Someday all terminals will be smart........

- 128 Functions—software controlled
- 7 x 12 matrix, upper/lower case letters
- 50 to 38,400 baud—selectable
- 82 x 16 or 92 x 22 format—plus graphics
- Printer output port
- "CHERRY" keyboard

CT-82 Intelligent Terminal, assembled and tested. $795.00 ppd in Cont. U.S.

SOUTHWEST TECHNICAL PRODUCTS CORPORATION
219 W. RHAPSODY
SAN ANTONIO, TEXAS 78216

Circle 350 on inquiry card.
The single card computer with the features that help you in real life

COMPLETE COMPUTER
In this advanced card you get a professional quality computer that meets today's engineering needs. And it's one that's complete. It lets you be up and running fast. All you need is a power supply and your ROM software.

The computer itself is super. Fast 4 MHz operation. Capacity for 8K bytes of ROM (uses 2716 PROMs which can be programmed by our new 32K BYTESAVER® PROM card). There's also 1K of on-board static RAM. Further, you get straightforward interfacing through an RS-232 serial interface with ultra-fast speed of up to 76,800 baud — software programmable.

Other features include 24 bits of bi-directional parallel I/O and five on-board programmable timers. Add to that vectored interrupts.

ENORMOUS EXPANDABILITY
Besides all these features the Cromemco single card computer gives you enormous expandability if you ever need it. And it's easy to expand. First, you can expand with the new Cromemco 32K BYTESAVER PROM card mentioned above. Then there's Cromemco's broad line of 5100-bus-compatible memory and I/O interface cards. Cards with features such as relay interface, analog interface, graphics interface, optoisolator input, and A/D and D/A conversion. RAM and ROM cards, too.

EASY TO USE
Another convenience that makes the Model SCC computer easy to use is our Z-80 monitor and 3K Control BASIC (in two ROMs). With this optional software you're ready to go. The monitor gives you 12 commands. The BASIC, with 36 commands/functions, will directly access I/O ports and memory locations — and call machine language subroutines.

Finally, to simplify things to the ultimate, we even have convenient card cages. Rugged card cages. They hold cards firmly. No jiggling out of sockets.

AVAILABLE NOW/LOW PRICE
The Cromemco Model SCC is available now at a low price of only $450 factory assembled ($395 kit). So act today. Get this high-capability computer working for you right away.

THE SINGLE CARD COMPUTER WITH THE FEATURES THAT HELP YOU IN REAL LIFE

Cromemco Incorporated
Specialists in computers and peripherals
280 BERNARDO AVE., MOUNTAIN VIEW, CA 94040 • (415) 964-7400
Fill your computer needs with the industry’s most professional microcomputers

#1 IN RELIABILITY

When you choose Cromemco you get not only the industry’s finest microcomputers but also the industry’s widest microcomputer selection.

What’s more, you get a computer from the manufacturer that computer dealers rate #1 in product reliability.*

Your range of choice includes our advanced System Three with up to four 8" disk drives. Or choose from the System Two and Z-20 with 5" drives. Then for ROM-based work there’s the Z2. Each of these computers further offers up to 1/2 megabyte of RAM (or ROM).

We say these are the industry’s most professional microcomputers because they have outstanding features like these:

- **Z-80A microprocessor** — operates at 250 nano second cycle time — nearly twice the speed of most others.

 "Rated in *The 1977 Computer Store Survey* by Image Resources, Westlake Village, CA.

- Up to 512 kilobytes of RAM and 1 megabyte of disk storage

- 30-amp power supply — more than adequate for your most demanding application.

- 21 card slots to allow for unparalleled system expansion using industry-standard S-100 cards.

- S-100 bus — don’t overlook how important this is. It has the industry’s widest support and Cromemco has professionally implemented it in a fully-shielded design.

- Cromemco card support of more than a dozen circuit cards for process control, business systems, and data acquisition including cards for A-D and D-A conversion, for interfacing daisy-wheel or dot-matrix printers, even a card for programming PROMs.

- The industry’s most professional software support, including COBOL, FORTRAN IV, 16K Disk-Extended BASIC, Z-80 Macro Assembler, Cromemco Multi-User Operating System, Data Base Management System, Word Processing System — and more coming.

- Rugged, professional all-metal construction for rack (or bench or floor cabinet) mounting. Cabinets available.

FOR TODAY AND TOMORROW

Cromemco computers will meet your needs now and in the future because of their unquestioned technical leadership, professionalism and enormous expandability.

See them today at your dealer. There’s no substitute for getting the best.
In the Queue

Foreground

45 FAST FOURIER TRANSFORMS ON YOUR HOME COMPUTER
Software—Stanley-Peterson
26 DESIGNING A UNIVERSAL TURING MACHINE: A Software Approach
Software—Munnecke
32 BUILD AN OCTAL/HEXADECIMAL OUTPUT DISPLAY
Hardware—Ciarca
108 AN EASY PROGRAMMING SYSTEM
Software—Weisbecker
124 TEACHING WITH A MICROCOMPUTER
Applications—Gerhold
186 THE MOTHER CHIP
Fiction—Willard
194 FORTRAN AND ITS GENERALIZATIONS
Language Tutorial—Maurer

Background

45 LIFE WITH YOUR COMPUTER
Applications: Life Games—Millen-Reardon-Smart
54 SOME FACTS OF LIFE
Life—Buckingham
68 ONE-DIMENSIONAL LIFE
Life Games—Millen
84 CHESS 4.7 VERSUS DAVID LEVY
Computer Chess—Douglas
108 AN EASY PROGRAMMING SYSTEM
Software—Weisbecker
124 TEACHING WITH A MICROCOMPUTER
Applications—Gerhold
186 THE MOTHER CHIP
Fiction—Willard
194 FORTRAN AND ITS GENERALIZATIONS
Language Tutorial—Maurer

Nucleus

6 In This BYTE
New Wonders of the Computer Age
10 Letters
43 Book Reviews
76 Programming Quickies: Life
92 Nybbles: Z-80 Assembler
161, 163 BYTE’s Bits, BYTE’s Bugs
164 Event Queue
166 Clubs, Newsletters
174 Programming Quickies: Tic-Tac-Toe in BASIC
176 Languages Forum
184, 202, 208 Technical Forum
192 Desk Top Wonders: A Game for the TI-58
209 What’s New?
246 Unclassified Ads
248 BOMB, Reader Service

Copyright © 1978 by BYTE Publication Inc. All rights reserved.

BYTE is published monthly by BYTE Publications Inc., 20 Main St., Peterborough, NH 03458. Address all mail except subscriptions to above address: phone (603) 924-7217. Address all editorial correspondence to the editor at the above address. Unacceptable manuscripts will be returned if accompanied by sufficient first class postage. Not responsible for lost manuscripts or photos. Opinions expressed by the authors are not necessarily those of BYTE. Address all subscriptions, change of address, Form 3579, and fulfillment complaints to BYTE Subscriptions, PO Box 590, Martinsville NJ 08836. Second class postage paid at Peterborough NH 03458 and at additional mailing offices—USPS Publication No. 102410. Canadian second class registration No. 9321. Subscriptions are $15 for one year, $27 for two years, and $39 for three years in the USA and its possessions. In Canada and Mexico, $17.50 for one year, $32 for two years, and $46.50 for three years. $25 for a one year subscription by surface mail worldwide. Air delivery to selected areas at additional rates available upon request. $25 for a one year subscription by air delivery to Europe. Single copy price is $2.00 in the USA and its possessions, $2.40 in Canada and Mexico, $3.50 in Europe, and $4.00 elsewhere. Foreign subscriptions and sales should be remitted in United States funds. Printed in United States of America. Each separate contribution to this issue and the issue as a collective work copyright © 1978 by BYTE Publication Inc. All rights reserved.

Subscription WATS Line: (800) 258-5485
The advent of the personal computer has made possible the calculation of the fast Fourier transform (FFT) on the small system. Applications of this powerful design tool include speech and music analysis as well as circuit design and development. Read Fast Fourier Transforms on Your Home Computer by William D Stanley and Steven J Peterson. page 14

Quite often a software approach to a problem is easier to implement than a hardware approach to the same problem. Tom Munnecke describes the software used in Designing a Universal Turing Machine and compares it to a comparable hardware approach. page 26

Steve Garcia describes a simple but useful addition to your computer in Build an Octal/Hexadecimal Output Display. This circuit can help you to convert from octal to hexadecimal (and vice versa) or give you the status of a byte during program execution. page 32

Our cover theme this month (painted by Robert Tinney) is the game of Life. In Life with Your Computer, Justin Millen, Judy Reardon and Peter Smart give a starting point for developing your own version of this exciting game. page 45

Researchers probing cellular automata have used Conway's game of Life as a tool in creating a collection of strange and exciting patterns. In David Buckingham's article Some Facts of Life we find a description of discoveries made since the original flurry of activity several years ago. page 54

One-Dimensional Life is an intriguing variant on John Conway's famous game. Out of this restricted format comes a surprising variety of familiar Life figures such as the flip flop and glider. Dr Jonathan K Millen leads us down the Life line in One-Dimensional Life. page 68

The same folks who brought you Chess 4.6 now bring you a new, improved version, Chess 4.7. Read the story of the epic battle of the mighty computer and the tenacious, clever human chess master in an article by J R Douglas, Chess 4.7 versus David Levy. page 84

In many microcomputer applications it is desirable to have a cheap method for printing numerical data. Robert H Astmann describes a way to interface a Texas Instruments 5050M printing calculator to an 8080A based computer in Interface Your Computer to a Printing Calculator. page 94

In This BYTE

When building a computer system it is frequently advisable to have your most often used basic routines stored in read only memory so that they will always be readily available. To make the best use of read only memory, the experimenter should be able to program his own. G H Gable describes one system for programming read only memory in his article, Zapper: A Computer Driven ER0M Programmer. page 100

Are you having trouble affording enough hardware to support a high level language such as BASIC? Are you finding it difficult to program in your machine's assembler language? If your answer to either of those questions is "yes," then what you're looking for is An Easy Programming System. In this article, Joe Weisbecker gives an introduction to hexadecimal interpretive programming, an alternative to high level languages and assemblers alike. page 108

Computer aided instruction is an excellent microcomputer application. To perform this function correctly, it helps to have a programming language designed for the purpose. Prof George A Gerhold describes some of the features such a language should possess in Teaching with a Microcomputer. page 124

If you have a need for multiplication and division circuits and don't want to worry about timing circuits, read Mike Weed's discussion of some Clockless Multiplication and Division Circuits you can work with. page 128

This month we present the second half of Chess 0.5 in the series Creating a Chess Player by Peter W Frey and Larry R Atkin. The program was written by Larry Atkin, who is co-author with David Slate of the world championship computer chess program, Chess 4.6. The program is written in Pascal and is readily adaptable to personal computers having Pascal systems such as the UCSD Pascal project software. page 140

To get the most out of your floppy disk units, you should know how to handle the data that will be stored on them efficiently. A I Halsema introduces us to the concept of Partitioned Data Sets and briefly describes a method for implementing them. page 168

What is the world going to be like in twenty years? That's a difficult question to answer, but the chances are that microcomputers will be part of it. Lawrence Willard takes a light-hearted look at one possible future in his story, The Mother Chip. page 186

FORTRAN is one of the antecedents to a number of computer languages. The ever popular BASIC is in some respects a simplification of FORTRAN. A number of later languages build upon the computer science learning experience which was FORTRAN and its compilers in the late 1950s and early 1960s. FORTRAN is even now becoming available in floppy disk based systems at the high end of the personal computing performance range. In this issue, W Douglas Maurer provides readers with an article on FORTRAN and Its Generalizations, good background reading on an important and still much used language. page 194
New from North Star
Double Density Performance at Single Density Prices

The new HORIZON computer and Micro Disk System now record in double density! That means each new Shugart SA-400 minifloppy disk drive accesses 180K bytes of on-line information. All double density HORIZON computers and Micro Disk Systems have a redesigned controller which allows the use of quadruple capacity disk drives as they become available in early 1979. A three-drive North Star System with quadruple capacity disk drives will access over a megabyte of on-line information. But, best of all there's no price increase for double density models.

North Star BASIC and DOS have been upgraded to accommodate the increased capacity and yet run existing programs with little or no change. The new disk system also supports single density, so existing single density diskettes can still be used. Single density SA-400 drives previously purchased with North Star systems can also be used.

Pricing
HORIZON with one double density SA-400 minifloppy (180K bytes), 16K RAM, Z80A processor and serial I/O port: $1599 kit, $1899 assembled.
MICRO DISK SYSTEM with one double density SA-400 minifloppy, controller board and power regulation: $699 kit, $799 assembled. (Cabinet and power supply $39 extra each.)

North Star Computers
2547 Ninth Street
Berkeley, California 94710
(415) 549-0858

Specifications:
S-100 compatible. MFM encoding, 35 tracks with ten 512-byte sectors per track. 179,200 bytes on double density SA-400 and North Star BASIC, DOS, and Monitor included.

For further information, write for full color catalog or contact your local computer store.
New Wonders of the Computer Age

by Carl Helmers

In recent months, trends in the development of integrated circuit technology have reached new heights of accomplishment, such that it is possible to note some exciting possibilities for design in the next year or so. These new highs are on a broad front of semiconductor technology which is required for the small computers our readers buy and use. The effects of this new technology may not be seen in the retail marketplace for another year or so, since there is a finite delay design time between the availability of a part's design specification and its appearance in finished products.

The first new high in semiconductor technology is the announcement of several new 64 K bit dynamic memory parts (see the Texas Instruments TMS 4164 described on page 209 of this issue). What are the implications of this technology for personal computers? Quite simply, they are new low prices for the same functions we see now in the marketplace. Eventually the prices of the 64 K parts will fall to the under $20 level now seen in 16 K chips purchased in volume. Where it once took 32 chips of 16 K bits per chip to saturate a personal computer's address space, it will now take only eight chips (and perhaps a dynamic memory controller chip) to do the same thing. It is now possible to combine a current model microprocessor, a video controller chip, a dynamic memory interface chip, a floppy disk controller chip, and one or two parallel interface chips with eight memory chips and obtain a very complete electronics module for a small computer that uses only 13 or 14 integrated circuits, yet has the performance of a large scale minicomputer of several years ago. In short, the memory address...
The small computer that won't fence you in.

A lot of semantic nonsense is being tossed around by some of the makers of so-called "personal" computers. To hear them tell it, an investment of a few hundred dollars will give you a computer to run your small business, do financial planning, analyze data in the engineering or scientific lab — and when day is done play games by the hour.

Well, the game part is true. The rest of the claims should be taken with a grain of salt. Only a few personal computers have the capacity to grow and handle meaningful work in a very real sense. And they don't come for peanuts.

Remember, there's no free lunch.

So before you buy any personal computer, consider Sol®. It costs more at the start but less in the end. It can grow with your ability to use it. Sol is not cheap. But it's not a delusion either.

Sol small computers are at the very top of the microcomputer spectrum. They stand up to the capabilities of mini systems costing four times as much.

No wonder we call it the serious solution to the small computer question.

Sol is the small computer system to do the general ledger and the payroll. Solve engineering and scientific problems. Use it for word processing. Program it for computer aided instruction. Use it anywhere you want versatile computer power!

Build computer power with our software.

At Processor Technology we've tailored a group of high-level languages, an assembler and other packages to suit the wide capabilities of our hardware.

Our exclusive Extended BASIC is a fine example. This BASIC features complete matrix functions. It comes on cassette or in a disk version which has random as well as sequential files.

Processor Technology FORTRAN is similar to FORTRAN IV and has a full set of extensions designed for the "stand alone" computer environment.

Our PILOT is an excellent text oriented language for teachers.

Sold and serviced only by the best dealers.

Sol Systems are sold and serviced by an outstanding group of conveniently located computer stores throughout the U.S. and Canada.

For more information contact your nearest dealer in the adjacent list. Or write Department B, Processor Technology, 7100 Johnson Industrial Drive, Pleasanton, CA 94566. Phone (415) 829-2600.

In sum, all small computers are not created equal and Sol users know it to their everlasting satisfaction.

ProcessorTechnology
Why Apple II is the world's best selling personal computer.

Which personal computer will be most enjoyable and rewarding for you? Since we delivered our first Apple® II in April, 1977, more people have chosen our computer than all other personal computers combined. Here are the reasons Apple has become such an overwhelming favorite.

Apple is a fully tested and assembled mainframe computer. You won't need to spend weeks and months in assembly. Just take an Apple home, plug it in, hook up your color TV* and any cassette tape deck — and the fun begins.

To ensure that the fun never stops, and to keep Apple working hard, we've spent the last year expanding the Apple system. There are new peripherals, new software, and the Apple II Basic Programming Manual. And wait till you see the Apple magazine to keep owners on top of what's new.

Apple is so powerful and easy to use that you'll find dozens of applications. There are Apples in major universities, helping teach computer skills. There are Apples in the office, where they're being programmed to control inventories, chart stocks and balance the books. And there are Apples at home, where they can help manage the family budget, control your home's environment, teach arithmetic and foreign languages and, of course, enable you to create hundreds of sound and action video games.

When you buy an Apple II you're investing in the leading edge of technology. Apple was the first computer to come with BASIC in ROM, for example. And the first computer with up to 48K bytes RAM on one board, using advanced, high density 16K devices. We're working to keep Apple the most up-to-date personal computer money can buy. Apple II delivers the features you need to enjoy the real satisfaction a personal computer can bring, today and in the future.

15 colors & hi-resolution graphics, too.

Don't settle for a black and white display! Connect your Apple to a color TV and BASIC gives you instant command of three display modes: Text, 40h x 48v Color-graphics in 15 color and a 280h x 192v High Resolution array that lets you plot graphs and compose 3-D images. Apple gives you the added capability of combining text and graphics, too.

Back to basics, and assembly language too.

Apple speaks three languages: fast integer BASIC, floating point BASIC for scientific and financial applications, and 6502 assembly language. That's maximum programming flexibility. And to preserve user's space, both integer BASIC and monitor are permanently stored in 8K bytes of ROM, so you have an easy-to-use, universal language instantly available. BASIC gives you graphic commands: COLOR=, VLIN, HLIN, PLOT and SCRN. And direct memory access, with PEEK, POKE and CALL commands.

Software: Ours and yours.

There's a growing selection of pre-programmed software from the Apple Software Bank—Basic Finance, Checkbook, High Resolution Graphics and more. Now there's a User Section in our bank, to make it easy for you to obtain programs developed
other Apple owners. Our Software
ink is your link to Apple owners all
er the world.

live with
ex sound
music.
Apple's ex-
sclusive built-in
speaker delivers
added dimension of sound to your
programs. Sound to compose electronic
music. Sound to liven up games and
lucational programs. Sound, so that
your program can “talk” back to you.
that's an example of Apple's “people
compatible” design. Another is its light,
natural injection-molded case, so you
can take Apple with you. And the
professional quality, typewriter-style
keyboard has n-key rollover, for fast,
error-free operator interaction.

Apple is the
proven computer.
Apple is a state-of-the-art single
board computer, with advanced LSI
design to keep component count to a
minimum. That makes it more reliable.
If glitches do occur, the fully socketed
board and built-in diagnostics sim-
plify troubleshooting. In fact, on our
assembly line, we use Apples to
test new Apples.

Apple peripherals
are smart peripherals.
Watch the far right column of this ad
each month for the latest in our grow-
ning family of peripherals. We call them
“intelligent interfaces.” They're smart
peripherals, so you can plug them in
and run them from BASIC without
having to develop custom software.
No other personal computer comes
close to Apple's expandability. In addi-
tion to the built-in video interface, cas-
sette I/O, and four A/D inputs with two
continuously variable game paddles,
Apple has eight peripheral slots, three
TTL inputs and four TTL outputs. Plus
a powerful, state-of-the-art switching
power supply that can drive all your
Apple peripherals.

Available now.
Apple is in stock and ready for
delivery at a store near you. Call us for
the dealer nearest you. Or, for more
details and a copy of our “Consumer's
Guide to Personal Computers,” call
800/538-9696**
or write Apple
Computer, Inc.,
10260 Bandley
Drive, Cuper-
tino, CA
95014.

New from Apple.
Valuable new series of software
packages for investors
Now private investors can generate
their own stock market reports and per-
form critical investment analysis instantly
with Apple II. Just log your Apple II
computer on to Dow Jones’ central data
bank with powerful Apple software: the
Dow Jones Series. The first two of these
highly practical programs are available now.
With Apple's Stock
Quote Reporter
program, a local tele-
phone call
links you to
Dow Jones’
continuously
updated
stock quotes for
more than
6000 com-
panies listed
on six major U.S.
exchanges. Current
activity for stocks in
the investors portfolio is delivered
automatically: ask/open, bid/close, high,
low and last prices, and volume traded.
Our Portfolio Evaluator enables
you to analyze current value of your
portfolio, and short- and long-term gain/
loss for each stock—or for your entire
portfolio.
Cost of Apple's Dow Jones service
is a one time contract fee of $25, which
includes the Stock Quote Reporter pro-
gram. An additional $3 charge is made
for the first three minutes of any transac-
tion and 50¢ per minute thereafter.
To take advantage of Apple's new
financial services, Apple II users need
only a communications card, a modem
and an ordinary telephone. This equip-
ment, the Dow Jones Series, and a broad
selection of other Apple software are
now in stock at your local Apple dealer.

Programming is a snap!
I'm halfway through Apple's BASIC
manual and already I've programmed
my own space wars game.

Those math programs I wrote
last week—I just rewrote them using
Apple's mini-assembler and got them
to run a hundred times faster.

Apple's smart peripherals make
expansion easy. Just plug 'em in and
they're ready to run. I've already
added two disks, a printer and the
communications card.
PASCAL PRAISE

I have just finished absorbing the Pascal articles and editorial in the August 1978 BYTE. If I were a crowd, I’d carry you off on my shoulders, cheering.

The pressure of monthly deadlines seems to have reduced most computerist periodicals to compendia of “How I Did This” and “How to Make That.” Recent themed issues of BYTE, though, show exceptional maturity and some solid planning. Your reasoned advocacy of a powerful, common language, with supportive material gathered into one reference issue, ranks as the most important contribution yet.

Pascal appears satisfactory for all our purposes. The concept of p-code provides the mechanism for bringing it to fruition.

Onward, computerists! The milling matron trumpeter. One half (left side) is clothed and the other half is exposed so that the mechanism is visible. Pressed in any information they may have, including any programming information which might be helpful.

Paul F. Doering
56 Elmore Rd
Rochester NY 14618

AUTOMATON TRUMPETER LIVES

On pages 105 and 106 of “Antique Mechanical Computers, Part 2” in August 1978 BYTE there are references to automaton trumpeters and a statement that none survive.

I just returned from Europe and observed at the Deutsches Museum in Munich Germany a life-sized automaton trumpeter. One half (left side) is clothed and the other half is exposed so that the mechanism is visible. Pressed for time, I was not able to find out if it still operates, or who constructed it.

William Harmon
2662 Grand Summit
Torrance CA 90505

COMPUTERS AND ADVERTISING

I am working on both a book and a magazine piece about the use of computers in the field of advertising—particularly in media control, including production scheduling, space acquisition and scheduling for print and broadcast media.

I would be grateful if any BYTE readers with experience in this relatively untapped software area could send me any information they may have, including any programming information which might be helpful.

I am also interested in a program which not only includes production and scheduling control, but carries the whole program right through to a daily alert printout, client billing, and acquisition of advertising space and time.

Maybe I’m asking for too much—but I have a feeling that someone out there may have already worked this out or is at work on it.

In any event, to anyone who would care to send me information I can use in my projected book and article, I would be most grateful.

Larry Ashman
1624 Dole St #1004
Honolulu HI 96822

SIGNETICS 2650: A CORRECTION

I have just finished reading “How to Choose a Microprocessor” by Lou Frenzel, page 124, in July 1978 BYTE. I feel that the advice he gives is excellent; however I also feel compelled to correct an inaccuracy in his section on the Signetics 2650. I own and constantly use a 2650 based microcomputer made by the Central Data Corp. This is available in a basic 1 board configuration complete with on board programmable memory, read only memory, cassette and video input and output (10). It is expandable to an S-100 system with floppy disks, 8 K and 12 K BASIC interpreters, assembler/editor, and debugging program. Central Data also publishes a regular newsletter to communicate with the already large number of users of this system.

I have programmed PDP-11s, 8080s, the 2650, and a SC/MPS. The 2650 instruction set comes closest to the power of the PDP-11, and I find it a real pleasure to use.

Gordon Brandly
RR 2
Fort Sask
Alberta CANADA T8L 2N8

SOME REFERENCES ON NETWORKING AND PROTOCOLS

Concerning your editorial in July 1978 BYTE, there are two pieces of literature which your readers may want to review. Both concern the Octopus computer network in use at Lawrence Livermore Laboratory in Livermore, CA, which is one of the campuses of the University of California.

The first article is in Datamation, April 19 1973, pages 58 thru 63. The second article is in Computer Design, July 1978, pages 77 thru 86.

The most impressive points of the Octopus network design are simplicity of both software and hardware implementation; suitability for use with standard, inexpensive, byte oriented, asynchronous modem hardware; and easy

Continued on page 158
If the truth is that you want a computer... then we want to be your computer store.

We're ComputerLand, the #1 computer store chain in the U.S. What's meaningful about that fact is, that ComputerLand has been chosen by more people as having what they've been looking for. And, since you're looking, let us tell you what you'll find, when you visit a ComputerLand store.

You'll find a product line that's continually evaluated to provide you with the widest and best selection in quality, brand name microcomputers anywhere. You'll find an enthusiastic and knowledgeable staff able to interpret all the equipment specifications, in terms of how they apply to you, and in a way you'll understand. You'll find demonstration areas where you can get a firsthand experience of running a computer yourself.

COMPUTERS FOR BUSINESS

You'll find educational materials to give you a total insight into the world of microcomputers.

You'll find a fully equipped service department to provide whatever assistance is required to keep your computer running in top-notch condition. You'll find computer user's clubs to join, where you can share ideas with people as enthusiastic as yourself. And, with each new visit, you'll find excitement—from the people you deal with, the equipment they offer, and from your own ever-growing personal involvement.

Enough about us. How about what computers do. To attempt to describe all the things your computer might do, would be to describe your imagination. So instead, we'll briefly list some of the many things for which small computers are already being used.

In business, the advent of the versatile and compact microcomputer has put the benefits of computing within reach of small companies. With systems starting at less than $6000, the businessman can computerize things like accounting, inventory control, record keeping, word processing and more. The net result is the reduction of administrative overhead and the improvement of efficiency which allows the business to be managed more effectively.

In the home, a computer can be used for personal budgeting, tracking the stock market, evaluating investment opportunities, controlling heating to conserve energy, running security alarm systems, automating the garden's watering, storing recipes, designing challenging games, tutoring the children... and the list goes on.

In industry, the basic applications are in engineering development, process control, and scientific and analytical work. Users of microcomputers in industry have found them to be reliable, cost-effective tools which provide computing capability to many who would otherwise have to wait for time on a big computer, or work with no computer at all.

And now we come to you, which leads us right back to where we started: **If you want a computer, then we want to be your computer store.**

Whether you want a computer for the home, business or industry, come to ComputerLand first. We'll make it easy for you to own your first computer. Because, simply put, we really want your business. When you come right down to it, that's what makes us #1.
DYNABYTE COMPUTERS
ARE ALL BUSINESS
INSIDE AND OUT.

When we designed our new small business computers, we meant business.

As basic as that seems, it is unique. Just about every other microcomputer being sold as a small business system today was originally designed as a kit for hobbyists.

Every design decision was made with quality and reliability in mind. The result is dependable performance and a solid appearance for business, professional and scientific applications.

FIRST SMALL SYSTEM WITH BIG SYSTEM STORAGE

Many applications handle large quantities of information, so the DB8/2 uses two quad density 5-inch disk drives with our exclusive Dual Density Disk Controller for up to 1.2 megabytes of formatted storage. That’s more capacity than two single density 8-inch drives.

If you need more storage, our DB8/4 has two 8-inch drives with up to 2 megabytes capacity, more than any other dual floppy disk system on the market.

OUR SOFTWARE IS BIG ON BUSINESS

Dynabyte helps you get down to business immediately. The DB8/2 is the first microcomputer to offer enough storage capacity on 5-inch drives to fully utilize CP/M,* the most widely accepted disk operating system. We also supply and support BASIC, FORTRAN and COBOL programming languages. Our applications packages include general ledger, accounts receivable, word processing and many other CP/M compatible programs.

Reliability is a big consideration in buying a business computer, so we built it in. Our edge connectors meet military specifications, the toughest electronics manufacturing standard. Our regulated power supply is designed to meet U.L. standards, which means the entire system runs cool and dependable. And our cast aluminum enclosures are rugged as well as attractive.

AND THE BIGGEST THING OF ALL

Customer support. Our support starts at the factory with testing and burn-in programs that assure the entire integrated system is reliable prior to shipment. Our completely modular design allows continuing support in the field. We maintain a bonded inventory of all sub-system modules which means we can deliver replacement sub-assemblies overnight nearly anywhere in the continental U.S.

Dynabyte built in little things, too. Like a fully-populated 12-slot backplane, switched AC outlets for accessories, an option for European power, quiet whisper fans with long-life metal construction, lighted indicator switches for Power On and Halt, a shielded enclosure to protect disk drives from electro-mechanical interference, and a fully enclosed power supply for operator safety.

Since we didn’t cut corners in design, the price/performance ratios of our systems make good business sense.

THE INSIDE FACTS

The DB8/2 Computer System includes two 5-inch disk drives either single or double sided for up to 1.2 megabytes of mass storage; a 4MHz Z-80 processing module with one parallel and two serial ports, an EPROM programmer and up to 4k of ROM; 32k of RAM, a 12-slot fully-populated backplane; our exclusive Dual Density Disk Controller, and CP/M.

The DB8/1 Computer includes a 4MHz Z-80 processor with one parallel and two serial I/O ports, an EPROM programmer and up to 4k of ROM; 32k of RAM, and a 12-slot fully-populated backplane.

The DB8/4 Disk System, designed to be the mass storage companion to the DB8/1, includes two 8-inch floppy disk drives in either single or double sided configuration for up to 2 megabytes of mass storage, our Dual Density Disk Controller, and CP/M.

All three units will be available in rack mount models.

For a descriptive brochure and price list, call or write Dynabyte, 1005 Elwell Court, Palo Alto, CA 94303. Phone (415) 965-1010.

Or better yet, see your local dealer.

YOU CAN DEPEND ON IT.
The advent of the home computer makes possible many new and varied applications both of a general nature and of a scientific or mathematical nature. One of the latter applications we have successfully implemented on a personal computer is the fast Fourier transform, which we will subsequently refer to as the FFT, according to standard usage. Some of the most important properties of the FFT are described in this article, and an FFT program written for the Digital Group Z-80 System using BASIC is provided.

Continuous Fourier Transform

Before discussing the FFT in particular, it is desirable to briefly survey some of the general concepts of the classical continuous Fourier (pronounced "foor-yay") transform. The terminology used refers to time and frequency since they are among the most common variables of interest in many applications, although the theory involved applies to a variety of different types of physical phenomena.

Consider the waveform \(x(t) \) shown in figure 1a which is displayed as a function of time (denoted by \(t \)). The waveform can also be described by the frequencies present in the signal. This description is called the spectrum of the time signal. Mathematically, it is the Fourier transform of the time function. The process of Fourier transformation is represented by the mathematical function

\[
X(f) = \int_{-\infty}^{\infty} x(t) e^{-j2\pi ft} \, dt
\]

where \(X(f) \) is the Fourier transform of \(x(t) \). [The constant \(j \) is used in electrical engineering to denote \(\sqrt{-1} \), also called \(i \). The number \(e, 2.71828 \), is the base of the natural algorithms.] For all but fairly simple functions, this mathematical process represented a formidable operation for many years. Prior to the development of the digital computer, many analytical and experimental methods were investigated for determining the approximate spectra of functions that arose in physical systems.

The magnitude of a typical spectrum is shown in figure 1b and is denoted by \(|X(f)|\), where \(f \) represents the frequency in Hertz (Hz). For example, if \(x(t) \) were a music signal, strong peaks of the spectrum at low frequencies would be characteristic of a significant amount of bass content such as...
PerSci delivers the Dual-Headed Diskette Drive that works and the Double Density IBM Compatible Controller to back it up.

While everyone else was waiting and promising—PerSci did it! Designed the industry's first fully reliable, field proven, dual-head design—now available in a high technology dual diskette drive, the PerSci Model 299. The 299 has a total of four heads handling two double-sided diskettes—providing up to 3.2 Mbytes of data in a drive the size of a standard floppy. And because the Model 299 has voice coil positioning, this dual diskette drive can seek data four to six times faster than possible on two independent stepper motor drives. All offered by PerSci at a highly competitive OEM price.

To save time and money in systems design, PerSci backs up the 299 with the first available double density, dual-head flexible disk controller—the Model 1170—for all applications requiring IBM 2D, IBM 3740 or S-100 bus compatibility. The PerSci 1170 is Z-80 based, the smallest, most intelligent floppy disk controller on the market.

The PerSci 299 and 1170 controller are designed with the same advanced technology that has made PerSci number three in diskette product shipments (and moving up). Don't wait around for more talk and more promises. Call PerSci for full information.

Peripherals a Generation Ahead.

PerSci, Inc., 12210 Nebraska Avenue, West Los Angeles, California 90025. (213) 820-3764.
drums or tubas. Conversely, many string instruments such as the violin display stronger peaks at higher frequencies in the audio spectrum. The frequency spectrum (or Fourier transform) thus provides a plot of the relative weight of different frequencies that comprise or represent the given signal.

If the Fourier transform or spectrum of a signal is known, the time function may be determined from the inverse transformation which is given by

\[x(t) = \int_{-\infty}^{\infty} X(f) e^{j2\pi ft} df \]

Observe that the inverse transform has essentially the same general form as the direct transform except for the sign of the exponential argument.

The concept of the frequency spectrum has long played a most important role in numerous scientific applications and has been of interest to mathematicians, engineers and scientists of many different disciplines. Among the areas where spectral analysis has been employed are sound and music analysis, communications systems design, analysis of mechanical vibrations, ocean wave analysis, statistics and many others.

Discrete Fourier Transform

The heart of the FFT is a mathematical operation known as the discrete Fourier transform (DFT). In the DFT, a set of integers n and m are defined to represent the equivalent in a sense of the time and frequency variables, respectively, of the continuous Fourier transform. This correspondence is best seen by observing the sampled signal x(n) shown in figure 2a. There are assumed to be N samples of the signal spaced T seconds apart. Thus, as n varies from 0 to N−1, the N samples of the time signal are generated. The duration of the time signal is \(t_p = N T \).

The DFT of x(n) is defined by the finite summation

\[X(m) = \sum_{n=0}^{N-1} x(n) W^{mn} \]

where

\[W = e^{-j2\pi n/N} \]

The function X(m) represents a discrete spectrum with m serving the same purpose in frequency as n did in time. The frequency increment between successive components is \(F = 1/t_p \) so that the spectral component at a frequency mF is X(m). For x(n) real and for N time points, a unique spectrum can be computed only at N/2 frequency points. Actually, X(m) is periodic in m with N points in each period, but only N/2 are unique. X(m) is, in general, a complex function consisting of a real and an imaginary part at each frequency. For many applications, the magnitude spectrum \(|X(m)| \) is the quantity of most significance. Some of the preceding points are illustrated in figure 2b.

As in the case of continuous signals, an inverse discrete Fourier transform (IDFT) can be defined. In this case, the inverse transformation is
It may be a hobby, or it may be an asset... It SHOULD be a Heathkit® Computer System

No matter what your computer system needs may be, Heathkit computers make sense! Heathkit "total design" computer systems give you a wide selection of peripherals, software programs to get you up and running fast; plus the reliability, service and responsibility that come from being a leader in the electronics industry for some 50 years!

OUR 8-BIT COMPUTER

Every Heathkit Computer Product is designed to offer substantial benefits over competitive products on the market. Our 8080A-based H8 for example, is more than just a simple 8-bit machine. With its "intelligent" front panel and keyboard entry and digital display, it actually lets you compute and program without the addition of any peripherals. It's an ideal computer training system, and when you're ready to advance, it's ready too. It's one of the most expandable computers around, and now with its NEW floppy disk system, it could be the only computer you'll ever need.

OUR 16-BIT COMPUTER

If you need the power, speed and versatility of a 16-bit machine, there's nothing better than our H11A. Based on the famous DEC LSI-11/2, the H11A provides complete DEC compatibility and access to the thousands of practical software programs and applications that entails. Along with our own complete systems software and our line of DEC-compatible peripherals including the DEC Writer II and our new floppy disk, you'll have state-of-the-art computing power at its very best!

OUR PERIPHERALS

The Heathkit Computer peripherals offer the same competitive advantages of our two computers. Our H9 CRT terminal, H10 paper tape reader/punch, ECP-3801 cassette storage recorder/player, and our new WH14 line printer, plus the new floppy disk storage systems all give you the quality, performance and value that Heath company is famous for. And we sell the memory, I/O interfaces and accessories you need to custom design a system to your particular specifications!

ALL THIS, PLUS HEATHKIT DOCUMENTATION, SERVICE AND SUPPORT

One of the most important parts of ANY computer system is documentation. And Heath documentation is quite simply, the best around. If you buy our computer products in kit form, you get a comprehensive step-by-step assembly manual that takes you every step of the way from unpacking to final plug-in. The knowledge you gain in building your Heathkit computer is invaluable—for service if it's ever needed, for quick troubleshooting and correction, and just for understanding the workings of the machine. In both our kit and fully assembled products, our comprehensive operating and instruction manuals are fully detailed, thorough and accurate. This documentation, plus Heathkit technical consultants and service nationwide, make your Heathkit computer system one you can depend on—to work right the first time, and to last for years!

SEND FOR YOUR FREE CATALOG

Read all about these Heathkit computer products and peripherals in the new FREE Heathkit catalog. Write Heath Company, Dept. 334-482 for your FREE copy. Or visit your Heathkit Electronic Center (Units of Schlumberger Products Corporation).

HEATHKIT COMPUTERS

Systems Engineered for Personal Computing

Heath Co. Dept. 334-482
Benton Harbor, MI 49022
CP-159
The resulting function is periodic in the variable \(n \) and has \(N \) points in one period. Thus, even if the original time signal were not periodic, the operation of the IDFT produces a function capable of providing the desired results in one cycle, but the pattern continues to repeat itself if the interval is extended outside of the basic range.

Observation of the definition of the DFT reveals that there are approximately \(N \) complex multiplications and about the same number of complex additions required to compute the spectrum at one particular value of \(m \). Since there are \(N/2 \) unique spectral components, the total number of computations required to generate a complete spectrum is of the order of \(N^2 \). The Cooley-Tukey algorithm, published in 1965, demonstrates one way to perform this transformation with a number of computations of the order of \(N \log_2(N) \), which turns out to be an enormous savings in computational time for long signal records. The Cooley-Tukey algorithm, along with subsequent variations, is referred to as the fast Fourier transform (FFT). Thus, the FFT is a high-speed algorithm for computing the discrete Fourier transform.

While the DFT is a finite summation and the classical Fourier transform is an integral transform, the DFT may be used to closely approximate the continuous function under many circumstances. Some of the concepts involved with such an approximation are considered later in this article.

The various FFT algorithms work best when the number of points in the sample record is an integer power of 2, i.e.: \(N = 2^k \), where \(k \) is an integer. The form of one of the basic algorithms is shown in figure 3 for the case of \(N = 8 \). Obviously, \(N = 8 \) is far too small for most applications, but the flow graph is of interest in understanding the form of the general computational algorithm. This particular algorithm is referred to as an in place algorithm since at each stage of the computation, the data may be stored in the same memory locations from which they were obtained.

Implementation of In Place Algorithm

The in place algorithm previously discussed was implemented on the Digital Group Z-80 System using BASIC. The program is given in listing 1. The particular system used had 18 K bytes of memory, of which about 12 K bytes were required for the BASIC software. It was determined that a 256 point transform could be computed with this system and the program listed uses this capacity. It could be readily expanded or contracted as the available memory size dictates. However, the size selected should be chosen as an integer power of 2 as previously noted. Thus, the next smaller size should be 128 and the next larger size should be 512.

In order to reduce the memory requirements, the trigonometric functions are generated as they are required in the program. This approach is not nearly as efficient from the standpoint of computation time as would be the process of initially generating and storing the functions in

\[
x(n) = \sum_{m=0}^{N-1} X(m)w^{-mn}
\]
Get it out of your system.

from $549

MicroDaSys makes it easy.

Don't settle for less than the most powerful system your money can buy! At $549 (kit), the MicroDaSys SYSTEM 1 is truly one of the best buys on the market. Don't miss out on 6800 computability or 68000 compatibility — get the best of both worlds!

CPU — Besides combining the 6800 with the S-100 bus, the MD-690A is truly a system on a board. Features include 1k RAM, 16 I/O bits, an RS 232 interface, a 2400 baud cassette interface, and 10k PROM space permitting the option of 8k BASIC in PROM.

MONBUG — The 1k PROA monitor at the heart of the SYSTEM 1 is compatible with the standard 6800 ROM. As a result, virtually all 6800 software will run on the SYSTEM 1. But MONBUG offers a memory-mapped video card permitting graphics animation and our exclusive memory window. And the interrupt-driven keyboard input is ideal for multitasking applications. MONBUG is only available on MicroDaSys systems.

6809 — The MD-690A is upwards compatible with the third generation Motorola 6809 processor chip. The 6809 offers 16 bit internal arithmetic, hardware multiplication, 18 addressing modes and 3 times the throughput of a 4 MHz Z-80. MicroDaSys will soon offer a PASCAL compiler for use with the new 6809.

THE SYSTEM — The basic SYSTEM 1 features our custom console keyboard, S-100 bus motherboard, 16 amp power supply, 16X 16 upper and lower case video/graphics card, and the MD-690A CPU board — all for $549 (kit)! The SYSTEM 2 adds our 12k RAM card populated with 8k of RAM and is priced at just $699 (kit).

PERIPHERALS — As your computing needs grow, MicroDaSys offers a full line of system peripherals including a mini-floppy disk and controller, an assortment of printers, and a full line of S-100 products. Our newest addition is an I/O card with 8 parallel ports (80 I/O bits), 2 serial ports and a full duplex modem for $149 (kit).

If your dealer does not have the SYSTEM 1, ask him to order one for you, or order direct from MicroDaSys.
Listing 1: Fast Fourier transform routine described in text. Lines 10 to 499 are available for the user to describe the time function that is to be studied.

2 DIM X1(256), X2(256)
4 N=256: L=B： P1=3.14159
6 REM -- GENERATE TIME FUNCTION --
10 REM
20 REM LINE NUMBERS 10-499 ARE USLD TO
30 REM GENERATE OR INPUT THE TIME FUNCTION
40 REM
50 PRINT 'DO YOU WANT A LISTING OF THE GENERATED TIME FUNCTION ?'
510 INPUT A$
520 IF A$='NO' THEN 440
530 IF A$='YES' THEN 500
540 B=X1(0)
550 FOR Z=0 TO N-1
560 IF ABS(X1(Z))>B THEN B=ABS(X1(Z))
580 NEXT Z
600 FOR Z=0 TO N-1
610 PRINT X1(Z) TAB(4) X2(Z) TAB(4)
650 FOR Z=0 TO N-1
650 PRINT 'HARMONIC ITABLE 30 1 X1<Z> HAR1NACY ITABLE 50 I X2<Z>
670 REM -- SCALE INPUT TIME FUNCTION --
680 REM GENERATE OR INPUT THE FUNCTION
700 REM LINE NUMBERS 410 TO 799 ARE USLD TO
710 PRINT
800 REM -- OUTPUT RESULTS --
810 PRINT 'IN WHAT FORM DO YOU WANT THE OUTPUT ?'
820 INPUT A$
830 IF A$='YES' THEN 870
840 IF A$='NO' THEN 990
850 END
880 REM - OUTPUT RESULTS -
890 PRINT 'IN WHAT FORM DO YOU WANT THE OUTPUT ?'
900 PRINT 'MAGNITUDE SPECTRUM PLOT (1)'
910 PRINT 'TABLE OF VALUES (2)'
920 REM
930 REM
940 IF A=1 THEN 970
950 IF A=2 THEN 1130
960 PRINT 'INCORRECT INPUT (1 OR 2)' : GOTO 890
970 REM - OUTPUT MAGNITUDE SPECTRUM PLOT -
980 PRINT 'CALCULATIONS IN PROGRESS -
990 REM - OUTPUT RESULTS -
1000 IF A=1 THEN 1100
1010 IF A=2 THEN 1270
1020 PRINT 'IN WHAT FORM DO YOU WANT ANOTHER OUTPUT (YES, NO) ?'
1030 IF A$='YES' THEN 1240
1040 REM
1050 IF A$='NO' THEN 990
1060 END

memory so that they can simply be called as required. However, where speed is not a major priority, this approach minimizes the total memory required.

Statements 10 through 499 in the program represent the particular input signal for which the transform is being computed. The time function may be generated by appropriate equations or an algorithm as will be demonstrated for several cases later. For experimental data, the values could be listed point by point if the function cannot be readily described by an equation.

Applying the Program

In order to effectively utilize an FFT program for spectral analysis, it is necessary to understand some of the peculiarities of the DFT and its relationship to the continuous Fourier transform. Although the FFT treats the signal as if it were periodic. The total duration of the time signal is the period T_p, and for the program being considered, this period contains 256 points. If T is the time increment between samples, then $T_p=256T$. The spectrum obtained from the DFT is also periodic and contains N (or 256) spectral components. However, for a time function that is real (which incidentally is the case for all signals considered in this article), it can be shown that half of the components are ambiguous; i.e. they are similar to the other half and do not represent any actual spectral information. Thus, there are $N/2$ (or 128) meaningful complex spectral components that are obtained with the FFT. These components are spaced apart in frequency by $F=1/T_p$. The value for $m=0$ corresponds to the DC component, $m=1$ is the fundamental, $m=2$ is the second harmonic, etc. According to sampling theory, a time signal must be sampled at a rate at least equal to (practically speaking, greater than) twice the highest frequency contained in the spectrum. Thus, if the highest frequency contained in a spectrum
Identical twins...almost.

This one prints. $395.

This one prints & plots. $795.

And they plug into Apple, Exidy, PET, Radio Shack & most major computers.

In 1977, AXIOM pioneered low-cost electrosensitive line printing, setting an example which others have been quick to follow.

However, we believe that once you are the market leader, you should stay out in front. So we're proud to announce the birth of two exceptional new products, the EX-801 MicroPrinter and the EX-820 MicroPlotter which set new standards for versatile low-cost hardcopy.

Meet the MicroPrinter
Here's the answer to a micro (or mini) computer's fondest dreams. Designed around the Intel 8048 microprocessor, the EX-801 MicroPrinter operates to 160 cps (that's 14 times faster than a TTY), and gives you the choice of 3 intermixable character sizes to provide 80, 40 or 20 columns on 5-inch wide electrosensitive paper, making this printer ideal for CRT hardcopy, data logging, remote message printing, program listing, record keeping...in fact, any application needing fast, low-cost copy.

Introducing the MicroPlotter
Our EX-820 MicroPlotter does everything the EX-801 does — plus it plots. Under software control, you have unlimited flexibility to mix alphanumeric ASCII and graphics on any line.

Prices
- EX-801P (Parallel ASCII input) — $395.
- EX-801S (RS232C/20mA to 1200 bps) — $495.
- EX-801HS (RS232C/20mA to 9600 bps) — $549.
- EX-820 (Parallel ASCII and RS232C/20mA) — $795.

Compatibility
At Axiom, we don't see much point in shipping a printer or plotter which requires days of labor, extra connectors, cables and interface cards before it can be made to work with your computer.

So we provide the interfaces. Just add the appropriate interface to your choice of printer or plotter for instant compatibility.

Interfaces
For the EX-801P MicroPrinter
- Apple II interface add $100.
- TRS-80 (level II) interface add $100.
- PET interface add $100.
- Exidy interface add $50.

For the EX-820 MicroPlotter
- Apple II (HIRES at a single keystroke) add $100.
- PET (All PET graphics) add $100.

These prices are for interfaces purchased with an Axiom printer or plotter. Phone or write today.

AXIOM CORPORATION
5932 San Fernando Rd., Glendale, CA 91202
(213) 245-9244 • TWX: 910-497-2283

Circle 24 on inquiry card.
Listing 2: Three different generating routines that can be used with listing 1 as the time functions. The first routine generates a pulse function that lasts 25 percent of the time that is being analyzed. The second routine also generates a pulse but half as long as the first routine. The third and fourth routines generate sine waves which are only slightly different.

Figure 4: Rectangular pulse for which the FFT is partially displayed in photos 1 and 2. The pulse is unity for 64 of the 256 points in the time record and zero for the remainder.

Figure 5: Rectangular pulse for which the FFT is partially displayed in photo 3. The pulse is unity for 32 of the 256 points in the time record and zero for the remainder. Since this pulse is shorter than the one of figure 4, the spectrum is broader. In general, there is an inverse relationship between the width of a pulse-like time function and the width of the frequency spectrum. This property is an important concept in signal transmission and results in the requirement of larger bandwidths for transmitting shorter pulse signals.
ULL SIZE FLOPPY DISK $995 COMPLETE!

DISCUS™ full-size floppy disk system is an overnight success...because it's delivered so complete you can use it running in a single evening. Just $995, it's a complete memory system. Complete with all hardware and software. Completely assembled. Completely tested. And tested as a complete memory system, you can not only solve your memory shortage faster, but also increase the speed of your system.

Your software library includes DOS, text editor, 8080 assembler (all integrated in DISK/ATE™); our BASIC-V™ advanced virtual disk BASIC able to handle wide variety of data formats and address up to 2 megabytes; and patches for CP/M®. And it's all interfaced to your controller's serial I/O port to avoid I/O guesswork.

And it's all yours for $995. We even offer CP/M for just $70, Micro-Soft Extended Disk Basic for just $199 and Micro-Soft Fortran for just $349 as nice options to add to your library. No wonder it's an overnight success! See DISCUS™ today at your local computer shop. Or if unavailable locally, send your check or money order direct to Thinker Toys™ (add $7 for handling; California residents add tax.) Or call (415) 524-2101, 10-5 Pacific Time.

Thinker Toys

1201 10th Street
Berkeley, CA 94710
large number of points, the function is shown as a continuous curve.) The video display of the first 14 spectral components in tabular form is shown in photo 1, and the first 15 components of the magnitude spectrum are displayed in photo 2. Henceforth, only the magnitude spectra will be shown.

When the pulse duration is changed to 12.5 percent of the period or 32 points as indicated in figure 5, the magnitude spectrum changes to the form shown in photo 3.

It should be pointed out that the bandwidth of a rectangular pulse is theoretically infinite in extent and so there is some aliasing error in each of these cases. However, the effects of aliasing are not pronounced in these two examples over the frequency range shown in the photos. At larger harmonic

Photo 1: The first 14 components (DC and harmonics up through the 13th) of the FFT spectrum corresponding to the pulse shown in figure 4. The program lists the real part of $X(m)$, the imaginary part of $X(m)$ and the magnitude $|X(m)|$.

Photo 2: Video graphics display of the magnitude spectrum corresponding to the pulse shown in figure 4. The display is of course rotated 90° from the basic mathematical form illustrated in figure 2.

Photo 3: Video graphics display of the magnitude spectrum corresponding to the pulse shown in figure 5.
values for the given signals and at shorter pulse widths for the given frequency range, the aliasing errors would be more significant.

A sine wave representing an assumed frequency of 1000 Hz and an assumed sampling time of \(T = 0.1953 \text{ ms} \) was generated and analyzed. The resulting spectrum is shown in photo 4. Note that the frequency resolution is \(F = \frac{1}{(0.1953 \times 10^{-3} \times 256)} = 20 \text{ Hz} \) so that 1000 Hz corresponds to harmonic number 50. Observe that an ideal single line appears as one might hope. On the other hand, when the frequency is changed to 1010 Hz while maintaining the same value of \(T \), the spectrum changes to the form shown in photo 5. The reasons for the striking difference are as follows: In the first case, the frequency corresponds exactly to one of the harmonic numbers (50th harmonic), and a property of the DFT is that no other line components appear in this case. However, in the second case, the component would theoretically appear halfway between the 50th and 51st harmonics so that the imperfections of the finite time duration of the observed sinusoid are now apparent. The phenomenon observed is called leakage. It can also be readily verified that the first sinusoid was observed over an exact integer number of cycles, while in the second case, the sinusoid was truncated during a cycle.

This example illustrates the necessity of understanding some of the limitations of the truncation and sampling processes in order to properly evaluate results. The phenomena just noted can be reduced by smoothing the data to be transformed with certain window functions before computing the FFT. Window functions smooth the beginning and end of a record length and reduce the effects of leakage on the spectrum.

More Examples

Other applications include the use of an analog to digital converter to sample speech and music waveforms or the waveforms encountered in electronic systems. The sample points could be stored for later spectral analysis using the FFT program. We hope readers will be encouraged to experiment with the program on their own computers.

REFERENCES

Photo 4: Video graphics display of the magnitude spectrum corresponding to a sine wave whose assumed frequency is 1000 Hz with a sampling interval \(T = 0.1953 \text{ ms} \). This assumption results in an integer number of cycles (50) in the record duration \(t_p \), which corresponds to 50 ms. The frequency then corresponds exactly to the 50th harmonic and the spectrum appears as a single line.

Photo 5: Video graphics display of the magnitude spectrum corresponding to a sine wave whose assumed frequency is 1010 Hz with a sampling interval \(T = 0.1953 \text{ ms} \). This frequency corresponds to the midpoint between the 50th and 51st harmonics, and the imperfections of the DFT in representing a continuous time signal now can be seen.
Designing a Universal Turing Machine

A Software Approach

Hardware or software; which is best? This question faces many designers when creating new systems. This article describes a software version of a hardware project detailed in December 1976 BYTE by Jonathan K. Millen in his article "A Universal Turing Machine," page 114.

The universal Turing machine (UTM) is elegantly simple and capable of emulating the instruction set of any computer. The Turing machine was invented by Alan Turing (1912-1954). It is an abstract computing device that contains all the fundamental properties a computer system must possess and is used to study computer concepts. Although difficult to program, its back-to-basics nature is alluring to anyone interested in the fundamentals of computers.

The universal Turing machine designed by Jonathan Millen has two memories: one for program storage and the other for the main storage or "tape." The tape is a supposedly infinite (but actually 1024 bits long) memory which is a series of 1s and 0s. A bit on the tape is pointed to by a counter known as the head. A program counter points to a state in the program being executed. Each state consists of two instructions: one to be used if the current bit under the head of the tape is a 1, the other if it is a 0. Each instruction contains fields describing whether to write a 1 or a 0 on the tape, which direction to move the tape (left or right one position), and the address of the next state to be executed.

Each instruction contains the following information:

- **Bit 0:** Write bit. Write this bit on the tape after the head is adjusted.
- **Bit 1:** Direction bit. If this is a 0, move the tape to the left; if it is a 1, move the tape to the right.
- **Bits 2 thru 7:** Next state. These six bits are the number of the next state to be executed.

The reader is referred to Millen's article for a complete description of the universal Turing machine. His design implements this machine with about 15 integrated circuits. The memories are 2102s, the head and program counter are counters, and the control logic consists of various flip flops, shift registers, clocks and decoders. The memories are loaded and examined with switches and a 7 segment light emitting diode (LED). The design is capable of executing about 40,000 instructions per second.

A Software Approach

The program in listing 1 is the logical equivalent of Millen's hardware version for the Motorola 6800 processor. The program storage, tape, program counter and head are parts of the computer's memory set aside for those purposes. The memory organization is shown in Table 1. The rest of the logic is programmed via the 6800's instruction set. Table 2 is a comparison of the various functions and their implementation in the two approaches.

The program is a relatively straightforward programming of the hardware version. The basic cycle of functions to be performed is:

- Test the bit on the tape under the head.
- Write a 1 or 0 according to the write bit of the instruction indicated by the program counter and the tape bit.
- Move the tape (adjust the head) according to the instruction's direction bit.
- Set the program counter equal to the address specified by the address bits of the instruction.
- Go back to the first step.

Since the 6800 is a byte oriented machine, the head must keep track of both a byte in memory and a bit within the byte. The
Tinker, Tailor, Soldier, Sailor . . .
Doctor, Lawyer . . . the Chieftain's here.

No matter whether you're a serious hobbyist or a serious businessman, the Chieftain 6800 microcomputer with capabilities that surpass the Z-80 is made for you.

Smoke Signal's quality-packed Chieftain I features two 5.25-inch mini-floppy drives and Chieftain II features two 8-inch floppy drives.

Both microcomputers provide 32K static memory, two serial I/O ports, a 2 MHz processor board, a 2K RAM monitor, a nine-slot motherboard with built-in baud rate generator and gold connectors for high reliability. The Chieftain's stylish leather-grained cabinet houses the above with its own cooling fan and regulated power supply.

Every Chieftain is complete with system software and is totally burned-in as well as tested to further insure high reliability.

And it's expandable to 64K memory with up to 2 megabytes floppy disk storage.

So see your nearest Smoke Signal dealer, he'll be glad to show you how to get your wampum's worth. Systems start at $2,595.

Hail to the Chieftain
Smoke Signal Broadcasting, 31336 Via Colinas, Westlake Village, CA 91361, (213) 889-9340
Circle 320 on inquiry card.
The universal Turing machine program is stored in the first 128 bytes of memory. Each state consists of two 1 byte instructions, so that the instruction's address in memory is the state number multiplied by 2. The 6800 has no multiply instructions, but in this case the same effect may be accomplished by the rotate left instruction:

Before shift 0 0 1 0 0 0 1 0 = decimal 41 state number.

After shift 0 1 0 1 0 0 1 0 = decimal 82 state address.

Hardware versus Software

Although there is probably not a great practical need for Turing machines of this type, the two designs provide some insights into the benefits and costs of each approach.

The most significant benefit of the hardware approach is speed. The program can only process 10,000 universal Turing machine instructions per second, or 25 percent of the circuit's capability.

The most significant benefit of the software approach is its flexibility. For example, suppose the address field of the instruction

Listing 1: 6800 assembler version of the universal Turing machine, which imitates the hardware version built by Jonathan Millen. This program is capable of executing 10,000 universal Turing machine instructions per second.

<table>
<thead>
<tr>
<th>Address</th>
<th>Hexadecimal</th>
<th>Label</th>
<th>Op Code</th>
<th>Operand</th>
<th>Commentary</th>
</tr>
</thead>
</table>
| 0200 | DE FE | BEGIN | LDX | HEAD | GET HEAD OF TAPE ADDR.
| 0202 | D6 FD | BEGIN | LDA B | MASK | MASKS OUT BIT ON HEAD
| 0204 | E5 00 | BEGIN | BIT B | 0,X | IS BIT ON TAPE 0?
| 0206 | 27 03 | BEQ | ZEROBIT | | YES, DON'T INCREMENT PROGRAM COUNTER
| 0208 | 7C 00 FC | INC | PC+1 | | NO, INCREMENT PROGRAM COUNTER
| 020B | DE FB | ZEROBIT | LDX | PC | GET ADDRESS OF NEXT TURING INSTRUCTION
| 020D | A6 00 | LDA A | 0,X | | GET TURING INSTRUCTION IN REGISTER A
| 020F | 0C | CLC | | | CLEAR CARRY PRIOR TO TEST
| 0210 | DE FE | BEGIN | LDX | HEAD | GET HEAD BYTE AGAIN
| 0212 | 85 40 | BIT A | #$40 | | MASK OFF DIRECTION
| 0214 | 27 07 | BEQ | DEC | | DECOLUMN IF IT IS ZERO
| 0216 | 56 | ROR B | | | ROTATE RIGHT IF IT'S A ONE
| 0217 | 24 09 | BCC | OK | | NO CARRY TO NEXT BYTE
| 0219 | 08 | INX | | | INCREMENT HEAD BYTE
| 021A | 56 | ROR B | | | SHIFT CARRY THROUGH
| 021B | 20 05 | BRA | OK | | ALL DONE
| 021D | 59 | DEC | | | ROTATE MASK LEFT ONE BIT
| 021E | 24 02 | BCC | OK | | NO CARRY TO NEXT BYTE
| 0220 | 09 | DEX | | | DECREMENT HEAD BYTE
| 0221 | 59 | ROL B | | | ROTATE THRU CARRY
| 0222 | DF FE | OK | STX | HEAD | RESTORE HEAD POINTER
| 0224 | D7 FD | STA B | MASK | | RESTORE MASK
| 0226 | 4D | TST A | | | CHECK LEFT BIT OF INSTRUCTION
| 0227 | 28 05 | BMI | WRITE1 | | SKIP IF IT IS ON COMPLEMENT MASK TO
| 0229 | 53 | COM B | | | WRITE A ZERO
| 022A | E4 00 | AND B | 0,X |bra, branch | 'AND' IN A ZERO
| 022C | 20 02 | BRA | branch | | SKIP AROUND THE
| 022E | EA 00 | ORA B | 0,X |branch | 'OR' IN A LOGIC
| 0230 | E7 00 | BRANCH | STA B | 0,X | PUT BYTE BACK TO TAPE
| 0232 | 84 3F | AND A | #$3F | | MASK OFF TWO LEFT
| 0234 | 49 | ROL A | | | BITS
| 0235 | 97 FC | STA A | PC+1 | | STORE AS NEW PROGRAM COUNTER
| 0237 | 7E 02 00 | JMP | BEGIN | | EXECUTE NEXT UTM INSTRUCTION

The logic to test the current bit is:

| TEST | LDX HEAD | Load head byte address.
| LDA B MASK | Load bit mask within byte.
| BIT B 0,X | Test corresponding bit in memory.
| BEQ ITSONE | Yes, it's a 1.
| ITSONE | logic if bit was a 0.
| ITSONE | logic if bit was a 1.

