Welcome to a whole new world of microcomputing. Here at last is a microcomputer with all the speed and power that you have wished for. The MC6809 is an exciting new concept in microprocessors that fills the gap between 8- and 16-bit machines. It provides the power of 16-bit instructions with the economy of 8-bit architecture.

The MC6809 has more addressing modes than any other 8-bit processor. It has powerful 16-bit instructions, and a highly efficient internal architecture with 16-bit data paths. It is easily the most powerful, most software efficient, and the fastest 8-bit general purpose microprocessor ever.

The greatest impact of the Motorola MC6809 undoubtedly will be software related. Ten powerful addressing modes with 24 indexing submodes, 16-bit instructions and the consistent instruction set stimulate the use of modern programming techniques. Such as structured programming, position independent code, reentrancy, recursion and multitasking.

A memory management system with extended addressing designed into the bus system controls up to 256K bytes of RAM memory. The dynamic memory allocation system, which is part of the multitasking DOS, allocates available memory in as small as 4K blocks.

The MC6809 system is the only 8-bit processor designed for the efficient handling of high-level languages. New addressing modes, a consistent instruction set and easy data manipulation on stacks allows the efficient execution of block-structured high-level code as generated by a compiler like PASCAL.

MP-09 Processor Card$195.00
68/09 Computer w/48K$1,500.00

SOUTHWEST TECHNICAL PRODUCTS CORPORATION
219 W. RHAPSODY
SAN ANTONIO, TEXAS 78216 (512) 344-0241

Circle 350 on inquiry card.
Fill your computer needs with the industry’s most professional microcomputers

#1 IN RELIABILITY

When you choose Cromemco you get not only the industry’s finest microcomputers but also the industry’s widest microcomputer selection.

What’s more, you get a computer from the manufacturer that computer dealers rate #1 in product reliability.*

Your range of choice includes our advanced System Three with up to four 8” disk drives. Or choose from the System Two and Z-2D with 5” drives. Then for ROM-based work there’s the Z2. Each of these computers further offers up to ½ megabyte of RAM (or ROM).

We say these are the industry’s most professional microcomputers because they have outstanding features like these:

• Z-80A microprocessor — operates at 250 nano second cycle time — nearly twice the speed of most others.

Up to 512 kilobytes of RAM and 1 megabyte of disk storage

• 30-amp power supply — more than adequate for your most demanding application.

• 21 card slots to allow for unparalleled system expansion using industry-standard S-100 cards.

• S-100 bus — don’t overlook how important this is. It has the industry’s widest support and Cromemco has professionally implemented it in a fully-shielded design.

• Cromemco card support of more than a dozen circuit cards for process control, business systems, and data acquisition including cards for A-D and D-A conversion, for interfacing daisy-wheel or dot-matrix printers, even a card for programming PROMs.

• The industry’s most professional software support, including COBOL, FORTRAN IV, RATFOR, 16K Disk-Extended BASIC, Z-80 Macro Assembler, Cromemco Multi-User BASIC, Data Base Management System, Word Processing System — and more coming.

• Rugged, professional all-metal construction for rack (or bench or floor cabinet) mounting. Cabinets available.

FOR TODAY AND TOMORROW

Cromemco computers will meet your needs now and in the future because of their unquestioned technical leadership, professionalism and enormous expandability.

See them today at your dealer. There’s no substitute for getting the best.

Here’s how you can be fully computerized for so much less than you thought

BUSINESS — EDUCATION — ENGINEERING — MANUFACTURING

We are pleased to announce the first professional time-sharing system in the microcomputer field. Naturally, it’s from Cromemco. This new multi-user system will do all of the tasks you usually associate with much more expensive time-sharing computers. Yet it is priced at an almost unbelievably low figure.

Look at these features:
- You can have up to 7 terminals plus a fast, 132-column line printer
- You can have a large system RAM memory that’s expandable to ½ megabyte using the Bank Select feature
- Each user has an independent bank of RAM
- You can have floppy disk storage of up to 1 megabyte
- You have confidentiality between most stations
- And, make no mistake, the system is fast and powerful. You’ll want to try its fast execution time yourself.

- No round-off error in financial work (because our BASIC uses binary-coded decimal rather than binary operation). And we’ve still been able to make it FAST.
- Terminals and printer are interrupt-driven — no additional overhead until key is pressed.
- The conveniences in this Multi-User BASIC make it much easier to write your own application software.
- A line editor simplifies changes.

BENCHMARK IT — NOW

In the final analysis, the thing to do is see this beautiful new system at your dealer. See its rugged professional quality. Evaluate it. Benchmark it for speed with your own routine (you’ll be agreeably surprised, we guarantee you).

Find out, too, about Cromemco’s reputation for quality and engineering. Look into it now because you can have the capabilities of a fully computerized operation much quicker and for much less than you ever thought.
In The Queue

Foreground

10 COMPUTER GENERATED MAPS, Part 1, by William D. Johnston
Maps help make the arrangement of numeric data meaningful

14 REPRESENTING THREE-DIMENSIONAL OBJECTS IN YOUR COMPUTER, by Richard Blum
Using a digitizer to input graphical data

32 COMMUNICATE ON A LIGHT BEAM, by Steve Clarcia
Transmit digital information over a beam of light

52 SINGLE CHIP VIDEO CONTROLLER, by Bob Haas
Controlling a video display with a single integrated circuit

130 THE INTEL 8275 CRT CONTROLLER, by Chris Tennant
This controller device eases video display design

Background

50 THE SUPERBOARD II, A Surprising Single Board Computer From OSI, by Chris Morgan
This single board computer can be expanded to a full-scale system

104 6800 DISASSEMBLER, by Bob Lentz
Decipher your machine code programs

110 SPACEWAR IN TINY BASIC, Navigating Through Integer BASIC, by David J. Beard
A space navigation application

150 SMART MEMORY, Part 2, by Randy C. Smith
A black box approach to associative memory design

164 SIMULTANEOUS INPUT AND OUTPUT FOR YOUR 8080, by W. D. Maurer
A roundabout method of I/O

176 QUEUING THEORY, THE SCIENCE OF WAIT CONTROL, Part 2: System Types, by Len Gorney
Looking at realistic situations

184 TRIGONOMETRY IN TWO EASY BLACK BOXES, by John A. Bell
Calculate trigonometric functions using arithmetic operations

196 TIC-TAC-TOE: A PROGRAMMING EXERCISE, by Delmer D. Hinrichs
How to approach a programming task

218 THE HOBBY UNWRAP, by Ralph Stirling
How to unwrap what was previously wrapped

233 A MINI-DISASSEMBLER FOR THE 2650, by Edward R. Teja and Gary Gonnella
A disassembler can save countless headaches

238 AIDS FOR HAND ASSEMBLING PROGRAMS, by Erich A. Pfeiffer
A personal routine helps increase accuracy

Nucleus

6 Editorial: Don't Forget the Hardware...

8 Letters

30, 210 Technical Forum

117 BYTE News

124 Event Queue

128 Nybbles: TMS-9900 Monitor

174, 288 BYTE's Bits

182 Desktop Wonder: Digits

204 Clubs and Newsletters

206 BYTE's Bug

209 Machine Language Puzzler: An Added Attraction

220 Programming Quickies

226 Book Reviews

286 Unclassified Ads

288 BOMB

288 Reader Service

Cover Art: BENEATH THE GRID, by Robert Tinney.

BYTE is published monthly by BYTE Publications Inc., 70 Main St, Peterborough NH 03458. Address all mail except subscriptions to above address: phone (603) 924-7217. Address subscriptions, change of address, USPS Form 3579, and fulfillment questions to BYTE Subscriptions, PO Box 590, Martinsville NJ 08836. Second class postage paid at Peterborough NH 03458 and at additional mailing offices—USPS Publication No. 102410 (ISSN 0360-5280). Subscriptions are $18 for one year, $32 for two years, and $46 for three years in the USA and its possessions. In Canada and Mexico, $20 for one year, $36 for two years, $52 for three years. $32 for one year air delivery to Europe. $32 surface delivery elsewhere. Air delivery to selected areas at additional rates upon request. Single copy price is $2 in the USA and its possessions, $2.40 in Canada and Mexico, $3.50 in Europe, and $4 elsewhere. Foreign subscriptions and sales should be remitted to United States funds drawn on a US bank. Printed in United States of America.

Address all editorial correspondence to the editor at the above address. Unacceptable manuscripts will be returned if accompanied by sufficient first class postage. Not responsible for lost manuscripts or photos. Opinions expressed by the authors are not necessarily those of BYTE. Entire contents copyright © 1979 by BYTE Publications Inc. All rights reserved.

BYTE is available in microform from University Microfilms International, 300 N Zeeb Rd, Dept PR, Ann Arbor MI 48106 USA or 18 Bedford Row, Dept PR, London WC1R 4EJ ENGLAND.

Subscription WATS Line: (800) 258-5485 Office hours: Mon-Thur 8:30 AM - 4:30 PM Friday 8:30 AM - Noon

May 1979 © BYTE Publications Inc
The people interested in just wetting their feet in the field of microcomputers are usually not looking for a very big system. A single board computer is often a good first experience. The Ohio Scientific Superboard II is one single board computer which has some interesting capabilities. Find out what Chris Morgan thinks about The Superboard II.

Flexible video displays have been made possible by special display controllers. Bob Haas describes four devices from different manufacturers and tells how he used a specific video display controller in a successful construction project. You can learn more about these single integrated circuit marvels in Single Chip Video Controller.

If you do not have documentation for a machine language program, it is almost impossible to determine how the program works. Bob Lentz describes a 6800 Disassembler that he wrote for his SwTPC 6800 system.

Possession of an integer arithmetic language does not preclude the writing of intricate programs involving trigonometric functions. David J Beard describes how he used an integer BASIC to develop navigation routines for Spacewar in Tiny BASIC.

The most prevalent form of output from a personal computer seems to be a video display. Therefore, the serious hobbyist should be aware of the number of different video display controllers that are available. Chris Tennant looked at the Intel 8275 video display controller and liked what he saw. In his article he describes a video interface using The Intel 8275 CRT Controller.

In part 2 of Smart Memory, Randy Smith presents a series of black box diagrams to describe the workings of an associative memory.

The "wraparound" queue can save you time during input and output operations on your computer. W D Maurer explains how the queue works and how to implement it on 8080 computer systems in Simultaneous Input and Output for Your 8080.

Last month Len Gorney described how to implement a queue on a computer. This month he talks about real life queues and how the science of Queuing Theory can be applied.

The CORDIC algorithm is a venerable and efficient method for calculating trigonometric functions. John A Ball gives some practical suggestions to experimenters in Trigonometry in Two Easy Black Boxes. Find out how you can streamline your number crunching with CORDIC.

Good programming techniques are vital in personal computing as well as in computing in general. Author Delmer D Hinrichs, using tic-tac-toe as an example, describes the strategies of the game programmer in Tic-Tac-Toe: A Programming Exercise.

For owners of Signetics 2650 based computer systems, Edward R Teja and Gary Gonnella have provided a useful disassembler program to help make sense of those hexadecimal machine language listings. Read A Mini-Disassembler for the 2650.

If your microcomputer lacks an assembler or high level language, it will be necessary to hand assemble all of your programs. To do this quickly and accurately it is a good idea to develop a consistent routine. Erich Pfeiffer describes a useful technique in Aids for Hand Assembling Programs.

A data tablet is a graphical input device that enables you to enter visual images into your computer. Richard Blum has a program for Representing Three-Dimensional Objects in Your Computer.

If you need to communicate digital information from one point to another through an electrically noisy environment, then optical communications may be one solution. If you are going to communicate over long distances or at high speeds, then a laser may be the best choice for a light source. This month Steve Ciarcia explains how to Communicate on a Light Beam.
Screensplitter Video Display System

From "Dumb" To "Smart"

Screensplitter is a video module designed for many levels of use—from the "dumb terminal" configuration to a page-oriented document processor to a multiple-process display system.

As a terminal, Screensplitter offers up to 40 lines of 86 characters, more than twice the number of visible characters than other systems in its price range.

As a document processor, it gives you single keystroke control over character, word, line, and page level alterations such as insertion or deletion. And a powerful new unit of area—the window—allows you to move blocks of text around or redimension paragraphs dynamically; again, all at the touch of a finger. Indentation, justification and pagination are standard and transportability is guaranteed with our CP/M interface.

As a multiple-process display system, Screensplitter places the raw power of the Window Package at your control. You can create any number of "subscreens", each a logically distinct I/O region with its own cursor, scroll control, reverse video, optional frame and many, many more features. Plotting and bar charting are a snap and you can even define your own character set to personalize your display.

*CP/M is a trademark of Digital Research, Inc.

Professionally Designed

There was only one design goal in the development of the Screensplitter: to provide a large rock-solid display that could accommodate diverse applications without sacrificing extensibility or compatibility. We not-so-modestly say that we have outdone ourselves. Just look at these features and compare them with other video systems available today:

- 40 lines of 86 characters per line.
- 1,024 words of onboard intelligence that manages your displayed data.
- A selection of esthetically designed fonts, including APL.
- Multiple subscreen control.
- A page-oriented document processor that boasts dynamic redimensioning and movement of text blocks.
- Ultra-fast display control.
- A character generator that is changeable and offers intrinsically winking characters that can be set to wink by scan line.
- 4,096 words of static display memory.
- Interfaces for CP/M and North Star DOS.
- A dedicated crystal for guaranteed display stability.
- Composite and direct-drive video output.
- S-100 compatibility.
- Full buffering on all bus lines.
- A 140 page user's manual.
- Immediate availability.

Micro Diversions, Inc. 8455-D Tyco Road Vienna, Virginia 22180 (703) 827-0888
Don’t Forget the Hardware...

by Carl Helmers

With respect to manufactured products for the small computer user, we live in a time of plenty. There are at least 20 to 30 different manufactured or kit versions of complete personal computer systems, many featuring numerous models and sets of options. The hardware of these computers is complete, and in the better brands comes with ample documentation of the system’s internals. The systems software comes in various stages of completeness and usefulness as a software development tool to satisfy particular personal computer users’ needs.

Many readers, like myself, may tend to hesitate at the thought of experiments which involve building hardware to couple with appropriate software, in order to accomplish an application. But what is the mystery of peripheral hardware?

In this era of integrated circuits, standard logic levels, and a wealth of solid state parts, even the most hesitant software addict can, with a small amount of effort, create custom hardware for personal applications by the simple act of wiring. I come from a software oriented background, and use programs in place of dedicated hardware wherever possible. But when I want to use my program to turn the lamps on and off in my house, in response to voice inputs, I “somehow” have to make my computer talk to 110 VAC 60 Hz. There is no way that my software can switch several amperes without some assistance.

One alternative means to accomplish this goal is to purchase one of several fairly elaborate AC wiring control interfaces which are coming on the market. But, if you want to learn about hardware and the simplicity of interfacing, you can make a simple evening’s project of wiring several optically isolated solid state relays to a parallel output port for your computer. The ease of interfacing is phenomenal.

I recently purchased several solid-state relays (see photo 1) from a local electronics parts distributor. This hybrid relay takes a standard TTL (transistor-transistor logic) signal of 5 V as its input, the same kind of a signal which is supplied by any typical computer’s TTL output port lines. It is optically isolated, so there is no direct electrical connection to the computer. Short of dropping a screwdriver across the 110 VAC lines, there is no chance of errant 110 VAC entering the back side of your computer.

Text continued on page 123

Photo 1. At $12.80 (quantity one) from an electronics distributor, optically isolated solid-state relays like this open up a whole world of practical personal computing experiments around the home.
"I own a fast-growing business and before I bought my computer system I put in a lot of late hours keeping up with my accounting and inventory control. Now the computer does my number crunching quickly, so I have time after hours to have some fun with the system. My son and I started out playing Star Trek on the system, and now we're learning to play chess.

"When I was shopping around for my system, the guys in the computer stores demonstrated all the unique features of the minifloppy. I've got to admit that at first I didn't really understand all the technical details. But now that I use the system every day, I really appreciate the minifloppy's fast random access and data transfer. I like the reliability, too.

"I'm glad I went with Shugart drives. Look, when you lay out your own money for a system, you want dependable performance and good value. Do what I did. Ask for the system with the minifloppy."

If it isn't Shugart, it isn't minifloppy.

Shugart Associates
435 Oakmead Parkway, Sunnyvale, California 94086
KUDOS FOR ITHACA

I have recently had the pleasure of doing business with a company which deserves recognition. I ordered a 16 K byte expansion kit from Ithaca Audio and installed it in my TRS-80 expansion interface box. Over several months I discovered that most of the time it didn't work. I also discovered that this was a design problem with the Radio Shack expansion interface, not the memory.

Radio Shack was not helpful. After all, I had installed additional memory not purchased through Radio Shack. I called Ithaca Audio, expecting a similar reaction. On the contrary! They knew about the various problems with the interface expansion box and installed it in my TRS-80 expansion interface box. Over several months I discovered that most of the time it didn't work. I also discovered that this was a design problem with the Radio Shack expansion interface, not the memory.

The NEC memory worked fine. All problems were solved. Now I know that when Ithaca Audio guarantees that their upgrade kit will work, they mean it.

Al Baker
2327 S Westminster St
Wheaton IL 60187

COMMENTS ON COMPUTER ASSISTED INSTRUCTION

I appreciated the articles by Davidson, Gerhold, and Kheriaty (November 1978 BYTE) and by Gerhold (December 1978 BYTE) relating to computer assisted instruction (CAI) on microcomputers. The discussion on what constitutes good and bad CAI courseware was helpful, and the description of PILOT software they are using was also informative. I am pleased to learn of work being done in the area of CAI on microcomputers, for my experience suggests it can be a very useful teaching tool.

One concern I have is that the microcomputer system described in these articles does not include the capability to prepare courseware on the small computer system. The approach taken by the authors to prepare and test courseware on a larger computer system, and then to use that courseware with microcomputers, has merit for their situation where the larger machine is readily available. However, many persons do not have access to such systems. Moreover, course objectives change rather frequently and individual teachers will prefer to present materials differently. It seems to me the small computer system should permit the teachers to write, test, and edit the courseware without being dependent on a large computer. This might possibly generate low quality courseware, but I feel many teachers could make good courseware who would not do so if a large (and probably less accessible) computer were required. People with experience in CAI could be of great assistance by publishing guidelines for writing good courseware along with methods of determining its quality.

Professor Gerhold presents a strong case for the use of PILOT instead of other languages for CAI; however, good courseware can be prepared using BASIC or other languages if that is all that is available to a particular user. I am using North Star BASIC and a Horizon II computer with 32 K bytes of programmable memory for computer aided instruction in soil physics at Oklahoma State University. Three BASIC programs were developed here to enter and edit courseware, process the courseware and interact with students and store their responses, and analyze student responses. The system is capable of performing complex matches of the kind described by Mr Gerhold (December 1978 BYTE, page 125) in one to five seconds, as well as jumping to specific parts of the courseware depending upon the student's responses to previous questions. Moreover it is very easy to create and edit courseware once the teacher has planned the material to be presented.

I hope to see more articles in BYTE relating to computer aided instruction on microcomputers. I would appreciate articles on software (such as PILOT), software and hardware required for preparing good courseware, methods of assessing the quality of courseware, low cost video terminals with special features needed in instruction such as graphics, subscripts, and superscripts.

Asst Prof David L Nofziger
Oklahoma State University
Stillwater OK 74074

PASCAL COSTS ADD UP

I would like to respond to BYTEs comment on “Pascal Critique and a Comment,” by J O’Loughlin (December 1978 BYTE, page 179). I feel that the UCSD Pascal system is not an affordable implementation of Pascal. Although the software costs “only” $200, you need 56 K bytes of programmable memory to use it productively ($800), plus 8 inch floppy disk ($1000), and a terminal with cursor control ($1000). Add this to a $1000 mainframe and this “affordable” system costs $4000. Compare this to a $600 TRS-80! Sure, Pascal is more readable than BASIC, but there are other cons.

Text continued on page 223

Circle 75 on inquiry card.

Huntsville, AL
(205) 539-1200
Phoenix, AZ
(602) 956-5727
Little Rock, AR
(501) 224-4508
Bellingham, WA
(601) 685-2122
Dublin, CA
(415) 828-8090
El Cerrito, CA
(415) 233-5010
Hayward, CA
(415) 538-8080
Lawrence, CA
(213) 371-3544
Los Altos, CA
(415) 941-0154
Los Angeles, CA
(213) 776-8000
Marin, CA
Call Directory Information
Pasadena, CA
(213) 449-3205
Saddleback Valley, CA
(714) 770-0131
San Bernardino, CA
(714) 866-6838
San Diego, CA
(714) 560-9912
San Diego East, CA
(619) 464-5656
San Francisco, CA
(415) 546-1992
San Jose, CA
(408) 253-6080
Santa Maria, CA
(805) 928-1919
Santa Rosa, CA
(707) 528-1775
Thousand Oaks, CA
(805) 495-3564
Tustin, CA
(714) 544-0542
Wheaton, IL
(630) 534-5205
Wheaton, IL
(630) 534-5205

BYTE Publications Inc
8 May 1979
If the truth is that you want a computer . . . then we want to be your computer store.

We're ComputerLand, the #1 computer store chain in the U.S. What's meaningful about that fact is, that ComputerLand has been chosen by more people as having what they've been looking for. And, since you're looking, let us tell you what you'll find, when you visit a ComputerLand store.

You'll find a product line that's continually evaluated to provide you with the widest and best selection in quality, brand name microcomputers anywhere. You'll find an enthusiastic and knowledgeable staff able to interpret all the equipment specifications, in terms of how they apply to you, and in a way you'll understand. You'll find demonstration areas where you can get a firsthand experience of running a computer yourself.

Enough about us. How about what computers do. To attempt to describe all the things your computer might do, would be to describe your imagination. So instead, we'll briefly list some of the many things for which small computers are already being used.

In business, the advent of the versatile and compact microcomputer has put the benefits of computing within reach of small companies. With systems starting at less than $6000, the businessman can computerize things like accounting, inventory control, record keeping, word processing and more. The net result is the reduction of administrative overhead and the improvement of efficiency which allows the business to be managed more effectively.

In the home, a computer can be used for personal budgeting, tracking the stock market, evaluating investment opportunities, controlling heating to conserve energy, running security alarm systems, automating the garden's watering, storing recipes, designing challenging games, tutoring the children . . . and the list goes on.

In industry, the basic applications are in engineering development, process control, and scientific and analytical work. Users of microcomputers in industry have found them to be reliable, cost-effective tools which provide computing capability to many who would otherwise have to wait for time on a big computer, or work with no computer at all.

And now we come to you, which leads us right back to where we started: If you want a computer, then we want to be your computer store.

Whether you want a computer for the home, business or industry, come to ComputerLand first. We'll make it easy for you to own your first computer. Because, simply put, we really want your business. When you come right down to it, that's what makes us #1.
Cartography, the art of mapmaking, originated in ancient times. It came of age in 1538 when Gerhard Mercator revolutionized the science with the introduction of the first modern mathematically derived map projections. Those projections, which bear his name, have stood the test of four and a half centuries, and to this day are of great value in a wide variety of applications. Many of the world’s most famous cartographers lived, worked, and made great theoretical contributions more than 200 years ago. The names of Lambert, Mollweide, Lagrange, Gauss, and others will ring familiar to even the casual user of maps.

While these men all had brilliant minds, they shared an extraordinary handicap: that which they could conceive in theory they could put in practice only through enormous labor in manual computation. The construction of maps through mathematical projections begins with sets of geographical coordinates which define the boundaries of the areas to be mapped. These coordinates are manipulated with appropriate mathematical procedures to convert the geographical data to map coordinates, and these final numeric figures are used to draw the maps. In practice, accurate maps require defining literally tens of thousands, and frequently hundreds of thousands — or even millions — of reference points.

It is no wonder that until recent times, these eminent scientists wasted years of their lives arduously computing complex mathematical conversions by hand. As recently as 20 years ago, it was still standard procedure in many government and private mapping agencies to create maps using nothing better than tables of precomputed conversion factors, between whose entries interpolation was required. The tables themselves had been computed manually, with the assistance of slide rules or mechanical calculators, at best. Over the years, cartographers frequently pointed out the need for various types of maps, and even developed the procedures for making them, but the manpower simply wasn’t available to execute the task.

Now, with the power of the microcomputer, the rankest amateur can produce in minutes what might have taken Mercator or Lambert many years to accomplish. Not only can the mathematical computations be carried out on the microcomputer, but with a suitable graphics device the map itself can be drawn in final form. The practical applications are limitless. Such diverse fields as economic sector mapping for business, generating map overlays for direct reception of weather satellite photos in the home, aeronautical and maritime navigation, OSCAR satellite tracking for communications, topographic mapping, and celestial maps for astronomy are just a few of the many worthwhile applications.

For Space War fans, a vivid video graphics presentation of the changing Earth as seen from an orbiting spacecraft can add excitement to the game as battles rage over Antarctica, then shift to high above Europe, or wherever the Captain takes his ship. A whole new dimension can be added to such games as Battleship, when the combatants have the entire Pacific Ocean with all of its islands and atolls in which to maneuver, plan tactics, and try to outwit the enemy.

Classifications of Maps

The kinds of maps that you might generate on your own personal computer will depend upon the intended use, but, broadly speaking, map projections fall into two general categories: mathematical projections

About the Author:

William D Johnston has worked in the fields of mathematics and computer systems since 1962. For the past ten years his professional position has been that of senior mathematician with primary responsibilities in computer graphics, user executives, and data reduction software for missile flight analysis. He built his first computer circuits (binary counters, ring counters, and half-adders) using vacuum tubes in 1959, the same year he received his amateur radio license.

and perspective (or geometric) projections. Mathematical projections are defined by a mathematical function or procedure which will preserve or enhance the characteristics most important in the map's application. The Mercator map is a classic example of the mathematical projection.

Perspective projections are very much like perspective engineering drawings, which come under the category of perspective geometry. They are defined by, and may be created through, geometric constructions. (Perspective projections may also be described mathematically, but the converse is not true. Projections classified as mathematical cannot be defined geometrically.) A map made of the visible surface of the Earth, exactly as it appears from an orbiting spacecraft, is a perspective projection. The map outline overlays placed on weather satellite photos are common examples of this type of projection.

Ideally, a map should portray the Earth as it actually is, preserving both the shapes and the relative sizes of the areas being mapped. Distances throughout the map should be at a constant ratio to the actual distances on the Earth. For navigation and radio communication purposes, it would be convenient to have great circles on the surface of the Earth (which define the shortest distance between any two points) to appear as straight lines on the map.

Unfortunately, since the Earth is a sphere and maps are, of necessity, flat, it is impossible to incorporate all of these features into a single projection. Consequently, the various map projections are compromises selected to minimize the various distortions while enhancing other features, depending upon the particular application that the map is to be used for.

Any map which preserves the relative sizes of the areas portrayed is called an equal-area projection. Any map which preserves the shapes of the areas portrayed is said to be a conformal projection. In practice, if the error is no more than one or two percent, the map is considered to have met the requirements. A given map may be either conformal or equal-area, or it may be both, or it may be neither.

Hardware

The creation of maps by computer is exceedingly simple. The only hardware necessary is the computer itself, along with some type of graphics device. The graphics equipment may be a video display, or an X,Y pen plotter. If you are primarily interested in printed maps, then obviously a pen plotter (or a video display with hardcopy attachment) would be your best choice. If, on the other hand, your first interest is in fast-changing maps for games, then a good video graphics display alone would serve quite well. Some dot matrix plotters can produce satisfactory maps, though often at a sacrifice in memory or mass storage I/O (input/output) time.

Map Generation Algorithms

One of the most appealing aspects of mapmaking by computer is the simplicity of the software. Figure 1 shows a flowchart of the fundamental procedure used to generate any map. The algorithm consists of a data base of raw geographic coordinates and a mathematical conversion procedure. Given a reference point (a point of projection or a set of mapping limits), the program loops through the conversion procedure, converting one pair of geographic coordinates to map coordinates each time, until the data base is exhausted. As each pair of map coordinates is computed, the information is used to draw that element of the map. If the pro-
program is to have the ability to generate several different projections, each projection conversion procedure can be written as a subroutine, and the appropriate subroutine would then be called at that point in the loop.

Most of the common projections, as we will see by the examples later, are defined by relatively simple mathematical equations. More often than not, the mathematical computations for a given conversion require no more than two to six statements in a BASIC program.

Data Base Requirements

As mentioned earlier, the data base consists of sets of geographic coordinates which describe the areas to be mapped. Since the map is generated by lines connecting the points, they must occur frequently enough to provide the desired resolution. The greater the resolution needed, the more data points required, and hence, the larger the storage requirements for the data base.

Of course if you are mapping the entire world, your data base will be much larger than if you are mapping, say, just the United States. Furthermore, the resolution of your graphics device, along with the scale factor of the finished map, sets an upper limit on both the number of data points and the angular resolution (that is, the number of significant digits) needed in the data base to secure the highest resolution possible with that particular device. The maps that accompany this article were generated from a data base that is far more extensive than most people would ever need. It consists of approximately 10,000 pairs of coordinates, sufficient to produce a satisfactory world map several feet (more than a meter) in diameter. The angular resolution of the latitudes and longitudes is 0.0001 radian, which is sufficient for maps down to a scale of 1:1,000,000 (i.e.: on the order of service station road maps).

The geographic coordinates (latitudes and longitudes) in the data base are almost universally stored in radians. The reason is that almost all map projections are computed by trigonometric formulas, and there is no sense having to convert the data base from degrees to radians every time the program is run.

Data Base Structure

The organization of the data base is straightforward. Each closed area represented by a continuous solid line which closes on itself is stored as a block of sequential coordinates (geographically sequential, that is). The last pair of coordinates in each block is the same as the first pair in the same block, so that the line drawn on the map will fully close. (Repeating the first pair of coordinates in this manner is not absolutely necessary, but it will save headaches later, at a very small cost in storage space.) Each of these blocks is separated by a flag — normally a pair of zeroes (i.e.: a zero for both the latitude and the longitude).

Islands which are so small as to require that only a dot be drawn for mapping purposes are grouped together into a single block. The program need know only the starting and ending addresses of that block so it can instruct the graphics device to draw only dots for these locations, rather than connecting them with lines. Political boundaries represented by dotted lines are handled in this same manner.

The size of your data base will determine whether it can be stored in main memory along with the program, or whether it will have to reside on a mass storage device. From the standpoint of computing efficiency, the ideal situation is to have it in main memory since this eliminates a tremendous amount of input/output (I/O) time. On the other hand, if the graphics device is relatively slow (as are many pen plotters), the lost I/O time will be masked by the time the computer spends waiting on the plotter, so no advantage is gained by using memory.

In cases where fast-changing maps are to be displayed on video display, programmable memory is definitely the best choice for locating the data base. Where sufficient main memory isn't available for the size of the data base in use, the data base can frequently be partitioned in such a manner as to permit the program to load portions of it from mass storage into memory at far less frequent intervals.

For certain special applications it has even been found advantageous to store data bases in read only memory. A number of amateur astronomers, for example, have stored the coordinates for the entire Messier catalogue of nonstellar objects, as well as limited star catalogues, in read only memory. The coordinates and catalogue numbers are used for both the real time control (pointing) of the telescope, as well as for generating star maps on the video display. Such applications of read only memory are generally limited to cases where the data base occupies no more than a few hundred bytes.

Compiling the Data Base

You can put together your own data base to fit your own particular requirements, if you have a mind to do so. Most libraries
How to buy a personal computer.

Suddenly everyone is talking about personal computers. Are you ready for one? The best way to find out is to read Apple Computer's "Consumer Guide to Personal Computing." It will answer your unanswered questions and show you how useful and how much fun personal computers can be. And it will help you choose a computer that meets your personal needs.

Who uses personal computers.

Thousands of people have already discovered the Apple computer—businessmen, students, hobbyists. They're using their Apples for financial management, complex problem solving—and just plain fun. You can use your Apple to analyze the stock market, manage your personal finances, control your home environment, and to invent an unlimited number of sound and action video games. That's just the beginning.

What to look for.

Once you've unlocked the power of the personal computer, you'll be using your Apple in ways you never dreamed of. That's when the capabilities of the computer you buy will really count. You don't want to be limited by the availability of pre-programmed cartridges. You'll want a computer, like Apple, that you can also program yourself. You don't want to settle for a black and white display. You'll want a computer, like Apple, that can turn any color TV into a dazzling array of color graphics.* The more you learn about computers, the more your imagination will demand. So you'll want a computer that can grow with you as your skill and experience with computers grows. Apple's the one.

How to get one.

The quickest way is to get a free copy of the Consumer Guide to Personal Computing. Get yours by calling 800/538-9696. Or by writing us. Then visit your local Apple dealer. We'll give you his name and address when you call.

*Apple II plugs into any standard TV using an inexpensive modulator (not included).
Representing

Three-Dimensional Objects
in Your Computer

Richard Blum
3 Mohawk Dr
Westboro MA 01581

How would you like to make still pictures "come to life"? Or perhaps draw or photograph objects and then animate them, on a video display? You can do it on your personal computer with the help of a data tablet and the program described herein. The program takes images from a data tablet and transforms them into a three-dimensional representation inside a computer.

Once a three-dimensional representation of an object is entered into a computer’s memory, programs can be used to display the object in perspective on a graphical video display. The object can be displayed from an infinite variety of perspectives. One can look at objects from any desired viewpoint and generate different viewpoints rapidly — a capability that is very useful in animation.

Computer Animation

Animation with computers has several advantages over traditional animation techniques. First, a computer can draw faster than a person. In 16 millimeter films, 24 frames must be displayed every second. Thus a normal animation requires thousands of drawings. The speed of the computer can save the time required to draw the many pictures animation demands.

Second, a computer can quickly generate perspective drawings of objects. Perspective, the reduction in size of objects as they move further away from the viewer, gives pictures three-dimensional realism. Many cartoons do not use perspective drawings because of the time required to draw them. With the aid of computers, this realism in animation is easily achieved.

Third, computers can recreate the effects of wide angle or telescopic lenses, and can simulate lighting from any angle.

With all these effects at their disposal, artists have the potential to create realistic and exciting animation. To make computer animation available to artists not familiar with computer programming, there must be techniques which enable easy entry of visual data into the computer. This is made possible by the data tablet.

The Data Tablet

The data tablet is a graphical input device that enables the entry of visual images into a computer. Just as a keyboard enters alphanumeric characters (the elements of text), so a data tablet enters lines and points (the elements of images). Data tablets are now commercially available for personal computer systems. The Bit Pad™, manufactured by Summagraphics, is an example of a high quality data tablet available for personal computers.

In using the data tablet, a pen shaped stylus is moved over a flat electromagnetically sensitive board. The pen’s position over the board is monitored by a controller which relays information to a computer. In this way it is possible to "draw" images directly into a computer’s memory.

The tablet board is 11 inches square. Each point on the board represents a value in an X,Y coordinate system. Resolution is good, distinguishing as many as ten points per millimeter. There are three modes of operation. Data can be sent to the computer continuously, continuously while the stylus is touching the board, or at distinct moments while the stylus is touching the board.

Even if you are not interested in animation, you may still find it useful to manipulate images using a computer. A space game enthusiast could enter pictures of starships and then display them during the game. The homeowner needing to do some interior decoration could enter photographs of a room interior and furniture. Then different furniture arrangements could be viewed.
Now you can put your S-100 system solidly into a full-size, single/double density, 600K bytes/side disk memory for just $1149 complete.

DISCUS/2D™ single/double density disk memory from Thinker Toys™ is fully equipped, fully assembled, and fully guaranteed to perform perfectly.

DISCUS/2D™ is a second generation disk memory system that's compatible with the new IBM System 34 format. The disk drive is a full-size Shugart 800R, the standard of reliability and performance in disk drives. It's delivered in a handsome cabinet with built-in power supply.

The S-100 controller utilizes the amazing Western Digital 1791 dual-density controller chip... plus power-on jump circuitry, 1K of RAM, 1K of ROM with built-in monitor, and a hardware UART to make I/O interfacing a snap.

The DISCUS/2D™ system is fully integrated with innovations by designer/inventor George Morrow. Software includes BASIC-V™ virtual disk BASIC, DOS, and DISK-ATE™ assembler/editor. Patches for CP/M* are also included. CP/M*, Microsoft Disk BASIC and FORTRAN are also available at extra cost.

DISCUS/2D™ is the really solid single/double density disk system you've been waiting for. We can deliver it now for just $1149. And for just $795 apiece, you can add up to 3 additional Shugart drives to your system. Both the hardware and software are ready when you are.

Ask your local computer store to order the DISCUS/2D™ for you. Or, if unavailable locally, write Thinker Toys™, 5221 Central Ave., Richmond, CA 94804. Or call (415) 524-2101 weekdays, 10-5 Pacific Time. (FOB Berkeley. Cal. res. add tax.)

*CP/M is a trademark of Digital Research.
There are many other uses for a data tablet; only imagination is needed to discover them.

Preparing to Use the Picture Input Program

The program in listing 1 allows one to construct three-dimensional representations of objects inside a computer. These representations will later be used to display the objects in perspective. The description of an object is entered using a data tablet, so that the process resembles drawing. For each side of the object entered, two pictures must be supplied. Either photographs or drawings may be used. The procedure described below assumes that photographs are used. If drawings are used instead, they must be prepared according to this procedure.

The two photographs must be taken such that they both center on the same point of the object (see figure 1). This point is to become the origin point. It is also necessary that the camera location for the second shot be directly behind where the camera was for the first shot, so that there is a straight line between the origin point and the center of the camera in both shots. Then the distance between the camera’s positions should be measured. It is not necessary to know how far the camera was from the object, but only to know the difference in camera position. The only other measurement necessary is the X,Y,Z distance between the origin and one vertex on the object.

It is also necessary that the lens’ effective focal length does not change between the two photographs. This may be achieved by using the same focus setting with a very small aperture, or more simply by using a

Photo 1: Two views of side view 1.

Photo 2: Two views of side view 2.
FOR PERSONAL COMPUTER USERS

onComputing

A new quarterly by the staff of BYTE®

This totally new publication is entertaining, informative, and uncomplicated. It is edited for the attorney, accountant, writer and other professional or business person aware of the personal computer as a tool for business, education, home entertainment, laboratory work and other applications.

Compiled and edited by the staff of BYTE, latest developments covered in onComputing will include creative uses of the small computer, books for the computer user, how and where to buy your personal computer and numerous features concerning the fascinating world of the microprocessor.

Add onComputing to your library of 'must' publications. Act now, subscribe and receive four (4) issues for $8.50 for one year (U.S.); Canada and Mexico: $10.00.

onComputing™

GUIDE TO PERSONAL COMPUTING

SUBSCRIBE NOW! COMPLETE AND MAIL ATTACHED POSTAGE PAID REPLY CARD

onComputing, Inc. □ 70 Main St. □ Peterborough, NH 03458 □ Dial toll free 800-258-5485 (In NH 924-7217)
Listing 1: BASIC program for entering and manipulating data from a data tablet.

0010 LET K=1
0020 LET (THIS PROGRAM ACCEPTS DATA FROM A TABLET AND TERMINAL)
0030 DIM X[10], Y[10], Z[10] (THIS PROGRAM LINES THREE DIMENSIONAL MODELS OF THE OBJECTS ENTERED)
0040 REM X Y Z COORDINATES
0050 DIM X[100], Y[100], Z[100] (THIS PROGRAM LINES THREE DIMENSIONAL MODELS OF THE OBJECTS ENTERED)
0060 REM X Y Z DISPLACEMENTS FROM SIDE 1'S ORIGIN
0070 DIM X[9], Y[9], Z[9] (THIS PROGRAM LINES THREE DIMENSIONAL MODELS OF THE OBJECTS ENTERED)
0080 REM INITIALIZE TOTAL NUMBER OF VERTEX TO 0
0090 LET T=0
0100 PRINT "HOW MANY SIDE VIEWS ARE TO BE ENTERED"
0110 INPUT S
0120 REM ENTER THE POINTS FROM EACH SIDE VIEW
0130 FOR I=1 TO S
0140 REM "PROCESSING SIDE VIEW" S
0150 GOSUB 0160
0160 NEXT S
0170 OPENFILE[1,1], "RESULT"
0180 FOR I=1 TO S
0190 PRINT FILE[1,1], I
0200 PRINT "PLACE THE STYLUS ON THE ORIGIN FOR PICTURE 1"
0210 CALL 1, 01, 02
0220 PRINT "PLACE THE STYLUS ON THE ORIGIN FOR PICTURE 2"
0230 CALL 1, 03, 04
0240 PRINT "HOW WAS CAMERA ONE FROM CAMERA TWO"
0250 REM "PROCESSING SIDE VIEW OTHER THAN SIDE ONE"
0260 LET K=0
0270 REM "IF FIND THE USERS ORIGIN"
0280 PRINT "PLACE THE STYLS ON THE ORIGIN FOR VIEWING PICTURE 1"
0290 CALL 1, 01, 02
0300 REM "CALCULATE THE DISTANCE BETWEEN THE KNOWN VERTEX AND ORIGIN"
0310 LET Z=I/(K1-K2)
0320 REM "CALCULATE THE DISTANCE BETWEEN THE KNOWN VERTEX AND ORIGIN"
0330 IF K1-K2=0 THEN GOTO 0360
0340 PRINT "HOW MANY VERTICES ARE TO BE ENTERED"
0350 INPUT 13
0360 END
0370 REM "IF FIND THE KNOWN VERTEX"
0380 PRINT "PLACE THE STYLUS ON THE KNOWN VERTEX IN PICTURE 1"
0390 CALL 1, K1, K2
0400 REM "TRANSFORM DATA TO THE USERS TABLET SPACE"
0410 CALL 1, K1, K2
0420 PRINT "PLACE THE STYLUS ON THE ORIGIN FOR VIEWING PICTURE 2"
0430 CALL 1, 03, 04
0440 PRINT "HERE IS THE X - Y Z DISTANCES BETWEEN THE KNOWN VERTEX AND ORIGIN"
0450 INPUT 11, 12, 13
0460 PRINT "VERTEX COMMON TO SIDE VIEW", I+1
0470 IF S>1 THEN GOTO 0450
0480 PRINT "NUMBER OF VERTICES TO BE ENTERED"
0490 INPUT 14
0500 GOTO 0500
0510 PRINT "ENTER THE X - Y - Z DISTANCES BETWEEN THE KNOWN VERTEX AND ORIGIN"
0520 PRINT "X - Y - Z COORD INATES FOR THE VERTEX"
0530 FOR I=1 TO 14
0540 IF S=1 THEN GOTO 0570
0550 IF 1<>1 THEN GOTO 0570
0560 PRINT "VERTEX COMMON TO SIDE VIEW", I+1
0570 PRINT "IN PICTURE ONE POINT TO ORIGIN"
0580 PRINT "IN PICTURE ONE POINT TO ORIGIN"
0590 CALL 1, X, Y, Z
0600 PRINT "PROCESS THE STYLUS ON THE ORIGIN FOR VIEWING PICTURE 2"
0610 CALL 1, 03, 04
0620 PRINT "HERE IS THE X - Y Z DISTANCES BETWEEN THE KNOWN VERTEX AND ORIGIN"
0630 INPUT 11, 12, 13
0640 PRINT "VERTEX COMMON TO SIDE VIEW", I+1
0650 IF S>1 THEN GOTO 0620
0660 PRINT "NUMBER OF VERTICES TO BE ENTERED"
0670 PRINT "HERE IS THE X - Y Z DISTANCES BETWEEN THE KNOWN VERTEX AND ORIGIN"
0680 FOR I=1 TO 14
0690 IF S=1 THEN GOTO 0700
0700 IF 1<>1 THEN GOTO 0700
0710 PRINT "VERTEX COMMON TO SIDE VIEW", I+1
0720 PRINT "HERE IS THE X - Y Z DISTANCES BETWEEN THE KNOWN VERTEX AND ORIGIN"
0730 INPUT 11, 12, 13
0740 PRINT "VERTEX COMMON TO SIDE VIEW", I+1
0750 IF S>1 THEN GOTO 0720
0760 PRINT "NUMBER OF VERTICES TO BE ENTERED"
0770 PRINT "HERE IS THE X - Y Z DISTANCES BETWEEN THE KNOWN VERTEX AND ORIGIN"
0780 FOR I=1 TO 14
0790 IF S=1 THEN GOTO 0800
0800 PRINT "VERTEX COMMON TO SIDE VIEW", I+1
0810 PRINT "HERE IS THE X - Y Z DISTANCES BETWEEN THE KNOWN VERTEX AND ORIGIN"
0820 PRINT "HERE IS THE X - Y Z DISTANCES BETWEEN THE KNOWN VERTEX AND ORIGIN"
0830 IF S>1 THEN GOTO 0810
0840 PRINT "NUMBER OF VERTICES TO BE ENTERED"
0850 FOR I=1 TO 14
0860 PRINT "HERE IS THE X - Y Z DISTANCES BETWEEN THE KNOWN VERTEX AND ORIGIN"
0870 PRINT "HERE IS THE X - Y Z DISTANCES BETWEEN THE KNOWN VERTEX AND ORIGIN"
0880 IF S>1 THEN GOTO 0870
0890 PRINT "NUMBER OF VERTICES TO BE ENTERED"
0900 FOR I=1 TO 14
0910 PRINT "HERE IS THE X - Y Z DISTANCES BETWEEN THE KNOWN VERTEX AND ORIGIN"
0920 IF S>1 THEN GOTO 0910

See Sol® at all these fine computer centers

AL: Birmingham: Computer Center Inc., (205) 942-8567
CA: Costa Mesa: Orange County Computer Center, (714) 846-0221
LA: Los Angeles: Computers Are Fun, (213) 473-0666
CT: Modesto: Computer Magic, (209) 527-5156
CT: Digital Deli, (415) 961-2670
CT: Walnut Creek: MicroSun Computer Center, (415) 933-6252
CT: Bethel: Technology Systems, (203) 748-6555
CT: Miami: Byte Shop of Ft. Lauderdale, (305) 561-2983
CT: Miami: Byte Shop of Miami, (305) 264-2983
CT: Tampa: MicroComputer Systems Inc., (813) 879-4301
IL: Lombard: Midwest MicroComputer, (312) 495-9869
ID: Boise Byte Shop Computer Store, (208) 345-3811
IA: Davenport: Memory Bank, (319) 386-3350
KY: Louisville: Matronix Associates, (502) 459-0503
MD: Silver Springs: Computers Etc., (301) 588-3748
TN: Jacksonville: Computers Etc., (615) 296-0520
NY: Florentine Computer Country, (314) 921-4434
NJ: Cherry Hill Computer Emporium, (809) 667-7555
NC: Raleigh: Bennett-Stiles Computer, (919) 781-0003
OH: Akron: The Basic Computer Shop, (216) 867-0389
OR: Beaverton: Byte Shop Computer Store, (503) 644-9986
PA: Kingsport: Computer Mart of New Jersey, (201) 793-8600
TX: Arlington: The Computer Tree, (607) 748-1223
TX: Austin: Computer Mart of New York, (212) 686-7921
TN: Kingsport: Micropcducts & Systems, (613) 245-8081
TX: Arlington: Computer Port, (817) 469-1520
FL: Fort Lauderdale: Byte Shop of Ft. Lauderdale, (305) 223-3496
CA: Costa Mesa: Orange County Computer Systems, Inc., 78-40-71
SPAIN: Barcelona: Interface S.A., (93) 301 7851
UNITED KINGDOM: Essex: The Byte Shop Ltd., (02) 709-4202
ARGENTINA: Buenos Aires: Basis Sistemas Digitales, 393-5299
BR: Sao Paulo: Calculadora DIGITAL, (11) 274-4444
CO: Bogota: Video National, 326505
COP: Copenhaghen: Peter W. Hold Trading Aps, 85-43-35
VENEZUELA: Caracas: Componentes Y Circuitos Electrónicos TTLCA, 565591.
A lot of semantic nonsense is being tossed around by some of the makers of so-called "personal" computers. To hear them tell it, an investment of a few hundred dollars will give you a computer to run your small business, do financial planning, analyze data in the engineering or scientific lab—and when day is done play games by the hour.

Well, the game part is true. The rest of the claims should be taken with a grain of salt. Only a few personal computers have the capacity to grow and handle meaningful work in a very real sense. And they don't come for peanuts.

Remember, there's no free lunch.

So before you buy any personal computer, consider Sol®. It costs more at the start but less in the end. It can grow with your ability to use it. Sol is not cheap. But it's not a delusion either.

Sol small computers are at the very top of the microcomputer spectrum. They stand up to the capabilities of mini systems costing four times as much.

No wonder we call it the serious solution to the small computer question.

Sol is the small computer system to do the general ledger and the payroll. Solve engineering and scientific problems. Use it for word processing. Program it for computer aided instruction. Use it anywhere you want versatile computer power!

Build computer power with our software.

At Processor Technology we've tailored a group of high-level languages, an assembler and other packages to suit the wide capabilities of our hardware.

Our exclusive Extended BASIC is a fine example. This BASIC features complete matrix functions. It comes on cassette or in a disk version which has random as well as sequential files.

Processor Technology FORTRAN is similar to FORTRAN IV and has a full set of extensions designed for the "stand alone" computer environment.

Our PILOT is an excellent text oriented language for teachers.

Sold and serviced only by the best dealers.

Sol Systems are sold and serviced by an outstanding group of conveniently located computer stores throughout the U.S. and Canada.

For more information contact your nearest dealer in the adjacent list. Or write Department B, Processor Technology, 7100 Johnson Industrial Drive, Pleasanton, CA 94566. Phone (415) 829-2600.

In sum, all small computers are not created equal and Sol users know it to their everlasting satisfaction.
Figure 7: To analyze perspective, two pictures of each side must be taken from two different distances. The line of sight through both cameras should be in line with a point on the object.

fixed-focus camera. Under a discussion of theory there is a description of another technique, in which there is no restriction of constant focus.

Enlargements of the photographs should be made to make measurements more accurate. I have found that there are always errors in reading values from photographs; the smaller the photographs, the larger the error ratio.

Using the Picture Input Program

With photographs and measurements, the user is ready to run the picture input program. To illustrate the use of this program, a simulated run will be described. For this simulation a simple object was photographed (see photos 1, 2, 3 and 4), and measurements taken. Four photographs were needed to represent two side views. (Note that for this object only two side views are necessary to see all the vertices.)

In figure 2 each vertex of the object is associated with a letter. Table 1 gives the values of the coordinates measured from the four photographs. These measurements are provided to illustrate the simulation. In a normal run of the program these values would be provided to the program directly from the data tablet.

The picture input program, written in BASIC, receives the information from the data tablet by making use of the BASIC CALL statement. The CALL statement activates an assembly language routine which handles the interface to the data tablet. This routine, not included here, must be supplied by the user.

The simulation begins by having the program prompt with the question:

HOW MANY SIDE VIEWS ARE TO BE ENTERED? 2

In this example there are two side views.
A powerful I/O interface card for any S-100 BUS. Three serial ports and one parallel port. Fully hardware operated. No software initialization required. In addition, this board will operate with any software. User is able to select status bits to fit any software configuration.

SELECTABLE BAUD RATES: All baud rates are dip switch selectable. Each port can be set for its own baud rate. CRYSTAL CONTROLLED baud rates. This interface card can operate with any Microprocessor at any speed. The 3 S+P does not depend on the CPU for its originating clock. 110-9600 baud.

EASY CONFIGURATION: The 3 S+P is easy to set. All port addresses are set by dip switches. Each port can be assigned independent of each other.

SOFTWARE COMPATIBLE: The 3 S+P will be compatible with most software arrangements due to the ability to set the status bits and the parity. P.C. Board is with plated through holes, solder mask, silk screened legend and gold plated contacts.

HIGH QUALITY: The highest quality parts are used. Specifications are. S-100 BUS compatible. high speed 1 K memory. Voltage requirements - +8 volts @900MA, +16volts @40MA, -16volts @100MA. Output is standard video.

OUTPUT ARRANGEMENT: All outputs terminate at the top of the card via a 26 contacts. Standard 26 pin IDC connectors mate with each port. RS-232, current loop at each serial port and full data lines at the parallel port connection. Operation is asynchronous mode, but can be configured for synchronous operation by minor reconfiguration.

FULL DOCUMENTATION: A complete manual of operation and construction is included. Easy construction and 3 hours is the estimated construction time. Just plug in, set the switches and enjoy all the different configured software. NO MORE changing the software to match I/O board. Just set the board and enjoy.

S-100 VIDEO DISPLAY BOARD

MODEL VID-100K (KIT) - $119.00
MODEL VID-100A (ASSEM.) - $139.00

- Provisions for plugging in keyboard.
- 16 lines at 64 characters.
- Full upper and lower case.
- Ascii key, character set, symbols, greek letters, and numbers.
- 7x9 dot matrix in an 8x10 field.
- Normal and reverse video, and blinking cursor.
- Compatible with CPM.
- A natural for text editing.
- Comes with software driver in ROM which provides scroll up and down, full cursor positioning, flashing and field characters.

Specifications are. S-100 BUS compatible, high speed 1K memory. Voltage requirements - +8 volts @900MA, +16volts @40MA, -16volts @100MA. Output is standard video.

Epoxy glass double sided with plated through holes, solder mask and silk screened legend for easy assembly and servicing.

S-100 EPROM PROGRAMMER +3

MODEL EPR-100K (KIT) - $129.95
MODEL EPR-100A (ASSEM.) - $159.95

All the same features of the TRS-80* model. Comes complete with interface cable, S-100 plug-in card. Totally self contained power supply, plus many other extras.

S-100 DISC CONTROLLER CARD

TRS-80* DISC DRIVES

MODEL DC-80K (KIT) - $169.00
MODEL DC-80A (ASSEM.) - $189.00

With the use of our interface cable or S-100 BUS system for TRS-80* computers this card controls mini or 8" floppies.

On board firmware with WDOS operating system, video driver, and keyboard driver which allows user to run any type of software available and emulates basic softwear driver resident in keyboard, if user so desires.
The program next states:

READY TO PROCESS SIDE VIEW NUMBER 1.

At this time the user should put the two photographs of side view 1 onto the data tablet. The program tells the user:

PLACE THE STYLUS ON THE ORIGIN IN PICTURE ONE.

The user should find the location of the origin in the photograph and indicate it with the stylus. In this example it is point O. Knowing this point allows the program to relate the data tablet’s coordinates to the photograph’s coordinates. The same is asked for picture 2:

PLACE THE STYLUS ON THE ORIGIN IN PICTURE TWO.

In preparation for the program, the user should measure the distance between the two camera positions. In this example the distance was 26.7 inches.

HOW FAR WAS CAMERA ONE FROM CAMERA TWO? 26.7

The program next needs to know where in the photograph the vertex whose distance to the origin has been measured lies. This point should be located twice. Once in response to:

PLACE THE STYLUS ON THE KNOWN VERTEX IN PICTURE ONE;

and once in response to:

PLACE THE STYLUS ON THE KNOWN VERTEX IN PICTURE TWO.

Vertex 1 is the known vertex. From table 1 we see that values $(0,43.1)$ and $(0,28.2)$ would be the values provided by the tablet. In preparing for the program, the distance between the origin and vertex 1 was measured. In X,Y,Z terms this distance is $(0,11.75,0)$. This value should be entered in response to:

ENTER THE X,Y,Z DISTANCE BETWEEN THE KNOWN VERTEX AND THE ORIGIN: $(0,11.75,0)$.

If more than one side view is to be entered, the other side views must somehow be related to the first coordinate system. This is done by finding points in the first side view which are also in other side views (see figure 3). Therefore, the program will ask the user to point to a vertex in side 1 which is also in side N. The first N vertices pointed to in side view 1 should be vertices which are also in other side views. That is, the first vertex in side view 1 should be a vertex which is also in side view 2. The second vertex pointed to in side view 1 should be a vertex found in side view 2. The second vertex pointed to in side view 1 should be a vertex found in side view 3, etc. (The program as presented in listing 1, for the sake of simplicity, assumes that only two side views are necessary, and that these side views are opposite (180°) to each other. For most objects these will be sufficient.)
C1P: $349! A dramatic breakthrough in price and performance. Features OSI's ultra-fast BASIC-in-ROM, full graphics display capability, and large library of software on cassette and disk, including entertainment programs, personal finance, small business, and home applications. It's a complete programmable computer system ready to go. Just plug-in a video monitor or TV through an RF converter, and be up and running. 15K total memory including 8K BASIC and 4K RAM — expandable to 8K.

C1P MF: $995! First floppy disk based computer for under $1000! Same great features as the C1P plus more memory and instant program and data retrieval. Can be expanded to 32K static RAM and a second mini-floppy. It also supports a printer, modem, real time clock, and AC remote interface, as well as OS-650 V3.0 development disk operating system.

C2-4P: $598! The professional portable that has over 3-times the display capability of 1P's. Features 32 x 64 character display capability, graphics, full computer type keyboard, audio cassette port, and 4 slot BUS (only two used in base machine). It has 8K BASIC, 4K RAM, and can be expanded to 32K RAM, dual mini-floppies and a printer.

C2-4P MF: $1599! It's a big personal computing mini-floppy system at a special package price. Contains the famous C2-4P microcomputer with 20K static RAM, 5" mini-floppy unit for instant program and data loading, RS-232 circuitry (for optional modem and printer), and four diskettes featuring exciting games, personal, business and education applications.

C2-8P: $799! The personal class computer that can be expanded to a full business system. Has all the features of the C2-4P plus an 8 slot BUS (3-times greater expansion ability than the C2-4P). Can be expanded to 48K RAM, dual floppies, hard disk, printer and business software.

C2-8P DF: $2599! A full business system available at a personal computer price! The system includes the powerful C2-8P microcomputer (32K RAM expandable to 48K), dual 8" floppy unit (stores 8-times as much information as a mini-floppy), and 3 disks of personal, educational and small business applications software. Has all the capabilities of a personal system including graphics plus the ability to perform Accounting, Information Management, and Word Processing tasks for small business. Contact your local Ohio Scientific dealer

* Monitors and cassette recorders not included. Ohio Scientific offers a combination TV/Monitor (AC-3P) for $115. Circle 290 on inquiry card.

OHIO SCIENTIFIC
America's largest full-line microcomputer manufacturer
1333 S. CHILLICOTHE RD., AURORA, OHIO 44202 (216) 562-3101
All that remains is to point to a vertex in picture 1 and then again to that vertex in picture 2, and to continue until all of the vertices in that side view have been pointed out. The program will ask:

HOW MANY VERTICES ARE TO BE ENTERED: 8

Eight is the answer for the first side view of this simulation. Then the program will ask:

IN PICTURE ONE POINT TO VERTEX N;

and

IN PICTURE TWO POINT TO VERTEX N.

For example, the first vertex pointed to is the common vertex. C is the common vertex in our simulation, so it is indicated first in picture 1 and again in picture 2. The data tablet provides the values (40.1, 0) and (26, 0). Then vertex A is pointed to in picture 1 and picture 2. Values (−3.3, 0) and (−2, 0) will come from the data tablet. This continues until all of the vertices of a side view have been entered.

When it is time to process another side view, the program will say so, asking for the same information as it did in side view 1 (e.g., where the origin and known vertex for this side view are, what are the measurements for the known vertex, and what was the distance between camera positions). Next, the different vertices should be pointed to, starting with the vertex common to side view 1.

When the program is finished, all the coordinates of the vertices will have been converted to three-dimensional coordinates, and represented inside the computer. Table 2 contains the results from this simulation.

Displaying the Object

With these results the object can be displayed from any desired viewpoint. For example, let us say that two side view pictures were taken such that the directions of the pictures were perpendicular to each other. It would be quite simple to display the object from a viewpoint between those from which the photos were taken, even though no picture was taken from such a position. Figure 4 shows examples of different viewpoints of the object photographed. These figures were developed mathematically, using the results of the picture input program, in the same manner that they would be developed by a program which displays objects three-dimensionally. Starting with just a few photographs, many such pictures of an object can be made.

Some Theory

How is it possible, that from two photographs of one side of an object, all of that side’s dimensions can be calculated? To answer this question, let us first examine the way in which perspective pictures are displayed. For simplicity, we will assume that
I've finally found a personal computer I respect. It's not surprising that professionals get excited about the Compucolor II. It's a totally-integrated 8080A system with full color graphics display, built-in 51K mini-disk drive, and the best cost performance ratio available in a personal computer.

The complete system is only $1495.* And that price includes 8K user RAM, RS-232C compatibility and random access file capabilities.

Our 8 foreground and background colors will boost your comprehension, while introducing you to an exciting new dimension in BASIC programming. The vector graphics have 16,484 individually-accessible plot blocks. And the 13" diagonal measure screen gives you 32 lines of 64 ASCII characters. You also have the flexibility that comes with 16K Extended Disk BASIC ROM.

Compucolor II offers a number of options and accessories, like a second disk drive and expanded keyboard, as well as expandability to 32K of user RAM. Of course we also have a whole library of low-cost Sof-Disc programs, including an assembler and text editor.

Visit your nearest computer store for details. And while you're there, do some comparison testing. With all due respect to the others, once you see it, you'll be sold on the Compucolor II.
the outline of an object consists of straight edges which meet at vertices. Rounded edges are approximated by several straight edges. Putting an object into perspective entails transforming the edges' three-dimensional coordinates into two-dimensional coordinates. Internally, the computer represents the objects' edges as pairs of vertices. Since straight lines in three dimensions get transformed to straight lines in two dimensions, all that is necessary is to transform coordinates of their endpoints.

The screen of a video display device is two-dimensional. We will call this plane the picture plane (see figure 5). Putting an object into perspective involves drawing straight lines between the object and an imaginary viewer. The imaginary picture plane is also inserted between the viewer and the object. The objects' vertices are projected to where the lines adjoining object and viewer intersect the picture plane. These points of intersection can be computed using similar triangles. Triangle ABC is similar to triangle ADE. The equation for a perspective transform is therefore:

\[
XP = \frac{DP(X)}{Z} \quad YP = \frac{DP(Y)}{Z}
\]

where the \(X, Y,\) and \(Z\) directions are as defined in figure 5:

\[
\begin{align*}
XP &= \text{X coordinate in picture} \\
YP &= \text{Y coordinate in picture} \\
DP &= \text{distance between viewer and picture plane} \\
X &= \text{vertex's X coordinate} \\
Y &= \text{vertex's Y coordinate} \\
Z &= \text{distance between vertex and viewer.}
\end{align*}
\]

The location of the picture plane with respect to the viewer determines the angle of vision. If the picture plane is close to the viewer, there is a wide angle effect. If the picture plane is far from the viewer there is a telescopic effect (see figure 6). The term \(DP\) in the above equations is that distance, and it is referred to as the perspective transform of the lens of the camera.

The object is displayed according to the values put into several equations. We know that the distance between camera and object is given by term \(Z\), and that the angle of vision is given by term \(DP\). To achieve rotation of the object, we use the equations below:

\[
\begin{align*}
XR &= X \times \cos(\text{angle 1}) - Y \times \sin(\text{angle 1}) \\
YR &= X \times \sin(\text{angle 1}) + Y \times \cos(\text{angle 1}).
\end{align*}
\]

By rotating the object around two axes, any angle of rotation in three dimensions can be achieved.

\[
\begin{align*}
YR1 &= YR \times \cos(\text{angle 2}) - Z \times \sin(\text{angle 2}) \\
ZR &= Z \times \cos(\text{angle 2}) + YR \times \sin(\text{angle 2}).
\end{align*}
\]

Perspective is arrived at by applying the original transform equations:

\[
\begin{align*}
XP &= \frac{DP(XR)}{ZR} \\
YP &= \frac{DP(YR)}{ZR}.
\end{align*}
\]
Now You Can Make Your Own Magic

Unleash the Full Power of Your Personal Computer With the All-New Aladdin Personal Programs™

Welcome To The All-New World Of Aladdin. And Get Ready To Make Your Own Magic

Aladdin Automation now offers you the magic of a full range of Personal Programs™ series especially designed to support the most popular personal computers available today. Some Personal Programs™ will take you to faraway places of exciting, action-packed adventures. Others will bring fun-filled learning experiences home to you and your child. Still others are designed for your own use in the home or office.

All Aladdin Personal Programs™ are moderately priced. Visit your personal computer dealer today to see and experience the magic waiting for you in every one of the Aladdin Personal Programs™. (And if your dealer hasn’t ordered his supply yet, then ask him to write Aladdin Automation for complete information on all the Personal Programs™ available now.)
A camera is a device which produces a perspective transform. The procedure with the photographs and data tablet is to reverse the transform to produce the three-dimensional coordinates of the vertex. From the equations above, we see that there are five variables. The photographs give us values for XP andYP. If DP and Z are determined, values for X and Y can be computed. It can be assumed that DP in one photograph will be the same as DP in another photograph, as long as the angle of vision does not change. With two photographs taken with camera positions one behind the other, and with the distance known between positions, we have two sets of perspective transform equations and a relationship between Z in one photo to Z in the other photo:

\[
\begin{align*}
XP_1(Z_1) &= DP(X) \\
XP_2(Z_2) &= DP(X) \\
YP_1(Z_1) &= DP(Y) \\
YP_2(Z_2) &= DP(Y) \\
Z_2 - Z_1 &= L.
\end{align*}
\]

Subtracting equation 2 from equation 1 and substituting \(Z_2 = L + Z_1 \):

\[
\begin{align*}
XP_1(Z_1) &= XP_2(L + Z_1) \\
X_1 &= XP_2(L) / (XP_1 - XP_2).
\end{align*}
\]

Therefore, to learn how far the camera was from a vertex, all we need to know is the distance between camera positions.

Finding DP, the perspective transform, requires the knowledge of the coordinate in either the X or Y direction for one known vertex. For example, with a value for X known and a value for Z obtained through the use of equation 6, we can write an equation for DP as:

\[
DP = Z(XP)/X.
\]

Once a value for DP is obtained, values for X and Y are computed using the Z values computed and the equations:

\[
\begin{align*}
X &= Z(XP)/DP \\
Y &= Z(YP)/DP.
\end{align*}
\]

Now every vertex's three-dimensional X, Y, and Z coordinates can be determined. These coordinates are given with respect to the edge of the camera. To orient them with respect to the origin, subtract the distance between origin and camera from each computed Z value. The first side of the object is now described three-dimensionally, independently of a viewing point or picture plane.

To describe other sides of the object, the above equations must be applied again. Also, two photographs taken as above, an origin, one known vertex, and an additional vertex common to both side views must be supplied. This additional common vertex will be used to relate the values obtained in one side view to the values obtained in the other side view (see figure 3). Once all of the values are computed for the second side, the differences are found between values computed in view one from values computed in the other view for the common vertex. These differences in value are the offsets from one side's coordinate system to the other side's coordinate system.

If these values are subtracted from one side's values, all vertices will be in relation to one origin. If this procedure is applied to all sides, the entire object is described. With the aid of your computer you can now display the object from any perspective you choose. You are not limited to the perspective of the photographs, and you can have the object placed at any distance or angle of rotation you like.

Another Input Method

There is another technique for entering three-dimensional information from photographs into a computer. This technique is useful in cases in which, rather than measuring between the camera positions and the object, it is easier to measure the positions of several points on the object. For example, you may be taking a picture of a house, and have no convenient way to measure the distance between the camera and the house. Yet it may be quite simple to measure the dimensions of a window frame. In this technique, rather than measure the distance between camera and object, the user measures two vertex coordinates in reference to a third vertex which is to serve as the origin.

The distance between object and camera need not be known, but the camera must point so that the origin of the object is in the center of the photos. Again, two photos are required. They should be taken parallel to each other, rather than taken one behind the other. Each photograph will have its own origin, and it is necessary to know the distance between the camera's positions, or distance between origins. Three vertices from one photograph yield three equations:

\[
\begin{align*}
Z_1 \times XP_1 &= X_1 \times DP \\
Z_2 \times XP_2 &= X_2 \times DP \\
Z_3 \times XP_3 &= X_3 \times DP.
\end{align*}
\]

Measurements of the object give \(X_1, X_2, X_3, Z_1, Z_2,\) and \(Z_3\). Measurements of the photograph give \(XP_1, XP_2,\) and \(XP_3\). We can substitute the differences for the \(Z_i\) with \(L_i\):
L1 = Z2 - Z1
L2 = Z3 - Z1
Z1 x XP1 = X1 x DP
Z1 x XPl = Z1 x DP
(L1 + Z1) x XP2 = X2 x DP
(L2 + Z1) x XP3 = X3 x DP;

and subtract the bottom equations from the top equations:

\[
\frac{(DP \times (X1 - X2)) + (L1 \times XP2)}{(XP1 - XP2)}
\]

Z1 =

\[
\frac{(DP \times (X1 - X3)) + (L2 \times XP3)}{(XP1 - XP3)}
\]

and solve for DP.

DP =

\[
\frac{((XP1 - XP2) \times (LP2 \times XP3)) - ((XP1 - XP3) \times (L1 \times XP2))}{((X1 - X2) \times (XP1 - XP3)) - ((X1 - X3) \times (XP1 - XP2))}.
\]

Once DP is solved for, Z1 can be found for any vertex by using the two photographs' equations and knowing the distance between camera positions:

\[
X1 = (Z1 \times XP1) / DP
\]

\[
X2 = (Z1 \times XP2) / DP
\]

\[
Z1 = (XP2 - DP) / (XP1 - XP2).
\]

Of course with Z1 determined X1 and Y1 can easily be found:

\[
X1 = (Z1 \times XP1) / DP
\]

\[
Y1 = (Z1 \times XP2) / DP.
\]

To enter data from the tablet with this technique, first indicate through a keyboard the values for the three known vertices, and then point to them in one photograph. This would allow the program to compute DP. Then, as in the other technique, point to a vertex in one photograph, and again to that vertex in the other photograph. More sides can be added, and eventually the whole object will be described.

There are additional techniques for entering three-dimensional data. For example, photographs may be taken with added amounts of rotation. This is particularly true in cases in which the user cannot take actual photographs, but has some means of determining a few dimensions of the object. In these cases, the angles of rotation must be calculated in addition to DP, X, Y, and Z. Because the mathematics for solving the equations with rotation is more involved than the equations in this article, I have not discussed it here, except to mention that for each angle of rotation one more known value, a vertex coordinate, needs to be known before the equations can be solved.
M6809 is Silicon

Technical Forum is a feature intended as an interactive dialog on the technology of personal computing. The subject matter is open-ended, and the intent is to foster discussion and communication among readers of BYTE. We ask that all correspondents supply their full names and addresses to be printed with their commentaries.

Terry Ritter
Joel Boney
Motorola Inc H2565
3501 Ed Bluestein Blvd
Austin TX 78721

In our recent article, "A Microprocessor for the Revolution: the 6809" (January, February, March 1979 BYTE), we tried to indicate that the specification, logic design, layout, and testing of a new microprocessor is a very big job. Throughout the project we were quite aware of the potential market for this new part, and the entire microprocessor design team made Herculean efforts to get it out as quickly as possible. The big push finally came down to getting the design ready for the mask shop before Christmas 1978 (we wanted to enjoy the holiday).

Every metal line, every polysilicon line, every connection, and every transistor in the entire layout had to be individually hand checked. A checking team consists of two individuals. The first member, and leader, is a circuit engineer who can read the layout to identify transistors, verify their logic function and size, and trace the connections between them. The second engineer monitors the checkout process on a logic-diagram blueprint, coloring each line and each gate as it is checked. This process continues until all gates and all lines are colored and until all paths are investigated on the layout. Uncovered errors are edited, replotted, and rechecked. The 6809 layout (with about 15,000 transistors) was completely hand checked three times in the last two weeks before Christmas 1978, in addition to sophisticated computer spacing checks.

Our EXORciser II based test system had been working for weeks with the 6809 breadboard (a gate-for-gate transistor-transistor-logic equivalent of the 6809). The working system had the new EXBUG09 monitor, and would run all our 6809 programs, including an
18,000 line diagnostic package. This program checks all registers, instructions, addressing modes, and numerous combinations. Correct execution provides a characteristic pattern of address positions as displayed on the logic analyzer.

We disconnected the breadboard, popped the first 6809 into the socket and started testing parts at 7:30 PM on Tuesday, January 9 1979. None of the devices worked the first time, but we did get two that failed in exactly the same way. This is one of nature's hints. Naturally, we were disappointed that none of the parts passed all tests, but we knew the complexity involved in an LSI (large scale integration) device.

After you have checked 5,000 gates they all tend to look alike, especially at 3 AM. All conductors look the same—there is no color coding on an integrated circuit. It is all too easy to miss a wrong connection, a shorted transistor, a floating gate, or any one of many possible errors. Thus, virtually all LSI devices require a sequence of mask iterations before a fully functional device is obtained. As weak areas are pinpointed by testing, new masks are obtained to improve yield. But the Motorola microcomputer design group has a history of producing functional, or nearly functional parts the first time, hence our disappointment.

Resigned to the worst, we proceeded to write programs to narrow the error to a particular instruction or sequence of instructions, and hopefully to a particular gate. After an hour of machine language testing, it became apparent that the error was random, not instruction dependent, and possibly parametric. That is, the malfunction was responsive to clock frequency, supply voltage, or operating temperature parameters.

Finally, the Microcomputer Design Manager picked up a heat gun and trained it on one of two suspicious devices. Everyone was transfixed, watching the logic analyzer with renewed hope. There was one false start, then the 6809 made it once through all tests. More heat, and the 6809 was running all 18,000 lines of test code over and over again. Pandemonium broke loose, with cheers and congratulations all around.

After some investigation, the minor temperature sensitive problems were identified, and masks were modified to produce customer samples... and Motorola is now in the 6809 business.
Coming up out of the Circuit Cellar is a rare occurrence, to the point where some of my friends have accused me of being a mushroom. I prefer to be likened to a mole—a more dignified species. We share a common bond of subterranean existence and fear of bright sunlight, but the mole’s predicament is dictated by nature, and mine by choice.

The Circuit Cellar is by no means a hole in the ground. It’s heated, well-lit and looks more like a living room than a cellar. Even though it affords all the comforts of home, there are those occasions when a change of environment is required. It’s not enough to walk out in the driveway, take a deep breath and run back into the cellar. Sometimes a complete change of surroundings is needed to shock the mind out of the doldrums and spark creativity (eg: a vacation). Since I usually don’t have time for vacations, I take “business excursions for purposes of cerebral detoxification” or “ECDs” for short.

For two months I had been wrestling with the details of an article on fiber optics and laser communications (this one). The hardware was completed very quickly, as with most of my projects, but the text dragged on for weeks. Lighting the wood stove in the Circuit Cellar became an all too easy chore using the piles of scrap paper I was generating. My graphospasms (ie: writer’s cramps) were not bearing fruit. One time I even found myself sitting at my desk pushing pencils through the electric pencil sharpener until it started smoking.

During times like this there was only one place to go — New Hampshire — to see the Colonel. My father-in-law, Colonel Foster, was the one person who could break me out of this slump. Between stories about old army buddies and spending the war in the Aleutians waiting for an invasion I would surely find some inspiration.

“Colonel? Are you there?” After anxiously dialing his telephone number and saying hello, I was left with silence at the other end of the line ...

“Colonel?”

“Be right with you, Steve.” As the receiver was picked up again he apologized, “Sorry Steve, my man was at bat and I had to see the hit. You’re a Red Sox fan, aren’t you?”

“It would be in bad taste for me to suggest that my subterranean hideaway provided all the spiritual stimulation I needed and that chasing a little ball around in the grass was not in my spectrum of pursuits.

“I quite understand your enjoyment of the game, Colonel. I hope your team wins,” I replied, evading his question. During my statement I heard him roar again in response to the activities on the television. When I sensed a lull, possibly precipitated by a commercial, I continued, “Colonel, I need to get away. How would you like some company tonight?”

“Sure, you know you’re always welcome. I haven’t had anyone to tell a good army story to in a long time.”
I told him I'd pack all the gear in the car and be there in three hours. Possibly I would feel better about writing once I arrived.

The Colonel, sensing the termination of the commercial, quickly responded, "Three hours is great. The game is still in the first inning. If you hurry you may get here before it's over... gotta go now."

One of the good things about living in New England is that everything is close. It was a scant 3 hour drive between Connecticut and New Hampshire, but I dragged it out an extra half hour so I wouldn't be competing with the Red Sox for the Colonel's attention. As I pulled into the garage he came out to greet me.

"Howdy," he said, slapping me on the back. From his exuberance I could tell that the Red Sox had just won the game. "Come on in and get settled. I'm expecting a telephone call... oops, there it is now."

Leaving the electronics junk in the car I followed him into the house. He was still wearing his lucky Red Sox baseball cap as he spoke.

"Chester, wasn't the game great? I thought they were going to blow it in the 6th. You bet, I'm ready for tomorrow's game. If they can play like that again, the pennant is in the bag..."

Suddenly Colonel Foster's expression changed to amazement, then anger. He grabbed his cap, slung it into the chair and complained, "Darn woman again!... What do you mean lucky! The Red Sox won through skill, not luck!... Go play with your WATS lines and let Chester and me talk." It was obvious that suddenly there was a third party to their conversation.

"Beatrice, I don't care if you think it was an error. It was ruled as a single... Yes, I know the 6th looked bad but that still doesn't mean they're just lucky..."

It was becoming an argument between the Colonel and Beatrice. A hint as to her identity was provided when he responded, "Beatrice, would you keep your opinions to yourself and let me talk to Chester? Chester, come on over for a private talk!"

He slammed the receiver down on the phone, put his baseball cap back on, and slumped into the easy chair. "I just can't carry on a baseball conversation with that woman around."

"Who's Beatrice?"

"The switchboard operator for the town. We don't have all that new computer telephone stuff you city slickers have. We have Beatrice. When it's business or personal she's good and keeps her nose out. But, when it's baseball, Beatrice has to get her two cents in!"

(Obviously what the Colonel and Chester needed was an alternate means of communication, such as CB.)

"I've got a great idea, Colonel. Why don't you and Chester use CB radios instead of the telephone?" The Colonel led me to the bookcase in the study. I found myself staring directly at a CB radio. He flipped it on and said, "Tune in channel 19 and listen." The radio came to life. "Breaker one nine... breaker one nine... this is your Big Mama on this one niner... all you 18 wheelers just put the hammer to the floor and let Big Mama be your guide... I'll have a Smokey report in five, but first, the weather..."

My eyes opened wide. "Is that Beatrice?"

"Beatrice? You're darn tootin' it is. She's got an antenna tower on her house and radio gear that would put an FCC test laboratory to shame. I swear she's running a full gallon."

"We tried CB a while back and it was useless." This time the conversation came from behind. Chester had let himself in and joined us in the study. He continued, "It all started when we telephoned the games to the tower."

"Tower?"

"I'm sorry, I guess the Colonel didn't tell you." Walking over to the window of the study and pointing to the adjacent mountain top roughly two miles away. "You see that structure on top of that hill? That's my tower. Well, not exactly my tower. I just work there. It's a combination fire tower and radio relay station. Occasionally I have to sit up there and monitor equipment during important transmissions."

"What's that got to do with Beatrice?"

"With all the interference from the equipment up there I can't use a radio or television to watch the Red Sox."

(Although what the Colonel and Chester had been talking about was the aspects of a good mystery.)

"The Colonel would tune in the game on his television set here, telephone me in the tower and then lay the receiver near the television so I could listen to the game. When Beatrice found out she'd bust in and add her commentary to the game. Do you know what it's like having a nosey Howard Cosell-type beating on your ear for three hours at a time?"

I could only offer my sympathy. If there was a solution short of stringing two miles of wire I didn't see it yet. But I would continue to think about it.

"Tomorrow is a very important Red Sox game. The pennant may hinge on it. Text continued on page 36
We’ve worked like mad to
cook up all your favorites.

Now, we're cooking. Our boys in the lab have turned circuit chefs these past three months to create a smorgasbord of deliciously assembled boards to support your APPLE II, TRS-80, or S-100 bus systems. Feast your eyes on our monstrous selection in the menu below. Then, order enough to satisfy your hunger for experimentation for months to come. Contact your local computer store, or call us direct. Bon appetit!

California Computer Systems
309 Laurelwood Road • Santa Clara, CA
(408) 988-1620 • 95050

So Nobody Goes Away Mad.

APPLE II Delicacies

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7114</td>
<td>APPLE ROM</td>
<td>$69.95</td>
</tr>
<tr>
<td>7740</td>
<td>APPLE Programmable Timer Module</td>
<td>$150.00</td>
</tr>
<tr>
<td>7710</td>
<td>APPLE Asynchronous Serial Interface</td>
<td>$99.95</td>
</tr>
<tr>
<td>7720</td>
<td>APPLE Parallel Interface</td>
<td>$69.95</td>
</tr>
<tr>
<td>7811</td>
<td>APPLE Arithmetic Processor</td>
<td>$389.00</td>
</tr>
</tbody>
</table>

APPLE Wire Wrap Board | $21.00
APPLE Solder Tail Board | $21.00

S-100 Bus Fare

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2501</td>
<td>MXVI 16K Static RAM Board</td>
<td>$299.00</td>
</tr>
<tr>
<td>2500</td>
<td>Wire Wrap Board</td>
<td>$30.00</td>
</tr>
<tr>
<td>4P10</td>
<td>Four-Parallel I/O Board</td>
<td>$99.95</td>
</tr>
<tr>
<td>2510</td>
<td>Etch Board</td>
<td>$17.95</td>
</tr>
<tr>
<td>2510</td>
<td>Solder Tail Board</td>
<td>$30.00</td>
</tr>
<tr>
<td>2200</td>
<td>All-Metal Mainframe Box</td>
<td>$399.00</td>
</tr>
</tbody>
</table>

*APPLE II, TRS-80 is a trademark of Apple Computers, Inc. S-100 is a registered trademark of Radio Shack, a Tandy Co.
Unfortunately, tomorrow is also a day I have to spend in the tower. I really want to listen to the game, but Beatrice is tough to listen to." I ran over to the window, looked at the tower in the distance, and noted the glass windows circling the observation deck. "What's the weather report for tomorrow?"

"Cloudy and cool I think." Chester answered.

"Good! Clear weather. . Colonel, could the television set be moved in this room for the game tomorrow?"

"I suppose so. Why?"

I scanned the study looking for a convenient AC power outlet and spied one by the window.

"Perfect," I said. Both the Colonel and Chester were a little perplexed at my behavior.

"What if I told you there was a way for Chester to listen to tomorrow's game undisturbed by Beatrice?"

"We've tried everything. What are you planning?"

"Wait here and I'll show you." I dashed off to my car and took a tripod, a long white rectangular instrument, a small black box with a lens at one end and a few patch cords out of the trunk. Dragging all the equipment into the study, I proceeded to assemble it, much to their amazement.

"What's all this, Steve?" the Colonel asked.

With as straight a face as I could muster I replied. "It's a laser."

Both men, army veterans of two wars and thirty years' service, took two steps back and exclaimed, "A laser?" It was instantly apparent that the words laser and "death ray" were synonymous for them. Before I let them think I planned to rub out Beatrice, I quickly continued my explanation.

"There are big lasers and little lasers. This is a little one. It won't burn anything or hurt anyone if used properly. Eye protection is the only consideration necessary on this particular laser."

"Do you always carry this stuff around with you?" the Colonel asked.

"No. It just happens to be the topic of this month's article for BYTE."

"What has this got to do with tomorrow's game?" Chester asked.

"We're going to transmit the game to you in the tower on a beam of light."

Their eyes opened wider but they remained receptive.

"Let me demonstrate."

I took the transistor radio, tuned it to a station and placed it on the coffee table. Taking a long patch cord, I plugged one end in the radio earphone jack, automatically silencing the radio speaker, and plugged the other into the rear of the laser. Aiming the laser, I turned it on. A red spot, about 1/8 inch diameter, shone brightly on the wall 15 feet away.

"You're sure that won't burn the wall?"

"Trust me."

Next, I picked up the black box with the lens on it and turned it on. I walked over to the illuminated spot on the wall and interrupted the laser beam path with the box. When the beam intersected with the lens, music was heard!

"That's the radio station you tuned in, all right," Chester said.

"Colonel, take that poker from the fireplace and wave it back and forth in front of the laser so it interrupts the beam." "Why...the radio goes on and off," he exclaimed a minute later.

"Correction, Colonel. The radio doesn't go off, only the receiver, when it no longer "sees" the modulated laser light beam. Notice in addition that the beam barely spreads out at all over the 15 feet to the wall."

"I think I get what you're driving at, Steve."

"You've got it. Chester takes the re-
This exceptional print quality for $560!
The new Comprint model 912 printer for computers and terminals:

- Fast—225 characters/second (170 lpm)
- 80 character lines on 8½" wide paper
- Quiet, non-impact operation
- 6 month warranty

Available now at computer stores and industrial distributors.
receiver up to the tower tomorrow, aims it at this window using the gun sight scope on top. Then we turn on the laser which, instead of being connected to the radio, comes from the television. Voila! Instant uninterrupted Red Sox baseball. And, no Beatrice!"

"Will it really work, Steve?" Chester asked.

"Sure, and tomorrow we'll prove it." Before the next comment from anyone the telephone rang and Colonel Foster answered it. Chester and I listened and smiled.

"Look, Beatrice, your team doesn't have a chance for the pennant... Are you still claiming that that was an error?... It wasn't just luck in the 6th I tell you..."

Chester and I laughed. Beatrice was really giving the Colonel a run for his money, but there was a twinkle in his eye as he spoke. The Colonel was living what he enjoyed most—baseball. First on television and then blow by blow with Beatrice.

Communicate on a Light Beam

Most experimenters have never considered using a modulated light beam for data communication. I'm not suggesting that everyone throw out their twisted pair RS-232 lines and replace them with laser beams, but I do ask you to consider the commercial advantages of such a concept and try a few experiments.

When discussing modulated light communications, a definition of terms is in order. The two most often heard are lasers and fiber optics. It is important to recognize that one is a light source and the other is a light conductor. It is not necessary for them to be used together but this is often the case. I'll explain more about each later.

A full duplex optical communication link is shown schematically in figure 1. It consists of two pairs of optical transmitters and receivers which allow data to flow in two directions simultaneously. Data from the base to the remote travels on one line, while data from the remote to the base is on the other. This is a dedicated duplex hookup. Unlike the ones you've probably used, this one uses fiber optic cable rather than wire. In its commercial applications it can offer the following advantages:

- Immunity to strong electrical or magnetic noise. Fiber optic material is usually glass or plastic and since there is no electrical conduction there can be no induced electrical noise.
- High electrical isolation. Since the data conductor is a dielectric material, the isolation between the transmitter and receiver is a function of distance.
- Higher bandwidth and lighter cable. Optical modulation systems have inherently higher data rate capabilities and glass and plastic weighs less than copper. Bandwidth is typically 100 megabits.
- Lower loss than coaxial systems. New low loss fibers extend transmission distance.
- Negligible crosstalk. If each fiber optic channel is optically sheathed there is no crosstalk. Even adjacent unsheathed fibers rarely interfere with each other.
- Ultimately lower cost than either coaxial or twisted-wire systems. The raw material (sand) used in making fiber optics is abundant, while copper gets increasingly more expensive. Cost for a data transmission system is ultimately based on dollars per megabit times distance. Since fiber optic systems have higher bandwidths, the cost factor is slowly moving in their favor.
"Our inventory is our existence. Think we'd trust it to anything less than Scotch® Brand Diskettes?"

Scotch Diskettes are the diskettes you can depend upon with the information your business depends upon.

Each one is tested and certified error-free before it leaves our factory. Because we know nothing less than perfection is acceptable for your vital business data.

Scotch Diskettes are available in regular or mini sizes, compatible with almost any system.

To find out where you can find Scotch Diskettes, call toll free: 800-328-1300. (In Minnesota, call collect: 612-736-9625.) Ask for the Data Recording Products Division.

If it's worth remembering, it's worth Scotch Data Recording Products.

Circle 368 on inquiry card.
Key ingredients in any optical communications system are the transmitters and receivers. The ultimate data rate is a function of how fast the transmitter can turn on and off, sending one bit of information, and whether the light sensitive receiver can track this transition. If the data rate is very low, say 110 bps in your experimental setup, a simple incandescent light and cadmium sulfide photocell will suffice. Higher data rates require much faster response and dictate use of LEDs (light emitting diodes) and phototransistors or photodiodes. Common red LEDs will easily handle 100 K bits per second and most common phototransistors, if properly biased, will also suffice. Higher frequencies require specially fabricated LEDs or, if the transmission line is especially long, then laser diodes might be in order.

It is important to know what each of the components in the system is and the way its selection affects the other components. The designs illustrated in this article are included to demonstrate a workable low frequency system which the personal computer enthusiast may wish to build. The physical electronics of high frequency commercial systems differ considerably, but the physical laws and general concepts are the same.

Fiber Optics

Fiber optics are just what they sound like — glass fibers which conduct light rather than electricity. To understand optical fibers we must look at a few definitions. An example of reflection and refraction is illustrated in figure 2. When a light ray strikes a boundary, partial reflection and partial transmission take place. The materials on either side of the boundary have particular constants \(n_1 \) and \(n_2 \) respectively (called indices of refraction) associated with them. These constants are dependent upon wavelength of the light transmission and the speed of light through the material. Reflection and refraction are related as follows:

\[
\text{Reflection } \theta_1 = \frac{n_2}{n_1} \theta_1', \\
\text{Refraction } \frac{n_1}{n_2} \sin \theta_1 = \sin \theta_2.
\]

The fiber has a core, a light transmitting material of higher index of refraction surrounded by a cladding or optical insulating material of a lower index of refraction. Figure 3a is a pictorial representation of a single fiber. Light enters the fiber at an infinite number of angles but only those rays entering the fiber at an angle less than the critical acceptance angle are transmitted. Light is propagated within the core of a multimode fiber at specific angles of internal reflection. When a propagating ray strikes the core/cladding interface, it is reflected and zigzags down the core. This is further illustrated in figure 3b.
Fun & Games

Plus Serious System Software

At Your Computer Retailer Now

TRS-80, Apple II, Sorcerer, SOL and Southwest Tech 6800 owners: get more out of your personal computer.

Get into action with G2 Bullseye!, Sea Battle,
Confrontation and Attack!

Sharpen your analytical abilities with G2's Outwit I, Outwit II and Mind Bender.

Take a chance with G2's Beat the House. Check out your health with Clinic.

And enjoy the challenging experience of two new G2 computer simulations: The Market and Wildcatting.

Or get serious with three powerful new languages. Level III Basic for the TRS-80. Extended Basic for the SOL. And Standard Basic for the Southwest Tech 6800. All written by Microsoft—the Basic wizards. Exclusively from G2.

Our software has more so your computer does more. Great programming. Highest quality cassette. The most comprehensive instruction manual available.

Plus source listing print-out of every application program in Basic. You can learn how the programs were written. We even encourage you to do your own re-programming to improve your skills!

G2 software is available from computer retailers nationwide. If your local retailer doesn't have it, ask him to become a G2 dealer by calling us toll free: (800) 538-8540 (U.S.A.) or (800) 672-8691 (California).

The Reason You Bought Your Computer.

A product of G2 Corporation
Consumer Computer Group
1216 North Lawrence Station Road
Sunnyside, California 92273 Phone: 714-796-7622
Photo 1 demonstrates that a very bright light can be transmitted through a single fiber. In this example the conductor is a single 40 mil plastic fiber with a helium-neon laser as an illumination source.

A fiber optic transmission system using readily available components can be constructed by any interested experimenter. A simple interface is shown in figure 4. An LED driven by a 7437 NAND buffer is focused into the end of a fiber optic bundle. The light emitted at the other end is focused on a phototransistor. When the light strikes the phototransistor it effectively grounds the input of the 74LS04, producing a high output. The connection between the LED, fiber optics, and phototransistor is facilitated through use of special optical connectors. Photo 2 shows an assortment of the type which should be used to build the interface in figure 4.

Lasers

The circuit of figure 4 is useful for only a short distance. This is due primarily to the low intensity of a standard LED. For greater distances a more intense light source is needed. This calls for a device such as a laser, an acronym that stands for light amplification.

Photo 2: Special connectors necessary to use fiber optics properly. Shown here (starting in the upper right corner and continuing clockwise) are a fiber optic cable with an end connector, a phototransistor in a TO-18 package, an extension coupling which allows two cables to be connected, and a bulkhead receptacle containing either an LED (light emitting diode) or phototransistor.
by stimulated emission of radiation. Light from a laser is all the same frequency, unlike the output of an incandescent bulb. Laser light is referred to as coherent, and has a high energy density. It can travel great distances without diverging from a tight beam.

The basic requirements for the creation of a laser are quite simple. We need a material that can absorb and release energy. Next, we need an energy source for exciting this material and a container to hold and control the lasing action, such as a glass tube or solid crystal.

In the actual lasing process, the laser material is placed inside the container, and then stimulated by means of an energy source into the emission of light waves. The laser beam is created by channeling the energy of these light waves into a particular and controlled direction. The result is a highly concentrated, brilliant beam of tremendous power. Figure 5 is a schematic of the first laser invented by Dr Theodore Maiman and a pictorial description of the lasing process.

The ruby laser is a pulse type laser which only produces a light output when the xenon lamp flashes. The best flash lamp can only be fired a few hundred times a second without extensive cooling apparatus. In a ruby laser this pulse mode operation is suitable for cutting stone and welding steel, but not for data communications, because the duty cycle is too short and the energy density too high for low cost fiber optics. The solution is to use a laser that operates continuously, such as a helium-neon gas laser.
Figure 6: Gas and solid-state laser light producing mechanisms.

