I/O drivers within AMS-80. It is thus possible to run a program in BASIC and have the output appear on the line printer (list device) or the console at will. The standard capacity existing in AMS-80 is shown in table 1.

System Expansion
The modular design of the AMSAT-GOLEM-80 system allows for operability at all stages of construction, once the initial stage is reached. Since a great deal of money is being spent, it would be encouraging to see it perform as soon as possible. The initial stage, apart from the processor power supply and bus,
NEW

RAM
- Scelbi "6800" Software Gourmet Guide & Cookbook Robert Findley $10.95
- Scelbi "8080" Software Gourmet Guide & Cookbook Robert Findley $10.95
- Programming the 6502 Rodnay Zaks $11.95
- 8080A/8085 Assembly Language Programming Lance Leventhal $9.50
- 6800 Assembly Language Programming Lance Leventhal $9.50
- Z-80 Assembly Language Programming Adam Osborne $9.50
- 6502 Assembly Language Programming Lance Leventhal $9.50
- Semiconductor Memory Data Book Texas Instruments $5.00
- Tracer: A 8000 Debugging Program Grappe! & Hemenway $6.00
- Bar Code Loader Ken Budnick $2.00
- Tiny Assembler 6800 Version 3.1 Jack Emmerich $9.00
- RA6800ML: An M6800 Relocatable Macro Assembler J. Hemenway $25.00
- MONDEB: An Advanced M6800 Monitor Debugger J. Hemenway $5.00
- Editor/Assembler for 8080/8085 Based Computers W.J. Weller & W.T. Powers $14.95
- Practical Microcomputer Programming The Z-80 W.J. Weller $29.95
- LINK68: An M6800 Linking Loader Grappe! & Hemenway $8.00

CPU
- Microprocessor Lexicon, Acronyms and Definitions Sybex $2.95
- Microprocessor System Design Edw. E. Klingman $22.50
- Basic Microprocessors and the 6800 Ron Bishop $11.95
- 8080A Bugbook Peter Rony $10.50
- Introduction to Microcomputers - Vol. II (binder) Osborne & Assoc. $30.00
- 6800 Programming for Logic Design Osborne & Assoc. $9.50
- Z-80 Programming for Logic Design Osborne & Assoc. $9.50
- 8080 Programming for Logic Design Osborne & Assoc. $9.50
- CMOS Cookbook Don Lancaster $10.50
- TTL Cookbook Don Lancaster $9.50
- Bipolar Microcomputer Components Data Book Texas Instr. $4.70
- TTL Data Book, 2nd edition Texas Instr. $7.50
- TTL Data Book, Supplement to 2nd edition Texas Instr. $1.25
- 9900 Family Systems Design and Data Book Texas Instr. $9.95
- Designing with TTL Integrated Circuits Texas Instr. $36.50
- Fundamentals and Applications of Digital Logic Circuits Sol Libes $7.95

I/O
- 6502 Applications Book Rodnay Zaks $12.95
- IC Converter Cookbook Walter Jung $13.95
- Microprocessor Interfacing Techniques (2nd edition) Lesia and Zaks $13.95
- The Cheap Video Cookbook Don Lancaster $5.95
- TV Typewriter Cookbook Don Lancaster $9.95
- Introduction to Microcomputers - Vol. III (binder) Osborne & Assoc. $20.00
- Active Filter Cookbook Don Lancaster $14.95
- Linear Control Circuits Data Book Texas Instr. $5.00
- Power Semiconductor Data Book Texas Instr. $9.25
- Interface Circuits Data Book Texas Instr. $6.95
- Optoelectronics Data Book, 5th ed. Texas Instr. $3.50
- Transistor and Diode Data Book Texas Instr. $13.50

(Postage $.75/item or $1.00 outside U.S. to a maximum postal charge of $3.00)

Name __
Address __
City_________________ State________ Zip________
□ Check enclosed □ Master Charge □ VISA
Card# ______________________ Expires____________
Signature __
Total enclosed $ ________ 1B2099
DIAL YOUR BANK CARD ORDERS
TOLL FREE 800-258-5477 (in N.H. 924-3355)
Table 6: AMS-80 I/O (input/output) allocations.

<table>
<thead>
<tr>
<th>Punch</th>
<th>P = 3</th>
<th>P = 2</th>
<th>P = 1</th>
<th>Audio Cassette</th>
<th>P = Console</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reader</td>
<td>R = 3</td>
<td>R = 2</td>
<td>R = 1</td>
<td>Audio Cassette</td>
<td>R = 0 Console</td>
</tr>
<tr>
<td>List</td>
<td>L = 3</td>
<td>L = 2</td>
<td>L = 1</td>
<td>Teletype Port</td>
<td>L = 0 Console</td>
</tr>
<tr>
<td>Console</td>
<td>C = 3</td>
<td>C = 2</td>
<td>C = 1</td>
<td>Video Display Board/Keyboard</td>
<td>C = 0 Teletype Port</td>
</tr>
<tr>
<td>Video Display Board</td>
<td>V = 0 Page With Line Foldover</td>
<td>V = 1 Page Without Line Foldover</td>
<td>V = 2 Scroll With Line Foldover</td>
<td>V = 3 Scroll Without Line Foldover</td>
<td></td>
</tr>
</tbody>
</table>

comprises 4 K bytes of programmable read-only memory of user memory, and a terminal device. With this amount of hardware, you can run AMS-80, enter programs in memory in hexadecimal code via AMS-80, and learn a little about software. The addition of some off-line memory, such as audio or paper-tape devices, allows you to run programs which require up to 4 K bytes of memory. Such programs include Tiny BASIC, orbital calculations for amateur satellite locations, and various amateur radio programs. If you have a radio teletypewriter terminal unit (RTTY-TU), you can even tune your shortwave radio in to commercial or amateur Teletype stations, and display their transmissions on your terminal.

If you get a modem interface and a second terminal, or use a video display/keyboard combination and a serial port/modem, you can make the basic system into a remote terminal for a large machine timesharing service, and access the computer at work from your home. Add another 4 or 8 K bytes of user memory, and you can run text editors, assemblers, or an 8 K BASIC interpreter. This opens a new dimension in computing. You can play Star Trek, and run education and business software and advanced amateur radio programs, such as contests. Put 16 K bytes of user memory in your system and you can get a floppy disk unit for an added dimension in computing.

Off-Line Data Storage

Off-line storage is storage for programs and data that is external to the 64 K bytes of accessible memory. It usually consists of audio tape, floppy disks, or paper tape. Floppy disk storage usually comes with an operating system and will not be discussed here. AMS-80 contains
Everbody's making money selling microcomputers. Somebody's going to make money servicing them.

New NRI Home Study Course Shows You How to Make Money Servicing, Repairing, and Programming Personal and Small Business Computers

Seems like every time you turn around, somebody comes along with a new computer for home or business use. And they're being gobbled up to handle things like payrolls, billing, inventory, and other jobs for businesses of every size...to perform household functions like budgeting, environmental systems control, indexing recipes, and more.

Growing Demand for Computer Technicians...
Learn in Your Spare Time

Even before the microprocessor burst upon the scene, the U.S. Department of Labor forecast over a 100% increase in job openings for the decade through 1985. Most of them new jobs created by the expanding world of the computer. NRI can train you at home to service both microcomputers and their big brothers. Train you at your convenience, with clearly written "bite-size" lessons that you do evenin&S or weekends without quitting your present job.

Assemble Your Own Microcomputer

NRJ training includes practical experience. You start with meaningful experiments building and studying circuits on the NRI Discovery Lab®. Then you build your own test instruments like a transistorized vol-ohm meter, CMOS digital frequency counter...equipment you learn on, use later in your work.

And you build your own microcomputer, the only one designed for learning. It looks and operates like the finest of its kind, actually does more than many commercial units. But NRI engineers have designed components and planned assembly so it demonstrates important principles, gives you working experience in detecting and correcting problems. It's the kind of "hands-on" training you need to repair and service units now on the market.

Mail Coupon for Free Catalog
No Salesman Will Call

Send today for our 100-page, full-color catalog. It describes NRJ's new Microcomputer Technology course in detail, shows all equipment, kits, and lesson plans. And it also tells about other NRJ courses...

Complete Communications with 2-meter transceiver...TV/Audio/Video Systems Servicing
with training on the only designed-for-learning 25" diagonal color TV with state-of-the-art computer programming. With more than a million students since 1914, NRI knows how to give you the most in home training for new opportunity. If coupon has been removed, write to NRJ Schools, 3939 Wisconsin Ave., Washington, D.C. 20016.

RUSH FOR FREE CATALOG

NRJ Schools
McGraw-Hill Continuing Education Center
3939 Wisconsin Avenue
Washington, D.C. 20016
Please check for one free catalog only.
NO SALESMAN WILL CALL

Accepts Payment by CIBill.

Rush for Free Catalog

NRJ engineers have designed components and planned assembly so it demonstrates important principles, gives you working experience in detecting and correcting problems. It's the kind of "hands-on" training you need to repair and service units now on the market.

Mail Coupon for Free Catalog
No Salesman Will Call

Send today for our 100-page, full-color catalog. It describes NRJ's new Microcomputer Technology course in detail, shows all equipment, kits, and lesson plans. And it also tells about other NRJ courses...
routines to store and read software from paper tape. Data is stored in Intel hexadecimal format. Paper tape, although common in professional circles, is not cheap, and the readers and punches are expensive. However, inexpensive hand operated readers do exist, so paper tape is a convenient and easily mailable form of program storage (for short programs).

Paper tapes can be stopped under software control. Thus, when BASIC is reading and interpreting a program, it can stop the tape momentarily to process the line of source code. Audio cassettes cannot be stopped in such a manner. Other programs, such as Assemblers or Editors, also have requirements for occasional inputs and outputs. Thus, AMS-80 contains buffer cassette-driver software to enable the main program to think that it is reading or writing characters on an incremental basis. Data is stored on tape in blocks of 256 characters. There is no format as such; the format is set by the main program because in this system the audio cassette is treated as if it is paper tape. This means that by using the Intel hexadecimal format and cassette buffer-driver routines in AMS-80, any paper-tape, cassette, or floppy disk system can read or write tapes and convert to and from the format needed for a particular operating system. A title command is put into AMS-80 to allow headings to be written on hexadecimal code blocks of tape so that they can be identified.

Since even a 15-minute cassette tape can hold a lot of software, a command is provided within AMS-80 to allow a tape to be scanned and a program found. The command transfers data from the reader to the punch device. It may be used to copy tapes or, if the console is assigned as the punch, it may be used to scan tapes and locate particular blocks.

The number of data bytes in a block is 256. Each block is preceded and followed by a mark tone. This allows the tape to be stopped and started. The data is read or written from the tape at 300 bps.

If the system has error detection, error-detection bytes are put on the tape. For example, the Intel hexadecimal format checks each line of code for a read error. Each line as printed on the console is a block in itself. The data, address, and error detection bytes are output to the paper-tape punch. These bytes will be collected by the cassette buffer software which, when full, will write 256 bytes on the audio tape. When reading that block back, it will read the entire block into a buffer. The Intel hexadecimal format reader then gets the data on a character-by-character basis from the buffer, and checks for errors.

The cassette storage medium is designed to be a paper-tape equivalent for information exchange. It is not designed to be part of an operating system, although an AMSAT flexible operating system may be available in the near future.

Operating Systems
Cassette and disk operating systems are currently available. These can be patched to operate through the AMS-80 I/O (input/output) drivers and hence improve them by allowing assignable I/O devices. AMS-80 is a paper-tape operating system in which the file storage and sorting is done by the operator.

The advantages of software configured I/O can be seen in the following circumstances: BASIC is designed to operate via the console. Punch and reader operations are available for program storage, but the execution is usually via the console. With assignable I/O, the console output routine can be assigned to a line printer, and outputs obtained at high speed. Alternatively, different readers (paper and audio) can be assigned with no change in the BASIC interpreter software.

The spare commands in AMS-80 can be allocated to interface to the operating system. For example, “Q” could be assigned to execute a jump to the operating system. A command can be assigned to return to AMS-80, once in the operating system. These aspects of interfacing AMS-80 to operating systems will be discussed in detail later.

Real-Time Operations
Real-time operations are required for many tasks. The 8080 has the capability of directly distinguishing between 8 real-time interrupts. In the AMSAT-GOLEM-80, Interrupt 0 is
equivalent to Reset, and Interrupt 1 is reserved for the breakpoint feature. The remaining interrupts are available for custom software. The time-of-day clock is not implemented in software, but rather in hardware, using an MOS digital-clock circuit. A number of floppy disk interfaces, North Star in particular, do not allow for interrupts during the disk read and write operations. Thus, a software clock would not be updated when running such a disk system. This means that no real-time operations could be executed without reinitialization of the clock each time. Using a hardware clock, the time of day can be read at any time by using simple input statements from the I/O port assigned to the clock.

Documentation

Documentation is very important. Keep all of the instructions for the various kits in one place. Three-ring binders are inexpensive and can contain a large amount of information. If you need more than 1 binder, split the information logically, such as hardware, software, peripherals, etc. When you build and test cards, note any unusual or special things that you did. Note any voltage or other measurements you made. Keep a copy of test routines you used to initially test something. You may need them a few years later. The level of documentation should be better than that supplied with commercial equipment. It may help you sell the system. It is also important to document the operational aspects of the system. Document how it is configured (an example is shown in table 6), and record the operating instructions so that others can operate the system in your absence. Note which connector plugs into which socket.

Planning your Project

Your requirements are going to differ from those of other people. Your method of assembly can be the same, but can differ in details. There are many manufacturers of memory and I/O cards. Some are sold fully assembled and tested, some assembled, some as kits, and some as bare boards. Choosing the card that suits your needs at a particular time can reduce your cost. Remember that the software is hardware transparent; for example, a program designed to run in user memory at hexadecimal memory locations 0100 to 2000 will run in any type of working memory, no matter who manufactured it. Therefore, it does not matter if you use a Brand X product when the rest of the club uses a Brand Y. Just ensure that the specifications for addressing the card are the same. (Wait states do not matter. If you need an extra wait state, your software will take longer to execute, but you will probably never notice the difference.)

The price of hardware is constantly falling. New cards are being introduced every month. It is possible to purchase a 32 K or 64 K-byte programmable-memory card populated by only 8 K bytes of memory circuits, and add the remaining integrated circuits as you need them. The price of the next 8 K bytes will probably be less than today's price. Purchase your hardware when you need it. Look around, compare the cards made by different manufacturers, decide how their features will fit into your system, ask for advice at your club, and then make your purchase. For example, some processor cards come with vectored interrupt capability, and some with bootstrap start.

Summary

The details of the construction of the individual cards are not presented here because vendors supply their own information. In the AMSAT-GOLEM-80, the hardware is interchangeable (within limits), and the actual manufacturer of any particular card is immaterial. The prototype has served to check our hardware and software for members of The Radio Amateur Satellite Corporation (AMSAT) and the Chesapeake Microcomputer Club Inc, who have set up a bulk purchase scheme for obtaining price reductions on hardware.

This article has described an approach to building an S-100 computer that is incremental and affordable, even though it may not be the lowest cost in the long run. The AMSAT-GOLEM-80 is an approach to a system. It may be built up as a stand-alone system, or it may be overlaid onto your existing hardware.
Add Some Control to Your Computer

An Output Port Tutorial

Ken Barbier
POB 1042
Socorro NM 87801

A virtually limitless number of devices can be controlled through a single output port using time multiplexing techniques. A series of 8-bit bytes is fetched from a control buffer in memory, and output through a single port. On the receiving end, bus buffers present the data to all the devices in parallel, but unique strobes are supplied to each device in turn, so that it can latch its own data word.

This technique is particularly useful if the devices are to be located some distance from the computer. The hardware shown in figure 1 has been used to control devices over 50 feet from the computer without exotic line drivers and receivers. Since remote addresses for each device are generated by the hardware, only 8 data lines and 1 strobe line are required. For maximum noise immunity, shielded twisted pair cable should be used.

Receive Hardware

In figure 1, 16 external devices receive 1 8-bit byte apiece. Using the Intel 8080, this block of data will be transmitted in about 300 μs. The I/O (input/output) write strobe accompanying the 1st byte triggers a delay oneshot which, after allowing more than enough time for the block transmission, triggers a reset oneshot which clears the remote address counter, the 74160. This insures that the next block of data will be routed to the correct device in turn.

The remote address counter supplies a 4-bit count to the 4-line-to-16-line data selector, the 74154. As the

Figure 1: The transmission circuitry is divided into 2 parts, the data transmission (D0 through D7) and the address. The address is decoded by a counter which determines which 1 of 16 devices is being used. The write strobe accompanying the data triggers a delay oneshot (IC3a) which triggers a reset oneshot (IC3b) which clears ICS, the remote address counter.
PROGRAMS AND ARTICLES PUBLISHED IN OUR FIRST 12 ISSUES INCLUDE THE FOLLOWING:

- A COMPLETE INCOME TAX PROGRAM (LONG AND SHORT FORM)
- INVENTORY CONTROL
- STOCK MARKET ANALYSIS
- WORD PROCESSING PROGRAM (FOR DISK OR CASSETTE)
- LOWER CASE MODIFICATION FOR YOUR VIDEO MONITOR OR PRINTER
- PAYROLL (FEDERAL TAX WITHHOLDING PROGRAM)
- EXTEND 16 DIGIT ACCURACY TO TRS-80 FUNCTIONS (SUCH AS SQUARE ROOTS AND TRIGONOMETRIC FUNCTIONS)
- NEW DISK DRIVES FOR YOUR TRS-80
- PRINTER OPTIONS AVAILABLE FOR YOUR TRS-80
- A HORSE SELECTION SYSTEM ARITHMETIC TEACHER
- COMPLETE MAILING LIST PROGRAMS (BOTH FOR DISK OR CASSETTE SEQUENTIAL AND RANDOM ACCESS)
- RANDOM SAMPLING BAR GRAPH
- CHECKBOOK MAINTENANCE PROGRAM
- LEVEL II UPDATES LEVEL II INDEX
- CREDIT CARD INFORMATION STORAGE FILE
- BEGINNER'S GUIDE TO MACHINE LANGUAGE AND ASSEMBLY LANGUAGE
- DATA BASE MANAGEMENT
- SOFTWARE EXCHANGE
- MARKET PLACE
- QUESTIONS AND ANSWERS
- PROGRAM PRINTOUTS

FREE WORD PROCESSING PROGRAM (Cassette or Disk)
For writing letters, text, mailing lists, etc., with each new subscriptions or renewal.

LEVEL II RAM TEST - Checks random access memory to ensure that all memory locations are working properly.

SEND FOR OUR 36 PAGE SOFTWARE CATALOG INCLUDING LISTINGS OF HUNDREDS OF TRS-80 PROGRAMS AVAILABLE ON CASSETTE AND DISKETTE: $2.00 OR FREE WITH EACH SUBSCRIPTION OR SAMPLE ISSUE.
74160 advances its count on the rising edge of its clock, it will initially supply address 0 to the 74154 until the trailing edge of the negative going I/O write strobe. This same strobe is the "data" supplied to the 74154, and so will appear on each of the outputs of the 74154 in turn. This constitutes the 16 remote addresses.

For expansion, 1 additional counter stage could be used to generate "first 16" and "second 16" control signals to double the number of devices.

Driver Programs

The example shown in figure 1 is for 16 devices. Every time we want to output a control to any one device, we must output all the control words. OUCNT is an 8080 routine designed to accomplish this (see listing 1). The calling program first loads the correct bit patterns into the correct buffer words, then sets the flag at memory location FLAG. This flag is used to prevent needless outputting of the controls. In a complex control program, many segments of the operating system may need to change the state of the devices at irregular intervals. In such an implementation there will be a fixed program cycle, with many tasks called in turn to perform their functions. At some point in the cycle, time will be allotted to output our controls. If no program segments or tasks have called for any change in the controls, it is not necessary to transmit them, and the flag will not be set. But when it is set, we will transmit all the controls, after clearing the flag.

Controlling Relays

Typical applications for this technique might include driving remote displays, with 32-decimal digits being transmitted, 2 per 8-bit byte. Or, as is shown in figure 2, 8 relays can be controlled by each 8-bit byte.

The simplified schematic of figure 2 shows a relay driver circuit capable of controlling 8 relays. The 8 bits of data are latched into the 74175s on the rising edge of the clock, so our negative going strobe can be used as is. If latches such as the earlier 7475 are used, the strobe would have to be inverted, since the output of a 7475 follows the input whenever the clock is high. In either case, any relay whose corresponding bit is not changed will remain in the previous state, as its corresponding latch is reloaded with the same data as before. (The type of NPN driver transistor will have to be selected to match the current and voltage requirements of the particular relay used.)

Relay Control Program

Obviously, if we need to control 8 relays with 1 byte, we do not want to change the state of all of the relays at the same time. This complicates the software required slightly. In the 8080 program shown in listing 2, a change relay subroutine allows us to change the state of 1 relay at a time. We must supply the subroutine with the number (hexadecimal 0 thru F) of the word in the buffer corresponding to the relay driver board, and a relay number (1 thru 8). We must also specify whether we want to turn it on or off. At the correct time, we put the word number in register C, the relay number in register E, and set register A to 1 for on, or 0 for off, and call CHGTRY. The next time the operating system calls OUCNT, only our

Listing 1: 8080 assembler routine to output control signals to 1 of 16 devices. CONTR is equated with the desired output port address.

```
;OUTPUT CONTROLS
CONTR EQU xxxx

OUCNT: LDA FLAG
ANI 0FFH
RZ
MVI A,00
STA FLAG
LXI H,BUFFER
MVI C,0FH
;SET COUNTER

OUCN1: MOV A,M
OUT CONTR
INX
DEC M
JNZ OUCN1
RET

FLAG: DB 0
BUFFER: DS 0FH
```

Figure 2: A relay driver board capable of controlling 8 relays. The state of the relay, on or off, is latched into the 74175 until a following strobe is received directing a change in state.
DON'T UNDERESTIMATE
THE POWER

Adam Osborne foretells the Next Industrial Revolution
in his new book

We are already five years into a new industrial revolution, the impact of which will rival the first industrial revolution. It is based on microelectronics.

Technological advances and price reductions of microelectronic devices have occurred at such an astounding rate, and from such surprising sources, that no one has been able to accurately predict what will happen, or when.

And in the welter of new technological developments, no one has paid attention to the social impact of what is occurring, or the consequences of such haphazard advancement. The fact that half of today's jobs may disappear within the next decade due to microelectronics should not be taken lightly.

Will the coming years prove to be a dream or a nightmare? In Running Wild, Adam Osborne scrutinizes the microelectronic industry for the laymen, he confronts the reader with what is going on today, and predicts what will certainly be happening tomorrow.

Be prepared.
18 chapters of solid, accurate programming information:
- Debugging techniques
- Interrupt modes
- Array and table handling
- Number base conversion
- Floating point arithmetic
- Programmed input/output
- Stack pointer usage

The last part of the book is software, an editor/assembler which will run on any 8080 or Z80 machine and a debugging monitor.

Send in the coupon supplied with the book and receive FREE the object programs of the editor/assembler and debug on either paper tape or on cassette tape for the TRS-80 microcomputer.

(Loads in Level 1 with 16K RAM or Level II.) Both the book and software for only $29.95!

For North Star Disk Systems: Now available for the Z80 on Single Density diskettes
- Editor/assembler object code $14.00
- Editor/assembler and debug source code $14.00
- Both for only $26.00!

A trademark of Tandy Corp.

DIAL YOUR BANK CARD ORDERS
TOLL FREE 800-258-5477
or enclose your check with this ad:

Name ____________________________
Address __________________________
Zip ______________________________

BITS inc Books to erase the Impossible
P.O. Box 428, 25 Route 101 West, Peterborough NH 03458
Ask for our new, FREE Catalog

Listing 2: This 8080 routine allows a state change for only 1 relay in a set of 8 instead of changing all relays at once.

Listing 3: Initialization routine to clear the address counter, buffer, and outputs all 0s to devices connected to system.

selected relay will change state, even though all the controls are output.

Error Free Operation

To insure that all controls have been received correctly, some sort of feedback to the computer can be provided. In actual practice this is usually unnecessary, but if it must be implemented, there are several possible techniques.

First, 74180 parity generator and checkers could be used to generate a parity bit on the transmit end, and check it on the receive end, sending back an interrupt if any word received is in error. This would add only 2 more signal conductors to the 9 already in the cable. Additionally, at the end of the delay oneshot time (and before the reset occurs), the remote address counter can be tested to insure that it has reached the all 1s state. A count error signal can be ORed with the parity error signal to produce a single interrupt in case either error should occur. The operating system can then try the transmission again, or at least indicate its existence.