The program increments the head position (moves tape to right) by rotating the mask to the right. If the bit is rotated out and into the carry, the HEAD address is incremented. The procedure is similar for moving the tape left.

The universal Turing machine program is stored in the first 128 bytes of memory. Each state consists of two 1 byte instructions, so that the instruction's address in memory is the state number multiplied by 2. The 6800 has no multiply instructions, but in this case the same effect may be accomplished by the rotate left instruction:

Before shift 0 0 1 0 0 0 1 0 = decimal 41 state number.

After shift 0 1 0 1 0 0 1 0 = decimal 82 state address.

Hardware versus Software

Although there is probably not a great practical need for Turing machines of this type, the two designs provide some insights into the benefits and costs of each approach.

The most significant benefit of the hardware approach is speed. The program can only process 10,000 universal Turing machine instructions per second, or 25 percent of the circuit's capability.

The most significant benefit of the software approach is its flexibility. For example, suppose the address field of the instruction

<table>
<thead>
<tr>
<th>Hexadecimal Addresses</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000 thru 007F</td>
<td>Universal Turing machine program and state storage area.</td>
</tr>
<tr>
<td>0080 thru 00FF</td>
<td>Universal Turing machine tape storage area.</td>
</tr>
<tr>
<td>00FB thru 00FC</td>
<td>Universal Turing machine program counter address of next state.</td>
</tr>
<tr>
<td>00FD</td>
<td>Tape head mask.</td>
</tr>
<tr>
<td>00FE thru 00FF</td>
<td>Tape head address.</td>
</tr>
<tr>
<td>0200 thru 0237</td>
<td>6800 interpreter program (listing 1).</td>
</tr>
</tbody>
</table>

Table 1: Memory allocation for the software implementation of the universal Turing machine.
More and more, you see the North Star HORIZON computer at work: in business, research, and education. Its high performance qualifies the HORIZON for demanding professional applications. Over 10,000 users during the past two years have proven that North Star hardware has the reliability for day-in, day-out computing. The HORIZON is now a serious candidate for any small system installation.

SOFTWARE IS THE KEY TO HORIZON MATURITY
North Star BASIC and DOS have been used to develop hundreds of commercial program packages. These packages establish that North Star software has the completeness and convenience necessary for serious program development. Because of the many independent vendors offering software using North Star BASIC and DOS, the HORIZON owner now has the widest selection of software in the microcomputer industry! Software available includes: word processing, general ledger, accounts payable/receivable, mailing list processing, inventory and income tax preparation. Program development systems such as assemblers, debuggers, editors, PILOT and FORTRAN are also available.

EXPAND YOUR HORIZON
The basic HORIZON computer includes a Z80 microprocessor, 16K bytes of RAM memory, an I/O interface and one Shugart minifloppy disk drive. The HORIZON can be expanded to 60K bytes or more of RAM, three disk drives, and three I/O interfaces. Performance can be enhanced by the addition of the North Star hardware floating point board. Also, S-100 bus products from other manufacturers may be used to expand the HORIZON.

For more information, contact your local computer store.
is to represent a signed displacement from the current program counter, as Millen suggests in his article. In hardware, this would require adding a 6 bit adder between the address bus and the program counter, plus some temporary latches to hold the results. In software, a store instruction must be changed to an add instruction. In hardware, the board must be modified to accommodate the new circuitry, and the clock re-adjusted. In software, under MIKBUG, the change can be made with seven keystrokes.

If this system were to be widely distributed, complete documentation would have to be written. The hardwired approach requires a circuit board layout, a schematic diagram, parts list and written commentary. In the software version, comments in the program serve to document the system, along with a written commentary.

The software approach allows a building block technique. The program may be easily combined with other programs. The external programs need to know only the addresses of the various blocks in the universal Turing machine program’s logic. The universal Turing machine circuit would have to be modified to adapt it to other equipment. The software version uses MIKBUG’s load and dump routines to save the tape contents, but this would have to be a specially constructed circuit for the hardwired design.

The design, implementation and testing times of the software version were two, one and two hours, respectively. I don’t know the exact times required for the hardware approach, but they should be at least several times more than the software approach.

In order to build the hardwired circuit, the experimenter must obtain all the circuitry, a circuit board, wire, power supply, etc., which may or may not be used in future experiments. However, once you have a microcomputer to work with, no extra items are needed and the computer is usable for any other projects without losing the ability to reload the universal Turing machine program.

This example cannot be taken as a complete treatment of the trade-offs of the two approaches. Each designer must judge the merits of an approach according to the particular needs of the problem to be solved. If the universal Turing machine were to be mass-produced for time-critical applications, the hardware approach would be best. If the design is to be used for the Sunday afternoon project of a microcomputer enthusiast who already has a system the software approach would be best.

<table>
<thead>
<tr>
<th>Function</th>
<th>Hardware Version</th>
<th>Software Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program storage</td>
<td>2102</td>
<td>Memory locations hexadecimal 00 thru 7F</td>
</tr>
<tr>
<td>Tape storage</td>
<td>2102</td>
<td>Memory locations hexadecimal 80 thru FF</td>
</tr>
<tr>
<td>Program counter</td>
<td>Two 74161s</td>
<td>Memory locations hexadecimal FB thru FC</td>
</tr>
<tr>
<td>Head</td>
<td>Three 74191s, 7474</td>
<td>Memory locations hexadecimal FD thru FF</td>
</tr>
<tr>
<td>Sequencing</td>
<td>7404,74161,74154</td>
<td>Conditional branching</td>
</tr>
<tr>
<td>Display</td>
<td>7 segment LED</td>
<td>MIKBUG print/punch command</td>
</tr>
<tr>
<td>Initializing tape</td>
<td>74157,7400,switch</td>
<td>MIKBUG load command</td>
</tr>
<tr>
<td>Saving tape</td>
<td></td>
<td>MIKBUG print/punch command</td>
</tr>
<tr>
<td>Debugging design</td>
<td>Logic probe and</td>
<td>MIKBUG break command</td>
</tr>
<tr>
<td></td>
<td>oscilloscope</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Correspondence chart of the functions of the two approaches and the means with which they are implemented.

REFERENCES

1. Millen, J. "A Universal Turing Mac"

Micromation has done for the S-100 bus what IBM did for the floppy disk.

Reliably doubled capacity.

Double Capacity
The DOUBLER — Micromation's latest advance in floppy disk technology — doubles the capacity of floppy disk systems. Over 500 Kbytes are recorded on each side of an 8" disk. This means bigger files for more powerful systems.

Double Speed
Data transfer with the DOUBLER is twice as fast — 500 Kbits per second. And since there is twice as much data on each track, your drive steps only half as much — so your system runs faster than it ever has before!

Increased Reliability
That's right — even better reliability. Why? Because we did it the IBM way. IBM designed 2D formatting — so it has to be reliable. Micromation's innovative, state-of-the-art design incorporates write precompensation electronics and a phase lock oscillator on a single, all digital, S-100 circuit board. So we guarantee the DOUBLER will be more dependable than your present single density controller — and we warrant the DOUBLER for a full year.

Unbeatable Convenience
It couldn't be easier to step up to double density. The DOUBLER operates automatically in either single or double density. Just insert a diskette and you're running properly. You can transfer files between single or double density diskettes without any software or hardware changes — or even operate with one single and one double density diskette. Installation is a snap. There's a hardware UART on board and the software is all ready to go. An onboard 2708 EPROM contains the bootstrap. There's even jump-on-reset circuitry so you can operate without a front panel. And, of course, we include utilities to format diskettes.

Universally Versatile
The DOUBLER will operate with all industry-standard mini and full-sized drives. And it will work in any 8080 or Z-80 S-100 computer operating at 2 to 4 MHz. The DOUBLER will support up to four double or single headed drives.

Fully Compatible
The DOUBLER is compatible with CP/M* version 1.4. If you have a CP/M* 1.4 system, just add our CBIOS — or you can buy our ready-to-boot version. Install the new controller, connect any terminal to the RS-232 interface, and boot off your new double-sized, double-speed system. You still can use all your old software without any changes.

Completely Affordable
All Micromation products are fully assembled, thoroughly tested, include complete documentation, and are priced for value:

<table>
<thead>
<tr>
<th>Product</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOUBLER double density controller</td>
<td>$495.</td>
</tr>
<tr>
<td>MEGABOX dual drive double density system</td>
<td>$2,295.</td>
</tr>
<tr>
<td>ZEPHIER — Per Sci double density system</td>
<td>$2,595.</td>
</tr>
<tr>
<td>Z-PLUS — MEGABOX 32 KZ-80 computer</td>
<td>$4,295.</td>
</tr>
</tbody>
</table>

Available
The DOUBLER is available NOW at your local computer store.

Micromation Inc. 524 Union Street San Francisco California 94133 / 415 398-0289

Where there's always more in store.

*CP/M is a trademark of Digital Research
“Steve, I think we have a little problem!” Ray charged into the basement and hovered over me waiting for a response.

I slowly rotated in my swivel chair. The rate was barely sufficient to overcome static friction, but I finally made it. As I raised my head to talk I was interrupted.

“Steve, I think we have a problem with that EROM.” Before he could finish, his expression abruptly changed and almost without a pause he ended the sentence with, “...what happened to you? You look like death warmed over!”

I could barely see the person standing before me with his hands on his hips. I also experienced a strange sensation of either a veil covering my face or an advanced case of furry eyeballs. Whatever the cause, Ray was still standing there awaiting a reply. It was a chore to speak. As the muscles contracted to produce the necessary air flow, I could sense a sudden recurrence of physical problems which I had hoped were on the wane.

“Steve you look terrible! You should be raring to go after two weeks in Acapulco, basking in the sun.”

Ray was referring to an engineering consulting job I had just completed in Acapulco for CBS. The Miss Universe Pageant, which was broadcast live from Mexico, included a new twist this year. A computerized judging system. It sounded like a fun consulting job as opposed to the usual, “design me a computer for...” type. The final rationalization was, I needed a vacation anyway. I wouldn’t want anyone to think that the 70 contestants had anything to do with my decision to go.

The other lucky members of our engineering party were Gus Calabrese (formerly with Digital Group) and George Watson and Dale Walker of CBS. Gus and I maintained the hardware; Dale supported the software; and, while George’s official function was the electrical scoring system, his unofficial title was chief taco tester. He had this uncanny ability to sort through all the various smells emanating from a restaurant and evaluate palatability. If he didn’t turn green as he walked through the door, it was Americanized enough for us to eat there.

This smooth sailing trip was punctuated by a succession of daily crises. For instance, George’s wife, having thoughtfully packed his suitcase without underwear, gave us the hoped for opportunity to take a crash course in Mexican capitalism and to venture out to the market place. The cab driver who “drove” us there (I use the word loosely) was subject to suicidal fits. From then on everything went downhill. The list goes on and on. Reliving the past two weeks in my thoughts heightened the sense of physical malaise I was experiencing. Fortunately, Ray spoke again in time to bring me back to reality.

“What’s wrong with you?”
G/2 MEANS BETTER BASIC, EXCITING COMPUTER GAMES, AND VALUABLE HEALTH HINTS.

Now you don’t have to be a programmer to use your computer! The G/2 Program Library is moving into computer stores all over America. These reliable, professional programs are pre-recorded on cassette tapes. They contain prompting instructions for easy use, and come complete with a detailed instruction manual. G/2’s rapidly expanding library of program topics appeals to a broad range of interests, and every program will help make your computer a better investment.

G/2 Basics for SOL and SWTPC (created by MICROSOFT™) are far better than the interpreter you’re now using. G/2 Standard Basic lets your SWTPC 6800 execute programs faster, uses only 7K of memory, and offers string arrays, extensive string functions, peek, poke, wait, continue, calculator execution, 10 nested subroutines, and much more. G/2 Extended Basic puts the king of Basic interpreters in your SOL computer. It offers string arrays, 16-digit accuracy, fully descriptive error messages, automatic line numbering and renumbering, an amazing editing capability, trace function, and many additional features you thought were limited to disk-based systems.

G/2 Beat the House brings the excitement of casino-type games of chance right into your own home. When you sit down to play Blackjack, Craps, Roulette or Slot Machine, you’ll feel like you’re in the middle of a Las Vegas casino, playing for big stakes.

G/2 Clinic helps you understand the effects of environment, heredity, personal habits, diet and even biorhythms on your health. Built-in prompts make these three programs easy for your family and friends to use, even if they’ve never before touched a computer.

G/2 Contests for Apple Owners use the full power of Apple’s color graphics to simulate the tense dangers of interplanetary war, the hair-trigger suspense of a shootout, and the challenges of several mathematical and pure logic puzzlers.

Start building your G/2 Program Library today. For the name of the G/2 dealer nearest you, call us toll-free at 800/538-1770. (In California, call 800/662-9810.) Then load one of these tapes and put the full power of your computer to work for you.

THE REASON YOU BOUGHT YOUR COMPUTER.
“Let’s just say it has something to do with a guy called Montezuma.”

“You’re not supposed to drink. . . .”

“Yeah, I know! Don’t drink the water!”

Ray looked at me and decided his problem still needed attention, even though I was dying. “Steve, I was about to check the EROM contents against the listing you gave me when I noticed that it was in octal. We need to use that EROM tomorrow and we had better find the error in it tonight. I made a hexadecimal dump of the EROM contents but I still can’t check it against your listing.”

The response was obvious. “Why don’t you convert it by hand?”

“Sure,” said Ray, “I can convert it, but a thousand conversions is more than I have time for tonight. Can we assemble it in hexadecimal on your system?”

My temples were starting to throb. I hadn’t used my computer in three weeks. Nothing was hooked up and I was in no condition to either attach and fire up my own programmer or write the simple algorithm to perform this minor calculation. It was hard enough for me to remember how to operate my own system without explaining the intricacies to Ray.

“Look, Ray, any night but tonight. I’ve got it in octal, decimal, hexadecimal, binary, —anything you want, but not tonight. I just don’t think I can hack it. You understand, don’t you?”

He was disappointed, but being a good friend he understood. “Can I borrow your TI programmer and some desk space? A thousand entries times five button pushes . . . shouldn’t take more than an hour or two. Got your battery charger handy?”

It seemed a shame to make Ray go to such lengths. If my system were up it would take only a matter of seconds to print out Ray’s listing. It may have been a very powerful Z-80 computer on any other occasion but tonight it wasn’t processing anything.

As I reached for the calculator in my briefcase I spied a relic that might provide a solution to the problem. “Ray, see that rectangular box with all the printed circuit boards plugged into the top of it?” I pointed to a bookcase that contained everything but books. “Bring it here and plug it in, and search through that pile of tapes over there until you find one marked with the same name as your listing. I made a binary dump on tape at the same time I made your listing.” There are some advantages to being ill—letting others fetch and carry is one of them.

Relying mostly on Ray’s high level of hardware expertise, interspersed with whatever limited verbal input I could manage, we successfully fired up my Sclbi-8B 8008 microcomputer. Even though I hadn’t used it for well over a year, the read only memory based operating system brought it to life immediately. The recognizable pattern on the light emitting diode (LED) display indicated it was ready to read input data, so I slapped in the cassette that Ray had found. Fortunately the data was stored in a format acceptable by both machines, and totally independent of the processor. I couldn’t execute the Z-80 EROM listing I had loaded, but I could display it.

“OK, Ray. Now that we’ve loaded the data we can step through it on single step and look at it on this output port display, which I built a while back.”

“How’s that going to help?” Ray looked at the 3 character display as he pressed the single step a few times. “The 8008 is an octal machine. Even the data on your display is coming out octal,” he said.

It was hard to smile but I managed a slight variation on the theme as I said, “Flip the switch next to the display.” Instantaneously, the 257 previously displayed changed to AF, its hexadecimal equivalent.

“Hey, that’s not bad, a combination octal and hexadecimal display! All I have to do is step through and copy down the hexadecimal equivalents, right?”

I nodded and Ray started to write. Barely ten entries had been made when his hardware curiosity got the best of him. “I was thinking of putting one of these on my system but it looked like too many components. By the way, I only see two chips. Where are you hiding the rest?”

“Remind me to tell you when I recover.”

Build a Combination Octal/Hexadecimal Display

Some people may consider hexadecimal displays a trivial addition to an expensive computer system, but sometimes these little add-ons make program debugging easier. I can’t help but wonder whether other computer experimenters would have need for such a display. I don’t expect it to replace the video display; but often, when debugging a program, it’s nice to be able to display a byte here and there to verify proper program execution. It will never replace the stepper and breakpoint monitor I now use, but it’s great to display keyboard or IO data quickly with a single output instruction.

There are many methods to display hexadecimal numbers on a 7 segment LED. Figure 1 and table 1 show an example of the usual brute force method using a read only memory as a hexadecimal decoder. Programming the 82523 was described in the
The perfect digital plotter for the small system computing enthusiast

Small in size, big in performance... and priced at only $1085*

HI PLØT™ is a digital plotter designed for the small systems market. Inexpensive to own and simple to operate, it still incorporates the same quality components, technology and skillful workmanship found in Houston Instrument’s larger plotters used throughout industry.

Not a kit, the HI PLØT™ is assembled and ready to use, with both a RS-232C and a parallel interface build in for creating graphic output from your system.

- Displays data in easy-to-read graphical format
- Both serial and parallel inputs built-in
- Uses standard 8½”x11” paper
- Plotting speed up to 2.4 ips
- Resolution of both 0.01 and 0.005 inch
- Baud rate and step size easily changed

For rush literature requests or local sales office information only, persons outside Texas call toll free 1-800-531-5205 #173 on inquiry card.
Fortunately there are other products on the market that can solve the problem. I've been using the Hewlett-Packard HP7340 hexadecimal display for a number of years. Those familiar with it can rightfully say how trivial the solution was, while those who are not may find it a revelation. Photo 1 illustrates the physical size of the HP7340. A hexadecimal A is displayed in a dot pattern. These hexadecimal displays depart from standard 7 segment format by being capable of displaying a capital B and D in hexadecimal. This is accomplished by controlling the corner dots which give the appearance of "rounding." This ability discriminates a B from an 8 or a D from a 0. There are 16 distinctly different characters.

An additional feature of the HP7340 is that it contains a 4 bit latch and the decoder/driver as well. The result is a single 8 pin hexadecimal display which successfully accomplishes the function of all the circuitry in figure 1. The specification of the individual pins are in figure 4.

Figures 2 and 3 demonstrate how the HP7340 can be configured to function as a 2 digit hexadecimal output port or a 3 digit octal port. No 8 bit latch is required since it

Table 1: Program for IC2 in figure 1.

<table>
<thead>
<tr>
<th>Input Code</th>
<th>82523 Program</th>
<th>7 Segment Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCBA</td>
<td>d7 d6 d5 d4 d3 d2 d1 d0</td>
<td>1</td>
</tr>
<tr>
<td>0000</td>
<td>0 1 1 1 0 1 1 1</td>
<td>1</td>
</tr>
<tr>
<td>0001</td>
<td>0 1 0 0 0 0 0 1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>0 1 1 0 1 1 0 1</td>
<td>1</td>
</tr>
<tr>
<td>0011</td>
<td>0 1 1 0 1 0 1 0</td>
<td>1</td>
</tr>
<tr>
<td>0100</td>
<td>0 1 0 1 0 1 0 0</td>
<td>1</td>
</tr>
<tr>
<td>0101</td>
<td>0 1 1 1 0 1 0 0</td>
<td>1</td>
</tr>
<tr>
<td>0110</td>
<td>0 1 1 1 1 1 1 1</td>
<td>1</td>
</tr>
<tr>
<td>0111</td>
<td>0 1 1 0 0 0 0 0</td>
<td>1</td>
</tr>
<tr>
<td>1000</td>
<td>0 1 1 1 1 1 1 1</td>
<td>1</td>
</tr>
<tr>
<td>1001</td>
<td>0 1 1 1 0 0 0 0</td>
<td>1</td>
</tr>
<tr>
<td>1010</td>
<td>0 1 1 1 1 0 1 0</td>
<td>1</td>
</tr>
<tr>
<td>1011</td>
<td>0 1 0 0 1 1 1 1</td>
<td>1</td>
</tr>
<tr>
<td>1100</td>
<td>0 1 1 0 1 1 0 0</td>
<td>1</td>
</tr>
<tr>
<td>1101</td>
<td>0 1 1 1 1 1 1 0</td>
<td>1</td>
</tr>
<tr>
<td>1111</td>
<td>0 1 1 0 0 1 1 0</td>
<td>1</td>
</tr>
<tr>
<td>1111</td>
<td>0 1 1 1 1 1 0 0</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 1: Hexadecimal latch, decoder and driver using a standard 7 segment light emitting diode (LED). Line CS on IC2 can be used to perform the blanking operation. This circuit can be replaced by a Hewlett-Packard HP7340 or equivalent (see table 2).
Considering a Microcomputer?

Be Sure to Check Out the Product Offerings of the World's Largest Full Line Microcomputer Company.

All Ohio Scientific machines come with microcomputing's fastest full feature BASIC-in-ROM or on-Disk for instant use.

Challenger I Series

Economical computer systems that talk in BASIC.
Ideal for hobbyists, students, education and the home.

- **Superboard II** — World’s first complete system on a board including keyboard, video display, audio cassette, BASIC-in-ROM and up to 8K RAM
- **Challenger IP** — Fully packaged Superboard II with power supply
- **Challenger IP Disk** — Complete mini-floppy system expandable to 32K RAM

Minimum Configuration Price

- 4K RAM: $279
- 4K RAM: $349
- 16K RAM: $1190

Challenger II Series

Ultra high performance BUS oriented microcomputers for personal, educational, research and small business use.

- **C2-4P** — The professional portable
- **C2-8P** — The world’s most expandable personal machine for business or research applications
- **C2-4P Disk** — The ultimate portable
- **C2-8P Single Disk** — Ideal for education, advanced personal users, etc.
- **C2-8P Dual Disk** — Most cost effective small business system

Minimum Configuration Price

- 4K RAM: $598
- 4K RAM: $799
- 16K RAM: $1464
- 16K RAM: $1738
- 32K RAM: $2597

Challenger II Serial Interface Series

Same great features as Challenger IIP Series for those who have serial terminals: small business, education, industry.

- **C2-0** — Great starter for users with a terminal
- **C2-1** — Great timeshare user accessory; cuts costs by running simple BASIC programs locally
- **C2-8S** — Highly expandable serial machine, can add disks, etc.

Minimum Configuration Price

- 4K RAM: $298
- 4K RAM: $498
- 4K RAM: $545

Challenger III The Ultimate in Small Computers

The unique three processor system for demanding business, education, research and industrial development applications.

- **C3-S1** — World’s most popular 8” floppy based microcomputer
- **C3-OEM** — Single package high volume user version of C3-S1
- **C3-A** — Rack mounted multi-user business system directly expandable to C3-B
- **C3-B** — 74 million byte Winchester disk based system. World’s most powerful microcomputer

Minimum Configuration Price

- 32K RAM: $3590
- 32K RAM: $3590
- 48K RAM: $5090
- 48K RAM: $11,090

OHIO SCIENTIFIC also offers you the broadest line of expansion accessories and the largest selection of affordable software!

Compare the closest Ohio Scientific Model to any other unit you are considering. Compare the performance, real expansion ability, software and price, and you will see why we have become the world’s largest full line microcomputer company.

I’m interested in OSI Computers. Send me information on:

- [] Personal Computers
- [] Small Business Computers
- [] Educational Systems
- [] Industrial Development Systems

I’m enclosing $1.00 for your 64-page small computer buyer’s guide.

Ohio residents add 4½ tax.

Name ____________________________
Address __________________________
City _____________________________
State __________ Zip __________
Phone ____________________________

1333 S. Chillicothe Road
Aurora, Ohio 44202
(216) 562-3101

Circle 290 on inquiry card.
Photo 2: Prototype board of the circuit in figure 4. Two similar circuits were built on the same board. When in the hexadecimal mode (shown at left in the picture), the leading digit is blanked. The display at the right shows the octal mode. Each is wired as an independent output port, but the computer sends the same data to both.

Figure 2: Hexadecimal latch, decoder and driver display circuit.

Table 2: Pin functions for the Hewlett-Packard HP7340 binary coded decimal (BCD) to hexadecimal display. Similar displays are made by Dialite and Texas Instruments.

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Input B</td>
</tr>
<tr>
<td>2</td>
<td>Input C</td>
</tr>
<tr>
<td>3</td>
<td>Input D</td>
</tr>
<tr>
<td>4</td>
<td>Blank Control (blank = +5 V)</td>
</tr>
<tr>
<td>5</td>
<td>Latch enable (latch = 0 V)</td>
</tr>
<tr>
<td>6</td>
<td>Ground</td>
</tr>
<tr>
<td>7</td>
<td>+5 V</td>
</tr>
<tr>
<td>8</td>
<td>Input A</td>
</tr>
</tbody>
</table>

Figure 3: Octal latch, decoder and driver display circuit.
Figure 4: Combination hexadecimal and octal display circuit.

Table 3: Power wiring table for figures 1, 2, 3 and 4.

<table>
<thead>
<tr>
<th>Number</th>
<th>Type</th>
<th>+5 V</th>
<th>Gnd</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC1</td>
<td>7475</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>IC2</td>
<td>82523</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>IC3</td>
<td>HP7340</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>IC4</td>
<td>HP7340</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>IC5</td>
<td>HP7340</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>IC6</td>
<td>HP7340</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>IC7</td>
<td>HP7340</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>IC8</td>
<td>74157</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>IC9</td>
<td>74157</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>IC10</td>
<td>HP7340</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>IC11</td>
<td>HP7340</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>IC12</td>
<td>HP7340</td>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>

already contains one. The 7340s can simply be attached to the data bus at any other parallel output port and strobed from a chip select decoder.

Figure 4 is the circuit of the unit similar to the one Ray used. Two multiplexer circuits alternate the input connections to the displays so that when switch 1 (SW1) is in the octal position, the circuit performs as figure 2, and when in the hexadecimal position, as figure 3. The leading character is blanked when in the hexadecimal mode. Two of these circuits are combined in the prototype board of photo 2. The left display is in the hexadecimal mode showing B7 while the right is in the octal mode displaying an equivalent 267 octal. The same binary information is being sent to each port; only the switch setting differs.

Usually these or equivalent displays are advertised only as hexadecimal displays. All strictly hexadecimal displays that I’ve seen contain these same electronics. While alphanumeric displays will also work, they require extensive scanning logic and are an overkill for this application.

In Conclusion

I hope this simple circuit will eliminate any frustration you may have in the area of hexadecimal displays.

If you have any comments about this or any other article I have written, please write and include a stamped, self-addressed envelope. The mail volume has risen to the point where I’m asked similar questions by many experimenters. A few of these letters will be included each month in BYTE’s “Letters” column when appropriate.

One question I’m often asked is whether my introductions are true. So far everything I’ve written is based upon actual people or events. While I take considerable poetic license in describing the situations, it is not necessary to invent fiction when experience is often so much more humorous.
Ohio Scientific has made a major breakthrough in small computer technology which dramatically reduces the cost of personal computers. By use of custom LSI micro circuits, we have managed to put a complete ultra high performance computer and all necessary interfaces, including the keyboard and power supply, on a single printed circuit board. This new computer actually has more features and higher performance than some home or personal computers that are selling today for up to $2000. It is more powerful than computer systems which cost over $20,000 in the early 1970's.

This new machine can entertain your whole family with spectacular video games and cartoons, made possible by its ultra high resolution graphics and super fast BASIC. It can help you with your personal finances and budget planning, made possible by its decimal arithmetic ability and cassette data storage capabilities. It can assist you in school or industry as an ultra powerful scientific calculator, made possible by its advanced scientific math functions and built-in "immediate" mode which allows complex problem solving without programming! This computer can actually entertain your children while it educates them in topics ranging from naming the Presidents of the United States to tutoring trigonometry — all possible by its fast extended BASIC, graphics and data storage ability.

This machine can be economically expanded to assist in your business, remotely control your home, communicate with other computers and perform many other tasks via the broadest line of expansion accessories in the microcomputer industry.

This machine is super easy to use because it communicates naturally in BASIC, an English-like programming language. So you can easily instruct it or program it to do whatever you want, but you don't have to. You don't because it comes with a complete software library on cassette including programs for each application stated above. Ohio Scientific also offers you hundreds of inexpensive programs on ready-to-run cassettes. Program it yourself or just enjoy it; the choice is yours.
Ohio Scientific offers you this remarkable new computer two ways.

Superboard II $279
For electronic buffs. Fully assembled and tested. Requires +5V at 3 Amps and a video monitor or TV with RF converter to be up and running.

Standard Features
- Uses the ultra powerful 6502 microprocessor
- 8K Microsoft BASIC-in-ROM
 - Full feature BASIC runs faster than currently available personal computers and all 8080-based business computers.
- 4K static RAM on board expandable to 8K
- Full 53-key keyboard with upper/lower case and user programmability
- Kansas City standard audio cassette interface for high reliability
- Full machine code monitor and I/O utilities in ROM
- Direct access video display has 1K of dedicated memory (besides 4K user memory); features upper case, lower case, graphics and gaming characters for an effective screen resolution of up to 256 by 256 points. Normal TV’s with overscan display about 24 rows of 24 characters; without overscan up to 30 x 30 characters.

Extras
- Available expander board features 24K static RAM (additional), dual mini-floppy interface, port adapter for printer and modem and an OSI 48 line expansion interface.
- Assembler/editor and extended machine code monitor available.

Challenger 1P $349
Fully packaged with power supply. Just plug in a video monitor or TV through an RF converter to be up and running.

ORDER FORM
Order direct or from your local Ohio Scientific dealer.
- I'm interested. Send me information on your
 - [] Personal Computers
 - [] Business Systems
- Send me a Superboard II $279 enclosed
- Send me a Challenger 1P $349 enclosed
- Include 4 more K of RAM (8K Total) $69 more enclosed

Name ___
Address __
City_________________________ State_________________ Zip________

Payment by: BAC (VISA) [] Master Charge [] Money Order []
Credit Card Account # ________________________________
Expires ___________ Interbank # (Master Charge) ____________
Ohio Residents add 4% Sales Tax

TOTAL CHARGED OR ENCLOSED __________________________
All orders shipped insured UPS unless otherwise requested FOB Aurora, OH

Interested in a bigger system? Ohio Scientific offers 15 other models of microcomputer systems ranging from single board units to 74 million byte hard disk systems.

Circle 290 on inquiry card.
WE'RE ALTOS COMPUTER SYSTEMS. Our SUN-SERIES ACS8000 business/scientific computer creates a new standard in quality and reliability in high technology computers.

HIGH TECHNOLOGY The ACS8000 is a single board, Z80®** disk-based computer. It utilizes the ultra-reliable Shugart family of 8 inch, IBM compatible, disk drives. A choice of drives is available: single or double density, single or double sided. Select the disk capacity you need, when you need it: ½M, 1M, 2M, or 4M bytes. The ACS8000 features the ultimate in high technology hardware: a fast 4 MHz Z80 CPU, 64 kilobytes of 16K dynamic RAM, 1 kilobyte of 2708 EPROM, an AMD 9511 floating point processor, a Western Digital floppy disk controller, a Z80 direct memory access, Z80 Parallel and Serial I/O (two serial RS232 ports, 1 parallel port), and a Z80 CTC Programmable Counter/Timer (real time clock). In essence, the best in integrated circuit technology.

BUILT-IN RELIABILITY The ACS8000 is a true single board computer. This makes it inherently reliable and maintainable. The board and the two Shugart drives are easily accessible and can be removed in less than five minutes. All electronics are socketed for quick replacement. Altos provides complete diagnostic utility software for drives and memory.

QUALITY SOFTWARE Unlimited versatility. The ACS 8000 supports the widely accepted CP/M®** disk operating system and FOUR high level languages: BASIC, COBOL, PASCAL and FORTRAN IV. All available NOW.

PRICE $3,840. Standard ACS8000 system with 32 Kb RAM and ½ Mb disk. FPP, DMA and software optional. Dealer/OEM discounts available. Delivery: 3 weeks ARO.

*Z80 is a trademark of Zilog, Inc.
**CP/M is a trademark of Digital Research, Inc.
Dealer/rep inquiries invited.
Many games are only the point of departure for exploration by the hobbyist. One could extend many of these to any home built computer. A lot of thought went into this book and it shows. I think the book does the best possible thing for a hobby: it makes the hobby more fun.

Noel K. Jukowski
Naval Environmental Prediction Research Facility
Monterey CA 93940

The Pocket Calculator Game Book
by Edwin Schlossberg and John Brockman
William Morrow and Company Inc
New York 1975
158 pages hardbound
$6.95

For many of us, the introduction to the microcomputer is the pocket calculator. However, after we learn its functions, it often ends up in a drawer except for shopping and checkbook balancing. It shouldn’t. There are many ways to use your calculator for enjoyment.

I like the competitive aspect of this computer business, either against the machine or another player. Therefore I like those books which show me new games to play. In this collection of 50 games, the authors present a variety which will appeal to everyone. There are applications for the “four-banger” as well as the more complex scientific models. You can play with one or more calculators, and one or more players. You may throw in dice or playing cards for variety.

There are easy games and hard ones, offering a range for all ages. Several have two versions, a simple method and complex one for those of you with the costlier machines. “1001” is one of several games whose object is to reach a particular number using the fewest moves. Use dice to determine your move, and hope for luck. There is “Calculator Poker” with betting strategy to guide you. For the business minded, there is “Economy” with all the trappings of high finance. The student of political science will find meat in “Cold War” or “Detente.” There are puzzles, mazes and much more. As a puzzle freak, I found my favorite among these pages. By multiplying and dividing in a judicious manner, one can deduce the proper path to follow. A game is a valuable test to see whether your calculator can handle certain operations. This would be an excellent way to check out a calculator that you are considering buying.

Throughout the book, the authors offer samples of how each game should be played, as well as winning strategy. In the introduction are explanations for those concepts which may be new to some readers, such as random numbers, and a glossary of hand calculator terms. A handy index divides the games into like categories, such as number of players, or games with dice, and so forth.
COSMAC VIP, the completely assembled, ready-to-operate RCA Video Interface Processor, opens up a whole new world of computer excitement. New challenges in graphics, games and control functions. Yet it's just $249.00.

Easy to buy. And easy to program, thanks to its unique, easy-to-use interpretive language. You get a complete how-to book including programs for 20 games: fun, challenging, and ready to load and record on your cassette.

Simple but powerful.

Built around an RCA COSMAC microprocessor, the VIP is a complete computer system that can grow with you. It has 2K of RAM, expandable on-board to 4K. Plus a ROM monitor, audio tone output to a built-in speaker, power supply, and 8-bit input and output ports for control of relays, sensors, or other peripherals.

Soon RCA will offer options for color graphics and 256 tone sound generation. An optional auxiliary keyboard will open up an exciting world of two-player games.

Take the first step now.
Check your local computer store or electronics distributor for the VIP. Or contact RCA VIP Marketing, New Holland Avenue, Lancaster, PA 17604. Phone (717) 291-5848.

*Suggested retail price. Does not include video monitor or cassette recorder.

The fun way into computers.
What can you do with your computer? After hearing about the game of Life, you may never ask the question again. Within the capabilities of a very minimal system, Life gives the computer the kind of job it does best: an enormous amount of repetitive logical operations. [The authors' system demonstrates this point: it had 2 K memory and a video terminal at the time of this writing.] This leaves you, the user, free to apply your creative energy on this fascinating game.

Developed by John Horton Conway, a British mathematician at the University of Cambridge, Life was first described in the October 1970 Scientific American by Martin Gardner in his "Mathematical Games" column. Its name comes from its resemblance to changing societies of living organisms which can grow, move and occasionally die out.

The Game of Life

An easy way to understand this game is to imagine an immense gridwork or checkerboard. We call each square in the checkerboard a cell, and the entire board a cellular space. Each cell is identical and can perform a number of specific functions. We won't worry about the edge of the board; let's say the space is large enough so that we never know there is an edge. In the game of Life, each cell can sense its eight neighboring cells (as in figure 1). Each cell in our space is in one of two states: it is either alive, or not alive (quiescent). The cellular space changes with time; time advances over the entire space at once, in steps. Each of these steps is called a generation.

The rules which determine the state of a given cell in the next generation are what give Life its delightful properties. They were chosen with great care by Conway, with reasons in mind that will be discussed later. [For mathematical background information see the book, Introduction to Artificial Intelligence by Philip C Jackson, published in 1974 by Petrocelli-Charter. A discussion of cellular automata and pointers to several detailed references are found in chapter 8.] Let us say there is a pattern of cells in the cellular space, some living, some not. The rules tell which presently living cells survive, which living cells die, and which cells that are not now alive will be living in the next generation. The rules are as follows:

- Each cell presently alive which has either two or three of its eight neighboring cells alive will be living in the next generation.
- Each cell presently alive which has other than exactly two or three live neighbors will not be alive in the next generation.
- If a cell is presently not alive, and exactly three of its eight neighboring cells are alive, it will be living in the next generation.

The above rules are applied all at once in the program for the game of Life. Every cell in the space is checked, as are its neighbors. The fate of that cell in the next generation is then determined. Note that this will amount to many thousands of checks in each generation for a cellular space filling even a small video display screen.

When the program has been loaded into the computer and you've entered the pattern, what can happen as the pattern evolves? There are a number of possibilities.

Figure 1: The center cell (0) has eight neighbors, as does every cell except those bordering the edges of the cellular space in any finite buffer in a computer program. Treating boundary conditions for a finite Life buffer is a fine point of Life program design.

Figure 2: Examples of still life cell patterns, the block (a) and the beehive (b).
Types of Patterns

The pattern may die, leaving you with an empty display as you search your imagination for another possibility to try.

It may stop at what Conway calls a still life. A simple example (figure 2) is the block, another the beehive. These patterns, when left undisturbed, remain the same generation to generation (a little more interesting than a blank screen, perhaps).

The pattern may develop a repeating cycle. The simplest of these is the blinker, which returns to its original self every other generation (see figure 3). A more sophisticated periodically repeating pattern has been described in the February 1971 Scientific American. Discovered by G D Collins Jr, it is called the tumbler (figure 4). It has a period of 14 generations, but after seven it is an upside-down copy of the original pattern; hence its name. Watching the tumbler change, you will notice that in every generation there is a row of empty cells separating two mirror image patterns. Each half helps keep the other half under control. If left to itself, half a tumbler will run over 100 generations before settling down.

There are patterns which have most intriguing properties of motion. The glider shown in figure 5 is one such pattern. It is so named because the way that it moves is called glide reflection, or reflection from a diagonal line. In four generations the glider produces a replica of itself, facing the same direction but displaced one square diagonally. After only two generations, it is a copy of itself pointing 90° from its original orientation. There are actually just two unique patterns in the life history of the glider, but it takes four generations for the orientation to match that of the original pattern.

Another example of a moving pattern is the lightweight spaceship shown in figure 6. This pattern also requires four generations to move and to complete a full cycle; it also has only two unique patterns if we disregard their orientation. Note that this pattern moves along a line of cells, as opposed to the glider's diagonal motion.

Finally, patterns exist which continue indefinitely, forever evolving. (It was not certain that such infinite patterns should exist for some time after Life was developed.)

Infinite Evolution a Possibility?

Conway selected the rules of Life to meet the following considerations:

- It should not be obvious that an initial pattern will grow without limit. (Conway specified that cells can die from overcrowding.)
- It should seem possible (but not obvious) that some patterns will grow without limit.
- Some initial patterns should grow and change for a considerable period of time.

As reported in the original Scientific American series of articles, Conway conjectured that there were no patterns which would actually grow without limit. At that time he offered a $50 prize to the first person to prove or disprove his conjecture. A short time afterwards a group from MIT disproved it by their discovery of a glider gun. The glider gun produces a glider every 30 generations. Since the glider moves away from its birthplace, we may consider the glider gun to be a special type of repeating pattern (see figure 7). The MIT group also discovered other remarkable events in Life by observing such things as collisions between numerous gliders.

Symmetry

A rather curious property in the evolution of many patterns is their tendency to gain symmetry. As an example, let us begin with a pattern with only partial symmetry called the snowflake, shown in figure 8a. In 15 generations it becomes the pattern called...
the honey farm, shown in figure 8b. (This initial pattern used for producing a honey farm differs from the one discovered by Conway and his collaborators.) Within the brief history of this pattern, it gains new symmetry it can never lose. Apparently, unless the pattern dies out completely, symmetry can only be gained, never lost.

Another example of a pattern increasing its symmetry is given in figure 9. Again, beginning with only partial symmetry, it evolves into another known pattern, a beautiful oscillating pattern called Pulsar CP 48-56-72. It reaches this pattern in 26 generations during which it gains its symmetry. (The initial pattern given here is again an alternative path to the known pattern.) The oscillating period of the Pulsar is three generations, and it provides a very interesting display.

The “Garden of Eden”

Up to now, the evolution of patterns has been considered, using some initial pattern. Can this initial pattern itself have unusual properties? It has been proven that a so-called “Garden of Eden” pattern must exist for the game of Life. A “Garden of Eden” pattern is one which cannot be produced by any other pattern. In other words, no pattern ever becomes a “Garden of Eden” pattern.
Figure 7: The glider gun is shown in mid-cycle with two generated gliders, the arrow indicating their direction of travel. A more detailed description of this pattern is given in the February 1971 Scientific American column by Martin Gardner, page 114.

of Eden" pattern. Such a pattern can only exist, therefore, as an initial pattern specified in generation zero.

It has been shown that a "Garden of Eden" pattern for Life can exist within a square with 10 billion squares on each side, but possibly it could be much smaller.

Perhaps one way to find a "Garden of Eden" pattern is to apply some programming skill, and all your computer's spare time. You start with a pattern you devised or one your computer generated, randomly or otherwise. The computer could then attempt to find a pattern which generates your pattern by trying out all the patterns possible in a larger space than your pattern uses. If it did not succeed in generating your pattern, you would have found a "Garden of Eden" pattern. A lucky application of this brute force technique may come up with the answer, but the going will be very slow. Perhaps some clever shortcut could be developed.

A Warning

The game of Life is downright addictive because there is always another pattern that you'll want to try out in your search for attractive, unusual or unpredictable patterns. Examining properties of symmetry and motion, and looking for "Garden of Eden" patterns and patterns like the glider gun will test your ability to predict fate in the game of Life.

The Program

A program for Life could be written in BASIC or some other high level language, but it would be grossly inefficient, both in size and speed. First of all, only a single bit is required to store each cell, but there is no simple way to manipulate individual bits in BASIC. You would therefore be forced to use one element of a floating point array for each cell, and since a floating point number typically uses three bytes, you would only make use of one out of every 24 bits. That would mean for a 64 by 64 cellular array you would need 12 K bytes. (Actually, you would need twice this number since two copies of the cellular array are needed in the simple Life program to be described.) The obvious way to reduce the size is to use every bit; a 64 by 64 cellular array would then require only 512
I haven't stopped laughing since I read Steve Ciarcia's new book, "TAKE MY COMPUTER...PLEASE!" It's Steve's first full length book, and it's the funniest to come along in years! It's even funnier if you're into computers! Just one crazy misadventure after another, based on Steve's true experiences, and his computer's inability to cooperate. You'll roar when you read how he tries to win at Jai-Alai and gets beaten at his own game. Or how he attempts a stock market killing that goes wrong when he logs into his broker's computer circuit! Imagine what happens when our hero sets up a computerized speed trap! And you'll fall on the floor when our hero builds a foolproof computer burglar alarm, and then locks himself out of the house with a souffle in the oven! You can't beat this book for computerized belly laughs. It's got lots of hilarious drawings that make Steve's easy writing style come to life even more. And, you can't beat the low, low price of only $5.95 + S/H!

Order your copy of "TAKE MY COMPUTER...PLEASE!" Do it today. It will tickle your fancy.

"Take my computer...please!"

by STEVEN CIARCIA

Scelbi Publications
P.O. Box 133 PP STN
Milford, Connecticut 06460
(A division of Scelbi Computer Consulting, Inc.)
(203) 874-1573

See it at your favorite computer/electronics dealer.

Or order direct from SCELBI: Price shown for North American customers. Master Charge, VISA, Postal and Bank Money Orders preferred. Personal checks delay shipping up to 4 weeks. Pricing and availability subject to change without notice. IMPORTANT! Include 75¢ postage/handling for each book delivered by U.S. Mail Book Rate or $2 for each book shipped First Class or via UPS.
Figure 8: The snowflake (a) and the pattern it generates after 15 generations, the honey farm (b).

Figure 9: This seed pattern (a) generates pulsar CP 48-56-72. One of the four cycle phases of the pulsar is shown in (b).

Figure 10: Flowchart of a Life program. [Authors' note: We have written a Life program for the SwTTPC 6800 system from this flowchart. Our version requires about 1.5 K of memory for a 2000 cell array, and takes only 6 seconds per generation. Our program can be configured for any size array up to a maximum of 2016 cells. Our 6800 Life program can be obtained from The Computer Warehouse Store, 584 Commonwealth Av, Boston MA 02215.]

bytes. The most efficient way to manipulate individual bits is to use assembly language. This will also be about ten times faster than a corresponding BASIC program, due to direct execution.

A general flowchart for a Life program is shown in figure 10. The program requires two workspaces, each the full size of the desired cellular array. The initial pattern is entered into workspace #1. The program then creates the next generation in workspace #2, since the original generation must not be altered until the new one is completed. After determining the new generation in workspace #2, it is copied back into workspace #1. The pattern is then displayed, and the procedure is repeated until the program is stopped.

As can easily be seen, Life can be a very interesting game. There are certainly moving patterns other than those described herein, and the possibility exists that one of you reading this could find a previously unknown moving pattern. If you make any discoveries while running Life, we would be glad to hear from you. Enjoy Life!
Double density Horizon Kit
just announced...double the storage at the same price!
The best buy just got better. Now, Horizons are double density at the same price as single density. 18K bytes of on-line information per disk! Single density will never again be your choice, as you can copy and convert all North Star software and programs to double density.

- 18K bytes per disk
- 8032 processor
- 16K RAM
- 16K 16K memory, $544
- 5/4 disk drive, $345
- exclusive application software

$1349
(reg. $1599)

LA 180 DECprinter with Serial Interface
Immediate delivery on the field-proven performer
180 cps has never been so affordable. For a limited time, MicroWorld lowers the price of Digital's versatile medium speed printer. Reliable technology and an extensive array of human engineering features make the LA 180 the smart choice for local or remote business applications.

- 180 characters per second printing
- tractor feed with switchable forms length control
- upper/lower case & stand
- compressed print, 16.5 characters per inch

$1895
(reg. $2495)

Texas Instruments Impact Printer
Immediate delivery
TI's new 810 multi-copy impact printer. Prints up to 440 lines per minute because of its unique look-ahead bi-directional feature, controlled by an on-board microprocessor.

- 150 cps, 110 to 9600 baud switchable
- Includes tractor feed
- RS232 serial interface

$1695

IP-125 Printer by Integral Data

$749
(reg. $799)

More specials from stock

<table>
<thead>
<tr>
<th>Product</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soroc IQ 120</td>
<td>$859</td>
</tr>
<tr>
<td>TI 745 KSR Portable Terminal</td>
<td>$1650</td>
</tr>
<tr>
<td>Hazeltine 1400 Terminal (ass'd)</td>
<td>$770</td>
</tr>
<tr>
<td>Hazeltine 1500 Terminal (ass'd)</td>
<td>$995</td>
</tr>
<tr>
<td>Bally Arcade</td>
<td>$299</td>
</tr>
<tr>
<td>Centronics 779 with tractors</td>
<td>$1095</td>
</tr>
</tbody>
</table>

NEW! MicroShopper Guide Vol. V $5.00 (Includes $1.05 postage)
MicroWorld (formerly Byte Shop Mall Order) is a division of The Phoenix Group, Inc. Call for all your computer needs. all prices plus shpg. & hdlg.

1425 W. 12th Pl. • Tempe, AZ. 85281 • 602-894-1193
or place your order TOLL FREE
1-800-528-1418

Circle 226 on inquiry card.
You can rely on SCELBI publications. Because Computer info that is fun and exciting. Written and illustrated with YOU, the computer!

NEW! “Learn Micro-Computers.” Quickly, easily and enjoyably. For the beginner just getting started in microcomputers. Here are all the fundamentals behind the operation of virtually all microcomputers. Everything the beginner needs in one handy package. Contains the popular book Understanding Microcomputers. Written in simple English. Concise. Accepted as the standard for the neophyte, you must own this 300-page no-nonsense, easy-reading text. Includes simple-to-use glossary of key microcomputer words. Companion cassette helps you get right into it. Chapter-by-chapter talking synopsis. Key review questions. References to page numbers for further review. You'll gain extra knowledge needed for reading and understanding computer magazines, manufacturer's literature and to feel "at home" around computers. A great new idea developed by the computer experts at SCELBI. Get Yours Now! At your favorite computer electronics dealer. Or order direct. Learn Micro-Computer only $14.95. Paperback edition of book alone: $9.95. Hardcover edition alone: $14.95. Shipping handling extra.* (Available after December 1)
hey make sense! They’re easy to read and understand.
For the neophyte. The pro. The advanced wizard. Everyone.

SCETBL's Software Gourmet Guides and Cookbooks for
"8080" and "6800"

NEW!
Steve Ciarcia’s hilarious new computer novel, “Take my computer...please!”

An uproariously funny full length book about Steve’s true-to-life misadventures and his computer’s inability to cooperate. Read his off-the-wall attempt to beat the Jai-Alai system. Or how he attempts a stock market killing but logs wrong info into his broker’s computer. What happens when Steve sets up a computerized speed trap? And page after belly laughing page of nonsense, jollies and even illustrations to bring the stories to life. 128 pages. Hard cover. You’ve got to get yours now! See it at your favorite computer/electronics dealer. Or, order direct. $5.95. Shipping/handling extra.

The Z80 Instruction Handbook now available!
Your complete guide to the powerful Z80 instruction set. This handy, compact reference provides a clear explanation. It’s an ever ready instant reference that can be carried in your pocket. Explains the instruction set in meticulous detail. Industry standard mnemonics are used throughout. Machine codes are presented in both octal and hexadecimal format. A convenient index lists all instructions alphabetically along with machine codes and timing information. Don’t wait. It’s available at computer and electronics retail outlets or direct from SCETBL. Only $4.95. Shipping/handling extra.

Looking for holiday gift ideas? Give someone the world of computers! Make it a SCETBL publication. They make excellent Christmas gifts. There’s one just right for that special someone on your list.

SCetbi Publications
P.O. Box 133 PP STN, Milford, CT 06460
(a division of Scetbi Computer Consulting, Inc.)
(203) 874-1573

*Prices shown for North American customers. Master Charge, VISA, Postal and Bank Money Orders preferred. Personal checks delay shipping up to 4 weeks. Pricing and availability subject to change without notice. IMPORTANT! Include 75¢ postage/handling for each book delivered by U.S. Mail Book Rate or $2 for each book shipped First Class or via UPS.
Some Facts of Life

David J Buckingham
Computer Communications
Network Group
E4, room 236BA
University of Waterloo
Waterloo, Ontario
CANADA N2L 3G1

Introduction

Life is a game that was developed by Prof. John H. Conway at the University of Cambridge and first presented by Martin Gardner in the October 1970 "Mathematical Games" column in Scientific American. The game is derived from a field of mathematics known as automata theory (in this case cellular automata). In the February 1971 "Mathematical Games" column the game was described again along with a good introduction to automata theory.

The game is played on a uniform cellular grid (in this case an area divided into squares, such as graph paper) where every cell is surrounded by eight immediate neighbors (i.e., cells touching the center cell under consideration). Each cell, or automaton, can be in either a 1 or 0 state (on or off — alive or dead). The population of cells is changed by a set of predetermined rules. These changes proceed in intervals called generations.

The rules are as follows:

- If a live cell is surrounded by two or three live cells in the present generation, it will remain on (or live) in the next generation.
- If an empty cell is surrounded in the present generation by exactly three neighbors, the cell will be on (i.e., born) in the next generation.
- If a cell has no neighboring live cells, or only one neighbor, it dies of loneliness and will be turned off in the next generation.
- If a cell has four or more live cells neighboring it, it will die in the next generation from overcrowding.

These rules are to be applied simultaneously to every cell in the pattern. The application of the rules to every bit in the field constitutes a generation. See figure 1 for an example of rule applications.

Unresolved Questions

What is a unique object in this universe of cells? What is a collection of objects? How do we tell them apart? These are difficult questions to answer conclusively. For the purposes of this article, an object is a cluster of connected bits or cells, a collection of clusters which will cause births by being near one another, or a collection of clusters that prevent some birth that would otherwise occur. Figure 2 gives some examples of patterns that would be objects and some that would not.

A collection of distinct objects is referred to as a constellation. Some constellations are so common that they are named as though they were a single object. Some of these are presented in figure 3.

Objects

Most people with access to some sort of computer have probably had a chance to observe the variety of patterns that exist within Life and to note some of the special properties particular to some of these objects. In order to be able to manipulate these objects, they have been classified.

The major groupings of classification are still lifes, oscillators, spaceships, uniform propagators, and a catch-all group of random objects. A rough outline of this system is shown in table 1. I shall attempt to describe...
Table 1: Classes and subclasses of objects occurring in Life, along with supplementary information.

<table>
<thead>
<tr>
<th>Class</th>
<th>Subclass</th>
<th>Number of objects known</th>
<th>Smallest object(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class I (still lifes)</td>
<td>subdivided by symmetry</td>
<td>(\infty)</td>
<td>block</td>
</tr>
<tr>
<td>Class II (oscillators)</td>
<td>((1a1)) flip flops ((1a2)) on-offs</td>
<td>(\infty)</td>
<td>blinker beacon</td>
</tr>
<tr>
<td></td>
<td>((1b)) billiard table configurations</td>
<td>(>100)</td>
<td>MIT oscillator</td>
</tr>
<tr>
<td></td>
<td>((1c)) inductors</td>
<td>4</td>
<td>tumbler</td>
</tr>
<tr>
<td></td>
<td>((1d)) pulsators</td>
<td>8</td>
<td>mazing, pentadecathlon</td>
</tr>
<tr>
<td></td>
<td>((1e)) shuttles</td>
<td>5</td>
<td>shuttle</td>
</tr>
<tr>
<td></td>
<td>((1f)) eater bound</td>
<td>23</td>
<td>two eaters</td>
</tr>
<tr>
<td>Class III (spaceships)</td>
<td>((1la)) diagonal</td>
<td>1</td>
<td>glider</td>
</tr>
<tr>
<td></td>
<td>((1lb)) orthogonal</td>
<td>3</td>
<td>lightweight spaceship (LWSS)</td>
</tr>
<tr>
<td>Class IV (uniform propagators)</td>
<td>((1Va)) stationary</td>
<td>2</td>
<td>glider gun</td>
</tr>
<tr>
<td></td>
<td>((1Vb)) moving (puffer trains)</td>
<td>4</td>
<td>switch engine</td>
</tr>
<tr>
<td>Class V (random)</td>
<td>subdivided by type of objects in census</td>
<td>(\infty)</td>
<td>bit (single cell)</td>
</tr>
</tbody>
</table>

Table 2: The number of small still life patterns which occur for each number of live cells up to 14.

<table>
<thead>
<tr>
<th>Number of live cells</th>
<th>Number of still life patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>11</td>
<td>46</td>
</tr>
<tr>
<td>12</td>
<td>121</td>
</tr>
<tr>
<td>13</td>
<td>240</td>
</tr>
<tr>
<td>14</td>
<td>619</td>
</tr>
</tbody>
</table>

Figure 3: Commonly occurring constellations. These are not a single object, but bear names for convenience, as follows: a, traffic light; b, honeyfarm; c, fleet; d, bakery.

Figure 4: An assortment of still life objects. These remain stable from generation to generation when not disturbed by other objects. They bear names as follows: (top row, left to right) a, block; b, tub; c, boat; d, beehive; e, ship; f, barge; g, snake; h, aircraft carrier; (bottom row, left to right) i, burloaf; j, long boat; k, long snake; l, period 3 eater; m, pond; n, long barge; o, shillelagh; p, hat.
each class and some of the objects of particular note within each class.

Class I: Still Lifes

Still lifes are objects in which there are no births or deaths and so remain the same from generation to generation. These particular objects are fairly easy to enumerate. An associate of mine, Peter Raynham, wrote a program which found all still lifes of less than 15 bits. The statistics of their distribution are presented in Table 2. Some of the smaller ones are shown in Figure 4.

One of the most practical uses of a still life is as an eater. An eater is an object capable of destroying or modifying another object and being able to return to its original configuration. Still lifes are good for this since they are able to attack any configuration at any phase (they are period 1 objects and do not change).

At present we know of three different eaters, each able to attack different types of objects. By differing objects, I mean objects that have different border configurations. Since the eater attacks only the outside surface of an object, this outer surface determines which type of eater might be suitable for use. Each eater will be described with an object that it can "eat" to show how that eater works.

The smallest member of the eater family is the block, shown in Figure 4a. The block is effective in consuming objects that have one connected bit in the row facing it (as in Figure 5). Its other reason for utility is the fact that it is very small. In oscillators and spaceship guns, where there may be little room for the removal of spurious debris, there is usually enough room for a block.

The second object of this family is the period 2 oscillator, which if traced, will reveal a flip flop, deaths occur because of under-population. (This is almost always true. Figure 9 is a period 2 oscillator, which if traced, will reveal that it adheres to both definitions.) A variety of small period 2 oscillators is shown in Figure 8; the type of each oscillator is also given.

Next in the hierarchy are billiard table objects that exhibit a flat connected outer border that is at least two bits long. Figure 6 shows such an attack. Almost all objects will develop this type of border if they expand. This property renders the period 3 eater invaluable. Although it is not quite as small as the block, it is still very much smaller than any other of the eater family.

The third such object, the period 6 eater, exhibits similarities to the period 3 eater in the way it eats; however it requires six generations to dispose of its prey and return to its initial state, whereas the previous eater takes three generations. This increase in time is important for success if the object being eaten has left some transient debris near the eater. If the eating mechanism were to reform itself quickly, this debris could kill the eater. In this case, the eater does not reform for an extra three generations, during which time this debris may well vanish.

Most of the period 6 eater's prey are the same as the period 3 eater's; but both are able to attack certain additional objects, complementing each other very nicely. Figure 7 shows the period 6 eater conveniently disposing of a block.

Class II: Oscillators

Oscillators are nonmoving objects with periods of two and greater. A blinker, shown in Figure 8a, is a simple oscillator consisting of three cells alternating in subsequent generations between a vertical and horizontal row. At present, we know of roughly 150 unique oscillators with a period greater than two.

There is a large undetermined number of period 2 oscillators, since they are very easy to construct. The oscillators have been subclassified by relating their mechanisms and their degree of naturalness. (Natural objects are those which may evolve from random patterns of live cells without intervention by the experimenter.)

Since there are only two basic ways in which a period 2 oscillator can work, these objects are very well defined. Therefore, they are assigned to their own subclass (class IIa). They must work as flip flops, on-offs or a combination of the two. In a flip flop, deaths occur because of under-population. In an on-off, any deaths that occur are due to over-population. (This is almost always true. Figure 9 is a period 2 oscillator, which if traced, will reveal that it adheres to both definitions.) A variety of small period 2 oscillators is shown in Figure 8; the type of each oscillator is also given.

Figure 5: A block devours a beehive. This process requires seven generations, as shown here.
See It All at Once!

Screensplitter

Text Editing and Multiple Process Display System

from Micro Diversions

unretouched photo 13" or larger slow phosphor monitor recommended

- 40 lines, 86 characters/line
 - UPPER/lower case full ASCII with special symbols
- Onboard intelligence:
 - 1K byte fast subscreen control, positioning and text formatting software
- Custom reprogrammable character generator for unusual applications
- 140 page Owner’s Guide covering hardware, software, system integration
- Available from stock

Micro Diversions, Inc.
8455-D Tyco Road
Vienna, Virginia 22180
(703) 827-0888

$295 Kit
$395 Assembled
$15 Owner's Guide only

VISA master charge

Circle 225 on inquiry card.
Figure 6: The most versatile eater object, the period 3 eater, devours the precursor pattern to beehive. While in isolation a 7 cell still life, this eater attacks other objects with a flat connected outer border at least two cells in length.

Figure 7: A period 6 eater attacks and eats a block. This new eater is notably more symmetrical than the period 3 eater. Functionally, each complements the capability of the other.

Figure 8: A variety of small period 2 oscillators. These objects alternate in succeeding generations between two patterns. Those on the top row bear names as follows (left to right): a, blinker; b, beacon; c, clock; d, toad; e, bipole; f, tripole; those on the bottom row are unnamed flip flops. The beacon is the only example here of an on-off type oscillator.

Figure 9: A period 2 oscillator which functions both as a flip flop and as an on-off.
Blaise Pascal

The NMS 85 Series
Northwest Microcomputer Systems

Classic OEM Development Tools
85/P - $7,495
- 8085, 3MHz, 54K User/10K System Memory
- 1.2 Mb Dual Density Floppies, 4ms Step, DMA
- Keyboard, RS232 Ports, Pascal, BASICs, Assembler
Options
- Fast Floating Point APU, 5MHz Timers, Ports, Modem, Clock
- COBOL, FORTRAN, Sort, Decimal, Graphics

Vintage Turnkey Business Systems
- Accounts Receivable: Billing, Aging, Full Forms Data Entry
- Word Processing: Screen Edit, Search, Justification, Page Numbering, Headings, etc.
- Client Information Management
- General Ledger
- Fuel Dispensing and Accounting

121 East Eleventh, Eugene, Oregon 97401 (503) 485-0626
Figure 10: Billiard table configurations. These oscillate within an enclosed area, as do balls on a billiard table. These are artificial objects which have not occurred unless specifically constructed by the experimenter. They tend to be large; the smallest is composed of 18 live cells. Those illustrated bear names as follows: a, MIT oscillator (a period 3 object); b, burloferimeter (period 7); c, an unnamed period 8 object; d, wavefront (period 4); e, an unnamed period 5 oscillator; f, an unnamed period 9 object.