Photo 3: A laser on a tripod shooting across my living room. The laser is a 2.2 mW unit built by Metrologic Instruments of Bellmawr NJ 08037 (this particular model is the ML-969). This picture was taken at night; the trees outside are illuminated by outside flood lamps.

(figure 6) or a laser diode which can be pulsed often enough to carry useful data.

The He-Ne laser uses mirrors and electrical excitation in a manner similar to the solid crystal type except that the lasing action is continuous. Photo 3 shows a He-Ne laser in operation. The particular unit has a power output of 2.2 mW and is made by Metrologic Inc. This type of laser can be modulated (the power supply high voltage is modulated) and used to drive a fiber optic bundle, but it is not normally used in that application. The light output of a He-Ne laser is usually red.
WE'RE ALTOS COMPUTER SYSTEMS. Our SUN-SERIES ACS8000 business/scientific computer creates a new standard in quality and reliability in high technology computers.

HIGH TECHNOLOGY The ACS8000 is a single board, Z80® disk-based computer. It utilizes the ultra-reliable Shugart family of 8 inch, IBM compatible, disk drives. A choice of drives is available: single or double density, single or double sided. Select the disk capacity you need, when you need it: ½M, 1M, 2M, or 4M bytes. The ACS8000 features the ultimate in high technology hardware: a fast 4 MHz Z80 CPU, 64 kilobytes of 16K dynamic RAM, 1 kilobyte of 2708 EPROM, an AMD 9511 floating point processor, a Western Digital floppy disk controller, a Z80 direct memory access, Z80 Parallel and Serial I/O (two serial RS232 ports, 1 parallel port), and a Z80 CTC Programmable Counter/Timer (real time clock). In essence, the best in integrated circuit technology.

BUILT-IN RELIABILITY The ACS8000 is a true single board computer. This makes it inherently reliable and maintainable. The board and the two Shugart drives are easily accessible and can be removed in less than five minutes. All electronics are socketed for quick replacement. Altos provides complete diagnostic utility software for drives and memory.

QUALITY SOFTWARE Unlimited versatility. The ACS 8000 supports the widely accepted CP/M® disk operating system and FOUR high level languages: BASIC, COBOL, PASCAL and FORTRAN IV. All available NOW.

PRICE ACS 8000-1, single density, single-sided (½ Mb) $3,840
ACS 8000-2, double density, single-sided (1 Mb) $4,500
ACS 8000-3, single density, double-sided (1 Mb) $4,800
ACS 8000-4, double density, double-sided (2 Mb) $5,300

Brackets show disk capacity per standard two drive system. All models come standard with 32 Kb RAM and two 8" disk drives as shown above. Expansion to 64 Kb is $363 per 16 Kb. FPP, DMA, software optional. Dealer/OEM discounts available. Delivery: 30 days ARO, all models.

*Z80 is a trademark of Zilog, Inc.
**CP/M is a trademark of Digital Research, Inc.
The most economical high intensity light source for long runs of fiber optics is the laser diode. Don't be so whimsical as to run out and buy one thinking you are going to make a ray gun -- it should be just as easy to use as an LED. Laser diodes get very hot in operation and are generally operated only in pulse mode. An 8 W laser diode sold through the surplus dealer can have an average power of only a few hundred microwatts when used in pulse mode operation. Using laser diodes in continuous operation is beyond the talents and resources of most hobbyists and must be left to the commercial ranks for the moment. The light output from a laser diode is infrared and invisible to the human eye.

Communicating on a Laser Beam

While it is possible to demonstrate communication with a laser diode, it is much more dramatic with a He-Ne laser since you can see the beam. A He-Ne laser can be modulated, but it cannot be turned on and off rapidly like an LED or diode. Instead the light intensity is modulated by the data signal. The Metrologic laser I used is a type ML-969 "modulatable" laser. It has a BNC connector on the rear and accepts a 0 thru 1 V input for 0 to 15 per cent intensity modulation. Any greater degree of modulation shuts off the lasing action.

Figure 7 illustrates the system configuration necessary to transmit data from one computer to another. Figure 8 is the schematic of a FSK (frequency shift keyed) modulation interface which can be used as the input to the laser. A 4800 Hz frequency reference produced by IC1 is divided by IC2 to give either 2400 Hz or 1200 Hz for a 1 or 0 logic input respectively. The modulation input to the laser can be any 1 V input up to 500 kHz bandwidth. A transistor radio is a good test source for experiments.

The receiver is shown in figure 9. The laser beam is directed at the phototransistor. With no modulation, the sensitivity is adjusted to set the phototransistor in the middle of its linear range. With the modulation turned on, the trigger adjust control is turned until the modulation data is seen at test point 1. If using a transistor radio as the source, the analog output can be obtained at this point and the rest of the circuit is unnecessary.
The Computer Cookbook

The Only Computer Reference Book You Need.

The one computer reference book that won’t go out of date. Because we vow to supply updates—free—to registered Cookbook owners as long as we keep our loose-leaf binder edition in print. We’ll send you new pages. You just pull out the old and plug in the new.

Bad business? We don’t think so. It’s our way of supporting the people who supported us. After all, the Cookbook is your book. We’ve distilled the advice of hundreds of computer owners who’ve put together systems—and had to make them work.

Working on a word processing system? We offer a quick and dirty hyphenation algorithm (used in the early phototypesetter model—but offer no money-back guarantee on that one. Plus hardware profiles with the kind of nitty-gritty details you won’t get anywhere else.

And if the Cookbook doesn’t cover your particular problem, let us know—we just may solve it in our next update. ‘Cause if it isn’t all, the Cookbook is your book.

Yes, I’m hooked. Ship me the Cookbook. I enclose $15 plus $1.50 shipping. (We always ship by UPS. However, allow four weeks for “worse case” Cookbook supply problems. California residents add $.98 sales tax. Checks should be payable to “The Computer Cookbook.” Or charge to Mastercharge or Visa).

Name
Street
City State Zip

for Mastercharge/Visa: Card Numbers Expiration Date

Signature

The Computer Cookbook / P.O. Box 4084 / Berkeley, CA 94704

See the Computer Cookbook at the 4th West Coast Computer Faire May 11-12-13. Our booth is Number 47—Downstairs in Brooks Hall, far left corner.
Table 1: Power pin connections for the integrated circuits used in constructing the laser communicator.

<table>
<thead>
<tr>
<th>Number</th>
<th>Type</th>
<th>+5 V</th>
<th>Ground</th>
<th>-12 V</th>
<th>+12 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC1</td>
<td>7437</td>
<td>14</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC2</td>
<td>74LS04</td>
<td>14</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC3</td>
<td>NE555</td>
<td>8</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC4</td>
<td>4027</td>
<td>16</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC5</td>
<td>4049</td>
<td>1</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC6</td>
<td>LM741</td>
<td>4</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC7</td>
<td>LM741</td>
<td>4</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC8</td>
<td>LM741</td>
<td>4</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC9</td>
<td>LM741</td>
<td>4</td>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 9: Modulated laser beam serial data receiver. The demodulator consists of two bandpass filters, one for 2400 Hz and the other for 1200 Hz. The power connections are given in table 1. The starred capacitors are mylar or polycarbonate capacitors. All resistors are 1/4 W unless otherwise specified. All diodes are type 1N914.
Integrated circuits 1 thru 4 form a frequency shift keyed demodulator with a TTL (transistor-transistor logic) output which is sent to a UART (universal asynchronous receiver-transmitter). To tune this section, first connect a 1200 Hz signal source to test point 1. Turn potentiometer R2 until the output amplitude of IC3 test point 4 peaks. Then apply 2400 Hz to test point 1 and adjust R1 until the amplitude at test point 3 also peaks. R3 adjusts the point at which circuit's output switches between logic levels. It should be set to follow the input at test point 1 with the shortest response time.

While the 15 pc cent modulation could be detected directly and converted to NRZ (nonreturn to zero) formatted data, the receiver circuitry would be far more complicated. The combination of amplitude and frequency modulation techniques is intended to add significantly to the chances that an experimenter will have success building it. The critical parameters (as with any optical system) are alignment and light level. And, while you may not have to transmit a Red Sox baseball game across two miles of New Hampshire woods, it's nice to know how if you ever have to do it.

If you have any questions, ideas or comments on Clarica's Circuit Cellar please write to me and enclose a self-addressed, stamped envelope. I'm always interested in knowing what you readers think. Next month's "Circuit Cellar" topic will be biofeedback.

Figure 10: A triple voltage power supply for the laser modulator.
The Superboard II

A Surprising Single Board Computer From OSI

My first experience with an Ohio Scientific product (in fact, my first experience with a personal computer) was with an OSI single board computer I bought in 1976. The unit sold for $99 and featured a row of eight switches and accompanying LEDs (light emitting diodes) for entering machine language programs. It had 256 bytes of programable memory, and no other I/O (input/output) besides the LEDs.

Much has happened to the personal computer industry since then, and this is reflected in OSI’s latest single board computer, the Superboard II. Actually a stripped down version of the Challenger 1P, the Superboard II is a no frills computer with surprising capabilities. The $279 price buys an assembled and tested unit with a 53 key upper and lower case keyboard on one board. The user must supply a +5 V power supply and a video monitor or TV set with RF (radio frequency) converter in order to be up and running.

The Superboard II comes with a machine language monitor and 8 K byte Microsoft BASIC in read only memory, 4 K bytes of user memory, and a Kansas City standard cassette interface. A 6502 processor forms the heart of the system. An intriguing graphics package is also supplied: the direct access video display has 1 K bytes of dedicated memory.

BASIC PEEK and POKE commands are used to create the video display. 256 special graphics characters can be called by the user for special applications including tanks and spaceships for...
games, plus building block characters for generating bar graphs and the like.

The Superboard II can also be bought with a cabinet and power supply included in the form of the Challenger 1P; the price is $349 to which the cost of a television monitor must be added.

A variety of software is available from OSI for both units in the areas of games, business software, and educational software. Titles include: Tiger Tank; Lunar Lander; Breakout; Presidents Quiz; Trig Tutor; Math Think; Checking Account; Advanced Mathematics; Definite Integrals; Return on Investment; Load Calculator; Cash Flow Analysis; and many others.

Evaluation

Having an 8 K byte Microsoft BASIC package on board the Superboard II is a real plus, especially when you consider the price. I found the Kansas City standard cassette interface to be rather slow when entering long programs, but programs are listed on the screen while being read — a real convenience. The 25 character by 25 line display format took some getting used to, but the characters are big and easily read. There is no provision for screen clear. Not mentioned in the instructions is the fact that the keyboard must be in upper case mode for the user to enter programs and commands. This is a minor point, but one which might lead one to think that the unit is malfunctioning.

One of the attractive features of this computer is its expandability. The Superboard II (and the Challenger 1P) can be expanded with the addition of a 24 K byte programmable memory expander board, dual 5 inch floppy interface, port adapter for printer and modem, and an OSI 48 line expansion interface. An assembler/editor and extended machine code monitor are also available. The unit can be upgraded to a 5 inch floppy system called PICODOS for approximately $650 additional cost. PICODOS is a limited single drive system that gives the user access to an 8 K byte work space and the ability to store up to eight programs on one disk. A full capability single drive computer system can be had for under $1000.

The Superboard II is an excellent choice for the personal computer enthusiast on a budget.
Several semiconductor manufacturers have recently produced video display controllers contained on a single integrated circuit. While none of these is the "video terminal-on-a-chip" that some of the publicity would have you believe, these new devices perform many of the functions required in a video display, thereby reducing the number of integrated circuit packages required. In addition, they are all programmable to some degree, which allows adding new features to an existing design at low incremental cost, or changing display formats if required by changing needs. These characteristics make these devices particularly interesting to a computer experimenter. A user might start with a 16 line, 64 character, upper case only display, and as requirements (and budget) increase, convert to a "professional" 24 line, 80 character, upper and lower case format just by adding more memory and a new character generator.

In this article, I will present a survey of the characteristics of four video display controllers, namely, the Intel 8275, the Motorola MC6845, the NS (National Semiconductor) DP8350, and the SMC (Standard Microsystems Corporation) 5027. In addition, I will present a detailed description of the Motorola part and a design for a display using that device.

Device Characteristics

Table 1 summarizes the important characteristics of each device. All of the devices are programmable. The Intel, Motorola, and SMC parts are programmed by the microprocessor system to which they are attached. This means that when the system is powered up, a program must be executed to initialize the display controller, before a proper display will appear on the display screen.

The display formats of the Intel and Motorola devices are, within limits, completely variable. For the Motorola part, any line width from 1 to 256 characters can be chosen. (Of course, these limits are unreasonable values; the actual limits are determined by the display timing constraints, an example of which will be given in the detailed discussion of the Motorola unit, later in this article.) The SMC 5027 is manufactured with a fixed "menu" of line widths,
Open the manual and LOAD the cassette. Then get ready to explore the world of Programmable Characters® with the SCREEN MACHINE™. You can now create new character sets—foreign alphabets, electronic symbols, and even Hi-Res playing cards, or, use the standard upper and lowercase ASCII character set.

The "SCREEN MACHINE" lets you redefine any keyboard character. Just create any symbol using a few easy key strokes and the "SCREEN MACHINE" will assign that symbol to the key of your choice. For example: create a symbol, an upside down "A" and assign it to the keyboard 'A' key. Now every time you press the 'A' key or when the Apple prints an 'A' it will appear upside down. Any shape can be assigned to any key!

The "SCREEN MACHINE" gives you the option of saving your character symbols to disk or tape for later use. There is no complicated 'patching' needed. The SCREEN MACHINE is transparent to your programs. Just print the new character with a basic print statement. The "SCREEN MACHINE" is very easy to use.

Included on the cassette are Apple Hi-Res routines in SOFTAPES prefix format. You can use both Apple's, routines and the SCREEN MACHINE to create microcomputing's best graphics.

Cassette, and Documentation, a complete package $19.95

APPLE HI-RES GRAPHICS: The Screen Machine by Softape

APPLE HI-RES GRAPHICS: The Screen Machine by Softape

Microgammon 1.0 Learn, practice and enhance your Backgammon ability with a true competitor $14.95

APPLE-LISTENER Voice recognition Software. Create your own programs which 'listen' and understand 31 spoken words—English or Foreign. No hardware needed $19.95

APPLE TALKER Your Apple's voice. Create programs which talk to you in English or Spanish or any language $15.95

JUPITER EXPRESS Command your ship thru the hazards of the Asteroid belt between Mars and Jupiter $9.95

FORTE® A music language, written like basic, you use line numbers for your notes. You can trace line numbers or notes. You can even print the words of any song. Save your song to your Disk $19.95

FORTH® Is the creation of Wm. Graves. This language gives you faster execution of programs than basic and is easier to program than machine language. Our 100 page manual will teach you everything you will need. FORTH® comes complete with demo programs on one Apple diskette $49.95

WHERE TO GET IT: Look for the SOFTAPE Software display in your local computer store. Apple dealers throughout the United States, Canada, South America, Europe and Australia carry the SOFTAPE Software line of quality products.

If your local dealer is sold out of SOFTAPE Software you can order it direct from us by check or Visa/Master Charge. If you have any questions please call us at:

1-213-985-5763

Or mail your order to the address below. We'll add your name to our mailing list for free literature and announcements of new products.

SOFTAPE™

10432 Burbank Blvd. • North Hollywood, CA 91601

Circle 329 on inquiry card.
For your SWTP 6800 Computer...

PERCOM's™ FLOPPY DISK SYSTEM

the

LFD-400

Ready to plug in and run the moment you receive it. Nothing else to buy, no extra memory. No "booting" with PerCom MINIDOS™, the remarkable disk operating system on EPROM. Expandable to either two or three drives. Outstanding operating, utility and application programs.

For more information see your local PerCom dealer or call toll free 1-800-527-1592

only $599.95

fully assembled and tested shipping paid

PERCOM DATA COMPANY, INC.
211 N.Kirby Dept. B Garland, Texas 75042
(214) 272-3421

For the low $599.95 price, you not only get the disk drive, drive power supply, SS-50 bus controller/interface card, and MINIDOS™, you also receive:

- an attractive metal enclosure
- a fully assembled and tested interconnecting cable
- a 70-page instruction manual that includes operating instructions, schematics, service procedures and a complete list of MINIDOS™ technical memo updates — helpful hints which supplement the manual instructions — a 90-day limited warranty.

SOFTWARE FOR THE LFD-400 SYSTEM

Disk operating and file management systems

INDEX™ The most advanced disk operating and file management system available for the 6800. Interrupt Driven Executive operating system features file-and-device-independent, queue-buffered character stream I/O. Linked-file disk architecture, with automatic file creation and allocation for ASCII and binary files, supports sequential and semi-random access disk files. Multi-level file name directory includes name, extension, version, protection and date. Requires 8K RAM at $4000. Diskette includes numerous utilities. ... $99.95 MINIDOS-PLUSX An easy-to-use DOS for the small computing system. Supports up to 31 named files. Available on ROM or diskette complete with source listing ... $39.95

BASIC Interpreters and Compilers

SUPER BASIC A 10K extended disk BASIC interpreter for the 6800. Faster than SWTP BASIC. Handles data files. Programs may be prepared using a text editor described below ... $49.95

BASIC BANDAID™ Turn SWTP 8K BASIC into a random access data file disk BASIC. Includes many speed improvements, and program disk CHAINing ... $17.95

STRUBAL+™ A STRucuted Basic Language compiler for the professional programmer. 14-digit floating point, strings, scientific functions, 2-dimensional arrays. Requires 16K RAM and Linkage Editor (see below). Use one of the following text editors to prepare programs. Complete with RUN-TIME and FLOATING POINT packages $249.95

Text Editors and Processors

EDIT68 Hemenway Associates' powerful disk-based text editor. May be used to create programs and data files. Supports MACROS which perform complex, repetitive editing functions. Permits text files larger than available RAM to be created and edited ... $39.95

TOUCHUP™ Modifies TSC's Text Editor and Text Processor for PerCom disk operation. ROLL function permits text files larger than available RAM to be created and edited. Supplied on diskette complete with source listing ... $17.95

Assemblers

PerCom 6800 SYMBOLIC ASSEMBLER Specify assembly options at time of assembly with this symbolic assembler. Source listing on diskette ... $29.95

MACRO-RELOCATING ASSEMBLER Hemenway Associates' assembler for the programming professional. Generates relocatable linking object code. Supports MACROS. Permits conditional assembly ... $79.95

LINKAGE EDITOR — for STRUBAL+™ and the MACRO-Relocating assembler ... $49.95

CROSS REFERENCE Utility program that produces a cross-reference listing of an input source listing file ... $29.95

Business Applications

GENERAL LEDGER SYSTEM Accommodates up to 250 accounts. Financial information immediately available — no sorting required. Audit trail information permits tracking from GL record data back to source document. User defines account numbers ... $199.95

FULL FUNCTION MAILING LIST 700 addresses per diskette. Powerful search, sort, create and update capability ... $99.95

PERCOM FINDER™ General purpose information retrieval system and data base manager ... $99.95

Ordering Information

To order, call toll free 1-800-527-1592. MC and VISA welcome. COD orders require 30% deposit plus 5% handling charge. Allow three weeks for delivery. Allow three extra weeks if payment is by personal check. Texas residents add 5% sales tax.

PERCOM 'peripherals for personal computing'
NOW...
Add-on Mini-Disk for the TRS-80*

Dual and triple drives also available.

Requires 16K RAM, Level II BASIC and Expansion Interface.

only $399.00

PERCOM DATA COMPANY, INC.
211 N. Kirby Dept. B Garland, Texas 75042
(214) 272-3421

To Order Call 1-800-527-1592

*Trademark of Tandy Corporation.

Requires 16K RAM, Level II BASIC and Expansion Interface.

*TRADEMARK of Tandy Corporation which has no relationship to PERCOM DATA COMPANY, INC.
<table>
<thead>
<tr>
<th></th>
<th>Intel 8275</th>
<th>Motorola MC6845</th>
<th>National Semiconductor DP8350</th>
<th>Standard Microsystems Corp 5027</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format Lines by Characters</td>
<td>fully programmable to 64 by 80</td>
<td>fully programmable to 128 by 256</td>
<td>mask programmable to 64 by 110</td>
<td>programmed options to 64 by 132</td>
</tr>
<tr>
<td>Microprocessor Compatibility</td>
<td>8080 family (direct memory access only)</td>
<td>all</td>
<td>all</td>
<td>all</td>
</tr>
<tr>
<td>Simplest System Interface</td>
<td>direct memory access via Intel 8257</td>
<td>shared memory</td>
<td>shared memory</td>
<td>shared memory</td>
</tr>
<tr>
<td>Display Memory Size (maximum)</td>
<td>64 K</td>
<td>16 K</td>
<td>4 K</td>
<td>4 K</td>
</tr>
<tr>
<td>Addressing</td>
<td>linear</td>
<td>linear</td>
<td>linear</td>
<td>row/column</td>
</tr>
<tr>
<td>Scrolling</td>
<td>line, character, page</td>
<td>line, character, page</td>
<td>line, character, page</td>
<td>line only</td>
</tr>
<tr>
<td>Cursor</td>
<td>blink or steady, reverse video or underline</td>
<td>blink or steady, reverse video or underline</td>
<td>reverse video or underline, no blink</td>
<td>reverse video or underline, no blink</td>
</tr>
<tr>
<td>Interface</td>
<td>none</td>
<td>video, or video and sync, or none</td>
<td>none</td>
<td>none or interlaced sync and video</td>
</tr>
<tr>
<td>Light Pen</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Graphics Capability</td>
<td>limited</td>
<td>full</td>
<td>full</td>
<td>full</td>
</tr>
<tr>
<td>Process</td>
<td>MOS</td>
<td>MOS</td>
<td>III1</td>
<td>MOS</td>
</tr>
<tr>
<td>Power</td>
<td>+5 V</td>
<td>+5 V</td>
<td>+5 V</td>
<td>+5, +12 V</td>
</tr>
<tr>
<td>Other Features (see text)</td>
<td>on board line buffers, visual attributes</td>
<td>high-speed timing on board</td>
<td>self-loading for standalone use</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Summary of characteristics of four video display controllers.

Text continued from page 52:
such as 20, 32, 40, 64, 72, 80, 96, and 132 characters, from which the initialization program can choose.

The NS DP8350 is mask programmed. Its characteristics are set by internal read only memories, the contents of which are determined when the device is manufactured. Changing the display format with this part means unplugging the current unit and plugging in a differently manufactured unit. A number of stock formats, among them 24 lines by 80 characters, will be available, but if your particular needs are not met by a stock part, you must contract with NS to program a custom part, agree to purchase a certain quantity, and perhaps pay a one time mask charge.

The SMC part has the ability to load its format parameters at power-up from an external read only memory, so that it does not have to be part of a microprocessor based system at all. It can therefore be used in a so-called “dumb” terminal.

All of the devices may theoretically be interfaced to any microprocessor, but practicalities limit the choices. The Intel part, being part of the 8080 family, is designed to interface to 8080 based systems via DMA (direct memory access) through the Intel 8257 DMA controller. This makes it difficult to interface the Intel part to non-8080 systems. In fact, since many people’s 5-100 bus 8080 systems will not support direct memory access, the Intel part would be difficult to interface even to these systems.

The Motorola MC6845, a member of the Motorola 6800 family, is easily interfaced to 6800 and 6502 systems, and can be interfaced to 8080 and Z-80 systems. The NS and SMC parts have system interfaces similar to the Motorola part. The simplest method of interfacing the latter three parts is by means of shared memory, wherein the display memory appears to the processor to be ordinary programmable memory.

Memory Usage

The maximum size of the display refresh memory for each part is limited by the number of refresh memory address lines coming out of the package. The Motorola part has 14 address lines, and the NS and SMC parts each have 12. The Intel part has access to the entire system memory through an attached direct memory access controller, and the system memory may be as large as 64 K (65,536) bytes. The Intel, Motorola, and NS parts access linear (sequential) refresh memory addresses, so there is a simple relationship between the refresh memory address of a given character and its position on the display screen.

The SMC 5027, however, outputs addresses in a row and column format which (without the addition of hardware to do address translation) causes inefficient use of
Horizon Disk Capacity Keeps Growing

The Horizon is now capable of 720K bytes on-line! The Horizon can connect to four double density 5¼" single-sided disk drives. Each of those drives can access 180K bytes of information. A four drive system accesses 720K bytes!

That's capacity you don't usually find in a microcomputer, but there's even more to come! The North Star disk controller board is designed so that two-sided disk drives may be added as soon as they become available from North Star.

Existing Horizons will accommodate the new two-sided drives so North Star owners can simply add additional drives to up-grade their system. Each two-sided drive will access 360K bytes! That means the maximum on-line disk storage for the Horizon will increase to over 1.4 million bytes!

New Cabinet for Disk Drives

North Star additional disk drives are now available with the same high quality wood cover as the Horizon computer! The Additional Drive Cabinet (ADC) is designed to accept either one or two drives for the Horizon or for mounting North Star Micro Disk System drives. Like the Horizon, the ADC is available with either wood or blue metal cover. Included is a new power supply capable of powering one or two drives. The ADC is $129 in kit form. Assembled, with one drive the ADC is $599, with two drives $999.

Pascal Now Available for Horizon

The much-heralded Pascal language is now being offered for use with the North Star Horizon computer. North Star, with the co-operation of the University of California at San Diego, is now delivering a Pascal Program Development system. North Star Pascal is ideally suited for developing large programs because of features such as: long variable names, block-structured control statements, and compilation. North Star Pascal is available on 5¼" diskettes for use with the Horizon or Micro Disk System. North Star Pascal will operate with either the Z80 or 8080 microprocessor.

Pascal, including documentation, is available in either single or double density versions for $49.

An auxiliary Pascal diskette, containing an 8080/Z80 assembler and some additional Pascal utilities, is available for $29. Complete information is available at your local retail computer store.

First Double Density, Now Double Memory

The new North Star 32K RAM board (RAM-32) has doubled the memory density of the popular Horizon computer. Available either with the Horizon or other S-100 bus computers, the RAM-32 runs at full speed — no wait states — with the 4 MHz Z80A microprocessor (as well as with slower Z80 and 8080 processors). Addressability of the RAM-32 is switch-selectable in four 8K regions.

North Star RAM features like bank-switching and parity checking are standard. The parity checking capability means that the RAM-32 is constantly diagnosing itself. That's a plus for your system. The fact that parity checking is a North Star RAM-32 standard is a plus for your pocketbook.

There is no extra charge for this important capability.

A Horizon with 48K of RAM can be configured by using one North Star 16K RAM board and a RAM-32. Need more memory? 56K can be configured by using two RAM-32 boards with one 8K region switched off.

NORTH STAR MDS, ZPB, FPB FOR OTHER S-100 COMPUTERS

Upgrade your system with these North Star products — available for any S-100 computer: Micro Disk System — a complete 5¼" floppy disk system, Z80 Processor Board, or the Hardware Floating Point Board.

<table>
<thead>
<tr>
<th>Horizon and RAM board prices are:</th>
<th>Kit</th>
<th>Assembled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizon - 1-16K</td>
<td>$1599</td>
<td>$1899</td>
</tr>
<tr>
<td>Horizon - 1-32K</td>
<td>1849</td>
<td>2099</td>
</tr>
<tr>
<td>Horizon - 2-32K</td>
<td>2249</td>
<td>2549</td>
</tr>
<tr>
<td>RAM-32</td>
<td>599</td>
<td>659</td>
</tr>
<tr>
<td>RAM-16</td>
<td>399</td>
<td>459</td>
</tr>
</tbody>
</table>

A typical Horizon configuration: CRT, Horizon computer, Additional Drive Cabinet (ADC).

NorthStar Computers
2547 Ninth Street
Berkeley, California 94710
(415) 549-0858
display memory when the display dimensions are not integer powers of 2. For example, building a 24 line by 80 character display with the SMC part would require a refresh memory that is 24 by 128, or 3,072 bytes total. Of these, 1,152 bytes would not be displayed. Also, a program to manage the display would have to perform row and column calculations to locate a given screen position. Of course, additional hardware could be added to "linearize" the addresses, but this defeats the purpose of using one of these devices, namely, the reduction of hardware.

Scrolling and Cursoring

All of the devices provide scrolling, that is, the ability to move data around on the display screen without actually moving the data in the refresh memory. The SMC device provides line scrolling only. An example of scrolling using the Motorola part is given in a later section of this article.

All the parts provide for the generation of a cursor (ie: some way for a human operator to determine the position at which the next character entered from a keyboard will be placed on the display). The Intel and Motorola devices allow a steady or blinking cursor consisting of an underscore or a reverse video (black on white) block. The NS and SMC parts allow for underscore or reverse video, but do not provide blinking.

Video Signal Characteristics

A standard North American television picture is composed of two frames of 262½ scan lines each, with scan lines from alternate frames interlaced vertically the width of one line, so that the resultant picture has 525 scan lines. Many computer video displays use only about 262 scan lines, and are not interlaced. This limits the maximum number of character rows on a display to about 25.

The Motorola part allows the use of interlacing to produce an aesthetically more pleasing display by doubling character dots vertically. This fills in what might otherwise be spaces on a high-resolution display. This is called interlaced sync, in Motorola's terminology. The Motorola and SMC parts also provide for interlaced sync and video, in which all 525 lines can be used for character formation, allowing as many as perhaps 50 character rows per display. The use of interlace does cause a flicker effect on ordinary white phosphor (P4) monitors, but computer experimenters with long persistence, green phosphor (P39) monitors may want to consider using interface.

Other Features

The Intel and Motorola circuits provide support for a light pen, that is, a light sensitive "wand" used by the display operator to point to areas on the display screen to signify something to the attached system. This requires additional hardware to implement.

The data displayed on the screen by the display controller need not be dot patterns from a character generator read only memory. They might be dots forming part of a graphic image. Except for the Intel part, the display controllers support whatever graphics-generation hardware the system designer cares to attach to them. The Intel part is limited in this area because of its line buffers, which orient it toward character generation only (more on this later).

The Intel, Motorola, and SMC display controllers are manufactured by the MOS (metal oxide semiconductor) process, and do not include the so-called high-speed timing function of a display on the device. The National part, however, uses an IIL (integrated injection logic), with none of the speed limitations of MOS, so it does include the high-speed timing functions. This inclusion helps to reduce external parts count. (A discussion of just what these timing functions are follows in a later section of this article.)

As mentioned earlier, the Intel display controller must interface to a system through a DMA controller such as the Intel 8257. The Intel display controller incorporates two 80 character line buffers. While it is displaying a row of characters from one line buffer, it fills the second line buffer from the memory by "stealing" some memory cycles. It then uses the second line buffer for display and fills the first line buffer from the third row of characters, and so on. The timing for a 24 line by 80 character display is such that up to 25 percent of a system's memory cycles may be taken by the display controller action. The Intel part's line buffers store 7 bit characters, so the graphics achievable with this part are limited to what can be displayed with a 128 character set, augmented by character-set switching (using additional hardware).

A distinguishing feature of the Intel part is support for visual attributes. With only minimal external hardware, blocks of characters can be made to blink, be highlighted (higher than normal brightness), be reversed (black on white), be underlined, or have any combination of these four qualities. In addition, two more attribute signals are provided that could provide color selection on a color display.
Color. VP-590 add-on Color Board allows program control of 8 brilliant colors for graphics, color games. Plus 4 selectable background colors. Includes sockets for 2 auxiliary keypads (VP-580). $69.

Sound. VP-585 Simple Sound Board provides 256 tone frequencies. Great for supplementing graphics with sound effects or music. Set tone and duration with easy instructions. $24.

Music. VP-550 Super Sound Board turns your VIP into a music synthesizer. 2 sound channels. Program control of frequency, time and amplitude envelope (voice) independently in each channel. Program directly from sheet music! Sync provision for controlling multiple VIPs, multitrack recording or other synthesizers. $49.

Memory. VP-570 RAM Expansion Board adds 4K bytes of memory. Jumper locates RAM in any 4K block of up to 32K of memory. On-board memory protect switch. $95.

EPROM Programmer. VP-565 EPROM Programmer Board comes complete with software to program, copy and verify 5-volt 2716 EPROMs—comparable to units costing much more than the VP-565 and VIP put together! Programming voltages generated on board. ZIF PROM socket included. $99.

EPROM Interface. VP-560 EPROM Interface Board locates two 5-volt 2716 EPROMs (4K bytes total) anywhere in 32K of memory. VIP RAM can be re-allocated. $34.

Auxiliary Keypads. Program your VIP for 2-player interaction games! 16-key keypad VP-580 with cable ($15) connects to sockets provided on VP-590 Color Board or VP-585 Keyboard Interface Card ($10).

** Tiny BASIC** VP-700 Expanded Tiny BASIC Board puts this high-level language on your VIP. BASIC stored in 4K of ROM. Ready for immediate use—no loading necessary. This expanded BASIC includes the standard Tiny BASIC commands plus 12 additional—including color and sound control. Requires external ASCII encoded alpha-numeric keyboard. $39.

** COSMAC VIP lets you add computer power a board at a time.**

With these new easy-to-buy options, the versatile RCA COSMAC VIP (CDP18S711) means even more excitement. More challenges in graphics, games and control functions. For everyone, from youngster to serious hobbyist. And the basic VIP computer system starts at just $249* assembled and ready to operate.

** Simple but powerful—not just a toy.**
Built around an RCA COSMAC microprocessor, the VIP includes 2K of RAM. ROM monitor. Audio tone with a built-in speaker. Plus 8-bit input and 8-bit output port to interface relays, sensors or other peripherals. It's easy to program and operate. Powerful CHIP-8 interpretable language gets you into programming the first evening. Complete documentation provided.

** Take the first step now.**
Check your local computer store or electronics parts house. Or contact RCA VIP Marketing, New Holland Avenue, Lancaster, PA 17604. Phone (717) 291-5848.

* Suggested retail price. CDP18S711 does not include video monitor or cassette recorder.

** Available 1st Quarter, 1979.

The fun way into computers.
A Conventional Display Design

To understand what the single integrated circuit video display controllers do, it is helpful to understand what functions a video display circuit must perform, and how those functions can be carried out with conventional TTL (transistor-transistor logic). Figure 1 shows the block diagram of such a display. A total of 32 packages (including the memory and character generator circuits) is required. The design is optimized for a 16 line, 64 character format. It uses the shared memory type of interface to the system. This interface scheme is simpler to implement, and faster for system updates, than the cursor control interface used in TV typewriter designs, but it does suffer from a "snow" effect when the system updates the display.

A 9 MHz crystal oscillator provides the timing for the entire display. The 9 MHz signal is used to clock the shift register that feeds dots (or pixels) to the video combiner circuit, hence it is called the "dot clock." The character generator is a 5 dots horizontal by 7 dots vertical unit. The dot clock frequency is divided by 6 to allow for the 5 horizontal dots in each character, plus one blank dot space between characters. The dot clock divided by 6 is called the character clock, and it controls the transfer of characters between portions of the circuit.

The horizontal timing circuit is driven by the character clock. This circuit counts to 95, then resets itself to 0; therefore there are a total of 96 character intervals in each horizontal scan. The character clock rate of 1.5
MHz (9 MHz divided by 6) yields a character time of 0.666 μs. 96 character intervals per horizontal scan yield a scan time of 63.94 μs, or a frequency of 15,640 Hz, close to the television standard. Of the 96 character intervals, 64 are displayed, and 32 are blanked.

At the end of each horizontal scan, another counter, the scan line counter, is incremented. It counts to 8, then resets itself to 0. Its output is connected to the character generator, to cause the character generator to output the correct line of dots for each scan line. Scan lines 0 and 8 are blank, because the character generator puts out no dots for these lines. There are, therefore, two blank scan lines between rows of characters. When the scan line counter resets to 0, the vertical (row) counter is incremented. The vertical counter counts to 28, then resets to 0. The first 16 counts are used to display character rows, and the remaining 13 are blanked. The 29 rows of nine scan lines each yield a total of 261 scan lines per frame, a vertical scan time of 16.69 ms (63.94 μs times 261), and a vertical frequency of 59.9 Hz, close enough to 60 Hz to minimize any shimmy problems in the display caused by power supply ripple or magnetic fields.

The addresses supplied to the refresh memory are produced by the horizontal (character) timing and the vertical (row) timing. The vertical address is incremented only when the scan line counter resets, so
that a given row of 64 characters of refresh memory is scanned nine times, in order to "paint" all seven scan lines of the characters, plus two blank lines. When the scan line counter resets, the vertical counter is incremented so that the next row of 64 characters may be scanned. In order to center the display, the vertical sync pulse is produced at about the 22nd character row, and the horizontal sync pulse at about the 80th character interval.

The circuit includes the capability of reversing (i.e.: converting to black on white) any character with bit 7 (the most significant bit) on. This can be used to highlight blocks of text, or generate a cursor.

Normally the refresh memory is connected to the vertical and horizontal timing circuits through a multiplexer, which can be thought of as a 10 pole, 2 position switch. When the processor wants to update the display, control circuitry switches the multiplexer so that the address the processor wants to update is supplied to the refresh memory instead of the address the timing circuits would be supplying. The processor reads or writes the location. The memory output is probably not correct for the display at that moment, so a segment of a different character is substituted for the correct one, producing the snow effect if extensive updates are being performed. The snow can be eliminated by allowing the processor to access the refresh memory only when the display is blanked, but I did not include circuitry for this in my design.

Using the Motorola MC6845 Display Controller

Figure 2 shows the block diagram of the display redrawn using the Motorola MC6845. The change is not striking. The 6845 has replaced only three blocks, namely, scan line timing, vertical (row) timing, and horizontal (character) timing. The circuit using the 6845 has five fewer packages. The 6845 occupies about the same amount of board space, consumes about the same amount of power, and costs more than the TTL packages it replaces. What have we gained by the replacement? For the person who is perfectly happy with the 16 by 64 TTL design, nothing. However, the advantage of the 6845 lies in its programmability. The characteristics of the display of which it is a part are easily changeable. This means that the same circuit can provide formats other than 16 by 64, such as 25 by 40, 14 by 72, and 12 by 80. The 6845 provides hardware scrolling, a blinking cursor (in addition to the selectable reverse video carried over from the all TTL circuit), support for a light pen, and three interlace options.

The programmability of the 6845 is in one way a slight disadvantage. An initialization program must be run by the system before the display will start up. The TTL version starts displaying immediately upon power-up, although the display will show at first whatever random characters the refresh memory contains at power-up.

Motorola's diagram of the 6845's internal
If you're looking for outstanding value in S-100 boards you can't afford to overlook the "Blue Boards" from SSM. The best combination of design, quality and price available anywhere. Innovative designs that feature versatility and reliable performance. Quality backed by a strong warranty. And prices that won't let you down.

But value goes beyond the boards themselves. It's reflected in the company that stands behind them. And SSM has been known for unparalleled customer service since the beginning of the personal computing industry.

With one of the broadest product lines in the S-100 marketplace, it's likely that SSM has the board you need. So, if you're looking for value, ask for the "Blue Boards." They're available at over 150 computer stores nationwide and abroad.

Send for our free brochure and find out why so many hobbyists and OEMs have chosen SSM products.
Figure 3: Functional block diagram of the Motorola MC6845 video display controller. Diagram used by permission of Motorola Semiconductor Products, Inc.

The structure is shown in figure 3. The characteristics of the display are set by values stored in the 6845's internal registers by a program run on the system processor. Some of the registers are written only once, at system power-up, to establish the format of the display. Other registers are updated periodically as part of normal display usage.

In order for the system to access the 6845's internal registers, the device is connected to the system data bus, the system ϕ_2 (phase 2) and R/W (read/write) control lines, to an address decoder, and to address bus line 0. The display now responds to two sets of addresses — 1,024 addresses corresponding to the 1,024 screen positions, and to two additional addresses used to access the 6845's internal registers. I will call
Build your own microcomputer as you learn computer technology at home.

New from NRI! The Most Complete and Up-to-date Home Study Course Ever Offered

As the microprocessor revolutionizes the computer world and microcomputers appear almost everywhere, NRI brings you a new, convenient, and effective way to keep up with this expanding technology. It's NRI's Computer Technology Course, created and designed exclusively for learning at home in your spare time.

Featuring NRI's Exclusive Dual Language Microcomputer

NRI goes beyond book learning to give you practical, "hands-on" experience in designing circuitry, interfacing components, programming, and troubleshooting. As you learn, you actually assemble NRI's designed-for-learning microcomputer, incorporating the latest advances in the state of the art. It looks and operates like the finest of its kind, actually does more than many commercial units. But NRI engineers have designed components and planned assembly so it demonstrates important principles, gives you working experience in detecting and correcting problems. And it's yours to keep, put to work in your own home or business.

You also build and keep your own test instruments, including a transistorized voltmeter and CMOS digital frequency counter. And NRI's Discovery Lab® broadens your horizons with specialized experiments and theory demonstrations.

The Proven Way to Learn at Home

You don't have to worry with travel, classes, or time lost from work when you learn the NRI way. As they have for more than 60 years of teaching technical subjects, NRI brings the material to you. You study in your spare time, at your convenience, using "bite-size" lessons that program material into logical segments for easier assimilation. You perform experiments and build equipment using kits we supply. And your personal NRI instructor is always available for consultation should you have questions or problems. Over a million students have already shown the effectiveness of NRI training.

Choice of Courses

Several courses are available, depending upon your needs and background. NRI's Master Course in Computer Technology starts with the fundamentals, explores basic electronics and digital theory, the total computer world, and the microcomputer. The Advanced Course, for students already versed in electronics and general computers, concentrates on the microprocessor and microcomputer. In both courses, you build all instruments and your own computer.

Send for Free Catalog...

No Salesman Will Call

Get the details on these exciting new courses in NRI's free, 100-page catalog. Shows all kits and equipment, lesson outlines, and full information, including facts on other electronics courses. Mail the coupon today and we'll rush your catalog. No salesman will ever call. Keep up with the latest technology as you learn on your own computer. If coupon has been removed, write to NRI Schools, Computer Department, 3939 Wisconsin Ave., Washington, D.C. 20016.
Listing 1: Initialization routine for MC6845 as coded for the 6800 microprocessor.

```
0200 5F CRTINI CLR B INIT REG #
0201 CE 0213 CRTLP STA B CRTC
0204 F7 E800 STA A 0,X
0207 A6 00 STA A CRTC+1
0208 B7 E801 INX INC B
020C 08 CMP B #16
020D 5C BNE CRT LP
0210 26 F2 RTS
0213 TABLE FCB $5E,$40,$4D,$08
0217 FCB $1C,$02,$10,$16
021B FCB $00,$08,$40,$08
021F FCB $00,$00,$00,$00
```

Listing 2: Initialization routine coded for the 6502 microprocessor.

```
0200 A2 00 CRTINI LDX =0
0202 B8 00 STA CRTC
0205 BD 11 LD A TABLE,X
0208 E0 01 INX CRTC+1
020C E0 10 CPX #16
020E D0 F2 BNE CRTLP
0210 60 RTS
0211 TABLE .BYTE $5E,$40,$4D,$08
0215 .BYTE $1C,$02,$10,$16
0219 .BYTE $00,$08,$40,$08
021D .BYTE $00,$00,$00,$00
```

Photo 3: Display generated by MC6845 controlled circuit. The 12 line by 80 character format is shown. Parameters illustrated are values placed in 6845 registers by program executing on the main system processor. A 10.275 MHz crystal is used to correct for severe overscan in the author's monitor.

Photo 4: MC6845 circuit generated display using 16 line by 64 character format. Parameters shown and referenced are correct for 10.275 MHz crystal, which was left in place after demonstrating 12 by 80 format. See table 2 for parameters appropriate for 9.0 MHz crystal.
these latter addresses X and X+1; with the 6845's RS (register select) line connected to system address line 0 (the least significant bit), these will be consecutive addresses.

The first address, X, is the 6845's "pointer" register, which determines which register is accessed through address X+1. To write to a particular register, store the register number at X, and the desired value at X+1. A routine to initialize the 6845 coded for the 6800 is shown as listing 1, and a version for the 6502 as listing 2. The 6502 version is slightly shorter, because the 6502's X register can be used both as a table pointer and as the 6845 register number.

Table 2 summarizes the function of each register and the values to be programmed into each register for three formats: 16 lines by 64 characters, 25 by 40, and 12 by 80. The detailed function of each register and the calculation of the values for the 16 by 64 format are as shown in the following seventeen examples.

R0 Horizontal total. This register is programmed with one less than the total number of character intervals in a horizontal scan. A value of 94 provides for a total of 95 character intervals. This produces slightly better overall timing than the value of 96 character intervals used in the TTL circuit. The horizontal scan time is 95 x 0.666 µs = 63.27 µs, for a frequency of 15,800 Hz.

R1 Horizontal columns displayed. A value of 64, equal to the number of characters displayed, is used.

R2 Horizontal sync position. A value of 77 specifies that the horizontal sync pulse is to start at the 77th character position. This value centers the display on my particular monitor, but may be varied as needed for other monitors.

R3 Horizontal sync width. This is specified in number of character intervals. A value of 8 yields a sync pulse width of 5.33 µs, close to the television standard.

R4 Vertical total. This register is programmed with one less than the total number of character rows. A value of 28 specifies 29 character rows.

R5 Vertical total adjust. This register allows adding additional scan lines to the vertical display time to trim the vertical scan frequency, if required to bring it close to the power line frequency (to minimize display "shimmyness"). A value of 2 is used here.

R6 Vertical rows displayed. This register is programmed with the number of character rows to be displayed, 16.

R7 Vertical sync position. A value of 22 specifies that the vertical sync pulse is to be produced at the 22nd character row, which centers the display on my monitor. Other monitors may require a slightly different value. The vertical sync pulse width is not programmable, as is the horizontal sync pulse width. It is fixed at 16 scan line times.

R8 Interface mode. This register is programmed with 0, specifying no interface (equivalent to the TTL circuit). Two other interface modes are available, as mentioned previously, but these require a long persistence phosphor (P39) monitor.

R9 Maximum scan lines. This register

<table>
<thead>
<tr>
<th>Register</th>
<th>Function</th>
<th>Value for 16 by 64</th>
<th>25 by 40</th>
<th>12 by 80</th>
</tr>
</thead>
<tbody>
<tr>
<td>R0</td>
<td>horizontal total</td>
<td>94 (5E)</td>
<td>—</td>
<td>110 (6E)</td>
</tr>
<tr>
<td>R1</td>
<td>horizontal cols. displayed</td>
<td>64 (40)</td>
<td>40 (28)</td>
<td>80 (50)</td>
</tr>
<tr>
<td>R2</td>
<td>horizontal sync position</td>
<td>77 (4D)</td>
<td>66 (42)</td>
<td>90 (5A)</td>
</tr>
<tr>
<td>R3</td>
<td>horizontal sync width</td>
<td>8 (08)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>R4</td>
<td>vertical total</td>
<td>28 (1C)</td>
<td>—</td>
<td>27 (18)</td>
</tr>
<tr>
<td>R5</td>
<td>vertical total adjustment</td>
<td>2 (02)</td>
<td>—</td>
<td>5 (05)</td>
</tr>
<tr>
<td>R6</td>
<td>vertical rows displayed</td>
<td>16 (10)</td>
<td>25 (19)</td>
<td>12 (0C)</td>
</tr>
<tr>
<td>R7</td>
<td>vertical sync position</td>
<td>22 (16)</td>
<td>27 (18)</td>
<td>22 (16)</td>
</tr>
<tr>
<td>R8</td>
<td>interface mode</td>
<td>0 (0)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>R9</td>
<td>maximum scan line</td>
<td>8 (08)</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Value Stored in R10 (decimal)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>nonblinking reverse block</td>
</tr>
<tr>
<td>8</td>
<td>nonblinking underscore</td>
</tr>
<tr>
<td>32 or 40</td>
<td>no cursor</td>
</tr>
<tr>
<td>64</td>
<td>fast blinking reverse block</td>
</tr>
<tr>
<td>72</td>
<td>fast blinking underscore</td>
</tr>
<tr>
<td>96</td>
<td>slow blinking reverse block</td>
</tr>
<tr>
<td>102</td>
<td>slow blinking underscore</td>
</tr>
</tbody>
</table>

Table 2: Appropriate values to be stored in internal registers of MC6845 for several display formats. The decimal representation is given first, and the hexadecimal representation follows in parentheses. The values marked by one asterisk (*) may be updated during display usage. The positions marked by two asterisks (**) are for a light pen; this design does not provide for a light pen. The values given for the 12 by 80 character format should be used with a 10.275 MHz crystal. The values for the 16 by 64 and 25 by 40 formats are specified for a 9.0 MHz crystal.

Table 3: Summary of cursor options for Motorola MC6845. To produce results shown in table, a value of 8 must also be stored in R11.
is programmed with the maximum scan line number that is to be presented to the character generator, and is 1 less than the number of scan lines per character row. A value of 8 causes the counter to run from 0 to 8, then back to 0. This produces a total of nine scan lines per character row. Using this number along with the others specified above, the resultant vertical timing is: 29 rows \((R4) \times 9\) lines per row \((R9) = 261\) scan lines. 261 scan lines + two lines extra \((R5) = 263\). Now, 263 \(\times 63.27\) \(\mu\)s per scan line = 16.64 ms per vertical scan, or a frequency just under 60.1 Hz, again close to the power line frequency. (Other values could be used to adjust the vertical frequency to 50 Hz, the common power line frequency in other countries.)

\(R10\) and \(R11\) Cursor start and end. These registers specify the format of the cursor. The values of 64 for \(R10\) and 8 for \(R11\) generate a cursor which is a blinking reverse video block covering the entire character. For discussion of other cursor options see the section entitled “Cursor Generation.”

The above registers are write only. Values may be stored in them, but not read back. These registers are generally written to only once (when the system is first powered up) to establish the characteristics of the display.

\(R12\) and \(R13\) Refresh start address. These registers are the high order six bits \((R12)\) and low order eight bits \((R13)\) of a 14 bit refresh address counter. For a nonscrolled display, these are initialized to 0. For a scrolled display, these registers will be updated periodically; since they, too, are write only, copies of them must be maintained by the processor. More information on the use of these registers is given in the section on scrolling.

\(R14\) and \(R15\) Cursor location. These registers are the high order six bits \((R14)\) and low order eight bits \((R15)\) of the location at which the cursor is to be displayed. When the refresh address output by the 6845 equals the cursor address, a cursor output signal is activated, subject to the constraints placed on the cursor by values placed in \(R10\) and \(R11\). More information on cursor generation is in a later section of this article. \(R14\) and \(R15\) are in principle readable as well as writeable, but unless proper buffering is provided for the 6845, they cannot be read. The circuit presented in the next section does not have the proper buffering, so these registers are treated as if they were write only, and copies are maintained by the processor.

\(R16\) and \(R17\) Light pen. These read only registers capture the refresh memory address at the instant a pulse is received from an external light pen. The processor can thereby calculate where on the display screen the operator is pointing the light pen. I provide no circuitry to support this feature of the 6845.

Display Design Description

Figure 4 shows the schematic of the display using the Motorola MC6845. The MC6845 being a MOS device (limited in counting speed to about 3 MHz), the higher speed dot and character clock circuits are still TTL. These are the high-speed timing functions mentioned previously. They must be implemented with external TTL packages on the Intel and SMC parts as well. The National display controller includes the dot clock crystal oscillator and the character clock divider on the chip.

\(IC10\) is a 9 MHz crystal oscillator. \(IC9\) and \(IC7a\) divide this by 6 to produce the character clock. \(IC9\) divides this by 5, when it reaches 5, the output of \(IC7a\) goes low, conditioning \(IC9\) to reset itself on the next clock pulse. Two variants of the character clock are used. The output of \(IC7a\) goes high when \(IC9\) goes from 5 back to 0, and a rising edge clock pulse is needed for \(IC2\), \(IC4\), an \(IC5\). A falling clock is needed for \(IC1\) and the 6845. Furthermore, the clock supplied to \(IC1\) must be high a minimum of 220 ns, and low a minimum of 160
New RAM Prices.
From The Dynamic Memory Company.

16K—$249 32K—$375
48K—$500 64K—$625

Ever since we started making these memory boards over a year ago we have continued to lower our prices to stay competitive. Due to your confidence in us, we are again able to lower our prices! Our reliability has been proven by months of superior performance in thousands of installations. Our low-power boards are being used by quality-minded systems manufacturers across the country and overseas.

4MHz boards now available.
After receiving hundreds of requests, our engineering staff has come up with a new version of our board which runs on 4MHz Z-80 systems. It wasn’t easy to come up with a high speed board which would operate as reliably as our 450ns version, but after months of careful design and testing, we did it. The price of the 250ns board is $10 per 16K additional.

All of our features remain.
Our boards didn’t become great sellers only because of the price. We still offer you our deselect feature which allows our RAM to overlap with any fixed memory areas in your system. Also, the RAM area of our board is fully socketed so that you can expand the board yourself.

Other standard features include: plug selectable addressing on 16K boundaries (shorting plugs are placed over wire-wrap pins to address the board — located on the top of the board for easy changes), S-100 and Z-80 compatibility and totally invisible refresh — no wait states.

Fully assembled, tested, and guaranteed.
All of our boards go through a rigorous testing procedure. They are then placed on burn-in running a series of memory tests to detect any other possible faults. After you receive the board, you are backed by us with a one year warrantee.

Low power consumption keeps your computer from "losing its cool."
The total power consumption of our 16K board is typically less than 4 watts (+8V @ 300ma, +16V @ 150ma and −16V @ 20ma). Boards with additional memory typically increase power consumption only 1 watt per 16K!

Standard S-100 Interface.
Our board is designed to interface with any standard S-100 CPU. All of the timing of the board is independent of the processor chip, and the board is set up for different processors by changing two plugs on the board.

Contact your local dealer.
To find out more about our RAM boards, contact your local dealer. If he is unable to help you, call or write us for a fast response. Central Data Corporation, 1207 North Hagan Street, Champaign, IL 61820. (217) 359-8010

Central Data
Figure 4: Schematic diagram of display circuit incorporating the MC6845 device. All integrated circuits except IC6 may be low power Schottky (LS) type.
NEW!

WHY CUT?
WHY STRIP?
WHY SLIT?

WHY NOT...

JUST WRAP™

- AWG 30 Wire
- .025" Square Posts
- Daisy Chain or Point To Point
- No Stripping or Slitting Required
 JUST WRAP™
- Built In Cut Off
- Easy Loading of Wire
- Available Wire Colors:
 Blue, White, Red & Yellow

* $14.95

MACHINE & TOOL CORPORATION 3455 CONNER ST., BRONX, N.Y. 10475 (212) 994-6600/TELEX 125091
*MINIMUM BILLING $25.00 / AD SHIPPING CHARGE $2.00 / NEW YORK CITY / STATE RESIDENTS ADD APPLICABLE TAX.
Table 4: A power pin table for the circuit in figure 4.

<table>
<thead>
<tr>
<th>Number</th>
<th>Type</th>
<th>+5 V</th>
<th>-12 V</th>
<th>-5 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC1</td>
<td>MC6485</td>
<td>20</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>IC2</td>
<td>74174</td>
<td>16</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>IC3</td>
<td>2513</td>
<td>24</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>IC4</td>
<td>74166</td>
<td>16</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>IC5</td>
<td>74175</td>
<td>16</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>IC6</td>
<td>7416</td>
<td>14</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>IC7</td>
<td>7400</td>
<td>14</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>IC8</td>
<td>7486</td>
<td>14</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>IC9</td>
<td>74163</td>
<td>16</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>IC10</td>
<td>7404</td>
<td>14</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>IC11</td>
<td>74157</td>
<td>16</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>IC12</td>
<td>74157</td>
<td>16</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>IC13</td>
<td>74157</td>
<td>16</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>IC14</td>
<td>21L02-1</td>
<td>10</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>IC15</td>
<td>21L02-1</td>
<td>10</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>IC16</td>
<td>21L02-1</td>
<td>10</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>IC17</td>
<td>21L02-1</td>
<td>10</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>IC18</td>
<td>21L02-1</td>
<td>10</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>IC19</td>
<td>21L02-1</td>
<td>10</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>IC20</td>
<td>21L02-1</td>
<td>10</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>IC21</td>
<td>21L02-1</td>
<td>10</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>IC22</td>
<td>74LS367</td>
<td>14</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>IC23</td>
<td>74LS367</td>
<td>14</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>IC24</td>
<td>74LS138</td>
<td>16</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>IC25</td>
<td>74LS138</td>
<td>16</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>IC26</td>
<td>7404</td>
<td>14</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

ns. The output of IC7a is of the wrong phase and is low for only 110 ns. Fortunately, the C output of IC9 is high for 220 ns (during counts 4 and 5), so it is used as the 6845 clock.

The 6845 presents the address of a character for refreshing the display to the memory. The memory then presents the character to the latch, IC2. The character in IC2 is then presented to the character generator, IC3. The dots for the specified scan line of the character are presented to the shift register, IC4, and shifted out at the dot clock rate to produce the video signal.

The 2 Character Pipeline

There is effectively a 2 character pipeline — one character being accessed from the refresh memory, and one character (actually one row of dots from a character) being accessed from the character generator. The two 6845 signals, cursor and display enable, must be delayed two character intervals by sections of IC5 to accommodate the pipeline effect. Display enable is low whenever the display is to be blanked. This includes the regions below, above, to the left, and to the right of the active display area. Cursor is high when the current refresh address matches the value programmed into the cursor address register pair (R14 and R15). Bit 7 of the character, the 6845 cursor signal, and the video signal from the shift register are combined in such a way that bit 7 being on causes reversal of the video for one character interval (changing white-on-black characters to black-on-white, or vice versa), and the 6845 cursor signal being on causes another reversal. Assuming the cursor has been so programmed, it can be distinguished from ordinary reversal because it will blink.

One timing consideration must be borne in mind when the MC6845 is used. The counter used in the all TTL circuit has negligible delay (20 ns) compared to the display character time (666 ns). The MC6845, being a metal oxide semiconductor device, is considerably slower, with a delay of as much as 160 ns. This delay time must be subtracted from the character time when specifying the refresh memory access time. The refresh memory integrated circuits specified in the design are “-1” suffix types (500 ns maximum access time) so the timing is satisfactory.

On the schematic diagram (figure 4), IC26 (74LS138) and IC27 (7404) are connected such that IC27 is enabled for the uppermost 8 K bytes of processor memory address space (hexadecimal E000 thru FFFF). Other connections of IC26's enable inputs (pins 4, 5, and 6) to the address lines, with or without sections of IC27, as required, can allow enabling for any 8 K memory address segment. Selection of a particular 1 K byte segment for the refresh memory is accomplished by connecting the refresh memory select line to a particular output of IC26. The CS (chip select) line from IC1, the 6845, is connected to another of the outputs of IC26. This allocates an entire 1 K byte segment to the 6845, whereas it needs only two addresses. More integrated circuits could be added to refine the decoding for the 6845 and eliminate the wasted address space.

Cursor Generation

The MC6845 provides several options for the generation of a cursor. Registers R10 and R11 control the format of the cursor, and R14 and R15 control its position. The low order five bits of R10 (bits 0 thru 4) specify the scan line on which the cursor is to start, and R11 specifies the scan line on which the cursor is to end. If R10 bits 0 thru 4 are all equal to 0, and R11 is 8, the cursor will occupy lines 0 thru 8, or the entire character. Using the circuitry presented earlier, the cursor becomes a block
POWERFUL INTERFACES

TRS-80* EXPANDOR INTERFACE

MODEL EI-80K (KIT) - $329.00
MODEL EI-80A (ASSEM.) - $349.00
- 32K high speed 250NS memory.
- Disc controller which controls mini or 8” floppy.
- RS-232 Port.
- Parallel Port
- Self contained heavy duty power supply. Plugs directly into rear of TRS-80* keyboard. Comes in attractive cabinet. *Twice the value for what you would spend for a TRS-80* expansion interface.*

TRS-80* MASTER CONTROL CONSOLE

MODEL MCC-K (KIT) - $129.95
MODEL MCC-A (ASSEM.) - $159.95
- A COMPLETE COMMAND CENTER FROM YOUR KEYBOARD OR FROM ANY LEVEL II OR DISC BASIC PROGRAM. Turn on bells, sprinklers, sense fire and burglar alarm, anything that needs a switch can be controlled by the command center.
 - **16 OUTPUT LINES:** With 8 relays, SPST, and 8 TTL diode protected signals
 - **16 OUTPUT LINES:** 8 lines with OPTO-COUPlers and 8 TTL diode protected
 - **FULL LED PANEL:** For status indicators of all control lines
 - **COMPLETE WITH CABINET:** Has attractive sloping cabinet
 - **FULLY HEAVY DUTY POWER SUPPLY:** Contains power supply. No external power needed.
 - **EASY CONNECTION:** Plugs into TRS-80* expansion port edge card rear of keyboard or between keyboard and expansion interface
 - **2-EDGE CONNECTORS:** 2-additional expansion 40 pin edge connectors.
 - **NEEDS NO SOFTWARE:** Operates from OUT and IN statements from BASIC or machine code statements. Example: (Out 5, 1=turn on switch 5. Out 5, 2=turn off switch 5, etc.)
 - **COMPLETE MANUAL AND SAMPLE PROGRAMS:** Comes with comprehensive manual and sample programs.

S-100 BUS MASTER CONTROL CARD

MODEL MCC-100K (KIT) - $159.95
MODEL MCC-100A (ASSEM.) - $189.95
- TURN IT ON.....TURN IT OFF
 Now you can control the outside world plus sense its status and its functions. 16 output and input lines. Turn on those bells, activate burglar alarms, etc.
 - **16 OUTPUT AND INPUT CHANNELS:** 16 output channels with SPST relay on each. Opto-couplers on each one of the input channels.
 - **EASY PORT ASSIGNMENT:** Port assignment is made via DIP SWITCH. In addition this board features our "ALL HARDWARE" software match setting features. You are able to select and set status, its parity to match any software configuration. No need to change the software to match the board.
 - **SIMPLE OPERATION:** Turning off the relays is commandable by addressing a port, plus turning a bit on or off. Sample: You're in BASIC and you want to turn on switch 16. You would write out 3, 16. This turns on switch 16. To turn it off you would write out 4, 16 and off it is.
 - **HIGH QUALITY:** The highest quality parts are used. The P.C. board is double sided with plated through holes, solder mask and silk screened legend
 - **FULL DOCUMENTATION:** A complete manual of operation and assembly is included.

TRS-80* DISC CONTROLLER MODULE

MODEL DCM-80K (KIT) - $159.95
MODEL DCM-80A (ASSEM.) - $189.95
- Option available: 1) 16K RAM Kit, high speed 250 NS with purchase of board - Special $85.00.
 - Has provisions for 16K memory
 - Will control mini or 8” floppy
 - DOS operating system included. Plugs directly into rear of TRS-80* keyboard.
 - Complete with power supply in attractive cabinet.

S-100 8K STATIC 250NS RAM MEMORY CARD

MODEL 8K-100K (KIT) - $119.95
MODEL 8K-100A (ASSEM.) - $139.95
- Fully buffered address, control and data lines.
- Memory protect and unprotect
- Power on clear
- Bank select feature for selection to any 64K quadrant
- Battery backup
- Will run with any Z-80 Microprocessor without need of wait states
- S-100 BUS power requirement 1.4 amps

TRS-80 is a trademark of Tandy Corp
of reverse video. If the value 8 is stored in R10 bits 0 thru 4 (i.e.: bit 3 is on) and in R11, the cursor occupies only line 8. Hence it becomes an underscore. If values other than these are used, only a portion of the character is reversed. I have found that partial reversal makes characters difficult to read, so the only values I consider usable are (0, 8) and (8, 8).

Bits 5 and 6 of R10 control cursor blinking. If bit 5 is on and bit 6 is off, the cursor is not displayed at all. This can be used to blank the cursor to indicate the system is not accepting keyboard input. If bit 6 is on, the cursor will blink. If bit 5 is off, the blink rate is about four times per second. If bit 5 is on, the blink rate is about two times per second.

Scrolling

Scrolling is the management of a video display in the following way. New data is entered on the bottom line of the display. When the bottom line is full, the entire display is moved up one line. In the process, the top line, containing the oldest data, may be discarded, or if the display memory is larger than the portion displayed on the screen, the old display data may temporarily be kept. In the latter case, the display could be scrolled down as well as up, and the display screen could act as a moveable "window."

The data movement necessary to implement scrolling could be done by a processor program. In fact, it must be done by the processor in the case of the all TTL display design, for there is no provision for hardware scrolling in that design. A program loop to perform scrolling on a 1,024 character screen might take from 15 to 20 milliseconds on a 6502 or 6800 processor. If the source of data to the screen was a serial communications line operating at 1200 bits per second (assume the system is emulating a terminal), the time between characters is only about 8 ms, not long enough to perform a scrolling operation. (An interrupt-driven program could be written to handle both scrolling and receiving of characters from the line, but this would be complex).

The 6845 does provide scrolling because its refresh start address is programmable, and may be updated whenever necessary. Up to this point, I've used the term scrolling to mean "line scrolling" where data is moved around as complete lines. In this case, the refresh start address of the 6845 would be updated in increments of 64 (for the 64 character line length).

However, scrolling can be done by individual characters. If the refresh start address is incremented by one, each character in each line moves one position left, and the first character of each line moves to the last position of the previous line. Also, if the display memory is at least twice as large as the display screen, scrolling could be done by page, in which case the refresh start address would be updated by 1,024 each time (again assuming the 16 by 64 format). Since the 6845 can address up to 16 K (16,384) bytes, the refresh memory could contain up to 16 pages of data, and scrolling could be done by line or page.

The design I have presented here has a refresh memory the same size as the display screen. It uses scrolling to enter new data on the bottom line of the display, and the top line is discarded when it is displaced. An example of how such scrolling operations might be done is shown in figure 5. Figure 5a shows how the display would be initialized. The 6845 is initialized with a refresh start address of 64 (decimal). The 6845's refresh address counter runs to 1,023 at the end of the 15th line, then continues with 1,024 and up to 1,087 at the end of the 16th and last line. Since only ten of the 6845's 14 refresh address lines are connected to the refresh memory, a 'wraparound' occurs—the address 1,024 is equivalent (in

Figure 5a: Initialization for a scrolled display. Refresh addresses are shown. The differing value given in parentheses is that perceived by the refresh memory, due to wraparound.

Figure 5b: Refresh addresses calculated after one scrolling operation.

Figure 5c: Refresh addresses of last scrolling operation before the processor memory reference must be reset to 0.
the refresh memory's perception) to 0. Hence the last line of the display starts at a memory address of relative 0, from the processor's point of view. For example, if the display memory were located at processor hexadecimal addresses E000 thru E3FF, the last line of the display would start at E000.

The procedure to perform a scroll operation is as follows: increment the refresh start address by 64, update the cursor address, and prepare the processor to store new data at refresh memory locations 64 thru 127 (relative to the actual processor starting address; for the example given above, the addresses would be E040 thru E07F). Figure 5b shows the result of this scroll operation.

All addresses are incremented by 64 for each new line until the situation shown in figure 5c prevails. In order to perform another scroll operation, the processor memory address must be reset to relative 0 (E000 as above), but the 6845 refresh start address can continue to be incremented; it needn't be reset. It will eventually wrap around itself.

Note well that the cursor address register is a 14 bit register, as is the refresh start address register. All 14 bits of the cursor address must match a refresh address displayed on the screen for the cursor to be displayed. The range covered by the refresh address is determined by the refresh start address and the number of characters on the screen. If the cursor address is outside of this range, no cursor will be generated by the 6845.

Scrolling in the case of a 12 line by 80 character format (where neither of the dimensions is a power of 2) is more complicated. As shown in figure 6a, the 6845 is initialized with a refresh start address of 144, so that, at the beginning of the 12th line, the 6845 outputs the address 1024, which is equivalent to memory address 0. In figure 6b a single scroll operation has been performed. All values have been incremented by 80. So far, everything is just like the 16 by 64 case, except for the increment value. In figure 6c, the last "simple" scroll has occurred, and things get more complicated from this point. In figure 6d the result of another scroll operation is shown. Again, all values have been incremented by 80, but as can be seen, memory wraparound occurs within the display line. In the 16 by 64 case, wraparound always occurs between lines, and it is relatively easy for a processor program to deal with. In the 12 line by 80 character case, the processor program must be aware that wraparound can occur with a line, and it must act accordingly.

Device Availability

The SMC 5027 and the Intel 8275 (along with its associated 8257 controller) have been available for some time from computer hobbyist vendors. The 5027 was originally priced at about $50, but may be available for less than that now in view of increasing competition. The Intel 8275 and 8257 pair are available for under $100. The Motorola MC6845 is available from regular electronics distributors. It usually costs about $30. The National DP8350 is the most recently announced of the four parts, so its price and availability may still fluctuate.

There are other video display controllers besides the four I have covered in this article. There will probably be even more announced by the time it is published and prices can be expected to fall as competition heats up.
have publications in which geographic coordinates for data base construction exist in both tabular and graphic form. Though somewhat tedious, tabular data can be keyed into the computer easily and saved in mass storage. If you have access to a graphics pad input device, you can quickly extract data directly from existing maps.

It should be pointed out that the companies which produce maps commercially guard their data bases jealously, since they are the products of much research and expense. They thoroughly disapprove of someone using their own data to go into business against them. Most commercial geographical publications contain a copyright notice which warns against such use, and the following notice from a recent Rand McNally Road Atlas is typical:

"Reproducing maps, tables, text, or any other material which appears in this publication by photocopying, by electronic storage and retrieval, or by any other means is prohibited." [Italics mine.]

Normally, one is not precluded by the copyright law from extracting copyrighted information for personal use, and it would seem that as long as you did not distribute or use the material commercially there would be no problem, but this is not a legal opinion. If you have any qualms about this, you might stick, as I have, to government publications and maps for source materials.

The United States government puts out a seemingly endless supply of geographic publications covering all parts of the world, so there is no scarcity of data from this source.

An easier way to go about setting up a data base is to obtain a ready-made one. You can buy one from a commercial establishment or from an individual (expensive, in either case), or you might be able to get one free from a government agency or a university. There are so many different data bases in existence that it is best for you to first decide exactly what you need, then directly contact the agencies that would be most likely to have what you want.

Many observatories, including university observatories, have extensive data bases for astronomical uses, free for the asking. As far as government agencies are concerned, your best bets are with the National Oceanic and Atmospheric Administration (6010 Executive Blvd, Rockville MD 20852), the National Technical Information Service (Room 620, 425 Thirteenth St NW, Washington DC 20004), and the US Geological Survey (National Center, 12201 Sunrise Valley Dr, Reston VA 22092). These agencies have many kinds of data bases, covering all parts of the world. Depending upon what you need, there may or may not be a charge for the material.

One drawback to obtaining data bases from agencies such as these is that they may not be in a format that you can use directly. For example, you may find that the data you need is available only on standard 7 or 9 track computer tape, and you will have to find a way to read it and convert it into a format you can use.

Sample Mapping Programs

The field is so broad that it is impossible to discuss here all of the projections in common use. Therefore, I have selected a few of the simplest and most common map projections to serve as illustrations of the techniques involved. For each example discussed, a program listing is included, as well as a number of maps actually generated by the programs. Many readers will find immediate application for one or more of the sample projections, exactly as they are demonstrated. Others will want to make modifications, and still others will want to delve deeper into the subject. A visit to your local library will turn up useful books which explain map projections, their uses, and the mathematics required to carry them out.

In all of the examples which follow, it is assumed that the geographic coordinates (latitudes and longitudes) in the data base are in radians, and that they are being converted to rectangular X,Y map coordinates (measured usually in centimeters or inches). Standard trigonometric convention is used for the algebraic signs of the coordinates. In other words, for the geographic coordinates, north latitudes are positive; south latitudes are negative; east longitudes are positive; west longitudes are negative. It is further assumed that the origin (0,0) of the map coordinate system is at the center of the map, with the X axis positive to the right, and the Y axis positive toward the top. There may be some slight variation between this standard system and your own graphics device, but at most it would require only a simple translation or rotation of the coordinates.

Each of the examples is demonstrated as a subroutine, which is to be called once for each pair of coordinates in the data base. Before the first call is made to the subroutine, certain initial parameters must have already been defined, and these are noted in the remarks accompanying each subroutine.
THE SEARCH FOR A SMALL COMPUTER SYSTEM STARTS HERE

It's the 3rd Annual National Small Computer Show, presenting the state-of-the-art showcase for micro- and mini-systems technology and software. Here you can survey virtually all makes and models of small computers, whether your interest runs to a no-nonsense micro priced in the hundreds of dollars or a powerful mini costing $20,000 or more. They're all here.

The world of small computers is quite large, extending to business and professional offices, scientific research, medicine and bionics, education, the home and hobbyist, therapeutic applications for the handicapped, design and engineering.

A full selection of lectures is presented to provide a grasp of small systems technology, so that you know what to consider when buying a computer or word processor. It's the first step in discovering what a system can really do for you!

NSCS lectures include sessions on system selection, computer languages, word processing functions, artificial intelligence, software applications, and a dozen more topics for people of all interests.

Plan now to attend. There will be about 30,000 square feet of exhibits, and more than 40 hours of lectures from which to choose. Registration fee is only $5.00 per day, including lectures.

Write for our informational brochure from National Small Computer Show, 110 Charlotte Place, Englewood Cliffs, N.J. 07632.

Circle 269 on inquiry card.
For each call made, the main program supplies a pair of geographic coordinates from the data base, and the subroutine returns the rectangular map coordinates. Grid lines, when desired, may be created by generating sets of "artificial" geographic coordinates within loops in the main program, then calling the appropriate conversion routine to get the map coordinates to draw them with. Any labeling or annotation of the maps would also be carried out by the main program.

The flowchart in figure 1 has illustrated the principal features of the main program, and no attempt will be made here to detail it further, since there would be some variation dependent upon your own hardware. In any case, it will be quite straightforward and simple.

The remarks included in the listings fully explain the operation and use of each subroutine, so those aspects will not be repeated in detail in the text. In fact, the greatest part of each listing is composed of remarks, with the actual executable portion comprising only about ten to 20 statements in each case.

Rectangular Projections

This is probably the simplest projection in existence, and requires an absolute minimum of mathematics to generate. The meridians and parallels are simply laid out as equally spaced straight lines at right angles to each other. You can take a standard sheet of graph paper, for example, and let each space in the horizontal direction equal a degree of longitude, and each space in the vertical direction equal a degree of latitude. Plot a few geographic coordinates on the graph paper in this manner and you have a rectangular projection.

The computer, of course, can do the job faster, and the subroutine given in listing 1 will serve quite nicely. Notice that no trigonometry is required, and that the actual conversion requires only two statements. Consequently, this type of projection can be carried out very rapidly, even when a large data base is involved.

The rectangular projection is not a real "projection" in the true sense of the word, since it is arranged arbitrarily and there is no direct geometric relationship between it and the surface of the Earth. Nevertheless, for many purposes it works very well, especially if the latitudinal (north-south) extent of the area being mapped is not too great. It works best for areas near the equator, and becomes useless near the poles. (The meridians on the Earth converge at the poles, whereas they remain parallel to each other on the projection. The resultant distortion above about 50 or 60 degrees latitude is usually unacceptable.)

The accuracy of the projection can be significantly improved if the horizontal map scale factor, F1, is adjusted to compensate for the convergence of the meridians. We can do this in the main program by computing F2 first, then computing F1 by $F1 = F2 \times \cos(C2)$. This does not eliminate the convergence problem, but it does reduce its effect.
Wondering which memory is best for you?

Base 2 offers the following products to the S-100 market at the industry's lowest prices:

8K Static Memory Board
This 8K board is available in two versions. The 8KS-B operates at 450ns for use with 8080 and 8080A microprocessor systems and Z-80 systems operating at 2MHz. The 8KS-Z operates at 250ns and is suitable for use with Z-80 systems operating at 4MHz. Both kits feature factory fresh 2102's (low power on 8KS-B) and includes sockets for all IC's. Support logic is low power Schottky to minimize power consumption. Address and data lines are fully buffered and 4K bank addressing is DIP switch selectable. Memory Protect/Unprotect, selectable wait states and battery backup are also designed into the board. Circuit boards are solder masked and silk-screened for ease of construction. These kits are the best memory value on the market! Available from stock... 8KS-B $125 (assembled and tested add $25.00) 8KS-Z $145 (assembled and tested add $25.00)

16K Static Memory Board
Base 2 can now offer the same price/performance in a 16K static RAM as in its popular 8K RAM. This kit includes 8K bank addressing with 4K boundary address setting on DIP switches. This low power unit provides on-board bank selection for unlimited expansion... No MUX board required. Using highest quality boards and components we expect this kit to be one of the most popular units on the market. Available in two speed ranges, the 16KS-B operates at 450ns while the 16KS-Z operates at 250ns. 16KS-B $285 (assembled and tested add $25.00) 16KS-Z $325 (assembled and tested add $25.00)

Z-80 CPU Board
Our Z-80 card is also offered in two speed ranges. The CPZ-1 operates at 2MHz and the CPZ-2 operates at 4MHz. These kits offer the maximum in versatility at unbelievably low cost. A socket is included on the board for a 2708 EPROM which is addressable to any 4K boundary above 32K. The power-on jump feature can be selected to address any 4K boundary above 32K or the on-board 2708. An On-board run-stop flip-flop and optional generation of Memory Write allows the board to run with or without a front panel. The board can be selected to run in either the 8080 mode, to take advantage of existing software, or in the Z-80 mode for maximum efficiency. For use in existing systems, a wait state may be added to the M1 cycle, Memory request cycle, on-board ROM cycle, input cycle and output cycle. DMA grant tri-states all signals from the processor board. All this and more on top quality PC boards, fully socketed with fresh IC's. CPZ-1 $110 CPZ-2 $125

S-100 for Digital Group Systems
This kit offers, at long last, the ability to take advantage of S-100 products within your existing Digital Group mainframe. Once installed, up to four S-100 boards can be used in addition to the existing boards in the D.G. system. The system includes an "intelligent" mother board, ribbon cables to link existing D.G. CPU to the DGS-100 board and a power wiring harness. The DGS-100 is designed to fit in the 5-3/4" x 12" empty area in the standard D.G. cabinet. It may seem expensive but there's a lot here! End your frustration! DGS-100 $295

Send for more details on these products. Get on our mailing list for information on more to be announced products at factory-direct prices from BASE 2. Why pay more when you can get the best at these prices???
P.O. Box 3548 • Fullerton, Calif. 92634 (714) 992-4344 CA residents add 6% tax MC/BAC accepted • FOB — U.S. destination

Circle 22 on inquiry card.
The map of the continental United States shown in figure 2 was generated with the rectangular projection routine. Even though the area being mapped does not meet the requirements for high accuracy (i.e., it is far from the equator; it has a fairly large latitudinal extent; and in the case of this particular map, F1 was not corrected for convergence of the meridians), it is still entirely satisfactory for many purposes.

Another interesting thing about the map in figure 2 is that it is made up entirely of dots. In response to an article of mine which appeared in another magazine, I received about three thousand letters over a period of about four weeks. These were requests for technical data which required that the geographic coordinates for the center of the person's town be supplied. This resulted in a ready-made data base, and I became curious as to its distribution. It was a simple matter to have the computer examine the data base and draw a dot for each city represented (eliminating duplications), using a rectangular projection.

Notice that all dots are the same size, and
The fastest floating point BASIC for any micro.

TSC BASIC for the 6800 is the fastest floating point BASIC for ANY 8 bit microprocessor. No longer will the 6800 take a back seat to the 6502, 8080, or Z80! And with the TSC name, you know it's top quality.

TSC BASIC is not only fast, but complete with over 50 commands and functions. Features include six digit floating point math, full transcendental functions, unlimited string length, if/then/else construct, logical operators, and two-dimen-

sional arrays including string arrays. The disk versions for FLEX™ 1.0 and 2.0 support random access data files (the mini FLEX™ version does not).

A cassette version requires 10K while the disk versions require at least 12K. No source listings included. With KCS cassette - $39.95; mini FLEX™ - $49.95; FLEX™ 2.0 - $54.95; and FLEX™ 1.0 - $59.95. Soon to come are a business BASIC and 6809 BASIC.

Technical Systems Consultants, Inc.

All orders should include 3% for postage and handling (8% on foreign orders). Send 25¢ for a complete software catalog.

Box 2574
W. Lafayette, IN 47906
(317) 463-2502

Circle 363 on inquiry card.
that only one dot was drawn for each city, regardless of its population and regardless of how many letters were received from the city. No dot was drawn for any city (regardless of its size) unless at least one letter was received from it.

It took only a few minutes to set up the program to make the map, and only a few seconds for the computer to draw it. I then had an excellent graphical illustration of what I could only guess at by looking at the listing of the data base.

Polar Equidistant Projections

This is another rather simple projection, but one which has many important uses. Figures 3 and 4 show polar equidistant projections of the northern and southern hemispheres, respectively. The parallels are drawn as equally spaced concentric circles, and the meridians as equally spaced radii. As seen in listing 2, the polar form of the map coordinates can be represented directly from the geographic coordinates by \((P/2-P, L)\), where \(P\) and \(L\) are the latitude and longitude, respectively. \((P/2, \text{of course, is the equivalent of } 90^\circ \text{ expressed in radians.})\) These in turn are directly converted to rectangular coordinates by the standard polar-to-rectangular conversion formulas. The entire process requires only three statements in the subroutine.
These particular maps were made for satellite tracking, for use with the amateur radio OSCAR communications satellites, and for tracking of weather satellites by amateurs who receive weather pictures in their homes directly from the satellites. In addition to the basic geographic information, the maps are overlaid with tracking information based on the location at which the map is to be used (Miami FL, in this case). The set of interconnected concentric "circles" around Miami are elevation angle contour lines. The radial lines that connect them are azimuth angle contour lines.

The satellite's position over the surface of the Earth is plotted on the map, and if it falls anywhere within the interconnected "circles" it is within range of the ground station. The station antenna can then be pointed at the satellite, based on the information derived from the map. The radial lines give the antenna azimuth angle from true north in 30° increments (with additional 10° tick marks around the outer elevation contour). The concentric "circles" give the antenna elevation angle in 10° increments, starting with the outermost circle at 0° elevation (i.e.: the satellite is exactly on the horizon at this point). The elevation increases inward, with the innermost circle being 80°, and the dot at the center (the location of the ground station) being 90° (i.e.: directly overhead).

Figure 4: Polar equidistant projection of the southern hemisphere. This map is used in conjunction with the one in figure 3 to complete the satellite tracking coverage south of the equator.
The far outside arc, which is not connected to the inner elevation circles, shows the maximum communications range through the satellite. In order for the ground station to see and access the satellite, the satellite's ground track must lie within the inner set of interconnected circles, but once it comes within that area the spacecraft will relay the signals to a far greater range. The distant unconnected circle shows what the maximum possible range is. When used for weather satellite tracking, this circle takes on a slightly different meaning. In that case, it shows the most distant land areas that the station can expect to receive pictures of.

In practice, a transparent plastic overlay showing the satellite's ground track is placed over the map to find the position at any given moment. Since the shape of the orbit doesn't change, only one ground track overlay is needed, and it is simply rotated on the map to match up with the point where the satellite crosses the equator on that particular pass.

A more elegant system, however, is to generate the map and tracking overlays on a video display. The satellite's current location can be displayed as a flashing dot whose position is constantly updated in a real-time mode.

Returning to the matter of the map itself, one realizes that the orientation of the map need never be changed, regardless of where the ground station is located. The subroutine shown in listing 2 generates the map from geographic coordinates, but this really needs to be done only once. A new data base can be made up of map coordinates, and every time a map is to be drawn the map coordinates can be fed directly to the graphics device without having to go through the conversion calculations.

On the other hand, the azimuth-elevation tracking overlays will change in position, size, and shape for every different ground station location and for every different satellite. A separate subroutine is required to generate sets of geographic coordinates to define the overlays, and that subroutine would in turn call the subroutine given in listing 2 in order to get the map coordinates with which to draw the overlays.

Although the maps shown in figures 3 and 4 stop at the equator, they can be extended further with no change in the program. In fact, it would be advantageous in this particular application to extend each of them another 20 or 30 degrees to provide some overlap. Extension much beyond 40 degrees, however, will result in excessive distortion.

As a final note about the satellite tracking maps, you may have noticed that the longitudes are labeled from 0 to 360 degrees. Not only that, they are positive westward. This convention used in satellite tracking is an exception to the standard rule stated earlier. But as far as we are concerned it makes no difference. It is simply the way the map is labeled. Our data base and conversion subroutine still use the standard convention to generate the map.

While we have concentrated on one specific application of the polar equidistant

Listing 2: Subroutine to compute map coordinates for polar equidistant projection.

```
3000 REM SUBROUTINE TO COMPUTE MAP COORDINATES FOR
3010 REM POLAR EQUIDISTANT PROJECTION.
3020 REM
3030 REM THE FOLLOWING VARIABLES MUST BE DEFINED BEFORE
3040 REM THIS SUBROUTINE IS CALLED:
3050 REM
3060 REM P IS THE GEOGRAPHIC LATITUDE (OBTAINED FROM
3070 REM THE DATA BASE) OF THE POINT BEING CONVERTED.
3080 REM L IS THE GEOGRAPHIC LONGITUDE (OBTAINED FROM
3090 REM THE DATA BASE) OF THE POINT BEING CONVERTED.
3100 REM S IS THE MAP SCALE FACTOR, EQUAL TO
3110 REM D/3.1415927, WHERE D IS THE DIAMETER (IN
3120 REM CENTIMETERS, INCHES, ETC.) OF THE FINISHED
3130 REM MAP.
3140 REM H IS A FLAG TO INDICATE WHICH HEMISPHERE IS
3150 REM BEING DRAWN. H=0 MEANS NORTHERN HEMISPHERE.
3160 REM H=1 MEANS SOUTHERN HEMISPHERE.
3170 REM S IS THE OFF-SCALE FLAG. S=0 MEANS ON-SCALE.
3180 REM S=1 MEANS OFF SCALE.
3190 REM R1 IS TEMPORARY STORAGE.
3200 REM X IS THE MAP X-COORDINATE IN CENTIMETERS OR
3210 REM INCHES.
3220 REM Y IS THE MAP Y-COORDINATE IN CENTIMETERS OR
3230 REM INCHES.
3240 REM
3250 LET S = 0
3260 LET S = 0 IF THE POINT FROM THE DATA BASE IS NOT IN THE
3270 REM HEMISPHERE BEING DRAWN; SET THE OFF-SCALE FLAG
3280 REM AND RETURN.
3290 REM
3300 IF P > 0.0 THEN 3490
3310 REM FOR A SOUTHERN HEMISPHERE MAP, CHANGE THE SIGN
3320 REM OF THE LONGITUDE TO MAINTAIN THE PROPER MAP
3330 REM ORIENTATION.
3340 LET L = -L
3350 GO TO 3540
3360 IF P < 0.0 THEN 3540
3370 RETURN
3380 REM COMPUTE THE MAP COORDINATES FROM THE
3390 REM GEOGRAPHIC COORDINATES.
3400 REM
3410 LET R1 = F * (1.5707963 - ABS(P))
3420 LET X = R1 * COS(L)
3430 LET Y = R1 * SIN(L)
3440 RETURN
3450 END
```
In an effort to offer products that meet the continually changing demands of the microcomputer industry, TARBELL ELECTRONICS is pleased to offer immediate delivery of these quality components and operating software. All TARBELL products are available from computer store dealers everywhere.

Tarbell Floppy Disk Interface

- Plugs directly into your IMSAI or ALTAIR and handles up to 4 standard single drives in daisy-chain.
- Operates at standard 250K per second on normal disk format capacity of 256K bytes.
- Works with modified CP/M Operating System and BASIC-E Compiler.
- Hardware includes 4 extra IC slots, built-in phantom bootstrap and on-board crystal clock. Uses WD 1771 LSI chip.
- Full 6-month warranty and extensive documentation.
- Kit $190 Assembled $265.

Specify drive for assembled units. Complete disk subsystems with operating software available. Please inquire for details.

Tarbell 32K RAM Memory

- 32K Static Memory
- S-100 Bus Connector
- 9 regulators provide excellent heat distribution.
- Extended addressing (bank switching.)
- Phantom line.
- Low power requirement.
- 20-Page operating manual.
- Full 1-year warranty.
- Assembled and tested full price only $625
- 16K version also available, assembled and tested only $390.

Tarbell Cassette Interface

- Plugs directly into your IMSAI or ALTAIR.
- Fastest transfer rate: 187 (standard) to 540 bytes/second.
- Extremely reliable—Phase encoded (self-clocking).
- 4 extra status lines, and 4 extra control lines.
- 37-page manual included.
- Device code selectable by DIP-switch.
- Capable of generating Kansas City tapes.
- Complete kit $120 Assembled $175.
- Manual may be purchased separately $8.
- Full 6-month warranty on kit and assembled units.

Tarbell Disk BASIC

- Runs on 8080, 8085 or Z80
- Searches a file quickly for a string.
- Up to 64 files open at once.
- Random Access.
- Assignment of I/O.
- Alphanumeric line labels allowed.
- Read and Write string or numeric data.
- Unlimited length of variable names and strings.
- Procedures with independent variables.
- Number system 10 digits BCD integer or floating point.
- Chain to another program.
- Cause programs to be appended onto programs already in memory.
- Cause interpreter to enter edit mode using 15 single character edit commands.

Occupies 24K of RAM. Tarbell BASIC on CP/M Disk $48. Source on paper or CP/M Disk $25. CP/M and BASIC-E on disk with manuals $100.

Tarbell Cassette BASIC

Includes most features of ALTAIR Extended BASIC, plus these added features:
- Assignment of I/O.
- Alphanumeric line labels.
- Unlimited length of variable names and strings.
- Number system 10 digits BCD integer or floating point.
- Procedures with independent variables.
- Read and Write string data.
- Multi-file capability.
- Full price with complete documentation $48.

Prepaid, COD, or cash only. California residents please add 6% sales tax.

ALTAIR is a trademark/tradename of Peritec Computer Corporation
CP/M is a trademark/tradename of Digital Research

Tarbell ELECTRONICS
950 DOVLIN PLACE • SUITE B
CARSON, CALIFORNIA 90746
(213)538-4251 • (213) 538-2254

Circle 360 on inquiry card.
Listing 3: Subroutine to compute map coordinates for orthographic equatorial projection.

map (and a very important and useful application at that), one should remember that there are many other uses for it. Even if you have no interest in communications or weather satellites, you will probably sooner or later come across an application where it suits your needs perfectly.

Orthographic Equatorial Projections

Perspective projections are those which show the Earth exactly as it appears when viewed from some point in space. These are especially useful for generating images of the Earth for use in spaceship maneuvering, and for generating outline maps for overlay on weather satellite photos. In the orthographic equatorial projection, the point of view is at infinity, and level with the equator. As complex as this might sound, the math is actually very simple, and the entire procedure requires only about a half dozen statements in the conversion subroutine, which is given in listing 3.

Figures 5 and 6 show a pair of maps generated by the program—the former centered on 70° west longitude and the latter on 90° east longitude. These are quite spectacular to generate in rapid succession on a video display, simulating the rotation of the Earth or the passage of a spacecraft around the earth. Incrementing the center longitude by five or ten degrees between images gives a sufficiently smooth transition for most purposes, but the increment can be made as small as desired.

It is true that not all spacecraft orbit the Earth at the equator, and the point of view is somewhat closer than infinity. For games, however, the simplicity of the mathematics required for projection often outweighs other considerations.
Meet Super Grip II, the great new test clip from A P Products.

New "duck bill" contacts are flat, won't roll off IC leads.

Open-nose construction enables probe at IC leg.

Pin rows are offset for easy attachment of probes.

Contacts are gold-plated phosphor bronze. "Contact comb" construction separates contacts with precision. No shorts.

Heavy-duty, industrial-grade springs for firm contact pressure—and a good grip when pulling ICs. They'll keep their spring indefinitely. No intermittents.

New narrow-nose design makes it easy to attach on high-density boards. And now you can test ICs with only .040" between opposing legs.

New button-head pins keep probes from sliding off. (Straight pin models for logical connections.)

The new A P Super Grip II is, without question, the best way there is to troubleshoot DIP ICs.
You get positive contacts. No intermittents. No shorts. Ever.
So it's endlessly useful to you—and it's built to stay useful indefinitely.
Try one. You'll find 8, 14, 16, 16 LSI, 18, 20, 22, 24, 28, 36 and 40-pin models at your nearby A P store. (Make sure it's your A P store.)

Need the address? Call (toll-free) 800-321-9668. And ask for our complete A P catalog, The Faster and Easier Book.

Faster and Easier is what we're all about.
If you need a more exact projection, pull out an old high school text on solid geometry or analytic trigonometry and you can come up with the formulas you need to generate a map projected from any altitude over any point on the Earth. You will need to go ahead and do this if you plan to generate map overlays for weather satellite photos, since some of the satellites are in very low orbits. TIROS-N, for example, is only about 854 km (531 miles) above the Earth's surface, and can see an area only about 6251 km (3884 miles) in diameter at any given moment. The picture image it transmits covers a significantly smaller area.