System Initialization

Since, upon initial application of power, the states of the latches and the 74160 counter will be indeterminate, the initializing subroutine of Listing 3 should be called at power on and reset times. This will clear the address counter, the buffer, and output all 0s to all devices.

I hope this short discussion of output port techniques will help readers to understand how the computer can be interfaced to the real world.
Expansive but not expensive

MicroAge introduces for Horizon and Alpha Micro Systems, the most powerful Hard Disk Units You’ve Ever Seen.

Welcome to “Hard” Times: a new age of hard disk cartridge drives for Horizon and Alpha Micro... so powerful, so reliable, so economical, you’ve never seen anything like it. Fast, easy and versatile: the revolutionary new Fujitsu M2201 with 40 (formatted) megabytes of storage... and the dynamic CDC Phoenix with 27 (formatted) megabytes. Both are operated with North Star and Alpha Micro commands. Added capacity means the ability to fully utilize the complete range of software and capabilities of North Star Horizon and Alpha Micro mainframes.

But their family interface compatibility is not all that’s expansive. Speed and economy are impressive, too. Super-fast access time means no waiting for command execution... easy handling of large files. And the price? Unbelievably low for this much flexibility, power, speed and capacity. And the low price includes the hard disk drive, S-100 controller, software interface, cords and disk pack.

Fujitsu M2201 Cartridge Module Drive
50 megabyte storage (40 formatted)

CDC Phoenix Cartridge Module Drive
32 megabyte storage (27 formatted)

Either.

$9995.00
Includes drive, S-100 controller, software interface and disk pack.

Exclusively from MicroAge

Ask your dealer about Hard Times — the Fujitsu M2201 and CDC Phoenix drives from MicroAge. Available to qualified dealers and OEM’s. If a dealer is not available in your area, call 800-528-1415.
The scope of the new homebrew design has now expanded to include relatively high-speed serial RS-232C communications among the homebrew node, the Western Digital P-engine, the Able/60-Synclavier, and other computers from time to time. I intend to use RS-232C at 19.2 K bps as the communications discipline, primarily for its universality. Today one can get almost any computer with a standard 25-pin D connector set up for the RS-232C discipline, at speeds ranging from a lethargic 110 bps to a maximum of 19.2 K bps. This upper-limit of speed is not exceptionally fast (about 1800 bytes per second is the equivalent in a useful measure), but the existence of these standard signal levels and standard connectors argues for this kind of approach.

The diagram of figure 1 shows how the overall conception of the system stands at present. The homebrew 6809 simultaneously provides a facility to directly execute 6809 code for experimental purposes, and a more permanently useful function of a common communications node which can be the subject of various serial communications strategies relative to the other processors.

Lest readers wonder, this is and remains a personal computer. It is true that the system is getting a bit large for one person to operate all of the terminal and music keyboards simultaneously, yet it resides in my home along with various other facilities of the complete computer experimenter: electronics shop, woodworking shop, and the beginnings of a machine shop.

This expanded conception of function for the homebrew 6809 barely changes the hardware design details originally conceived. The computer will have 16 K bytes of memory to start, several terminal ports, several parallel ports, and space for 4 K bytes of ultraviolet, erasable read-only memory. The read-only memory will contain the implementation of low-level, communications-monitor software and key parts of a reverse-polish notation, stack-oriented, threaded interpretive language. Remember that the conception of a homebrew or commercial system made of modular components can change considerably in detail as a result of time and resources available.

As the system design develops from this initial intention, its actual detail may prove inconsistent with what I have conjectured thus far. Recognizing this starting point, I invite readers to follow in on a guided tour of the current state of my thinking about this new, homebrew, microprocessor system project. Let's see how the central processor bus design comes out, what logic blocks will be required, and let's have some preliminary thoughts on the

Figure 1: How the 6809 homebrew computer fits into a bigger system. The new 6809 computer will serve as a central communications node for multiple computers involved in this personal system. At present 2 complete computer systems are involved, with serial communications via the 6809 node, which is the subject of this homebrewing series. The Able/60 has several specialized peripherals which will be used for personal research purposes, such as, high-speed 16 channel analog-to-digital input conversion and a real-time clock with 1 µs resolution. In this diagram, mass storage equipment is not shown, but it is a part of each computer: the Able/60 computer includes 2 5-inch floppy drives, and 2 full-size floppy drives as its mass storage complement. The P-Engine machine includes 2 double density, standard-size floppy disk drives.
Interested In Personal Computers?

This is the place for you! You'll meet and talk with hundreds of manufacturers, distributors and retailers... all showcasing their new 1980 Micro, Mini and Small Computer Systems.

You'll see them all... Radio Shack, Pet, RCA, Compucolor, Heathkit... you name it! All the major terminal and peripheral companies too, plus software developers magazine editors and book publishers. Yes, it'll be the largest showing of personal computer hardware, software and services ever assembled in the Northeast!

You'll be enthralled, entertained and educated. You'll see computer art, graphics and animation. You'll hear computer synthesized music, watch computerized amusements, play electronic and video games and attend scores of free tech talks and briefings given by internationally recognized speakers. And you may win a free computer given away as a door prize! Don't miss the largest gathering of computers and computerists! No pre-registration necessary.

Tickets available at the door.
Adult admission $5.00.

Interested In Business Systems?

Interested in Business Systems? This will be your one opportunity to see all of the Mini, Micro and Moderate Sized Computer Systems under one roof. Your attendance at this show is a must if you, or your company, are contemplating the purchase of any type of computer or office equipment.

You'll see them all... the big (and small) names in computers, data and word processing equipment, peripherals and software. You'll attend dozens of free, easily-understood briefings on how computers can help you in your business or profession.

So if you're considering a computer or computer-related service... starting your own computer business or changing your job within the computer industry... or if you'd just like to learn more about computers as they relate to your personal life and to your business or profession, come to the show to see the Computerized World of Tomorrow...Today. And bring the entire family. It's a fun-filled educational experience. No pre-registration necessary.

Tickets available at the door.
Adult admission five dollars.
Circle 401 on Inquiry card.

Zs - SYSTEMS

64K RAM BOARD

The Zs-SYSTEMS 64K RAM board is designed to operate in any 280 based microcomputer having S-100 bus. It uses 16K dynamic RAM chips, & features:
- Board select
- Bank select
- Transparent on-board refresh
- 2 or 4 MHz operation
- Memory disable

Available from stock to 60 days
As low as $500.00 in quantities of 100

Price of one...........$649.00
PC board only...........$59.00
With 16K RAM...........$359.00
Plus shipping charges

FLOPPY DISK CONTROLLER
Handles with no modification
- 4 standard 8" drives
- (Shugart or compatible) or
- 3 mini drives 5.25" Run with 2 or 4 MHz CPU

Use CP/M Disk Operating System Using the 1771 LS controller
Price of one...........$245.00

SEND FOR FREE INFORMATION
6 months warranty on our boards with normal use

Zs SYSTEMS
PO Box 1847, San Diego, CA 92112
(714) 447-3997

16K STATIC RAM

with
$275 450 ns
$300 250 ns
memory chips

Assembled, Tested and Guaranteed

Static TMS 4044 or equivalent - Fully Static 4Kx1 Memory Chips for full DMA capability, no tricky timing problems.
Fully S-100 Bus Compatible - All lines fully buffered, Dip Switch Addressable in two 8K block, 4K increments. Write Protectable in 2 blocks, Memory Disable using Phantom, Battery back up capability.
Bank Select - Using output port 40H (Cromemco software compatible)-addressable to 612KB of Ram for time share or Memory Overlap, also has alternate ports 80H, COH.
Guaranteed - Parts and labor for one year. You may return the undamaged board within 10 days for a full refund.
Orders - You may phone for Visa, MC, COD ($4 handling charges for COD) orders. Personal checks must clear prior to shipping. Shipping-Stock to 72 hours normally. Will notify expected shipping date for delay beyond this, Illinois residents add 5% tax. Please include phone number with order.

S.C. Digital P.O. Box 906 Phone: Aurora, IL 60507 (312) 897-7749

Designing The Logic Of The System

The task at hand is to design the central processor card for this homebrew computer. This is the starting point for the design of the whole system. Detail choices made in the processor card's arrangement impact every other card designed for the system.

We know, that the system must have 16 address lines and 8 data lines because it uses a 6809 processor architecture, and simplicity dictates avoidance of extra logic for memory paging schemes. But which 24 lines of the 40 remaining in the backplane bus should be committed to which particular uses? Every board in the system must be consistent with this detail choice. The choice is made trivial by the fact that, except for aesthetic and symmetry reasons explained below, one backplane line is as good as the next.

If we were building a computer consistent with plug compatible backplane bus designs such as the SS-50 of Southwest Technical Products Corporation, or the Institute of Electronic and Electrical Engineers (IEEE) S-100 standard bus, these choices would be crucial to that goal of plug compatibility. However, a homebrew system is a homebrew system, so our plug compatibility will be at the level of integrated circuits, not at the level of backplane buses.

Designing The Logic Of The System—Backplane Setup

As noted in the July BYTE page 194, the power supply wiring of the backplane has been committed to the outermost pins of the sockets. The assignment of power supply pins used 32 of the 72 pins available, in order to take advantage of the heavy copper wires of the buses. The power supply wiring commitments were made consistent with a symmetry principle: if a board should be inadvertently rotated 180 degrees and plugged in, all power buses will map into identical power buses. The outermost power bus is the —12 V analog power bus. Proceeding inward, the next symmetric pair will be used for the +12 V analog power; the next pair of buses is for the +5 V main logic power supply. The innermost power buses are the central system ground buses. In table 1, a listing of backplane bus connections, these initial assignments of power pins are shown in shade (a).

The power supplies used in building this system are provided by relatively inexpensive modular building blocks from James Electronics. The +5 V logic power is provided by a single regulated supply rated at 6 A. The 2 analog supply voltages are provided by separate modules rated at 1 A. In the photographs of the physical hardware, these modules are shown as mounted, prior to wiring.

In the design of the backplane bus once the power supply commitments have been made, the next items to consider are the data and address lines. Continuing the process of symmetrical allocation, the 16 address lines and 8 data lines should be assigned to bus pins in such a manner that if a card is rotated, data lines will map into data lines, and address lines will map into address lines. The address lines are split into 2 groups of 8 connections on either side of the symmetry axis. The data lines are
ONE PACKAGE DOES IT ALL

Includes these Application Programs . . .

Sales Activity, Inventory, Payables, Receivables, Check/Expense Register, Library Functions, Mailing Labels, Appointments, Client/Patient Records

RANDOM, MULTI-KEY RECORD RETRIEVAL under CP/M, CDOS, IMDOS, ADOS . . .

SELECTOR III ALLOWS INSTANT RECALL OF ANY RECORD USING ANY INFORMATION ITEM IN THE RECORD. That statement deserves re-reading, because that ability makes SELECTOR III the most powerful Date Base Management System in microcomputers today!

With SELECTOR III you can...

• define a record format, assign retrieval keys, and begin entering data in minutes.
• create sorted pointers to records matching your specific range of requirements.
• automatically generate reports with control-break summaries and unlimited variety.
• bring an application online in hours instead of months.

SELECTOR III comes complete with eight application programs that perform the tasks listed at top of page. And, since it’s distributed in source code form, you can easily add subroutines to do specific computations or file updates.

SELECTOR III runs under CBASIC Vers. 1 or 2, and is priced at $295. SELECTOR III-C2 is dedicated to Vers. 2 only, runs about twice as fast, and costs $345.

Both systems are available in a variety of CP/M, diskette size and density formats including IBM 8"; North Star; Micropolis; TRS-80; Processor Tech Helios II; Altair; iCOM; Dynabyte; Lmsai; and others.

Available from computer stores nationwide:

LIFEBOAT Associates
2248 Broadway, Suite 34,
New York, N.Y. 10024 • (212) 580-0082

Or order direct from

MICRO-AP
9807 Davona Drive, San Ramon, CA 94583
(415) 826-6897

Circle 213 on Inquiry card.
allocated into 2 groups of 4 connections. Continuing the listing of the backplane connections in table 1, these assignments of 24 address and data pins are shown in shade (b). At this stage in the allocation of logical signals to the bus, 24 of 40 available pins have been used, leaving 16 pins still to be determined.

The next item to consider is the set of lines which connect the central processor to the external world. These lines are the essential timing and control signals which define the discipline of the bidirectional 8-bit bus used by the microprocessor. In the specifications of the 6809, the following signals are defined which have relevance to the outside world:

- **RW** = Read versus Write bus direction relative to the processor.
- **ENABLE** = Clock output ("Phi 2") of processor.
- **QENABLE** = Quadrature clock of processor.
- **RESET** = System reset line to processor and all peripherals.
- **MRDY** = Memory-ready line, for use with slow memory devices.
- **BREQ** = Bus request for direct memory access (DMA).
- **BA** = Bus available.
- **BS** = Bus status.
- **FIRQ** = Fast interrupt request.
- **IRQ** = Interrupt request.
- **NMI** = Nonmaskable interrupt request.

The simplest and most direct way to deal with these 11 signal lines would be to bring them out to the backplane. But do we really need all these signal lines in this processor? Might it be more useful to commit a majority of the remaining 16 lines to interrupt activities, rather than having nonessential copies of the lines coming from the processor circuit? For example, we may prefer to incorporate 8 separate interrupt lines in order that each of a possible 8 peripheral devices could have a dedicated line. If this is to be accomplished, then the total commitment of noninterrupt lines to the backplane must be 8 lines instead of the mixed selection of 3 interrupt lines and 8 signal lines shown above. How can we modify this set of backplane signals given the limitations and purposes of this particular design?

First, remember that this application is a simple and limited one in which no direct-memory access is being implemented, and that all memory will be fast enough to drive the processor at full speed. Given this requirement, the 2 signals memory ready (MRDY) and bus request (BREQ) can be removed from the set seen by the external world beyond the processor card. We have thus reduced the backplane line count to 9 lines, nearly enough to allow 8 distinct interrupt lines.

The next items to question are the bus available (BA) and bus status (BS) signals. These are used to decode 1 of 4 possible states: normal operation, interrupt acknowledge, synchronization acknowledge, and bus grant (halt acknowledge). Of these, the limited goals of the present

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA</td>
<td>Bus available</td>
</tr>
<tr>
<td>BS</td>
<td>Bus status</td>
</tr>
<tr>
<td>FIRQ</td>
<td>Fast interrupt request</td>
</tr>
<tr>
<td>IRQ</td>
<td>Interrupt request</td>
</tr>
<tr>
<td>NMI</td>
<td>Nonmaskable interrupt request</td>
</tr>
</tbody>
</table>

Table 1: An allocation of backplane signals

As described in the text, this backplane signal set provides for 8 bidirectional data lines, 16 address lines, 8 individual fast interrupt lines used with a (slow) software polled strategy, 2 direct interrupt lines, and 4 essential timing signals for the 6809 and its relationship with the external world. The assignment of these lines is kept symmetrical, so that while the processor may not work if any board in the system is inadvertently plugged in the wrong way, no major conflicts will occur that could damage a gate or buffer. The shades indicate stages in the backplane allocation process described in the text: (a) pins are the power connections; (b) pins are the address and data connections; (c) pins are the 16 lines allocated to processor control signals and interrupts.
Future Strategy, Management, & Design for:

- Distributed Processing
- Data Base
- Networks
- Corporate Strategy

Washington, D.C. October 15-19
Los Angeles October 22-26
Boston November 5-9
Chicago November 26-30

Seminar Fee: $1150.00

CALL OR WRITE:
(213) 476-9747

TECHNOLOGY TRANSFER INSTITUTE
P.O. BOX 49765, LOS ANGELES, CA. 90049 (213) 476-9747

Circle 364 on inquiry card.
system make the only externally relevant state "normal operation" if we can confine interrupt handling logic to the processor card. Can this be done? The answer is "yes", if we define fixed read-only memory vectors for all interrupts, and eliminate the need to decode interrupt acknowledge externally for purposes of altering the interrupt vector locations. Thus the backplane signal requirements have been further reduced to 7 lines, still allowing the 3 original interrupt lines to come out to the external world off the central processor card.

Now let's examine the interrupt handling capabilities of the processor. Of the 3 available interrupts, the fast interrupt is the most general. The reason for this is that it only stacks away the essentials of the processor state when acknowledging the interruption with a branch through the FIRQ vector location, hexadecimal address FFF6. These essentials are the condition code, and the return address. In contrast, the NMI and IRQ interrupts always stack away the entire current contents of the central processor's set of registers. If we use the FIRQ signal for most interrupt activity, then, when speed is needed, only those registers which are used by the interrupt routine can be stacked away using the multiple register push and pull instructions. If the operation of the NMI or IRQ (ie: complete protection) is required, the multiple register operation of push and pull can be extended to cover all the processor registers using the proper "post-byte" which selects registers.

What about devoting the FIRQ interrupt input to 8 different possible sources, using a concept of a software-polling flag register and a parallel input port to prioritize "who called"? This eliminates 1 more line from the original backplane signal requirements, while adding 8 interrupt lines labeled 10 through 17. We keep the NMI and IRQ lines available for truly high-priority interrupt signals which must go in directly without much software decoding. Our result then is the final backplane signal set listed in table 1, with this last set of additions shown in shade (c). Two lines are left uncommitted at this stage, in case an essential signal concept is omitted. One or more interrupt lines (10 through 17) can be sacrificed, if more than 2 lines must be added due to some shortcomings.

With this general discussion of the system's backplane complete, I will continue these notes next month with a more detailed sketch of the system's most important card: the central processor module. Following this design discussion, the final installment on the processor module will be a short description of the detailed schematic as I write it.

Articles Policy

BYTE is continually seeking quality manuscripts written by individuals who are applying personal computer systems, designing such systems, or who have knowledge which will prove useful to our readers. For a more formal description of procedures and requirements, potential authors should send a large (9 by 12 inch, 30.5 by 22.8 cm), self-addressed envelope, with 28 cents US postage affixed, to BYTE Author's Guide, 70 Main St, Peterborough NH 03458.

Articles which are accepted are purchased with a rate of up to $50 per magazine-page, based on technical quality and suitability for BYTE's readership. Each month, the authors of the two leading articles in the reader poll (BYTE's Ongoing Monitor Box or "BOMB") are presented with bonus checks of $100 and $50. Unsolicited materials should be accompanied by full name and address, as well as return postage.
Model DMB-6400 Series dynamic 64k byte RAMS incorporate the features which are standard in the DM-6400 Series and adds the following capabilities:

- **ALPHA MICRO, CROMEMCO, and NORTH STAR output port bank select compatible.**
- **Four (4) 16k byte, functionally independent memory banks.**
- Memory bank size can be incremented to 64k bytes in 16k increments.
- Eight (8) 64k byte banks of memory per output port.

Model DM-6400 Series dynamic 64k memory boards feature IEEE S-100 compatible timing and on board transparent refresh.

- **Memory selectable and deselectable in 4k byte increments.**
- **25 MHz on board crystal oscillator for independent timing.**

DMB-6400 and DM-6400 Common Features:

- **4 MHz Z80 operation with no wait states.**
- **Low power- 8 watts maximum.**
- **Tested and burned-in.**
- **Reliable, expandable memories.**

ONE YEAR GUARANTEE

THE FOLLOWING PRODUCTS ARE AVAILABLE FROM YOUR LOCAL DEALER.

- DMB-6400/64K RAM
- DMB-4800/48K RAM
- DMB-3200/32K RAM
- DMB-1600/16K RAM
- DM-6400/64K RAM
- DM-4800/48K RAM
- DM-3200/32K RAM
- DM-1600/16K RAM

U.K. & EUROPEAN REPRESENTATIVE:
ABACUS COMPUTERS LTD.
62, NEW CAVENDISH STREET
LONDON, W1M 7LD U.K.
TEL. 01-580.8841 TELEX 881-3085

AUSTRALIAN REPRESENTATIVE:
COMPUTERLAND OF MELBOURNE
555 COLLINS STREET
MELBOURNE, VIC3000
TEL: 625881

MEASUREMENT systems & controls incorporated
867 North Main Street • Orange, CA 92668
Telephone: 714/633-4460

Circle 215 on inquiry card.
Belais' Master Index to Computer Programs in BASIC Gives You Access to $14,836.14 Worth of Computer Programs for Just $7.95!

Now Available Off-The-Shelf

You paid hundreds or even thousands of dollars for your new microcomputer. By now it may be driving you crazy that a $1000 computer with no software is just $10,000 worth of scrap metal! But computer programs cost money. In a recent survey of 956 computer programs offered for sale in the top three home computer magazines, the average price was found to be $27.94. What a rip-off!

You don't need to spend hundreds of dollars to get a complete library of programs for your computer. That is, you don't if you have Belais Master Index to Computer Programs in BASIC! Belais' Master Index gives reviews of 551 programs that have appeared in 10 major home computer magazines—programs that you can type into your computer for free!

The large 8½ x 11, 188-page directory is packed with information. This is not just a simple listing of article titles, but a complete reference work.

Each B/M review is complete—it has everything you need to know about a program. A brief index line summarizes the review for quick reference. Source information shows you where the program can be found. Any updates or corrections are shown so you know the program is accurate and complete. The text of the review gives you a full description of what the program does. In addition, the review gives detailed technical information about hardware and software the program needs. Everything you need to know is right at your fingertips!

We don't provide the program listings themselves, of course. But we do tell you where you can pick them up—even ones that appeared in print years ago.

You don't have to be a programming wizard to use Belais Master Index. That's because B/M lists only ready-made, read-to-run programs in BASIC, the easy-to-use language enjoyed by millions.

Even if you're not a master programmer, you'll appreciate Belais Master Index. Why? Save money hours, days, or even weeks writing a program when someone else has probably already done the work for you! These programs are working documents, ready-to-run

Programs like, Circuit Design, Psychobiology, PASCAL Compiler, Forester's Write-it Simulation, and Color T.V. Master. Never again will you have trouble answering that question "But what are home computers good for?"

Then again, there's always MONEY. Maybe you haven't thought of all the ways your "fun" computer could turn out to be a little of the good stuff for you. Maybe you haven't—but a lot of other people have, and they've written up their class for you to use. Belais' Master Index lists dozens of programs that you can use to set up your own business. If you already have a business, Belais Master Index has the programs to turn your computer into a full-fledged business system. General ledger, billing, payroll, mailing lists, word processing—no matter what type of business you have, Belais' Master Index has the programs you need. At this and save $20, too! The cover price of Belais' Master Index to Computer Programs in BASIC is $9.95. But because you're buying by mail, we'll drop our standard list price of $27.94. Whal a bargain! For only $7.95 plus $1 shipping. That's for as many programs as you wish to try. And if you're not completely satisfied, return it to us within 30 days and we'll refund every cent you paid. You can't lose, so order NOW!

Now learn the electronics of microprocessing.

Enjoy the challenge and excitement of learning about microprocessing hardware—how it functions and how to repair it—by actually building your own equipment as you learn.

National Technical School's Microcomputer Division offers three such learn-by-doing courses that you can enjoy at home, in your spare hours. Each combines clear, concise lessons with Heath and NTS-designed digital equipment—a combination our students tell us makes for "lively" home study.

Find out more about these valuable NTS Microcomputer Courses. Send today for our colorful 65-page catalog—it's FREE!

No obligation. No salesman will call. Approved for veteran training.

NATIONAL SCHOOLS

TECHNICAL TRADE TRAINING SINCE 1905

Residents and Home-Study Schools

4320 South Figueroa St., Los Angeles, Calif. 90037

NATIONAL TECHNICAL SCHOOLS

Dept. 217-039

4000 South Figueroa Street • Los Angeles, California 90037

Please rush your FREE 65-page color catalog:

Name ________________________________
Address ________________________________
City _____________________________ State ZIP ________

☐ Check if interested in G.I. Bill information.
☐ Check if interested ONLY in classroom training in Los Angeles.

TRS-80 SOFTWARE

32K with 2 DISK DRIVES

PAYROLL SYSTEM $235

Includes:

a) File Maintenance
b) Payday Entries
c) Earnings Record
d) Payroll Register
e) Write Pay Checks
f) Write Other Checks

Hands up to 300 employees per diskette. Automatically calculates FICA, FED. TAX, UNEMPLOYMENT, and more.