Figure 11: Inductor and pulsator oscillators. These are natural objects which may appear from automation of random patterns. Inductors possess an imaginary line of symmetry which pulsators lack. They are called by the following names: a, pulsar (an inductor of period 3); b, tumbler (period 14 inductor); c, an unnamed period 8 inductor; d, pentadecathlon (pulsator of period 15); e, mating (period 4 pulsator); f, unix (period 6 pulsator). The pentadecathlon is of particular historical significance.
YOUR NEW LIFE STYLE!

Discover How to Improve Your Personal Abilities

An amazingly powerful application of a computerized personal information management system. In handy booklet form.

- Increase your personal capabilities
- Save money
- Improve your ability to plan
- Locate important facts quickly
- Eliminate the drudgery of routine chores

These all add up to a better life style for you! A new way of living which can be more pleasant, bring you more happiness and success.

Information. That's the key. Your command of information is what gives you the power to succeed.

Information For What?
Information you need to make decisions...to solve problems...to seek creative solutions in real life situations. Information that when under your control will amplify your personal abilities.

You've Heard of the Information Explosion?
Now it's time for an explosion in your personal capacity to deal with a wealth of information. The personal computer is the answer. And now the means is available for you to use it to your personal advantage.

Can a Computer Really Do It?
You bet it can! The power of a personal computer is fantastic. Untold amounts of information can be processed in the blink of an eye. Chores you've found laborious can be done by your simple command. Facts that have taken hours to find can now be located at the snap of your finger. That's what a personal computer can do...

...if YOU know how!

YOU? Yes, you! You need to have the know-how to unleash the power of the microcomputer for your benefit.

Until now only the programmers and designers could make such profitable use of the personal computer. PIMS - the Personal Information Management System - has changed that. You don't have to be a programmer to use PIMS. PIMS is a program which you type into a personal computer. Then it's just a matter of following the instructions for setting up your own tasks for computer assistance.

Can It Really Be That Easy?
Sure, that's the beauty of a program for information management. It's an alternative to programming from your standpoint. All you do is define the job you want the microcomputer to do. Express yourself in simple commands and statements. Then the microcomputer plus PIMS does the rest.

What Can It Do?
PIMS will enable you to function with increased effectiveness. Use it to balance your check book. It can keep an inventory of your possessions. (Ever store something and afterwards forget where? PIMS will tell you the location!) Use PIMS to plan your day, vacation, education and important life events. PIMS can tutor math, keep your personal mailing list or telephone directory. Use it to keep track of personal disbursements. It can even be used to schedule your TV viewing. And more. Much more. There's practically no limit to the type of applications.

Here's what you get.
All in one neatly bound volume,
- The microcomputer and its potential for personal use
- Ways in which your microcomputer can be helpful in everyday life and serving basic personal needs
- PIMS - Personal Information Management System. All the basics and jargon
- PIMS program outline and flow chart
- 15 sample ways in which PIMS can work to your personal advantage
- The complete listing of a practical functional program. Written in BASIC language. Ready to use!

The PIMS program was prepared by SCELBI using Microsoft® compatible BASIC as used in a wide variety of personal computers. Systems like Apple II, Radio Shack TRS-80 (level II), Ohio Scientific 400 and many other small computer systems.

Don't Have a Computer?
Even if you are still just thinking about getting your own personal computer, you should have this book. It will show you in clear understandable terms what you'll be able to accomplish with your own microcomputer.

Coming Soon!
PIMS - Personal Information Management System will soon be available in handy booklet form. First-off-the-press copies will be ready for shipment in January. At only $9.95 (plus shipping and handling charges) it's got to be the greatest bargain to come along!

An Offer You Won't Want to Refuse:
Now, as a pre-publication offer, you can get your copy for $1 off. That's right, if you act now, before January 1, you can get your copy of PIMS for just $8.95.*

Don't Wait.
Get your copy now! You'll discover how you can find your new life style - with PIMS.

*Prices shown are for North American customers. Pricing, specifications, availability subject to change without notice. Personal checks may delay shipment. IMPORTANT! Include $1.50 postage/handling for each item to be delivered by U.S. Mail. Book Rate, or $2 for each item to be shipped First Class or UPS.

A trade mark of Microsoft, Inc.
configurations (class I1b). These oscillators are configurations that oscillate within an enclosed area, like balls on a billiard table. Billiard table configurations are considered to be very artificial, since they have not turned up in the histories of any random objects. By this, I mean that if live cells are placed randomly on the plane, the patterns which they generate probably will never evolve into an artificial object, such as a billiard table configuration.

They are quite large, as evidenced by the examples in figure 10. The first example is the smallest such object, and it consists of 18 bits. This subclass of oscillators contains the only known examples of oscillators with periods of 7, 10 and 11.

The next class, inductors (class I1c), are natural oscillators that exist in two or four pieces with an imaginary line of symmetry between them (exhibiting one-way or two-way orthogonal symmetry). Pulsators (class I1d) are also so far considered to be natural oscillators except that they do not have this line of symmetry. One of their properties is that they require no external stimulus to continue oscillating.

The aforementioned subclasses have greatly similar characteristics, so I have grouped them together. Most of the initial oscillators that were found were from this group, since the methods for harnessing random objects into oscillators were not known at the time.

Some of these oscillators are presented in figure 11; the most important of these is the *pentadecathlon*. This object throws off several sparks (small collections of dying bits) that can be used to reflect a glider, reflect two gliders, turn a glider into a block, turn a block into a glider, etc. Some of the early research into Life probably might not have occurred if this object had not been discovered.

Shuttles (class IIe) are important for the existence of much of the interesting research into Life. Shuttles are objects that move back and forth with a relatively long period. The two primary shuttles, the *basic shuttle* and the more complex *twin bees*, leave debris at their extremities which would fatally wound the shuttles if the debris were not removed before they returned (see figure 12). This is one of the uses of the eaters that was discussed in the section on still lifes. In the examples I have used blocks to remove the debris from the ends, but just about any of the eaters would have suited some phase of this debris. The debris left behind may at first seem to be somewhat of a bother, but without it there would most likely not be any known glider guns (defined later).

The very last class (class I1g) contains *eater bound oscillators*. These oscillators consist of patterns which generally must be manipulated in order for the object to return to its initial state. In figure 13 a good example of two eater bound oscillators is given that also shows the differentiation between two eaters acting on the same object (which is not often possible). A period 52 oscillator (figure 14) is shown to illustrate the unusual properties of objects being eaten. The center object will be attacked by one eater twice each time it rotates (the object rotates 90° every 13 generations). The example in figure 15 is a period 6 oscillator using the period 6 eater. The 7 bit eater is not suitable here because it would have returned to its original state too soon and would have attacked the reforming object. (If the 7 bit eater

Figure 12: Shuttle objects. Object a is the basic shuttle; object b is the twin bees shuttle. These move back and forth with a relatively long period. Eaters are used to remove debris from their path.

Figure 13: Two eater bound oscillators. These differ in that they are stabilized by two different eaters. Oscillator a has a period of 6; oscillator b has a period of 5.
Wondering which memory is best for you?

Base 2 offers the following products to the S-100 market at the industry's lowest prices:

8K Static Memory Board
This 8K board is available in two versions. The 8KS-B operates at 450ns for use with 8080 and 8080A microprocessor systems and Z-80 systems operating at 2MHz. The 8KS-Z operates at 250ns and is suitable for use with Z-80 systems operating at 4MHz. Both kits feature factory fresh 2102's (low power on 8KS-B) and includes sockets for all IC's. Support logic is low power Schottkey to minimize power consumption. Address and data lines are fully buffered and 4K bank addressing is DIP switch selectable. Memory Protect/Unprotect, selectable wait states and battery backup are also designed into the board. Circuit boards are solder masked and silk-screened for ease of construction. These kits are the best memory value on the market! Available from stock...

- 8KS-B $125 (assembled and tested add $25.00)
- 8KS-Z $145 (assembled and tested add $25.00)

16K Static Memory Board
Base 2 can now offer the same price/performance in a 16K static RAM as in its popular 8K RAM. This kit includes 8K bank addressing with 4K boundary address setting on DIP switches. This low power unit provides on-board bank selection for unlimited expansion... No MUX board required. Using highest quality boards and components we expect this kit to be one of the most popular units on the market. Available in two speed ranges, the 16KS-B operates at 450ns while the 16KS-Z operates at 250ns.

- 16KS-B $285 (assembled and tested add $25.00)
- 16KS-Z $325 (assembled and tested add $25.00)

Z-80 CPU Board
Our Z-80 card is also offered in two speed ranges. The CPZ-1 operates at 2MHz and the CPZ-2 operates at 4MHz. These cards offer the maximum in versatility at unbelievably low cost. A socket is included on the board for a 2708 EPROM which is addressable to any 4K boundary above 32K or the on-board 2708. An On-board run-stop flip-flop and optional generation of Memory Write allows the board to run with or without a front panel. The board can be selected to run in either the 8080 mode, to take advantage of existing software, or in the Z-80 mode for maximum efficiency.

- CPZ-1 $110
- CPZ-2 $125

S-100 for Digital Group Systems
This kit offers, at long last, the ability to take advantage of S-100 products within your existing Digital Group mainframe. Once installed, up to four S-100 boards can be used in addition to the existing boards in the D.G. system. The system includes an "intelligent" mother board, ribbon cables to link existing D.G. CPU to the DGS-100 board and a power wiring harness. The DGS-100 is designed to fit in the 5-3/4" x 12" empty area in the standard D.G. cabinet. It may seem expensive but there's a lot here! End your frustration!

- DGS-100 $295

Send for more details on these products. Get on our mailing list for information on more to be announced products at factory-direct prices from Base 2. Why pay more when you can get the best at these prices???

P.O. Box 3548 • Fullerton, Calif. 92634
(714) 992-4344
CA residents add 6% tax
MC/BAC accepted • FOB — U.S. destination
is used, the patterns results in two blinkers, six blocks, and one tub in 110 generations.)

Class III: Spaceships

Regrettably, there have been no new spaceships reported since the orthogonal spaceships presented in *Scientific American* in 1971. These are summarized in figure 16. The glider (figure 16a), which features diagonal movement, has been used for many simulations and constructions.

Movement by an object of one space in one generation is referred to as movement at the speed of light (c). There is no distinction made between diagonal and orthogonal movement, even though algebraically the distances are not the same. The glider travels at c/4 and the three other spaceships travel at c/2. The interesting thing to note is that the three larger spaceships travel orthogonally. The orthogonal spaceships are most useful in several of the types of puffer trains to be discussed in the next section.

Class IV: Pattern Producing Mechanisms

Class IV is divided into two sections: the

Spaceship Guns

Class IVa consists of spaceship guns. These objects eject projectiles of class III objects. The main two objects of class IVa are the glider guns of primary period 30 and 46. There are no primary guns which produce any of the other three spaceships. However, such a mechanism can be built using glider guns.

The period 30 glider gun (figure 17) works by having two shuttles of the type presented earlier aimed at one another. The debris that would normally be removed by eaters collides and just happens to create a glider that escapes without harming the shuttles. The period 30 glider gun is of paramount importance to simulations in Life and the possible existence of computing mechanisms. These implications will be discussed in a later article.

The period 46 gun, known as a newgun, also works by having two shuttles collide. It may be seen in figure 18. In this case the shuttle consists of two B heptominoes (described later) travelling opposite one another to produce debris at both ends of travel. A glider is produced when these two shuttles, which are of the twin bees type, collide at right angles. There are other arrangements of this shuttle that produce gliders in other ways, including an ambidextrous variety.

There is another interesting variation: if one of the debris removing blocks is removed from the end of one of the twin bee shuttles, the gun will still work.

Puffer Trains

Puffer trains are patterns that move and leave debris in their wake. Because these patterns do move, as opposed to the stationary spaceship guns, they are not only able to produce moving debris but also trails consisting of stationary objects. Leaving stable objects is useful when the intention is to produce a train of puffers to build some sort of construction on the fly.

The three basic puffer trains all work by different means. The train which was discovered first is presented in figure 19. The center object is a *pre-B heptomino*, which, if traced, will seem to move forward until the debris in the back of it stops the uniform forward motion. In this case, the B heptomino is bounded by two light-weight spaceships able to control the object; the whole configuration puffs along at c/2.

Figure 14: A long period eater bound oscillator. This object has a period of 52; 13 generations are required for 90° of rotation. The central section is attacked twice by one eater each time it rotates.

Figure 15: A period 6 oscillator which employs the period 6 eater. This matching of period frequencies prevents the eater from disrupting the reforming central group.
This object reaches a stable period of 140 after a startup time of over 1000 generations. Additional spaceships may be added to the end of the object to further adjust the output from it in order to reduce the final period, the startup time necessary to reach a stable period and to adjust the output to blocks, gliders, etc.

A type of puffer similar to the previous one is called a Schick ship (after its discoverer). This is an interesting object (consult figure 20) in that the "engine" is really a tagalong, an object capable of being pulled along behind another object (usually a spaceship). Here, a heptomino follows a pair of mirrored spaceships. It is quite remarkable that this configuration leaves a small trail of debris behind it and that, although this debris would die if left alone, additional spaceships following behind are able to trigger the debris into varying forms of static debris. The static debris can be left behind and used later. It is relatively useful for building armadas because of the relative simplicity of creating this object from gliders (producing a basic ship requires 11 gliders).

The last type of puffer train is the smallest, a mere 11 bits at startup — the size is somewhat larger when the final repeat cycle is known, since there is transient debris in the field. This particular train travels very slowly, taking 96 generations to traverse eight spaces (speed c/12). It is also very unusual in that it is the only known puffer train that travels diagonally — the same direction as the glider, but three times as slow.

Unlike the other puffer engines, this train does not require that any other spaceship exist to bound it. To stabilize the basic engine, a block must be placed somewhere in the debris produced by the object to prevent the debris from destroying it. If the engine is run without a stabilizing block, some rising debris finally catches the engine after 11 full cycles and destroys it. The remaining field settles down to a final census only after 3911 generations!

Pertinent to the above paragraph is the fact that random patterns are quite often able to produce certain types of edge configurations, which enable them to surge forward with a great burst of speed for short periods of time. In the case of the switch engine, when some random exhaust manages this type of movement, this slow moving engine is easily caught.

The switch engine (presented in figure 21) will produce, after its startup time, eight blocks every 288 generations. Other debris can be produced, including gliders. Since this train travels so slowly, there are presently no real uses for it.

Figure 16: The four known spaceships which occur in Life. Their appellations are: a, glider; b, lightweight spaceship; c, middleweight spaceship; and d, heavyweight spaceship. The glider travels diagonally at a rate of one space every four generations. The other three travel orthogonally at one space per two generations.

Figure 17: This glider gun, which has a period of 30 generations, was the first object of class IVa to be discovered. It periodically emits a glider which travels away diagonally. The four block still lifes are used as eaters to dispose of debris. Glider guns are of great importance in simulations, where gliders are made to collide, thus forming new objects.

Figure 18: A period 46 glider gun which is called the newgun. Two twin bees shuttles collide at right angles to produce one glider every 46 generations. As before, the block still lifes are used to remove debris which could cause disruption of the formation.
known 1105 objects of less than 15 bits in size.

Buckingham's most productive area of research has been the devising of glider collisions to produce objects of classes I thru IV. As of August 1978, he has managed to create collisions to produce all of the presently known 1105 objects of less than 15 bits in size.

A random object is simply anything that does not fit in any of the above classes. It appears that all random objects eventually become something from one of the above classes. It has been assumed that there are no objects that expand irreguarly forever (this is a common problem in other cellular spaces using other rules). There are some very popular nonterminals in life, which, due to their commonality, have been given names. In some cases these have been rather heavily investigated. In figure 22 are some of the more common nonterminals and their names.

The most common object of this class must be the oft published R pentomino (figure 22a), which many people still believe runs forever. The result of this pattern was, however, published in Scientific American; it runs for 1103 generations, producing four blinkers, eight blocks, one boat, four beehives, one ship, one burloaf, and six gliders.

The B heptomino (figure 22b), with a census of three blocks, one ship and two gliders in 148 generations, is one of the more heavily investigated objects, as is evidenced by some of the material presented in this article. It has the following interesting property: the front configuration of the object moves along to reappear the same every other generation, but flipped over.

A close relative of the previous object is the π heptomino (figure 22c) with a census of five blinkers, six blocks and two ponds in 173 generations. Phase 1 of this object was called a blasting cap by the artificial intelligence researchers at Massachusetts Institute of Technology (MIT); we call phase 3 a house. If you trace the house for 30 generations, you will notice that a house reappears at the front of the debris ten spaces ahead of where it started. The house does not appear again after this because the debris catches up with it and kills it. Many attempts have been made to stabilize this object, with no success as yet.

A random object that consists of fewer than ten bits and that has descendants enduring for more than 50 generations is referred to as a Methuselah. The acorn pattern (figure 22d) is presently the record holder for duration. This is presented as a challenge to anyone who would like a difficult object to trace.

We hope that some of our investigations into the more exotic corners of Life will inspire readers to try their hands at this fascinating pastime.
Early issues of BYTE carried a never completed series by Carl Helmers inadvertently entitled "LIFE Line," which was also the name used for Robert Wainwright's newsletter. These Helmers articles appeared as follows:

"LIFE Line 1," September 1975 BYTE, volume 1, number 1, pages 72 thru 80;
"LIFE Line 2," October 1975 BYTE, volume 1, number 2, pages 34 thru 42;
"LIFE Line 3," December 1975 BYTE, volume 1, number 4, pages 48 thru 55;

A bibliography of Scientific American information on LIFE (all references are to Martin Gardner's "Mathematical Games" column).

October 1970: page 120. This is the original Life article, including the definition of the facts of Life, and illustration of numerous fundamental patterns.

November 1970: page 118. Answers to several questions posed in the first article on the subject, including definition of the several varieties of spaceships.

January 1971: pages 105, 106 and 108. Continued progress on the Life front including answers to several unsolved questions and results of a flurry of computer Life activity.

February 1971: Special "Mathematical Games" article on "cellular automata theory."

March 1971: pages 108 and 109. Short note about progress made by John Conway and R William Gosper, plus illustration of a large scale flip flop pattern which is delicately balanced and easily destroyed by minor disturbances such as impact of a glider.

April 1971: pages 116 and 117. Examples of fuses, the 5 cell cross series, and announcement of Robert T Wainright's Lifeline newsletter.

November 1971: page 120. Short note on continued progress at the MIT AI Laboratory.

January 1972: page 107. The discovery of the eater by Bill Gosper at MIT.

Hurry down to your public library if you wish to use these references, as due to lack of space some local libraries may be committing the unspeakable crime of throwing away Scientific American. . . . CH

The January 1979 Issue of BYTE will contain an article by Mark Niemiec which describes several algorithms for Life. Readers who wish to experiment with Life patterns will find these algorithms useful in writing efficient Life programs for their computers.

NOW, A TOTAL BUSINESS SOFTWARE PACKAGE OF SEVEN PROGRAMS ON ONE FLOPPY DISC MAKES IT A SNAP.

Our TBS software package has been in use for over a year now without a single failure thereby earning the privilege of joining our national product line. Written in a practical manner for the businessman who needs a total accounting system rather than bits and pieces. The Total Business System differs from other business software offerings in that it is a Complete package, fully interactive, with automatic updating for all files. Available on floppy disk under Microsoft Disk Basic or CP/M the package requires a minimum of 24K of free memory with 256K of disk memory. We've taken the hard work out of business software for micro computers!

INCLUDES

Payables Payroll Fixed Assets Financial Reports
Receivables Inventory Check Register Etc.

Requires licensing agreement—Dealer discounts available.

SCIENTIFIC RESEARCH
PO. Box 490099-B Key Biscayne, Fl 33149
Phone orders call 800-327-6543 Information – (305) 361-153

December 1978 © BYTE Publications Inc
One-Dimensional Life

Jonathan K Millen PhD
661 Main St
Concord MA 01742

The game of Life is known to many computer experimenters for its beautiful, symmetrical two-dimensional displays and for its imaginary population of blinkers, beehives, gliders, and other strange, pseudoliving organisms. Invented by the British mathematician John Conway, the game was described in the “Mathematical Games” section of Scientific American in October 1970 and February 1971. A series of articles on how to program it for a home computer also appeared in three of the earliest issues of BYTE (“LIFE Line 1, 2, and 3,” BYTE September 1975, page 72; October 1975, page 34; December 1975, page 48). It is an attractive home computer software project, but the program requirements in memory capacity, processor speed and display capability were more than I possessed in my homebrew machine. The programming effort also looked formidable. I developed One-Dimensional Life as a small scale substitute.

Conway’s Two-Dimensional Life traces successive generations of a pattern of cells in an infinite square array of cells like an uncolored checkerboard. The generation rules determine the state of a cell in the next generation based on its present state and the states of its neighbors, the eight cells touching it.

Each cell has two possible states: off and

Figure 1: The state of a cell in the next generation is computed from its present state and the states of the four other cells in its neighborhood. The neighborhood of a cell consists of all cells within a distance of two cells from the cell in question.

(a)

Figure 2: The generation rules, illustrated here for a few representative cases. Each cell is marked with a dot if it is on, and left as an empty square if it is off. The next generation of the middle cell in each neighborhood is shown below it. 2a illustrates the rule that a cell is “born” if and only if it has two or three on neighbors in its neighborhood (in each example, the square being examined is shown in color). 2b illustrates that a cell survives if and only if it has two or four neighboring on cells. Note that a cell dies if it has three on neighbors.
A cell is "born" (i.e., goes on when previously off) if exactly three of its neighbors are on. A cell survives (i.e., stays on) with two or three neighbors on. Otherwise it is off in the next generation.

Generation Rules

In a one-dimensional version, patterns have to exist in a single row of cells. Each cell in the row has two cells touching it. I tried all possible generation rules involving a cell and its two neighbors, and I was disappointed in the results with all of them. It finally occurred to me to try a larger neighborhood including not only the adjacent cells but also the two adjacent to them (see figure 1). It still took several tries to come up with generation rules that seemed to yield a game approaching the richness of the two-dimensional game. The rules illustrated in figure 2 met my criteria for interest, which included the existence of oscillating patterns with long periods, patterns with long lifespans that eventually vanish, and gliders. The rules can be summarized as follows: Each cell is viewed with respect to a 5 cell region including itself and two neighboring sights on either side. Cells with two or three neighbors on are born and those with two or four neighbors on survive. The rest are off in the next generation.

The bare rules are rather plain without some biological "facts of life" to dress them up. The following explanation is offered:

Rule 1: Birth. Cells that are off but have either two or three neighbors on, go on.

Rule 2: Survival. Cells that are on and have two or four neighbors on stay on. Those with zero or one neighbors on die from loneliness; those with three neighbors on die from overcrowding. What keeps a cell with four neighbors on from dying is not clear. Maybe there is just not enough room to lie down.

Examples

Let us trace the life spans of a few patterns. The simplest oscillating pattern consists of two adjacent cells on. Its next generation has two cells on with two cells off in between, and the third generation regenerates the original pattern. Figure 3 shows three generations of this pattern. Note that the successive generations of a one-dimensional pattern form a two-dimensional pattern.

Another period 2 pattern is the flip flop in figure 4. A line of five adjacent cells on is also periodic, but with period 6. Seven generations of it are shown in figure 5.

A glider is shown in figure 6. It looks the same in every generation, but in each generation it moves one cell to the right. It is easily proved, incidentally, that One-Dimensional Life, unlike Two-Dimensional Life, has no stable patterns that repeat in one generation in the same place.

Figure 3: The simplest oscillating pattern, consisting of two adjacent cells on. Three generations are shown. Every second generation recreates the original pattern, so this pattern is said to have period 2. Its alter ego, the pattern with two cells on separated by two cells off, also has period 2. The three generations are separated in order to emphasize that they are separate generations rather than part of a Two-Dimensional Life configuration.

Figure 4: A pattern with period 2 that oscillates between the starting pattern and its mirror image. These kinds of patterns are sometimes called flip flops in conventional Life terminology. (Note that each line is the complete state of the Life universe in one generation.)

Figure 5: A line of five cells that regenerates itself after six generations. In my experience, this pattern has the longest period of any One-Dimensional Life pattern.

Figure 6: A glider pattern, so called because it regenerates itself in a steadily moving position. This glider has a period of 1.
We have seen a glider of period 1 and two static oscillating patterns of periods 2 and 6.

Are there patterns with all possible periods? I generated the life spans of lines with up to 15 cells and found one new oscillating pattern: a line of 12 cells that oscillates with period 4. This suggested that static oscillating patterns could be found for even periods, though I have not yet found any with periods longer than six. Of course if one starts a line of 12 (period 4) and a line of five (period 6) far enough apart to keep them from interacting, the pattern as a whole will not repeat until the twelfth generation, because 12 is the least common multiple of 4 and 6.

What about odd periods? Having found a glider of period 1, I tried a number of similar but longer patterns and discovered the period 3 glider shown in figure 7. Readers may enjoy discovering for themselves another period 3 glider that is one cell longer than the one in figure 7. It is tempting to conjecture that gliders exist with all odd periods. If anyone finds oscillating patterns or gliders of period 7 or greater, I would like to hear about it.

Tabulation

There is an obvious notation for specifying a pattern without drawing a picture. A one-dimensional pattern, being just a sequence of on and off cells, may be regarded as a binary number. By convention, we can consider the pattern proper as just the cells between the leftmost on cell and the rightmost on cell, inclusive. Thus, the number for a pattern will always be odd, except for the "all off" pattern, 0. Pattern numbers can be reported in decimal, octal or hexadecimal to save space. For example, the first generation shown in figure 3 (two adjacent cells) can be represented by binary 11 (or hexadecimal 3). The second generation in figure 3 would then be represented by binary 1001 (or hexadecimal 9). The pattern of binary 11111 (hexadecimal 1F) goes through the following cycles, all noted in hexadecimal: 6B, 17D, 49, 1B, 55 and back to 1F. (Note the 3-digit hexadecimal number 17D, which is needed because the figure is nine cells wide at that point in the cycle.)

This numbering system also provides a handy way of enumerating patterns in a systematic sequence. This gives rise to the idea of constructing a dictionary of patterns in numerical order, listing for each pattern its vital statistics: whether it oscillates, glides, dies or leads to a noninteracting collection of oscillating patterns and gliders. By way of illustration, the first 28 entries in such a table are shown in table 1.

Theoretically there is also the possibility that a pattern may grow in mass (ie: the total number of cells on) without bound, like the glider gun found for Two-Dimensional Life. No such infinitely growing pattern has yet been found for One-Dimensional Life.

Implementation

The discoveries of the period 4 pattern and the large period 3 gliders were made on my Turing machine computer. Implementing the One-Dimensional Life rules was easy and would probably have been easier if
MICROFILE
A New Datafile Management Program
With A Comprehensive Concept
In Software Presentation
Offered By:

MICROFILE MAKES BREAKTHROUGH IN DOCUMENTATION
PRS "Microfile" comes with a complete and instructive handbook explaining every procedure step by step. This unique documentation is written in clear and easy-to-understand English and avoids esoteric technical language.

But PRS "Microfile" documentation is more than clear and precise instructions in a graphically appealing manual. You learn at the same time. As you and your computer work together, the text helps you to create interesting applications.

PRS solves one of the major concerns of beginners. You will find a special chapter on how to interface newly acquired software with your specific configuration. PRS gives clear tutorial instructions on the whole matter of I/O patches. In addition, you will always find a complete source listing of the I/O section of our programs. PRS makes every effort to facilitate the implementation of its software within your particular system.

Indeed, PRS "Microfile" documentation offers you a true fluency in computer-user dialogue. This in turn allows you to arrive at an efficient and effective use of your PRS "Microfile" program and microcomputer.

PRS MICROFILE HAS A POWERFUL CODE
Powerful code means fast and accurate answers. PRS permeates the design of its unique code with "human engineer-ing." And you’ll appreciate the delicate balance between machine-human dialogue and resident program-space memory.

PRS MICROFILE COMES IN BEAUTIFUL CASSETTE-FOLDER
Your PRS "Microfile" cassette and manual is protectively nestled in an efficient and durable gold-stamped folder. Wherever you file it, in your room or office, the decor will be enhanced by its elegance.

WITH PRS MICROFILE, A NEW DATAFILE MANAGEMENT PROGRAM YOU CAN:
- Manage any list of items
- Edit information already on file
- Sort items alphabetically upwards and downwards
- Search by primary and/or secondary keys (labels)
- Total sums of columns
- Justify right or left margins of each column
- Save and retrieve data with mass storage media

UNLIMITED APPLICATIONS
For example, PRS "Microfile" manages:
- Home inventory
- Listing of musical tapes
- Calendar of activities
- Vacation itineraries
- Checks by categories
- Home-upkeep tickler files
- Family historical data
- Medical Records

PRS MICROFILE SUPPORTS YOUR MAJOR BRANDS
- Cuts cassette version: runs as is with SOLOS/CUTER monitor easily adaptable to the SORCERER from EXIDY.
- TOL cassette relocatable Z-80 version: runs with Zapple monitor.
- TARBELT cassette version: interfaced to the APPLE monitor (8080A version of ZAPPLE) but easily adaptable to your own monitor (see above paragraph on our documentation.)
- TRS-80 version: runs on level II with 16 K minimum.
- ICOM 8” disk CP/M version.
- MICROPOLIS 5” disk CP/M version.

VISIT YOUR NEAREST DEALER TODAY TO OBTAIN YOUR PRS MICROFILE FOR ONLY $49.95 FOR CASSETTES AND $64.95 FOR FLOPPY DISKS.

Let him demonstrate the excellence of PRS "Microfile", a new DATAFILE MANAGEMENT SYSTEM. Or use the coupon below to obtain the name of a dealer in your area.

New Product Releases From
PRS THE PROGRAM OF THE MONTH CORPORATION
257 Central Park West. New York, N.Y. 10024

Gentlemen:
 please place my name on your priority mailing list to receive your descriptive advance releases of all new programs developed by PRS at regular intervals.
 please send me a list of dealers in my area.

Name __
Title __
Corporation ___________________________________
Address ___
City __________________ State __________ Zip ________
Telephone __________________ Reference 1288

BYTE December 1978 71
I had had a more conventional computer to work with, instead of a Turing machine (see "A Universal Turing Machine," December 1976 BYTE, page 114). The algorithm for producing new generations according to the rules is illustrated in figure 8, visualizing the memory requirements, and figure 9, a flowchart. Note that, as in Two-Dimensional Life, there is one complication to bear in mind when computing the next generation: When you change the state of a cell, you must remember the old state long enough to use it in computing the next state of its neighbors. If the program scans the row from left to right, changing cells as it goes, it needs a temporary memory of three cells. When the front of the scan is at cell N, the program is able to recompute cell N, after saving it, using its memory of the prior states of cells N - 1 and N - 2, together with the present states of cells N, N + 1 and N + 2. The old state of N - 2 may then be forgotten and the scan moved right one cell.

I will spare you the details of how this algorithm can be accomplished in Turing machine language. A more universal problem is how to get the patterns displayed. My only output device, at first, was a single LED (light emitting diode) that could be stepped through memory, to display it one bit at a time. To improve on this I built a visible shift register, a cascade of two 8 bit shift registers with an LED on each output, giving me a movable 16 bit window on memory. I was considering extending the window to 32 bits when I was lucky enough to get a long term loan of a SwTPC CT-1024 video display from a friend who had no present need of it.

There is a coincidental resemblance between a Turing machine and a video display: both normally change memory addresses by ±1. It turned out to be easy and natural to patch in the CT-1024 memory in place of the Turing machine "tape" memory. Turing machine computations were then directly visible as they progressed on the video screen. One more refinement was all that was needed to display successive generations of a pattern below one another as in the
For Homeowners, Businessmen, Engineers, Hobbyists, Doctors, Lawyers, Men and Women

We have been in business for over nine years building a reputation for providing a quality product at nominal prices — NOT what the traffic will bear. Our software is:

- Versatile — as most programs allow for multiple modes of operation.
- Tutorial — as each program is self prompting and leads you through the program (most have very detailed instructions contained right in their source code).
- Comprehensive — as each program is self prompting and leads you through the program (most have very detailed instructions contained right in their source code).
- Readable — as all of our programs are reproduced full size for ease in reading.

- Versatile — as most programs allow for multiple modes of operation.
- Tutorial — as each program is self prompting and leads you through the program (most have very detailed instructions contained right in their source code).
- Comprehensive — as each program is self prompting and leads you through the program (most have very detailed instructions contained right in their source code).
- Readable — as all of our programs are reproduced full size for ease in reading.

Our Software is copyrighted and may not be reproduced or sold.

Master Charge and Bank Americard accepted.

AVAILABLE AT MOST COMPUTER STORES

Scientific Research
PO. Box 490099-B
Key Biscayne, FL 33149
Phone orders call 800-327-6543
Information — (305) 361-1153

BYTE December 1978 73
Figure 9: Flowchart for the One-Dimensional Life algorithm.

Photo 1: One-Dimensional Life display. On the author's system, 1s are represented by exclamation points and 0s by blanks. Each line represents one generation of One-Dimensional Life.

figures: up and down cursor control. Outputs were created by decoding the last three instruction address bits, effectively yielding eight 1 bit output ports that were strobed every time an instruction with the appropriate address was executed. Two of these outputs became cursor control outputs.

After all this hardware activity and some program modifications, the result was the kind of display shown in photo 1. The screen has the first 16 generations of a line of seven cells. This pattern settles down after 40 generations to a collection of non-interacting oscillating patterns, but before that happens it produces one of the most intriguing displays of its kind, one that I would never have seen without the help of a home computer. Of course, readers can verify these discoveries with any home computer and share in some of the excitement of exploration which I found.
Software for the Percom LFD-400

Disk Operating and File Management Systems
INDEX: The most advanced Disk Operating and File Management System available for the 6800. Interrupt Driven Executive operating system features file-and-device-independent, queue-buffered character stream I/O. Linked-File disk architecture, with automatic file creation and allocation for ASCII and binary files, supports sequential and semi-random access disk files. Multilevel file name directory includes name, extension, version, protection, and date. Requires 8K RAM at $1000. Diskette includes numerous utilities.

MINIDOS-PLUSX: An easy to use DOS for the small computing system. Supports up to 31 named files. Available on ROM or diskette complete with source listing. $39.95

Basic Interpreters and Compilers
SUPER BASIC: a 10K extended disk BASIC interpreter for the 6800. Faster than SWTP BASIC, 9-digit accuracy, program CHAINING, BASE 0 subscoping, improved error reporting, disk data files, and print column alignment. Program and data files may be prepared using one of the Text Editors described below. $49.95

BASIC BANDAID: Turn SWTP 8K BASIC into a respectable random access data file disk BASIC. Includes many speed improvements and program CHAINING. When ordering, specify version (2.0, 2.2, or 2.3). Complete with listing. $17.95

STRUBAL: A Structured Basic Language Compiler for the serious professional programmer. Includes elements of BASIC, P/L/M, and assembly language. Features 10-digit floating point, strings, scientific functions, and 2-dimensional arrays. Requires 16K RAM memory and LINKING LOADER (see below). Complete with RUN-TIME and FLOATING POINT packages. $99.95

Text Editors
EDIT68: Hemenway Associates powerful disk-based text editor. May be used to create programs and data files. In addition to SEARCH, CHANGE, DELETE, and MOVE functions, EDIT68 supports MACROS which perform complex repetitive editing functions efficiently. Runs in only 6K RAM. "Spoiling" permits text files much larger than the available RAM memory to be created and edited. $29.95

TOUCHUP: If you already have the TSC Text Editor, TOUCHUP will convert it into a disk-based text editor. ROLL function permits text files much larger than the available RAM memory to be created and edited. TOUCHUP is supplied on diskette complete with source listing. $17.95

ASSEMBLERS
PERCOM 6800 SYMBOLIC ASSEMBLER: Requires only 8K of RAM memory to assemble programs with 200 labels. More convenient to use than most assemblers; assembly options may be specified at time of assembly. $29.95

MACRO-RELOCATING ASSEMBLER: This Hemenway Associates assembler is for the programming professional. Generates relocatable and linkable object code. MACRO facility permits nested macro calls. Permits conditional assembly. Requires 16K RAM. $49.95

Busness Applications
GENERAL LEDGER SYSTEM. $199.95
FULL-FUNCTION MAILING LIST. $99.95

Write or call for our complete software catalog.

PERCOM DATA COMPANY, INC.
Dept B • 318 Barnes • Garland TX 75042
(214) 272-3421

The LFD-400 is ready to plug in and run the moment you receive it. Nothing else to buy! Not even extra memory!

YOU GET:
1. The popular Shugart SA 400 minifloppy drive. Drive alignment is double checked by PerCom before shipment.
2. The drive power supply—fully assembled and tested.
3. LFD-400 Controller/Interface—plugs into the SS-50 bus • accommodates three 2708 EPROMs • fully assembled and tested.
4. MINIDOS—the remarkable LFD-400 disk operating system on a 2708 EPROM • plugs into the LFD-400 Controller card • no extra memory required. No "booting" needed.
5. Attractive metal enclosure.
6. Interconnecting cable—fully assembled and tested.
7. Two diskettes—one blank, the other containing numerous software routines including patches for SWTP 8K BASIC and the TSC Editor/Assembler.
8. 70-page instruction manual—includes operating instructions, schematics, service procedures, and the complete listing of MINIDOS.
10. 90-day limited warranty.

MINIFLOPPY is a trademark of Shugart Associates.
MINIDOS is a trademark of PERCOM Data Company, Inc

The LFD-400 is readily expanded to either two or three drives. Write for details. Send for our free brochure for more information about the LFD-400 Floppy Disk System and LFD-400 software.

To save you money, the LFD-400 Floppy Disk System is available only from PerCom. Because of the special pricing, group and dealer discounts are not available.

MC and VISA welcome. COD orders require 30% deposit plus 5% handling charge. Allow three extra weeks if payment is by personal check. The LFD-400 Floppy Disk System is available immediately. Allow three weeks for testing and transportation. Texas residents add 5% sales tax.
The game of Life was developed by John Horton Conway and was introduced in the “Mathematical Games” section of the October 1970 Scientific American magazine. Life is played on a grid of squares (in this case a 22 by 22 matrix). A given square is either occupied or empty. The program user specifies which squares are occupied initially.

The game of Life program produces new generations of the matrix by applying life’s laws for birth, survival and death to the present generation. These laws are:

Birth: An unoccupied square becomes occupied if in the preceding generation exactly three of the eight neighboring squares were occupied (squares that touch horizontally, vertically or diagonally are said to be neighboring squares).

Survival: An occupied square remains occupied if in the preceding generation two or three neighboring squares were occupied.

Death: An occupied square becomes unoccupied if in the preceding generation fewer than two or more than three neighboring squares were occupied.

Text continued on page 82

Listing 1: BASIC E program and sample run of the game of Life. A sequence of eight states of Life demonstrates operation of the program.
SUPER-SORT
The ultimate in high performance sort/merge

Specifications

- High Performance Tournament/Heapsort Algorithm
- Multiple Input Files Read in Parallel for True Merge Operation. Up to 32 Sort and 32 Merge Input Files Handled.
- Dynamically Invokable User Exit Routines
- Record Selection via SELECT/EXCLUDE Statements
- Handles Fixed and Variable Length Records
- Handles Fixed and Variable Length Fields
- Handles up to 32 Sort Keys with Intermixed Sequence Indicators, Data Types and Alternate Collating Sequences
- Handles Multi-Volume Diskette Files
- Compatible with CP/M* and any Derivative Including ADOS, IMDOS, CDOS, etc.
- 8080/8085/Z-80 Compatible
- Specialized Optimizations for Floppy Disk Environment
- Keyword Command Input for Easy Operator Entry
- Benchmarked at Over 560 Records per Minute!
- Invokable as a Subroutine from FORTRAN, COBOL and Assembler
- Furnished in Relocatable and Executable Form for Easy Load-Address Definition
- Optional TAGSORT Operation
- Data Types Include ASCII, EBCDIC, Binary, BCD (COBOL Packed Decimal), etc.
- Supports CP/M-compatible Diskette Files under BASIC, FORTRAN, COBOL and Assembler.

Price $250** includes manual and single density diskette. Manual only $15 refundable with purchase.

WORD-MASTER
The last word in text editing

Specifications

- Compatible with any "Dumb" CRT Possessing Addressable Cursor and Backspace (Includes Hazeltine - All Models, SOROC, Lear Siegler, IMSAI-VOIC, ADDS Regent, Behive, etc.)
- Bi-Directional Word Tab, Line Tab, Screen Tab
- Bi-Directional Word Delete, Line Delete and Character Delete
- Quad-Directional Cursor Movements
- Mid-Line Insert and Delete
- Automatic RAM/Diskette Buffering With No User Intervention
- Nested Command Looping with Conditional Execution
- Global String Search, Global String Replace
- Scratch-Pad Buffer for Text Movement, Global Replication, and String Command Storage
- Multiple Input File Merging with User-Controlled Insertions for Easy Document Assembly
- Multiple Output File Control by Section Under User Control
- Compatible with CP/M and Most of its Derivatives Including CDOS, IMDOS, etc.
- Use TEX* for Print Formatting Functions

Price $150** includes manual and single density diskette. Manual only $9.00 refundable with purchase.

*CP/M and TEX are Trademarks of Digital Research.
** Prices and Specifications subject to change without notice.
© 1978, MicroPro International Corporation. All rights reserved.
About the Author

William Englander is a self-employed computer programmer as well as an instructor at San Diego State University and National University.

Listing 1, continued:

RUN LIFE BASIC-E INTERPRETER - VER 1.3

ENTER INITIAL NUMBER OF ITERATIONS? 8
ENTER INITIAL COORDINATES: 0,0 TO END
? 8,10
? 9,10
? 10,10
? 11,10
? 12,10
? 0,0
ENTER PAPER SIZE (IN LINES/PAGE), SET UP PAPER & HIT ENTER? 33
Bit Pad™ is the low-cost digitizer for small computer systems. Better than a joystick or keyboard for entering graphic information, it converts any point on a page, any distance into its digital equivalents. It's also a menu for data entry. You assign a value or an instruction to any location on the pad. At the touch of a stylus, it's entered into your system.

Who can use it? Anyone from the educator and the engineer to the hobbyist and the computer games enthusiast. The data structure is byte oriented for easy compatibility with small computers, so you can add a power supply, stand alone display, cross-hair cursor and many other options.

Bit Pad by Summagraphics. The leading manufacturer of data tablet digitizers. Bit Pad. The only words you need to say when considering digitizers.

$1,000 creativity prize. Just write an article on an original Bit Pad application and submit it to any national small-computer periodical. If the editors publish it—and the decision is solely theirs—Summagraphics will pay you $1,000.
Here comes another high-flying Blue Board of Happiness from SSM.

The VB-2 Video Board...

It saves programming time, memory space, and is built to U.S. video standards.

Check out all our VB-2’s great features, and compare prices:

- It’s an I/O controlled video interface that turns a TV or commercial grade monitor into a video terminal
- No need for another I/O board for keyboard input and video display
- Hardware controlled cursor for line feed, carriage return, and backspace
- Reduced software overhead frees up more memory space for important data
- Extra adjustments include adjustable character width, horizontal margin and vertical position

Circuitry provided to drive a speaker for external “beep” tone
- 64 x 16 character display includes upper case letters, numbers and symbols
- Characters can be switch selected for white on black, or black on white
- Full interlace for complete compatibility with video standards
- S-100 compatible

All for only $149.95. Available at over 100 retail locations, or direct from SSM.

SSM manufactures a full line of S-100 boards. For complete details, just send for our new FREE catalog.

2116 Walsh Avenue Santa Clara, CA 95050 (408) 246-2707

*We used to be Solid State Music. We still make the Blue Boards.
IA Expands S-100 Line

Mass Storage at Incomparable Prices.

Video Display Board

Field-proven reliable engineering
Over 10,000 boards worldwide prove Ithaca Audio provides the quality and reliability you demand.

Ithaca Audio Boards are fully S-100 compatible, featuring gold edge connectors and plated-through holes. All boards (except the Protop board) have fully buffered data and address lines, DIP switch addressing, solder mask and parts legend.

Z-80 CPU Board Most powerful 8 bit central processor available. Featuring power-on-jump, provision for on-board 2708. Accepts most 8080 software.

$35.00

6K Static RAM Board High speed static memory at the lowest cost per bit. Includes memory protect/unprotect and selectable wait states.

$25.00

2708/2716 EPROM Board Indispensable for storing dedicated programs and often used software. Accepts up to 16K of 2708's or 32K of 2716's.

$25.00

Protop Board Universal wire-wrap board for developing custom circuitry. Accepts any size DIP socket.

$25.00

RAM!

32K for $359.

Ithaca Audio is now stocking the Mostek 4115 add-on RAM for S.D.'s Expandoram. Buy their basic board, 32K of RAM from us and SAVE.

S.D. SALES Expandoram board $199
Ithaca Audio 32 4115's @ $5.00 ea. 160
32K Only $359

Circle 190 on inquiry card.

Disk Controller Board

Controls up to 4 single or double sided drives. Data protect features include automaticdisable of write-gate during power-down for data integrity. Supported by a reliable software package, K 2 FDOIS and complete diagnostic documentation.

$35.00

K2 Operating System

Power full disk software in the DEC tradition. Includes Text Editor (TED), File Package (PIP), Debugger (HDT), Assembler (ASMABLE), HEXBIR, 1 COPY, System Generator (SYSGEN). Command syntax follows Digitals OS-9, RT/11 format. First in a family of high level software. Soon to be released, FORTRAN & Pascal Compilers.

$75.00

How to Order

For technical assistance call or write to:

ITHACA AUDIO
P.O. Box 91
Ithaca, New York 14850
Phone: 607/273-3271

HOW TO ORDER

Send check or money order, include $2.00 shipping per order. N.Y.S. Residents include tax

Memorex single sided 550 Flexible Disk Drive $456.
Memorex double sided 552 Flexible Disk Drive $330.
Disk Controller Board $35.
K2 FDOIS Available on 8" floppy disk w. manual $75.

Quality Components

ZILOG Z-80 $19.00
ZILOG Z-80A 23.00
INTEL 2708 11.00
FAIRCHILD 2102 LHPC 1.60
FAIRCHILD 2102 LPC 1.35
IMSAI 8080 Kit with 22 Slot M.B. $560.00
plus $10.00 shipping

Circle 190 on inquiry card.
See the exciting 16-bit world of Alpha Micro at your local Alpha Micro dealer.

<table>
<thead>
<tr>
<th>State</th>
<th>Location</th>
<th>Address</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>Huntsville</td>
<td>Computer Store</td>
<td>205-539-000</td>
</tr>
<tr>
<td>Alaska</td>
<td>Anchorage</td>
<td>Computer Store</td>
<td>907-344-4336</td>
</tr>
<tr>
<td>Arizona</td>
<td>Phoenix</td>
<td>Computer Store</td>
<td>602-285-0065</td>
</tr>
<tr>
<td>California</td>
<td>Huntsville</td>
<td>Computer Store</td>
<td>907-344-4336</td>
</tr>
</tbody>
</table>

Text continued from page 76

The Life program in listing 1 was written in BASIC E and run on an IMSAI 8080. Since it is necessary to reference the present generation’s matrix while developing the next generation’s matrix, two arrays, A and B, are used alternately. When an array element represents an occupied square, it is given a value of 10. 1 is added to it for each occupied neighboring square (including itself for a square with three or more neighbors). Consequently a square in the next generation becomes occupied if its corresponding element in the present generation array is equal to 3, 13, or 14 (an empty square with three neighbors or an occupied square with two or three neighbors).

Statements 1 through 13 establish the number of generations to be printed and the initial occupied squares (in the A array). Statements 19 through 25 print the contents of the A array and zero the B array. Statements 27 through 34 generate the B array from the A array. Statements 36 through 42 print the B array and set the A array to zero. Statements 44 through 52 generate the A array from the B array and then loop back to produce the next two generations.
Thinking of adding mass memory to your S-100 bus?

You say you’re ready for greater storage? Well now, with average access times of 28 milliseconds, large, on-line direct access cartridge disk files have become a reality in microcomputing. And, ALPHA MICRO offers you not one, but TWO ways to vastly increase your system capacity...and do it without overtaxing your budget.

First, there’s the ALPHA MICRO AM-500™ Hard Disk Subsystem. It uses the popular CDC 9427H (Hawk) cartridge disk drive with a total of 10 megabyte capacity (5 fixed, 5 removable). The AM-500 comes complete with interface formatter/controller, cabling, and disk drive. You can expand your mass memory to meet your requirements, in 10 megabyte increments, up to 40 megabytes.

Thinking of even more mass memory? Check out the ALPHA MICRO AM-400™ Hard Disk Subsystem. It features the CALCOMP TRIDENT Series Hard Disk Drive in a choice of models with 25, 50, 80, 200, or 300 megabyte capacity. And, you can daisy-chain up to four units, on-line, in any mix. How’s that for capacity?

So, if you’re thinking of adding mass memory to your S-100 bus, be sure to check out the ALPHA MICRO AM-400 or AM-500 Hard Disk Subsystem at your nearest ALPHA MICRO Dealer. And while you’re there, ask him to show you the rest of the ALPHA MICRO hardware and software lines.

Circle 4 on inquiry card.
Chess 4.7 versus David Levy

The Computer Beats a Chess Master

After 29 years, computer chess finally achieved a victory in human competition at the master class tournament level. During the fourth game of a match held at the Canadian National Exhibition from August 26 to September 4, 1978, International Master David Levy resigned to Chess 4.7/CYBER 176 after 56 moves, although he did win the tournament, 3½ to 1½.

David Levy was three years old in 1949, when the American mathematician and computer science pioneer Claude Shannon produced the first paper describing the methodology for producing chess playing computer programs. Not until 1956 did any machine win a game against a human opponent: MANIAC, a system developed at the Los Alamos Scientific Laboratory, won a greatly simplified chess game against a novice player in 23 moves.

12 years later, Levy, expert rated and Scottish National Champion, attended the Fourth Annual Machine Intelligence Workshop. There he took exception to the views of John McCarthy of Stanford University and Prof Donald Michie of Edinburgh University, who agreed that within ten years a computer system would be World Champion of chess. Levy countered that not only would computers fall short of that goal, but they would be unable to defeat him in a tournament style match within that 10 year period. Neither side was able to shake the other's convictions and, as a result, Levy wagered £1250 sterling that he could defend against the computer advances.

The machine intelligence community had expected Levy to be defeated by a large network of computers participating in the game, until 1970, when a Northwestern University program called Chess 3.0, written by Larry Atkin, Keith Gorlen and David Slate, clearly emerged as the leading effort in the first US Computer Chess Championship. David Levy was then 24.

The original feeling of confidence Levy held must have been somewhat shaken as the years 1973 and 1974 saw Chess 4.0 achieve a United States Chess Federation rating higher than that of the average US tournament chess player. [Note: the version number of the program increases along with its skill.] Then, in 1976 and 1977, when Chess 4.5 and 4.6 won the class B championship at the Paul Masson Open Chess Tournament and won outright at the Minnesota Open, Levy conceded that he had begun to think that his match with Chess 4.7, "would not be a formality but could be just a bit of work."

The latter part of 1977 and early 1978 saw a series of 2 game matches between Levy and Chess 4.6, the Duchess program from Duke, Greenblatt's MIT program, and Kaissa from the USSR. Levy handily defeated all the programs in the first game.

Chess 4.7, running on a Control Data Corp (CDC) CYBER 176, had compiled a rating of 2030 after 31 tournament games and a speed chess performance rating of 2450, when the last challenge was given. The issue was to be resolved on the tenth anniversary of the original wager, with play to begin on Saturday, August 26.

Getting a computer to a chess match, which was the duty of this author and Dr Dave Cahlander, is a considerably more difficult task than getting a human to a match. Crossing the Canadian border with microprocessor controlled chessboards, and setting up and testing telephone lines and modems between Toronto and the CYBER 176 in Arden Hills MN consumed most of a week.

The glass box in which the match was held, standing beside three bowling lanes and a fencing exhibition, faced a large demonstration chessboard and seats for onlookers. A square of chess tables used in simultaneous play filled the rest of the room. Opposite the glass box was the stand.
of Josef Smolij, local speed chess king and guru of the all-night, outdoor Yonge Street Chess Association. Josef, we were to learn, would play a large part in the first win ever for a chess machine at the master level.

The relationship between the opponents in the Levy match is difficult to describe. The two Davids, Levy and Slate, and the CDC folks stayed in the same hotel and ate meals, travelled and generally spent the entire time together as friends. Levy even considered the machine to be sort of a friendly foe. Each night the entire group found itself on the sidewalks of Yonge Street playing chess on overturned milk cartons with Joe Smolij until the small hours of the morning. Joe demonstrated his “Smash-Crash” Gambit (also known as the Greco Counter Gambit for those who have not yet met Josef) for 50 cents a lesson.

Levy’s plan for the match was not difficult to anticipate, since he had demonstrated that, while tactical positions favored the computer, strategic positions favored him. He had used close, quiet games to defeat the computers in each defense of the wager, playing a strategic game until a weakness developed in the computer’s position, then winning against that weakness.

The game score of round 1 is presented in the form of a Turing experiment. For those not familiar with him, Alan Turing proposed a method for determining whether a machine should be called “intelligent.” In this test, a human, linked via teletypewriter with a machine, is told that he is communicating with either a machine or another human. If he is unable to determine with which of them he is communicating, the machine can be termed “intelligent.” The question: was Levy White or Black in game 1? Consult table 1 and form an opinion. The answer appears in the text box on page 90.

The first game was a draw. This created a great deal of speculation, as most of the

Table 1: The score (record of moves) of game 1 of the match. The reader is asked to examine this game, and to form an opinion concerning which player had which color of pieces.

About the Author

J R Douglas has 16 years of experience as a microprogrammer, and maintains an interest in artificial intelligence. His hobbies include photography and amateur radio (callsign KA0ACN).

Figure 1: Position occurring in round 1 after White’s 12th move. The player of Black next unleashes an attack which wins material and disrupts White’s Kingside.

Figure 2: The final position reached in game 1. The participants agreed to a draw.
Innovations in Calculator Technology

Advancements from Texas Instruments are available in many forms at ComputerLand. Like the TI Programmable 58 with plug-in Solid State Software™ modules. A Master Library module with 25 pre-written programs, including math, statistics, and finance, is virtually a tool kit for today's professional. And there are optional modules available.

With the TI Programmable 59, you can use blank magnetic cards to record custom programs to run individually or with programs in the library modules. And with the TI Programmer, fast, accurate conversions and calculations can be performed in either hexadecimal, octal, or decimal number bases.

Want more? The PC-100A Printer, Plotter will turn your TI Programmable calculator into a quiet, high-speed printing calculator that prints, lists, and traces your program.

A Powerful, Personal S-100 Computer

The Vector 1 digital computer is a powerful, personal computer based on the 8080A or Z-80 microprocessor and the common S-100 bus structure. Vector 1 has 78 basic machine instructions and a minimum instruction cycle of two microseconds. There is room for up to 64 K of directly addressable memory using a parallel 8 bit word/16 bit address and up to 256 separate input and output devices can be addressed. For simplicity, reliability, and quality, see Vector 1 and the complete Vector Graphic line at ComputerLand.

The Quality Mini Recording Media

Your data is worthless if you can't store it safely until you need it. And not all brands of data storage media provide the safety you desire. Chances are you've already discovered that the hard way.

Reason enough to buy Verbatim diskettes and storage files at ComputerLand. Verbatim diskettes, cassettes, and cartridges store your data word-for-word until you call for it. The captured data is then played back bit for bit, byte for byte, verbatim. That saves your time. And your money. When you want to be sure of your data, specify Verbatim at ComputerLand.

You're always welcome at ComputerLand

ComputerLand® Corp., 14400 Catalina St., San Leandro, CA 94577 (415) 895-9363

Circle 75 on inquiry card.
Figure 3: Position reached in game 4 after Black has made his 47th move. The human chess masters present, including Canadian Master Bruce Amos and 14 year old US National Master Joel Benjamin, were of the opinion that White must lose material. White did have a move they missed, and played it.

Figure 4: The final position of game 4. White's pawns will march irresistibly to the eighth rank and become Queens. Black can find no way to stop them, and resigns.

<table>
<thead>
<tr>
<th>Chess 4.7</th>
<th>Levy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. P-K4</td>
<td>P-K4</td>
</tr>
<tr>
<td>2. N-KB3</td>
<td>P-KB4</td>
</tr>
<tr>
<td>3. PxP</td>
<td>P-K5</td>
</tr>
<tr>
<td>4. N-K5</td>
<td>N-KB3</td>
</tr>
<tr>
<td>5. N-N4</td>
<td>P-Q4</td>
</tr>
<tr>
<td>6. NxB check</td>
<td>QxN</td>
</tr>
<tr>
<td>7. O-R5 check</td>
<td>O-B2</td>
</tr>
<tr>
<td>8. QxQ check</td>
<td>KxQ</td>
</tr>
<tr>
<td>9. N-B3</td>
<td>P-B3</td>
</tr>
<tr>
<td>10. P-Q3</td>
<td>PxP</td>
</tr>
<tr>
<td>11. BxP</td>
<td></td>
</tr>
</tbody>
</table>

Possessing a one pawn advantage, the computer has forced Black's King to remain in the center of the board.

<table>
<thead>
<tr>
<th>Chess 4.7</th>
<th>Levy</th>
</tr>
</thead>
<tbody>
<tr>
<td>11. ...</td>
<td>N-Q2</td>
</tr>
<tr>
<td>12. B-KB4</td>
<td>N-B4</td>
</tr>
<tr>
<td>13. P-KN4</td>
<td>NxB check</td>
</tr>
<tr>
<td>14. PxN</td>
<td>B-B4</td>
</tr>
<tr>
<td>15. O-O</td>
<td>P-KR4</td>
</tr>
<tr>
<td>16. N-R4</td>
<td>B-Q5</td>
</tr>
<tr>
<td>17. B-K3</td>
<td>B-K4</td>
</tr>
<tr>
<td>18. P-Q4</td>
<td>B-Q3</td>
</tr>
<tr>
<td>19. P-KR3</td>
<td>P-QN3</td>
</tr>
<tr>
<td>20. R/B-K1</td>
<td>B-Q2</td>
</tr>
<tr>
<td>21. N-B3</td>
<td>PxP</td>
</tr>
<tr>
<td>22. PxP</td>
<td>R-R5</td>
</tr>
<tr>
<td>23. P-B3</td>
<td>R-R1</td>
</tr>
</tbody>
</table>

At this point, Levy announced to the spectators that he was playing the "Smash-Crash" Gambit, attributed to Josef Smolij of Toronto.

<table>
<thead>
<tr>
<th>Chess 4.7</th>
<th>Levy</th>
</tr>
</thead>
<tbody>
<tr>
<td>24. K-B1</td>
<td>B-N6</td>
</tr>
<tr>
<td>25. R-K2</td>
<td>B-B1</td>
</tr>
<tr>
<td>26. K-N2</td>
<td>B-Q3</td>
</tr>
<tr>
<td>27. B-N1</td>
<td>R-R6</td>
</tr>
<tr>
<td>28. R/1-K1</td>
<td>R-N6 check</td>
</tr>
<tr>
<td>29. K-B2</td>
<td>R/1-R6</td>
</tr>
</tbody>
</table>

Levy has seized command of the King Rook file. The defense is not at all obvious.

<table>
<thead>
<tr>
<th>Chess 4.7</th>
<th>Levy</th>
</tr>
</thead>
<tbody>
<tr>
<td>30. R-K3</td>
<td>B-R3</td>
</tr>
<tr>
<td>31. N-K2</td>
<td></td>
</tr>
</tbody>
</table>

Chess 4.7 forces the exchange of minor pieces, and thereby defangs Levy's attack.

<table>
<thead>
<tr>
<th>Chess 4.7</th>
<th>Levy</th>
</tr>
</thead>
<tbody>
<tr>
<td>31. ...</td>
<td>BxN</td>
</tr>
<tr>
<td>32. R/1xB</td>
<td>P-B4</td>
</tr>
<tr>
<td>33. P-B4</td>
<td>RxB</td>
</tr>
<tr>
<td>34. RxR</td>
<td>R-R6</td>
</tr>
<tr>
<td>35. K-N3</td>
<td>R-R8</td>
</tr>
<tr>
<td>36. B-B2</td>
<td>R-Q6</td>
</tr>
<tr>
<td>37. R-R3</td>
<td>PxP</td>
</tr>
<tr>
<td>38. Rxp check</td>
<td>K-B1</td>
</tr>
<tr>
<td>39. R-Q7</td>
<td>R-Q6 check</td>
</tr>
<tr>
<td>40. K-N2</td>
<td>B-B4</td>
</tr>
<tr>
<td>41. RxP/5</td>
<td>R-Q7</td>
</tr>
<tr>
<td>42. P-N4</td>
<td>BxP</td>
</tr>
<tr>
<td>43. R-Q8 check</td>
<td>K-B2</td>
</tr>
<tr>
<td>44. R-Q7 check</td>
<td>K-B1</td>
</tr>
<tr>
<td>45. RxP/4</td>
<td>R-N7</td>
</tr>
<tr>
<td>46. K-B3</td>
<td></td>
</tr>
</tbody>
</table>

This move avoids the pin of the Bishop to the King — see why in the next move.