By the time you get to the height of a geosynchronous satellite (35,800 km or 22,250 miles), you see all but about 9 degrees around the edges of the Earth's disc. That's less than the last little sliver between the outer edge and the outermost meridian lines on the maps in figures 5 and 6. At the distance of the moon, you miss less than one degree, so the orthographic projection is virtually perfect at this distance. That's also why most maps of the moon are printed using an orthographic equatorial projection.

If you do write a subroutine to generate close-up perspective projections, you may find that in some cases the trouble is repaid with the advantage of needing to handle a considerably smaller portion of the data base at any given time. This is true because so much less of the Earth is visible in any one close-up projection. Depending upon exactly what you are doing, you may be able to partition the data base in such a manner that smaller hunks of it need to be accessed at a given time, cutting down on unnecessary input and output operations.
COMPUTER SOFTWARE

For Homeowners, Businessmen, Engineers, Hobbyists, Doctors, Lawyers, Men and Women

We have been in business for over ten years building a reputation for providing a quality product at nominal prices — NOT what the traffic will bear. Our software is:

- Versatile — as most programs allow for multiple modes of operation.
- Tutorial — as each program is self prompting and leads you through the program (most have very detailed instructions contained right in their source code).
- Comprehensive — as an example our PSD program not only computes Power Spectral Densities but also includes FFT's, Inverse-transforms, Windowing, Sliding Windows, simultaneous FFT's variable data sizes, etc. and as a last word our software is:

- Readable — as all of our programs are reproduced full size for ease in reading.

For Homeowners, Businessmen, Engineers, Hobbyists, Doctors, Lawyers, Men and Women

We have been in business for over nine years building a reputation for providing a quality product at nominal prices — NOT in a subset of Dartmouth Basic but are not oriented for any one particular system. Just in case your Basic might not use one of our functions we have included an appendix in Volume V which gives conversion algorithms for 19 different Basic's; that's right, just look it up and make the substitution for your particular version. If you would like to convert your favorite program into Fortran or APL or any other language, the appendix in Volume II will define the statements and their parameters as used in our programs.

Over 85% of our programs and those in the first five volumes will execute in most 8K Basic's with 16K of free user RAM. If you only have 4K Basic, because of its lack of string functions only about 60% of our programs in Volumes I through V would be usable, however they should execute in only 8K of user RAM.

For those that have specific needs, we can tailor any of our programs for you or we can write one to fill your specific needs.

Vol. I
Business & Personal Bookkeeping Programs
Bond Selling Software
Compound Interest
Cyclic Schedule
Depreciation Schedule
Floor Estimator
Interest Rate Calculator
Investments
Mortgage Calculator
Optimize Order
Order Entry
Pert Tree
Rate Table
Return 2
Return 3
Schedule 1

Vol. II
Games & Pictures
Hibernial
Che-Sq.
Cost
Confidence 1
Confidence 2
Confidence 3
Confidence 4
Correlations
Curves
Differences
Duality
Polynomial
Polynomial Fit
Polynomial Fit
Polynomial Fit
Regression
Stat 1
Stat 2
Stat 3
Two Distribution
Two Univariate
Two Variances
Two Variances

Vol. III
Billing
Inventory
Payroll
Stat 2
Cron
Report
Schedule 2
Inventory
Stocks
Switch

Vol. IV
Andy Cap
Bosco
But
Conf 10
Descrpt
Differ
Energy
Fouier
Integers
Loore
Loos
Mazes
Parking
Popul
Routines
Savings
Santo
Sim.

Vol. V
Andy Cap
Bosco
But
Conf 10
Descrpt
Differ
Energy
Fouier
Integers
Loore
Loos
Mazes
Parking
Popul
Routines
Savings
Santo
Sim.

Vol. VI
Ledger
Maintains Company accounts and generates financial reports. Includes routines for: Payroll, General Ledger, Payroll

Vol. VII
Ches
Designed to challenge the average player; fairly comprehensive. Great fun for all, offers a unique opportunity for beginners in need of an opponent.

Vol. VIII
1040-Box
Taxpayers return itemized deductions or standard

Vol. IX
Balance
Resolves bank statements

Vol. X
Checkbook
Balances your checkbook

Vol. XI
Deprec 2
Computes depreciation, 4 methods, any time period

APPENDIX A

APPENDIX B

APPENDIX C — FAVORITE PROGRAM CONVERSIONS

AVAILABLE AT MOST COMPUTER STORES
Master Charge and Bank Americard accepted.

Our Software is copyrighted and may not be reproduced or sold.

SCIENTIFIC RESEARCH
PO. Box 490099-B
Key Biscayne, FL 33149
Phone orders call 800-327-6543
Information — (305) 361-1553

BYTE May 1979 89
Figure 6: Orthographic equatorial projection centered on 90° east longitude. Here, the same type of projection as used in figure 5 is employed, but the view has been rotated 160° to the east.

THE MICRO WORKS

THE INDUSTRY LEADER IN AFFORDABLE HI-RES VIDEO ANALYSIS

The Micro Works—FIRST to bring high resolution, low cost video to the micro world. Our Digisectors (we even coined the term) provide high speed, precise conversion of video signals to digital data—data you can manipulate to manage security systems, interpret bar codes and steer robots. We've been in the video business for a long time; our DS-68 for 8000 machines was the first video digitizer designed specifically for microprocessors and the first to sell at prices experimenters and hobbyists could afford. Its big sister, the DS-90, provides new features at an unprecedented price for S-100 micros.

Both boards support high resolution, a 256x256 picture element scan, the precision of 64 grey scale levels, and speed—conversion times as low as 3 microseconds per pixel. The Digisectors are shipped with the software to digitize a full frame of video and store the image in memory. From there, you can output to disk, printer, or simply analyze the data for conditions your system is programmed to interpret.

What else do you get for your money? A reliable, trouble-free board which you don't need to be a hardware or software wizard to operate. Digisectors are shipped assembled, burned in and tested; you just plug them in and run. Our customers are happy; they use Digisectors in research applications, custom microprocessor systems, scanning devices, portrait systems and robotics. Isn't it time for your computer to get the whole picture?

Price:
DS-68 $189.95
DS-90 $349.95

DS-95 for the Apple
COMING SOON!

P.O. BOX 1110 DEL MAR, CA. 92014 714-756-2687

Master Charge
Visa Accepted

Circle 231 on inquiry card.
Wordsmith is the video text editing system you've been waiting for. Its power, flexibility and simplicity help you carve any text editing task down to size—in a way you can understand. We wanted a system that allows you to think in traditional ways about text layout, yet at the same time makes the traditionally tedious operations such as cut and paste simple and fast. We think we've done it. We want you to decide for yourself.

Flexibility

- **Logical/Physical Page Distinction.** Define your own hardcopy size. Wordsmith remembers the difference between the screen size and the hardcopy page size.
- **Modular Hardcopy Driver.** Drive a Qume® Sprint-5 or TTY-like device directly now, Diablo, NEC and other hardcopy devices soon.
- **Pure Text.** Wordsmith files are pure text with no control characters mixed in. This universal format keeps you as compatible with the world as possible. What you see on the screen is what you get as hardcopy.
- **Page Templates.** Snapshots of the block layout of a page can be saved as named disk files, then later recalled and superimposed on the current page. Use such "templates" for standard multicolumn layouts, common letter formats, and fixed-field forms. A single keystroke dispatches you quickly from block to block as you fill in your page.
- **File Switching.** Moving from document to document to examine, copy, move and change text is like rolling off a log. You're not confined to one disk file at a time anymore.

Simplicity

- **Auto Word Break.** Forget the right margin. Wordsmith notices when you won't be able to complete the current word and moves it to the next line for you as you continue typing.
- **Understandable Commands.** The most frequently used commands are single keystrokes. The rest are easily remembered abbreviations.
- **Informative Status Lines.** The top two screen lines constantly display page number information, document name, cursor position, tab stops and status/error phrases. You're always in touch with your document.

- **Protection Against Catastrophic Errors.** It's nearly impossible to ruin your document with a single bad command. Wordsmith's page oriented design and double-checking user interface help you do what you mean!

Power

- **Page Oriented Philosophy.** A document is a collection of pages. The screen displays one entire page at a time. Simple random access page flipping commands take you quickly to any page in the document. Equally efficient commands allow you to insert, delete, copy and move pages both within one document and across documents.
- **Extensive Block Manipulation Capabilities.** Using "windows", portions of text, charts, etc., can be quickly and effortlessly moved around on the current page, or across pages. The shape and size of any window can be changed in real time, with the contained text automatically reformating itself (heading word and paragraph boundaries) to conform to the new shape.
- **Instantaneous Formatting.** Compacting (extraneous blank deletion) and right justifying are simple commands that tidy up a full page or window's worth of text in the blink of an eye. Random access cursor movement, line and character insert and delete, line and page split and join, and a host of other line and character level commands help you put text in its place quickly and accurately.

The **Wordsmith**

TEXT EDITOR

Defining the New Generation of Text Editing
from Micro Diversions, Inc.
8455-D Tyco Rd.
Vienna, Va. 22180
(703) 827-0888

- Direct CP/M® and North Star DOS compatibility
- Available for 40x86, 24x80 and 16x64 memory-mapped video boards
- Fully reentrant for efficient multi-programming environments (6K program space, 5K data area)
- 8080 and Z80 compatibility

Ordering Information:
$200
(IScreensplitter™ Owners: $801)
Manual only: $15
Check, VISA, Mastercharge

1. CP/M or North Star DOS version?
2. TTY or QUME interface?
3. Brand and memory address of video display board?
4. Ship on single or double density, 5" or 8" diskette?

Inquire about our custom keyboard.

Circle 219 on inquiry card.
Figure 7: Orthographic polar projection of the northern hemisphere. A spacecraft high over the north pole would see a view similar to this.

Listing 4: Subroutine to compute map coordinates for orthographic polar projection.

Orthographic Polar Projections

This is another special case of the perspective projection where the point of projection is at infinity. This time, however, the viewpoint is located directly over the poles. As seen in figures 7 and 8, maps of this projection suffer from compression of geographic features near the equator, but this is a minor drawback considering the ease with which they are generated. Grid lines for the meridians and parallels were omitted from these two particular maps, so the distortion is really not so noticeable unless someone points it out to you. The differences near the equator will be apparent if you compare these maps to the polar equidistant maps in
figures 3 and 4. Nevertheless, those maps are mathematical projections designed for specific purposes, and the orthographic polar maps are much more realistic for other purposes (the orbiting spaceships, for example).

The subroutine used to generate these maps is shown in listing 4, where only three statements are required for the conversion process. Although this sample routine does not provide for rotation of the map, this can be implemented by the inclusion of one additional statement. All you need to do is add the desired rotation angle to the geographic longitude (L) of the point being converted. (Some systems may also require that the resultant angle be normalized before it is used in the trigonometric function.)

Azimuthal Equidistant Projections

Here we come to one of the most interesting projections in common use. The azimuthal equidistant projection, also

Listing 4 continued:

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2290</td>
<td>REM X IS THE MAP X-COORDINATE IN CENTIMETERS OR INCHES.</td>
</tr>
<tr>
<td>2300</td>
<td>REM Y IS THE MAP Y-COORDINATE IN CENTIMETERS OR INCHES.</td>
</tr>
<tr>
<td>2310</td>
<td>LET S = 0</td>
</tr>
<tr>
<td>2320</td>
<td>REM IF THE POINT FROM THE DATA BASE IS NOT IN THE HEMISPHERE BEING DRAWN, SET THE OFF-SCALE FLAG</td>
</tr>
<tr>
<td>2330</td>
<td>REM AND RETURN.</td>
</tr>
<tr>
<td>2340</td>
<td>IF H = 0 THEN 2470</td>
</tr>
<tr>
<td>2350</td>
<td>IF P > 0.0 THEN 2480</td>
</tr>
<tr>
<td>2360</td>
<td>LET L = -L</td>
</tr>
<tr>
<td>2370</td>
<td>REM FOR A SOUTHERN HEMISPHERE MAP, CHANGE THE SIGN</td>
</tr>
<tr>
<td>2380</td>
<td>REM OF THE LONGITUDE TO MAINTAIN THE PROPER MAP ORIENTATION.</td>
</tr>
<tr>
<td>2390</td>
<td>RETURN</td>
</tr>
<tr>
<td>2400</td>
<td>LET S = 1</td>
</tr>
<tr>
<td>2410</td>
<td>REM COMPUTE THE MAP COORDINATES FROM THE GEOGRAPHIC COORDINATES.</td>
</tr>
<tr>
<td>2420</td>
<td>LET X = R1 * COS(L)</td>
</tr>
<tr>
<td>2430</td>
<td>LET Y = R1 * SIN(L)</td>
</tr>
<tr>
<td>2440</td>
<td>RETURN</td>
</tr>
<tr>
<td>2450</td>
<td>END</td>
</tr>
</tbody>
</table>

Figure 8: Orthographic polar projection of the southern hemisphere. The projection is the same as in figure 7, but the vantage point has been shifted to a point above the south pole.
Figure 9: Azimuthal equidistant projection centered on Dallas, Texas. Also called a great circle map, this projection gives true azimuths and distances from the center to all other points. This kind of map is especially useful for showing great circle navigation routes and for determining the proper great circle bearings when aiming radio antennas.

referred to as a great circle map, is particularly useful in navigation and radio communication. Each such map is based on a chosen central location, and the land areas are mapped so that the azimuths to them from the center are true in all directions. This is accomplished by computing the great circle bearings and distances from the central location to each of the points in the data base, then scaling the distance to fit the map. This yields the polar form of the map coordinates which are then directly converted to rectangular map coordinates in the usual manner.

Since the shortest distance between any two points on the surface of the Earth is along the great circle path between them, ships and aircraft follow such paths as closely as possible. Radio signals are usually
Our prices are too low to advertise. Please call or write.

We have a full staff of Programmers and Computer Consultants to design, configure and deliver a Turnkey Computer System to meet your specific requirements.
Figure 10: Azimuthal equidistant projection centered on Canberra, the capital of Australia. Compare this map to the one in figure 9 and notice how different the world looks from the standpoint of navigation and radio bearings.

strongest along the shortest path, so reception is best when the antenna is lined up with the correct great circle bearing. The azimuthal equidistant map is superb in these applications.

Figures 9 and 10 illustrate maps centered on Dallas TX, and Canberra, Australia, respectively. A navigator planning a flight from Dallas to Tokyo would draw a straight line from the center of the Dallas map, to Tokyo. This line indicates the shortest path between the two cities, and shows the intervening territory to be traversed. By extending the straight line on out to the bearing scale on the perimeter of the map, the initial departure bearing can be read directly.

Ham radio operators and shortwave listeners use these maps extensively. Suppose
S-100 RS-232 CONTROL CARD
8-SERIAL I/O CHANNELS
MODEL 232-100K (KIT) - $149.95
MODEL 232-100A (ASSEM.) - $179.95
A MUST FOR THE SERIOUS USER: NOW, FROM A SINGLE SERIAL I/O PORT YOU CAN SEND AND RECEIVE DATA TO ANY OF THE 8 CHANNELS WITH A SIMPLE SOFTWARE COMMAND EITHER IN BASIC OR MACHINE CODE.
• INDIVIDUAL BAUD RATES: Each channel can be set for its own individual baud rate via a dip switch. Card contains its own on board baud rate generator chip and crystal. The RS-232 Control Card will run any S-100 Microprocessor because of its on board timing clock.
• ALL HARDWARE: Yes this has our "ALL HARDWARE" software match setting features. You are able to select and set status, its partly to match any software configuration. NO NEED TO CHANGE THE SOFTWARE TO MATCH THE CARD.
• SIMPLE OPERATION: Only one port to configure. It's easy to set and run. You just output from Basic or your machine code program the Port # and Btl 1-8. By turning on bits one through eight you're able to direct your output to any RS-232 device. An extra feature is, you are able to run more than one RS-232 device at a time. Output and input from all 8 if you want.
• EASY CONNECTION: On top of the board are two 50 pin edge connectors. Supplied with the board are two cables with 40 Pin IDC connectors on one end and four DB-25 connectors on the other. All cables for connection from board to I/O devices is supplied.
• HIGHEST QUALITY: The highest quality parts are used. The P.C. board is double sided with plated through holes, solder mask and silk screened legend.
• FULL DOCUMENTATION: A complete manual of operation and assembly is included.

S-100 Z-80 CENTRAL PROCESSING UNIT
MODEL Z-80100K (KIT) - $129.95
MODEL Z-80100A (ASSEM.) - $139.95
• Selectable power on jump to any memory address.
• Provisions for on board EPROM.
• True generation 8080A and 82 clock signals.
• Selectable wait states on M-1 cycle memory request cycles, on board ROM cycle, and input-output cycles.
• True DMA tri states for all signals from processor board.
• All status signals are latched per the S-100 BUS specifications.
• Unit includes high speed Z-80A Microprocessor chip, 4 Mhz operation - can be switched to 2 Mhz, if so desired.
• Power requirements — +5volts @ 1.0amps.

TRS—80* TO S-100 BUS CABLE ADAPTER
MODEL CAB-80K (KIT) $99.95
MODEL CAB-80A (ASSEM.) $119.95
• FULL INTERFACE: Contained within the cable assembly, is a small enclosure. This enclosure contains all the logic to convert your TRS-80* to be compatible with the S-100 BUS system.
• FULL BUFFERING: All address, data and signal lines are fully buffered.
• EASY CONNECTION: It is easy to connect. Just plug the one end of the cable into the one slot on your S-100 system and plug the other end into the rear of the TRS-80* keyboard or between the expansion interface. Turn on and go........
• TWO EDGE CONNECTORS: Two addition 40 pin port edge connectors are provided for other connection of expansion interfaces.
• POWER: All power is derived from the S-100 BUS structure. Since the TRS-80* will not support other devices hooked to its power supply, it is a must that your S-100 supply =8-10 volts D.C. Logic card contained within the cable has on board 5 volt regulator. Current requirements is 375 ma. Unit has separate terminal for exterior connection of DC power requirement if it is to be supplied outside the S-100 BUS system.
• FULL OPERATION MANUAL: Not much need for a manual, but we have prepared one with full principle of operation, etc.

TRS-80* 16K MEMORY ADD-ON KIT
FOR THE TRS-80* — SORCERER‡ — APPLE II†
8-PRIME, 250NS HIGH SPEED MEMORY CHIPS
MODEL 16K-80 - $95.00
• All chips are new, top quality, factory fresh and tested.
• Each kit comes with complete, simple to understand instructions. Even the least experienced individual can add on memory.
• Comes complete with programmed jumpers.
• Guarantee: If a chip fails, we will replace it with no questions asked. Lifetime guarantee!
• Remember: These are top quality prime #1 chips. All orders shipped same day as received!

WORLD POWER SYSTEMS, INC.
1161 N. El Dorado Place, Suite 333, Tucson, Arizona 85715
24 Hour Order Phone No: 602-886-2537
that a ham in Canberra, the capital of Australia, hears a station in Venezuela that he would like to talk to. By using the map in figure 10, he can draw a line from the center, through Venezuela, out to the edge. The bearing read at the edge tells him where to set his antenna, and once done he not only receives the strongest possible signal from Venezuela, but he also assures that his own signal is transmitted along the shortest possible path to the other ham.

The distance scale at the bottom of these maps can be used to measure the distance between the center and any other location on the map. But it cannot be used between just any two locations: on this type of projection the distance scale is accurate only when measuring outward from the center.

The bearing scale, you will notice, is numbered from 0 to 360 degrees, clockwise from true north. This is the usual convention for all navigation and radio bearings. We label the map in this manner, but work with standard trigonometric convention in the program. More will be said about that later.

The program that generated the example maps is given in listing 5. Although slightly more involved than the previous map projections that we have looked at, it still requires only about a dozen statements to carry out the entire conversion process. One interesting feature is that there is no off-scale flag to worry about, because there is no such thing as an off-scale condition on an azimuthal equidistant map. The entire world is mapped, with no discontinuities, so every coordinate in the data base will find a home somewhere on the map.

The solution of the mathematics requires an inverse cosine function, which is not present in many BASIC interpreters. Rather than worry about what other implementations might be like, I just set it up to compute the inverse cosine by a user-defined function, FNC. It is up to the user to insert a properly defined function for this operation.

Most BASIC interpreters have inverse tangent functions. Inverse cosine can be derived by
\[
\cos^{-1}(X) = -\tan^{-1}\left(X/\sqrt{1 - X^2}\right) + 1.57083 \ldots , \text{RGAC}.
\]

Since many of the people who are interested in this type of map are also interested in printing out tables of great circle bearings and distances to other locations, I arranged the first part of the program to compute the angle in navigation/radio bearing convention before converting it to standard convention. The remarks beginning at line 5900 give additional details for extracting this information if you want it in tabular form.

One should be cautioned that the creation of azimuthal equidistant maps requires a fairly dense data base, because of
INFO 2000 DISK SYSTEMS:
A LOT LESS THAN YOU EXPECT.

Less Cost
The DISCOMEM Controller board costs us less to manufacture. So your complete INFO 2000 Disk System costs you less—at least $400 less than comparable disk systems.

Less Hardware
Only three S-100 boards are needed to create a complete, high-performance disk-based microcomputer system—the DISCOMEM Controller Board, a 32K memory board, and any 8080, 8085 or Z80 CPU board. You don’t need extra interface or EPROM boards since DISCOMEM contains 2 serial ports, 3 parallel ports and provision for 7K of EPROM and 1K of RAM.

Less Time
The INFO 2000 Disk System is incredibly fast! Using the PerSci Drives with voice coil positioning, disk seek times are up to 8 times faster than with other drives. A full disk-to-disk copy and verification takes well under a minute. Formatting and verifying a new diskette takes less than half a minute. Reloading CP/M from diskette takes a fraction of a second.

Less Space
The system is remarkably compact, requiring only 1/2 to 1/3 the space taken by other 2-drive disk systems.

It all adds up to more capability for your money.
The complete INFO 2000 Disk System comes completely assembled and tested. It includes dual diskette drives, the DISCOMEM Controller, power supply, cabinet, cables and the CP/M disk operating system—everything you need for immediate plug-in-and-go operation with your microcomputer. This means less time, hassle, hardware, space, errors and less money than for comparable equipment. Now, isn’t that a lot less than you’d expected in a dual disk system?

INFO 2000 Disk Systems are also available for Digital Group and Heath H8 microcomputers. Dealer inquiries welcomed.

INFO 2000
CORPORATION
20620 South Leopard Avenue
Corona, California 92874
(213) 532-1702

© 1979 by BYTE Magazine

Circle 173 on inquiry card.

*CP/M is a registered trademark of Digital Research.

*Extra cost option.
Listing 5 continued from page 98:

5740 REM -180 DEGREES AND +180 DEGREES (-PI AND +PI).
5750 IF L1 := -3.1415927 THEN 5780
5760 LET L1 = L1 + 6.2831853
5770 GO TO 5800
5780 IF L1 <= 3.1415927 THEN 5800
5790 LET L1 = L1 - 6.2831853
5800 LET PI = SIN(P)
5810 LET DI = A1 * PI + A2 * COS(P) * COS(L1)
5820 LET D = FNC(D1)
5830 LET C = (PI -AI * DI) / (A2 * SIN(D1))
5840 LET C = FNC(C1)
5850 REM NORMALIZE THE VALUE OF C, DEPENDING UPON THE
5860 REM RELATIVE LONGITUDES OF THE POINT AT THE CENTER
5870 REM OF THE MAP AND THE POINT BLING PROCESSED.
5880 IF L1 >= 0.0 THEN 6020
5890 LET C = 6.2831853 - C
5900 LET C = 1.57079653 - C
5910 REM AT THIS POINT C IS IN THE RANGE FROM 0 TO
5920 REM 2*PI, MEASURED CLOCKWISE FROM TRUE NORTH. IF
5930 REM DEGREES * B = C * 57.2957795. THE GREAT
5940 REM CIRCLE DISTANCE ALONG THE SURFACE OF THE EARTH
5950 REM CAN ALSO BE COMPUTED AT THIS POINT BY
5960 REM K = U * 6378, WHERE K IS IN KILOMETERS, OR BY
5970 REM M = D * 3963, WHERE M IS IN MILES.
5980 REM
5990 REM NOW REVERSE THE DIRECTION OF MEASUREMENT OF C
6000 REM AND ROTATE IT BY PI/2 (90 DEGREES), THEN
6010 REM normalize the result between -PI and +PI.
6020 LET C = 1.57079653 - C
6030 IF C := -3.1415927 THEN 6070
6040 LET C = C + 6.2831853
6050 REM CONVERT THE ANGULAR DISTANCE TO THE MAP RADIAL
6060 REM DISTANCE.
6070 LET R1 = D * F
6080 REM R1 AND C NOW REPRESENT NORMALIZED POLAR
6090 REM COORDINATES ON THE MAP, FROM WHICH THE
6100 REM HORIZONTAL MAP COORDINATES ARE COMPUTED:
6110 LET X = R1 * COS(C1)
6120 LET Y = R1 * SIN(C1)
6130 RETURN
6140 END

the extreme elongation of graphical features near the edge of the map. The consequence of having widely separated data points will be an entirely unacceptable map with long straight and angular lines on the outer portions. This can be minimized somewhat by certain interpolation techniques, but none of these can entirely compensate for fundamental deficiencies in the data base.

Perhaps by this time some readers have realized that the polar equidistant maps that we looked at in figures 3 and 4 are actually just very special cases of the azimuthal equidistant map. Due only to their unique central locations, they happen to be more easily generated by the procedure in listing 2 than the one in listing 5, though either could do the job with just minor modification.

Celestial Maps

No examples of celestial maps have been included because the methods used to create them have already been covered in the discussion of the other types of maps. It is doubtful that you would want to generate a hard copy of a celestial map, since the projections used are pretty much standardized and there are plenty of nice printed maps available at nominal cost. The true value of computer generated celestial maps materializes in the creation of video displays for use adjacent to the telescope during astronomical observations.

One can set up a system to display selected areas of the heavens on a video display equipped with a red filter to preserve night vision. The area displayed can be specified at the keyboard, or it can be automatically designated according to the current pointing position of the telescope. The computer can be used to drive the telescope's tracking motors, and simultaneously update the video display as the field of vision moves across the night sky.

As mentioned earlier, ready-made data bases abound for astronomical applications. For all practical purposes, the format is the same as for geographical data bases. Celestial coordinates, however, are given in right ascension (measured in hours, minutes, and seconds) and declination (measured in degrees). Right ascension can also be represented in degrees of arc, where 15 degrees are equal to one hour of time. The format you use would depend upon the ultimate application.

In addition to the coordinates stored in the data base, it will be necessary to store a code indicating the type of object (star, nebula, galaxy, etc) as well as its visual magnitude (brightness). Then dots of varying size, or even distinctly different symbols, can be displayed to give a much more accurate representation of what the observer will see through the telescope. The process used for celestial mapping is very much like that demonstrated by the United States map in figure 2, in that the map is made up entirely of isolated dots or symbols with no lines connecting them.

Since the area of the sky presented on the video screen at any one time is comparatively small, most portions of the sky can be displayed with no noticeable distortion merely by using a simple rectangular projection. Areas within about 30 or 40 degrees of the celestial poles might be presented using a polar equidistant projection.

Homemade Projections

It has already been pointed out that the projections we examined are just the most common of the many projections actually in use. You may find that you have an application that requires a different approach, and you will probably find just what you want in any good text on cartography or map projections. But don't let that be the end of the line for you. There is nothing that says that you can't devise your own projections. If you want a projection that shows the surface of the Earth as viewed from an antimatter
spaceship traveling through the core of the Earth, it's a simple matter to set up one. When you're through, you can even name the projection after yourself. To demonstrate the liberties one can take, I have included in figure 11 a projection of my own design. This I have called Johnston's Complementary Latitude Polar Projection of the Northern Hemisphere. The reader is left to find a use for it.

Summary

Some of the greatest theoretical contributions to the science of cartography were made as far back as 400 years ago. But producing each given map was a monumental task of manual computation, not to be taken lightly. What was possible in theory for hundreds of years has only become practical to carry out on any significant scale in the past 25 years, and for a time only by organizations with access to large scale computers.

Today, you and I can sit before our home computers, and with a few keystrokes we can command our machines to spew out maps of all descriptions. In mere seconds, we can have maps for satellite tracking, for antenna pointing, for Space War games, or for whatever purposes suit our fancy. The subroutines given in the accompanying listings can be used to generate a number of different types of very useful maps, and with little effort the reader can devise additional software to further expand the capability.

This article has barely scratched the surface of the field of computer generated maps. We have not, for example, addressed the subject of topographic mapping, or any of a host of other interesting aspects of computerized cartography. Commercial and government installations use techniques far more sophisticated than those demonstrated here. One can, however, derive an enormous amount of practical use and personal satisfaction from putting into operation the procedures that we have examined. If your imagination has no limits, then the power of your computer has no bounds.●

Figure 11: Johnston’s complementary latitude polar projection of the northern hemisphere. This is a homemade projection invented by the author, for which the reader is invited to find a use.
DIgITAL RESEARCH

□ CP/M-80 FDIS — Diskette Operating System complete with
Text Editor, Assembler, Debugger, File Manager and system
utilities. Available for wide range of systems including
North Star, Helios II, Micropro, iCOM (all systems) and Altair.
Supports computers such as TRS-80, Horizon, Sid System II,
Vestarile, Altair 8800, COMPAL-80, DYNABYTE DB2, and
iCOM Attache. Specify desired configuration $100/$15

□ MAC — 8080 Macro Assembler. Full Intel macro definitions.
Pseudo Ope include RPC, IRP, REPL, TITLE, PAGE, and
MACLIB. Z-80 Library included. Produces Intel absolute hex
output plus symbols file for use by SID (see below) $100/$15

□ SID — 8080 symbolic debugger. Full trace, pass count and
break-point program testing system with back-trace and histo-
gram utilities. When used with MAC, provides full symbolic
display of memory labels and equaled values $50/$15

□ EXTEXT — Text formatter to create paginated, page-numbered
and justified copy from source text files, directory to disk or printer
...... $50/$15

□ DESPOOL — Program to permit simultaneous printing of
data from disk while user executes another program from the
console .. $50/$1

MICROSOFT

□ Disk Extended BASIC — New version, ANSI compatible
with long variable names. WHILE/WEND, chaining, variable
length file records $300/$25

□ FORTRAN-80 — ANSI '86 (except for COMPLEX) plus
many extensions. Includes relocatable object compiler, linking
loader, Library Manager and Cross Reference List utilities included
$400/$25

□ COBOL-80 — ANSI '74 Pseudo-complier with relocatable
object runtime package. Format same as FORTRAN-80 and
MACRO-80 modules. Complete ISAM, interactive ACCEPT/
DISPLAY, COPY, EXTEND $625/$25

□ MACRO-80 — 8080/280 Macro Assembler, Intel and Zilog
mnemonics supported. Relocatable linkable output. Loader,
Library Manager and Cross Reference List utilities included
$419/$15

□ MACRO-80 PLUS FORTRAN subroutine library available. Lib-
ary includes ABS, SIGN, EXP, DLOG, SQRT, DSORT,
ATAN, DATAN etc. etc. $219/$15

□ EDIT-80 — Very fast random access text editor for text with or
without line numbers. Global and intra-line commands sup-
ported. File compare utility included $89/$15

XITAN (software requires Z-80 CPU)

□ Disk BASIC — Fast powerful interactive interpreter. PRI-
VACY password security. Can dynamically open a large
number of files simultaneously for random or sequential I/O
$159/$20

□ Z-TEL — Text editing language. Expression evaluation iter-
ation and conditional branching ability. Registers available for
text and commands. Macro command strings can be saved on
disk for re-use ... $89/$20

□ ASM Macro Assembler — Mnemonics per Intel with Z-80 ex-
tensions. Macro capabilities with absolute Intel hex or relocat-
able linkable output modules $89/$20

□ LINKER — Link-edits and loads ASM modules $89/$20

□ Z-BUG debugger — Trace, break-point tester. Supports deci-
dal, octal and hex modes. Disassembler to ASM mnemonic set. Emulation technique permits full tracing and break-point support through ROM $89/$20

□ TOP Text Output Processor — Creates page-numbered, jus-
tified documents from source text files $69/$20

□ Super BASIC — Sub-set of Xitan Disk BASIC with extensive
arithmetic and string features but without random access data
file support. Available optionally with features to support VOB
Xitan video output board $99/$20

□ A3 package includes Z-TEL, TOP, ASM and Super BASIC
............... $249/$40

□ A3+ package includes Disk BASIC, Z-TEL, TOP, ASM,
Z-BUG and LINKER $409/$40

MICROPRO

□ Super Sort I — Sort, merge, extract utility as absolute
executable program or linkable module in Microsoft format.
Sorts fixed or variable records with data in binary, BCD,
packed Decimal, EBCDIC, ASCII, floating, fixed point, expon-
ential field, justified, etc. etc. Even variable number of fields
per record $250/$25

□ Super Sort II — Above available as absolute program only
............... $250/$25

□ Super Sort III — As II without SELECT/EXCLUDE
............... $150/$25

□ Word Master Text Editor — In one mode has super-set of
CP/M's ED commands including global searching and replac-
ing, forward and backwards in file. In video mode, provides full
screen editor for users with serial addressable-cursor terminal
$150/$25

□ Corresponder — Mail list system, supporting form letter
 generation with personalized greetings. Reference fields per-
mit sorting and extraction by name, address fields or reference
data using Super Sort. Requires CBASIC $85/$25

SOFTWARE SYSTEMS

□ CBASIC-2 Disk Extended BASIC — Non-interactive BASIC
with pseudo-code compiler and runtime interpreter. Supports
full file control, chaining, integer and extended precision vari-
ables etc. Version 1 users can receive Version 2 and new
manual for $45 with return of original diskette. Standard CP/M
and TRS-80 CP/M versions available $30/$5

□ Accounts Receivable — Open item system with output for
total aged reports and customer-oriented statement and billing
purposes. On-Line Enquiry permits information for Cus-
tomer Service and Credit departments. Interface to General
Ledger provided if both systems used. Requires CBASIC $699/$20

□ Accounts Payable — Provides aged information of accounts
by vendor with check writing for selected invoices. Can be
used alone or with General Ledger and/or with NAD. Re-
quires CBASIC $699/$20

□ NAD Name and Address selection system — interactive mail
list creation and maintenance program with output as full re-
ports with reference data or restricted information for mail
labels. Transfer system for extraction and transfer of selected
records to create new files. Requires CBASIC $79/$20

□ QSORT — Fast sort/merge program for files with fixed record
length, variable field length information. Up to five ascending or
descending keys. Full back-up of input file created. Parameter
file created, optionally with interactive program which requires
CBASIC. Parameter file may be generated with CP/M assem-
bler utility $85/$20

102 May 1979 © BYTE Publications Inc
Software for most popular 8080/Z80 computer disk systems, including NORTH STAR, MICROPOLIS, ICOM, SD SYSTEMS, DYNABYTE DBB/2, HELIOS, ALTAIR, TRS-80 and 8" SOFT SECTORED formats.

GRAHAM-DORIAN SOFTWARE SYSTEMS

- **PAYROLL SYSTEM** — Maintains employee master file. Computes payroll withholding for FICA, Federal and State taxes. Prints payroll register, checks, quarterly reports and W-2 forms. Can generate ad hoc reports and employee form letters with mail labels. Requires CBASIC. Supplied in source code. $605/$35

- **APARTMENT MANAGEMENT SYSTEM** — Financial management system for receipts, disbursements and security deposits of apartment projects. Captures data on vacancies, revenues, etc. for annual trend analysis. Daily report shows late rents, vacancy notices, vacancies, income lost through vacancies, etc. Requires CBASIC. Supplied in source code. $605/$35

- **INVENTORY SYSTEM** — Captures stock levels, costs, sources, sales, ages, turnover, markup, etc. Transaction information may be entered for reporting by salesman, type of sale, date of sale, etc. Reports available both for accounting and decision making. Requires CBASIC. Supplied in source code. $605/$35

OTHER

- **Z80 Development Package** — Consists of: (1) disk file editor, with global inter and intra-line facilities. (2) Z80 relocating assembler, 2log/Mostek mnemonics, conditional assembly, and cross reference table capabilities; (3) linking loader producing absolute Intel hex disk file for CP/M LOAD, DDT or SID facilities. Standard CP/M and TRS-80 CP/M versions available. $95/$15

- **TEXTWRITER II** — Text formatter to justify and paginate letters and other documents. Special features include insertion of text during execution from other disk files or console, permitting recipe documents to be created from linked fragments on other files. Ideal for contracts, manuals, etc. $75/$5

- **WHATSTII?** — Interactive data-base system using associative tags to retrieve information by subject. Hashing and random access used for fast response. Requires CBASIC. $125/$25

- **DISZILUG** — As DISINTEL to Zilog/Mostek mnemonic files. Runs on Z80 only. Standard CP/M and TRS-80 CP/M versions available. $605/$10

SOFTWARE PRICES

<table>
<thead>
<tr>
<th>Software with/</th>
<th>Manual Alone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software</td>
<td>Price</td>
</tr>
<tr>
<td>Manual alone</td>
<td>$605/$35</td>
</tr>
<tr>
<td>Manual alone</td>
<td>$605/$35</td>
</tr>
</tbody>
</table>

- **DISINTEL** — Disk based disassembler to IBM 80386 or TDL Xitan Z80 source code, listing and cross reference files. Intel or TDL/Xitan pseudo ops optional. Runs on 8086. Standard CP/M and TRS-80 CP/M versions available. $655/$10

- **XYBASIC** Interactive Process Control BASIC — Full disk BASIC features plus unique commands to handle bytes, move and shift, and to test and set bits. Available in Integer, Extended and ROMable versions. Integer Disk or Integer ROMable. $295/$25

- **SMAL/80 Structured Macro Assembled Language** — Package of powerful general purpose text macro processor for SMAL, an assembler language with IF-THEN-ELSE, LOOP-REPEAT-WHILE DO-END, BEGIN-END constructs. $755/$15

- **Selector II** — Data Base Processor to create and maintain single Key data bases. Prints formatted, sorted reports with numerical summaries. Available in Microsoft and CBASIC (state which). Supplied in source code. $195/$20

- **CPM/374X Utility Package** — Has full range of functions to create or re-name an IBM 3741 volume, display directory information and edit the data set contents. Provides full file transfer facilities between 3741 volume data sets and CP/M files. $195/$10

- **Flippny Disk Kit** — Template and instructions to modify single sided 5¼" diskettes for use of second side in single sided drives. $975

- **BASIC Comparison** — A comprehensive features and performance analysis of five 8080 disk BASIC languages — CBASIC, BASIC-E, XYBASIC, Microsoft Disk Extended BASIC, and Xitan's Disk BASIC. Items of results of 21 different benchmark tests for speed and accuracy and lists instructions and features of each BASIC dialect (A.S.C.). FREE

- **TRS-80 FORTRAN PACKAGE** — Professional disk-based language and utility package written by Microsoft, creators of Level II BASIC. The package runs on a TRS-80 system with 32K RAM, one or more drives and TRSDOS. The software is supplied on diskettes and consists of a relocatable machine code FORTRAN Compiler, Macro Assembler, a Linking Loader, Subroutine Library, Text Editor. $325

- **Macro assembler, loader and editor alone** $165

Software Supermarket

The Software Supermarket is a trademark of Lifeboat Associates

Lifeboat Associates

2248 Broadway, New York, N.Y. 10024 (212) 580-0082

Disk systems and formats: North Star single or double density, IBM single or double density, Alfa, Helios II, Micropolis Mod I or II, 5¼" soft sector (Micro ICOM/SD Sales / Dynabyte), etc.

Add $1/item shipping ($2 min.). Add $1, additional for UPS C.O.D.

Manual cost applicable against price of subsequent software purchases.

The sale of each proprietary software package conveys a license for use on one system only.

Check	**U.P.S. COD**	**Visa**	**Master Charge**
Shipping

Account #	**Exp. Date**	**$1.00 for C.O.D.**
Signature | **Total**

My computer configuration (specifying disk system):

- **Name**
- **Address (No P.O. Box)**
- **City** | **State** | **Zip**

Effective 4/179

Circle 206 on inquiry card.

May 1979 © BYTE Publications Inc 103
6800 Disassembler

After spending two frustrating days trying to use MIKBUG to interface both a video display and a Teletype to the Southwest Technical Products SWTPC 6800 assembler (object code only), I wrote the disassembler in listing 1 to help me decipher the assembler. The disassembler and the program to be disassembled must be co-resident in memory; the disassembler is located in the highest 2 K bytes of an 8 K byte memory, allowing it to operate on object programs up to 6 K bytes long. Temporary storage registers and the stack are located in the MIKBUG programmable memory area, hexadecimal addresses A000 thru A07F, and no page zero direct instructions are used.

The control port is a peripheral interface adapter (PIA) at hexadecimal 8004, configured for the SWTPC CT-1024/AC-30 television typewriter. MIKBUG input/output (IO) routines used are BADDR (E047) and PDATA 1 (E07E). The output port is a PIA at hexadecimal 8008, configured for the SWTPC PR-40 printer. The disassembler looks at object code in much the same way as the 6800 processor, but with one important difference: if the processor runs into an illegal op code, it runs amok; the disassembler just stops and requests a new starting address. Table 1 compares the physical operation of the processor with the logical operation of the disassembler.

Operation is easy: simply type a 4 digit hexadecimal starting address into the control port in response to the prompt "?". Disassembly and listing will begin at the specified address and continue until either an illegal op code is encountered or any key on the control port is pressed. For convenience, the disassembler also calculates and prints the effective address of all relative instructions.

Dirty tricks object code can make the disassembler stumble, but not fail, since it will request new input if it runs into obvious trouble. Things to watch out for are:

- Instructions which modify other instructions.

Table 1: Comparison between the actual workings of the 6800 processor while operating on a program and the logical workings of the disassembler on the same text.

<table>
<thead>
<tr>
<th>Processor</th>
<th>Disassembler</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fetch op code at address in program counter.</td>
<td>Fetch op code at address in pseudo-program counter.</td>
</tr>
<tr>
<td>2. Increment program counter.</td>
<td>Increment pseudoprogram counter.</td>
</tr>
<tr>
<td>3. Interpret op code.</td>
<td>Look up op code in table.</td>
</tr>
<tr>
<td>4. Fetch operand bytes, as necessary, incrementing program counter.</td>
<td>Fetch operand bytes, as necessary, incrementing pseudoprogram counter.</td>
</tr>
<tr>
<td>5. Execute instruction.</td>
<td>Print mnemonic operand.</td>
</tr>
</tbody>
</table>

Listing 1: Disassembler for the 6800 which resides in the upper 2 K byte portion of an 8 K byte memory which can operate on programs stored in the lower 6 K bytes.

Listing 1 continued on page 106

Table 7: Comparison between the actual workings of the 6800 processor and the logical workings of the disassembler on the same text.

<table>
<thead>
<tr>
<th>Processor</th>
<th>Disassembler</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fetch op code at address in program counter.</td>
<td>Fetch op code at address in pseudo-program counter.</td>
</tr>
<tr>
<td>2. Increment program counter.</td>
<td>Increment pseudoprogram counter.</td>
</tr>
<tr>
<td>3. Interpret op code.</td>
<td>Look up op code in table.</td>
</tr>
<tr>
<td>4. Fetch operand bytes, as necessary, incrementing program counter.</td>
<td>Fetch operand bytes, as necessary, incrementing pseudoprogram counter.</td>
</tr>
<tr>
<td>5. Execute instruction.</td>
<td>Print mnemonic operand.</td>
</tr>
</tbody>
</table>
Megamouse.

It's mighty for its size.
In fact, the Series 5000 is the first small system offering over a megabyte of integrated mini-floppy capacity.
You can start off with just one 5-inch disk drive, if you prefer, then add two more as you need them. And you have a choice of either single-sided or double-sided drives, both double-density.
What's more, our memory management shatters the old 64K limitation myth. You can install better than 300K of RAM in either desk or desktop versions.

The Series 5000 is made by Industrial Micro Systems—built strong like our name suggests.
It features the same kind of rugged reliability that goes into our big, 8-inch disk drive enclosures and computer systems. And it incorporates the same kind of refined quality found on our mil quality memory boards.
In the final analysis, the smallest thing about the Series 5000 is the price.
Call or write today for full details. Dealer/supplier inquiries answered promptly.

INDUSTRIAL MICRO SYSTEMS, INC
The great unknown.
628 N. Eckhoff St., Orange, CA 92668. (714) 633-0355.
Listing 2: Sample output of the disassembler:

- Text strings, constant bytes or temporary storage locations embedded in blocks of executable code.
- Lookup tables, such as the one used in the disassembler.
- Instructions buried within other instructions, such as the CPX skip trick.

Entering at 0100 we see

0100 8C 86 20 LDX #8620
0103 ...next... (A is unchanged)

But entering at 0101 we see

0100 8C
0101 86 20 LDA A #820 (A has $20 value)

(If one enters this routine at hexadecimal 0100, accumulator A is unchanged when NEXT is executed; entering at 0101 passes hexadecimal 20 to NEXT in accumulator A.)

No dirty tricks were incorporated in the disassembler program, so it happily disassembles itself starting at hexadecimal 1818, stopping when it reaches the top of the lookup table (see listing 2). Machines should work; people should think. It does take a considerable amount of thinking to find your way through somebody else's un-commented code, even using this program, but at least the clerical work can now be done by the machine.
"Efficiency is in. Extravagance is out."

— Vector Graphic

That's why when you look for top-quality, low-cost, add-on-memory you should always look for Vector Graphic on your memory boards. It means they stand behind every product through over 200 Vector Graphic dealers.

Vector Graphic is the only one who designs in so much quality for so little cost.

The 48K Dynamic RAM memory board is used in the Vector MZ microcomputer, although any Z-80/S-100 computer system can take advantage of the problem-free transparent refresh offered in this high-quality, low-cost add-on-memory.

It's no secret, Vector Graphic is carefully assembling state-of-the-art 16K-bit dynamic boards. And each board is thermally cycled, aged and continuously read-write tested over 400 million error-free cycles.

The new 48K board consumes less than 4 watts total power and provides the same superior design and reliability found in all products from Vector Graphic. Remember, it's memory that works.

— Dealer inquiries invited —
Opening page of the document:

Listing 1 continued from page 106:

1918 TE 1325 JMP PROM and ask for a new starting address.
1919 60 01 T3 92 printer has finished, if not, wait in loop.
1920 2A 74 BPL 71 Printer done, so clear PIA flag
1921 A6 00 LDA A, Y Printer done, so clear PIA flag
1922 FE A66E LDX #TEM restore the index reg
1923 72 32 RTS and go back where we came from.
1924 70 5E66 FCX look at the flag to see if an immediate inst.
1925 2C 9D BEQ NIM if not, do nothing but return
1926 06 23 LDA A, Y if so, print a "a"
1927 0B 05 BSR TTY
1928 39 NIM RTS and then return
1929 36 FE80 TACK LDA A, Y Get possible opcode in A
1930 4F 00 BSR TTY Table starting addr in X reg
1931 13 5F 01 CMP A, Y Compare opcode to table entry Same?
1932 05 2B EC BEQ NIM If not, found opcode, go print mnemonic
1933 01 80 INX No, increment X to next location in table
1934 01 8E INX
1935 04 8F INX
1936 15 80 INX
1937 47 9E INX
1938 19 9F10 DEX You have reached, if not, go back
1939 46 0F 2F BNE C31 Print the invalid opcode as ascii
1940 40 06 BC NIM BSR TTY Print mnemonic string until finding
1941 06 06 A6 LDA A, Y ten byte, less than 5 if
1942 60 80 HLT INX
1943 18 80 CMP A, #51 Found tag code, go return
1944 19 80 DCS DONE
1945 15 BD 80 BSR TTY Set tag byte, so print it
1946 39 80 F5 BRA HLT and go next byte is string
1947 15 A4 81 DONT BSR OUTS Print a space
1948 56 80 A6 LDA A, Y Get the byte in A
1949 61 82 TBLX PCLMN Restore the pseudo p.c. to 1 reg
1950 19 80 PLA and return tag to tag routine in acc A
1951 04 80 TBLX Long, boring table starts here.
1952 01 80 TABL FCB #11 First byte is opcode, then three
1953 41 9E FCB #10 ascii bytes containing the mnemonic, then the tag code.
1954 56 9E FCB #10
1955 5A 9E FCB #10
1956 49 9E FCB #10
1957 19 9E FCB #10

Random Comments

SET

Set up PIA for line printer.

PROM

Prompt user: Home up, clear end of file "2":

LCTR

Line counter for pager.

CONT

Continue loop reentry.

ADR

Print address.

FCODE

Interpret tag byte from table:

TST S Test tag codes greater than 5 loop reentry,

PRTBS Print B, space;

PRTXS Print X, space;

PRTDS Print D, space;

B3 Print two bytes pointed to by X;

B2 Print one byte pointed to by X;

RET Return — new address, loop to continue.

REL

Relative instruction:

ADD Adder for REL; Compute absolute target SUB Subtractor for REL; address.

TADR Printer for REL, and print it.

PCS

Print ASCII character in a, space.

TTS Print ASCII character string pointed to by X register.

TT4 Print 4 hexadecimal characters pointed to by X register:

TT2 Print similar to MIKBUG OUT4HS:

OUTS Print a space;

OUT2 Print byte;

OUTL Print left half of byte;

OUTR Print right half of byte.

TTY

Line printer print routine:

T1 Tests keyboard for any key pressed, T3 Line printer done yet?

T2 Yes.

FCK Flag check — looks to see if immediate mode instruction, if so print "a" if no, go:

NIM FCK done.

TABCK Table check for op code in question:

CK1 Check it;

MISS Not in table; print it as ASCII and give up;

HIT In table, print mnemonic.

TABL Op code lookup table starts here.

See the BrighterWriter™ at these stores.

Computersand
At most stores, nationwide

Arizona
Byte Shop. Phoenix, Tempe, Tuscon

California
Byte Shop. Lawndale, San Jose, Citrus

Florida
Capitall Computer. Davis

Computer Demo Room. San Rafael.

Sunnyvale

Computer Store. Santa Monica

Computer Merchant. San Diego

Jade Computer Products. Hawthorne

Colorado
Computer Tech. Denver

District of Columbia
Georgetown Computer, Washington

Florida
Computer Age. Pompano Beach

Micro Computer, So. Daytona

Professional Computing, W. Palm Beach

Georgia
Roy Abell & Assoc., Columbus

Hawaii
MicroComputer Systems. Honolulu

Illinois
Illini Micro. Naperville

Indiana
Data Domain, Bloomington

Iowa
Memory Bank. Davenport

Kansas
Computer System. Wichita

Kentucky
Pragma Tech. Louisville

Louisiana
Micro Computer. New Orleans

Massachusetts
Computer Mart. Waltham

CPU Shop. Charlestown

Michigan
Computer Mart. Royal Oak

Hobby Elec. Flint

Newman Computer. Ann Arbor

Tri Cities Computer Mar. Saginaw

United Micro Systems. Ann Arbor

Nebraska
Omaha Computer. Omaha

New Hampshire
Computer Mart. Nashua

New Jersey
Computer Mart. Iselin

New York
Computer Mart. New York

CompuWorld, Inc.. Rochester

Mini-Micro Mart. Syracuse

Ohio
Cybershop Micro. Columbus

Dayton Computer. Dayton

21st Century Shop, Cincinnati

Oklahoma
Vern SIT Products. Pappula

Oregon
Computer Pathways, Salem

Red River Computer. Eugene

Pennsylvania
Microcomputers. Philadelphia

Texas
Byte Shop. Richardson

Interactive Computer. Houston

Micro Mike. McAllen

Micro Mart. San Antonio

Vermont
Computer Mart. Essex Junction

Virginia
Computer Place. Roanoke

Computer Systems Store. McLean

Computers Plus. Alexandria

Washington
Empire Electronics. Seattle

West Virginia
Micro Data Systems. Osage

Wisconsin
Byte Shop. Greenfield
Pay a little bit more and get a printer that's brighter than your computer. The BrighterWriter.

When a few dollars more buys you a first-class impact printer, why settle for a toy? The BrighterWriter gives you quality to start with. And versatility that stays even if you outgrow your present personal computer.

Built smart like the big ones.
The BrighterWriter's a smart printer. There's a microcomputer inside. It outwits even the bigger, higher-priced printers. So you get versatility to do all kinds of printing. And power to grow on.

Prints fat, skinny, tall, small.*
This printer can be as creative as your imagination. Stretch out your characters. Squeeze them close. Make them high. Low. Bold. Banner. You name it.

Plugs into your computer.
Most popular personal computers interface to the BrighterWriter. Simply and quickly. Hundreds of Brighter Writers are working in Apple, TRS-80, Heathkit, S-100 and many other personal computer systems right now.

Pictures and fancy symbols.*
The BrighterWriter draws out your creativity. You can print drawings, graphs, diagrams, bold symbols, or just about any graphic you can imagine.

Picture your page as thousands of dots. The BrighterWriter can fill in the dots, plot them contiguously, stack them, or scatter them. And its special set of graphic characters simplifies the process.

Prints any character a typewriter can. Faster...
The BrighterWriter can print plain and simple. With 7x7 dot matrix clarity. You get all the letters, numbers, and standard symbols of a regular typewriter. At up to 80 cps throughput.

Ordinary paper.
Fancy or plain, the BrighterWriter prints on ordinary paper. Better yet, it prints on many shapes of paper: Single sheets. Roll. Fanfold.

Want more copies? The BrighterWriter prints multiple copies without extra adjustments.

Four easy buttons.
Operating the BrighterWriter couldn't be simpler. Up-front controls are easy to get to. A power button to turn it on. A test button to self-test your printer. A paper feed button to advance the sheets or forms. A line feed button to advance the paper a line at a time.

$949 Prints any-which-way.
The BrighterWriter comes in two models. The IP-225, at $949, gives you a BrighterWriter with tractor-feed drive for precision forms control. This one can handle everything from labels to 8½" paper widths.

It has eight form lengths and gives you all the features of our IP-125.

$799 Buy.
Our IP-125, friction-feed, BrighterWriter has a 96 character set and prints on 8½" wide paper. Upper and lowercase. It prints expanded characters, too. You can choose a RS-232 serial or parallel interface. $799

Lots of goodies.
There's more. Choose all kinds of options for your BrighterWriter. Up to 132 characters per line, variable character densities, larger buffers, special graphics packages, interface cables, and more.

Give us a call or write. Integral Data Systems, 14 Tech Circle, Natick, MA 01760, (617) 237-7610. Better yet, see the BrighterWriter at the store nearest you.

Integral Data Systems, Inc.
So you want to fly your own spaceship, but you're not up to doing six months worth of assembly language programming and the only high level language you've got is a tiny version limited to 4 function integer arithmetic? That rules out any kind of realistic navigation — or so it seems. All digital machines are limited to integer mathematics. Nearly any operation possible in machine code can be duplicated in a high level language, provided you have enough memory and the time to wait for the results. Armed with a little bit of knowledge, though, you can keep the convenience of your interpreter and have three-dimensional trigonometry, too. Here's how I did it.

My first objective in writing a spacewar game was to provide a realistic trainer for spaceflight rather than a flashy video display or a complex set of board game type rules. I feel strongly that a spacewar game ought to be three-dimensional. The third dimension is far more than a frill: it's the major difference between spaceflight and surface operations. I developed the scenario for my game in 1972 when I was working with a homebrew analog computer. In my version a single ship maneuvers in Cartesian space and is attacked by a series of homing torpedos that must be either destroyed or evaded. The game requires both aimed laser fire and navigation precise enough to permit evasion by narrow margins.

This article describes the trigonometry routines developed for the game. It assumes that you are familiar with high school physics and right angle trigonometry. These routines represent a compromise between precision and speed; they are neither quick nor simple, but then, neither is astrogation.

Moving the Ship

The playing area for my game is a sphere of Cartesian space with a radius of 10,000 units. This provides about 4.2×10^{12} distinguishable positions, or the same number of vectors, each defined by a set of three integers $X, Y,$ and Z as in figure 1. The ship's position, acceleration and velocity vectors can be represented by nine integers.

A convenient feature of this Cartesian representation is that motion along each axis can be calculated independently of the other axes. Also, I made the simplifying assumption that each turn in the game is one unit of time. This simplifies Newton’s laws of motion considerably. The familiar:

\[
\text{position} = S = S_0 + VT + AT^2/2 \\
\text{velocity} = V = V_0 + AT
\]

can be written as:

\[
S = S + V + A/2 \\
V = V + A
\]

for each axis. Finding relative position and
TRS-80® SERIAL PARALLEL I/O MODULE

8-SERIAL INPUT/OUTPUT PORTS:
8-PARALLEL INPUT/OUTPUT PORTS:
MODEL MS10-K $129.95
MODEL MS-10A (ASSEM.) $149.95

- **EASY CONNECTION:** Connects to the expansion port edge card connector between keyboard and expansion interface or direct to rear of the TRS-80® keyboard.
- **DIP SWITCH:** All ports, baud rate, parity, etc. all set by dip switches.
- **ON BOARD FIRMWARE:** No software driver routine needed for operation of the module. Simple OUT and IN statements operate the module.
- **RS-232, CURRENT LOOP:** All 8 channels can be selected for RS-232 or current loop.
- **BAUD RATE SELECTION:** All channels dip switch selectable for individual baud rates from 110 to 9600 baud.

TRS-80® TO S-100 BUS

MODEL RSB-K (KIT) - $249.95
MODEL RSB-K (KIT) - $289.95

- **FULLY SELF CONTAINED POWER SUPPLY.** (10 AMP).
- **BUS TERMINATION:** BUS termination and conditioning for no crosstalk or noise etc.
- **S-100 SIGNALS:** All required S-100 signals are generated by on board logic and is fully compatible with the TRS-80®.

TRS-80® EPROM PROGRAMMER +3

MODEL EPR-80K (KIT) - $129.95
MODEL EPR-80A (ASSEM.) - $159.95

- **SELF CONTAINED:** Comes housed in an attractive cabinet with self contained power supply.
- **PROGRAMS:** This unit programs the popular 2708, 2716 EPROMS. Personality modules for other EPROMS will be available at a later date.
- **FIRMWARE:** On board firmware so that no software need be written or entered into your CPU system. The firmware can be shut off when not in use. Firmware resides at F0000. The firmware in and out of system is controlled from a switch on front panel.
- **3-ADDRESSABLE ROM LOCATIONS:** The EPROM Programmer has three sockets on front panel which are addressable to any location by dip switch. In addition each ROM location can be shut off or turned on by switches located on the front panel.
- **MONITOR:** A monitor is supplied within the firmware for performing several functions. Move memory, debug, verify, program from memory, program from TTY input, etc.
- **EASY CONNECTION:** The EPROM Programmer is attached with ease. For the TRS-80® users, the unit plugs into the rear of the keyboard or between the keyboard and expansion interface. Included with the unit are two additional 40 pin edge connections for interfacing of other interfaces. For the S-100 users, a molded connection cable is supplied and it is inserted into one of the connectors on your mother board. Plug it in and it is ready to use.
- **FULLY BUFFERED:** add address and data lines are fully buffered.
- **OTHER FEATURES:** Other features include status lights for which ROM selected, switch enable for programming, pulse (burn) indicator firmware select/deselect switch, on, off and dip switches for the addressing of each ROM location.
velocity is also much simpler. Vector addition is just that:
\[
S_{\text{rel}} = S_1 - S_2 \quad V_{\text{rel}} = V_1 - V_2
\]
for each axis.

Spherical Coordinates

Cartesian coordinates make it simple to model the laws of motion. A spaceship might possibly use a Cartesian system for navigation, but what about those homing torpedos? Any conceivable shipboard ranging and detection system tracking a foreign body should read out an angle and a range, not a set of grid points. Besides, entering your throttle settings in three axes is unnatural enough to deter any but the most hardened of spacewar addicts. The simplest solution is to keep track of all moving bodies in Cartesian coordinates and convert those coordinates to spherical form for display. Figure 2 shows a system of spherical coordinates. Each point or vector is defined by an azimuth ranging from 0 to 359 degrees (A), a declination ranging from -90 to 90 degrees (D), and a radius given in unit lengths (R). Instead of X,Y,Z we have A,D,R.

The ship's position and velocity are converted to spherical form for display. The thrust vector is input in spherical form and converted to Cartesian for computation. The direction of laser fire is kept in spherical form and compared to the spherical coordinates of the target at the next turn.

Next, we need routines to convert vectors in the form X,Y,Z to the form A,D,R and back again. The only trigonometric functions needed for those two conversions are the sine and the arctangent.

Listing 1 shows the S=sin (S) routine. S is an angle ranging from 0 to 90 degrees. The routine returns the sine of S in variable S in parts per thousand (1000 times the sin(S)). This routine makes use of the series:
\[
\sin(S) = S - S^3/3! + S^5/5! - S^7/7! + \ldots
\]
where S is in radians. Line 20 converts S from degrees to radians times 1000. Line 40 is the sine series in a form suitable for 16 bit integer mathematics. Beyond 45 degrees this series gave poor results. For values over 45 degrees line 10 transfers control to line 60. Lines 60 to 110 take the cosine of 90 - S using the series:
\[
\cos(S) = 1 - S^2/2! + S^4/4! - S^6/6! + \ldots
\]

It's a good idea to test this routine by generating all 91 values and checking them against a table or calculator. The results should be within 2 or 3 parts per thousand.

Listing 2 is a similar routine to calculate the arctangent of a ratio U expressed in parts per thousand (U times 1000). The series used here is:
\[
\arctan(U) = U - U^3/3 + U^5/5 - U^7/7 + \ldots
\]

It is not valid for U > 1. Line 10 is an adjustment to improve accuracy for values approaching 1. Notice that here the result S is in radians and must be converted to degrees immediately before exiting (line 50). Again, it's a good idea to test this routine for values of U between 0 and 999 before using it.
CIS COBOL is more than an efficient COBOL Compiler, it is a complete software development tool for business and office automation systems. It enables the programmer to write applications in a powerful subset of ANSI 74 standard COBOL and to take advantage of CIS COBOL language extensions such as interactive screen handling which are designed to fully exploit the special features of the microcomputer environment. Version 3 of CIS COBOL has many language additions but the compiler still requires only 20K bytes of memory and runs on 8080 and Z80 based microcomputers with 32K to 64K under the popular CP/M* operating system.

CIS COBOL is designed to support interactive applications. Areas of a CRT screen are mapped onto record descriptions in your CIS COBOL program and data is transferred using the ACCEPT and DISPLAY verbs providing full cursor manipulation and data entry facilities to the CRT operator. CIS COBOL language extensions enable the screen position at which the transfer is to start to be specified, protected fields to be defined, and the CURSOR position to be detected and set by the program.

CIS COBOL is able to exploit features of the microcomputer. Language extensions in CIS COBOL enable programs to define file names at run time, to read and write text files of variable record length and to access free memory in varying machine configurations. CIS COBOL supports run time subroutines written in assembler and accessed from COBOL by means of the CALL USING verb. Built-in subroutines implement facilities to CHAIN programs together. PEEK and POKE memory locations outside your COBOL program and GET and PUT data to special peripheral devices via your microcomputer's I/O ports.

CIS COBOL is oriented toward rapid program development. The compiler accepts input of your source program directly from keyboard as well as from source and library files on disk and generates an object file which the CIS COBOL run time system immediately loads and executes or optionally links and saves as a self loading program. The run time system has built-in indexed and relative I/O packages and contains an interactive debug package to help find errors quickly by stepping through the execution of your CIS COBOL program.

CIS COBOL is supported by intelligent utility programs. When you take delivery of CIS COBOL Version 3 on 8 inch or 5 inch diskette you will receive in addition to the compiler and run time system the CONFIG program which enables you to configure CIS COBOL run time systems to drive many different types of "dumb" CRT terminals such as Lear Siegler ADM9A and Hazeltine 1200, plus the time saving FORMS program which allows you to create and edit screen images of business forms and then automatically generate the corresponding COBOL record descriptions to COPY into your CIS COBOL program.

Circle 220 on inquiry card.
Exact values of the tangent for angles in 1 degree increments should return the proper angle, but a tangent falling between these values does not necessarily return the closest angle.

Large Values

In order to prevent overflow and preserve even two digits of precision, it is necessary to make a special case of each decade. Listing 3, the \(S=\arctan(T/U) \) routine, should serve as a worst case example of this process. This routine calculates the 3 digit ratio \(U \) and calls the arctangent routine shown in listing 2. The variable \(V \) is a flag set for angles over 45 degrees (line 30) and cleared otherwise (line 10). \(V \) is a temporary storage location used to swap \(T \) and \(U \) in these cases (lines 20, 40, 50, 60). Lines 70 to 100 represent the first decade. Note the trap at line 85 to prevent division by zero. The other decades are similar. Line 300 traps for values of \(U \) over 999, and line 320 tests the flag \(V \) and complements the angle \(S \) if \(T \) and \(U \) had been reversed.

You will also need similar, but simpler, routines that return \(U=\sin(S) \) and \(U=\sin(S) \). All of these routines can be shortened considerably if they do not need to accept the full range of 16 bit integers (as, for example, in a battleship type game on a 100 by 100 grid). The general process of writing these routines is similar to the manipulation of decimal places and the use of rough pre-calculations necessary if one were using a slide rule. It may be helpful to run through each decade of the routine on paper before beginning to program.

One More Detail

So far, all our routines work with first quadrant angles (positive declination and azimuth from 0 to 90 degrees). It is necessary to express each vector as its first quadrant equivalent before conversion, and restore the converted vector to its proper quadrant afterwards. Listing 4 is the Cartesian to spherical routine. In lines 10 to 120 the values \(X, Y, \) and \(Z \) are made positive and their original signs stored in the flags \(F, L, \) and \(G \), respectively. The vector is now in the first quadrant and conversion can proceed. Refer to figure 3 during this discussion.

Lines 130 to 160 calculate the azimuth, angle \(A \). Lines 170 to 190 find the projected radius \(R_1 \) and store it temporarily in variable \(R \). Lines 200 to 220 find the declination, angle \(D \). Lines 230 to 260 find the true radius. Note that line 230 complements \(S \); the projected radius divided by the true radius, \(R/R_1 \), is the cosine of \(D \) or the sine of 90-\(D \).

The vector \(A,D,R \) is now complete but must be restored to the proper quadrant. In line 270 the declination is simply given the same sign as \(Z \). Line 280 exits if the azimuth is unchanged. Lines 290 to 310 apply the proper correction for azimuths between 270 and 360 degrees. Lines 320 to 340 deal with angles between 90 and 180 degrees, and line 350 corrects for the only remaining case.

The conversion from spherical to Cartesian requires a similar process of reduction to first quadrant and restoration, and uses the same three flags. Listing 5 shows only the actual spherical to Cartesian conversion. Lines 10 to 40 find \(Z \). Lines 50 to 80 find the projected radius \(R_1 \) and store it temporarily in \(Y \), again using the cosine or sine of the complement. Lines 90 to 110 find \(X \), and lines 120 to 150 find \(Y \).

Application

My version of this trigonometric package ran to 170 lines and almost 4 K bytes of program storage in a version of tiny BASIC that permits subscripted variables and FOR-NEXT loops. Even if your BASIC does not permit subscripted variables, it's a good idea to keep the temporary vectors \(A,D,R \) and \(X,Y,Z \) for the two conversion routines. If these are not written as subroutines, program length will get out of hand quickly. The flags \(F, L, \) and \(G \) can be replaced by a single variable holding the quadrant number. In a game involving two ships, one can be kept at the origin \((X,Y,Z=0,0,0) \), and only
Listing 4: BASIC program for converting from Cartesian to spherical coordinates.

10 LET F=0
20 LET L=0
30 LET G=0
40 IF X<1 GOTO 70
50 LET X=X
60 LET F=F+1
70 IF Y<1 GOTO 100
80 LET Y=Y
90 LET L=L+1
100 IF Z-1 GOTO 130
110 LET Z=Z
120 LET L=L+1
130 LET T=T+X
140 LET U=V
150 GOSUB (S=ARCTAN T/U)
160 LET A=5
170 LET U=X
180 GOSUB (U=L/SIN S)
190 LET R=U
200 LET T=2
210 GOSUB (S=ARCTAN T/U)
220 LET D=S
230 LET S=90-S
240 LET U=R
250 GOSUB (U=L/SIN S)
260 LET R=R
270 IF E=1 LET D=-D
280 IF D=0 IF L=0 RETURN
290 IF L=1 GOTO 320
300 IF L=1 LET A=-360+A
310 RETURN
320 IF F=1 GOTO 350
330 LET A=R=180-A
340 RETURN
350 RETURN

Listing 5: Program for converting from spherical to Cartesian coordinates.

10 LET S=0
20 LET U=0
30 GOSUB (U=U*SIN S)
40 LET Z=2
50 LET U=U
60 LET S=90-D
70 GOSUB (U=L/SIN S)
80 LET V=U
90 LET S=90-S
100 GOSUB (U=L/SIN S)
110 LET X=U
120 LET Y=V
130 LET S=90-A
140 GOSUB (U=L/SIN S)
150 LET Y=U

relative position and velocity for the other displayed. This saves nine more variables. However, it also eliminates a major challenge from the game. It's astonishing how far from your station you can wander while concentrating on combat, and how long it takes to turn around and get back. If you assume a fixed, forward firing weapon, you can use the same vector to represent both thrust and direction of fire. As a last resort, you can always go two-dimensional; this brings the number of variables used within limits (and greatly simplifies the conversion process).

Don't expect a great deal of accuracy from these routines. I got results within 1 degree and 1 percent for most cases, but certain values return much larger errors. As long as the Cartesian vectors are preserved from turn to turn, the errors do not accumulate and can be treated as quirks in the ship's ranging and detection system. Any attempt to rotate the coordinate system by converting to spherical coordinates, adding angular translations and converting back to Cartesian will quickly introduce large errors. Also remember that to keep the radius (R) from overflowing, X, Y, and Z must be limited to about ± 13,000.

If you plan to acquire a full BASIC for your system, you'd be well advised to wait for it before attempting a spacewar game. If, like me, you have to live with integer arithmetic for some time, a weekend's worth of work will give you a package of trigonometric capability that can serve as the nucleus for a wide variety of games and simulations.

Gravity wells and orbits can be handled nearly as easily as in a full BASIC; speed and position can be controlled accurately enough to make a docking maneuver painstakingly difficult. Another possibility is a version of lunar lander that includes the return to orbit. The software vacuum is likely to be with us for some time, but you can begin sharpening your skill as an astrogator now.
For the first time:
Hard-to-obtain
computer music
material has been
collected into one
convenient, easy-to­
read book.

The BYTE Book of
Computer Music com­
bines the best from
past issues of BYTE
magazine with exciting new material
of vital interest to computer experimenters.
The articles range from flights of fancy about the reproductive
systems of pianos to Fast Fourier transform programs
written in BASIC and 6800 machine language. Included in
this fascinating book, edited by Christopher P. Morgan,
are articles discussing four-part melodies, a practical music
interface tutorial, electronic organ chips, and a remarkable
program that creates random music based on land terrain maps!

$10.00

Buy this book at your favorite computer book
store or order direct from BYTE BOOKS
Add 50¢ per book for postage and handling

70 Main Street Peterborough, New Hampshire 03458
TI PERSONAL COMPUTER DELAY DUE TO HARDWARE PROBLEMS. Rumors abound that Texas Instruments has delayed introduction of their personal computer system because of problems encountered in the design of a new microprocessor circuit to be used in the system. The 9985 microprocessor is a 16 bit stripped down version of the 9940, which contains 2 K bytes of read only memory, 128 bytes of programmable memory, 32 bit I/O (input/output), 5 M Hz operation and timer/counter on one integrated circuit. Also, it has been reported that the FCC rejected the TI approach to the RF (radio frequency) modulator design. It is expected that TI will have solved these problems for the introduction of the system in June at the summer Consumer Electronics Show in Chicago.

RADIO SHACK HAS OVER 50 PERCENT OF PERSONAL COMPUTER BUSINESS. According to a report issued by Dataquest, a marketing research firm, Radio Shack sold approximately 100,000 TRS-80s, valued at $105 million dollars in 1978. This represented almost 10 percent of Tandy's business, and means that Radio Shack shipped over 50 percent of the total 1978 volume and 21 percent of the value of personal computer systems. Commodore was second, selling 25,000 PETs valued at $20 million, and Apple shipped 20,000 systems valued at $30 million. MITS/Pertec shipped 3000 units valued at $12 million, IMSAI shipped 5,000 valued at $18 million and all other personal computer makers shipped 35,000 units valued at $130 million. Dataquest adds to this the IBM and Hewlett-Packard table-top systems selling for less than $15,000. Thus IBM shipped 5,000 units valued at $95 million and Hewlett-Packard shipped 4,000 units valued at $60 million.

TANDY TO INTRODUCE NEW COMPUTER SYSTEM. Tandy has disclosed that it will soon introduce two, three and possibly four new computer systems in the second and third quarters of 1979. The systems will be designed to fit specific purposes. This is seen by industry experts as an attempt by Tandy to strengthen its market position in anticipation of Texas Instruments entering into the personal computer market. Tandy has had their TRS-80 in production for almost two years.

INTEL REPORTS 42 PERCENT INCREASE IN SALES FOR 1978. Intel, the pioneer in microprocessors, reported sales of just over $400 million dollars in 1978, compared to $282.5 million in 1977 — a 41.8 percent increase. In fact, sales in the last quarter increased over 61 percent as compared to the same period in 1977. Profits increased 39.7 percent; from $31.7 million to $44 million. Coincidentally, Zilog had sales of $18 million, and reportedly operated in the red for 1978.

MICROSOFT MOVING INTO 16 BIT SOFTWARE. Microsoft, a recognized leader in microprocessor software, plans to introduce a broad range of software for 16 bit processors, using the new Intel 8086 and Zilog Z-8000 microprocessors. Most of Microsoft's business is OEM (original equipment manufacturer). This indicates that several hardware manufacturers plan systems using these 16 bit processors. Microsoft will not desert the 8 bit area in which they plan to release a BASIC compiler and Pascal and APL interpreters.

INTEL PRESIDENT WORRIES ABOUT VLSI. Gordon Moore, Intel founder and president, was the keynote speaker at the recent International Solid States Circuit Conference. In his speech, he expressed great concern about the possibility that integrated circuit technology is too far ahead of applications. The industry is moving into the next generation of integrated circuits, called VLSI (very large scale integration) which feature devices with upwards of 400 K transistors, or 100 K gates. So far, the applications for such large devices have not developed. At the same meeting Dr Tom Longo, vice-president and chief technical officer at Fairchild Semiconductor, suggested that one possible application for VLSI might be the 64 bit microprocessor.

MICRODISKS ARE COMING. Microdisk is the name given to the new 8 inch hard disk drive, which is now being developed by several disk manufacturers. It is expected that at least four manufacturers will show these new disks at the NCC (National Computer Conference) show next month. These drives will fit into the same space as an 8 inch floppy disk, provide upwards of 20 M bytes unformatted storage, and use Winchester technology for high speed
access. It is anticipated that the first production microdisks should be available late 1979, with full production not expected until mid 1980. Expected selling price in OEM quantities is $1500. This will probably translate to $3000 retail for a complete system including controller and power supply. At present 14 inch hard disks with 10 M byte storage are available at an end user cost of $7000 to $10,000.

16 BIT MICROPROCESSOR SCENE GROWING. Zilog began shipping Z-8000 samples in March, and Motorola expects to start sampling their 68000 this month. Production quantities should be available in the fall. Meanwhile, Intel has heated up competition by cutting the 8086 price by 23 percent; from $82.50 to $65.20 (4 MHz) and from $99 to $76.25 (5 MHz) in 500 quantity lots. The 8086 has been in production for almost a year; a very substantial lead time. However, the Zilog Z-8000 and the Motorola 68000 in particular are more powerful than the 8086, and Intel's price reduction probably represents a marketing strategy.

HP NOW PRIMARILY A COMPUTER COMPANY. Hewlett-Packard, which until now has been primarily a manufacturer of electronic instruments (voltmeters, frequency generators, etc), has disclosed that their computer business is now larger than their instrument business, and is growing at a faster rate. It is rumored that Hewlett-Packard will soon introduce a personal computer system.

COMMODORE REPORTS 8.6 PERCENT INCREASE FOR 1978. Commodore's 1978 Annual Report states that sales increased from $46 million to $50 million and that income rose from $1.5 million to $4 million, a 165 percent increase. There is little doubt that the PET and KIM accounted for the major portion of this increase. Like Tandy, Commodore does not break down its sales figures: however, industry experts estimate that over 25,000 PETs were sold in 1978. The Annual Report shows pictures of a PET with a standard keyboard, numeric pad and cutout tape recorder. Further, they promise a "new generation of PET computers" but do not say when.

IEEE AND ANSI WORKING ON PASCAL STANDARD. The IEEE (Institute of Electrical and Electronic Engineers) and ANSI (American National Standards Institute) have formed a joint committee to coordinate development of a Pascal standard. It is expected that the development of the standard will take several months.

PERKINS-ELMER LEAVES FLOPPY BUSINESS. Perkins-Elmer is the second major floppy disk manufacturer to leave the business within the last year. The Wangco division supplied drives to personal computer systems makers such as Cromemco, Heath Co and Intelligent Systems Corp. Although Wangco operated in the black and was growing, its profits were not apparently fulfilling Perkins-Elmer's expectations.

APL INTERPRETER AVAILABLE. The first APL interpreter for a microprocessor has been introduced by Vanguard Systems Corp, San Antonio TX. It is designed to run on a Z-80 computer system. As yet no data is available on how it compares to IBM APL. Several companies, including Microsoft and Scientific Time Sharing, have been promising a microprocessor APL package, but Vanguard is the first to reach the market.

LOW COST VOICE OUTPUT FOR COMPUTERS. If you are looking for a low cost, high quality voice output for your computer system, why not try interfacing the Texas Instruments Speak and Spell game to your system. This is done by interfacing some parallel ports to the keyboard connections of Speak and Spell. A short software driver routine for the interface was published in the January issue of the Ottawa Computer Group Newsletter (Box 132218, Kanata Ontario Canada).

MICROSOFT PASCAL. We have heard that Microsoft is going to announce a Pascal package. The Microsoft version is supposed to be compatible with UCSD, ANSI, and ISO Pascal. The initial implementations of Pascal will be on the 8080, 8086, Z-80, Z-8000, and LSI-11. Additional implementations will be produced as the demand arises. The 8080, 8086, and Z-80 versions will be CP/M compatible. The rumored price for Microsoft Pascal is $1,000.

Sol Libes
ACGNJ
1776 Raritan Rd
Scotch Plains NJ 07076
More BYTE BOOKS in your future...
...And the future

THE BYTE BOOK OF COMPUTER MUSIC combines the best computer music articles from past issues of BYTE Magazine with exciting new material—all written for the computer experimenter interested in this fascinating field.

You will enjoy Hal Chamberlin's "A Sampling of Techniques for Computer Performance of Music" which shows how you can create four-part melodies on your computer. For the budget minded, "A $19 Music Interface" contains practical tutorial information—and organ fans will enjoy reading "Electronic Organ Chips For Use in Computer Music Synthesis".

New material includes "Polyphony Made Easy" and "A Terrain Reader". The first describes a handy circuit that allows you to enter more than one note at a time into your computer from a musical keyboard. The "Terrain Reader" is a remarkable program that creates random music based on land terrain maps.

Other articles range from flights of fancy about the reproductive systems of pianos to Fast Fourier transform programs written in BASIC and 6800 machine language, multi-computer music systems, Walsh Functions, and much more.

For the first time, material difficult to obtain has been collected into one convenient, easy to read book. An ardent do-it-yourselfer or armchair musicologist will find this book to be a useful addition to the library.

SUPERWUMPUS is an exciting computer game incorporating the original structure of the WUMPUS game along with added features to make it even more fascinating. The original game was described in the book What To Do After You Hit Return, published by the People's Computer Company. Programmed in both 6800 assembly language and BASIC, SUPERWUMPUS is not only addictively fun, but also provides a splendid tutorial on setting up unusual data structures (the tunnel and cave system of SUPERWUMPUS forms a dodecahedron). This is a PAPERBYTE™ book.

TINY ASSEMBLER 6800, Version 3.1 is an enhancement of Jack Emmerichs' successful Tiny Assembler. The original version (3.0) was described first in the April and May 1977 issues of BYTE magazine, and later in the PAPERBYTE™ book TINY ASSEMBLER 6800 Version 3.0.

In September 1977, BYTE magazine published an article entitled, "Expanding The Tiny Assembler". This provided a detailed description of the enhancements incorporated into Version 3.1, such as the addition of a "begin" statement, a "virtual symbol table", and a larger subset of the Motorola 6800 assembly language.

All the above articles, plus an updated version of the user's guide, the source, object and PAPERBYTE™ bar code formats of both Version 3.0 and 3.1 make this book the most complete documentation possible for Jack Emmerichs' Tiny Assembler.

A walk through this book brings you into Ciarcia's Circuit Cellar for a detailed look at the marvelous projects which let you do useful things with your microcomputer. A collection of more than a year's worth of the popular series in BYTE magazine, Ciarcia's Circuit Cellar includes the six winners of BYTE's On-going Monitor Box (BOMB) award, voted by the readers themselves as the best articles of the month: Control the World (September 1977), Memory Mapped IO (November 1977), Program Your Next EROM in BASIC (March 1978), Tune In and Turn On (April 1978), Talk To Me (June 1978), and Let Your Fingers Do the Talking (August 1978).

Each article is a complete tutorial giving all the details needed to construct each project. Using amusing anecdotes to introduce the articles and an easy-going style, Steve presents each project so that even a neophyte need not be afraid to try it.
BASEX, a new compact, compiled language for microcomputers, has many of the best features of BASIC and the 8080 assembly language—and it can be run on any of the 8080 style microprocessors: 8080, Z-80, or 8085. This is a PAPERBYTE™ book.

Subroutines in the BASEX operating system typically execute programs up to five times faster than equivalent programs in a BASIC interpreter—while requiring about half the memory space. In addition, BASEX has most of the powerful features of good BASIC interpreters including array variables, text strings, arithmetic operations on signed 16-bit integers, and versatile I/O communication functions. And since the two languages, BASEX and BASIC, are so similar, it is possible to easily translate programs using integer arithmetic data from BASIC into BASEX.

The author, Paul Warme, has also included a BASEX Loader program which is capable of relocating programs anywhere in memory.

SIMULATION is the second volume in the Programming Techniques series. The chapters deal with various aspects of specific types of simulation. Both theoretical and practical applications are included. Particularly stressed is simulation of motion, including wave motion and flying objects. The realm of artificial intelligence is explored, along with simulating robot motion with the microcomputer. Finally, tips on how to simulate electronic circuits on the computer are detailed.

RA6800ML: AN M6800 RELOCATABLE MACRO ASSEMBLER is a two-pass assembler for the Motorola 6800 microprocessor. It is designed to run on a minimum system of 16K bytes of memory, a system console (such as a Teletype terminal), a system monitor (such as Motorola MIKBUG read only memory program or the ICOM Floppy Disk Operating System), and some form of mass file storage (dual cassette recorders or a floppy disk).

The Assembler can produce a program listing, a sorted Symbol Table listing and relocatable object code. The object code is loaded and linked with other assembled modules using the Linking Loader LINK68. (Refer to PAPERBYTE™ publication LINK68: AN M6800 LINKING LOADER for details.)

There is a complete description of the 6800 Assembly language and its components, including outlines of the instruction and address formats, pseudo instructions and macro facilities. Each major routine of the Assembler is described in detail, complete with flow charts and a cross reference showing all calling and called-by routines, pointers, flags, and temporary variables.

In addition, details on interfacing and using the Assembler, error messages generated by the Assembler, the Assembler and sample I/O driver source code listings, and PAPERBYTE™ bar code representation of the Assembler's relocatable object file are all included.

This book provides the necessary background for coding programs in the 6800 assembly language, and for understanding the innermost operations of the Assembler.
LINK68: AN M6800 LINKING LOADER is a one pass linking loader which allows separately translated relocatable object modules to be loaded and linked together to form a single executable load module, and to relocate modules in memory. It produces a load map and a load module in Motorola MIKBUG loader format. The Linking Loader requires 2 K bytes of memory, a system console (such as a Teletype terminal), a system monitor (for instance, Motorola MIKBUG read only memory program or the ICOM Floppy Disk Operating System), and some form of mass file storage (dual cassette recorders or a floppy disk).

It was the express purpose of the authors of this book to provide everything necessary for the user to easily learn about the system. In addition to the source code and PAPERBYTE™ bar code listings, there is a detailed description of the major routines of the Linking Loader, including flow charts. While implementing the system, the user has an opportunity to learn about the nature of linking loader design as well as simply acquiring a useful software tool.

MONDEB: AN ADVANCED M6800 MONITOR-DEBUGGER has all the general features of Motorola's MIKBUG monitor as well as numerous other capabilities. Ease of use was a prime design consideration. The other goal was to achieve minimum memory requirements while retaining maximum versatility. The result is an extremely versatile program. The size of the entire MONDEB is less than 3 K.

Some of the command capabilities of MONDEB include displaying and setting the contents of registers, setting interrupts for debugging, testing a programmable memory range for bad memory locations, changing the display and input base of numbers, displaying the contents of memory, searching for a specified string, copying a range of bytes from one location in memory to another, and defining the location to which control will transfer upon receipt of an interrupt. This is a PAPERBYTE™ book.

BAR CODE LOADER. The purpose of this pamphlet is to present the decoding algorithm which was designed by Ken Budnick of Micro-Scan Associates at the request of BYTE Publications, Inc., for the PAPERBYTE™ bar code representation of executable code. The text of this pamphlet was written by Ken, and contains the general algorithm description in flow chart form plus detailed assemblies of program code for 6800, 6502 and 8080 processors. Individuals with computers based on these processors can use the software directly. Individuals with other processors can use the provided functional specifications and detail examples to create equivalent programs.
The parts for a simple 110 VAC lamp controller with one channel and a 10 A rating consist of:

- One Sigma Instruments Model 221A-3-5D Hybrid Relay: $12.80
- One AC Line Cord (surplus store): $1.00
- One AC Socket (local hardware store): $1.35
- One plug for my computer’s parallel interface (DB-15): $2.00
- One aluminum minibox: $2.98
- Miscellaneous interconnect wire: 0.00

Total for one channel: $20.13

In an evening I had this relay wired to my computer, and ready for use in some applications. The most obvious home oriented application is, of course, the control of lamps in real time, assuming you have a real time clock and an appropriate operating system in your computer. At a high level, the simplest open loop lamp control procedure can now be implemented:

DO FOREVER
BEGIN
 Wait Until 6;
 Turn On Lamp;
 Wait Until 11;
 Turn Off Lamp
END;

Here I have used “DO FOREVER” to mean that the block will be repeated indefinitely with no ending condition in the program itself, although it is always possible to pull the plug or reset the computer with manual intervention. This is a procedure which is reiterated day in and day out as a background task of the computer system, with a real time executive which can monitor time. What is the advantage over a simple mechanical timer? It is, of course, the equivalent of that timer, but you have gained the ability to combine the relay control with the more sophisticated logic of a program.

With this simple amount of hardware, it is now possible to write programs which do much more than the mechanical timer. For example, if you want to give your house a lived-in look on the basis of lights, you can now add some randomization. Let’s define a function, RANDOM(X), which returns a random number ranging from 0 to X, as do many standard compilers and interpreters. We can extend this procedure, using randomization of the starting and stopping times. In this next example, we add a second period in which the lamp is on:

DO FOREVER
BEGIN
 Wait Until (6 + RANDOM(2));
 Turn On Lamp;
 Wait Until (8 + RANDOM(1));
 Turn Off Lamp;
 Wait Until (9 + RANDOM(1));
 Turn On Lamp;
 Wait Until (11 + RANDOM(3))
END;

Our program has no inputs now, other than time synchronization with the computer’s real time clock. The effect is that of having two periods with random starting and stopping times during the evening. Combine this with several other channels for different rooms of the house, and you have unique and random night lighting control for times when the house is vacant due to business or family trips. Of course, no computer (as yet) can collect piled up mail or clear snow from the driveway, but with a simple evening’s effort of wiring up several relays in a control box, this sort of program can be left running when you go away.

In this example, I wanted to use this relay for lamp control. But, with a little imagination, you can control much more than lamps. The solid-state relays can turn on and off virtually any load within the current limitations of the device (10 A in this example) at the zero point of the AC waveform. This could include: turning on your coffeemaker in the morning (assuming that you primed it with water and grounds the night before); turning on a hot plate (of less than 1000 W) under a tea kettle in the morning; responding to a voice input microphone for the particular room you are in by recognizing the words on and off (all using techniques discussed in past BYTE issues). There is no reason why other appliances, such as the motor of my attic fan, could not be controlled in the same way.

The point is, the act of creating hardware for such brute force things as turning AC lines on and off has been reduced to wiring, and is now an easily solved problem. Just as we all experiment with software, we can now very simply experiment with software that controls significant hardware outside the computer system. All it takes is the willingness to spend some time wiring the particular details needed to make your system’s output port talk to the real world. Hardware is not hard to control, once you’ve got a complete computer system with real time clock and parallel output data ports.
May 1-3, 1979 Southwestern Computer Conference, Myriad Convention Center, Oklahoma City OK. This conference, sponsored by the Oklahoma State University Technical Institute in cooperation with the Data Processing Management Association and the Association for Systems Management, will include 150 exhibit booths and 60 seminar presentations. Contact E. Z. Millican, OSU Technical Institute, 901 N. Portland, Oklahoma City OK 73107.

May 7-11, Data Base Concepts and Design, Kansas City KS. Sponsored by the American Management Association, this course will feature practical information, workshops and case studies to help the participant understand structure, concepts, design, software and management. Contact American Management Associations, 115 W. 50th St. New York NY 10020. (212) 586-8100.

May 11-13, The West Coast Computer Faire, San Francisco Civic Auditorium. This is a conference and exposition on personal computers for home, business, and industry. Contact Computer Faire, POB 1779, Palo Alto CA 94302. (415) 851-7075.

May 14-16, Implementing Cryptography, The New York Sheraton, New York, NY. This seminar will present current techniques that protect transmitted and stored data, authenticate messages and system users, and generate electronic digital signatures. Contact Keitron Inc., Valley Forge Executive Mall, #11, 530 F Street Westford Rd., Wayne PA 19087.

May 15-17, MicroExpo '79, Centre International de Paris, Paris FRANCE. Contact Sybex Inc., 2020 Milvia St., Berkeley CA 94704.

May 15-17, First Education Computer Fair, Detroit Plaza Hotel, Detroit MI. This fair will be held in conjunction with 1979 Association for Educational Data Systems' 17th Annual Convention. The theme of the fair will be the use of microprocessors in education Contact Bruce C. Alcock, Riverdale Country School, W 253 St and Fieldston Rd., Bronx NY 10471.

May 15-18, 1979 Association for Educational Data Systems' 17th Annual Convention, Detroit Plaza Hotel, Detroit MI. The convention program will focus on computer applications, computer resources, computer related curriculum, application development methodologies and futures. Exhibits, user group meetings and vendor sessions will also be offered. Contact Arthur W. Daniels Jr., 31202 Duxbury, Madison Heights MI 48071.

May 21-23, Distributed Data Processing, Logan Airport Hilton, Boston MA. A detailed perspective of the decisions to be made in planning, implementing and maintaining distributed data processing systems. Contact American Management Associations, 115 W. 50th St. New York NY 10020.

May 21-24, Eighth Annual Incremental Motion Control Symposium, Ramada Inn, Urbana IL. Contact Dr. B. Kuo, POB 2772, Station A, Champaign IL 61820.

May 21-25, Systems Analysis Workshop, Chicago IL. This workshop will teach systems analysis and others needing systems analysis skills to use a practical set of tools and techniques to evaluate user requests and document requirements for new data processing systems. Contact Brandon Systems Institute, 4720 Montgomery Ln., Bethesda MD 20014.

May 21-25, Structured Programming and Software Engineering, The George Washington University, Washington DC. This course is designed for experienced program architects, designers and managers. It will provide up-to-date technical knowledge of logical expression, analysis and invention for performing and managing software architecture, design and production. Presentations will cover principles and applications in structured programming and software engineering. Design workshops with analysis and review sessions will provide actual practice in problem solving. Contact George Washington University, Con.

If you need Business Reports with fancy frills you have the wrong company. We don't put these in our Software or our Ads. Both cost *** You *** Money.

But if you need solid, Down-To-Earth Software for your North Star, Imsai, or other low cost Data Processing System written in Microsoft Basic or Cbasic including GL, AR, AP, Inventory, Payroll, Mailing List and Fixed Asset Accounting then you *** Do *** have the right company.

GIVE US A TRY — WE KNOW YOU'LL BE GLAD YOU DID

We honor Visa and Mastercharge

Aaron Associates

102 Avenida Dela Estrella
Suite 208
San Clemente, CA 92672
(714) 492-7633
16K MEMORY ADD-ON KIT

FOR THE TRS-80* - SORCERER†
APPLE II†
8-PRIME, 250 NS HIGH SPEED MEMORY CHIPS

$95.00

• All chips are new, top quality, factory fresh and tested.
• Each kit comes with complete, simple to understand instructions. Even the least experienced individual can add on memory.
• Comes complete with programmed jumpers.