ALSO AVAILABLE

ACCOUNTS RECEIVABLE $195
ACCOUNTS PAYABLE $195
INVENTORY CONTROL WITH BILLING & ACCST'S REC. $550
MANUALS $29.95/ea.

CUSTOM PROGRAMS & OTHERS

TRS-80 SOFTWARE

Circle 198 on inquiry card.

TRS-80 FUN GAMES

at NEW LOW COST

CRAPS - all types play - no player limit $6.95
BIG SIX - 40 different number combos $5.95
BIO-RHYTHM - different from any others $5.95
PERPETUAL CALENDAR - from Christ to infinity $4.95

SAVE $4.80 - Order all 4 Programs for only $19.00

BLANK C-10 CASSETTES - Highest Quality 1.0 $1.30 ea; 6-10 $1.15 ea; 11-20 $1.05 ea; 21-50 $0.95 ea

DONTHO SCIENTIFIC

P. O. Box 864, Mich. City, Ind. 46360

Please ship the following:

☐ CRAPS $6.95 ☐ BIG SIX $5.95
☐ BIO-RHYTHM $5.95 ☐ CALENDAR $4.95
☐ ALL 4 PROGRAMS $19.00

Blank C-10 Cassettes - Quantity

NAME ________________________________
ADDRESS ________________________________
CITY/STATE/ZIP _____________________________

☐ Check ☐ Money Order

Complete money back guarantee. No questions. Personal checks accepted. We trust you. All shipments made in 10 days.
Omikron transforms TRS-80* into a powerful business system.

STANDARD DRIVES 8" Drives give you 5 times the speed and 3 times the storage of your mini drives! Our system provides a standard Shugart interface so you can use either your 8" drives or ours. Omikron drives are enclosed in an attractive metal cabinet, and include a power supply.

SOFTWARE CP/M* is the most popular operating system for microcomputers. But many high-level languages and advanced business programs cannot run with the special CP/M* designed exclusively for the TRS-80*. The Omikron MAPPER with standard CP/M* allows you to expand your software capability to go beyond the few available TRS-80* compatible packages.

The MAPPER I and MAPPER II are plug-in modules. They don't require any circuit changes, are easy to install, and they don't interfere with the normal operation of your TRS-80*. All your original software, including Level III BASIC will still run properly. Omikron products require 16K LII BASIC and the TRS-80* Expansion Interface.

MAPPER I is a memory management unit which adapts your TRS-80* to run standard CP/M* Versions for both 5" and 8" drives are available. The package includes CP/M* software on 5" or 8" diskette, and documentation. 5" unit, $169. 8" unit, with adapter cable, $199.

MAPPER II includes the MAPPER I package plus a disk adapter module which allows both 5" and 8" drives to run on the same cable. Drive selection is under software control to permit easy file transfer between the drives. With cable, $249.

CONVERSION - If you purchase MAPPER I or II and plan to use only mini-drives, Omikron will transfer CP/M* files from 8" diskette to a 5". This allows you to run software previously available to only 8" drive owners. $25 per mini-diskette.

DRIVE - 8" drive, $849. Additional drive, $695. WARRANTY - 1 year on boards; 90 days on drives. VISA/MasterCharge accepted. Prepaid orders given top priority.

*CP/M is a TM of Digital Research. TRS-80 is a TM of Tandy Corporation.

INCOME TAX PROGRAMS FOR TRS-80™

Accountants, lawyers, tax consultants nationwide, prepared over 30,000 1978 Federal tax returns using our system.

Displays and fills in Form 1040 and related schedules on the screen, then prints out the completed forms automatically.

Change your mind? Make an error? Correct a single entry and you have a brand new form with all re-computations made automatically.

No tax system, running on any computer anywhere, has all the features of our professional system, and yet—

Our base program, which does 1040 and Schedule A costs only $189.95

And! You can add schedules for only $37.95 each, customizing your system to your requirements.
A specially designed SF TACTICAL BATTLE GAME for your PET, TRS-80 or APPLE Computer.

The man called Sudden Smith watched the five blips on his screen spread out to meet the enemy. Two freighters converted into something like battlewagons, powerful but slow, and three real cruisers: the most powerful group of warships ever seen near the Promethean system — except for the Stellar Union fleet opposing them. Everyone was calling it Starfleet Orion, though it existed for only this day. It was life or death, and, after the object lesson on the planet Spring, everyone knew it.

STARFLEET ORION is a complete 2 player game system

- rule book
- battle manual
- cassette
- ship control sheets
- program listings

Includes 2 programs, 22 space ship types, and 12 playtested scenarios. Game mechanics are extremely simple, but play is exciting, challenging, and rich in detail. Specify PET (8K), TRS-80 (Level II, 16K), or APPLE II (16K & 32K) $19.95.

Ask your local dealer or send your check to:

Automated Simulations
Department Y
P.O. Box 4232
Mountain View, CA. 94040

California residents please add 6% sales tax

TR5-80 disk software

DISKETTE DATA BASE IDM-III 32K

$49

You can use it to maintain a data base & produce reports without any programming. Define file parameters & report formats on-line. Features key random access, multi-entries, sort, select. field arith, audit log. Almost use up all 32K.

ACCOUNT

$59.

- manage client accounts & account receivable.
- automatic billing & transaction recording.
- print invoices and reports.
- 32K req.

WORD PROCESSOR 16K

$39

- Our WORD-III is the first word processor specifically designed for TRS-80.
- 22 character labels; symbol table dump and cross-reference; error cross-reference; extensive arithmetic and listing control.

MAILING LIST 16K

$35

- It lets you maintain data base and produce reports & labels sorted in any field. Random access. 2-digit selection code used.

INVENTORY 16K

$39

- While others use inefficient sequential file, we use 9-digit alphanumeric key for fast on-line random access. Record has key, description, level, safety level, order amt., unit cost & price, annual usage, location and vendor code.
- Reports give order info, performance summary, etc.

KEY RANDOM-ACCESS UTIL 16K

$19

- Lets you access a record by specifying a key. Features hashing, blocking, buffering technique. auto I/O error retry, etc.

MICRO ARCHITECT

96 Dothan St.
Arlington, MA 02174

6800 DEVELOPMENT SOFTWARE

An integrated applications development and execution system.

SDOS

- All devices interrupt-driven including typehead. Provides device independent, byte addressable random files.
- Supports any mixture of floppy or hard disk drives up to 2.5 billion bytes.
- Sector read-ahead and buffer pool enhance application performance.
- Flexible. Currently runs on 7 manufacturers' systems, using 10 different drive/controllers, including mini-floppies and hard disk.

BASIC COMPILER

- For speedy business applications. 10 digit BCD; random access to variable size records; long variable names, formatted output, if-then-else, error trapping. Field proven for over 2 years.

EDIT

- A powerful text editor with change, delete, replace commands.
- Automatic display of modification or context changes; macro facilities for complex or repetitive editing.

ASM

- 2 pass conditional assembler; 32 character labels; symbol table dump and cross-reference; error cross-reference; extensive arithmetic and listing control.

IDB

- Single-step, multiple, real time breakpoints; memory dump; multiple display modes. No special hardware needed.

Over 500 pages of documentation to match this proven software.

- Complete package: $760.00
- Also (not including SDOS) available for SWTP, Exorcisor, SSB & MSI DOS.

Write for free catalogue. Sizable distributor discounts.

'TINY' PASCAL

for TRS-80® & NORTH STAR®

Now you too can have Pascal! The Chung/Yuen 'Tiny' Pascal has been specially designed for TRS-80 & North Star owners. The full power & elegance of 'Tiny' Pascal is at your command! Programs written in 'Tiny' Pascal run at least 4 times faster than the same program in BASIC! 'Tiny' Pascal is also a great way to learn Pascal Programming, & fun too.

The minimum system requirements are: Level II, 16K for TRS-80. No disk required & 24K for North Star. (Specify density)

SOURCE TOO!

But most important, you also get source to 'Tiny' Pascal written in Pascal with each purchase! You can even compile the compiler! (Requires 36K for North Star systems, & 32K, Level II for TRS-80). You can customize your own version, or just use it the way it is.

'Tiny' Pascal is a subset of Standard Pascal & includes:
- RECURSIVE PROCEDURE/FUNCTION,
- IF-THEN-ELSE,
- REPEAT/UNTIL,
- 'PEEK' & 'POKE', WHILE, CASE, & MORE!

(Plus full graphics for TRS-80 as well)

Also you can save & load programs.

You get all this & more, plus a user's manual for $40.00.

available from:

SUPERSOFT

P.O. Box 1628
Champaign, IL 61820
(217) 344-7596

All orders pre-paid, Illinois residents add 5% sales tax.
Good Buys From Disks, Etc.

Verbatim 10 for $29.00
MINI-DISKS or 3 for $10.00

New! Verbatim Digital Quality Cassettes For Personal Computers
Professional quality cassettes feature leader-free, splice-free, premium grade tape, precision engineering features. For top performance in popular personal computers, including Apple, PET, Heathkit, Atari and Mattel.

2 for $5.45

Mini-Disk Protectors
Fit 3-Ring Binders
Tough, glare-proof vinyl. Holds 2 diskettes and 10 cards.

75¢ ea., 10 for $5.75

Storage Cases
Made of durable, molded plastic. Choice of black or beige.

Maxi Case, $4.25
Mini Case, $3.75

MasterCharge, Visa, Checks OK. No COD's.

SPECIALIZING IN
QUALITY MICROCOMPUTER HARDWARE
INDUSTRIAL • EDUCATIONAL • SMALL BUSINESS • PERSONAL

BUILDING BLOCKS FOR MICROCOMPUTER SYSTEMS, CONTROL & TEST EQUIPMENT

WIRED: $295.00

R² I/O
2K ROM
2K RAM
3 Serial Ports
1 Parallel Port

KIT: $279.00
WIRED: $310.00

16 K RAM
FULLY STATIC MEMORY

KIT: $340.00
WIRED: $395.00

TT-10
TABLE TOP MAINFRAMES

ELECTRONIC CONTROL TECHNOLOGY (201) 686-8080

POWER SUPPLIES, CPU's, MEMORY, OEM VARIATIONS

763 RAMSEY AVE. HILLSIDE, N.J. 07205
Low Cost Computer Assisted Instruction

APPILOT language is an Apple II version of the standard computer assisted instruction (CAI) language, PILOT. Using lesson files created by the APPILOT program editor, APPILOT creates multimedia learning experiences with text, graphics and sound. The student can interact with APPILOT using both numbers and words which APPILOT recognizes as student input.

APPILOT conforms closely to the proposed common PILOT standard, but it incorporates features that fully use the capabilities of the Apple II computer. Among these features are color graphics commands, a musical mini-language, and disk commands for lesson segmentation which give an effective lesson size up to 90 K bytes. APPILOT also links to the Apple's integer BASIC to allow full calculation capacities.

APPILOT is available on tape and disk and is offered on Super Load tapes and for those Apple owners who wish to run prewritten APPILOT lessons. For $17.95 the user can execute APPILOT lessons on a 16 K byte Apple, using only tape storage. Included on the tape is the interpreter and a demonstration lesson about APPILOT. Also provided is a documentation manual for running APPILOT and for linking it with the MUSE APPEN-I Text Editor, which may be used for creating and editing APPILOT lessons.

For institutions that wish to write as well as use APPILOT lessons, the CP/M Text Editor

ED-80 is a text editor designed to run under CP/M and derivative operating systems on 8080, 8085, and Z-80 disk based systems. A user's manual of over 60 pages describes both implementation and usage. ED-80 has a simple command structure patterned after the University of Maryland's editor for UNIVAC 1100s. Over 50 commands are provided, including forward or backward locate, change, and find commands; insert, delete, append, print, list, macro, case, scale, tabset, and window commands; and get and put commands for copying, moving, merging, and duplicating edit files and program libraries. An internal location counter is maintained for displaying with text, prompting for user input, and for line positioning.

ED-80 provides a window approach to text editing that is not hardware dependent. Users may examine and edit data through a one line window as it is moved through the edit file. A window command allows instantaneous full screen displays of both the current line and surrounding lines, with forward and backward scrolling.

Compatible with existing CP/M edit files, ED-80 is available on an 8-inch single density disk for $71. For further information contact Software Development and Training Inc, POB 4511, Huntsville AL 35802.

16-Digit Scientific Subroutine Package for Microsoft Extended and Disk BASIC Interpreters

DPFUN is a comprehensive 16-digit precision scientific subroutine package written for Microsoft extended and disk BASIC interpreters, including TRS-80 Level II BASIC. The 13 double-precision exponential, logarithmic, trigonometric, and inverse trigonometric functions provide a valuable utility for engineering and scientific applications. DPFUN uses truncated continued fraction algorithms that result in easily entered code, fast execution, and full exploitation of the precision that is available in 64-bit binary floating-point notation. The complete set of subroutines occupies approximately 2.5 K bytes.

The DPFUN source code only is available for $10 postpaid. For further information contact Miken Optical Co, 53 Abbott Av, Morristown NJ 07960.

Elementary Math Tapes for TRS-80

The Microcomputer Mathematics Program K-8 consists of a set of tapes for drill, practice and tutorial in addition, subtraction, multiplication, division, fractions, numeration and decimals for kindergarten through 8th grade. The tapes are programmed for use on a Radio Shack Level II BASIC TRS-80 microcomputer and 16 K bytes modified memory. The teacher's manual gives an overview of the program, suggests ways to use the program, correlates the skills to selected mathematics texts, and provides suggestions for individualizing math instruction. One set of microcomputer Mathematics Program K-8 tapes including the teacher's manual is $99.50. For further information contact Foundation for Quality Education Inc, 802 Merchants State Bank Building, 5217 Ross Av, Dallas TX 75206.
A COMPLETELY REFURBISHED “SELECTRIC” ASCII TERMINAL FOR THE SMALL BUSINESSMAN OR SERIOUS HOBBYIST.

The AJ 841 I/O terminal. Now available from dealers nationwide.

Demand for our AJ 841 I/O computer terminal has been great. And now it's getting even greater. So call your local computer shop dealer right away. Supply is limited! You may never have another opportunity like this one to buy your own professional terminal.

The AJ 841 features:
- Choice of serial RS 232 or parallel interface
- ASCII code,
- 14.9 cps printout
- High quality Selectric printing
- Heavy-duty Selectric mechanism
- Off-line use as typewriter
- Documentation included
- 30-day warranty on parts and labor (details available on request)

Call toll-free now
For location of your nearest AJ dealer, call toll-free:
800/538-9721
California residents call 408/263-8520.

ANDERSON JACOBSON

WHAT'SIT?™
(Wow! How’d All That Stuff get In There?)

from Computer Headware
... the Self-Indexing Query System
for your Apple II, North Star, or CP/M machine

Distributed by:
- Information Unlimited / 219-924-3522
 P.O. Box 8372, Merrillville, Indiana 46410
- Lifeboat Associates / 212-580-0082 (CP/M model only)
 2248 Broadway, Suite 34, New York City 10024
- Structured Systems Group, Inc. / 415-547-1567
 5288 Claremont Avenue, Oakland, California 94618

Circle 12 on inquiry card.
VuePoint is a touch input display panel that measures only 2½ inches thick. Vuepoint's 12 line by 40 character flat panel also provides a unique touch input capability. This approach permits efficient and speedy operator interaction using menu-driven displays. Vuepoint's microprocessor based controller provides all standard smart video features plus the following: touch response in matrix or screen echo modes, multiple display buffers, and alternate character sets. Communication is by standard 300-19200 bps asynchronous RS-232 protocol. Options include wall or rack mount, auxiliary printer, and 28 character ASCII keyboard. Vuepoint is priced at $3500. For further information, contact General Digital Corp, 700 Burnside Av, E Hartford CT 06108.

Circle 571 on inquiry card.

Where Do New Products Come From?

The information printed in the new products pages of BYTE is obtained from "new product" or "press release" copy sent by the promoters of new products. If in our judgment the information might be of interest to the personal computing experimenters and homebrewers who read BYTE, we print it in some form. We openly solicit releases and photos from manufacturers and suppliers to this marketplace. The information is printed more or less as a first in first out queue, subject to occasional priority modifications. While we would not knowingly print untrue or inaccurate data, or data from unreliable companies, our capacity to evaluate the products and companies appearing in the "What's New" feature is necessarily limited. We therefore cannot be responsible for product quality or company performance.

Heat Sealable Cassette Holder

This cassette holder, designated Pocketray, will hold a cassette securely with the title visible. Cassettes are fully protected on three sides. There are 12 Pocketrays to a sheet which is perforated vertically and horizontally. These may be snapped apart into single units or in any multiple to fit the most creative configuration. Made of PVC, these cassette holders are easily heat sealed to any vinyl material, with a minimum of tooling. Samples, pricing, and literature are available from Charles Leonard Inc, 79-11 Cooper Av, Glendale NY 11227.

Circle 574 on inquiry card.

Computer Communication at Your Fingertips

VuePoint is a touch input display panel that measures only 2½ inches thick. Vuepoint's 12 line by 40 character flat panel also provides a unique touch input capability. This approach permits efficient and speedy operator interaction using menu-driven displays. Vuepoint's microprocessor based controller provides all standard smart video features plus the following: touch response in matrix or screen echo modes, multiple display buffers, and alternate character sets. Communication is by standard 300-19200 bps asynchronous RS-232 protocol. Options include wall or rack mount, auxiliary printer, and 28 character ASCII keyboard. Vuepoint is priced at $3500. For further information, contact General Digital Corp, 700 Burnside Av, E Hartford CT 06108.

Circle 571 on inquiry card.

APL/Z-80 Release 2.0

Vanguard Systems Corp, 6812 San Pedro, San Antonio TX 78216 has announced the release of version 2.0 of APL/Z-80, an APL Interpreter for Z-80 based microcomputers. APL/Z-80 includes the following features: dynamic execution of system commands; serial printer support; shared variables; auxiliary processor for I/O (input/output) ports which allows complete device control using defined APL functions for any device interfaced to the Z-80 I/O port; and auxiliary processor implementation of a file system featuring a directly indexable file having variable length records, each of which can be an APL array of arbitrary type, shape, and size (up to available workspace).

A workspace containing defined APL/Z-80 functions, implementing each of the primitive functions not present in this version of APL/Z-80, is distributed with each system. The hardware required is a Z-80 processor, a disk drive, and either serial ASCII APL console terminal or ASCII keyboard and video display board compatible with the Vector Graphic Flashwriter or Processor Technology VDM-1.

The end user license for use on a single processor is $350.

Circle 572 on inquiry card.

Distributed Computer System Based on Personal Computers

Cluster/One is a distributed processing alternative to BASIC timesharing. The central Cluster/One unit (the Queen) connects to 15 personal microcomputers (the Drones), via a high-speed parallel data bus (the Clusterbus). An optional feature provides support for an additional 15 Drones. Currently supported as Drone stations are the Apple II, Commodore PET 2001-8, and TRS-80.

Programs and data files can be shared among the users of Cluster/One. They are stored on two IBM compatible eight inch floppy disks. Each disk holds up to 315 K bytes of data. Disk data transfer rate is 250 K bits per second, managed by a large scale integration floppy disk controller chip. All data transfers are cyclic redundancy checked (CRC) and disk writes are automatically verified. Data is transmitted to each Drone station in packets, with individual error checking. Typical system response time for program loading is two seconds.

Cluster/One commands are quite similar to their counterpart cassette tape commands. Disk commands may be imbedded in user programs, permitting menu-driven program loading or chaining.

Cluster/One comes with a full set of utility programs for system maintenance and backup, along with separate documentation for the end users. Prices begin at $4500 and vary with the particular configuration and options selected. For further information, contact Nestar Systems Inc, 810 Garland Dr, Palo Alto CA 94303.

Circle 573 on inquiry card.
FLOPPY DISK REPAIR
- PerSci and Shugart
- Quick turnaround
- Factory trained on PerSci

COMPUTER SERVICE CENTER
7501 Sunset Blvd
Hollywood CA 90046
213-851-2226

Circle 68 on inquiry card.

GET CONNECTED
Connect your S-100 BUS or TRS-80 system to the telephone network and turn it into a terminal. The µ-Phone© is absolutely all you need - it's not just a modem, not just a controller.

Just plug the µ-Phone© into your processor and plug it's cable into a standard modular telephone wall jack and you're connected.

The µ-Phone© is BELL 103 compatible and F.C.C. registered.

Another Fine Idea From
I.D.E.A.
850 Lexington St.
Waltham, MA 02154
617-893-1368

Circle 178 on inquiry card.

BASIC/FOUR COMPUTER
MODEL 350
Perfect for small to medium sized business applications. Model 350 CPU, 4.2 Mb Disc Drive, Video Display Terminal, 160 cps Printer, and 6 Disc Cartridges. Under continuous factory maintenance. Full system ready to go $11,000.

Contact:
Carl Egetter (714) 979-9013
THERMAX SYSTEMS, INC.
3185 "A" AIRWAY AVE
COSTA MESA, CA 92626

Circle 367 on inquiry card.

Don't Forget!
Our New 4K Byte Non-Volatile Memory Boards Won't Let You!
- 30 days minimum guaranteed data retention
- Ultra low power 450 NSEC static CMOS RAM IC's
- On-board regulator, power monitor and battery
- S-100 bus compatible

Assembled and Tested $395.00

Remember . . .
to send for details!

Cygnet
1395 Golf Street
Dayton, Ohio 45432

Circle 88 on inquiry card.

TRS-80 USERS
Three Diskless TRS-80 Programs
- Telephone/Address/Mailing list program - sorts by name or zip code. Retrieves telephone # from name and vice versa. Access time is under 2 seconds, over 100 listings, Level II 16K - $30.00.
- Mandalas for the Cybernetic Age I & II - amazing graphic programs, better than TV - lasts hours without repeating or commercials. 2 sets of four interweaving designs, Level I or II 4K RAM - $30.00.

Introductory offer - All 3 for $75.00
Loweco provides complete support
Catalog $2.00

LOWECO COMPUTER
1803 RODNEY
LOS ANGELES CA 90027
213-860-7530
6% TAX IN CALIFORNIA

Circle 207 on inquiry card.

A Message to our Subscribers
From time to time we make the BYTE subscriber list available to other companies who wish to send our subscribers promotional material. We take great care to screen these companies, choosing only those who are reputable, and whose products, services, or information we feel would be of interest to you.

While we believe the distribution of this information is of benefit to our subscribers, we firmly respect the wishes of any subscriber who does not want to receive such promotional literature. Should you wish to restrict the use of your name, simply send your request to

BYTE Publications Inc
Attn: Circulation Department
70 Main St
Peterborough NH 03458

Thank you.
New Word Processing System Also Supports Data Processing Applications

A video based word processing system capable of handling data processing applications has been introduced by Vector Graphic Inc, 31364 Via Colinas, Westlake Village CA 91361. The new system, called Memorite 2, incorporates the firm’s Z80 based MZ microcomputer with 630 K bytes of disk capacity, their Mindless Terminal, and the Qume Sprint S5, 55 cpm printer. For word processing applications, Memorite 2 with dual Micropolis floppy disk drives features advanced text preparation, edit, and delete capabilities. It offers automatic letter printing from memory with full formatting techniques such as underlining, indentation, automatic margins and variable line and character spacing. The system also performs mass mailings, which allow letters to be merged with address lists. Its memory is resident on programmable read-only memory, so users need only type after a "power up and proceed" function.

As a data processor, Memorite 2 is capable of performing standard accounting tasks and custom applications in business BASIC for small firms or departments of large companies. Scientific calculations are also available for technical environments.

The price for the Memorite 2 is $8,950.

Circle 575 on inquiry card.

Non-Volatile Memory Board

The E4K EAROM Memory Board provides a Multibus compatible nonvolatile memory of up to 4 K words by 8-bit capacity. The memory contents are electrically alterable under computer control, permitting it to function as a programmable memory but with the advantage of long term unpowered data retention. Either word or block erase is possible. Operating software listings are provided with the board. Typical applications include remote data acquisition systems, numerical control systems, process controllers, storage of manually entered constants and telephone number storage.

The prices for the E4K EAROM Memory Board start at $420. For further information, contact Schneider Instrument Co, 8115 Camargo Rd, Madeira OH 45243.

Circle 576 on inquiry card.
THE MM-103 DATA MODEM AND COMMUNICATIONS ADAPTER
S-100 bus compatible

FCC APPROVED
Both the modem and telephone system interface are FCC approved, accomplishing all the required protective functions with a miniaturized, proprietary protective coupler.

WARRANTY
One year limited warranty. Ten-day unconditional return privilege. Minimal cost, 24-hour exchange policy for units not in warranty.