<table>
<thead>
<tr>
<th>Chess 4.7</th>
<th>Levy</th>
</tr>
</thead>
<tbody>
<tr>
<td>46. ...</td>
<td>B-B4</td>
</tr>
<tr>
<td>47. R-Q8 check</td>
<td>K-K2</td>
</tr>
<tr>
<td>48. R-R41 check</td>
<td></td>
</tr>
</tbody>
</table>

The human masters present did not see this move. They thought the computer was certain to lose material.

<table>
<thead>
<tr>
<th>Chess 4.7</th>
<th>Levy</th>
</tr>
</thead>
<tbody>
<tr>
<td>48. ...</td>
<td>K-B2</td>
</tr>
<tr>
<td>49. P-N5</td>
<td>P-N3</td>
</tr>
<tr>
<td>50. R-Q7 check</td>
<td>K-B1</td>
</tr>
<tr>
<td>51. PxP</td>
<td>RxB</td>
</tr>
<tr>
<td>52. P-B5</td>
<td>R-R6 check</td>
</tr>
<tr>
<td>53. K-N4</td>
<td>R-R5 check</td>
</tr>
<tr>
<td>54. K-R5</td>
<td>R-Q5</td>
</tr>
<tr>
<td>55. R-QB7</td>
<td>B-K2</td>
</tr>
<tr>
<td>56. P-B6</td>
<td></td>
</tr>
</tbody>
</table>

Black has no way to prevent the steamroller pawns from advancing to the eighth rank.

<table>
<thead>
<tr>
<th>Chess 4.7</th>
<th>Levy</th>
</tr>
</thead>
<tbody>
<tr>
<td>56. ...</td>
<td>Resigns</td>
</tr>
</tbody>
</table>

Table 2: The score of the fourth round game. The computer had the White pieces and the first move. After Levy lost the game, Joe Smolij complained that the Smash-Crash Gambit was for use against people, not machines.

Photo 2: Josef Smolij, the guru of the Yonge Street Chess Association, as he presides over his midnight lessons in the Smash-Crash Gambit.
Photo 3: In game 4, David Levy stolidly ponders the position after his move 51... RxP. The computer's material and positional advantage is large, but tenaciously he seeks the best defense.

Photo 4: Levy forms his plan, and reaches out over the flickering electronic chessboard to put it into effect. He may persuade the computer to trade Rooks. Getting rid of Chess 4.7's troublesome Rook would allow some freedom of movement for Levy's beleaguered King.

Photo 5: The computer decides not to trade Rooks. Levy pulls his Bishop back to act as a shield against the final assault. He smiles as he sees that the steamroller pawns will not stop.
assembled experts had predicted a 3 game conclusion to the 6 game match. The rules required that Levy obtain only three points to win his wager. Now play would be forced to at least four rounds. Levy's concentration during the opening phase of the second game did not falter as he quietly put away the machine without apparent trouble.

Round 3 was not scheduled for six days, so the glass booth, looking much like an abandoned bus stop enclosure, sat empty while various masters played simultaneous exhibitions against spectators, amidst the sounds of three bowling lanes and the clank of sabers from the adjacent fencing matches.

Play resumed on September 2. The third round was another closed and quiet game which Levy won without apparent effort. The score then stood ½ to 2½, with Levy needing only a draw to win the match. However, he chose to confront Chess 4.7 directly in the fourth round by playing the Greco Counter Gambit. His decision was made only hours before, while sitting on a milk carton playing chess against Joe Smolij, the Smash-Crash Gambit expert.

Round 4 commenced with fireworks that never died out during the entire game. The moves of that game are given in table 2.

Though Levy finished the match in the fifth round with another closed game and held his 10 year wager, those on the computer chess side of the contest did demonstrate the ability to produce master level games. The most frequently heard comment after the match was that there were no losers in Toronto.

What happens now? A new version of the program, Chess 5.0, waits in the wings, the CYBER 176 spends most of its waking hours hard at work aiding in the design of its successor, and Levy has offered a prize of $5000 to the developer of a system which is able to defeat him in match play within the next five years. Here we go again.

Photo 6: David Slate (left), of Northwestern University, and David Cahlander of Control Data Corp watch the computer terminal as it displays one of Chess 4.7's moves in game 4.
PLAY CHESS WITH YOUR COMPUTER!

MICROCHESS is the culmination of two years of chessplaying program development by Peter Jennings, author of the famous 1K byte chess program for the KIM-1. MICROCHESS 2.0 for 8K PETs and 16K APPLES, in 6502 machine language, offers 8 levels of play to suit everyone from the beginner learning chess to the serious player. It examines positions as many as 8 moves ahead, and includes a chess clock for tournament play. MICROCHESS 1.5 for BRIDGE CHALLENGER by George Dulaman for 8K PETs, Level 16K TRS-80s, and 16K APPLES: You and the dummy play 4 person Contract Bridge against the computer. The program will deal hands at random or according to your criterion for high card points. You can review tricks, swap sides or replay hands when the cards are known. No longer do you need 4 people to play! $14.95

ORDERS: Check, money order or VISA/Master Charge accepted; programs and cassettes guaranteed. If you have questions, please call us at 617-783-0694. If you know what you want and have your VISA/MC card ready, you can DIAL TOLL FREE 1-800-325-6400 (24 hours, 7 days; in Missouri, dial 1-800-342-6600). Or you can now at a special introductory price of only $19.95 mail your order to the address below. Personal Software™ products are now available at all Radio Shack® stores throughout the United States and Canada, and from the PET and APPLE dealers listed below. New dealers are being added daily. For the name and address of a dealer near you, call us at 617-783-0694 today!

Personal Software™ Cambridge, MA 02138

P.O. Box 136-B12

Circle 302 on inquiry card.
Z-80 Assembler

Patrick A Crowe
22 Ringsbury Close
Purton
Swindon ENGLAND SN5 5DE

A Z-80 assembler that implements all of the Zilog defined mnemonics is available from BYTE. This assembler uses the conventions established by Zilog in the Z-80 Assembly Language Programming Manual. It recognizes uppercase characters for labels, operators and operands. All defined pseudo-operations have been implemented except for macroinstructions and conditional assembly commands.

The assembler can be implemented in read only memory. It assumes that a console display and a paper tape reader and punch are available. However, since the user must supply the input and output routines for the program, this is not necessary, and the required functions can point to locations in memory.

The Nybbles Library is an inexpensive means for BYTE readers to share some interesting but specialized forms of software. These programs are written by readers with small computers and printer facilities, and are therefore designed for particular systems. The algorithms and programming techniques in these programs can be directly used by readers with similar equipment, or can serve as an inspiration for improvisation on computers of different characteristics.

Potential authors of such programs should send us a self-addressed stamped envelope, with a request for a copy of our "Guidelines for Nybbles Authors." Payment for Nybbles items is based on sales and length of the item. Rates are set at the time of acceptance.

Nybbles Library programs are sent in listing form, printed on 8.5 by 11 inch paper on both sides. The Nybbles Library programs are 3 hole punched for collection in loose leaf binders, and come in an attractive folder which serves as a cover.

This month "The Z-80 Assembler" (#101) has been added to the Nybbles Library. To order your personal copy, at $4 postpaid, fill out the coupon below.

Please send _____ copies of BYTE Nybble #______ at $_______ postpaid.

____ Check Enclosed

Bill my BAC # __________________________ Exp Date __________________________

Bill my MC # __________________________ Exp Date __________________________

Name __________________________

Street __________________________

City __________________________ State ________ Zip Code ______

BYTE Nybbles Library, 70 Main St, Peterborough NH 03458

You may photocopy this page if you wish to keep your BYTE intact.
Pay a little bit more and get a printer that's brighter than your computer.

The BrighterWriter™

When a few dollars more buys you a first-class impact printer, why settle for a toy? The BrighterWriter gives you quality to start with. And versatility that stays even if you outgrow your present personal computer.

Built smart like the big ones.
The BrighterWriter's a smart printer. There's a microcomputer inside. It outwits even the bigger, higher-priced printers. So you get versatility to do all kinds of printing. And power to grow on.

Prints fat, skinny, tall, small.*

This printer can be as creative as your imagination. Stretch out your characters. Squeeze them close. Make them high. Low. Bold. Banner. You name it.

Plugs into your computer.
Most popular personal computer interfaces to the BrighterWriter. Simply and quickly. Hundreds of Brighter Writers are working in Apple, TRS-80, Heathkit, S-100 and many other personal computer systems right now.

Pictures and fancy symbols.*
The BrighterWriter draws out your creativity. You can print drawings, graphs, diagrams, bold symbols, or just about any graphic you can imagine.

*Some of these advantages require extra-cost options.

Picture your page as thousands of dots. The BrighterWriter can fill in the dots, plot them contiguously, stack them, or scatter them. And its special set of graphic characters simplifies the process.

Prints any character a typewriter can. Faster . . .
The BrighterWriter can print plain and simple. With 7x7 dot matrix clarity. You get all the letters, numbers, and standard symbols of a regular typewriter. At up to 80 cps throughput.

Ordinary paper
Fancy or plain, the BrighterWriter prints on ordinary paper. Better yet, it prints on many shapes of paper: Single sheets. Roll. Fanfold.

Want more copies? The BrighterWriter prints multiple copies without extra adjustments.

Four easy buttons.
Operating the BrighterWriter couldn't be simpler. Up-front controls are easy to get to. A power button to turn it on. A test button to self-test your printer. A paper feed button to advance the sheets or forms. A line feed button to advance the paper a line at a time.

$949 Prints any-which-way.
The BrighterWriter comes in two models. The IP-225, at $949, gives you a BrighterWriter with tractor-feed drive for precision forms control. This one can handle everything from labels to 8½" paper widths.

It has eight form lengths and gives you all the features of our IP-125.

A brighter buy.
Our IP-125, friction-feed BrighterWriter has a 96 character set and prints on 8½" wide paper. Upper and lowercase. It prints expanded characters, too.

You can choose a RS-232 serial or parallel interface. $799

Lots of goodies.
There's more. Choose all kinds of options for your BrighterWriter. Up to 132 characters per line, variable character densities, larger buffers, special graphics packages, interface cables, and more.

Give us a call or write. Integral Data Systems, 14 Tech Circle, Natick, MA 01760, (617) 237-7610. Better yet, see the BrighterWriter at the store nearest you.

Integral Data Systems, Inc.

Circle 177 on inquiry card.
Interface Your Computer
to a Printing Calculator

Robert H. Astmann
58A Spring St
Red Bank NJ 07701

There are many microprocessor applications in which it is desirable to produce a hard copy of numeric information being measured or computed, yet even the cheapest of today's low cost printers could easily be the most expensive component of such a system. A solution to this problem is to use one of the thermal printing calculators now available. By means of an interface to a microprocessor, the calculator integrated circuit can be given stimuli identical to those received during the normal pushing of the calculator keys. In this article I describe such an interface which was implemented using an Intel 8080A processor and a Texas Instruments 5050M printing electronic calculator.

Basic Control Procedure

I first describe the method by which data is normally entered on a calculator keypad. Referring to figure 1, each button on the keypad provides a unique connection between a column output line and a row input line. The calculator integrated circuit outputs a scan pulse to each column bus sequentially, and looks for an input pulse from one of the rows. The interpretation given to a detected row signal is therefore dependent on which column is being accessed during the given time period.

The job for the microprocessor in this application is to monitor the column signals until the column containing the desired character key is active and then to drive the correct row bus to a high level so that the calculator circuit senses the input while the given column signal is still active. The microprocessor software controls this procedure by using two stored lookup tables (see table 1): a list of column vector bytes and a list of row vector bytes. The entries in these two tables, together with the code for the

Table 1: Contents of the row vector and column vector tables (RWVCT and CLVCT, respectively) referenced by the program in listing 1.

<table>
<thead>
<tr>
<th>Hexadecimal Row</th>
<th>Hexadecimal Column</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector (RWVCT)</td>
<td>Vector (CLVCT)</td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>01</td>
<td>"0"</td>
</tr>
<tr>
<td>04</td>
<td>01</td>
<td>"1"</td>
</tr>
<tr>
<td>04</td>
<td>02</td>
<td>"2"</td>
</tr>
<tr>
<td>04</td>
<td>04</td>
<td>"3"</td>
</tr>
<tr>
<td>02</td>
<td>01</td>
<td>"4"</td>
</tr>
<tr>
<td>02</td>
<td>02</td>
<td>"5"</td>
</tr>
<tr>
<td>02</td>
<td>04</td>
<td>"6"</td>
</tr>
<tr>
<td>01</td>
<td>01</td>
<td>"7"</td>
</tr>
<tr>
<td>01</td>
<td>02</td>
<td>"8"</td>
</tr>
<tr>
<td>01</td>
<td>04</td>
<td>"9"</td>
</tr>
<tr>
<td>0F</td>
<td>08</td>
<td>"T"</td>
</tr>
<tr>
<td>0F</td>
<td>04</td>
<td>"="</td>
</tr>
<tr>
<td>01</td>
<td>08</td>
<td>"="</td>
</tr>
<tr>
<td>08</td>
<td>08</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: Keyboard arrangement of the Texas Instruments 5050M printing calculator. Calculator logic outputs a scan pulse to each column bus sequentially and looks for an input pulse from one of the rows. This uniquely identifies the key pressed by the user. Although there are only four row inputs to the calculator circuit, there are five rows of keys. Signals from the upper row of keys appear simultaneously on all four row inputs through the diode network.

Figure 7: Keyboard arrangement of the Texas Instruments 5050M printing calculator. Calculator logic outputs a scan pulse to each column bus sequentially and looks for an input pulse from one of the rows. This uniquely identifies the key pressed by the user. Although there are only four row inputs to the calculator circuit, there are five rows of keys. Signals from the upper row of keys appear simultaneously on all four row inputs through the diode network.
Be at the Northeast's most exciting show featuring microcomputers and small computer systems.

The Northeast Business & Personal Computer Show will be the largest presentation of hardware and software ever gathered in Boston. And it will all take place at the spectacular Hynes Auditorium in Boston's Prudential Center. Hundreds of displays and exhibits will showcase microcomputers and small computer systems for businesspeople • hobbyists • doctors • scientists • engineers
• accountants • homeowners • researchers • programmers • technicians • students • educators.

With special exhibits for children, featuring calculators, computers, and educational displays.

You'll be entertained, educated, enthralled! Win valuable prizes in the computerized mouse maze contest, programming contests, and other electronic competitions. Hear computerized music synthesizers. See computer-generated art, graphics, and animation. Watch computer amusements. Play dozens of electronic and video games.

Internationally recognized speakers will give lectures and seminars for all categories and levels of enthusiasts, including introductory classes for novices. You may even have a chance to demonstrate your own equipment and applications. So plan to be in Boston this April. This is one show you won't want to miss!

HYNES AUDITORIUM, PRUDENTIAL CENTER, BOSTON

For more information call or write Northeast Expositions, Box 678, Brookline Village, Massachusetts 02147. Phone (617) 522-4467
desired character, determine the mapping of a column input into a row output.

Hardware Interface

The signalling between the TI 5050M calculator integrated circuit and keypad is illustrated in figure 2. A 17 V pulse of 40 µs nominal duration is outputted to each column bus with the entire sequence being repeated every 7.3 ms. This signalling continues as long as no button is pushed. When a button is pushed, the column signals are extended to about 150 µs to validate the button push. This pulse width is maintained until the button is released, during which time any other button push is ignored. It is immediately apparent that to interface this calculator to the 8080A processor, level translation circuitry in both directions is required. The circuitry I used in this application is shown in figure 3. An Intel 8255 Programmable Peripheral Interface integrated circuit was chosen because it was already interfaced to the 8080A as a keyboard port. The diodes tied to +5 V ensure that the inputs to the 8255 do not go above +5.7 V when a column signal goes to +17 V. The output lines from the 8255 are connected to open collector drivers which translate a +5 V signal to +17 V.

The necessary connection points within the calculator case were easily accessed since there were large metal strips connecting the printed circuit board to the keypad. A dual trace oscilloscope was used to deduce the identity of each connection. Once the columns were identified by noting the time displacement of the scan pulse on each bus relative to the others, the rows were identified by pressing buttons and looking for responses on the connections that normally did not exhibit any signalling.

Software Interface

At the heart of the printer control software is the driver program, INTER. INTER is called when a single decimal digit or control character is to be entered. A 4 bit BCD representation of the digit must first be loaded into the C register of the 8080A. As shown in listing 1, this character code is used to select the correct column and row vectors from the two lookup tables contained in table 1.

In my microcomputer system, which is based on an Altair 8800 computer, this program was executed out of programmable memory which utilizes a processor wait

Figure 2: The sequence of column scan signals outputted by the calculator circuit.

Figure 3: Circuitry for interfacing the 8255 programmable peripheral interface to the Texas Instruments 5050M printing calculator. The diodes prevent the inputs to the 8255 from going above 5.7 V when a column signal goes to 17 V. The output lines from the interface are connected to open collector drivers (IC1) which translate the 5 V signals to 17 V.

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>TYPE</th>
<th>+5</th>
<th>GROUND</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC1</td>
<td>7407</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>IC2</td>
<td>8255</td>
<td>26</td>
<td>7</td>
</tr>
</tbody>
</table>
At last, you can get a mammoth 32K memory without paying a beastly price. The SuperRam™ 32K static memory kit is just $649 for S-100 systems (Z-80 version, add $70).

The latest of George Morrow's heavyweight memory designs for Thinker Toys™, the SuperRam™ 32K features two independent 16K blocks, each addressable and write-protectable. It meets the Proposed IEEE S-100 Standard with full buffering of both data and address lines. Uncommonly efficient, the Morrow design utilizes just 7 IC's for control and buffering, drawing typically 2.6 amps.

Ask your local computer shop to order the SuperRam™ 32K kit for you. Or, if unavailable locally, order direct from Thinker Toys™, 1201 10th St., Berkeley, CA 94710. Or call (415) 524-2101, weekdays 10-5 Pacific Time. Add $3 for handling. (Cal. res. add tax.)

Morrow makes memory for

Thinker Toys™

Circle 255 on inquiry card.
grammable peripheral interface. Row vector and column vector (RWVCT and CLVCT) contents are listed in table 1. The first section in the list is the portion of the main program that calls the routines.

<table>
<thead>
<tr>
<th>Label</th>
<th>Op Code</th>
<th>Operand</th>
<th>Commentary</th>
</tr>
</thead>
<tbody>
<tr>
<td>LHLD</td>
<td>POINT</td>
<td>load HL with memory data pointer</td>
<td></td>
</tr>
<tr>
<td>MOV</td>
<td>C,M</td>
<td>load C from memory with 2 low order digits</td>
<td></td>
</tr>
<tr>
<td>INX</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOV</td>
<td>B,M</td>
<td>load B from memory with 2 high order digits</td>
<td></td>
</tr>
<tr>
<td>INX</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CALL</td>
<td>OUTPR</td>
<td>enter the four digits</td>
<td></td>
</tr>
<tr>
<td>MVIC</td>
<td>D0H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CALL</td>
<td>LINE</td>
<td>terminate the line</td>
<td></td>
</tr>
<tr>
<td>CALL</td>
<td>SKIP</td>
<td>skip a line</td>
<td></td>
</tr>
</tbody>
</table>

OUTPR:

<table>
<thead>
<tr>
<th>Label</th>
<th>Op Code</th>
<th>Operand</th>
<th>Commentary</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOV</td>
<td>A,C</td>
<td>get 2 low order decimal digits</td>
<td></td>
</tr>
<tr>
<td>STA</td>
<td>SAVE+1</td>
<td>save</td>
<td></td>
</tr>
<tr>
<td>MOV</td>
<td>A,B</td>
<td>get 2 high order decimal digits</td>
<td></td>
</tr>
<tr>
<td>MVIB</td>
<td>D0H</td>
<td>clear B reg for INTER</td>
<td></td>
</tr>
<tr>
<td>CALL</td>
<td>PR2DI</td>
<td>enter 2 high order digits</td>
<td></td>
</tr>
<tr>
<td>LDA</td>
<td>SAVE+1</td>
<td>retrieve 2 low order digits</td>
<td></td>
</tr>
<tr>
<td>JMP</td>
<td>PR2DI</td>
<td>enter 2 low order digits</td>
<td></td>
</tr>
</tbody>
</table>

PR2DI:

<table>
<thead>
<tr>
<th>Label</th>
<th>Op Code</th>
<th>Operand</th>
<th>Commentary</th>
</tr>
</thead>
<tbody>
<tr>
<td>STA</td>
<td>RRC</td>
<td>save low order digit</td>
<td></td>
</tr>
<tr>
<td>RRC</td>
<td>RRC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANI</td>
<td>0FH</td>
<td>BCD value for digit to be entered now occupies right side of accumulator</td>
<td></td>
</tr>
<tr>
<td>MOV</td>
<td>C,A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CALL</td>
<td>INTER</td>
<td>enter the high order digit</td>
<td></td>
</tr>
<tr>
<td>LXi</td>
<td>D0F00H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CALL</td>
<td>DELAY</td>
<td>delay for calculator response time</td>
<td></td>
</tr>
<tr>
<td>LDA</td>
<td>SAVE</td>
<td>retrieve low order digit</td>
<td></td>
</tr>
<tr>
<td>ANI</td>
<td>0FH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOV</td>
<td>C,A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CALL</td>
<td>INTER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LXi</td>
<td>D0F00H</td>
<td>enter the low order digit</td>
<td></td>
</tr>
<tr>
<td>JMP</td>
<td>DELAY</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SKIP:

<table>
<thead>
<tr>
<th>Label</th>
<th>Op Code</th>
<th>Operand</th>
<th>Commentary</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVI</td>
<td>C0H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CALL</td>
<td>INTER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LXi</td>
<td>D0</td>
<td>delay for thermal print head response and paper advance</td>
<td></td>
</tr>
<tr>
<td>JMP</td>
<td>DELAY</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INTER:

<table>
<thead>
<tr>
<th>Label</th>
<th>Op Code</th>
<th>Operand</th>
<th>Commentary</th>
</tr>
</thead>
<tbody>
<tr>
<td>LXi</td>
<td>H,CLVCT</td>
<td>HL points to head of column vector table</td>
<td></td>
</tr>
<tr>
<td>DAD</td>
<td>B</td>
<td>HL points to correct column vector byte</td>
<td></td>
</tr>
<tr>
<td>MOV</td>
<td>D,M</td>
<td>load D reg. with column vector</td>
<td></td>
</tr>
<tr>
<td>LXi</td>
<td>H,RWVCT</td>
<td>HL points to head of row vector table</td>
<td></td>
</tr>
<tr>
<td>DAD</td>
<td>B</td>
<td>HL points to correct row vector byte</td>
<td></td>
</tr>
<tr>
<td>IN</td>
<td>PORTB</td>
<td>read status of column signals</td>
<td></td>
</tr>
<tr>
<td>ANA</td>
<td>D</td>
<td>is desired column active?</td>
<td></td>
</tr>
<tr>
<td>JZ</td>
<td>COL</td>
<td>No, keep looking</td>
<td></td>
</tr>
<tr>
<td>MOV</td>
<td>A,M</td>
<td>Yes, prepare to output row signal</td>
<td></td>
</tr>
<tr>
<td>MVIC</td>
<td>C0FH</td>
<td>initialize first delay counter</td>
<td></td>
</tr>
<tr>
<td>INR</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JNZ</td>
<td>WAIT1</td>
<td>time to output row signals</td>
<td></td>
</tr>
<tr>
<td>OUT</td>
<td>PORTC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MVI</td>
<td>C0FH</td>
<td>initialize second delay counter</td>
<td></td>
</tr>
<tr>
<td>INR</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JNZ</td>
<td>WAIT2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XRA</td>
<td>A</td>
<td>clear accumulator</td>
<td></td>
</tr>
<tr>
<td>OUT</td>
<td>PORTC</td>
<td>reset row signals</td>
<td></td>
</tr>
<tr>
<td>RET</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Label</th>
<th>Op Code</th>
<th>Operand</th>
<th>Commentary</th>
</tr>
</thead>
<tbody>
<tr>
<td>INR</td>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JNZ</td>
<td>DELAY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INR</td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JNZ</td>
<td>DELAY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RET</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Listing 1: Assembly language program for interfacing an Intel 8080A processor to a Texas Instruments 5050M printing calculator using an 8255 programmable peripheral interface. Row vector and column vector (RWVCT and CLVCT) contents are listed in table 1. The first section in the list is the portion of the main program that calls the routines.
user.) Hence, at this point in the application program the code for the #/S key is loaded into the C register and the subroutine LINE is called. LINE proceeds to call INTER and then causes a delay of about 0.5 seconds which enables the calculator to activate the thermal print heads and advance the paper. Finally, the subroutine SKIP is called in order to skip a line before printing the next number.

Conclusions

When using a microprocessor in a control application, it is necessary to be able to "shake hands" with the device to be controlled. This is best accomplished by structuring the software so that a low-level driver routine makes the handshaking transparent to the higher level software.

In this application, the signalling protocol of the printing calculator is utilized as a control mechanism by the processor. The interface between the two devices is easy to implement and the result is low cost numeric printing capability. Whenever the calculator is disconnected from the processor interface, it will operate normally again.

Conclusions

When using a microprocessor in a control application, it is necessary to be able to "shake hands" with the device to be controlled. This is best accomplished by structuring the software so that a low-level driver routine makes the handshaking transparent to the higher level software.

In this application, the signalling protocol of the printing calculator is utilized as a control mechanism by the processor. The interface between the two devices is easy to implement and the result is low cost numeric printing capability. Whenever the calculator is disconnected from the processor interface, it will operate normally again.

Brochures available

<table>
<thead>
<tr>
<th>Brochures available</th>
<th>Terrapin, Inc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kit $300, Assembled $500</td>
<td>33 Edinborough Street</td>
</tr>
<tr>
<td>S-100 Bus Interface Kit $40, Assembled $50</td>
<td>6th Floor</td>
</tr>
<tr>
<td>U.S. postage $5</td>
<td>Boston, MA 02111</td>
</tr>
<tr>
<td>Mass. residents add 5% sales tax</td>
<td>(617) 482-1033</td>
</tr>
</tbody>
</table>

CLIP AND STRIP

Model CAS-130

$19.8

- CUTS AWG 30 WIRE TO DESIRED LENGTH
- STRIPS 1" OF INSULATION

MINIMUM BILLING $25.00
ADD SHIPPING CHARGE $2.00
NEW YORK STATE RESIDENTS ADD APPLICABLE TAX

OK MACHINE & TOOL CORPORATION
3455 Conner St., Bronx, N.Y. 10475 • (212) 994-6600 • TELEX 125091
A Computer Driven EROM Programmer

G H Gable
50 Cliftwood Dr
Halesite NY 11743

One of the most fascinating and useful products of recent technology is the read only memory (often abbreviated as ROM) and especially useful for the experimental systems designer is the erasable and electrically programmable read only memory, variously abbreviated EROM or EPROM.

In designing my first microprocessor based system, a read only memory was a must to contain the operating system and the floating point arithmetic firmware. I did extensive research into read only memory systems and after a week or so I was ready to make a specification. I had previously chosen the processor for the system to be the MOS Technology 6502 which requires a memory access time of about 500 ns when running with a 1 MHz clock. It was very desirable to have the read only memory meet this specification for two reasons. First, because of the dynamic nature of the 6502, it does not wait for slow memory very readily. Second, and by far most important, I wanted my arithmetic routines in read only memory to run as fast as possible since I would be using them very often. These considerations ruled out the older 1702 type memories as too slow.

The choice was obvious as soon as I read about the Intel 2708. It had all the requisite features: fast (450 ns) access time, large array (1024 8 bit words) on a single chip, and easy straightforward programming. When I designed this programmer the going price was $100; currently the prices have dropped to about $10, making this chip even more desirable.

The chip is also numbered 8708 to fit into Intel’s 8000 line which includes the 8080. The 2708 and the 8708 are identical as far as I know. They are definitely interchangeable at a pin level. There is also a variation of the design called the 2704/8704 which is arranged as an array of 512 8 bit words. The 2704/8704 is electrically and logically identical to the 2708/8708 but contains only half as much memory. The high order address line is not defined for the 2704/8704. (Rumor has it that 2704/8704 parts are identical to 2708s but wired into the package with the high order address bit unconnected.)

System Design

My design called for 4 K bytes of read only memory resident firmware which could be built up over a period of time as the operating system and arithmetic routines were debugged. My approach to this was to prototype the eventual firmware in normal
programmable memory and then transfer it to read only memory after debugging. I designed a 4 K byte read only memory board (photo 1) which has four 2708 PROM chips plus 1 K bytes of programmable memory. The programmable memory can be jumper selected to occupy any 1 K page on the board. This allows for prototyping a routine in the actual address space that it will eventually occupy. The system has worked out extremely well.

It was my original intention to have the read only memory programmed by professionals offsite. My impression was that 2708 programming was somewhat complex and that a programmer board for a limited number of burns was not very practical. After learning more about the 2708 my attitude changed. A little thought convinced me that a computer driven programmer could be simply constructed at minimum cost. It would be very convenient to be able to program the chips in my own computer and to be able to make changes and corrections with a short turnaround time.

Programming the EROM

When initially received, and after each erasure, all the bits of the 2708 are in the "1" state (output high). The content of the 2708 is programmed by selectively changing state to "0" in the desired bit locations. Programming a given byte requires the address of the byte on the address input pins and the data byte on the data pins, all at TTL levels (+5 V) with the write enable pin held at +12 V, a program pulse of +26 V at 20 mA is applied to the program pin. The 2708 specifications require that the program pulse be between 100 µs and 1000 µs wide. A series of pulses are required to program a particular address. Intel recommends that one pulse be administered to each address location in a loop. The number of times the loop must be repeated is a function of the pulse width. The final accumulated program current time to each address must be greater than 100 ms. Such a scheme is a natural for computer control.

The Zapper programming board shown in photo 2 and figure 1 is designed to have the address and data multiplexed to it through a peripheral interface adapter (PIA) with at least eleven output lines. I use the peripheral interface adapter that is available on my MOS Technology KIM-1 single board computer to drive the Zapper. If you do not have one of these PIAs I recommend either the MOS Technology 6520 or the Motorola 6820. The address and data are passed through the lower eight lines (PA0-PA7) while three of the upper lines (PB0-PB2) control the multiplexing and programming current.

The driving computer is expected to direct the following sequence of events which will program one address location in the 2708:

- PB0 is brought high to enable the upper 8212 (IC1) eight bit latch.
- The lower eight bits of the address are loaded on PA0-PA7 and thus into the 8212.
- PB0 is brought low latching the low address onto the outputs of IC1 which are wired to the address inputs of the 2708.
- PB1 is brought high to enable the lower 8212 (IC2). The upper two bits of the address are loaded on PA0-PA1 and latched when PB1 goes low.
- The data byte is loaded on PA0-PA7 and latched by the PIA.
- PB2 is brought high for the pulse time gating the program current to the EROM.

This sequence is repeated the required number of times to program the EROM.

Photo 2: The Zapper board with the EROM in the upper left corner. Data from the PIA as well as logic power and ground come in via the ribbon cable at the bottom which is connected directly to the computer. Program power comes in on the cable in the upper right corner from an external power supply.
Figure 1: The address and data information for the Zapper is multiplexed through the PIA ports PA0-PA7 while control signals are presented on PB0-PB2. PB0 is connected to the enable pin of the upper 8212 which latches the lower eight bits of the address. The high two bits of the address are loaded and latched on the lower 8212 by PB1. The data byte is latched by the PIA. When PB2 goes high, program power is gated to the program pin of the 2708 by the 3 transistor high current gate in the lower right.
OKIDATA SL 125 LINE PRINTER
- 125 lines per minute, 132-column print line
- Upper/lower case
- 8 different character sizes
- 12 IPS paper
- Tractor feed

$84.35 per month* $2449.00 complete

OKIDATA MODEL 110 LINE PRINTER
- 110 CPS dot matrix
- Friction feed
- 80 columns
- Bidirectional printing

$41.29 per month* $1199.00 complete

TELETYYPYE MODEL 43 PRINTER
- 132 characters per line
- 110 or 300 Baud switch selectable
- Full keyboard
- RS232C Serial interface standard

$44.24 per month* $1299.00 complete

CENTRONICS 703 SERIAL PRINTER
- 180 characters per second
- Bidirectional logic seeking printing
- Microprocessor electronics
- Full 132 columns

$96.61 per month* $2805.00 complete

CENTRONICS 761 KSR PRINTER
- 300 Baud serial transmission
- Bidirectional and incremental printing
- RS232, CCITT-V24 or current loop interface
- Baud selection (110/150/300)

$69.75 per month* $2025.00 complete

MORE PRINTER BUYS
DECWRITER II LA 36
- $49.94 per month $1495.00 complete

LEAR-SIEGELER 301 PRINTER
- 65.27 1995.00

CENTRONICS 700 PRINTER
- 52.35 1520.00

CENTRONICS 779 PRINTER
- 41.95 1294.00

Call for prices and information on other models in our complete line of printers and other hardware.

SYNCHRO-SOUND ENTERPRISES, INC.
The Computer People
193-25 Jamaica Avenue, Jamaica, New York 11423
212/468-7067 TWX 710-582-5886
West Coast: 5010 Commerce Blvd., Rohnert Park, CA 94928
707/544-2865

*36 month lease
 Maintenance additional
 OEM pricing available

Hours 9-4 Daily and Saturday
Visit our new showroom
Working units on display
American Bank

Circle 355 on inquiry card.

BYTE December 1978 103
A burn pulse for each location. The cycle is repeated so that each location receives 255 pulses. The end of the program is signaled by the Teletype bell or terminal signal.

Later it is used in the pulse timing loop simply to cut down the programming pulse time to program the 2708. The start and end plus one addresses of the programmable memory block are loaded in BSL, BSH and BEL, BEH registers respectively before execution is begun. Data is programmed into the same relative addresses in the read only memory as they are found in the programmable memory; ie: the low ten bits of the address are the same.

Notice that the 2708 can be partially programmed. If the memory block to be copied is less than 1024 bytes long, only the appropriate bytes are programmed. The remaining locations are unchanged. The block to be programmed can start and end anywhere in the 1 K page. This is a very useful feature as it allows firmware to be developed over a period of time. The partially programmed read only memory can be used in the meantime. Incidentally, listings 2 and 3 are subroutines only for the sake of modularity and the whim of the author. They are called at only one point each.

It is very important that the +26 V programming power be off at the power supply before the computer has had a chance to latch PB2 low. After this initialization, a pause is implemented by waiting for input from a terminal in subroutine MSG, listing 3. The application of program power before the computer has initialized the Zapper board will usually result in some random location being burned with some random data.

Erasing the EROM

The 2708 is very easily erased using an ultraviolet light source. Intel specifications indicate that an integrated dose of 10 watt-sec/cm² at a wavelength of 2537 angstroms is required to erase the 2708. A quick glance at the CRC Handbook of Chemistry and Physics shows that 2537 angstroms is the most persistent spectral line of mercury (Hg). This means that any mercury vapor lamp will do the trick. I use a nice packaged source from MSC Macalaster (Catalog #3400) which slips over the top of the read only memory. (When using the unit, discard the filters which come with it, and be sure you shield your eyes from the lamp.) The chip

Software

The driving software, as shown in listings 1 to 4, implements the above sequence of events in a double loop. The inside loop, listing 2, works its way through all the addresses to be programmed and gives each location a 600 µs programming pulse. The outer loop, listing 1, repeats the process 255 times giving a total program current time of 153 ms to each bit. This is sufficient time to program the 2708. The start and end plus one addresses of the programmable memory block are loaded in BSL, BSH and BEL, BEH registers respectively before execution is begun. Data is programmed into the same relative addresses in the read only memory as they are found in the programmable memory; ie: the low ten bits of the address are the same.

Notice that the 2708 can be partially programmed. If the memory block to be copied is less than 1024 bytes long, only the appropriate bytes are programmed. The remaining locations are unchanged. The block to be programmed can start and end anywhere in the 1 K page. This is a very useful feature as it allows firmware to be developed over a period of time. The partially programmed read only memory can be used in the meantime. Incidentally, listings 2 and 3 are subroutines only for the sake of modularity and the whim of the author. They are called at only one point each.

It is very important that the +26 V programming power be off at the power supply before the computer has had a chance to latch PB2 low. After this initialization, a pause is implemented by waiting for input from a terminal in subroutine MSG, listing 3. The application of program power before the computer has initialized the Zapper board will usually result in some random location being burned with some random data.

Erasing the EROM

The 2708 is very easily erased using an ultraviolet light source. Intel specifications indicate that an integrated dose of 10 watt-sec/cm² at a wavelength of 2537 angstroms is required to erase the 2708. A quick glance at the CRC Handbook of Chemistry and Physics shows that 2537 angstroms is the most persistent spectral line of mercury (Hg). This means that any mercury vapor lamp will do the trick. I use a nice packaged source from MSC Macalaster (Catalog #3400) which slips over the top of the read only memory. (When using the unit, discard the filters which come with it, and be sure you shield your eyes from the lamp.) The chip

Software

The driving software, as shown in listings 1 to 4, implements the above sequence of events in a double loop. The inside loop, listing 2, works its way through all the addresses to be programmed and gives each location a 600 µs programming pulse. The outer loop, listing 1, repeats the process 255 times giving a total program current time of 153 ms to each bit. This is sufficient time to program the 2708. The start and end plus one addresses of the programmable memory block are loaded in BSL, BSH and BEL, BEH registers respectively before execution is begun. Data is programmed into the same relative addresses in the read only memory as they are found in the programmable memory; ie: the low ten bits of the address are the same.

Notice that the 2708 can be partially programmed. If the memory block to be copied is less than 1024 bytes long, only the appropriate bytes are programmed. The remaining locations are unchanged. The block to be programmed can start and end anywhere in the 1 K page. This is a very useful feature as it allows firmware to be developed over a period of time. The partially programmed read only memory can be used in the meantime. Incidentally, listings 2 and 3 are subroutines only for the sake of modularity and the whim of the author. They are called at only one point each.

It is very important that the +26 V programming power be off at the power supply before the computer has had a chance to latch PB2 low. After this initialization, a pause is implemented by waiting for input from a terminal in subroutine MSG, listing 3. The application of program power before the computer has initialized the Zapper board will usually result in some random location being burned with some random data.

Erasing the EROM

The 2708 is very easily erased using an ultraviolet light source. Intel specifications indicate that an integrated dose of 10 watt-sec/cm² at a wavelength of 2537 angstroms is required to erase the 2708. A quick glance at the CRC Handbook of Chemistry and Physics shows that 2537 angstroms is the most persistent spectral line of mercury (Hg). This means that any mercury vapor lamp will do the trick. I use a nice packaged source from MSC Macalaster (Catalog #3400) which slips over the top of the read only memory. (When using the unit, discard the filters which come with it, and be sure you shield your eyes from the lamp.) The chip

Software

The driving software, as shown in listings 1 to 4, implements the above sequence of events in a double loop. The inside loop, listing 2, works its way through all the addresses to be programmed and gives each location a 600 µs programming pulse. The outer loop, listing 1, repeats the process 255 times giving a total program current time of 153 ms to each bit. This is sufficient time to program the 2708. The start and end plus one addresses of the programmable memory block are loaded in BSL, BSH and BEL, BEH registers respectively before execution is begun. Data is programmed into the same relative addresses in the read only memory as they are found in the programmable memory; ie: the low ten bits of the address are the same.

Notice that the 2708 can be partially programmed. If the memory block to be copied is less than 1024 bytes long, only the appropriate bytes are programmed. The remaining locations are unchanged. The block to be programmed can start and end anywhere in the 1 K page. This is a very useful feature as it allows firmware to be developed over a period of time. The partially programmed read only memory can be used in the meantime. Incidentally, listings 2 and 3 are subroutines only for the sake of modularity and the whim of the author. They are called at only one point each.

It is very important that the +26 V programming power be off at the power supply before the computer has had a chance to latch PB2 low. After this initialization, a pause is implemented by waiting for input from a terminal in subroutine MSG, listing 3. The application of program power before the computer has initialized the Zapper board will usually result in some random location being burned with some random data.

Erasing the EROM

The 2708 is very easily erased using an ultraviolet light source. Intel specifications indicate that an integrated dose of 10 watt-sec/cm² at a wavelength of 2537 angstroms is required to erase the 2708. A quick glance at the CRC Handbook of Chemistry and Physics shows that 2537 angstroms is the most persistent spectral line of mercury (Hg). This means that any mercury vapor lamp will do the trick. I use a nice packaged source from MSC Macalaster (Catalog #3400) which slips over the top of the read only memory. (When using the unit, discard the filters which come with it, and be sure you shield your eyes from the lamp.) The chip

Erasing the EROM

The 2708 is very easily erased using an ultraviolet light source. Intel specifications indicate that an integrated dose of 10 watt-sec/cm² at a wavelength of 2537 angstroms is required to erase the 2708. A quick glance at the CRC Handbook of Chemistry and Physics shows that 2537 angstroms is the most persistent spectral line of mercury (Hg). This means that any mercury vapor lamp will do the trick. I use a nice packaged source from MSC Macalaster (Catalog #3400) which slips over the top of the read only memory. (When using the unit, discard the filters which come with it, and be sure you shield your eyes from the lamp.) The chip

Erasing the EROM

The 2708 is very easily erased using an ultraviolet light source. Intel specifications indicate that an integrated dose of 10 watt-sec/cm² at a wavelength of 2537 angstroms is required to erase the 2708. A quick glance at the CRC Handbook of Chemistry and Physics shows that 2537 angstroms is the most persistent spectral line of mercury (Hg). This means that any mercury vapor lamp will do the trick. I use a nice packaged source from MSC Macalaster (Catalog #3400) which slips over the top of the read only memory. (When using the unit, discard the filters which come with it, and be sure you shield your eyes from the lamp.) The chip

Erasing the EROM

The 2708 is very easily erased using an ultraviolet light source. Intel specifications indicate that an integrated dose of 10 watt-sec/cm² at a wavelength of 2537 angstroms is required to erase the 2708. A quick glance at the CRC Handbook of Chemistry and Physics shows that 2537 angstroms is the most persistent spectral line of mercury (Hg). This means that any mercury vapor lamp will do the trick. I use a nice packaged source from MSC Macalaster (Catalog #3400) which slips over the top of the read only memory. (When using the unit, discard the filters which come with it, and be sure you shield your eyes from the lamp.) The chip

Erasing the EROM

The 2708 is very easily erased using an ultraviolet light source. Intel specifications indicate that an integrated dose of 10 watt-sec/cm² at a wavelength of 2537 angstroms is required to erase the 2708. A quick glance at the CRC Handbook of Chemistry and Physics shows that 2537 angstroms is the most persistent spectral line of mercury (Hg). This means that any mercury vapor lamp will do the trick. I use a nice packaged source from MSC Macalaster (Catalog #3400) which slips over the top of the read only memory. (When using the unit, discard the filters which come with it, and be sure you shield your eyes from the lamp.) The chip
What do the S-100, the Heath H8, the Radio Shack TRS-80, the Apple, the Digital Group, and the Intel/National 80/10 and 80/20 machines have in common?

Support from CompuKit™

Whether it's flexibility, economy, or reliability that you're looking for, you only need to look to one product line: CompuKit from Godbout Electronics. We're the ones who deliver when we say we will, play close attention to the needs of users, and enjoy a doubly enviable reputation for reliability with cost-effectiveness.

Here are some more reasons for our popularity...

All our Econoram™ memory kits offer the following:

- Extensive bypassing of supply lines
- Static design for problem-free interfacing with a variety of systems, and elimination of dynamic timing requirements
- Low power operation with guaranteed current specifications
- All lines buffered for reliable data transfer
- Write strobe selection switch for S-100 boards (allows use of memory with or without front panel)
- Tri-state outputs for use with bi-directional busses
- Guaranteed under 450 ns access time (conservatively rated; many users are running our boards in 4 MHz Z-80 systems)
- Dip switch address selection for protection
- High quality, solder masked and legended boards with sockets for all ICs
- S-100 memories are compatible with all S-100 machines

Extended warranty. We believe in our products, and we back them up with a 1 year (not 90 days) limited warranty that covers any defects in materials or workmanship.

Choice of "unkit", assembled and tested, or CSC qualified boards. Most of our memory boards are now available as "unkits", with sockets and bypass caps pre-soldered in place for easy assembly. In addition to standard assembled/tested boards, we also qualify boards under the Certified Systems Components program. These boards are burned in for 200 hours, serial numbered, and guaranteed to run at 4 MHz over the full temperature range. We exchange CSC boards if any defect occurs within 1 year of invoice date.

S-100 Products

8K ECONORAM II™
$139 (unkit), $159 (assem)

Our least costly way to add memory to S-100 machines. Configured as two independent 4K blocks, with separate protect for each block and vector interrupt provision if you try to write in protected memory. Handles DMA. Less than 1500 mA current consumption.

16K ECONORAM IV™
$279 (unkit), $314 (assm), $414 (CSC)

Manual write protection for 4K blocks, use with or without phantom line. runs DMA at 2 or 4 MHz. Guaranteed under 2000 mA current (typically 1500 mA). Finally...static storage at less than the cost of dynamic equivalents!

24K ECONORAM VII™
$445 (unkit), $485 (assm), $605 (CSC)

Our top of the line. Configured as 4 independent blocks (two 8K and two 4K) for unique addressing options. Write protect for each block; use with or without phantom line; provision for two qualifiers; runs DMA at 2 or 4 MHz; draws less than 2500 mA (1800 mA typical).

11 SLOT S-100 MOTHERBOARD
$90 (unkit)

Includes all edge connectors pre-soldered in place, with extensive supply line bypassing and active termination for reliable data transfer. Dimensions: 8.5" by 11"

18 SLOT S-100 MOTHERBOARD
$124 (unkit)

Same features as above, but 18 slots. Dimensions: 8.5" by 16.7"

OTHER COMPUTER PRODUCTS

TRS-80 CONVERSION KIT
$159

Expand the TRS-80 mainframe 4K to 16K, or use with the memory expansion module. Our detailed instructions describe both conversion processes. Includes all parts necessary for conversion, and is backed up by our standard 1 year limited warranty. Also suitable for expanding memory in APPLE computers.

32K STATIC S-100 MEMORY:
$599!

Full feature "unkit" offers low power consumption, guaranteed 4 MHz operation...and of course, the reliability of an Econoram.

FREE FLYER: We stock much more than...we could possibly fit in any one ad. Did you know, for example that we stock some of the best motherboard boards around? That we carry, full line of components? And that we distribute a wide range of Vector products? Send us your address, and the flyer is yours. Or send 41 for first class delivery...and the bulk rate delay.

TERMS: Allow 5% shipping, excess refunded. Call res. add tax. VISA/Mastercharge. Call (415) 362-0636, 24 hours. COD OK with street address for UPS. (85) COD charge applies.

Circle 150 on inquiry card.
Listing 3: The MSG routine effectively causes a pause so that programming power may be turned on after the Zapper board has been initialized. Execution is resumed when any key on the Teletype is pressed.

should be stuck in a piece of conducting foam while erasing. An exposure time of 30 to 40 minutes will yield a fresh chip ready to be programmed again. If you want to make your own eraser, use the GE #G4S11 4 W mercury vapor lamp with a GE #89C504 ballast. Both of these items are usually available at commercial electrical supply houses. The exposure time is about 40 minutes with the 2708 placed 1 cm from the bulb.

My experience shows that each successive time a 2708 is erased the exposure time to completely erase it increases. As the total energy needed to erase it is cumulative, extra short exposures can be given as needed. A little program to check each byte for all ones will assure that the memory is fully erased.

It is also convenient to remember that any 1 bit in the EROM can be changed to 0. Sometimes a single byte needs to be modified and this can occasionally be done without erasing the EROM and reprogramming it. This has been the case for me more often then statistics would dictate. Someone else must not been so lucky.

REFERENCES
1. Intel Data Catalog, Intel Corp, 1975.

Listing 4: External symbol table. The PIA registers (PAD, PADD, PBD, PBDD) are those assigned on the KIM-1 board. OUTCH and GETCH respectively output and input one character each to or from a terminal. They are part of the KIM-1 operating system.

<table>
<thead>
<tr>
<th>HEX DECIMAL LOCATION</th>
<th>SYMBOL</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>BSL</td>
<td>STARTING ADDRESS OF PROGRAMMABLE MEMORY</td>
</tr>
<tr>
<td>0001</td>
<td>BSH</td>
<td>ENDING ADDRESS PLUS ONE OF PROGRAMMABLE MEMORY</td>
</tr>
<tr>
<td>0002</td>
<td>BEL</td>
<td>WAIT REGISTER</td>
</tr>
<tr>
<td>0003</td>
<td>BEH</td>
<td>CYCLE COUNT REGISTER</td>
</tr>
<tr>
<td>0004</td>
<td>LRH</td>
<td>LOCATION REGISTER</td>
</tr>
<tr>
<td>1700</td>
<td>PAD</td>
<td>PA PORT DATA REGISTER</td>
</tr>
<tr>
<td>1701</td>
<td>PADD</td>
<td>PA PORT DIRECTION REGISTER</td>
</tr>
<tr>
<td>1702</td>
<td>PBD</td>
<td>PB PORT DATA REGISTER</td>
</tr>
<tr>
<td>1703</td>
<td>PBDD</td>
<td>PB PORT DIRECTION REGISTER</td>
</tr>
<tr>
<td>1704</td>
<td>OUTCH</td>
<td>TTY OUTPUT ROUTINE</td>
</tr>
<tr>
<td>1705</td>
<td>GETCH</td>
<td>TTY INPUT ROUTINE</td>
</tr>
<tr>
<td>1706</td>
<td>IFPSA</td>
<td></td>
</tr>
</tbody>
</table>

THE PS-80 PROD PROM cartridge in a side slot.
1/0: serial RS232 300/1200 baud port full parallel port, dual cassette recorder port or 300/1200 baud.
EXPANSION: up to 32k RAM on board 1/0 to 5-100 extension box for additional memory and any other $100 peripheral boards. PRICE: $895 (does not include CRT or cassette.)
8k RAM $695.00 available soon.
16k RAM $1150.00 available now.
32k RAM $1395.00 available now.
EDUCATIONAL AND CLUB DISCOUNTS AVAILABLE PERSONAL CONSULTANT AND DEALER INQUIRIES INVITED.

FOR COMPLETE INFORMATION WRITE TO PERSONAL SYSTEMS CONSULTING
(714) 443-5353
P.O. Box 24586 El Cajon, California 92012
106 December 1978 © BYTE Publications Inc
Circle 303 on inquiry card.
We Start With A Price That's Hard To Beat.

But We Don't Stop There.
Central Data Corporation has combined the benefits of new technology and high-volume company sales to bring you a RAM board with more features and product options for less money.

Lower Prices
More Memory Capability
To begin with, we've reduced the price of our 16K RAM board by $40 to $249. At $425—a price reduction of $50—our 32K board costs less, too. Plus, we now offer a full 48K memory board for $599. These boards are expandable to 64K at a price of $185 per 16K package. Or you can start right out with a full 64K board for $775.

Improved Board Design
We've also added improvements to the board design at no extra cost to you.

• Deselectable in 2K increments. Our deselect feature enables you to switch off any 2K to avoid overlap with your existing memory.
• Fully socketed memory. This feature enables you to expand the memory board yourself.
• Plug selectable addressing. Now you can re-address without soldering.

Other Standard Features
• Power-saving dynamic board with on-board invisible refresh
• One-year guarantee on parts and labor
• S-100 and Z-80 compatible

Specifications
Storage Capacity: 16K, 32K, 48K, or 64K
Addressing: 16K boundaries
Max. Input Load: One LS TTL load
Output Buffering: On all data lines
Access Time: 450ns
Cycle Time: 480ns
Wait States Generated: None
Maximum DMA Rate: 1 Mhz

Power Consumption
+16 150ma
+ 8 300ma
-16 20ma

Other Products From Central Data
Central Data also offers, fully-assembled and in kits, a range of other computer products including (pictured above) our 2650 microprocessor, software packages, TV/Monitor, ASCII keyboard, and (not pictured) floppy disk system, to name just a few.

For More Information
To Place an Order
We welcome any questions you have about our RAM boards or other products. To place an order, or for more information contact:

Central Data Corporation
P.O. Box 2484, Station A
Champaign, IL 61820
Ph. (217) 359-8010

Place orders prepaid or COD. Delivery is stock to 30 days with shipping and handling prepaid in Continental United States. Please include phone as well as name and address.
An Easy Programming System

Joseph Weisbecker
1220 Wayne Av
Cherry Hill NJ 08002

This article describes a hexadecimal interpretive programming system which requires less hardware than high level languages such as BASIC, and which I feel is much easier to use than machine language. In my experience, hexadecimal interpretive programming is ideally suited to real time control, video graphics, games or music synthesis. It can be used with inexpensive computer systems consisting of a hexadecimal keyboard and only 1 K or 2 K of programmable memory. Expensive terminals and large memories aren't required. You can quickly and easily write useful programs that require five to ten times less memory than conventional high level languages without resorting to the tedious complexities of actual machine language.

Interpretive Programming

This programming approach isn't new, but surprisingly few people seem to be using it. The technique consists of designing a high level pseudomachine language that is more powerful for specific applications than conventional machine language. An interpretive program is then written to execute this new set of pseudoinstructions. Each pseudoinstruction is really just a code that specifies a machine language subroutine. This set of subroutines can be designed to perform any functions you might need for your application. By staying with a machine language format, and not using labels or English words for instruction codes, memory requirements are lower. By limiting the addressing range and number of variables, you can limit each pseudoinstruction code length to several bytes for further memory space savings. Interpretive programs for these powerful pseudomachine languages can require as few as 512 bytes of memory. It has seldom taken me more than a week to implement a new hexadecimal interpretive language, and I can then use it for years. The approach can be thought of as vertical microprogramming with the microprocessor machine language used as the microcode representation.

To illustrate the compactness of these types of programs, I wrote a video tic-tac-toe program using the CHIP-8 language described below. Only 500 program bytes were required versus 3000 bytes for an equivalent version written in BASIC. Besides saving memory, this also meant 2000 fewer keystrokes for initial program entry. In addition, the CHIP-8 interpreter was about eight times smaller than the BASIC interpreter. The CHIP-8 program ran on a 1.5 K memory system with a hexadecimal keyboard, while the BASIC program required an 8 K system with an ASCII keyboard and alphanumeric display. The CHIP-8 program took about 12 hours to design, hand code, enter and debug. I suspect that the BASIC version took at least as long on a much more expensive system.

This hexadecimal interpretive programming approach is important for two reasons. First, it reduces the cost of the hardware you need to get started in home computing. Second, it drastically reduces the amount of read only memory required in microprocessor based products such as controllers and video games. Read only memory cost is a significant factor in these types of products.

A detailed example will be used to illustrate the hexadecimal interpretive programming approach. The new RCA COSMAC VIP computer will be used for this example (see August 1977 BYTE, page 30, for a description of this computer). It is a low cost, single card computer containing 2048 bytes of programmable memory, a graphic video display, and a hexadecimal keyboard. I had this type of programming in mind when I incorporated features such as multiple program counters in the COSMAC (1802) microprocessor architecture.

The pseudomachine language used in my example will be one called CHIP-8, designed for use with the COSMAC VIP system. I will
INTRODUCING
DUAL DRIVE MINIFLOPPY FOR PET!

'DUAL MINI FLOPPY DRIVE WITH 100K PER DISK SIDE FOR TOTAL 200K ON LINE.
'DESIGNED FOR COMMERCIAL SPEED REQUIREMENTS —FAST LOADING SPEED.
'DISKMON™ (DOS) AUTOMATICALLY REORGANIZES FREE DISK SPACE AFTER SAVE OR ERASE.
'DISKMON IS RESIDENT IN ROM VIA DISK CONTROLLER BOARD PLUGGED INTO EXPANDAPET.
'DISKMON ADDS 14 COMMANDS TO BASIC INCLUDING DISK DATA FILES.
'FULL DISK SOFTWARE SUPPORT FORTRAN & PLM COMPILERS THIS JANUARY.
'90 DAY MANUFACTURER'S WARRANTY ON HARDWARE —READY TO USE ON DELIVERY. WITH FULL INSTRUCTIONS AND UTILITY DISKETTE.

FOR ADDITIONAL INFORMATION CALL OR WRITE FOR ADDITIONAL INFORMATION • INITIAL QUANTITIES LIMITED.

DKH641 — DUAL DRIVE SYSTEM COMPLETE WITH DISKMON ...
DKL067 — DISKMON ASSEMBLER LISTING/DOS
ASM789T — PET ASSEMBLER ON CASSette
ASM789D — PET ASSEMBLER ON DISKETTE (5.25"
LINK456 — AUTOLINK LINKING LOADER ON DISKETTE
FOR300 — FORTRAN COMPILER ON DISKETTE (JAN '79)
PLM400 — PLM COMPILER ON DISKETTE (JAN '79)

* * * BUSINESS PACKAGES STARTING IN 1st QUARTER 1979 * * *

DKH641 IS A PRODUCT OF CONVENIENCE LIVING.

PET COMPUTER

WHY NOT BUY FROM THE BEST?

8K PET $ 7 9 5
24K PET (8+16K) $1210
32K PET (8+24K) $1310
ALL PRICES INCLUDE 48 HR. PRE-SHIPPING TESTING & 3 FREE CASSETTE PROGRAMS
PRICES SHOWN ABOVE INCLUDE EXPANDAPET. RAM MEMORIES WILL HAVE HIGHER PRICING.

INTERNAL MEMORY EXPANSION FOR PET!

EXPANDAPET™ INTERNAL MEMORY EXPANSION UNIT

* MOUNTS EASILY INSIDE YOUR PET
* EASY TO INSTALL (15 MINUTES)
* NO DEGRADATION OF PET SYSTEM
* USES LOW POWER DYNAMIC RAMS
* 90 DAY MONEY BACK GUARANTEE
* MOUNTING SLOTS FOR 4 BOARDS
* CALL/WRITE FOR ADDITIONAL INFO
* DEALER INQUIRES INVITED.

EXPANDAPET PRICES

16K (+8K PET = 24K) $425
24K (+8K PET = 32K) $525
32K (+8K PET = 40K) $615
OPTIONAL PLUG-IN BOARDS 32K UNIT ALLOWS 8K OF SERIAL I/O BOARD... $75 ASSEMBLY LANGUAGE
S-100 I/O BOARD..... $75 SUBROUTINES ACCESSED
4K EPROM BOARD..... $50 VIA THE USR COMMAND.

EXPANDAPET IS A PRODUCT OF CONVENIENCE LIVING.

FULLSIZED TYPEWRITER KEYBOARD FOR PET!

NPK-101 IS A PRODUCT OF NEW ENGLAND ELECTRONICS.

* COMMERCIAL QUALITY KEYBOARD WITH METAL ENCLOSURE.
* BASIC TYPEWRITER DESIGN FOR TOUCHTYPSTS.
* SINGLE KEY FUNCTIONS FOR ALL CURSOR CONTROLS.
* PLUGS DIRECTLY INTO PET'S LOGIC BOARD.
* DOES NOT USE USER OR IEEE-488 PORTS.
* ATTACHES DIRECTLY TO FRONT OF PET'S FRAME.

ORDERS ARE NOW BEING ACCEPTED FOR DECEMBER & JANUARY DELIVERY.

$139.95

WE CANNOT LIST ALL OF OUR SOFTWARE AND HARDWARE PRODUCTS CALL OR WRITE FOR OUR *FREE* SOFTWARE/HARDWARE DIRECTORY

DOMESTIC & OVERSEAS DEALER INQUIRES INVITED ON *MEMORY* KEYBOARD *SOFTWARE

NEECEO

NEW ENGLAND ELECTRONICS CO., INC.
248 BRIDGE ST., SPRINGFIELD, MASS. 01103
MON-FRI 9:30-5:30, SAT 10-2, E.S.T.
(413) 739-9626

ACCEPTED, ADD 3% SERVICE CHARGE.
discuss using this language rather than describing the interpreter for it. Suffice it to say that the interpreter only requires 512 bytes and resides at memory locations 0000 to 01FF (hexadecimal). Programs written in the CHIP-8 language must start at memory location 0200 (hexadecimal). The sample program described will run on a 1024 byte memory system. This includes the CHIP-8 interpreter, the program, work area and video display refresh buffer. The program itself only requires 60 CHIP-8 instructions.

CHIP-8 Language

Table 1 describes the 31 CHIP-8 instructions provided in this pseudomachine language. Each instruction requires only two bytes (four hexadecimal digits). Memory addressing is limited to 4096 bytes so that only three hexadecimal digits are needed to specify a memory address. The number of variables has been limited to 16, labeled V0 to VF in this article. These are 1 byte variables or registers that can be modified or examined by CHIP-8 instructions. There is also a 2 byte memory address register called I, which is used by certain instructions. A real time clock or timer is provided. This timer can be set to any hexadecimal value between 00 and FF by the FX15 instruction. For example, if V2 contained hexadecimal 0A, an F215 instruction would set the timer to 0A. This timer is automatically decremented by one 60 times per second until it reaches 00. If the timer was set to 3C (decimal 60) it would reach 00 exactly 1 second later. This timer can be used to provide delays in game or control programs. A tone clock is also provided which can be set to cause a tone lasting from 1/60 to about 4 seconds.

An important feature of this type of language is that all variables (registers) are contained in memory. This means that debugging is generally limited to examining memory locations, not internal microprocessor hardware registers. Astute readers will be wondering why I maintained a fixed 2 byte instruction length when variable instruction length was possible. Since absolute memory addresses are used, fixed 2 byte instructions avoid addressing confusion that increases programming errors. Also, any instruction can easily be replaced by a branch instruction of the same length for debugging breakpoints or program patching.