GUARANTEE

If a chip fails, we will replace it with no questions asked.
Lifetime guarantee!

Remember: These are top quality prime #1 chips. All orders shipped same day as received!

TERMS

CASH WITH ORDER, VISA, MASTER CHARGE. NO C.O.D.'S! PERSONAL CHECKS REQUIRE 3 WEEKS TO CLEAR.

WORLD POWER SYSTEMS, INC.

1161 N. El Dorado Place, Suite 333, Tucson, Arizona 85715
24 Hour Order Phone No: 602-886-2537

* TRS-80 is a trademark of Tandy Corp
† Sorcerer is a trademark of Exidy, Inc
‡ Apple II is a trademark of Apple Computer, Inc

WATCH FOR MODULE 50
Help yourself - your family - your friends to better health with the new Speakeasy VitaFacts Series learning programs! These professionally-prepared programs include an audio cassette, a computer cassette and a booklet.

May 23-24, The Clemson Conference on Small Computers: Application for Business, Industry, Education, Medicine, Clemson University, Clemson SC. This conference will be of interest to individuals interested in small computers who have a wait and see attitude. Persons who are already involved with small systems will find the conference interesting and beneficial. There will be discussions on a wide variety of applications, tutorials on small systems and exhibits of equipment. Contact William J. Barnett, Associate Professor, College of Engineering, Clemson University, Clemson SC 29631.

May 24-26, Computers in Critical Care and Pulmonary Medicine, Yale University School of Medicine, New Haven CT. The purpose of this meeting is to bring together computer scientists, biomedical engineers and physicians who are interested in the application of computer technology to the diagnosis and treatment of critically ill patients. The program will consist of one day devoted to respiratory monitoring and two days devoted to the presentation of papers pertaining to the application of computer technology to the monitoring of critically ill patients. Contact S. Nair MD, Norwalk Hospital and Yale University School of Medicine, Norwalk CT 06856.

June 1-6, 1979 International Summer Consumer Electronics Show, McCormick Place, Chicago IL. This show serves as the marketplace for the entire consumer electronics industry. Contact Consumer Electronics Show, 2 Illinois Ct., Suite 1607, 213 N. Michigan Av., Chicago, IL 60601.

June 4-7, 1979 National Computer Conference. New York Coliseum, New York NY. NCC '79 will feature a premier showcase of the state of the art in computing and data processing. Leading organizations, large and small, will show the latest equipment and services in approximately 1500 booths. More than 100 program sessions are planned, emphasizing the four major areas of management, applications, science and technology, and social implications. In conjunction with NCC '79, the Personal Computing Festival of commercial exhibits, application demonstrations, and technical sessions on microcomputer systems and applications will be held at the Americana Hotel. Contact NCC '79, c/o American Federation of Information Processing Societies Inc., 210 Summit Av., Montvale, NJ 07645.

June 6-8, Eighth Annual Conference of Small College Computer Users in Education, Denison University, Granville OH. Sessions will include the presentation of papers and demonstrations of the educational use of microcomputers, computer text book surveys, discussions with authors of computer texts, administrative uses of computers in small colleges, and a tutorial on microprocessors. Contact Douglas Hughes, Computer Ctr., Denison University, Granville OH 43022, (614) 587-0833.

June 6-8, Twelfth Annual Association of Small College Computer Users in Education Conference, Denison University, Granville OH. Sessions will include the presentation of papers and demonstrations of the educational use of microcomputers, computer text book surveys, discussions with authors of computer texts, administrative uses of computers in small colleges, and a tutorial on microprocessors. Contact Douglas Hughes, Computer Ctr., Denison University, Granville OH 43022, (614) 587-0833.

June 6-8, Annual Conference of the MUMPS Users Group, Marriott Hotel, Atlanta GA. Papers will be presented on all aspects of MUMPS development, implementation, and use. Contact Judith Faulkner, Program Committee, Department of Psychiatry, Clinical Sciences Ctr., 600 Highland Av., Madison WI 53792.

June 6-8, Computer Contract Negotiation, New York NY. This three day course is designed to give participants sound answers to the complex ramifications of preparing and negotiating computer contracts. Contact Brandon Consulting Group Inc., 505 Park Av., New York NY 10022.

June 19-21, International Microcomputers/Minicomputers/Microprocessors '79, Palais des Expositions, Geneva SWITZERLAND. Focusing on the changing state of the art in mini/microcomputers and microprocessors, the 1979 conference program will probe advances in systems and equipment, with emphasis on practical applications and uses of minicomputers and microcomputers as well as the techniques important to their development.

June 27-29, Machine Processing of Remotely Sensed Data, Purdue University, W Lafayette IN. The symposium will focus upon the theory, implementation and novel applications of machine processing of remotely sensed data. Contact Purdue University, Laboratory for Applications of Remote Sensing, 1220 Polter Dr., W Lafayette IN 47906.

July 9-20, Computing Systems Reliability, University of California, Santa Cruz CA. Contact Institute in Computer Science, University of California Extension, Santa Cruz CA 95064.
The marvelous computer projects that Steve Ciarcia has constructed in his cellar are explained in detail so that you can make your microcomputer perform the same useful functions. Each article is a complete tutorial, presented in such an easy-going style that even beginners can understand and enjoy.
TMS-9900 Monitor

Jeremy O Jones
Alan Jones
Dept of Computer Science
Trinity College Dublin
Dublin 2–IRELAND

Everyone has their own idea of what a good monitor should and should not do. Our TMS-9900 monitor is aimed at a small Texas Instruments 9900 system (without disks) with a terminal (64 by 32 character screen size) for I/O (input/output). It has been designed so that programs (which may be cross assembled elsewhere) can be debugged efficiently. To this end, the monitor contains an instant assembler, a disassembler, and comprehensive user program tracing facilities. The instant assembler allows modifications in code to be made quickly, since calculating op codes is difficult because the op code fields are not aligned on nybble boundaries.

The monitor occupies slightly less than 256 bytes of memory and has been assembled to occupy hexadecimal locations F400 thru FFFE. The monitor allows the user to examine and change memory locations; disassemble instructions; assemble mnemonics; perform memory searches; move blocks of memory; set breakpoints; trace program operation; and other functions.

The Nybbles Library is an inexpensive means for BYTE readers to share some interesting but specialized forms of software. These programs are written by readers with small computers and printer facilities, and are therefore designed for particular systems. The algorithms and programming techniques in these programs can be directly used by readers with similar equipment, or can serve as an inspiration for improvisation on computers of different characteristics.

Potential authors of such programs should send us a self-addressed stamped envelope, with a request for a copy of our Guidelines for Nybbles Authors. Payment for Nybbles items is based on sales and length of the item. Rates are set at the time of acceptance.

This month the "TMS-9900 Monitor" (#106) has been added to the Nybbles Library. To order your personal copy, at $3.00 postpaid, fill out the coupon below.

Please send ______ copies of BYTE Nybble #___________ at $___________ postpaid.

Please remit in US funds only.

___________ Check Enclosed

Bill my BAC # ___________________________ Exp Date ___________________________

Bill my MC # ___________________________ Exp Date ___________________________

Name ___________________________

Street ___________________________

City ___________________________ State ___________ Zip Code ___________

BYTE Nybbles Library, 70 Main St, Peterborough NH 03458

You may photocopy this page if you wish to keep your BYTE intact.
<table>
<thead>
<tr>
<th>Description</th>
<th>Model No.</th>
<th>Price</th>
<th>Qty</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>16K Memory Add-On Kit</td>
<td></td>
<td>$ 95.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-100 3 S+P Interface Card</td>
<td>3 S+P-100K</td>
<td>$159.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 S+P-100A</td>
<td>$189.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-100 EPROM Programmer +3</td>
<td>EPR-100K</td>
<td>$129.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EPR-100A</td>
<td>$159.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRS-80* to S-100 BUS</td>
<td>RSB-K</td>
<td>$249.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RSB-A</td>
<td>$289.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-100 Video Display Board</td>
<td>VID-100K</td>
<td>$119.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VID-100A</td>
<td>$139.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRS-80* Master Control Console</td>
<td>MCC-K</td>
<td>$159.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MCC-A</td>
<td>$189.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRS-80* Expander Interface</td>
<td>EI-80K</td>
<td>$329.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EI-80A</td>
<td>$349.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRS-80* Disc Controller Module</td>
<td>DCM-80K</td>
<td>$129.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DCM-80A</td>
<td>$159.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16K RAM Kit (With purchase of DCM-80)</td>
<td></td>
<td>$ 85.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRS-80* EPROM Programmer +3</td>
<td>EPR-80K</td>
<td>$129.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EPR-80A</td>
<td>$159.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-100 BUS Master Control Card</td>
<td>MCC-100K</td>
<td>$159.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MCC-100A</td>
<td>$189.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-100 Disc Controller Card—</td>
<td>DC-80K</td>
<td>$139.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRS-80* Disc Drives</td>
<td>DC-80A</td>
<td>$159.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-100 RS-232 Control Card</td>
<td>232-100K</td>
<td>$149.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>232-100A</td>
<td>$179.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRS-80* Serial Parallel I/O Module</td>
<td>MS10-K</td>
<td>$129.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MS10-A</td>
<td>$149.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-100 Z-80 Central Processing Unit</td>
<td>Z-80100K</td>
<td>$129.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Z-80100A</td>
<td>$139.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRS-80* To S-100 BUS Cable Adapter</td>
<td>CAB-80K</td>
<td>$ 99.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAB-80A</td>
<td>$119.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-100 8K Static 250NS RAM Memory Card</td>
<td>8K-100K</td>
<td>$119.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8K-100A</td>
<td>$139.95</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TERMS—CASH WITH ORDER, VISA, MASTER CHARGE. NO C.O.D.'S! PERSONAL CHECKS REQUIRE 3 WEEKS TO CLEAR.

☐ My check (made payable to World Power Systems, Inc.) is enclosed

☐ Please charge to my: ☐ Visa ☐ Master Charge No. _______________ Exp. Date _______________

Signature _______________________

SHIP TO:
Name ___________________________

Address __________________________

City/State _________________________

Phone ____________________________

WORLD POWER SYSTEMS, INC.
1161 N. El Dorado Place, Suite 333, Tucson, Arizona 85715
24 Hour Order Phone No: 602-886-2537
The Intel 8275 CRT Controller

Chris Tennant
119 S Kaspar
Arlington Hts IL 60005

About the Author

Chris Tennant is an electrical engineering graduate of the University of Illinois. His specific areas of interest are communications and computer systems. As a hobby, Chris has been building the Z-80 S-100 microcomputer partially shown in the pictures.

Chris works in the University's Psychology department as an electronic technician of the Cognitive Psychophysiology Lab. Brain wave experiments are run, and PDP-11 minicomputers abound in this environment. Along with a fellow senior technician he has designed and built digital and analog devices to interface the computers to the test subjects. Microprocessor projects are both in progress and on the drawing board.

The Intel 8275 is a programmable video display controller manufactured by Intel Corporation. It is sealed in a 40 pin dual in line package. The device is presently expensive, but it replaces more costly circuitry of a greater size and complexity.

The 8275 has full color capability, a light pen option, many display modes, and simplicity in both hardware and software. This article's focus is on the ability and overall value of an 8275 based video terminal. Since value is a relative judgment, frequent comparisons will be made between an 8275 based terminal and other kinds of terminals presently available.

Video terminals can be divided into two groups:

- **Dedicated memory terminals.** These are prevalent in microprocessor systems. A typical terminal contains 1 K or 2 K bytes of memory for screen data. The memory is used almost continuously for screen refresh, and hence is dedicated to the terminal. The processor may have both read and write access to the video memory. Dedicated memory terminals include bit mapped terminals. Every dot location on a bit mapped display is addressable. Many bit mapped terminals allow read access as well as write access.

- **Direct memory access terminals.** This kind of terminal is connected to a processor bus. The video memory actually resides in processor memory. It is not dedicated memory, so the information must be transferred from the processor to the screen for each screen refresh. Usually processor operation is suspended for refresh, resulting in lower processor throughput.

For the most part, this article considers the use of an 8275 and a microprocessor

![Photo 1: The author's 2 board video controller using the Intel 8275 video display controller.](image-url)
YES!! Godbout has S-100 BANK SELECT BOARDS!

We're happy to announce the new CompuKit™ memories, each with two totally independent, individually selectable and addressable banks. These are low power, completely static, 4 MHz boards that offer Econoram quality in a brand new format.

Our memory boards are generally available in 3 forms: unit (sockets, bypass caps pre-soldered in place for easy assembly); assembled and tested; or qualified under the Certified System Component (CSC) high-reliability program (200 hour burn-in, guaranteed 4 MHz operation over the full commercial temperature range, and immediate replacement in event of failure within 1 year of invoice date).

<table>
<thead>
<tr>
<th>Name</th>
<th>Storage</th>
<th>Buss</th>
<th>Addressable on</th>
<th>Design</th>
<th>Unkit</th>
<th>Assm</th>
<th>CSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Econoram XIII-16™</td>
<td>16K X 8</td>
<td>S-100</td>
<td>8K boundaries</td>
<td>static</td>
<td>$369</td>
<td>$419</td>
<td>$519</td>
</tr>
<tr>
<td>Econoram XIII-24™</td>
<td>24K X 8</td>
<td>S-100</td>
<td>8K boundaries</td>
<td>static</td>
<td>$479</td>
<td>$539</td>
<td>$649</td>
</tr>
<tr>
<td>Econoram XIII™</td>
<td>32K X 8</td>
<td>S-100</td>
<td>16K boundaries</td>
<td>static</td>
<td>$629</td>
<td>$699</td>
<td>$849</td>
</tr>
</tbody>
</table>

... AND WE STILL HAVE THE BOARDS THAT MADE US FAMOUS, ALL THE WAY TO 32K:

<table>
<thead>
<tr>
<th>Name</th>
<th>Storage</th>
<th>Buss</th>
<th>Design</th>
<th>Speed</th>
<th>Configuration</th>
<th>Unkit</th>
<th>Assm</th>
<th>CSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Econoram II™</td>
<td>8K X 8</td>
<td>S-100</td>
<td>static</td>
<td>2 MHz</td>
<td>dual 4K</td>
<td>$149</td>
<td>$164</td>
<td>N/A</td>
</tr>
<tr>
<td>Econoram IV™</td>
<td>16K X 8</td>
<td>S-100</td>
<td>static</td>
<td>4 MHz</td>
<td>single 16K</td>
<td>$295</td>
<td>$329</td>
<td>$429</td>
</tr>
<tr>
<td>Econoram VI™</td>
<td>12K X 8</td>
<td>H8</td>
<td>static</td>
<td>2 MHz</td>
<td>1-8K, 1-4K</td>
<td>$200</td>
<td>$270</td>
<td>N/A</td>
</tr>
<tr>
<td>Econoram VII™</td>
<td>24K X 8</td>
<td>S-100</td>
<td>static</td>
<td>4 MHz</td>
<td>2-4K, 2-8K</td>
<td>$445</td>
<td>$485</td>
<td>$605</td>
</tr>
<tr>
<td>Econoram IX™</td>
<td>32K X 8</td>
<td>Dig Grp</td>
<td>static</td>
<td>4 MHz</td>
<td>2-4K, 1-8K, 1-16K</td>
<td>$649</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Econoram X™</td>
<td>32K X 8</td>
<td>S-100</td>
<td>static</td>
<td>4 MHz</td>
<td>2-8K, 1-16K</td>
<td>$599</td>
<td>$649</td>
<td>$789</td>
</tr>
<tr>
<td>Econoram XI™</td>
<td>32K X 8</td>
<td>SBC</td>
<td>static</td>
<td>4 MHz</td>
<td>2-8K, 1-16K</td>
<td>N/A</td>
<td>N/A</td>
<td>$1050</td>
</tr>
</tbody>
</table>

SEE CompuKit™ PRODUCTS AT YOUR LOCAL COMPUTER STORE

• FULL FUNCTION I/O BOARD $189 unitk, $249 assembled & tested

Our new I/O board gives you unparalleled flexibility and operating convenience: we include features such as two independently addressable serial ports, real ESI hardware UARTS for minimum CPU housekeeping, full RS232C, current loop (20 mA) and TTL signals on both ports, crystal controlled Baud rates up to 19.2 Kbaud, transmit and receive interrupts on both channels, industry standard RS232 level converters with four RS232 handshaking lines per port, optically isolated current loop with provisions for both on board and off board current sources, full feature operation with either 2 or 4 MHz systems, low power consumption (+8V @ 250 mA typ; +16V @ 70 mA typ; -16V @ 35 mA typ), no software initialization required for board operation (although board parameters may be altered by software), and much more.

Amazingly enough, all these features won't cost you more than other types of I/O boards that do a whole lot less. Want complete information? Just write, and we'll be glad to tell you all about it.

16K MEMORY EXPANSION SET $109 (3/$320)
For Radio Shack-B0, Apple, Sorcerer machines. 250 ns chips for 4 MHz operation, DIP SHUNTS. 1 year limited warranty. Includes easy-to-follow instructions.

ACTIVE TERMINATOR KIT $29.50
Our much imitated design plugs into any S-100 motherboard to treat the S-100 bus as it really is, thereby reducing noise, glitches, ringing, overshoot, and other bus-related problems. Improves reliability of data transfer, while saving power compared to standard passive termination systems.

11 SLOT MOTHERBOARD UNKIT $90
Includes 11 edge connectors soldered in place for simplified assembly as well as active termination for reliable data transfer with energy efficiency. Dimensions: 8.5" x 11".

18 SLOT MOTHERBOARD UNKIT $124
Same as above, but 18 slot version. Dimensions: 8.5" x 16.75".

JUST IN: AN EXCITING NEW CHIP FROM WESTERN DIGITAL, the 1791 MOS LSI dual density disc controller chip. Prime part! With pinout and data, only $59.

TERMS: Allow 5% shipping excess refunded. Call 51 rooms long order at (415) 532-0656.
COD OK with street address for UPS COD (COD charge applies). Price good through current month of magazine.

Circle 150 on inquiry card.
system as a terminal. Hence, this terminal is intended to be connected to a large computer. The hobbyist, on the other hand, often uses a microprocessor as a stand-alone computer. For the hobbyist, processor time is more important than for the user of a microprocessor based terminal connected to a larger computer. Therefore, the potential homebrewer reading this article would understandably be skeptical of the 8275 because it can rob up to 25 percent or more of the processor's time. But after all things are considered, I believe that even the experimenter will be tempted by the features of the 8275 as I was.

An example of how the 8275 can be uniquely applied to a real-life situation will help to orient the reader toward its abilities. A power generating plant could employ an 8275 based terminal in its main control room. Many tables of data might be kept in the computer defining the status of various generators, the power load of various points in the city and graphs of previous days and weeks' status.

The operator, using an 8275 based terminal, could flip between the pages of information. The operator could watch statistics change dynamically. Headings of tables would be underlined. Important statistics would be printed as reverse video characters, yellow alert information would be highlighted, and disaster information would be highlighted and blinking. This way, the operator can find the necessary information at a glance. If one is looking for all disaster and yellow alert data, one can spot it immediately, at a time when seconds count. If one is looking for other kinds of information, it can also be found quickly because it, too, has its own kind of signature. Dedicated memory terminals and bit-mapped (also dedicated memory) terminals. Finally, the frequent uses of terminals in general are measured against the 8275's abilities. I hope to show that the 8275 meets most of these needs better than the other terminals.

What follows is an introductory explanation of 8275 operation. Its merits and weaknesses are judged by comparing it to scrolling terminals, dedicated memory terminals and bit mapped (also dedicated memory) terminals. Finally, the frequent uses of terminals in general are measured against the 8275’s abilities. I hope to show that the 8275 meets most of these needs better than the other terminals.

Device Description

The 8275 video controller requires two peripheral items in order to operate: a microprocessor and a direct memory access device. The microprocessor initializes the 8275 during power-up. It also shares its memory with the 8275. Figure 1 is a functional block diagram of the 8275. The lefthand signal lines interface to the system bus. The processor communicates with the 8275 via the bidirectional data bus and standard handshaking. The single address line, A0, indicates that this device occupies two locations in memory or I/O (input/output) space. The 8275 communicates with the direct memory access controller via the direct memory access request output and direct memory access acknowledge input. The interrupt output is used to coordinate direct memory access activity.

The video control lines are described below.

- **Character Clock** input. The character clock tells the 8275 how fast characters are to be output to the screen. It also clocks the several internal counters which provide the screen timing. Direct memory access timing is based on the character clock as well.

Figure 1: A functional block diagram of the Intel 8275 video controller.
We are offering, for a limited time, the industry proven Remex RFD1000B Disc Drive at an introductory price of $395. This is the lowest price ever advertised for a full size disc drive. This drive can operate in either single or double density mode and can store up to 800k bytes unformatted. It has been on the market for three years and has been proven in the field.

We are also a service center and ready to service what we sell at rates that keep hobbyist and small OEM budgets in mind.

BONUS OFFER: We will include two important options—Optical Write Protect and a Door Lock Mechanism—list price value $50. for only $25. for ordering promptly. If you include check or money order with your order, we will include these two options absolutely FREE.

The Computer Factory
P. O. Box 155
Arlington Ma. 02174

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>City</th>
<th>State</th>
<th>Zip</th>
</tr>
</thead>
</table>

- **Disc Drives @ $395.**
- **Options Packages @ $25.**
- **Shipping ($5.00/drive)**
- **Tax (Mass. Residents)**
- **TOTAL**

- **Check or M.O. with order**
- **C.O.D. (Include 25% with order)**
- **M.C. #**
- **Visa #**

Signature

Circle 68 on inquiry card.
Figure 2: A description of the circuitry needed for generating built-in characters. The resulting characters that are output are shown in figure 2b.

- **Line Count** outputs. These four outputs inform the character generator which scan line the screen is tracing. At the top of a character row, the line count is 0. After the next retrace, the line count is 1, and so forth. The line count tells the character generator which row of dots to output. The line count is programmable from one to 16 scan lines per character.

- **Character** outputs. These seven bits of output determine which one of 128 possible characters is to be displayed. They typically output the ASCII code representations of the characters.
• **Two Built in Characters** outputs. These signals are used to provide 11 characters without the use of a character generator. The use of these outputs may add needless complexity to the video circuitry. Figure 2a shows the circuitry needed to provide the characters in figure 2b. These characters are used for drawing boxes around fields on the screen. A lower chip count and several hours of building time are sacrificed for these 11 characters. It is recommended that the characters be put in the character generator read only memory. The 2708 programmable read only memory makes a good 128 by 8 by 8 character generator. I chose a programmable read only memory because I could not find a character generator I liked on the market.

• **Two General Purpose** outputs. These two bits can be individually programmed to change logic levels at predetermined points on the screen. Their function is left to the designer.

• **Reverse Video** output. This bit tells the video circuitry that the negative image of the character is to be displayed. A white character on a black background is therefore displayed as a black character on a white background.

• **Light Enable** output. When this output is high, an override of the character generator occurs and only white dots are sent to the screen. This output is used for the underline function and to display the cursor.

• **Video Suppress** output. This output has the opposite function of light enable. It blanks the screen. It also provides blinking characters, invisible retrace and "end of line" blanking (which will be explained later).

• **Highlight** output. Characters of two intensities are possible because of this output.

• **Horizontal Retrace** output. Raster timing is generated internally. This output synchronizes the video monitor’s horizontal oscillator with the 8275.

• **Vertical Retrace** output. This output synchronizes the monitor’s vertical oscillator with the 8275. The duration of both kinds of retrace is programmable.

• **Light Pen** input. A positive edge on this input latches the present row and column positions. One possible light pen circuit is shown in figure 3. The light pen is a phototransistor. It is connected to a differentiator (the resistor/capacitor network) and a comparator. The comparator detects a positive spike caused by the electron beam intensifying the phosphor on the screen. A Schmitt gate gives the video controller a clean, sharp edge. The controller now has the row and column positions. The table shows the power pin assignments for the circuits in figures 3 thru 6.

<table>
<thead>
<tr>
<th>Number</th>
<th>Type</th>
<th>+5 V</th>
<th>GND</th>
<th>-5 V</th>
<th>+12 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC1</td>
<td>8275</td>
<td>40</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC2</td>
<td>8212</td>
<td>24</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC3</td>
<td>74LS165</td>
<td>16</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC4</td>
<td>74109</td>
<td>16</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC5</td>
<td>7404</td>
<td>14</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC6</td>
<td>7400</td>
<td>14</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC7</td>
<td>7486</td>
<td>14</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC8</td>
<td>7402</td>
<td>14</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC9</td>
<td>7432</td>
<td>14</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC10</td>
<td>7416</td>
<td>14</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC11</td>
<td>7408</td>
<td>14</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC12</td>
<td>7414</td>
<td>14</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC13</td>
<td>74174</td>
<td>16</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC14</td>
<td>74157</td>
<td>16</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC15</td>
<td>74157</td>
<td>16</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC16</td>
<td>74157</td>
<td>16</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC17</td>
<td>7400</td>
<td>14</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC18</td>
<td>74126</td>
<td>14</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC19</td>
<td>2102</td>
<td>10</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC20</td>
<td>2102</td>
<td>10</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC21</td>
<td>2102</td>
<td>10</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC22</td>
<td>2102</td>
<td>10</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC23</td>
<td>2102</td>
<td>10</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC24</td>
<td>2102</td>
<td>10</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC25</td>
<td>2102</td>
<td>10</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC26</td>
<td>2102</td>
<td>10</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC27</td>
<td>2708</td>
<td>24</td>
<td>12</td>
<td>21</td>
<td>19</td>
</tr>
<tr>
<td>IC28</td>
<td>7400</td>
<td>14</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC29</td>
<td>74426</td>
<td>14</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC30</td>
<td>74426</td>
<td>14</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC31</td>
<td>74426</td>
<td>14</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC32</td>
<td>74426</td>
<td>14</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC33</td>
<td>7405</td>
<td>14</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC34</td>
<td>7421</td>
<td>14</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC35</td>
<td>7486</td>
<td>14</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC36</td>
<td>74139</td>
<td>16</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Power pin assignments for the circuits in figures 3 thru 6.
Figure 3: A possible configuration of the 8275 to produce a composite video signal. The number of dots which make up a character is determined by the dot clock.
NEW UTILITY FOR YOUR COMPUTER.
Until now, there hasn't been a Real-Time Clock for the Apple II*. The Apple Clock from Mountain Hardware keeps time and date in 1mS increments for over one year. On-board battery backup keeps the clock running in the event of power outage. Software controlled interrupts are generated by the clock. That means you can call up schedules, time events, date printouts...all in real time on a programmed schedule.

EASY TO USE.
The Apple Clock is easily accessed from BASIC using routines carried in on-board ROM. With it, you can read time and program time-dependent functions for virtually any interval. From milliseconds to days, months or a year.

PLUG IN AND GO.
Plug the Apple Clock into a peripheral slot on your Apple II and you're ready to go.

FEATURES.
- Time and date in 1mS increments for periods as long as one year.
- Software for calendar and clock routines, as well as an event timer are contained on on-board ROM.
- Program interrupts.
- Crystal controlled accuracy of ±.001%.
- On-board battery backup keeps your clock in operation even during power outage.

REAL TIME AT THE RIGHT PRICE.
At $199 assembled and tested, it's the clock your Apple has been waiting for. And, it's available now through your Apple dealer. Drop in for a demonstration. Or return the coupon below.

A COMPLETE LINE.
Mountain Hardware also offers a complete line of peripheral products for many fine computers.

*Apple II is a trademark of Apple Computer, Inc.
Figure 4: Adding the character generator circuitry to the 8275 video controller. This particular configuration has 128 program-

able characters...
column positions latched in its internal registers.

It is good to know that the two General Purpose, the Reverse Video, and the Highlight outputs all operate identically. Their functions can be changed at the will of the designer. Any three of the outputs could be used to represent the primary colors. Then either additional chroma circuitry or direct connection to the electron guns' amplifiers could turn the output bits into actual colors. This feature could be very important to experimenters who may someday upgrade their systems to have color video.

Video Display Circuitry

Since this article is primarily concerned with the 8275's operation, discussion of the circuit will be limited mostly to the composite video output circuitry. The purpose of this section is to further acquaint the reader with the 8275. Figure 3 shows one configuration for producing a composite video signal. A dot clock is divided down to provide the character clock. If the dot clock is divided by n, there are exactly n dots per character horizontally. The character clock is connected to the 8275, but it must also connect to two other points. It controls the loading of the shift register, and it clocks several bits through flip flops. The shift register turns the parallel dot data from the character generator to serial form for the video display. The six bits (Reverse Video, Light Enable, Video Suppress, Highlight, Horizontal Retrace and Vertical Retrace) are delayed by one clock by passing them through the flip flops to synchronize them with the slow speed of the character generator. They are then gated with the character data through some logic gates to produce the composite video output signal.

My character generator (figure 4) has 128 fixed characters and 128 programmable characters. The programmable characters are interfaced to the processor bus in such a way that the processor has priority of access over the 8275. The video controller selects one of the 128 character groups with a General Purpose output. Note that up to 512 characters are possible if both General Purpose outputs are used. The simplest character generator would have no interface to the processor bus and would consist of a single character generator.

Figure 3 gives the reader an idea of the complexity of the output circuit. Each box represents one integrated circuit (if a simple character generator is assumed), except for the six flip flops, which are all contained in a single chip. A total of about a dozen chips is required to realize the output logic. With a crystal and some resistors and capacitors, the output circuit is complete.

Screen Format

The screen format of the 8275 is programmer definable. Characters can be displayed either single or double spaced. The
Figure 6: The address decoding circuitry is added to the character generator circuitry of figure 4 to complete the video controller.

height of each character is programmable from 1 to 16 raster scan lines. The number of characters in a row is programmable from 1 to 80. The number of rows from top to bottom is programmable from 1 to 64. Unfortunately, the monitor's timing is not infinitely flexible. Some screen formats would be impossible for a monitor to synchronize with. For example, a screen format of two characters horizontally by two characters vertically would not be possible. A horizontal or vertical retrace signal would come from the 8275 long before the monitor's beam was at the end of the screen. Another limitation may be the bandwidth of the monitor. If the monitor has a low bandwidth, the characters may become smeared and difficult to read if there are too many characters in a horizontal row. The parameters also depend on the character clock going into the 8275.

In spite of all this confusion, there is a range of screen and character formats which is acceptable to the monitor, and one of them must be chosen before data can be displayed.

The screen format parameters are loaded into the 8275 after power-up, but can also be changed dynamically. This means that different screen and character formats can be used to represent different kinds of information. For example, a tightly packed screen of 4 K characters might be used for graphics, a medium packed screen of 2 K to 3 K characters might display text, and a loosely packed 1 K character screen might be a table of contents or other directive data. The user could tell at a glance what kind of information he is looking at just by the screen format. Only six bytes are required to reprogram the 8275's screen and character format.

Controller Circuitry

Building a direct memory access circuit requires special care. The device is master of the bus at one moment, a normal peripheral the next; a situation which requires some signal reversing. Furthermore, when it is the bus master, it can do some odd things to the timing.

The Intel 8257 direct memory access controller will set up a memory address and do a normal memory read by making MEMRD low. Then, the I/O write (IOWR) will go low to strobe the data to the I/O device (the video controller in this case). The signal DACK informs the video controller that it alone is intended to receive the data. If the designer is not careful, other I/O devices may be accidentally addressed. Each direct memory access cycle puts a new address on the bus. The eye! ing of addresses and the strobing of IOWR will eventually access all I/O devices unless disabling of I/O devices is designed into the system. The job is more complex when dealing with S-100 signals.

My direct memory access controller has evolved its way out of S-100 compatibility. Stubbornly using Intel's direct memory access controller meant altering boards and the bus. Some nonstandard things needed to be done. Indeed, my devices are not even I/O mapped as the 8275 assumes. Rather than raking over the details of my circuit, I recommend the reader check on other direct memory access devices, such as the Zilog Z-80 DM-8. It has separate cycles for reading
No matter what your needs, Artec has a memory board for you. You can start with 8K of TI 4044 memory on a 5.3" x 10" card and work your way up to a full 32K in 8K increments. The access time is only 250ns. The memory is addressable in 4K blocks and is perfect for S100 and battery augmented systems. The Artec 32K Expandable Memory has four regulator positions, bank select and plenty of room for all necessary support hardware. It uses less than 1 amp per 8K of memory (3.9 for 32K), and only +8 volts.

BOARD KIT ASSEMBLED

<table>
<thead>
<tr>
<th>Memory</th>
<th>KIT</th>
<th>ASSEMBLED</th>
</tr>
</thead>
<tbody>
<tr>
<td>8K Memory</td>
<td>$150</td>
<td>$175</td>
</tr>
<tr>
<td>16K Memory</td>
<td>$265</td>
<td>$315</td>
</tr>
<tr>
<td>24K Memory</td>
<td>$400</td>
<td>$475</td>
</tr>
<tr>
<td>32K Memory</td>
<td>$520</td>
<td>$620</td>
</tr>
</tbody>
</table>

Add-on: $135—Chips alone: $7.00

GP100—$20.00

Maximum design versatility along with standard address decoding and buffering for S100 systems. Room for 32 uncommitted 16 pin ICs, 5 bus buffer & decoding chips, 1 Dip address select switch, a 5 volt regulator and more. High quality FR4 epoxy. All holes plated through. Relflowed solder circuitry.

WW100—$20.00

A wire wrap breadboard, similar to the GP100. Allows wire wrap of all sizes of sockets in any sizes of sockets in any combination. An extra regulator position for multiple voltage applications. Contact finger pads arranged for easy pin insertion.

Buffering Kit—$12.65

All the necessary components to bootstrap any Artec board into your system. Buffering I/O, Dip switch heat sinks and every support chip you need.

TO ORDER: Use your Mastercharge or BankAmericard. Or just send along a money order. We can accept only U.S. currency. Please include $3 handling on all orders. California residents add 6.0% sales tax.

FOR MORE INFORMATION: For more information about these or any of Artec's complete line of circuit boards or for either industrial or personal use, please call or write. A catalog will gladly be sent.

Circle 13 on inquiry card.
MEMORY MAP OF VIDEO DATA

N BY M VIDEO SCREEN

TOP DIRECT MEMORY ACCESS ADDRESS

TOP LINE OF SCREEN

SECOND LINE OF SCREEN

BOTTOM DIRECT MEMORY ACCESS ADDRESS

Figure 7: An example of scrolling and using direct memory access. The screen (7a) resides in processor memory (figure 7b). Scrolling takes place when the current direct memory access pointer is moved as shown in figures 7c and 7d.

memory and writing to a peripheral. It also allows memory mapped I/O. Of the two direct memory access devices mentioned, it alone can be considered S-100 compatible.

Direct Memory Access

Characters which are to be displayed on a video screen are transferred by direct memory accessing from processor memory. The direct memory access process also retrieves the special attributes such as reverse video, highlight, underline, blink, and two general purpose signals. A series of direct memory access transfers occur for each character line to be displayed. After the entire screen has been written, vertical retrace occurs, and the direct memory access is repeated. The microprocessor must wait while the transfer takes place. This may interfere with as much as 25 percent of the processor's time. This figure does not take "cycle stealing" into account. (Cycle stealing is a condition where the processor allows the direct memory access controller to take control of the system bus while the processor is doing internal work.) The processor is not using the bus anyway, so the direct memory access controller steals that clock cycle or cycles. For an 8080A, the timing diagrams seem to indicate that no cycle stealing takes place. The processor-direct memory access hand-shaking is too slow. This will be true for either controller mentioned earlier. My 25 percent figure assumes a full 2 K screen with no cycle stealing, and using the Intel controller at a 2 MHz clock frequency. The screen is refreshed at a rate of 60 Hz.

A strong argument against the 8275 is that it cuts into processor time while merely displaying a static picture. Other terminals for microprocessors, such as those with dedicated video memory, can operate without disrupting processor operation at all. The only time the processor uses up with respect to video is the time it takes to change the screen.

Opponents of the 8275 point out the direct memory access problem as its greatest weakness. But using direct memory access also has its advantages. The reader can weigh the advantages of the 8275 against this overhead disadvantage. I find that, for my purposes, the flexibility and display power offered is worth the loss of processor throughput. Furthermore, as will be seen, the overhead can be reduced.

With direct memory access capabilities, the processor memory is shared with video memory but without timing conflicts. Dedicated memory video terminals, on the other hand, give the processor priority in memory operations. If the terminal is writing characters when the processor takes over its memory, the screen becomes undefined, and a "scratch" mark results. Scrolling, page changing and other operations which require around 2,000 reads and 2,000 writes (for a typical 2 K screen) can produce temporary havoc on the screen. A dynamically changing screen can be annoying to look at. Video memory for the 8275 can be read from or written into at any time without scratch marks because only one device operates at a time — either the controller or the processor.

The direct memory access controller is programmable to work on any section of memory. It can, in fact, be programmed to change source locations at any time. This means that page changes of the video screen.
can be made by changing the accessed address; a task which requires half a dozen writes. This compares with 2,000 reads and 2,000 writes of a block transfer in dedicated memory terminals.

With direct memory access, scrolling is automatic. The interrupt output of the 8275 is used to tell the processor that the bottom of the screen has been reached. At this time the processor can effect a scroll by changing the current pointer in the controller (figure 7). Without any actual character manipulation, the characters on the screen are made to move up by one row. The top row swings around to the bottom. This new bottom row can then be erased. The same locations in memory are used before and after the scroll. Both scrolling up and scrolling down are possible.

A different kind of scrolling is also possible. In this method, the addressed memory space actually does change. If the programmer is dealing with 10 K bytes of text, it could be scrolled one line at a time by moving the direct memory access space down by 80 (for an 80 character per line screen format — see figure 8). The current direct memory access pointer is always at the top of the address space. This is just another form of page changing with most of the screen being common to both pages.

The 8275 is an intelligent controller. As it accesses the data, it examines the incoming characters for special command bytes. When the most significant bit is a one, the controller knows this is a special command. One command outputs one of the 11 built-in characters. Another special command sets or resets six bits corresponding to reverse video, underline, blink,
INTRODUCING — THE NEW
DUAL DRIVE MINIFLOPPY FOR PET!

• DUAL MINI FLOPPY DRIVE WITH 100K PER DISK SIDE FOR TOTAL 200K ON LINE.
• COMMERCIAL LOADING SPEEDS * 8K LOADS IN 2.6 SECONDS COMPLETE.
• DOS REORGANIZES SPACE AFTER SAVE OR ERASE FOR EFFICIENT STORAGE.
• DISKMON ADDS OVER 20 COMMANDS TO BASIC INCLUDING DISK DATA FILES.
• DISKMON COMMANDS SUPPORT COMM. PRINTER OFF PARALLEL PORT SUCH AS CENTRONICS LINE OF PRINTERS (AVAILABLE FROM NEECO).
• FULL DISK SOFTWARE SUPPORT • FORTRAN & PLM COMPILERS •
• 90 DAY MANUFACTURER'S WARRANTY ON HARDWARE • READY TO USE ON DELIVERY, FULL MANUAL AND UTILITY DISKETTE INCLUDED.
• CALL OR WRITE FOR COMPLETE INFORMATION ON THE "DISKORIVER".
• THIS SYSTEM REQUIRES EXPANDAPET MEMORY (MINIMUM 16K)

DKH642 — DUAL DRIVE SYSTEM, COMPLETE WITH DISKMON $1295.00
ASM7890 — PET ASSEMBLER ON DISKETTE WITH MANUAL $49.95
PLM400 — PLM COMPILER ON DISKETTE $49.95
FOR300 — FORTRAN COMPILER ON DISKETTE $69.95
DKL687 — DISKMON ASSEMBLER LISTING/DOS $19.95
DATA100 — COMPLETE DATA BASE SYSTEM (PRICE APPROXIMATE) $400.00
BASCOMP — BASIC COMPILER ON DISKETTE $49.95
NGP200 — 20 GAMES ON DISKETTE $49.95
BKGAM — BACKGAMMON ON DISKETTE $24.95
MICRO — MICROCHESS ON DISKETTE $24.95
CENT7681 — CENTRONICS 7681, ROLL FEED DOT MATRIX $1245.00
CEN779(1) — SAME AS 779(1)BUTWITH TRACTOR FEED — PLUG INTO PET $1345.00
CEN779(2) — SAME AS 779(2)BUTWITHTRACTORFEED INTO PET $1345.00
DKH641 IS A PRODUCT OF COMPUTHINK.

PET COMPUTER

NEECO OFFERS A FULL SIX MONTH WARRANTY ON ALL PET'S — AN ADDITIONAL 3 MONTHS FREE.

INTERNAL MEMORY EXPANSION FOR PET!

EXPANDAPET™ INTERNAL MEMORY EXPANSION UNIT

* MOUNTS EASILY INSIDE YOUR PET
* EASY TO INSTALL (15 MINUTES)
* NO DEGRADATION OF PET SYSTEM
* USES LOW POWER DYNAMIC RAMS
* 90 DAY PART & LABOR GUARANTEE
* 90 DAY MONEY BACK GUARANTEE
* MOUNTING SLOTS FOR 4 BOARDS
* CALLWRITE FOR ADDITIONAL INFO
* DEALER INQUIRIES INVITED.

EXPANDAPET PRICES

16K (+8K PET = 24K) $425
24K (+8K PET = 32K) $525
32K (+8K PET = 40K) $615

NPK-101 IS A PRODUCT OF NEW ENGLAND ELECTRONICS.

WE CANNOT LIST ALL OF OUR SOFTWARE AND HARDWARE PRODUCTS CALL OR WRITE FOR OUR *FREE* SOFTWARE/HARDWARE DIRECTORY

DOMESTIC & OVERSEAS DEALER INQUIRIES INVITED ON * MEMORY * KEYBOARD * FLOPPY

(617) 449-1760 MASTER CHARGE/VISA ACCEPTED
TELEX 951021

NOW AVAILABLE! $139.95

NPK-101 IS A PRODUCT OF NEW ENGLAND ELECTRONICS.

NEW ENGLAND ELECTRONICS CO., INC.
679 HIGHLAND AVE., NEEDHAM, MASS. 02194
MON.-FRI. 9:30-5:30

Circle 281 on inquiry card.
PROUDLY ANNOUNCES THE NEWEST PET MICROCOMPUTERS BY COMMODORE!

The PET™ is now a truly sophisticated Business System with the announcement of these Peripherals.

PET 2001 - 32K
PROUDLY ANNOUNCES THE NEWEST PET MICROCOMPUTERS BY COMMODORE!

The PET™ is now a truly sophisticated Business System with the announcement of these Peripherals.

PET 2001 - 4K*
PET 2001 - 8K*
PET 2001 - 16K LARGE KEYS
PET 2001 - 32K LARGE KEYS
PET 2041 - SINGLE FLOPPY
PET 2022 - PRINTER
PET 2023 - ROLL FEED
PET 2040 - DUAL FLOPPY
8K RETROFIT ROM KIT

IMMEDIATE DELIVERY

NEW ENGLAND AREA SUB-DEALERSHIP INQUIRIES INVITED!

NEW ENGLAND ELECTRONICS CO., INC.
679 HIGHLAND AVE., NEEDHAM, MASS. 02194
MON - FRI. 9:30-5:30

(617) 449-1760

MASTER CHARGE/VICE ACCEPTED

TELEX 951021
Circle 282 on inquiry card.
controller. The output shown in figure 9a is what is desired. We wish to underline the five letters in the word "codes". Figure 9b shows a memory map with the special codes inserted in the text. The set underline bit command will command the controller to underline all output until the bit is reset. The reset underline bit command stops the underlining procedure. If the codes were not invisible, the output would probably look like figure 9c. Since the special command codes cannot be converted into printable ASCII characters, spaces are output on the screen. Note the extended underline. This occurs because the reset underline bit command is printed before the bit is actually reset. This visible code mode is not advisable for high quality output.

Figure 9: An example of using "invisible" special commands with the video controller. The output shown in figure 9a is what is desired. We wish to underline the five letters in the word "codes". Figure 9b shows a memory map with the special codes inserted in the text. The set underline bit command will command the controller to underline all output until the bit is reset. The reset underline bit command stops the underlining procedure. If the codes were not invisible, the output would probably look like figure 9c. Since the special command codes cannot be converted into printable ASCII characters, spaces are output on the screen. Note the extended underline. This occurs because the reset underline bit command is printed before the bit is actually reset. This visible code mode is not advisable for high quality output.

The end of screen command is similar to end of line except that the remainder of the screen is blanked instead of just one line. Thus, a clear screen operation consists of one write instead of 2,000. The end of screen command would be placed at the top left-hand corner of the screen.

It has been shown that emulating a simple scrolling terminal is easy with the direct memory access controller and the 8275 video controller. When using a scrolling terminal, one notices the large amount of unused screen space that frequently exists. If the 8275 controller were to access 2,000 characters when, say, only 200 characters were being displayed, the 8275 would be wastefully cutting into processor time. The stop direct memory access commands answer this problem. A short line of print is followed by an end of line, stop direct memory access command, which blanks the remainder of the line and discontinues memory transfer until it is needed for the next line. Variable line lengths are involved. The only difference is that variable line lengths are involved.

The last line of nonblank characters can be followed by an end of line, stop direct memory access command, which blanks the remainder of the line and discontinues memory transfer until it is needed for the next line. Variable line lengths are involved. The only difference is that variable line lengths are involved.

In order to underline five consecutive characters on the screen as in figure 9a for example, the five characters must be preceded by a special command which sets the underline bit (figure 9b). Every character following the command is underlined for the remainder of the screen unless another special command resets the underline bit. Such a command would follow the 5 character word to terminate the underline. Note in figure 9a that the special code does not occupy a character position on the screen. This happens with the 8275 even though the special codes are accessed just like the displayed data. The codes are "invisible." The 8275 can be programmed for either visible or invisible special command codes. Figure 9c is an example of a visible command code.

A different kind of command is end of line. When the 8275 reads this one byte command, it blanks the remainder of the current line by enabling the video suppress output. Thus, after a scroll, the new bottom line need not be erased but only headed by an end of line command. For an 80 character per line format, one write effectively clears the bottom line instead of 80 writes.

The end of screen command is similar to end of line except that the remainder of the screen is blanked instead of just one line. Thus, a clear screen operation consists of one write instead of 2,000. The end of screen command would be placed at the top left-hand corner of the screen.

It has been shown that emulating a simple scrolling terminal is easy with the direct memory access controller and the 8275 video controller. When using a scrolling terminal, one notices the large amount of unused screen space that frequently exists. If the 8275 controller were to access 2,000 characters when, say, only 200 characters were being displayed, the 8275 would be wastefully cutting into processor time. The stop direct memory access commands answer this problem. A short line of print is followed by an end of line, stop direct memory access command, which blanks the remainder of the line and discontinues memory transfer until it is needed for the next line. Variable line lengths are involved. The only difference is that variable line lengths are involved.

The last line of nonblank characters can be followed by an end of line, stop direct memory access, which blanks all subsequent lines and terminates the transfer operation. The stop direct memory access commands reduce overhead considerably. The processor experiences not 25 percent delay, but frequently as low as 0 to 10 percent delay due to direct memory access operation. In this way, the direct memory access overhead argument is no longer as strong. Furthermore, much processor time is actually saved by the memory access — page changes, scrolling, and line and screen blanking are all faster, requiring fewer reads and writes. They take less software than most dedicated memory terminals. Also, visual continuity is maintained because no scratches ever appear on the screen during reads and writes.

Interesting results can be obtained by changing some of the device parameters. If the direct memory access controller is programmed to transfer 4 K bytes of memory, but the video controller is only programmed for a 2 K byte screen, the following results occur.

The first scan displays the first 2 K bytes of addressed memory. The vertical retrace occurs and the screen is redrawn. This time, the second 2 K bytes of addressed memory is displayed. Upon the third frame, the first
Please send me additional information.

Name ____________________________
Institution ________________________
Street ______________________________
City ________________________________
State __________________ Zip _________

University Microfilms International
300 North Zeeb Road
Dept. P.R.
Ann Arbor, MI 48106
U.S.A.

18 Bedford Row
Dept. P.R.
London, WC1R 4EJ
England
2 K bytes is once again displayed. A double exposure of the two images effectively occurs. Since each frame is 1/60 second, the refresh of each image is 1/30 second. The human eye senses flicker below approximately 24 frames per second, so no flicker is noticeable. If each frame contained a graph on identical axes, the double exposure would be the superposition of the two graphs. The graphs could be plotted by loading programmable characters into the character generator and displaying them in the proper positions on the screen.

Double exposures would double the memory requirement but have no effect on the data transfer overhead. The video display is still refreshed at the same rate but with alternating images. Triple exposures can also be made. The addressed memory size is three times the screen size. Some flicker would exist since each image is refreshed every 1/20 second.

Superposition of screens cannot be done with ordinary dedicated memory systems. Bit mapped displays can, however, superimpose any number of images without experiencing screen flicker. This can be done by ORing the images together into the same bit map. If involved graphics are intended for a video terminal, the bit map displays are preferred to an 8275 based display.

Interlacing

Ordinary television sets and monitors will interlace the picture if the incoming signal has interlace timing. An interlaced picture has twice as much vertical resolution as a noninterlaced picture. For ordinary television, there are 525 scan lines in an interlaced picture but only 262 lines in a noninterlaced picture. Like so many video terminals, the 8275 unfortunately does not provide interlace timing.

Cost

This topic is a bit unpleasant to the average hobbyist. As of mid-March, 1978, the 8275 was a $100 integrated circuit. If this device is like many others, its price could drop significantly before too long. The direct memory access controller is presently about $28 (it has two spare channels left over for the user's floppy disk and digital cassette too). A character generator runs for $8 to $18. My 2 board system was under $225. All things considered, this is not very expensive when one thinks about the price of terminals with half the features of this one.

A smart way to build this circuit (or anything else that uses expensive components) is to construct the boards first, begin testing the transistor-transistor logic, and last of all buy the 8275. This way, you give the price a chance to come down.

Conclusions

An 8275 based terminal offers the user a large number of features. The useful lifetime of such a terminal is long because of its flexibility. It can bend to meet a wide variety of requirements. Features which are not immediately taken advantage of are always available at a later time.

Features include outputs for reverse video, underlining, blinking, highlighting and general purposes (user defined). A light pen can be used and a cursor is provided. 11 built-in characters are a mixed blessing because of the work involved in decoding them. The character height (line count), the screen format, the retrace timing, the direct memory access burst timing, and the type of cursor to be displayed are programmable.

Upgrading the system is easy because of its programmability. Hence, color can be added without major complications. The controller easily becomes a dual controller for two video monitors.

More and more "minimal systems" that are not so minimal in their power are coming into being. Greater need is arising for a video interface that is small. 10 chip computers with video are possible, and larger single board computers promise great performance for their size when they use the 8275. The price paid for all the features of the 8275 is in direct memory access overhead. The processor is halted for a portion of the time while the screen is refreshed. The end of line, stop direct memory access and end of screen, stop direct memory access commands reduce this overhead, dependent on how full the screen is. The double space mode cuts the overhead in half.

Direct memory access also increases the speed of some operations. Page changing and scrolling are two examples that take almost no processor time. To the user, they appear to be instantaneous operations. Visual continuity is maintained while the processor works in video memory. None of the "scratch" marks characteristic of dedicated memory terminals appear.

Feature for feature, terminals using the 8275 surpass dedicated memory terminals. In text environments with only light graphics requirements, its speed and special attributes make it more attractive than bit-mapped terminals. For many users, a video terminal based on the 8275 video display controller is the optimum choice.
THE DIAGNOSIS:
MEDICAL OFFICE MALAISE

Between insurance forms, Medicare and Medicaid forms, bills, and patient records, the typical medical office today is swamped with paperwork. If the sheer volume isn’t enough of a problem, it is also essential that all this be done with speed and accuracy. It has been estimated that doctors and office staff spend nearly a quarter of their time handling paperwork. Until now, the only alternatives were either hiring more personnel or subcontracting with an outside firm. Obviously, a medical data base management system has great potential for significantly increasing office efficiency and freeing staff for more valuable duties.

THE CURE:
MED2 FROM OHIO MICRO SYSTEMS

MED2 is a reliable, debugged program that generates valuable administrative reports, bills, aging account analysis, and insurance forms. It is the result of over a year of design, testing, and retesting in collaboration with medical offices. It features a large on-line capacity and can be operated by the existing office staff. MED2 is suitable for one person offices or group practices. It adapts readily to GP’s, specialists, dentists, and medical laboratories. MED2 requires a Z80/8080 microcomputer system that supports CP/M and it is available on Micropolis 5.25 in. and IBM 3740 8 in. diskettes.

FREE USERS SEMINAR WITH EVERY MED2 DISK

There is a lot to know about MED2 - more than can be explained in an ad or manual. To show you what MED2 can do, how to use it, and why it is configured as it is, OHIO MICRO SYSTEMS makes an unprecedented offer - a FREE two day user’s seminar (lodging included) with every MED2 disk. We believe this is the best way for you to obtain a thorough working knowledge of MED2. You get to see, question, and evaluate MED2 with its designers. The seminar is comprehensive and includes information on procedures in medical offices, customizing MED2 for unique situations, technical aspects of MED2, and marketing strategies. The seminar can be a complete course for an end-user familiar with microcomputers, but it is specifically geared for dealers. MED2 provides an excellent entry for dealers into the large new marketplace of medical offices. There is no question that the need exists. Investing the time in the seminar will open the doors to increased hardware and system sales.

The price of MED2 is $895. A deposit of $200, which applies toward the purchase price, is required for registration in the seminar. If you decide to not purchase MED2 after the seminar, you owe no more. Contact OHIO MICRO SYSTEMS for seminar dates, registration, and further information. Phone (216) 678-5202 or write to us at 500 South Depeyster, Kent, Ohio 44240.

OHIO MICRO SYSTEMS
500 S. DEPEYSTER ST. • KENT, OHIO 44240 • (216) 678-5202
Smart Memory, Part 2

In part 1 the principal processes of an associative memory and processor were described. These include:

- Selection — activating the desired memory words in parallel via their content (addressing by content).
- Alteration — updating all selected words in parallel, with multiwrite.
- Arbitration (Responder Resolution) — methods for reading content serially from potentially more than one responding word.

The second and concluding part of this article reiterates these themes through the use of successive black box logic diagrams. No attempt is made to specify exact devices (as in a schematic), since the idea is to illustrate a general architecture. Once the conceptual components are understood (and this is only one of many forms for associative memories) the personal computer enthusiast can experiment with methods for further logic reduction through the use of large scale integration circuits, addition of circuitry for random access or multidimensional addressing, or even the application of more hardware processing power at each memory node.

This concludes our content addressable design discussion. For information about REM, which is a 4 K byte associative memory board for the S-100 bus, contact Semionics at 41 Tunnel Rd. Berkeley CA 94705.

See figures following on pages 152 thru 160.

About the Author:

Randy Smith is employed by Semionics Associates as the design engineer for the REM S-100 board and is the coinventor of REM. His personal interests include artificial intelligence research, especially language comprehension.

Photo 2: Content addressable memory board for the S-100 bus. The 4 K byte memory board is manufactured by Semionics Associates.
Introducing Bidirectional Printing At Affordable Prices

FASTER THAN THE DEVIL!

Using bidirectional printing the Spinterm can print up to 55 characters per second with the quality of a printing press. In fact, with more than 14 different optional printing “thimbles,” each with up to 128 characters, there is no end to its printing capabilities. In addition, during communications, there are six user selectable baud rates to 1200. Untouchable!

MULTI-FUNCTIONAL

Spinterm’s many standard features include 10 or 12 pitch spacing (user selectable), normal and absolute tabs from 1-136 (in either direction), adjustable line feed with subscript and superscript capabilities and enough power to imprint the original and five copies.

Spinterm boasts an incredible graphing resolution of up to 5760 plot points per square inch (120 horizontal — 48 vertical). Fantastic!

LONGER LIFE — QUIETER OPERATION

Having an MTFB of more than 2000 hours, the Spinterm will perform to the reliability you demand. The materials used in the “thimble” and print hammer extend their life by 50%. The “thimble” alone provides normal element life of more than 30 million impressions!

And when it comes to quiet, the Spinterm printers are ~60dB with the standard die-cast aluminum cover; 67dB or less without cover — so they can be used in almost any application. Unbelievable!

TOTAL ADAPTABILITY

Means compatibility. The Spinterm features five optional interfaces (RS232-C, standard). In addition, Spinterm’s options include Proportional Spacing — Tractor, Bottom and Pin Feed — Nylon fabric or Multi-strike film ribbon cartridges, plus too many more to mention. Outstanding!

Now instead of a printer playing catch-up, the computers gotta pitch. See it!

For complete information about Spinterm printers see your dealer or write: SPINTERM, Input Output Unlimited, 5922 Kester Avenue, Van Nuys, CA 91411, (213) 997-7791.
Figure 4: Word parallel associative memory. Each cell of the word contains logic to compare its contents with the respective bit of the comparand broadcast from the central processor. The type of comparison selected by the FNCODE is generally only exact match (=) for this architecture. The result of the comparison for each bit is placed on the output line, and the separate bit results are combined by external logic into the result for the entire word. For exact match, the output lines need merely be ANDed. If the outputs are open collector, this can be implemented without a gate by tying the outputs together through an appropriate pull-up resistor. An N bit mask is applied to the associative cells so comparison on only part of the word (where the mask = 1) is possible. The inset shows how the comparison logic box could be implemented for exact match. The word read and write logic is omitted for simplicity.
A microcomputer add-in associative memory subsystem. Therefore, the word size will be eight bits. The block size is chosen as 256 words by eight bits so it can hold enough related character information. For textual information, one ASCII character will occupy one byte. Since our processor can send only one byte of compareand to the memory at a time, eight bits of low address \((A_7 \text{ thru } A_0)\) will select the one of 256 bytes of all blocks to be compared. This offset address can be kept conveniently in an 8 bit register and incremented or changed when necessary.

![Figure 5: Word parallel associative memory with external word logic for comparisons. By placing the comparison logic external to the memory word, the need for special memory cells is removed, and the memory word may be an ordinary, available, and cheap random access type. The N bit comparison logic can be built in the form of available integrated circuit comparators. Magnitude comparisons like word > compareand (>), or word < compareand (<), etc. are now readily included with exact match in the associative function set.](image)

![Figure 6: Block oriented comparison logic: byte serial, block parallel. Further savings in associative logic can be realized by sharing the logic over a block of memory words. By choosing the block size judiciously, it is possible to use existing programmable memory circuits. Information in the block will be considered as a unit (e.g.: a personnel record for one individual) and all blocks (rather than all words) in the system will be treated in parallel. For the rest of this article, the figures will illustrate conceptual architectures for a microcomputer add-in associative memory subsystem. Therefore, the word size will be eight bits. The block size is chosen as 256 words by eight bits so it can hold enough related character information. For textual information, one ASCII character will occupy one byte. Since our processor can send only one byte of compareand to the memory at a time, eight bits of low address \((A_7 \text{ thru } A_0)\) will select the one of 256 bytes of all blocks to be compared. This offset address can be kept conveniently in an 8 bit register and incremented or changed when necessary.](image)
Table 2: Partial function table of a J-K flip flop.

<table>
<thead>
<tr>
<th>CLK</th>
<th>FR</th>
<th>J</th>
<th>K</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>L</td>
<td>X</td>
<td>X</td>
<td>H</td>
</tr>
<tr>
<td>!</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>Qo</td>
</tr>
<tr>
<td>!</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
</tbody>
</table>

Figure 7: The parallel selection system. Suppose the first ten bytes of each block were defined to hold the lastname of each person in our personnel file. To find all people named Smith, the computer would execute a series of byte comparisons: /lastname/ = S, /lastname + 1/ = M, etc. Lastname is the beginning offset (A7 - A0 = 0) of that field, and /lastname/ indicates the value stored there in each block.

For multibyte comparands we need a temporal AND of the byte comparison results, as opposed to the spatial AND of bit comparison results in figure 5. A J-K flip flop (whose partial function table is given in table 2) performs the conjunction. The SET function initializes the tags of all blocks. All blocks start as responders (tag = 1) because no selection criteria have been imposed. Subsequent restrictions cause those blocks that do not meet all specifications to turn their tags off — and they remain discarded until a new SET command is issued.

Therefore, at the end of the comparison or selection process, that subset of blocks whose tags are still on have met all the requirements. The SAMPLE line clocks the flip flops only during an associative compare function, and at the time when the comparison logic result becomes valid. All blocks respond to the comparison simultaneously, and as shown at this level of the design, can only read out their data for comparison purposes.
Both our UNCommon Dynamic and our UNCommon Static RAMS have the following features and specifications:

- They are all GUARANTEED to be compatible with the following S-100 systems:
 - CROMEMCO, IMSAI, ITHACA AUDIO, MITS, NORTH STAR, PROCCESSOR TECHNOLOGY, TDL, TEL, VECTOR GRAPHICS, and other S-100 systems.

Both of Our UNCommon Dynamic RAM Series, the DMB-6400 and the DM-6400, feature:

- 64K bytes of dynamic RAM with on board transparent refresh
- S-100 interface compatible, with crystal controlled timing INDEPENDENT of bus or processor timing
- No wait states with 8080 or Z-80 to 4MHz. Up to 5MHz with 1 wait state.
- Memory selectable or deselected in 4K byte increments.
- Low power. 8 watts maximum in 64K byte configuration

Our UNCommon Static RAM Series, the SMB-3200, features:

- Memory Bank select capabilities. Either two (2) 16K byte banks of memory, or one (1) 32K byte bank per board.
- 32K bytes of low power static RAM
- No wait states with 8080, 8085, or Z-80 processors up to 5MHz
- Addressable in 4K byte increments at 4K boundaries. Deselectable in 4K byte increments.

UNCommon Dynamic RAMS with MEMORY BANK SELECT.
- DMB 6400/64K RAM — 1895.00
- DMB 4800/48K RAM — 1795.00
- DMB 3200/32K RAM — 1695.00

UNCommon Static RAMS with MEMORY BANK SELECT.
- SMB 3200/32K RAM — 1695.00

UNCommon Dynamic RAMS
- DM 6400/64K RAM — 1895.00
- DM 4800/48K RAM — 1795.00
- DM 3200/32K RAM — 1695.00

 UNCommon RAMS with MEMORY BANK SELECT. (16800)
- DMB 6400/64K RAM — 1895.00
- DMB 4800/48K RAM — 1795.00
- DMB 3200/32K RAM — 1695.00

Prices subject to change without notice.

NEW PRODUCTS

- NEW PRODUCT
 64K bytes of fast, low power dynamic RAM.
 MEMORY BANK SELECT
 $895.00
 (for model DMB-6400)

- NEW PRODUCT
 64K bytes of fast, low power dynamic RAM.
 $795.00
 (for model DM-6400)

- NEW PRODUCT
 32K bytes of faster Static RAM which MEMORY BANK SELECT
 $695.00
 (for model SMB 3200)

All of our UNCommon Dynamic and Static Series RAMS feature the following:

- Inputs are RC filtered and buffered with 1 LS TTL load. Compatible with terminated or unterminated busses.
- Outputs are all tri-state.
- Disc compatible DMA compatible
- Phasor memory selectable on pin 67
- DIP switch selectable addressing.
- Reliability — all boards fully tested and burned-in
- FULL DOCUMENTATION — Schematics, layout, parts list, theory of operation, timing diagrams, and option selection.
- Guaranteed performance on parts and labor for one year.

MEASUREMENT systems & controls incorporated
867 North Main Street
Orange, California 92668
Telephone: (714) 633-4400

For the above products see your local dealer or order directly.

ORDERS — BA, VISA, MASTER CHARGE, money orders, or personal checks. Please allow 17 days for checks to clear bank. California residents please add 6% sales tax to your order.

All orders shipped postpaid. All orders in U.S. funds. Please add 10% on all orders outside the U.S.A. and Canada.
Figure 8: Parallel processing in place: the multiwrite function. New logic black boxes have been added to the CE (chip enable) and the WE (write enable) inputs of our memory blocks to turn them into CAPP (content addressable parallel processors), which Foster (see bibliography, part 1) has defined as associative memories with parallel write ability. Without recourse to address, we can change the contents of any previously selected blocks, whose tags are 1. When the multiwrite responders command is executed, only the chip enables of those blocks whose tags are on are activated. The write enable is also activated during multiwrite. The value of the addressed byte in all selected blocks is changed to the contents of the comparand bus. The tags are unaffected (no SAMPLE signal is present). Without knowing the addresses of the blocks in our selected subset, we are able to change their contents in place. Notice this change can be common data (mark all engineers in our file for a $100 bonus) or specific (show 550 parts on hand for stock item #36574).

<table>
<thead>
<tr>
<th>Access Type</th>
<th>Type</th>
<th>Address</th>
<th>Resulting Access Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEM WRITE</td>
<td>Hole or other</td>
<td>FNCODE OFFSET</td>
<td>1 of 16 associative functions. Random access memory write.</td>
</tr>
<tr>
<td>MEM READ</td>
<td><16 bit address></td>
<td></td>
<td>Random access memory read; any memory in hole space must be read only.</td>
</tr>
</tbody>
</table>

Derivation of Associative Commands

<table>
<thead>
<tr>
<th>Address</th>
<th>Resulting Access Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>A15 thru A12</td>
<td>HOLE FNCODE OFFSET</td>
</tr>
</tbody>
</table>

Table 3: A clarification of the random access and associative operation definitions.
As your introduction to

The Library of Computer and Information Sciences
Choose either

This $60.00 classic for only $3.95. A saving of 93%

ENCYCLOPEDIA OF COMPUTER SCIENCE
Edited by Anthony Rolston and Chester L. Rek. More than 1550 outside pages of information on every aspect of computer science—from algebra to automata theory, from basic terminology to string-processing languages. Articles by 208 experts. Over 700 charts, tables, graphs, and diagrams. Counts as 3 of your 3 books.

Any other 3 books for only $3.95 (values to $59.85)

If you will join now for a trial period and take only 3 more books—at a handsome discount—over the next 12 months.

<table>
<thead>
<tr>
<th>Title</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>A DISCIPLINE OF PROGRAMMING. Edgar W. Dijkstra. Impressive new programming tools to solve problems that range from the everyday to the complex</td>
<td>$10.95</td>
</tr>
<tr>
<td>THE PSYCHOLOGY OF COMPUTER PROGRAMMING. Gerald M. Weinberg. The classic study of computer programming as a human activity</td>
<td>$10.95</td>
</tr>
<tr>
<td>DISTRIBUTED PROCESSING AND DATA COMMUNICATIONS. Daniel R. McGivney. The technical and organizational components of data communications. Counts as 2 of your 3 books.</td>
<td>$20.75</td>
</tr>
<tr>
<td>CDP REVIEW MANUAL: A Data Processing Handbook. 2nd Ed. Lordi and Stien. In-depth coverage of data processing equipment, computer programming and software, data processing management, and mathematics and statistics. Softcover</td>
<td>$10.95</td>
</tr>
<tr>
<td>PLI/STRTUCTURED PROGRAMMING, 2nd Edition. Joan K. Hughes. Covers the full language with detailed case studies, practice problems, coding explanations, a glossary of over 300 terms, and an extensive chart listing of all PL/I keywords.</td>
<td>$10.95</td>
</tr>
<tr>
<td>DEBUGGING SYSTEM 360/370 PROGRAMS USING ON and VS STORAGE DUMPS. D. H. Rindfleisch. A superior guide to storage dump debugging. Illustrations, examples, sample dumps</td>
<td>$19.95</td>
</tr>
<tr>
<td>SYSTEM/370 JOB CONTROL LANGUAGE. Gary Delph Brown. Includes descriptions of hardware devices and access methods and references to many useful JCL features. Softcover</td>
<td>$12.50</td>
</tr>
<tr>
<td>DIGITAL SYSTEMS: Hardware Organization and Design. Hill and Peterson. A classic reference on hardware organization and system architecture. Counts as 2 of your 3 books.</td>
<td>$23.95</td>
</tr>
<tr>
<td>IMS PROGRAMMING TECHNIQUES: A Guide to Using DL/I. Kapp and Lehman. Spells out specific techniques to write application programs in an IMS DL/I database environment.</td>
<td>$17.95</td>
</tr>
<tr>
<td>HIGH LEVEL CODING PROGRAMMING. Gerald M. Weinberg et al. Introduces "sheltered programming" concepts, stresses modular design and maintainability of code. Counts as 2 of your 3 books.</td>
<td>$21.95</td>
</tr>
<tr>
<td>I/O DESIGN: Data Management in Operating Systems. Freeman and Perry. Covers I/O devices, channel programming, device allocation, control statements, data organization and staging, and much more.</td>
<td>$18.95</td>
</tr>
<tr>
<td>MINICOMPUTERS: Low Cost Computer Power for Management. Revised Edition. Donald F. Kenney. How to use minicomputers to cut data processing costs and set up more manageable information handling systems.</td>
<td>$14.95</td>
</tr>
</tbody>
</table>
Figure 9: Nonassociative read responder techniques. In part 1 an associative technique was described to read the contents of responders (without addresses) when there were more than one. It consists of a daisy chain connecting all the tags in the memory into a priority list. During an associative read, only the highest priority responder (the first responder) could place its contents on the bus to the processor. A companion function, next, to turn off the first responder, and the query function to determine if there are any more responders, completed the description of necessary hardware. Implementing these priority chains would require at least three more different logic gates per memory word and, although fast (and address free), the design becomes rather bulky.

When a random access address structure is placed on the memory words (as it usually is to facilitate loading and unloading of the memory), a nonassociative technique for reading responders is available. The responders may be read serially by taking advantage of their address structure. The tags of all blocks from least to highest in address may be sent in batches to the central processor through input ports. The processor can then scan the tags in sequence for the next (or first) responder, and quickly derive the responding block's address in preparation for a random access read. The tag input ports could also be arranged hierarchically, to speed search in cases where there are likely to be few responding words. Alternatively, all responders could first multwrite a 1 into a reserved flag bit in their memory block. Groups of tags could be ORed and the results for many groups sent to the processor through input ports. Finding a 1 in any bit of the input word tells the processor the group of blocks to search. A random access, serial scan of the flag bit for each block in that group determines exactly which one (or more) responded. A random access read then fetches the information desired. The query function, here, simply entails reading and testing the input words.
NEW! PET BUSINESS SYSTEM

The PET is now a truly sophisticated Business System with the Floppy Disk and Printer which makes an ideal cost efficient business system for most professional and specialized fields: medicine, law, research, engineering, education, etc.

PET 2001
- 16 or 32K Bytes Dynamic RAM
- 16K ROM Operating System
- 8" CRT
- Full-sized Business Keyboard
- Full Screen Editing
- Operating system will support multiple languages (BASIC, assembly)
- Machine Language Monitor
- 8K ROM Expansion Socket

PET 8½
- 80 column dot matrix
- Full PET graphics
- 8" inch paper

PET ELECTROSTATIC PRINTER 2021
- 8½ inch printer
- 12 inch paper

PET DOUBLE DRIVE FLOPPY DISK 2040 $1095
- 360 K bytes storage
- High-speed Data Transfer
- Flips into IEEE Port
- 6504 Microprocessor
- 8K ROM Operating System
- 8K ROM Encoding and Decoding
- 4K RAM
- Uses Single or Dual sided Disks

PET SINGLE DRIVE FLOPPY UNIT 2041 $595
- 160K bytes storage
- 171K ret user storage

PET DIRECTRIP BOX Add music and sound effects to your programs. Compose, play, and hear music on your PET. Completely self-contained (no wiring). Fress 3 programs including Star Wars theme, sound effects, etc. $39.

PET MADRONA
- 12" CRT
- 320K Storage
- Graphics only

PET 12" Video Monitor
- $125 with 8K unit
- $95 with 16K unit
- $65 with 32K unit

PET MINICOMBO
- 8½ inch printer
- 12 inch paper

PET MUSIC BOX
- Add music and sound effects to your programs.
- Compose, play, and hear music on your PET.
- Completely self-contained (no wiring).
- Free 3 programs including Star Wars theme, sound effects, etc. $39.

PET MAESTRO
- 64K RAM
- 94 Keys
- 100, 2 RS-232 Ports
- Dual floppy drive
- Keyboard and VIO line above

PET MAESTRO II
- 128K RAM
- 256K user storage
- 2 RS-232 Ports
- Keyboard and VIO line above

PET MAESTRO III
- 256K RAM
- 512K user storage
- 2 RS-232 Ports
- Keyboard and VIO line above

PET MAESTRO IV
- 512K RAM
- 1024K user storage
- 2 RS-232 Ports
- Keyboard and VIO line above

PET MAESTRO V
- 1M RAM
- 2048K user storage
- 2 RS-232 Ports
- Keyboard and VIO line above

PET MAESTRO VI
- 2M RAM
- 4096K user storage
- 2 RS-232 Ports
- Keyboard and VIO line above

PET MAESTRO VII
- 4M RAM
- 8192K user storage
- 2 RS-232 Ports
- Keyboard and VIO line above

PET MAESTRO VIII
- 8M RAM
- 16384K user storage
- 2 RS-232 Ports
- Keyboard and VIO line above

PET MAESTRO IX
- 16M RAM
- 32768K user storage
- 2 RS-232 Ports
- Keyboard and VIO line above

PET MAESTRO X
- 32M RAM
- 65536K user storage
- 2 RS-232 Ports
- Keyboard and VIO line above

PET MAESTRO XI
- 64M RAM
- 131072K user storage
- 2 RS-232 Ports
- Keyboard and VIO line above

PET MAESTRO XII
- 128M RAM
- 262144K user storage
- 2 RS-232 Ports
- Keyboard and VIO line above

PET MAESTRO XIII
- 256M RAM
- 524288K user storage
- 2 RS-232 Ports
- Keyboard and VIO line above

PET MAESTRO XIV
- 512M RAM
- 1048576K user storage
- 2 RS-232 Ports
- Keyboard and VIO line above

PET MAESTRO XV
- 1G RAM
- 2097152K user storage
- 2 RS-232 Ports
- Keyboard and VIO line above

PET MAESTRO XVI
- 2G RAM
- 4194304K user storage
- 2 RS-232 Ports
- Keyboard and VIO line above

PET MAESTRO XVII
- 4G RAM
- 8388608K user storage
- 2 RS-232 Ports
- Keyboard and VIO line above
Figure 10: Accessing the add-in associative memory. Only eight address bits (A7 thru A0) are used for associative memory accesses. Therefore, eight bits (A15 thru A8) are left to specify whether a memory access represents an associative access, and, if so, which function is involved. Let A11 thru A8 be the FN CODE (one of 16 functions) during an associative instruction. Comparison and multiwrite instructions need data supplied by the central processor. For these operations, the processor must execute a memory write. If the nonassociative (random access) technique for reading responders is used, all associative functions may be initiated by a processor memory write cycle. To distinguish between random access and associative operations, a 4 K byte "hole" is defined at some arbitrary 4 K boundary of address space. In general, a memory write to the hole indicates an associative function specified by A11 thru A8. A read of any byte in the hole is considered normal random access (although memory, if present, must be read only). Table 3 clarifies the definition of random access and associative operations. Figure 10 also illustrates the derivation of the mask and other signals used in previous diagrams. The mask, for example, can be implemented by a simple 8 bit output port.
PROGRAM DESCRIPTION

GALACTIC BLOCKADE RUNNER • AN EXCITING SPACE WAR GAME WITH GRAPHICS $9.95
SCI-FI GAME SAMPLER • 3 GAMES—LUNAR Lander—STAR MONSTER—SPACE BATTLE $7.95
R/T LUNAR LANDER • A REAL TIME LUNAR LANDER WITH GRAPHICS $7.95
MICRO-TEXT EDITOR • FORMAT TEXT—SAVE & LOAD TO TAPE—OUTPUT TO PRINTER $9.95
OTHELLO III • A STRATEGY BOARD GAME—PLAY AGAINST COMPUTER OR OTHERS $7.95
AIR RAID • A REAL TIME ARCADE TYPE SHOOTING GAME IN MACH. LANG. $14.95
MICRO-CHESS • PLAY CHESS WITH YOUR COMPUTER—VARIOUS LEVELS OF DIFF. $19.95
BRIDGE CHALLENGER • DON'T WAIT FOR OTHERS TO PLAY—YOUR COMPUTER'S READY $14.95
APPLE 21 • BLACKJACK WITH HIRES GRAPHICS $9.95
STAR WARS/SPACE MAZE • SCI-FI GAMES FOR THE APPLE $12.95
RENUMBER • RENUMBER YOUR BASIC PROGRAMS—RENUMBERS EVERYTHING $14.95
DISK RENUMBER • SAME AS ABOVE, BUT ON DISK $19.95
PILOT 2.0 • THE EDUCATIONAL LANGUAGE, IN MACH. LANG.—INC. EDITOR $14.95
PILOT 3.0 • THE DISK VERSION OF THE ABOVE $24.95
APPLE TALKER • YOUR APPLE SPEAKS! NO NEW HARDWARE REQUIRED $15.95
APPLE LISTENER • SPEECH RECOGNITION THE EASY WAY—GREAT WITH THE TALKER $19.95
TIC-TAC-TALKER • TIC-TAC-TOE USING SPEECH SYNTHESIS AND RECOGNITION $19.95
FORTRAN • FOR THE TRS-80—SEE MICROSOFT'S ADS $325.00
SYSCOP • MAKE BACKUP TRS-80 SYSTEM TAPES THE EASY WAY $9.95
ANDROID NIM-2 • GAME OF NIM WITH ANIMATED ROBOTS AND SOUND $14.95
SNAKE EGG • A BETTING GAME WITH ANIMATED SNAKES AND SOUND $14.95
LIFE 2 • 100 GEN. PER MIN. LIFE & BATTLE OF LIFE W/ANIMATION & SOUND $14.95
DCV-I • PUT SYSTEM TAPES ON DISK EVEN IF IN SAME MEM AS DOS $9.95
MUSIC MASTER • ENTER SHEET MUSIC—THE TRS-80 THEN COMPILES & PLAYS IT $14.95
DISK MUSIC MASTER • SAME AS ABOVE BUT ON DISK W/MANY SELECTIONS $24.95
TRS-80 CP/M • OPENS UP THE WHOLE WORLD OF CP/M SOFTWARE TO THE TRS-80 $150.00
PET ASTROLOGY • DOES ALL THE COMPUTATIONS FOR YOU $9.95
PERSONAL FINANCE PKG. • KEEPS TRACK OF CHECKS, BUDGET, COMPUTES INTEREST $9.95
TRS-80 DISK LIB. "A" • 9 PROGRAMS ON DISK—INC. BLOCK RON, OTHELLO ETC. $39.95
16K MEMORY UPGRADE FOR TRS-80, APPLE & SORCERER COMPUTERS $94.95
C-10 HIGH QUALITY DATA CASSETTES W/SCREW HOUSINGS 10/P $34.95
VERBATUM 5-1/2 INCH BLANK DISKETTES 10/P $10.00

10% OF IF YOU ORDER 3 SOFTWARE PACKAGES OR MORE

AVAILABLE FROM THESE FINE MICRO COMPUTER DEALERS

BYTE MAG 1979
NEW! THE ELECTRIC PAINTBRUSH by Ken Anderson for 4K Level I and II TRS-80s: Create the most dazzling graphics displays you have ever seen with a minimum of effort. The Electric Paintbrush is actually a simple 'language' in which you can write 'programs' directing your paintbrush around the screen—drawing lines, turning corners, changing white to black, etc. Once defined, these programs may be called by other programs or repetitively executed, each time varying the parameters of brush movement.

The machine language interpreter executes your programs almost instantaneously, allowing you to create real-time, animated graphics displays. The screen photos above are actually 'snapshots' of the action of a single one-line program over about thirty seconds. Mesmerize your friends with visual effects they've never seen on a TV screen! There's no limit to the variety of exciting and artistic graphics displays you can create with The Electric Paintbrush. And it's available now for only $14.95

MICROCHESS is the culmination of two years of chessplaying program development by Peter Jennings, author of the famous 1K byte chess program for the KIM-1. MICROCHESS 2.0 for 8K PETs and 16K APPLEs, in 6502 machine language, offers 8 levels of play to suit everyone from the beginner learning chess to the serious player. It examines positions as many as 6 moves ahead, and includes a chess clock for tournament play. MICROCHESS 1.5 for 4K TRS-80s, in Z-80 machine language, offers 3 levels of play (both Level I and Level II versions are included and can be loaded on any TRS-80 without TBUG). MICROCHESS checks every move for legality and displays the current position on a graphic chessboard. You can play White or Black, set up and play from special board positions, or even watch the computer play against itself! Available now at a special introductory price of only $19.95.

BRIDGE CHALLENGER by George Dulsman for 8K PETs, Level II 16K TRS-80s, and 16K APPLEs: You and the dummy play 4 person Contract Bridge against the computer. The program will deal hands at random or according to your criterion for high card points. You can review tricks, swap sides or replay hands when the cards are known. No longer do you need 4 people to play! $14.95

TIME TREK by Brad Templeton with sound effects for 8K PETs is Personal Software's answer to the proliferation of Star Trek games. This is a real time action battle game which requires fast thinking as well as sharp wits. There are no 'turns' in Time Trek: your scanners and ship's status report are constantly updated on the screen, and you can enter commands as fast as you can press the keys. You use your shields, phasers and photon torpedoes against enemy Klingons in a game where you can move, steer and fire at the same time. Star Trek aficionado or not, you'll appreciate the excitement and excellence of this real time game $14.95

WHERE TO GET IT: Look for the Personal Software™ display rack at your local computer store. Over 275 dealers now carry the Personal Software™ line—more than any other brand. If your local dealer doesn't already carry Personal Software™ products, ask him to call us at (617) 782-5932. Or you can order direct from us by check, money order or VISA/Master Charge. If you have questions, please call us first at (617) 782-5932. If you know what you want and have your VISA/MC card ready, you can use any telephone to dial toll free 1-800-325-6400 24 hrs In Missouri dial 1-800-342-6600 7 days

Or you can mail your order to the address below. To add your name to our mailing list for free literature and announcements of new products, use the reader service card at the back of this magazine.

Personal Software™
P.O. Box 136-B4, Cambridge, MA 02138
Simultaneous Input and Output for Your 8080

The process of I/O (input/output) in assembly language on a typical microcomputer system is rather crude. You input the status register and perform a logical AND with a mask consisting of one bit. If the result is not zero, you know the bit was on and the I/O device was therefore ready. In that case, you either input or output the data register, as appropriate. Otherwise, you loop back to input the status register again. On the 8080, it goes like this:

Input

\[
\text{ILOOP: IN ISTAT AN! IREADY JZ !LOOP IN IDATA RET}
\]

Output

\[
\text{OLOOP: IN OSTAT AN IOREADY JZ OLOOP OUT ODATA RET}
\]

where the quantities ISTAT, IDATA, OSTAT, ODATA, IREADY, and OREADY are what is called, in the world of big computers, “installation-dependent” (that is, they differ from one person’s 8080 to another). The first four of these might be given by:

\[
\text{ISTAT EQU 3 IDATA EQU 2 OSTAT EQU 3 ODATA EQU 2}
\]

describing a single channel for both input and output involving two ports, with port numbers 3 and 2. The other two might be given as:

\[
\text{IREADY EQU 1 OREADY EQU 2}
\]

to denote that the rightmost bit of the status register is the input-ready flag and the second bit from the right in this register is the output-ready flag. (Your dealer must supply you with these values, or show you how to find what they are, when you buy your system.) You can also make these into subroutines by adding a return as follows:

Input

\[
\text{IN ISTAT AN! IREADY JZ !LOOP IN IDATA RET}
\]

Output

\[
\text{IN OSTAT AN IOREADY JZ OLOOP OUT ODATA RET}
\]

This allows you to CALL INPUT to bring a newly input character into register A, or to CALL OUTPUT whenever you have a new character in register A that you want to put out.

The trouble with this kind of I/O is that it is not simultaneous. When you are doing input, that is all you are doing; when you are doing output, that is all you are doing. Meanwhile, your system is sitting uselessly in a loop, which it is performing several thousands of times, or sometimes (particularly in the case of input) several millions of times. What you need in order to increase the efficiency of your system, if you have 190 bytes of read only memory and 65 bytes of programmable memory to spare, is a simultaneous I/O package which allows you to do input, processing, and output, all at the same time.

The basic idea of simultaneous I/O is that of the queue. Any queue can be considered by analogy to a waiting line for a bus. (The story, told to this author second or third hand, is that in England people line up for buses in lines that look like spirals or, more
THE LEADER IN
MICROCOMPUTER EDUCATION
PRESENTS

BEST-SELLING BOOKS
Used by Universities and Industry worldwide (ten languages)

C200 - AN INTRODUCTION TO
PERSONAL AND BUSINESS COMPUTING
Rodnay Zaks, 250 pp
A comprehensive introduction to small computers, their
peripherals, and what to select. $6.95

C201 - MICROPROCESSORS: FROM
CHIPS TO SYSTEMS
Rodnay Zaks, 416 pp
The basic text on all aspects of microprocessors and
the assembly of a system. $9.95

C202 - PROGRAMMING THE 6502
Rodnay Zaks, 250 pp
A complete introductory programming text for the
6502. $10.95

D302 - 6502 APPLICATIONS BOOK
Rodnay Zaks, 200 pp
Connecting a 6502 board to the outside world: from
home alarm to music and industrial control. $12.95

C207 - MICROPROCESSOR
INTERFACING TECHNIQUES
A. LeSea & R. Zaks, 416 pp
How to interface a microprocessor to external devices:
from keyboard to ADC to floppy disk, including
standard busses. $11.95

X1 - MICROPROCESSOR LEXICON, 125pp
All the definitions of the microprocessor world in a con­
venient pocketbook format. $2.95

AVAILABLE AT BOOKSTORES, COMPUTER STORES, AND ELECTRONIC SHOPS EVERYWHERE!

SELF-STUDY COURSES ON CASSETTES
"The time-efficient way to learn"™

Self-study courses include two to eight audio-cassettes and a special book. They offer the fastest way to learn the topic covered
(from 1½ to two days). Highly effective.

1 - INTRODUCTORY - SHORT (2.5 hrs ea)
S1 - INTRODUCTION TO
MICROPROCESSORS $29.95
S2 - PROGRAMMING
MICROPROCESSORS $29.95
S3 - DESIGNING A MICROPROCESSOR
SYSTEM $29.95
S10B - INTRODUCTION TO PERSONAL AND
BUSINESS COMPUTING $21.90

2 - INTRODUCTORY - COMPREHENSIVE
(10 to 12 hrs ea)
S81 - MICROPROCESSORS $59.95
S82 - MICROCOMPUTER
PROGRAMMING $59.95

3 - SPECIALIZED (4.5 to 6 hrs ea)
S83 - 3-MILITARY MICROPROCESSOR
SYSTEMS $49.95
S85 - BIT-SLICE $49.95
S86 - INDUSTRIAL MICROPROCESSOR
SYSTEMS $49.95
S87 - MICROPROCESSOR
INTERFACING $49.95

TO ORDER
By Phone: 415 848-8233, Visa, M.C.,
Amer Express.

By mail: Include payment.
Shipping: add $1.50 per book (UPS) or
$6.50 (4th class - allow 4 weeks).
Double for cassettes and overseas.
Sales: In California add tax.

FREE DETAILED CATALOGUE

2020 Milvia Street
Berkeley, CA 94704
Tel 415 848-8233 Telex 336 311

NAME ___________________________________ POSITION _______________________
COMPANY ___
ADDRESS __
CITY __________ STATE / ZIP __________________
□ C200 □ C201 □ C202 □ C207 □ D202 □ S1 □ S2 □ S3 □ S10B □ S81 □ S82 □ S83 □ S85 □ S86 □ S87
□ Charge my □ Visa □ M.C. □ Amer Express
Number __________________ Exp. date __________
Signature ____________________ □ Send Catalogue

BYTE May 1979 165
informally, like the tail of a pig — a shape that is in turn called queue in French, presumably because it looks vaguely like the letter Q.) Consider the characters waiting for the bus as ASCII characters, rather than as local town characters, and consider the bus not as a bus in the technical sense, but (for output) as the actual output device — the teletypewriter video display terminal, Selectric terminal, or whatever. When your routine wants to output a character, this character goes on the end of the queue. It then has to wait for a while until the characters in front of it, which were entered earlier, get on the bus that is, until they are actually output — before it can be output.

The analogy with the bus is not a perfect one, because a real bus, when it comes along, takes everybody waiting for it all at once. A waiting line in a supermarket at the checkout counter would be a better analogy, because characters, like shoppers, leave the queue one at a time, as well as entering it one at a time.

For input, there is another queue, but this time the input device feeds new characters onto the end of the waiting line, and they come off the front — that is, board the bus — when they are actually used by the program which is asking for input. Several characters might be typed before they were actually used by the program, presumably because it is doing something else, such as a long computation. For output, the use of the queue is more common, because programs typically produce output characters much faster than they can actually be output; these characters enter the queue and are then output from it, one at a time, while the computer goes on to whatever it has to do next.

Before we discuss how a queue like this is actually implemented, let us digress a bit and answer one fundamental question: how are we to handle three programs going simultaneously — an input program, an output program, and something else which is reading input and writing output? There are two ways, one being the use of interrupts, the other making use of a technique called polling. We shall use polling, mainly because it does not require any special hardware (not all 8080 systems have a priority interrupt control unit) and also allows the user who might not have written his own monitor to use simultaneous I/O without interfering with any interrupt conventions which his monitor might have established.

Polling, in this case, assumes that the functions of watching the input device and the output device to see if they are ready, and taking appropriate action when they are ready, are subroutines of the user's program. We shall call them IPOLL and OPOLL. They are not to be confused with the ordinary I/O subroutines which supply input to the user's program and accept output from it; we shall call these IP and OP. To summarize the functions of our four routines:

(1) IP is called when the user's program wants an input character, and IP returns with that character in register A.
(2) OP is called when the user's program has a character to be output, and this character must be in register A when OP is called.
(3) IPOLL is called every so often (in a sense to be described more precisely below) to check whether the user has keyed in a new character that has to be placed on the end of the input queue.
(4) OPOLL is called every so often to check whether the output device has completed its processing of the previous character to be output; if it has, the next one is sent out.

IP and OP are both from IP and OP and from the user's program. When they are called from IP and OP, they employ an additional feature, not discussed above. IPOLL returns with the carry set if a new character is placed on the input queue, and clear otherwise. OPOLL returns with the carry set if a new character was removed from the output queue and put out, and clear otherwise. This information is used by IP and OP, but it is not needed by the user program. In fact, for the user program, there is no need to distinguish between the func-

Listing 1: Subroutine IP, written in 8080 assembler language and called when the user's program wants an input character. IP returns that character in the A register.

```
IP:  PUSH H ; SAVE HL REGISTER
     LHLD PIQ ; FRONT OF INPUT Q TO HL
     LDA EIQ ; END OF INPUT Q (LO) TO A
     CMP L ; COMPARE FIQ(LO) : EIQ(LO)
     JNZ IP3 ; IF UNEQUAL, Q NONEMPTY

IP2: CALL OPOLL ; Q EMPTY. TIGHT LOCP
      CALL IPOLL ; (KEEP POLLING I AND Q)
      JNC IP2 ; (UNTIL IN CHAR. RECEIVED)

IP3: MOV A,M ; FIRST IN Q CHAR. TO A
      PUSH PSW ; SAVE THIS CHARACTER
      INX H ; UPDATE FRONT OF INPUT Q
      MVI A,TIQ ; WRAPAROUND TEST (COMPARE
      CMP L ; FIQ(LO) AND TOP OF IN Q
      JNZ IP4 ; (LO) -- IF =, RESET TO
      MVI L,BIQ ; BOTTOM OF IN Q (LO)

IP4: SHLD PIQ ; PUT FIQ BACK IN MEMORY
      POP PSW ; RESTORE INPUT CHARACTER
      POP H ; RESTORE HL REGISTER
      RET ; OUT OF THIS ROUTINE
```
OUR $9.95 TUTOR!

A Computer Target Game
That Teaches Fractions While You Play!

Available on Hayden Computer Program Tapes for the PET!

Our $9.95 tutor is cheaper than a private tutor, but it’s as effective as one. It’s an active and fun way of learning a boring subject. It is ideal for home use and for the whole family. It can be played individually or with up to 9 competitors. And it’s completely ready to run on your PET personal computer!

CROSSBOW is an effective way of lifting the barriers that usually block understanding of fractions. It’s effective because CROSSBOW grabs attention and holds it through competitive spirit, while teaching fractions in a game situation!

Three levels of play challenge all ages from 7 to adult. Level 1 play teaches recognition of fractional quantities and allows the player to use a ruler to help determine the position of the target on the screen. Level 2 increases judgment of fractional quantities in that the ruler is not displayed until after 4 misses. Level 2 also accepts only fractions reduced to the lowest common denominator. Level 3 generates a fraction and requires the player to add or subtract a fraction. The resulting sum or difference is the position the arrow will strike.

All these features make CROSSBOW a valuable $9.95 tutor. It can prove to be invaluable to your children!

CROSSBOW
by Paul J. Breitenbach,
#02701, $9.95

Check out these other Hayden Computer Program Tapes:
• SARGON: A COMPUTER CHESS PROGRAM
• GAME PLAYING WITH BASIC
• THE FIRST BOOK OF KIM
• HOW TO BUILD A COMPUTER-CONTROLLED ROBOT
• MAYDAY!