LOW PRICE—$359.95—For Modem AND Coupler

HIGH QUALITY
-50 dBm sensitivity. Auto answer. Auto originate. Auto dialer with computer-controlled dial rate. 61 to 300 baud (anywhere over the long-distance telephone network), rate selection under computer control. Flexible, software-controlled, maskable interrupt system.

ASSEMBLED & TESTED
Not a kit! (FCC registration prohibits kits)

Call for further information:
VOICE: (703) 750-3727
MODEM: (703) 750-0930 (300 baud)

Potomac Micro-Magic, Inc.
Write for brochure:
First Lincolnia Bldg., Suite B1
4810 Beauregard St.
Alexandria, Va. 22312

DATA TERMINAL EQUIPMENT — FROM MICROMAIL

LA34 DEcwriter IV
$1,199.00
- Upper/lower case, 9x7 dot matrix
- 10, 12, 13.2, 16.5 characters/inch
- 2, 3, 4, 6, 8 or 12 lines/inch
- 22"W x 7"H x 15¾"D, 25 lbs.
- 110 or 300 baud, RS 232C serial ASCII
- Friction feed, paper width to 15"

SOROC IQ 120 $795.00
- RS 232C, upper/lower case, full ASCII
- Numeric keypad, protected fields
- Cursor keys plus addressable cursor
- Auxiliary extension port

SOROC IQ 140 $1,250.00
- RS 232C and 20mA current loop
- Extensive editing features
- 25th line terminal status display
- 16 function keys (32 with shift)

New from DIABLO
DIABLO 1640 $2,690.00
Receive-only $2,331.00
High-quality daisywheel printing at 45 cps.

DIABLO 1650 $2,779.00
Receive-only $2,419.00
Metal daisywheel printing at 40 cps.

T.I. 810 printer $1,695.00
- Includes upper/lower case
- 150 characters per second
- RS 232C serial interface
- Adjustable forms tractor

NEC Spinwriter
Call or write for prices

To Order: Send certified check (personal or company checks require two weeks to clear) including handling* and 6% sales tax if delivered within California.

*Handling: Less than $2,000, add 2%; over $2,000, add 1%. Everything shipped freight collect in factory cartons with manufacturer’s warranty.

MICROMAIL • BOX 3297 • SANTA ANA, CA 92703
(714) 731-4338

Circle 223 on inquiry card.

BYTE September 1979 219
NARKLE™

The NAME, ADDRESS, REFERENCE, KEYWORD, LETTER, ENVELOPE SYSTEM.

DATA FILE

NARLKE™ is an interactive, menu-operated system that allows the creation, maintenance, update, delete, etc., of a mailing information file. Using the 100 reference fields you can store data about each client and also use this data as a means of automatically building smaller, more specific files. Also, you can list files, view individual records by name or record number, and so much more.

LETTER

Using the NARLKE data file and your text editor, NARLKE will create hand-crafted personalized letters completely automatically. It features automatic data file name insertions in the inside address, salutation, and the body of the letter; either first name or title last name. Up to 25 "keywords" can be used, and so much more.

NARLKE is the most polite data system on the market today, easily operated by secretarial personnel with a few hours instruction.

NARLKE is sold on diskettes and includes a 43-page operator's manual.

XTABFREQ™

The CROSSTABULATION, FREQUENCY, STATISTICS, ENTRY SYSTEM. XTABFREQ is a completely interactive system which secretarial personnel should be able to operate with only a few hours of instruction. The crosstabulation routine can operate in two or more dimensions, generating cell count, cell row and column %, as well as cell % of total table. The routine derives Chi-Square, Degrees of Freedom, Lambda, Uncertainty Coefficients, Els, Kendall's Tau B and Tau C, Gammans and Somer's D. The SPSS™ user will find XTABFREQ NOT TO BE A COMPROMISE but much more convenient and versatile.

FREQUENCY

Besides Absolute Frequency the routine generates Adjusted, Relative and Cumulative Frequency. Also a code and symbol for Weighting can be used with the Row Count.

You also get the Mean, Mode, Kurtosis, Minimum, Maximum, Range, Standard Error, Standard Deviation, Skewness, Median, and Variance.

REFENTRY

Both the Crosstabulation and the Frequency Routine utilize the very powerful data entry and management routine, REFENTRY™. This routine lets you easily build, examine, store on diskettes, manipulate, and extract files for your XTABFREQ Jobs. XTABFREQ will also accept NARLKE™ File Interactively. With XTABFREQ you can predict tomorrow without waiting for punchcards. XTABFREQ is sold on diskettes with a 37-page operator's manual.

Send $175 for Narkle and $295 for XTABFREQ. Manuals are available at $10 each. Dealer inquiries welcome.

SPSS™ is a copyright of Mcgrow-Hill, Inc.
This program permits composing and printing letters, flyers, advertisements, manuscripts, etc., using the COMMODORE PET and a printer. Script directives include line length, left margin, centering, and skip. Edit commands allow the user to insert lines, delete lines, move lines and paragraphs, change strings, save onto cassette, load from cassette, move up, move down, print and type. The Cmc Word Processor Program addresses an RS-232 printer through a Cmc printer adapter. The Cmc Word Processor program is available for $29.50. Add $1.00 for postage and handling per order.

Order direct or contact your local computer store.
25 START-AT-HOME
COMPUTER BUSINESSES

In “Low Capital, Startup Computer Businesses”

CONSULTING • PROGRAMMING • MICRO COMPUTER OPPORTUNITIES • SOFTWARE PACKAGES • FREELANCE WRITING • SEMINARS • TAPE/DISC CLEANING • FIELD SERVICE • SYSTEMS HOMES • LEASING • SUPPLIES • PUBLISHING • HARDWARE DISTRIBUTORS • SALES AGENCIES • USED COMPUTERS • FINDER’S FEES • SCRAP COMPONENTS • AND MORE...

Plus — ideas on moonlighting, going full-time, image building, revenue building, bidding, contracts, marketing, professionalism, and more. No career tool like it. Order now — if not completely satisfied, return within 30 days for full immediate refund.

Phone Orders 901-761-9090

DATASEARCH

4954 William Arnold Road, Dept. B, Memphis, TN 38117

Rush my copy of “Low Capital Startup Computer Businesses” at $20.

NAME/COMPANY
ADDRESS
CITY/STATE/ZIP

☑ Check Enclosed ☐ VISA ☐ Master Charge

Exp. Date

SOFTWARE TOOLS

C compilers and cross-compilers for PDP-11’s, LSI-11’s, 8080’s and Z/80’s, with complete runtime library. The full language is supported with efficient code generation.

- Interface libraries giving access to all system directives for UNIX*, RT-11, RSX-11M, RSTS/E, IAS, CP/M, CDOS and ISIS-II.
- A-Natural narrative assembler for 8080’s and Z/80’s with librarian and linking loader.
- Over 75 installations in less than six months.

*UNIX is a trademark of Bell Laboratories.

Continuing maintenance and training available. An affordable alternative to Assembler, Fortran or Pascal, for as little as $500 per compiler binary license. Catalogue and references available upon request. Write to

Whitesmiths, Ltd.
127 East 59th Street · New York NY 10022 · 212 799-1200

MAGSAM™

KEYED FILE MANAGEMENT

Put data at your fingertips…easily accessed, displayed and updated by key. Designed to meet all of your data management needs, MAGSAM™ allows you to quickly implement sophisticated keyed file structures through simple CBASIC statements.

Standard MAGSAM™ features include record retrieval with random by key, sequential by key, and generic ("wild card") search, and complete compatibility with all CBASIC file facilities. Each MAGSAM™ Package includes the MAGSAM™ file manager, MAGSAMX™ tutorial program, MAGSAM™ file dump utility, User Guide, Reference Card, and one year update service.

Select the version of MAGSAM™ that meets your requirements. All versions of MAGSAM™ are completely upward compatible and may be upgraded at any time for the price difference.

- MAGSAM III™ — Most advanced version. Multiple Key support (any number of keys), and Record and Key Deletion with automatic reclamation of disk space...
- MAGSAM II™ — Single Key support with full Delete capability...
- MAGSAM I™ — Entry level version. Single Key support without Delete capability...
- User Guide only - comprehensive tutorial and reference manual...

Available for 8" soft sector, Micropolis, and TRS-80 disk formats. Requires CP/M or derivative and CBASIC. Distributed as CBASIC subroutines in source form.

Visa and Mastercharge welcome. Dealer and OEM inquiries invited.

WELL,
BYTE MA BELL!

Have your TRS-80® computer dial the telephone® Dial 20 phone numbers, accessed by a single letter code® Operates with dial & pushbutton phones® Requires a simple interface using $4 worth of parts from Radio Shack® No internal connections are made to the TRS-80® The program is supplied on cassette tape, with complete instructions® (Specify Level I or II with order)

TRS-80® is a registered trademark of Tandy Corporation

Write to: Software Exchange
2681 Peterboro
W. Bloomfield, Mi. 48033
LET CPAids GET YOU THROUGH THE TAX SEASON

- Standard and Master Tax Programs designed to prepare even the most complex returns.
- General Ledger and Payroll, working in conjunction with the tax programs to further simplify tax preparation.
- Tax Pacs used by individuals for at-home preparation.
- NEW for this year - Corporation Tax Programs.

CPAids
- Microcomputer software developed by CPA's
- Used Nationally the past two years
- Available on North Star Basic and CP/M

For more details write:
Computer Tax Service • 1640 Franklin Ave. • Kent, Ohio 44240

or contact the dealer nearest you:

Creative Software Introduces: Programs & Products for the TRS-80 (16K level II)

A new JOYSTICK interface for the TRS-80 allows for joystick control of "I Am Bored" flight simulators or two Atari"" style joystick controllers with no modification to the TRS-80. A choice of programs include Space Invaders, A Farmer's Life, and many others.

New for this year - Corporation Tax Programs.

NEW! A super JOYSTICK interface for the TRS-80! These socket style joysticks can be used with "I Am Bored" flight simulators or two Atari"" style joystick controllers with no modification to the TRS-80. A choice of programs include Space Invaders, A Farmer's Life, and many others.

Household Finance I & II $15.00
- Standard and Master Tax Programs designed to prepare even the most complex returns.
- General Ledger and Payroll, working in conjunction with the tax programs to further simplify tax preparation.
- Tax Pacs used by individuals for at-home preparation.

Household Utility I $12.00
- Includes Calendar, Loans and Bill Pay Programs.

Household Utility II $12.00
- Includes Compound Interest, Amortization, and Car Costs Programs.

 ALSO: New Programs for the PET:

PET Word Processor $75.00
- Complete word processing capabilities including upper/lower case, string search, string change, and many other features found on commercial word processors. Package includes both text editor and formatter and requires 6K of memory.

PET Space War II $10.00
- Fantasy space action! You are in control of the Enterprise as you defend the Earth against the cold war which threatens the Human condition. Requires the Creative Software word processor for the PET.

PET Road Race $10.00
- Another great action video game! You are in control of the Enterprise as you fight against the cold war which threatens the Human condition. Requires the Creative Software word processor for the PET.

Creative Software
P.O. BOX 4030, MOUNTAIN VIEW, CA 94040

Circle 72 on inquiry card.
RAM CHIPS

4044 TYPE

4K by 1 — 18-pin — 5V, 5% supply

These are the same factory prime chips used in our premium quality RAM boards. May be 4044, 4041, 5257, 6641, or 9044, depending on manufacturer. All have 4044 pinout and timing specs. All guaranteed 30 days.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Price 1-31</th>
<th>Price 32-63</th>
<th>Price 64-99</th>
<th>Price 100-499</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$7.50</td>
<td>$6.50</td>
<td>$5.75</td>
<td>$5.50</td>
</tr>
<tr>
<td>32-63</td>
<td>$6.50</td>
<td>$5.50</td>
<td>$5.75</td>
<td>$5.50</td>
</tr>
<tr>
<td>64-99</td>
<td>$5.75</td>
<td>$4.75</td>
<td>$5.75</td>
<td>$4.75</td>
</tr>
<tr>
<td>100-499</td>
<td>$5.50</td>
<td>$4.50</td>
<td>$5.75</td>
<td>$4.75</td>
</tr>
</tbody>
</table>

250 nsec. 450 nsec.

Circle inquiry number for free newsletter.

North Star* and PASCAL Users: Mike's announces

TIMESHARING

for the Horizon—

Interrupt-driven, bank switching timesharing software; supports North Star DOS and BASIC and PASCAL.

A complete selection of business application software is available for North Star* systems.

Write or call for descriptive literature.

$14.95

SORCERER SOFTWARE!

FASTGAMMON™ by Bob Christiansen. Thousands of people are already playing FASTGAMMON on TRS-80 and Apple. Now it is ready for SORCERER, with the sharpest graphics ever! Backgammon players love this machine language program that provides a skillful opponent. Eight-page instruction manual includes rules of backgammon. $19.95

PLOT by Vic Tolomei. Now Apple owners will be envious of how easy you can get good graphics on your SORCERER. PLOT includes both a super high resolution mode and a quick low resolution mode. Both are accessible from your BASIC programs using simple commands. Hi-res & lo-res examples included on tape. $14.95

Z-80 DISASSEMBLER by Vic Tolomei. Decode machine language programs, including SORCERER’s monitor and ROM-PACS. With this 2-zero Disassembler written in BASIC, instruction mode prints out machine code and Zilog mnemonics in standard format. Or use the ASCII mode which converts machine code to ASCII. $14.95

MAGICMAZE™ by Vic Tolomei. A challenging maze game. Ten levels of play. Holding your lantern, you wander through a maze trying to stay on the right path and avoid pitfalls. Automatic scoring tells you how good a pathfinder you are. $11.95

WHERE TO GET IT: Ask your nearest Sorcerer dealer to see Duality Software’s Sorcerer programs. Or, if you prefer, you may order directly from us. Master Charge and Visa card holders may telephone their orders and we will deduct $1 from orders over $10 to compensate for phone charges. Or mail your order to the address above. California residents add 6% sales tax. Orders outside North America add $5 for registered airmail. Pay in U.S. currency.

* The name ‘SORCERER’ has been trademarked by Exidy, Inc.
$100 FREE ACCESSORIES
WITH 16K OR 32K PET

FREE Terminal Package with 8K PETs
PET ACCESSORIES

- Commodore Dual Floppy Disk Drive $1295.00
- New TC 2001 Terminal Package for the PET $595.00
- Second Cassette — from Commodore $95.00
- Commodore PET Tape Kit $35.00
- Beeper - tells when tape is loaded $24.95
- Petuna - Play music from PET $29.95
- Video Buffer - Attach another CRT $49.95
- Combo - Petuna and Video Buffer $139.95
- Batis 4-slot S-100 Motherboard $119.95
- $100 PET Interface was $289.00 SALE $178.95
- New Serial Printer Interface for PET $78.95
- Integral Data Printer w/new interface PET - Compatible Selective in Desk $495.00
- TTY KSR-33 Screen Printer for PET $395.00

Call for Availability

Originate Answerback Modem for PET B-Directional RS-232 Interface $230.00

$200 FREE ACCESSORIES

SUPER SAVINGS

SPECIAL OF THE MONTH

Desktop Selective-Based Terminal $319!

Super bargain while they last. A desktop terminal based on an IBM Selectric typewriter for only $319 including documentation. These terminals were originally designed for use with timesharing systems where terminal replacement is required. The IBM keyboard and printer are separated by a three foot cable and each has its own enclosure (great for custom installations). Serial RS-232 Interface uses RTTY instead of ASCII. So you will need to write a conversion program to have no ASCII interface for this model. 16L phot type 10 line length, pica. Sold in AS-IS condition. Our warranty is limited to replacement of missing parts (we check all motors).

SAVE UP TO 43%

CENTRONICS PRINTERS

Returbished excellent working condition. 10 day return privilege of course.

SPEED WIDTH PRINT WORKING WARRANTY
MODEL (Type Character Price
100 120 chars/sec $595.00
700 13-90 132 5 x 7 $660 $1,075
701 15-120 132 5 x 7 $695 $1,175
761 60 132 7 x 7 $695 $1,025

Model 761 includes Keyboard

NEW 300 baud Acoustic Coupler $189

CAT COUPLER

SANYO MONITOR

9-in $240.00
15-in $169.00 $460.00 $279

IMPORTANT ORDERING INFORMATION

All orders must include 4% shipping and handling. Michigan residents must also add 4% for state sales tax. All foreign orders (except Canada) need an additional 10% for shipping and handling. We cannot process your order without these.

IMPORTANT ORDERING INFORMATION

COUPON VALID WITH PREPAID ORDER

NEW 300 baud Acoustic Coupler.

SANYO MONITOR

9-in $240.00
15-in $169.00 $460.00 $279

IMPORTANT ORDERING INFORMATION

All orders must include 4% shipping and handling. Michigan residents must also add 4% for state sales tax. All foreign orders (except Canada) need an additional 10% for shipping and handling. We cannot process your order without these.

IMPORTANT ORDERING INFORMATION

COUPON VALID WITH PREPAID ORDER

NEW 300 baud Acoustic Coupler.

SANYO MONITOR

9-in $240.00
15-in $169.00 $460.00 $279

IMPORTANT ORDERING INFORMATION

All orders must include 4% shipping and handling. Michigan residents must also add 4% for state sales tax. All foreign orders (except Canada) need an additional 10% for shipping and handling. We cannot process your order without these.

IMPORTANT ORDERING INFORMATION

COUPON VALID WITH PREPAID ORDER

NEW 300 baud Acoustic Coupler.

SANYO MONITOR

9-in $240.00
15-in $169.00 $460.00 $279

IMPORTANT ORDERING INFORMATION

All orders must include 4% shipping and handling. Michigan residents must also add 4% for state sales tax. All foreign orders (except Canada) need an additional 10% for shipping and handling. We cannot process your order without these.

IMPORTANT ORDERING INFORMATION

COUPON VALID WITH PREPAID ORDER

NEW 300 baud Acoustic Coupler.

SANYO MONITOR

9-in $240.00
15-in $169.00 $460.00 $279

IMPORTANT ORDERING INFORMATION

All orders must include 4% shipping and handling. Michigan residents must also add 4% for state sales tax. All foreign orders (except Canada) need an additional 10% for shipping and handling. We cannot process your order without these.

IMPORTANT ORDERING INFORMATION

COUPON VALID WITH PREPAID ORDER

NEW 300 baud Acoustic Coupler.

SANYO MONITOR

9-in $240.00
15-in $169.00 $460.00 $279

IMPORTANT ORDERING INFORMATION

All orders must include 4% shipping and handling. Michigan residents must also add 4% for state sales tax. All foreign orders (except Canada) need an additional 10% for shipping and handling. We cannot process your order without these.

IMPORTANT ORDERING INFORMATION

COUPON VALID WITH PREPAID ORDER

NEW 300 baud Acoustic Coupler.

SANYO MONITOR

9-in $240.00
15-in $169.00 $460.00 $279

IMPORTANT ORDERING INFORMATION

All orders must include 4% shipping and handling. Michigan residents must also add 4% for state sales tax. All foreign orders (except Canada) need an additional 10% for shipping and handling. We cannot process your order without these.
Model 250OA S-100 Wire Wrap Board
• S-100 BUS compatible
• Double sided PCB board
• Plated through holes
• Perimeter ground
• All S-100 BUS signals labeled and numbered
• Accommodates standard size IC sockets
• 4 to 500 regulator positions available
• All transistors or integrated circuits accessories available
• 500 BUS compatible
• Double side board configuration
Cat No. 1600 $ 37.00

Model 250OA S-100 Solder Board
• S-100 BUS compatible
• Double sided PCB board
• Plated through holes
• Perimeter ground
• All S-100 BUS signals labeled and numbered
• Accommodates standard size IC sockets
• 4 to 500 regulator positions available
• Allows either positive or negative regulators
• Dense hole configuration
Cat No. 1604 $ 37.00

Model 2501A S-100 Mother Board
• 12 slot capability
• All 11.5 x 3.5 inch connectors included
• 4 x 3.5 inch connector for reducing signal noise and line reflections
• Active termination of all bus lines to reduce signal noise and line reflections
• Distributed bypassing of all power lines
• Solder mask both sides of board
• Silk-screen of reference designations
• Single strong board mounting
• Cross wire BUS lines both sides of board
• All holes plated thru
• Solder plating circuit areas
Cat No. 1610 Kit $ 38.00
Cat No. 1615 Kit $ 58.00

Model 2502A S-100 Extender Terminating Board
• Active or dynamic termination
• All power lines felled for protection
• All S-100 BUS signals labeled and numbered
• Can be used as an extender or terminator
• Solder mask both sides of board
• Screened reference designations
• Plated fingers
Cat No. 2520 $ 37.95

Model 711A Apple II Arithmetic Processor
• Based on 8080A 8-bit microprocessor device
• 16K bit memory (13232)
• Floating point 16 and 32 bit operation
• Binary data formats
• Add, subtract, multiply, and divide
• Square root, logarithms, exponents
• rotates, milled and fixed fixed conversions
• On-board optional storage
• Programmed I/O data transfer
• Internal floating point selector
• Supports interrupt driven chain
• Allows DMA chain
drive
• Power down ROM
• 16k bytes firmware (ROM) or software (RAM) space available
Cat No. 1634 $ 1035.00

Model 711A Apple II PROM Module
The 711A PROM MODULE permits the addition of ROM to the Apple II System. It provides the physical removal of the Apple II PROMS. The Apple II PROMS allows software reconfiguration, change, and/or removal to be made on a ROM basis or BYTE BASE. An on-board expandable paddle interface is also available.
• BYTE oriented program override
• Selectable program override
• Power down PROMS
• 14K PROM space available
• Uses 16 I/167A type proms
• Allows use of DIN84 interrupt driven chain
Cat No. 1631 A&T $ 73.00
Cat No. 1630 KIT $ 62.00

Model 2020A 16K Static Memory
• Fully compatible
• Uses 72 data lines and 8 VDC input at less than 2 amps
• Bank select available by bank port and bank byte
• Phonon line capability
• Addressable in 6K blocks in 8K memory
• 8K blocks can be located anywhere within 8K memory
• May be used as a 6K, 12K, or 24K memory board
• Led indicators for board indication
• Solder mask on both sides of board
• Silk screen with part and reference designations
Cat No. 1630A Kit $ 4500 A&T $ 325.00
Cat No. 1630K 3600 A&T $ 340.00
Cat No. 1630B 4500 A&T $ 330.00
Cat No. 1630C 5400 A&T $ 385.00

Model 2021A 8080A Processor
• Based on 8080A processor device
• 16K bit memory (13232)
• Floating point 16 and 32 bit operation
• Binary data formats
• Add, subtract, multiply, and divide
• Square root, logarithms, exponents
• Rotates, milled and fixed fixed conversions
• On-board optional storage
• Programmed I/O data transfer
• Internal floating point selector
• Supports interrupt driven chain
• Allows DMA chain drive
• Power down ROM
• 16k bytes firmware (ROM) or software (RAM) space available
Cat No. 1634 $ 1035.00

Model 2022A 8080A Processor
• Based on 8080A processor device
• 16K bit memory (13232)
• Floating point 16 and 32 bit operation
• Binary data formats
• Add, subtract, multiply, and divide
• Square root, logarithms, exponents
• Rotates, milled and fixed fixed conversions
• On-board optional storage
• Programmed I/O data transfer
• Internal floating point selector
• Supports interrupt driven chain
• Allows DMA chain drive
• Power down ROM
• 16k bytes firmware (ROM) or software (RAM) space available
Cat No. 1634 $ 1035.00

Model 474OA Apple II 3½ Digit BCD/AD/Converter
The 4740 allows conversion of a DC voltage to a BCD number for standard interface. Typical inputs would be DC inputs from temperature or pressure transducers. Selectable input on end of conversion
• 300V maximum
• +4 to +12V full scale
• Plus or minus 10% nonlinear
• Plus or minus 1 count quantization
• Three, temperature compensated
• Calibration adjustment
• Input offset adjustment
• Flooding option
• Overrange and sign indicators
• Input filters
• Power down ROM
• Supports interrupt driven chain
• Allows DMA chain drive
• 256 bytes firmware (ROM) or software (RAM) space available
Cat No. 1637 KIT $ 135.00
Cat No. 1640 KIT $ 141.00