Graphic Display Approach

Before proceeding with a detailed programming example, readers will need to understand the video display system. Figure 1 shows the graphic display format used.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1MMM</td>
<td>Go to 0MMM</td>
</tr>
<tr>
<td>BMMM</td>
<td>Go to 0MMM + VO</td>
</tr>
<tr>
<td>2MMM</td>
<td>Do subroutine at 0MMM (must end with 00EE)</td>
</tr>
<tr>
<td>00EE</td>
<td>Return from subroutine</td>
</tr>
<tr>
<td>3XKK</td>
<td>Skip next instruction if VX = KK</td>
</tr>
<tr>
<td>4XKK</td>
<td>Skip next instruction if VX ≠ KK</td>
</tr>
<tr>
<td>5XY0</td>
<td>Skip next instruction if VX = VY</td>
</tr>
<tr>
<td>9X0Y</td>
<td>Skip next instruction if VX ≠ VY</td>
</tr>
<tr>
<td>EX9E</td>
<td>Skip next instruction if VX = hexadecimal key (LSD)</td>
</tr>
<tr>
<td>EXA1</td>
<td>Skip next instruction if VX ≠ hexadecimal key (LSD)</td>
</tr>
<tr>
<td>6XKK</td>
<td>Let VX = KK</td>
</tr>
<tr>
<td>CXKK</td>
<td>Let VX = Random Byte (KK = Mask)</td>
</tr>
<tr>
<td>7XKK</td>
<td>Let VX = VX + KK</td>
</tr>
<tr>
<td>8XY0</td>
<td>Let VX = VY</td>
</tr>
<tr>
<td>8XY1</td>
<td>Let VX = VX/VY (VF changed)</td>
</tr>
<tr>
<td>8XY2</td>
<td>Let VX = VX & VY (VF changed)</td>
</tr>
<tr>
<td>8XY4</td>
<td>Let VX = VX + VY (VF = 00 if VX + VY < FF, VF = 01 if VX + VY > FF)</td>
</tr>
<tr>
<td>8XY5</td>
<td>Let VX = VX - VY (VF = 00 if VX < VY, VF = 01 if VX > VY)</td>
</tr>
<tr>
<td>FX07</td>
<td>Let VX = current timer value</td>
</tr>
<tr>
<td>FXOA</td>
<td>Set timer = VX (01 = 1/60 second)</td>
</tr>
<tr>
<td>FX15</td>
<td>Set tone duration = VX (01 = 1/60 second)</td>
</tr>
<tr>
<td>AMMM</td>
<td>Let I = 0MMM</td>
</tr>
<tr>
<td>FX1E</td>
<td>Let I = I + VX</td>
</tr>
<tr>
<td>FX29</td>
<td>Let I = 5 byte display pattern for LSD of VX</td>
</tr>
<tr>
<td>FX33</td>
<td>Let MI = 3 decimal digit equivalent of VX (I unchanged)</td>
</tr>
<tr>
<td>FX55</td>
<td>Let MI = VO : VX (I = I + X + 1)</td>
</tr>
<tr>
<td>FX65</td>
<td>Let VO : VX = MI (I = I + X + 1)</td>
</tr>
<tr>
<td>000E</td>
<td>Erase display (all 0s)</td>
</tr>
<tr>
<td>DXYN</td>
<td>Show n byte MI pattern at VX-VY coordinates.</td>
</tr>
</tbody>
</table>

Table 1: CHIP-8 instruction set. Note that invalid hexadecimal characters in the hexadecimal instructions listed are replaced by valid hexadecimal codes when a program is written. Thus B1000 might be a valid use of the BMMM instruction.
Everything you ever wanted in a video interface.
(Automatic scrolling, cursor, erase functions, etc.)

And less.
(Stand-alone—requires no processor.)

NPC's NEW VIB SERIES. FROM $129.95

Don't let the low price fool you. These are not kits. They are fully assembled and tested boards. NPC's custom CRT Processor Chip is the secret behind the entire family. All perform character entry and cursor control functions automatically. They execute all normal cursor commands as well as more sophisticated functions such as erase page, erase to end of line, etc. Text automatically scrolls when cursor reaches bottom of page. Display format is fixed at 16 lines of 64 characters for optimum efficiency.

VIB-1000 All standard features described above. $129.95
VIB-2000 All features of the VIB-1000 plus FOREGROUND AND BACKGROUND video modes, SCREEN PROTECT and READY/_BUSY handshake. $159.95
VIB-3000 All features of the VIB-2000 plus SCREEN READ capability. $169.95
VIB-2000S Serial interface (RS-232C) version of the VIB-2000. $189.95

Where Pricing is as Important as Technology

NPC
6660 Vanel Avenue
Canoga Park, California 91303 • (213) 887-1010
Telex 69-8481 • TWX 910-494-1954
A Division of DuMont Electronics Corporation

If your local computer store does not have NPC's new VIB series yet, contact the distributor nearest you to order direct.

STEP SYSTEMS, INC.
4815 West 77th Avenue
Minneapolis, MN 55435
(612) 831-3644

NATIONAL ELECTRO SALES
12063 W. Jefferson Blvd.
Culver City, CA 90230
(213) 391-6294

DEALER INQUIRIES INVITED
Circle 287 on inquiry card.
Figure 1: A drawing of the video display. The inner dashed square is the playing area. The range of X and Y is shown.

The dotted line indicates the area of the screen used for display. This display area consists of an array of spot positions 64 wide by 32 high. These spot positions represent bits in a 256 byte page of memory. When a memory bit is one, the spot position is on (white). The CHIP-8 language specifies spot positions on the screen by an XY coordinate system as shown in figure 1. The values of the X coordinate (horizontal spot position) can run from 00 to 3F (0 to 63 decimal). The values of the Y coordinate (vertical spot position) run from 00 to 1F (0 to 31 decimal). Any two variables (V0 to VF) can be used to specify the X and Y coordinates of a spot position on the screen.

The display instruction (DXYN) lets you show a pattern of spots on the screen. This pattern of spots can form a picture, letter, number, etc. Patterns are represented in memory by a list of one to 15 bytes. Suppose you want to display a rocket ship. You must first construct a rocket ship pattern on grid paper as illustrated in figure 2. The hexadecimal codes for this pattern can then be derived directly from the bit pattern.

To show this rocket ship on the screen with a DXYN instruction, you must first set I to the address of the rocket ship pattern byte list in memory. You must then set two variables to the X and Y coordinates at which you want the rocket ship pattern to appear on the screen. The X and Y coordinates specify the position of bit 7 of the first pattern byte on the screen. For example, the following short program would show the rocket pattern of figure 2 at the top left corner of the screen:

<table>
<thead>
<tr>
<th>Memory Address (Hexadecimal)</th>
<th>Instruction Code</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0200</td>
<td>6200</td>
<td>Set V2 = rocket X coordinate = 00</td>
</tr>
<tr>
<td>0202</td>
<td>6300</td>
<td>Set V3 = rocket Y coordinate = 00</td>
</tr>
<tr>
<td>0204</td>
<td>A20A</td>
<td>Set I = rocket pattern address = 020A</td>
</tr>
<tr>
<td>0206</td>
<td>D236</td>
<td>Display 6 byte rocket pattern</td>
</tr>
<tr>
<td>0208</td>
<td>1208</td>
<td>End loop</td>
</tr>
<tr>
<td>020A</td>
<td>2070</td>
<td>Rocket pattern byte list</td>
</tr>
<tr>
<td>020C</td>
<td>70F8</td>
<td></td>
</tr>
<tr>
<td>020E</td>
<td>D888</td>
<td></td>
</tr>
</tbody>
</table>

The last hexadecimal digit of the display instruction (DXYN) must always specify the number of bytes in the pattern to be shown on the screen. The DXYN instruction compares each bit of the new pattern to be displayed with whatever is already displayed on the screen at the same spot positions. If a 1 bit is already displayed at the same position as a 1 bit in the new pattern to be displayed, a 0 will be shown on the screen at this spot position, and VF will be set to 01. In other words, the new pattern to be shown is combined with the pattern already showing on the screen via an EXCLUSIVE OR function. This means that after a pattern is shown on the screen it can be erased by showing the same pattern again with the same X and Y coordinates. Incrementing the X or Y coordinate and showing the pattern a third time would cause the illusion of motion. If the value of VF is 01 after showing the pattern on the screen, it means that the pattern touched or hit a previously displayed pattern.

The DXYN instruction permits displaying, erasing and moving individual patterns on the video screen. The ability to detect when one pattern meets another permits you to program chase, paddle and target games.

Decimal Digits and Random Bytes

Several instructions are provided to permit displaying decimal numbers on the video screen. These are useful for game scorekeeping, etc. An FX33 instruction converts the value of any variable (VX) to decimal form. Suppose I=0442 and V9=A7 (hexadecimal). An F933 would cause 01 to be stored in memory location 0422 (hexadecimal), 06 in 0423, and 07 in location 0424.

The actual value of each byte of the pattern is shown under the HEX column.
ARTEC CRAFTSMANSHIP HAS CREATED

The First
Truly Silent
Motherboard

Noise in your bus lines means errors in your programs. The Artec shielded Motherboard totally eliminates noise.

At 4MHz, the Artec shielded Motherboard is free from spurious noise. No ringing in your bus lines. No errors in your programs.

This Motherboard offers you engineering and craftsmanship never before available in the small computer field. Outstanding as either a replacement for your present Motherboard or as the heart of a new system. Consider these features:

- 1/10th inch thick—more than twice as thick as most Motherboards.
- Totally shielded—all holes plated through; full bus terminations.
- Fits easily into any standard chassis.
- Master edge connectors—the finest quality connectors available.
- Reflowed solder circuitry.
- No soldering required.
- Designed for the S-100 bus.

The Motherboard price is:

$150 (KIT)
$190 (ASSEMBLED)

Five years of experience in every card

For five years, Artec has worked hard to develop a complete line of custom, prototype and off-the-shelf printed circuit boards. And in five years of tough industrial use, Artec boards have proven themselves among the most reliable boards available anywhere.

NEW! DEC® and Heath Compatible LSI Boards

The new Artec WW11 lets you adapt or add onto your DEC LSI-11 or Heathkit LSI mini-computer. Can accommodate 14 and 16 pin DIPs plus all necessary passive components.

FULL CARD $75
(10.45" x 8.4")

HALF CARD $35
(5.225" x 8.4")

Order today!

Put an Artec board to work for you. Use your Mastercharge or Visa. Or just send along a money order. We can accept only U.S. currency. Please include $3 handling on all orders. California residents add 6% sales tax.

Please send me: (include quantity)

<table>
<thead>
<tr>
<th>Shielded</th>
<th>Full WW11</th>
<th>Half WW11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motherboard</td>
<td>Card</td>
<td>Card</td>
</tr>
</tbody>
</table>

- I've enclosed a money order for $ ________________________
- Mastercharge
 Visa (number) (exp. date)

Name ____________________________

Address ____________________________

City __________________ State ______ Zip ______

Calif. Res. add 6% sales tax. Encl. $3 handling. 10% discount for students and computer club members. (Please enclose name of club or school)

ARTEC ELECTRONICS, INC.

Artec Electronics, Inc. • 605 Old County Rd. • San Carlos, CA 94070
(415) 592-2740
Photo 1: The actual video display of the game showing the rocket, UFO and score.

Since A7 in hexadecimal equals 167 in decimal, we see that the three bytes addressed by I represent the decimal equivalent of the value of V9. If I=0422, an F265 instruction could then be used to set V0, V1 and V2 to the values of the three bytes addressed by I above (01, 06 and 07). An FX29 instruction can then be used to set I to a 5 byte pattern representing any one of the three decimal digits. An F229 instruction would leave I addressing a 5 byte pattern for displaying the least significant decimal digit (7 in this example). A DXY5 instruction can then be used to display the decimal digit on the video screen at any desired position.

The above example illustrates the use of an FX65 instruction to transfer three memory bytes to three variables (V0 to V2). The FX55 instruction will store any number of variables in memory locations starting at the I address. These two instructions can be used to increase the number of variables by swapping sets of variables and memory bytes. Just remember that variables are always copied to or from memory in groups starting with V0 and ending with VX, inclusive.

It is often useful to generate random byte values. The CXKK instruction sets any variable (VX) to a random byte value. This random byte will have any bits matching 0 bit positions in KK (a 2 digit hexadecimal number) set to 0. For example, a C407 instruction would set V4 equal to a random byte value between hexadecimal values 00 and 07.

The remainder of the CHIP-8 instructions should be self-explanatory. The 2MMM instruction will transfer control to a subroutine which must be terminated by

Figure 3: The range of rocket X values is from hexadecimal 0F to 2E. Rocket Y is decremented from hexadecimal 1A to 00. The UFO Y remains a constant hexadecimal 08, while the UFO X is incremented from hexadecimal 00 to 39.
16K STANDARD RAM — $285

KIT — 450 nsec. Ideal for SOL 20, IMSAI 8080, etc.

For 4 Mhz. systems—order our board with 250 nsec. memory chips—priced at $320. For either board—full factory assembly, burn-in, testing, 1-year warranty on both parts and labor—add $25.

- DIP Switch Addressing
- First Quality Components
- All Inputs Buffered
- Off-the-Shelf Availability
- Fully Static TMS 4044
- Full Year Guarantee

Circle our Reader Service Card Number for free Catalog

Contains a complete description of our products including the recently announced 16K PLUS premium RAM which is ideal for Cromemco systems (see October ads). Also contains parts, 8K RAM versions, schematics, specifications, full warranty statements, previews of new products such as our 8086 CPU board.

Texas Instruments

TMS 4044 — $5

450 nsec. — Quantity 64

Factory Prime memory chips, guaranteed good.

<table>
<thead>
<tr>
<th>250 nsec.</th>
<th>450 nsec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-31 chips</td>
<td>$8</td>
</tr>
<tr>
<td>32-63 chips</td>
<td>7</td>
</tr>
<tr>
<td>64-over</td>
<td>6</td>
</tr>
</tbody>
</table>

For orders under $50 — add $2 handling.

 Guarantee: Kits — All parts guaranteed for one year.
Factory assembled units for USA customers — Both parts and labor guaranteed for one year; ten day return privilege. Factory assembled units for foreign customers — parts guaranteed for one year; no return privilege.

 Direct Factory Orders — you may phone for VISA, MC, COD orders. ($3 handling charge for COD orders only). Purchase orders accepted from recognized institutions. Personal checks OK but must clear before shipment. Shipped prepaid with cross-country orders sent by air. Shipping normally within 48 hours. Washington residents add 5.4% tax. Our 16K STANDARD and Premium 16K PLUS board are also available through most computer stores.

Seattle Computer Products, Inc.
1114 Industry Drive, Seattle, WA. 98188
(206) 255-6750
Designing a Video Game Program

A detailed example will illustrate how easily the CHIP-8 language can be used to program a real-time video game. The first step always involves specifying the video display and the functions to be programmed. Figure 3 shows the display format chosen for this game. An enemy UFO will be constantly moving from left to right across the top of the screen. A single digit score will be displayed at the lower right. A rocket ship will appear at a random horizontal position along the bottom edge of the display area. You can launch this rocket by pressing key F on the hexadecimal keyboard. The rocket will then move vertically toward the top of the screen. When it reaches the top or hits the target UFO it will be erased and a new rocket will appear at the bottom of the screen. After nine rockets have been launched the game ends and no new rockets will appear. If you hit the UFO with a rocket the score is incremented by 1.

After specifying the positions of the various game patterns on the video screen as shown in figure 3, you must decide on how the 16 variables will be used in the program. Table 2 illustrates how we will use the variables in this example. Six variables (V3, V4, V5, V6, V7, V8) are needed to specify the X and Y coordinates of the three types of patterns involved (score, target UFO and rocket). We need two more variables (V1, V2) to keep track of the current score and number of rockets launched. V9 will be used as a flag that shows whether or not the current rocket has been launched. VA will be set to 01 if the rocket hits the UFO (i.e., point scored) and V0 will be used for a working register in the program. VF is the hit flag and is automatically set to 01 when a hit occurs.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V0</td>
<td>Temporary variable</td>
</tr>
<tr>
<td>V1</td>
<td>Score (00 at start)</td>
</tr>
<tr>
<td>V2</td>
<td>Rocket counter (00 at start)</td>
</tr>
<tr>
<td>V3</td>
<td>Score X (38)</td>
</tr>
<tr>
<td>V4</td>
<td>Score Y (18)</td>
</tr>
<tr>
<td>V5</td>
<td>UFO X (00 at start)</td>
</tr>
<tr>
<td>V6</td>
<td>UFO Y (08)</td>
</tr>
<tr>
<td>V7</td>
<td>Rocket X (random, 0F to 2E)</td>
</tr>
<tr>
<td>V8</td>
<td>Rocket Y (1A at start)</td>
</tr>
<tr>
<td>V9</td>
<td>Rocket fired flag (00=no, 01=yes)</td>
</tr>
<tr>
<td>VA</td>
<td>Score increment (00 or 01)</td>
</tr>
<tr>
<td>VF</td>
<td>Hit flag (00 or 01)</td>
</tr>
</tbody>
</table>

Table 2: Rocket program variables. VB, VC, VD and VE are not used in this program.

Flowcharting the Game

I believe you should always construct a detailed flowchart, such as the one shown in figure 4. Proper flowcharting will save hours of debugging and will simplify making future changes to your program. A flowchart also lets you see the major and minor loops in your program, allowing you to avoid timing bugs that can occur in real-time situations such as video games.

Step 1 involves initializing the score and rocket counters, as well as the X and Y coordinates for the target UFO and on-screen score digit. The UFO pattern is shown on the screen so that it can subsequently be moved. In step 2 the latest score is shown on the screen, and V2 is checked to see if the game should end because nine rockets have been fired.

Step 4 performs the operations required to show a new rocket at the bottom of the screen. The rocket count is incremented by 1 for each new rocket. The rocket pattern Y coordinate is set to hexadecimal 1A so that the rocket will appear at the bottom of the screen. The rocket X coordinate is set to a random value between hexadecimal 0F and 2E so that it will appear at a random horizontal position without interfering with the score digit. The flag V9 is set to 00 to indicate that the rocket has not yet been fired. The rocket is then shown on the screen and the program proceeds to the loop containing steps 5, 6 and 7.

This loop causes the target UFO to continuously move across the top of the screen while waiting for key F to be pressed. The UFO is randomly moved zero, one, two or three spot positions to the right each time the loop is executed. This gives it a rather fast, randomly varying rate of motion, making it harder to hit. The movement of the UFO merely involves incrementing its X coordinate (V5). When V5 is incremented past the right edge of the display area, wrap around automatically occurs so that the UFO reappears at the left edge of the display area. This wrap around automatically occurs when any X or Y coordinate of any display pattern is incremented or decremented past any edge of the 64 by 32 bit display area.

When key F is pressed to launch the rocket, step 6 causes V9 to be set to 01. Step 7 then causes step 8 to be included in the loop. Step 8 checks the value of the system real-time clock (or timer) to see if it has reached 00 yet. When the timer reaches 00 the rocket is moved up one spot position, and the timer is reset to a value of 03 (1/20
Most features of ALTAIR Extended BASIC are included PLUS these added features:
- Assignment of I/O
- Alphanumeric line labels are allowed
- Read and write string data
- Unlimited length of variable names and strings
- Procedures with independent variables
- Number system 10 digits BCD integer or floating point

Included are commands unique to Tarbell BASIC which provide capabilities to:
- Chain to another program
- Assign a physical device to CP/M Disk Operating System

Tarbell BASIC occupies 21K of RAM.
Tarbell BASIC on cassette - $36
Tarbell BASIC on CP/M Disk - $36
Tarbell BASIC Source on paper - $25
Tarbell BASIC Source on CP/M Disk - $25

Price is $100 on CP/M diskette with documentation. (CP/M is a product of Digital Research.)

SPOOLER

This 8080 program will save many hours of computing time. It intercepts all output to the list device, spools the output to a high-speed disk file, and directs the spooled data to a low-speed printer during unused cycle time while the CPU waits for transfer of data to and from the console. System throughput is greatly increased with the aid of SPOOLER. Output is never lost due to insufficient memory allocation. Fully compatible with the CP/M file system, SPOOLER permits parallel processing without hardware interrupt, and with minimal impact on other processes.
Price: $70.00 (Copyright K.L.H. Systems.)

BASIC-E Compiler

Designed to work with CP/M Disk Operating System this software requires a total of 20K bytes of memory. Included are 26 compiler error messages and 23 run-time error messages. Disk files may be read, written or updated by using both sequential and random access. Included are blocked and unblocked files. Price for compiler and run-time monitor on diskette is $10.00. Manual is available separately for $5.00. (Public domain software by Gordon E. Eubanks, Jr.).

CP/M 1.4 Update Package

A TARBEELL Update Package for those now using CP/M 1.3 is now available on diskette. The Update Package adds new commands and the ability to access four disk drives, as well as 21 new CP/M manuals, TARBELL CP/M User’s Guide and a new BIOS listing.
Price: $50.00.

CBASIC Programming System

Upward compatible from BASIC-E, CBASIC is similar but expanded to include several business oriented facilities, allowing decimal computations to 14 digits of precision, data formatting and PRINT USING statements. Statements allow access to disk files and disk file maintenance. Strings of characters may be read from the console to permit correct input line format to be checked before reading data. General programming features include variable names up to 31 characters, optional line numbers, dynamic debugging tracers, and optional data output to printer. CBASIC on diskette and manual priced at $100. (Copyright Software Systems.)

EMPL-an 8080 APL

Especially suited to educational applications, EMPL is an adaptation of APL, using the ASCII character set. Only one-dimension arrays are allowed. This 8K version occupies the first 5376 bytes of memory and operates in two modes. The Execution Mode permits all instructions to be executed immediately. The Definition Mode permits the user to enter functions. EMPL on Tarbell Cassette with manual is $15. (Copyright 1977 Erik Mueller).

*ALTAIR is a trademark/tradename of Pertec Computer Corp.
**CP/M is a trademark/tradename of Digital Research
Figure 4: Flowchart for rocket game.
CP/M™ OPERATING SYSTEM
- Editor, Assembler, Debugger, and Utilities
- For 8080 and Z-80 Systems
- Up to four IBM-compatible floppy disks
- Documentation includes:
 - CP/M Features and Facilities
 - CP/M Editor Manual
 - CP/M Assembler Manual
 - CP/M Debugger Manual
 - CP/M Interface Guide
 - CP/M Alteration Guide

MAC™ MACRO ASSEMBLER
- Compatible with new Intel Macro standard
- Complete guide to Macro Applications

SID™ SYMBOLIC INSTRUCTION DEBUGGER
- Symbolic memory reference
- Built-in assembler/disassembler

TEX™ TEXT FORMATTER
- Powerful text formatting capabilities
- Text prepared using CP/M™ Editor

Please send me the following:
- CP/M™ System Diskette and Documentation (Set of 6 manuals for $100).
- CP/M™ Documentation (Set of 6 manuals) only for $25.
- SID™ Diskette and Manual for $90.
- TEX Diskette and Manual for $75.
- MAC™ Diskette and Manual for $90.
- Send information on CP/M User's Group, high level languages and optional packages.

NOTE: Due to the proprietary nature of CP/M™ software, please enclose your CP/M Serial No. when ordering MAC, SID, or TEX without the CP/M diskette. CP/M™ Serial No.
- BankAmericard No. Exp. Date
- Master Charge No. Exp. Date
- Check or M.O. enclosed.
- California residents add 6% sales tax.

Total amount of purchase $ ____________

Name __________________________
Address _________________________
City ____________________________ State __ Zip ____________

Post Office Box 579 • Pacific Grove, California 93950 • (408) 649-3896

Circle 95 on inquiry card.
Coding and Debugging the Final Program

The final program is shown in figure 5. To translate the flowchart into CHIP-8 instructions, start by listing even numbered hexadecimal memory addresses in the first column, as shown in figure 5. Fill in the third column with an abbreviated description of the function to be performed by each instruction. It is usually most convenient to locate subroutines and pattern byte lists at the end of the program. Labeling the appropriate program addresses with the flowchart step numbers will also prove helpful. The actual hexadecimal codes for the CHIP-8 instructions can then be written in column 2 and entered into the COSMAC VIP memory using the hexadecimal keyboard.

To debug the program, replace the 4209 instruction at memory location 0212 with a 1212 branch instruction. When the program runs, it will stop at location 0212 since the 1212 branch loops on itself. If the UFO and a 0 digit initial score show on the video screen, you know execution was proper up to location 0212. Replace the

Figure 5: The rocket program code in CHIP-8 hexadecimal interpretive language instructions. The steps specified relate directly to the flowchart given for the game in figure 4.
“My Structured Systems business software has paid for itself in labor hours saved alone.”

Says Mr. Tunnah: “The program is designed from a CPA standpoint, for multiple corporations, which we have. It is flexible and gives me the ability to change reporting by profit centers easily. It is up and running quickly, and it just keeps on running. I think it’s the best business software available.”

The best software available. That’s what Structured Systems Group set out to create.

Structured Systems offers three sophisticated accounting systems. Our General Ledger software is big enough for multi-client write-up by the CPA, or multi-corporate reporting for the business, but small enough for the micro budget. The very comprehensive Accounts Receivable and Accounts Payable packages will operate independently, or they will coordinate with the General Ledger.

Our systems record transactions easily and correctly, and provide an audit trail from source document to financial statements. And they will maintain monthly and year-to-date information in dollars and in percentages. And they are reliable.

The three systems interact with the user to set up parameters such as format and headings, account titles and numbering, automatic billing or reminder notices, credit limits, sales reports, a check register, and much more.

Ken Tunnah is one of many innovators bringing the micro revolution to the small business. As a programmer, he knows computers and their languages. As a businessman, he knows business and its languages. And when Mr. Tunnah decided to microcomputerize the accounting function at Colloid-A-Tron, he turned to Structured Systems software.

The software is designed to run on an 8080 or Z-80 CPU with 48K of memory, dual disks with CP/M®, printer, keyboard, and CRT. To make it all work for you, we have provided the most extensive documentation and support in the industry.

We provide the capability to computerize complex accounting functions on relatively inexpensive microcomputer equipment. Ken Tunnah has told us what that means: “I’ve bucked some trends. I looked around, and decided that with the right software, I could get a micro to outperform a $45,000 mini. I’m satisfied. It’s simple economics.”

We can refer you to a growing number of sophisticated retailers experienced in Structured Systems Group business systems. Or we can work directly with you. We’d be happy to provide you with more information on our product line, which includes QSORT™ (a sort/merge program), CBASIC (a business BASIC), NAD™ (a mailing and addressing system), and our General Ledger, Accounts Receivable, and Accounts Payable packages.

*CP/M is a registered trademark of Digital Research

Structured Systems Group
5208 Claremont Avenue
Oakland, CA 94618
Call us at (415) 547-1567. Or write Dept. B7.

Putting the Microcomputer in Business.
Program faster, debug easier now

Flowchartrix™ a unique flowchart development tool from Stirling/Bekdorff, saves you time, space, and money, no matter what language you work with. Whether you program professionally or just for fun. The 78F2 Flowchartrix™ helps your thoughts move in logical steps, and lets you retrace logic easily when debugging.

When you use “top-down” programming methods, you can use the 78F2 to lay out your original logic concept blocks. Then by following the plan you lay out in words at the concept stage, you can write a finely detailed flowchart quite smoothly. Then it’s easy to write actual code based on the flowchart.

54% more logic cells than other flowchart forms, so you get far more of your program on each page. Each Flowchartrix has a full 77 logic cells, not just 50. This not only saves paper, but also makes your flowcharts easier to understand. By seeing up to 27 extra steps of your program on each page, you comprehend program flow more clearly. That’s important while writing the flowchart, more important when you write actual code. It’s also extremely helpful when you debug, and indispensable when you come back months or years later to modify your original work. 78F2’s higher matrix count makes your flowcharts quicker to debug because there are fewer pages to search for errors. Fewer pages also save you money and storage space.

Unique matrix can show your loops AS loops. The Flowchartrix 9 x 11 matrix gives you plenty of room to write loops laid out as sort of a squared circle. This makes loops and subroutines easier to recognize, because their form is readily apparent at a glance. Since they’re easier to find, and may even be completed on a single page, they’re also simpler to debug or modify.

Every matrix cell has a specific label to help you track branch points. Now it’s easier to follow your program from page to page, point to point. When you write program documentation, having a separate reference point for each cell makes your program much easier to describe clearly.

With Flowchartrix, you don’t need a shape template to draw remarkably regular logic symbols. Guides for the most-used logic symbols are right in each matrix cell. They help you draw most standard flowchart symbols entirely free-hand. This saves all the time you’d otherwise spend hunting a shape template and positioning it to draw every symbol. Your train of thought need not longer be interrupted by template tedium. With 78F2, your pencil can fly as fast as you can write, without interruption. When a flash of insight strikes, now you can keep your pen on paper, flowing rapidly from one step to the next without a break.

78F2 is surface-engineered to take both pen and pencil without blotching. The tough 22-lb base stock is the same brilliant white opaque material used in our 78C1 Combination Coding/CRT Layout forms. Pure enough to use with magnetic ink scanners, heavy enough to withstand vigorous erasure, every Flowchartrix gives you crisp, sharp, characters and symbols. It takes ink without spreading, and accepts soft pencil lead with good contrast.

Order your supply today. Ask your local computer store for Stirling/Bekdorff™ 78F2 Flowchartrix™. To enjoy the world’s most advanced program development aids most, use the entire Stirling/Bekdorff system: 78F2 Flowchartrix (for concept planning and flowcharting), 78C1 Combination Coding/CRT Layout forms (for coding and display planning in BASIC, OPUS, and other line-language numbers), and 78P4 Print-Out Design Sheets (to design report printouts for easy coding). Our programming tools work together as a complete system to save time and reduce errors during every stage of program development, from concept to completion. Try them for yourself today. If your store is out of stock, use the coupon below to get yourself a supply on the way now.

YES! Please rush the programming aids indicated below.

<table>
<thead>
<tr>
<th>78F2 Flowchartrix™</th>
<th>78C1 Coding/CRT Combination</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 shi t pads $1.95</td>
<td>100 shi t pads $5.85</td>
</tr>
<tr>
<td>50 shi t pads $3.95</td>
<td>50 shi t pads $4.95</td>
</tr>
</tbody>
</table>

78P4 Print Out Designer

Charge to [] Master Charge [] Visa [] exp. date

Enclosed is my check for $ ____________

Dealer inquiries welcome

Stirling/Bekdorff

b10 4407 Parkwood San Antonio, TX 78281 (512) 824-5643

1212 branch with the original 4209 instruction and put a similar idle loop branch further down in the program for the next test run. In this way you can identify which program steps are causing a problem. If you need to change any portion of the program, just insert a branch instruction to a patch added at the end. Designing, coding and debugging this simple game program required about eight hours. Actual coding and loading the program into memory required less than an hour of this time.

The sample program was kept simple for ease of understanding. Even in this simplified form it is a challenging game to play. The speeds of the rocket and UFO can be easily adjusted to make scoring more or less difficult. Adding multiple targets and 2 digit scoring is possible. Multiple rocket launch angles or after-launch steering could be incorporated. Exploding UFO patterns could be shown when one is hit.

Conclusions

Hexadecimal interpretive programming provides an easy way to program small computers. This approach requires fewer instructions and is much easier than machine language programming. On the other hand, hexadecimal interpretive programming requires much less hardware overhead cost than do high level languages such as BASIC.

A detailed example was provided to illustrate this interpretive approach for a real time video game. The RCA COSMAC VIP and CHIP-8 language were used in this example, although other hexadecimal interpretive languages are possible, and a similar approach can be used with other microcomputers. The steps required in programming with a language such as CHIP-8 are the same as required when using any language: you must specify the functions required, decide on variable and memory utilization, prepare a flowchart, check the flowchart, do the detailed coding, load the code, and debug to the extent required to get the program running properly. Only the last two steps involve using the hardware. Skipping any of the earlier steps will invariably lead to excessive machine debugging time no matter what language is used.

If you’ve never tried a language such as CHIP-8, you may be surprised at how easy it is to use. If you have a limited budget you will certainly appreciate the savings in hardware over conventional high level languages. Last but not least, you might even discover that designing your own hexadecimal interpretive language is also fun.■
6800 Debug Package

The TSC 6800 Debug Package provides a better way to trap program bugs. It is an extremely powerful and complete assembler language program debugging tool which is capable of simulating all functions of the 6800 microprocessor, including interrupts and I/O operations. It is an ideal substitute for hardware logic analyzers or CPU emulators at only a fraction of the cost.

Any number of breakpoints may be user defined. Each breakpoint may invoke any one or combination of eight different actions. These actions may be dependent on a user defined condition such as register A=$FF or memory location $1B55=0. The actions may also be delayed or limited by a pass count. Histogram breakpoints may be set to enable profiling of the executed program. Breakpoints may be set in RAM or ROM!

Complete simulation control allows trace mode to be enabled at anytime. During trace, registers and opcode mnemonics are displayed after each instruction is executed. Single or multiple instruction stepping is permitted as well as simulation speed control. The trace back feature allows the past 256 executed instructions to be viewed. Program execution may be halted at anytime by operator command.

Memory protection and traps are another key feature. Any section(s) of memory may be write, execute, memory, or simulate protected. Execution traps allow program exit on general conditions such as interrupt instruction, transfer instruction, subroutine nest count, and instruction count timeout.

General features include a line at a time assembler, disassembler, memory interrogation commands, hex calculator, machine states counter, stack protection, register modifier, and mode control. In all, there are over 50 commands available. The manual includes detailed operating instructions as well as the complete commented source listing. Requires 9K at $3000.

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL68-30</td>
<td>Manual and source listing</td>
<td>$35.00</td>
</tr>
<tr>
<td>SL68-30C</td>
<td>with KCS Cassette</td>
<td>$41.95</td>
</tr>
<tr>
<td>SL68-30D</td>
<td>with mini FLEX™ diskette</td>
<td>$43.00</td>
</tr>
<tr>
<td>SL68-30F</td>
<td>with 8" FLEX™ diskette</td>
<td>$55.00</td>
</tr>
</tbody>
</table>

Send 25¢ for a complete catalog of TSC’s assembler language software for the 6800, 8080, and 6502.
Who doesn't want a tutor who is infinitely patient, expert on almost any subject under the sun, available at your beck and call, adapted to your learning speed and style, and cheap? This has attracted the attention of a number of the manufacturers of personal computers, and several of them make prominent reference to educational applications in their advertising. But the customer who uses educational applications to justify raiding the family budget for a computer will have some explaining to do, for good teaching software on microcomputers is not available, nor is it easy to write. Why?

If you examine the 20 years of development of computer assisted instruction (CAI) on mainframe computers, you'll see that the computer can be an effective teaching tool when used properly. Students taught with a computer perform as well or better than comparison groups; they may learn two or three times faster. Their failure rate is lower and they express satisfaction with the technique. Why then is the technique not more widely used? There are three main reasons.

First, teachers are conservative. In fairness we also must realize that teachers have heard too many extravagant claims for the miracle that this or that piece of educational technology will produce; their cynicism is understandable. Proponents of computer assisted instruction have not always been conservative (nor have they always been accurate). The cost of hardware is also seen to be prohibitive. Exceptions exist, but the most visible (ie: highly funded) systems are costly to purchase or lease. Third, the creation of high quality software is a difficult and time consuming task which to this point has provided little compensation beyond personal satisfaction.

The personal computer will eliminate two of the reasons. Teachers are discovering computers through their own efforts and through stimulation provided by students and parents who have computers in their homes. The major price breaks in the cost of hardware have resulted from the introduction of smaller machines. Minicomputer systems will possibly cost less than 10 percent of minicomputer systems (using in all cases initial capital outlay, the most relevant number for individuals or small institutions). What remains is to create appropriate software for teaching with a microcomputer.

Before we attempt to write good teaching software, there are some rather fundamental questions to be answered. First, what do we mean by good teaching? A more useful question might be, "What is good teaching not?" One relevant answer for computer teaching is, "Good teaching is not just testing."

Most programs described as teaching programs are programmed tests; the format is exclusively question, accept answer, one message for right, and a second for wrong. Random selection of messages from a list may defer boredom a bit, but that feature alone does not change a test into teaching.

Good teaching is not repetitious to the point of boredom. That's an obvious statement, but it poses a dilemma for those who would teach with the computer, because the efficient use of a computer usually involves repeated use of sections of code. The resolution of the dilemma is to write long and varied course software which can be used by a large number of students.

Good teaching does not force each student to proceed by the same path. Addition of hints or partial solutions for every question on a programmed test does not make that program a good teaching program. If each wrong answer is diagnosed, and a hint or partial solution which builds on the correct portions of that particular wrong answer is given, then we may have a good teaching tool.

Good teaching does not consist of a random collection of available bits and pieces. This implies that we should think in terms of sizable units which can become significant components of a course or subject.

Finally, we should not forget that good teachers are most often experienced teachers and that any occasional lack of enthusiasm on their part about the teaching efforts of well-meaning parents is not invariably misguided.

Another important question is, "What are we trying to teach?" This question is especially important for the personal computer user because the output devices commonly used cannot provide the notation which the students use elsewhere. Books are not written in uppercase only; exponents are not usually written with arrows or double
asterisks; yes and 1 are not synonymous, nor are no and 0; the answer to every question is not a, or b, or c, or d — none of the above. If we attempt to teach using devices which impose notation limitations, we ask ourselves repeatedly, “Are we teaching what we want to teach, or are we teaching how to use and cope with the limitations of the software?”

With these points in mind let us now consider computer languages for teaching. Some teaching languages are based on a teaching strategy; others are based on software functions. Our experience is that the latter types are far superior to the former, for they allow implementation of a variety of teaching strategies. Examination of a large variety of good computer assisted instruction materials shows that they are built from a small number of operations.

For example, one must be able to send text to and accept text from the terminal. Call these functions type and accept (or T and A). (The notation herein is the PILOT notation; for a more complete description of the language see “Computer Assisted Instruction on a Microcomputer,” November 1978 BYTE, page 90.)

Having accepted text, one must be able to analyze it. This is usually done with some type of a match (M) algorithm. One also needs some kind of jump (J) instruction, instructions for subroutine calls and returns (U and E), and some kind of compute (C) instruction so that one can use the full range of numerical and string operations normally associated with computers. Finally one needs some way to make execution of at least some of these instructions (at a minimum, the jump) dependent on the values of various variables or on the success or failure of certain matches.

The obvious question for the microcomputer fan is, “Can I use BASIC?” Unfortunately, the answer is, “Only with extreme difficulty.” Typing text is no problem, and accepting input from the terminal can be handled. Accepting an input of two when you programmed INPUT X and expected the answer 2 will take some extra code, but we’ve already learned that these are going to be long programs by usual computer standards. The difficulties with accepting data pale in significance when compared to the difficulties with match.

Consider an extremely simple case: a question that can be answered yes. Write BASIC code which will match any of the following:

yes, Yes, YES, O.K., OK, Of course, Sure, Always.

This is it — a workbook that actually shows you how a computer is organized, programmed, and run. How? Because the book is a computer! The Computer Book.

Here's how it works: the top third of each page graphically represents a memory location (illustrated at right) which includes memory and address registers to be filled in by you, the reader-as-programmer. The program steps are listed at the tops of the pages, and at each location you are given your next instruction(s) to carry out. You play the switch register and control circuits, a bookmark serves as the program counter, and your pencil is the line printer. Before you know it, you’ll be “jumping to subroutine” and “clearing the link” with the best of them! More importantly, you’ll understand exactly why you’re performing each step as you run through the programs. Not even stepping a real computer through a program can provide a comparable learning experience — the reader is inside the computer!

The text of The Computer Book is presented in such a clear, down-to-earth style that it makes an ideal introductory reference for anyone, student and non-technician alike, who wishes to improve his/her understanding of the digital world. Contents include:

- Number Systems and Codes
- Practice Programs
- Memories
- Assembly Language
- Peripherals
- High Level Languages
- What Goes On In There?
- FORTRAN
- The Instruction Set
- COBOL
- Organization of the Computer
- Programming
- Microprogrammed Computers
- Thumbs-On Experience
- Microprocessors
- Our First Program Steps
- Microcomputers

ARTECH HOUSE BOOKS
610 Washington St. Dedham, MA 02026
(617) 326-8220

Please send me ___ copies of The Computer Book at $28.00 per copy.

I enclose check or m.o. for $_

MC ____________ Exp. date ____________
Name __________________________
Address __________________________
City __________________________
State __________________________ Zip __________________________

December 1978 © BYTE Publications Inc
but which will not match any of these:

yesterday, yes and no, yes or no, Alyeska, eyes.

In a good teaching language it can be done in a single line. It could be done in BASIC, at least in a BASIC with a full range of string operators, but in practice no one bothers because it's so much easier to tell the student to answer 1 for yes. One could program the match algorithm of a good teaching language in BASIC as a subroutine, but the resulting code is too slow. It seems then that BASIC (and other computational languages, such as FORTRAN and APL) are not suitable for this purpose.

Fortunately one of the best teaching languages, PILOT, is well suited for microcomputers. The original form of PILOT is too limited for production of top quality teaching materials. Several extended forms of PILOT have been developed, and the National Library of Medicine is supporting an effort to achieve a national standard for the extended language. At Western Washington University we have implemented what promises to be essentially this standard on a SwTPC 6800, and we are currently working on 8080, Z-80 and Pascal implementations. By doing so we have shown that it is possible to implement a language that includes all the operations necessary for teaching, including the full range of numeric and string operators, full floating point, and numeric and string arrays, all in a 20 K byte microcomputer. Moreover, the response time is excellent. We maintain that there is no reason to settle for less in an instructional language.

Now that you're convinced that you'll have to get better systems software, what about hardware? It appears that any of the standard microcomputers will be suitable for this application if they can accept sufficient memory (16 K to 20 K bytes). The length of instructional programs and the distance and complexity of branching within the program requires the use of floppy disks or other forms of mass storage.

A typical instructional dialogue program occupies about 8 K bytes for every 5 minutes of instruction. Any individual student might leapfrog an entire section in a few seconds if the program were written to move with a well-prepared student. Thus the system must be interpretative, with the programs stored on disks.

Good terminals for teaching should have good graphics capabilities. At this time such terminals are too expensive ($4000 to $6700), several times the cost of the rest of the system. What is needed is a video terminal with at least a 256 by 256 dot matrix that can be superimposed on a 24 line by 80 character display (upper and lower case). Until such a unit is available, we must make do with less. However, a 40 character line is rather short for this purpose.

Finally, after all these cautions and discouragements, what can or should the owner of a microcomputer who wants to use the thing to teach do? One possibility is to search for or create games which provide practice in topics which your children have already learned in school. An obvious example is a version of Spacewar that demands fractional inputs as an exercise in fractions. A second possibility is the purchase of suitable systems software and course material. Such material is beginning to come onto the market. The third and most exciting possibility is to become involved in creating teaching material. Get suitable systems software and find an interested teacher. The teacher provides the material and the approach, and you provide the programming. If you take this route, remember that the teacher knows how to teach, that students are more varied than your imagination, and that good materials require testing and editing and retesting and reediting.
BUSINESS AND FINANCE

STOCK PORTFOLIO ANALYSIS PACK
Add to your stock portfolio analysis.

$199

WORD PROCESSING FOR FINANCIAL PLANNERS
With the program on your keyboard, you can create, add, delete, move, rearrange, copy, print, and save your files. The program is designed for business use and includes features such as a spell checker and a built-in database.

$299

ANNUAL REPORT ANALYZER
With an annual report in mind, you can use this program to analyze the data contained within. The program will help you to identify trends, compare figures, and make meaningful comparisons.

$199

BUSINESS FINANCIAL PACK
This comprehensive financial package includes everything you need to manage your business finances. It includes a spreadsheet program, a financial calculator, and a business plan writer.

$499

SOFTWARE RECOMMENDATION PACK
This pack includes a selection of software programs designed to meet the needs of small businesses.

$1499

BUSINESS COMPUTER PACK
Includes a selection of business software programs designed to meet the needs of small businesses.

$1499

EDUCATION

BASIC LANGUAGE PACKAGE
This package includes a BASIC interpreter, a compiler, and a tutorial for beginners. It is ideal for those who want to learn the basics of programming.

$199

DIET PLANNING SOFTWARE
This program helps you to plan your diet and monitor your progress. It includes a variety of meal plans and can be tailored to suit your individual needs.

$199

COMMODORE "PET" only $795

ANDERSON JACOBSON

BFT E.D. 11 11H o u n P C1 d 1 t1a 11 o n s.

m o w Pf 11 1 o l c11 m 1 P 1 1 r n wo r 1 l

"Un K1vbo. 1d 1 01 P ET

Co m p l1 ty R l u b h tdby A J

MM111 1 1bl e l o r 1 l1 d 1

P CS st 11 t'ltlu d t d u 1 I llo p p 1n , 32 K RA M ,

1/0 , DO S , BA SIC

Thi lo w co1 11oh1 1 11 nwll bu1mtu

b011d , 1 nd VIC 10.tiovt

VOP .. 2 S U95 • VOP 44 S49 95

wht n m1tchd W1 1h C O MP UTER FAC

01d Enuy , G1ner1I L tdget , P1v 1oll Sv1

R 1c11n b l1 / P 1 y 1bl1 , lnwn l or y Conuol /

oo • 9'11 11 y ton1ro ll 1d 11pe

SK R A M M1 mo1y

hom 1bou1

m icro NOVA

$1 J ,500

STEPS TO SUCCESS IN BUSINESS
This book provides a comprehensive guide to starting and running a business. It covers everything from choosing a location to managing finances.

$19.95

THE COMPUTER FACTORY 978 570 Third Avenue New York, N.Y. 10017

(212) 687-5001 (212) PET-2001 Foreign order desk - Telelex 640055

BYTE December 1978 127
Digital integrated circuits that multiply binary numbers without the use of clock pulses have been available for several years. One such 4 bit by 4 bit multiplier is illustrated in figure 1. The 8 bit product appears on the output lines about 40 ns (the propagation delay) after the input lines are set. Larger numbers may be multiplied by first sectioning the inputs into 4 bit words, forming the products of each word of one input with every word of the other input, and summing these products in the appropriate manner. The propagation delay increases approximately linearly with the number of input bits. The number of integrated circuits required increases roughly as the number of bits in the multiplier times the number of bits in the multiplicand.

Multipliers are readily constructed from simpler integrated circuits. A 4 by 4 multiplier is illustrated in figure 2. The four bits of the multiplicand are gated into the adder M places from the right if the Mth bit of the multiplier is 1. If this bit is 0, only 0 is added in. The parts count is minimized by bringing the carry output of the last adder back to a previous adder input. This system costs less than the circuit in figure 1. Its disadvantages are a higher components count and a 60 percent increase in power requirements. The two systems have comparable propagation delays.

Clockless Multiplication

and Division Circuits

Figure 1: Commercially available 4 by 4 multiplier.
Figure 2: Inexpensive 4 by 4 multiplier that has a higher number of integrated circuits and uses more power than the circuit in figure 1.
The circuit in figure 3 shows one of many possible variations along these lines. This 4 by 5 multiplier uses inverters and NOR gates on the inputs instead of the AND gates of figure 2. Desirable input buffering is thus provided at about the same dollar cost, but requires more packages and power.

Clockless division circuits are more complicated than multiplication circuits. One way to obtain a 4 bit quotient from a 7 bit dividend and a left-adjusted 4 bit divisor is shown in figure 4. A subtraction is performed at each stage by complementing the divisor and adding, while forcing a carry input to the adder. If the difference is negative, as indicated by a 0 carry output, a 4 bit 1 out of 2 multiplexer is set to transmit the minuend to the next stage. If the difference

Figure 3: 4 by 5 multiplier with buffered inputs.
Osborne & Associates is publishing its business systems in book form. These systems represent five years of development and testing by O&A programmers, and the books include more than a year's worth of extensive and detailed documentation.

What systems are we selling?

1) PAYROLL WITH COST ACCOUNTING — available now
2) ACCOUNTS PAYABLE AND ACCOUNTS RECEIVABLE — available now
3) GENERAL LEDGER — orders now being accepted

Each book sells for $15.00, and includes source listings in Wang BASIC, program and system documentation, and user's manual. Each is a complete package by itself, or all three may be implemented together to form a complete system with interdependent files.

And if Wang BASIC won't work, or you don't know programming, or you'd rather not key in thousands of words of source code, take a look at the list of consultants who have adopted O&A programs, converted them to run on many popular systems, and are waiting to hear from you.

CP/M CBASIC: GOOD NEWS

for CONSULTANTS, COMPUTER STORES AND SOFTWARE HOUSES

Osborne & Associates is converting its business software from Wang BASIC - as it was originally published - to CP/M CBASIC, which runs on many floppy disk-based microcomputer systems. We will only sell the CP/M magnetic surface to consultants, computer stores and software houses. Osborne & Associates prefer to write and sell books, not customize the programs or answer the end user's questions. The disk for each book sells for $250.00. Once you buy the floppy disk you can copy it, resell it, change it or use it. We place no restriction on the magnetic surface; we copyright only the printed word in our books. CBASIC Payroll is available now. All three systems are scheduled to be available by the end of 1978; call or write for the exact availability of each system.

If you are an end user interested in the CBASIC programs, write or call us. We will put you in touch with your closest dealer.

DIGITAL GROUP: MITS 4.1 BASIC:

William K. Haines
ANACOM GENERAL CORPORATION
1180 E. Ash Avenue
Fullerton, CA 92631
(714) 992-0223

NORTH STAR:

Alan P. Hald
BYTE SHOP OF ARIZONA
813 N. Scottsdale Road
Tempe, AZ 85281
(602) 967-1428

TRS-80:

Don French
TANDY COMPUTERS
700 One Tandy Center
Fort Worth, TX 76102
(817) 390-3011

MICROSOFT disk BASIC:

Dan Kindred
GNAT COMPUTERS, INC.
7895 Convoy Court
San Diego, CA 92111
(714) 560-0433

CP/M CBASIC:

OSBORNE & ASSOCIATES, INC.
630 Bancroft Way
Berkeley, CA 94702

MICROPOLIS, PROCESSOR TECH. NORTTHSTAR:

David Price
3801 Victor Lane
Midlothian, VA 23113

Osborne & Associates, Inc.
P.O. Box 2036, dept. 115
Berkeley, CA 94702 USA

(415) 548-2805
TWX 910-368-7277

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PRICE</th>
<th>QUANTITY</th>
<th>AMOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>09-8 Payroll with Cost Accounting</td>
<td>$15.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13-8 Accounts Payable/Receivable</td>
<td>$15.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-9 General Ledger</td>
<td>$15.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NAME ____________________________

ADDRESS ____________________________

CITY ___________ STATE ____________

ZIP ____________

PHONE ____________________________

☐ I am a dealer interested in purchasing O&A CBASIC programs for resale. Please send description and order information for:
☐ CBASIC Payroll with Cost Accounting
☐ CBASIC Accounts Payable/Receivable
☐ CBASIC General Ledger

☐ I am an end user interested in running CBASIC programs. Please notify me of the closest dealer for:
☐ CBASIC Payroll with Cost Accounting
☐ CBASIC Accounts Payable/Receivable
☐ CBASIC General Ledger

PAYMENT (Shipping for large orders to be arranged)

☐ All foreign orders $3.00 per book for airmail
☐ $0.35 per book 4th class (allow 2-3 weeks in the U.S.)
☐ $0.75 per book UPS in the U.S. (allow 10 days)
☐ $1.50 per book special rush shipment by air in the U.S.

Please send the following information:

☐ Becoming an O&A dealer
☐ School discounts
☐ List of foreign distributors
☐ Other O&A publications

Payment in advance must be enclosed for purchasers of up to $70.00. Invoicing U.S. purchases over $70.00 available upon approval of your account. All foreign orders must be prepaid in U.S. dollars drawn on a U.S. bank.
Figure 4: Simple but slow clockless division circuit.
Best Sellers

* Getting Involved With Your Own Computer by Leslie Solomon and Stanley Veit answers the questions: "What can small computers do? Which is best for my purposes?" Whether your interest is business applications, word processing, education, security, etc., this lucid text will bring you in touch with an exciting new world destined to affect us all. $5.95.

* The Thinking Computer: Mind Inside Matter by Bertram Raphael. Artificial intelligence, or AI, is the branch of computer science concerned with making computers "smarter." It is a growing, vital field that, unfortunately, the subject of much popular misunderstanding. This book is a lucid introduction to AI that does much to overcome this misunderstanding. With a minimum of technical jargon, it discusses the capabilities of modern digital computers and how they are being used in contemporary AI research. It discusses the progress of AI, the goals, and the variety of current approaches to making the computer more intelligent. $6.95.

* BASIC Computer Games: Microcomputer Edition edited by David H Ahl. Here are 102 classic computer games, every one in standard microcomputer BASIC; every one complete with large, legible listing, sample run and descriptive notes. All the classics are here: Super Star Trek (one of the most challenging versions anywhere), Football (two versions), Blackjack, Lunar Lander (three versions), Tic Tac Toe, Nim, Life and Horserace. This revision of 101 BASIC Computer Games is a real must, even if you own the original. $7.50.

* BASIC and the Personal Computer by Thomas A Dwyer and Margot Critchfield. A fascinating book covering many areas of interest to the personal computer user. After giving an in-depth course in BASIC, which can be covered in 8 hours, the book discusses microcomputer hardware, graphics, word processing, sorting, simulation and data structures. This is an easy to read text that is useful for the beginner and informative for the advanced user. 438 pp. $12.95.

* Scientific and Engineering Problem Solving With The Computer by William Ralph Bennett Jr is one of the most exciting books we've seen in years. Besides teaching BASIC, this lively, lucid book presents a wealth of imaginative and unusual applications programs taken from many disciplines (A sample exercise: "Using the algorithm in the text with the pair-correlation matrix from Hamlet, compute the most probable diagram path which starts with the letter T"). The exercises run the gamut from random processes to the dynamics of motion, from entropy in language to the Watergate problem. You'll discover BASIC applications in lasers and in the Fourier series and the law (1). In its diversity and elegant style, it ranks with Donald Knuth's works as a milestone in the art of computing. Hardcover $19.95.

* Computer Power and Human Reason by Joseph Weizenbaum. This book is one which should be purchased or read for several reasons. If you're presently a programmer by trade or skill, you'll see a philosophy of computer use and abuse propounded. It's genuinely interesting, and definitely provocative if you refer to the storm of letters, counter letters and counter counter letters which this book produced in the Association for Computing Machinery's SIGART newsletters during 1976. If you're a novice to the field, the tutorial and explanatory chapters of this book, which are aimed at the layperson, will serve as an excellent background source which is also eminently readable. This includes an excellent and low level explanation of what an algorithm is, and how computers go about executing effective algorithms. $5.95.

Praised by many critics as the best books in their field, The Art of Computer Programming, Volumes I, II and III, are part of a projected seven volume omnibus survey of computer science now being completed by Donald E Knuth.

* Volume I, Fundamental Algorithms, begins with a thorough discussion of the mathematics used in computer programming, followed by a treatment of information structures, stacks, arrays, linked lists, dynamic storage allocation, and trees. 634 pp. $21.95.

* Volume II, Seminumerical Algorithms, is concerned with random numbers, statistical tests, random sequences, as well as arithmetic (floating point and multiple precision), polynomials, and rational arithmetic. 624 pp. $21.95.

* Volume III deals with Searching and Sorting, and as the name implies, the emphasis is on algorithms for sorting, including combinatorial properties of permutations, internal sorting, optimum sorting, and external sorting. Also included is a section on sequential searching, hashing, digital searching, and more. 722 pp. $21.95.

A hypothetical assembly language called MIX was developed by the author to illustrate programming examples throughout the series. MIX is easily convertible to other assembly languages.

Professor Knuth writes with style and wit. This classic work belongs on the reference shelf of everyone seriously interested in computer science.
is positive, the multiplexer transmits this difference. The quotient bits are the same as the bits that set the multiplexers. This method is straightforward and provides a remainder, but has the disadvantage of being relatively slow.

A more elegant clockless divider makes use of the relation $1/(1-r) \approx 1+r$ provided the absolute value of r is much less than 1. The error in this estimate is r^2, as can be seen by multiplying each side of the approximate equality by $(1-r)$. Suppose an 8 bit dividend ($A = a_7a_6a_5a_4a_3a_2a_1a_0$) is to be divided by an 8 bit left-adjusted divisor ($D = d_7d_6d_5d_4d_3d_2d_1d_0$) to yield an 8 bit integer quotient Q. Let:

$$r = (2^3-d_2d_1d_0)/(2^3(d_7d_6d_5d_4d_3+1)).$$

This means that:

$$D = (d_7d_6d_5d_4d_3+1)(2^3)(1-r)$$

$$Q = 27(A)/[(d_7d_6d_5d_4d_3+1)(2^3)(1-r)],$$

$$Q \approx 2^4(A)(1-r)/(d_7d_6d_5d_4d_3+1).$$

Since d_7 equals 1, r is less than $2^3/(2^3 \times 2^4)$ or 2^{-4}, and r^2 is less than 2^{-8}. Q in this approximation is accurate to at least eight bits. Let:

$$I = 2^{12}/(d_7d_6d_5d_4d_3+1)$$

and

$$J = 2^{12}/(d_7d_6d_5d_4d_3+1)^2$$

each rounded to the nearest integer. Then Q is approximately equal to $2^{-8}(A)[1+(2^3-d_2d_1d_0)(2^3)(J)]$ and the division problem has been reduced to addition and multiplication once I, J and $(2^3-d_2d_1d_0)$ have been determined.

This last quantity is easily derived from four simple gates, as illustrated in the complete divider of figure 5. The quantities I and J are listed in table 1 for all possible values of $d_7d_6d_5d_4d_3$. These are found to 9 bit and 5 bit accuracy, respectively, to insure 8 bit accuracy in Q after the intermediate

Table 1: List of I and J values for 8 bit divider circuit of figure 5.

<table>
<thead>
<tr>
<th>Upper D</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_7d_6d_5d_4d_3</td>
<td>1617 1615 1617</td>
<td>1617 1615 1617</td>
</tr>
<tr>
<td>1 0 0 0 0</td>
<td>0000 0000 0000</td>
<td>0000 0000 0000</td>
</tr>
<tr>
<td>1 0 0 0 1</td>
<td>0111 0101 0001</td>
<td>0111 0101 0001</td>
</tr>
<tr>
<td>1 0 0 1 1</td>
<td>0000 0000 0000</td>
<td>0000 0000 0000</td>
</tr>
<tr>
<td>1 0 1 0 0</td>
<td>0000 0000 0000</td>
<td>0000 0000 0000</td>
</tr>
<tr>
<td>1 0 1 1 0</td>
<td>0111 0101 0001</td>
<td>0111 0101 0001</td>
</tr>
<tr>
<td>1 1 0 0 0</td>
<td>0000 0000 0000</td>
<td>0000 0000 0000</td>
</tr>
<tr>
<td>1 1 0 0 1</td>
<td>0111 0101 0001</td>
<td>0111 0101 0001</td>
</tr>
<tr>
<td>1 1 0 1 1</td>
<td>0111 0101 0001</td>
<td>0111 0101 0001</td>
</tr>
<tr>
<td>1 1 1 0 0</td>
<td>0111 0101 0001</td>
<td>0111 0101 0001</td>
</tr>
<tr>
<td>1 1 1 0 1</td>
<td>0111 0101 0001</td>
<td>0111 0101 0001</td>
</tr>
<tr>
<td>1 1 1 1 0</td>
<td>0111 0101 0001</td>
<td>0111 0101 0001</td>
</tr>
<tr>
<td>1 1 1 1 1</td>
<td>0111 0101 0001</td>
<td>0111 0101 0001</td>
</tr>
</tbody>
</table>

Table 2: Power connections for integrated circuits used in figures 7 thru 5.

<table>
<thead>
<tr>
<th>Number</th>
<th>Type</th>
<th>+5 V</th>
<th>Gnd</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC1</td>
<td>74284</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>IC2</td>
<td>74285</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>IC3</td>
<td>7483A</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>IC4</td>
<td>7483A</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>IC5</td>
<td>7483A</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>IC6</td>
<td>7408</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>IC7</td>
<td>7408</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>IC8</td>
<td>7408</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>IC9</td>
<td>7408</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>IC10</td>
<td>7408</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>IC11</td>
<td>7408</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>IC12</td>
<td>7408</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>IC13</td>
<td>7408</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>IC14</td>
<td>7402</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>IC15</td>
<td>7402</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>IC16</td>
<td>7402</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>IC17</td>
<td>7402</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>IC18</td>
<td>7402</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>IC19</td>
<td>7402</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>IC20</td>
<td>7402</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>IC21</td>
<td>7402</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>IC22</td>
<td>7402</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>IC23</td>
<td>7402</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>IC24</td>
<td>7402</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>IC25</td>
<td>7402</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>IC26</td>
<td>7402</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>IC27</td>
<td>7402</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>IC28</td>
<td>7402</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>IC29</td>
<td>7402</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>IC30</td>
<td>7402</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>IC31</td>
<td>7402</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>IC32</td>
<td>7402</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>IC33</td>
<td>7402</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>IC34</td>
<td>7402</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>IC35</td>
<td>7402</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>IC36</td>
<td>7402</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>IC37</td>
<td>7402</td>
<td>14</td>
<td>7</td>
</tr>
</tbody>
</table>

Figure 5: Faster 8 bit clockless divider. The 4 by 5 multiplier is the circuit of figure 3. The I and J values are obtained from a set of gates or a lookup table. The results being looked for are the values given in table 1. The 8 by 8 multiplier is the only device not previously discussed. The multiplier is composed of bit slices; the theory behind the multiplication circuits can be found in the TTL Data Book for Design Engineers, published by Texas Instruments Inc. The device number is SN54LS275, found on page 7-391 of the 1976 edition.
steps. I and J may be determined for a given divisor by a lookup process or by a suitable arrangement of gates. Of course, the entire division may be performed by looking up the inverse of the 8 bit divisor and then multiplying, but the method described here uses one eighth the memory space and only slightly more circuitry.