Available at your local computer store!

Hayden Book Company, Inc.
50 Essex Street, Rochelle Park, NJ 07662
tions of calling IPOLL and calling OPOLL. It is enough to have a single subroutine, POLL, whose only function is to call IPOLL and OPOLL and then return; the subroutine POLL can then be called by the user program.

How often must the user program call the subroutine POLL? The answer is that the user program must be so organized that there is never a significant amount of real time during which POLL is not called. (How to ensure this will be described below.) The reason, of course, is that if this is not so, we could have the bad luck to push an input key during such a period of real time, and then, since POLL was not called, that input character will never be placed on the input queue and will therefore never be seen by the user's program. (Remember Murphy’s law: if anything can go wrong, it will.)

On output, the situation is not that bad, but if there were a significant amount of time during which POLL was not called, the output device would effectively be stopped during that period of time. If this were a recurrent phenomenon, you would see the output device starting and stopping in jerks, like a car that loses power.

The easiest way to call POLL often enough from the user’s program is to call POLL once in every loop and at least once in every subroutine. (If there is a subroutine call instruction in a loop, we do not need to call POLL explicitly in that loop, since POLL will be called by the called subroutine.) Or, for a more explicitly stated method, call POLL just before every return instruction and at every labeled instruction to which there is a backward jump. (That is, if the label is ALPHA, then somewhere later in the program there must be a jump to ALPHa.)

On output, we consider the characters that are actually in the queue; the shaded area shows the characters that are actually in the queue; the unshaded area shows the rest of the array in memory. To take a character off the front of the queue, assuming that FIQ is in register pair HL (which we can bring about by doing LHLD FIQ), we get the character to which FIQ points (by doing MOV A,M) and then increase FIQ by one (by doing INX H). This insures that POLL will be called often enough. [In a system with a real time clock, calling POLL from the interrupt handler for the clock every few milliseconds will accomplish the same end...]

We now discuss the way in which we implement a queue in memory, namely as a “wraparound array.” We start with an array IQ (input queue) of characters, together with two 16 bit pointers, or variables whose values are addresses, called FIQ (front of input queue) and EIQ (end of input queue). Figure 1 shows a typical configuration of the input queue. The shaded area shows the characters that are actually in the queue; the unshaded area shows the rest of the array in memory. Figure 1 shows a typical configuration of

Listing 2: Subroutine OP, called when the user’s program has a character to be output. This character must be in the A register when OP is called.

OP:	PUSH PSW	SAVE A-REGISTER
	PUSH H	SAVE HL-REGISTER
	LHLD EQQ	END OF OUTPUT Q
MOV M,A	PUT CHAR. ON END OF Q	
INX H	UPDATE END OF OUTPUT Q	
MVI A,TOQ	WRAPAROUND TEST (COMPARE	
CMP L	(EQQ) AND TOP OF OUT Q	
JNZ OP2	(LO) -- IF =, RESET TO	
MVI L,BOQ	BOTTOM OF OUT Q (LO)	

| OP2: | LDA FOQ | FRONT OF OUTPUT Q (LO) |
| JNZ OP4 | AFTER INCR., Q FULL |

OP3:	CALL IPOLL	Q FULL. TIGHT LOOP
CALL OPOLL	(KEEP POLLING I AND O)	
JNC OP3	(UNTIL SMALLER OUT Q)	

OP4:	SHLD EQQ	PUT EQQ BACK IN MEMORY
CALL OPOLL	MAKE SURE OPOLL AND IPOLL	
CALL IPOLL	ARE CALLED AT LEAST ONCE	
POP H	RESTORE HL-REGISTER	
POP PSW	RESTORE A-REGISTER	
RET	OUT OF THIS ROUTINE	
MicroSource™ is becoming the chosen business software producer. For all the right reasons. For example, before you ever see one of our applications, it’s field tested and refined. Another reason is our Operations Manuals. They’re called the finest in the industry... you never need special training to use MicroSource. One more reason: versatility. MicroSource works with different terminals and printers. You can use your favorite terminal, and choose between speed or print quality in a printer. Add in the rest of the story — like support, enhancements, low cost — and you get the picture.

If your dealer stakes his business on MicroSource software, can you afford to do less?

MoneyBelt — The Money Manager™
A modular in-house bookkeeping package with general ledger, accounts payable and receivable, and payroll. Buy at your own pace... one at a time or all at once. Less than $8000 (under $200/mo. on a financing lease) for all hardware and first module (suggested list). Horizon and other North Star disk based systems.

LedgerPlus — The Company Bookkeeper™
Also modular, with all the accounting modules of MoneyBelt, plus inventory, check reconciliation and mailing list. Each interacts with the others, but stands alone, too. A first for Vector Graphic, MZ, Apple and Micropolis disk based systems. Less than $8000 (under $200/mo. on a financing lease) for all hardware and first module (suggested list).

Other business software packages by MicroSource: AutoScribe — The Paperwork Manager™, Bookkeeper — The Office Accountant™, TimeKeeper — The Time Accountant™.

MicroSource
1425 W. 12th Place • Tempe, Arizona 85281 • (602) 894-9247 • Cable: MICROAGE
Telex: 165 033 (MICRO AGE TMPE)
The following are trademarks of The Phoenix Group, Inc.: MicroSource, AutoScribe, Bookkeeper, MoneyBelt, LedgerPlus, TimeKeeper.
DEALERSHIPS STILL AVAILABLE

Circle 228 on inquiry card.
(since these are the two cases in which special action has to be taken). By adopting the convention illustrated in figure 1, both of these conditions can be sensed by testing for $\text{FIQ} = \text{EIQ}$. Of course, the entire setup of figure 1 has to be duplicated for the output queue EOQ and its two associated pointers FOQ and EOQ.

Let us make the simplifying assumption that each queue is entirely within one 256-byte page (from hexadecimal addresses xx00 through xxff for some hexadecimal value of xx). This means that we can compare register pair HL with the address of the top of a queue by simply comparing register L with the low-order eight bits of this address. On equality, we set register L only (register H does not change) to the low-order eight bits used to equal the address of the bottom of the queue. Here the top and the bottom refer to the array in memory, and are distinct from the front and the end as discussed above.

What happens when our queues get full? First of all, let us discuss how big we want the queues to be. The two queues and the four addresses FIQ, EIQ, FOQ, and EOQ must of course be in programmable memory, while the four routines IP, OP, IPOLL, and OPOLL can be in read-only memory. So to a certain extent it depends on how much programmable memory is available in your system. An input queue of n characters allows you to type n characters ahead of where the program is at any given moment, and an output queue of n characters allows your program to put out n more characters than have actually been output yet by the output device at any given moment. While the device is outputting these n characters, your system can be doing something else simultaneously. There is no reason for the input and the output queues to be the same size, and in a typical application you might be using 10 characters in the input queue and 55 characters in the output queue. A bit of experimentation here will satisfy you as to what is comfortable for your application.

When the output queue gets full, it means that the capacity of the queue for temporarily saving output characters has been used up. In that case we simply go back to what we used to do before we had simultaneous I/O—that is, wait for a character to be actually put out before we do anything else. Whenever the user's program puts a new character into the output queue, we perform our incrementation, as discussed above, and then check to see if the output queue is full ($\text{FOQ} = \text{EOQ}$). In that case, we go into a loop, calling IPOLL and OPOLL until OPOLL returns with the carry set. This indicates that OPOLL sensed output ready and put out a character—an operation that reduces the size of the output queue. The result is that, when we enter the output routine OP, the output queue will never be full, and, if $\text{FOQ} = \text{EOQ}$, we know that the output queue is not full but empty.

When the input queue becomes full, we are typing too fast. Any further characters which we type will not be read by the user's program. The only thing we can do in this case is to give the user a warning that this has happened, so that he will retyping the characters involved. Fortunately we can do this easily, with most output devices, by putting out a control-G (hexadecimal 07, or on some output devices 87) which will either ring a bell or put out a high-pitched beep. A variation on this system, which we use, involves putting out the control-G when the output queue is almost full (let us say, seven or fewer spaces remaining) so that the last few characters do not have to be retyped; the user simply stops typing for a while and waits for a decent interval.

A minor technical point: We cannot sound the bell simply by calling OP. Recall that calling OP simply puts a character on the output queue; it may be a second or longer before that character is actually put out. When we type a character that has to be retyped, however, we need an immediate indication of this fact. We therefore use a single-byte input alarm counter IAC which is normally zero. To specify a bell as above, we simply increment IAC

Listing 3: Subroutine IPOLL, called periodically to check whether the user has keyed in a new character that has to be placed at the end of the input queue.

```assembly
IPOLL: IN ISTAT ; GET STATUS BITS (IN)
ANI READY ; READY BIT ZERO MEANS
RZ ; NOTHING TYPED - OUT
PUSH H ; SOMETHING TYPED - SAVE
IN IDATA ; HL REG. AND INPUT IT
LHLD EIQ ; END OF INPUT Q TO HL
MOV M,A ; PUT CHAR. ON END OF Q
INX H ; UPDATE END OF INPUT Q
MVI A, TIQ ; WRAPAROUND TEST (COMPARE
CMP L ; EIQ(LO) AND TOP OF IN Q
JNZ IPOLL2 (LO) -- IF =, RESET TO
MVI L,BIQ ; BOTTOM OF IN Q (LO))

IPOLL2: LDA FIQ ; FRONT OF INPUT Q (LO)
SUB L ; TO A -- IF = EIQ (LO)
JZ IPOLL3 ; AFTER INCR., Q FULL
SHLD EIQ ; NOT FULL. RESTORE EIQ

IPOLL3: JNC IPOLL4 ; IF FIQ-EIQ IS NEGATIVE,
ADI LIQ ; ADD SIZE OF INPUT Q

IPOLL4: CPI FUDGE ; TEST IN Q WITHIN FUDGE
JNC IPOLL7 ; FACTOR (7) OF BEING
LXI H,IAC ; Pull. IF SO, BUMP INPUT
INR M ; ALARM COUNTER BY 1

IPOLL7: POP H ; RESTORE HL REGISTER
STC ; SET CARRY (CHAR. THERE)
RET ; OUT OF THIS ROUTINE
```

170 May 1979 © BYTE Publications Inc
A short time ago, Microsoft introduced TRS-80 FORTRAN—a complete ANSI-standard FORTRAN with macro assembler, linking loader, and text editor, all for only $350. The response has been overwhelming.

Many TRS-80 users even told us, “The assembly language development software alone is worth that price.” We think they’re right, of course, but we’ve made it an even better deal.

ANNOUNCING:
THE TRS-80 ASSEMBLY LANGUAGE DEVELOPMENT SYSTEM FOR $175.

For half the price of the TRS-80 FORTRAN Package, you can buy the TRS-80 ASSEMBLY LANGUAGE DEVELOPMENT SYSTEM, including:

EDIT-80 A fast, random access text editor that’s easy to use and loaded with features. Lets you insert, replace, print or delete lines; edit individual lines; renumber lines in a file; and find or substitute text.

MACRO-80 The best Z80 assembler anywhere. MACRO-80 supports a complete Intel-standard macro facility plus many other “big computer” assembler features: comment blocks, octal or hex listings, 8080 mode, titles and subtitles, variable input radix (base 2 to base 16), and a complete set of listing controls.

LINK-80 Loads your relocatable assembly language modules for execution and automatically resolves external references between modules.

CREF-80 Gives you a complete dictionary of program symbols, showing where each is defined and referenced.

The Microsoft TRS-80 FORTRAN Package is still available for $350. Or, for HALF PRICE, get the TRS-80 ASSEMBLY LANGUAGE DEVELOPMENT SYSTEM.

Either way, it’s a steal.

TO: Microsoft, 10800 N.E. 8th, Suite 819, Bellevue, WA 98004
☐ Send me the works! TRS-80 FORTRAN Package for $350.
☐ Send me half the works! TRS-80 Assembly Language Development System for $175.

☐ Check enclosed ☐ Master Charge ☐ VISA

Dealer Inquiries Invited
OPOLL: IN OSTAT ; GET STATUS BITS (OUT)
ANI OREADY ; READY BIT ZERO MEANS
RZ ; PORT STILL BUSY - OUT
LDA IAC ; GET INPUT ALARM COUNTER
DCR A ; AND DECREASE IT BY 1
JM OPOL L1 ; IF WAS ZERO, NO ALARM
STA IAC ; STORE DECREASED VALUE
MVI A,CTRLG ; CONTROL-G (BELL) TO A
RET ; ALARM AND EXIT

OPOL L1: PUSH H ; SAVE HL REGISTER
LHLD FOQ ; FRONT OF OUTPUT Q TO HL
LDA EOQ ; END OF OUT Q (LO) TO A
CMP L ; COMPARE FOQ (LO):EOQ(LO)
JZ OPOLL7 ; IF EQUAL, NOTHING IN Q
MOV A,M ; GET FIRST Thing IN Q
OUT ODATA ; AND PUT IT OUT
INX H ; UPDATE FRONT OF OUTPUT Q
MVI A,TOQ ; WRAPAROUND TEST (COMPARE
CMP L ; FOQ (LO) AND TOP OF OUT
JNZ OPOLL5 ; Q(LO) -- IF !=, RESET TO
MVI L,BOQ ; BOTTOM OF OUTPUT Q (LO)

OPOLL5: SHLD FOQ ; PUT FOQ BACK IN MEMORY
POP H ; RESTORE HL REGISTER
STC ; SET CARRY (WORK DONE)
RET ; OUT OF THIS ROUTINE

Listing 4: Subroutine OPOLL, called periodically to check whether the output device has completed its processing of the previous character to be output. If it has, the next character is sent out.

FIQ: DS 2 ; FRONT OF INPUT Q (2 BYTES)
EIQ: DS 2 ; END OF INPUT Q (2 BYTES)
POQ: DS 2 ; FRONT OF OUTPUT Q (2 BYTES)
EOQ: DS 2 ; END OF OUTPUT Q (2 BYTES)
IAC: DS 1 ; INPUT ALARM COUNTER (1 BYTE)
LIQ EQU 36 ; LENGTH OF INPUT Q
LOQ EQU 36 ; LENGTH OF OUTPUT Q
IQ: DS LIQ ; INPUT Q (SINGLE PAGE)
OQ: DS LOQ ; OUTPUT Q (SINGLE PAGE)
BIQ EQU IQ MOD 256 ; BOTTOM OF INPUT Q (LO)
BOQ EQU IQ MOD 256 ; BOTTOM OF OUTPUT Q (LO)
T1Q EQU BIQ+LIQ ; TOP OF INPUT Q (LO)
T0Q EQU BOQ+LOQ ; TOP OF OUTPUT Q (LO)
ISTAT EQU 3 ; INPUT STATUS PORT
OSTAT EQU 3 ; OUTPUT PORT
IDATA EQU 2 ; INPUT DATA PORT
ODATA EQU 2 ; OUTPUT DATA PORT
IREADY EQU 2 ; MASK FOR INPUT READY
OREADY EQU 1 ; MASK FOR OUTPUT READY
CTRLG EQU 7 ; CONTROL-G (SOMETIMES 87H)
IFUDGE EQU 7 ; INPUT FUDGE FACTOR

Listing 5: Suggested data definitions.

INIT: LXH H,IQ ; BOTTOM OF INPUT Q IS
SHLD FIQ ; INITIAL VALUE OF FRONT
SHLD EIQ ; AND END OF INPUT Q
LXI H,Q ; BOTTOM OF OUTPUT Q IS
SHLD FOQ ; INITIAL VALUE OF FRONT
SHLD EOQ ; AND END OF OUTPUT Q
XRA A ; ZERO IS INITIAL VALUE
STA IAC ; OF INPUT ALARM COUNTER

Listing 6: Initialization of the system.
5 reasons why you should not buy the electric pencil II™

Check the appropriate box(es):

☐ You love typing the same copy 20 thousand times a day.
☐ Your secretary can type 250 words per minute.
☐ You're dying to spend $15,000 on a word processing system, just for the tax investment credit.
☐ All your capital assets are tied up in a 10-year supply of correction fluid.
☐ You never commit a single thought to paper.

If you have checked one or more boxes, you do not Need The Electric Pencil. On the other hand, you may want to join the thousands of people who haven't checked a single box.

The Electric Pencil II is a Character Oriented Word Processing System. This means that text is entered as a string of continuous characters and is manipulated as such. This allows the user enormous freedom and ease in the movement and handling of text. Since line endings are never delineated, any number of characters, words, lines or paragraphs may be inserted or deleted anywhere in the text. The entirety of the text shifts and opens up or closes down or pulled up in a wrap around motion with right and left justified columns. The Diablo versions may be upgraded at any time by simply returning the original disk or cassette and the price difference between versions, plus $15 to Michael Shrayer Software. Only the originally purchased cassette or diskette will be accepted for upgrading under this policy.

Have we got a version for you?
The Electric Pencil II operates with any 8080/280 based microcomputer that supports a CP/M disk system and uses an Imsai V10, Processor Tech. VDM-1, Polymorphic VTI, Solid State Music V915B or Vector Graphic video interface. REX versions also available. Specify when using CP/M that has been modified for Micropolis or North Star disk systems as follows: For North star add suffix A to version number; for Micropolis add suffix B, e.g., SS-IIA, DV-II B.

Upgrading policy
Any version of The Electric Pencil may be upgraded at any time by simply returning the original disk or cassette and the price difference between versions, plus $15 to Michael Shrayer Software. Only the originally purchased cassette or diskette will be accepted for upgrading under this policy.

Attention: TRS-80 Users!
The Electric Pencil has been designed to work with both Level I (16K system) and Level II models of the TRS-80, and with virtually any printer you choose. Two versions, one for use with cassette, and one for use with disk, are available on cassette. The TRS-80 disk version is easily transferred to disk and is fully interactive with the READ, WRITE, DIR, and KILL routines of TRSDOS 2.1.

Wide screen video
Versions are available for Imsai V10 video users with the huge 80x24 character screen. These versions put almost twice as many characters on the screen!!

Demand a demo from your dealer!
Give them the Gift of Life

ST. JUDE CHILDREN'S RESEARCH HOSPITAL
Danny Thomas, Founder

St. Jude Children's Research Hospital is the only research institution dedicated solely to the conquest of catastrophic diseases of childhood.

In less than twenty years, the knowledge and new treatment procedures developed there have brought hope to suffering children who once would have been called incurable.

This knowledge is freely shared with pediatricians and physicians all over the world. Children admitted to St. Jude Children's Research Hospital study programs receive total medical care without cost.

This unique hospital needs help to continue. Inflation keeps eating away at the value of the dollar and increases the cost of operation. At the same time, the very success that allows children under its care to live longer means that St. Jude must provide free care to an increasing number of patients.

Please join in this effort to save children everywhere. Write: ALSAC-St. Jude Children's Research Hospital, 539 Lane Ave., Memphis, TN 38105 for further information.

Please give these children the Gift-of-Life by sending a tax-deductible gift.

Computer Chess Report

The ninth annual North American Computer Chess Championship held at the convention of the Association for Computing Machinery December 1978 produced a new champion program. The Belle system, developed at Bell Laboratories by Ken Thompson, emerged with four wins in the Swiss System Tournament and with top honors.

Belle was seeded fourth in the tournament, and faced defending champion program Chess 4.7, the perennial favorite written by David Slate and Larry Atkin of Northwestern University, in the second round. This match was generally thought to be the finest game of the entire event. Only the programs "knew" what was going on; neither Robert Byrne nor David Levy, both highly skilled chessmasters, could even tell which program was winning.

A complete table of tournament results is reproduced here. The table contains blank entries because the 4 round Swiss System does not have each program play against every other program. A clear winner is produced, but the relative ranking of contestants finishing in the middle of the pack is indeterminate. The seeding of entries, performed by Dr Monroe Newborn, was fairly accurate; only three game results were contrary to that predicted by the seeding.

Two programs in the event were written for microprocessors. Sargon, for the 2 - 80, and Mike, for the 6800, competed against programs executing on impressively large computers. Much jest was made over the fact that Sargon, running on a Wave Mate Jupiter computer, defeated the program Awit, which was running on a huge Amdahl 470 system.

Awit had its problems, many of which were caused by attempts to run the program on several different machines during the tournament. The saddest hard luck entry, however, was the Brute Force program. It was plagued with system crashes, program bugs (it couldn't handle en passant pawn captures made in just a particular way), and malfunctioning "patches" to the program bugs. Brute Force lost its second round game in three different ways.

A speed chess tournament pitting human chess players against Chess 4.7 was held as an adjunct to the main event. The machine won two "5-minute" games from Mark Diesen, one of the fast rising young stars of American chess. Robert Byrne beat the machine twice, but in "10-minute" games. The programmers were honored to have had the program play a speed game against Edward Lasker, at 93 years of age the grand old man of chess. The computer was not awed; it won the game.

Chess Endgame Research and Developments

Ken Thompson, the programmer of Belle, has written other programs which specialize in playing chess endgames. One program plays the endgame of King and Queen versus King and Rook. In late December 1978, Walter Browne (see "Grandmaster Walter Browne versus Chess 4.6," January 1979 BYTE, page 110) played this endgame against the machine.

Browne played White, having the material advantage. The computer, playing a previously unknown defensive method, tenaciously defended its "theoretically lost" position. According to the rules of chess, Browne had to capture the Rook within 50 moves after the start of the exercise, or the game would be declared drawn.

The initial position was chosen to be the worst possible position for the computer's Black pieces. It is highly significant that despite his best efforts,
Browne was only able to capture the Rock exactly on move 50. This enabled Browne to quickly win the game and a $100 wager he had riding on it, but he was not able to find the win in 31 moves predicted by the program.

In his chess programs Thompson uses a Digital Equipment Corp PDP-11 which has been outfitted with two special purpose hardware devices. One generates possible moves, and the other evaluates positions.

Land Identification and Information Management System

The San Diego County Department of Transportation has recently formed a task force whose objective is to formally define a proposed LIMS (Land Identification and Information Management System).

The collection, analysis and display of land related information, particularly in map form, is a significant part of every day county operations, not only in San Diego or California, but nationwide. In the United States, county governments are the geographic and political units for land information and record keeping. Most land use recording and mapping systems today are unorganized and uncoordinated, having evolved from antiquated systems which have changed little since the days when America was still expanding westward. The current systems used in processing, storage, and subsequent use of this data pertaining to land use, acquisition, assessment, and development are proving to be costly and inefficient.

San Diego County's LIMS Task Force is preparing to develop a land identification system which will combine these efforts into a single, comprehensive and cost-effective system. High-speed, high capacity computer technology, which will permit increased data storage, rapid access to this data, and automated display and printout of the desired map-featured products is now available. The system would provide a central repository of all geographically oriented information in the county, and a single comprehensive file of land related data.

San Diego County is approaching the data input problem in a way that is significantly different from previously proposed or developed automated mapping systems. The innovative method of data input envisioned for the LIMS project will utilize inputs based on engineering calculations, in lieu of digitized inputs. This process will produce end results which represent real world geographic values instead of digitized map data.

The study will examine the inefficiencies of the current land records keeping systems, prepare new system design parameters, evaluate alternative systems, and recommend a final design with organizational, funding, and implementation plans. When implemented LIMS should serve such other county departments as the planning, assessment, records, and registry of voters departments. Additional users are expected to be the municipalities within the county, state and federal agencies located in the county, and land related businesses in the private sector.

For further information on the LIMS Project in San Diego County, contact Kenneth E. Pele, LIMS Task Force Director, at (714) 565-5297.

A Call For Educational Material

The Florida Educational Computing Project, which is supported by the state of Florida, has recently approved a project for the evaluation and implementation of a microcomputer based instructional computing system. As a member of the evaluation committee, I am writing to you so we may contact those readers who have education oriented software developed for microcomputers.

We are looking for both computer assisted instruction type material and administrative support programs (e.g., film library inventory control, word processing, statistical analysis, etc.) At this time we do not have the funds to purchase any software, and would therefore be willing to certify the return or destruction of any program material loaned to us.

Because of the variety of computers these programs may run on, we would prefer those which are not too dependent on a particular hardware configuration or operating system (if one is required). However, we would like to hear about any programs running on 6502, 8080, 80188, or Z80 machines.

The outcome of this project will be a catalog listing all the acceptable software packages we receive: their evaluation, and their source of distribution. This catalog will be available to all educational institutions in the state of Florida and to any other interested educational systems. Naturally we would like to share with those who contribute software for evaluation, possibly starting an exchange program among the participants.

Any help we receive would not only be greatly appreciated, but would accelerate the exposure, use, and knowledge of microcomputers in general. We feel that the microcomputer, because of its relative small size, low cost, and dedicated one-on-one responsiveness, will prove to be a powerful learning tool for the student and a valuable time-saving aid to the educator.

We hope, with the cooperation of your magazine and your readers, that our efforts will show that the microcomputer is "an idea whose time has come" in the field of education.

Those who have software they wish to submit for evaluation and inclusion in our catalog, or questions concerning our project may contact Dr. Nelson J. Towle, Sarasota County Schools, 2490 Halton St, Sarasota FL 33577, (305) 953-5000 extension 322.

LIMITED TIME

CASH DISCOUNT

(IL residents add 5% sales tax)

A full refund will be made for any product returned within 10 days.

X-perf Systems™ designed by Computex are integrated and cost efficient. Customer satisfaction is guaranteed. Write for information on technical details and applications software. Special prices to computer clubs. Computer systems catalogue $1.

(312) 684-3183

COMPUTEX

"The Computer Experts"

5710 Drexel Avenue
Chicago, IL 60637

Sales & Service

Circle 73 on inquiry card.

New Micro-Engine Microcomputer

16-bit P-code CPU

PASCAL PROGRAMS EXECUTE 5X FASTER THAN ON SIMILAR CPU's

$2695* READY TO RUN

$2995 List price

$2949 COD (25% down)

STANDARD:

- 16-bit P-code CPU
- 64K bytes RAM
- Floppy disk controller
- Full DMA
- Floating point hardware
- 2 serial I/O ports
- 2 parallel I/O ports
- Pascal & Basic compilers, text editor, file manager, CPU & memory diagnostics, symbolic Pascal debugger

$1795* Without case & power supply

$1995 List price

$1949 COD (25% down)

10% DOWN, GUARANTEES PRIORITY & PRICE

PERKIN-ELMER (Model 588)

$799* List price $956 COD (25% down) $899

$695* SHUGART (Model SAS88)

$755 List price

$719 COD (25% down)

- LIMITED TIME -

CASH DISCOUNT

(IL residents add 5% sales tax)

A full refund will be made for any product returned within 10 days.
Queuing Theory,
The Science of Wait Control

Part 2: System Types

In part 1 we discussed the computer implementation of row and circular queues. Now, let us take a look at the structure of queues in the real world and see if they can be fitted to our previous programs. In the following discussion, the word "queue" refers to the waiting line in the system. The word "facility" refers to the service facility area located at the head of the queue.

System Types

There are four general types of queuing structures. The first, and simplest, is the single queue single facility system (figure 3). In this structure, there is one waiting line and one service area to be studied. A 1 pump gas station with one entrance is a real world example of this system.

We can extend this system to the single queue multifacility system (see figure 4). In this structure, customers line up in a single waiting line and are serviced at the first of a series of facilities. Upon departure from the first facility, the customers immediately enter another queue to await their turn at the second service facility. This insertion and deletion continues until the customer is eventually deleted from the last facility and consequently the entire system. This structure is not unlike a cafeteria where you first line up for a sandwich, then line up for dessert, then for a drink, and finally, for the cash register.

Another basic queue structure is a multi-queue single facility system (see figure 5). This is the type of structure you see at a typical supermarket checkout counter area. Customers arrive at the queue with their purchases and choose one of many waiting lines. Each service facility offers the same service, that is, checking out the purchases, but each line holds different customers.

The multiqueue, multifacility system in figure 6 is a combination of the previously mentioned structures. A number of initial queues feed into a series of facilities. When a customer enters a particular queue, that customer travels from each facility within that subsystem until the eventual deletion from the system. Once a customer is entered into a subsystem, that customer causes that subsystem to behave as does the single queue multifacility queue system.

Any waiting line can be fitted to one of the four queue structures just mentioned. Try it the next time you’re waiting in a line.

After we are able to define the type of queue we have, the problem of analyzing the structure and arriving at answers most important in queuing problems is our next step. At this time we won’t concern ourselves with the difference between a single server or a multisever queue. The former represents a grocery store checkout counter arrangement where customers enter any line (usually the shortest or the fastest moving). The latter fits into the situation at a barbershop. One long line feeds into

Note: The numbering of the figures and listings is continued from part 1 in April 1979 BYTE, page 132.
a large service area where a number of barbers (ie: the servers) wait for you to come to them.

Let’s imagine a 1 pump gas station. At the start of the day, the operator (ie: server) opens the pump and waits for the first customer of the day to arrive. After some period of time, the first customer arrives and immediately drives up to the pump for service. This lucky first customer has no waiting time since the facility (at the head of the queue) is open and free of previous customers. The customer requires some period of time for service, and upon completion of this servicing time leaves the system. The operator sits back and waits for the next customer to arrive.

The second customer arrives, is immediately served, and leaves the system. If the only time a customer spends in a queue is the time required for service, no queue forms. What we need for a queue to form is to have customers arrive while there is a customer being serviced. Then a line will form with waiting customers. The queue will form based entirely upon the service requirements of the customer at the service area.

Randomness

A pure queuing problem requires that customer arrival and service times be different. In other words, while a customer is being serviced, other customers enter the system at random intervals during the simulation period to form a queue.

Formally speaking, the randomness of these arrivals follows a Poisson distribution and exponential interarrival times. Basically, this means that an arrival has an equal chance of arriving at the tail of the queue at any time during the simulation period of the problem. Typical nonqueue structures do not exhibit this random criterion. For example, a movie theater line is not a good queue problem because arrivals usually bunch up in a period 10 to 15 minutes before the new show starts. Therefore, during the simulation period, randomness is a key ingredient. Randomness causes the queue to lengthen and decrease based only on the service requirements of each customer.

Usually a customer must wait in a line at any business establishment before receiving the desired service. How the businessman treats these waiting customers is of prime importance as to the success or failure of most businesses. A typical customer will take one of the following actions when faced with a waiting line. The first action is to just wait in the line until service arrives. Once in line, that customer will remain in line until the end. The businessman has little worry over this customer because this customer will eventually be serviced and some profit will be realized.

A second alternative open to a waiting customer is for that customer to jockey from line to line. How many times have you seen this customer arrive at one queue, wait for a short period of time, move to another queue, wait again, then move again, and so on. This situation exists in the multiqueue system as is evidenced in a bank or large supermarket with many service facilities available for customer use.

The definition of a queue requires that arrivals to the queue be random.

Figure 5: Multiqueue single facility system. An example of such a system is the supermarket checkout area. The checkout area has several service facilities, each with a corresponding queue, that all offer the same service.

Figure 6: Multiqueue, multifacility system. This system has a number of initial queues feeding into a series of facilities. A customer entering a particular queue stays within that particular subsystem until leaving the system.
The previous two actions should cause little concern. The customer remains in the system and will eventually be served, thereby yielding the business some profit. However, what happens when the customer leaves the system after entering or refuses to enter the system initially?

If a customer has entered the system and leaves before being serviced, that customer has reneged. This situation occurs quite often when the waiting lines are moving at a rate far too slow for the customers within the lines. The customer and possible profits are lost to the businessman when a customer's action takes him or her on this route.

The last, and most damaging to the businessman, is the situation where a customer doesn't initially enter the system. When a customer sees a long and slow moving line, that customer usually balks. This customer is surely lost because he doesn't even give the businessman a chance at the very outset.

Since time is money, the important questions relating to queuing systems must be solved with relation to the time involved in waiting and servicing customers.

What is the maximum amount of time a customer waits in a line? What is the average amount of time all the customers are expected to wait in line before being served and deleted? What is the maximum amount of service time for any one customer during a typical period of time? Any measurement involving customer waiting time and customer service time is vital to the success or failure of a business.

A Queuing Problem

The program shown in listing 3 is that of a typical queuing problem utilizing the circular queue as the queuing structure. What we may have here is a hypothetical 1 pump gas station. The system will therefore be described as a single queue single facility structure.

Past experience gives us some of the input parameters required for the problem solution. For example, our queue is dimensioned to ten locations, so only ten cars can fit in our service area. This parameter can be adjusted using input parameter questions at the beginning of the program. In addition to the queue length, the program asks for the minimum and maximum typical service times. The arrivals per unit time determine how many customers are arriving each minute during the simulation. The arrivals per unit time determine how many customers are arriving each minute during the simulation. The simulation is halted after the first parameter value is reached, namely, the amount of time to run the model.
First Time Offer for the Micro Market

TEC® MODEL 501

DATA-SCREEN® TERMINAL

A NEW LOW COST, MICROPROCESSOR CONTROLLED CRT TERMINAL

QUALITY — APPEARANCE

ECONOMY

ONLY $995.00 (QTY 1)
DELIVERED CONT. USA

90 DAY WARRANTY GUARANTEES YOU YOUR EQUIPMENT WORKS PROPERLY

1 YEAR EXTENDED WARRANTY AT SPECIAL RATES

Go First Class

✓ Our Specifications Before You Buy

<table>
<thead>
<tr>
<th>DISPLAY</th>
<th>SPECIFICATIONS</th>
<th>INTERFACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCREEN CAPACITY, CHARACTERS</td>
<td>2000</td>
<td>DATA FORMAT</td>
</tr>
<tr>
<td>CHARACTERS PER LINE</td>
<td>80</td>
<td>DATA BITS</td>
</tr>
<tr>
<td>NUMBER OF LINES</td>
<td>25</td>
<td>DATA BIT B</td>
</tr>
<tr>
<td>SCREEN</td>
<td>P4 phosphor (white)</td>
<td>PARITY</td>
</tr>
<tr>
<td>TUBE SIZE (DIAGONAL)</td>
<td>12 inches (30.4 cm)</td>
<td>Odd, even or deleted with error displayed as DLE</td>
</tr>
<tr>
<td>VIEWING AREA</td>
<td>54 square inches (137.1 cm)</td>
<td>STOP BITS</td>
</tr>
<tr>
<td>CHARACTER SIZE</td>
<td>0.20" high x 0.8" wide (5.08 mm high x 2.03 mm wide)</td>
<td>DATA TRANSFER RATE</td>
</tr>
<tr>
<td>REFRESH RATE</td>
<td>60 Hz (50 Hz available)</td>
<td>50, 75, 110, 134.5, 150, 300, 600, 1200, 1800, 2000, 2400, 3600, 4800, 7200, 9600 BAUD</td>
</tr>
<tr>
<td>SCAN METHOD</td>
<td>Raster</td>
<td>REFRESH RATE</td>
</tr>
<tr>
<td>CHARACTER GENERATION</td>
<td>5 x 7 character in an 8 x 10 dot matrix</td>
<td>60 Hz (50 Hz available)</td>
</tr>
<tr>
<td>CURSOR</td>
<td>Blinking block</td>
<td>POWER REQUIREMENTS</td>
</tr>
<tr>
<td>MEMORY</td>
<td></td>
<td>Model 501 - 115 volts, 60 Hz, 100 watts nominal</td>
</tr>
<tr>
<td>TYPE</td>
<td>Random Access Memory</td>
<td>Model 502 - 230 volts, 90 Hz, 100 watts nominal</td>
</tr>
<tr>
<td>CAPACITY</td>
<td>2000 characters</td>
<td></td>
</tr>
</tbody>
</table>

OPERATOR CONTROLS

- POWER ON/OFF SWITCH: On rear of unit
- BRIGHTNESS CONTROL: On rear of unit

POWER REQUIREMENTS

- Model 501 - 115 volts, 60 Hz, 100 watts nominal
- Model 502 - 230 volts, 90 Hz, 100 watts nominal

NATIONAL DISTRIBUTOR FOR

DEALER NETWORK IS NOW BEING SET UP — YOUR INQUIRY IS INVITED

3S SALES, INC. P.O. Box 45944 Tulsa, OK 74145

918 - 622-1058

Circle 364 on inquiry card.

BYTE May 1979 179
Listing 3: BASIC program that simulates a single queue single facility system such as a 1 pump gas station. The program incorporates several functions discussed in part 1.

```
1000 REM
1010 PRINT "MINUTES TO RUN SIMULATION=";
1020 INPUT M
1030 PRINT "MAXIMUM ARRIVALS/UNIT TIME=";
1040 INPUT A2
1050 PRINT "MINIMUM SERVICE TIME=";
1060 INPUT S2
1070 PRINT "MAXIMUM SERVICE TIME=";
1080 INPUT S3
1090 PRINT "QUEUE LENGTH=";
1100 INPUT H2
1110 PRINT "INPUT 1 FOR RUNNING OUTPUT, ELSE INPUT 0:";
1120 INPUT P
1130 C = 0
1140 C2 = 0
1150 C3 = 0
1160 C4 = 0
1170 M2 = 0
1180 M3 = 0
1190 S4 = 0
1200 H = H2
1210 T = H2
1220 FOR J = 1 TO H2
1230 Q(J) = -9
1240 NEXT J
1250 GOTO (T) = 0
1260 T = T - 1
1270 GOSUB 1610
1280 FOR J = 1 TO M
1290 FOR J2 = 1 TO H2
1300 IF Q(J2) = -9 THEN 1330
1310 C = C + 1
1320 Q(J2) = Q(J2) + 1
1330 NEXT J2
1340 C2 = C2 + C
1350 IF C < < C3 THEN 1370
1360 C3 = C
1370 C = 0
1380 IF P = 0 THEN 1410
1390 PRINT "PICTURE OF QUEUE AFTER " ; J ; " MINUTES"
1400 GOSUB 1680
1410 IF Q(I) < M3 THEN 1520
1420 M2 = M2 + M3
1430 C4 = C4 + 1
1440 S4 = S4 + S
1450 IF P = 0 THEN 1470
1460 GOSUB 1730
1470 GOSUB 2110
1480 GOSUB 1610
1490 IF P = 0 THEN 1520
1500 PRINT "PICTURE OF QUEUE AFTER DELETE"
1510 GOSUB 1680
1520 A3 = 1
1530 A = INT (RAND (1) * A2)
1540 IF A3 > A THEN 1580
1550 GOSUB 1900
1560 A3 = A3 + 1
1570 GOTO 1540
1580 NEXT J
1590 GOSUB 1730
1600 STOP
1610 S = INT (RAND (1) * 10) + (S3-9)
1620 IF Q(H) = -9 THEN 1640
1630 Q(H) = 0
1640 M3 = Q(H) + S
1650 IF P = 0 THEN 1670
1660 PRINT "REQUIRED SERVICE TIME=" ; S
1670 RETURN
1680 FOR J2 = 1 TO H2
1690 PRINT Q(J2)
1700 NEXT J2
1710 PRINT "TAIL=" ; T ; " HEAD=" ; H
1720 RETURN
1730 PRINT C4 ; " FULLY SERVED CUSTOMERS IN " ; J ; " MINUTES"
1740 PRINT "MAXIMUM CUSTOMERS QUEUED=" ; C3
```

1750 MS = M2/C4
1760 PRINT "AVERAGE WAIT TIME=" ; MS
1770 SS = S4/C4
1780 PRINT "AVERAGE SERVICE TIME=" ; SS
1790 CS = C2/J
1800 PRINT "AVERAGE NUMBER OF QUEUED CUSTOMERS=" ; CS
1810 RETURN
1820 REM
1830 REM I N S E R T I O N R O U T I N E
1840 REM
1850 REM
1860 REM CHECK TAIL AND HEAD POINTER VALUES
1870 REM
1880 REM
1890 REM
1900 IF H = T GOTO 1970
1910 IF H < T GOTO 2030
1920 IF T >= 1 GOTO 2030
1930 IF H = H2 GOTO 2080
1940 Q(H2) = 0
1950 T = H2 - 1
1960 GOTO 2050
1970 IF T <> 0 GOTO 2000
1980 REM
1990 REM
2000 Q(T) = -9 GOTO 2080
2010 H = H2
2020 T = H2
2030 REM
2040 REM N O R M A L T A I L I N S E R T I O N
2050 REM
2060 REM
2070 REM
2080 REM
2090 REM
2100 REM
2110 REM
2120 REM D E L E T I O N R O U T I N E
2130 REM
2140 REM
2150 REM
2160 REM
2170 REM
2180 REM
2190 REM
2200 REM
2210 REM
2220 REM
2230 REM
2240 REM
2250 REM
2260 REM
2270 END
Conclusion

For the serious reader, the list of reference material includes those texts which place a good emphasis on queuing theory. After digesting the ideas in this article, plunge into these texts. Now I can return to my reading queue and get to those lines of books and articles waiting on my bookshelf. I'm sure that somewhere out there is a line waiting for you!

BIBLIOGRAPHY

Solve your floppy disk inventory problems... Use ours.

Kybe can ship any model floppy disk, data cassette or mag card in only two days.
You'll get the same high performance products sold by 3M, BASF, Memorex and other brand name suppliers. The same products we've built for OEM's for years. Why not order direct? Our full line is competitively priced, backed by an unconditional 90 day warranty and in stock for fast delivery.
Dealer inquiries invited.
Listing 1: The Digits program, written for the Texas Instruments SR-52. The object of the game is to guess a number generated randomly by the calculator in the fewest number of guesses possible.

Program Listing

Commentary

000 LBL A' ; number of digits
002 4 STO 00 rtn
007 LBL E' ; truncate
009 (STO - .5)
015 EE INV EE rtn
019 LBL D' ; 10^10
021 10 INV log rtn
026 LBL + ; count matching
028 A' ; digits
029 LBL cos
031 9 SUM 00
035 (INDACLOO -
041 9 INV SUM 00
046 IND RCL 00)
051 INV fdro π
054 IND STO 00
058 1 SUM 19
062 LBL π
064 dsz cos rtn
067 LBL B ; respond to guess
069 prt fix 0
072 ÷ A' INV log
076 LBL sin
078 x 10 -
082 - E' IND STO 00 =
089 dsz sin
091 0 STO 19
095 SBR +
097 10 PROD 19
102 A' dsz x
105 LBL x
107 RCL 00 +
111 A' RCL 01 (
116 LBL 1'
118 IND EXC 00
122 INV fdro 2
125 IND EXC 00
129 LBL 2'
131 dsz 1'
133 + A' 0)
137 IND STO 00
141 SBR +
143 0 * STO 00
148 dsz x
150 RCL 19 INV fix
155 prt pap HLT
158 LBL E ; pick a number
160 fix 0 A'
163 LBL SUM
165 RCL 00 + 9
170 + STO 01
174 7 y^x 9 x RCL 99
181 ÷ D' - E' =
186 x D' > STO 99
192 9 INV log -
196 E' x 1
199 IND STO 01 -
204 07 1 - ; is it in range?
208 fpox SUM
210 dsz SUM
212 INV fix CLR HLT ; cleanup
215 LBL D ; seed for random
218 EXC 99 HLT ; note EXC is used

Instructions:

1. Enter program.
2. Start random number sequence by keying in a positive integer and pressing D.
3. For a new game, press E. In the initial configuration, the SR-52 selects four digits, all between 1 and 6, such as 2361 or 5335, then displays 0 (this takes about 120 seconds).
4. Key in your guess and press B. After a few moments (see below for approximate timing), SR-52 responds with a 2 digit number, where x (tens) is the number of digits in your guess which are in the right position, and y (ones) is the number of correct digits in the wrong position. For example, if the SR-52 had chosen 5335 and your guess was 5351, the response would be 21.
5. Repeat step 4 as many times as needed to determine the hidden number completely. If not using a TI PC-100 printer, you should keep a written record of guesses and responses. The object of the game is to use as few guesses as possible. Step 3 starts a new game.
6. Variation: the program is initially set for 4 digit numbers. For any other number (2 to 9) of places, set location 002 to the desired number, say by keying GTO A' LRN number LRN.
7. Variation: the program initially uses digits 1 thru 6. To use digits 1 thru r, enter r+1 in locations 204 thru 205, with leading 0 if r+1 is a 1 digit number. To use digits 1 thru 7, key GTO 204 LRN 08 LRN.

Digits Versus Codebreaker

The game described above is similar to Codebreaker (copyright 1976, Texas Instruments), which comes in the TI game library for the SR-52. Digits, however, permits repeated occurrences of a digit in the hidden number, and can be easily modified (steps 6 and 7 above) for different versions of the game.

The Program

The Digits program is shown in listing 1. Frequently used subroutines are placed at the front for improved speed. Subroutine
E shows one way to do truncation on the SR-52. A quick way to get powers of 10 is illustrated in D'. The "cycle" routine (locations 105 thru 149) cyclically permutes the digits of the guess entered with the following modification: any digits in the guess which were previously matched in the answer will have been set to 0, and these digits will not be moved. (Thus, 1234 becomes 4123, but 1034 becomes 4013.) The outer loop (105 thru 149) contains an inner loop (114 thru 132), and the program listing shows how the outer index is saved on the SR-52 operations stack when the inner loop is executing.

The random number formula (see listing commentary) is the one used in the TI basic library. Key D can be used between games to examine or restart the random sequence since it exchanges display contents with the random number in memory.

Response time depends on the width of the numbers used. As a rule, if you are using numbers with p decimal positions, the time in seconds from guess entered to response displayed will be \(\frac{5}{3}(p^2+p) \), which means it will take about 20 and 35 seconds for 3 and 4 digit numbers respectively, all the way up to 150 seconds for 9 digit numbers.

CP/M + TRS-80

The CP/M Operating System now available for Radio Shack's TRS-80

- Editor, Assembler, Debugger, and Utilities
- For 8080 and Z-80 Systems
- Up to four floppy disks
- Documentation includes:
 - CP/M Features and Facilities
 - CP/M Editor Manual
 - CP/M Assembler Manual
 - CP/M Debugger Manual
 - CP/M Interface Guide
 - CP/M Alteration Guide
 - CP/M System Diskette and Documentation (Set of 6 manuals) for $150.
- CP/M Documentation (Set of 6 manuals) only $25.

MAC Macro Assembler

- Compatible with new Intel Macro standard
- Complete guide to Macro Applications
- MAC Diskette and Manual for $150.

SID Symbolic Instruction Debugger

- Symbolic memory reference
- Built-in assembler/disassembler
- SID Diskette and Manual for $125.

TEX Text Formatter

- Powerful text formatting capabilities
- Text prepared using CP/M Editor
- TEX Diskette and Manual for $125.

High-Level Languages

- Basic
- Fortran
- Cobol
- Call or write for information

User's Group

- 35 disks with utilities, games and applications
- Call or write for information

FMG CORPORATION

P.O. Box 16020 • Fort Worth, TX 76133 • (817) 738-0251

CP M is a registered trademark of Digital Research Corp; TRS-80 is a registered trademark of Radio Shack.
Trigonometry
in Two Easy Black Boxes

About the Author

John A. Ball is a radio astronomer at the Center for Astrophysics, Cambridge MA. He has written a book entitled Algorithms for RPN Calculators published by Wiley.

If your computer can add, subtract, multiply, divide, calculate square roots, sines, cosines, tangents, arc sines, arc cosines, and arc tangents, then you are prepared to solve any trigonometry problem. However, if your computer lacks some of these trig functions, then this article will be helpful, as it shows how to use CORDIC techniques to program two “black boxes” (alias subroutines or processors) to perform trigonometric functions. As a bonus, you will find that some complex and important problems are easier with the two black boxes than with conventional trig functions.

Coordinate Rotations

Suppose we have a black box (call it BB 1 for “black box number one”) that performs rotations in Cartesian coordinates. Given \(x, y, \) and \(\theta \), BB 1 calculates \(x' \) and \(y' \) where:

\[
\begin{align*}
x' &= x \cos \theta - y \sin \theta \\
y' &= x \sin \theta + y \cos \theta
\end{align*}
\]

(Eq 1)

These are the standard equations for a rotation. They can be derived from figure 1. The sign convention on the angle \(\theta \) in these equations is such that the point (or vector) \(x, y \) rotates counterclockwise through an angle \(\theta \) in a stationary coordinate system, or alternatively, the coordinate system rotates clockwise through an angle \(\theta \) and the point is stationary. Interchanging the plus and minus signs in equations 1 gives the opposite sign convention for \(\theta \).

Many trigonometric problems are solvable using BB 1. The special case \(y = 0, x = R \), for example, gives:

\[
\begin{align*}
x' &= R \cos \theta \\
y' &= R \sin \theta
\end{align*}
\]

(Eq 2)

These are the equations for converting polar to rectangular coordinates. The special case \(y = 0, x = 1 \) gives:

\[
\begin{align*}
x' &= \cos \theta \\
y' &= \sin \theta
\end{align*}
\]

(Eq 3)

BB 1 will calculate sines and cosines, and from these the other trigonometric functions are easy.

Now suppose we have a second black box, BB 2, which rotates the given coordinates \(x \) and \(y \) through whatever angle is
SWITCHED-ON TRS-80
SOFTWARE

SYSTEMS... SUPPORT...

Using the Radio Shack TRS-80 as our base, we provide a full line of business-oriented software, plus products with the follow-on support necessary to insure a successful installation and ongoing operations.

Our program costs $100 for the documentation, an additional $50 for the software on magnetic tape, and/or another $100 for the software on diskette. We highly recommend that you subscribe on one form of media. In adopting this approach, we're going straight for the jugular (so to speak). Within the next year, we anticipate a very competitive market for business software relating to the TRS-80, and wish to establish ourselves immediately in a dominant position. In doing so, we are presuming over 1,000 participants in BIZ-80.

Pricing accordingly, we're sure BIZ-80 will become such a fantastic bargain that few serious businessmen intending to use a TRS-80 could possibly pass up the value offered. Really ... how could you pass this up?

We're sure you must be interested in just what getting...

be interested — you'll be
Well, just about

The Business Software People

The systems are professional quality products developed for the businessman using a TRS-80 microcomputer — they are well-documented from the customer's point of view, they all tie together, i.e., Order Processing feeds Accounts Receivable, etc.; and they work all the time. Rerun, operation and backup procedures, as well as start-up and first time run instructions are covered in detail, from the perspective of the first-time user. Easily followed step-by-step instructions guide you through a sample run with dummy data (provided with every system). Start running your system at once, without the need to stumble through it trying to create a file in order to understand how to use it. Periodically, we upgrade the documentation to reflect improvements and/or changes in the system caused by TRS-80 enhancements. The enhancements will be available at a nominal charge to cover distribution expenses. Updates are FREE to BIZ-80 subscribers.

Programs and systems are only as good as the documentation and people behind them. Participants in the one-year (max.) contract will receive:
1. 12 Systems—6 tape/6 disk
2. Support
3. Updates
4. Newsletters
Our software products are oriented to four levels of TRS-80 systems: System I-a stand-alone 16K Level I with one cassette tape System I-a 32K with DOS, optional printer (CRT oriented) and one disk drive System II-a 32K with DOS, line printer and two disk drives System III-a 48K with DOS, line printer, RS232 interface and three-plus disk drives. Remember, all these business systems tie together

The TRS-80 is a powerful tool for business management. We want to help you use this tool to your best advantage.

BIZ-80
17 Briar Cliff Dr. Milford, NH 03055
603-673-5144

Circle 28 on inquiry card.

Every thing you need! Within the year, you'll receive a disk based Inventory system, Accounts Receivable system, Accounts Payable system, General Ledger system, Sales and Payroll. At the same time, all six subjects will be covered for a tape-based system. Yes! Provisions have been made so that as your system upgrades, your data base will follow with a minimum of difficulty.

We're not talking about stripped-down systems, either. Elements of BIZ-80 are already prepared and have been sold to satisfied customers for as much as $150. The Name/Address system requires an entire diskette itself (over 50,000 bytes) with some optional subroutines relegated to yet another disk.

Our magazine, SoftSide, has proven it can be done: significant software can be offered at extraordinary prices, attracting a sufficient following to make the effort profitable.

BIZ-80 is not only competitive, but will set the standard by which value will be compared ... and that standard will be hard to meet.

The object of BIZ-80 is to develop systems that are easy to use, well-documented and include simple error-correction routines, will be inexpensive; can be used by the customer without the need for sophisticated computer-oriented personnel; existing employees and management can easily learn to operate.

Our goal is to ultimately provide the complete computer system with 1. Basic business programs on subscription basis 2. Special applications business programming on contractual basis

The TRS-80 is a powerful tool for business management. We want to help you use this tool to your best advantage.
Write faster in BASIC, FORTRAN, or COBOL

Document & modify more easily, too

Human-engineered to do the job better. Yes, you really can get flawless code faster, using the Stirling/Bekdorf™ system of software development tools with structured programming concepts. The 78P2, 78P4, and 78C1 are human engineered to reduce debug errors, improve debugging speed, and aid concept communication.

First, use the 78P2 Flowchart™ to lay out your original concept blocks. Then use it to write a finely detailed flowchart.

54% more logic cells than other flowchart forms, put far more of your program on each page. Each Flowchart has a full 78 logic cells, not just 30. This saves paper, and makes your finished flowcharts easier to understand. By seeing up to 27 extra steps of a program on each page, you comprehend program flow more clearly. You save money and storage space, too.

- Every matrix cell in the 7x11 matrix has a specific label to help you track branch points. When you write program documentation, having a separate reference point for each cell makes your program much easier to describe clearly.
- With Flowchart, you don’t need a shape template to draw remarkably regular logic symbols. Guides for the most used logic symbols are in each matrix cell so you draw most standard flowchart symbols onlby free-hand.

78P4 Print-Out Designers are next. When you finish flowcharting, lay out the printed reports your program will generate. Then when you code you blaze through the report generation segments right along with the rest of your program.

Unique 70x150 matrix accommodates even proportional spacing word processor formats. The 150-column width can handle practically any printer form. The 78P4 is big, 14½ x 22 inches, because we’ve scaled the cell size to human writing comfort, not machine print, giving nearly twice the character writing area of other printout design sheets.

Special 5-column area records the program line number of the code which creates each printed line. It shows, at a glance, exactly which line of code creates each line of your report, saving hours of needless search time when you must change a line of code (do you always have to, sooner or later?)

Every sheet of 78C1 gives you 2 form uses for the price of one. Use 78C1’s full 28 line 80 column grid to code regular program steps. Then for interactive or instructional sections, simply keep your characters within the appropriate CRT indicator lines, and you’ll automatically know where every character will show on your CRT screen.

28 line x 80 column coding capacity saves you 14 sheets out of every 100, compared to 24 line forms. 86 sheets hold more program steps than 100 sheets of any 24-line form, yet we offer full-size 6mm x 3mm grid blocks to give you complete freedom in planning and visual space between lines.

Works with your CRT display, no matter what brand you own. Equipped for both 15 line x 64 column and 24 line x 20 column display formats.

Available in three versions (one for BASIC languages, one for FORTRAN, another for COBOL). The 78C1 is so powerful we include a 7-page instruction manual with every order.

Every tool in the Stirling/Bekdorf system is surface-engineered to take both pen & pencil without blotting. Our tough, extra-heavy, 24- page paper is pure enough to use with critical magnetic ink character readers, and gives you crisp character action with pencil or plastic tip pen.

Every part of our system uses eye-comfortable soft blue grids. All grid rulings, tints, and division rules are reproduced in a special shade of blue, easy on your eyes even after hours of continuous programming. If you’re a professional programmer, you’ll particularly appreciate our improvement over the green lines you’ve been writing on.

3 ring binder is one more of our secrets for your success. All your notes, logic concepts, Flowcharts, code, CRT layouts, print-out designs, and documentation can be kept together, in order, in one place. When everything you create stays together, debugging and modification is much simpler.

Order your supply of the world’s most advanced software development tools, right now, before you hatch even one more bug.

78% more logic cells than other flowchart forms, put far more of your program on each page. Each Flowchart has a full 78 logic cells, not just 30. This saves paper, and makes your finished flowcharts easier to understand. By seeing up to 27 extra steps of a program on each page, you comprehend program flow more clearly. You save money and storage space, too.

- Every matrix cell in the 7x11 matrix has a specific label to help you track branch points. When you write program documentation, having a separate reference point for each cell makes your program much easier to describe clearly.
- With Flowchart, you don’t need a shape template to draw remarkably regular logic symbols. Guides for the most used logic symbols are in each matrix cell so you draw most standard flowchart symbols onlby free-hand.

78P4 Print-Out Designers are next. When you finish flowcharting, lay out the printed reports your program will generate. Then when you code you blaze through the report generation segments right along with the rest of your program.

Unique 70x150 matrix accommodates even proportional spacing word processor formats. The 150-column width can handle practically any printer form. The 78P4 is big, 14½ x 22 inches, because we’ve scaled the cell size to human writing comfort, not machine print, giving nearly twice the character writing area of other printout design sheets.

Special 5-column area records the program line number of the code which creates each printed line. It shows, at a glance, exactly which line of code creates each line of your report, saving hours of needless search time when you must change a line of code (do you always have to, sooner or later?)

Every sheet of 78C1 gives you 2 form uses for the price of one. Use 78C1’s full 28 line 80 column grid to code regular program steps. Then for interactive or instructional sections, simply keep your characters within the appropriate CRT indicator lines, and you’ll automatically know where every character will show on your CRT screen.

28 line x 80 column coding capacity saves you 14 sheets out of every 100, compared to 24 line forms. 86 sheets hold more program steps than 100 sheets of any 24-line form, yet we offer full-size 6mm x 3mm grid blocks to give you complete freedom in planning and visual space between lines.

Works with your CRT display, no matter what brand you own. Equipped for both 15 line x 64 column and 24 line x 20 column display formats.

Available in three versions (one for BASIC languages, one for FORTRAN, another for COBOL). The 78C1 is so powerful we include a 7-page instruction manual with every order.

Every tool in the Stirling/Bekdorf system is surface-engineered to take both pen & pencil without blotting. Our tough, extra-heavy, 24- page paper is pure enough to use with critical magnetic ink character readers, and gives you crisp character action with pencil or plastic tip pen.

Every part of our system uses eye-comfortable soft blue grids. All grid rulings, tints, and division rules are reproduced in a special shade of blue, easy on your eyes even after hours of continuous programming. If you’re a professional programmer, you’ll particularly appreciate our improvement over the green lines you’ve been writing on.

3 ring binder is one more of our secrets for your success. All your notes, logic concepts, Flowcharts, code, CRT layouts, print-out designs, and documentation can be kept together, in order, in one place. When everything you create stays together, debugging and modification is much simpler.

Order your supply of the world’s most advanced software development tools, right now, before you hatch even one more bug.
Many problems are simplified by being written directly in terms of coordinate rotations or rectangular to polar to rectangular coordinate conversions. Examples are conversions of coordinate systems in positional astronomy and problems in complex numbers, especially complex impedances in electronics.

CORDIC Techniques

Volder (1959) developed the original CORDIC (COordinate Rotation Digital Computer) technique for use in a special purpose computer which solved, among other problems, for the distance and heading between two points specified by their latitudes and longitudes on the earth. Meggitt (1962) and Walther (1971) described generalizations of the CORDIC technique called pseudo-multiplications and pseudo-divisions. (See the end of this article for bibliographic information about this reference and the other references cited.) Hewlett-Packard and other calculators use CORDIC techniques internally to calculate trigonometric functions [see Cochran (1972) and Egbert (1977)].

CORDIC techniques allow one to program (or to "solder" together) BB 1 and BB 2 using only adds, subtracts, and shifts inside the loops. Outside the loops one also needs one or two multiplications or divisions in a base 2 machine, or one or two multiplications or divisions and a square root in a base 10 machine. As a rough general rule, CORDIC techniques are faster and easier in a computer that has no floating point hardware and no multiply/divide hardware, but does have multibit shifts. If a multibit shift must be built up from single bit shifts or from a multiply, then series expansions to get trigonometric functions are sometimes preferable. These statements are usually also true in a base 10 machine with "digit" substituted for "bit.

If you are really in a hurry, a CORDIC rotator can be made in hardware, as Volder (1959) describes.

With the second half of equations 1 in mind, suppose we want to perform coordinate rotations quickly and easily. The \(\cos \theta \) factor multiplying the parentheses is a scale factor for both \(x' \) and \(y' \). As a special case, consider rotating through an angle \(\theta_n \) satisfying:

\[
\theta_n = \tan^{-1}(b^{-n}) \quad (Eq\ 9)
\]

where \(b \) is the radix or the base of the number system in the computer (usually \(b = 2 \) or \(10 \)) and \(n \) is an integer. For these special

MULTI-TASKING!

The TEMPOS Operating System is quickly becoming the standard in Multi-User, Multi-Tasking operating systems for 8080 and 280 microcomputers. Multi-Tasking means that, even with only one user at one terminal, more than one job can be running on the system simultaneously! If you have ever had to go get a cup of coffee while you wait for your computer to print listings, you know the advantages of a system that will handle one job while you are working on another. TEMPOS is a true time sharing system, and the maximum number of jobs is limited only by your memory.

MULTI-USER!

Want to share your computer with another user? With TEMPOS all it takes is another terminal... up to seven interactive terminals are allowed! And with Re-Entrant programs, each user does not need a complete copy in memory. We include three Re-Entrant programs (the OPUS THREE High-Level Language, the TEXTED Text Editor, and FILES, a disc file directory/mannipulator) or write your own! In addition, we include an assembler, a linking loader, a half-dozen other utility programs and over 60 system subroutines, callable by the programmer!

PROVEN!

With TEMPOS, you get a package that has been tested in our facilities for over two years, and in the field at over 50 different installations. We have used this system ourselves for everything from writing high-level languages to developing applications to text editing to games. TEMPOS is undoubtedly the most flexible software tool on the market... and you can have it for much less than you think!

COMPATIBLE!

TEMPOS is available for many different systems; pre-written drivers may include yours. Or, using our interactive System Generation Routine, you can add your own. Call or write now for our free catalog and the name of a dealer near you. The TEMPOS Operating System is available for $787.00, the manual set (price may be credited toward the purchase of the TEMPOS package) for $21.50 (prices include shipping within the U.S.).

ADMINTERATIVE
SYSTEMS
INC.

1642 S. Parker Road, Suite 300, Denver, Colorado 80231
(303) 755-9694
ANNOUNCING

New from DEC

LA34 DECl writer IV

$1,199.00

- 110 or 300 baud, RS232C serial ASCII
- Upper/lower case, 9 x 7 dot matrix
- 10, 12, 13, 2, 16.5 characters/inch
- 2, 3, 4, 6, 8, or 12 lines/inch
- 2 x 7" x 15½" D, 25 lbs.

Teletype 43 $999.00

- RS232C, 110 or 300 baud
- Upper/lower case, full ASCII
- Pin feed, 12" x 8¼" paper

New from DIABLO

DIABLO 1640 $2,690.00

Receive-only $2,331.00

High-quality daisywheel printing at 45 cps.

DIABLO 1650 $2,779.00

Receive-only $2,419.00

Metal daisywheel printing at 40 cps.

SOROC IQ 120 $795.00

- RS232C, upper/lower case full ASCII
- Numeric keypad, protected fields
- Cursor keys plus addressable cursor
- Auxiliary extension port

SOROC IQ 140 $1,250.00

- RS232C and 20mA current loop
- Extensive editing features
- 25th line terminal status display
- 16 function keys (32 with shift)

To Order: Send certified check (personal or company checks require two weeks to clear) including handling* and 6% sales tax if delivered within California.

*Handling: Less than $2,000, add 2%: over $2,000, add 1%. Everything shipped freight collect in factory cartons with manufacturer's warranty.

Visit MICROMAIL at the National Computer Conference — Personal Computing Festival, New York City, June 5-7, Booth 126.

angles, the rotation in equations 1 simplifies to shifts (multiplying by tan(θ)) is equivalent to a right shift by n places) and add and subtract, except for the scale factor cos(θ).

Since θ becomes arbitrarily small for arbitrarily large n, any angle θ can be represented as a sum of θ:

θ = Σθn

where each θn is an integer, and |θn| < b. In base 2, for example:

θ ≈ 45°, 26.565°, 14.036°, 7.125°, 3.576°, ...

and in base 10:

θ ≈ 45°, 5.7106°, 0.5729°, 0.05730°, 0.005730°, ...

The set Rn represents θ in what is called the arc tangent radix.

Given θ and b, the set Rn is unique only with some additional conditions. In bases other than 2, we usually specify Rn ≥ 0 and also θ ≥ 0, which are not restrictions, since 0 ≤ θ < 360° represents all possible angles. In base 2 we can specify θ = ±1 (never 0) provided we begin with a 90° initial rotation, and provided 180° < θ < 180°. Rotating by 90° is, of course, trivial. These Rn in base 2 have the following advantage: The scale factor cos(Rnθ) is independent of Rn, so the product

K = Π(cos(θn))⁻¹

which is the scale factor for the total θ rotation, is a constant independent of Rn and θ. K depends only slightly on the number of bits in a word, which is the range of n in equation 13.

In any base other than 2, K is a function of Rn and we need to calculate K for each θ. Fortunately this calculation can be done also using only adds and shifts inside the loop and a square root outside the loop. To see this, write:

K = Π n Rn

= Π(1 + tan²θ) Rn

K² = Π(1 + b²n) Rn

Circle 222 on inquiry card.
Multiplying by \(b^{-2n} \) is equivalent to a right shift by \(2n \) places.

This scheme for finding \(K \) works well for BB 1 because the square root can wait until outside the loop; but BB 2 is somewhat more difficult. In BB 2 we need to know \(K \) at each step of the loop in order to compare the current \(y' \) with the desired \(y' \) (unless it is 0). Except for the needed square root, we could use equations 14 to keep a correctly scaled version of the desired \(y' \) to compare with the current \(y' \) at each step. The need for a square root can be eliminated by stepping through angles of \(2\theta_m \). The correct factor for \(K \) therefore becomes \((\cos(\theta_m))^2\). Rotating by \(2\theta_m \) at each step is twice as much work as rotating by \(\theta_m \), but any other scheme involves still more work. BB 2 takes about twice as much time in the loop as BB 1, but needs no square root.

As pointed out by Waltner (1971) and Rheinstein (1977), the CORDIC approach can also be used to calculate hyperbolic functions, and, from these, logarithmic and exponential functions. In my experience, however, the conventional approach using series expansions for logs and exponentials is almost always preferable.

CORDIC techniques produce arbitrarily precise answers if the effective word length is arbitrarily long. If digits lost by shifting are rounded rather than truncated, then the precision will usually be no worse than \(\pm 2 \) or \(\pm 3 \) in the least significant digit, as discussed by Meggitt (1962).

Test Programs in BASIC

Listing 1 is a CORDIC version of BB 1 and BB 2 written in BASIC. The point of using BASIC is that this listing is simultaneously an algorithm (or flowchart) and a test to verify that the algorithm works. The program in BASIC has no practical value, but should be translated into assembly language (or even hardware) to make useful subroutines.

Statements 10 thru 60 are initialization. B is the base of the computer's number system (a special version for \(B = 2 \) is discussed below). M is the number of digits in a word and also the number of places in the arc tangent radix representation of angles. The array A is \(\theta_p \) (see equation 12). The value of A should be precalculated and assembled into the program as a permanent reference array. The D array is unnecessary in a working program. Instead, think of \(D(j) \) as an operator that produces a right shift by \(2j \) digits. This is important because \(D(j) \) is used not as a multiply, but as a shift in the loops.

The units in this program are degrees. To

```
5 REM BB1, BB2, AND R-P
6 REM ADAPTED FROM RHEINSTEIN IN BYTE 2-8, 142 (AUGUST 1977)
10 LET B = 10
20 LET M = 6
25 DIM A(M), D(M)
30 IF J = 0 OR M
40 LET D(J) = B(-1-J)
50 LET A(J) = ATN(B(-J)) + 180/3.14159
60 NEXT J
70 PRINT "TYPE I FOR BB1, 2 FOR BB2, OR 3 FOR R-P "
80 INPUT Z
85 PRINT
90 IF Z = 1 GOTO 120
100 IF Z = 2 GOTO 300
105 IF Z = 3 GOTO 500
110 GOTO 70
120 PRINT "TYPE X, Y, THETA "
130 INPUT X, Y, T
132 IF T <= 0 GOTO 135
133 LET T = 360
135 PRINT
140 LET K = 1
141 FOR J = 0 TO M
145 LET T1 = T
150 LET T1 = T - A(J)
190 IF T < 0 GOTO 250
210 LET Y1 = Y
220 LET Y = Y1
230 LET X = X - D(J)
235 LET M = K + D(J)
240 GOTO 175
250 LET T = T1
255 LET Y = Y1 + X
260 NEXT J
265 LET K = 50*(K)
270 PRINT "X ' = " + X/K " Y ' = " + Y/B*(M+1)
275 GOTO 70
300 PRINT "TYPE X, Y, Y ' "
310 INPUT X, Y
315 PRINT
340 LET T = 0
345 LET K = T
350 FOR J = 0 TO M
370 LET Y1 = X
372 LET X1 = Y
374 LET Y2 = Y1
376 LET X2 = A(D(J))
380 LET Y = Y2*X2
385 LET K1 = X
390 LET X = X/K1
399 IF (Y - K1) * (Y - K1) < 0 GOTO 430
400 LET X = X - D(J) + Y2
402 IF X < 0 GOTO 410
404 IF (Y - K1) * (Y - K1) > 0 GOTO 430
410 LET T = T + A(J)
420 GOTO 370
430 LET Y = Y1
435 LET X = X/Y1
436 LET K = K1
440 NEXT J
442 IF ABS(Y/K1) < B(-M+1) GOTO 445
443 PRINT "ERROR! DELTA Y = " + Y/K "+Y + M+1
445 IF K = K1
450 PRINT "X ' = " + X/K " Y ' = " + Y/B*(M+1) " THETA = " + T
460 GOTO 70
500 PRINT "TYPE X, Y, Y ' "
510 INPUT X, Y
515 PRINT
540 LET T = 0
545 LET K = 1
550 FOR J = 0 TO M
570 LET Y1 = Y
580 LET X = X - D(J)
590 IF X < 0 GOTO 630
600 LET X = X + D(J)
610 LET T = T + A(J)
615 LET K = K + D(J)
620 GOTO 570
630 LET Y1 = Y1 + X
635 LET X = X/Y1
640 NEXT J
645 LET K = 50*(K)
646 IF X < 0 GOTO 650
648 LET X = X/Y1
649 LET T = T + A(J)
650 PRINT "R = " + X/K1 " PH1 = " + T
660 GOTO 70
999 END
```

Listing 1: A CORDIC version of Black Box 1, Black Box 2, and a rectangular to polar conversion routine written in BASIC for the decimal number system. This listing is intended as a "flowchart" of the CORDIC algorithm to show how it works. Readers should convert it to assembly or machine language to make it fast enough to be practical.
Listing 2: A CORDIC version of Black Box 1, Black Box 2, and a rectangular
to polar conversion routine written in BASIC for the binary number system.

change to radians, drop the *180/3.14159 in
line 50 and replace 360 by 2π in line 133
and 180 by π in line 648.

Statements 70 thru 110 allow the operator to select BB 1, BB 2, or R-P discussed
below.

BB 1

Statements 120 thru 290 are BB 1. The
operator types X, Y, and THETA (alias T).
Lines 132 thru 134 make T positive. This
version can rotate only positively; negative
angles are handled by going all the way around.

Two nested loops are necessary: a
J loop from lines 170 thru 260, which cor-
responds to the n sum in equation 10, and
an inner loop from 175 to 240, which
rotates and also determines \(R^n \) by the sub-
traction in 180 and the test in 190. State-
ments 210 thru 230 implement equation 1
for \(\theta = \theta_n \) but with two twists: first, cos\(\theta \) is ignored until outside the loops, as
mentioned above; second, the Y value is
actually Y1 (see line 255). This eliminates
a shift which would otherwise be in line 220.

So we trade a multidigit shift in the inner
loop for a single digit shift in the J loop (line
255) and a multidigit shift outside the
loops (in the print statement 280). This idea
is described by Egbert (1977). The inner
loop also calculates K, as in equations 14.

Line 235 is another shift and add (not a
multiply) and the square root is outside the
loop in line 265. Dividing by K in line 280
gives \(x' \) and \(y' \) correctly scaled. Note that
X, Y, and T are all written over.

BB 2

Statements 300 thru 460 are BB 2. The
angle T starts from 0 in line 340 and K is
initialized to Y3 (the desired \(y' \)) in line 345
rather than to unity as in line 155. The J
loop extends from lines 350 thru 440 and the
inner loop from lines 370 thru 420. Lines
370 thru 384 and lines 400 and 410
implement the double angle rotation de-
scribed above. The trick of moving one of
the shifts outside the inner loop, as de-
scribed in BB 1, is used here also, but with the
roles of X and Y interchanged (see line 435).

The obscure part of this program is prob-
ably the three IF statements (lines 390, 402,
and 404) used to determine when to exit
from the inner loop. Only one subtraction
per cycle is needed in line 390 because the
expression Y1-K1 for one cycle is the same
as Y-K for the preceding cycle. The multiply
is not needed. Instead, the point of 390 is
OVER 150 EXCITING PROGRAMS

* MORE EVERY DAY *

EDUCATION

- SPACEWAR I - BANNER - UFO ATTACK - PILE UP - BIORHYTHM - AUTO RACE and WORDS.

ELECTRONICS

- SPACEWAR II - CIVIL WAR - TRAP THE TRIBBLE - LIFE - KNIGHT - CONCENTRATION and LUNAR LANDER.

MARKETING

All SOFTWARE-80 programs are guaranteed. Programs available in Level I and Level II Basic. All of our business programs will operate with printer; custom programs also available. With certified check or money order, all orders shipped within 24 hours. Personal checks allow 2 weeks. Send for our complete catalogue.

SOFTWARE-80

18228 Cabrillo Court
Fountain Valley, CA 92708

ALL PRICES AND PROGRAMS ARE SUBJECT TO CHANGE WITHOUT NOTICE
to determine whether the sign of Y-K differs from the sign of Y1-K1 and, if so, to go to line 430. These signs differ only if the last rotation has carried past the proper stopping point. K and K1 in line 390 are the desired y' scaled by the same factors as y and Y1. The subtractions would be meaningless if the scale factors were different.

Even if the signs of Y-K and Y1-K1 in line 390 are the same, the rotation might still have carried past the proper stopping point. This occurs if Y1-K1 is positive and X has changed from positive (X1) to negative, or if Y1-K1 is negative and X has changed from negative (X1) to positive. These two cases correspond to rotating through 90° or 270° and are tested for in lines 402 and 404. The multiplications in 402 and 404 again need not be done, and the subtractions in 404 has already been done in 390. An alternative would be to perform the addition in line 410 and then test T.

Statement 442 tests whether the desired y' has been achieved. If not, the desired y' is too large ($|y'| > R$) and your reward is in 443. K needed to scale X' is calculated in line 445, this time without a square root. However, there is a problem: Y_3 (the desired y') must not be 0. This version of BB 1 cannot work with the desired $y' = 0$.

R→P

The special case $y' = 0$ in BB 2 is the very useful rectangular to polar (R→P) coordinate converter. Although the preceding general purpose BB 2 will not handle $y' = 0$, a special program for $y' = 0$ is actually easier and faster than BB 2. Statements 500 thru 660 are R→P. No new tricks are needed: R→P is quite similar to BB 1. The IF statement in line 590 determines whether or not the sign of Y has changed. The reversed signs in lines 580 and 600 change the sign of the angle to give ϕ rather than θ as the answer (see equations 6). Statements 646 thru 648 are necessary because X can be negative.

Base 2 is Special

A binary version with $R_2 = \pm 1$, as shown in listing 2, allows some simplifications but also presents some problems. For BB 1 and R→P, K is the constant in line 12. With no inner loop, just a j loop, no advantage comes from shifting only X or only Y. So $D[j]*$ is an operator causing a right shift by $j-1$ bits.

This binary version of BB 1 can rotate either positively or negatively, but only up to 180°; hence the reason for lines 131 thru 136. I is the direction to rotate and is equal to the sign of T (see line 175); so multiplying by I in lines 180, 213, 214, 220, and 230 is really just selecting whether to add or subtract. The special case for $j = 0$ in lines 213 through 215 is a preliminary 90° rotation, as mentioned above.

In BB 2, J can start at 1 rather than 0 (line 350) because each rotation step is double the normal angle. The direction to rotate is positive if K1-Y has the same sign as X and negative if these signs differ (see line 372). As before, K1 is the desired y' with the same scale factor as Y.

Most of the rest of this program is the same as the previous version in listing 1.

Examples

This section contains two examples of problems solved using BB 1 and BB 2. I use the following notation:

- **Call BB 1** ($x, y, \theta; x', y'$)
 - **Call BB 2** ($x, y, y'; x', \theta$)
 - **Call R→P** ($x, y; R, \phi$)

In each case above, the given quantities precede and the answers follow the semicolon (see figure 2). When using the actual programs, remember that the given quantities often are written over.

Consider first a plane triangle. Given two sides and the included angle, find the other side and two angles (see figure 3). This problem is known as SAS for side-angle-side: A, B, and C are angles; a, b, and c are the oppo-

Figure 3: The side-angle-side problem in plane trigonometry (given a, b, C; find A, B, c) can be solved as follows:

- **Call BB 1** ($b, 0, C; t1, t2$)
 - $t1$ and $t2$ are the rectangular coordinates corresponding to a vector of length b at an angle C (equation 2 in the text).

- **Call R→P** ($a - t1, t2; c, b$)
 - $a - t1$ and $t2$ are the rectangular coordinates corresponding to a vector of length c at an angle B.

- $A = 180° - B - C$
 - the sum of the interior angles of a triangle is 180°.
Payroll with Cost Accounting #09-8 $15.00
Accounts Payable and Accounts Receivable #13-6 $15.00
General Ledger #20-9 $15.00

These books feature complete, quality applications software for small-to-medium sized businesses. Each book includes fully documented program listings, sample printed reports, installation instructions and user’s manual.

Written in an extended Wang BASIC (write to ask us about our CP/M CBASIC version and other conversions).

Some Common BASIC Programs #06-3 $8.50†
76 short practical programs, most of which can be used on any microcomputer with any version of BASIC. Complete with program descriptions, listings, remarks and examples. 300 pages. #06-3 $8.50†

NEW PET Cassette
All 76 programs from Some Common BASIC Programs are now reprogrammed ready to run on the Commodore PET. Available on cassette only. The book is necessary for program documentation and user instructions. #25-X $10.00

Volume 0 - The Beginner’s Book
Volume I - Basic Concepts
Volume II - Some Real Microprocessors*
Volume III - Some Real Support Devices*

These books describe how to program a microcomputer using assembly language. They discuss classical programming techniques, and contain simplified programming examples relevant to today’s microcomputer applications. 400 pages each.

Volume 1 - Basic Concepts
A must for anyone in the computer field, this best selling text explains hardware and programming concepts common to all microprocessors. Its universal appeal is reflected by its having the greatest yearly sales volume of any computer text. 360 pages. #08-X $7.95

Volume 2 - Some Real Microprocessors*
Provides objective, commercial-free descriptions of virtually every microprocessor on the market today. Lets you know what’s available, how they work (or sometimes don’t work), and how to use them. More detailed user/designer information than provided by most manufacturers. 350 pages. #02-2 $8.50†

Volume 3 - Some Real Support Devices*
Same objective, in-depth coverage as Volume 2, but applied to support devices that might be used in any microprocessor system: memory, data communication devices, data converters, direct memory access controllers, busses, and much more.

†As of July 1, 1979 all $8.50 book prices increase to $9.50. If ordering after July 1, 1979 please use $9.50 price.
site sides. Given \(a, b, c \); find \(A, B, C \). The solution can be written as:

\[
\text{Call BB} 1 (b, 0, C; t_1, t_2) \quad \text{Call R->P} (a - t_1, (2; c, B) \quad (Eq 16) \quad A = 180^\circ - B - C
\]

The \(ts \) are intermediate answers. As a test case: \(a = 50^\circ, b = 70.71^\circ, c = 105^\circ \); get \(A = 30^\circ, B = 45^\circ \), and \(c = 96.59^\circ \). This test case is in listing 3. The derivation of this algorithm is left as an exercise for the reader; start from the equations in any trigonometry book.

As a somewhat more difficult example, consider the problem Volder (1959) originally solved: given the latitudes and longitudes of two points on the earth, find the great circle distance between them and the initial heading. This problem comes up, for example, in long-distance ham radio in determining where to point the antenna beam. Given the longitude \(\lambda_1 \) (west longitudes are \(+ \)) and latitude \(\phi_1 \) (north latitudes are \(+ \)) of station 1 (home) and the longitude \(\lambda_2 \) and latitude \(\phi_2 \) of station 2, the algorithm below calculates \(A \), the initial heading or pointing angle (north reference clockwise azimuth)

\[
\text{Listing 3: Test case solution to a side angle side triangle problem.
}\]

\[
\text{Listing 4: A test case for the algorithm that gives great circle distance and heading between points on the earth.
}\]

from station 1 toward station 2, and \(D \), the great circle distance between stations.

\[
\text{Call BB} 1 (1, 0, \phi_2; C2, S2) \quad \text{Call BB} 1 (C2, 0, \lambda_1 - \lambda_2; t_1, t_2) \quad \text{Call BB} 1 (t_1, S2, \phi_1; t_3, t_4) \quad (Eq 17) \quad \text{Call R->P} (t_4, t_2; t_5, A) \quad \text{Call R->P} (t_3, t_5; t_6, d)
\]

As a test, \(t_6 = 1 \). The angle \(d \) is the distance \(D \) in angular units. If \(d \) is in degrees, multiply by 60 to get \(D \) in nautical miles; by 69.1 to get statute miles; or by 111.2 to get kilometers. This algorithm is approximate because it assumes a spherical earth. As a test case: \(\lambda_1 = 71.05^\circ, \phi_1 = 42.36^\circ \) (Boston), \(\lambda_2 = 70.66^\circ, \phi_2 = -33.41^\circ \) (Santiago de Chile on the west coast of South America); get \(A = 179.7^\circ \) (slightly east of south) and \(D = 5237 \) statute miles. This test case is shown in listing 4.

The derivation of this algorithm is also left as an exercise for the reader. [As a hint: two approaches are possible. One approach begins with figure 6 in Smart (1962) and uses spherical trigonometry. Another approach, mentioned by Volder (1959), uses rotation matrices and views the problem in terms of coordinate transformations. Calculator algorithms for this and some similar problems are in Ball (1978), appendix A.7.]

REFERENCES

How to Buy & Use Minicomputers & Microcomputers

How to Buy & Use Minicomputers & Microcomputers

By W. Barden, Jr.

Explores the basics: covers hardware, software, peripheral devices, programming languages & techniques; use for fun or profit! 240 pgs. #21351 . . . $9.95

Microcomputer Primer

By M. Waite & M. Pardee

Explains it all: central processing unit, memory, input/output interfaces, programs. Discusses well-known models & shows how to program your own. 224 pgs. #21404 . . . $7.95

Microcomputers

By W. Barden, Jr.

Explores the basics: covers hardware, software, peripheral devices, programming languages & techniques; use for fun or profit! 240 pgs. #21351 . . . $9.95

Microcomputer Primer

By M. Waite & M. Pardee

Explains it all: central processing unit, memory, input/output interfaces, programs. Discusses well-known models & shows how to program your own. 224 pgs. #21404 . . . $7.95

Basic Primer

By M. Waite & M. Pardee

Covers BASIC fundamentals, program control, organization, functions & variations. With a game program & data on numbering systems & ASCII character codes. 192 pgs. #21586 . . . $8.95

Introductory Experiments in Digital Electronics and 8080A Microcomputer Programming and Interfacing

By R. Larsen & Titus

Covers basic gates thru microcomputer interrupts, with hardware & software examples. Experiments re: breadboarding, circuits, etc. over 416 pgs. each. Book 1: #21550 . . . $12.95. Book 2: #21551 . . . $10.95.

Both: #21552 . . . $20.95

NCR Data Communications Concepts

By NCR Corp.

Examines assembly-language programming of 8080, MC6800 & MCS6502 models. Explains concepts, operation & architecture. With precanned operations. 256 pgs. #21548 . . . $6.95

NCR Data Processing Concepts Course

By NCR Corp.

Intro to data processing, computers & digital logic. Covers input/output devices, memories, control. 256 pgs. #21547 . . . $7.95

Understanding CMOS Integrated Circuits (2nd Ed.)

By R. Melen & H. Garland

Begins with basic digital ICs; covers semiconductor physics, CMOS fabrication technology & design, & advanced CMOS applications. 144 pgs. #21598 . . . $5.95

Transistor-Transistor Logic (2nd Ed.)

By G. Flynn

Discusses digital logic & different types of logic circuits used in the TTL functional class. With block diagrams, schematics, logic truth tables. 288 pgs. #21572 . . . $6.95

SAVE 10% when you order 3 or more!

Examine any book(s) at NO RISK for 15 Days!

Clip Out—Mail Today!

YES—Please send me the book(s) indicated below. If I'm not completely satisfied, I may return any or all within 15 days of receipt for full credit or refund. Add sales tax where applicable.

☐ 21351 ☐ 21534 ☐ 21552
☐ 21404 ☐ 21447 ☐ 21548
☐ 21459 ☐ 21550 ☐ 21598
☐ 21547 ☐ 21551 ☐ 21572
☐ I have checked 3 or more titles and deducted my 10% savings.

Name (Please Print)
Address
City
State Zip Code
Total: $___

☐ Check ☐ Money Order ☐ Master Charge
☐ Visa/BankAmericard
Exp. Date
Account No.: _________
Interbank No.: _________
(Master Charge only)
Signature: ___________

Minimum credit card purchase: $10.00

MAIL TO:
Howard W. Sams & Co., Inc.
4300 W. 62nd St.
Indianapolis, IN 46206

Prices subject to change 6 months after issue date.
Tic-Tac-Toe: A Programming Exercise

Computer and calculator games serve at least four useful functions:

• Developing logic and mathematical skills.
• Demonstrating programming methods.
• Demonstrating operation of the computer.
• Providing entertainment.

Keeping these possibilities in mind, let us examine the problem of developing a program to enable the computer to play tic-tac-toe with the user.

The game of tic-tac-toe at first appears to be a trivial game. New players quickly learn that a game played rationally by both sides must end in a draw. But being unbeatable does not mean you have mastered the game. The skilled player sets traps in the form of forks so that there are two ways to complete a row of three, only one of which can be blocked by the opponent. There are 15, 120 different sequences for the first five moves alone, counting rotations and reflections, but these may be reduced to a manageable number of possibilities. There are only three basic opening moves: center, side, and corner. The corner opening is strongest; only by taking the center can the second player avoid an immediate trap. With a side opening or with a center opening, the second player has four choices to avoid an immediate trap. For the side opening game, these safe choices are the three adjacent cells or the opposite side. For the center opening game, the safe choices are the four corners.

There are a number of tic-tac-toe programs already available, so why write another one? Many of these programs play a very passive game, and some even allow the user to win. If the user can win, it follows that the computer response was a mistake. Actually, the computer response may be a mistake even if it does not allow a user win (it may fail to take advantage of an opportunity to set a trap). I have designed an aggressive program that allows no user wins, and that takes every possible opportunity to set a trap. The user has to play a perfect game to get even a draw.

System Considerations

It is assumed that either a printer or a video terminal is to be used for input and output. The user’s responses to program questions may be entered as Y or N (for yes or no), and user moves during the game may be entered as single digits 1 thru 9. Each digit represents one of the nine cells of the playing board (see figure 1a). The printer or video terminal allows a 2-D display of the tic-tac-toe playing board, including the positions of all computer and user moves.

Program Planning

There are several possible ways of programming a tic-tac-toe game. One way is to identify all possible board configurations (as is done in the game of Hexapawn) and then to make the proper response for each configuration. For tic-tac-toe, this would involve an unreasonable number of possibilities. Another approach is to check the center cell, take it if it has not been taken, and otherwise take a corner cell, etc. This leads to a passive and irrational game. The algorithm used in my program is as follows:

1. Randomly select a center, side, or corner opening move.
2. Check the user’s response to be sure it is a legal move before entering it onto the board.
3. Based upon the user’s response, select a sequence of forcing moves so that the user must next make a predetermined move or lose the game.
4. If possible, set a trap (fork).
5. For variety, randomly select alternate strategies for setting traps.
6. After either a computer win or a draw game, print an appropriate message (remember that it is not possible for the user to win).
TRSI-80 LEVEL II AND DOS

GENERAL SUBROUTINE FACILITIES GSF
Collection of fast easy-to-use machine language routines.

- **IN MEMORY SORT** with multiple variables and keys.
- **SORT 1000** - Element array in 9 seconds.
- **ARRAY read/write to tape, compress/uncompress/move data.**
- **SCREEN scrolling, save screen displays, and more**

DISK SORT PROGRAM DSP
- **SORT/MERGE** multi-diskette files. Fast and easy to use.
- **MULTIPLE variables and keys.** User input/output sort exists.
- **IN-MEMORY** sort with multiple variables and keys. 32 or 48K.

RENUMBER WITH REMODEL - MERGE WITH PROLOAD
- **REnumber** any section or an entire program.
- **MOVE** program segments. **DELETE** program lines.
- **COMBINE** programs with renumber and merge.
- **LOAD or SAVE** any portion of a program from tape.

COPY SYSTEM TAPES WITH COPYSYS
- **COPY** and **VERIFY** machine language object tapes.
- **MERGE** object tapes to form single load module.

MICROCOMPUTER CASSETTES
- **SPECIAL formulation** optimized for microcomputers.
 - Extremely broad **FREQUENCY response.** Clean recordings.
 - Exceptional **DENSITY** characteristics. Broad range. Consistency.

REMODEL Order TS21, Dal $24.95
REMODEL + PROLOAD Order TS22, Dal $34.95
GENERAL SUBROUTINE FACILITIES Order TS25, Dal $24.95
DISK SORT PROGRAM Order TS26, Dal $34.95
Must specify 2K, 32K, or 48K on above. System house discounts.
COPYSYS (Not DOS) Order TS24, at $14.95
For TAPES that TEST best Order 10 ea at $14.95
User Manuals $3.00 refundable on program purchase.

BYTE's New Toll-free Subscriber W.A.T.S. Line

To further improve service to our customers we have installed a toll-free WATS line in our Peterborough, New Hampshire office.

If you would like to order a subscription to BYTE, or if you have a question related to a BYTE subscription, you are invited to call*

(800) 258-5485 between 8:00 AM and 4:30 PM Eastern Time. (Friday 8 AM - Noon).

*Calls from continental U.S. only.

We thank you and look forward to serving you.

READY-TO-RUN SOFTWARE
FOR YOUR NORTH STAR COMPUTER

NEW LANGUAGE TRANSLATOR PKG. $60.00
ENGLISH TO JAPANESE - Teaches rudimentary conversational Japanese - easy to use, easy to learn.

TUTORIAL III $40.00
Release version 4, covers many new commands plus customizing program for BASIC.

INTEGRATED BUSINESS SYSTEM $175.00
Designed for dual floppy drive system - contains A/P; A/R; Pay, Gen. Ledger; Letter Generator; Bus Stat; Inventory, Sales/Sales Analysis.

MEDICAL/PROFESSIONAL BILLING $35.00
Doctors, Lawyers and Dentists - use this to issue statements, track receivables, age accounts, etc.

MAILING LABEL PROGRAM $35.00
Lots of help for your direct mail program. Add, delete, maintain mailing list and print labels.

ALL SOFTWARE PACKAGES ARE WRITTEN IN BASIC ON DISKETTE ONLY

Send for Free Catalog
Packages containing Program Listings only are available.

(714) 774-1270

T.D.Q. TAPE DATA QUERY

PET-8K SOL-18 TRS-80-LEVEL II

FILE MANAGEMENT SYSTEM
- **UTILIZES DUAL AUDIO CASSETTE RECORDERS**

INTERACTIVE QUERY LANGUAGE
- **ENGLISH-LIKE COMMANDS**

COMPUTERIZED BUSINESS & PERSONAL RECORDS
- **CUSTOMIZE YOUR OWN FILE STRUCTURES**

IMPLEMENTED IN BASIC

T.D.Q. CASESET WITH MANUAL & REF. CARD $50.00

THE FOLLOWING PRE-DEFINED T.D.Q. FILE STRUCTURES ARE AVAILABLE TO SOLVE YOUR DATA PROCESSING NEEDS:

- **INVENTORY CONTROL** $35.00
- **ACCOUNTS RECEIVABLE** $35.00
- **ACCOUNTS PAYABLE** $35.00
- **ORDER PROCESSING** $35.00
- **CUSTOMER DIRECTORY** $25.00
- **APPOINTMENT SCHEDULING** $25.00

EACH WITH CASSETTE AND MANUAL

Sends Self Addressed Stamped Envelope for Complete Software Catalogue.

Send Check or Money Order To:

H. GELLER COMPUTER SYSTEMS
DEPT. B, P.O. BOX 350
NEW YORK, NY 10040

(NeW York residents add applicable sales tax)
There are a number of special cases that complicate things. The program must correctly handle all possibilities.

Implementation

The program first checks to see if the operator needs instructions for playing the game. If so, they are printed out, including a tic-tac-toe board with the number of each cell indicated. Note that the board array (B), which holds the contents of all nine board cells, is not a string array; instead, the number which corresponds to the desired ASCII character is stored and then converted to an ASCII character at board display time.

Program initialization is necessary to ensure that the first and all subsequent games start off correctly. The initial computer move is selected by using the RND function.