Model 7112A Apple II Synchronous Serial Interface
• Conforms to RS-232C (configuration 4 thru E)
• Supports full duplex or half duplex operation
• DTE type configuration
• Fail-safe RS-232C operation
• 14 STD CLK rates: 50, 10, 15, 20, 30, 45, 50, 60 kHz
• BAUD plus EIC CLK
• Serial data shift detect select
• All BAUD rates data crystal controlled
• Programmable interrupts from transmitter, receiver, and error detection logic
• Character SYN by one or two SYNC codes
• Programmable SYNC code reset
• Standard synchronous signaling rate per RS-232C AS 3.17.76
• Characteristics of both functions
• Three bytes of filtering on both transmitter and receiver data
• 78, 9 on transmit
• Optional odd, even, no parity by
• Parity, overflow, and allow status checks
• Powers down ROM
• 256 bytes firmware (ROM) or software (RAM) space available
• Supports interrupt driven chain
• Allows DMA chain drive
Cat No. 1635 Kit $ 90.00

Model 2200A Mainframe
• Industrial/commercial-quality construction
• Flip-top cover
• External cooling capability
• 12 slot capacities (see model 2200B)
• Input: 110, 115, or 125 VAC
• Input: 10 VDC, 20 + 16 VDC
• Options: 8 VDC, 20 + 16 VDC
• 14K PROM space available
• All bus indicators labeled on board
• Leads for all circuit boards
• All parts available separately
Cat No. 1612 A&T $ 380.00
Cat No. 1614 A&T $ 375.00

Model 7110A Apple II Asynchronous Serial Interface
• Parity, overflow, and framing error checks
• Optional divide by 16 clock mode
• False start bit detection
• Software programmable interrupts
• Data double buffered
• One or two data bit operation
• Power down PROM
• 256 bytes firmware (ROM) or software (RAM) space available
• Supports interrupt driven chain
• Allows DMA chain drive
• 134.5 BAUD available for serial interface
• Conforms to RS-232C (configuration A thru E)
• Supports half or full duplex operation
• DCE type interface
• Fail-safe RS-232C operation
• 14 STD CLK rates: 50, 10, 15, 20, 30, 45, 50, 60 kHz
• BAUD plus EIC CLK
• Serial data shift detect select
• All BAUD rates data crystal controlled
• Programmable control signals
• Option E / Baud rate
• Option F / Baud rate
Cat No. 1613 A&T $ 141.00
Cat No. 1613 KIT $ 90.00

Model 720OA Apple II Parallel Interface
• Two directional 8 bit buses for interface to peripherals
• Two programmable control registers
• Four individually-controlled interrupt input lines; two usable as peripheral control outputs
• DMA handshake logic for input and output peripheral lines
• High impedance state and direct transitor drive peripheral lines
• Programmable interrupts
• CMOS drive capability on side A and peripheral lines
• 2 I/O drive capability on all A and B side lines
• Power down ROM
• Supports interrupt driven chain
• Allows DMA chain drive
• 256 bytes firmware (ROM) or software (RAM) space available
Cat No. 1612 KIT $ 105.00
Cat No. 1612 Kit $ 62.00

Model 750OA Apple II Wire Wrap Board
The 750OA is used for the programming of any program into the Apple II computer.
• All bus signals labeled on board
• Perimeter ground
• #7827 with a 2.75 inch high
• All holes plated thru
• Gold plated connector fingers
Cat No. 1606 $ 19.00

Model 750OA Apple II Solder Board
The 750OA is the same as the 750OA except it is designed for soldering of circuits
Cat No. 1608 $ 19.00

Model 750OA Apple II Etch Board
The 750OA is a two sided copper board which is etched out of circuits for use in the Apple II computer.
Cat No. 1608 $ 19.00

Circle 170 on Inquiry card.
SOFTWARE CASSETTES

Star Trek III
The most advanced version we've seen! TRS-80 L1/L2, 16K
Cat No. 1041 $14.95

Backgammon
You play against the computer! Win/lose on strategy, etc. Extremely good! TRS-80 L1/L2
Cat No. 1481 $10.95

Sargon Chess
Win all 8 levels of play, excellent graphics, etc TRS-80 L1/L2, 16K
Cat No. 1091 $19.95
Apple II, 16K
Cat No. 1317 $19.95

Tarot
Excellent graphics, frightening accuracy TRS-80 L1/L2, 4K
Cat No. 1042 $5.95

Air Raid
An arcade-type real time game of target practice. TRS-80 L1/L2, 4K
Cat No. 1188 $14.95

Microchess
Graphical Chessboard with 32 pieces, 8 levels. TRS-80 L1/L2, 4K
Cat No. 1182 $19.95
Apple II
Cat No. 1183 $19.95

Daily Biorhythm
Plots a 31 day graph centered on the day you compute. TRS-80 L1/L2
Cat No. 1051 $5.95

Fortran Plus
By Micropro! For TRS-80 L2 with 32K and single disk. Cat No. 1341 $340

Beat the House
4 Casino games: Blackjack, Roulette, Craps, Slot Machine. Excellent simulation TRS-80 L2, 16K
Cat No. 1347 $14.95
Apple II, 16K
Cat No. 1349 $14.95

Level III Basic
Gives your TRS-80 the power of a full size system. Disk commands, advanced editing, etc. TRS-80 L2
Cat No. 1332 $49

Bridge Challenger
You and your dummy play against the computer in regular contract bridge. Either you or the computer sets up TRS-80 L2, 16K
Cat No. 1195 $14.95
Apple II
Cat No. 1196 $14.95

Machine Language Monitor
Allows you to interact directly with the TRS-80 at machine language level. 10pg manual TRS-80 L1/L2
Cat No. 1046 $23.95

Electric Pencil
The famous word processor for TRS-80 L1/L2, 16K
Cat No. 1338 $95
L2 diskette version Cat No. 1338D $145

VERBATIM
5½ Diskettes
$27 box of 10
4 boxes for $100
Cat No. Type Use
1417 Diskette TRS-80, Apple
1148 Hard, 16 hole North Star
1149 Hard, 16 hole Micropro

8” Disks
$37 box of 10
3 boxes for $100
• IBM compatible
• Single density
• Individual cored
Cat No. 1145 Type 32-1000
Description 32 sector holes, 1 index hole
Cat No. 1146 Type 34-1000
Interchangeable with IBM32, 3740, 3770, 3790, etc.

EDGE CONNECTORS
• Cold plated
Description
S-100, Imax type, solder-tail
Cat No. 1376 Price $4.00
S-100, Imax type, wire-wrap
Cat No. 1428 Price $4.25
S-100, Airfoil type, solder-tail
Cat No. 1388 Price $4.00
8-pin Motorola type, wire-wrap
Cat No. 1389 Price $2.50

Ribbon Cable CLEARANCE SALE
• Flat style, 36AWG
• Order by Cat No. 1367 & conductors
Cond. 10 15 25 50 100
10 $1.00 $1.80 $2.60 $4.00
25 $1.80 $3.20 $4.60 $7.60
50 $2.50 $4.60 $6.50 $10.00
100 $3.00 $6.50 $9.80 $16.00

SEND for FREE CATALOG FEATURING
The best selection of computer accessories and components. Trivia, physical science, science kits, electronics, books, etc. Fully guaranteed.

Send for FREE CATALOG Featuring

from Novation
CAT Acoustic

Modem
Let your computer talk to other computers over standard telephone lines. Also communicates with any Bell 203 compatible modem. Designed specifically for small computers! Fully assembled and tested.
Cat No. 1480

Anadex Alphanumeric Printer
$925
Features 80 columns, 8 lines per minute, 9p. character height, parallel interface. Complete kit with paper and ink. Cat No. 1343 TRS-80 Adapter Cable $40
Cat No. 1344 3500 sets 2-part paper $90.50
Cat No. 1345 1000 sets 3-part paper $90.50

RECTIFIERS & BRIDGES
Order by Cat No., Voltage, and Current

<table>
<thead>
<tr>
<th>Cat No.</th>
<th>1A</th>
<th>2A</th>
<th>3A</th>
<th>3A</th>
<th>5A</th>
<th>5A</th>
<th>6A</th>
<th>8A</th>
<th>10A</th>
<th>10A</th>
<th>15A</th>
<th>15A</th>
<th>20A</th>
<th>25A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0400</td>
<td>0.05</td>
<td>0.12</td>
<td>0.25</td>
<td>0.30</td>
<td>0.45</td>
<td>0.60</td>
<td>0.90</td>
<td>0.98</td>
<td>1.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0401</td>
<td>6.00</td>
<td>6.00</td>
<td>6.00</td>
<td>6.00</td>
<td>6.00</td>
<td>6.00</td>
<td>6.00</td>
<td>6.00</td>
<td>6.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0402</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0403</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0404</td>
<td>6.00</td>
<td>6.00</td>
<td>6.00</td>
<td>6.00</td>
<td>6.00</td>
<td>6.00</td>
<td>6.00</td>
<td>6.00</td>
<td>6.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0405</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Matchless Systems - TRS-80

Minidisk Drive
Accesses twice as fast as cables. Completely assembles the Radio Shack drive, bled and tested, ready to plug in and go! Simple modification to use as tape case, power supply, and second drive!
Cat No. 1372 MINIDISK DRIVE $395
Cat No. 1356 4 DRIVE EXPANSION CABLE $40
Cat No. 1147 Verbatim Diskettes for above - box of 10 for $27

Sليمم Available at HOBBY WORLD

<table>
<thead>
<tr>
<th>Cat No.</th>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1407</td>
<td>512K</td>
<td>$160</td>
</tr>
<tr>
<td>1409</td>
<td>8K</td>
<td>$125</td>
</tr>
<tr>
<td>1500</td>
<td>1K</td>
<td>$100</td>
</tr>
<tr>
<td>1500A</td>
<td>1K</td>
<td>$150</td>
</tr>
<tr>
<td>1501A</td>
<td>8K</td>
<td>$139</td>
</tr>
<tr>
<td>1402</td>
<td>16K</td>
<td>$100</td>
</tr>
<tr>
<td>1403</td>
<td>8K</td>
<td>$100</td>
</tr>
<tr>
<td>1404</td>
<td>8K</td>
<td>$100</td>
</tr>
<tr>
<td>1405</td>
<td>8K</td>
<td>$100</td>
</tr>
<tr>
<td>1406</td>
<td>8K</td>
<td>$100</td>
</tr>
<tr>
<td>1407</td>
<td>8K</td>
<td>$100</td>
</tr>
<tr>
<td>1408</td>
<td>8K</td>
<td>$100</td>
</tr>
<tr>
<td>1409</td>
<td>8K</td>
<td>$100</td>
</tr>
<tr>
<td>1410</td>
<td>8K</td>
<td>$100</td>
</tr>
<tr>
<td>1411</td>
<td>8K</td>
<td>$100</td>
</tr>
<tr>
<td>1412</td>
<td>8K</td>
<td>$100</td>
</tr>
<tr>
<td>1413</td>
<td>8K</td>
<td>$100</td>
</tr>
</tbody>
</table>

KIC Sockets
Penny-A-Pin

<table>
<thead>
<tr>
<th>Cat No.</th>
<th>penny-A-Pin</th>
<th>TRIM MOUNTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1415</td>
<td>8X8X8X8X8</td>
<td>9X9X9X9X9</td>
</tr>
<tr>
<td>1416</td>
<td>8X8X8X8X8</td>
<td>9X9X9X9X9</td>
</tr>
<tr>
<td>1417</td>
<td>8X8X8X8X8</td>
<td>9X9X9X9X9</td>
</tr>
<tr>
<td>1418</td>
<td>8X8X8X8X8</td>
<td>9X9X9X9X9</td>
</tr>
<tr>
<td>1419</td>
<td>8X8X8X8X8</td>
<td>9X9X9X9X9</td>
</tr>
<tr>
<td>1420</td>
<td>8X8X8X8X8</td>
<td>9X9X9X9X9</td>
</tr>
</tbody>
</table>

**PAY by check, COD, Visa, or Mastercharge. Order by phone or mail. Minimum order $10. Please include phone number and magazine/issu

BYTE September 1979 227
New Catalogue

Announcement!

SuperDisk

Electrolabs is proud to announce appointment as Distributor by CI-Honeywell Bull.

Price Breakthrough on SuperDisk 10 MBD! $3495.00

General purpose controller (requires 2 parallel I/O ports) $1500.00

S-100 Controller (DMA) $1995.00

"RL-01/RK-05" surrogate (transparent to RT, RS, RX) $1900.00

Software: (CP/M Compatible)

- Superdos 1 (Z-80) $695.00
- Microdos 1 (TRS-80) $199.00
- Power Supply (switching) $395.00
- Enclosure (desktop) $99.00

Mini-Floppy Drive

- Single or double density
- Quick access time
- High reliability & durability

Mini-floppy Cable Kit:

For TRS-80 or your Tarbell controller.

$24.95

ESAT 200B

Bi-Lingual 80x24 Communicating Terminal

Scrolling, full cursor, bell, 8x8 matrix, 110-19,200 baud, Dual Font Applications, Arabic & Hebrew, Multilingual Data Entry, Forms Drawing, Music Instruction, Specialized Graphics (e.g., Games, Chemical Plants, Switchyards) $349.00

We carry keyboards, cases, power supplies, etc., enough to make an entire system.

Circle 115 on inquiry card.

ELECTRO LABS is proud to announce appointment as Distributor by CI-Honeywell Bull.
FINALLY
TEXAS INSTRUMENTS TI-99/4 Home Computer
Many Peripherals. Coming soon.

NEW!
APPLE II PLUS
ONLY $1195
A complete self-contained computer system with APPLESOFT floating point BASIC in ROM, full ASCII keyboard in light weight molded carrying case.

Features Include:
- sub-start ROM + 16K RAM + 13" color monitor + 16-bit microprocessor + $10 RAM + 13" color monitor (24 lines of 32 chars)
- 28K RAM operating system (includes 14K BASIC) + Sound - 3 tones, 5 octaves
- 16 colors. 180 x 255 res. + Large TI library of ROM programs available.

APLLE II Complete
16K Model add $200
32K Model add $500

Compucolor II
COMPUGRAF II Disk Based Model 3
Advanced hardware and software technology gives you:
- 14 Color Drawings + Advanced Color Graphics
- 16K Disk Drums + 48K Disk Operating System
- 8K RAM Upper Memory
- 16K RAM Printer
- 8080A Microcomputer
- RS-232 C Interface

$1495 Complete
16K Model add $200
32K Model add $500

Over 1000 software manuals, books, disks on display.
Come In and browse.

BUSINESS COMPUTER IMSAI
The low cost solution to your business problems. A wide variety of software available for all your needs.
- Standard Micros + Full line of peripherals
- 48K Memory + 8K Disk Drive
- Data Acquisition + Graphing

NEW D. C. Hayes MICROMODEM II
- Modular telephones jack only $379

NEW Mountain Hardware SUPERTALKER
- Digital speech recording and playback.

PRICE INCLUDES:
- $35 of Software with purchase of any computer on this page.

SOUNDWAVE MUSIC BOX
ONLY $29.95
Music and Sound Effects for PET, TRS-80, Apple II. Add music and sound effects to your programs. Compose, play, and hear music on your computer. Totally self-contained. Free programs.

PROM PROGRAMMING SYSTEM
- User-friendly PROM programming system.
- 256K ROM + 16K EPROM + 8K EPROM + 8K PROM

NEW CENTRONICS
- Wide selection of printers and plotters.
- Inexpensive and reliable.

ANDERSON JACOBSON
- Apple extended, etc.
- A sure value disk at only $49.

RADIO SHACK • PET • SORCE • APPLE • COMPUCOLOR • ETC.

TO ORDER CALL TOLL FREE 800-223-7318

The COMPUTER FACTORY
485 Lexington Avenue 750 Third Avenue New York, N.Y. 10017
(212) 867-5001 (212) PET-2001 Foreign order desk - Telex 640055
MICROBYTE Z80/1-O

- A complete single board Z80A
- CPU and 8255 compatible
- IMSAI, ALTAIR
- 2 MHz, 4 MHz version of the Z80
- 10 instructions — superseded up and upward compatible from the 8080
- Provision for full on board memory using 1K (2708), 2K (2716), 4K (2725)
- On board EPROM can be hardwired and software deselected
- 2 MHz or 4 MHz operation is switch selectable
- 5 or 1 wait state for all cycles is switch selectable
- 2 RS-232 serial ports with 6251 USART
- Serial baud rates switch selectable
- 24 programmable parallel I/O lines (uses 6255)

FLOPPY DISK DRIVE INCLUDES CABINET & POWER SUPPLY

- Assembled & tested with Radio Shack Interface
- Assembled & tested with 1 yr. warranty on parts & labor
- Mfg. by Lobo Drive

IMS A I . CONN.

100 PIN-SOLDERTAIL GOLD CONTACTS $3.00 each or 10/2.60 each

- TRS-80 Floppy disk drive with cabinet & pwr. supply compatible with Radio Shack Interface
- Assembled & tested with 1 yr. warranty on parts & labor
- Mfg. by Lobo Drive

SHUGART 801-DISK DRIVE

WITH CABINET & POWER SUPPLY

- ASSEMBLED & TESTED
- 1 YR PARTS & LABOR
- Mfg. by Lobo Drive

SHUGART 2716 SA400

DISK DRIVE INCLUDES CABINET, NO PWR SUPPLY, OUTLINES FOR SWITCH, FUSE, & INTERFAC E CABLE

- Mfg. by Lobo Drive

8251 PROGRAMMABLE/U-A RT TESTED @ 4 MHZ

- SPECIAL

.1 @ 12 VOLTS CERAMIC CAP

10c each or

100 / $9.90

LOW POWER 450 NS.

- $8.75 each
- 8 for $66.00

2708's

5 VOLT ONLY

LOW POWER

450 NS

- $40.00

SCANBE/RN

SOCKETS — LO PROFILE REGULATORS

- 1-24 25-99 100-499 500up
- 1-9 10-49 50up

NEW PRODUCTS

- 8086 — CPU BOARD
- 8088 — CPU BOARD
- Double Density Controller

CALL OR WRITE FOR DEALER INFO

CABLE ASSEMBLY

- for 8" disk drives
- (2) 50 PIN CARD- EDGE CONNECTORS ON 41T RIBBON CABLE

- $20.00 ea.
- extra conn. $7.50 ea.

ORDERING INFORMATION:

Name, Address, Phone
Ship by: UPS or P.P.
Charging: Add $2.50 up to
5 lbs., all excess shipping
charges will be refunded. Credit
cards will be charged appropriate
freight.

TERMS:

We accept cash, check, money
orders, Visa, and Master Charge
cards, (U.S. Funds Only).
COD's: on approval only
Open Acct's: companies may
inquire for net terms.
Tax: add 8% for Calif. residents only

MICROBYTE MOTHERBOARD

- Active Diode termination
- Slot for IMSAI front panel
- Terminal block connection for easy hook-up

- Extra wide ground plane
- Silk screen and solder mask
- Assembled and tested

MICROBYTE DISK CONTROLLER

- IBM 3740 Soft Sectedor-Compatible
- 280 or 8080 compatible on 8-10 bus
- Single density uses both min and max size drives, runs CP/M, on Disk Portals, Master Card, etc.
- Selectable portaddress
- Use with 2716 or 2718 for bootstrap or monitor program
- No hooks, jumpers, use plug in modules for different drives
- User Installation Chart
- Assembled and tested
- Specify disk drives used when ordering by mail

- $225.00

IMSAI CONN.

- 100 PIN-SOLDERTAIL GOLD CONTACTS

$3.00 each or 10/2.60 each

- 1 YR PARTS & LABOR

- Mfg. by Lobo Drive

$385.00

- Interface Cable Available

- Floppy disk drive with cabinet & pwr. supply compatible with Radio Shack Interface
- Assembled & tested with 1 yr. warranty on parts & labor
Circle 201 on inquiry card.

Circle 201 on inquiry card.
Save $ on TRS-80 Products

NEW!! TREMENDOUS SAVINGS ON TRS-80 SYSTEMS

Complete system includes:
TRS-80 Level II, w/our 48K RAM, Dual MPI Disk Drives, and the APPARAT DOS+ software ($2500 value), only $2049. Line printer and desk options available.

SUPERDISK

TF-7D Micropolis Largest capacity mini floppy, up to 195 Kbytes on 77 tracks with 77TKDOS+ $699

PRINTERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP779 Centronics 779 w/tractors</td>
<td>$1099</td>
</tr>
<tr>
<td>LP700 Centronics 700</td>
<td>$1175</td>
</tr>
<tr>
<td>LP701 Centronics 701</td>
<td>$1759</td>
</tr>
<tr>
<td>NEC Spinwriter</td>
<td>$2499</td>
</tr>
</tbody>
</table>

SuperDisk

TF-7D Micropolis Largest capacity mini floppy, up to 195 Kbytes on 77 tracks with 77TKDOS+ $699

Add-on Disk Drives

DOES NOT INCLUDE POWER SUPPLY OR CHASSIS

- Pertec FD200 or MPI B-52 $272.00
- Shugart SA400 (unused) $282.00
- Pertec Dual Head $399.00

IMPORVE TRS-80 PERFORMANCE WITH NEWDOS+

Over 200 modifications, corrections and enhancements to TRS DOS. Includes utilities. Available in two versions:
35 Track version $99
40 Track version $110

NEW PRODUCTS

- Small System RS232 Interface $49.00
- Expansion Interface w/32K $499.00
- AC Line Interference Eliminator $18.95
- AC Isolator (6 connectors) $45.95
- Telephone Interface $179.95
- Verbatim 5" soft sector Diskettes $3.39

Memory

16KM 16K RAM Kit Computer $74
Expansion Interface $78

Software

- Accounts Receivable $39
- Inventory Control $39
- Job Entry/Status $75
- General Ledger $79
- Game Diskette $19
- AJA Word Processor $75

Send for FREE Catalog

A Complete Family Of Disk Drives To Choose From...

In Stock

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TF-1 Pertec FD200, 5¼", 40 track use both sides</td>
<td>$379</td>
</tr>
<tr>
<td>TF-3 Shugart SA400, 5¼", 35 tracks same as tandy</td>
<td>$389</td>
</tr>
<tr>
<td>TF-5 MPI 5¼" 40 track door lock and auto diskette ejection</td>
<td>$379</td>
</tr>
<tr>
<td>TDH-1 Pertec Dual Head mini-floppy 35 track same capacity as 2 drives</td>
<td>$499</td>
</tr>
</tbody>
</table>

All disk drive systems come complete with power supply and chassis
- Two drive cable= $25
- Four drive cable= $35

IMPROVE TRS-80 PERFORMANCE WITH NEWDOS+

Over 200 modifications, corrections and enhancements to TRS DOS. Includes utilities. Available in two versions:
35 Track version $99
40 Track version $110

MEMORY

16KM 16K RAM Kit Computer $74
Expansion Interface $78

SOFTWARE

- Accounts Receivable $39
- Inventory Control $39
- Job Entry/Status $75
- General Ledger $79
- Game Diskette $19
- AJA Word Processor $75

Send for FREE Catalog

A Complete Family Of Disk Drives To Choose From...

In Stock

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TF-1 Pertec FD200, 5¼", 40 track use both sides</td>
<td>$379</td>
</tr>
<tr>
<td>TF-3 Shugart SA400, 5¼", 35 tracks same as tandy</td>
<td>$389</td>
</tr>
<tr>
<td>TF-5 MPI 5¼" 40 track door lock and auto diskette ejection</td>
<td>$379</td>
</tr>
<tr>
<td>TDH-1 Pertec Dual Head mini-floppy 35 track same capacity as 2 drives</td>
<td>$499</td>
</tr>
</tbody>
</table>

All disk drive systems come complete with power supply and chassis
- Two drive cable= $25
- Four drive cable= $35

Printers

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP779 Centronics 779 w/tractors</td>
<td>$1099</td>
</tr>
<tr>
<td>LP700 Centronics 700</td>
<td>$1175</td>
</tr>
<tr>
<td>LP701 Centronics 701</td>
<td>$1759</td>
</tr>
<tr>
<td>NEC Spinwriter</td>
<td>$2499</td>
</tr>
</tbody>
</table>

NEW PRODUCTS

- Small System RS232 Interface $49.00
- Expansion Interface w/32K $499.00
- AC Line Interference Eliminator $18.95
- AC Isolator (6 connectors) $45.95
- Telephone Interface $179.95
- Verbatim 5" soft sector Diskettes $3.39

MEMORY

16KM 16K RAM Kit Computer $74
Expansion Interface $78

SOFTWARE

- Accounts Receivable $39
- Inventory Control $39
- Job Entry/Status $75
- General Ledger $79
- Game Diskette $19
- AJA Word Processor $75

6000 E. Evans Ave., Bldg. 2
Denver, CO 80222
(303) 758-7275

Circle 277 on inquiry card.