This process uses the inverse of a small number to find the inverse of a larger number, and so suggests a procedure for handling the division of numbers of arbitrary size. Such multiple-precision calculations could be performed by expanding the kind of hardware described here, or by an iterative software routine. Remainders are not directly available from this circuit, and must be obtained by subtracting the product of the quotient and divisor from the dividend.

The requirement that the divisor be left-adjusted is something of a nuisance; dividers generally need a restriction of this sort to keep the calculation in range of the hardware capability. Methods exist to make this adjustment and the subsequent adjustment required in the quotient without the use of clock pulses. These cumbersome circuits will not be described here.

Is any of this useful to the small systems owner? Most microprocessors do not have multiplication or division instructions. Products and quotients are obtained through time-consuming subroutines. Computer generated music or animated video displays may not permit sufficient computation time. Such real time outputs would be feasible if the fast circuits described here were incorporated into an external arithmetic unit and accessed through the input/output (IO) ports of the microcomputer. Then a division would be performed by the following:

- Output the divisor to the external arithmetic unit divider.
- Output the dividend to the external arithmetic unit divider.
- Input the quotient from the external arithmetic unit divider.
- Input the remainder (if desired) from the arithmetic unit divider.

Holding registers are required for the divisor and dividend. If 8 bit arithmetic is used, the entire calculation can be performed easily in the time taken by the input and output instructions.

Editor's Note:

These circuits are theoretical. They have been designed but not implemented by the author.

The Texas Instruments Microcomputer Library

When you build a project, you need information. All you find in the advertisements for parts are mysterious numbers... hardly the sort of information which can be used to design a custom logic circuit. Data books are the essential references which allow us to manage the hundreds of thousands of different devices that make up the electronic equipment we use. The Texas Instruments data book series is foremost in the field, containing a wealth of information on the devices which TI manufactures.

OTHER BOOKS FROM TI

- **Fingertip Math**
 264 pp. $2.95.
- **Software Design for Microprocessors**
 390 pp. Hardcover, $12.95.
- **The Great International Math on Keys Book**
 200 pp. $4.95.
- **Understanding Solid State Electronics, 3rd edition**
 242 pp. $3.95.
- **Designing With TTL Integrated Circuits**
Everything you’ve ever wanted to know about microcomputers in ONE complete book for only $10.95

The ultimate book about microcomputers. Written by experts... SCELBI and BYTE. Over 400 pages. A collector’s item, featuring The Basics from the first 16 issues of BYTE and SCELBI’s classic library of books. Your microcomputer bookshelf is incomplete without this priceless edition.

You can’t buy information organized like this anywhere. This is the book that everyone who is into microcomputers needs for reference, for ideas, for clues to problem solving. It is a truly authoritative text, featuring easy-to-read, easy-to-understand articles by more than 50 recognized professional authors, who know and love microcomputers from the ground up. Logical and complete, it features many glossaries, and is illuminated with profuse illustrations and photographs.

The Scelbi BYTE Primer is divided into four logical sections, that take you from point “O” through building and programming your own computer... step-by-step-by-step.

How does a microcomputer do it? Lots of “how to” theory. Introducing you to microcomputer operation. 6800, 6502, Z80 CPU chip capabilities. RAM and ROM memories. Addressing methods.

And that’s only the beginning! Others have spent millions acquiring the type of microcomputer information found within the 400 pages of The Scelbi BYTE Primer. But, it costs you only $10.95, plus $1 for postage and handling, complete! You know the quality of Scelbi and BYTE. This is your assurance of excellence throughout this MUST text. Order your copy today! And, get one for a friend!
Wrap Me Up and Take Me Home

DIAL YOUR BANK CARD ORDERS ON OUR TOLL-FREE HOT LINE: 1-800-258-5477.

Name ___
Address __
City __________________ State ______ Zip ______
Signature __

Number of books __________________
Postage $.75/book or $4.00 outside U.S. __________________
Grand Total __________________

Prices subject to change without notice. Dealer Inquiries Invited. You may photocopy this page.
Periodical Guide for Computerists, January-December 1977, by E. Berg Publications. This is a comprehensive index of all the articles, book reviews, editorials, letters, record reviews, and miscellaneous small inserts and notes from the top 25 magazines in the field. Several thousand articles are grouped into over 60 subject categories that are listed alphabetically for easy reference. At the back is an author index, including the major areas of their expertise. An indispensable guide for anyone in the fields of personal computing, amateur radio, and electronics. 72 pp. $5.00.

Robots on Your Doorstep by Nels Winkless and Iben Browning. "This book will amaze you, frighten you, nauseate you, excite you...it will probably make you think about things you have never contemplated before," states the introduction to this clever and well-written account of robots: past, present, and future. Intelligence, artificial intelligence, brain structure and simulation, and characteristics of robots are only a few of the areas explored. One chapter is devoted to the personal computer revolution and how it has brought robots into the amateur's workshop. 179 pp. $6.95.

Programming in PASCAL by Peter Grogono. This book is an excellent introduction to one of the fastest growing programming languages today. The text is arranged as a tutorial containing both examples and exercises to increase reader proficiency in PASCAL. Besides sections on procedures and files, there is a chapter on dynamic data structures such as trees and linked lists. These concepts are put to use in an example bus service simulation. Other examples range from the Tower of Hanoi problem to circumscribing a circle about a triangle. *Programming in PASCAL* is sure to hold the reader's interest. 359 pp. $9.95.

Z80 Programming for Logic Design by Adam Osborne, Jerry Kane, Russell Rector, and Susanna Jacobson. Here's the book we've all been waiting for! This is the first in the Z80 family of books, which are programming for logic design books (the 8080 and 6800 books). Written for both programmers and logic designers, it explains how an assembly language program can replace non-programmable logic devices—with direct reference to the Z80 microcomputer. 352 pp. $8.50.

8080A/8085 Assembly Language Programming by Lance A. Leventhal. This book provides an introduction to assembly language programming for the 8080A and the 8085 processors. Included are sections on the instruction sets for the two processors, assemblers, simple program examples, code conversion, tables and lists, subroutines, IO, interrupts, program design, and debugging. Many examples and illustrations are included to cover critical points. 467 pp. $8.50.

How to Profit from your Personal Computer by Ted G. Lewis. If you have wanted to use your personal computer in a profitable manner, and you feel you need some help planning programming techniques for common business applications, this book is for you. Enjoyable and readable, it contains suggestions for accounting, payroll handling, inventory management, and sorting mailing lists. Many terms and notations are explained. Sample programs in BASIC, the use of blueprints to design program structure, and a full glossary of terms are a few of this book's special features. 191 pp. $7.95.

SARGON by D. and K. Spracklen. A complete computer chess program that won the 1978 West Coast Computer Faire Chess Tournament. Highly praised in the 9/78 issue of *Personal Computing*. Available early November. 120 pp. $14.95. (No photo)

Microcomputer Primer by Mitchell Waite and Michael Pardee. Here's a microprocessor tutorial for readers having some electronics background. *Microcomputer Primer* concentrates on the hardware of microcomputers (although there are sections dealing with software) with chapters on basic computer concepts, hardware, programming, memories, and number systems. A full complement of photos and schematics accompanies the text. 224 pp. $7.95.

Programming a Microcomputer: 6502. This informal, well-written book may just be what you need to enter the world of microcomputers. Caxton C. Foster uses the 6502 as a basis for discussing the techniques of writing programs. The chapters include simple, practical example programs for creating a Morse Code oscillator, combination lock, tune player, digital clock, and more. The emphasis is on clarity, and the many illustrations and flowcharts help get the author's points across. 231 pp. $9.95.

Programmable Calculators by Charles J. Sippl and Roger J. Sippl. This large (526 pages) book is an exhaustive survey of the programmable calculator field covering its history and present status. Chapters deal with the basic calculator, advanced hand-held products, RPN (Reverse Polish Notation) versus algebraic notation, desktop calculators, and programming the programmable calculator. Examples and illustrations abound in this useful reference work. $14.95.

Here are two big packages of fascinating information and practical guidelines from the symposiums held at the 1977 and 1978 West Coast Computer Faires.

The First West Coast Computer Faire Conference Proceedings, edited by Jim C. Warren, Jr., contains 336 pages covering such topics as: tutorials for the computer novice, human aspects of system design, robots (including the text of a talk by science fiction writer Frank Herbert), and electronic mail, music with computers, hardware, software—the list goes on. $12.00.

The Second West Coast Computer Faire Conference Proceedings, edited by Jim C. Warren, Jr., is 505 pages and covers many of the above topics plus others such as: computers for the visually handicapped, exotic computer games, high level design for microprocessors, computer articles for business and crafts, homebrewed equipment, and speech input and output. You can't miss for only $13.00.

Up your Own Organization! by Donald M. Dible. A great handbook on how to start and finance a new business, this is the most comprehensive reference we've seen on the subject. For the programmer-consultant or the basement homebrewer-turned-entrepreneur, this is your book. It is recommended in the Bank of America Small Business Reporter and Changing Times magazines. 372 pp. Available for $14.95 in hardcover.

Fundamentals of Recordkeeping and Finance for the Small Business by Robert C. Ragan, CPA, and Jack Zwick, Ph.D. Once you have your organization or business up and running, records must be kept. What should I keep, and how do I record them? This book on fundamentals will give you a helpful start. Section One deals with maintaining records, protecting assets, and providing a basis for planning. Section Two provides a starting point for owner-managers who want to sharpen their financial management skills. 196 pp. Only $10.00 in hardcover.

Dealer inquiries invited.

BITS

Books to erase the impossible

BYTE December 1978 139
Creating a Chess Player Part 3:

Chess 0.5 (continued)

Listing 1: The second half of Chess 0.5, written in Pascal. This portion of the program covers evaluation of terminal nodes, the look-ahead procedure and user commands (listing 1 continued on page 146).

This month we conclude the listing and commentary of Chess 0.5 begun last issue. The program was written by Larry Atkin, who is coauthor with David Slate of the world championship chess program, Chess 4.6. The program is readily adaptable to personal computers having Pascal systems such as the UCSD Pascal project software. Part 4 concludes the series with a discussion of chess strategy and tactics.

Evaluating Terminal Positions

Another important aspect of any chess program is the function which provides a static evaluation of terminal positions in the look-ahead tree. In the present program, this routine also doubles as a preliminary scoring function for sorting moves at the first ply, at the beginning of the look-ahead search. Since the evaluation function is used repetitively in the search, efficiency demands that it be carefully engineered. We have left this task as an exercise for the reader. Our function presently includes only a few basic essentials.

The most important feature is material. We employ essentially the same function for this that is used by Chess 4.5. A trade-down bonus is also incorporated, ie: trade pieces but not pawns when ahead in material. A second feature which is considered is piece mobility. The mobility of Knights and Bishops is weighted more heavily than that for Rooks and Queens. Special credit is given to a King which is located in one of the four corner squares in each corner of the board, ie: 16 squares total. This encourages early castling. Pawn structure is considered by providing a bonus for advancing the pawns in the four center files, for having a pawn near the King, and for having a pawn adjacent to or defended by another pawn. This indirectly penalizes isolated or backward pawns. There is a direct penalty...
if the square in front of a pawn is occupied. The position of the Rooks is considered by providing a bonus for placing a Rook on the seventh rank and for attacking another Rook of the same color (i.e., doubled Rooks). The executive routine for these assessments is EVALU8.

The Look-Ahead Procedure

The look-ahead procedure is controlled by an executive routine called SEARCH. Several subprocedures are also defined which handle specific tasks. NEWBST keeps track of the move which is currently thought to be best, and dynamically reorders the moves at the first ply level each time a new best-move is selected. MINMAX determines whether the move under consideration will produce an α-β cutoff. SCOREM is called into action when the program can find no legal moves at a node. It determines whether the position should be scored as a checkmate or as a stalemate. SELECT is responsible for move ordering at each node. It determines whether there are any more moves to be searched and if so, makes sure that they are generated in the correct order (i.e., captures, killers, castling moves, and then the remaining moves).

SEARCH incorporates a number of important features which make the look-ahead search more efficient. These include staged move generation, preliminary ordering scores, setting a narrow α-β window at the beginning of the search, conducting the search in an iterative fashion, and dynamically recording moves at the first ply as the search proceeds. Because of these features, the full-width search takes a long time instead of taking forever.

User Commands

For the user's convenience, the program should be able to respond to a few simple commands. Inputs to the program are processed by a lengthy routine, READER, which has many component subroutines. The translation of the input string is handled by a group of routines: RDRERR, RDRGNST, RDRSFT, RDRCMP, RDLINE, RDRMOV and RDRNUM. Each of the commands is executed by a separate routine.

When the human player wishes to terminate the game before it has reached its conclusion (e.g., when he is hopelessly lost and does not want to stay around to be crushed), he can simply type an END command and the ENDCMD routine will terminate the program. If the user simply wishes to start a new game, he can type INIT and the INICMD routine will set up for a new game.
CBASIC-2

New features that enhance CBASIC's value as the best buy in Business BASIC:

- **CHAINING** to pass control from program to program;
- **INTEGER VARIABLES** allow fast computation in 16-bit binary arithmetic;
- **MULTIPLE LINE FUNCTIONS** allow easier, more structured coding;
- **XREF** produces a cross-reference dictionary of variables;
- **SAVEMEM** reserves memory space and loads subroutines;
- **XREF** produces a cross-reference dictionary of variables;
- **SADD%** returns absolute address of strings;
- **CONSTAT%** reports console status;
- **UCASE$** converts a string to upper case;
- **COMMAND$** returns contents of command line;
- **BUFFERING**, **%EJECT**, and more.

Special Introductory Price: $89.95

SSG CBASIC version one owners can update for only: $49.95

(send registration when ordering)

Other vendors sell CBASIC. But how many back up their customers when software is updated? We do.

For information, or to order, contact:

Structured Systems Group
5208 CLAREMONT AVENUE
OAKLAND, CALIFORNIA 94618
(415) 547-1567

EXCELLENT CHOICE!

Users of computers and programmable calculators enjoy this magazine! The articles are of interest to hobbyists and professionals. The programs are accompanied by explanations written in clear, logical language. Our authors are people who own and use machines like yours!

"The Recreational Programmer" is issued bi-monthly. It is available by subscription only for twelve dollars per year (domestic), or fifteen dollars per year (foreign).

Subscriptions and articles may be sent to:

THE RECREATIONAL PROGRAMMER
BOX 2571
KALAMAZOO MICHIGAN 49003

EXCELLENT CHOICE!
The Electric Pencil II is a Character Oriented Word Processing System. This means that text is entered as a string of continuous characters and is manipulated as such. This allows the user enormous freedom and ease in the movement and handling of text. Since line endings are never delineated, any number of characters, words, lines or paragraphs may be inserted or deleted anywhere in the text. The entirety of the text shifts and opens up or closes as needed in full view of the user. The typing of carriage returns as well as word hyphenation is not required since lines of text are formatted automatically.

When text is printed, The Electric Pencil II automatically inserts carriage returns where they are needed. Numerous combinations of line length, page length, line spacing and page spacing allow for any form to be handled. Character spacing, BOLD FACE, multicolumn as well as bidirectional printing are included in the Diablo versions. Right justification gives right-hand margins that are even. Pages may be numbered as well as titled. This entire page (excepting the large titles and logo) was printed by the Diablo version of The Electric Pencil II in one pass.

Now on CP/M

The Electric Pencil II is also compatible with Imsai's IMDOS and HELIOS versions SSH and DSH are now ready. The NEC print package is now available. A utility program that converts PENCIL to CP/M to PENCIL files is ready. "CONVERT" is only $35.00.

NEW FEATURES: * CP/M, IMDOS and HELIOS Compatible * Supports Four Disk Drives * Dynamic Print Formatting * DIABLO as well as NEC printer packages * Multicolumn Printing * Print Value Chaining * Page-at-a-time Scrolling * New Bidirectional Multispeed Scrolling Controls * New Subsystem with Print Value Scoreboard * Automatic Word and Record Number Tally * Cassette backup for additional storage * Full Margin Control * End-of-Page Control * Non-Printing Text Commenting * Line and Paragraph Indentation * Centering * Underlining * BOLD FACE *

W I D E S C R E E N V I D E O ! ! !

Available to Imsai VIO video users for a huge 80x24 character screen. These versions put almost twice as many characters on the screen !!!

HAVE WE GOT A VERSION FOR YOU ?

The Electric Pencil II operates with any 8080/280 based microcomputer that supports a CP/M disk system and uses a Imsai VIO, Processor Technology VDM-1, Polymorphic VTI, Solid State Music VB-1B or any similar memory mapped video interface. REX versions now available. Specify when using CP/M that has been modified for Micropolis or North Star disk systems as follows: For North Star add suffix A to version number, for Microplus add suffix B to version number, e.g. SS-IIA, DV-IIB.

As text is typed in and the end of a screen line is reached, a partially completed word is shifted to the beginning of the following line. Whenever text is inserted or deleted, existing text is pushed down or pulled up in a wrap around fashion. Everything appears on the video display screen as it occurs which eliminates any guesswork. Text may be reviewed at will by variable speed scrolling both in the forward and reverse directions. By using the search or the search and replace function, any string of characters may be located and/or replaced with any other string of characters as desired.

When text is inserted, The Electric Pencil II automatically inserts carriage returns where they are located. Character spacing, BOLD FACE, multicolumn as well as bidirectional printing are included in the Diablo versions. Right justification gives right-hand margins that are even. Pages may be numbered as well as titled. This entire page (excepting the large titles and logo) was printed by the Diablo version of The Electric Pencil II in one pass.

UPGRADING POLICY: Any version of The Electric Pencil may be upgraded at any time by simply returning the original disk or cassette and the price difference between versions plus $15.00 to MSS. Accept only original media at time of purchase.

Demand a demo from your dealer!

Circle 319 on inquiry card.
(eg: side to move, move number, en passant, castling), this can be done by activating STACMD.

Notes on Notation

The program also processes standard chess notation. This is not strictly necessary. Many programs use their own convention for entering and reporting moves. A common procedure is to denote the squares using a number (1 through 8) for each row and a letter (A through H) for each column. A move is defined by listing the present square of the piece and then the destination square. For example, the common opening move, P-K4, would be E2E4. Moving the White Knight on the kingside from its original square to KB3 would be G1 F3. This convention works nicely but it forces an experienced chess player to learn a new system. Most would prefer standard chess notation.

Because there are multiple ways to express the same move in standard notation, the translation routine needs to be fairly sophisticated. Consider a position in which the White Queen’s Rook is on its original square and the neighboring Knight and Bishop have been moved. A move which places the Rook on the Queen Bishop file can be designated as R-B1, R-QB1, R/1-B1, R/1-QB1, R/R1-B1, or R/R1-QB1. It is important that the program recognize that each of these character strings represents the same move. How is this done?

One way is to have the machine generate a list of all legal moves and then compare each of these with the move entered by the player. If his move matches one on the list, that move is noted. The rest of the list is then checked and if no more matches are found, the noted move is assumed to be the correct one. If no match is found, the machine prints “illegal move.” If a second match is found (eg: P-B3 matches both P-KB3 and P-QB3), the machine prints “ambiguous move.” The process of translating the opponent’s move into machine compatible form and checking its legality or ambiguity is done by YRMOVE. The process of translating the machine’s move into standard notation is handled by MYMOVE. Both of these procedures call MINENG, which is responsible for constructing the appropriate character strings.

Final Thoughts

This completes our listing of our demonstration chess program. Despite the program’s length, there are many desirable features which have been omitted. The reader with an interest in chess and programming should use this listing as a starting point for developing a program. The time required for move calculation can be reduced by writing machine dependent code for some of the frequently used routines. There are also features which can be added to improve the level of play.

One useful addition would be an opening library. An effective technique for this is described by Slate and Atkin in their chapter in Chess Skill in Man and Machine (P W Frey, editor, Springer-Verlag, New York, 1977). An opening library provides the user with a challenging set of opening moves and directs the game into situations which are familiar to the experienced chess player. By including various options at the early choice points and using a random selection procedure, the programmer can insure that the machine will not always select the same move sequence. The programmer can also give the user the option of specifying a particular opening against which he would like to practice. For important matches, the programmer can prepare surprise openings for the machine in order to gain a psychological edge on the opponent.

Text continued on page 157
An advanced desktop data system for $1,995? Quitcherkiddin*, TANO.

We're not kiddin'. Outpost 11 is exactly that. You get:

- A ruggedly designed unit, intended for heavy use
- Full ASCII keyboard
- 24 x 80 character CRT
- 32K bytes RAM
- M6800 CPU

Just like this, for only

$1995

COMPLETE

With Outpost 11 and the BASIC software package, you can:
- Do full floating point BCD math
- Program SAVE and LOAD with file names
- Trig and math functions
- GET, PUT and FIELD statements
- Floppy file processor
- Mini-floppy disk drive and controller
- BASIC software package
- Over 20 applications packages available
- User documentation

You've been waiting a long time for a Data System with all these features at a price like this. Now it's yours. No kiddin'.

Order Form

Quit your kiddin'
Listing 1, continued from page 140:

```

FUNCTION EVROOK (* EVALUATE ROOK *)
VALUE = (+ ROOK LOCATIONS +)
BEGIN
  INTV = TVI (* SCRATCH *)
  INTH = THI (* SCRATCH *)
  INTS = TS (* SEVENTH RANK *)
BEGIN
  INTV = INTV + 1 (* INITIALIZE *)
  THMS = THM (* AT FIRST PLY *)
  IF NOT TVS(THM,INTV) THEN
    BEGIN
      ANDS(INTH,THMS,THMSTV(THM,INTV));
      If NOT NULRS(INTH) THEN
        BEGIN
          INTV = INTV + 1 (* GIVE DOUBLE ROOE CREDIT *)
          THMS = THMS + 1;
        END;
      END;
    END;
  END;
  EVROOK = INTV + INTH*INTV**INTV; (* CREDIT ROOKS ON SEVENTH *)
END (* EVROOK *)

BEGIN
  IF TVS(JNTK-1) = HBV1(JNTK) AND XPS = BSTVL(JNTK-2) THEN
    (* MOVE WILL PRUNE ANYWAY *)
    INTV = XTHV(JNTK-1) = HBV1(JNTK);
  ELSE
    BEGIN
      INTV = (FLOOP(THMSTV(TV)),21,22),ELOOP(TV),SH,VR);
      IF THMSTV(TV) THEN
        BEGIN
          INTV = INTH - TVI (* LOCATE FIRST ROOK *)
          THMS = INTV;
        END;
      END;
      BEGIN
        ANDS(INTH,THMS,THMSTV(INTH,THMS));
        If NOT NULRS(INTH) THEN
          BEGIN
            INTV = INTV + 1 (* GIVE DOUBLE ROOE CREDIT *)
            THMS = THMS + 1;
          END;
        END;
        EVROOK = INTV + INTH*INTV**INTV; (* CREDIT ROOKS ON SEVENTH *)
      END (* EVROOK *)
    END;
  END;
  IF TVS THEN
    BEGIN
      WRITE("VALUE",JNTK,JNTK,INDEX(JNTK),INTV);
      PRINTMOV(MOVES(INDEX(JNTK)-1));
    END;
  END;
  (* RETURN SCORE *)
END (* FUNCTION SELECT *)

FUNCTION SEARCH (* SEARCH LOOK-AHEAD TREE *)
BEGIN
  INTV = TVI (* RETURNS THE BEST MOVE *)
  LABEL 11, 12, 13, 14, 15, 16; (* TRY DIFFERENT FIRST MOVE *)
  IF INTV THEN
    BEGIN
      MOVES = 0; (* FLOAT VALUE BACK UP *)
      IF INTV THEN
        BEGIN
          IF MOVES THEN
            (* FIND ANOTHER MOVE *)
            MOVES = 1; (* BACK UP A PLY *)
          END;
        END;
      END;
      IF INTV THEN
        BEGIN
          EXIT SEARCH (* GET MOVES *)
        END;
      END;
    END;
  END;
  (* RETURN MOVE INFORMATION *)
  (* PLY OF BEST MOVE *)
END (* FUNCTION SELECT *)

BEGIN
  INTV = TVI (* MOVES INDEX *)
  THMS = THM (* SCRATCH *)
BEGIN
  BSTVLA = INDEX(A+1); (* SAVE BEST MOVE *)
  IF A = AK THEN (* AT FIRST PLY *)
    BEGIN
      BRM = MOVES(BSTVLA); (* SAVE BEST MOVE *)
      FOR INTV = BSTMVLA = MOVES(BSTVLA) DO
        BEGIN
          MOVES(INTH) = MOVES(INTH) + 1 (* MOVE OTHER MOVES DOWN *)
          MOVES(INTH) = MOVES(INTH) + 1 (* PUT BEST AT BEGINNING *)
          BSTVLA = BSTVLA + 1 (* POINTS TO BEST MOVE *)
        END;
      END;
    END;
  ELSE
    BEGIN
      If NOT MOVES(BSTVLA) = NHC THEN
        BEGIN
          KILLJNTK = MOVES(BSTVLA); (* SAVE KILLER MOVE *)
        END;
      END;
    END;
  END (* BEST MOVE *)
END (* FUNCTION SEARCH *)

BEGIN
  MOVES(INDEX(JNTK)-1) = TRUE (* INDEED MOVE*)
  IF MOVES(INDEX(JNTK)-1) THEN (* CLEAR MOVES SEARCHED *)
    BEGIN
      BSTVL(JNTK-2) = BSTVL(JNTK-2) (* SAVE ALPHAB *)
      INTV = INTV + 1 (* INHIBIT PRUNING IN EVALUATE *)
      MOVES = 0 (* INITIALIZE MAXIMUM POSITIONAL SCORE *)
      GEMALL = 0 (* GENERATE ALL MOVES *)
      FOR INTV = A1 TO JNTK-1 DO
        BEGIN
          IF UPDATE(MOVES(INTH)) THEN (* CLEAR MOVES SEARCHED *)
            BEGIN
              INDEX(JNTK) = INTH (* POINT TO CURRENT MOVE *)
            END;
          EVALUATE (* SCORE POSITION *)
        END;
      END;
      GONODATE(MOVES(INTH));
      END;
    END;
  END (* SELECT EXIT - DOW *)
  IF INTV THEN
    BEGIN
      MOVES(INTH) = A1 (* SELECT EXIT *)
      SPRINTMOV(MOVES(A1));
      IF NOT MOVES(INTH) THEN
        BEGIN
          SELECT MOVES(INTH); (* SELECT EXIT *)
        END;
    END;
  END (* SELECT EXIT *)
END (* SELECT EXIT *)

BEGIN
  MOVES(ININDEX(JNTK)-1) = TRUE (* INDEED MOVE *)
  If MOVES(ININDEX(JNTK)-1) THEN (* CLEAR MOVES SEARCHED *)
  BEGIN
    SOLVE(JNTK),INDEX(JNTK),INDEX(JNTK),INDEX(JNTK); (* INITIALIZE *)
  ELSE
    VALUE(INDEX(JNTK)) = 0 (* STALEMATE *)
  BEGIN
    VALUE(INDEX(JNTK)) = 1 (* IF SMT THEN *)
    WRITE("SCORE",JNTK,JNTK,INDEX(JNTK),INDEX(JNTK),VALUE(INDEX(JNTK)));
    END (* IF SMT THEN *)
  END (* BEGIN *)
END (* FUNCTION SELECT *)

BEGIN
  MOVES(ININDEX(JNTK)-1) = 1 (* CLEAR MOVES SEARCHED *)
  If MOVES(ININDEX(JNTK)-1) THEN (* CLEAR MOVES SEARCHED *)
  BEGIN
    BSTVL(JNTK-2) = BSTVL(JNTK-2) (* INHIBIT PRUNING IN EVALUATE *)
    MOVES = 0 (* INITIALIZE MAXIMUM POSITIONAL SCORE *)
    GEMALL = 0 (* GENERATE ALL MOVES *)
    FOR INTV = A1 TO JNTK-1 DO
      BEGIN
        If UPDATE(MOVES(INTH)) THEN (* CLEAR MOVES SEARCHED *)
          Begin
            INDEX(JNTK) = INTH (* POINT TO CURRENT MOVE *)
          END;
        EVALUATE (* SCORE POSITION *)
      END;
    END;
    GONODATE(MOVES(INTH));
    END (* SELECT EXIT *)
  END (* IF SMT THEN *)
  IF INTV THEN
    BEGIN
      MOVES(ININDEX(JNTK)-1) = 1 (* RESTORE ALPHA *)
      SORTMOV(MOVES(INTH-1)); (* SORT PRELIMINARY SCORES *)
      For INTV = A1 TO JTH DO
        BEGIN
          KILLJNTK = NULRY (* CLEAR KILLER TABLE *)
        END;
    END;
  END (* SELECT EXIT *)
END (* SELECT EXIT *)

BEGIN
  MOVES(ININDEX(JNTK)-1) = 0 (* INITIALIZE FOR NEW MOVES *)
  BEGIN
    MOVES(ININDEX(JNTK)-1) = A1 (* CLEAR MOVES SEARCHED *)
    BSTVL(JNTK-2) = BSTVL(JNTK-2) (* INHIBIT PRUNING IN EVALUATE *)
    MOVES = 0 (* INITIALIZE MAXIMUM POSITIONAL SCORE *)
    GEMALL = 0 (* GENERATE ALL MOVES *)
    For INTV = A1 TO JNTK-1 DO
      BEGIN
        If UPDATE(MOVES(INTH)) Then (* CLEAR MOVES SEARCHED *)
          BEGIN
            INDEX(JNTK) = INTH (* POINT TO CURRENT MOVE *)
            EVALUATE (* SCORE POSITION *)
          END;
      END;
    END;
    GONODATE(MOVES(INTH));
    END (* SELECT EXIT *)
  END (* SELECT EXIT *)
END (* SELECT EXIT *)

BEGIN
  MOVES(ININDEX(JNTK)-1) = 1 (* CLEAR MOVES SEARCHED *)
  If MOVES(ININDEX(JNTK)-1) THEN (* CLEAR MOVES SEARCHED *)
  BEGIN
    BSTVL(JNTK-2) = BSTVL(JNTK-2) (* INHIBIT PRUNING IN EVALUATE *)
    MOVES = 0 (* INITIALIZE MAXIMUM POSITIONAL SCORE *)
    GEMALL = 0 (* GENERATE ALL MOVES *)
    For INTV = A1 TO JNTK-1 DO
      Begin
        If UPDATE(MOVES(INTH)) Then (* CLEAR MOVES SEARCHED *)
          BEGIN
            INDEX(JNTK) = INTH (* POINT TO CURRENT MOVE *)
            EVALUATE (* SCORE POSITION *)
          END;
      END;
    END;
    GONODATE(MOVES(INTH));
    END (* SELECT EXIT *)
  END (* IF SMT THEN *)
  IF INTV THEN
    BEGIN
      MOVES(ININDEX(JNTK)-1) = A1 (* RESTORE ALPHA *)
      SORTMOV(MOVES(INTH-1)); (* SORT PRELIMINARY SCORES *)
      For INTV = A1 TO JTH DO
        BEGIN
          KILLJNTK = NULRY (* CLEAR KILLER TABLE *)
        END;
    END;
  END (* SELECT EXIT *)
END (* SELECT EXIT *)

BEGIN
  MOVES(ININDEX(JNTK)-1) = 0 (* INITIALIZE FOR NEW MOVES *)
  BEGIN
    MOVES(ININDEX(JNTK)-1) = A1 (* CLEAR MOVES SEARCHED *)
    BSTVL(JNTK-2) = BSTVL(JNTK-2) (* INHIBIT PRUNING IN EVALUATE *)
    MOVES = 0 (* INITIALIZE MAXIMUM POSITIONAL SCORE *)
    GEMALL = 0 (* GENERATE ALL MOVES *)
    For INTV = A1 TO JNTK-1 DO
      Begin
        If UPDATE(MOVES(INTH)) Then (* CLEAR MOVES SEARCHED *)
          BEGIN
            INDEX(JNTK) = INTH (* POINT TO CURRENT MOVE *)
            EVALUATE (* SCORE POSITION *)
          END;
      END;
    END;
    GONODATE(MOVES(INTH));
    END (* SELECT EXIT *)
  END (* SELECT EXIT *)
END (* SELECT EXIT *)
```

December 1978 © BYTE Publications Inc
CIS COBOL is the Compact, Interactive, Standard COBOL which offers for the first time a cost-effective key to full commercial use of microcomputers. It can be used simply and naturally, offers facilities unavailable with other forms of COBOL, and produces efficient code without wasting space. For example, a 32K byte system is sufficient to run the compiler or a substantial application program.

CIS COBOL contains the most relevant parts of the ANSI 74 standard plus extra facilities to provide a powerful interactive business language.

The CIS COBOL Object Pack is available for shipment on IBM compatible diskette to users of a variety of 8080/Z80 based computers running the CP/M* or ISIS* Operating Systems.

Dealer and Application Vendor terms are available

Evaluation copy $500 in USA, 2 weeks delivery, payment by cheque, American Express or Visa.

Micro Focus offers a CIS COBOL licensing package to OEM's including access to internal documentation and program source plus an Interfacing Kit to enable CIS COBOL to be implemented quickly in the OEM's own hardware and software environment. The CIS COBOL compiler is itself written in COBOL making it self compiling and thereby extremely portable.

MICRO FOCUS LTD 58 Acacia Road, London NW 86AG, ENGLAND, UK
Telephone 01-702-8843 TLX 28536

* CP/M is a trademark of Digital Research and ISIS is a trademark of Intel Corporation.

Circle 216 on inquiry card.
Listing 1, continued:

IF SMTR OR SWPS THEN
 FOR INTW = AW:1 TO JNTW-1 DO
 BEGIN
 WRITE("PRELIM-INTW,VALUE(INTW)\nPREMOVING(VALINTW)\n(* PRINT PRELIMINARY SCORES \nIF INTW/2-1 = INTW DIV 2 THEN PAUSER\nELSE\n SELWHT(WITY) \n (* SEARCH ALL MOVES \nENDI

M11 (* INITIALIZE AT NEW DEPTH *)
BEGIN
 VSSELJNXT1 = $1
 IF JNTK = $JNT THEN
 BEGIN
 EVALUATE \n (* EVALUATE CURRENT POSITION *)
 INDEX(JNTK+1) = $AN\n BSTVL(JNTK+1) = VALUE(INDEX(JNTK+1))
 IF REMNAX(JNTK+1) OR JNTK = $JKT THEN
 SELDOM; \n (* THIS MOVE PRUNES *)
 SCHR(JNXT) = $2; \n (* capture search *)
 ENDI
ELSE
 SCHR(JNXT) = $3; \n (* captures in full search *)
 GENCAP; \n (* GENERATE CAPTURES *)
 SELWHT((SCHR(JNXT)\n (* change search mode *)
ENDI

M21 (* capture search *)
BEGIN
 INTW = $AW\n (* best move pointer *)
 INTV = $AV\n (* best value *)
 FOR INTV = LINDX(JNXT) TO JNTW-1 DO
 WITH MOVEVINTW DO
 IF NOT DSMW THEN
 IF ABS(STPNV(RCPM)) = INTW THEN
 INTV = ABS(STPNV(RCPM)); \n (* set new move *)
 INTW = INTV; \n (* best move to INTV *)
 IF INTW = AW THEN \n (* MOVE FOUND *)
 SELMOV(INTW) \n (* SELECT BIGGEST CAPTURE *)
 ELSE \n SELDOM; \n (* quit *)
ENDI

M31 (* full width search - captures *)
BEGIN
 INTW = $AW\n (* best move pointer *)
 INTV = $AV\n (* best value *)
 FOR INTV = LINDX(JNXT) TO JNTW-1 DO
 WITH MOVEVINTW DO
 IF NOT DSMW THEN
 IF ABS(STPNV(RCPM)) = INTV THEN
 INTW = INTV; \n (* best move to INTW *)
 INTV = INTW; \n (* best move to INTV *)
 IF INTW = AW THEN \n (* MOVE FOUND *)
 SELMOV(INTW) \n (* SELECT BIGGEST CAPTURE *)
 ELSE \n IF NOT NULMV(KILLR(JNXT)) THEN
 BEGIN
 INTW = JNXT; \n (* save current moves index *)
 GENFLKS(KILLR(JNXT),RMP1) \n (* generate move by killer *)
 SCHR(JNXT) = $W1; \n (* set next search mode *)
 FOR JNTW = INTW TO JNTW+1 DO
 IF KILLR(JNXT),RMP1 = MOVEVCONT(JNXT) THEN \n (* look at moves by killer *)
 SELMOV(RWT); \n (* select killer move *)
 ENDI
 ENDI
 SELWHT(MHT) \n (* go to next state *)
 ENDI

H11 (* initialize scan of castle moves and other moves by killer piece *)
BEGIN
 GENCAI; \n (* generate castle moves *)
 SELWXHTH1; \n (* go to next state *)
ENDI

H51 (* full width search - castles and other moves by killer piece *)
BEGIN
 SELWHTH1; \n (* select any move *)
 GENFLKSLALOC(JNXT),RMP1 \n (* generate remaining moves *)
 SELWXHTH1; \n (* next search mode *)
ENDI

H61 (* full width search - remaining moves *)
BEGIN
 SELWHTH1; \n (* select anything on list *)
 IF HSVELJNXT1 = 0 THEN \n (* score mate *)
 SELDOM; \n (* exit select *)
ENDI

H71 (* research first ply *)
BEGIN
 JNXT = LINDX(AW+1) \n (* point to already generated moves *)
 HSVELJNXT1 = 0; \n (* reset moves searched *)
 FOR INTW = AW+1 TO JNTW+1 DO
 MOVEVINTW,RSW = FALSE; \n (* clear searched bit *)
 IF SMTR THEN \n (* write "-", INTK, BSTVL=2-1, BSTVL=1-1*)
 SELWHTH1 \n (* search all moves *)
ENDI

221 (* select exit *)
SELECT = INTBI \nENDI (* select *)

BEGIN (* search *)
BSTVL(NXK) = AW \n (* initialize move *)
INDEX(JNXT1) = $AN \n (* initialize tree *)
ENDI (* initialize move *)
ENMI (* initial guess at score *)
BSTVL=2-1 = VALUE(JNXT) \n (* initialize alpha-beta window *)
JNKT = $KST \n (* initialize iteration number *)
WHILE (MOVES < NODEL) AND (JNKT < MAXIZE DIV 2, ZE-BI) DO\nBEGIN

111 (* start new ply *)
BSTVL=1-1 = VALUE(JNKT) \n (* initialize alpha-beta *)

121 (* different first move *)
BEGIN
 IF BSTVL(JNXT) = VALUE(INDEX(JNKT+1)) \n (*) newbst(JNKT1) *)
 ENDI (* find another move *)
ELSE
 BEGIN
 IF UPDATE(MOVEVINDEX(JNKT+1)) THEN \n GOTO 111 \n (* start new ply *)
 ELSE
 GOTO 121 \n (* find another move *)
 ENDI

131 (* float value back *)
IF REMNAX(JNKT) THEN \n GOTO 151 \n (* prune *)
ELSE
 BEGIN
 IF UPDATE(MOVEVINDEX(JNKT+1)) THEN \n GOTO 111 \n (* start new ply *)
 ELSE
 GOTO 141 \n (* find another move *)
 ENDI
ENDI (* end *)

151 (* back up a ply *)
IF JNKT = $KST THEN \n BEGIN (* not done with iteration *)
 DNMATE(MOVEVINDEX(JNKT+1)) \n (* retract move *)
 ENDI (* end *)

161 (* done with iteration *)
IF BSTVL(AW) = BSTVL(AW-2) OR BSTVL(AW) = BSTVL(AW-1) THEN \n BEGIN (* no move found *)
 IF HSVELJNXT1 = 0 THEN \n BSTVL(AW) = 0 \n BEGIN (* no legal moves *)
 GOTO 161 \n (* give up *)
 ENDI (* end *)
 BSTVL(AW-2) = -ZFI \n (* set alpha-beta window large *)
 BSTVL(AW-1) = -ZFI \n (* set alpha-beta window *)
 SCHRJNXT1 = $HST \n (* try again *)
 ENDI (* end *)
ENDI (* end *)

171 (* exit search *)
SEARCH = BSTVL(AW) \n (* return best move *)
ENDI (* search *)

PROCEDURE READER;
 (* read input from user *)
LABEL 111 \n (* command finished exit *)
VAR \n IMRA = RA; \n (* scratch token *)
 INTJ = TJ; \n (* echo command index *)
PROCEDURE RODERR(ARMH) \n (* print diagnostic and exit *)
VAR \n INTJ = TJ; \n (* string index *)
 INTN = TN; \n (* message index *)
BEGIN
 IF NOT SHED THEN \n (* echo line if not already done *)
 BEGIN
 WRITE ""; \n (* write intj to zj-1 do *)
 WRITE(INI;(*write(intj!))
 (* write input line *)
 ENDI (* end *)
 ENDI (* end *)
 (* leading blakens before arrow *)
 ENDI (* end *)
 (* pointer to error *)
 ENDI (* command error *)
 ENDI (* end *)
NEW!

9600 BAUD CASSETTE RECORDER

An ASYNCHRONOUS NRZ type Recorder with remote motor start/stop. Error rate 10⁻⁸ at 4800 BAUD. Can be used from 110 to 9600 BAUD into a UART — no clocking required. This is not an audio recorder. It takes RS232 or TTL signals from the terminal or computer and gives back the same signals. No audio interface is used. Motor start/stop is manual or through TTL or RS232 signals.

Tape speeds are 1.6" / 3.0" and 6.0" per second. 110 volt, 60 Hz, 5 watts. (220 Volts on special order). Can use high quality audio cassettes (Philips Type) or certified data cassettes. Recommended for DATA LOGGING, WORD PROCESSING, COMPUTER PROGRAM RELOADING and DATA STORAGE. Manual control except for motor start/stop. 6800, 8080 or Z80 software for file or record searching available on request with order. Used by major computer manufacturers, Bell Telephone and U.S. Government for program reloading and field servicing.

AVAILABILITY — Off the shelf.

MODEL CC-9
$200.00 (4800 Baud)
$220.00 (9600 Baud and 220V/50 Hz)

PROVIDES MONITOR AND TAPE SOFTWARE in ROM. TERMINAL and TAPE PORTS on SAME BOARD. CONTROLS ONE or TWO TAPE UNITS (CC-8 or 3M3B).

This is a complete 8080, 8085, or Z80 system controller. It provides the terminal I/O (RS232, 20 mA or TTL) and the data cartridge I/O, plus the motor controlling parallel I/O latches. Two kilobytes of on board ROM provide turn on and go control of your Altair or IMSAI. NO MORE BOOTSTRAPPING. Loads and Dumps memory in hex on the terminal, formats tape cartridge files, has word processing and paper tape routines. Best of all, it has the search routines to locate files and records by means of six, five, and four letter strings. Just type in the file name and the recorder and software do the rest. Can be used in the BISync (IBM), BiPhase (Phase encoded) or NRZ modes with suitable recorders, interfaces and software.

This is Revision 8 of this controller. This version features 2708 type EPROM's so that you can write your own software or relocate it as desired. One 2708 preprogrammed is supplied with the board. A socket is available for the second ROM allowing up to a full 2K of monitor programs.

Fits all $100 bus computers using 8080 or Z80 MPU's. Requires 2 MHz clock from bus. Cannot be used with audio cassettes without an interface. Cassette or cartridge inputs are TTL or RS232 level.

AVAILABILITY — Off the shelf.

DOUBLE DENSITY FLOPPY DISK CONTROLLER

A new floppy controller for 5" and 8" drives utilizing the new 1791 chip to provide single or double density recording. Flip the switch to use one or the other mode. Can load memory from single density and re-record it double density on the same drive so you can transfer or re-record your programs and files. Comes with new format program for double density on disk to replace your old single density format program. (Soft Sector IBM format). $295. Assembled and tested.

SHIPPING STARTED OCTOBER '78.

PEGASUS DOUBLE DISK ENCLOSURE and POWER SUPPLY

Holds one or two drives, has two drive power supply. 110 or 220V. Comes empty or filled with Shugart drives. Variations preclude listing prices. Call or write for full details.

SHIPPING STARTED OCTOBER '78.

Z 80 BOARD for SWTP COMPUTER

Now you can use the 8080/Z80 software programs in your SWTP 6800 machine. Replaces your MPU board with a Z80 and ROM so that you are up and running with your present SWTP memory and MPS card. 1 K ROM on board replaces MIKBUG and enables you to use XITAN Z80 software which we can supply.

AVAILABILITY — Off the shelf.

$190.00, Tested & Assmb.

For U.P.S. delivery, add $3.00. Overseas and air shipments charges collect. N.J. Residents add 5% Sales Tax. WRITE or CALL for further information. Phone Orders on Master Charge and BankAmericard accepted.

The LATEST in Tape Systems

2SIO (R) CONTROLLER
$190.00, Tested & Assmb.
Listing 1, continued:

FUNCTION RDSGTN(VAR $IRA) : # GET NEXT TOKEN FROM COMMAND
RETURNS TOKEN IN A.
RETURNS TRUE IF NON-EMPTY
TOKEN.
A TOKEN IS ANY CONSECUTIVE
COLLECTION OF ALPHANUMERIC
CHARACTERS, LEADING SPECIAL CHARACTERS
IGNORED. *)

VAR
INTJ : TJI
(* STRING INDEX *)
BEGIN
WHILE (INTJ < 2) AND (Ord (IN LNE [INTJ]) < Ord ("=")) DO
A := ""
INTJ := INTJ + 1
END;
RDSGTN := INTJ := AA:
(* RETURN TRUE IF ANYTHING
MOVED *)
WHILE (INTJ < 2) AND (IN LNE [INTJ] = "=" OR INTJ = 1) DO
(* SKIP REST OF TOKEN *)
END; (* RDSGTN *)

PROCEDURE RDSFTI (* SKIP FIRST TOKEN IN COMMAND
LINE *)
VAR
INRA := RAI:
INTB := TBI:
(* SCRATCH *)
BEGIN
INTJ := AJI
INTB := RDSGTN(INRA):
(* THROW AWAY FIRST TOKEN *)
END; (* RDSFTI *)

PROCEDURE RDSRCHO (* TEST FOR AND EXECUTE COMMAND
EXITS TO COMMAND EXIT IF
COMMAND IS PROCESSED. *)

FUNCTION RMPHTBI (* EXTRACT NEXT COMMAND
FROM INPUT LINE,
RETURNS TRUE IF NON-EMPTY
COMMAND. *)
VAR
INTC := TC:
INTJ := TJI:
(* SCRATCH *)
(* STRING INDEX *)
BEGIN
READLN;
INTJ := AJI
WHILE NOT (EOLN AND (INTJ < 2)) DO (* COPY INPUT LINE *)
BEGIN
READCARD(INJ):
INTJ := INTJ + 1
END;
WHILE NOT (EOLN) DO
(* SKIP REST OF INPUT LINE *)
BEGIN
READCARD(INJ):
INTJ := INTJ + 1
END;
(* BLANK REST OF LINE *)
END;
READCARD(INJ):
INTJ := INTJ + 1
(* SET END OF COMMAND *)
JN T J := AJI
(* RESET INPUT LINE POINTER *)
END; (* RMPHTBI *)

NEW SOFTWARE FOR
YOUR COMPUTALKER!

SOFTWARE PACKAGE II
available now

CTEDIT A new parameter editor
CSEDIT Editor for CSR1 input
CTEST CT-1 Hardware diagnostic
PLAYDATA To hear the data files
MEMVOICE A vocal memory dumper
KEYPLAY Subr. to play letters/digits
PIANO A simple musical keyboard

8080 Assembly Language
** Sources Included **
CPM 8”, North Star, Micropolis,
Tarbell, CUTS, MITS ACR,
paper tape

on any of the above media $30.00
calif. res. add 6% sales tax

COMPUTALKER CONSULTANTS
1730 21st Street, AB
Santa Monica, CA 90404
(213) 392-5230

December 1978 © BYTE Publications Inc
Circle 53 on inquiry card.
Listing 1, continued:

PROCEDURE BOARDV(AJT1): (* ADVANCE N FILES *)
BEGIN
 IF INTS + 6 < 25 THEN
 INTS := INTS + 6
 ELSE
 INTS := 25;
 END (* BOARV *)

PROCEDURE BOASTOC (AJP1): (* STORE PIECE ON BOARD *)
BEGIN
 BOARD.RBSI[INTS] := AI;
 IF INTS <= 25 THEN
 INTS := INTS + 1;
 END (* BOASTOC *)

BEGIN (* BOACH *)
CLST1 := (* CLEAR STATUS FLAGS *)
LSTMV := NULMV; (* CLEAR PREVIOUS MOVE *)
FOR INTS := 26 TO 29 DO
 BOARD.RBSI[INTS] := AT; (* CLEAR BOARD *)
 INTH := LITE;
 INTH := 81;
REPEAT
 CASE CLST1[JNT1] OF
 'P': BOASTOITUPMER(INTH);
 'B': BOASTOITUMER(INTH);
 'N': BOASTOITUMER(INTH);
 'K': BOASTOITUMER(INTH);
 'Q': BOASTOITUMER(INTH);
 'H': INTH := LITE;
 'G': INTH := DARE;
 'O': INTH := DARE;
 'D': BOASTOITUPMER(INTH);
 'L': BOASTOITUPMER(INTH);
 'G': BOASTOITUPMER(INTH);
 'O': BOASTOITUPMER(INTH);
 'D': BOASTOITUPMER(INTH);
 'L': BOARD[ORD(INTH)] := 0;
 END (* CASE *)
 ELSE
 IF CLST1[L] IN ('A', 'H') THEN
 BEGIN
 FOR INTS := 26 TO 29 DO
 BOARD.RBSI[INTS] := AT;
 CLST1 := (* CLEAR STATUS *)
 RORERR := "ILLEGAL BOARD OPTION " ||
 JNT1 := JNT1 + 1;
 UNTIL JNT1 = 29;
 END (* BEGIN *)
 END (* ELSE *)
 END (* IF-ELSE *)
END (* BEGIN *)

PROCEDURE ENDCMD(): (* COMMAND - END PROGRAM *)
BEGIN
 GOTO 91; (* END PROGRAM *)
END (* ENDCMD *)

PROCEDURE GOMCMD(): (* COMMAND - GO N MOVES *)
BEGIN
 GOING := RORNUM;
 IF GOING = 0 THEN
 BEGIN
 GOING := 1;
 END (* IF-THEN *)
END (* GOMCMD *)

PROCEDURE INITCMD(): (* COMMAND - INITIALIZE FOR A NEW GAME *)
BEGIN
 GOTO 11; (* INITIALIZE FOR A NEW GAME *)
END (* INITCMD *)

PROCEDURE LETCMD(): (* COMMAND - CHANGE VARIABLE *)
LABEL Z11:
 (* LET COMMAND EXIT *)
PROCEDURE LETONE(): (* COMMAND - SET ONE VARIABLE *)
A111 := 11111111;
VAR BIT111 := (*) VARIABLE *)
BEGIN
 IF A111 = L THEN
 BEGIN
 R := RORNUM;
 GOTO Z11;
 END (* IF-THEN *)
END (* BEGIN *)

PROCEDURE PAMCMD(): (* COMMAND - PRINT ATTACK MAP *)
BEGIN
 WHILE RORNUM > 0
 IF INRAAI = "T" THEN
 PRINT(KA1AIET());
 ELSE
 PRINT(KA1AIET());
 END (* IF-ELSE *)
 ELSE
 RORERR := "ATTACK MAP NOT 'TO' OR 'FROM'");
 END (* PAMCMD *)

PROCEDURE POPCMD(): (* COMMAND - PRINT OTHER STUFF *)
VAR
 SPORT := 11;
 CASTLE := 11;
BEGIN
 If BOARD[SPORT] THEN
 BEGIN
 PRINT("WHITE MUST ATTACK", TO MOVE.");
 END (* PRINT *)
END (* PPOCM *)

December 1978 © BYTE Publications Inc 151
Listing 1, continued:

PROCEDURE PHNCHWO
(* COMMAND - PRINT MOVE LIST *)
VAR
INT: * TH:
(* MOVES LIST INDEX *)
BEGIN
LISTMOV:
FOR INT := 1 TO INTW DO
BEGIN
WRITE(INTW, " ");
PRIMMOVMOV(INTHW, INTW);
IF INTW/2 + INTW DIV 2 THEN
PAUSE;
END;
END (* PHNCHWO *);

PROCEDURE SWCHWO
(* COMMAND - FLIP SWITCH *)
LABEL
Z11
(* SWITCH OPTION EXIT *)
PROCEDURE SWCHNE
(INHA:
(* PROCESS ONE SWITCH *)
VAR STY:
(* SWITCH NAME *)
BEGIN
INT := TJ:
(* SAVE COMMAND INDEX *)
BEGIN
IF INRA = A THEN
BEGIN
INT := JTJ:
IF RORGNT(INRAN) THEN
BEGIN
IF INRA = "ON " THEN
BEGIN
SWCHNE("EC", "OLVE");
SWCHNE("PA", "SWPA");
SWCHNE("PS", "SWPS");
SWCHNE("U", "SWU");
SWCHNE("FR", "SWIF");
END;
ELSE
BEGIN
EXIT STATUS OPTION (*);
END;
END;
ELSE
IF INRA = "OFF " THEN
BEGIN
SWCHNE("EC", "OLVE");
SWCHNE("PA", "SWPA");
SWCHNE("PS", "SWPS");
SWCHNE("U", "SWU");
SWCHNE("FR", "SWIF");
END;
BEGIN
SWCHNE("EC", "OLVE");
SWCHNE("PA", "SWPA");
SWCHNE("PS", "SWPS");
SWCHNE("U", "SWU");
SWCHNE("FR", "SWIF");
PROCEDURE STACWI
(* COMMAND - STATUS CHANGES *)
LABEL
Z11
(* STATUS COMMAND OPTION EXIT *)
VAR
INRA = RA;
(* CURRENT TOKEN *)
INTH = THI;
(* SIDE BEING PROCESSED *)
PROCEDURE STACPI
(INRA:
(* PROCESS EP FILE *)
BAYF:
(* TEST TOKEN *)
(* EQUIVALENT FILE *)
BEGIN
IF A = INRA THEN
BEGIN
IF INT = LITE THEN
BEGIN
BOARD.RBS = XTRFSRI,B1;
END
ELSE
BOARD.RBS = XTRFSRI,B1;
GOTO Z11;
(* EXIT STATUS OPTION *)
END;
END (* STACPI *);
PROCEDURE STACGO
(* ALLOW CASTLE KING SIDE *)
BEGIN
IF INT = LITE THEN
BOARD.RBS = BOARD.RBS + ELS;
ELSE
BEGIN
(* READER *)
IF NOT RORGNT(INRAN) THEN
BEGIN
CLST:
PROCEDURE STAEO:
(* TEST STATUS OPTION *)
BEGIN
IF ODRERR THEN
BEGIN
PROCEDURE STAAT:
(* PROCEDURE TO EXECUTE IF EQUAL *)
BEGIN
IF INRA = A THEN
BEGIN
BEGIN
(* STACWI *)
(* CLEAR STATUS *)
INT := LITE;
(* DEFAULT SIDE WHITE *)
Z11 (* STATUS OPTION EXIT *)
WHILE RORGNT(INRAN) DO
BEGIN
STACWI():
(* CLEAR STATUS *)
PROCEDURE WHAIC:
(* COMMAND - WHAT? *)
BEGIN
(* READER *)
WHILE NOT RORGNT DO
RLOGIN;
(* COMMAND EXITS *)
BOARD.RBS := BOARD.RBS + ELS;
PROCEDURE STAEO:
(* SET SIDE TO MOVE *)
BEGIN
BOARD.RBS := INT;
(* STM *)
END (* STAEO *);
PROCEDURE STAAG:
(* SET BLACK OPTIONS *)
BEGIN
INT := DARK;
(* STM *)
END (* STAAG *);
PROCEDURE STAEPE:
(* SET ENPASSANT FILE *)
BEGIN
IF NOT RORGNT(INRAN) THEN
BEGIN
RDRERR;
PROCEDURE STACAR:
(* ALLOW CASTLE QUEEN SIDE *)
BEGIN
IF INT = LITE THEN
BEGIN
BOARD.RBS := BOARD.RBS + (ELS);
ELSE
BOARD.RBS := BOARD.RBS + (ELS);
END (* STACAR *);
PROCEDURE STAK:
(* ALLOW CASTLE QUEEN SIDE *)
BEGIN
(* STACGO *)
(* CLEAR STATUS *)
INT := LITE;
(* DEFAULT SIDE WHITE *)
Z11 (* STATUS OPTION EXIT *)
WHILE RORGNT(INRAN) DO
BEGIN
STACGO():
(* CLEAR STATUS *)
PROCEDURE STAAT:
(* COMMAND - LAST MESSAGE *)
BEGIN
WHILE RLOGIN DO
RLOGIN;
Listing 1, continued:

IF NOT THEN
BEGIN
 WRITE("*");
 FOR INTJ = A1 TO J2 DO
 WRITE(IMAGE(INTJ));
 WRITE("\n");
END:

PROCEDURE ADDCHR
 (* ADD CHARACTER TO MESSAGE *)
_BEGIN
 MOVEMS(INTM) = A;
 IF INTM = F4 THEN
 INTM = INTM + 1;
_END:

PROCEDURE ADDSQP
 (* ADD SQUARE TO MESSAGE *)
_EXTERN
 (AIRM:
 BIT1);
Listing 1, continued:

IF RMD THEN (* CASTLE *)
 BEGIN
 ADDRD1"-D-0 "; 31
 IF RMD THEN
 ADDRD1"-D-1 "; 21
 END
 ELSE
 IF RMD THEN
 HINGE4(A,FMC,FMCL)
 ELSE
 SIMPLE MOVE *)
 IF RMD THEN
 PROMOTION *)
 BEGIN
 ADDCR1("=")
 ADDCR1(16CRPPII)
 END
 ADDRD1"-D- "; 31
 IF RMD THEN
 (* CHECK *)
 BEGIN
 ADDRD1("CHECK "; 151
 IF RMD THEN
 (* CHECKMATE *)
 ADDCR1("=")
 END
 ELSE
 (* STALEMATE *)
 ADDRD1("STALEMATE; ",10 l
 END
 END (* NINGE *)

PROCEDURE HMOVIE: (* MAKE MACHINES MOVE *)
 VAR
 INNM: RNI
 (* THE MOVE *)
 BEGIN
 CREATE
 (* INITIALIZE DATA BASE *)
 INNM "HOMESSEARCHI
 (* FIND THE BEST MOVE *)
 IF INNM, RNI THEN
 (* NO MOVE FOUND *)
 BEGIN
 GOING = 81
 IF LITE.RNIC THEN
 (* CONGRATULATIONS *)
 ELSE
 WRITEL "DRAWN, "
 END
 END
 ELSE
 (* STALEMATE *)
 BEGIN
 WRITEL "GAME OVER, "
 (* TRANSLATE MOVE TO ENGLISH *)
 WRITECNI(HOMES)
 (* TELL THE PLAYER *)
 THEN
 IF SWU THEN
 WRITEL "BISHOP, "
 (* MAKE THE MOVE *)
 END
 END
 (* NINGE *)
 END

PROCEDURE YMHOVE: (* MAKE PLAYERS MOVE *)
 LABEL
 1, 2, 7, 16, 15:
 (* SYNTAX MICES *)
 16:
 (* AMBIGUOUS MOVE *)
 17:
 (* NORMAL EXIT *)
 VAR
 IF: TBI
 (* VALU MOVES FOUND *)
 INTC1 TCI
 (* CURRENT CHARACTER *)
 INTM: TJI
 (* MOVES INDEX *)
 INTP: TPI
 (* MOVING PIECE *)
 INCP: TPI
 (* CAPTURED PIECE *)
 INCF: TBI
 (* CASTLE *)
 INFCPS: TBI
 (* QUEEN SIDE CASTLE *)
 INTP1 TGI
 (* PROMOTION TYPE *)
 IFP: TBI
 (* MOVE FOUND *)
 IFD1 TBI
 (* R, N, B OR Q ON LEFT *)
 IFL1 TBI
 (* K OR Q ON RIGHT *)
 IFP: TBI
 (* K OR Q ON RIGHT *)
 ILNF: SFI
 (* FILES ON LEFT *)
 INLF: SFI
 (* FILES ON RIGHT *)
 INFS: SFI
 (* BISHOP FILE *)
 INRM: RH
 (* THE MOVE *)
 FUNCTION HOMIC
 (* DETERMINE IF NEXT INPUT CHARACTER IS NOT IN A GIVEN SET *)
 (* SET OF CHARACTERS TO CHECK *)
 (* SEMANTICS ROUTINE TO CALL *)
 IF NEXT CHARACTER IS IN SET *)
 (* TRUE IF CHARACTER IS NOT IN SET *)
 VAR
 INTB: TBI
 (* SCRATCH *)
BEGIN
 INTB = 0 (INTC IN A):
 IF NOT INTD THEN
 BEGIN
 YMHOVE:
 (* EXECUTE SEMANTICS ROUTINE *)
 IF JNTJ = INTC1 THEN
 (* ADVANCE PASS CHARACTER *)
 BEGIN
 JNTJ = JNTJelligent
 IF INTC1 = "-" OR INTC1 = "1" THEN
 (* EXIT SCAN *)
 END
 HOMIC := INTB1
 (* RETURN TRUE IF CHARACTER IS NOT IN STRING *)
 END
 END
 ELSE
 (* NOMIC *)
 BEGIN
 (* FOUND A MOVE, EXITS TO AMBIGUS MOVE IF THIS IS THE SECOND POSSIBLE MOVE, SAVES THE MOVE IN INRM OTHERWISE *)
 IF IFW THEN GOTO 171
 IF IFW THEN "HOMESSEARCHI
 IF IFW THEN MOVESININT1I
 END
 (* YMM)
 END
 PROCEDURE YRCM:
 (* COMPARE SQUARES, CALLS YMM HOMESSEARCHI MOVE THE RIGHT TYPE OF PIECE, CAPTURES THE RIGHT TYPE OF PIECE, AND MOVES TO AND FROM POSSIBLE SQUARES *)
BEGIN
 IF IFL1 = "-" THEN
 (* SEMANTICS - CAPTURE *)
 IF IFL1 THEN
 (* SEMANTICS - CASTLE *)
 BEGIN
 IF IFL1 THEN
 (* SEMANTICS - CAPTURE PIECE *)
 BEGIN
 CASE INTC1 OF
 "F": INCP1 XTUMEP[OMEREMJNTJ]
 "W": INCP1 XTUMEF[OMEREMJNTJ]
 "B": INCP1 XTUMP[OMEREMJNTJ]
 "Q": INCP1 XTUMP[OMEREMJNTJ]
 END
 END
 END
 END
 END
 END
 (* SEMANTICS - CASTLE LONG *)
 BEGIN
 IF IFL1 THEN
 (* SEMANTICS - K OR Q ON LEFT *)
 BEGIN
 CASE INTC1 OF
 "K": INLF = [F1,F2] = INLF1
 "Q": INLF = [F1,F2] = INLF1
 (* KING SIDE *)
 IF IFL1 THEN
 END
 (* YMM *)
 END
 END
 END
 END
 END
 (* SEMANTICS - R, N, B OR Q ON LEFT *)
 BEGIN
 CASE INTC1 OF
 "K": INLF = [F2,F3] = INLF1
 "W": INLF = [F2,F3] = INLF1
 "B": INLF = [F2,F3] = INLF1
 "Q": INLF = [F2,F3] = INLF1
 END
 END
 END
 (* SEMANTICS - R, N, OR B ON RIGHT *)
 BEGIN
 CASE INTC1 OF
 "N": INLF = [F2,F3] = INLF1
 "K": INLF = [F2,F3] = INLF1
 "B": INLF = [F2,F3] = INLF1
 END
 IFL1 = "-" THEN
 END
 (* YMM *)
 END
 END
 (* SEMANTICS - RANK OR LEF *)
 BEGIN
 CASE INTC1 OF
 "K": INLF = [F2,F3] = INLF1
 "W": INLF = [F2,F3] = INLF1
 "B": INLF = [F2,F3] = INLF1
 END
 IF IFL1 THEN
 END
 (* YMM *)
 END
 END
 IF JNTJ = "-" THEN
 BEGIN
 IF JNTJ = "LITE THEN

CHESS SKILL IN MAN AND MACHINE edited by Peter W Frey.
A game of endless variations, chess has challenged our skill for centuries. This book surveys our current understanding of human chess skill and covers the subtleties of coaxing a machine to play chess. The initial chapter and appendix present a brief history of the computer chess tournaments. The next two chapters describe the essentials of how humans and computers play chess. The fourth chapter provides a detailed description of the Northwestern Chess Program, currently the national champion. The following three chapters discuss several alternative approaches to chess programming. In the final chapter, a former captain of the U.S. Olympic chess team assesses the present status of chess skill in human and machine. 217 pp. $14.80 hardcover.