Listing 1: Tic-tac-toe program written in BASIC.

```basic
10 PRINT " *** RATIONAL TIC-TAC-TOE ***"
20 REM
30 REM A PROGRAM BY D D HINRICHS IN TDL 8 K BASIC
40 REM APRIL 1977
50 PRINT
60 INPUT "DO YOU WANT INSTRUCTIONS (Y OR N) " ; A$
70 IF A$ = "N" THEN 230 : REM SKIP INSTRUCTIONS
80 N = 48
85 FOR I = 1 TO 9
90 B(I) = N + I : REM SET EACH BOARD CELL TO ITS NO.
100 NEXT I
110 PRINT
120 PRINT " THIS PROGRAM PLAYS AN AGGRESSIVE GAME OF TIC-TAC-TOE. IF YOU MAKE ANY MISTAKE, THE COMPUTER WILL WIN. IF YOU PLAY A PERFECT GAME, YOU WILL GET A DRAW. THE PLAYING BOARD IS DISPLAYED AS FOLLOWS:"
130 GOSUB 1780 : REM DISPLAY PLAYING BOARD
140 PRINT
150 PRINT " TO MAKE YOUR MOVE, ENTER THE DIGIT (1 - 9) THAT REPRESENTS THE BOARD CELL YOU WISH TO OCCUPY, THEN ENTER A CARRIAGE RETURN. THE COMPUTER WILL THEN CALCULATE ITS RESPONSE AND DISPLAY THE UPDATED BOARD. AT THE START, THE COMPUTER WILL RANDOMLY CHOOSE A CENTER, CORNER, OR SIDE OPENING MOVE."
160 PRINT
170 PRINT " COMPUTER MOVES ARE: X"
180 PRINT " YOUR MOVES ARE: O"
190 F = RND(-1)
200 DATA 4,6,8,2,3,7,0,9,0,7,3,1,4,9,3,7,6,9,4
210 DATA 2,8,6,4,1,9,0,7,0,1,9,7,2,7,3,8,9,2
220 DATA 9,1,6,3,4,1,9,7,4,3,6,4,2,8,7,3,0,1,0
230 DATA 5,8,7,6,4,0,9,0,0,5,8,6,4,1,9,0,7,0,0
240 DATA 1,3,5,9,8,5,3,1,7,1,3,7,4,6,9,0,8,0
250 DATA 3,1,5,7,8,5,3,1,7,1,3,5,9,0,0,0,0
260 DATA 1,3,5,4,6,3,5,6,7,4,5,1,8,7,0,0,0,0
270 DATA 4,7,5,6,9,5,9,7,4,3,9,5,7,8,4,7,9,5,8
280 DATA 3,4,2,5,3,2,9,5,6,5,9,3,2,7,2,5,6,9
290 DATA 2,3,5,8,9,9,5,3,5,2,3,5,9,7,7,4,5,3,9
300 DATA 7,4,3,5,2,3,2,7,4,5
310 DATA 4,7,5,6,9,5,9,7,4,3,9,5,7,8,4,7,9,5,8
320 DATA 5,9,2,8,3,5,2,9,5,6,5,9,3,2,7,2,5,6,9
330 DATA 3,4,2,5,3,2,9,5,6,5,9,3,2,7,2,5,6,9
340 DATA 2,3,5,8,9,9,5,3,5,2,3,5,9,7,7,4,5,3,9
350 DATA 7,4,3,5,2,3,2,7,4,5
360 DATA 4,7,5,6,9,5,9,7,4,3,9,5,7,8,4,7,9,5,8
370 DATA 5,9,2,8,3,5,2,9,5,6,5,9,3,2,7,2,5,6,9
380 DATA 3,4,2,5,3,2,9,5,6,5,9,3,2,7,2,5,6,9
390 DATA 7,4,3,5,2,3,2,7,4,5
400 DATA 4,7,5,6,9,5,9,7,4,3,9,5,7,8,4,7,9,5,8
410 DATA 5,9,2,8,3,5,2,9,5,6,5,9,3,2,7,2,5,6,9
420 DATA 3,4,2,5,3,2,9,5,6,5,9,3,2,7,2,5,6,9
430 DATA 7,4,3,5,2,3,2,7,4,5
440 REM
450 REM ENTRY POINT TO INITIALIZE FOR A NEW GAME
455 RESTORE REM RESET DATA POINTER TO START
460 F = 0
465 F = INT(RND(1)^2) : REM SET FLAG TO 0 OR 1
470 G = 1
475 H = 0
480 Cl = 10
490 C2 = 10
500 N = 0
510 FOR I = 1 TO 9
520 B(I) = 32 : REM SET BOARD CELLS TO BLANKS
530 NEXT I
550 REM INITIAL COMPUTER MOVE IS 0, 1, OR 2 (0 THEN CHANGED TO 5)
555 C = INT(RND(1)*3) : REM SELECT INITIAL MOVE
560 IF C = 0 THEN C = 5 : REM CENTER OPENING GAME
570 IF U = 10 - C : REM PUT COMPUTER MOVE IN CELL
580 GOSUB 2100 : REM DISPLAY BOARD, ACCEPT 1ST USER MOVE
590 IF C = 5 THEN 1720 : REM CENTER OPENING GAME
610 IF C = 2 THEN 1320 : REM SIDE OPENING GAME
620 IF U = 5 THEN 940 : REM CORNER GAME, 1ST USER MOVE 5
630 R = 10 * U + 140 : REM FIND RESPONSES FOR CORNER GAME
640 IF U > 5 THEN R = R - 10
650 IF F = 1 THEN R = R + 5 : REM REENTRY POINT FOR 5-UNIT RESPONSES
660 IF F = 1 THEN R = R + 5
670 IF U = 1 THEN R = R + 5 : REM REENTRY POINT FOR 7-UNIT RESPONSES
680 IF U = 1 THEN R = R + 5
690 NEXT I
700 F = 1 : REM INCREMENT DATA POINTER TO 1ST RESPONSE
```

Listing 1 continued on page 200
Announcing...

SMALL BUSINESS COMPUTERS Magazine

The magazine for users and potential users of small business computer products and services

- The monthly magazine for businessmen in the process of purchasing or installing their first computers.
- The practical how-to publication written in non-technical language and stressing business applications for small computer systems. Each monthly issue includes

FEATURE SURVEY REPORTS: Such as, Software Packages for Small Business Applications, Small Manufacturing Systems, Inventory Control Systems, Microcomputer Business Applications, and so on.

APPLICATION STORIES: Real life examples of computer applications in the small business environment: capabilities, benefits, what to watch for, and much more of direct interest to the small businessman.

COMPUTER PROFILES • IDEAS AND INNOVATIONS • INFORMATIVE ADS

SPECIAL CHARTER SUBSCRIPTION

Receive the next 12 issues of Small Business Computer Magazine for just $9 — 50% off the cover price.

Mail the coupon today to **SMALL BUSINESS COMPUTERS Magazine** 33 Watchung Plaza • Montclair, NJ 07042

ED SMITH'S SOFTWARE WORKS ANNOUNCES RRMAC

AN M6800 SYSTEM RELOCATABLE RECURSIVE MACROASSEMBLER & LINKING LOADER

ATTENTION ALL PROGRAMMERS: If you have been looking for an assembler with real macro capabilities, then RRMAC is the one for you.

Character replacement is the crux of macro expansion. RRMAC allows unlimited character replacement in any field of a macro model statement. **RRMAC**'s use of macro directions supports both global and local set symbols. Set symbols can be based on either arithmetic expressions or character expressions. Macro model statements can determine attributes of set symbols or macro arguments. **RRMAC** allows macros to define new macros and to call other macros. Macro calls can be recursive, that is, a macro may call itself.

RRMAC contains a mini-co-resident editor, allows spotting if desired, support insert files, retains TSO Text Editor source code compatibility, plus many other programmer conveniences features. **RRMAC** can be furnished on cassette or mini-floppy in either SSS or Mini-Flex format. Comes complete with linking loader, Instruction Manual/Programmers Guide & an extensively commented assembly listing.

- M6SRB - cassette $100.00
- MBRB - SSS disk $10.00
- M6BERB - cassette $120.00
- MBRF - flex disc $150.00
- M6BRF - SSS disk $120.00

A 6600 to 6800 cross assembler **RRMAC** will be available in June.

Order directly by check or MC/Visa. California residents add 6% sales tax. Customers outside of U.S. or Canada add $5 for air postage & handling.

Dealer inquiries welcome.

The Independent Newsletter of Heath Co. Computers

- **Circle 31 on inquiry card.**

Circle 32 on inquiry card.
770 REM REENTRY POINT FOR LOOP TO SELECT COMPUTER RESPONSES
780 F = F - 1
790 F = F + F
800 READ C
810 C2 = C1
820 C1 = C
830 N = N + 1
840 IF C = 0 OR C = U THEN 770
850 IF C = 0 OR C = U THEN 1160
860 IF C2 = 0 OR C = H THEN 770
870 IF F = 1 THEN 2070
880 IF E = 0 THEN 900
890 IF N = 5 THEN 2070
900 GOSUB 1780
910 GOSUB 1980
920 GOTO 770
930 REM
940 REM CORNER OPENING GAME, FIRST USER MOVE WAS 5
950 U = 1
960 GOSUB 2100
970 IF U = 3 OR U = 7 THEN 1220
980 IF U = 4 OR U = 8 THEN G = 0
990 GOSUB 2100
1000 C = 7
1010 IF G = 0 THEN 32 THEN C = 6
1020 IF B(2) = 32 THEN C = 6
1030 C = 4
1040 IF B(4) = 32 THEN C = 8
1050 C = 10 - U
1060 B(C) = 88
1070 PRINT "CONGRATULATIONS - YOU GOT A DRAW THAT GAME"
1080 INPUT " DO YOU WANT TO PLAY ANOTHER GAME (YORN)" ; A$
1090 IF A$ = "Y" THEN 450
1100 PRINT "SO LONG UNTIL NEXT TIME THEN"
1110 STOP
1120 REM CORNER OPENING GAME, FIRST USER MOVE IS 8
1130 B(9) = 88
1140 GOSUB 1780
1150 IF U < 4 THEN U = 3
1160 IF U > 5 THEN U = 8
1170 IF U = 1 THEN C = 6
1180 GOTO 740
1190 REM
1200 IF U < > 1 THEN 1600
1210 IF U = 1 THEN 740
1220 IF U = 2 THEN 1630
1230 IF U = 3 THEN 1620
1240 IF U = 4 THEN 1610
1250 IF U = 5 THEN 1600
1260 IF U = 6 THEN 1590
1270 IF U = 7 THEN 1580
1280 IF U = 8 THEN 1570
1290 H = 4
1300 R = 140
1310 GOTO 700
1320 REM SIDE OPENING GAME, FIRST USER MOVE IS 8
1330 B(9) = 88
1340 GOSUB 1780
1350 IF U = 8 THEN 1420
1360 IF U > 6 THEN E = 1
1370 IF U = 1 THEN C = 6
1380 GOTO 740
1390 REM
1400 REM
1410 REM SIDE OPENING GAME, FIRST USER MOVE IS 3
1420 B(9) = 88
1430 GOSUB 1780
1440 IF U = 3 THEN C = 4
1450 IF U = 4 THEN 1560
1460 IF U = 5 THEN 1630
1470 B(3) = 88
1480 GOSUB 1780
1490 GOSUB 1980
1500 C = 1
1510 IF U = 1 THEN C = 6
1520 GOTO 2060
1530 R = 0
1540 REM
1550 REM SIDE OPENING GAME, FIRST USER MOVE IS 8, 2ND USER MOVE IS 3 OR 1
1560 F = 0
1570 H = 6
1580 F = 1
1590 H = 4
1600 R = 140
1610 GOTO 700
1620 REM SIDE OPENING GAME, FIRST USER MOVE IS 8, 2ND USER MOVE IS 6 OR 7
1630 B(1) = 88
1640 REM
22 START-AT-HOME COMPUTER BUSINESSES

In "The Datasearch Guide to Low Capital, Startup Computer Businesses"

CONSULTING • PROGRAMMING • SOFTWARE PACKAGES
• COM • FREELANCE WRITING • SEMINARS • TAPE/DISC
CLEANING • FIELD SERVICE • SYSTEMS HOUSES •
LEASING • SUPPLIES • PUBLISHING • TIME BROKERS •
HARDWARE DISTRIBUTORS • SALES AGENCIES •
HEADHUNTING • TEMPORARY SERVICES • USED
COMPUTERS • FINDER'S FEES • SCRAP COMPONENTS •
COMPUTER PRODUCTS AND SERVICES FOR THE HOME.
Plus -- Loads of ideas on moonlighting,
going full-time, image building, revenue
building, bidding, contracts, marketing,
professionalism, and more. No career
planning tool like it. Order now. If not
completely satisfied, return within 30
days for full immediate refund.

8½ x 11 ringbound • 156 pp. • $20.00
Phone Orders 901-382-0172

DATASEARCH
5694 Shelby Oaks Dr., Suite 105, Dept. B, Memphis, TN 38134
Rush copies of "Low Capital Startup Computer Businesses" at $20
per copy to me right away.

NAME/COMPANY
ADDRESS
CITY/STATE/ZIP

Check Enclosed □ BankAmericard □ Master Charge

PET WORD PROCESSOR

This program permits composing and printing letters, flyers, advertisements, manuscripts, etc., using the COMMODORE PET and a printer.

Script directives include line length, left margin, centering, and skip. Edit commands allow the user to insert lines, delete lines, move lines and paragraphs, change strings, save onto cassette, load from cassette, move up, move down, print and type.

The CmC Word Processor Program addresses an RS-232 printer through a CmC printer adapter.

The CmC Word Processor program is available for $29.50. Add $1.00 for postage and handling per order.

Order direct or contact your local computer store.

CONNECTICUT microCOMPUTER
150 POCONO ROAD
BROOKFIELD, CONNECTICUT 06804
(203) 775-9659
TLX: 7104560052

North Star DOS and BASIC now fully supported on double density 8" drives.

More than 500K storage per disk now possible.
which calculates a random (actually pseudo-random) number between 0 and 1. This number is then multiplied by 3, and only the integer part saved to form a random 0, 1, or 2. Then 0 (later changed to 5), designates a center opening game, 1 a corner opening game and 2 a side opening game. Variable F (flag), which selects alternate computer strategies, is also randomly set to 0 or 1.

In this program, the response library is entered with DATA statements. The program’s opening move and the initial user response are used to determine where to start reading in the response library. The library contains sequences of digits which represent the program’s forcing moves. For 13 of the 24 possible combinations of opening move and user move, there are two possible winning strategies for the program, one of which is selected depending upon the status of variable F. Thus, even with the same opening move and the same initial user move, the program’s responses may vary. Each of these winning strategies, which results in a fork, has five digits. These
digits are selected sequentially for the program’s responses. If the selected response is the same as the user’s move, the user has blocked that row and the next digit is selected by using a loop. The digits in the even numbered positions and the fifth (last) digit represent winning responses, and control is diverted to a win routine which prints the board and the computer winning message.

Two more of the 24 possible combinations have only one strategy for a sure program win, but the program responses are handled in the same manner.

Six of the 24 possible combinations do not have a forced win strategy. These are handled by a 7 digit string of forcing moves that may end in a draw. These 7 digit strings have a 0 spacer inserted before the seventh digit to trigger diversion to the draw routine. The latter prints the board and a draw message after the seventh digit has been selected. A separate test causes a jump to the next digit if a zero spacer is detected as a program response.

That leaves three cases that require spe-

Listing 1 continued from page 200:

1650 GOSUB 1780 : REM DISPLAY UPDATED BOARD
1660 GOSUB 1980 : REM ACCEPT THIRD USER MOVE
1670 C = 3 : REM COMPUTER RESPONSE IS 3 OR 5
1680 IF U = 3 THEN C = 5 : REM COMPUTER WINS
1690 GOTO 2060 : REM COMPUTER WINS
1700 REM
1710 REM CENTER OPENING GAME REENTRY POINT : REM FIND RESPONSES FOR CENTER GAME
1720 R = U * 10 - 10 : REM FIND RESPONSES FOR CENTER GAME
1730 IF U > 5 THEN R = R - 10 : REM RETURN TO SELECT RESPONSES
1740 IF INT(U/2) = U/2 THEN 700 : REM RETURN TO SELECT RESPONSES
1750 GOTO 740 : REM RETURN TO SELECT RESPONSES
1760 REM
1770 REM DISPLAY SUBROUTINE TO PRINT UPDATED PLAYING BOARD
1780 PRINT
1790 PRINT TAB(4) " I I"
1800 PRINT TAB(2) CHR$(B(1));" I ";CHR$(B(2));" I ";CHR$(B(3))
1810 PRINT "--------+
1820 PRINT TAB(2) CHR$(B(4));" I ";CHR$(B(5));" I ";CHR$(B(6))
1830 PRINT "--------+
1840 PRINT TAB(2) CHR$(B(7));" I ";CHR$(B(8));" I ";CHR$(B(9))
1850 PRINT TAB(4) " I I"
1860 RETURN
1960 REM
1970 REM ROUTINE FOR WHEN THE COMPUTER WINS THE GAME
1980 INPUT "YOUR MOVE IS " ; U
1990 IF U < 1 OR U > 9 THEN 2030
2000 IF INT(U) < > U THEN 2030
2010 IF B(U) < > 32 THEN 2030
2020 B(U) = 79
2025 RETURN
2030 PRINT "YOUR MOVE IS ILLEGAL. TRY AGAIN"
2040 GOTO 1980
2050 REM
2055 REM ROUTINE FOR WHEN THE COMPUTER WINS THE GAME
2060 B(C) = 88 : REM PUT COMPUTER MOVE IN PROPER CELL
2070 GOSUB 1780 : REM DISPLAY BOARD FOR WINNING GAME
2075 PRINT
2080 PRINT " ***** I WON *****"
2090 GOTO 1170 : REM NEW GAME?
2100 REM
2110 REM ROUTINE FOR COMBINED CALC, ENTERING, BOARD DISPLAY, USER MOVE
2120 C = 10 - U
2130 B(C) = 88
2140 GOSUB 1780
2150 GOSUB 1980
2160 RETURN
2170 END
of the preceding paragraph except that the last move is not a forcing move. To avoid a false win-test on the sixth (even) digit, zeros are inserted as spacers before the sixth and also before the seventh response digits.

The last two cases are more difficult, and somewhat similar. In each case it would be possible to use a series of forcing moves ending in a draw if the user simply blocked each potential row of three as it occurred. In each case, it is also possible to forego a first response forcing move, and instead to set a trap if the nonforced user move is not correct. I used the latter method in this program. This requires checking the second user move and then making the correct response to that move. A number of extra program steps are required to do this, but the program now plays a rational game.

Other Systems?

Some BASICs may not have some of the features used in this program, such as logical operators, ASCII code to character conversion, string variables, prompting INPUT statements, or PRINT TAB. These operations can normally be duplicated in other BASICs by slight program changes. If you would like a copy of this program in its Hewlett-Packard HP-67 programmable calculator form, send me two blank magnetic cards and a stamped, self-addressed envelope, and I will send it to you along with the slightly different instructions.

Conclusions

This game program exercise demonstrates the programming requirements for even a fairly simple problem:

1. Thoroughly evaluate the problem, to be sure that all possibilities are allowed for.
2. Consider the limitations and special features of the system to be used.
3. Decide exactly what you want to program to do, and then program to do it in a logical, straightforward manner.
4. Plan for ease of input and clarity of output.
5. Document so that others (and yourself at a later date) can readily understand the program.

In programming for this game, you may have found some pointers on logic and program planning. In any case, the completed program may be used to demonstrate system operation while entertaining your family and friends."

SUPER SOFTWARE!

MICROWARE 6800 SOFTWARE IS INNOVATION AND PERFORMANCE

NEW LISP Interpreter

The programming language LISP offers exciting new possibilities for microcomputer applications. A highly interactive interpreter that uses list-type data structures which are simultaneously data and executable instructions. LISP features an unusual structured, recursive function-oriented syntax. Widely used for processing, artificial intelligence, education, simulation and computer-aided design. 6800 LISP requires a minimum of 12K RAM. Price $75.00

A/BASIC Compiler

The ever-growing A/BASIC family is threatening old-fashioned assembly language programming in a big way. This BASIC compiler generates pure, fast, efficient 6800 machine language from easy to write BASIC source programs. Uses ultra-fast integer math, extended string functions, boolean operators and real-time operations. Output is ROMable and RUNS WITHOUT ANY RUN-TIME PACKAGE. Disk versions have disk I/O statements and require 12K memory and host DOS. Cassette version runs in BK and requires RT/68 operating system. Price: Disk Extended Version 2.1 $150.00. Cassette Version 1.0 $65.00

NEW A/BASIC Source Generator

An “acid-on” option for A/BASIC Compiler disk versions that adds an extra third pass which generates a full assembly-language output listing AND assembly language source file. Uses original BASIC names and inserts BASIC source lines as comments. SSB and SWTPC Miniflex version available. Price: $50.00.

NEW A/BASIC Interpreter

Here it is—a super-fast A/BASIC interpreter that is source-compatible with our A/BASIC compiler. Now you can interactively edit, execute and debug A/BASIC programs with the ease of an interpreter—then compile to super efficient machine language. Also a superb stand-alone applications and control-oriented interpreter. Requires 8K RAM. The cassette version is perfect for Motorola D2 Kits. Price: $75.00

RT/68 Real Time Operating System

MIKBUG—compatible ROM that combines an improved monitor/debbuger with a powerful multitasking real-time operating system. Supports up to 16 concurrent tasks at 8 priority levels plus real time clock and interrupt control. Thousands in use since 1976 handling all types of applications. Available on 6830 (MIKBUG-type) or 2708 (EPROM-type) ROM. Manual is a classic on 6800 real-time applications and contains a full source program listing. Price: RT68MX (6830) $55.00. RT68MXP (2708) $55.00

6800 CHESS

ELIZA

6800 version of the famous MIT artificial intelligence program. The computer assumes the role of a psychoanalyst and you are the patient. This unusual program is unique because the dialog with the computer is in unstructured plain English. An impressive demonstration program. Price: $30.00

Our software is available for most popular 6800 systems on cassette or diskette unless otherwise noted. Disk versions available on S.S.B., SWTPC, or Motorola MODEM. Please specify which you require. Phone orders are welcomed. We accept MASTERCHARGE and VISA. We try to ship orders within 24 hours of receipt. Please call or write if you require additional information or our free catalog. Microware software is available for OEM and custom applications.

MICROWARE SYSTEMS CORPORATION

P. O. BOX 4855
DES MOINES, IA 50304
(515) 265-6121
The Birmingham Microprocessor Group Computer Club

The Birmingham Microprocessor Group Computer Club meets on the fourth Sunday of each month. Meeting time is 2 PM at the Park Memorial Branch of the public library, 1814 11th Av S, Birmingham. The rear entrance to the building should be used. Membership dues are $6 per year which includes their newsletter. For more information, write POB 8072, Birmingham AL 35218.

New Apple Computer Club in North Carolina

A new Apple computer club, the Carolina Apple Core, has been founded in the Durham-Raleigh-Chapel Hill NC area. The meeting format consists of monthly meetings on the third Tuesday of each month at different locations. Annual dues are $5 with a monthly newsletter and software library developing. At least two Apple computers with dual disk drives will be attendant at each meeting. Dynamic programs featuring Apple captions are scheduled monthly, with seminars on Apple topics scheduled at other times during the month for the novice or the professional. The club is interested in exchanging information and software with other clubs. Contact Carolina Apple Core, 5212 Inglewood Ln, Raleigh NC 27609.

MUMPS Users Group

In an attempt to reach a larger MUMPS area, the MUMPS Users Group has switched to a controlled circulation magazine format. The intention is to publish the magazine quarterly with each issue featuring a major MUMPS applications package, a number of unique applications, facts on new implementations, information on the annual meeting and on available MUMPS tutorials, and whatever items prove of interest to the readers. For more information about the MUMPS Users Group, write to POB 208, Bedford MA 01730.

Triangle Amateur Computer Club

The TACC (Triangle Amateur Computer Club) in Raleigh NC is dedicated to the advancement of interest in amateur or personal computers. Membership is open to all who support these ideas. The club meets on the last Sunday of the month at 2 PM in the Dreyfus Auditorium, Research Triangle Institute, Research Triangle Park NC. For further information about the club, write POB 17523, Raleigh NC 27514.

Apple Users Group in Boston Area

The Boston area now has its own Apple Computer Users Group. NEAT (New England Apple Tree) supports a regular newsletter containing the latest information in the world of Apple, programming tips and techniques, program listings, reviews, tutorials, and more. Monthly meetings are held the third Wednesday of each month in the Mitre Corp. cafeteria, Rt 3, Bedford MA, for software exchange, information sharing, and guest speakers. They also have available software for the Apple Annual dues are $6. For further information, contact Mitch Kapor, 31 Birch Rd, Watertown MA 02172.

Boston Computer Society Membership Increases 281%

According to the latest issue of The Boston Computer Society newsletter, the BCS Update, their club's membership has increased from 80 to 225 members in a five month period. Congratulations! The club has a wide range of interests, ideas and interesting people. New computers and programs are displayed at meetings, rumors and facts are exchanged, free magazines and information are available, and guest speakers keep members up to date with new systems and applications. Additionally, the club fosters a PET user group. For meeting information, write to The Boston Computer Society, 17 Chestnut St, Boston MA 02108.

Attention French Computer Enthusiasts

A new club called Microtel-club for the hobbyists in microcomputer and telecommunication areas has been formed in France. Their intentions are to develop the interest of the French population in these technical areas, to give the members the chance to use and compare microcomputers, to support the most interesting projects of its users, and to promote the exchanges between them. More than ten Microtel-clubs exist...
in France. In Paris the club owns six microcomputers, many training kits, a library, and three laboratories with electronic equipment. The club is open every day and a newsletter is published twice a month. A new Microtel-club will be formed in Palo Alto CA to develop exchanges between France and the United States. The membership cost is $35 per year. For further information, write Microtel-club Administration, 9 rue Huysmans, 75006 Paris FRANCE 0 54 470 23.

Newsletter for Processor Technology Computers

Proteus/News, formerly Solus News, is an independent newsletter for owners and users of Processor Technology Corporation computers. A sampling of the content of this one page newsletter includes: a "Review of PT DOS 15", "An Introduction to Programming in Pascal", a book review of 45 BASIC Programs by Didactic; "Development of the SLAC Pascal Compiler"; description of the SLAC Pascal Solus/Cuter utilities; and other features. The bimonthly subscription rate is $12 per year. Contact Proteus, 1690 Woodside Rd., Suite 219, Redwood City CA 94061.

Free Timeshare Access

The 8080 Etc compatible users group has expanded its services to both the personal computer user and commercial firms. Free access to over 85 types of business, medical, accounting, research, and hobby software programs is offered to members who have a communications modem. Acoustic couplers or the IDS card for the S-100 bus are recommended and they must be set at the transmission rate of 300 bps. The system can be accessed by dialing (209) 638-6392 and typing the following passwords: Hello-w101, 8080 Etc. The users group also publishes a quarterly journal of group activities and general debugging notes and always has need fortidbits and notes from members or interested people. For a free list of program titles, send a self addressed stamped envelope and include the type of system and specific components, along with any questions to Membership, The 8080 Etc, POB 894, Fresno CA 93714.

Microcomputer Business Users Group

BUG (The Microcomputer Business Users Group) is an association of business men and women and data processing professionals who meet monthly to educate themselves about the methods of achieving solutions to business problems with microcomputers. The primary emphasis is upon education related to application software, although system software and hardware get some attention. Vendors are invited to speak and are encouraged to give educational talks. The group is geared towards end users and vendors or prospective vendors of software. The BUG newsletter keeps members informed about activities, happenings, forthcoming speakers, hearsay information and previous meetings. Meetings are held 7 PM on the first Tuesday of each month at Baruch College, 46 E 26 St., New York NY (3rd floor computer library). Contact The Microcomputer Business Users Group, 161 W 75 St., New York NY 10023.

 BYTE's Bugs

F8T BASIC Problem

Some users have experienced problems in running the BASIC program from "Fast Fourier Transforms on Your Home Computer" by William D Stanley (December 1978 BYTE, page 14). The difficulties are caused by differences in the behavior of BASIC interpreters when they encounter additional statements on the same line following an IF-THEN statement.

Many BASIC systems act in this manner. In cases where the condition tested by the IF is false, program flow proceeds to the next line of the program, skipping over additional statements on the same line as the IF-THEN (following the colon or backslash). However, some BASICs will execute statements on the same line as the IF-THEN, even if the condition is false.

If you have the second type of BASIC interpreter, the following program line must be inserted for the program to run correctly.

1075 IF C > X4 THEN 1090

[Thanks to Dana Tremblay, 178 County St., Apt b, Attleboro MA 02703, for pointing out this problem.]
APL and the Greatest Common Divisor

I read the article "Pascal versus BASIC: An Exercise" in August 1978 BYTE, page 168. Upon examining the Pascal, BASIC and FORTRAN listings on page 172 for the greatest common divisor between two integers, I was curious about how an APL program would compare. I submit my APL version in listing 1 (several example runs are shown in listing 2). A detailed step by step analysis of the APL program is given which shows some of the power inherent in the APL language.

Analysis of Program

The explanation is given for the function

\[
\text{GCD } 6 \ 8 \ 14
\]

The greatest common divisor among a series of integers as contained in vector \(V \) is necessarily less than or equal in magnitude to the smallest one of the integers. The smallest integer is easily selected in APL using the floor reduction \(\lfloor \n/ V \rfloor \), which in our example would result in selecting the number 6. One could proceed by dividing all of the elements of \(V \) by this smallest integer and testing each division for a remainder of 0. This again is easily implemented using

\[
\n/ ((\lfloor n/ V \rfloor) \circ \n) = 0
\]

wherein, for our example, the 6 residue of vector \(6 \ 8 \ 14 \) given by

\[
6 \ 8 \ 14
\]

returns the vector \(0 \ 2 \ 2 \). When this vector is logically equated to 0 the vector \(0 \ 0 \ 0 \) results. The logical AND reduction of this vector \(\n/ 1 \ 0 \ 0 \) returns the number 0. One could next subtract 1 from the smallest element, 6, and repeat, whereupon one would find that \(\n/ (5 \ 6 \ 8 \ 14) = 0 \) also returns the number 0. Obviously, the first integer in the decreasing series of integers thus obtained that returns the number 1 will be the greatest common divisor.

In our example \(6 \) gives the vector \(1 \ 2 \ 3 \ 4 \ 5 \ 6 \). Thus if we reverse this vector, we have the desired elements for successive divisors. This is done in APL for our example using the vector reversal \(\n/ 6 \). This gives the vector \(6 \ 5 \ 4 \ 3 \ 2 \ 1 \).

The outer product in APL is called out by the two symbols " . "", precisely the operation needed here since the outer product will take each of the elements on the left and apply it in turn to the primitive function on the right. Thus in our example, \(6 \ 5 \ 4 \ 3 \ 2 \ 1 \circ . \) \(6 \ 8 \ 14 \) returns the matrix:

\[
\begin{array}{cccccc}
0 & 2 & 2 & 1 & 3 & 4 \\
0 & 0 & 2 & 2 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

When this matrix is logically compared to 0 we obtain:

\[
\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
\end{array}
\]

The AND reduction, \(\n/ \), applies to the rows of a matrix. Hence we will return in our example the vector \(0 \ 0 \ 0 \ 0 \ 1 \ 1 \) when applied to the last matrix above. The position of the first 1 that occurs in this vector will reference the position in the vector of divisors \(\n/ (\n / V) \). If this position index is appended as a subscript, \(\n/ (\n / V)[\cdot \circ \n \cdot \text{index} \ldots] \), the greatest common divisor will be displayed. The first occurrence of 1 in the vector for our example is obtained by the dyadic use of the index operator iota on the vector \(0 \ 0 \ 0 \ 0 \ 1 \ 1 \), which returns a 5. The fifth element of vector \(6 \ 5 \ 4 \ 3 \ 2 \ 1 \) is 2, which is the greatest common divisor of \(6 \ 8 \ 14 \).

\[
\begin{array}{cccccc}
GCD & 391 & 238 & 1887 & 1003 \\
GCD & 17 & & & & \\
GCD & 637 & 735 & 343 & 49 & 6468 \\
GCD & 49 & & & & \\
GCD & 6 & 8 & 14 & & \\
GCD & 2 & & & & \\
\end{array}
\]

Listing 1

Listing 2
APL Aids Instructors

Prof Selby Evans
Psychology Dept
Texas Christian University
Fort Worth TX 76129

Fortunately, I did not know that APL was unsuitable for computer aided instruction, so I started using it four years ago. It works fine. Professor Gerhold’s “Teaching with a Microcomputer” (December 1978 BYTE, page 124) falls far short of convincing me that I should learn another special purpose language just to handle computer aided instruction.

Professor Gerhold found the interpretation of responses to simple yes-no questions formidable in BASIC. None of my programs ask that kind of question as part of the instruction, but rather as the start up routine. Here’s how I handle it:

```
[10] +SK1:N'=1+[]
' WANT YOUR MISSION ORDERS?'
```

I don’t try to handle variants of expression because I find that beginning students, told to answer yes or no, do it. I haven’t protected against expressions like yesterday, yetti, or you blasted idiot, because I’ve never seen inexperienced students answer that way. Semisophisticated students may try to spoof the system with things like that, but as far as I am concerned, they are welcome to whatever they get.

When I present a question calling for a word or two as response, I use a function that tests for the presence of key letters in specified order. Thus, a judicious selection of key letters makes the function tolerant of some misspelling and typographical errors. The function checks the list of alternatives and responds differently depending on whether the response matches the first or one of the subsequent alternatives.

Professor Gerhold believes that such a function would be too slow. I find no basis for that belief. On a Sigma-9 in a timesharing environment with 30 users, the function has no discernable impact on terminal response time. Under those conditions the response time does not exceed the carriage return time and so is perceived as immediate. If a dedicated microprocessor can’t match that, I am going to be disappointed.

Aside from permitting me to work in a familiar and powerful language, using APL for computer aided instruction allows me to use functions already developed. For example, when I need to plot histograms, I simply copy the histogram function from my statistical workspace. This came in handy in the writing of my StarTrek game in which I had to figure a confidence interval for the mean, in order to spread the phaser enough to have a reasonable chance of hitting the Klingon.

A third advantage of APL is that it lets me write complex programs very easily.

The Problem of Software Piracy Revisited: A Proposal

Vernor Vinge
Assoc Prof of Mathematics
San Diego State University
San Diego CA 92182

One of the greatest problems facing individuals who own computers is to legally acquire inexpensive, high quality software. The fact that it is often possible to acquire such software for free illegally is one of the reasons we have the problem, for if a paying market existed, some extremely useful programs would be written for it. (There are rumors that Bell Labs LSI-11 UNIX may never be released: if it costs hundreds of
thousands of dollars to develop a system which can then be stolen and sold for $10, there is scarcely a reason to market it at $500 to $1000, prices that would yield a good profit on an "honest" market.)

Most illicit copying is done casually and in a spirit of friendly (nonprofit) cooperation between fellow users. I believe that the following suggestion, if adopted by sellers of major software products, would drastically reduce the risk of such copying.

Let P be the price the seller has currently put on one unit of his or her product. (P would be related to the seller's estimate of what the traffic could bear if no illicit copying were possible.) When customers buy the product, they have the option of naming (on the sales form) any person who is already a registered purchaser of the software. The person so named would then receive an rP dollar "software bounty" from the seller, where r is a number between 0 and 1 announced by the seller when the product is introduced. (It might take some experience to decide the best value for r. My opinion is that some value greater than 0.5 would be optimum for the seller. The price P could be changed with time, but a fixed r would help consumers maintain confidence in the bounty.)

Let P be the price the seller has currently put on one unit of his or her product. (P would be related to the seller's estimate of what the traffic could bear if no illicit copying were possible.) When customers buy the product, they have the option of naming (on the sales form) any person who is already a registered purchaser of the software. The person so named would then receive an rP dollar "software bounty" from the seller, where r is a number between 0 and 1 announced by the seller when the product is introduced. (It might take some experience to decide the best value for r. My opinion is that some value greater than 0.5 would be optimum for the seller. The price P could be changed with time, but a fixed r would help consumers maintain confidence in the bounty.)

Retro-Graphics™

For your Dumb Terminal. The Retro-Graphics PC card mounts easily in the Lear Siegler ADM-3A to provide you with an affordable graphics computer terminal.

Features:
- 2-80 Based
- 512 by 250
- Dot Matrix
- Simple Plug-in Interconnect
- Point Plotting
- Automatic Vector Generation
- Optional TEKTRONIX Software Compatibility

You will be impressed with the packaging, performance and price of the Retro-Graphics card. Write or phone today for complete specifications.

DIGITAL ENGINEERING, INC.
1787 Tribute Road, Suite K
Sacramento, CA 95815
(916) 920-5600

The rP software bounty would have many effects. Suppose Tom buys the product. If he can convince Jan to buy, Tom can recover a substantial portion of his expense (assuming that r is reasonably large). But why would Jan name Tom on the sales form? Presumably because Tom has promised Jan some fraction of the bounty; that is their affair. If Tom is an enterprising individual (and if the product is much in demand) then he might be able to recover his entire purchase cost and possibly make more.

Of course, Jan and all the others that Tom has won bounties on may be doing the same thing. This is a secondary effect of the scheme. It turns present marketing realities upside down: the software bounty would reward those who purchase early, and leave procrastinators with the risk that there may be no bounties left to win when they get around to buying.

Notice that although the arrangements between customers and prospective customers may be quite complicated and novel, the situation would be simple for the seller. He or she must keep a mailing list of registered purchasers--also necessary for sending out software updates and maintenance fixes. If n units are eventually sold, the seller will receive at least $nP - (n-1)rP$ for his efforts. (If P changes with time, the result is only slightly more complicated.)

The software bounty scheme will not stifle those whose moral fiber is not merely weak, but nonexistent. An outright criminal who copies the product and sells it at a low price could make a lot of money. Two features of the plan might tend to discourage this, however. The person receiving the bounty must be named by the new purchaser on a bona fide sales form. Thus anyone buying a bootlegged product would know that he was doing so and would know that he could not obtain any bounties of his own; in fact, he would have to undertake equivalent criminal activity if he wished to make any money from disseminating the product. Secondly, outright bootlegging directly damages legitimate bounty hunters and is therefore more likely to be reported than under present marketing strategies.

A creative suggestion, to be sure. But if to purchase a score of a great symphony one had to pay the same amount as the original composer's stipend, very few people would have ever heard a number of masterpieces.

A commission sales arrangement is exactly how such works of art are sold by a myriad of dealers — and there is no reason why software works of art cannot be sold on a similar basis...
Using any instructions in the Intel 8080 instruction set except ADD, ADI, ADC, ACI, and DAD, write a program that adds two 8-bit binary numbers. Assume that the addend and augend have been preloaded into the B and C registers, respectively. The sum should be located in the accumulator when the addition is completed, and then the processor should be halted. The program should have a minimum number of instructions and should execute with the greatest possible speed. Puzzle a bit on this problem and when you figure out how to do it, turn to page 217.
The world's only single-chip LSI Universal Printer Controller is here!

The very low-cost 40-pin CY-480 controls ANY standard 5 × 7 dot matrix printer with print speeds up to 200 cps! The CY-480 Universal Printer Controller from Cybernetic Micro Systems is the first—and only—40-pin LSI device which will control and interface any standard 5 × 7 dot matrix printer (including those from Victor, LRC, Practical Automation and Amperex) having a print speed up to 200 cps. It operates from a single +5V power supply and will interface a printer with any microcomputer or minicomputer system through standard 8-bit ports. The CY-480 accepts either serial (RS232C) or parallel ASCII input from the host system's data channel.

The CY-480 replaces bulky, expensive dedicated controllers. The small, single LSI package offers a 5 × 7 dot matrix character generator, full upper and lower case ASCII 96-character font, a 48-character (expandable by daisy-chaining) descender buffer storage. Standard are 10, 12 or 16 characters/inch variable character density command. Color selectable print command, forward/backward printing command, and horizontal and vertical independently expanded print command. The CY-480 provides graphics capability and includes a "flip-print" operating mode for 160° viewing. Ready lines provide full asynchronous communications with handwriting.

Low price! $35 a single unit!
CYBERNETIC MICRO SYSTEMS
2378-B Walsh Ave. • Santa Clara, Calif. 95050
Phone (408) 249-9255

Periodic Answers

Mark Zimmermann
Caltech 130-33
Pasadena CA 91125

I would like to comment on the question BYTE posed in reference to Jef Raskin's article "Unlimited Precision Division" (February 1979 BYTE, page 156). The question concerned decimal expansion of 99991/99989.

By using several tricks from An Introduction to Number Theory by Harold Stark, in conjunction with an HP-25 calculator to do 10-digit arithmetic, I found that the period of the decimal expansion of 99991/99989 is 99988.

The theorem states that for any pair of numbers m and n which have no factors in common except 1, and which have no common factors with 10, the rational number m/n has a purely periodic decimal expansion and the length of the period is ord₁₀(n).

The function \(\text{ord}_n(10) \) is defined as follows (paraphrasing Stark):

if \(10^b \) leaves a remainder of 1 when divided by \(n \), and \(b \) is the smallest positive integer for which this occurs, then \(\text{ord}_n(10) = b \). For example, \(\text{ord}_{99}(10) = 2 \) since 102 leaves a remainder of 1 when divided by 99. Therefore, by Stark's theorem, 1/99 has period 2 in its decimal expansion.

Stark also gives some hints which reduce the amount of work in finding the smallest working value of \(b \). For the case \(n=99989 \), there are 11 candidates for \(b \), of which only \(b=99988 \) works.

During all stages of the calculation, one cares only about the remainders after division by 99989, so a calculator that can handle 10 decimal digits is adequate.

Thanks for suggesting an interesting puzzle!
A Hard Way to Hard Copy

Suppose you have glued a light emitting diode (LED) on each key of your typewriter, then connected those LEDs to the outputs of a decoder, then connected the decoder to the output ports of your favorite microcomputer. Each time a character is displayed on the output LED light, you push the key and the character is printed. You must not forget some auxiliary function indicators for things like space, new line, etc. I think it is the most economical way to obtain a good printout from a microcomputer or a personal computer. In my opinion the achievable speed is nearly two characters per second.

The cost of such an adaptation should be less than $25, assuming bargain basement LEDs and a typewriter you already own. It could be possible to extend the function by adding a touch contact on each key.

I have only one reservation: in a few years it might be more common to own a microcomputer than a typewriter.

Other Early Computers

Keith Reid-Green's article "A Short History of Computing" (July 1978 BYTE, page 84) neglected to mention a number of very significant machines. On reading the article one gets the impression that prior to this decade no computers were built outside the USA, and that any machine within the USA was in all probability built by IBM. Of course in a short article one cannot hope that a complete history will be presented, but I do not feel that the author presented a correct view of the development of computers.

Since my own knowledge of the history of computing is limited to mainly British machines, I too will no doubt leave out many machines that others would include. The following are some of the machines that I feel should have been mentioned:

- Konrad Zuse's electromagnetic computers built in Germany before and during World War II.

Adding $25 for assembled, tested. Guaranteed.

Static TMS 4044- Fully Static 4Kx1 Memory chips for better data integrity and DMA compatibility.

Fully S-100 Bus Compatible-All lines fully buffered, Dip Switch Addressable in two 8K blocks, 4K increments, Write Protectible in 2 blocks, Memory Disable using Phantom (pin 67) or strappable to any port pin.

Bank Select Using Output port 40H (Cromemco software compatible)-addressable to 512KB of RAM or for time share. Also has alternate port 80H-making over 1 million byte of RAM available.

Quality Components-First quality parts, fully socketed. Glass epoxy board with silk screened legends, solder masks, Gold Contacts.

Guaranteed-parts and labor for 1 year. You may return the undamaged board within 10 days for a full refund. Foreign and kit purchasers-parts only guaranteed; no return privilege.

Orders- You may phone for Visa, MC, COD orders. ($4 handling charge for COD orders only). Personal checks must clear prior to shipping. Shipping-Stock to 72 hours normally. Will notify expected shipping date for delays beyond this. Illinois residents add 5% tax. Please include phone number with order.

S.C. Digital
P.O. Box 906
Aurora, IL 60507
312-897-7749

May 1979 © BYTE Publications Inc

Circle 331 on inquiry card.

16K STATIC RAM

Kit price $285 450 nsec
$320 250 nsec
Memory Chips

Add $25 for assembled, tested. Guaranteed.

Static TMS 4044- Fully Static 4Kx1 Memory chips for better data integrity and DMA compatibility.

Fully S-100 Bus Compatible-All lines fully buffered, Dip Switch Addressable in two 8K blocks, 4K increments. Write Protectible in 2 blocks, Memory Disable using Phantom (pin 67) or strappable to any port pin.

Bank Select Using Output port 40H (Cromemco software compatible)-addressable to 512KB of RAM or for time share. Also has alternate port 80H-making over 1 million byte of RAM available.

Quality Components-First quality parts, fully socketed. Glass epoxy board with silk screened legends, solder masks, Gold Contacts.

Guaranteed-parts and labor for 1 year. You may return the undamaged board within 10 days for a full refund. Foreign and kit purchasers-parts only guaranteed; no return privilege.

Orders- You may phone for Visa, MC, COD orders. ($4 handling charge for COD orders only). Personal checks must clear prior to shipping. Shipping-Stock to 72 hours normally. Will notify expected shipping date for delays beyond this. Illinois residents add 5% tax. Please include phone number with order.

S.C. Digital
P.O. Box 906
Aurora, IL 60507
312-897-7749

May 1979 © BYTE Publications Inc

Circle 331 on inquiry card.
• The code breaking computers (COLOSSI) built in Bletchley Park, England, during World War II.
• The Manchester University Mark 1 (1948) and the Cambridge EDSAC (1949). The Mark 1 was the first stored program computer. The first program written for it was to determine the highest proper factor of 2^{18}. It succeeded in solving this problem in a 52 minute run on June 21, 1948. It used as memory the electrostatic Williams Tube which was later used under license by IBM for the 701 and 702 computers. The EDSAC machine introduced the concept of subroutines.
• Two transistorized computers were built at Manchester in 1953 and 1955. These machines led to the MV950 computer which was used commercially, six being built and used for a period of five years.
• The Atlas computer (1962). This was designed at Manchester by a team led by Prof. Kilburn who was part of the team that built the Mark 1 and also wrote the program mentioned above. When Atlas was finished it was said to be the most powerful computer in the world and it introduced concepts such as paging and virtual storage. This machine was also sold to a number of users and one was still in full time use up to a couple of years ago. The machine made such an impression that even today the power of a computer is often quoted as so many Atlases.
• No mention was made of the Burroughs machines with their unique architecture.
• What ever became of DEC?

If anyone is interested in a fuller account of the development of computing machines, there are several books that should be read. They are:

• History of Manchester Computers by S. Lavington, published by the National Computing Center, Manchester England and distributed in the USA by The Hayden Book Company Inc., 50 Essex St., Rochelle Park N.J. This book describes the development and construction of all the computers built at Manchester University.
I would like to compliment you on the article “A Microprocessor for the Revolution: The 6809, Part 1: Design Philosophy” by Terry Ritter and Joel Boney (January 1979 BYTE, page 14). Although most of us will never be in a position to design an LSI microprocessor, an article on design philosophy is quite appropriate. The same considerations faced by the microprocessor designer are faced by the system designer trying to choose the best microprocessor for his system, and the user (including the hobbyist) trying to choose the best system for his application.

Ritter and Boney do an excellent job of presenting the criteria to be used in judging a microprocessor, but their conclusions — that the 6809 is “the best 8 bit machine so far made by humans” and “definitely superior to the 8 bit competition” — are by no means beyond question. Their attitude can perhaps be excused by the fact that they are the proud fathers of a new “baby”, but it has been said with considerable justification that there is no “best” microprocessor for all applications. It is unlikely that when the 6809 becomes available the situation will be any different. For example, Synertek’s upgrade of the 6502, the 6516, could prove superior to the 6809 in many applications.

It is true, but perhaps not immediately obvious, that increasing the number of address modes available on a microprocessor does not necessarily make it more useful. The autoincrement and autodecrement modes, in particular, are powerful and appropriate on a 16 bit machine like the PDP-11, but they can actually decrease the power of an 8 bit machine by introducing two types of inefficiencies.

First, because an exotic instruction set requires a complex architecture, it in-
VAK-4 DUAL 8K-RAM $379.00
VAK-2 8K-RAM ($½ populated) $239.00

VAK-4 16K STATIC RAM BOARD
• Designed specifically for use with the AIM-65, SYM-1, and KIM-1 microcomputers
• Two separately addressable 8K-blocks with write protect.
• Designed for use with the VAK-1 or KIM-4 motherboards
• Has provisions for mounting regulators for use with an unregulated power supply
• Made with 1st quality 2114 static ram chips
• All IC’s are socketed
• Completely assembled, burned-in, and tested

We manufacture a complete line of high quality expansion boards. Use reader service card to be added to our mailing list, or U.S. residents send $1.00 (international send $3.00 U.S.) for airmail delivery of our complete catalog.

*Product of MOS Technology

RNB ENTERPRISES INCORPORATED
2967 W. Fairmount Avenue • Phoenix, AZ 85017 • (602) 265-7564

PET PRINTER
GET HARD COPY FROM YOUR COMMODORE PET USING A STANDARD RS-232 PRINTER

The CmC ADA 1200 drives an RS-232 printer from the PET IEEE-488 bus. Now, the PET owner can obtain hard copy listings and can type letters, manuscripts, mailing labels, tables of data, pictures, invoices, graphs, checks, needlepoint patterns, etc., using a standard RS-232 printer or terminal.

PET PRINTER ADAPTER

$98.50 ADA 1200B
Assembled and tested

$169.00 ADA 1200C
With case, power supply and RS-232 connector

Order direct or contact your local computer store. Add $3.00 for postage and handling per order.

214 May 1979 © BYTE Publications Inc
CONVERT ANY TV
TO A HIGH QUALITY MONITOR

Circle 379 on inquiry card.

The "EXTERMINATOR"

A completely self-contained, high density graphic system for S-100 buss users of Polymorphic VT-64 video board. —$125 by 128V resolution. Total software control. Assembled & tested . . . $248.00
Write for details and avail. options.

VAMP Inc. Box 29315
Los Angeles, Calif. 90029

PRICE: $129.00
We also carry the SYM-1 Microcomputer with manuals $269.00

6809 the most effective choice, remembering that all operations using the common address modes (direct and extended) require the same or fewer bytes of code and at least one less cycle of execution time on the 6516.

The next most frequent operations in Ritter and Boney's static analysis, after loads and stores, were subroutine calls and returns. A comparison of the two processors' capabilities in that area follows:

<table>
<thead>
<tr>
<th>Type of Addressing</th>
<th>6809 Byte Cycles</th>
<th>6516 Byte Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>extended</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>rel. 8 bit</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>rel. 16 bit</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>indirect</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>system</td>
<td>1/2</td>
<td>1/6/7</td>
</tr>
<tr>
<td>RTS</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>RTI</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>other indexed</td>
<td>all indexed</td>
<td>modes available</td>
</tr>
</tbody>
</table>

As mentioned in the article, the use of software interrupts for breakpoints and operating system calls is a good programming practice. The 6809 provides three software interrupt instructions; two require two bytes and all save all registers on the stack. The 6516 has six BRK instructions; all 1 byte instructions. They save no registers for flexibility and speed, but only one byte and ten additional cycles are required, if necessary, to save all registers.

Authors Ritter and Boney indicated that a major effort was made to "clean up the 6800 instruction set and make it more consistent," and cite the instruction TFR R1, R2 as an example. It is not clear to me that remembering 42 combinations like TFR A,B, TFR X,Y is any easier than remembering 42 mnemonics of the form TAB, TBA, and TXY, and the 6809 user will pay a heavy price for such consistency. The TFR instruction requires two bytes and seven cycles for each register transferred, as opposed to one byte and one cycle on the 6516. Moreover, if the programmer insists on using a TFR type format, a 6516 assembler could certainly be written to accept it.

Another advantage of the 6516 is the 16 bit data handling capability. Aside from the ADDD, SUBD, and CMPD instructions, the 6809 has no facilities for computing with 16 bit data. All 6516
Circle 287 on inquiry card.

BET.
YOU DIDN'T KNOW!

OAE's new PP-2708/16 PROM Programmer is the only programmer with all these features:
- Converts a PROM memory socket to a table top programmer: No complex interfacing to wire—just plug it into a 2708 memory socket.
- A short subroutine sends data over the address lines to program the PROM.
- Programs 2 PROMs for less than the cost of a personality module. (2708s and TMS 2716s)!
- Connect 2 or more in parallel—super for production programming.
- Complete with DC to DC switching inverter and 10 turn carbon trimmers for precision pulse width and amplitude alignment.
- All packaged in a handsome aluminum case.

WE SHIP FROM STOCK—EVERYTHING FACTORY FRESH, FULLY WARRANTED

TELETYPER Model 43 TTL................................. $965
RS232 ... $1,046
(We stock Teletype Paper and Ribbons)
HAZELTINE 1500 assembled $945
1510 .. $1,086
Also available with French, German or Danish character sets.

PER CEC
Model 277 Dual Disk Drive, single density $1,210
Slimline cabinet w/power supply $299

MARINCHIP SYSTEMS M9900 CPU
The Complete, Compatible 16 bit CPU for the S-100 Bus
Kit Assembled
M9900 .. $550 $700

We configure systems to suit your individual requirements.

IMS MEMORY
High speed, fully static, 8K $190

MODEM
Originatel/Answer, The "CAT" from Novation $190

INTERTUBE
Smart terminal for intelligent users $900

DEC LA 34
High quality I/O Printer $1,159

9900 S-200 INTERFACE BOARD
Provides interface from Technico to S-100 components $959

64K MEASUREMENT SYSTEMS & CONTROLS MEMORY
High speed, fully static, on ONE board $695

S-100 MAINFRAME 12 slot TEI Model MCS-112 $433
For order: 10% shipping for Terminals, Per Sci and Mainframe. 83 shipping for other items. 24 hr. shipping upon receipt of certified check or money order. Personal checks: allow 10 days. Credit cards: 4% charge. NY residents add tax.

WE EXPORT
We have no reader inquiry number. Please call or write.

JOHN D. OWENS ASSOCIATES, INC.
147 NORWOOD AVENUE
STATEN ISLAND, NEW YORK 10304
DAY, EVENING, WEEKEND, HOLIDAY CALLS WELCOME!
(212) 448-6283 (212) 448-6298

Puzzling Rotation

Ken Barbier
Borrego Engineering
POB 1253
Borrego Spgs CA 92004

Listing 1.
10 PRINT
20 Y = 0: X = INT((1/7)*1E+06)
30 FOR K = 1 TO 7
40 Y = Y + X
50 PRINT Y
60 PRINT
70 NEXT K
80 END

The program in listing 1 is more a puzzle than a useful routine. The only practical application I can foresee would be to entice some computer hobbyist with more mathematical ability than I, to explain why the resulting numbers have the same digits in the same order. Does the same digit rotation occur for similar operations in other number bases?

Line 20 starts with a 6 digit integer formed from the first six digits of the reciprocal of that magic number, seven. This number is repeatedly added to itself to form a column of 6 digit numbers with curious properties.

I won't show these results here. You will have to try it on your computer. If your version of BASIC insists, you might have to enter 1E+06 in line 20 as 1000000.
Solution to Machine Language Puzzler (See page 209)

Addition can be performed without an ADD instruction by subtracting the two's complement of the addend from the augend. Specifically:

\[X + Y = X - (-Y) = X - Y^* \]

where \(Y^* \) is the two's complement of \(Y \).

A simple approach is as follows (assume that \(X \) is in register C, and that \(Y \) is in register B):

```
MOVA, B
CMA
INR A
MOV B, A
MOVA, C
SUB B
CMC
HLT
```

A shorter solution is not quite as obvious:

```
MOVA, B
CMA
SUB C
CMA
HLT
```

NO FRILLS! NO GIMMICKS! JUST GREAT DISCOUNTS

MAIL ORDER ONLY

<table>
<thead>
<tr>
<th>Product</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAZELTINE</td>
<td>$650.00</td>
</tr>
<tr>
<td>CENTRONICS</td>
<td></td>
</tr>
<tr>
<td>779-1</td>
<td>$954.00</td>
</tr>
<tr>
<td>779-2</td>
<td>$1051.00</td>
</tr>
<tr>
<td>700-2</td>
<td>$1350.00</td>
</tr>
<tr>
<td>761 KSR tractor</td>
<td>$1955.00</td>
</tr>
<tr>
<td>760 tractor</td>
<td>$2195.00</td>
</tr>
<tr>
<td>NORTHSTAR</td>
<td></td>
</tr>
<tr>
<td>Horizon I assembled</td>
<td>$1629.00</td>
</tr>
<tr>
<td>Horizon II assembled</td>
<td>$1339.00</td>
</tr>
<tr>
<td>Desk System</td>
<td>$589.00</td>
</tr>
<tr>
<td>TELETYPE</td>
<td></td>
</tr>
<tr>
<td>Mod 43</td>
<td>$995.00</td>
</tr>
<tr>
<td>IMS</td>
<td></td>
</tr>
<tr>
<td>16K Static Memory</td>
<td>$459.95</td>
</tr>
<tr>
<td>DIGITAL SYSTEMS</td>
<td></td>
</tr>
<tr>
<td>Computer</td>
<td>$4345.00</td>
</tr>
<tr>
<td>Double Density Dual</td>
<td>$2433.00</td>
</tr>
<tr>
<td>IMSAI</td>
<td></td>
</tr>
<tr>
<td>VDP 80/1000</td>
<td>$5895.00</td>
</tr>
<tr>
<td>VDP 40</td>
<td>$3795.00</td>
</tr>
<tr>
<td>VDP 42</td>
<td>$3895.00</td>
</tr>
<tr>
<td>VDP 44</td>
<td>$4195.00</td>
</tr>
<tr>
<td>16K Memory assem.</td>
<td>$399.00</td>
</tr>
<tr>
<td>PICS 80/15</td>
<td>$679.00</td>
</tr>
<tr>
<td>CROMEMCO</td>
<td></td>
</tr>
<tr>
<td>System III $1000 off</td>
<td>$4990.00</td>
</tr>
<tr>
<td>10% off on all other Cromemco products</td>
<td></td>
</tr>
<tr>
<td>TEXAS INSTRUMENTS</td>
<td></td>
</tr>
<tr>
<td>810 Printer</td>
<td>$1595.00</td>
</tr>
<tr>
<td>CENTRONICS Micro Printer</td>
<td>485.00</td>
</tr>
</tbody>
</table>

Most items in stock for immediate delivery. Factory-fresh, sealed cartons.

DATA DISCOUNT CENTER
P.O. Box 100
135-55 Northern Blvd., Flushing, New York 11354, 212/465-6609
N.Y.S. residents add appropriate Sales Tax. Shipping FOB N.Y.
BankAmericard, Master Charge add 3%. COD orders require 25% deposit.

SOFTWARE FOR BUSINESS

includes:

* Mailing List
* General Ledger
* Payroll
* Phone Directory
* Customer Information
* Invoice Writer
* Inventory
* Check Writer
* Complete Business System
* Master Business System

Available Soon
Word Processor

video world

2224 N. University, Peoria, Il. 61604
Phone 309/686-9352

* Trademark of Apple Computer Co. Inc.

C/PM SOFTWARE TOOLS

ED-80 TEXT EDITOR

THE PROGRAMMER’S MOST IMPORTANT SOFTWARE TOOL — WHY NOT MAKE IT YOUR BEST?

ED-80 encompasses the features found on large mainframe and minicomputer editors, such as the IBM 370, CDC 170, UNIVAC 1100, and the DEC PDP-11 series computers, plus additional features designed for floppy disk based operating systems. It is a context editor which is compatible with C/PM and its derivatives, including AIMOS, OOS.A, COOS, etc.

Over 50 commands are provided, including forward or backward LOCATE, CHANGE, and FIND commands, INSERT, DELETE, REPLACE, APPEND, PRINT, LIST, MACRO, and other lower CASE, SCALE, TABSET, and WINDOW commands, and GET and PUT commands for repurposing, duplicating, concatenating, and managing text files and libraries. Sophisticated search and change techniques are provided for managing BASIC, FORTRAN, COBOL, PL/I, ALGOL, APL, PASCAL, ASSEMBLER TEXT FORMATTED, and other file types.

The WINDOW command allows instantaneous full screen display of both the current and surrounding lines for further editing, and provides for forward and backward scrolling in the full screen mode. Designed for today’s high speed CRTs and video monitors, the WINDOW command separates ED-80 from all other available editors, and is not hardware dependent.

Up to three MACRO commands may be defined for iterative execution of concatenated editor commands. Once defined, they may be subsequently executed, or recalled for observation. A MACRO may also be defined and executed in a single operation.

Configurable parameters for tailoring the editor to the user’s keyboard and environment are provided through the use of the C/PM Dynamic Debug Tool (DDT). The WINDOW, WINDOW NEXT, WINDOW PREVIOUS, NEXT LINE, and PREVIOUS LINE commands fall in this category. These commands are considered so important to test editing that only one key has to be depressed to cause any one of them to execute.

A CURRENT LINE NUMBER is internally maintained by the editor for displaying when prompting for input and with certain other commands. Line numbers are dynamically adjusted as the result of line inserts and deletes, and may be used for positioning within the file. They are not stored or associated with the text in any manner.

ED-80 is thoroughly documented with a User’s Manual of over 35 pages describing each command and feature, and includes numerous examples. It is 9.5K bytes in size, and a minimum C/PM operating system of 20K is recommended. A User’s Manual and standard size single density diskette are $69.00. A User’s Manual is $75.00, refundable with purchase. COD and money orders shipped next day. COD orders require 10% deposit. Personal checks must clear before shipment. Include $2.00 shipping/handling per order.

SOFTWARE DEVELOPMENT AND TRAINING, INC.
P.O. Box 4511 — Huntsville, Alabama 35802
C/PM® is a trademark of Digital Research

Circle 91 on inquiry card.

Circle 386 on inquiry card.

May 1979 © BYTE Publications Inc 217
Guess who builds this great $19.95* Logic Probe.

You. With this easy-to-build Logic Probe Kit from CSC and just a few hours of easy assembly—thanks to our very descriptive step-by-step manual—you have a full performance logic probe. With it, the logic level in a digital circuit translates into light from the Hi or Lo LED; pulses as narrow as 300 nanoseconds are stretched into blinks of the Pulse LED, triggered from either leading edge. You'll be able to probe deeper into logic with the LPK-1, one of the smarter tools from CSC.

Complete, easy-to-follow instructions help make this a one-night project.

CONTINENTAL SPECIALTIES CORPORATION

The Hobby Unwrap

Ralph Stirling
7401 Garland Av
Takoma Park MD 20012

The Hobby Wrap Model BW-630 wire wrap gun, manufactured by the OK Tool Company, 3455 Conner St, Bronx NY 10475, is a useful tool for experimenters. One feature I missed, though, is the ability to unwrap wrong connections. The Hobby Wrap is powered by a DC motor run on two C cells. If the batteries are installed backwards, the motor runs in the reverse direction. It can then unwrap wire wrap connections. But removing the batteries and replacing them backwards is a very inefficient way to do unwrapping. Some better method of reversing battery polarity is required.

A double pole double throw (DPDT) switch can be used to change the polarity of the motor connections. The Hobby Wrap is dismantled by removing the two bolts and the metal ring around the battery compartment. I have found that a Radio Shack 275-407 (or equivalent) DPDT subminiature slide switch can be mounted in a cutout made in the thin plastic square at the

Figure 2: Installation of double pole double throw switch in the Hobby Wrap gun.
Figure 1: A modification to the Hobby Wrap Model BW-650 wire wrap gun manufactured by the OK Tool Company. A double pole double throw switch is used to reverse the direction of motor rotation, enabling the user to unwrap wire wrap connections.

rear of the top side of the tool. The switch should be mounted in the left half of the case (when viewed from the rear of the gun). This allows the right half to be removed completely without upsetting the battery connections. The slide switch is glued in position with epoxy, because mounting holes would be difficult to drill. The whole modification takes less than two hours.

Step by Step Instructions

1. Remove right half of case (two bolts and ring).
2. Remove motor (pop off rubber belt and gently remove motor from drive shaft).
3. Unsolder wires connecting the motor with the battery connectors.
4. Solder wires (30 gauge wire wrap) diagonally across the switch as shown in figure 1.
5. Solder two wires from the motor to the middle two contacts on the switch, and two wires from the battery connectors to one of the outer pairs of contacts on the switch.
6. Trim out the thin section of plastic on the left half of the case (figure 2) and glue the switch into this slot with epoxy.
7. Remount the motor, route the wires past the bolt hole, replace the right half of the case in its original position, and label the switch positions.

You now have an unwrapping tool whenever you need it. To unwrap, slide the switch to the unwrap position, place the tool over the wire wrap post as in wrapping, and press more firmly than usual while giving the motor a brief burst. The wrap should come right off.

LSI-11 TIME

It’s TIME you brought your LSI-11 up to DATE TIME and DATE, two important parameters in the computer world, are available to your LSI-11 on one DUAL SIZE BOARD. When requested, the TCU-50D will present you with the date (month and day), time (hour and minutes), and seconds. Turn your computer off and forget about the time — your battery supported TCU-50D won’t, not for 3 months anyway. The correct date and time will be there when you power up.

The TCU-50D is shipped preset to your local time, but can be set to any time you want by a simple software routine.

AT $295
YOU CAN’T AFFORD TO IGNORE TIME

Time is only one way we can help you upgrade your LSI-11 or PDP-11 system. We’d also like to tell you about the others. So contact Digital Pathways if you’re into -11’s. We are too.
SwTPC 6800 Display Routine

The SwTPC 6800 computer requires the use of the MIKBUG M function to load and display the contents of memory. The program in listing 1 allows immediate display or loading of X number of bytes, and is much easier on the programmer than the MIKBUG subroutines. I hope this program will be of some service to readers.

Listing 1: 6800 program for displaying and reading X number of bytes.

```
00001  MOV A, #00000000H
00002  MOV A, #00000001H
00003  MOV A, #00000002H
00004  MOV A, #00000003H
00005  MOV A, #00000004H
00006  MOV A, #00000005H
00007  MOV A, #00000006H
00008  MOV A, #00000007H
00009  MOV A, #00000008H
00010  MOV A, #00000009H
00011  MOV A, #0000000AH
00012  MOV A, #0000000BH
00013  MOV A, #0000000CH
00014  MOV A, #0000000DH
00015  MOV A, #0000000EH
00016  MOV A, #0000000FH
00017  MOV A, #00000010H
00018  MOV A, #00000011H
00019  MOV A, #00000012H
00020  MOV A, #00000013H
00021  MOV A, #00000014H
00022  MOV A, #00000015H
00023  MOV A, #00000016H
00024  MOV A, #00000017H
00025  MOV A, #00000018H
00026  MOV A, #00000019H
00027  MOV A, #0000001AH
00028  MOV A, #0000001BH
00029  MOV A, #0000001CH
00030  MOV A, #0000001DH
00031  MOV A, #0000001EH
00032  ADDL #00000000H
00033  ADDL #00000001H
00034  ADDL #00000002H
00035  ADDL #00000003H
00036  ADDL #00000004H
00037  ADDL #00000005H
00038  ADDL #00000006H
00039  ADDL #00000007H
00040  ADDL #00000008H
00041  ADDL #00000009H
00042  ADDL #0000000AH
00043  ADDL #0000000BH
00044  ADDL #0000000CH
00045  ADDL #0000000DH
00046  ADDL #0000000EH
00047  ADDL #0000000FH
00048  ADDL #00000010H
00049  ADDL #00000011H
00050  ADDL #00000012H
00051  ADDL #00000013H
00052  ADDL #00000014H
00053  ADDL #00000015H
00054  ADDL #00000016H
00055  ADDL #00000017H
```

The SwTPC 6800 computer requires the use of the MIKBUG M function to load and display the contents of memory. The program in listing 1 allows immediate display or loading of X number of bytes, and is much easier on the programmer than the MIKBUG subroutines. I hope this program will be of some service to readers.

Also available:
- Complete Legal Billing System

Rothenberg INTEGRATED FINANCIAL SYSTEM
under
CP/M*

- GENERAL LEDGER
- ACCOUNTS RECEIVABLE
- ACCOUNTS PAYABLE
- PAYROLL
- INVENTORY CONTROL

Easy to use, self-guided. You don't have to be a CPA!

Price: $500 each
Complete manuals: $8 each
Immediate Delivery
Requires only 32K system

Requires CBASIC**
Prepaid or COD only
Send CP/M serial # with each order

Also available:
Complete Legal Billing System

Rothenberg INFORMATION SYSTEMS, INC.
260 Sheridan Avenue
Palo Alto, CA 94306
(415) 324-8850

*CP/M is a trademark of Digital Research
**Add $100 if CBASIC is also needed
6800 Register Display

The program in listing 1 solves a major point of frustration for users of the 6800 processor with the MIKBUG operating system. With such systems, the user must insert the software interrupt (SWI, #$3F) instruction into the code and stop the program execution at that point every time a register display is desired. A software interrupt causes MIKBUG to gain control after outputting the contents of the registers. Note that after using the software interrupt, the user must reset the program counter and other registers and run the program again. There is no practical way to single step through a program or to have lights which allow one to view registers during execution of a program.

DISPL solves this problem when called as a subroutine. It prints all register contents at the point of call and then returns control to the calling program with all registers restored.

Slight modifications will allow DISPL to do elaborate and useful functions. Including a small supervisor routine in the DISPL routine will allow conditional register printing, or conditional software interrupt. Conditional printing is useful when

Data-Safe Products, Inc.

4737 Darrah St., Phila., PA 19124 • 215/635-0004

Dealer Inquiries Invited

TAPE*SAFE

METAL CASSETTE SHIELDS

Don’t risk the erasure of valuable cassette-stored data through accidental magnetic-field exposure. Such irretrievable loss can occur during storage or transit if unprotected tapes are exposed to the magnetic fields produced by motors, transformers, generators, electronic equipment—even the intense transient fields induced by electrical storms. TAPE-SAFE Cassette Shields are constructed of the same special magnetic alloy used to shield cathode ray tubes and other magnetic-sensitive components. Heliarc-welded seams and hydrogen annealing assure optimum shielding properties. Each attractively-finished TAPE-SAFE Shield accommodates one cassette in its original plastic box. The handsome FILE DECK, in contrasting color, stores six TAPE-SAFE Shields (One FILE DECK sent FREE with each six Cassette Shields). Order direct from this ad.

TAPE-SAFE Cassette Shields—$14.95 ea., postpd.
Six or more at one time—$12.95 ea., postpd.
Inquire about quantity discounts

Mike Hayes
Tektronix
3311 Roselawn
San Antonio TX 78226

[Circle 90 on inquiry card.]
the user desires to display the registers just
the first ten times through a loop, or perhaps
just after the 100th time through a loop.
This is implemented with just a simple
counter and branch if greater than. Condi-
tional software interrupt is extremely useful
when the user knows that at a certain place
in a program, a particular register should
not exceed a given value.

Obviously there are many variations on
the sorts of small supervisor routines which
can be added on to this basic program. Most
are easy to implement. The idea for DISPL
was derived from certain functions available
with the Motorola Exorisor system. Un-
fortunately, no listings of those system
programs were available to me, so I wrote
the basic idea.

Listing 1: 6800 register
display program. Use of
references to MIKBUG
makes this program fully
position independent.

```
00001  NAM       DISPL
00002A  ORG      $200
00003      E0CA          A       OUT2HS EQU $E0CA         PRINT 2 CHAR FROM X
00004      E0CB          A       OUT4HS EQU $E0CB         PRINT 4 CHAR FROM X
00005      E1D1          A       PRINT EQU $E1D1         PRINT A CHAR FROM A
00006A     00              A       SAVCC FCB 0 SAVE CONDITION CODES
00007A     00              A       SAVBR FCB 0 SAVE B REGISTER
00008A     00              A       SAVR FCB 0 SAVE A REGISTER
00009A     0000           A       SAVX FDB 0 SAVE X REGISTER
00010A     0000           A       SAVPC FDB 0 SAVE PROGRAM COUNTER
00011A     00001          NAM   DISPLAY TPA TRANSFER CC TO A REGISTER
00012A     00002          A       STAA SAVCC STORE IN...
00013A     00003          A       PULA SAVBR SAVCC SAVVAR SAVVAR
00014A     00004          A       STAB SAVBR CC A B X
00015A     00005          A       STX SAVX STACK HOLDS PC ON ENTRY
00016A     00006          A       LDAA 0,X
00017A     00007          A       STAA SAVPC
00018A     00008          A       LDAA 1,X
00019A     00009          A       STAA SAVPC-1 STORE PREVIOUS PC IN SAVPC
00020A     00010          A       LDX #$AVCC
00021A     00011          A       JSR OUT2HS OUTPUT CC,B,A,X,P
00022A     00012          A       JSR OUT2HS
00023A     00013          A       JSR OUT4HS
00024A     00014          A       JSR OUT4HS
00025A     00015          A       LDAA #5D
00026A     00016          A       LDAA #5A CR,LF OUT
00027A     00017          A       JSR PRINT
00028A     00018          A       LDAA #$A
00029A     00019          A       LDAA #$A
00030A     00020          A       LDX SAVBR
00031A     00021          A       JSR PRINT
00032A     00022          A       LDAB SAVBR
00033A     00023          A       LDX SAVX RESTORE ALL REGISTERS
00034A     00024          A       PSAS
00035A     00025          A       LDAA SAVCC
00036A     00026          A       LDAA SAVCC
00037A     00027          A       LDAA SAVCC
00038A     00028          A       PULA TAP
00039A     00029          A       PULA
00040A     00030          A       RTS END
00041
TOTAL ERRORS 00000.
```

Introducing—New, Low-cost, Fixed Vocabulary
Speech Synthesizers†
for Computer Hobbyists or OEM use

FEAT URES
- Two 64-word vocabularies available:
 - Full spoken numerics plus a variety of measurement words
 - ASCII characters: numerics, alphabet, punctuation
- Clear, highly intelligible male voice
- All MOS-LSI circuitry
- 6-bit parallel strobed input
- No external clocks required
- Inputs are TTL compatible
- Analog Speech output signal
- Custom vocabularies can be produced only $95.00 ♦

$179.00 ♦

Boards with numbers &
calculator functions...

†Invented by Forrest Moyer

TELESENSORY SYSTEMS, INC.
3408 Hillview Ave., P.O. Box 10099, Palo Alto, CA 94304
Telephone (415) 493-2626

*Plus state sales taxes where applicable

Circle 362 on inquiry card.
Text continued from page 8:

siderations already discussed in the forum published with your comment. Remember, all programming languages are equivalent (eg. to a Turing machine), so there are no programs that will run in Pascal that won't run in BASIC.

I don't mean to defend BASIC. Its slow and archaic. But it (and FORTRAN) have lasted much longer than Pascal will last? The ideas behind optimal form. equivalent (eg: to a Turing machine).

simplicity of implementation.

We have planned additional features for will be interpreted at runtim e. have special features to support the compiler writer's task, we have chosen the name COSY-Pascal. The system is now running on the Apple II computer. The Apple cuts off the cost of a terminal and brings you down to an 1800 dollar computer... RGAC.

PASCAL COMMUNICATION REQUESTED

We are busy with the implementation of a high level language compiler and would like to get in touch with other groups who pursue similar goals. Here is a short summary of our project.

The language at which we are aiming has the full expression power of Pascal and will run on a p-code interpreter for a virtual machine. As our language will have special features to support the compiler writer's task, we have chosen the name COSY-Pascal. Since Pascal is a uniquely defined language, we have planned additional features for the following compiler subtasks. syntax defintion, attribute propagation, and definition table options. Design criteria for the extensions were economy of memory usage, user convenience and simplicity of implementation.

Based on recursive descent LL(1) techniques, syntactic rules may be formulated in Backnus-Naur Form. The grammar is compiled almost as is, and will be interpreted at runtime.

As with attributed grammars, variables may be associated with every nonterminal of the grammar, such that the variables of the dynamically last nonterminals are accessible to the programmer. Error messages produced by other errors will be suppressed by the system.

Presently we want to implement a strongly simplified version of Pascal. Most of the compiler source (6502 processor) and some support routines are implemented, but they are not yet intensively tested. A detailed specification of most of Pascal has been worked out and will be discussed.

We hope to have some simple programs compiled and running soon.

Bernhard Miller
Mozartstr. 1
1744 Kandel
Norbert Gireitze
Leneste
75 Karlsruhe
WEST GERMANY

IMPROVING STATISTIC ACCURACY

Alan B Forsyth's article "Elements of Statistical Computation" (January 1979 BYTE, page 182) pointed out how numerical errors can accumulate when computing means and standard deviations. Readers interested in more information about this topic should consult the December 1978 issue of PCC Journal, the monthly publication of the Personal Programmers Club for Hewlett-Packard programmable calculator users.

The article, "More Accurate Statistics," discusses in detail a method for accumulating sums of data to compute means and standard deviations. The recurrence formulas, which can be used to store or delete data using the new method, are given, as well as the formulas which show how to compute other statistical parameters associated with the line of best fit for a group of data and the correlation coefficient. An HP-67/97 program is given which shows how to implement the new technique, and numerical examples are discussed. The method given can be programmed on any calculator or computer.

John Robert Kennedy
11692 Chenualt St #310
Los Angeles CA 90049

SOME INSIGHTS ON INFORMATION

Thank you for publishing the fine article by Andrew Fife, on the biology of robots "Designing a Robot from Nature." (February and March 1979 BYTE) His article "turned on a little light." One light turned on in my head per day, or even per week, makes it all worth while.

He reports that frog skin was moved from back to stomach, and from stomach to back. Irritating the stomach then caused the frog to scratch his back, and irritating his back caused the frog to scratch his stomach.

I say Aha Packet-switching. Headers, with source address. The telegram, the telephone call, or the computer packet all come with a source address, a necessity if the information comes in on a port that has multiple users.
Aha #2) I have always wondered how there could be as many nerves in my spine as there are sensors below. If things are partitioned, there don’t have to be as many wires.

Aha #3) Our sensors, for the most part, have very low data rates. Normally we are not irritated on many parts of our skin at once. There is plenty of time for many sensors to share a trunk in a party-line architecture. We are, I think, confused by an over-abundance of signals at once. By stimulating large areas of skin at one time, you know that something is happening, but you may not be able to separate the points.

Aha #4) Think acupuncture. I have a doctor who, though educated on the U.S. mainland, is Chinese. Dr. Lam has studied acupuncture, and practices it, in conjunction with normal medicine. My wife had cramps in her stomach area. They persisted. Dr. Lam couldn’t localize the trouble because a large area of muscles were fighting. He got out his needle and spun it into her foot, in a spot which he says is related to the stomach area. Within five minutes the muscles had relaxed. The remaining pain was isolated in a small area. He could feel this area, and he diagnosed the pain as gall-bladder. A subsequent operation proved him right; many large gall-stones, one of which had plugged up the duct. What had the doctor done? He had biased (pushed the break button) the nerve from the stomach area to the brain, by getting at the nerve from another port. The brain didn’t know the foot-signal from any other signal on the same trunk. The brain decided that there was no longer any pain in the stomach.

Aha #5) This suggests that there are many party-lines in higher animals (and I am a computer man: I have no idea how high) and each of these goes to many sensors.

Aha #6) Today airplanes are using high-bandwidth coax from a string of sensors to the controls. They’re on the right track.

Give us enough time, and mix together enough scientists and engineers, give us the help of magazines like BYTE, and we may figure ourselves out yet.

N J Thompson
1615 Wilder #401
Honolulu HI 96822

PASCAL UNEXPANDABLE

Your position in favor of UCSD Pascal is valid only from the perspective of the buyer of a complete computer system who wants the manufacturer to supply all of the operating system software. This buyer is willing to accept the limitations of the software in order that he may take advantage of its being off the shelf. The trend towards bundled packaging of Pascal, as well as other major operating systems and languages, places the buyer of such a product in the position where he or she initially gets a very good computer, but is unable to expand that system to suit his own needs, without derailing on-going operations, and without a loss of efficiency.

Aha #7) Many users of APL, such as you or I, have invested many days on one line of code. But when we modernize, we modernize the whole system. We cannot afford to lose any part of that code.

Aha #8) This suggests that there is a need for a fundamental function, a function which would be supplied with the system, on which all future additions are made. Although less elegant than UCSD Pascal, there are other software packages one can start with which allow users to implement their own expansions, such as the IPS system described in your January issue. Thus, while valid from the perspective of certain users, your position should be qualified to reflect the limitations of that perspective.

George Lyons
280 Henderson St
Jersey City NJ 07302

APL NOT DESIRED

Periodically I see APL programs in BYTE. I would like to discourage as much as possible all usage of APL.

When I was an undergraduate at Rice University, I had occasion to use APL quite a bit—first as the language I cut my programming teeth on, then as a graphics language, and finally, tutoring other students who were cutting their programming teeth. I saw these students acquire the same bad habits which I had learned from the language, and have just as hard a time breaking these habits as I did.

APL can be wonderful fun when you first use it, and it has some marvelously powerful constructions which allow you to do many things very concisely. But this same conciseness and the lack of control structures encourage students to have competitive one-liners. But some students would be elated at a new, completely obtuse line of APL which would generate the first n prime numbers, or some such foolishness. This was fine, as long as these one-liners remained the property of the programmer. But have you ever tried to decipher another person’s APL programs? It is literally easier to read an assembler program than a foreign APL program. Even commercial APL software is written obtusely.

I spent a good portion of a week trying to decipher a workspace of graphics routines written by a well-known and well-respected manufacturer, and finally gave up. I’ve also found that I have a hard time deciphering even my own APL programs. I think that the use of APL in BYTE is a bad influence on students. I think that APL suggests that one can write programs without making one think about the system as a whole, and that is very bad.

I am not opposed to the use of APL, but I am opposed to the use of APL in BYTE. I would like to discourage as much as possible all usage of APL.

APL NOT DESIRED

Periodically I see APL programs in BYTE. I would like to discourage as much as possible all usage of APL.

When I was an undergraduate at Rice University, I had occasion to use APL quite a bit—first as the language I cut my programming teeth on, then as a graphics language, and finally, tutoring other students who were cutting their programming teeth. I saw these students acquire the same bad habits which I had learned from the language, and have just as hard a time breaking these habits as I did.

APL can be wonderful fun when you first use it, and it has some marvelously powerful constructions which allow you to do many things very concisely. But this same conciseness and the lack of control structures encourage students to have competitive one-liners. But some students would be elated at a new, completely obtuse line of APL which would generate the first n prime numbers, or some such foolishness. This was fine, as long as these one-liners remained the property of the programmer. But have you ever tried to decipher another person’s APL programs? It is literally easier to read an assembler program than a foreign APL program. Even commercial APL software is written obtusely.

I spent a good portion of a week trying to decipher a workspace of graphics routines written by a well-known and well-respected manufacturer, and finally gave up. I’ve also found that I have a hard
time understanding programs that I myself have written more than a month ago in APL. I’ve found that I no longer need APL, because I have a programmable calculator, and it is my belief that APL would never have existed had Hewlett-Packard come out with the HP-65 before IBM decided that FORTRAN was not all that the engineer needed.

Please let me encourage you not to spoil any of your good articles with an obtuse, unreadable, inefficient one-liner in APL. If APL persists, and our civilization perishes, APL will one day be dug up by a future archaeologist, who will try to decipher it, and find it more unreadable than Linear B.

David A Stephens
POB 877
Pecos TX 79772

GENEALOGICAL INFORMATION

Help! I am a genealogist with a PDP-10, expanded memory and disk and paper tape storage. Where can I find programs for the genealogist to use?

Mrs G Creaser
4 Sunny Hill Rd
Northboro MA 01532

Could any readers help trace some promising programs?...RGAC

FAST FOURIER TRANSFORMS ON YOUR HOME COMPUTER

I was pleased to see the article by Stanley and Peterson on the fast Fourier transform, “Fast Fourier Transforms on Your Home Computer” (BYTE December 1978, page 14). Aside from having many useful applications, this technique is complex enough to provide some fun and surprises when just playing with it. I would like to share some observations and prejudices which have arisen out of my personal experience with the FFT (fast Fourier transform).

Although the Fourier transform sometimes gives unexpected results and may be used to couch propositions in a very elegant fashion, it may not always be the best approach to use. Every operation in frequency space has an equivalent operation in real space; therefore any procedure utilizing the Fourier transform may, in fact, be performed without it. Sometimes results which appear to be profound become just common sense when approached in this way.

I think that authors should emphasize strongly (as did Stanley and Peterson) that the FFT is not an approximation, but just a faster way to compute the DFT (discrete Fourier transform). Approximations occur only in the sense that the DFT is used to approximate the continuous transform of a continuous (or analytic) function. These approximations arise from two sources, a finite sampling interval and a finite total sampling time. By their very nature, computers cannot calculate a continuous Fourier transform, and we are always forced to use the DFT.

I personally would like to see the “sampling theorem” banned. At best its invocation obscures a perfectly clear concept, and at worst it is a tautology. The useful content of the theorem is contained in the observation that two points are needed to specify a sine wave of a given frequency. Used in this way, the theorem is misleading when it implies that we can safely discard parts of a signal (above a given frequency) because they “contain no information.” I think it is more correct to say that the lost parts of the signal contain information that we do not want, cannot get, or do not need. In one sense “information” is a concept that we bring to a signal, not a property of the signal itself. In another sense, all frequencies contain some information, and a portion of that information is always lost during the sampling process.

The sampling theorem is meaningless if, in the literal sense, a signal really contains no information above a given frequency (i.e., all Fourier amplitudes are 0). It is then obvious that a knowledge of all amplitudes below this frequency is equivalent to knowing the signal.

For a number of reasons the high frequency part of the DFT differs from the continuous transform we would like it to approximate. It turns out that the DFT is equivalent to sampling a segmental linear function, that is, to a linear interpolation between data points. High frequency components (i.e., near the limit decreed by the sampling rate) may be better approximated by multiplying the transform by a low pass filter function. The shape of a given filter corresponds to a particular method of interpolating between data points, and conversely any interpolation scheme yields its own filter function.

Some other references which I have found very useful are:

I would be interested in any response to these comments.

Kenneth H Douglass Phd
Division of Nuclear Medicine
Johns Hopkins Hospital
Baltimore MD 21205
Practical Microcomputer Programming:
The INTEL 8080
by W J Weller, A V Shatzel, and H Y Nice
Northern Technology Books
Evanston IL 1976
306 pages hardcover, 6½ by 9¼ inches
$21.95

There was my new computer running correctly, lights twinkling alluringly, and there was my first serious problem: how was I to introduce keyboard written code into the thing? I was (that was three years ago) a green novice suddenly required to create a program in machine language, and the available literature helped not at all. The assembly manuals were written in language that a child could follow, but the applications manuals were written in the runes of the software priesthood, all abbreviation and ellipsis. How I wished for a book to bridge the gap!

Well, here it is. In fact it has existed since the end of 1976, but without the fanfare it deserves. It introduces 8080 machine language and assembly language programming to the novice. The authors know that there is a difference between novice and ninny. They never talk down. They merely talk in clear English, in sentences with recognizable nouns and verbs, and they spell out words fully. They move fast, but they have time for colorful illustrations and allusions. They introduce binary operations with a passing reference to Paul Revere's lantern ("One if by land") and with the case of "If the shade is up don't come in. My husband is home." Examples abound in the form of short assembly language programs. These are always cogent and often related to actual problems that confront the typical home computer owner, such as how to read a keyboard. What's more, the book is a pleasure to handle: hardcover, sewn in signatures (so that it can lie on the desk open at any page), printed in clear book type on creamy matte paper.

The first chapters focus on binary operations, the Intel mnemonics, the elemental operations that they instigate, and the conventions of assembly language programming. On every page the authors spot and clear up the small ambiguities of technical jargon that can block understanding. For example, the Intel instruction MOV A,B only copies the contents of B register into A register and nothing gets transported bodily. Throughout, they use the word copy in preference to move. They point out the fact that the zero flag in the status register reads zero when the result of an operation is nonzero and is one when the result is zero. And they explain that there is a difference between carry and overflow in the status register even though, as they point out, "the Intel literature has used them interchangeably and in some places erroneously."

They go on, chapter by chapter, to shed light on binary arithmetic; multiplication and division in binary; the use of the stack pointer; the use of subroutines, arrays, and tables; how to convert between binary and decimal (and why the instruction DAA is not often used); a detailed explanation of input/output (I/O) and communication with a terminal; analog I/O; interrupt driven processes; and the debugging of programs. With this kind of introduction, the reader is then quite able to benefit from the many books and manuals that are directed toward the professional.

The reader will learn best by actually trying the little programs that accompany the text, but in doing so should be prepared for some snags. The source listings frequently contain pseudoinstructions that are peculiar to the cross assembler used by the authors: ZAR, LLA, JEQ, and about a dozen others. These can be translated even by a beginner (with the help of the index) into conventional Intel instructions, but one wishes it were not necessary. The cross
assembler was written by the authors for a Computer Automation LSI-2 machine. The home computerist might wish they had used one of the resident assemblers commonly available to home users, but evidently the book is aimed not only at the hobbyist but also at the college classroom, where the big equipment is more likely to be available. Almost a third of the book is devoted to a complete source listing of the cross assembler.

Another substantial source listing, found in Appendix A, is the authors' "Hexadecimal Debug" program, and you may well want to put it into operation in your own system. It's nifty. Debug is an 880 byte program that enables the user to inspect and alter the contents of memory, to inspect and alter the registers, and to set breakpoints, all in unusually convenient ways. Remember, however, to mark all the odd pseudo-operation codes and replace them. You may also have to replace subroutine labels that duplicate the designations of registers A, B, D and H, if your assembler gets confused by such duplication, as mine does. Line 254 contains a misprint: the printed instruction is CPI ', whereas it should read CPI '; perhaps the period got lost when the dot matrix printout was reproduced.

Structured Programming in APL
by Dennis P Geller and Daniel P Freedman
Winthrop Publishers Inc, 1976
Englewood Cliffs NJ $9.95

Structured programming began with two insights: one embodied in a formal proof that any possible program logic could be expressed in terms of a conditional branch and a conditional loop, and the other, Dijkstra's observation that the quality of programmers' work is a decreasing function of the number of GOTOs in their code. From these two insights has sprung a revolution in programming style among those who have accepted them, and angry arguments from those who haven't, and who feel put upon by those who insist on eliminating GOTOs altogether.

This book simply shows how to use APL in such a way that only structured programs result, and makes virtually no mention of the term structured programming outside its title. It is written as an introductory textbook, interweaving lessons on APL functions and operators among chapters on IF statements and DO loops, other features of APL such as terminal use, workspace management and debugging aids, and apt quotations from Lewis Carroll's The Hunting of the Snark.

Coverage is thorough, and the level is ele-

64KB MICROPROCESSOR MEMORIES

- S-100 - $695.00
- SBC 80/10 - $750.00
- LSI 11 - $750.00
- 6800 - $750.00

CI-S100 — 64K x 8 on a single board. Plugs directly into the IMSAI, MITS, TDL, SOL and most other S-100 Bus computers. No wait states even with Z80 at 4Mhz. Addressable in 4K increments. Power requirement 6 watts. Price $695.00.

CI-1103 — 8K words to 32K words in a single option slot. Plugs directly into LSI 11, LSI 11/2, H11 & PDP 1103. Addressable in 2K increments up to 128K. 8K x 16 $390.00. 32K x 16 $750.00 qty. one.

CI-6800 — 16KB to 64KB on a single board. Plugs directly into Motorola's EXORcisor and compatible with the evaluation modules. Addressable in 4K increments up to 64K. 16KB $390.00. 64KB $750.00.

CI-8080 — 16KB to 64KB on single board. Plugs directly into Intel's MDS 800 and SBC 80/10. Addressable in 4K increments up to 64K. 16KB $390.00. 64KB $750.00.

Tested and burned-in. Full year warranty.

Chrislin Industries, Inc.
Computer Products Division
31352 Via Colinas • Westlake Village, CA 91361 • 213-991-2254

Circle 47 on inquiry card.
Relax...you no longer have to do a sequential search to order reprint articles. In addition to the 1975-1976 index, the 1977 and 1978 indices are now available.

To receive your BYTE INDEX/REPRINT CATALOG(S) send 50¢ for postage and handling to BYTE INDEX, 70 MAIN STREET, PETERBOROUGH NH 03458.

An order form is included in the index package for convenient ordering of reprint articles. Just fill it in, enclose payment and return it to BYTE.
nique; they are not writing for novice programmers as Geller and Freedman are. If you are confident of your style, read Gilman and Rose. If you are just starting, or don't know much about structure, design and documentation, Structured Programming in APL is the one for you. Better yet, read both.

Mokurai Cherlin
APL Business Consultants
POB 478
Mt Shasta CA 96067

The Cheap Video Cookbook
by Don Lancaster
Howard W Sams and Co
Indianapolis IN, 1978
$5.95

Don Lancaster stays on the sequel bandwagon with his new "cookbook." This time, the recipe is for a 7 integrated circuit design called TVT 6 5/8. This $20 circuit, along with software and module customizing, allows a wide variety of alphanumeric (such as 24 lines by 80 characters) or graphic (256 by 256) displays on standard television sets. A little extra software gives you multiple cursors, scrolling, and full editing features.