Circle 15 on inquiry card.
Sankyo Magnetic Card Reader

$59

These Sankyo I/O units are capable of storing and retrieving over 400 characters of data in under two seconds. The flexibility of this device lends itself to numerous applications. As an input reader to a computerized security system, the computer has the ability of identifying the card holder and admitting only those individuals who are authorized to enter the premises during specified time frames. The device is also suitable for maintaining customer information files, or any other application where small amounts of information must be quickly entered into a data processing system.

Accepts 3" by 4" HP style mag cards. (Similar to bank cards.) Motorised feeder pulls the magnetic card across the four channel read/write head. New, surplus, original cost $250. Full documentation.

memory

TRS-80 $65
APPLE II $105
16k memory (8) 4116's

These used data terminals were originally designed for chain store inventory control and order entry systems. The operator enters the inventory control number, merchandises on hand and the unit price. After all pertinent data has been entered into the reciever, the main device is then selected, and the operator is then able to lean on the acoustic coupler and all the recorded information is transmitted back to the master computer. With a little imagination and use of these portable data systems, we should be able to exchange programs and computer information with associates across the country.

All units were removed from service in working condition. Original cost $9.500.

Each system comes complete with:

- Portable Cassette Drive Unit
- Five Guild "D" Mics
- Removable Entry Keyboard
- Acoustical Coupler
- Battery Charger
- Shoulder strap
- Full Documentation

SPECIAL CIRCUITS

200A, 4 Mils... 24.95
300A, 2 Mils... 55.00
304A, 1 Mils... 55.00
504A, 10 mils... 22.50
505, Total 16 bits... 49.95
506, Total 16 bits... 49.95
TMS800, 16 bits... 49.95

SYSTEM X-10

It's not often that California Digital ventures into the distribution of consumer products, but we have recently come across a product that appears so unique that we had to add it to our product line. This is the System X-10 manufactured by the SRS Turntable Company. This space age system will remotely control any light or appliance in your home or office. Command signals are transmitted from the control console over your existing wiring. From your bed, in your chair, or in the car, you can control up to 18 different electrical devices. The System has a 13 channel transmitter that is used to control your television, radio, or light fixture on the premises.

The basic starter package comes complete with complete console, battery operated wireless controller, one of each of the appliance models, and instructions. A complete system package is priced at only $99.95. Additional modules are available for $19.95 each.

(213) 679-9001

California Digital
Post Office Box 3097 B. Torrance, California 90503
FLOPPY DISK STORAGE BINDER

This black vinyl three-ring binder comes with ten transparent plastic sleeves which accommodate either five-inch or eight-inch floppy disks. These sleeves may be ordered separately and added as needed. A contents file is included with each sleeve for easy identification and organization. Binder & 10 holders $14.95 Part No. 8800; Extra holders 95¢ each. Part No. 8000.

OPTO-ISOLATED PARALLEL INPUT BOARD FOR APPLE II

There are 8 inputs that can be driven from TTL logic or any 5 volt source. The circuit board can be plugged into any of the 8 sockets of your Apple II. It has a 16 pin socket for standard ribbon cable connection.

Board only $15.00. Part No. 900, with parts $96.95. Part No. 100A.

ASCII KEYBOARD

This board has two passive, opto-isolated circuits. One converts RS-232 to 20mA, the other converts 20mA to RS-232. All connections go to a pin edge connector. Requires +12 and -12 volts. Board only $39.95 Part No. 7901.

ASCII TO CORRESPONDENCE CODE CONVERTER

This bidirectional board is a direct replacement for the board inside theretched 1000 terminal. The on-board controller can convert ASCII character sets, including those for Russian or other languages.

COMMUNICATION INTERFACE

There is no need for a front panel. Complete documentation included. $229.95 Part No. 1A1000.

DISK JACKET

Made from heavy duty O665 matte plastic with reinforced grooves. The mini-keystone version holds two 5-1/4 inch diskettes and will fit any removable disk drive. The jackets to the left of the disk drive can be used for easy identification of the contents of the disk. Please order only in multiples of ten. $9.95/10 Pack.

VIDEO TERMINAL

16 lines, 84 columns. Upper and lower case 5x7 dot matrix. Works with TL parallel keyboard input. On board baud rate generator 75, 110, 150, 300, 600, 1200, 2400, 3840, 4800, 9600, and 19200 baud. $119.95 Part No. 1A1000.

PET COMPUTER

With 32K memory. $1195. Disk Drive $1195.

FLOPPY DISK STORAGE BINDER

This black vinyl three-ring binder comes with ten transparent plastic sleeves which accommodate either five-inch or eight-inch floppy disks. These sleeves may be ordered separately and added as needed. A contents file is included with each sleeve for easy identification and organization. Binder & 10 holders $14.95 Part No. 8800; Extra holders 95¢ each. Part No. 8000.

OPTO-ISOLATED PARALLEL INPUT BOARD FOR APPLE II

There are 8 inputs that can be driven from TTL logic or any 5 volt source. The circuit board can be plugged into any of the 8 sockets of your Apple II. It has a 16 pin socket for standard ribbon cable connection.

Board only $15.00. Part No. 900, with parts $96.95. Part No. 100A.

ASCII KEYBOARD

This board has two passive, opto-isolated circuits. One converts RS-232 to 20mA, the other converts 20mA to RS-232. All connections go to a pin edge connector. Requires +12 and -12 volts. Board only $39.95 Part No. 7901.

ASCII TO CORRESPONDENCE CODE CONVERTER

This bidirectional board is a direct replacement for the board inside theretched 1000 terminal. The on-board controller can convert ASCII character sets, including those for Russian or other languages.

COMMUNICATION INTERFACE

There is no need for a front panel. Complete documentation included. $229.95 Part No. 1A1000.

DISK JACKET

Made from heavy duty O665 matte plastic with reinforced grooves. The mini-keystone version holds two 5-1/4 inch diskettes and will fit any removable disk drive. The jackets to the left of the disk drive can be used for easy identification of the contents of the disk. Please order only in multiples of ten. $9.95/10 Pack.

VIDEO TERMINAL

16 lines, 84 columns. Upper and lower case 5x7 dot matrix. Works with TL parallel keyboard input. On board baud rate generator 75, 110, 150, 300, 600, 1200, 2400, 3840, 4800, 9600, and 19200 baud. $119.95 Part No. 1A1000.

PET COMPUTER

With 32K memory. $1195. Disk Drive $1195.

T.V. INTERFACE

Converts video, AM modulated RF, Channel 2 or 3. Very powerful almost no tuning is required. Complete with power supply and RG59 coax terminated with BNC for use with any TV set.

PARALLEL TRIAC OUTPUT BOARD FOR APPLE II

This board has 8 triacs capable of switching 110 volt 6 amp loads (660 watts per channel) or a total of 5280 watts. Board only $15.00 Part No. 210, with parts $119.95 Part No. 210A.

To Order:

Mention part no. description, and price. In USA shipping paid by us for orders accompanied by check or money order. We accept C.O.D. orders in the U.S. only, or a VISA or Master Charge no., expiration date, signature, phone no., shipping charges will be added. CA residents add 6.5% for tax. Outside USA add 10% for air mail postage and handling. Payment must be in U.S. dollars. Dealer inquiries invited. 24 hour order line (408) 226-4084.

Send for FREE Catalog...a big self-addressed envelope with 41¢ postage gets it fastest!
Circle 125 on Inquiry card.

MODERN
- Type 103 5 Full or
equip with dual
- Works up to
- Origine
- or Answer
- No
- only low
- TTL in
- and output
- Connect 8 speaker
- crystal mic.
- Board only
$7.60 Part No. 109.

APPLE II
- Type 110 8 Full or
- Works up to
- Origine
- or Answer
- No
- only low
- TTL in
- and output
- Connect 8 speaker
- crystal mic.
- Board only
$7.60 Part No. 109A

S-100 BUS
ACTIYE TERMINATOR
Board only $14.95 Part No. 900, with parts $24.95 Part No. 900A

DC POWER SUPPLY
- Board supplies a regulated +5
- 12, -12, and -5
- volts at 1 amp.
- Power required is
- 8 volts at 3 amps,
- AC C.T. at 1.5 amps.
- Board only $12.50 Part No. 9005, with parts $23.95 Part No. 9005A

To Order: Mention part no. description, and price. In USA shipping paid by us for orders accompanied by check or money order. We accept C.O.D. orders in the U.S. only or a VISA or Master Charge no., expiration date, signature, phone no., shipping charges will be added. CA residents add 6.5% for tax. Outside USA add 10% for air mail postage and handling. Payment must be in U.S. dollars. Dealer inquiries invited. 24 hour order line 408) 229-4034.

Send for FREE Catalog... a big self-addressed envelope with 41st postage gets it fastest!
A completely refurbished IBM Selectric Terminal with built-in ASCII Interface.

$1395

Features:
- 300Baud
- 14.9 characters per second printout
- Reliable heavy duty Selectric mechanism
- RS-232C Interface
- Documentation included
- 60 day warranty - parts and labor
- High quality Selectric printing
- Off-line use as typewriter
- Optional tractor feed available
- 15 inch carriage width

HOW TO ORDER
DATA-TRANS 1000
1. We accept Visa, Master Charge. Make cashier checks or personal check payable to:
DATA-TRANS
2. All orders are shipped
F.O.B. San Jose, CA
3. Deliveries are immediate

DATA-TRANS
2154 O'Toole St.
Unit E
San Jose, CA 95131
Phone: (408) 263-9246

To Order: Mention part no. description, and price. In USA shipping paid by us for orders accompanied by check or money order.
We accept C.O.D. orders in the U.S. only, or a VISA or Master Charge no., expiration date, signature, phone no.,
shipped as desired. CA residents add 8.5% for tax. Outside USA add 10% for air mail postage and handling. Payment must be in U.S. dollars. Dealer inquiries invited. 24 hour order line (408) 263-4084.

Send for FREE Catalog... a big self-addressed envelope with 41c postage gets it fastest!
CASSETTE SOFTWARE

For 8080/2/68 m.Cs ...

BASIC ETC — Developed by the co-authors of the original Tiny BASIC, BASIC ETC is easy to use yet includes commands and functions required for powerful business and scientific programs as well as for hobby applications. 9.5k bytes of RAM, 1500-baud cassette and 42-page user's manual ... $39.95

Cassette Operating System — EPROM (2708) COS for the Percom Cl-812 dual peripheral interfacing PC card ... $39.95

If you're programming on an 8600 µ, you'll want these development and debugging programs written by Ed Smith of the Software Works:

- Disassembler/Source Generator — Disassembles SWTP Resident Assembler, TSC Mnemonics Scanner/Editor or Smoke Signal Mnemonic Scanner/Editor and produces compacted source code suitable for re-editing. Prints or displays full assembly-type output listing.
 - Kit ... $25.00
 - Tape ... $25.00

- Disassembler/Trace — Use to examine (and examine and execute) any area of RAM or ROM. "Software-single-step" through any program, change the contents of CPU or memory location at any time, trace subroutines to any depth.
 - 2.3k bytes of RAM (Order M6865) ... $20.00
 - 4.3k bytes of ROM (Order M6880) ... $20.00
 - Relocating Assembler/Linking Loader (M6865) ... $50.00
 - Relocating Disassembler/Segmented Source Text Generator (M6865) ... $35.00

- Americana Plus — 14 tunes for the Newtech Model 68 Music Board in machine language ready to load and run. Cassette compatible with Percom CIS-30+ and SWTP AC-30. Order MC-1SW ... $15.95

HARDWARE

Newtech Model 68 Music Board — Produces melodies, rhythms, sound effects, morse code, etc. from your programs. Includes manual with BASIC for writing music scores and assembly language routine to play them. Installs in SWTP I/O slot. Assembled and tested ... $59.95

- The Percom ELECTRIC WINDOW™ — Memory-resident and programmable. This video display character generator board for your 8080-68 µ.Cs and SWTP AC-30. Order MC-1SW ... $15.95
 - Large card ... $24.95
 - 1/0 size card ... $14.95

To order products or request additional literature, call Percom's toll-free number: 1-800-927-1592. For detail technical information call (214) 272-9421.
ATTENTION ELF OWNERS
ANNOUNCING QUEST SUPER BASIC
At last, a full Basic for 1982 systems. A complete function Basic including two dimensional arrays, string variables, floating point, arithmetic and 32 bit signed integer arithmetic (10 digit accuracy) with 100 routines. Easily adaptable for QVM minimization for Basic and user programs. Cassette version in stock now for immediate delivery. ROM versions coming soon with exchange slons for other popular 1802 systems also.

System includes: Tiny Basic Source now available $19.00
S-100 Slot Expansion. Add more S-100 slots to your Super Expansion Board or use as a 4 slot S-100 Mother Board. Board without connectors $8.90.

Coming Soon: High resolution alpha/numeric display. Complete box contains new 2708 EPROM, 3.5K x 128, 256 x 1024 resolution for less than $100. Economical versions for other popular 1982 systems also.

10K Dynamic RAM board expandable to 32K for less than $150.

Multi-volt Computer Power Supply
50 X 3 amp. 12V, 5 amp. 15V, 1.5 amp. 9V, 3 amp. 6V, 3.5 amp. 12V are regulated. Kit $29.95. Kit with punched frame $37.45. Woodgrain case $10.00.

60 Hz Crystal Time Base Kit $4.40
Converts digital clocks from AC line frequency to 60 Hz. Dead on. Outstanding accuracy. Kit Includes: PC board, IC, crystal, resistors, capacitors, $12.95. For shipping.

Some day shipment. First the parts only. Factory tested. Guaranteed money back. Optional other components at factory prices.

INTEGRATED CIRCUITS

Circuit diagrams, etc.

ATTENTION ELF OWNERS
ANNOUNCING QUEST SUPER BASIC
At last, a full Basic for 1982 systems. A complete function Basic including two dimensional arrays, string variables, floating point, arithmetic and 32 bit signed integer arithmetic (10 digit accuracy) with 100 routines. Easily adaptable for QVM minimization for Basic and user programs. Cassette version in stock now for immediate delivery. ROM versions coming soon with exchange slons for other popular 1802 systems also.

System includes: Tiny Basic Source now available $19.00
S-100 Slot Expansion. Add more S-100 slots to your Super Expansion Board or use as a 4 slot S-100 Mother Board. Board without connectors $8.90.

Coming Soon: High resolution alpha/numeric display. Complete box contains new 2708 EPROM, 3.5K x 128, 256 x 1024 resolution for less than $100. Economical versions for other popular 1982 systems also.

10K Dynamic RAM board expandable to 32K for less than $150.

Multi-volt Computer Power Supply
50 X 3 amp. 12V, 5 amp. 15V, 1.5 amp. 9V, 3 amp. 6V, 3.5 amp. 12V are regulated. Kit $29.95. Kit with punched frame $37.45. Woodgrain case $10.00.

60 Hz Crystal Time Base Kit $4.40
Converts digital clocks from AC line frequency to 60 Hz. Dead on. Outstanding accuracy. Kit Includes: PC board, IC, crystal, resistors, capacitors, $12.95. For shipping.

Some day shipment. First the parts only. Factory tested. Guaranteed money back. Optional other components at factory prices.

INTEGRATED CIRCUITS

Circuit diagrams, etc.

ATTENTION ELF OWNERS
ANNOUNCING QUEST SUPER BASIC
At last, a full Basic for 1982 systems. A complete function Basic including two dimensional arrays, string variables, floating point, arithmetic and 32 bit signed integer arithmetic (10 digit accuracy) with 100 routines. Easily adaptable for QVM minimization for Basic and user programs. Cassette version in stock now for immediate delivery. ROM versions coming soon with exchange slons for other popular 1802 systems also.

System includes: Tiny Basic Source now available $19.00
S-100 Slot Expansion. Add more S-100 slots to your Super Expansion Board or use as a 4 slot S-100 Mother Board. Board without connectors $8.90.

Coming Soon: High resolution alpha/numeric display. Complete box contains new 2708 EPROM, 3.5K x 128, 256 x 1024 resolution for less than $100. Economical versions for other popular 1982 systems also.

10K Dynamic RAM board expandable to 32K for less than $150.

Multi-volt Computer Power Supply
50 X 3 amp. 12V, 5 amp. 15V, 1.5 amp. 9V, 3 amp. 6V, 3.5 amp. 12V are regulated. Kit $29.95. Kit with punched frame $37.45. Woodgrain case $10.00.

60 Hz Crystal Time Base Kit $4.40
Converts digital clocks from AC line frequency to 60 Hz. Dead on. Outstanding accuracy. Kit Includes: PC board, IC, crystal, resistors, capacitors, $12.95. For shipping.

Some day shipment. First the parts only. Factory tested. Guaranteed money back. Optional other components at factory prices.

INTEGRATED CIRCUITS

Circuit diagrams, etc.

ATTENTION ELF OWNERS
ANNOUNCING QUEST SUPER BASIC
At last, a full Basic for 1982 systems. A complete function Basic including two dimensional arrays, string variables, floating point, arithmetic and 32 bit signed integer arithmetic (10 digit accuracy) with 100 routines. Easily adaptable for QVM minimization for Basic and user programs. Cassette version in stock now for immediate delivery. ROM versions coming soon with exchange slons for other popular 1802 systems also.

System includes: Tiny Basic Source now available $19.00
S-100 Slot Expansion. Add more S-100 slots to your Super Expansion Board or use as a 4 slot S-100 Mother Board. Board without connectors $8.90.

Coming Soon: High resolution alpha/numeric display. Complete box contains new 2708 EPROM, 3.5K x 128, 256 x 1024 resolution for less than $100. Economical versions for other popular 1982 systems also.

10K Dynamic RAM board expandable to 32K for less than $150.

Multi-volt Computer Power Supply
50 X 3 amp. 12V, 5 amp. 15V, 1.5 amp. 9V, 3 amp. 6V, 3.5 amp. 12V are regulated. Kit $29.95. Kit with punched frame $37.45. Woodgrain case $10.00.

60 Hz Crystal Time Base Kit $4.40
Converts digital clocks from AC line frequency to 60 Hz. Dead on. Outstanding accuracy. Kit Includes: PC board, IC, crystal, resistors, capacitors, $12.95. For shipping.

Some day shipment. First the parts only. Factory tested. Guaranteed money back. Optional other components at factory prices.

INTEGRATED CIRCUITS

Circuit diagrams, etc.

ATTENTION ELF OWNERS
ANNOUNCING QUEST SUPER BASIC
At last, a full Basic for 1982 systems. A complete function Basic including two dimensional arrays, string variables, floating point, arithmetic and 32 bit signed integer arithmetic (10 digit accuracy) with 100 routines. Easily adaptable for QVM minimization for Basic and user programs. Cassette version in stock now for immediate delivery. ROM versions coming soon with exchange slons for other popular 1802 systems also.

System includes: Tiny Basic Source now available $19.00
S-100 Slot Expansion. Add more S-100 slots to your Super Expansion Board or use as a 4 slot S-100 Mother Board. Board without connectors $8.90.

Coming Soon: High resolution alpha/numeric display. Complete box contains new 2708 EPROM, 3.5K x 128, 256 x 1024 resolution for less than $100. Economical versions for other popular 1982 systems also.

10K Dynamic RAM board expandable to 32K for less than $150.

Multi-volt Computer Power Supply
50 X 3 amp. 12V, 5 amp. 15V, 1.5 amp. 9V, 3 amp. 6V, 3.5 amp. 12V are regulated. Kit $29.95. Kit with punched frame $37.45. Woodgrain case $10.00.

60 Hz Crystal Time Base Kit $4.40
Converts digital clocks from AC line frequency to 60 Hz. Dead on. Outstanding accuracy. Kit Includes: PC board, IC, crystal, resistors, capacitors, $12.95. For shipping.

Some day shipment. First the parts only. Factory tested. Guaranteed money back. Optional other components at factory prices.

INTEGRATED CIRCUITS

Circuit diagrams, etc.
The EXPANDORAM is available in versions from 16K up to 64K, so for a minimum investment you can have a memory system that will grow with your needs. It is a dynamic memory with the invisible on-board refresh, and it WORKS!

- Interfaces with Altair, IMSAI, SOL-8, Cromemco, SBC-100, and others.
- Bank Selectable
- Phantom
- Power 8VDC, -16VDC, 5 Watts
- Lowest Cost Per Bit
- Uses Popular 4116 RAMS
- PC Board is double sided solder masked and has silk-screen parts layout.

The EXPANDORAM is available in versions from 16K up to 64K, so for a minimum investment you can have a memory system that will grow with your needs. It is a dynamic memory with the invisible on-board refresh, and it WORKS!

- Interfaces with Altair, IMSAI, SOL-8, Cromemco, SBC-100, and others.
- Bank Selectable
- Phantom
- Power 8VDC, -16VDC, 5 Watts
- Lowest Cost Per Bit
- Uses Popular 4116 RAMS
- PC Board is double sided solder masked and has silk-screen parts layout.

The EXPANDORAM is available in versions from 16K up to 64K, so for a minimum investment you can have a memory system that will grow with your needs. It is a dynamic memory with the invisible on-board refresh, and it WORKS!

- Interfaces with Altair, IMSAI, SOL-8, Cromemco, SBC-100, and others.
- Bank Selectable
- Phantom
- Power 8VDC, -16VDC, 5 Watts
- Lowest Cost Per Bit
- Uses Popular 4116 RAMS
- PC Board is double sided solder masked and has silk-screen parts layout.

The EXPANDORAM is available in versions from 16K up to 64K, so for a minimum investment you can have a memory system that will grow with your needs. It is a dynamic memory with the invisible on-board refresh, and it WORKS!

- Interfaces with Altair, IMSAI, SOL-8, Cromemco, SBC-100, and others.
- Bank Selectable
- Phantom
- Power 8VDC, -16VDC, 5 Watts
- Lowest Cost Per Bit
- Uses Popular 4116 RAMS
- PC Board is double sided solder masked and has silk-screen parts layout.

The EXPANDORAM is available in versions from 16K up to 64K, so for a minimum investment you can have a memory system that will grow with your needs. It is a dynamic memory with the invisible on-board refresh, and it WORKS!

- Interfaces with Altair, IMSAI, SOL-8, Cromemco, SBC-100, and others.
- Bank Selectable
- Phantom
- Power 8VDC, -16VDC, 5 Watts
- Lowest Cost Per Bit
- Uses Popular 4116 RAMS
- PC Board is double sided solder masked and has silk-screen parts layout.
Visit our new retail location!
Assembled & Tested $259.95 • Complete Unit with 4K Memory and Video Driver on Eprom assembled and tested $339.95

kit $199.95

OPTIONAL:
- Sockets $10.00
- 2K Memory $30.00
- 4K Memory $60.00
- Video Driver Eprom $20.00
- S-100 plug-in • Parallel keyboard port

On board 4K Screen Memory (Optional). On board Eprom (Optional) for Video Driver or Text Editor Software.

Up and down scrolling through video memory Reverse Video, Blinking Characters.

Display: 128 ASCII Characters 64x32 or 32x16 Screen format (Jumper Selectable). 7 by 11 Dot Matrix Characters.

American or European TV Compatible (CRT Controls Programable) Dealer Inquiries Invited

32-K Static RAM $499. KIT
- S-100 Plug-In • Kit includes P.C. board, all parts and assembly manual • Uses 2114L, 450 nS.
- I.C. sockets - $20.00
- P.C. BOARD BY S-100 CO.

16-K Static RAM $249. KIT
- S-100 Plug-In Kit includes P.C. board, all parts and assembly manual. Uses 2114L 450 nS.
- Sockets - $10.00
- Add $40.00 for 300 nS (4MHz) RAMS
- P.C. BOARD BY WAMECO

Z-80 CPU $125. KIT
- S-100 Plug-In Kit includes P.C. boards, all parts and assembly manual.
- FEATURES: 2MHz operation • S-100 plug-in • Power-on jump • On board provision for 2708 (optional at $12.95).
- P.C. BOARD BY ITHACA AUDIO

ASCII Keyboard Kit $79.95

Assembled and Tested $95.95
- Single +5V Supply • Full ASCII Set (Upper and Lower Case) • Parallel Output • Positive and Negative Strobe • 2 Key Rollover • 3 User Definable Keys • P.C. Board Size: 17-3/16" X 5" • Control Characters Molded on Key Caps • Optional Provision For Serial Output
- **OPTIONAL:** Metal Enclosure $27.50 • Edge Con. $2.00 • Sockets $4.00 • Upper Case Lock Switch $2.50 • Shift Register (For Serial Output) $2.00

Dealer Inquiries Invited

Apple II I/O Board Kit
Plugs into Slot of Mother Board
- 1 8 Bit Parallel Output Port (Expands to 3 Ports) • 1 Input Port • 15mA Output Current Sink or Source • Can be used for peripheral equipment such as printers, floppy discs, cassettes, paper tapes, etc. • 1 free software listing for SWTP PR40 or IBM selectric.