The sixth annual U.S. Computer Chess Championship, held in October 1975, was a tournament in which twelve computer programs competed against each other. This book includes a detailed analysis and description of all the games, presented by David Levy, the tournament director. 86 pp. $5.95.

AN EDITOR/ASSEMBLER SYSTEM FOR 8080/8085 BASED COMPUTERS by W J Weller and WT Powers.
This 148-page book contains complete information for initializing and using a powerful new editor/assembler and debugging monitor system, and the full SOURCE text of both. The assembler fully supports all Intel instruction mnemonics as well as the entire language used in PRACTICAL MICROCOMPUTER PROGRAMMING™: THE INTEL 8080. The editor/assembler is resident in less than 8K RAM and will run on any 8080, 8085 or 280 based computer with peripherals which transfer on a character by character basis or can be made to do so by buffering. The user supplies his own I/O drivers. The text editor is extremely simple to use and does not require irrelevant line numbers. Also included is a program to convert Processor Technology™ format tapes to a format usable by the editor/assembler.

This system is not the usual “quickie” software, riddled with errors and limitations, but a professionally created, thoroughly tested and debugged system. At $14.95 it is the best software bargain you are ever likely to see. AND BY THE WAY... paper tape object copies of all of this software are sent FREE to book purchasers when the coupon at the back of the book is returned to Northern Technology Books. 8½ x 11 format. $14.95.

STANDARD DICTIONARY OF COMPUTERS AND INFORMATION PROCESSING 2nd Edition by Martin H Weik.
This is a very complete, fully cross-referenced dictionary. It goes a step farther in that it includes full explanations, practical examples, many pertinent illustrations, and supplementary information for over 12,500 hardware and software terms. It cross-references the terms to other closely related concepts, and appended to each definition, as the need arises, are explanations, tutorial information, examples, usage areas, and cross-references for further clarification of concepts and meanings. 390 pp. $16.95 hardcover. (No photo)
BEGIN
(• YR MOVE •I
INTB 1::1 FALSE;
MHllE NOT INT B 00
BEGIN
READER I
lSTNOVI
trCA I • F Al SE I
If PR 1 • F Al SE I
IFOO u FIL SE;
IFQS
FALSE;
If LO Is F Al SE:
lflf I• FALSCI
1r•o •• FALSE I
1r11r • • FAlSEI
lNTP I• NTI
INCP I• NTI
IHLr I• IFl •• Fll I
tfrdtr I • [Fl • • Flll
INLR I • IRl •• Rlll
IHRR I• l Rl •• Alli

Listing l , continued:

......
.,.,
....
......
-z-.
.,.,
......
.,.,
.,.,
.,.,
.... ..

CASE

-2-.

!HTC OF

-1-1 lHlR

......
•J•1
.,
.,.,

lRl ll
!RZJ:
IUJI
IR .. 11
IR,11
[R611
IR711
IRlll

I•

lHlR
IHLR
IMLR
INLR
lllLR
IHLR
INLR

ENO
ELSE
CASE INTC OF
·1·1 INLR
INLR
"J"I INLR
INLR
lNLR
lNLR
lNlR I a
lNlR
[NOi
C• YA:MUtK •
ENDI

!Riii
(R111
IR611
IR' 11
IR"ll
IRJll
IRZll
IRlll

INTC

••

YR"NUL

·p-,

·A:·•
......
.,..
·a·,

••

ILINEIJHT.Jl1

NCHINf(-P·,-A:·,-H·,-a-.-a-.-w:-1,YltMPC"I
NCHINl(•1•1
,YltMMULt
NCHIH((•IC•,•a-1
,YR"LICQI
HCHU11u-R·.-N-,-a-1
,YRMLRll
NCHIN((•1• , ,•1•1
,YRMLRICJ
111
c• LEFT SIDE DONE •t
IF NOT NCHINl["·"I
, YRMMUl t
IF
NCH INC 1•••,•x•1
,YRMCAltl
Jr
NCHINC(•p•,•11t·.·N·,·B·.·Q·1
, YRMCPC I
, 'fRMNUll
IF
NCHINll "/"I
121
c• RI,HT SIDE SQUARE •1
, Yl:MRCQI
tr
NCHINl
1r
NCHIN((·A:·,-N-.-a-1
, 'fRM•R:ll
IF
NCHINll•1• •• •a-1
, YRMRRCI
lll
c• PROMOflON •t
If
NCHIN((•a• 1
, YRMNULI
Jr
NCHIN((-~-.-..-.-.-.-Q-1
,YRMPl:OJ
GOTO 1S I

t

C• SE"ANTICS •

MULL •J

.,

I·•·· -a·•

PROCEDURE YANPCNI

I• SEMANTICS •

......
.... .,

BEGIN
CASE !HTC OF
INTP
INTP
INTP
INTP I •
INTP
•1(•1 lNTP
[NOi
ENOI
YR:MPCN

XTUMPfEP • .INT"J1
ITUMP([R:,JNTMJ;

XTUMPIEN,JNTMJ;

ITU"PI El!lt JNTM It

XTU"PlEQ,JNTNJ;
ITU"P([l(,JNTNJ;

PIECE MOVED • 1

....•••• .,
,••.

PAWN •1
ROOK
l(HICNT •J
BISHOP •J
QUEEN • 1
KING • J

l~I

trrfCHIN((.. 0•,•0•1
NCHINfl•-•1
HCHINIC•o•,•0•1
NCHIN((· - · 1
NCHINC(·o·.-a-1
SYHTAX CORRECT •J

c•

,YRMNULI
,Yf(MNULl
, YftMCASI
,YRHCQSl
, Y'RMNULJ

IF

00

00

PROCEDURE

IFRF ANO HOT IFRO THEN
lNA:F I • IHRF • (F ... F"SJ;
IFLF ANO HOT IFLO THEN
lNLF I • INLF • (Flt,F51;
IF"V I • FALSE:
INTll 11• IN ;
NHilE INTN c JNTN 00
MITH "OVESl IHTMJ 00
BEGIN
IF lt"PA: • IFPR fHEN
If R"PR THEN
IF R"PP a INTG THEN
YRl'ICO"
El SE
El SE
IF A:"OO s IFOO THEN
tr RMOO THEN
IF li.MQS a IFQS THEN
YA:MHIT
ElSE
El SE
YRNCON:
INTll I • INTIHl;
[MO;
IF IFNV THEM
BEt;IN
NINENGCINIUl,"YOUlt MOVE "IJ
MRITElNCNOVNSI I
TH[NOV 1 INRNl I
INT8 I• TA:U£1
ENO
ELSE
•RITElNI" lllEGAl HOVE,"11
GOTO 11:
IF

PRO"OflON •J

t• R001(•J
(• l(HICHT •1
(• BISHOP •J
t• QUEEN •J

P5l&
PN;

PBS
PQ;
.,

c•

YRNRICQ;

SE"IHTICS •

I(OR Q OH IUCHT •1

BEGIN
CASE lNTC OF

•1(•1 INltF I• lf5 •• fl1 • 1Nttf1
•a•• JNltf •• 1 r1 •• ,,, • uutr1
ENOJ
IFRF
ENO;

I•

r•

1 • QU[[M SIO[•I

TA:UU
YlltNLICQ •J

I• SE"ANT ICS •
ltJGHT •J

PROCEDURE YRNRllB J

BEGIN
CASE

1• KING SIDE •1

R, H, OR I ON

lNTC OF

•1t•1
•..-1
•9•1

Ullt:F I• (Fl,F'll •

INA.F'S

lNlltf I• (f2,F7J •
INA:f I• 1Fl,f61 •

INA:f1
INA.F:

I• ROOI(rtLE •1
1• KNIGHT rILE •1

c•

161

BISHOP rtLE . ,

ENO;

tFRO I• TRUE;
ENO;

c•

TM[N GOTO 1a.1
TH[M COTO 11;
TM[N'
TM[Nt
THEM•
TH[M
THEM
THEN
THEN

lZl
1'1

GOTO
GOTO
GOTO
GOTO

161
131

THEMI
TH[MJ
TH[NI
THEM GOTO 151
THEN t;OTO 161

t• CASTLING •t
If
IF
If
IF
If

lSI

1• SE"ANTICS BEGIN
CASE lNTC OF
A:""1 INTG
00
H 00 1 INTG I •
1•1 HUG t•
•g•1 INTC. I •
ENOJ
If PR I• TRUE;
END:
(• YA.MPR:O

LEGAL MOVES • 1

If
IF
tr
IF
tr

PROCEDURE YA:"NUL;
BEGIN
[NO:

l a

1• READ NEXT MOVE •1
1• LIST

(• SYNTAX ERROR. •1
111111.ITELN(• SYNTAX ERROR.•t 1
GOTO 111

THEN
THEN
THEN
THEN
THEN

GOTO
GOTO
GOTO
GOTO
GOTO

161
16 .:

16;

is;

16;

....
..

SELECT K OR Q FILE • l

••••

CORRECT PROMOTION TYPE •1
COMPARE SOUA•ES ANO PIECES •1

SELECT K OR Q r ILE •I
NO HOV[FOUND Y'Ef •J
1 • lNITUllZE !HOE<

.,

c•

NOT PROMOTION •1

••••

CASTLING ·~
CASTl ING SANE MAY

c.

.,

••••

NOT CASTLING •I
COMPARE SOUARES ANO PIECES • 1
ADVANCE NOV[S INO[X • 1

c•
c•
c•
c•

OM[NOYI FOUND •1

••

..••

COMV[RT TO OUR STYL[
PRINT llOV(•I
NU[TH[llOVE •1
UIT YRNOVf • 1

•1

NO MOVES fOUlllO •t

EXIT •1

t• Ertf •t

YA:NLRB . ,
171
111
1• SE"AHTICS •

PROCEDURE YRNRIU I

lt&NK ON ltICMT

•1

(• AMBIGUOUS MOYE •)
MIUTELN(• AMBIGUOUS MOVE.•J l
f• EXIT •1

ENO I
ENO :

c•

Y'RMOVE •1

BEGIN

If JNTN a LITE THEN
CASE !HTC OF
•1•1 INRA. I•
•z•1 INIUt r •
•3•1 IHIUt I•
.. ,,. ... IHRA: I,.
•5•1 INRR I•
•&•1 IHRR 1 :
-1-1 INRR 1 •
•a-1 INRR I :
ENO
El SE
CASE INTC OF
•1 ""1 INRR I•
1 INRR 1z
•1•1 INRR
.. ,,. .. , INRR I a
•5•1 INRR I•
•&•1 INRR I a
•7•1 IHRR
•1•1 IHRR 1 a
ENO:
c• Y'R"LRK •1
ENO;

·z ..

156

lRl II
I RZ 11
!Al J:

IR• I I

l Q5"
I 06 J:

BEGIN
C• THE PROGRAM •I
WA:lf[LN(• HI,
THIS IS CHESS
lNICOH:
1 1

l R7 J:
I RI 1;

IR8ll

(R7J:
l Rf> J;
(R5 J;
CR .. I;
(Rl 1:
I RZ It
I Rl I;

December 1978 © BYTE Publicuions Inc

21

c•

.s•q

INITIALIZE FOA A NEiii GAME •J
INITIL CBOAA:OI:
REPEAT
REPEAT
'fRMOVE:
UNTIL SMR[I

(• EXECUTE "ACHilrillES MOVE •t
REPEAT
NY HOVE I
IF GOING > 0 THEN
GOING 1• GOING•ll
UNTIL GOING a 0;
UNTIL FALSE:

9 I
C•
ENO.

ENO Of PROCtU M •I

t• INITIALIZE COtillSTINTS •t

c•

INitlALlZC 'OR A NEiii GAME

c•

EXECUTE PLIYEl:S MOVE

•J

•t


A second and somewhat more challenging project would be to develop a transposition table for the program. This requires the availability of unused memory (at least 8 K bytes and preferably 16 K or 32 K bytes), an efficient hashing scheme, and a set of decision rules to select among positions when a collision occurs (i.e., two positions hash to the same address in the table). Another problem is that the use of a staged evaluation process and the α-β algorithm often provides an imprecise evaluation score (i.e., the machine has determined that a position was not optimal but has not invested the time to find out exactly how bad it was). If the programmer succeeds with the transposition table, however, move calculation will take 30 to 50 per cent less time in most middle game positions and 60 to 90 per cent less time in many end game positions.

A third area for improvement is the evaluation function. Our program presently has only a rudimentary function. The reader should compare it with the one used by Chess 4.5 which is described in detail by Slate and Atkin. Their evaluation function provides an excellent starting point for revising our present function. In part 4 we will discuss the advantages of using a conditional evaluation function, i.e., one that changes depending on the stage of the game and on the presence of special features. One implementation of this strategy is the special end game program described by Monroe Newborn in Chess Skill in Man and Machine.

It is appropriate for us to add two important disclaimers at this juncture. Although we have carefully tested each of the routines in the program and played several chess games, it is still possible that there are a few minor bugs in the program. If you find one, a letter to one of us or to BYTE would be appreciated. Secondly, our chess program was written primarily for pedagogical purposes. For this reason it is not a production program and does not run very efficiently. If you are the competitive type, our program should provide many useful ideas, but you should not expect it to compete successfully in tournament play unless you make extensive modifications and additions.

A chess program has a tendency to grow and change its personality as the programmer becomes more familiar with each of its many limitations. It provides a constant challenge for those of us who are too compulsive to tolerate obvious weaknesses. In fact one must be careful not to become totally obsessed with this project. We do not wish any of you to lose your job or your spouse because of a chess program.
recovery from transmission errors. Add to this the fact that the protocol has been in service a number of years, and I am sure readers will find the literature worth reviewing.

Carroll Perkins
POB 333
Pilot Mountain NC 27041

SIZING UP MODULAR PROGRAMMING

I enjoyed the “Top-Down Modular Programming” by Albert D Hearn in the July 1978 BYTE, page 32. I thought he did a good job of explaining the subject. While I realize that he was purposely trying to simplify matters, I do take exception to his comment that a module should be no more than 50 lines long.

The concepts of structured programming are intended as guidelines, not as dogma for a programmer’s religion. All of the better known proponents of the methodology stress this point, along with the idea that you must approach the study of structured programming with your eyes open, making your own evaluation. In this light let us explore the 50 line limit.

One of the bases for breaking a program up into modules is so that a complex problem can be handled with small, easy to understand pieces of code. One of the thoughts about module size is, therefore, that a module ought to be able to fit on one printed page. This is so that all the information about the module is in one place and the programmer won’t have to thumb through several pages to read the code for a single module. Having experienced “modules” running as long as 10 to 15 pages, I heartily agree with this philosophy.

In professional programming installations, this idea has frequently been translated into a local standard of about 50 lines of code, since this is the number of lines which are printed on an 8.5 by 11 inch (21.59 by 27.94 cm) page coming out of a line printer (allowing for headers, footers, etc). For the personal computer enthusiast, however, this limit might be more conveniently set at 24, 32 or 40 lines—the size of the video display.

For many more complex problems, it is possible that a significant module cannot be constructed in 24 lines. This is no problem—just make the modules longer. The point is to try to restrict the module size to a length which enhances the programmer’s ability to understand the code.

James Fleming
2220 Sims Dr
Columbus IN 47201

Announcing . . .

SMALL BUSINESS COMPUTERS Magazine

The magazine for users and potential users of small business computer products and services

- The monthly magazine for businessmen in the process of purchasing or installing their first computers.
- The practical how-to publication written in non-technical language and stressing business applications for small computer systems. Each monthly issue includes:

APPLICATION STORIES: Real-life examples of computer applications in the small business environment — capabilities, benefits, what to watch for, and much more of direct interest to the small businessman.

COMPUTER PROFILES • IDEAS AND INNOVATIONS • INFORMATIVE ADS

SPECIAL CHARTER SUBSCRIPTION

12 issues @ 50% off

Receive the next 12 issues of Small Business Computer Magazine for just $9 . . . 50% off the cover price

Mail the coupon today to: SMALL BUSINESS COMPUTERS Magazine

33 Watchung Plaza • Montclair, NJ 07042

YES. Enter my charter subscription at the 1: price cost of $9 for 12 monthly issues.

Check enclosed. □ Bill me

Name ____________________________

Organization ____________________________

Address _______________________________________

City/State __________________ Zip ______

CIRCLE 328 ON INQUIRY CARD
ing terms and conditions to interested
commercial entities.

Thank you for your consideration.

A Sidney Alpert
University Patents Inc
2777 Summer St
Stamford CT 06905

Steve Ciarcia replies:

While I am personally aware of
journalistic freedoms with regard to
patents, many readers may not be. Your
statement is well taken. It should be
further noted that the University of
Illinois patents appear to cover the
scanning principle and not the design
circuitry.

PLATO AND THE TOUCH PANEL

I lead a double life: during the night
I make up little things for my own
Apple, but during the day I become a
rising young training executive of the
CDC Plato terminal.

And that’s why Steve Ciarcia’s article
on touch input units brought me up with
a start — because his touch panel is
nearly identical to the touch panels
put on the first Plato terminals! I’m
taking about the original Magnavox
terminals that brought Plato out of the
lab in Illinois and into the world. Those
terminals, just like Steve’s monitor,
had a picture frame around them with
32 LEDs and 32 phototransistors. In
fact, there are only minor differences
between them and Steve’s design except
for the aspect ratio — Plato terminals
have square screens. The Plato panels
even had a built-in circuit that triggered
the 0.1 second beep Steve mentioned
in his article.

One minor difference was that Plato
panels had the LEDs on the top and
the phototransistors on the bottom.
Steve’s method is better — the old touch
panels would fall regularly whenever the
sun shone on them at the wrong angle.

Those old panels are obsolete now.
Both CDC and the other Plato terminal
maker are using different designs, under
direct control from an internal micro-
processor. But there are still plenty of
the old Magnavox boxes out there, in
schools and colleges across the country.
In fact, three microprocessor systems
that I know of display output through
a gat ed and rewired Magnavox box,
bo unched on the “orange and black
market.” (named for the color of the
old plasma screens, you know.)

Silas S Warner
8 Charles Plaza
Baltimore MD 21201

Steve Ciarcia replies:

Thank you for the vote of confi-
dence. It may interest you to know that
I worked for Control Data Corporation
for three years as a process control
engineering consultant. During that time
I became familiar with Plato, but never
have, to this day, used the touch input
feature. I just liked to go in after work
and play Star Trek or Empire against
other people on the system throughout
the country.

The design illustrated in BYTE was
done from scratch and any resemblance
to Plato is purely coincidental. I just
got an idea for it one Friday afternoon
and brought the completed unit into
the office Monday morning.

VOICING AN OPINION

Congratulations to Bill Georgiou for
his excellent primer on speech recog-
nition in June 1978 BYTE (“Give an Ear
to Your Computer,” page 56). This
wide-ranging and complex topic was
presented in a most understandable
form, yet did not sacrifice excessive
detail.

As Mr Georgiou stated, voice recogni-
tion has a rather long history, and has
intrigued avid experimenters such as
myself for some time. Back in 1965, I
designed and built a demonstration unit
capable of differentiating ten different
words or short phrases, and activating
one of ten relays upon completion of
analysis. The project was awarded a first
prize at the Canada-Wide Science Fair
that year.

The implementation was not unlike
figure 12 in the article, an automatic
gain control stage followed by multiple
bandpass filters, except that all pro-
cessing was done in analog. A degree of
differential comparison was incor-
porated, to provide for the variableness
of fundamental pitch in each speaker.
Template matching was used, with a
great deal of “cut-and-try” programming
effort. And if Mr Georgiou thinks the
Bell Labs version of 1952 was “gro-
tesque,” he should have seen this one,
built from old television sets and record
players.

Although the machine displayed
about a 90 percent recognition rate for
my voice (it had obviously been pro-
grammed that way), I was constantly
surprised during public demonstrations
how often it would react correctly to a
“stranger’s” voice. With a little practice,
even a feminine voice could speak the
word “open” and see my little solenoid
lock snap back.

The article has rekindled my interest
in the field, and I shall be looking for-
ward to implementation with my micro-
processor now.

F Wallace
Burroughs Business Machines Ltd
POB 861
Winnipeg, Manitoba
CANADA R3C 2P7

CALLING ALL COMPUTERS

I got quite a zing out of Donald
Newcomb’s letter on the evils of radio
Get a head start with computers the easy, inexpensive way with Rockwell’s AIM 65.

For learning, designing, work or just fun, the R6500 Advanced Interactive Microcomputer (AIM 65) offers features you won’t find on other comparably priced systems.

- Alphanumeric 20-Column Thermal Printer for Hard Copy Listing
- Alphanumeric 20-Character Display
- Dual Cassette, TTY and General-Purpose I/Os
- R6502 NMOS Microprocessor
- Read/Write 1K Byte RAM Memory
- System Expansion Bus Connector
- PROM/ROM and RAM Expansion Sockets
- Advanced Interactive Monitor Firmware
- Big, Terminal-Style Keyboard
- Optional Two-Pass, Symbolic Assembler and BASIC Interpreter

AIM 65 is available from your local Hamilton/Avnet distributor or send the coupon below to:
Microelectronic Devices, Rockwell International, P.O. Box 3669, Anaheim, CA 92803 or phone (714) 632-3729.

GET ME STARTED!

☐ Send me more information on AIM 65.
☐ Have someone phone me at ____________________________

Name__________________________ Address__________________________

__________________________ ____________________________

Rockwell International

...where science gets down to business

communications between computers, having just read the DOC’s (the Canadian FCC) proposals on the “Packet Radio Service.” Welcome to the 19th century, Mr. Newcomb!

The DOC is proposing not 1 MHz, but the entire amateur radio 220 MHz band and very likely will finalize at 220-221 MHz, leaving room for a communicator class or GRS (CB) service in the remaining 4 MHz. Our FCC, which works very closely with the DOC, is thinking along the same lines.

Unquestionably, we’ll have radio communications between computers within the next year or two. I, for one, am extremely excited by the fantastic possibilities, and am already working on suitable equipment. I’d appreciate hearing from others working along the same lines.

Donad L Stoner W6TNS/7
John Hancock Blvd
Mercer Island WA 98040

IDEAS NEEDED FOR PROJECT TO AID DISABLED

The Spain Rehabilitation Center at the University of Alabama Medical Center has a project underway to demonstrate both the utility and economic feasibility of the new generation of personal computers for use by the severely disabled. The programmability of the computer will allow it to serve as a general purpose appliance to be used as an aid to communication and education as well as for environmental control and entertainment.

This system, as currently envisioned, will consist of a microcomputer; an on line storage device for programs and data; two television monitors for user feedback and information display; a printing device for typed output; a speech recognition device for vocal input of commands, data, and text; a power line controller for environmental control; and a telephone dialing and answering device. We are attempting to select components which are widely distributed and serviced as well as being plug compatible and economically priced.

Programs will be written or purchased to perform specific functions in each of the four general areas mentioned above. However, we would be very interested in receiving ideas from your readers, particularly those who are disabled, those who have disabled friends or relatives, and those who have personal computers and would like to develop hardware or software for the system on their own, regarding specific functions which they would like to see developed and which could be accommodated by the proposed microcomputer system.

We are looking forward to receiving input from anyone who may be interested in this project.

Charles Healey
Spain Rehabilitation Center
UAB University Sta
Birmingham AL 35294

Circle 313 on inquiry card.
Pascal for Computer Club Members

The UCSD Pascal Project has announced a special offer for bona fide computer clubs. The UCSD Pascal software, which normally sells for $200, will be made available to club members at a substantial discount if the club assists in the copying and production costs for disseminating the software. For more information, computer clubs should contact Tracy Barrett, CO 21, UCSD, La Jolla CA 92039.

Some BOMB Reflections

Occasionally we like to share some of the unfettered comments, pro and con, that arrive monthly on the BOMB cards, our system for reader response through a postcard at the back of the magazine.

The following BOMB card came from an anonymous Pascal enthusiast:

```
We have been suitably chastened. This is the first time we have been accused of not being subjective enough, and we will attempt to examine the problem as subjectively as possible...CM
```

Other BOMB comments about the August issue include:

Best BYTE I have read in a long time. Please devote more discussion to Pascal. The language in its beauty, compactness and readability is worth talking about. Would like to know more about the extensions being discussed for the language.

The article by Weems ("Designing Structured Programs") was easy to comprehend and delivered a valuable message.

This was one of your best issues, I like having related articles in one issue.

To be fair, not all the comments were as positive as the last three. The following BOMB card was also received for the month of August:

```
BOMB: BYTE's Ongoing Monitor Box 418

Some BOMB Reflections

Attention: HAL 9000 Owners

We have just received word of an important new book: Programming Instructions for the HAL 9000 Computer, revised edition. The new edition of the HAL 9000 handbook has been updated to incorporate improvements suggested by this versatile machine's surviving users. In particular, the manufacturers suggest that priority be given to the retrofitting of small explosive charges at strategic points in the central memory unit.

Authorized by Arthur C Clarke
Chief Semantic Controls Engineer
Colombo SRI LANKA

Best BYTE I have read in a long time. Please devote more discussion to Pascal. The language in its beauty, compactness and readability is worth talking about. Would like to know more about the extensions being discussed for the language.

The article by Weems ("Designing Structured Programs") was easy to comprehend and delivered a valuable message.

This was one of your best issues, I like having related articles in one issue.

To be fair, not all the comments were as positive as the last three. The following BOMB card was also received for the month of August:

```
BOMB: BYTE's Ongoing Monitor Box 418

Incremental Motion Control Symposium
Issues a Call for Papers

The Eighth Annual Symposium on Incremental Motion Control Systems and Devices will be held at the Ramada Inn, Urbana IL, May 21 thru 24 1979. A call for papers has been issued by Prof B C Kuo, director of the symposium, which is sponsored by the Incremental Motion Control Systems Society, in cooperation with the University of Illinois, Dept of Mechanical Engineering, and Warner Electric Brake and Clutch Company of Beloit WI.

The symposium will encompass a broad area with sessions devoted to tutorial papers as well as original contributions, covering step motors,
Circle 33 on inquiry card.

Your opportunity to take a Byte

We've got an exciting ground floor opportunity for you to participate in the incredibly fast-growing retail personal computer business. We're Byte Industries, Incorporated™ and we're offering individual Byte Shop™ franchises, nationwide. Here's your chance to share in the expanding retail personal computer business!

As a Byte Shop, you get:
- The nationally recognized Byte Shop trademark.
- A broad, full-line inventory of small-business and personal computer products.
- National and regional advertising support.
- Comprehensive technical and business management training, and on-going advisory services.
- Aid in local site selection, and professionally designed store interiors.
- Exclusive, protected territories.

To qualify, you should have an interest in computers, and a desire and ability to operate your own business. Retail experience and a sales background at the management level is a plus. A theoretical or working knowledge of computer technology is helpful. Investment is roughly $100,000 with an initial equity contribution of at least $40,000.

If you've got what it takes, then you're ready for your own Byte Shop™. Write or call Dave Pava, our franchise development manager now.

408-739-8000

You Are What You Eat

Machine tool control systems, computer controls, linear and AC/DC motors, clutch-brake devices and systems, and related incremental motion control applications. Exhibit space will be available.

The call for papers, both theoretical and practical, related to incremental motion control systems and devices, requests authors to submit a summary of about 500 words by January 1. Final manuscripts will be due around mid March. Send all summaries and inquiries to Dr B C Kuo, POB 2772, Station A, Champaign IL 61820, phone (217) 333-4341.

A Call for Papers

The Instrument Society of America has issued a call for papers for its 1979 conference and exhibit, ISA/79. The conference will take place at the O'Hare Exposition Center in Chicago IL, from October 22 through 25 1979. The conference theme, Instrumentation for Energy Alternatives, will emphasize current practices in instrumentation design and implementation. Papers are being sought in the following areas: analysis, automatic control, chemicals and petroleum, cryogenics, data handling and computation, education and training, food, glass and ceramics, maintenance, management, marine sciences, metals, mining and metallurgy, power, process measurement and control, standards and practices, telemetry, test measurement, water and wastewater, pulp and paper, and biomedical instrumentation. Paper topics should introduce or explain techniques or innovations in instrumentation and control system design, testing, operation and maintenance. The papers may be either theoretical in nature or application oriented. The deadline for unsolicited abstracts is February 5 1979. The appropriate forms should be requested from: ISA/79, Instrument Society of America, 400 Stanwix St, Pittsburgh PA 15222.

American Management Association Offers Courses for EDP and NonEDP Professionals

The American Management Association's Information Systems and Technology Division is offering courses for both the electronic data processing (EDP) and nonEDP professional managers. A sampling of the courses offered include: systems analysis and design computer security, minicomputers, distributed data processing, fundamentals of EDP, office automation, EDP applications to human resources and much more. The courses run through March 1979. A brochure...
Chess Bug

Due to an oversight on our part, a number of errors appeared in the October 1978 "In This BYTE" entry (page 4) for "Creating a Chessplayer" by Peter W Frey and Larry Atkin. The introduction implies that Peter Frey is one of the creators of Chess 4.6. This is not true. The program was written by Larry Atkin and David Slate. Peter Frey was also erroneously referred to as "David" Frey, and Larry Atkin as Larry "Atkins." We sincerely apologize to all concerned for these errors.

Address Change

In the "What's New?" section of November 1978 BYTE we reported on a new product from TSA Software (page 216). This company has notified us of a change of address. Their new address is: 39 Williams Dr, Monroe CT 06468.

Tilt!

Some errors crept into the Pinball Wizard program that appeared in my article "The HP-67 and HP-97: Hewlett-Packard's Personal Computers" (June 1978 BYTE, page 112). The code in step 69 of listing 1 (page 114) should read "35 00", not "36 00"; the key entry is correct, however. Also, step 189 (page 115) should read "RCL B 36 12", not "RCL B 36 06," and step 139 should read LBL 0 21 00 instead of LBL 0 21 16. My apologies to any readers who might have experienced difficulties in using the program.

Craig A Pierce
2529 S Home Av
Brewyn IL 60402

Circle 280 on inquiry card.

Dec 1978 © BYTE Publications Inc
In order to gain optimum coverage of your organization's computer conferences, seminars, workshops, courses, etc, notice should reach our office at least three months in advance of the date of the event. Entries should be sent to: Event Queue, BYTE Publications, 70 Main St, Peterborough NH 03458.

December 3-5, Ninth North American Computer Chess Championship, Sheraton Park Hotel, Washington DC. The 1978 annual meeting of the Association for Computing Machinery will be the site of this chess championship. This will be a 4 round Swiss style tournament with participants restricted to computers. Two rounds will be played on December 3 (1 PM and 7:30 PM), one on Monday (7:30 PM) and the last round on Tuesday (7:30 PM). Deadline for entries is October 20. Contact Prof M M Newborn, School of Computer Science, McGill University, Montreal Quebec H3A 2K6, CANADA.

December 4-6, 1978 Annual Conference of the Association for Computing Machinery, Sheraton Park Hotel, Washington DC. Contact Dr Richard Austing, Dept of Computer Science, University of Maryland, College Park MD 20742, (301) 454-2004.

December 4-6, Minicomputers and Distributed Processing, Atlanta GA. This 3 day seminar will examine the uses, economics, programming and implementation of minicomputers. Contact Phillip M Kowlen, director, Center for Continuing Education, The University of Chicago, 1307 E 60th St, Chicago IL 60637.

December 4-8, Microcomputer Software Design, Virginia Polytechnic Institute and State University, Blacksburg VA. This workshop will develop assembly language programming skill for 8080 and 8085 based microcomputers. Topics to be discussed include floating point mathematics, lookup tables, number base conversion, interrupt programming, searching and sorting. Contact Dr Linda Leffel, Donaldson Brown Center for Continuing Education, Virginia Polytechnic Institute and State University, Blacksburg VA 24061, (703) 951-5421.

December 6-8, Data Processing Operations Management, Washington DC. This 3 day seminar will emphasize the management skill and techniques applicable to the data processing operations function. Contact Dr Linda Leffel, Donaldson Brown Center for Continuing Education, The University of Chicago, 1307 E 60th St, Chicago IL 60637.

December 12-14, Midcon/78, Dallas Convention Center, High Technology electronics show and convention. Contact Electronic Conventions Inc, El Segundo CA, (800) 421-6816 (toll free).

December 13, Computer Networking Symposium. Sponsored by the IEEE Computer Society's Technical Committee on Computer Communications and the Institute for Computer Sciences and Technology of the National Bureau of Standards. This symposium will highlight papers of practical and research experiences concerning both computer and communication networks. Contact Dr George Cowan, Computer Sciences Corp, 6565 Arlington Blvd, Falls Church VA 22046.

December 13-15, Distributed Mini-computer Networks, Executive Tower Inn, Denver CO. This seminar will address the minicomputer from the viewpoint of the distributed network user. The structure and management of a large data base and software problems with the trade-offs of languages utilized, hardware types, input and output options, device controllers, system failure and recovery, sample application case studies and the economics of minicomputer applications will be covered in depth. Contact The Institute for Professional Education, Suite 601, 1901 N Fort Myer Dr, Arlington VA 22209, (703) 527-8700.

December 18-21, Microcomputer Data Acquisition, Instrumentation and Measurement Systems, Virginia Polytechnic Institute and State University. Course to be given by the authors of the Bugbooks. Contact Dr Linda Leffel, Donaldson Brown Center for Continuing Education, Virginia Polytechnic Institute and State University, Blacksburg VA 24061, (703) 951-5421.

January 8-12, Structured Programming and Software Engineering, George Washington University, Washington DC. This course is designed for experienced program architects, designers and managers. It will provide up to date technical knowledge of logical expressions, analysis and invention for performing and managing software archi-
tecture, design and production. Presentations will cover principles and applications in structured programming and software engineering. Design workshops with analysis and review sessions will provide actual practice in problem solving. Contact George Washington University, Continuing Engineering Education, Washington DC 20052.

January 15-17, Minicomputers and Distributed Processing, San Francisco. For details, see December 4-6, Atlanta.

January 17-19, Distributed Minicomputer Networks, Ramada Inn, Arlington VA. For details, see December 13-15, Denver.

January 24-27, International Microcomputers/Microprocessors 79/Japan, Harumi Exhibition Center, Tokyo. Contact ISCM, 222 W Adams St, Chicago IL 60606, (312) 263-4866.

January 30-February 1, Communication Networks and Exposition, Sheraton Park Hotel, Washington DC. Designed to bring together communication network users, consultants, vendors and regulatory officials so that issues can be discussed and analyzed. It is particularly aimed at executives and managers who purchase communication products and services. Contact The Conference Company, 60 Austin St, Newton MA 02160.

February 1-3, Microprocessor Programming Workshop with a Take-Home Microprocessor, Jefferson Plaza Building, Arlington VA. Sponsored by the IEEE, this 3 day workshop is intended for the practicing engineer, engineering manager and programmer. The course objective is to provide state of the art information in order to acquire an understanding of the place of microprocessors as replacements for wired logic and as controllers; to provide the capability of understanding the design of systems involving microprocessors; and the ability to program the Motorola M6800 microprocessor in machine language. All students will have their own microprocessor and laboratory equipment. Contact IEEE Service Center, 2145 Hoes Ln, Piscataway NJ 08854.

February 13-15, The National Office Exhibition and Conference, Harbour Castle Hilton Convention Center, Toronto Ontario. This 3 day exhibition will provide a showplace for approximately 100 exhibitors in the areas of word processing, office computers, office equipment and furniture. Contact Canadian Office magazine, 2 Bloor St W, Suite 2504, Toronto Ontario, CANADA M4W 3E2, (416) 967-6200.

SELECTOR II

- A QUERY LANGUAGE
- A REPORT WRITER
- AN ISAM FILE SYSTEM

What does SELECTOR II do? Well just about everything . . . Simply define a file record with item names and types (money fields or dates, etc.). Pick key fields. Enter data.

At any time you can select records by key for updating or deletion. Or you can select collections of records by the data they contain (like all blue-eyed ladies speaking French who purchased Gizmo 500's in March). You can have that information displayed or summarized on your screen or listed on your printer properly titled, paginated, formatted, totaled, averaged, max-ed or min-ed . . . as you desire.

SELECTOR II does all of your fielding, finding, formatting and fuming for you. All you need do is issue orders.

SELECTOR II is available for Microsoft Extended Disk BASIC and CBASIC, on diskette, with user's manual for $255 including 1 year maintenance. Dealer inquiries gladly accepted.

Micro-Ap
8939 San Ramon Road
Dublin, CA 94566

Circle 218 on inquiry card.
Attention: Robot Enthusiasts

The Robotics Newsletter is a monthly periodical for robot enthusiasts on both the hobby and professional level. It presents timely articles on micro-computers, batteries, motors, automata theory, sensory devices, manipulators, biophysical analogs, robot history, etc. Yearly subscriptions are $8. Contact the International Institute for Robotics, POB 615, Pelahatchie MS 39145.

Northern New England Computer Society

Albert Brunelli has written us that a new computer club has been formed "up here in the north woods." It is located in Berlin NH and is called the Northern New England Computer Society. They meet the second Thursday of each month at 7 PM at the New Hampshire Vocational Technical College, Milan Rd, Berlin. Their aim is to set up an area that is accessible to local people where they can learn about and use small computers. The membership fee is $10 per year. For more information, write to Albert Brunelli at POB 69, Berlin NH 03570.

Denver Amateur Computer Society

The Denver Amateur Computer Society now has permanent club quarters and office at 1380 S Santa Fe Dr, Denver CO 80223. The club meets the third Wednesday of every month at 7:30 PM. For further information, write to the society's president, Mike Dymtrasz, at the above address or call (303) 979-6441.

The Okaloosa Computer Hobbyist Club

We have been notified that the Okaloosa Computer Hobbyist Club has been formed in Ft Walton Beach FL. The meetings are held on the second and fourth Tuesday of each month and all interested persons and newcomers are welcome. For more details, write to Loretta R Gubko, P.O. Box 72, 32 Denton Blvd NW, Fort Walton Beach FL, (904) 242-5938.

Computers in Mental Health Newsletter

Micro-Psych is a newsletter for professionals interested in the use of computers in mental health. Each bimonthly edition contains reviews of current work in the field, a forum for the exchange of information, an ongoing bibliography, and news about pertinent hardware and software. Membership and a subscription to Micro-Psych costs $10 per year. For more information about this newsletter, contact Marc D Schwartz, MD, 26 Trumbull St, New Haven CT 06511.

Connecticut Computer Club Welcomes All Level Hobbyists

The Connecticut Computer Club, which is a few years old, consists of an informal group of software and hardware people who meet on a monthly basis to exchange ideas. Speakers and demonstrations are of general group interest. The club meets the first Thursday of each month at either the Suffield Library or The Computer Store of Windsor Locks. A newsletter is available to members at a yearly cost of $5. Contact Leo Taylor, 18 Ridge Ct W, W Haven CT 06516, (203) 933-3518.

Quad City Computer Club

We have heard from John E Greve, president of the Quad City Computer Club (QC3). The club, devoted to all phases of hobbyist computing, meets on the first Sunday of each month at 7 PM at the Rock Island Arsenal classroom #5, Rock Island IL. The dues are $6 per year, which includes a newsletter. For more information concerning this club, contact John E Greve, 4211 7th Av, Rock Island IL 61201.

Apple II Users Group in Portland OR

The Apple Portland Program Library Exchange, or APPLE for short, has been formed as a users group for owners of the Apple II. They are interested in exchanging programs and ideas with other clubs. Send a self-addressed stamped envelope for an application form to Ken Hoggatt, 9195 SW Elrose Ct, Tigard OR 97223.

Canadian PET Owners Start Users Group

The Vancouver PET Users Group recently held their second meeting. Attendees included 40 owners and 15 PETs. The club format includes a short presentation by a PET owner on programming, or PET hardware news from Commodore and other sources. This is followed by PET patter and program swapping. For more information about this club, write to Richard Leon, Vancouver PET Users Group, POB 35353, Station E, Vancouver British Columbia, CANADA.

TRS-80 Computing

A complimentary copy of TRS-80 Computing has been sent our way. This 32 page first edition is packed with TRS-80 news including articles by a TRS-80 designer, a Radio Shack repairman, and a couple of programmers; an article on how to install your own 16 K
Put this SOROC IQ 120 at the end of your system for fast and silent input/output.

$795.00*

Put this T.I. 810 printer at the end of your system for fast and reliable hard-copy output.

$1695.00*

Put this TELETYPE 43 at the end of your system for reliable low-cost input/output.

$999.00*

*plus 2% handling. Shipped freight collect.

Also DIABLO. LEAR/SIEGLER DEC.

Write or call for a free catalogue.

Put this TELETYPE 43 at the end of your system for reliable low-cost input/output.

$999.00*

*plus 2% handling. Shipped freight collect.

Also DIABLO. LEAR/SIEGLER DEC.

Write or call for a free catalogue.

byte integrated circuits and save; a 10 page schematic, and considerably more. The price for 12 issues is $10 and is available from Computer Information Exchange Inc, POB 158, San Luis Rey CA 92068.

Chicago Area Computer Hobbyist Exchange Forms User Groups

In keeping with the club's philosophy of dedication to investigating the roles and uses of microcomputers and related small size computing devices in the hobbyist field, the Chicago Area Computer Hobbyist Exchange (CACHE) has recently announced the formation of user groups. According to the club's newsletter CACHE Register, the North Star, SOL and Digital Group user groups are active and going strong. The CP/M, H-11/LSI-11 and computer aided instruction user groups have formed but are not meeting regularly. There are other groups in the formative stages. CACHE members meet on the third Sunday of each month at 1 PM in the Northern Illinois Gas Building, Golf and Shermer Rds, Glenview IL. Contact Bill Precht, president, POB 52, S Holland IL 60473.

Attention Minneapolis/St Paul Apple II Users

We have been notified by Dan Buchler, 13516 Grand Av S, Burnsville MN 55337, that an Apple II users group has been formed in the Minneapolis and St Paul area. The purpose of the group is to promote the exchange of user developed programs and technical information among Apple II users. Help in documenting programs will be offered. Contact Dan Buchler for further information.

Newsletter for Users of Digital Group Equipment

BRIDGE (Bidirectional Reflections for the Illumination of Digital Group Enthusiasts) is an impressive newsletter devoted to helping fellow Digital Group owners over the voids. The cost of membership is $6, which entitles you to six issues of the newsletter. The most recent newsletter contains a couple of articles, items for sale, random bits of information of interest to Digital Group equipment owners and much more, including a letter from BYTE's Steve Ciarcia, an occasional contributor. If this newsletter is of interest to you, it can be obtained by writing to the Digital Group Independent Users Group, POB 316, Woodmere NY 11598.

Rockwell's AIM 65 Users Group

An AIM 65 users group is being formed for Rockwell's computer-on-a-board. A bimonthly newsletter will be available in January 1979 for $5 per year. Article contributions are welcome. For more information about this group, contact Don Clem, RR 2, Spencerville OH 43587.

*CP/M is a trademark of Digital Research
**Add $100 if CBASIC is also needed

Circle 328 on inquiry card.
Partitioned Data Sets

Figure 1: Information arrangement for a small partitioned data set.

If you have a floppy disk and are having trouble keeping track of where your programs and data are written on it, this simple file organization technique may provide the automated management of disk space you need.

A partitioned data set (PDS) is a file divided (or partitioned) into areas, each area containing data not related to data in other areas. For example, a system library might contain a source editor, assembler and linkage editor. Each of these programs could be stored in a separate partition in a partitioned data set. The partitioned areas in which these programs would be stored are called members of the data set, so the partitioned data set just described would contain three members, as in figure 1.

Designing the Partitioned Data Set

Four things are required for definition of a partitioned data set. First, a map for defining those areas on the disk that are in use (allocated). For this we create a track map that defines each track on the disk with one bit. If the bit is set to 1, the corresponding track is free. If the bit is set to 0, the track is in use. For a disk with 77 tracks, a 10 byte track map is sufficient. The position of each bit in the map defines the address of its associated track. The first bit in the map defines track 0, the second bit defines track 1, etc. The track map is referenced whenever a data set is allocated or scratched, so the smallest data set possible would be 1 track in length.

Second, we need a sector map to keep track of which sectors are in use and which are free. As in the track map, we assign 1 bit in the map to each sector. If our disk has 10 sectors per track, the sector map must be 770 bits in length, so we assign 97 bytes to it. As in the track map, the position of each bit defines the address of the associated sector. The sector map, table 1, is used when a member is created in or deleted from a data set.

Third, a control block for defining the name and location of the partitioned data sets is needed. These blocks can immediately follow the maps, and should contain space for the data set name, starting track address of the data set, length of directory in tracks, and the ending track address of the data set. Following this control block are similar

Table 1: Possible arrangement for the label record (1a) and data set control block (1b) for a partitioned data set.
control blocks for other data sets and unused (free) control blocks. A free control block is indicated by the name field being filled with binary 0s.

The maps and the control blocks can all fit on a single track. This track is called the volume table of contents (VTOC) and begins with the volume label, also known as the volume serial number (VSN). If we want a multitrack volume table of contents, we need to define how many tracks are in the table for use by the access method software. A byte for a count of the tracks in the volume itself should be included. If our system is to handle different formats and densities it would be wise to include the format information in the table of contents. The access method software could then read the count of the number of tracks on the disk and the number of sectors per track directly from the table and be able to handle several formats without modification.

In order to avoid wasting disk space, 16 byte logical records can be blocked 8 to a 128 byte sector. A single track volume table of contents blocked in this way could handle 136 partitioned data sets. The fourth item required for a partitioned data set is a directory for the members in the data set. The directory, table 2, begins at the first sector of the first track of the actual data storage area. The directory entries are 16 bytes long and packed 8 to a 128 byte sector. Each entry contains the name of the member, the starting and ending track and sector addresses of the member, the count of the number of sectors actually used by the member, and the data type of the member. The data type may be:

0 : Source data.
1 : Core image object data.
2 : Relocatable object data.

Both source and BASIC programs may be stored in a member of data type 0, while data type 2 is used as input to a relocating loader, linking loader or linkage editor. Data type 1 is used for storing nonrelocatable programs.

Now that the design of the file structure is complete, we can design software that will create, manipulate and delete members and data sets.

Table 2: Format for the directory entry information.

<table>
<thead>
<tr>
<th>Member name</th>
<th>Start of data area address for member</th>
<th>End of data area address for member</th>
<th>Number of logical records in use</th>
<th>Data type of member</th>
<th>Unused</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 bytes</td>
<td>2 bytes</td>
<td>2 bytes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 bytes</td>
<td>2 bytes</td>
<td>1 byte</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 bytes</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2: Disk initialization program.

Implementation

The first program we need is a disk initialization routine such as the one in figure 2. The initialization routine creates and empties the volume table of contents track and clears the data storage area by setting it to 0. The user is required to enter the volume serial number and the beginning and ending track numbers of the data storage area. The track and sector maps are created so that the bits corresponding to the data storage area are set to 1 (free space) and all other bits
Figure 3: The ALLOCATE routine, used to put a new file onto the disk and update all pointers to indicate that the file is present.
are set to 0 (space used). The volume label, a count of the tracks used by the volume table of contents (permanently set to 1) and the maps are then written on the first sector of the first track of the disk. All other sectors of the table of contents track are set to binary 0. Every sector of the data storage area is also set to 0. Initialization of the disk is now complete.

Once the disk has been initialized, we can allocate data sets on it by using the allocate routine. The allocate routine shown in figure 3 actually consists of two routines: one to allocate data sets, and one to allocate members in a data set. To allocate a data set, the user enters the volume serial number of the disk, the name of the data set to be allocated (six characters maximum), the number of sectors to be used for directory, and the number of tracks to be devoted to the data area. Note that the space used for the directory is included in the amount of space entered for the data area definition.

The allocator routine then reads the volume table of contents track and verifies that the volume serial number on the disk matches that entered by the operator and that the data set name to be used does not already exist. If neither test fails, the track map is scanned for contiguous free space equal to the amount requested by the user. If the free space is found, the necessary bits are reset to 0 in the track map. The data set control block is now built by moving the required data into an empty block in the table of contents. The sector map is also updated to reflect the sectors used by the directory and the updated volume table of contents is rewritten on the disk, completing the allocation of a data set.

To allocate a member, the user must provide the volume serial number of the disk as well as the name of the data set of which the member will be a part, the member's name (six characters maximum), member data type, and the number of sectors to allocate to the member. The allocator program again verifies that the proper disk is on line and that the data set exists. Obtaining the address of the partitioned data set's directory from the control block for the data set, the allocator verifies that a member with the same name as that being allocated does not already exist. If all is well, the sector map is scanned for contiguous free space in the data set's data storage area sufficient to satisfy the user's request. If space is available, an empty directory record is used to create a directory entry for the member. The sector map is then updated and the directory and table of contents are rewritten on the disk.

We now have a partitioned data set with...
In order to free space on the floppy disk, deletion programs are required. Scratching a data set would deallocate the space used by the members in the data storage area (recorded in the sector map) and clear the track map bits used for the overall space allocation for the data set. The data set control block is then filled with binary 0s, freeing all space previously allocated.

Scratching a member requires that the sector map be updated and the directory entry for that member be rewritten as binary 0s. The deletion programs should be written to be as forgiving as possible of operator errors. After the operator has finished giving the delete command, the program should echo the command and wait for operator verification. All this is needed in order to avoid accidentally destroying irreplaceable data.

Another useful program is the volume table of contents lister. The list program reads the data set control blocks from disk, formats and displays the information contained in them, and indicates how much space is allocated to each data set and how much free space remains. As an added feature, the lister could be made smart enough to use the data in the data set control blocks to find and display the contents of the member’s directory entries, thereby providing a powerful tool for controlling the data on the disk.

As with all good things, the free space on the disk will soon come to an end. The obvious solution is to delete a few members or data sets to make room for new things, but this has the disadvantage of destroying....
programs and data that may be important.

A better solution would be to place these programs into cheap archival storage in a format that simplifies their restoration onto the disk. Thus, the members or data sets to be saved would be written to magnetic tape by an unload program and written back on the disk later with a load program. The unload program reads the data set control block of the data set to be unloaded and writes it on tape. It then reads the directory entries for the members of the data set and writes the one selected to tape, followed by the data for the member from the data storage area. It continues to write directory entries followed by member data until the request entered by the user is completed.

The load program reads the data from the tape and if necessary allocates data sets and members before writing the data into them from the tape.

The partitioned data set file organization technique has been used successfully on many large systems and can be easily adapted for use by the hobbyist. In order to avoid a situation similar to that encountered with audio cassettes, standards should be formulated now so that disks can be interchanged from user to user.
Tic-Tac-Toe in BASIC

Tic-Tac-Toe is a game that has been turned into a computer program thousands of times. Although it is fun to play with a computer, the best a human opponent can hope for is a draw game. After a short time the player loses interest because he or she never has any chance of winning. My version plays a regular game except that there are a few logic errors which put the player on a more even level with the computer. There is a fighting chance against the now imperfect opponent. The program logic that scans the rows, columns and diagonals has been altered to produce counter-moves much like those of a person just learning the game. After playing dozens of games with the machine, if the player is lucky, the pattern of moves that fool the machine will emerge and allow the player to beat the machine every game. One such pattern is shown by the sample game of figure 1.

To change the program logic back to playing a perfect game every time, change the value of Z at line 1140 from 1 to 2. This hint should allow any good hacker to figure out how the program works internally. You can have fun playing the computer and showing your friends you are, indeed, smarter than the computer!
Listing 1: BASIC source code listing for Tic-Tac-Toe game.

100 REM "TA" === TIC-TAC-TOE WITH A TWIST
110 REM 02-05-77 WRITTEN BY MIKE STODDARD
120 REM
130 DIM K(I:3),L(I:9),A(I:12)
140 PRINT "(D) THE GAME OF TIC-TAC-TOE. THERE ARE A POSSIBLE GAMES"
150 PRINT "WHICH YOU CAN WIN. THE BOX SQUARES ARE NUMBERED."
160 PRINT "1 2 3 4 5 6 7 8 9"
170 FOR I=1 TO 3
180 FOR J=1 TO 3
190 LET K(I,J)=9
200 NEXT J
210 NEXT I
220 LET N=0
230 LET M=0
240 LET J=1
250 LET I=1
260 LET N1=0
270 LET N2=0
280 PRINT TAB(7);"A SYSTEM WITH SOCK!"
290 PRINT TAB(7);"OUR SPECIAL MOTOROLA MICROPROCESSOR EVALUATION KIT II"
300 PRINT TAB(7);"CHRISTMAS "PACKAGE" INCLUDES THE HARDWARE YOU NEED"
310 PRINT TAB(7);"TO EXPAND YOUR D2 KIT TO FULL SYSTEM CAPABILITIES!
320 PRINT TAB(7);"FULLY TESTED AND ASSEMBLED!
330 PRINT TAB(7);"SEND US YOUR CHECK OR MONEY ORDER NOW!
340 PRINT TAB(7);"WE CAN ALSO BILL TO YOUR MASTER CHARGE OR VISA"
350 PRINT TAB(7);"IF YOU INCLUDE THE NUMBER AND EXPIRATION DATE.
360 PRINT TAB(7);"ENCLOSE TOTAL FOR ENTIRE PACKAGE OR ANY TAXES (INCLUDE AN ADDITIONAL $5.00 FOR SHIPING"
370 PRINT TAB(7);"AND HANDLING). BE SURE TO INCLUDE YOUR NAME"
380 PRINT TAB(7);"ADDRESS AND PRINT CLEARLY. MAKING CHECKS"
390 PRINT TAB(7);"PAYABLE TO MOTOROLA INC.
400 PRINT TAB(7);"MALL TO:
410 PRINT TAB(7);"MOTOROLA MAIL ORDER SALES"
420 PRINT TAB(7);"P.O. BOX 27605, TEMPE, AZ 85282.
430 PRINT TAB(7);"A SYSTEM WITH SOCK!"
440 PRINT TAB(7);"MOTOROLA MICROPROCESSOR EVALUATION KIT II"
450 PRINT TAB(7);"IT INCLUDES:
460 PRINT TAB(7);"MEK6800AB ... $199.95"
470 PRINT TAB(7);"ACCESSORY BOARD FOR COMPLETE INTERFACE BETWEEN D2 KIT. ASCII"
480 PRINT TAB(7);"KEYBOARD AND VIDEO MONITOR OR TV SET. HAS CUSTOM ROM WITH"
490 PRINT TAB(7);"VIDEO DRIVER.
500 PRINT TAB(7);"SOFTWARE PROGRAMMABLE LINE AND CHARACTER FORMAT:
510 PRINT TAB(7);"16 X 32, 16 X 64, 24 X 80—UP TO 24 LINES BY 165 CHARACTERS.
520 PRINT TAB(7);"5 X 7 CHARACTER FORMAT WITH UPPER AND LOWER CASE.
530 PRINT TAB(7);"MEK6800D2 ... $235.00"
540 PRINT TAB(7);"THE EVER POPULAR D2 (IN KIT FORM ONLY) TO DEVELOP AND EVALUATE"
550 PRINT TAB(7);"M6800 MICROPROCESSORS.
560 PRINT TAB(7);"FREQUENCY SYNTHESIZER ... $395.00"
570 PRINT TAB(7);"MEMORY BOARD WITH 16K X 8 BYTES OF RAM.
580 PRINT TAB(7);"POWER SUPPLY ... $99.50"
590 PRINT TAB(7);"FULLY-REGULATED +12 VOLTS AT 1 AMP AND +5 VOLTS AT 6 AMPS..."
600 PRINT TAB(7);"CAPABLE OF POWERING COMPLETE SYSTEM WITH POSSIBLE EXPANSION.
610 PRINT TAB(7);"MOTOROLA MICROPROCESSOR EVALUATION KIT II"
620 PRINT TAB(7);"FREQUENCY SYNTHESIZER ... $395.00"
630 PRINT TAB(7);"MEMORY BOARD WITH 16K X 8 BYTES OF RAM.
640 PRINT TAB(7);"POWER SUPPLY ... $99.50"
650 PRINT TAB(7);"FULLY-REGULATED +12 VOLTS AT 1 AMP AND +5 VOLTS AT 6 AMPS..."
660 PRINT TAB(7);"CAPABLE OF POWERING COMPLETE SYSTEM WITH POSSIBLE EXPANSION.
670 PRINT TAB(7);"MOTOROLA MICROPROCESSOR EVALUATION KIT II"
680 PRINT TAB(7);"FREQUENCY SYNTHESIZER ... $395.00"
690 PRINT TAB(7);"MEMORY BOARD WITH 16K X 8 BYTES OF RAM.
700 PRINT TAB(7);"POWER SUPPLY ... $99.50"
710 PRINT TAB(7);"FULLY-REGULATED +12 VOLTS AT 1 AMP AND +5 VOLTS AT 6 AMPS..."
720 PRINT TAB(7);"CAPABLE OF POWERING COMPLETE SYSTEM WITH POSSIBLE EXPANSION.
730 PRINT TAB(7);"MOTOROLA MICROPROCESSOR EVALUATION KIT II"
740 PRINT TAB(7);"FREQUENCY SYNTHESIZER ... $395.00"
750 PRINT TAB(7);"MEMORY BOARD WITH 16K X 8 BYTES OF RAM.
760 PRINT TAB(7);"POWER SUPPLY ... $99.50"
770 PRINT TAB(7);"FULLY-REGULATED +12 VOLTS AT 1 AMP AND +5 VOLTS AT 6 AMPS..."
780 PRINT TAB(7);"CAPABLE OF POWERING COMPLETE SYSTEM WITH POSSIBLE EXPANSION.
790 PRINT TAB(7);"MOTOROLA MICROPROCESSOR EVALUATION KIT II"
800 PRINT TAB(7);"FREQUENCY SYNTHESIZER ... $395.00"
810 PRINT TAB(7);"MEMORY BOARD WITH 16K X 8 BYTES OF RAM.
820 PRINT TAB(7);"POWER SUPPLY ... $99.50"
830 PRINT TAB(7);"FULLY-REGULATED +12 VOLTS AT 1 AMP AND +5 VOLTS AT 6 AMPS..."
840 PRINT TAB(7);"CAPABLE OF POWERING COMPLETE SYSTEM WITH POSSIBLE EXPANSION.
850 PRINT TAB(7);"MOTOROLA MICROPROCESSOR EVALUATION KIT II"
860 PRINT TAB(7);"FREQUENCY SYNTHESIZER ... $395.00"
870 PRINT TAB(7);"MEMORY BOARD WITH 16K X 8 BYTES OF RAM.
880 PRINT TAB(7);"POWER SUPPLY ... $99.50"
890 PRINT TAB(7);"FULLY-REGULATED +12 VOLTS AT 1 AMP AND +5 VOLTS AT 6 AMPS..."
900 PRINT TAB(7);"CAPABLE OF POWERING COMPLETE SYSTEM WITH POSSIBLE EXPANSION.
910 PRINT TAB(7);"MOTOROLA MICROPROCESSOR EVALUATION KIT II"
920 PRINT TAB(7);"FREQUENCY SYNTHESIZER ... $395.00"
930 PRINT TAB(7);"MEMORY BOARD WITH 16K X 8 BYTES OF RAM.
940 PRINT TAB(7);"POWER SUPPLY ... $99.50"
950 PRINT TAB(7);"FULLY-REGULATED +12 VOLTS AT 1 AMP AND +5 VOLTS AT 6 AMPS..."
960 PRINT TAB(7);"CAPABLE OF POWERING COMPLETE SYSTEM WITH POSSIBLE EXPANSION.
970 PRINT TAB(7);"MOTOROLA MICROPROCESSOR EVALUATION KIT II"
980 PRINT TAB(7);"FREQUENCY SYNTHESIZER ... $395.00"
990 PRINT TAB(7);"MEMORY BOARD WITH 16K X 8 BYTES OF RAM.
1000 PRINT TAB(7);"POWER SUPPLY ... $99.50"
1010 PRINT TAB(7);"FULLY-REGULATED +12 VOLTS AT 1 AMP AND +5 VOLTS AT 6 AMPS..."
1020 PRINT TAB(7);"CAPABLE OF POWERING COMPLETE SYSTEM WITH POSSIBLE EXPANSION."
Listing 7 continued:

2060 LET N4 = 0
2070 FOR I = J TO 10
2080 LET J = I
2090 LET N4 = N4 + K(I, I)
2100 IF N4 ≥ M GOTO 2230
2110 NEXT I
2120 LET K(I, I) = 0
2130 LET N4 = 0
2140 FOR I = 1 TO 10
2150 LET J = I
2160 LET N4 = N4 + K(I, J)
2170 IF N4 ≥ M GOTO 2230
2180 NEXT I
2190 IF K(I, J) = 5 GOTO 2210
2200 ON N1 GOTO 1370, 1590, 1790, 1220
2210 PRINT TAB(7), "THE GAME IS A DRAW."
2220 GOTO 2700
2230 IF M = J GOTO 2260
2240 IF K(I, J) >... ? GOTO 2500
2250 ON K2 GOTO 2290, 2310, 2330, 2350
2260 PRINT TAB(7), "CONGRATULATIONS. YOU WIN THIS GAME."
2270 GOTO 2700
2280 REM COEFFICIENT EVALUATION SUBROUTINE
2290 LET J = J - I
2300 LET J = 10
2310 LET J = J
2320 LET J = 1
2330 GOTO 2210
2340 LET J = J
2350 GOTO 2210
2360 LET J = J + 1
2370 GOTO 2211
2380 REM CONVERT 1-9 SUBSCRIPT TO I-J VALUE
2400 LET N4 = 0
2410 FOR I = 1 TO 10
2420 FOR J = 1 TO 10
2430 LET N4 = N4 + K(I, J)
2440 NEXT J
2450 NEXT I
2460 GOTO 2700
2470 LET K(I, J) = 1
2480 IF NZ GOTO 2500
2490 REM CONVERT 1-9 VALUE TO 1-J SUBSCRIPT
2500 IF NZC>1 GOTO 2550
2510 IF NZC<1 GOTO 2550
2520 GOTO 2700
2530 LET N4 = 0
2540 FOR I = 1 TO 10
2550 LET N4 = N4 + K(I, J)
2560 NEXT I
2570 PRINT TAB(7), "EVERYTHING YOU ALWAYS WANTED TO PLUG INTO YOUR PET, APPLE OR TRS-80."