The book's first chapter introduces the concept of "cheap video," and has a brief explanation of its two novel tricks: SCAN and upstream tap. Chapter 2 covers various software routines needed for a good display, each routine building on the last. The reader is encouraged to write improved versions. Routines covered include cursors, scrolling, graphics loaders, memory repacking (for 40 or 80 character lines), and the all-important (to "cheap video") SCAN "microinstruction." Upstream taps, data-to-video conversion, bandwidth reduction, sync circuitry, and other hardware, as well as television modifications, are in chapter 3. Construction details in chapter four describe the main circuit and several "personality" modules. The fifth chapter addresses transparency, or how to do other things such as run BASIC, when the computer is not working with the display.

The TVT 6 5/8 is designed around a 6502 microcomputer (KIM), but with mainly software changes a 6800 system should work just fine. Other processors, such as the Z-80, 8080, 1802, and 2650 should be usable, but would require more...
work. Although the TVT 6 5/8 is built from only seven integrated circuits, and the circuit itself only costs approximately $20, there is more to it than first meets the eye.

The author makes a few important assumptions. It is assumed that you already own a microcomputer (KIM in this case) that has sufficient programmable memory (up to 8 K bytes for 256 by 256 black and white graphics) to store the display. There must also be enough memory left over to run any cursor, loader, or other applications software. You must be willing and able to modify your microcomputer's memory to add a clever trick called an "upstream tap." Finally, you mustn't mind giving up 5 percent (for a single 32 or 40 character line display) to 50 percent (for 16 by 80 alphanumeric displays) to 50 to 95 percent (256 by 256 graphics) of the processor's time so that it can control the display. As far as the television is concerned, you may have to adjust the horizontal hold and/or defeat the sound trap for a really good 24 by 80 display. Still, you get only a 5 by 7 dot matrix (uses less bandwidth than a 7 by 9 matrix) and, if you aren't careful, the display may still flicker. Cheap video is cheap because the memory (the single largest expense for a video display) is assumed to be available at no cost, and the processor is assumed to be available between 5 and 95 percent of the time to provide display timing.

Whether you stick with the older all-hardware interface using counters and gates and registers, or try your hand at this approach of letting the processor do most of the dirty work, or even if you just are curious about how video displays work, this is a good reference book. It has several hints and tricks for reducing bandwidth requirements, for generating suitable video and sync signals, and for making more general (module programmed) circuits which easily can be changed to provide different display formats. It even has complete schematics, printed circuit board patterns, and "nuts and bolts" instructions on how to build your own TVT 6 5/8. Proofreading was lax in the schematics section, though, so you have to be on your toes and understand basic electronics to catch and correct the many discrepancies in component types and values, as well as to follow the few unexplained circuit changes made from schematic to schematic.

Glen E Monaghan
1405 C Paegelow
Scott AFB IL 62225

Get Your Documentation Together!

BITS INC. PROUDLY PRESENTS THE BITS PROGRAMMER PAD FOR ASSEMBLY LANGUAGE PROGRAMMERS

Improve your style with Bits Programmer's Pads. One side is an ingenious form, custom-tailored to the microprocessor you're programming: 8080A, 6800, Z-80, 6502 or 1802. The microprocessor's architecture is laid out along with contiguous memory spaces to allow you to work out critical memory allocations, data movement, tables, and stack manipulations. This adds another dimension to your documentation.

The other side is for your program, with pre-numbered lines and columns for addresses object code, labels, instructions, and those essential comments. If you're hand assembling your programs, these pads are a life saver! Write your source code first and later assemble by filling in the object codes and assigning memory addresses. To relocate or revise your program, just renew the address column with typewriter correction tape and renumber.

Each 50 page pad is printed on a durable stock paper that can stand up to erasers and they're punched for a 3 ringed notebook, too. Protect your programs, make them easier to write, use, and understand. Catch those bugs early and run a clean program. Only $2.50 each (Please include $.75 for postage and handling)

BITS inc
FOR YOUR CONVENIENCE USE ORDER FORM ON PAGE 25 Rl. 101 Peterborough, N.H. 03458 — Dial Bank Card orders 800-258-5477 (in NH call 924-3355)
Microcomputer-Based Design
by John B Peatman
McGraw-Hill, New York
540 pages, 6½ by 9½ inches
$24.50

Microcomputer-Based Design by John B Peatman is a combination text and reference book aimed at engineers who wish to learn how to design systems using microprocessor. It is written not in a dull, dry tone, but rather in a light style. The minimum required background for this text is a rudimentary knowledge of logic (i.e., transistor-transistor logic gates and flip-flops) and the basic concepts of computer programming. The book develops hardware and software design skills upward from that point to a practical and useful level. A key feature of this book is the logical, lucid presentation of arguments present in the many illustrated design decisions.

Microcomputer-Based Design is divided into seven chapters and six appendices. The chapters are fairly complete, in-depth entities and each contains a set of practical design problems and additional references. The references may be difficult to find for readers without access to an engineering library since many of the references are articles in engineering journals or manufacturers' application notes.

Chapter one is an overview of microcomputer applications focusing primarily on the distribution of "intelligence" to instruments and tools.

Chapter two, "Microcomputer Registers and Data Manipulation", includes a brief discussion of numbering systems and the various, commonly encountered modes of addressing. This is followed by a good presentation of machine language instructions, assembly language, and assembly language programming techniques.

Chapter three considers computer hardware organization. Several different philosophies of commercially available microprocessor families are described. The characteristics of various logic families are considered with an eye towards interconnection compatibility. Bus structures and their electronic implementation are described in some detail. Flags, interrupts, direct memory access control and programmable timers are also described with examples.

Chapter four reviews the various characteristics of memory components and systems. Included are sections on the implementation of main power failure battery

video 100

12" BLACK & WHITE
LOW COST VIDEO
MONITOR
$149.00 LIST

- Ideal for home, personal and business computer systems
- 12" diagonal video monitor
- Composite video input
- Compatible with many computer systems
- Solid-state circuitry for a stable & sharp picture
- Video bandwidth—12 MHz ± 3 DB
- Input impedance—75 Ohms
- Resolution—650 lines Minimum IN Central 80%
 of CRT; 550 Lines Minimum beyond central 80%

of CRT ref EIA RS-375
- Dimensions—11.375" high; 16.250" wide;
 11.250" deep (exclude video input connector)
- Weight—6.5 KG (14.3 lbs) net

AVAILABLE FOR IMMEDIATE DELIVERY!

LEEDEX Corporation

2300 East Higgins Road • Elk Grove Village, Illinois 60007 • (312) 364-1180 • TLX: 25-4786

Generous dealer discount available

Circle 203 on inquiry card.
backup systems and floppy disks.

Chapter five examines peripherals. There are sections on IO control and handshaking, timing and buffering. There are also discussions of specific common microcomputer peripherals: keyboards, phototransducers, circuit testers, analog to digital and digital to analog converters, pressure transducers, optical displays, relay drivers, synchro-motors and printers. Finally, there are sections on universal asynchronous receiver-transmitters (UARTs), line drivers, the HP1B-IEEE 488 bus and self-test hardware.

Chapter six describes the various options that exist in hardware and software development packages from prototyping boards to disk based operating systems. There is also a brief discussion of high level languages for microcomputers.

Chapter seven describes in detail the algorithms for solutions to several common microcomputer software problems. Algorithms are described to read and to parse a functional keyboard input, self-test routines and number system conversion and manipulations. Real time programming constraints are also considered.

The set of appendices describes the characteristics of specific microcomputers. Each appendix covers the architecture and organization of a particular processor integrated circuit. The rest of the integrated circuit set (memory, IO, etc.) is also briefly covered. Appendices are included on the 4004, F8, 8080, 6800, COSMAC, and PPS-8 processors. It is refreshing to see that these appendices are more than just a reprinting of the manufacturers' specification sheets.

On the negative side, there is a disturbing absence of discussion of any of the higher performance integrated circuits that were certainly available when this book was written. There is also inadequate treatment given to bit slice and microprogramming techniques. Software development by emulation is also omitted. The balance is, however, overwhelmingly positive. This is a text which starts off quietly, never grows dull, and yet contains a great deal of substance. There are sections on using esoteric devices like first in first out stacks (FIFOs) that I have previously never seen in a design text.

Microcomputer-Based Design is a wellcome development. I recommend this book to advanced experimenters, undergraduate engineering students and practicing engi

Ira Rampil
2412 Independence La
Apt F 103
Madison WI 53704

Frank O. Woman
The Van Noy Borng
Author, Computer Based Design

PERSONAL INFORMATION MANAGEMENT SYSTEM

Z80 INSTRUCTION HANDBOOK

CALCULATING WITH BASIC

LEARN MICROCOMPUTERS

6800 & 8080 SOFTWARE COOKBOOKS

SCELBI Publications
P. O. Box 133 PP STN, Milford, CT 06460

*IMPORTANT ORDERING INFO! Include 75 cents postage/handling for each item. Prices shown are for North American customers. Master Charge, VISA, Postal and Bank Money Orders preferred. Personal checks delay shipping up to 4 weeks.

Circle 318 on inquiry card.
A Mini-Disassembler for the 2650

Software development in machine language is a difficult task. A substantial part of the frustration can be traced to the difficulties of debugging a program when one must work from a printout that has no flow, no mnemonics, and bears little resemblance to any real world logic system. A disassembler can save the programmer countless headaches by correcting these deficiencies. This particular disassembler was constructed to aid in the development of software for a dedicated controller for an amateur radio repeater.

The basic requirements for our disassembler are that it use a small amount of memory (this version uses less than 750 bytes of memory, satisfying our definition of small), and that it provide a readable listing that includes mnemonics. The only restriction of this version is that it will print a maximum of only hexadecimal FF addresses (eg: hexadecimal 0400 to 04FF) without being restarted.

Using the Disassembler

The disassembler is employed in a straightforward manner:

1. Load the program from the listing.
2. Using the Signetics PIPBUG monitor, GOTO the initial address of the disassembler.
3. Input a 4 digit address for the program to be listed (include leading zeroes).
4. Input a 2 digit stop address.

Text continued on page 236
Listing 1: A 2650 disassembler. Technically, this listing is a disassembled assembly listing of a disassembler. The program is designed to take Signetics 2650 machine language code and transform it into an assembler-like listing.

<table>
<thead>
<tr>
<th>Address</th>
<th>Hexadecimal Code</th>
<th>Operator</th>
<th>Operand</th>
<th>Address</th>
<th>Hexadecimal Code</th>
<th>Operator</th>
<th>Operand</th>
</tr>
</thead>
<tbody>
<tr>
<td>0440</td>
<td>76 40</td>
<td>PPU</td>
<td></td>
<td>0490</td>
<td>06 FC</td>
<td>LODI</td>
<td>2</td>
</tr>
<tr>
<td>0442</td>
<td>77 02</td>
<td>PPL</td>
<td></td>
<td>0492</td>
<td>0E 63 F7</td>
<td>LODA</td>
<td>2</td>
</tr>
<tr>
<td>0444</td>
<td>06 FD</td>
<td>LODI</td>
<td>2</td>
<td>0495</td>
<td>E1</td>
<td>COMZ</td>
<td>1</td>
</tr>
<tr>
<td>0446</td>
<td>3F 02 24</td>
<td>BSTA</td>
<td>3</td>
<td>0496</td>
<td>98 09</td>
<td>BCFR</td>
<td>0</td>
</tr>
<tr>
<td>0449</td>
<td>01 00</td>
<td>LODZ</td>
<td>2</td>
<td>0497</td>
<td>CF 04 F9</td>
<td>STRA</td>
<td>3</td>
</tr>
<tr>
<td>044A</td>
<td>CE 00</td>
<td>STRA</td>
<td>2</td>
<td>0498</td>
<td>3F 05 E4</td>
<td>BSTA</td>
<td>3</td>
</tr>
<tr>
<td>044D</td>
<td>DA 77</td>
<td>BIRR</td>
<td>2</td>
<td>0499</td>
<td>1F 04 D0</td>
<td>BCTA</td>
<td>3</td>
</tr>
<tr>
<td>044F</td>
<td>06 FE</td>
<td>LODI</td>
<td>2</td>
<td>04A1</td>
<td>87 03</td>
<td>ADDI</td>
<td>3</td>
</tr>
<tr>
<td>0451</td>
<td>0E 63 FF</td>
<td>LODA</td>
<td>2</td>
<td>04A2</td>
<td>DA 6D</td>
<td>BIRR</td>
<td>2</td>
</tr>
<tr>
<td>0454</td>
<td>C1 69</td>
<td>STRA</td>
<td>1</td>
<td>04A3</td>
<td>F5 10</td>
<td>TMII</td>
<td>1</td>
</tr>
<tr>
<td>0455</td>
<td>3F 02 69</td>
<td>BSTA</td>
<td>3</td>
<td>04A4</td>
<td>E7 03</td>
<td>BCTA</td>
<td>3</td>
</tr>
<tr>
<td>0458</td>
<td>DA 77</td>
<td>BIRR</td>
<td>2</td>
<td>04A5</td>
<td>07 AB</td>
<td>LODI</td>
<td>3</td>
</tr>
<tr>
<td>045A</td>
<td>3F 03 5B</td>
<td>BSTA</td>
<td>3</td>
<td>04A6</td>
<td>0F 08</td>
<td>TMII</td>
<td>1</td>
</tr>
<tr>
<td>045D</td>
<td>04 02</td>
<td>LODI</td>
<td>0</td>
<td>04A7</td>
<td>E1</td>
<td>COMZ</td>
<td>1</td>
</tr>
<tr>
<td>045F</td>
<td>CC 04 FC</td>
<td>STRA</td>
<td>0</td>
<td>04B1</td>
<td>C6 04</td>
<td>STRA</td>
<td>3</td>
</tr>
<tr>
<td>0462</td>
<td>0D 84 FD</td>
<td>LODA</td>
<td>1</td>
<td>04B3</td>
<td>04 14</td>
<td>LODI</td>
<td>0</td>
</tr>
<tr>
<td>0465</td>
<td>06 F8</td>
<td>LODI</td>
<td>2</td>
<td>04B5</td>
<td>06 02</td>
<td>LODI</td>
<td>2</td>
</tr>
<tr>
<td>0467</td>
<td>04 03</td>
<td>LODI</td>
<td>0</td>
<td>04B7</td>
<td>E1</td>
<td>COMZ</td>
<td>1</td>
</tr>
<tr>
<td>0469</td>
<td>07 DB</td>
<td>LODI</td>
<td>3</td>
<td>04B8</td>
<td>09 09</td>
<td>BCFR</td>
<td>1</td>
</tr>
<tr>
<td>046B</td>
<td>CC 04 FB</td>
<td>STRA</td>
<td>0</td>
<td>04BA</td>
<td>CF 04 F9</td>
<td>STRA</td>
<td>3</td>
</tr>
<tr>
<td>046E</td>
<td>0E 63 F3</td>
<td>LODA</td>
<td>2</td>
<td>04BD</td>
<td>3F 05 28</td>
<td>BSTA</td>
<td>3</td>
</tr>
<tr>
<td>0471</td>
<td>E1 00</td>
<td>COMZ</td>
<td>1</td>
<td>04C0</td>
<td>1F 05 00</td>
<td>BCTA</td>
<td>3</td>
</tr>
<tr>
<td>0472</td>
<td>98 0E</td>
<td>BCFR</td>
<td>0</td>
<td>04C3</td>
<td>84 04</td>
<td>ADDI</td>
<td>0</td>
</tr>
<tr>
<td>0474</td>
<td>CF 04 F9</td>
<td>STRA</td>
<td>3</td>
<td>04C4</td>
<td>87 0C</td>
<td>ADDI</td>
<td>3</td>
</tr>
<tr>
<td>0477</td>
<td>04 09</td>
<td>LODI</td>
<td>0</td>
<td>04C5</td>
<td>FA 6E</td>
<td>BIRR</td>
<td>2</td>
</tr>
<tr>
<td>0479</td>
<td>CC 04 FA</td>
<td>STRA</td>
<td>0</td>
<td>04C7</td>
<td>64 17</td>
<td>ADDI</td>
<td>0</td>
</tr>
<tr>
<td>047C</td>
<td>3F 05 E4</td>
<td>BSTA</td>
<td>3</td>
<td>04C8</td>
<td>D8 68</td>
<td>BIRR</td>
<td>0</td>
</tr>
<tr>
<td>047F</td>
<td>1F 04 D0</td>
<td>BCTA</td>
<td>3</td>
<td>04CD</td>
<td>1F 00 00</td>
<td>BCTA</td>
<td>3</td>
</tr>
<tr>
<td>0482</td>
<td>87 03</td>
<td>ADDI</td>
<td>3</td>
<td>04DD</td>
<td>0F 00 8A</td>
<td>BSTA</td>
<td>3</td>
</tr>
<tr>
<td>048A</td>
<td>DA 68</td>
<td>BIRR</td>
<td>1</td>
<td>04DE</td>
<td>0C 04 FE</td>
<td>STRA</td>
<td>0</td>
</tr>
<tr>
<td>0486</td>
<td>04 01</td>
<td>LODI</td>
<td>0</td>
<td>04DF</td>
<td>E4 01</td>
<td>COMI</td>
<td>0</td>
</tr>
<tr>
<td>0488</td>
<td>CC 04 FC</td>
<td>STRA</td>
<td>0</td>
<td>04DH</td>
<td>1E 00 00</td>
<td>BCTA</td>
<td>2</td>
</tr>
<tr>
<td>048B</td>
<td>04 0C</td>
<td>LODI</td>
<td>0</td>
<td>04DI</td>
<td>0D 04 FF</td>
<td>LODA</td>
<td>1</td>
</tr>
<tr>
<td>048D</td>
<td>CC 04 FA</td>
<td>STRA</td>
<td>0</td>
<td>04DE</td>
<td>E1</td>
<td>COMZ</td>
<td>1</td>
</tr>
</tbody>
</table>
The 8100 by HUH

An S-100 Bus Adapter/Motherboard for the TRS-80 plus a whole lot more!!!

S-100 BUS INTERFACE

6 SLOT MOTHERBOARD

- **1 Slot for CPU**
- **1 Slot for Memory**
- **2 Slots for Expansion**
- **1 Slot for I/O**

Additional Features

- **Serial RS232**
- **Parallel Input and Output**
- **Space for 16K Dynamic RAM**
- **Can Use Left Over 4K Chips**
- **Low Cost - Prices Start at $15**

Prices Start as Low as $35 (S-100 Bus Interface Only)

Call or Write for Complete Pricing Information and More Details

The 8100 is Available From Leading Computer Dealers or Directly From HUH

Dealer Inquiries Invited

For Sale to 500 connections, RAM support.

USA Domestic Price Only

1429 Maple St.
San Mateo, CA 94402
(415) 573-7359

List 1 continued on page 236

Listing 1 continued:

```
04DF  9E 00 00  BCF 2
04E2  1F 04 4F  BCTA 3
04E5  00  LODZ 0
04E6  00  LODZ 0
04E7  00  LODZ 0
04E9  00  LODZ 0
04EA  00  LODZ 0
04EB  12 13  SPU 0
04ED  74 75  CPU 0
04EF  76 77  PPU 0
04F1  84 85  TPU 0
04F3  40 77  HLT 0
04F4  92  LP 0
04F5  93  LPL 0
04F6  C0  NOP 0
04F7  00  LODZ 0
04F8  30  RDCZ 0
04F9  EA 09  PPL 0
04FB  03  LODZ 3
04FC  01  LODZ 2
04FD  04  FE  LODI 0
04FF  12  *-

0500  04  20  LODI 0
0502  07  93  LADI 3
0504  El  COMZ 1
0505  99  06  BCFR 1
0507  CF 04 F9  STRA 3
0508  1F 05 28  BCTA 3
050D  87  03  ADDI 3
050F  84  1F  ADDI 0
0511  D8  71  BIRR 0
0515  18  72  BCTR 3
0517  04  10  LODI 0
0517  07  78  LODI 3
0519  El  COMZ 1
051A  98  06  BCFR 1
051C  CF 04 F9  STRA 3
051F  1F 05 28  BCTA 3
0522  87  03  ADDI 3
0524  84  1F  ADDI 0
0526  D8  71  BIRR 0
0528  F5  0C  TMII 1
052A  C0  NOP 0
052C  98  0F  BCFR 0
052D  04  03  LODI 0
052E  CC 04 FC  STRA 0
0532  CC 04 F7  STRA 0
0535  04  06  LODI 0
0537  CC 04 FA  STRA 0
053A  18  37  BCTR 3
053C  F5  08  TMII 1
053E  98  0F  BCFR 0
0540  04  02  LODI 0
0542  CC 04 FC  STRA 0
0545  CC 04 F7  STRA 0
0548  CC 04 F0  LODI 0
054A  CC 04 FA  STRA 0
054D  18  24  BCTR 3
054F  F5  04  TMII 1
0551  98  11  BCFR 0
0553  04  02  LODI 0
0555  CC 04 FC  STRA 0
0558  04  01  LODI 0
055A  CC 04 F7  STRA 0
055D  04  00  LODI 0
055F  CC 04 FA  STRA 0
0562  18  0F  BCTR 3
0564  04  01  LODI 0
0566  CC 04 FC  STRA 0
056B  CC 04 F7  STRA 0
056E  04  0C  LODI 0
0570  CC 04 FA  STRA 0
0573  3F  05 8A  BSTA 3
0576  04  01  LODI 0
0578  CC 04 FB  STRA 0
057B  07  77  LODI 3
057D  0C  0F 77  LODA 0
0580  83  ADDZ 3
0581  CC 04 F9  STRA 0
0584  3F  06 02  BSTA 3
0587  1F  05  D2  BCTA 3
```

Circle 266 on inquiry card.
Circle 265 on inquiry card.

With our new IEEE-488 Interface

Our popular series 40 printers are now available with an IEEE-488 compatible interface or an industry standard Buffer Interface Parallel interface. Both interfaces include a line buffer and software addressability. Featuring our famous commercial quality construction, the new models start at $585 In singles. Other models available are the low cost Parallel ASCII starting at $425 and an RS232/Current Loop interface beginning at $575. Generous OEM discounts are available. All models are complete stand-alone units with a 40 column impact dot matrix printer and a 64 character ASCII set. Includes power supply, casework and interface electronics.

For more information write to:¶

MPL 2099 West 2200 South, Salt Lake City, Utah 84119
or call (801) 973-6053

The Listing Format

Example: 0765 04 20 00 LODI 0

Address
First Byte (op code)
Second Byte (if used)
Third Byte (if used)
Mnemonics
R/V

Listing 1 continued:

<table>
<thead>
<tr>
<th>Address</th>
<th>Hexadecimal Code</th>
<th>Operator</th>
<th>Operand</th>
</tr>
</thead>
<tbody>
<tr>
<td>058A</td>
<td>06 0C</td>
<td>LODI</td>
<td>2</td>
</tr>
<tr>
<td>058C</td>
<td>0E 65 9B</td>
<td>LODA</td>
<td>2</td>
</tr>
<tr>
<td>058F</td>
<td>E1</td>
<td>COMZ</td>
<td>1</td>
</tr>
<tr>
<td>0590</td>
<td>98 05</td>
<td>BCFR</td>
<td>0</td>
</tr>
<tr>
<td>0592</td>
<td>04 01</td>
<td>LDA</td>
<td>0</td>
</tr>
<tr>
<td>0594</td>
<td>CC 04 FC</td>
<td>STRA</td>
<td>0</td>
</tr>
<tr>
<td>0597</td>
<td>FA 73</td>
<td>BDRR</td>
<td>2</td>
</tr>
<tr>
<td>0599</td>
<td>1F 05 A9</td>
<td>BCTA</td>
<td>3</td>
</tr>
<tr>
<td>059C</td>
<td>14 31</td>
<td>RTCI</td>
<td>3</td>
</tr>
<tr>
<td>059D</td>
<td>15</td>
<td>RTCI</td>
<td>1</td>
</tr>
<tr>
<td>059E</td>
<td>16</td>
<td>RTCI</td>
<td>2</td>
</tr>
<tr>
<td>059F</td>
<td>17</td>
<td>RTCI</td>
<td>3</td>
</tr>
<tr>
<td>05A0</td>
<td>34 05</td>
<td>RTDA</td>
<td>0</td>
</tr>
<tr>
<td>05A1</td>
<td>36</td>
<td>RTET</td>
<td>1</td>
</tr>
<tr>
<td>05A2</td>
<td>36</td>
<td>RTET</td>
<td>2</td>
</tr>
<tr>
<td>05A3</td>
<td>37</td>
<td>RTET</td>
<td>3</td>
</tr>
<tr>
<td>05A4</td>
<td>94</td>
<td>DARI</td>
<td>1</td>
</tr>
<tr>
<td>05A5</td>
<td>96</td>
<td>DARI</td>
<td>2</td>
</tr>
<tr>
<td>05A6</td>
<td>97</td>
<td>DARI</td>
<td>3</td>
</tr>
<tr>
<td>05A7</td>
<td>00</td>
<td>LODZ</td>
<td>0</td>
</tr>
<tr>
<td>05A8</td>
<td>06 03</td>
<td>TMII</td>
<td>1</td>
</tr>
<tr>
<td>05A9</td>
<td>98 07</td>
<td>BCFR</td>
<td>0</td>
</tr>
<tr>
<td>05AF</td>
<td>CC 04 F8</td>
<td>STRA</td>
<td>0</td>
</tr>
<tr>
<td>05B2</td>
<td>1B 18</td>
<td>BCTR</td>
<td>3</td>
</tr>
<tr>
<td>05B4</td>
<td>F5 02</td>
<td>TMII</td>
<td>1</td>
</tr>
<tr>
<td>05B6</td>
<td>98 07</td>
<td>BCTR</td>
<td>0</td>
</tr>
<tr>
<td>05BC</td>
<td>CC 04 F8</td>
<td>STRA</td>
<td>0</td>
</tr>
<tr>
<td>05BD</td>
<td>18 10</td>
<td>BCTR</td>
<td>3</td>
</tr>
<tr>
<td>05BF</td>
<td>F5 01</td>
<td>TMII</td>
<td>1</td>
</tr>
<tr>
<td>05C1</td>
<td>98 07</td>
<td>BCTR</td>
<td>3</td>
</tr>
<tr>
<td>05C3</td>
<td>04 31</td>
<td>LODI</td>
<td>0</td>
</tr>
<tr>
<td>05C5</td>
<td>CC 04 F8</td>
<td>STRA</td>
<td>0</td>
</tr>
<tr>
<td>05C8</td>
<td>1B 05</td>
<td>LODI</td>
<td>0</td>
</tr>
<tr>
<td>05CA</td>
<td>CC 04 F8</td>
<td>STRA</td>
<td>0</td>
</tr>
<tr>
<td>05CF</td>
<td>1F 05 E4</td>
<td>BCTR</td>
<td>3</td>
</tr>
<tr>
<td>05D2</td>
<td>00</td>
<td>NOP</td>
<td>4</td>
</tr>
<tr>
<td>05D3</td>
<td>07 01</td>
<td>LODI</td>
<td>3</td>
</tr>
<tr>
<td>05D5</td>
<td>3F 03 6D</td>
<td>BSTA</td>
<td>3</td>
</tr>
<tr>
<td>05DB</td>
<td>0C 04 F8</td>
<td>LODA</td>
<td>0</td>
</tr>
<tr>
<td>05DE</td>
<td>3F 02 84</td>
<td>BCTR</td>
<td>3</td>
</tr>
<tr>
<td>05E1</td>
<td>1F 04 D3</td>
<td>BSTA</td>
<td>3</td>
</tr>
<tr>
<td>05E4</td>
<td>0E 04 FC</td>
<td>LODA</td>
<td>1</td>
</tr>
<tr>
<td>05E7</td>
<td>0D 84 FD</td>
<td>BDRA</td>
<td>2</td>
</tr>
<tr>
<td>05EA</td>
<td>3F 02 69</td>
<td>BSTA</td>
<td>3</td>
</tr>
<tr>
<td>05ED</td>
<td>07 01</td>
<td>LODI</td>
<td>3</td>
</tr>
<tr>
<td>05EF</td>
<td>3F 03 5D</td>
<td>BSTA</td>
<td>3</td>
</tr>
<tr>
<td>05F2</td>
<td>0D 04 FE</td>
<td>LODA</td>
<td>1</td>
</tr>
<tr>
<td>05F5</td>
<td>85 01</td>
<td>ADD1</td>
<td>1</td>
</tr>
<tr>
<td>05FA</td>
<td>CD 04 FE</td>
<td>STRA</td>
<td>1</td>
</tr>
<tr>
<td>05FC</td>
<td>F8 04 FA</td>
<td>BDRA</td>
<td>2</td>
</tr>
<tr>
<td>05FF</td>
<td>3F 03 5D</td>
<td>BDRA</td>
<td>2</td>
</tr>
<tr>
<td>0602</td>
<td>0E 04 F8</td>
<td>LODA</td>
<td>2</td>
</tr>
<tr>
<td>0605</td>
<td>0D 04 F9</td>
<td>LODA</td>
<td>1</td>
</tr>
<tr>
<td>0608</td>
<td>0D 25 9B</td>
<td>LODA</td>
<td>1</td>
</tr>
<tr>
<td>0609</td>
<td>3F 02 84</td>
<td>BSTA</td>
<td>3</td>
</tr>
<tr>
<td>060B</td>
<td>FA 68</td>
<td>BDRA</td>
<td>2</td>
</tr>
<tr>
<td>0610</td>
<td>07 01</td>
<td>LODI</td>
<td>3</td>
</tr>
<tr>
<td>0612</td>
<td>17</td>
<td>RTCI</td>
<td>3</td>
</tr>
</tbody>
</table>

That's right. The famous Computalkers CT-1 Speech Synthesizer that produces highly-intelligible natural sounds of speech can now be installed on your TRS-80.

Completely self-contained, the Model CT-1T comes with its own chassis and power supply, on-board audio amplifier (2 Watts), CBR1 software, and interconnect cable. The CT-1T comes with complete documentation and is available on either 5¼ inch diskette or cassette. TRS-80 Level II and 16K words memory required, 32K words recommended.

SAVE $100

SPECIAL INTRODUCTORY PRICE

$495

Suggested retail price is $595.

Calif. residents add 6% sales tax.

COMPUTALKER CONSULTANTS

1730 21st St., Suite A
Santa Monica, CA 90404
(213) 392-5230

Circle 48 on inquiry card.
In any command dealing with registers, the R/V column represents the register number. In all other cases the R/V column represents the V (value or condition) field.

The total memory used in this listing is from hexadecimal 0440 to 069A. Areas 044B to 04F2 and 04F3 to 04F6 are used as tables of unique codes. 04F7 to 04FF is a scratch pad storage area (eg: STOP, START addresses). The area from hexadecimal 059C to 05A7 contains a table of op codes that are one byte long but which have a format of two bytes. Hexadecimal 0613 to 069A is used for storage of ASCII characters which are used for mnemonics.

Storage Area Definitions
04F7 = Address mode 00=Z, 01=I, 02=R, 03=A
04F8 = R/V of op code
04F9 = Indexing for mnemonics print
04FA = Number of spaces between data and mnemonic
04FB = Number of letters in mnemonic
04FC = Number of bytes in command
04FD = High order start address
04FE = Low order start address
04FF = Stop address

This is not a refined program by any means: with some work it could reside in less memory and perhaps be more efficient. Its only intent is to be a development tool, and it does this well. It has helped make software development for our controller more like higher level language programming.

RAM CHIPS

4044 TYPE

4K by 1 — 18-pin — 5V, 5% supply

These are the same factory prime chips used in our premium quality RAM boards. May be 4044, 4041, 5257, 6641, or 9044, depending on manufacturer. All have 4044 pinout and timing specs. All guaranteed 30 days.

<table>
<thead>
<tr>
<th>250 nsec.</th>
<th>450 nsec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-31 chips</td>
<td>$7.50 $6.50</td>
</tr>
<tr>
<td>32-63</td>
<td>6.50 5.50</td>
</tr>
<tr>
<td>64-99</td>
<td>5.75 4.75</td>
</tr>
<tr>
<td>100-499</td>
<td>5.50 4.50</td>
</tr>
</tbody>
</table>

Circle inquiry number for free newsletter.

Computer Lab of New Jersey

Computer Lab sells the best S-100 Bus products at the best possible prices. Not only are our prices great, so is our delivery. We offer a 10% discount on most major lines, plus a 5% additional discount for a cash purchase.

<table>
<thead>
<tr>
<th>LIST PRICE</th>
<th>CASH PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSM 1/O-4 Kit</td>
<td>$149.95 $128.20</td>
</tr>
<tr>
<td>Integral Data Systems IP-22S Printer</td>
<td>$949.00 $811.39</td>
</tr>
<tr>
<td>P1210 Option - add</td>
<td>$127.39</td>
</tr>
<tr>
<td>Graphic Option - add</td>
<td>$33.34</td>
</tr>
<tr>
<td>Vector Graphic BK Ram</td>
<td>$245.00 $209.47</td>
</tr>
<tr>
<td>Thinker Toys Speakeasy I/O Kit</td>
<td>$130.00 $111.15</td>
</tr>
</tbody>
</table>

Subject to available quantities. Prices quoted include cash discount. Shipping and Insurance extra.

Call for our prices on:
- Cromemco, Godbout, IMSAI, IMC, Meca, Micropolis, Problem Solver, SSM, Sorcerer, Vector Graphic

Computer Lab of New Jersey

141 Route 46 • Budd Lake, N.J. 07826
Phone: (201) 691-1984

HOURS: Monday & Friday: 12 to 6, Tuesday-Thursday: 12 to 9
Saturday: 10 to 5

Call or write for our free catalog & price list
Aids for Hand Assembling Programs

Listing 1: Program description for BRAVEC. This description should be the first step taken when writing a program.

BRAVEC

The program takes a 16 bit number ORigin and adds two to it. The new number then is subtracted from another 16 bit number, DEstination. The difference, which may be positive or negative, in two's complement, is stored in POINTL. The difference is also examined to determine if it is larger than +127 (if positive) or smaller than −127 (if negative). If this is the case, FF is loaded into POINTH; otherwise 00 is loaded. POINTH and POINTL are then displayed by transferring control to the (KIM) operating system.

Erich A Pfeiffer PhD
Wells Fargo Alarm Services
Engineering Center
1533 26th St
Santa Monica CA 90404

Resident assembler programs and interpreters for high level languages are available increasingly for microcomputer systems based on the more popular microprocessors. Nevertheless, many operators of small microcomputer systems are unable to use such programs because their systems are not large enough to support them. Unless they are lucky enough to have access to a timesharing service or to some larger computer which supports a cross assembler, their only way of developing a usable object program is to assemble it by hand.

While the mere idea of such an endeavor might horrify any programmer who is used to working with large machines, the hand assembly of shorter programs for 8 bit microprocessors actually is not very difficult. It has been my experience that the assembly of programs can be greatly simplified and the likelihood of errors can be reduced by using some simple aids in the assembly process.

One of these aids is in the form of hardware and consists of a special program assembly form. The software aids are several short utility routines which run even on the smallest microcomputer systems. Development of the assembly method described in this article is based on experience gained from working with programmable calculators of the keyboard language type. Matt Biever of the Pro-Log Corporation has long been advocating some of the techniques that I am using. The article's assembly method is used for program development for a KIM-I microcomputer. It can be adapted easily for other microcomputer systems as long as they use an 8 bit processor. The assembly method will be demonstrated with a sample program.

Before writing a program, it is a good idea to put down in writing what the program is supposed to do. Such a program description, as shown in listing 1, might state any limitations on the magnitude of variables used or might indicate what happens if these limitations are exceeded.

The next step is to develop a concept of the program in the form of a flowchart as in figure 1. While the symbols used in such charts are standardized, the chart's degree of detail is a matter of personal preference. From program descriptions and flowcharts, one can determine how many memory locations or registers will be necessary to store data and temporary results. These locations should be written in the program register table as shown in table 1. This table also contains the addresses of subroutines or registers of the monitoring system that are called by the program, or of PIA registers that will be addressed. The table is similar to the symbol table printed by the computer during the machine assembly of a program.
After a program description is developed, the actual writing of the program can begin. The programmer, who writes a symbolic program in the form of lines, each line successively numbered, contains one mnemonic for an operation (unless it is an "all comment" line) and later will be punched into one punch card for computer entry. Because the operation described by the mnemonic can have a length of one, two or three bytes, each line eventually results in one, two or three machine instructions. Therefore, there exists no simple relation between the line number and the address at which the machine code is stored in the computer memory. For the hand assembly of programs, it is advantageous to use a different format for the program listing in which there is a one to one relationship between program line and memory location. The writing of the symbolic program and the assembly into machine code is greatly simplified by the use of a special program assembly

Figure 1: Flowchart of the program described in listing 1. The circled numbers refer to the comment numbers in listing 2.

Build The World's Most Powerful 8-Bit Computer
Featuring The Famous Intel 8085!

Explorer/85™

Starting for just $129.95 you can now build yourself a sophisticated, state-of-the-art computer that can be expanded to a level suitable for industrial, business and commercial use. You learn as you go...in small, easy-to-understand, inexpensive levels!

- Features Intel 8085 cpu/100% compatible with 8080A software.
- Onboard S-100 bus (up to 8 slots!)
- Onboard RAM and ROM expansion!
- Built-in deluxe 2K Monitor/Operating ROM!
- Cassette/RS 232 or 20 ma/j-1/2-bit parallel I/O and timer all on beginner's Level "A" system!

EXPLORE/85 gives you the computer features immediately without turning you into an appliance operator. Designed to run pre-assembled software for the Intel 8085 computer, EXPLORE/85 is a terminal program designed to help begin assembly programming or to aid in debugging an existing program. As you learn to program, the machine code location is displayed and the listing is enhanced with the mnemonic for the current instruction. Use Label Location

Use Label Location

Table 1: Program register table for program BRAVEC. This table contains all descriptions of all memory locations used by the program.

Circle 280 on inquiry card.
Circle 381 on inquiry card.

MORE BANG PER BUCK

The PERKIN-ELMER BANTAM

ALL NEW

$799.00

All the Features of the Hazeltine 1400 & LSI ADM-3A

Upper/Lower Case

7 x 10 Char Matrix

White or Black Char

Transparent Mode

Tab Function

Backspace Key

Shift Lock Key

Print Key

Integrated Numeric Pad

$41.61 per month

Lease-Purchase

$1095.00

TELETYPE MODEL 43 KSR

with RS232

10 or 30 CHAR/SEC

132 COLUMNS

UPPER/LOWER CASE

USR-310

Originat

Acoustic

$149.00

Coupler

0-300 Baud

Stand Alone

Crystal Controlled

RS232

USR-330

Originat

Auto-Answer

$324.00

Modem

FCC Certified for Direct Connection to Phone Lines

USR-320 Auto-Answer

Only Modem $299.00

All Units include a 120 day warranty

Optional Maintenance package available

Any Product may be returned within 10 days for a full refund.

U.S. ROBOTICS, INC.

1035 W. LAKE ST.

CHICAGO, ILL. 60607

Sales [312] 733-0497

General Offices [312] 733-0498

Service [312] 733-0499

form. The form I developed for our KIM-1 system is shown in listing 2. (Similar forms are available from the Pro-Log Corporation; order Nr CF-1.) Each line of the coding form corresponds to one memory location with the least significant hexadecimal digit of the address preprinted in the ADD column. The form can be used with any computer system that uses a hexadecimal machine code. For octal notation, a different layout is advantageous.

The programmer starts writing a program by adding the other digits of the program starting address in the ADD and Page

Listing 2: Program listing of BRAVEC using the author’s hand assembly form for the KIM-1. This form can be used with any hexadecimal based microprocessor.

Program: BRAVEC

<table>
<thead>
<tr>
<th>Page</th>
<th>ADD</th>
<th>OPC</th>
<th>Label</th>
<th>MNE</th>
<th>Mode</th>
<th>Operand</th>
<th>N</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>00</td>
<td>ORLO</td>
<td></td>
<td></td>
<td>DATA</td>
<td>Registers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>ORHI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>DELO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>DEHI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>18</td>
<td>CLC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>49</td>
<td>LDA</td>
<td>#2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>65</td>
<td>ADC</td>
<td>Z</td>
<td>ORLO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09</td>
<td>90</td>
<td>BCC</td>
<td>NELO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0A</td>
<td>02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0B</td>
<td>E6</td>
<td>INC</td>
<td>Z</td>
<td>ORLO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0C</td>
<td>01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0D</td>
<td>85</td>
<td>NELO</td>
<td>STA</td>
<td>Z</td>
<td>ORLO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0E</td>
<td>00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0F</td>
<td>F38</td>
<td>SEC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>45</td>
<td>LDA</td>
<td>Z</td>
<td>DELO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>E5</td>
<td>SQC</td>
<td>Z</td>
<td>ORLO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>85</td>
<td>STA</td>
<td>Z</td>
<td>POINT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>FA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>A5</td>
<td>LDA</td>
<td>Z</td>
<td>DELH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>E5</td>
<td>SQC</td>
<td>Z</td>
<td>ORLO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A</td>
<td>A5</td>
<td>LDA</td>
<td>Z</td>
<td>POINT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1B</td>
<td>FA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1C</td>
<td>90</td>
<td>BCC</td>
<td>NEG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1D</td>
<td>09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1E</td>
<td>10</td>
<td>BPL</td>
<td>OUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1F</td>
<td>09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VA-BECC Program Assembly Form
columns. It should be noted that the Page column refers to memory pages while the Page-of heading indicates pages of coding forms. The program is written by entering the mnemonic of the first instruction into the MNE column of line 0. Many of the instructions of a microprocessor can occur in more than one addressing mode. During machine assembly, the assembler program deducts the addressing mode from the format of the operand or the definition of a symbol. When hand assembling a program it is advantageous to specify the addressing mode in the Mode column. Immediate

Listing 2 continued:

Program: BRAVEC
Page 2 of 2 Date: Programmer:

<table>
<thead>
<tr>
<th>Page</th>
<th>ADDR</th>
<th>OPC</th>
<th>Label</th>
<th>MNE</th>
<th>Mode</th>
<th>Operand</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>A9</td>
<td>FF</td>
<td>FLAG</td>
<td>LDA #</td>
<td>4FF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>85</td>
<td>4C</td>
<td>STA Z</td>
<td>PINTH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4C</td>
<td>6C</td>
<td>JMP ABS START</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4F</td>
<td>1C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>710</td>
<td>F7</td>
<td>NEG GPL</td>
<td>FLAG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>A9</td>
<td>00</td>
<td>OUT LDA #</td>
<td>00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>85</td>
<td>4C</td>
<td>STA Z</td>
<td>PINTH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4C</td>
<td>1C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We have positions for innovative individuals with background in:

Hardware/Software
- Computer Architecture
- Operating Systems
- Systems Programming
- Mini/Micro Assembly Language Programming
- Electro Optics/Video Display Systems

Applications
- Robotics
- Computer Vision System
- Computer Speech I/O
- Intelligent Machines
- Servo Systems

If you have an Associate or higher degree, or equivalent experience, and are looking for a challenging opportunity in any of the above areas, send your resume in complete confidence to: Staffing Manager/P. O. Box 225474, M.S. 217/Dallas, TX 75265.
mode addressing is commonly indicated by the symbol \#. For other addressing modes, suitable abbreviations of the column headings in the programmer's reference card should be used. For operations which have only one addressing mode, the Mode column is left empty. The addressing mode determines how many address bytes will have to follow the opcode byte. After filling in the Mode column, the programmer should cross out the appropriate number of lines in the MNE column. This reserves the corresponding memory locations for the address or operand part of the instruction.

The Label column will carry an entry for two conditions only:

- If the line contains the start of a subroutine.
- If the line is the destination of a conditional or unconditional jump or branch instruction.

While assembly programs sometimes put certain limitations on the choice of labels, any suitable word or letter and number combination can be used as a label for hand assembly. However, it makes sense to pick a word or abbreviation that indicates what the subroutine or branch destination is doing in the program, (i.e. "WAITLOOP," "COUNT," or simply "LOOP 7").

The next column to fill in is the one with the heading Operand. When writing programs for machine assembly, the programmer enters a symbolic label in this field and leaves it up to the assembly program to figure out what to do with it. When writing for hand assembly, the programmer can make the task easier by being a bit more specific. The operand can be one of the following things:

1. In the immediate addressing mode, it is simply the number that is to be entered by the operation. Rather than give this number a symbolic name which is defined somewhere in a symbol table, it is much easier to enter it directly in the Operand field. One has to be careful to remember which number system is being used. A number without a prefix indicates decimal notation. The prefix % indicates binary notation. A bit mask for bit 2 and 0, for example, would have the operand \%00000101. If the number is in hexadecimal form, the prefix $ would normally be used, but in this case it is much simpler to enter the hexadecimal number directly in the OPC column of the following line.

2. With a jump or branch instruction, the operand symbol indicates the destination of the operation. The operand of such an operation must have a counterpart in the label column somewhere in the program. The only exception is when the program calls subroutines that are stored in read only memory (as I do frequently with subroutines of the KIM monitoring system). In this case, the operand symbol has to have a counterpart in the stored program.

3. With any other memory referenced instruction, the operand symbol symbolizes a memory location. I have found it useful to think of these locations as registers even though, unlike the registers of the processor, they are physically located somewhere in memory. As a matter of fact, their location, if possible, is in page zero of the memory to take advantage of the shorter addressing mode. For registers used in stock subroutines, I have assigned locations which begin at the upper end of page zero and work their way downward. They are listed in a master register list and care has been taken that subroutines that are likely to be used in the

Get your PC masters in as little as 2 weeks

At Echo Design your circuit drawings can be converted into finished artwork masters in only 2 to 6 weeks, depending on complexity. We do board layouts for many of the biggest names in the business. And we have broad capability. Such as computer boards having 450 ICs.

Choose any or all these services:

- Layout (to digitizing standards if desired)
- Assembly drawing
- Tape-up (artwork)
- Schematic drawing
- Fab drawing
- Bill of material
- Printed board

Place a call now to John Offenbacker or Al Chew and get your new board moving at competitive prices.

FREE Ask for a copy
Basic Guidelines for Printed Circuit Partitioning
echo DESIGN AND DEVELOPMENT CORPORATION
195 EAST GISH ROAD • SAN JOSE, CA 95112
408-292-0918

We also provide contract technical personnel worldwide.
same program do not occupy the same register addresses. The symbolic names for registers that will be used in the main program are noted in a program register table (table 1) with the addresses to be assigned later. The symbols again should be words or abbreviations which indicate the meaning of the data contained in the register, such as STARLO to mean starting address, low order byte.

The column N of the program assembly form can be used to indicate the number of cycles it takes to execute the instruction. This is necessary, for example, to determine the time of timing loops. In most cases, however, this column will be left empty.

Finally, the Comment column should be used to explain the function of the operation listed in the current line and sometimes following lines. While this information may not be needed by the programmer, it is tremendous help for any other person trying to understand what the program is doing. If the program has been flowcharted first, which is highly recommended for all but the shortest programs, the comment can simply be a number which refers to an equally numbered symbol on the flowchart.

In this way the programmer works down the lines of the program assembly form. Every time a 0 is encountered in the ADD column, (s) he adds the most significant bit. If that addition makes the ADD column is also advanced. Eventually the program will be completed and the hand assembly can begin. Like the computer, I do this in a number of passes.

The first pass is the easiest one. Using a listing of the instruction set, or the programmer reference chart, the mnemonic and the entry in the Mode column is used to look up the op code of the instruction, which is entered into the OPC column of the line. A frequent error during this operation is to mistake an 8 for a B or vice versa, and I double check op codes with these symbols. The programmer's reference cards supplied by the manufacturers, although they fit nicely into a shirt pocket, were apparently not intended for use by programmers over 40 years of age. The listing of the instruction set in the data sheets or system manuals is usually printed in a more reasonable letter size.

The second step is to assign absolute addresses to the symbols of the program register list. First, all registers and their addresses used in stock subroutines to be called by the program are transferred from the master register list to the program register list. Then absolute addresses are assigned to all other registers listed, making sure that no duplication occurs. Registers which contain the low and high order bytes of numbers, or registers which contain successive bytes if multiple precision operations are used, have to be arranged in such a way that their absolute addresses are adjacent in increasing order (STARLO = B3, STARHI = B4).

With the completed program register list one can go over the program again. For each memory referenced instruction other than branch and jump instructions, the program register list will contain an absolute address for the symbol in the operand column. This hexadecimal number is now entered into the OPC column of the following line. For registers located outside of page zero (such as the registers in P1As) the address will be entered in two lines and care has to be taken to enter the low order byte first, followed by the high order byte. During this pass I also check all lines with a # in the Mode column and, if necessary, convert the binary or decimal operand into hexadecimal notation which is entered in the OPC column of the following line.
With this step completed, the OPC column should show a hexadecimal number in most lines. The next step is to pass over the program listing another time.

Any line with an open OPC column where the mnemonic indicates a branch instruction will require that the branch vector for the relative addressing mode be calculated. For short forward branches this poses no problem because the offset can easily be counted off (beginning at the second line following the one which contains the branch instruction, and continuing to the line which has the corresponding symbol in the label column). For longer branches and especially backwards branches, if memory pages are crossed it is very easy to make a mistake and miss by one count in either direction. I have found it advantageous to let the microcomputer perform this operation because, after all, it is much better in hexadecimal calculations than any programmer.

The example program BRAVEC receives the origin and destination of a branch and calculates the branch vector in two’s complement notation. A flag is set if the relative addressing range is exceeded. The program is loaded from cassette tape beginning at memory location 0000. Loading begins here because this location in the KIM-1 system can be addressed easily by pressing the space bar of the connected terminal. The first four locations are actually data registers into which the low and high order bytes of origin and destination of the branch are entered.

When the program is executed beginning at location 0004, it displays or prints the branch vector in two’s complement as the low order byte of the address field. The high order byte of this field normally shows 00, while FF indicates that the reach of the relative addressing mode has been exceeded.

While the program, as listed, is written for the 6502 microprocessor, only instructions that have an equivalent in the instruction set for the 6800 were used. The program, therefore, can be converted easily. However, the registers POINTHI and POINTLO, which are displayed as an address in the LED display of the KIM-1 microcomputer, are specific for this system. For other computers the user will have to find another way of displaying the result of the calculation.

After all branch vectors have been calculated in this fashion and entered in the appropriate lines, the only open spaces in the OPC column should be the address parts of jump instructions. For jumps within the main program, it is easy to find the line with a matching entry in the label column and to enter the address of this line into the OPC columns of the lines following the one containing the jump instruction. For subroutines called from read only memory, the address has to be looked up in the subroutine listing.

Stock subroutines which have been written on some other occasion and which can be loaded from magnetic or paper tape frequently can be used. Normally such subroutines will be tacked on after the last memory location occupied by the main program. The KIM-1 system has a relocating loading routine for loading from magnetic tape. If this feature is not available, some area in the memory should be set aside into which the subroutines are loaded. A move program then can be executed to pull up the subroutine. For the 6502 processor I use a program called MOV BLO which requires only 14 program steps due to one very convenient addressing mode of this processor.

Unless one is very pressed for memory space, it is a good idea to have all subroutines start in lines with a 0 as the least significant digit because it is easier to keep track of the starting address after relocation. In order to be relocatable, a subroutine may not contain any absolute jump instructions and only relative addressing within the subroutine is permitted.

After the last addresses for the stock subroutines have been entered in the program assembly form, the hand assembly is completed. I have never clocked the operation, but by following the methods described, it goes much faster than one would expect. With all op codes being listed in a single column it is much easier to enter them into the machine, either from a hexadecimal keyboard or from the keyboard of a terminal. This is another occasion in which operator errors can easily occur and I proofread all programs after entry. This operation is again greatly simplified by the use of the assembly form which shows address and op code in adjacent columns.

The assembly method and the assembly aids described have been in use for several months and have been found to greatly reduce the likelihood of assembly errors. Unfortunately, this method does not protect from programming errors and the debugging of the program still is a time consuming but necessary step to follow the assembly of a program.
AT LAST!
The High Density Color Graphics You've Been Waiting For!

- Plugs directly into your S-100 bus
- Eight different colors
- Eleven software selectable modes
- Display densities ranging from 64X32 to 256X192 Blocks
- 6K bytes of on board screen refresh memory
- Bank select
- Board protect
- Composite video
- Software graphics driver routines for the 8080/Z80

Introductory Offer:

BCG-800K (Kit) ... $285.00
BCG-800A (Assembled) $385.00
BCG-800B (Bare board w/S68047) $ 45.00
VISA & MASTER CHARGE - Calif. Res. Add 6% Sales Tax
Call or Write for Details:

Biotech Electronics
P.O. Box 485
Ben Lomond, CA 95005
(408) 338-2686

NEW! for the PET™
HIGH RESOLUTION GRAPHICS!

Now there is a complete Software Package and a simple, low cost Logic Circuit that gives the PET 2001 HIGH RESOLUTION GRAPHICS! It can plot 3-D images, pictures, fancy graphs, maps - almost anything! Points are plotted on a high resolution matrix of 236h.x.181v. Graphic displays can be stored on tape cassettes.

Do it yourself with the Graphics Hardware Manual from Conley Graphics. Complete hardware information, diagrams, and easy to understand explanations allow you to build your own Logic Circuit for the affordable price of ONLY $15. Parts are readily available from popular electronics stores. Now, high resolution graphics opens up a world of new uses for the PET!

Complete Software Package and Graphics Hardware Manual $19.95

Mail Order To:
CONLEY GRAPHICS
211 Purdue Avenue, Kensington, CA. 94708
Calif. residents add 6%. Sales Tax

PET is a trademark of Commodore Business Machine

Dealers, Computer Retailers and Bookstores:

Let the BOSS work for you!

Computer retailers and bookstores are invited to take advantage of Bits' One Stop Service - BOSS. Our entire stock of books, software, posters and products are available at wholesale prices to you.

We review literally hundreds of books published today in the microcomputer field for technical accuracy and readability. The result is a catalog of over 200 books from more than 50 publishers of the best selling, most asked for books. Plus a complete line of Personal Software™ for Apple, TRS-80 and Pet, the most advanced and sophisticated software available today. Plus popular, hard-to-find posters, Plus Programmers Pads™ available exclusively from Bits. Plus items-of-interest products.

Because we buy in volume we can offer you wholesale prices usually equal to or lower than publisher discounts if you ordered yourself. Now you can have those wholesale prices and a wide variety too from one source! One call on our toll free 800-258-5477 puts your order on its way in 48 hours.

With BOSS's comprehensive selection and fast friendly service, isn't it time you gave your customers and yourself the very best? Call or write today for information on the wholesale program.

Bits, Inc.
Books to erase the impossible
PO Box 428
25 Route 101 West
Peterborough, NH 03458
603-924-3355

The BOSS processes..... locates..... packages..... and ships for fast services
THE ART OF PROBLEM SOLVING, ACKOFF'S FABLES
by Russell L. Ackoff
□ Most of us, in our rush to apply the computer in trying to solve our real world problems, jump to find the right language or the proper algorithm. Perhaps a preparatory step could help us toward realizing the most direct, creative, and efficient solution. Ackoff's book is a lesson in creative problem solving (Part One) with examples in the application of this art (Part Two). It is an enlightening book. 214 pp. $13.95 Hardcover.

Z-80 INSTRUCTION HANDBOOK
by Nat Wadsworth
□ Moving over to a more powerful processor? Learn the full capabilities of the Z-80 instruction set quickly with this new Scelbi publication. It is a practical reference, using the original Zilog mnemonics, and is meant to serve as a guide for the novice, Intermediate, or experienced programmer. 117 pp. $4.95

THE ANATOMY OF A COMPILER
(Second Edition)
by John A. N. Lee
□ This new edition reviews all areas of computer language translation and goes on to cover the syntax of complex languages and their compilation. The text is designed to educate the users of high level languages to a position where they can understand, diagnose or implement a compiler. Lee accomplishes this end with a lively and graphic style. 470 pp. $19.95.

BASIC WITH STYLE: PROGRAMMING PROVERBS
by Henry Ledgard
□ Programmers can and should write programs that work the first time. This statement may sound idealistic to those accustomed to long hours of debugging. Yet it is the theme of this book. It contains a unique collection of "proverbs" or rules and guidelines for writing more accurate error-free programs. Newly rewritten, the book now emphasizes structural programming and all examples are in BASIC. 134 pp. $5.95.

9900 FAMILY SYSTEMS DESIGN AND DATA BOOK
by Texas Instruments
□ This is a comprehensive design manual/data book for Texas Instruments' family of 16-bit microprocessor products. Nine chapters cover basic decisions in system design, hardware design, software design, the 9900 instruction set, program development, and application examples. Here is a complete information package (1000+ pages) on TI's powerful new processor. $9.95.

SOURCE BOOK FOR PROGRAMMABLE CALCULATORS
by Texas Instruments
□ TI has put together over 60 example problems for solution on their TI-58 and TI-59 programmable calculators. Each example contains a description of the problem, the calculator program, guidelines for using the program, example solutions and references for further investigation. The problems cover topics in: number theory, algebra and trig, calculus, statistics, business, economics, biology, engineering, and physics. 416 pp. $16.50.

CONTENT ADDRESSABLE PARALLEL PROCESSORS
by Caxton C. Foster
□ Content addressable memory arrays and parallel processing of all memory elements simultaneously are techniques which offer the advantages of speed and ease of programming as the cost of logic and memory elements continues to decrease. This book by Caxton C. Foster covers the theory, structure, and capabilities of CAPP machines; the known algorithms for parallel processing; applications of CAPP's; a survey of papers on distributed parallel processing; and descriptions of real CAPP machines. It is a comprehensive text, and a good introduction to the subject. 233 pp. $13.95.
Software

Sophisticated Personal Software $5

TEN PROGRAMS
- Finance Manager
- Checkbook Balancer
- Personal Budget
- SENET Game
- Blackjack Game
- TIC-TAC-TOE
- Destroyer
- X-Y Plot
- Fourier Analysis
- Multi-math Drill

Order your copy — Send $5.00 to
COMPUTALL CORPORATIONS
P.O. Box 536
Atlantic, Iowa 50022

RS 232C Computer Compatible Paper Tape Transmitter/Model 812

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stops & starts on character at all speeds, uses manual control or X-on, X-off 90-260 V; 50-60 Hz power; 50-900 baud, up to 150 characters synchronous or asynchronous; gosled internal or external clock; RS 232C, current loop or parallel output, reads 3-8 level tape, T-11 frame/char, even or odd parity, Desktop or rack mount.</td>
<td>$299</td>
</tr>
</tbody>
</table>

ADDMASTER CORPORATION
416 Juniper Serra Drive
San Gabriel, CA 91776
(213) 285-1121
Telex 674770 Addmaster SGAB

APPLE OWNERS!

the ARESCO ASSEMBLER/TEXT EDITOR is now available

- Line-numbered text editor
- One-Pass Assembly with optional second pass
- Compatible with Disk or Cassette
- Sixty pages of Documentation
- Only $29.95

Check, MC, VISA or UPS collect all OK
SASE for more information
Dealer inquiries are invited

Also available for KIM & TIM
Write for details

ARESCO
BOX 1142
COLUMBIA, MD 21044
(215) 631-9052

SPACEWAR FOR THE TRS-80

Dynamic real-time action game includes two spaceships (with forward and side thrusters) plus torpedoes, all moving in the strong gravitational field of the sun. User-adjustable game speed, thruster power, torpedo speed, and initial orbital radius and eccentricity. Excellent for teaching Newton’s Laws — all motion is correctly simulated. 2-90 machines-language program for Level II. Requires only 4K memory.

For Level II cassette tape send $15.00 to
PODOSOFT
9 Smith Street
Wellesley, MA 02181

FRUGAL FRONT PANEL SERIES

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-100 DISPLAY-SENSE BOARD KIT Board and Manual $22.95 Kit $20.95</td>
<td></td>
</tr>
<tr>
<td>REMOTE HEX PANEL Board and Manual $22.95 Kit $20.95</td>
<td></td>
</tr>
<tr>
<td>REMOTE BINARY PANEL Board and Manual $32.95 Kit $30.95</td>
<td></td>
</tr>
</tbody>
</table>

COMPUTER CANOPY DUJCUTS

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPLE II</td>
<td>$12.95</td>
</tr>
<tr>
<td>H-B, H-11, HORIZON, INTEGRAND 800D</td>
<td>$14.95</td>
</tr>
<tr>
<td>SAGE CT-85, ADM-3, H-9, ACT IVb, PET, HAZELTINE 1800/1810/1820</td>
<td>$16.95</td>
</tr>
<tr>
<td>TRS-80, Keyboard-Monitor-Cassette 3 pc</td>
<td>$25.95</td>
</tr>
</tbody>
</table>

Add $3.00 per item for shipping and handling. 5% extra for C.O.D.

Don’t Forget!

Our New 4K Byte Non-Volatile Memory Boards Won’t Let You!

- 30 days minimum guaranteed data retention
- Ultra low power 450 NSEC static CMOS RAM IC's
- On-board regulator, power monitor and battery
- S-100 bus compatible

Assembled and Tested

$395.00

Remember...

to send for details!

CYGAL
1395 Golf Street
Dayton, Ohio 45432

T-BUG™ accessories

Machine language programs linking with your copy of the Radio Shack TRS-80 monitor

Super TLEGS: Onboard relocater moves T-BUG to your choice of RAM. Now you can examine, modify any formerly coincidental machine status.

LL-0 16K Level II $9.95
TSTEP: Single steps for T-BUG, enables an implicit keypad including backspace. A clearable before/after display shows all instruction-set aspects of machine status: CPU registers, flags, stack elements, as you SPACE through memory in program flow sequence. TLEGS relocates.

LL-1 16K Level II $11.95
Pee Wise Backspace: Very tiny, very handy. T-BUG internal, turns on/off key under F-6 command. Stroke shows previous memory location, like reverse ENTER. TLEGS relocates.

PW-1 4K Level II $4.95

Includes cassette, instructions, examples.

Allen Gelder
5914 California Street
San Francisco, CA 94112

T-BUG, TRS-80 tm Radio Shack/Tandy Corp.
Minidisk Library Case

The Minikas-ette/10 is a minidisk sized version of the Kas-ette/10 Diskette Library Case. The cases safeguard recorded data by protecting against contaminants such as dust and debris, and offer temperature and humidity control for storage or shipping. Durably constructed of extra strong polypropylene, the library cases are finished in a beige leather type texture. Additional features include: flexible fan tabs which provide a firm vertical hold while allowing for easy media access and replacement, and the pop-up easel design places media within convenient view and reach of user. Both library cases are available from The Minicomputer Supplies Company, 963 Holmdel Keyport Rd, Holmdel NJ 07733.

Circle 644 on inquiry card.

New Electric Wire Wrapping Tool

This new EW-8 electric wire wrapping tool from OK Machine and Tool Corp is interchangeable with its previous model EW-7D and incorporates a number of improvements at no increase in price. Rated to accept bits for wire sizes 22-30 AWG, the Model EW-8 features a reinforced Lexan housing, radio frequency (RF) interference reducing circuitry, and a high reliability motor and indexing mechanism. The tool is double insulated and weighs 14 ounces. It is available with accessory tool VIT-1 which permits easy resetting of indexing position in 45 degree increments.

The EW-8 is priced at $85.11 and the VIT-1 costs $15. Contact OK Machine and Tool Corp, 3455 Conner St, Bronx NY 10475.

Circle 645 on inquiry card.

Printer Controller Supports Centronics and Dataproducts Printers

The DEC PDP-11 Line Printer Controller (DLP 11), designed to support either Centronics or Dataproducts type printers, operates on any Digital Equipment Corporation PDP-11 computer without software or hardware modification.

The DLP 11 comes complete with all necessary cabling and connectors to interface directly to the printer used. In order to simplify installation and testing, a self-test mode is provided. Low power requirement is another feature of the controller, which incorporates low power Schottky transistor-transistor logic.

Priced at $750 in single quantities, the DLP11 is available from DataSystems Corp, 8716 Production Av, San Diego CA 92121.

Circle 646 on inquiry card.

An S-100 Compatible 6802/09

Micro Data Systems has announced the MD-690A, a new processor board which adds three features to those found on their MD-690. These features are: 6809 compatibility, 10 K bytes programmable read only memory, RS-232 Interface provision and S-100 bus compatibility.

The MD-690A gives the user more monitor flexibility and the option of upgrading the board to accommodate the 6809 processor by Motorola. It comes complete with MONBUG, a 1K byte programmable read only memory monitor program which is software compatible with the standard Motorola MKBUG monitor and designed to interface with most memory mapped video and graphics cards for fast Input and output (IO). The board can accommodate up to 10 K bytes of 2716 erasable read only memory which may be used for 8 K byte BASIC or other firmware.

The price for the board with the 2400 bps cassette Interface, 1 K byte monitor and 1 K bytes of programmable memory is $198 in kit form and $258 assembled and tested. Complete documentation including assembly and troubleshooting instructions and a comprehensive user's guide are provided. For further information write to Micro Data Systems, POB 36051, Los Angeles CA 90036.

Circle 647 on inquiry card.

Where Do New Products Items Come From?

The information printed in the new products pages of BYTE is obtained from "new product" or "press release" copy sent by promoters of new products. If in our judgment the information might be of interest to the personal computing experimenters and homebrewers who read BYTE, we print it in some form. We openly solicit releases and photos from manufacturers and suppliers to this marketplace. While we would not knowingly print untrue or inaccurate data, or data from unreliable companies, our capacity to evaluate the products and companies appearing in the "What's New?" feature is necessarily limited. We therefore cannot be responsible for product quality or company performance.

The price for the board with the 2400 bps cassette Interface, 1 K byte monitor and 1 K bytes of programmable memory is $198 in kit form and $258 assembled and tested. Complete documentation including assembly and troubleshooting instructions and a comprehensive user's guide are provided. For further information write to Micro Data Systems, POB 36051, Los Angeles CA 90036.

Circle 647 on inquiry card.
Multkeyed Indexed Sequential File Control

The keyed indexed sequential search (KISS) system enables multikey access to a user's disk files. KISS provides user selected variability of key and data lengths. The KISS system includes an indexed sequential file manager (ISFM) and a direct access file manager (DAFM). The absolute maximum number of disk accesses to retrieve any record under control of KISS is three. The system is implemented in assembler language and is designed to operate on the 8080/8085 and Z-80 based systems.

KISS is distributed as a relocatable object module on user specified formatted floppy disk. Configurations are available for IMSAI (DOS-A) and ISIS-II using PL/M, FORTRAN, assembler, and Extended BASIC. The 3 section illustrated user guide, which includes technical concept, user interface control, and file control code examples for various languages, is included in the price of $485. The user guide can be purchased separately for $22.50 plus $2.50 for postage and handling. Contact Morrow Computer and Electronic Design Inc, 315 Willhagan Rd, Nashville TN 37217.

Specialized Programming Aids for TI-59 Handheld Calculator

Specialized computer programming aids are now available from Texas Instruments for use with the TI programmable 59 handheld calculator. These aids offer easier conversion of ASCII and EBCDIC codes, routines for debugging and analyzing TMS 9900 and Intel 8080 processor programs, and a number of general programmer aids covering base conversions and logical and arithmetic operations.

The Programmer's Aid Pakette is a 64 page booklet providing detailed documentation for six full length programs: EBCDIC code converter, ASCII code converter, ASCII and EBCDIC encoder, TMS 9900 disassembler, Intel 8080 disassembler and TI programmer simulator. All require a TI-59 with attached PC-100A thermal printer, plus blank TI-59 magnetic program cards, into which the user keys the code lists for automatic entry into the calculator. The booklet format includes program listings which are keyed into the user's own magnetic cards; no additional programming is required.

Pakettes are also available on securities, statistical testing, civil engineering, electronic engineering, blackbody radiation, oil/gas/energy, astrology and TI-59/PC-100A printer utilities. All pakettes are priced at $10 with a $1.50 handling charge plus state and local taxes. For further information write to Texas Instruments Inc, Service Facility, POB 53, Lubbock TX 79408.

BYTE's Bits

About the March 1979 Cover

In the flurry of January's snowstorms, we neglected to put in an "About The Cover" text elaborating more than the title of Robert Tinney's March cover painting Through The Trapdoor. One or two readers took us to task for this omission, perhaps because it was not as obvious to them as to us. The lettering on the wooden block puzzle as assembled (if you could do so) spells out the word plaintext, in two lines. As the plaintext is cranked through the black box of a trapdoor algorithm, it becomes a jumbled form known as ciphertext. Here we symbolize the trapdoor by a hole in a sheet of translucent material, and the trapdoor jumbles the puzzle parts as they fall through the hole.

This of course brings up a challenge. Who will be the first reader with skills at woodcrafts to rationalize the design of such a woodblock in order to create a real puzzle? The actual pieces should be close to those, imagined in this picture, but certainly not identical since there is no way to assemble the pieces shown into a cube which spells "plain" and "text" along two rows.
Assembled and Tested
Added at Ithaca Audio

Field-proven reliable engineering

Over 15,000 boards worldwide prove Ithaca Audio provides the quality and reliability you demand. Ithaca Audio Boards are fully S-100 compatible, featuring gold edge connectors and plated-through holes. All boards (except the Protoboard) have fully buffered data and address lines, DIP switch addressing, solder mask and parts legend.

• Z-80 CPU Board still the most powerful 8 bit central processor available. Featuring power-on-jump, provision for on-board 2708. Accepts most 8080 software.

 A&T 4 mHz $205.00
 A&T 2 mHz $175.00
 Blank PC $ 35.00

• Disk Controller Board controls up to 4 single or double sided drives. Supported by a host of reliable software packages: K2 FDOS, Pascal, Basic and complete diagnostics.

 A&T $175.00
 Blank PC $ 35.00

• K2 FDOS Disk software in the DEC tradition. Includes character oriented text editor (TED), File Package (PIP), Debugger (HDT), Assembler (ASMBLE), HEXBIN, 1 COPY, System Generator (SYSGEN) and more. Command syntax follows Digital’s OS-8/RT-11 format. First in a family of high level software. Basic and Pascal available now. Soon-to-be-released Fortran.

 K2 Disk $ 75.00

• Video Display Board features the full 128 upper/lower case ASCII character set. Easy-to-read 16 line x 64 character format can be displayed on an inexpensive video monitor or modified TV set. Includes TTY software. Add our powerful K2 FDOS to create a versatile operator’s console.

 • A&T $145.00
 • Blank PC $ 25.00

• 8K Static RAM Board High speed static memory at a reasonable cost per bit. Includes memory protect/unprotect and selectable wait states.

 A&T 250 ns $195.00
 A&T 450 ns $165.00
 Blank PC $ 25.00

• 2708/2716 EPROM Board indispensable for storing dedicated programs and often used software. Accept up to 16K of 2708’s or 32K of 2716’s.

 A&T (less EPROMs) $ 95.00
 Blank PC $ 25.00
 2708 EPROMs $ 11.00

• 8” Disk Drives

 Shugart compatible Memorex 550’s are in stock. Single and double density compatible, 330K bytes capacity with our controller or use your own.

 Either way $456

• Protoboard Universal wire-wrap board for developing custom circuitry. Room for three regulators. Accepts any size DIP socket.

 Blank PC $ 25.00

Pascal/Z Ready

The first Pascal Compiler for the Z80, and the fastest Z80 Pascal ever is now ready. Over one year in development, Ithaca Audio was obviously pleased with the results. “We really have outperformed them” states Jeff Moskow, Director of Software Engineering, beaming over the recently released benchmarks, in which Pascal/Z averaged better than five times the speed of a recent P-code implementation.

“Pseudo-code means a vendor only has to supply one compiler to lots of people using lots of different machines, and that makes his life very easy, but it also means users’ programs execute significantly slower. Therefore, we chose to write a native compiler that delivers fast re-entrant ROMable code, with no need for an intermediate language and interpreter. That’s where our speed comes from.” As a matter of fact, Pascal/Z is often twenty times as fast as UCSD’s implementation and may well be faster than dedicated Pascal machines such as the recently announced Western Digital Pascal Micro-engine. Unlike the Microengine, Pascal/Z does not require any new special CPU hardware and has the added benefit of compatibility with existing Z80 software.

Operational requirements of Pascal/Z are the Ithaca Audio K2 Operating system and 48K of memory during compilations. The output is standard Z80 Macrocode which is linked and run through the Ithaca Audio Macroassembler. Binary files may be as small as 2.5K, or even less if the full library is not used. The compiler, including the Macroassembler, is available on an 8” K2 floppy disk. Price including full documentation is $175.00. The Macroassembler is available separately for $50.00. Delivery is from stock.

More Software:

For those that don’t require the speed of a compiler like Pascal/Z, Ithaca Audio also offers the convenience of BASIC. BASIC/Z, an extended version of TDL’s Super Basic, runs in slightly over 12K and is supplied on an 8” K2 disk for $75.00.

SAVE Even More - When you buy your software as a package K2 and Pascal/Z $225 K2, Pascal/Z and Basic/Z $275

HOW TO ORDER

Send check or money order. Include $2.00 shipping per order.

N.Y.S. Residents include 8% sales tax.

For technical assistance call or write:

ITHACA AUDIO

P.O. Box 91
Ithaca, New York 14850
Phone: 607/257-0190

Circle 190 on inquiry card.
Double Density Floppy Disk Storage System

This new double density floppy disk storage system, the Delta-1, has been introduced by Meca, POB 695, 7026 Old Woman’s Spring Rd, Yucca Valley CA 92284. The Delta-1 provides up to 200 K bytes of storage on a single 5¼ inch drive, included with the Delta-1 disk system is the MFM S-100 disk controller which supports up to three SA-400 disk drives. Individuals who now own a Meca Alpha-1 tape system can use the MFM disk controller to combine the Alpha-1 and Delta-1 into a fully integrated tape and disk storage system. North Star owners may take advantage of the availability of the MFM disk controller card to double disk storage space from 90 K to 180 K bytes. The price for the controller card alone is $199.

Available software includes a CP/M disk operating system with editor, assembler, debugger and BASIC-E for $98. Microsoft Extended Disk BASIC is offered for $195. Several applications programs are available which operate with both the Delta-1 and Alpha-1. An introductory price of $999 includes the minifloppy single-sided disk drive, MFM disk controller, power supply, connectors and cable, complete documentation, and Meca disk operating system.

Circle 603 on inquiry card.

Dual and Single Drive Expandable Floppy Disk Systems

A new family of expandable floppy disk systems, called EXP, is available from Micromation Inc, 524 Union St, San Francisco CA 94133. EXP is a complete floppy system using standard 8 inch disks and a write protect and front panel activity light as standard. The system uses drives supplied by Memorex. Each drive offers a full 265 K bytes of storage in IBM 3740 soft sectored format. EXP is fully supported by software. Users are offered CP/M as one option. BASIC, FORTRAN, or complete business application and word processing packages are also offered.

EXP is a complete, fully assembled and tested floppy disk storage system. The total system includes drives, S-100 controller, power supply, and wood and metal enclosure. The EXP-1 single drive system is priced at $1195 and the EXP-2 dual drive system is $1895, and an optional double density controller (for $300) permits doubling the actual density of data on each disk.

Circle 604 on inquiry card.

Floppy Disk System from Charles River Data Systems

Charles River Data is offering its MF-11 LSI-11 floppy disk system with the DEC LSI-11/2 and associated Digital Equipment Corp (DEC) plug-in memory. The MF 11/2 is functionally identical in performance characteristics to the PDP 11V05 but uses only 10½ inches of panel height and is available at a lower price. The 10½ inch enclosure holds the DEC processor, two Shugart floppy disk drives with controller, power supply, slides for rack mounting, and the DEC H9270 back panel. An 8 quad slot backplane is also available.

The controller and interface card provides total software and media compatibility between the DEC processor and the floppy disk system, which allows use with any of the PDP 11V03 software packages. It also provides bootstrap loader, self-test and IBM 3740 formatter. Contact Charles River Data Systems Inc, 4 Tech Cir, Natick MA 01760.

Circle 605 on inquiry card.
BIG ¾" HIGH LCD DISPLAY
USE INDOORS OR OUT
200 HOUR 9V BATTERY LIFE
AUTO ZERO, POLARITY,
OVERRANGE INDICATION
100 mV DC F.S. SENSITIVITY
19 RANGES AND FUNCTION

SPECIFICATIONS:
DC VOLTS (5 RANGES): 0.1mV to 1000V: Accuracy
±0.5% rdg ±0.5% f.s; Input Imped: 10MΩ; Max.
input 1kV except 500V on 200mV range.
AC VOLTS (40Hz to 5kHz): 0.1V to 600V; Accuracy:
±1.0% rdg ±0.5% f.s; (-2dB max. at 5kHz); Max.
input: 600V.
RESISTANCE (6 LOW POWER RANGES): 0.1Ω to
20MΩ; Accuracy: ±0.5% rdg ±0.5% f.s; (±1.5% rdg
on 20MΩ range); input protected to 120VAC all
ranges.
DC CURRENT (8 RANGES): 0.1nA to 100mA;
Accuracy: ±1.0% rdg ±0.5% f.s.
DIMENSIONS AND WEIGHT: 5-7/8" x 3-3/8" x
1-3/4", 12 oz.; POWER: 9V batt. (not incl.) or Hickok
AC adapter; READ RATE: 3/sec. OPERATING
TEMPERATURE: 0°-50°C.

ALL THE MOST WANTED FEATURES
IN A COMPACT DVOM

$74.95
ONLY
HICKOK

On-the-Spot accuracy, wherever and whenever you need it. The Hickok LX303 is ideal for any field service, industrial maintenance or personal application. Rugged, reliable. Easy to read in any light, this exciting, new, 3½ digit Mini-Multimeter weighs only 12 ounces and carries a full one year guarantee. Features previously found only in expensive units...at a price under $75.00! Another American made test equipment breakthrough from Hickok: The Value Innovator for over 60 years. Order Today!

PLEASE SEND ME
___ Hickok LX303 Digital Multimeters ..
___ AC-3 AC Adapter. 115VAC (220VAC avail.)
___ CC-3 Deluxe Carrying Case ..
___ VP-40 40KV DC Probe ..
___ CS-1 10A DC Current Shunt ..
___ VP-10 X10 DCV Probe Adapter ..
___ VP-10 X10 DCV Probe Adapter ..
___ VP-10 X10 DCV Probe Adapter ..

Bill my company, P. O. attached (D & B rated firms only) net 30 days
Payment enclosed. Bill me: Master Charge VISA

Name ________________ Signature ________________
Address _____________________________
City __________________ State __________ Zip __________
Add $3.00 Postage and Handling. CA Residents Add 6½% Sales Tax.
S-100 Card Holds and Programs 2716, 2708 Programmable Read Only Memories

A maximum of eight TMS 2716 or 2708 16 K or 8 K bytes programmable read only memories are held on this new programming and storage board called the Databank. The board will also program memories by means of two special sockets. One of these sockets provides a connection to an external programming station while the other socket allows the programming of memories on the Databank. Each of the eight memories may be individually switched into or out of the system address space. The entire board can be disabled and enabled by I/O (input/output) commands.

In addition to the programmable read only memories, the Databank will hold 1 K or 2 K bytes of 2114 programmable memory. The memory will operate as bus memory or can be substituted by software command for any of the programmable read only memories. A memory in the programming socket also has this substitution ability. All programming voltages are provided by the Databank board circuitry.

Two New Boards for S-100 Systems

This 8 K byte read only memory and programmable memory board is ideal for S-100 systems which require both types of memory. It will replace two boards in most systems, reducing cost, Inventory, and motherboard slots. The independent addressing and wait state control make the board as flexible as two separate boards. The control and I/O board has 12 inputs and four high current outputs.

Low Price 16 K Byte Static Memory Board

This 16 K byte static memory board, designated SupeRam 16, has been designed for S-100 microcomputer systems. SupeRam is a complete kit featuring four independently addressable and write-protectable 4 K byte blocks. The compact control design uses only 11 integrated circuits. All signals are fully buffered, including address and data lines. SupeRam 16 K byte is priced at $299 and available from Thinker Toys, 1201 10th St, Berkeley CA 94710.$

The Triac control allows direct computer control of AC equipment. Counters are valuable for process control or counting instruments and the built-in timer gives the computer a dual count per minute (or second) capability.

Assembled and tested, the boards sell for $195 each. OEM quantity discounts are available. For more information, contact Tri Mark Engineering, 12402 W Kingsgate, Knoxville TN 37922.$

Recognition memory is organized in 8 bit words and 256 word REM records. It is a static memory with an access time of 200 ns for a single memory location, and recognize or multwrite time, for all REM records of 4 µs. This time does not increase with size of memory. In a system with multiple REM boards, all of these are accessed in parallel during a recognize or multwrite operation.

The REM S-100 add-in recognition memory board has a capacity of 8 K bytes and is priced at $525.$

Associative Computer Memory Available from Semionics Associates

Content addressable or associative computer memory is available from Semionics Associates, 41 Tunnel Rd, Berkeley CA 94705. Called REM (recognition memory), it differs from conventional memory by eliminating serial searching. An item may be accessed simply by being named. REM can be written into and read from like ordinary memory, but has parallel processing functions, including six types of recognize and multwrite. The recognition operations replace serial searching, while multwrite allows the processor to write into multiple locations with a single Instruction. Individual bit masking may be applied to all of the operations, including ordinary location accessed read and write. A data processing system with these functions is known as a CAPP (content addressable parallel processor). Ideal for pattern recognition and information retrieval applications, it is also capable of performing parallel arithmetic operations.

Semionics' first product is an add-in recognition memory for microcomputers having the S-100 bus. Called REM S-100, the board converts the microcomputer to a CAPP by adding new instructions to the instruction set of the processor. The board is organized to make these additional instructions possible without any alteration to the processor.

Recognition memory is organized in 8 bit words and 256 word REM records. It is a static memory with an access time of 200 ns for a single memory location, and recognize or multwrite time, for all REM records of 4 µs. This time does not increase with size of memory. In a system with multiple REM boards, all of these are accessed in parallel during a recognize or multwrite operation.

The REM S-100 add-in recognition memory board has a capacity of 8 K bytes and is priced at $525.$

At the following prices: DB00 (without programmable memory) $199.95; DB08 (1 K byte programmable memory) $219.95; DB16 (2 K byte programmable memory) $239.95 with shipping charges of $5 in the US and Canada and $25 overseas. For further information, contact Objective Design Inc, POB 20325, Tallahassee FL 32304.$

Circle 531 on inquiry card.
SOLID STATE SALES... Announces a Breakthrough in Computer Technology

VIDEO COMPUTER PROCESSING SYSTEM

GRAY LEVELS

THIS REMARKABLE VP-1 COMPUTER INTERFACE KIT HAS THE FOLLOWING:

- IT PRODUCES COMPOSITE VIDEO OUTPUT IN A 128 x 128 MATRIX FROM A DIRECT MONITOR CONNECTION USING 8K OF MEMORY
- THE SYSTEM USES A STANDARD 5 1/2 INCH DISK
- WILL NOT TIE UP COMPUTER WHEN NOT ADDRESSED
- IT DISPLAYS CONTINUOUSLY WHEN NOT ADDRESSED
- IT MAY PRODUCE PSEUDO COLOR AND/OR GRAPHICS (UP TO 16 GREY LEVELS, 4 BIT BINARY)

FEATURES

- CONTINUOUS SURVEILLANCE
- INSPECTION OF MOVING PARTS
- VISUAL GRAPHIC INPUT TO A COMPUTER
- INSPECTION OF MOVING PARTS

APPLICATIONS

- CONTINUOUS SURVEILLANCE
- VISUAL GRAPHIC INPUT TO A COMPUTER
- CONTINUOUS SURVEILLANCE
- INSPECTION OF MOVING PARTS

OUR VP1 VIDEO SYSTEM CONSISTS OF THE FOLLOWING KITS:

- CCD 202C SOLID STATE VIDEO CAMERA KIT ASSEMBLED & TESTED: $499.00
- VP-1 COMPUTER INTERFACE SYSTEM (3 BOARDS) ASSEMBLED & TESTED: $999.00
- 8K MEMORY BOARD (OPTIONAL): $295.00

THIS VIDEO COMPUTER KIT CAN WORK WITH THE GE, REDICON, OR ANY OTHER 128 x 128 SENSOR CAMERA

INQUIRY CARD

Circle 340 on inquiry card.
MIT Offers Video Tape Course in Semiconductor Devices

A course in semiconductor devices by Professor Clifton Fonstad is being offered by Massachusetts Institute of Technology in the form of tutored video instruction. The course consists of 38 hour MIT classes plus problem sets, quizzes and solutions.

Starting with a basic presentation of the energy band viewpoint, this course deals with the physics, modeling, fabrication and application of semiconductor devices. Silicon devices are emphasized in the context of integrated circuits. Physical models for devices are developed to a point sufficient for viewers to understand the design and use of semiconductor devices. The course begins with a presentation of much of the required physics, so that students with a wide diversity of backgrounds should be able to use the course effectively.

The video tapes are delivered in four shipments of nine to ten tapes each. They may be kept up to six weeks, or the course may be accelerated by requesting earlier shipment of the next course and returning tapes of the completed section.

The fee for participating in TVI is $900 plus $150 per noncredit student. There is no additional charge if the number of students exceeds 25. Contact Dr. John T. Lynch, director, Tutored Video Instruction, Room 9-267, Massachusetts Institute of Technology, Cambridge MA 02139.

Circle 608 on inquiry card.

Logic Probe for TTL and CMOS Testing from Heath

Heath Company has released the IT-7410/ST-7410 Logic Probes which are designed for in circuit testing of TTL (transistor-transistor logic) and CMOS integrated circuits. Features include switch selection of threshold levels for either TTL or CMOS circuitry and lamps that turn on when the input voltage crosses the appropriate level. A memory circuit is incorporated in the design of the unit to turn on a light emitting diode when either threshold level is crossed.

The new probes provide true logic level detection at high frequencies (no AC coupled) and detection of pulses as short as 10 ns. Upper frequency limits are 100 MHz (TTL or CMOS at 5 VDC squarewave) and 80 MHz (CMOS at 15 VDC squarewave). Power for the Logic Probe is drawn from the circuit under test via two spring loaded, insulated clips. A ground lead is provided for high frequency operation. Probe overload protection is 50 VDC continuous and 175 VDC for 5 seconds.

The IT-7410 is the kit version and is priced at $39.95 and the ST-7410 is the assembled version and sells for $64.95. For more information about the Logic Probes, write to the Heath Company, Dept. 350-690, Benton Harbor MI 49022.

Circle 609 on inquiry card.

Speak to Me in MICR

This kit of magnetic Ink character recognition letters makes it possible to personalize your own shirts, tote bags, jeans, director’s chair covers, and other canvas or cotton items with a household iron. The software applications kit is designed to help the authors of such phrases as APL polisher, computer simulation, loose circuits, terminal case, and bubble logic, communicate creatively even when away from the computer. Each kit contains 118 letters, 40 numbers and 44 computer widgets with complete instructions for application. The kit is $3.95 or $7 for two (add 10% for postage). Contact Martha Herman, 114 W. 17th St., New York NY 10011, Specify blue or white type when ordering.

Circle 658 on inquiry card.
Thousands of people have used this board with complete satisfaction. Puts 16K of software on line at ALL TIMES! Kit features a top quality solder masked and silk-screened PC board and first run parts and sockets. All parts (except 2708’s) are included. Any number of EPROM locations may be disabled to avoid any memory conflicts. Fully buffered and has WAAIT STATE capabilities.

250 NS SALES!

16K DYNAMIC RAM CHIP

16K x 1 Bit 16 Pin Package. Same as M1051-24, 250 NS access, 40 ns cycle time. Our best price yet for this state of the air RAM, $56 256 byte and 64K RAM boards using this chip are readily available. These are new, fully guaranteed devices for a range of applications from $8.95 each.

8 FOR $69.95

2070 EPROMS

Now full speed! Prime new units from a major U.S. Mfg. 450 NS. Access time, 1K x 8. Equiv. to 4-1702 A's in one package.

$15.75 ea. 3 FOR $49.95

EXPRESSER'S HEATING PLATE

Large Manufacturers Surplus. 5/8 x 10’ in. Made of 3/8 in. tempered glass with heating element laminated on back. Works off 120 VAC. Protected by thermostat and two fusable fuses. Rated 120 Watts. Use for any heating applications. Perfect for heating ferric chloride to increase PC Board etching efficiency. Units are brand new, non-submersible.

WHILE THEY LAST—$2.99 each

MALLORY COMPUTER GRADE CAPACITOR

30,000 MF 15 WDC

Small 3 x 2 Inches

$1.95 ea. 3 FOR $4.95

New! REAL TIME Computer Clock Chip

N.S. MMS131. Features BOTH 7 segment and BCD outputs. 28 Pin DIP. $4.85 with Date.

Circle 92 on inquiry card.
Switching Power Supplies With Power Fail Signal

This new series of switching power supplies has been designed for small computers utilizing nonvolatile memories. The DS151 series features a power fail signal as standard feature. Should a power failure of one half cycle occur, the TTL compatible power fail signal warns the computer (for example with an interrupt) that primary AC power has been lost allowing the program in the system to store the state of the machine in nonvolatile memory before DC power fails several milliseconds later. This power failure warning feature thus allows for "fail safe" operation when power is interrupted. Three models are presently available: 5 V at 30 A, 12 V at 12 A, or 15 V at 10 A. All are regulated to within plus or minus 0.1%. The power supplies will operate within a wide input voltage range from 100 to 130 VAC. The power fail series is priced at $194 in production quantities (1000) and $289 for prototype quantities. Contact Digital Power Corp., 2060 The Alameda, San Jose CA 95126.

High Speed Monolithic 8 Bit Digital to Analog Converter

A 10 ns settling time enables Motorola's new state of the art MC-10318 to convert digital information into analog signals in high speed instrumentation, digital displays, storage oscilloscopes, radar processing and television broadcast applications. Accurate to 8 bits (+1/2 least significant bit), and monotonic over a 0 to 70° C (32° to 158° F) temperature range, the new digital to analog converter can operate in systems with data rates above 25 MHz. Inputs are compatible with MECL 10,000 logic, for direct interfacing with high speed processing systems. Operating from a standard -5.2 V power supply, the integrated circuits complementary outputs can produce 51 mA full scale over a compliance range from -1.3 V to +2.5 V, while dissipation is typically less than 500 mW. Maximum nonlinearity is ±0.19 percent of full scale.

The 16 pin ceramic dual-in-line package device is priced at $26 in quantities of 100 thru 999. For further information, contact Motorola Semiconductor Products Inc, POB 20912, Phoenix, AZ 85036.

Floppy Disk Read Amplifier From Motorola

Motorola's new MC3470 floppy disk read amplifier combines linear and digital functions ordinarily requiring several integrated circuits to accurately extract digital information from magnetic floppy disk read heads. The disk signal, which may be noisy and exhibit a number of waveform variations, is processed by the integrated circuit to produce a standardized logic output. Accepting a differential input from the magnetic head, in the presence of common-mode noise, the signal is amplified, routed through an external RC (resistor-capacitor) filter network, and then sharpened by an active differentiator. Peaks are detected by a comparator, which drives a digital time domain filter consisting of pulse generators, a oneshot multivibrator and a D type flip flop. The resulting digital output exhibits none of the amplitude variations and jitter present in the input, and can drive standard logic forms with a guaranteed maximum peak shift of 3.5 percent.

The MC3470 floppy disk read amplifier is available in an 18 pin plastic dual-in-line package at the 100 piece price of $5.95. For more information, contact Motorola Semiconductor Products Inc, POB 20912, Phoenix AZ 85036.

Video Speed Analog to Digital Converter

This new analog to digital converter integrated circuit, the TDC 1014J, features 6 bit resolution and a 30 MHz sample rate. Packaged in a 24 pin dual-in-line package, the device provides video speed data conversion without the need for an external sample and hold circuit. The TDC 1014J requires only a single convert command to digitize an analog waveform between 0 and -1 V. Included in the circuit are 63 strobed comparators, encoding logic, and a 6 bit data latch with TTL outputs. Output mode controls provide either straight binary or two's complement data. The TDC 1014J is priced at $186 in quantities of 100. Contact TRW LSI Products, POB 1125, Redondo Beach CA 90278.
Mini Memory

The Mini Memory System (MM-S) offers us the opportunity to sell these circuits at a lower price compared to our competitors. The MM-S is fully compatible with the IBM 360/A0 format, with no compromises in circuitry, low maintenance, and Shugart quality.

Immediate Delivery

- All 128 ASCII Codes
- Display Characters
- 24 Lines, 11 Line Screen
- 80 Characters Per Line
- Self Diagnostic Test

CONNECTORS

- Edge Connectors
- Certified Digital Cassettes

DISKETTES

Scotch

- Disk Software
- Apple II Mini Soft sec.
- Apple II Mini 16 sec.