PRICE:
- 1 Input and 1 Output Port $49.00
- 1 Input and 3 Output Ports $64.00

Dealer Inquiries Invited

new! A DREAM COME TRUE!

Introducing: 30 MHz **DUAL TRACE PORTABLE SCOPE** for an amazing $555.

- Dual trace 2-channel; separate, chopped or alternate modes. • 30 megahertz bandwidth. • External and internal trigger.
- Time base - 0.05, Microseconds to 0.2 SEC/div
- 21 settings • Battery or line operation.
- Line synchronization mode.
- Power consumption less than 50W. • Vertical gain - 0.1 to 50 volts/div - 12 settings. • Size: 2.9" H 6.4" W 8.5" D. • Weighs only 3.5 lbs. with batteries.
- Complete with input cable and rechargeable batteries and charger unit.
- **OPTIONAL:** Leather case $45.00 • 10:1 probe $27.00 (2 for $49.00)

MS-215 15 MHZ DualTrace Portable Scope $399.

MS-15 15 MHZ Single Trace Scope $299.

SHIPPING $3.50 / California residents add 6% sales tax

ELECTRONICS WAREHOUSE Inc.
15820 Hawthorne Boulevard
Lawndale, CA 90260
(213) 370-5551

Circle 130 on inquiry card.
PET SPECIALS

PET 16N 16K full size graphics keyboard $955 $150
PET 16B 16K full size business keyboard $955 $130
PET 32N 32K full size graphics keyboard $1195 $170
PET 32B 32K full size business keyboard $1195 $170
PET 18S 16K small keyboard, integral cassette $995 $130
PET 32S 32K small keyboard, integral cassette $1195 $170
PET BK 8K small keyboard, integral cassette $795 $100
PET 2040A Single Disk Drive — 340,000 bytes $855 $115
PET 2022 Tractor Feed Printer $995 $130
PET 2023 Pressure Feed Printer $849 $110

PET C2N External Cassette Dock $95 $12

FREE! UP TO $170 IN MERCHANDISE WITH THE PURCHASE OF ONE OF THE FOLLOWING PET-CBM ITEMS!!

IEEE - RS232 Printer Adaptor for PET $79.50
BETSI PET to S-100 Interface & Motherboard $119.00
PET Connectors - Parallel or IEEE $2.25
Cassette Port $1.60

FREE! UP TO $170 IN MERCHANDISE WITH THE PURCHASE OF ONE PET-CBM ITEM.

WRITE FOR 6502 AND S-100 PRODUCT LIST

FREE! UP TO $170 IN MERCHANDISE WITH THE PURCHASE OF ONE PET-CBM ITEM.

FUTURE PRODUCTS: 80 CHARACTER VIDEO BOARD, 10 BOARD WITH CASSETTE INTERFACE.

DEALER INQUIRIES INVITED, UNIVERSITY DISCOUNTS AVAILABLE AT YOUR LOCAL DEALER

WAMECO INC. 111 GLENN WAY #8, BELMONT, CA 94002 (415) 592-6141
10% OFF 20% OFF

YOUR OWN TRS-80 SYSTEM AT TREMENDOUS SAVINGS

DISK DRIVES NOW IN STOCK!

<table>
<thead>
<tr>
<th>ITEM</th>
<th>REG. PRICE</th>
<th>OUR PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRS-80 Complete System Level I - 4K RAM</td>
<td>$988.00</td>
<td>$888.20</td>
</tr>
<tr>
<td>TRS-80 Complete System Level II - 16K RAM Expansion Interface</td>
<td>$988.00</td>
<td>$889.20</td>
</tr>
<tr>
<td>Pertec FD200 Mini Disk Drive Centronics 779 Printer Centronics 351 Printer</td>
<td>$988.00</td>
<td>$889.20</td>
</tr>
<tr>
<td>Centronics 101 Printer Anadex OP-4000 Printer Centronics P1 Printer</td>
<td>$988.00</td>
<td>$889.20</td>
</tr>
<tr>
<td>Trendata 1000 Memory Kit (68k)</td>
<td>$1595.00</td>
<td>$1295.00</td>
</tr>
</tbody>
</table>

FREE INSTALLATION

Verbatim Diskettes ea. Maxell Diskettes ea. Centronics Printers C-10 Cassettes C-30 Cassettes Paper (91/2" x 11" fanfold: 5000 sheets)

$3.50 $3.50 $10.00 $24.75 $29.95 $29.95 $1295.00

Same as Line Printer II

Special 1st 25 units sold $850 Reg. $895

Anadex 9500 Similar to Line Printer III $1175 Reg. $1199

All printers include cables

There are new developments every day—write or call for the latest information.

Outlet Hours: Mon.-Fri.: 9 am.-7 pm. Sat. 12-5 pm.

FOREIGN and DOMESTIC DISTRIBUTORSHIPS AVAILABLE...

BUILD YOUR OWN LOW COST MICRO-COMPUTER POWER SUPPLIES FOR S-100 BUS, FLOPPY DISCS, ETC.

POWER TRANSFORMERS (WITH MOUNTING BRACKETS)

<table>
<thead>
<tr>
<th>ITEM</th>
<th>USED IN</th>
<th>PRI. WINDING</th>
<th>SECONDARY WINDING OUTPUTS</th>
<th>UNIT PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>1</td>
<td>0V, 110V, 120V</td>
<td>2x9A 2x2.5A 2x2.5A 2x4.5A</td>
<td>$19.95</td>
</tr>
<tr>
<td>T2</td>
<td>2</td>
<td>0V, 110V, 120V</td>
<td>2x12.5A 2x3.5A 2x3.5A 2x4.5A</td>
<td>$25.95</td>
</tr>
<tr>
<td>T3</td>
<td>3</td>
<td>0V, 110V, 120V</td>
<td>2x9A 2x2.5A 2x2.5A 2x4.5A</td>
<td>$27.95</td>
</tr>
</tbody>
</table>

POWER SUPPLY KITS (OPEN FRAME WITH BASE PLATE, 3 HRS. ASSY. TIME)

<table>
<thead>
<tr>
<th>ITEM</th>
<th>USED FOR</th>
<th>W x D x H</th>
<th>UNIT PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>KIT 1</td>
<td>@+8 Vdc</td>
<td>12"x6"x4"</td>
<td>$46.95</td>
</tr>
<tr>
<td>KIT 2</td>
<td>@-8 Vdc</td>
<td>12"x6"x4"</td>
<td>$44.95</td>
</tr>
<tr>
<td>KIT 3</td>
<td>@+16 Vdc</td>
<td>12"x6"x4"</td>
<td>$54.95</td>
</tr>
<tr>
<td>KIT 4</td>
<td>@-16 Vdc</td>
<td>12"x6"x4"</td>
<td>$59.95</td>
</tr>
</tbody>
</table>

POWER SUPPLY KITS (OPEN FRAME WITH BASE PLATE, 3 HRS. ASSY. TIME)

<table>
<thead>
<tr>
<th>ITEM</th>
<th>USED FOR</th>
<th>W x D x H</th>
<th>UNIT PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>KIT 1</td>
<td>@+8 Vdc</td>
<td>12"x6"x4"</td>
<td>$46.95</td>
</tr>
<tr>
<td>KIT 2</td>
<td>@-8 Vdc</td>
<td>12"x6"x4"</td>
<td>$44.95</td>
</tr>
<tr>
<td>KIT 3</td>
<td>@+16 Vdc</td>
<td>12"x6"x4"</td>
<td>$54.95</td>
</tr>
<tr>
<td>KIT 4</td>
<td>@-16 Vdc</td>
<td>12"x6"x4"</td>
<td>$59.95</td>
</tr>
</tbody>
</table>

REGULATED POWER SUPPLY “R2” ASSY. & TESTED, OPEN FRAME, SIZE: 9" (W) x 5" (D) x 5" (H) $69.95

SPECS: +5V ±1%, @ 5A, +24V, ±1%, @ 5A. OVERCURRENT PROTECTION AND ±5% ADJ. FOR BOTH VOLTAGES.

REMARK: IDEAL FOR ROCKWELL AIM-65 MICROCOMPUTER.

SHIPPING FOR EACH TRANSFORMER: $4.75. FOR EACH POWER SUPPLY: $5.00 IN CALIF., $7.00 IN OTHER STATES. CALIF. RESIDENTS ADD 6% SALES TAX. OEM WELCOME.

SUNNY INTERNATIONAL

(TRANSFORMERS MANUFACTURER)

Telephone: (213) 633-8327

STORE:

7245 E. ALONDRA BLVD.
PARAMOUNT, CA 90723

STORE HOURS: 9 AM-6 PM
16K EPROM CARD-S 100 BUSS
$59.95
KIT
OURS BEST SELLING KIT
USES 2708's!
THOUSANDS OF PERSONAL AND BUSINESS SYSTEMS AROUND THE WORLD USE THIS BOARD WITH COMPLETE SATISFACTION. PUTS 16K OF SOFTWARE ON LINE AT ALL TIMES! IT FEATURES A TOP QUALITY SOLDERMASKED AND SILK-SCREENED PC BOARD AND FIRST RUN PARTS AND SOCKETS. ALL PARTS (EXCEPT 2708'S) ARE INCLUDED. ANY NUMBER OF EPROM LOCATIONS MAY BE DISABLED TO AVOID ANY MEMORY CONFLICTS. FULLY BUFFERED AND HAS WAIT STATE CAPABILITIES.

16K STATIC RAM KIT-S 100 BUSS
$279 KIT
FULLY STATIC, AT DYNAMIC PRICES
WHY THE 2114 RAM CHIP? WE FEEL THE 2114 WILL BE THE NEXT INDUSTRY STANDARD RAM CHIP. THIS MEANS PRICE, AVAILABILITY, AND QUALITY WILL ALL BE GOOD. THAT'S WHY WE CHOSE THE 2114 TO BE THE ONLY WAY TO GO ON THE 16K BUSS. WE'VE ALL HEARD THE NON-DYNAMIC RAMS SOUNDED GREAT. BUT THE 2114S ARE CREATED IN A SIMILAR WAY. SOME OF THE OTHER 4K's HAVE DYNAMIC RAM CHIPS IN OUR LINES THAT ARE AT 4K TIMES OF 2114. SOME OF OUR COMPETITION'S 16K BOARD USES THESE 'TRICK' DEVICES. BUT NOT US! THE 2114 IS THE ONLY CHOICE FOR A TROUBLE-FREE, STRAIGHTFORWARD DESIGN.

16K STATIC RAM SS-50 BUSS
$295 KIT
FULLY STATIC AT DYNAMIC PRICES
KIT FEATURES:
1. Addressable on 16K Boundaries
2. Uses 2114 Static Ram
3. Runs at Full Speed
5. All Parts and Sockets included
6. Low Power: Under 2 Amps Typical

NEW! G.I. COMPUTER SOUND CHIP
AY-9810. AS FEATURED IN JULY, 1979 BYTE. A FANTASTICALLY POWERFUL SOUND & MUSIC GENERATOR. PERFECT FOR USE WITH ANY 8BIT MICROPROCESSOR. CONTAINS: 3 TONE CHANNEL, NOISE GENERATOR, 3 CHANNELS OF AMPLITUDE CONTROL, 16 BIT ENVELOPE, PERIOD, CONTROL, 2-8 BIT PARALLEL I/O, 3 D TO A CONVERTER, PLUS MUCH MORE! ALL IN ONE 40 PIN DIP. SUPER EASY TO INTERFACE TO THE S-100 OR OTHER BUS SYSTEMS.

SPECIAL OFFER: $14.95 EACH ADD $5 FOR 64 PAGE DATA MANUAL. LIMITS APPLY.

PROC. TECH. QUITS THE MICROPROCESSOR BUSINESS! FACTORY CLOSE OUT - SPECIAL PURCHASE!
#16KRA
16K S-100 Dynamic Ram Board - $149.95
ORIGINALLY PRICED AT $249 EACH!
WE PURCHASED THE REMAINING INVENTORY OF PT'S POPULAR 16K RAM BOARD WHEN THEY RECENTLY CLOSSED THEIR PLANT. DON'T MISS THE BOAT! THESE ARE BRAND NEW, FULLY TESTED, ASSEMBLED AND READY TO GO. ALL ARE SOLD WITH OUR STANDARD 90 DAY LIMITED WARRANTY!!

72 PAGE FULL MANUAL, INCLUDED FREE!

NOT ASSOCIATED WITH DIGITAL RESEARCH OF CALIFORNIA. THE SUPPLIERS OF CP/M SOFTWARE.

Digital Research: Computers (GF TEXAS)
P.O. Box 401555 • GARLAND, TEXAS 75040 • (214) 271-2461

BYTE September 1979 247
JADE Computer Products

FREE! A 1/2 INCH, BLACK AND WHITE, MONITOR WITH THE PURCHASE OF ANY SORCERER!

Flexibility is the key. The SORCERER computer gives you the flexibility of using ready-to-run, pre-packaged programs or doing your own thing and personalizing the programs for yourself. Whichever you choose the SORCERER is the personal computer that speaks your language.

The SORCERER also provides full graphics capabilities. Each character, formed by an 8 x 8 dot cell, can be programmed as a graphic symbol set. High resolution (512 x 240 addressable points) gives a total of 122,880 locations for super animation and extremely tight plotting curves. The alphanumeric and graphical fonts can be included on the video screen.

PART NUMBER: SYO-5016A
With 16K of memory...
$1150.00

PROTO BOARD Includes gold tinned, S-100 compatible 72-pin dip, accomplishes all S-100 40 pin dip packages. Reg. $195 Special Price $185 PART TEX-1409

SD SYSTEMS SBC-100 An S-100 8080 compatible computer with 8080 CPU, with 1002 bytes of RAM, 1024 bytes of PROM, Serial I/O port, and kit. KIT $229.95

TRS-80 APP & SORCERER TRS-80 APP SPL System Features Include: 1) S-100 Compatible 2) Two serial 1/0 ports using standard interface. One general purpose interface and parallel interface to interface control or Select interface switch on board. "KBC-30753K" standard cassette interface usable up to 1200 baud, allowing storage of up to 180,000 bytes on a 30 minute cassette. Kit $159.95 Assembled $195.00

High Quality 13 INCH COLOR MONITOR—Specially matched for use with the TI-99/4 console. Uses a simple, sure hook-up. Up to 102K TOTAL MEMORY-CAPACITY-16K RAM, plus up to 26K ROM onboard, plus up to 30K ROM in TRS-80 Build State Software Command Modules. 16-COLOR GRAPHICS CAPABILITY—Easy to access high resolution graphics have special features that let you define your own characters, create animated displays, charts, graphs, etc. MUSIC AND SOUND EFFECTS—Provides outstanding audio capability. Build three Note chords and adjust frequency, duration and volume quickly and simply. You can build notes with short, straight forward commands. Five full octaves from 110 Hz to beyond 40,000 Hz. BUILT-IN EQUATION CALCULATOR—Unique convenience features helps you find quick solutions to everyday math problems, as well as complex mathematical calculations.

SYM-1 Part Number: CPK-5000A
6502-Based SINGLE BOARD COMPUTER WITH KEYBOARD/DISPLAY KIM-1 HARDWARE COMPATIBLE, COMPLETE DOCUMENTATION
$245

GRI KEYBOARDS Features Include: Full 128 character ASCII, tri-mode Macs encoding a MOS/DTL TTL compatible output on a two-key rollover. 40 key keyboard includes a Level and pulse strobe, Shift and alpha lock and

Circle 195 on Inquiry card.

Circle 195 on Inquiry card.
INTEGRAL DATA SYSTEMS MODEL 440 PAINTER
THE PAPER TIGER

THE PIGGY MAINFRAME

THE PIGGY IS HERE!

POWER SUPPLIES

JADE COMPUTER PRODUCTS

VISTA V80 MINI DISK SYSTEM

WHERE ORDERS TOLL FREE:

In the United States and Canada

When visiting the Los Angeles area, visit JADE's retail store at 13340 S. Hawthorne Blvd. in the city of Hawthorne

800/421-5809 Continental U.S.
800/282-1710 Inside California

INFORMATION CENTER

1-800-421-5809

PART NUMBER: MBS-38004

Includes disk drive, power supply, regulator, board, and compact case. The V-80 offers 24 more storage capacity. Simply take it out of the box, plug in the cable, and it is ready to run. Requires 16K, Level II, expansion interface.

Interface Cable...$29.95

PART NUMBER: WCA-3251A

Circle 195 on inquiry card.

Circle 195 on inquiry card.

Circle 195 on inquiry card.

Circle 195 on inquiry card.
Circle 296 on inquiry card.

COMMERCIAL GRADE PERIPHERALS FOR THE MICROCOMPUTER

PRINTER TERMINALS

- **ASCII SELECTRIC PRINTER/TYPewriter:** Why settle for less than the best? ASCII selects for printout from your computer. Refurbished IBM Model 725 can be used as off-line typewriter or on-line printer. Complete with solenoids, power supply, case and ASCII interface card (TLT to CPU parallel port). Price: programmed w/3 translation tables (one type sphere) – $799.00.

- **SELECTRIC I/O TERMINALS** (by GTE/Information Systems). Both ASCII & IBM code versions with microcomputer interface software & hardware (RS-232 connector). Cassette drive models permit up to 2400 baud data transfer rate as well as off-line data storage, use as memory typewriter, & as data entry device for office personnel familiar with Selectric typewriters but not computers. Wide-carriage, interchangeable type spheres; optional built-in modem. All units cleaned, adjusted & warranted.

 - Model 5541 (IBM Correspondence code) – $795.00
 - Model 5550 (correct, code, built-in cassette drive) – $1195.00
 - Model 5650 (ASCII code, built-in cassette drive) – $1295.00

- **DIABLO MODEL 1550 "DAISY-WHEEL" TERMINAL:** Refurbished letter-quality terminal with Hytype I printer (30 cps), full ASCII keyboard, RS-232 serial prot, 110, 150, 300 baud, 768 char print buffer, software controlled graphics mode (1/60 in. spacing), built-in stand, SHIP WT. 200 lb. Price, refurbished: – $1995.00.

- **DIABLO HYTYPE I Model 1200 PRINTER MECHANISM:** Used & complete and tested. Requires power supply, case & mCPU interface. 15 day return privilege – no other warranties. LIMITED QUANTITY! – $750.00.

 - 9-8 ribbon cable & connector for printer Main Logic PCB – $10.00
 - 14-pin Winchester connector & 18" power supply cable – $5.00
 - "As-is" spare printer PCB’s for parts (Logic, Heat Sink, Controller): ea. $20.00
 - New Pin-feed Platen (14") – $50 if bought w/printer; separately – $100.00

MODems

- **POS 103/202 "MIX or MATCH" MODEM:** BELL 103 and/or BELL 202 frequencies: Unique POS control design permits use in one housing of both Bell-compatible 103 (0 – 300 baud) and 202 (0 – 1200 baud) modem modules originally made by VADIC Corp. for a telephone company subsidiary. FEEL ON: RS-232 serial interface, auto-answer, auto-dial, LED display, telephone line interface via acoustic coupler, manual DAA, or auto-answer. DAA (sold separately) FULLY ADJUSTED; no special tools required. 3,000 mile range over standard dial-up telephone lines.

 - POS 103 MODEM (with Auto Answer, Auto Dial) – $179.95
 - POS 202 MODEM (Half-Duplex with Reverse Channel) – $249.95
 - POS 202 MODEM (Half-Duplex w/Rev Ch, Auto-Answer) – $279.95
 - POS 103/202 MODEM (Auto-Answer, Auto-Dial) – $399.95

- **POS-100 NRZI TAPE DRIVE CONTROLLER/FORMATTER:** Designed as interface between 5-100 bus mCPU and 5-track, 800 BPI, NRZI tape drive, Allows microcomputerist to read and write IBM-compatible 1/2" mag tapes. Software provided for 8060 or 2600 systems. Requires modification for drives of various mfrs.

 - Price: (Includes S-100 card, controller card, 10" cable, software listing) – $750.00
 - NRZI TAPE DRIVE by WILLARD LABS. 5-track, 800 BPI, NRZI format, 12"sec., 1200 ft. reel (10 megabyte capacity) Fully tested and warranted $599.00.

- **POS 103/202 MODEM (Auto-Answer, Auto-Dial)** – $399.95

TAPE DRIVES

- **NRZI TAPE DRIVE TERMINALS**

 - No. 519 (w/fan & AC cord): 1900 baud, 6"/sec AC motor; fwd/rewnd circuitry plus tape head, no read/write electronics $39.95
 - No. 519 (w/fan & AC cord): 1900 baud, 6"sec AC motor; fwd/rewnd circuitry plus tape head, no read/write electronics $39.95
 - No. 519 (w/fan & AC cord): 1900 baud, 6"sec AC motor; fwd/rewnd circuitry plus tape head, no read/write electronics $39.95

- **IBM Code Versions with Microcomputer Interface Software**

 - 48K Dynamic Ram – $595.

 - Micromation Doubler Disk Controller... $395.

- **Measurement Systems & Controls**

 - Measurement Systems & Controls

 - 48K Dynamic Ram... $595.

PACIFIC OFFICE SYSTEMS, INC.

918 Industrial Ave.
Palo Alto, CA 94306
(415) 321-3986

Full documentation included PLUS interface instructions where indicated. All equipment is shipped insured FOB Palo Alto within 14 days after check clears or COD order is received. Prices may change without notice.

Call or write for details, quantity prices, catalog, 15 day return privilege PLUS 90 day no charge replacement of defective parts. All orders shipped from stock. No back orders, no substitutions. M/C & VISA accepted.

ProComp/New England announces IMNET... (IMSAI Multi-user NETwork Operating System) True Microcomputer Networks.... Better than timeshared mini- or micro-systems.... And less expensive. Stop by and see for yourself, Or write or call for our IMNET brochure.

10 Megabyte Winchester Disk, Integrated Video Computer... $10,995. Other Micromation Integrated Video Computer Systems from $5995.

Specials

- Micromation Doubler Disk Controller... $395.
- Measurement Systems & Controls
- 48K Dynamic Ram... $595.

ProComp/New England

4th Floor
120 Boylston Street
Boston, MA 02116

Write, call or stop in (M-F 9-5; S 10-4) for our catalog and Grand Opening Sale Price List.
Wire Wrap Tools

Battery Hobby Tool
- Auto Indexing
- Anti-Overwrapping
- Modified Wrap

<table>
<thead>
<tr>
<th>Tool</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>BW2628</td>
<td>$19.95</td>
</tr>
<tr>
<td>BT30</td>
<td>$2.95</td>
</tr>
<tr>
<td>BT2628</td>
<td>$7.95</td>
</tr>
<tr>
<td>BC1</td>
<td>$11.00</td>
</tr>
</tbody>
</table>

*Requires 2 "C" Niced Batteries

Battery Industrial Tool
- Accepts Industrial Bits and Sleeves
- Industrial Motor for Production Wrapping
- Backforce Avail. (Recommended for #30).

<table>
<thead>
<tr>
<th>Tool</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>BW928</td>
<td>$49.95</td>
</tr>
<tr>
<td>BW928BF</td>
<td>$52.95</td>
</tr>
<tr>
<td>EW8</td>
<td>$85.00</td>
</tr>
</tbody>
</table>

Electric Industrial Tool
- Accepts Industrial Bits and Sleeves
- Industrial Motor for Production Wrapping
- Backforce Avail. (Recommended for #30).

<table>
<thead>
<tr>
<th>Tool</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>EW28</td>
<td>$29.50</td>
</tr>
<tr>
<td>EW28BF</td>
<td>$92.90</td>
</tr>
</tbody>
</table>

IC Sockets

RN HIGH RELIABILITY eliminates trouble. "Side-wipe" contacts make 100% greater surface contact with the wide, flat sides of your IC leads for positive electrical connection.

WIRE WRAP SOCKETS

<table>
<thead>
<tr>
<th>8 Pin</th>
<th>10-24</th>
<th>25-99</th>
<th>100-249</th>
<th>250-1K</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 Pin</td>
<td>.21</td>
<td>.18</td>
<td>.16</td>
<td>.15</td>
</tr>
<tr>
<td>14 Pin</td>
<td>.39</td>
<td>.37</td>
<td>.34</td>
<td>.32</td>
</tr>
<tr>
<td>16 Pin</td>
<td>.42</td>
<td>.40</td>
<td>.36</td>
<td>.34</td>
</tr>
</tbody>
</table>

SOLDER TAIL

<table>
<thead>
<tr>
<th>8 Pin</th>
<th>10-24</th>
<th>25-99</th>
<th>100-249</th>
<th>250-1K</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 Pin</td>
<td>.21</td>
<td>.18</td>
<td>.16</td>
<td>.15</td>
</tr>
<tr>
<td>14 Pin</td>
<td>.39</td>
<td>.37</td>
<td>.34</td>
<td>.32</td>
</tr>
</tbody>
</table>

ORDERING INFORMATION
- Orders under $25, add $2 handling
- Blue Label or First Class, add $1 (up to 3 lbs.)
- CODs, Visa & MC orders will be charged shipping
- Most orders shipped next day.

OK PRODUCTS

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>WD 30</td>
<td>$3.75</td>
</tr>
<tr>
<td>WD-30-TRI</td>
<td>5.50</td>
</tr>
<tr>
<td>R-30-TRI</td>
<td>3.75</td>
</tr>
</tbody>
</table>

Page

35 E. Chestnut Street 5A, Monrovia, California 91016 Phone (213) 357-5005

AVAILABLE AT SELECTED LOCAL DISTRIBUTORS

BYTE September 1979 251
SALE $100.00 OFF

Circle 4 on inquiry card.

PET COMMODORE

- Model stock
- Delivery from only

WE TAKE B/A, VISA, AM. EXP. • ADD 2.5% HANDLING & POSTAGE • PRICES SUBJECT TO CHANGE W/O NOTICE

Add Now only $179.00

- **Power**
- **Sanyo** available for the lowest price ever, only $99.00. You can add:
 - **APPLE's new upgraded APPLE II w/1 SK** is now in stock and
 - **KIM•1 Compatible**
 - **SYM•1 IN STOCK**
 - **Options:** 101 Key Keyboard Add $19.95
 - **Add 117 Key Keyboard**

KIM-1

Now only $179.00

- **In stock**
- **Add $99.95**
- **Assembly & enclosure**

COMMODORE

- **PET**
- **Now in stock**
- **Add $775.00**

LOW LOW APPLE II PLUS $990.00

APPLE's new upgraded APPLE II w/16K is now in stock and
for the lowest price ever, only $990.00. You can add:

- **** New Word Processing Pac...
- **Includes:**
 - Keyboard & enclosure
 - **90 Day Warranty**
 - MICROSOFT BASIC
 - **Complete Documentation**
 - **$100 Expansion Module**
 - **Add $44.95**

AIM 65

ADVANCED INTERACTIVE MICROCOMPUTER

- On Board 20 column alphanumeric printer
- Alphanumeric 20 character display
- Terminal style Keyboard 96 Keys
- **$695.00**

RCA COSMAC VIP

NEW LOW PRICE $249.00

- Assembled, Regular price...
- **w/Sanyo 9" Monitor**...
- **w/4K RAM... Add $450.00**
- **w/1K RAM... Add $375.00**
- **w/4K RAM... Add $450.00**
- **ASSEMBLED ROM... Add $85.00**
- **Basic in ROM... Add $100.00**
- **Power Supply... Add $99.95**
- **Enclosure... Add $44.95**

NORTH STAR HORIZON

DOUBLE DENSITY

- **Now in stock** North Star Z-80 based high-performance computer.
- 160K Bytes per Disk
- 8K Processor
- **2 Used Processor**
- **2 Series**
- **1 Parallel Port Avail.**
- **16K RAM**

Here are some examples

+ **New SOL-20 w/o Memory** $1285.00
+ **SOL-20 Keyboards** $1195.00
+ **8KRA Memory Boards Assembled** $129.95
+ **NKRA Memory Boards up to 64K** $CALL

PROCESSOR TECHNOLOGY SALE

- **SOL-20 DEALERS & USERS INVITED!**
- **Spare parts, work in process, and finished goods. This material will be sold on a first come first served basis.**
- **Advanced will continue to support some SOL products on a limited basis so make sure you get a copy of our complete inventory listing and a place on our SOL mailing list.**

WE TAKE B/A, VISA, AM. EXP. • ADD 2.5% HANDLING & POSTAGE • PRICES SUBJECT TO CHANGE W/O NOTICE

Circle 4 on inquiry card.
The Vista V80 Mini Disk System is the perfect way to widen the capabilities of your TRS-80* Microcomputer. Quickly and inexpensively. Our $395 price tag is about $100 less than the Radio Shack equivalent. Our delivery time is immediate (24 hour turnaround from our Santa Ana, Ca. factory). And our system is fully interchangeable. That's just the start.

It will give you 23% more storage capacity by increasing useable storage from 55,000 to 65,000 bytes per drive with our new software patch.

It can work 8 times faster than the TRS-80 MiniDisk system, because track-to-track access is 5ms versus 40ms for the TRS-80. You can realize this added speed once the new double disk expansion interface is available without expensive modification of the existing unit.

It has a better warranty than any comparable unit warranty available - a full 120 days on all parts and service. When you consider how much more goes into the Vista V80, that shows a lot of faith in our product.

A full 3 amp power supply means you have 2½ times the power necessary to operate the V80, and full ventilation insures that there will be no problems due to overheating.

The Vista V80 Mini Disk System requires Level II Basic with 16K RAM Expansion interface (it operates from the Radio Shack interface system. It comes complete with a dependable MPI Minifloppy disk drive, power supply, regulator board and vented case. It's shipped to you ready to run - simply take it out of the box and plug it in. You're in business.

*TRS-80®Tandy Corp.

The Vista Computer Company.
Manufacturers of Quality Computer Systems and Software.
714/751-9201
1320 East St. Andrews Place
Suite I, Santa Ana, Ca. 92705

Circle 378 on Inquiry card.
The *NEW Owners Of* Radio Hut
P.O. BOX 2015 GARLAND, TEXAS 75041
ORDER BY PHONE—214-324-5509

The EXPANDORAM is available in versions from 16K up to 64K, so for a minimum investment you can have a memory system that will grow with your needs. This is a dynamic memory with the invisible on-board refresh, and it WORKS!

- Bank Selectable
- Phantom
- Power BYDC, +16VDC, 5 Watts
- Lowest Cost Per Bit
- Uses Major Brand 16K RAMS
- PC Board is doubled solder masked and has silk-screen parts layout
- Extensive documentation clearly written

SD EXPANDORAM

<table>
<thead>
<tr>
<th>Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>16K</td>
<td>$219.00</td>
</tr>
<tr>
<td>32K</td>
<td>$279.00</td>
</tr>
<tr>
<td>48K</td>
<td>$359.00</td>
</tr>
<tr>
<td>64K</td>
<td>$419.00</td>
</tr>
<tr>
<td>WITHOUT MEMORY</td>
<td>$159.00</td>
</tr>
</tbody>
</table>

TELE TAPE

Record important telephone conversations now with Tele Tape and your recorder. Each time your telephone receiver is picked up your recorder will start automatically and when you hang up it stops. Tape will be extra clear so you can refresh your memory at a later date. Kit includes everything except case and phone plugs.

Assembled and Tested only

$29.95

VERSALOOPPY KIT

The Versatile Floppy Disk Controller

Features: IBM 3740 Soft Sected Compatable. S-100 BNS Compatible for Z-80 or 8080. Control up to 4 Drives (single or double sided). Directly controls the following drives:

1. Shugart SA400/450 Mini Floppy
2. Shugart SA800/860 Standard Floppy
3. PERSCI 70 and 277
4. MFE 700/750
5. CDC 9404/9406

EXPANDORAM 64K Kit (16K Ram)

16K $219.00
32K $279.00
48K $359.00
64K $419.00
W/O MEMORY ... $159.00

We carry a full line of SD Systems Products. Please write for catalog or call for prices.

UNSCRAMBLER KIT

Interfaces with any monitor or scanner
- Easily tuned
- Full instructions included
- Drilled fiberglass P.C. Board
- Easy to install
- Punched case includes everything except case and phono jacks

This unit can unscramble most any scrambled frequency such as the Motorola scramble and so on.

Only $37.95 A&T

TELE TAPE

Record important telephone conversations now with Tele Tape and your recorder. Each time your telephone receiver is picked up your recorder will start automatically and when you hang up it stops. Tape will be extra clear so you can refresh your memory at a later date. Kit includes everything except case and phone plugs.

Assembled and Tested only

$29.95

LED WIRING HARNESS

Has one of our LED Rocket switches, one rotary switch, two jumbo LED lamps and two PC edge connectors from desk top calculator plant

79¢ EACH

POWER SUPPLY

A very fortunate purchase. One of the best industrial quality REGULATED supplies we have seen. High performance, small size. Input is 120VAC, 60 HZ. Has the following regulated outputs: -5VDC at 800 MA. -15VDC at 1.25 AMP. -25 VDC at 180MA.

$10.95

MINIATURE SPEAKER SPECIAL

2 INCH — .8 OHM.
PERFECT FOR CLOCKS! $.79

ROCKER SWITCH

HEAVY DUTY
S.P.D.T. 3A. 125 V.A.C.
New, modern styling! 5 for $1

Z80 STARTER KIT

SD System's Z80 Starter Kit enables the novice to build a complete microcomputer on a single board. Featuring the powerful Z80 microprocessor the Z80 Starter Kit features:

- Keyboard and Display
- Audio Interface
- PROM Programmer
- Expansion and Wire Wrap Area
- On Board RAM
- 4 Channel Counter/Timer
- Z-BUG Monitor in PROM / I/O Ports.

This month's Special:

$219.95 Kit

$369.95 A&T

RELATED CHIPS

2114 (300ns) 5.95
Z80 PIO 9.95
Z80 CTC 11.95
2708 8.99
4115 8/34.95
4116 (200ns) 8/80.00
4116 (150ns) 8/100.00

DISC CONTROLLER

$771 29.95

While in Dallas visit our retail store at Treehouse Shopping center. Garland Road and Jupiter.

COMPUTER CORNER

Z80 10.99
Z80A 13.99

TERMS: Add 30¢ postage, we pay balance. Orders under $15 add 75¢ handling. No C.O.D. We accept Visa, Master Charge, and American Express cards. Tex. Res. add 5% Tax. Foreign orders (except Canada) add 20% P & H. 90 Day Money Back Guarantee on all items.
To get information on the products advertised in BYTE, fill out the reader service card with your name and address. Then circle the appropriate numbers for the advertisers you select from the list. Add a 15-cent stamp to the card, then drop it in the mail. Not only do you gain information, but our advertisers are encouraged to use the marketplace provided by BYTE. This helps us bring you a bigger BYTE.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AB Computers 245</td>
<td>68</td>
<td>Data Access Corp 165</td>
<td>120</td>
<td>Micro-Mike's 224</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Administrative Systems 80</td>
<td>69</td>
<td>Data Discount Center 221</td>
<td>121</td>
<td>Micropolis 108, 109</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Advanced Access Group 110</td>
<td>70</td>
<td>Data/Print Publishing Co 186</td>
<td>122</td>
<td>Micro Pro International 56, 57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Advanced Computer Products 252, 253</td>
<td>71</td>
<td>Datacom Computer Corp 194</td>
<td>123</td>
<td>Microsoft 127</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>180</td>
<td>72</td>
<td>Data Terminals & Communications 195</td>
<td>124</td>
<td>MicroSoft (CAI) 210</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Alladin Stitching 77</td>
<td>73</td>
<td>Data-Trans 238</td>
<td>125</td>
<td>Microsource 13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Alico 21</td>
<td>74</td>
<td>Diablo (Div. of Xerox) 79</td>
<td>126</td>
<td>Microtext Inc 59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>American Square Computers 174</td>
<td>75</td>
<td>Digital Pathways 167</td>
<td>127</td>
<td>Microtext Inc 147</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Anderson Jacobson 215</td>
<td>76</td>
<td>Disks Etc 213</td>
<td>128</td>
<td>Microwave 164</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Apparel 234</td>
<td>77</td>
<td>Disko Scientific 210</td>
<td>129</td>
<td>The Micro Works 158</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Apple Computer 25</td>
<td>78</td>
<td>Driks Etc 213</td>
<td>130</td>
<td>Miklos 231</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>AP Products 63</td>
<td>79</td>
<td>Driks Etc 213</td>
<td>131</td>
<td>Mini Computer Suppliers 176</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>ASAP Computer Products 85</td>
<td>80</td>
<td>Driks Etc 213</td>
<td>132</td>
<td>Mission Control 199</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>ATV Research 172</td>
<td>81</td>
<td>Driks Etc 213</td>
<td>133</td>
<td>Morrow/Thinker Toys 25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Automated Computer Software 121</td>
<td>82</td>
<td>Driks Etc 213</td>
<td>134</td>
<td>Morrow/Thinker Toys 25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Automated Simulations 212</td>
<td>83</td>
<td>Driks Etc 213</td>
<td>135</td>
<td>Mountain Hardware 143</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Avionics Engine 172</td>
<td>84</td>
<td>Driks Etc 213</td>
<td>136</td>
<td>Mountain Hardware 143</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Axon 144</td>
<td>85</td>
<td>Driks Etc 213</td>
<td>137</td>
<td>MVT Microcomputer Systems 45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Basic Time 187</td>
<td>86</td>
<td>Driks Etc 213</td>
<td>138</td>
<td>National Technical Schools 210</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Bats (Div of Measurement 133</td>
<td>87</td>
<td>Driks Etc 213</td>
<td>139</td>
<td>NEECO 94, 95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Bela (Div of Measurement 133</td>
<td>88</td>
<td>Driks Etc 213</td>
<td>140</td>
<td>NEECO 156</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Bela (Div of Measurement 133</td>
<td>89</td>
<td>Driks Etc 213</td>
<td>141</td>
<td>Netronics 87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Biotech Electronics 152</td>
<td>90</td>
<td>Driks Etc 213</td>
<td>142</td>
<td>New England Recruiters 174</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Bits + Pieces 181, 200</td>
<td>91</td>
<td>Driks Etc 213</td>
<td>143</td>
<td>New World Books 239</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Buse/Charles Fido 172</td>
<td>92</td>
<td>Driks Etc 213</td>
<td>144</td>
<td>Omnicom 211</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Byte Back Issues 213</td>
<td>93</td>
<td>Driks Etc 213</td>
<td>145</td>
<td>Omni Computer Corp 179</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>BYTE Books 113, 135</td>
<td>94</td>
<td>Driks Etc 213</td>
<td>146</td>
<td>OnComputing 97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>* Byte Subscriber 217</td>
<td>95</td>
<td>Driks Etc 213</td>
<td>147</td>
<td>Organic Software 174</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Byte WATS 172</td>
<td>96</td>
<td>Driks Etc 213</td>
<td>148</td>
<td>Oracle Software Associates 199</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>California Comp Systems 37</td>
<td>97</td>
<td>Driks Etc 213</td>
<td>149</td>
<td>Owens Associates Inc 124</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>California Digital 215</td>
<td>98</td>
<td>Driks Etc 213</td>
<td>150</td>
<td>Pac Bell 214</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Roy J. Canon 174</td>
<td>99</td>
<td>Driks Etc 213</td>
<td>151</td>
<td>Pacific Exchanges 25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>CAP Electronics 92</td>
<td>100</td>
<td>Driks Etc 213</td>
<td>152</td>
<td>Pacific Software Inc 163</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Centronics 73</td>
<td>101</td>
<td>Driks Etc 213</td>
<td>153</td>
<td>Pacific Software Inc 163</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Chips Industries 142</td>
<td>102</td>
<td>Driks Etc 213</td>
<td>154</td>
<td>Pacific Software Inc 163</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>COMPAC 180</td>
<td>103</td>
<td>Driks Etc 213</td>
<td>155</td>
<td>Paramount Systems 214</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>COMPAC 192</td>
<td>104</td>
<td>Driks Etc 213</td>
<td>156</td>
<td>Partial Software 163</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>COMPAC 195</td>
<td>105</td>
<td>Driks Etc 213</td>
<td>157</td>
<td>PeerCom 166</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Compuchip Corp 39</td>
<td>106</td>
<td>Driks Etc 213</td>
<td>158</td>
<td>Personal Computer Development 214</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Computer Factory NY 155, 229</td>
<td>107</td>
<td>Driks Etc 213</td>
<td>159</td>
<td>Persol Software 163</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Computer Furniture & Accessories 161</td>
<td>108</td>
<td>Driks Etc 213</td>
<td>160</td>
<td>Perfect World 163</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Computer Hardware 215</td>
<td>109</td>
<td>Driks Etc 213</td>
<td>161</td>
<td>Petrol Software 163</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Computer Letter 68, 148, 153</td>
<td>110</td>
<td>Driks Etc 213</td>
<td>162</td>
<td>Petrol Software 163</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Computer Mart of NJ 93</td>
<td>111</td>
<td>Driks Etc 213</td>
<td>163</td>
<td>Petrol Software 163</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Computer Service Center 217</td>
<td>112</td>
<td>Driks Etc 213</td>
<td>164</td>
<td>Power One Inc 164</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Computer Tax Service 223</td>
<td>113</td>
<td>Driks Etc 213</td>
<td>165</td>
<td>Power One Inc 164</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Computer Warehouse 217</td>
<td>114</td>
<td>Driks Etc 213</td>
<td>166</td>
<td>Power One Inc 164</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Computerlink 148</td>
<td>115</td>
<td>Driks Etc 213</td>
<td>167</td>
<td>Power One Inc 164</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Convex Systems 47</td>
<td>116</td>
<td>Driks Etc 213</td>
<td>168</td>
<td>Power One Inc 164</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Cover Craft 176</td>
<td>117</td>
<td>Driks Etc 213</td>
<td>169</td>
<td>Power One Inc 164</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Creative Software 228</td>
<td>118</td>
<td>Driks Etc 213</td>
<td>170</td>
<td>Power One Inc 164</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Cromemco 1, 2</td>
<td>119</td>
<td>Driks Etc 213</td>
<td>171</td>
<td>Power One Inc 164</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>CTC 104</td>
<td>120</td>
<td>Driks Etc 213</td>
<td>172</td>
<td>Power One Inc 164</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Advanced Micro Systems 177</td>
<td>121</td>
<td>Driks Etc 213</td>
<td>173</td>
<td>Power One Inc 164</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Cybertronics Inc 224</td>
<td>122</td>
<td>Driks Etc 213</td>
<td>174</td>
<td>Power One Inc 164</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Cygol 217</td>
<td>123</td>
<td>Driks Etc 213</td>
<td>175</td>
<td>Power One Inc 164</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Correspond directly with company.
Low Cost Add-On Storage for Your TRS-80*. In the Size You Want.

When you're ready for add-on disk storage, we're ready for you.

Ready with six mini-disk storage systems — 102K bytes to 591K bytes of additional on-line storage for your TRS-80*.

Choose either 40-track TFD-100™ drives or 77-track TFD-200™ drives.

One- and three-drive systems immediately available.

Systems include Percom PATCH PAK #1™, on disk, at no extra charge. PATCH PAK #1™ de-glitches and upgrades TRSDOS* for 40- and 77-track operation.

TFD-100™ drives accommodate "flippy disks." Store 205K bytes per mini-disk.

Low prices. A single-drive TFD-100™ costs just $399. Price includes PATCH PAK #1™ disk.

Enclosures are finished in system-compatible "Tandy-silver" enamel.

Whether you need a single, 40-track TFD-100™ add-on or a three-drive add-on with 77-track TFD-200™s, you get more data storage for less money from Percom.

Our TFD-100™ drive, for example, lets you store 102.4K bytes of data on one side of a disk — compared to 80K bytes on a TRS-80® mini-disk drive — and 102.4K bytes on the other side, too. Something you can’t do with a TRS-80® drive. That’s almost 205K bytes per mini-disk.

And the TFD-200™ drives provide 197K bytes of on-line storage per drive — 197K, 394K and 591K bytes for one-, two and three-drive systems.

PATCH PAK #1™ our upgrade program for your TRSDOS*, not only extends TRSDOS* to accommodate 40-and 77-track drives, it enhances TRSDOS* in other ways as well. PATCH PAK #1™ is supplied with each drive system at no additional charge.

The reason you get more for less from Percom is simple. Peripherals are not a sideline at Percom. Selling disk systems and other peripherals is our main business — the reason you get more engineering, more reliability and more back up support for less money.

In the Product Development Queue...a printer interface for using your TRS-80® with any serial printer, and...the Electric Crayon™ to map your computer memory onto your color TV screen — for games, animated shows, business displays, graphs, etc. Coming PDQ!

™ TFD-100, TFD-200, PATCH PAK and Electric Crayon are trademarks of PERCOM DATA COMPANY.

*TRS-80 and TRSDOS are trademarks of Tandy Corporation and Radio Shack which have no relationship to PERCOM DATA COMPANY.

To order add-on mini-disk storage for your TRS-80®, or request additional literature, call Percom’s toll-free number: 1-800-527-1592. For detailed technical information call (214) 272-3421.

Orders may be paid by check or money order, or charged to Visa or Master Charge credit accounts. Texas residents must add 5% sales tax.

Percom ‘peripherals for personal computing’
The Microcomputers you should take seriously

The Challenger III Series is the microcomputer family with the hardware, features, high level software and application programs that serious users in business and industry demand from a computer system, no matter what its size.

Since its introduction in August, 1977, the Challenger III has become one of the most successful microcomputer systems in small business, educational and industrial development applications. Thousands of Challenger III's have been delivered and today hundreds of demonstrator units are set up at systems dealers around the country.

Now the Challenger III systems offer features which make their performance comparable with today's most powerful mini-based systems. Some of these features are:

Three processors today, more tomorrow.
The Challenger III Series is the only computer system with the three most popular processors — the 6502A, 68000 and Z 80. This allows you to take maximum advantage of the Ohio Scientific software library and the tremendous number of programs offered by independent suppliers and publishers. And all Challenger III's have provisions for the next generation of 16 bit micros. 16 bit data BUS, 20 address bits, and unused processor select codes. This means you'll be able to plug a CPU expander card with two or more 16 bit micros right in to your existing Challenger III computer.

Systems Software for three processors.
Five DOS options including development, end user, and virtual data file single user systems, real time, time share, and networkable multi-user systems.

The three most popular computer languages including three types of BASIC plus FORTRAN and COBOL software with more

OS-DMS, the new software star.
Ohio Scientific has developed a remarkable new Information Management system which provides end user intelligence far beyond what you would expect from even the most powerful mini systems. Basically, it allows end users to store any collection of information under a Data Base Manager and then instantly obtain information, lists, reports, statistical analysis and even answers to conventional "English" questions pertinent to information in the Data Base. OS-DMS allows many applications to be computerized without any programming!

The new "GT" option heralds the new era of sub-microsecond microcomputers.
Ohio Scientific now offers the 6502C microprocessor with 150 nanosecond main memory as the GT option on all Challenger III Series products. This system performs a memory to register ADD in 600 nanoseconds and a JUMP (65K byte range) in 900 nanoseconds. The system performs an average of 1.5 million instructions per second executing typical end user applications software (and that's a mix of 8, 16 and 24 bit instructions).

Mini-system Expansion Ability.
Challenger III systems offer the greatest expansion capability in the microcomputer industry, including a full line of over 40 expansion accessories. The maximum configuration is 768K bytes RAM, four 80 million byte Winchester hard disks, 16 communications ports, real time clock, line printer, word processing printer, and numerous control interfaces.

Prices you have to take seriously.
The Challenger III systems have phenomenal performance-to-cost ratios. The C3-S1 with 32K static RAM, dual 8" floppies, RS-232 port, BASIC and DOS has a suggested retail price of under $3600. 80 megabyte disk based systems start at under $12,000. Our OS-CP/M software package with BASIC, FORTRAN and COBOL is only $600. The OS-DMS nucleus package has a suggested retail price of only $300, and other options are comparably priced.

To get the full story on the Challenger III systems and what they can do for you, contact your local Ohio Scientific dealer or call the factory at (216) 562-3101

C3-B wins Award of Merit at WESCON '78 as the outstanding microcomputer application for Small Business

Ohio Scientific
1333 S. Chillicothe Road • Aurora, Ohio 44202

The Challenger III Series from Ohio Scientific.