MEMORY

TRS-80® APPLE II® 16k memory (8) 4116’s

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Price</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>16k</td>
<td>$1,125</td>
<td>Up to copable of either local or remote connection through our products.</td>
</tr>
<tr>
<td>32k</td>
<td>$1,375</td>
<td>Provides a...</td>
</tr>
</tbody>
</table>

Apple II Memory

- **16k**
- **32k**
- **64k**

World Power TRS-80 Interface

- **MCs 11/0 Modulator**
- **RS485 Modulator**
- **RS422 Interface**
- **EPROMS Eeprom prog.**

Digital Cast A/V-100

- **R.F. MODULATOR** $29.95
- **Broadcast & Radio,** **audio & video** on your existing color television. Recommended for the Apple II.

Extender Board

- **Mullins** $34.95

###附属产品

- **Thumwheel switch**
- **Capacitors**
- **DIP Switch**
- **Thowwheel Switch**
- **Electrolytics**
- **IC SOCKETS**
- **Wire Wrap**
- **WIRE WRAP CENTER**

Attention TRS-80 Owners

- **$650 WORD PROCESSING TERMINAL**

LAWYERS, BUSINESMEN... This terminal, when properly interfaced to your computer, allows you the flexibility of generating computerized free correspondence. It may give you the time to review the correspondence, and "fill-in" forms on your computer, edit on your screen, and when the test is letter perfect instruct your computer to print an error free copy on your terminal.

The heart of this terminal is the durable IBM Selectric Typewriter. If maintenance is ever required, the World Wide network of IBM service centers is at your disposal. The terminal is functional as a regular office typewriter when not performing computer work. Over the next several months 150 of these terminals will be removed from service, returned to the manufacturer, inspected, and brought into perfect condition. Last Spring we offered for sale two-hundred Diablo printers. Within three months every unit was sold. Don't pass this opportunity to purchase a word processing terminal at an excellent price.

Selectric Terminal $650 (FOB Los Angeles). Shipping to the East coast approx. $15. Combined TRS-80 interface and power supply available. Documentation will be supplied to those individuals who want to do their own custom interfacing. Sorry, but credit cards will not be accepted on this purchase.

(213) 679-9001

All merchandise is Represented by the premium grade, superior in quality, shipped the same day received. California residents add 6.5% sales tax. Sorry, but credit cards will not be accepted on this purchase.
New Video Product Line from Environmental Interfaces

Environmental Interfaces' new video product line digitizes video data from standard EIA or NTSC TV cameras, deposits the data in the computer memory via the S-100 bus, and uses the digital data to reconstruct a picture on a monitor. The data is digitized into 16 gray levels with a maximum resolution of 512 pixels per line by 256 lines.

The Real Time Video Digitizer (RT) digitizes the picture in 1/60 second and deposits it in the main memory as a single operation using direct memory access. The Gray Level/Graphics Monitor Interface (MI) displays pictures in 16 gray levels or displays graphics in black and white. The MI uses block direct memory access control between computer main memory (requiring an additional interface) to develop the video signals for the monitor. In combination, the RT and MI can simultaneously deposit a picture in computer memory and display it, providing flicker-free digitized motion pictures or a frozen image. The Programmable Video Digitizer (PVD) digitizes the image in a line bypass fashion under software control. Resolution of the PVD is completely variable up to 512 pixels per line by 256 lines. If the RT or MI is used, horizontal resolution must be 64, 128, or 512 pixels per line, and vertical resolution must be 64, 128, or 256 lines. Resolution is varied by DIP switches.

The RT, PVD and MI each consist of two printed circuit boards which plug into the S-100 bus, utilizing one slot for each board. A combined RT and MI is available which consists of three boards. The prices are as follows: PVD, $495; RT, $595; MI, $595; and the RT and MI, $850. For further information write to Environmental Interfaces, 23414 Greenlawn Av, Cleveland OH 44122.

PerCom Manufactures Add-On Disk Drive for Radio Shack TRS-80

PerCom has recently announced an add-on 5 inch floppy disk drive for the Radio Shack TRS-80 computer. The PerCom unit, which includes the drive, drive power supply, and enclosure, is identical in all important respects to the TRS-80 Mini Disk System. The drive itself is the Shugart SA-400. The data transfer rate is 125 thousand bits per second, and access time is a fraction of a second. The drive power supply features overload current limiting and thermal protection.

Interfacing of disk drives to the TRS-80 computer is accomplished with the Radio Shack TRS-80 Expansion Interface, which accommodates up to four drives (and other peripherals), and includes controller electronics and a four drive cable. Operating software for all drives is obtained by the user with the purchase of the first drive from Radio Shack.

The PerCom unit sells for $399. For further information, contact PerCom Data Company Inc, 4021 Windsor, Garland TX 75042.

Buffered APL/ASCII Video Terminal

Offering protected formats, video enhancements and APL overstrike and ASCII underscore, the Datamedia Elite 3045A is a microprocessor based, fully buffered, APL/ASCII video terminal. It features: character interactive, line or page mode communications; 103 and 202 modem compatibility and switch selectable EIA and optional 20 mA current loop interfaces; underscore in APL or ASCII mode; formatted data entry with protect capability; direct connect through RS-232C or 20 mA current loop or remote connection compatible with Bell 103 or 202 modems; cursor addressability and remote position sensing; ten user function keys; multiple level video display capability; no memory address space required to support screen enhancements; detached keyboard to provide expanded applications flexibility; and 15 data transmission rates, up to 9600 bps, selectable from keyboard.

The Elite 3045A is priced at $1995. Contact Datamedia Corp, 7300 N Crescent Blvd, Pennsauken NJ 08110.

May 1979 © BYTE Publications Inc
Introducing the Vista V80 Mini Disk System

- 23% MORE STORAGE CAPACITY — Increases your usable storage capacity 23% from 55,000 to 67,800 bytes on drive one.
- FASTER DRIVE — Electronically equal to the TRS-80 Mini-Disk System, but up to 8 times faster (Track-to-track access in 5ms for the V80 versus 40ms for TRS-80).
- DOES NOT VOID TRS-80 WARRANTY — V80 also has 90-day warranty.
- HERE’S WHAT YOU GET:
 - Minifloppy disk drive
 - Power Supply
 - Regulator board
 - Compact case
- DOUBLE DENSITY FOR DOUBLE STORAGE — The V80 will work with the Vista double-density expansion unit when available.
- SHIPPED TO YOU READY TO RUN — Simply take it out of the box, plug it in and you’re ready to run.

PLUS MORE GOOD NEWS — Vista has a new support team, new address, new telephone, and a new owner. Vista is now part of Advanced Computer Products.

ALSO AVAILABLE FROM THE NEW VISTA.
Vista V-200 Double Density Mini Floppy System with S-100 Controller, CPM on 5½”, power supply & case .. $699.00
Vista V-250 Dual Shugart 8” Floppy System with S-100 Controller, CPM, BASIC “E”, power supply & slimline case $2199.00

Vista Computer Company
1320 E. St. Andrews Place, Unit I
Santa Ana, CA 92705
(714) 751-9201
TWX 910-595-1565

Special Introductory Price:
$395.00

Dealer inquiries invited.
DEC LA 36 Compatible Acoustic Coupler

Designated A242A/36, this new acoustic coupler designed with TTL is made specifically for Digital Equipment Corporation's LA 36 teletypewriter terminal. The A242A/36 offers full duplex 103/113 operation at up to 450 bps. The A242A/36 features positive handset lock, direct microphone handset coupling and direct connection to terminal via permanently attached J4 cable.

To increase accuracy of transmitted and received data, the unit features built-in quartz crystal controlled circuitry, double flange seals, special circuitry for reduction of side tone effects, and special rubber feet for extra vibration isolation.

The A242A/36 is housed in a compact, lightweight case and is priced at $265. For further information contact Anderson Jacobson Inc, 521 Charcot Av, San Jose CA 95131.

Circle 539 on inquiry card.

Turnkey Video Interface Board

The CRT-1000 is a complete 16 line by 64 character video interface. It includes a 1 K by 6 bit programmable memory, a 64 by 7 by 5 row scan character generator, and a video processor, in addition to the supplementary logic. It accepts TTL data levels in ANSI standard ASCII and provides a composite video output which can be directly connected to any standard video monitor.

Power required by the CRT-1000 is 5 V at approximately 350 mA. Video and synchronous levels (positive or negative) are switch selectable. Synchronous timing is crystal controlled; however, the dot frequency (character width) may be adjusted to accommodate different video screen widths and scan rates.

The CRT-1000 responds to a large group of cursor control commands, including: erase page and home cursor, home cursor, erase end of line and return cursor, return cursor, cursor left, cursor right, cursor up and cursor down. An erase line function which does not affect the cursor position is provided. When the cursor reaches the bottom line of the display and a line feed code is activated, the entire display is shifted up one line. Additionally, a roll screen command is available which causes the bottom line to be replaced by what was previously at the top of the screen instead of a blank line as in line feed.

The CRT-1000 measures 3.5 by 5 inches (8.89 by 12.7 cm). The price is $119.95. For further information contact Nucleonic Products Company, POB 1454, Canoga Park CA 91304.

Circle 540 on inquiry card.

Light Pen for Commodore PET 2001

A self-contained light pen which plugs directly into the Commodore PET 2001 user port has been announced by the 3G Company Inc, 37a Williams Canyon Rd, Gaston OR 97119. This light pen makes it possible to bypass the PET's keyboard and interact directly with the information displayed on the video screen. The light pen adds versatility to most graphics programs. It also adds unique capabilities for application programs aimed at the noncomputer oriented person.

The light pen is complete and ready to plug into the PET. A sample program and programming instructions come with the pen. The entire package sells for $24.95.

Circle 543 on inquiry card.
RCA Cosmac Super Elf Computer $106.95

Counterclockwise turn to buy any other computer. There is no other computer on the market today that has all the desirable features of the Super Elf for little money. The Super Elf is a small single board computer that does many big things. It is an excellent computer for learning and for learning programming with its machine language and it is easily expanded with additional memory, Tiny Basic, ASCII Keyboards, video character generation, etc.

The Super Elf includes a ROM monitor for program debugging which can be stepped through for program debugging which can be stepped through for program debugging which

A 1K Super ROM Monitor $19.95 is available as an 10 isolate program bugs quickly. Then follow with laler monitor and Tiny Basic or other purposes.

An RCA 1861 video graphics chip allows you to connect to your own TV with an inexpensive video cable. The 1861 is a special chip with added features for display

Super Expansion Board with

This is truly an astounding value! This board has been designed to allow you to decide how you want it optioned. The Super Expansion Board comes with 6K of low power RAM fully addressable anywhere in 64K with built-in memory protection and optional battery backup. There have been many for all other options on the same board and its ready into the socket cabinet also.

A K Super ROM Monitor $19.95 is available as an on board option in 2708 ROM which has been determined to give a specific and desirable and error checking multi file cassette reader. A cassette file is another exclusive from Guest. It includes register save and restart, block move capability and video display with blinking cursor. Break points can be used with the register save feature to get a known point to then follow with a single step. The Super Monitor is written with subroutines allowing users to take advantage of monitor functionality simply by calling them up.

Auto Clock Kit $15.95

DC clock with 4-50 displays. Uses National MA-1012 module with alarm option, includes a light dimmer, crystal driven TC blocks. Fully regulated, comp. Interface. Add $3.95 for battery operated clock.

RCA Cosmac VIP Kit $229.00

Video computer, video display, graphics. Fully assembled, test. $249.00

Not a Cheap Clock Kit $14.95

Includes everything except case 2-PC boards 6-00 LED displays, chip, transformer, all components and full instructions. Orange displays also available. Same kit w/90 diode, flex line only $21.95 Case $11.75.

60 Hz Crystal Time Base Kit $4.40

Consists of clock frequency to crystal/time base. Outstanding accuracy. Kit includes clock freq. crystal, resistors, caps, trimmers and trimmers.

Digital Temperature Meter Kit $34.95

Beautiful woodgrain case w/Hz. $11.75

NiCad Battery Fixer/Charger Kit $8.95

Fixes your NiCad battery charger in the field and then charges them up, all in one kit with full instructions and parts. $7.35

PROM Eraser will erase 25 PROMs in 10 minutes. Ultraviolet, assembled $34.95

Rockwell AIM 65 Computer $149.95

6502 based single board with fully ASCII keyboard and 20 column thermal printer, 20 char. alphanumeric display, ROM 3000 cross-references, free update service through 1979. Domestic postage $3.50. Foreign $5.00. 1978 INT Mole closeout $11.95.

Multi-volt Computer Power Supply

8 v. amp, 11v. 5 v., 5v. 1.5 amp., 2.5 v. 12v. 1.5 amp. -12 voltage, +5v. +12v regulated. Kit $93.95. Kit with punched frame $135.00. Woodgrain case $15.00.

Video Modulator Kit $8.95

Convert your TV set into a high quality monitor without affecting normal usage. Complete kit with full instructions. $29.95

2.5 MHz Frequency Counter Kit

Complete kit less case $37.50

30 MHz Frequency Counter Kit

Complete kit less case $74.75

Preselector to kit to $35.00 $19.95

79 IC Update Master Manual $35.00

Stopwatch Kit

Full six digit binary operated, 2-5 volts. 3.2768 MHz crystal accuracy. Times to 59 min. 59 sec, 99 119 sec. Times, split, and Taylor.

Hickok 3% Digit LCD Multimeter

Stab30c plus: 10m-100k, 5 ranges. 3% digital. Max. reads: 700 ohms 3.4mV. 2 1 ohm 20mV. OC cur. 0.1 to 100ma. Hand held. LCD displays, auto zero, polarity, overloads.

FREE: Send for your copy of our NEW 1979 QUEST CATALOG. Include 2c stamp.

TERMS: $5.00 min. order U.S. Funds. Call residents add 6% tax. Bank American and Master Charge accepted.

Shipping charges will be added on charge cards.

INTEGRATED CIRCUITS

Same day shipment. First line parts only. Factory tested. Guaranteed money back. Quality IC's and other components at factory prices.

BYTE May 1979 263
What's New?

TI Publishes Third Edition of Understanding Solid-State Electronics

A new and updated edition of *Understanding Solid-State Electronics*, 270 pages, is available from the Texas Instruments Learning Center Library, POB 3640, MS 84, Dallas TX 75285. The softback is priced at $3.95.

This third edition covers today's semiconductor technologies and products and reviews earlier electronic devices and integrated circuits to provide the reader with a basic understanding of solid-state electronics. Written in non-technical language, *Understanding Solid-State Electronics* is a self-teaching textbook complete with quizzes and glossaries.

New additions include comprehensive discussions on MOS (metallic oxide semiconductors) and LSI (large scale integrated circuits); how an MOS transistor works, how it compares to a bipolar transistor and how MOS transistors have made microprocessors and microcomputers possible. New details are also provided on linear integrated circuits; the techniques used to fabricate them and how they are used.

The book explains how diodes, transistors, thyristors and integrated circuits are made; how they work; and how they are used in systems. Other topics covered are: what electricity does in systems; how circuits make decisions; and how semiconductors relate to systems.

How to Find the Personal Computer You Want

A 24 page publication entitled *Personal Computers for the Businessman* explains what a personal computer is and how it differs from a mini-computer. It also describes a shopping strategy to follow when the decision is made to purchase a system. A major part of the report is an overview of the best known manufacturers currently in the personal computer market. The configuration of each system is given as well as the price range. There is also a list of manufacturers and suppliers in the back of the publication. The purchase price of the report is $7.50. For further information contact Management Information Corp, 140 Barclay Ctr, Cherry Hill NJ 08034.

1978/1979 Catalog from Cramer Electronics

This comprehensive catalog from Cramer Electronics lists the components, systems, peripherals, instruments and tools that are available at local Cramer stocking centers. Listed in the 1978-79 Cramer Buyer's Guide are products made by such companies as Allen-Bradley, Amphenol, Bourns, Erle, Fairchild, General Electric, ITT Cannon, Mostek, Motorola, RCA, Sprague, Texas Instruments and several hundred manufacturers. Cramer offers components in over 50 product categories covering all active and passive areas plus a wide range of accessories. For a copy of this catalog, write to Cramer Electronics, 85 Wells Av, Newton MA 02159.

Directory of PET Related Products

A comprehensive hardware and software reference service for users of the Commodore PET computer has been announced by Channel Data Systems, 5960 Mandarin Av, Goleta CA 93017. The Channel Data Book is a user oriented directory of PET related products including: software, hardware and peripherals, literature and periodicals of special interest to PET users, listings of user groups and distributors, and cross references by product type and supplier. The Channel Data Book provides dividers and color coding to organize programs, articles, and newsletters of specific interest to each user.

The book includes a 3 ring binder and updated supplements with instructions for filing new and revised material. The Channel Data Book is priced at $19.95, which includes an update service through calendar year 1979.

New Microcomputer Magazine from Germany

Chip is a new German language magazine for microcomputer users interested in computer construction, programming and applications. Published every other month, this appealing publication has at least 65 pages of editorial material dealing with software and hardware, ready-for-use devices, instructions for circuit construction, programming, and stories in words and pictures. Every issue is complete with book reviews, training methods and instructions, and a forum for exchanging experiences and opinions. The cost for six issues of *Chip* is DM 24.00. For more information, write to Vogel-Verlag, Max-Planck-Str, 7/9, Postfach 6740, D-8700 Wurzburg 1, GERMANY.
10-DAY FREE TRIAL

SPECIAL SALE! PET $785 $750

IN STOCK NOW!

• 14K ROM, 8K RAM
• Fast Microsoft BASIC
• Integral Tape & CRT
• Graphics & Lower case
• Real-time clock
• IEEE and Parallel I/O

The most computer value you can buy in a single box. the PET is a complete system. It’s our most popular computer.

THE PET CONNECTION

SECOND CASSETTE FOR PET $95

• 4K Apple II Computer
• 8K Apple II Computer
• Disk Drive & Controller
• Second Cassette only

FREE MICROVERTER $35 value UHF Modulator works better than VHF type此款适用于任一类型APPLE计算机

Hazeltine 1400

IN STOCK NOW $699.00

Now a 5th Generation in Terminals: Immediate Delivery

Hazeltine 1500 full of features $1049

Hazeltine 1510 with buffer logic $1149

Hazeltine 1520 with printer interface $1499

call or write for more information

NCE/CompuMart, Inc.

1250 North Main Street, Department BY49
P. O. Box 8610 Ann Arbor, Michigan 48107

10 DAY RETURN PRIVILEGE

(313) 994-3200

Send for our FREE Catalog

READER PUNCH

We have interfaced our reconditioned reader/ punch units to give you the latest and most reliable unit at these low prices. Interfaces include power supply, cables and cabinet.

TTL PARALLEL READER/PUNCH $750

RS-232 SERIAL $950

CENTRONICS 777 PRINTERS

Selectable for 10 or 16 5 char 80 or 123 char 8 line. Print speeds up to 100 cpm. Parallel interface with handshake

CENTRONICS 777-1 with friction feed $1035

CENTRONICS 777-2 with friction feed $1140

INTEGRAL DATA IMPACT PRINTER

Now you can print on plain paper and make multiple copies on a low-cost printer. The friction-feed IP-125 and the tractor-feed IP-225 column dot-matrix printers are perfect for parallel or RS-232 serial applications at baud rates up to 1200. Graphics, print density and buffer options are available to fit every system’s needs. Write for information on options.

IP-125 $799
IP-225 $949

EXidy SORCERER for $895

SPECIAL OF THE MONTH

FREE 9" SANYO MONITOR

with purchase of a
16K or 32K SORCERER

SAVE $169

NOW IN STOCK — SYM-1

Datel/Selectic

Table-top Terminals

SYM-1 From Syntek

$269.00

SUPER SALE

List $279.95

S-100 MPA $189.95

S-100 MPA gives your PET complete control of the S-100 bus (even DMA). Get an assembled unit at kit price.

CENTRONICS 779 PRINTERS

Send for our FREE Catalog

BYTE May 1979 265

Circle 283 on inquiry card.
SAL-11 Structured Assembly Language

The SAL-11 Structured Assembly Language software is a MACRO-11 pre-processor which operates on DEC LSI-11s and PDP-11s under RT-11. SAL-11 is a mid-level language suitable for systems and applications programming which requires the advantages of assembly language.

SAL-11 facilitates the use of structured programming techniques; provides a standard interface between FORTRAN and MACRO-11 modules; provides string handling capabilities; handles recursive and reentrant modules; and provides commands for stack manipulation, register saving and restoring, and for passing parameters and control between modules.

The structured programming facilities provided by SAL-11 include the classic control structures for conditional execution, iterative execution, case statements, program block definition and environment setup.

Included in the $515 binary license fee is a copy of the user's guide and 1 year warranty which includes technical assistance and maintenance support. For further information contact GEJAC Inc, POB 13331, Baltimore MD 21203.

Circle 548 on inquiry card.

Structured Programming for the TRS-80

SLIC (structured language for interactive computation) is a high level language interpreter offered by RTG Data Systems, 309 Santa Monica Blvd, Suite 312, Santa Monica CA 90401. SLIC features a complete set of control statements for structured programming; modular programming using functions with arguments; dynamic variable allocation for efficient memory usage; device independent input and output (IO) using unit numbers (byte, record and variable IO are all provided); programs that can read and write cassette data files; character, integer and real variables; one- and two-dimensional arrays; keyword compression; 28 built-in functions; cassette motor control and many more features.

Sample SLIC program listings are included. SLIC is available on TRS-80 cassette and requires a 16 K Level I machine. The price is $50 and the user's manual may be ordered separately for $10.

Circle 549 on inquiry card.

Compiler for 6500 Microcomputer Family

A systems implementation language called CSL/65 has been developed by Computer Applications Corporation (COMPAS) for the 6500 microcomputer family offered by Rockwell, Synertek and MOS Technology. The language resembles PL/I and ALGOL in general form, but has been specifically designed for microcomputer users. Versions are currently available for the Rockwell System 65 development system and any PDP-11 using the RT-11 operating system.

CSL/65 is a mid-level language designed to combine the power and flexibility of assembler language with the structuring potential of a high level language. All language features are aimed at improving the productivity of the systems programmer by simplifying the development of programs normally written in assembler. CSL/65 produces assembler code rather than object code. This allows the programmer to enhance or optimize at the assembler level if necessary as well as enabling the programmer to drop into assembler whenever necessary. CSL/65 output is then passed to the assembler, which is part of the System 65 monitor, or to the MINmic assembler, which is available from COMPAS for the PDP-11.

The price for either the System 65 or PDP-11 versions of CSL/65 is $1000. The MINmic assembler (required for PDP-11 users) is $900. For further information contact Computer Applications Corp, 413 Kellog, Ames IA 50010.

Circle 551 on inquiry card.

Game Series Available for Apple II

The Intelligent Game Series #1 is available for the Apple II computer. The three software packages include: Battleship and 3-dimensional Tic Tac Toe; Hangman and Concentration; and Casino Royale (includes 1 arm bandit, crap game, blackjack and roulette). All three packages feature Apple II low and high resolution graphics with instructions included. Each program package costs $12 and Individual program listings can be obtained for $3 per program. For more information contact Stuart Frager, POB 13331, Baltimore MD 21203.

Circle 547 on inquiry card.

Zilog BASIC Interpreter Supports Z-80 Based Microcomputers

Zilog's extended BASIC interpreter supports the firm's MCZ series of microcomputers. Introduced to date (the MCZ-105, MCZ-160 and MCZ-190) and its new line of development systems (the 4 MHz ZDS-1/40 and 2.5 MHz ZDS-1/25).

Programs can be interactively entered, edited, run and debugged completely within the BASIC Interpreter subsystem. Zilog's BASIC allows the user to manipulate real, integer and string data with full file capabilities, including both string and record random access. BASIC includes two math libraries: a binary package with seven significant digits, and a binary coded decimal data version with 13 significant digits.

The Interpreter interfaces with the RIO operating system of Zilog's microcomputers, which use the Z-80 processor. Programs can be interfaced with PLZ or assembly language procedures and can be chained to other BASIC programs.

For more information contact Zilog, 10460 Bubb Rd, Cupertino CA 95014.

Circle 550 on inquiry card.

BASIC for Fairchild F8 Features Floating Point

Micro Business Systems Inc has announced a full BASIC interpreter for use with Fairchild's F8 processor. Called MBS-BASIC, the new feature products 9 digit precision and floating point arithmetic.

Including all standard arithmetic operations and relations, MBS-BASIC is competitive in speed and efficiency with the 8080 and Z-80 BASIC interpreters. MBS-BASIC version 1.0 has a license fee of $179.95. The MBS-BASIC interpreter is distributed on ASR33 compatible paper tape and is provided with documentation. Contact Micro Business Systems Inc, POB 8255, JFK Sta, Boston MA 02114.

Circle 552 on inquiry card.
Venus 2001 Video Board

Assembled and Tested $259.95 • Complete Unit with 4K of Memory and Video Driver on Erpom assembled and tested $339.95

OPTIONAL:
- Sockets $10.00
- 2K Memory $30.00
- 4K Memory $60.00
- Video Driver Erpom $20.00
- Text Editor Erpom (Includes Video Driver $75.00)

S-100 Plug-In • Parallel Keyboard Port

On board 4K Screen Memory (Optional). On board Erpom (Optional) for Video Driver or Text Editor Software.

Up and Down Scrolling through Video Memory

Reverse Video, Blinking Characters.

Display: 128 ASC11 Characters 64 X 32 or 32 X 16 Screen format (Jumper Selectable). 7 by 11 Dot Matrix Characters.

GRAND OPENING SPECIAL!

15 MHZ DUAL TRACE Portable Scope

$399.

15 MHZ Dual Trace

BIG PRICE BREAKTHRU

- Battery or A.C. Operated • External and Internal Trigger
- Time Base—.1 m Sec./Div. Into 21 Calibrated Ranges • 3% Accuracy • Input Impedance 1 M Ohms • Complete with Input Cables, Battery and Charger.

OPTIONAL:
- Leather Case $45.00
- 10:1 Probe $27.00
 (2 for $49.00) Prices Good through 5/31/79

MS-15 Single Trace Scope $299.

3½ DIGIT DMM LCD Readout

$139.95

- 1.3" H 2.7" W 4.0" D
- .5% Accuracy • AC-DC
- 1-1000V • Ohms 1K-10M
- Current lmA-1 Amp
- 100% Overload Protection

OPTIONAL:
- Leather Case $20.00
- NiCad Battery and Charger $16.00

3.5 LED DIGITS Panel Meter

- .5% Accuracy
- Voltage Range 0-1000V
- Power: +5V 200mA
- Auto Zero • Update Rate: 3 Rdg. / Sec.

ASCII Keyboard Kit $77.

Assembled and Tested $93.00

- Single +5V Supply • Full ASCII Set (Upper and Lower Case) • Parallel Output • Positive and Negative Strobe • 2 Key Rollover • 3 User Definable Keys • P.C. Board Size: 17-3/16" X 5" • Control Characters Molded on Key Caps • Optional Provision For Serial Output

OPTIONAL:
- Metal Enclosure $27.50 • Edge Con. $2.00 • Sockets $4.00 • Upper Case Lock Switch $2.50 • Shift Register (For Serial Output) $2.00

Dealer Inquires Invited

Apple II I/O Board Kit

Plugs into Slot of Mother Board

- 1 8 Bit Parallel Output Port (Expands to 3 Ports) • 1 Input Port • 15mA Output Current Sink or Source • Can be used for peripheral equipment such as printers, floppy discs, cassettes, paper tapes, etc. • 1 free software listing for SWTP PR40 or IBM selectric.

PRICE:
- 1 Input and 1 Output Port $49.00
- 1 Input and 3 Output Ports $64.00

Dealer Inquires Invited

SHIPPING $3.50 / California residents add 6% sales tax

ELECTRONICS WAREHOUSE Inc.

15820 Hawthorne Boulevard
Lawndale, CA 90260
(213) 370-5551

Circle 130 on inquiry card.
TRSS-80
- Can input into basic
- Can use LPRINT and LPRINT to output, or output continuously RS-232 compatible
- Can be used with or without the expansion bus
- On board switch selectable baud rates of 110, 300, 600, 1200, 2400, parity or no parity odd or even. 5 or 6 stop bits, and 1 or 2 stop bits. D.T.R. line and XON/XOFF
- Connects B.8 speaker and crystal mic. directly to board
- Uses RS-232 FSK demodulator
- Requires +5 volts. Board only $24.95 Part No. 106A

NAVIGATOR
- Box of 10
- $19.95 Part No. 330

VERBATIM MINIDISK
- Hexadecimal with 3 user definable
- Board requires a single 5 x 5 inch pad
- Four onboard LEDs
- Indicate the HEX code generated for each board

RS-232/ TTL
- Converts TTL to RS-232, and converts RS-232 to TTL
- Two separate circuits
- Requires + and +12 volts
- All connections go to a 10 pin gold plated edge connector
- Board only $4.50 Part No. 232A, with parts $7.60 Part No. 232B

APPLE II
- Serial I/O INTERFACE
- Baud rate is continuously adjustable from 0 to 30,000
- Plugs into any peripheral connector
- Lower current drain. RS-232 input and output selectable 5 to 8 data bits, 1 or 2 stop bits, and parity or no parity, odd or even, or +5 volt jumper selectable address
- SOFTWARE: Input and Output Routine from monitor or BSSC to BASIC to other printer. Program for using an Apple II for a video or intelligent terminal
- Also can output to correspondence code to some terminals. Also also watches DTR or only
- Board only $15.00 Part No. 2A, assembled $24.95 Part No. 2B

BK EPROM
- PICLEON
- Saves programs on PROM permanently until erased via UV light up to 8K bytes. Programs may directly run from the program saver
- Such as fixed routines or assemblers
- 5 volt bus compatible
- Room for 8K bytes of EPROM non-volatile memory
- Board only $24.95 Part No. 106A, with parts $27.50 Part No. 106B

VERBATIM
- Board only $19.95 Part No. 8010A, assembled $79.95 Part No. 8010C
- No connectors provided, see below.

RS-232/ TTL
- INTERFACE
- Converts TTL to RS-232, and converts RS-232 to TTL
- Two separate circuits
- Requires + and +12 volts
- All connections go to a 10 pin gold plated edge connector
- Board only $4.50 Part No. 232A, with parts $7.60 Part No. 232B

WAMECO INC.
- FDC-1 FLOPPY CONTROLLER BOARD will drive any double density 80 track, 5.25" drives up to 8 drives, on board PROM with power boot up routine. (not included) $42.95
- PFB-1 Front Panel. (Finally AMIGA style hex display single line dot matrix) $25.95
- MEM-1 1KB of buffer, 5-100 uses $10.00 type RAMS, PC Board $24.95, $168 Kit $34.95
- GMB-16 MOTHER BOARD, 16 slot termination, 5-100 board only $34.95
- CPU-1 8080A Processor board 5-100 with 8 level vector interrupt PC Board $29.95
- RTC-1 Realtime clock board. Two independent interrupts. Software programmable. PC Board $29.95, $60.95 Kit
- EPM-1 1702A 4K EPROM card PC Board $25.95
- EPM-2 2708/2716/2732 EPROM card PC Board $24.95
- GMB-16 MOTHER BOARD, Short Version of GMB-12, 9 slots PC Board $39.95
- MEM-8 16K x 8 Fully Buffered $114 Kit $39.95

S-100 BUS
- ACTIVE TERMINATOR
- Board only $14.95 Part No. 900, with parts $24.95 Part No. 900A

TAPE INTERFACE
- Play and record Karnage
- Converts a low cost tape recorder to a digital recorder
- Works up to 1200 baud
- Digital In and Out are TTL-serial
- Output of board connects to mic. of recorder
- Earphone outputs up to 3 volts
- No cool
- Requires $15.00 Part No. 231

HEX ENCODED KEYBOARD
- This HEX keyboard has 18 keys, 12 enclosed with 3 user definable
- The encodled TTL circuitry
- In and out are TTL-compatible
- Four onboard LEDs indicate the HEX code generated for each key depression
- The board requires a single power supply. Board only $15.00 Part No. HX-3, with parts $49.95 Part No. HX-3A, 44 pin edge connector $4.00 Part No. 44P

DC POWER SUPPLY
- Board supplies a regulated +5 volts at 3 amps, +12, -12, and -5 volts at 1 amp
- Power required is 90V AC at 3 amps, and 54 volts AC C.T. at 1.5 amps
- Board only $11.50 Part No. 8085, with parts excluding transformers $42.95 Part No. 8085A

To Order
- Mention part number, description, and price. In USA, shipping paid for orders accompanied by check, money order, or Master Charge. Bank American or VISA • number, expiration date and signature. Shipping charges added to C.O.D. orders. California residents add 5% for tax. Outside USA add $1 for air mail. No C.O.D. checks and money orders must be payable in US dollars. Parts lists include sockets for all IC's, components, and circuit board. Documentation is included with all products. Prices are in US dollars. No open accounts. To eliminate tariff in Canada boxes are marked "Computer Parts." Dealer inquiries invited. 24 Hour Order Line (415) 228-4064
- Circuits designed by John Bell

For free catalog including parts lists and schematics, send a self-addressed stamped envelope.

ELECTRONIC SYSTEMS
Dept. B. P. O. Box 21638, San Jose, CA USA 95151

268 BYTE May 1979
Circle 125 on Inquiry card.
The DATA-TRANS 1000

A completely refurbished IBM Selectric Terminal with built-in ASCII Interface.

Features:
- 300 Baud
- 14.9 characters per second printout
- Reliable heavy duty Selectric mechanism
- RS-232C Interface
- Documentation included
- 60 day warranty - parts and labor
- High quality Selectric printing
- Off-line use as typewriter
- Optional tractor feed available
- 15 inch carriage width

HOW TO ORDER
DATA-TRANS 1000
1. We accept Visa, Master Charge. Make cashier checks or personal check payable to:
DATA-TRANS
2. All orders are shipped F.O.B. San Jose, CA
3. Deliveries are immediate

For orders and information
DATA-TRANS
2154 O'Toole St.
Unit E
San Jose, CA 95131
Phone: (408) 263-9246

ASCII KEYBOARD
By Cherry Products
Mounted to DECWRITER Panel
ASSEMBLED $9.95

ASCII to Correspondence code converter
This bidirectional board is a direct replacement for the board inside the Trendata 1000 terminal. The on board connector provides RS-232 serial in and out. Sold only as an assembled and tested unit for $93.00. Part No. 1000C

TIDMA*
- Tape Interface Direct Memory Access
- Record and play programs without bootstrap loader (no prom) has FSK encoder/decoder for direct connections to low cost recorder at 1200 baud rate, and direct connections for inputs and outputs to a digital recorder at any baud rate
- S-100 bus compatible
- Board only $35.00 Part No. 112A
- Power required is 12 volts AC C.T., or +5 volts DC
- Board only $7.80 part No. 107A

T.V. INTERFACE
- Converts video to AM modulated RF, Channels 2 or 3
- So powerful almost no tuning is required. On board regulated power supply makes this extremely stable. Rated very highly in Doctor Dobie's Journal Recommended by Apple
- Power required is 12 volts AC C.T., or +5 volts DC
- Board only $7.80 part No. 107A

To Order:
Mention part number, description, and price. In USA, shipping paid for orders accompanied by check, money order, or Master Charge, BankAmericard, or VISA number, expiration date and signature. Shipping charges added to C.O.D. orders. California residents add 6.5% for tax. Outside USA add 10% for air mail postage and handling, no C.O.D.'s. Checks and money orders must be payable in US dollars. Parts kits include sockets for all ICs, components, and circuit board. Documentation is included with all products. Prices are in US dollars. No open accounts. To eliminate tariff in Canada boxes are marked 'Computer Parts.' Dealer inquiries invited. 24 Hour Order Line: (408) 228-4084

For free catalog including parts lists and schematics, send a self-addressed stamped envelope.

ELECTRONIC SYSTEMS
Dept. B, P. O. Box 21638, San Jose, CA USA 95151

Circle 125 on inquiry card.
SD EXPANDORAM
The Ultimate S-100 Memory

The EXPANDORAM is available in versions from 16K up to 64K, so for a minimum investment you can have a memory system that will grow with your needs. This is a dynamic memory with the invariable on-board refresh, and IT WORKS!

- Bank Selectable
- Power down VDD, ±16VC, 5 Watts
- Lowest Cost Per Bit
- Uses Popular 4116 RAMs
- PC Board is doubled solder masked and has silk-screen parts layout.

Available Accessories
- Low Power RAMS
- 16K boundless and Protection via Dip Switches
- Designers Work with 2.808, 8088 CPU's.

EXPANDO 64 KIT (4116)
- 16K...
- 32K...
- 64K...
- 128K...

List $79.50 OUR PRICE $52.50

FREE

Just for Asking.
FREE BATTERY with your meter.

UNIGRamic

- Complete muốning Station
- THREADS-TOGETHER MODULAR DESIGN FOR
- QUICK, ON-LINE HEALED OR DIY CHANGES
- Low voltage system, 3.0v grounded

Each of the above stations include ITDB Power Supply with switch range, 4.5V and 9V, and meter, 6.3V and 12.6V, 6V Dropout Current, 220mA maximum range. In addition to the above, it also includes a 5V Battery adapter. Only one of the four battery adapters is designed for use of the 1150 Premier Side: Controlled Meters, $185 Each, Tote Up, $69.50 Each

List $59.50 OUR PRICE $52.50

TURN-OUT

- 64K $440.00
- 16K $245.00
- 32K $310.00
- 64K $440.00

TRP-80

MEMORY EXPANSION KITS

4116's RAMs (16Kx1 200ns)

8 for $69.00

PRIORITY ONE

ELECTRONICS

16723B Roscoe Blvd. Sepulveda, CA 91343

2102LPC

450ns Low Power RAMS
$1.00 Ea. in lots of 25

2102LHP

250ns Low Power RAMS
$1.25 Ea. in lots of 25

FND 503

Common Cathode

FND 510

Common Anode

59c

10P4

24 PIN DIP PLUGS

WITH COVERS

3 / $1.00

40 / $10.00
HAZELTINE 1400

Only

$649.95!

- Verbatim Mini Diskettes $3.70 each (boxes of 10)
- Two-tier walnut formsica enclosure for SA-400 Shugart... $39.95
- Typewriter Ribbons (many makes such as Diablo, Centronics, DEC and print wheels)
- TRS-80 16K Expansion Kit... $89.95
- Centronics 779 tractor... $1150.00
- Two-tier walnut formica enclosure. Mounting hardware.

Mail TORA SYSTEM INC.
Order 29-02 23rd Avenue
Only. Astoria, NY 11105
(212) 932-3533

TERMINAL DATA CORPORATION

MODEL 1200 RS-232 DATA SPbTTER

Available in kit form

Model 1200K gives the terminal or microprocessor user a second interface for a printer, plotter, cassette or tape drive. It operates at any speed & isolates the two output devices from each other, while providing 2 RS-232 interfaces from the terminal or microprocessor.

The kit consists of 3 RS-232 connectors, printed circuit board, all necessary components, enclosure, mounting hardware & assembly instructions...

write or call

TERMINAL DATA CORP.
11878 Coolidge Ctr.
Rockville, MD 20852
(301) 881-7655

BASIC SUBROUTINE LIBRARY

Volume 1

VM Professional Application Software, Ltd.
2703 Bainbridge Avenue
BURNABY, B.C. V5R 2S7

- ARRAYS - maximum, minimum, sum, variance, sorting.
- MATRIX ALGEBRA - addition, subtraction, multiplication, transposition, determinant, inversion.
- SIMULTANEOUS EQUATIONS - non-symmetrical, symmetrical, banded, three-diagonal.
- VISA number and expiration date.

Send check, money order, or Master Charge or VISA number and expiration date to:

BOOTSTRAP ENTERPRISES
P.O. Box 614
Richardson, Texas 75080

MUSICAL PET™

With built-in Sound Generator

$775 (8 K Model)

Sold Separately for $39.95

Discounts available on the new

16 K/32 K Models

Meets music standards proposed by "The Paper" and "Curser." Supplied with complete instructions and demo tape.

Offered jointly by:

AMFTEC INC.
MICRO WORLD ELECTRONIX

5975 N Broadway
Denver, CO 80216
(303) 571-0833

5975 W Mississippi
Lakewood, CO 80226
(303) 938-4407

TRS - 80

SPECIAL PROMOTION SALE
SAVE 10%, 15% or more on ALL Computers, Peripherals, Software, and ALL other fine Radio Shack® products.

NO TAXES on out-of-state shipments.

FREE Surface delivery in U.S.

WARRANTIES will be honored by your local Radio Shack® store.

Offered exclusively by Radio Shack®
Authorized Sales Center
1117 Conway
Mission, Texas 78572
(512) 585-2765

THermal PRINTER

$49.95

Handling Charge Included

- 12 characters/line
- 5 x 7 dot matrix
- Alphanumeric capability
- Weight 6 ounces
- Uses 2¼ inch thermal paper

Send check, money order, or Master Charge or VISA number and expiration date to:

BOOTSTRAP ENTERPRISES
P.O. Box 614
Richardson, Texas 75080

VisiCalc™

How did you ever do without it?

© 1979 PS Inc.
#30 Wire Kits

<table>
<thead>
<tr>
<th>Size (in)</th>
<th>#1</th>
<th>#2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3"</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>3 1/2"</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>4"</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>5"</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>6"</td>
<td>250</td>
<td>250</td>
</tr>
</tbody>
</table>

#3 $24.95

<table>
<thead>
<tr>
<th>Size (in)</th>
<th>#1</th>
<th>#2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 1/2"</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>3"</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>5"</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>6"</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

#4 $44.95

Choose One Color or Random Assortment:
Red, Blue, Green, Yellow, White, Orange, Black.

- #26 Prices on Request

INDUSTRIAL Wire Wrap Tool

- BW 926 BF (Back Force) $49.95
- #30 Bit & Sleeve 29.50
- Batteries & Charger 11.00

ELECTRICAL INDUSTRIAL Wire Wrap Tool

- EW 7D BF (Back Force) $85.00
- #30 Bit & Sleeve 29.50
- Batteries & Charger 11.00

InterConnect Cables

<table>
<thead>
<tr>
<th>Size (in)</th>
<th>14 pin</th>
<th>16 pin</th>
<th>24 pin</th>
<th>14 pin</th>
<th>16 pin</th>
<th>24 pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>5"</td>
<td>1.24</td>
<td>1.34</td>
<td>2.95</td>
<td>3.34</td>
<td>3.46</td>
<td>3.72</td>
</tr>
<tr>
<td>12"</td>
<td>1.33</td>
<td>1.44</td>
<td>2.74</td>
<td>2.95</td>
<td>3.32</td>
<td>3.69</td>
</tr>
<tr>
<td>24"</td>
<td>1.62</td>
<td>1.75</td>
<td>3.22</td>
<td>3.25</td>
<td>3.67</td>
<td>4.11</td>
</tr>
<tr>
<td>48"</td>
<td>2.05</td>
<td>2.20</td>
<td>4.06</td>
<td>4.01</td>
<td>4.37</td>
<td>5.06</td>
</tr>
</tbody>
</table>

OK Products

- WD 30 50 ft. Wire Dispenser Red, White, Blue, or Yellow $3.75
- WD-30-TRI TRI Color Dispenser 5.50
- R-30-TRI Refill for TRI Color 3.75
- INS 1418 14 & 16 pin Insertion Tool 3.25
- MOS 40 40 pin Insertion Tool 7.50
- EX-1 IC Extractor Tool 1.49
- H-PCB-1 Hobby PC Board 4.99
- WSU 30 Hand Wrap/Unwrap/Strip Tool 6.25
- WSU 30M Same as WSU30 with Modified Wrap 7.50

Logic Probe PRB-1

- $34.95

Wire Wrap Tools

- BW 630 (Back Force) $34.95
- BT 30 $2.95
- BT 2626 #26 Bit 7.95
- Batteries & Charger 11.00

Hobby Wire Wrap Tool

- BW 630 (Back Force) $34.95
- Batteries & Charger 11.00

Electrical Hobby Wire Wrap Tool

- BW 630 (Back Force) $34.95
- Batteries & Charger 11.00

Connector Kits

- 44 pin Solder Tail $1.95
- 100 pin Solder Tail $3.95
- 100 pin Wire Wrap $3.95

Edge Card Connectors

- 44 pin Solder Tail $1.95
- 100 pin Solder Tail $3.95
- 100 pin Wire Wrap $3.95

Solderless BREADBOARDS

- SK 10 2.2" x 6.5" $16.50

Logic Probe PRB-1

- $34.95

Page Digital Electronics

- 135 E. Chestnut St. #5
- Monrovia, CA 91016
- (213) 357-5005

Ordering Information

- Orders under $25 and COD's add $2
- All others, shipped Prepaid in U.S. via UPS
- For Blue Label (Art) or 1st Class, add $1
- We accept Visa & Mastercharge

New

- Compatible with all Logic Families
- 10 Nsec pulse response

Dealer Inquiries Invited

Circle 298 on inquiry card.

BYTE May 1979

275
JADE Computer Products

Disk Drives
- 8801R $495.00 by Micru Peripherals, Inc. Operates in either single density (125KB, unformatted) or double density (250KB, unformatted) modes, up to 40 tracks, with a track-to-track access time of only 5 ms.
- FD-100 $395.00 35-Track drive.
- SA801R $495.00 by Shugart Single-sided 8" floppy drive.
- GSI/Siemens. Runs cooler and quieter than 801 (8")
- SA400 $325.00 Single density 5¼, 35-Track drive.
- Cabinet and power supply available

Logic Probes
- MODEL I
- MODEL II

S-100 Motherboards
- JADE 6-SLOT Kit $41.95
- Assembled & Tested $46.95
- Bare Board $24.95
- 9-SLOT "LITTLE MOTHER" Kit $85.00
- Assembled & Tested $93.00
- Bare Board $35.00
- 13-SLOT "QUIET MOTHER" Kit $95.00
- Asm. & Tested $109.00
- Bare Board $40.00
- 22-SLOT "STREAKER" $149.00

Video Interface
- S-100 Compatible Serial Interface with Socketed Kit $117.95
- Assembled & Tested $135.00
- Bare Board w/manual $35.00

Z80A Special 4MHz CPU Chip

Jade Products Mainframes
- Includes heavy duty power supply. +6 volts DC @ 30 AMPS, -15 volts DC @ 4 AMPS, 6 volts DC may be added.
- only $389.00

3M or Verbatim Floppy Disks
- 5½ in. Minidiskettes
- 4.40 each or box of 10 for $40.00
- 8 in. Standard Floppy Disks
- Soft Sector
- $4.75 each or box of 10 for $42.50

FLOPPY DISK INTERFACE
- JADE FLOPPY DISK (Tractor board) Kit $195.00
- Assembled & Tested $250.00

S.D. Computer Products Versa-Floppy
- Kit $199.95
- Assembled & Tested $239.00

Trendcom 100 Intelligent Printer
- $345
- Interface & Cable for TRS-80

Expandor's Black Box Printer

Expansion Board

Vector Plugboards

S-100 Interface
- S-100 Compatible Parallel Serial Interface
- Kit JG-P/S $124.95
- Assembled & Tested $179.95
- Bare Board w/manual $30.00

- Circle 195 on inquiry card.
PLACE ORDERS TOLL FREE: 800/421-5809 Continental U.S.
800/262-1710 Inside California

LEEDEX MONITOR
- 12" Black and White
- 12MHZ Bandwidth
- Handsome Plastic Case

$139.00

THE KOM 1

$179

CASING - $29.95

6502 - Based single board computer with keyboard/dis­play, KIM-1 compatible, complete documentation.

SYM-1 CASE $39.95

34x28
Circle 19 5 on inquiry card.

39x579

12" Black and White

B080A SUPPORT DEVICES

- 8245
- 12MHZ Bandwidth
- 6800 PRODUCT
- Handsome Plastic Case

STATIC RAMS 1-15 16-100

CHARACTER GENERATORS

UAR TS

USRT

KEYBOARD CHIPS

DYNAMIC RAMS

PROMS

EXPANDABLE TO 64K

JADE MEMORY EXPANSION KITS FOR TRS-80 and Apple

4116's

Everything a person needs to add 16K of memory. Chips come neatly packaged with easy to follow directions. In minutes your machine is ready for games and more advanced software.

$75.00

For discounts on larger quantities

“UNISI” TYPE CARD GUIDE SPECIAL:

Regular Price $30.00 each

SPECIAL: 10 for $1.00!

NEW!

JADE Z80 BOARD

IMPROVED DESIGN AND FEATURES

ON BOARD 27128 OR 27126 EPROM

VERY RELIABLE AT 4 MHZ OR 2 MHZ

POWER ON JUMP AND RESET

ON BOARD USART (B251)

2MHz

Kit Assembled & Tested $135.00

4 MHz

Kit Assembled & Tested $145.95

Bare Board $35.00

JADE 8080A

with full documentation

Kit Assembled & Tested $100.00

Bare Board $69.95

$350.00

with cables

EMPLOR BOARD KITS

All prices subject to change without notice.

WRITE FOR OUR FREE CATALOG
All prices subject to change without notice.

LEEDEX MONITOR

Naked Terminal

FEATURES & BENEFITS

- Industry standard 80 character by 24 line format (Model 57)
- Completely self contained terminal electronics, just add CCTV monitor and keyboard.
- No support software required.
- Switch selectable modes: Duplex, Full Duplex, Block mode.
- Block mode allows editing before transmit.
- Keyboard interface provided, including regulated +5 volts and -12 volts.
- Video is switch selectable as “Black-on-White” or “White-on-Black”.
- Fully assembled, socketed, tested, burned in, and guaranteed for a full year from date of purchase.

$350.00

with cables

NEW!

JADE Z80 BOARD

IMPROVED DESIGN AND FEATURES

ON BOARD 27128 OR 27126 EPROM

VERY RELIABLE AT 4 MHZ OR 2 MHZ

POWER ON JUMP AND RESET

ON BOARD USART (B251)

2MHz

Kit Assembled & Tested $135.00

4 MHz

Kit Assembled & Tested $145.95

Bare Board $35.00

JADE 8080A

with full documentation

Kit Assembled & Tested $100.00

Bare Board $69.95

$350.00

with cables

EMPLOR BOARD KITS

All prices subject to change without notice.

WRITE FOR OUR FREE CATALOG
All prices subject to change without notice.

LEEDEX MONITOR

Naked Terminal

FEATURES & BENEFITS

- Industry standard 80 character by 24 line format (Model 57)
- Completely self contained terminal electronics, just add CCTV monitor and keyboard.
- No support software required.
- Switch selectable modes: Duplex, Full Duplex, Block mode.
- Block mode allows editing before transmit.
- Keyboard interface provided, including regulated +5 volts and -12 volts.
- Video is switch selectable as “Black-on-White” or “White-on-Black”.
- Fully assembled, socketed, tested, burned in, and guaranteed for a full year from date of purchase.

$350.00

with cables

NEW!

JADE Z80 BOARD

IMPROVED DESIGN AND FEATURES

ON BOARD 27128 OR 27126 EPROM

VERY RELIABLE AT 4 MHZ OR 2 MHZ

POWER ON JUMP AND RESET

ON BOARD USART (B251)

2MHz

Kit Assembled & Tested $135.00

4 MHz

Kit Assembled & Tested $145.95

Bare Board $35.00

JADE 8080A

with full documentation

Kit Assembled & Tested $100.00

Bare Board $69.95

$350.00

with cables

EMPLOR BOARD KITS

All prices subject to change without notice.

WRITE FOR OUR FREE CATALOG
All prices subject to change without notice.

LEEDEX MONITOR

Naked Terminal

FEATURES & BENEFITS

- Industry standard 80 character by 24 line format (Model 57)
- Completely self contained terminal electronics, just add CCTV monitor and keyboard.
- No support software required.
- Switch selectable modes: Duplex, Full Duplex, Block mode.
- Block mode allows editing before transmit.
- Keyboard interface provided, including regulated +5 volts and -12 volts.
- Video is switch selectable as “Black-on-White” or “White-on-Black”.
- Fully assembled, socketed, tested, burned in, and guaranteed for a full year from date of purchase.

$350.00

with cables

NEW!

JADE Z80 BOARD

IMPROVED DESIGN AND FEATURES

ON BOARD 27128 OR 27126 EPROM

VERY RELIABLE AT 4 MHZ OR 2 MHZ

POWER ON JUMP AND RESET

ON BOARD USART (B251)

2MHz

Kit Assembled & Tested $135.00

4 MHz

Kit Assembled & Tested $145.95

Bare Board $35.00

JADE 8080A

with full documentation

Kit Assembled & Tested $100.00

Bare Board $69.95

$350.00

with cables

EMPLOR BOARD KITS

All prices subject to change without notice.

WRITE FOR OUR FREE CATALOG
All prices subject to change without notice.

LEEDEX MONITOR

Naked Terminal

FEATURES & BENEFITS

- Industry standard 80 character by 24 line format (Model 57)
- Completely self contained terminal electronics, just add CCTV monitor and keyboard.
- No support software required.
- Switch selectable modes: Duplex, Full Duplex, Block mode.
- Block mode allows editing before transmit.
- Keyboard interface provided, including regulated +5 volts and -12 volts.
- Video is switch selectable as “Black-on-White” or “White-on-Black”.
- Fully assembled, socketed, tested, burned in, and guaranteed for a full year from date of purchase.

$350.00

with cables

NEW!

JADE Z80 BOARD

IMPROVED DESIGN AND FEATURES

ON BOARD 27128 OR 27126 EPROM

VERY RELIABLE AT 4 MHZ OR 2 MHZ

POWER ON JUMP AND RESET

ON BOARD USART (B251)

2MHz

Kit Assembled & Tested $135.00

4 MHz

Kit Assembled & Tested $145.95

Bare Board $35.00

JADE 8080A

with full documentation

Kit Assembled & Tested $100.00

Bare Board $69.95

$350.00

with cables

EMPLOR BOARD KITS

All prices subject to change without notice.

WRITE FOR OUR FREE CATALOG
All prices subject to change without notice.

LEEDEX MONITOR

Naked Terminal

FEATURES & BENEFITS

- Industry standard 80 character by 24 line format (Model 57)
- Completely self contained terminal electronics, just add CCTV monitor and keyboard.
- No support software required.
- Switch selectable modes: Duplex, Full Duplex, Block mode.
- Block mode allows editing before transmit.
- Keyboard interface provided, including regulated +5 volts and -12 volts.
- Video is switch selectable as “Black-on-White” or “White-on-Black”.
- Fully assembled, socketed, tested, burned in, and guaranteed for a full year from date of purchase.

$350.00

with cables

NEW!

JADE Z80 BOARD

IMPROVED DESIGN AND FEATURES

ON BOARD 27128 OR 27126 EPROM

VERY RELIABLE AT 4 MHZ OR 2 MHZ

POWER ON JUMP AND RESET

ON BOARD USART (B251)

2MHz

Kit Assembled & Tested $135.00

4 MHz

Kit Assembled & Tested $145.95

Bare Board $35.00

JADE 8080A

with full documentation

Kit Assembled & Tested $100.00

Bare Board $69.95

$350.00

with cables

EMPLOR BOARD KITS

All prices subject to change without notice.

WRITE FOR OUR FREE CATALOG
All prices subject to change without notice.
Description

TRS-80 Complete System

Line Printer

Mini Disk System

C-10 Cassettes

Verbatim Diskettes

<table>
<thead>
<tr>
<th>Description</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRS-80 Complete System</td>
<td>$628.20</td>
</tr>
<tr>
<td>Level II-4K RAM</td>
<td></td>
</tr>
<tr>
<td>TRS-80 Complete System</td>
<td>$888.20</td>
</tr>
<tr>
<td>Level II-16K RAM</td>
<td></td>
</tr>
<tr>
<td>Expansion Interface</td>
<td>$269.10</td>
</tr>
<tr>
<td>Pertec FD200 Disk Drive</td>
<td>$385.00</td>
</tr>
<tr>
<td>BASF 6106</td>
<td>$465.00</td>
</tr>
<tr>
<td>Centronics 779 Printer</td>
<td>$1299.00</td>
</tr>
<tr>
<td>Centronics 101 Printer</td>
<td>$1400.00</td>
</tr>
<tr>
<td>Anadex DP-8000 Printer</td>
<td>$995.00</td>
</tr>
<tr>
<td>Centronics P1 Printer</td>
<td>$445.00</td>
</tr>
<tr>
<td>580 (selectric) Printer</td>
<td>$975.00</td>
</tr>
<tr>
<td>Memory Unit (installed)</td>
<td>$138.00</td>
</tr>
<tr>
<td>(kit)</td>
<td>$98.00</td>
</tr>
<tr>
<td>Verbatim Diskettes ea.</td>
<td>$4.95</td>
</tr>
<tr>
<td>3</td>
<td>$12.00</td>
</tr>
<tr>
<td>10</td>
<td>$37.00</td>
</tr>
<tr>
<td>Maxell Diskettes ea.</td>
<td>$7.50</td>
</tr>
<tr>
<td>3</td>
<td>$21.00</td>
</tr>
<tr>
<td>10</td>
<td>$60.00</td>
</tr>
<tr>
<td>C-10 Cassettes ea.</td>
<td>$4.50</td>
</tr>
<tr>
<td>5</td>
<td>$18.75</td>
</tr>
<tr>
<td>25</td>
<td>$23.95</td>
</tr>
<tr>
<td>C-30 Cassettes</td>
<td>$29.95</td>
</tr>
<tr>
<td>Paper (9½" x 11" fanfold, 3500 sheets)</td>
<td></td>
</tr>
</tbody>
</table>

Classroom Instruction offered in Level II Basic—$49.95; and DOS/Disk Basic—$69.95

HAZELTINE

CRT Specials

- 1400 — $750.00
- Modular I — $1850.00
- 1500 — Call DRA
- 1510 — Prices

Introducing the 1410 with up to 2 year warranty

For computer supplies

dra can't be beat

* QUALITY name brand products
* SERVICE 24hr shipping
* PRICES to fit your budget

CHARGE IT
Master Charge and Visa accepted

Send for FREE Price List
Data Research Associates, Inc.
River Rise Road, New City, New York 10956

Toll Free 800-431-2302
OR 212-220-4747

Circle 384 on inquiry card.
Circle 115 on inquiry card.

Electrolabs

POB 6721, Stanford, CA 94305
415-321-5601

Visa, American Express, Master

10 Megabyte SUPER DISK!!!

NEW PRODUCT RELEASE!!!

Low Profile Socket Spectacular!!!
Featuring a kind of "Mexican Handshake" principle, these sockets will NOT let your 10" socket volver put "in.

 значения (10 MB) and controller for $6750.00) For POP-11, LSI-11
and
S-100 machines

COMMERCIAL GRADE PERIPHERALS FOR THE MICROCOMPUTER

PRINTER TERMINALS

• ASCII SELECTRIC PRINTER/TYPETRIBER: Why settle for less than letter-quality printout from your computer? Refurbished IBM Model 726 can be used as all-in-one typewriter or on-line printer. Complete with solenoids, power supply, case and ASCII interface card (TTL to CPU parallel port). Interface includes programmable ASCII translation table on EPROM with up to 3 tables for use with various type shapes. Feedback signals on completion of each print cycle assures fastest printing speed (115 cps.)

Price: programmed w/3 translation tables (one type shape)...

$949.95

• SELECTIC I/O TERMINALS (by GTE/Information Systems). Both ASCII & IBM code versions with microcomputer interface software & hardware (RS-232 connector). Cassette drive models permit up to 2400 baud data transfer rate as well as off-line data storage, use as memory typewriter, & use as data entry device for office personnel familiar with Selectric typewriters but not computers. Wide-carriage, inter-changeable type shapes; optional built-in modem. All units cleaned, adjusted & warranted.

Model 5541 (IBM Correspondence code)...

$695.00

Model 5550 (ASCII code, built-in cassette drive)...

$1195.00

Model 5560 (ASCII code, built-in cassette drive)...

$1295.00

• IBM SELECTIC 726 TYPETRIBER I/O w/solenoids switches & magnetic driver PCB from GTE/JS terminal plus instructions for 8080 printer-driver interface hardware & software

a) Typewriter mechanism complete, cleaned & adjusted...

$375.00

case from terminal & power supply (+24 volt, 212 volt, 5 volt & 48 volt)...

$750.00

• DIABLO HYTYPE Model 1200 PRINT MECHANISM: used, complete and tested. Requires power supply, case & CPU interface. 15 day return privilege - no other warranties.

LIMITED QUANTITY...

$750.00

b) 6 Ribbon cable & connector for printer Main Logic PCB...

$300.00

• 14-pin Winchester connector & 18" power supply cable...

$5.00

• "At-A" spare printer PCB's for parts (Logic, Heat Sink, Control)...

$20.00

New Pin-fed Platen (14")...

$50.00 (if bought w/printer; separately = $100.00)

NO RISK! 15 DAY APPROVAL ON ALL MAIL ORDERS

PACIFIC OFFICE SYSTEMS, INC.

2600 E. Carmillo Real, Suite 202
Palo Alto, Calif. 94306

Call or write for details, quantity prices, catalog. 15 day return privilege PLUS 30 day no charge replacement of defective parts. All orders shipped from stock. No back orders, no substitutions. M/C & VISA accepted.

Circle 298 on inquiry card.
EXCITING NEW KITS!

Regulated Power Supply
5 to 15 VDC

- Fast 1.6 A output at 5-15 VDC output
- Up to 5.6 A output at 5 VDC
- Heavy duty transformer
- 3 terminal IC voltage regulator
- Once regulated for cooling efficiency
- 120 VAC input
- 3/8" W x 6 1/4" H

JE210 5 to 15 VDC $19.95
JE300 9 digit Clock Kit $14.95
JE301 Digital Switch Kit $39.95
JE302 Power Generator Kit $14.95
JE303 Jumbo 6 digit clock kit $29.95

ELECTRONICS (415) 592-8097

DIGITALEXITING

MAIL ORDER ELECTRONICS - WORLDWIDE
1021 HOWARD AVENUE, SAN CARLOS, CA 94070
ADVERTISED PRICES GOOD THRU MAY

FREE PHONE ORDER WELCOME (415) 592-8097

S10.00 MINIMUM ORDER - U.S. Funds Only
Spares Sheets — 25¢
California Residents — Add 6% Sales Tax
1979 Catalog Available — Send 41¢ stamp

THANK YOU FOR SUPPORTING 897 MAJOR ELECTRONIC SHOWS

Circle 200 on inquiry card.
Circle 200 on inquiry card.

CUSTOM CABLES & JUMPERS

DB 25 Series Cables

Part No.	Cable Length	Connectors Price
02322P-4-S | 4 ft | $15.95 ea.
02325-4-S | 4 ft | $17.95 ea.

Dip Jumpers

CABLO LENGTH CONNECTORS PRICE
D-24-1 | 11-14 Pins | $1.05 ea.
D-18-1 | 11-14 Pins | $1.10 ea.
D-24-2 | 11-14 Pins | $1.25 ea.
D-18-2 | 11-14 Pins | $1.30 ea.
D-24-1-2 | 1-2 Pins | $1.45 ea.

For Custom Cables & Jumpers, See JAMECO 1979 Catalog for Pricing

CONNECTORS 25 Pin-D Subminiatures

023092F (as pictured) PLUG (Meets RS232) $2.95
02355 SOCKET (Meets RS232) $3.50
023526-1 Cable Cover for 0239 or 0235 $1.75

PRINTED CIRCUIT EDGES

108-Spacing-0.040 Edge Length — Meets RS-316. $25 to $30 P Cart
15/00 PINS (Socket Edge) $1.95
15/05 PINS (Socket Edge) $2.45
15/24 PINS (Socket Edge) $2.95
50/100 (108 Spacing) Wire (Wire Wrap) $0.95
50/100 (108 Spacing) Wire (Wire Wrap) RS111-15.00

SOLAR CELLS

2x2cm

• 0.4 volts Can be added in series for higher voltage or parallel for higher current.
• 41 MW $35.00 ea. or $35.00/lp

THE 3RD HAND

MAKES CIRCUIT ASSEMBLY A BREEZE!

Let's work with both hands.
Sturdy Aluminum Construction. $99.95 ea.

• "Clamp 3rd Hand" on edge of board, table or work board. Insert circuit board, position components.
• Flip circuit board to flat position for soldering and disassembly.

JE701 2-6 DIGIT CLOCK KIT $19.95

REMOTE CONTROL TRANSMITTER & RECEIVER

INSTRUMENT/CLOCK CASE

This case is an injection molded unit that is ideal for use with our JE200 COUNTER, or COUNTER, or COUNTER. It has dimensions of 4\(\frac{1}{2}\)" in height by 4" in width by 1-1/8" in height. It is clear, complete with a red bezel.

$3.49 each

PART NO: IN-CC

JAMECO COMPONENTS

-Completely Assembled - Gently Operated -
The Transistor Checker is capable of making a wide range of tests, either in "circuit" or out of circuit. To operate, simply plug the transistor to be tested into the front panel socket, hook it up with the unit supplied leads, and press the large red display. The unit safety and automatically Samantha, Texas. Hi, my name is Margaret. My

MICROPROCESSOR COMPONENTS

SMD 8500 LOGIC LEVEL CONVERTER

$7.04 ea.

SMD 85001 Logic Level Converter $7.50

SMD 85002 Logic Level Converter $7.50

$10.00 Minimum Order — U.S. Funds Only

California Residents —- 8% Sales Tax

MAIL ORDER ELECTRONICS — WORLDWIDE

ADVERTISED PRICES GOOD THRU MAY

PRICE ORDER WELCOME (415) 882-8907

Mail Order Electronics

Circle 200 on inquiry card.
THE COMPLETE PC BOARD HOUSE
EVERYTHING FOR THE S-100 BUSS

* FPC-1 FRONT PANEL BOARD
 Hex Displays, IMSAI Replaceable$54.95
* FDC-1 FLOPPY DISC CONTROLLER BOARD
 Controls up to 8 Discs$45.00
* MEM-1A 8K BYTE 2102 RAM Board$31.95
* MEM-2 16K BYTE 2114 RAM Board$31.95
* CPU-1 8080A CPU Board
 With Vector Interrupt$31.95
* EPM-1 4K BYTE 1702A EPROM$29.95

FUTURE PRODUCTS: 80 CHARACTER VIDEO BOARD,
IO BOARD WITH CASSETTE INTERFACE.

DEALER INQUIRIES INVITED, UNIVERSITY DISCOUNTS AVAILABLE
AT YOUR LOCAL DEALER

WAMECO INC. 111 GLENN WAY #8, BELMONT, CA 94002 (415) 592-6141

MAY SPECIAL SALE ON PREPAID ORDERS
(charge cards not included on this offer)

WAMECO REAL TIME CLOCK BOARD
MEM-2 with MIKOS #7 16K RAM
with L2114 450 NSEC$235.95
MEM-4 with MIKOS #8 16K RAM
with L2114 250 NSEC$269.95
MEM-1 with MIKOS #1 450 NSEC 8K RAM
with L2114 450 NSEC$123.95
CPU-1 with MIKOS #2 8080A CPU$89.95
MEM-1 with MIKOS #3 250 NSEC 8K RAM
with L2114 250 NSEC$144.95
MEM-12 with MIKOS #4 13 slot mother board
with L2114 450 NSEC$89.95
RTC-1 with MIKOS #5 real time clock$60.95
VB-1B with MIKOS #6 video board less molex connectors
with L2114 450 NSEC$98.95
EMP-1 with MIKOS #10 4K 1702 less EPROMS
with L2114 450 NSEC$49.95
EMP-2 with MIKOS #11 16-32K EPROMS less EPROMS
with L2114 450 NSEC$59.95
QM-9 with MIKOS #12 9 slot mother board
with L2114 450 NSEC$75.00

WAMECO PARTS ASSORTMENT WITH WAMECO AND CYBERCOM PCBDs
MEM-2 with MIKOS #7 16K RAM
with L2114 450 NSEC$235.95
MEM-4 with MIKOS #8 16K RAM
with L2114 250 NSEC$269.95
MEM-1 with MIKOS #1 450 NSEC 8K RAM
with L2114 450 NSEC$123.95
CPU-1 with MIKOS #2 8080A CPU$89.95
MEM-1 with MIKOS #3 250 NSEC 8K RAM
with L2114 250 NSEC$144.95
MEM-12 with MIKOS #4 13 slot mother board
with L2114 450 NSEC$89.95
RTC-1 with MIKOS #5 real time clock$60.95
VB-1B with MIKOS #6 video board less molex connectors
with L2114 450 NSEC$98.95
EMP-1 with MIKOS #10 4K 1702 less EPROMS
with L2114 450 NSEC$49.95
EMP-2 with MIKOS #11 16-32K EPROMS less EPROMS
with L2114 450 NSEC$59.95
QM-9 with MIKOS #12 9 slot mother board
with L2114 450 NSEC$75.00

WAMECO PARTS ASSORTMENTS ARE ALL FACTORY PRIME
PRICES ON PREPAID ORDERS

VISA or MASTERCARD. Send account number,inters, number expiration date and sign your order. Approx. postage will be added. Checks or money orders will be sent post paid in U.S If you are not a regular customer, please use charge, cashiers check or postal money order. Otherwise there will be a two-week delay for checks to clear. Calif. residents add 6% tax. Money back 30-day guarantee. We cannot accept returned IC's that have been soldered to. Prices subject to change without notice. $5.00 minimum order. $1.50 service charge on orders less than $10.00.

Circle 387 on inquiry card.
ATTENTION TRS-80 & APPLE USERS

A PRINTER FOR YOUR COMPUTER

$995.00
MODEL 3S-80 for TRS-80
Ready to plug into your expansion interface.

MODEL 3S-PP
for computers with 8 bit serial port.

$1095.00 for
MODEL 3S-AA
Includes RS-232 card for Apple II Specify model number on order.

- Ready to plug into your computer
- Very high quality print
- Completely refurbished IBM 731 I/O Selectric terminal in a new table
- Upper & lower case removable type ball
- Special I/O interface
- Heavy duty re-mfg. IBM power supply

TERMS: VISA, MASTERCHARGE, Cashier Check or Money Order.
C.O.D. with 10% down.
Shipping Via Air or Truck collect.

3 S SALES
P.O. BOX 45944
TULSA, OK 74145
918/622-1058

PET 2001 PERSONAL COMPUTER
Quite portable, very affordable and unbelievably versatile, the PET computer may very well be a lifetime investment.

2001-0 Computer 8k, bytes with integral cassette and graphic typewriter keyboard: $595.00
2001-160 Computer 16k, bytes, large keyboard/resonators and paper tape: $780.00
2001-200 Computer identical to 2001-160 plus printer: $980.00
2001-320 Computer identical to 2001-200 with 32k bytes of memory: $980.00
2001-328 Computer identical to 2001-200 except has 32k bytes of memory: $980.00
2001-322 Printer: 80 column dot matrix after market printer: $490.00
2001-640 Printer: 60 column dot matrix printer with paper tape available: $900.00
2001-800 Printer: 80 column dot matrix printer: $1095.00
2001-1400 Printer: 140 column dot matrix printer with full graphics: $1980.00
2001-1410 Printer: 141 column dot matrix printer with full graphics: $1980.00
GUN User Manual 160 page covering all facets of user programming, communications for PET computers.

BOGGER COMPUTER

284 BYTE May 1979
*MEMORY SALE! have it your way...

16K $295.00!! (4MHz) (Reg.$370.00) 32K $485.00!! (4MHz) (Reg.$620.00)

ALL BOARDS ASSEMBLED AND TESTED (KIT PRICING AVAILABLE)
- Extended addressing allows board to exist anywhere in 256K memory on standard S-100 bus
- LOW Power, 1.6 amp per 16K
- 9 Regulators for perfect heat distribution
- Static, of course
- Phantom line
- Each 4K block locatable anywhere
- Fully tested and burned in for 48 hours

ADD-ON MEMORY CHIPS - $4.95 EACH!! (TMS 4044 or MM 5257) - 8 Chips - Minimum Order

*Sale ends June 1, 1979

16K 32K

Z-80 CPU (one serial chip set, less eprom) $195.00 (Reg. $280.00)
- 2 Parallel + 2 Serial Port
- 2 MHz or 4 MHz Switch Selectable
- Baud Rates 150-9600
- Power on Jump to On/Board Eprom (2708 or 2716)
- Memory Management on A16 and A17

VIDEO TERMINAL SIMULATOR $295.00 (Reg. $400.00)
- Plugs into S-100 Bus and simulates all functions of a Soroc or other RS-232 type terminal. A simple video monitor such as a Sanyo or Sony TV will perform as a smart terminal by writing into an IO Port.
- 2K Eprom, 4K Ram (2 video pages on 16 x 64)
- Lower Case Descenders (16 x 64 or 24 x 80)
- Tabs, protected fields, home/load cursor, blink, reverse video, underline, page erase, etc. (Intel 8275 CRT controller)

DOUBLE DENSITY DISC CONTROLLER $385.00
- CPM* Compatible, TARBELL Pin-out compatible
- On/Board Boot
- 2 or 4 MHz Jumper Selectable
- 8 inch Single or Double sided (5.25 inch available)
- 52 Sectors, runs CPM*, IBM Format

*CPM is a trademark of Digital Research, Inc.

ORDER NOW!!

SALES AND SERVICE

West:
DELTA PRODUCTS
1653 E. 28th Street
Long Beach, Calif 90806
Tel (213) 595-7505

East:
DELTA PRODUCTS
1254 South Cedar Road
New Lenox, Illinois 60451
Tel (815) 485-9072

Circle 89 on inquiry card.
Dealer inquiries invited.
Personal checks must clear before shipment • 90 day unconditional warranty • B of A, M/C Okay

FOR SALE: HEWLETT PACKARD 25C programmable calculator with 8 K memory, serial I/O (input/output) ports. Will trade it or sell it for $750 or best offer. Johann " delle, 8852 Rock Forest Dr, St Louis MO 63123, (314) 421-5056 (Ibm thru Fri) or (314) 843-6609 evening.

WANTED: New or used dumb video display or PET. Also a modem for either. Jonathan Guttenberg, 125 E 72 St, New York NY 10021.

FOR SALE: Heath H8, 16 K, serial I/O (input/output), video display terminal, and all Heath software. Working great. Bargain at $1000. Jeff Lambrinos, 7 Parkshore Cir, Sacramento CA 95831, (916) 422-7622.

WANTED: Information on the IBM Cardatvpe typewriter, type 866 and 868 or on the IBM electric typewriter Model 11C. I would like manuals, parts, or other data to help me convert this machine to a printer for a $5800 microcomputer. John Klish 506 DeLessep Dr, Kent OH 44240.

EMPLOYMENT WANTED: Graduated December 1978 from Central Michigan University with a Bachelor of Independent Study degree in Electronic Sound Synthesis (degree in Computer Science). Also hold Associate degree in Industrial Electronics. Seeking employment in electronic sound synthesis and audio music programming. I have excellent background in microcomputers. Steven Peterson, 311 Bird Av NE, Grand Rapids MI 49506, (616) 361-6063.

FOR SALE: Heathkit H8 and H9 with cassette recorder, I/O (input/output) interface. 8 K with masterboard. berthen H8. BASIC. Unit up and running. $1100. Will deliver free anywhere in Northeast from Virginia north, R D Morgan, 666 Newhope White Dr, York PA 17404, (717) 765-4707.

WANTED: Technical data on a Video Master Inc video display terminal. Has Bell Brothers video display model TV-12C 70-12-0101, micro switch keyboard SW-1025 and auxiliary keyboard SW-101, Display 80 characters, 24 lines. Fred Ordway, POB 5846, Bethesda MD 20014.

FOR SALE: Digital Group 10 K 2-80 system with two Phl-Decks 64 character-video, Javelin monitor, keyboard, power supplies. No cabinets. Fully functional. $1,500, or best offer. Grant Youngman, 3721 Brambleville Cir, Lithonia, GA 30058 at office (404) 886-8272, or at home: (404) 981-6540.

FOR SALE: Several Digital Group Real World interface systems. Interfaces to any 8 bit machine with parallel I/O (input/output) boards. Interfaces to AC and DC controllers, analog-to-digital and digital-to-analog converters, temperature and current probes, and other custom circuits. A B Nest, 400 S Lipan 2, Denver CO 80223.

FOR SALE: Two complete control data SRC 4000 computers with some spare circuit boards. Also two typewriters with card punch. Make offer. Frank Booth (203) 452-4846.

FOR SALE: Complete ELF II, almost new. Incomplete computer with five edge connectors and case. GIANT I/O (input/output) cassette and monitor board, two 4 K memory boards, card ASCII keyboard, power supply, monitor, connectors, software. Worth over $600. Asking $400, will listen to offers. Contact R J Crafts, POB 139, Oak Bluffs MA 02557, (801) 693-2175.

FOR SALE: Paragonex model 100A logic analyzer, new, assembled and working. $165 (factory price $225 kit, $236 assembled). I bought a Paragonex 150. C J Drost, Cornell University, College of Vet Med, Ithaca NY 14853, at office: (607) 286-2181, or at home: (607) 272-2458.

FOR SALE OR TRADE: Integral S-100 rack mountable mainframe. Includes 11 stt motherboard, five connectors in place, 15 A power supply, and fan. Never been used. First check or money order for $220, or I will trade it for a KIM-1 like new with power supply and all manuals. David Minix, 461 E College St, Murfreesboro TN 37130, (615) 890-1701.

FOR SALE: Digital Group 10 K 2-80 system with two Phl-Decks 64 character-video, Javelin monitor, keyboard, power supplies. No cabinets. Fully functional. $1,500, or best offer. Grant Youngman, 3721 Brambleville Cir, Lithonia, GA 30058 at office (404) 886-8272, or at home: (404) 981-6540.

FOR SALE: Several Digital Group Real World interface systems. Interfaces to any 8 bit machine with parallel I/O (input/output) boards. Interfaces to AC and DC controllers, analog-to-digital and digital-to-analog converters, temperature and current probes, and other custom circuits. A B Nest, 400 S Lipan 2, Denver CO 80223.

FOR SALE: Two complete control data SRC 4000 computers with some spare circuit boards. Also two typewriters with card punch. Make offer. Frank Booth (203) 452-4846.
BUILD YOUR OWN LOW COST MICRO-COMPUTER POWER SUPPLIES FOR S-100 BUS, FLOPPY DISCS, ETC.

POWER TRANSFORMERS (WITH MOUNTING BRACKETS)

<table>
<thead>
<tr>
<th>ITEM</th>
<th>USED IN</th>
<th>PRI. WINDING</th>
<th>TAPS</th>
<th>SECONDARY WINDING OUTPUTS</th>
<th>SIZE</th>
<th>UNIT PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO.</td>
<td>KIT NO.</td>
<td></td>
<td></td>
<td></td>
<td>W X D X H</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>1</td>
<td>0V, 110V, 120V</td>
<td>2x9A</td>
<td>2x2.5A</td>
<td>3 3/4" x 35/8" x 31/8"</td>
<td>$19.95</td>
</tr>
<tr>
<td>T2</td>
<td>2</td>
<td>0V, 110V, 120V</td>
<td>2x13.5A</td>
<td>2x3.5A</td>
<td>3 3/4" x 34/8" x 31/8"</td>
<td>$25.95</td>
</tr>
<tr>
<td>T3</td>
<td>3</td>
<td>0V, 110V, 120V</td>
<td>2x10A</td>
<td>2x2.5A</td>
<td>3 3/4" x 35/8" x 31/8"</td>
<td>$27.95</td>
</tr>
<tr>
<td>T4</td>
<td>4</td>
<td>0V, 110V, 120V</td>
<td>2x4.5A</td>
<td>2x4.5A</td>
<td>3 3/4" x 35/8" x 31/8"</td>
<td>$19.95</td>
</tr>
</tbody>
</table>

POWER SUPPLY KITS (OPEN FRAME WITH BASE PLATE, 3 HRS. ASSY. TIME)

<table>
<thead>
<tr>
<th>ITEM</th>
<th>USED FOR</th>
<th>+8 Vdc</th>
<th>@8 Vdc</th>
<th>+16 Vdc</th>
<th>@16 Vdc</th>
<th>@+28 Vdc</th>
<th>W X D X H</th>
<th>UNIT PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>KIT 1</td>
<td>16 CARDS SOURCE</td>
<td>18A</td>
<td>2.5A</td>
<td>3A</td>
<td>3A</td>
<td>4A</td>
<td>12" x 6" x 41/2"</td>
<td>$46.95</td>
</tr>
<tr>
<td>KIT 2</td>
<td>SYSTEM SOURCE</td>
<td>25A</td>
<td>2.5A</td>
<td>3A</td>
<td>3A</td>
<td>4A</td>
<td>12" x 6" x 41/2"</td>
<td>$54.95</td>
</tr>
<tr>
<td>KIT 3</td>
<td>DISC SYSTEM</td>
<td>18A</td>
<td>2A</td>
<td>2A</td>
<td>4A</td>
<td>10" x 6" x 41/2"</td>
<td>$62.95</td>
<td></td>
</tr>
<tr>
<td>KIT 4</td>
<td>DISC SOURCE</td>
<td>8A</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td>10" x 6" x 41/2"</td>
<td>$44.95</td>
</tr>
</tbody>
</table>

Each kit includes: Transformer, capacitors, resistors, bridge rectifiers, fuse & holder, terminal block, Alum. chassis plate, all nec. mtg. parts and instructions.

Shipping: For each transformer: $4.75. For each kit: $5.00 in Calif., $7.00 in other states. Calif. residents add 6% sales tax. Master charge, Visa & OEM welcome.

CALL TOLL FREE: (800) 423-5387 IN CA, HI, AK: (213) 886-9200

SHUGART SA-400 MINIFLOPPY DRIVE $275

VERBATIM 5 1/4" DISKETTES $29.95 box of 10 Cat No. Type Use

LINEAR AND V.A.SALE!

DATA CASSETTES 10 for $17

FREE CATALOG!

For in stock: COD, Visa, Mastercard. Order by phone or mail. Please include phone no. 7245 x 7246 x 7247 for shipping/handling, or $3.30 for air, Foreign add 50% for surface, 50% for air. COD's and all kit. All items guaranteed satisfaction for 14 days!
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>91</td>
<td>204</td>
<td>Micro Mike’s 201</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>92</td>
<td>205</td>
<td>Microcosm 270</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>93</td>
<td>206</td>
<td>Microsoft 171</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>94</td>
<td>207</td>
<td>Micro Source 169</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>95</td>
<td>208</td>
<td>Microwave 201</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>96</td>
<td>209</td>
<td>The Micro Works 90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>97</td>
<td>210</td>
<td>Micro World Electronics 274</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>98</td>
<td>211</td>
<td>Micros 283</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>99</td>
<td>212</td>
<td>Micro Computer Suppliers Inc 115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>213</td>
<td>Morrow/Thinker Toys 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>101</td>
<td>214</td>
<td>Mountain Hardware 137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>102</td>
<td>215</td>
<td>Mountain Hardware 224</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>103</td>
<td>216</td>
<td>mp 236</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>104</td>
<td>217</td>
<td>Maritime System Inc 235</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>105</td>
<td>218</td>
<td>Natl Small Computer Show 77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>106</td>
<td>219</td>
<td>NECO 144</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>107</td>
<td>220</td>
<td>NEDIS 145</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>108</td>
<td>221</td>
<td>Neoteric Research 239</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>109</td>
<td>222</td>
<td>New England Recruiters 274</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>110</td>
<td>223</td>
<td>New Brunswick Computer 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>111</td>
<td>224</td>
<td>North Star Computer 57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>112</td>
<td>225</td>
<td>NRO (National Research Office) 65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>113</td>
<td>226</td>
<td>Ohio Micro Systems 149</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>114</td>
<td>227</td>
<td>OK Machine & Tool 71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>115</td>
<td>228</td>
<td>Oliver Advanced Engineering 216</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>116</td>
<td>229</td>
<td>onComputing 17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>117</td>
<td>230</td>
<td>On Line 270</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>118</td>
<td>231</td>
<td>Osborne & Associates 193</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>119</td>
<td>232</td>
<td>OSI G3 193</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>120</td>
<td>233</td>
<td>Owens & Associates 216</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>121</td>
<td>234</td>
<td>Pacific Office Systems 279</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>122</td>
<td>235</td>
<td>Page Digital 275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>123</td>
<td>236</td>
<td>PA M Electronics inc 211</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>124</td>
<td>237</td>
<td>Payne, Jackson & Associates 181</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>125</td>
<td>238</td>
<td>Pen Cash Data 54, 55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>126</td>
<td>239</td>
<td>Personal Software inc 162, 163, 274</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>127</td>
<td>240</td>
<td>P. S. 209, 274</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>128</td>
<td>241</td>
<td>Pickles & Troub 213</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>129</td>
<td>242</td>
<td>Plozen of 242</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>130</td>
<td>243</td>
<td>Point of 243</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>131</td>
<td>244</td>
<td>Power & Control 244</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>132</td>
<td>245</td>
<td>Power & Control 245</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>133</td>
<td>246</td>
<td>Power & Control 246</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>134</td>
<td>247</td>
<td>Power & Control 247</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>135</td>
<td>248</td>
<td>Power & Control 248</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>136</td>
<td>249</td>
<td>Power & Control 249</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>137</td>
<td>250</td>
<td>Power & Control 250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>138</td>
<td>251</td>
<td>Power & Control 251</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>139</td>
<td>252</td>
<td>Power & Control 252</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>140</td>
<td>253</td>
<td>Power & Control 253</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>141</td>
<td>254</td>
<td>Power & Control 254</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>142</td>
<td>255</td>
<td>Power & Control 255</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>143</td>
<td>256</td>
<td>Power & Control 256</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>144</td>
<td>257</td>
<td>Power & Control 257</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>145</td>
<td>258</td>
<td>Power & Control 258</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>146</td>
<td>259</td>
<td>Power & Control 259</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>147</td>
<td>260</td>
<td>Power & Control 260</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>148</td>
<td>261</td>
<td>Power & Control 261</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>149</td>
<td>262</td>
<td>Power & Control 262</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>150</td>
<td>263</td>
<td>Power & Control 263</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>151</td>
<td>264</td>
<td>Power & Control 264</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>152</td>
<td>265</td>
<td>Power & Control 265</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>153</td>
<td>266</td>
<td>Power & Control 266</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>154</td>
<td>267</td>
<td>Power & Control 267</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>155</td>
<td>268</td>
<td>Power & Control 268</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>156</td>
<td>269</td>
<td>Power & Control 269</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>157</td>
<td>270</td>
<td>Power & Control 270</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>158</td>
<td>271</td>
<td>Power & Control 271</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>159</td>
<td>272</td>
<td>Power & Control 272</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>160</td>
<td>273</td>
<td>Power & Control 273</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>161</td>
<td>274</td>
<td>Power & Control 274</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>162</td>
<td>275</td>
<td>Power & Control 275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>163</td>
<td>276</td>
<td>Power & Control 276</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>164</td>
<td>277</td>
<td>Power & Control 277</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>165</td>
<td>278</td>
<td>Power & Control 278</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>166</td>
<td>279</td>
<td>Power & Control 279</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>167</td>
<td>280</td>
<td>Power & Control 280</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>168</td>
<td>281</td>
<td>Power & Control 281</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>169</td>
<td>282</td>
<td>Power & Control 282</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>170</td>
<td>283</td>
<td>Power & Control 283</td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>171</td>
<td>284</td>
<td>Power & Control 284</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>172</td>
<td>285</td>
<td>Power & Control 285</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>173</td>
<td>286</td>
<td>Power & Control 286</td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>174</td>
<td>287</td>
<td>Power & Control 287</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>175</td>
<td>288</td>
<td>Power & Control 288</td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>176</td>
<td>289</td>
<td>Power & Control 289</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>177</td>
<td>290</td>
<td>Power & Control 290</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>178</td>
<td>291</td>
<td>Power & Control 291</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Correspond directly with company.

Video Out in Front

Voting on the February 1979 BOMB card was rather close. The first and second place winners placed 8.75 and 8.46 points above the standard deviation. The third and fourth place articles were 7.38 and 7.09 points above the standard deviation.

In first place was Timothy Loos for his short hardware article entitled "Use a Tele­ vision Set as a Video Monitor." In second place was John Giacomo for his "Stepping Motor Primer." These authors will receive $100 and $50 respectively.

Placing third was "A Microprocessor for the Revolution," by Terry Ritter and Joel Boney followed closely by Steve Garcia’s "Build a Computer Controlled Security System."
Structured Systems business software can put a microcomputer to work for you.

SSG's general accounting, data inquiry, mailing, and communications software packages are bringing real computer power to hundreds of businesses right now. They are ready to go to work for your business.

The Honest-To-Business $12,000 Computer*

Our software will power DYNABYTE, CROMEMCO, IMSAI, NORTHSTAR, ALTOS, MICROMATION, DIGITAL SYSTEMS, or other Z-80 or 8080 based computers through your General Ledger, Accounts Receivable, and Accounts Payable. And maintain a conversational data-base query system, store and print your mailing list and labels, produce and edit correspondence, address it from your mailing list, and more. The price for a total system—hardware and SSG software—ranges from $8,000 to $14,000.

Real Business Computing

Our Business Software packages are designed to be up and running and working for you in a matter of hours. Without expensive reprogramming, technical staff additions, or costly trial-and-error. Our quality is high, our documentation practically self-instructive. The applications are flexible and extensive, designed to meet and exceed the requirements of most small to medium businesses. Real computer solutions at microcomputer prices.

Some Pleasant Surprises

Your computer retailer can give you a demonstration and literature. You might find a solution just right for your business with "off the shelf" prices and delivery times. Or we will be happy to send you literature direct, including a list of our dealers and compatible hardware. Write us, or call.

The SSG product line includes these outstanding packages:

- General Ledger
- Accounts Receivable
- Accounts Payable
- CBASIC-2
- LETTERIGHT Letter Writer
- NAD Mailing System
- QSORT Sorting System
- WHAT'S IT? Data/Query System

Structured Systems Group

5204 Claremont
Oakland, California 94618
(415) 547-1567

* Complete prices will vary with equipment and software selected. Required: 8080 or Z-80 based computer running a CP/M or CP/M-compatible disk-based operating system. Your retailer or SSG can advise on specifics. (CP/M is a product of Digital Research.)
The Microcomputers you should take seriously.

The C3 Series is the microcomputer family with the hardware features, high level software and application programs that serious users in business and industry demand from a computer system, no matter what its size.

Since its introduction in August, 1977, the C3 has become one of the most successful microcomputer systems in small business, educational and industrial development applications. Thousands of C3's have been delivered and today hundreds of demonstrator units are set up at systems dealers around the country.

Now the C3 systems offer features which make their performance comparable with today's most powerful minicomputers. Some of these features are:

Three processors today, more tomorrow.

The C3 Series is the only computer system with the three most popular processors— the 6502A, 68000 and Z-80. This allows you to take maximum advantage of the Ohio Scientific software library and the tremendous number of programs offered by independent suppliers and publishers. And all C3's have provisions for the next generation of 16 bit micros via their 16 bit data BUS, 20 address bits, and unused processor select codes. This means you'll be able to plug a CPU expander card with two or more 16 bit micros right in to your existing C3 computer.

Systems Software for three processors.

Five DOS options including development, end user, and virtual data file single user systems, real time, time share, and networkable multi-user systems.

The three most popular computer languages including three types of BASIC plus FORTRAN and COBOL with more languages on the way. And, of course, complete assembler, editor, debugger and run time packages for each of the system's microprocessors.

Applications Software for Small Business Users.

Ready made factory supported small business software including Accounts Receivable, Payables, Cash Receipts, Disbursements, General Ledger, Balance Sheet, P & L Statements, Payroll, Personnel files, Inventory and Order Entry as stand alone packages or integrated systems. A complete word processor system with full editing and output formatting including justification, proportional spacing and hyphenation that can compete directly with dedicated word processor systems.

There are specialized applications packages for specific businesses, plus the vast general library of standard BASIC, FORTRAN and COBOL software.

OS-DMS, the new software star.

Ohio Scientific has developed a remarkable new Information Management system which provides end user intelligence far beyond what you would expect from even the most powerful minicomputers. Basically, it allows end users to store any collection of information under a Data Base Manager and then instantly obtain information, lists, reports, statistical analysis and even answers to conventional "English" questions pertinent to information in the Data Base. OS-DMS allows many applications to be computerized without any programming!

The new "GT" option heralds the new era of sub-microsecond microcomputers.

Ohio Scientific now offers the 6502C microprocessor with 150 nanosecond main memory as the GT option on all C3 Series products. This system performs a memory to register ADD in 600 nanoseconds and a JUMP (65K byte range) in 900 nanoseconds. The system performs an average of 1.5 million instructions per second executing typical end user applications software (and that's a mix of 8, 16 and 24 bit instructions!)

Mini-system Expansion Ability.

C3 systems offer the greatest expansion capability in the microcomputer industry, including a full line of over 40 expansion accessories. The maximum configuration is 768K bytes RAM, four 80 million-byte Winchester hard disks, 16 communications ports, real time clock, line printer, word processing printer and numerous control interfaces.

Prices you have to take seriously.

The C3 systems have phenomenal performance-to-cost ratios. The C3-S1 with 32K static RAM, dual 8" floppies, RS-232 port, BASIC and DOS has a suggested retail price of under $3600. 80 megabyte disk based systems start at under $12,000. Our OS-CP/M software package with BASIC, FORTRAN and COBOL is only $600. The OS-DMS nucleus package has a suggested retail price of only $300, and other options are comparably priced.

To get the full story on the C3 systems and what they can do for you, contact your local Ohio Scientific dealer or call the factory at (216) 562-3101.

C3-B wins Award of Merit at WESCON '78 as the outstanding microcomputer application for Small Business.