Everything you always wanted to plug into your PET, APPLE or TRS-80.

Hansford, John
603 N Hazelton Av
Wheaton IL 60187

Having been interested and active in computer programming for some 10 years, I have watched with great anticipation the advent of the personal computer. In my own hobby and professional programming, I have used a rather large number of languages and have discovered through many painful experiences and uncounted hours of debugging that, in general, regardless of the language being used, a modular top-down approach to developing new programs is by far the easiest to understand and use. Unfortunately, my first experiences with programming consisted of occasional use of a Teletype terminal on a timesharing BASIC system. I still use BASIC for some of my hobby programs, but I find that unless some skill in program organization is used, a BASIC program can very easily become a

Everything you always wanted to plug into your PET, APPLE or TRS-80.

Hansford, John
603 N Hazelton Av
Wheaton IL 60187

Having been interested and active in computer programming for some 10 years, I have watched with great anticipation the advent of the personal computer. In my own hobby and professional programming, I have used a rather large number of languages and have discovered through many painful experiences and uncounted hours of debugging that, in general, regardless of the language being used, a modular top-down approach to developing new programs is by far the easiest to understand and use. Unfortunately, my first experiences with programming consisted of occasional use of a Teletype terminal on a timesharing BASIC system. I still use BASIC for some of my hobby programs, but I find that unless some skill in program organization is used, a BASIC program can very easily become a
rat's nest of inserted problem bypasses and altogether impossible to read. I recently obtained a copy of a primer on Pascal in the hopes that it would provide some knowledge and insight into providing a proper means of improving program structure through language format and syntax rather than relying on my own experience in this area. I can now see why this language has become much more popular as a first language in many universities and I hope that it will continue to grow in popularity and wide usage.

At various times in the past I have tried my own hand at designing a source language which would provide a much more meaningful approach to program structure which must be at least as important as function. I have no new language to propose in the cause of this interest, having never tried to implement one of the languages I have designed, but I do have some comments which may be of interest to those who are also involved in the search for the "perfect language."

In various languages, to my knowledge including BASIC, Pascal and COBOL, there is at least one statement which tests a condition and will or will not perform a specified function depending on the outcome of the test. This is, of course, the IF statement in the languages mentioned above. ELSE we forget, these languages also contain a statement which allows the testing of a variable state and the optional performance of one of several alternative functions depending on the state encountered. In BASIC, this is the "ON . . . GOTO . . ." statement; in Pascal it is the "case . . . of . . ." statement, and in COBOL it is the "GO TO . . . DEPENDING ON . . ." statement. FORTRAN also has this capability in a limited way through the use of the numeric IF rather than the logical IF. In my humble opinion, Pascal's implementation of this feature is far more meaningful not only to program structure but also to understanding the condition which is actually being tested. Many times when this structure is used in BASIC or COBOL, it is the powerful feature which justifies the use of that "hairy" computation to adjust the conditions which are actually present to be an integer between 1 and 10. Pascal's implementation of this structure is still not perfect because it takes some extra effort in defining data types to assure that one of the alternatives will indeed be picked. Correct me if I'm wrong, but there is no explicit way to specify what should be done if none of the states for which there are alternatives is actually

Figure 1.

```
IF
  condition 1 statement 1
  condition 2 statement 2
  condition 3 statement 3
  .
  condition n statement n
END
ELSE statement
```
found. I believe it would also be somewhat tricky to use this single Pascal statement to perform one function if the variable being tested is less than 50, to perform another if the variable equals 50, or to perform a third if the value is greater than 50, for example.

These are obviously closely related conditions and would ideally be resolved with a simple statement structure. Note that these types of tests are possible in most any language: however, my suggestion is that there should be an alternative to this sometimes confusing structure.

Rather than having one statement to test a single condition and another to resolve multiple conditions, why not make the single condition test a simple subset of the multiple condition test? A loosely defined statement structure which would satisfy this requirement is shown in figure 1. As this statement is parsed, the statement becomes a multiple condition test when it contains multiple conditions. When additional conditions are encountered, each is concatenated to the first condition to form a new conditional expression which is then evaluated to determine if the statement associated with the new condition should be executed or not. The one restriction I would like to see on this type of a structure would entail not evaluating the original condition if statement 1 is omitted. This means that only the concatenated expressions which are formed will actually be evaluated. Simple examples of possible forms of this type of a statement are shown in figure 2.

I believe that this statement structure provides an excellent aid to properly organizing program structure. It has the capability of directly relating associated states in an easy to understand manner and provides the flexibility which a multiple condition test should have, without having to go through any complex manipulations to resolve the conditions present to any particular restrictive form.

I would welcome any and all comments on this proposal and am always interested in finding more about the "perfect language" if you have any suggestions.

Perhaps a reader with language design experience would care to comment on the various examples and suggestions proposed. Readers should note that none of the examples of figure 2 follow the prototype of figure 1 completely. But the examples of figure 2 might provide interesting variations on the multiple condition suggestion if they prove unambiguous to a language translator or interpreter. . . .CH1

Try the User-Oriented Language with Power! PASCAL

PASCAL is the new trend in programming for those who want more than BASIC solutions to their software problems.

Our PASCAL software offers the simplicity of BASIC with the power of PASCAL

VOL. 1 includes Depreciation Interest Checking Metric Base2816 Sort1 Sort2 Form1040 Stocks Handicap Calculator Decision and more!

VOL. 2 for Business soon to be released

Cyber-Score Inc.
Software Dept.
Suite 406 - The Riker Building
35 West Huron Street
Pontiac, Michigan 48058

Phone (313) 338-6317
Price: only $19.95 per volume
Please add $1.25 per vol. postage
Foreign orders add $6 postage

For those who have not yet stepped up to Pascal, the programs above also available in BASIC
Pascal Critique and a Comment

I have just finished reading your August 1978 issue and would like to comment. I am more than a little disappointed with the volume of coverage given to Pascal. Whatever the relative merits of the language that amount of discussion isn't merited in my opinion. There currently is no affordable implementation of the language available to the typical computer enthusiast. If and when Pascal is available I believe it will have a very rough battle trying to compete with both the pricing and heavy usage that BASIC enjoys today.

Another problem I think you have failed to address is the effect of the huge investment in time and money many have made in BASIC. Just what is to become of that? Conversion? An unlikely prospect given the historical example of the COBOL and PL/I controversy. Use both languages? Again an unlikely prospect. Most people have all they can handle without the demands a second language would require.

It should also be pointed out that Pascal has little or no following outside the academic community. It wouldn't be the first time that a language enjoying a great deal of admiration at the academic level has failed to gain acceptance as a viable tool in the real world of data processing. Languages are used and live only on the basis of perceived usefulness, the availability of experienced practitioners, and widespread implementation of the language. Pascal now has none of those attributes.

In my opinion the number of users of any language speak many silent volumes that by weight of numbers signal acceptance of a language more than any theoretical proposals or arguments about the relative advantages of competitive languages.

But there is an affordable implementation of Pascal — the UCSD system is available separately, or bundled with various manufacturers' products. As a means of learning a new language, conversion of one or two programs as tutorial experiments is just fine. Pascal should only be thought of as an avenue to more effective creation of new programs.

As for "no following outside the academic..."
community,” Pascal has a very strong following as witnessed by the representatives of both industry and academia present at the UCSD Pascal Workshop last summer. BASIC was once the only logical and effective choice of languages to use.

The virtue of Pascal and similar languages is the fact that the very expression of the program is so much closer to the way people think. I, for example, think in terms of “I want to do thus and so”; in Pascal, I might have to map out in advance exactly what it is he will ask the machine to do.

At the root of the matter is the consideration that there is no clean distinction between “implementing a program” and simply “invoking a system utility.” Suppose, for example, we wish to check on the value of some variable, for example J, during an APL terminal session. We simply type:

$$J$$

Now suppose that the value of J is lower than we expected, so that we become interested in the first J elements of the array A. We type:

$$A[1..J]$$

Continuing Comments on APL

John Howland’s “Comments on APL’s Characteristics” in the May 1978 BYTE Languages Forum, page 143, are for the most part well thought out. However, it seems to me that he is missing something when he states that an APL programmer who composes programs on line is “similar to the person who opens his mouth and begins to speak before engaging his brain.” The whole point of having an interactive language facility is based on the fact that the programmer does not always want to reference a procedure with the name thusandso. In BASIC I would have to reference it in the program with a number artificially created for that purpose. I might say GOSUB 10000, for example, when I really mean to call and execute a thusandso procedure. Pascal can be used as any other programming language — for the underlying computers are identical. It is a matter of making the expression of a program easier for the user.

BETA-1 is the answer to the many requests MECA has received for a universal tape unit. So we are proud to present the first mass storage solution for non-S100 bus microcomputers. Now you can own a BETA-1 complete, assembled and tested, for only $399.

STANDARD FEATURES

- Random seek to file at more than 100 inches per second.
- Typical access time is 10 seconds or less.
- Plugs directly into standard 8-bit parallel I/O port.
- Fast load time at 8000 bits per second.
- Reliable — Uses professional phase-encoding technique.
- Internal 8035 microprocessor with 1K byte program.
- Self-contained high level operating system.
- Up to 1 megabyte on-line with a single drive.
- Replaces disk at a fraction of the cost and delivers similar performance.
- Interfaces to most popular microcomputers and requires only a parallel or serial port.

OPTIONAL ACCESSORIES

- Serial I/O Port
- Double the loading speed for 16,000 bits per second.

The BETA-1 will interface easily to most popular microcomputers. Delivered assembled only (sorry, no kits). Limited quantities available from first production run, SO ORDER NOW! Sound too good to be true? Then judge for yourself and place your order today. Call MECA, or your favorite dealer, for more details.
But now perhaps we realize that J is actually the number of pairs of quantities in A and so in order to examine the set consisting of the first element of each pair we type:

\[A[-1+2:X 1 J] \]

I could go on, but I think the point is clear: at what level of complexity have we stopped merely using the facilities of the environment and started writing a program?

My own view is that the above distinction is immaterial and that what matters is simply that the environment be structured to maximize the programmer's capability to accomplish the job at hand expediently. When the job at hand is large and complicated, there is no question but that at present hardware costs the most expedient recourse involves writing out the bulk of what is to be typed in beforehand. Likewise when the job at hand is trivial and transparent (eg: inspecting \(A[-1 J] \)), it is undeniably the case that writing it down before typing it in is a waste of time. In between these two extremes, things are not so clear, and the point at which paper and pencil become necessary will depend both on the individual programmer involved and on the system. However, what is clear is that the more complex the programmer finds himself able to get, on line, while still maintaining cogency of thought, the more productive he will be.

Mr Howland justly defends APL's right to left order of evaluation from those who would make it left to right: \(3 ÷ 6 \) equals 2 is not a pleasant prospect. However, a valuable property for any language/environment to possess is one which allows short, transparent programs to be entered quickly and easily, without any need for pencil and paper in the process. My suggestion to the APL terminal manufacturers, if they haven't done so already, is to implement an option whereby each line could be entered from right to left (in much the way one frequently finds oneself writing out lines of APL on paper, that is, starting at the righthand edge and working leftwards). In this way, the objective of simplified online program creation could be achieved at no cost in the way of incompatibility with existing APL processing precedence.

Reacting just slightly to the last paragraph of your letter, a question comes to mind: is it the terminal manufacturer's responsibility or the APL interpreter-writer's responsibility to make the input sequence run from right to left? With a fast enough terminal, it is possible to rewrite the last
From EMM — the industry’s largest supplier of 4K static RAMs — a 2114 with a year and a half of delivery behind it. Not a new part. Just a new pin-out of a proven part. 1 K x 4 organization. 5V only. Standard 18-pin DIP. It draws only 300 mw, has all the speed you need for microprocessor applications.

EMM SEMI, INC.
A division of Electronic Memories & Magnetics Corporation
3883 North 28th Avenue, Phoenix, Arizona 85017 (602) 263-0202

In response to the discussions of high level languages I have been following in BYTE, I would like to call your attention to an existing language as implemented on the Hewlett-Packard 9825A.

HPL, as Hewlett-Packard calls it, is implemented on the basic machine similarly to BASIC. Extensions are available by stages in read only memory. String capabilities are enhanced by a string ROM. IO handling by the general IO ROM is enhanced to be similar to FORTRAN. The advanced programming ROM extends the capabilities to cover, in large part, the characteristics of PIAO ALGOL as described in The Design and Analysis of Computer Algorithms by Aho, Hopcroft and Ullman (Addison Wesley). A couple of features should be noted. An assignment operator is used, allowing the equal sign to be only a relational operator. While the list of variable names is limited to single letters, the flexibility of substrings, local variables in subprograms and functions, and r variables provide for few problems in practical use.

I have been working with this system for a year and a half developing and implementing programs for an agricultural consulting firm. While the firmware, fully implemented, is probably close to 70 K, this is an excellent example of what can be done on a small system, and might just be a good system to emulate.
Radio Shack Computer Users

TRS-80 monthly newsletter

The largest publication devoted to the TRS-80 System

- Business
- Personal Finance
- Practical Applications
- Gambling-Games
- Latest RADIO SHACK Developments

and more

MAJOR PROGRAMS PUBLISHED MONTHLY
- INCOME TAX PROGRAM
- EXTENSIVE MAILING LIST AND FILE PROGRAM
- PAYROLL STOCK SELECTION PICKING WINNING HORSES
- PERSONAL FINANCE PACKAGE
- GRAPHICS STATISTICS MATHEMATICS EDUCATION

...and more

$24. Per Year

COMPUTRONICS

Box 149RB, New City, New York 10956 (914) 425-1535

Send for FREE Software Catalogue (Including listings of hundreds of TRS programs available on cassette and diskette).

The Sorcerer comes to the

COMPUTER LAB
of New Jersey

The Sorcerer features:

- Z-80 CPU
- Serial & Parallel IO
- High Resolution Graphics
- 8 K basic in ROM
- Dual Cassette with Motor Control
- Expands to 32 K RAM
- Power On Monitor
- S-100 Bus Compatible

For Christmas:

Sorcerer with 16 K of RAM
Regularly $150 — for December $995
(Off the shelf delivery)

Call for our discounts on: Apple, Commodore, ECT, Imac, IMC, PolyMorphics, SWTP, Godbout, Meca, Micropolis, North Star, Problem Solver Systems, Thinker Toy and many more!
We have loads of books and software for Apple, Sorcerer, TRS-80, etc.

141 Route 46, Budd Lake, New Jersey 07828
(201) 691-1984

Offer subject to available quantities — Shipping extra.
Mail and phone orders accepted.
NJ residents add 5% sales tax.

PET WORD PROCESSOR

This program permits composing and printing letters, flyers, advertisements, manuscripts, etc., using the COMMODORE PET and a printer.

Script directives include line length, left margin, centering, and skip. Edit commands allow the user to insert lines, delete lines, move lines and paragraphs, change strings, save onto cassette, load from cassette, move up, move down, print and type.

The CmC Word Processor Program addresses an RS-232 printer through a CmC printer adapter.

The CmC Word Processor program is available for $29.50. Add $1.00 for postage and handling per order.

Order direct or contact your local computer store.

Check, Money Orders, or Credit Cards Accepted

161 Almeria Ave.
Dept B-118
Coral Gables, Florida 33134
Phone (305) 576-7666

Trans-Data Corporation

Apple Owners! We've Got Software!

Trans-Data Corporation is lately offering Software Commercial, Educational, Scientific and Entertainment Applications included.

APA09 LABEL PRINT $10.00
AD06 MAILING LIST SYSTEM $50.00
AD02 FILE USE TUTORIAL $15.00
APA04 FINANCES $15.00
APA07 CHECK BOOK $20.00
AE08 SUPER MATH $18.00
AE08 METRIC CONVERSION $20.00
AG06 MEMORY AIDE $18.00
AG16 HORSE RACE $18.00
AG03 KEYBOARD ORGAN $18.00

For floppy disk add $8.00. Add $2.00 for shipping and handling. Florida residence add 4% tax.

Circle 378 on inquiry card.
A Proposal for a Kitchen Inventory System, or Don’t Byte the Wand That Feeds You

A practical and natural application for your home computer is an inventory system for the kitchen. Such a system would relieve humans of the details involved in making out a grocery list.

One convenient way of keeping track of the various items in the pantry is to use the information that is now provided on most food packages specifically for that purpose, namely, the Universal Product Code, or UPC. This is, of course, put there for use by food stores, but there is no reason that the UPC cannot be used in the home.

The Universal Product Code appears on a product label as a patch containing bar codes, with a line of human readable numbers underneath. This distinctive design has now become familiar to most North American shoppers. Information contained in the bar codes can be read by an optical sensing device connected to a computer.

At present many computer experimenters are equipping their computers with an optical sensing device, a bar code reader that has a scanning wand, for the purpose of scanning the new machine readable software which uses similar bar codes. A good example of such software is the PAPERBYTE™ series of books which BYTE Publications produces. It is probable that the same scanning wand used for reading the software may be used to read the Universal Product Code. The scanning wand provides a quick and easy method to identify a given item without keystroking any information into the computer. It will, unfortunately, be necessary to do some keystroking to set up the system. One minimal implementation of an inventory system might be set up in the following manner. For each grocery item in stock, a data base would exist containing:

- a representation of the Universal Product Code for a given item,
- a human language description of the product including brand name, generic name, and size or quantity,
- the minimum quantity that should be kept on hand,
- optional information on the item’s shelf life,
- any other information which is deemed useful (for example, which members of a household like a particular item).

As the supply of an item becomes depleted, the container is thrown out. Immediately before disposing of the container, though, the UPC bars are scanned. The computer stores this code in a table of
items which are depleted and should be restocked. Prior to setting off on a shopping trip, the user requests a display (preferably on a hard copy device) of depleted products. The computer uses the depleted products table to reference the master data base, and retrieves the human language description of the product from the master data base and displays it for the user, along with other information. If the display is on a hard copy device, the user simply tears off the paper and uses it as a grocery list.

Probably the best way to establish and maintain the data base is with the use of an interactive program. The user would build the data base from scratch by starting with those items on hand at the time. For each item, the UPC bar codes are scanned, then the user types in the other information about the item. (Note that it is not necessary for the numeric product code to be keystroked by the user.) After the initial data is stored, the interactive program may be executed to update the file with information for new or different products. It is not necessary to start with a huge data base containing data for every possible product. Each household would keep information tailored specifically to its needs in its data base.

The size of the data base is dependent on the number of different products a given household buys. It should be noted that each brand of a given generic item has its own code. The data base may be kept small if a single brand of a given item is used consistently. The procedure of reading the UPC bar codes just before consigning the container to the garbage follows one of the cardinal rules of computer use, which is: *garbage in — garbage out.*

Special arrangements would still be necessary to handle those products not marked with the UPC in many stores, such as fresh meat and local produce. It might be possible, with knowledge of the encoding method of the UPC, to make a custom UPC bar code symbol by hand. This could be mounted permanently near the garbage can scanning station and scanned instead of a package symbol. The computer could then at least note that the supply of a non-encoded item was depleted and call attention to the fact.

An ingenious tinkerer could no doubt find many ways to improve the system. For example, some means to indicate exactly which nonencoded item is depleted might be devised. And it might prove useful to scan a package as it is bought, to verify that it is back in stock. Also, the addition of a modem for telephone communication gives rise to many possibilities.

A computer equipped with a modem could, with the proper programming, call a computer equipped food store and automatically order the necessary grocery items. And given the proper programming both in the home and at the store, it could dial up several different stores, compare prices and order from the store which provides the lowest price for the entire list. With electronic transfer of funds, the computer could even automatically pay the grocery bill.

Automating the kitchen inventory should give people the time to develop new recipes or new computer applications.
He did not want his optional entertainment chip tampered with; his films, recordings, reading and fantasy trips had all been carefully selected, carefully tested over the years.

About the Author

Lawrence F Willard has been a journalist and free lance writer for over 30 years, contributing to many magazines, including New Hampshire based Yankee Magazine. A ham radio operator, Larry teaches journalism and media courses at Manchester Community College in Manchester CT.

Jonathon Witherspoon Twombly floated up out of a warm and comfortable world of drifting, unconnected images to begin, unfortunately, a new day. He stared at the cream colored ceiling, as he always did, to read the wedge of light that fanned from the top of the window shade to intersect a discolored area of the ceiling in a fairly significant manner. Nine o’clock, he guessed, disdaining for three and a half seconds the absolute accuracy of his Minnie on the bedside table. He rolled over and looked at it, stubbornly translating 24 hour time to his own archaic measure. His guess was a mere four minutes and ten seconds slow. Pretty close, he noted contentedly.

The mini-mini-micro-processor, his own personal computer link to the vast and complex world of 1997, winked at him with a softly glowing numeral 3. Not much larger than a deck of playing cards and half as thick, Minnie rested upright in her umbilical slot, absorbing power for her batteries and sharing her thoughts with the house computer in its basement hideaway. A rather old microprocessor, Mike ran the house, but Minnie was boss as long she was plugged into the table, or as long she was on Twombly’s person and not more than a mile distant from the house. Beyond that range she could integrate with Mike up to a distance of 40 miles using the high power car facilities, and beyond the 40 mile radius she could use the worldwide network of relay stations. But that cost money and was rarely necessary. Jonathon Twombly did not travel very much or very far.

At the moment he was staring at the glowing figure 3 in disbelief. Three messages for him during the night? How unusual! Twombly was a nobody; no family, no friends, no job. He didn’t have to work, and so never would be allowed to. He lived on the regular income from his trust fund, and, with Minnie’s help, he kept his outgo exactly equal to his income. It was a good life.

He removed Minnie from her niche and keyed in a command. The four foot square screen built into the wall at the foot of his bed lit up and the readout began:

MSG 1 BELLOGRAM 7.6.97 2207 66234621 BP P12 TWOMBLY, JONATHON W 779 28 88980 BMA
YOU ARE HEREBY CITED BY TRAFFIC CONTROL OFFICER 229 BOSTON CITY POLICE FOR MOVING TRAFFIC VIOLATION 7.6.97 1201 HOURS PL 2395 SEC. 8. B. SECTOR QUADRANT 9 FINE 25 DOLLARS REMIT WITHIN 24 HOURS TO AVOID ARREST PC JOHN KELLEY.

Twombly swore mildly (he was not an aggressive man). He’d had the car on manual five minutes during the entire day and he’d managed to get a ticket. He might as well pay now and get it over with. He didn’t even bother to call up the picture the cops had surely filed. He didn’t want to see himself on the screen making an ass of himself. Payment of the fine would wipe the picture out of the police computer banks. He punched up his bank balance, confining it to Minnie’s small screen. $207.81. Even with seven cents added as interest during the night, it wasn’t a healthy balance. He swore again, mildly, and punched in the command, the amount and the police computer address, checked it on the screen and punched the execute button. $182.66. The city had $25; the bank had its 15 cent service charge. Twombly called up the second message:
MSG 2 VIDEOPHONE CALL 0231 7.7.97
CENTRAL HOTEL RM 63
HI TWOMB OLD CHAP. REMEMBER ME?
PUDDY, ROOMY, WESTERN U? IN TOWN
FEW HOURS. HOW ABOUT A DRINK? NOW.
LEAVING SUNUP. 766 26 0589 CHEERS.

Twombly shuddered, wiped the screen clear. He had set Minnie to store night calls, not wake him up; he wasn’t sorry. He called up the last message:

MSG 3 BELLOGRAM 7.7.97 0800 66091532
FBCC BOSSOFF TWOMBLY, JONATHON W
779 28 88980 BMA
YOU ARE HEREBY REMINDED
APPOINTMENT THIS OFFICE ANNUAL
CHECKUP AND FIVE YEAR
REPROGRAMMING 1400 HOURS THIS DATE.
PREPARE FOR ROUTINE PHYSICAL,
PSYCHOLOGICAL TESTS TO DETERMINE
AGING FACTOR. ALL NEW PROGRAM CHIPS
TO BE INSTALLED, INCLUDING OPTIONAL.
YOU MAY RETAIN OR CHANGE OPTIONAL.
NOTE: WHEN THE HELL ARE YOU GOING
TO LET US REPLACE YOUR ANTIQUATED
MINI FOR NEW ATOM POWERED MODEL?
P. T. HARRIS BUCHIEF.

Twombly wiped the screen. Of course he hadn’t forgotten. Minnie had already placed an order for a car. Good old Minnie. Like hell they would replace her. Not yet. He sat for a moment, thinking. They’d find him five years older, reflexes a bit slower. New programming would compensate. Obstacle detection devices would take over a little sooner when he drove on manual, putting him a little less in control. His heart would be monitored more carefully and his med­­save unit would probably get newer, more powerful drugs. Minnie would probably calm him down a little quicker when he got overexcited. Did he want his optional entertainment chip tampered with? No. His films, his recordings, his reading, his fantasy trips had all been carefully selected, carefully tested over many years. They would do without further change.

Twombly got up, dressed (he wanted no help from the waldos, those mechanical servants that Mike controlled), and dropped
64KB MICROPROCESSOR MEMORIES

- S-100 - $695.00
- LSI 11 - $890.00
- 6800 - $995.00

Cl-S100 64K x 8 on a single board. Plugs directly into the IMSAI, MITS, TDL, SOL and most other S-100 Bus computers. No wait states even with Z80 at 4Mhz. Addressable in 4K increments. Power requirement 6 watts. Price $695.00.

Cl-1103 8K words to 32K words in a single option slot. Plugs directly into LSI 11, LSI 11/2, H11 & PDP 1103. Addressable in 2K increments up to 128K. 8K x 16 $390.00. 32K x 16 $890.00 qty. one.

Cl-6800 16KB to 64KB on a single board. Plugs directly into Motorola’s EXORcisor and compatible with the evaluation modules. Addressable in 4K increments up to 64K. 16KB $390.00. 64KB $995.00.

Cl-8080 16KB to 64KB on single board. Plugs directly into Intel’s MDS 800 and SBC 80/10. Addressable in 4K increments up to 64K. 16KB $390.00. 64KB $890.00.

Tested and burned-in. Full year warranty.

Chrislin Industries, Inc.
Computer Products Division
31352 Via Colinas • Westlake Village, CA 91361 • 213-991-2254

Circle 46 on inquiry card.

Minnie into his inside jacket pocket from which nobody but he could remove it without calling out the police emergency vehicles and perhaps the National Guard; anyway, nobody had ever tried it. He went into his small but luxurious dining room to eat the late breakfast Minnie had summoned for him. He was served by one of his two household waldos, which glided across the carpet on a cushion of air, delicately bearing a plate of scrambled eggs in hands that could bend a steel I beam into a pretzel.

Mike operated the waldos, using their sensory substitutes for eyes, ears and sense of touch. Twombly had programmed Mike to speak through the waldos’ vocoder systems in an almost human male voice, and he had also fixed it so that when Minnie wanted to speak to him verbally through Mike, the waldos underwent a startling change of sex, answering in suitable feminine tones. She spoke to him now above the plate of scrambled eggs.

“I have ordered you a car, a Whinger Electric, to be here at one o’clock. Very few of the agencies still have those in their inventory. They are, as you know, obsolete. Next year we will have to pay the antique car premium to get one.”

“I know, I know; we’ll worry about that next year.” Twombly ate his eggs, retired to his study and programmed the next lesson in his study course, “Late 19th Century and Early Twentieth Century External Bathroom Architecture in Rural Areas.” Fifteen minutes before the hour of one o’clock he was standing on the sidewalk in front of his townhouse awaiting the Whinger Electric. He was not alone. Standing a few feet away from him was the occupant of the neighboring townhouse, a Professor John Carmody, who taught English to first year students at Radcliffe. Twombly wondered whether he should activate his nonintercourse signal, but Minnie’s low buzz indicated that the good professor had activated his own, thus solving the problem. It was, of course, the grossest kind of social blunder to speak to or take any notice of a person radiating a nonintercourse signal.

Just then the signal stopped, and before Twombly could activate his own signal, the professor spoke to him.

“Since your signal is off, sir, may I be permitted conversation with you?”

It was now too late to emit a nonintercourse signal, and the grossest kind of social impropriety not to answer.

“My dear Professor Carmody, you may indeed converse with me,” said Twombly.

“Nice day, isn’t it?”

“Yes, I perceive you are waiting for a car?”
"Indeed, yes. I am headed into the center of the city, to government sector. Do you wish to share my car?"

"No, no, my dear Mr Twombly; my own is on the way. Would you be interested in a small wager, say five dollars, as to which vehicle arrives first?"

"That would be most sporting," agreed Twombly. "Shall we say ten dollars?"

"Done," said Professor Carmody.

Although neither could now erect the nonintercourse barrier, by mutual unspoken agreement nothing more was said. At exactly one o’clock both vehicles came into view, arriving from opposite directions. Twombly’s arrived a fraction of a second before the professor’s. The professor nodded in token of defeat, and entered his car. Twombly’s bank balance would shortly grow by ten dollars. He felt very good about that. Entering the two seater electric, he took Minnie from his inside jacket pocket and inserted it in the slot in the dashboard. It was now his car, for a daily rental fee, until he removed Minnie and gave the car a signal to return to its depot. He put the car on automatic and keyed in the destination. He could not get a traffic ticket as long as the car was under automatic control by the city’s own traffic computer which directed the symbiotic duo of Minnie and the car’s computer.

Twombly leaned back, completely relaxed in the knowledge that he was in the safest environment ever known to mankind. No matter what difficulties there were, through rain, fog, sleet or snow the car would transport him without danger. If he had a heart attack, his medisave implant would go into action, administering adrenalin, electric shock, or whatever else was needed for the few minutes it would take for help to arrive. Minnie would work through the car computer and signal system to coordinate the meeting of the car with the nearest mobile medical unit, which would be receiving a flow of medical data and electrocardiograms. It was exceedingly difficult to die in an automobile, or on the street for that matter. Minnies could work directly into repeaters mounted on telephone poles no more than a mile apart throughout the entire city.

At government center the car parked itself to wait until Twombly’s return, since he had not given it instructions to return to the depot. He took Minnie out of the dashboard slot and returned it to his inside jacket pocket, stepped out of the car onto a moving walkway, and was carried into the building that housed the Boston office of the Federal Bureau of Computer Control. He took the elevator to the twelfth floor.
Office of Programming and Adjustment, where he underwent a battery of tests which proved that he was five years older. His Minnie was sent to one of many laboratories where highly skilled technicians made new program chips and inserted the chips in the Minnie to replace the ones which had served Twombly well for five years. It was late afternoon when Twombly left; an hour after that, one of the technicians approached the lab chief with an almost microscopic program chip in the palm of his hand.

“We have a condition red, I think,” he told the chief. “This is the alternate program entertainment chip from Twombly’s Minnie.”

“Carson,” said the chief, “that simply cannot be. He couldn’t get out of the building without a full complement of chips; the master computer wouldn’t let him through the door.”

Carson, his face almost as red as the little dot on the chip which meant alternate program, said: “He had a full complement of chips. I got the wrong one in. He got an experimental chip I was designing for my wife’s Minnie.”

“What kind of an experimental chip?” asked the chief in tones that made Carson’s flesh creep.

“You might call it a babysitting chip,” said the technician, “although it doesn’t just sit. I can tell you that we’re in a great deal of trouble if he activates that chip. We have to prevent that.”

“Condition red,” sighed the chief. “We have to key into his Minnie by way of the house computer, but we’ll have to get authorization from Washington. I’ll notify Harris; it’s his problem. He won’t like it much.”

“I don’t think we have time. He’ll most likely activate the entertainment chip after he finishes dinner; Twombly is predictable.”

“We have to take time. After that J E Lewyt scandal, where the untouchability of our beloved director was found wanting, we’ve been under very rigid orders about invading the privacy of private computers. We’ve got to get authorization.”

They got it after a three hour delay, but as Carson feared, it was too late. When the special code got them access to the Twombly house computer, it reported that Twombly had activated the alternate program entertainment chip. The chief sighed and requested a complete readout from the time of activation.

CHIP ACTIVATED 2030 HOURS. SEQUENCE COMPLETED: UNDRESSING, BATHING, DRYING, POWDERING, DIAPERING. AS INSTRUCTED BABY HAS BEEN PUT TO BED
"We can do without the burping," yelled the chief. "Carson, override the program at once; switch off the alternate program. My God, I think we have a law suit on our hands. You and I will end up in the coal mines."

"Program is off, chief. I'll see if I can get an informal but detailed report from his Minnie... it's coming now."

Chief of Laboratory Q, George Justine, had chewed the nails down to the quick on one hand and had started on the other when Carson leaned back in his chair and actually smiled.

"Twombly started to panic when the waldos grabbed him and started to undress him, but calmed down and gave in when he couldn't stop them. He seemed to be actually enjoying the bath, and when he was put to bed with the warm bottle he slurped it down and actually cooed. He is now in a deep, peaceful sleep, and his Minnie reports that his blood pressure is normal for the first time in months."

"Well, we're not off the hook yet, but it looks better."

"Chief, we'll call him in tomorrow and explain the mistake, and apologize. We'll give him back his entertainment chip and I'll take back the babysitter chip."

"I doubt it. I mean, we can call him in, but something tells me he isn't going to give up that chip. It fits in too well with his psychological profile. We'll have to give it to him in addition to the entertainment chip. We'll gain one thing; I think we can get him to take the newer model Minnie, because the one he has doesn't have room for any more alternate programs. If he wants to play baby, he'll have to exchange Minnies, and I think he will."

"I hate to lose that babysitter chip; I put a lot of work in on that."

"Carson, that's going to be the least of your worries. We're going to have to fill out lots of reports... you are. There'll be lots of investigations and an awful lot of flack. There is one possible ray of light, there may be other people like Twombly, and this may prove to be some kind of legitimate therapy. I don't know. That's for the psychologists to decide. Right now we have to get ready for the worst, charges of invasion of Twombly's privacy. We panicked. We went to the top to get authorization to enter the computer of a private citizen, citing clear and present danger. What did we achieve? We stopped a man from getting burped."
The **EAS**

Full-Size Floppy Disk Drive System

Introductory Price of $1,995 (List Price $2,495)

- Fully Assembled and Tested
- Two full-size 8" Shugart drives
- Power supply, interface, cables, cooling fan, strong aluminum chassis, attractive wood cabinetry.
- Controller with Western Digital 1771B controller chip and on board PROM boot strap loader for CP/M™, which is the disk operating system recommended and available separately from EAS including assembler, text editor and debugger, and EAS's I/O handlers (BIOS) together with powerful utilities.
- Available with or without controller.
- Capable of formatting diskettes
- 90 day parts and workmanship warranty.
- S-100, Z-80, 8080 compatible.
- Storage capacity is a quarter of a million bytes per drive, a total of a half a million bytes per system
- Shugart drives used in our systems have the most mechanical reliability of any flexible disk drives on the market.
- Dealer inquiries are invited.

Electro Analytic Systems, Inc.

PO Box 102 • Ledgewood, NJ 07852
Phone: (201) 584-8284

"CP/M™ is a trademark of Digital Research, Inc.

Commander in Chief

A Game for the TI-58 Programmable Calculator

Larry Kollar
Room 225 W Wadsworth Hall
Michigan Technological University
Houghton MI 49931

Commander in Chief is a TI-58 snowball war game for one player (see listing 1). After entering the program, press E. This clears the memory and initializes the random number generator (program 15 in the library module). You are now ready to play. Enter the number of snowballs you want up to 100 and push A. If you try to enter more than 100 snowballs, the program will place only 100 snowballs in your register. No iceballs allowed.

After a few seconds, the calculator will come back with a 1 or a flashing 1. If the display flashes, you are at war. Next, you estimate how many snowballs the enemy has and push B. The display will flash how many snowballs the enemy actually has. Following this, it will display a 1, 0 or -1 and then the year number; or the display will flash 9,999,999,99. If this occurs, there has been a holocaust and the enemy is rendered inoperative. If there is no holocaust, the 1, 0 or -1 tells you whether you have won, achieved a standoff, or lost; then the year number is displayed. You and your enemy have lost half of your snowballs and each of you will add more on the next year.

If there is no war at all during the year, you have the option of declaring war. The procedure is the same as that in which the enemy has declared war. If you can make it through ten years, you win the Snobel Peace Prize.

ACKNOWLEDGEMENTS

Thanks to David Nahakian for helping me with some of the program sequences.
Sample Game

<table>
<thead>
<tr>
<th>Year</th>
<th>Your Total Snowballs</th>
<th>Total Enemy Snowballs (not seen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>68</td>
</tr>
<tr>
<td>2</td>
<td>180</td>
<td>127</td>
</tr>
<tr>
<td>3</td>
<td>260</td>
<td>209</td>
</tr>
</tbody>
</table>

(Enemy declares war. Player estimates 191 snowballs, an error of 18. This is multiplied by the actual enemy snowballs and the number of his snowballs. The resulting holocaust factor is 978,120. The holocaust factor needed to cause a holocaust is 1,500,000. There has been no holocaust, so each power loses half his/her snowballs, discarding fractions. Player wins.)

<table>
<thead>
<tr>
<th>Year</th>
<th>Your Total Snowballs</th>
<th>Total Enemy Snowballs (not seen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>130</td>
<td>104</td>
</tr>
<tr>
<td>5</td>
<td>230</td>
<td>197</td>
</tr>
<tr>
<td>6</td>
<td>330</td>
<td>224</td>
</tr>
</tbody>
</table>

(Player declares war and estimates 251 enemy snowballs, an error of 27. The holocaust factor is 1,985,840. There has been a holocaust; and both sides are blitzed.)

Listing 1: Commander in Chief, a game for the Texas Instruments TI-58 programmable calculator.

Note that some of the operations of this TI calculator series allow multikey entries into one location. This is indicated by an asterisk within the key.

### Loc.	Keys	Commentary
000 | *Lbl E | Random number generator.
006 | *Pgm 15 *E* R/S *Lbl A | 100 is maximum number of snowballs added is one turn.
012 | \(\times\) t 1 0 0 \(\times\) t 1 | Lower limit
018 | \(\times\) t *Lbl SUM 00 | Upper limit
024 | 1 STO 10 | Add enemy snowballs
027 | 1 0 1 STO 11 | 0
032 | *Pgm 15 C *Int SUM 13 | 1
038 | 1 3 STO 11 | 0
042 | 15 C STO 20 | 0
046 | 9 \(\times\) t RCL 20 \(\times\) t | War ?
051 | \(\times\) *Lbl + 1 SUM 21 | 1
057 | RCL 21 R/S *Lbl B | 1
063 | RCL 13 *Pause = | \(\lfloor x \rfloor\)
068 | i CE X RCL 00 X | Holocaust factor
077 | STO 15 | RCL 13
079 | 1 5 0 0 0 0 | Maximum holocaust factor
086 | \(\times\) t RCL 15 \(\times\) t Inx RCL | 0
092 | 13 2 = | *Int STO
098 | 13 RCL 0 \(\div\) 2 = | 1
104 | *Int STO 0 \(\div\) RCL 13 | 1
110 | – | 1
111 | *Op 10 | Signum function (Who won ?)
113 | *Pause Pause RCL 21 GTO + | 1
119 | *Lbl \(\times\) CLR \(\div\) = RCL | Flash year number
127 | *Lbl Lnx CLR 1/x *CM’s R/S | You are rendered inoperative!
It really is a necessary part of your knowledge, even if you're never going to write FORTRAN programs.

The average small system user will not be able to use FORTRAN as a programming language for his or her system. Some small systems have BASIC, and there is at least one FORTRAN system for the 8080 (available from Microsoft), but FORTRAN is still chiefly a language for large computers (including minicomputers and mid-size computers). Nevertheless, there are many situations in which a knowledge of FORTRAN is important even to the small system user. The most important of these is in the description of algorithms. It is of no use to describe an algorithm in, say, INTEL 8080 assembly language, since this would not make sense to users of Motorola and other microcomputers; so algorithms are very often described either in FORTRAN, or in some other algebraic language. FORTRAN, though, seems to be the one that is used most often for this purpose, since more people know FORTRAN than any other algebraic language.

There are hundreds of books on FORTRAN today, all of which are written for the large system user who is, presumably, actually going to use FORTRAN to solve problems. It is very rare that one finds a description of FORTRAN written for those who merely need to understand algorithms written in FORTRAN, but who are going to rewrite those algorithms in some other language themselves. The present article is written to fill this need.

The basic function of an algebraic language, of course, is to allow one to write algebraic expressions directly. Given a formula like

$$ k = \frac{ij-i+j}{n} $$

one has to write, in assembly language, something like “load i; multiply by j; subtract i; add j; divide by n; store in k” in order to calculate the new value of k. On most small systems, the job is even harder than this. We have to call subroutines for multiplication and division, and in an 8080 based system, even addition and subtraction of quantities in memory cannot be done directly: the right addresses have to be loaded into H and L first. However, when we are describing an algorithm, rather than writing a program, the formula above is what interests us, and we would like to write it directly. In FORTRAN, we would write

$$ K = \frac{(i^*j-1+i^*j)}{N} $$

There are several differences between the FORTRAN version and the original formula. Some of them are due to the fact that we have to be able to key the FORTRAN formula into a system on a terminal or a keypunch. For instance, we have to use upper case letters instead of lower case and we have to use the slash (/) to mean “divide.” The parentheses are necessary because, if we did not use them, that is, if we wrote

$$ K = i^*j-1+i^*j/N $$

the formula we would be expressing would actually be

$$ k = ij-i+j $$

since division takes precedence over addition.
The last difference between the formula and its FORTRAN version is in the use of the asterisk (*). This is necessary whenever we have a multiplication, since \(IJ \), just as in assembly languages, would be the name of a single variable. In FORTRAN, the name of a variable must start with a letter, can contain only letters and digits (although some versions of FORTRAN allow a few extra characters, most do not), and has a maximum length which depends on the system being used. Typical maximum lengths for identifiers are eight characters (IBM 360 and 370) and six characters (UNIVAC 1100 series, DECsystem 10).

In addition to the use of formulas of this kind, FORTRAN involves a number of other statements which express commonly encountered sequences of instructions. Among these are:

1. **GO TO**. Where the 8080 assembly language user writes JMP K, meaning “Jump to K,” and the 6800 user writes BRA K, meaning “Branch to K,” the FORTRAN user writes GO TO 15, meaning “Go to statement number 15.” Statements in FORTRAN have numbers rather than names, and the numbers have nothing to do with addresses in the machine; they can be assigned arbitrarily and do not even have to be in sequence (as they do in BASIC).

2. **IF**. The keypunches used by many large system users do not have the characters \(<\), \(\leq\), \(\geq\), \(>\), or \(\neq\) (although they do have \(=\)) and FORTRAN therefore uses .LT. (less than), .GT. (greater than), .LE. (less than or equal), .GE. (greater than or equal), and .NE. (unequal). Thus “If A is less than B, then go to statement number 15” would be written in FORTRAN as

 \[
 \text{IF (A.LT.B) GO TO 15}
 \]

 FORTRAN is distinguished from BASIC (and ALGOL, PL/I, and various other algebraic languages) by requiring the parentheses after the keyword IF, and also by not making use of the word THEN. FORTRAN also uses .EQ. (equal) in comparing, and not the character \(=\), which is reserved for assignment statements involving formulas (such as in \(K = (1*J-I+J)/N \), discussed above).

3. **STOP**. This signals the end of an algorithm, although a large system will not actually stop at this statement, but will go on to do the next job (assuming that there are more jobs waiting to be done).

4. **END**. This is simply the last statement in a program and has nothing to do with stopping, which can happen at any time. That is, we can have several STOP statements in a program, but only one END statement.

5. **READ**. A READ statement in FORTRAN is largely self-explanatory; thus READ (5, 91) N, A, B reads in three quantities and calls them N, A, and B. The 5 in this statement is a FORTRAN convention: the standard input medium (as opposed to any special tapes or disk files which might be used) is referred to as unit number 5. The 91 is a reference to a FORMAT statement which describes, in this case, in what format N, A, and B are going to be given. This FORMAT statement can be ignored by the person who is merely interested in what the algorithm does.

6. **WRITE**. This is very much like READ, except for one peculiar convention: when one of the quantities to be written out is a constant string, this string is found in the associated FORMAT statement, rather than in the WRITE statement itself. An example should make this clear. Suppose we want to write out the sentence THERE ARE 7 ERRORS IN THE ABOVE PROGRAM. We have a count in our program

 \[
 \text{LET COUNT = 7}
 \]

 \[
 \text{WRITE (6, 92) C, COUNT, A, B}
 \]

 This would result in the output

 THERE ARE 7 ERRORS IN THE ABOVE PROGRAM.
ONLY PROGRAMMERS SHOULD BE ALLOWED TO SORT!

Isn't that ridiculous? They're your files, your information and your needs. Take control of them now with

SORT-80

available separately (for only $95.00) or as part of FMS-80, the only fully integrated microcomputer File Management System. From initial file definition through selective report generation, FMS-80 takes you every step of the way interactively.

Also ask about REMOTE-80 Intelligent Terminal Software; SCREEN DESIGNER—interactively create and utilize video forms; and MLU—the complete Mailing List Utility. All run under any CP/M-based system (IMDOS, CDOS, etc.). BASIC interfaces implemented for most through CALL, and all have unique benefits.

DEALERS: Have we got a deal for you! Liberal discounts and painless evaluation packages—we're waiting to hear from you.

COMPUTERS PLUS, INC.
678 S. Pickett St.
Alexandria, VA 22304. (703) 751-5656

CATCH THE S-100 BUS

<table>
<thead>
<tr>
<th>Product</th>
<th>List Price</th>
<th>Special Cash Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tarbell Floppy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disk Controller Kit</td>
<td>199.00</td>
<td>159.95</td>
</tr>
<tr>
<td>Percom Cassette</td>
<td>89.95</td>
<td>74.95</td>
</tr>
<tr>
<td>Interface Kit</td>
<td>35.00</td>
<td>29.00</td>
</tr>
<tr>
<td>Mullen Extender Board</td>
<td></td>
<td></td>
</tr>
<tr>
<td>with Probe Kit</td>
<td>35.00</td>
<td>29.00</td>
</tr>
<tr>
<td>SSM VBI-B</td>
<td>149.95</td>
<td>119.95</td>
</tr>
<tr>
<td>Video Kit</td>
<td>69.00</td>
<td>44.95</td>
</tr>
<tr>
<td>Godbout Econoram</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II8K Kit (Static)</td>
<td>135.00</td>
<td>114.95</td>
</tr>
<tr>
<td>IMC MB-1 12</td>
<td>1599.00</td>
<td>1339.00</td>
</tr>
<tr>
<td>North Star Horizon 1 Kit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Check Our Prices on
North Star, Vector Graphic, Cromemco, Solid State Music, TDL, Mullen.

Quantities Limited. Shipping and Insurance Extra. Prices Quoted Include Cash Discounts.

Bus...S-100, Inc.
Address...7 White Place
Clark, N.J. 07066
Interface...201-382-1318

called NERRS, which is, in this case, equal to 7. We would like to write a statement something like

WRITE “THERE ARE ”, NERRS, " ERRORS IN THE ABOVE PROGRAM”.

In FORTRAN, however, we have to write something like

WRITE (6, 92) NERRS

where statement number 92, the FORMAT statement, is

92 FORMAT (' THERE ARE ', 13, ' ERRORS IN THE ABOVE PROGRAM').

The 13 here is the format for NERRS (a three digit integer), while the 6 in the WRITE statement is like the 5 in the preceding READ statement; that is, unit number 6 is the standard output medium.

Where constant strings are not present, WRITE is very much like READ. That is, we can have a statement WRITE (6, 93) N, A, B which will write out the quantities N, A, and B. In some versions of FORTRAN, we find PRINT 93, N, A, B with the unit number 6 left out; the only thing to remember here is that we are not printing out the number 93, as this is the FORMAT statement number, just as before.

(7) DO. Suppose we want to repeat a group of statements N times. Then, just before these statements, we can write

DO 25 I = 1, N

where the last statement in the group to be repeated has statement number 25. This will not only cause the statements to be repeated, but will set the index I to a different value each time: 1 the first time, 2 the second time, and so on up through N the last time.

(8) CALL. The FORTRAN programmer can write CALL SUB, just like the 8080 programmer (the 6800 programmer would write JSR SUB, meaning "Jump to subroutine SUB"); the difference arises when the subroutine SUB has parameters. Where the small system user has to figure out his own way of passing parameters, FORTRAN does this automatically. If the parameters are A, B, and C, for example, the FORTRAN programmer simply writes CALL SUB(A, B, C).

(9) SUBROUTINE. At the beginning of every subroutine there is a statement like SUBROUTINE SUB(X, Y, Z), which says that the name of this subroutine is SUB and that its dummy parameters (sometimes called formal parameters) are X, Y, and Z. This means that if SUB is now called as above (that is, with the statement CALL SUB(A, B, C)), then X corresponds to A,
Y corresponds to B, and Z corresponds to C.

(10) RETURN. This is used in a subroutine in place of STOP; it stops the subroutine and returns to the program (which could possibly be another subroutine) which called this subroutine. If we use STOP in a subroutine, the entire job will stop.

(11) FUNCTION. In FORTRAN there are certain special functions: SORT (square root), SIN (sine), COS (cosine), and the like. Thus the FORTRAN statement Y = SORT(A) sets Y equal to the square root of A. But FORTRAN also allows the programmer to make up his own functions. These are coded like subroutines, with two exceptions. We start a function with a statement like FUNCTION F(X, Y, Z) which tells us that F is the name of the function and X, Y, and Z are the dummy parameters. At the end of the function (normally just before RETURN) we write F = e, where e stands for whatever we want the value of the function to be. If we then use the function F by writing U = F(A, B, C), then, just as before, X corresponds to A, Y corresponds to B, Z corresponds to C, and e will now be computed and U will be set equal to e.

(12) DIMENSION. This is used to define tables (arrays). DIMENSION A(50), for example, defines a table of 50 variables which are called A(1), A(2), and so on up through A(50). We can also, of course, make reference to A(i), A(j+1), and the like. DIMENSION B(3, 3) defines a matrix of nine variables, B(1, 1) through B(3, 3), and we can make reference to B(i, j) if i and j have values 1, 2, or 3.

(13) REAL. Most large systems, of course, have floating point representations for real numbers. FORTRAN assumes that every variable represents a real number unless its name begins with L. Thus REAL LAMBDA specifies a variable in a subroutine which is called this subroutine. If we use REAL instead of INTEGER for a variable, the entire job will stop.

(14) INTEGER. The INTEGER statement allows us to define variables whose names do not begin with I, J, K, L, M, or N to be integers rather than real numbers. An integer on a large system is typically 32, 36, 48, or 60 bits long; an integer on a minicomputer or a midsize computer is typically 12, 16, 18, or 24 bits long.

(15) COMMON. Normally, when we have a variable in a subroutine which is called (for example) J, and another variable in the main program (or another subroutine) which is also called J, these are treated by FORTRAN as two different variables. The
exception to this rule occurs when J appears in COMMON statements in both programs. The rules for writing COMMON statements properly are complex; but in a published program, one may always assume that the rules have been properly followed.

Every so often, one will be faced with a program written in some algebraic language other than FORTRAN, such as ALGOL or PL/I. The main differences between these languages are as follows:

1. GOTO. Statements in FORTRAN and BASIC have numbers, but statements in ALGOL and PL/I have names. When a name is defined it is followed by a colon.

2. IF. Most algebraic languages other than FORTRAN use the additional keyword THEN, and many also allow the keyword ELSE (meaning “otherwise”). Thus IF α THEN β ELSE γ means “If α is true, then do the statement(s) β; otherwise, do the statement(s) γ.”

3. STOP. ALGOL does not have a STOP statement; to stop in the middle of a program, one writes GO TO α, where α is a label (followed by a colon) just before END at the end of a program.

4. END. In ALGOL and PL/I there are two kinds of END. One is used just as in FORTRAN, and the other is in the middle of a program paired with BEGIN. The statements between BEGIN and END are called a block (or sometimes a compound statement), and may take the place of a single statement wherever one can legally occur in the language. PL/I also requires an END paired with each DO.

5. READ. PL/I has two kinds of READ, one called READ and the other called GET. The GET variation is used when built-in format conversions are to be exercised. Some variations of GET involve no statements at all, but many ALGOL programmers assume that there is a subroutine called inreal(x), which inputs the real number x, and similarly ininteger(x), which inputs the integer x.

6. WRITE. PL/I uses WRITE as well as another form called PUT. WRITE corresponds to READ and PUT corresponds to GET. ALGOL has outreal(x) and outinteger(x), which correspond to inreal(x) and ininteger(x).

7. DO. In PL/I, in order to repeat certain statements from i = 1 to N, we write DO I = 1 TO N (note the word TO), followed by the statements to be executed, followed by END. In ALGOL, we write

Available for Immediate Delivery

TRS-80 OWNERS

SOFTWARE NOW AVAILABLE
CASSETTE OR DISC (DOS)

BUSINESS — Complete small business, inventory control, invoicing, accounts receivable, accounts payable, general ledger, mailing list, payroll.

GAMES — Exciting new games to make your TRS-80 more fun.

HOME — Complete home budget, checkbook, savings, loans.

OVER 100 EXCITING PROGRAMS
—MORE ADDED EVERY DAY—

EDUCATION — ELECTRONICS — MARKETING
PROGRAMS FOR PET AND APPLE
- Level I BASIC and Level II BASIC
- Choose printer option on many programs
- Custom programs available
- We also purchase original programs

SEND FOR A COMPLETE LIST OF PROGRAMS NOW!

SOFTWARE 80
25469 Hardt Street, Loma Linda, CA 92354
(714) 962-3423

$1195

U.S. ROBOTICS SERIES-300 MODEMS

300 BAUD
103/113 COMPATIBLE
ACOUSTIC/HARDWARE VERSIONS
ORIGINATE/ANSWER VERSIONS

U.S. Robotics now combines the price/performance leader in 300 Baud Modems with the price/performance leader in hardcopy terminals to bring you teleprinter capability at incredible package prices:

- **USR-310 Originate Acoustic Coupler + Teletype Model 43 KSR** = $1195
- **USR-330 Originate/Auto-Answer FCC Certified Modem + Teletype Model 43 KSR** = $1395
- **USR-320 Auto-Answer FCC Certified Modem + Teletype Model 43 R0** = $1215

Stand alone modems and teletype available:

- **Teletype 43 KSR with RS232C** = $1095
- **USR-310 Originate Acoustic Coupler (operates with any standard telephone)** = $139

Direct Connect DAA

TELETEYPE MODEL 43

- **USR-330 Originate/Auto-Answer Modem** = $234
- **USR-320 Auto-Answer Modem** = $299

(F.C.C. Certified Package. Connection to phone lines via standard extension phone jack.)

U.S. ROBOTICS, INC.
2440 N. Lincoln/Chicago, IL 60614/(312) 528-9045

Circle 321 on inquiry card.
for \(I := 1 \) step 1 until \(N \) do begin, followed by the statements, followed by end; if there is only one statement to be repeated, then begin and end are not necessary (although they may appear). In BASIC, we write \FOR I=1 \TO N, followed by the statements, followed by NEXT I.

(8) CALL. In BASIC we write GOSUB \(n \), meaning “Go to a subroutine at statement number \(n \)”; subroutines in BASIC do not have names as they do in FORTRAN, ALGOL, and PL/I. In ALGOL, we leave out the word CALL; thus \(\text{SUB}(A, B, C) \) by itself is a statement which calls the subroutine \(\text{SUB} \).

(9) SUBROUTINE. Subroutines in ALGOL and PL/I are called procedures, and where in FORTRAN one would write \(\text{SUBROUTINE } \text{SUB}(X, Y, Z) \), in ALGOL one writes procedure \(\text{SUB}(X, Y, Z) \), and in PL/I one writes \(\text{SUB}: \text{PROCEDURE}(X, Y, Z) \). The situation in ALGOL is especially confusing because a subroutine is written inside the program of which it is a subroutine, at the beginning of that program with all the other declarations (real, integer, and the like). This makes it very difficult, in practice, to figure out where the first statement of an ALGOL main program is, particularly if it has a lot of nested subroutines. You have to start at the beginning of the program and work your way through all the subroutines, each of which is declared by a procedure statement with a matching end (which you have to find); then you suddenly come, with no warning, upon a simple statement like \(I := 1 \) and, believe it or not, that is where you are supposed to start executing.

(10) RETURN. In PL/I you write \(\text{RETURN}(e) \) to correspond to \(\text{RETURN } F = e \) followed by RETURN in FORTRAN, where \(F \) is the name of a function.

(11) FUNCTION. The terms corresponding to the FORTRAN FUNCTION for ALGOL and PL/I are INTEGER PROCEDURE, REAL PROCEDURE, and the like; the adjective before PROCEDURE tells you whether the value of the function is supposed to be an integer, a real number, or whatever.

(12) DIMENSION. In BASIC, one writes DIM instead of DIMENSION. In ALGOL, one writes integer array or real array; in PL/I, one writes DECLARE, which may be shortened to DCL (and usually is). DECLARE in PL/I is an all-purpose declaration having dozens of variations, but DECLARE \(A(100) \), sometimes followed by various other keywords, is roughly like DIMENSION \(A(100) \) in FORTRAN, as is real array

for \(I := 1 \) step 1 until \(N \) do begin, followed by the statements, followed by end; if there is only one statement to be repeated, then begin and end are not necessary (although they may appear). In BASIC, we write \FOR I=1 \TO N, followed by the statements, followed by NEXT I.

(8) CALL. In BASIC we write GOSUB \(n \), meaning “Go to a subroutine at statement number \(n \)”; subroutines in BASIC do not have names as they do in FORTRAN, ALGOL, and PL/I. In ALGOL, we leave out the word CALL; thus \(\text{SUB}(A, B, C) \) by itself is a statement which calls the subroutine \(\text{SUB} \).

(9) SUBROUTINE. Subroutines in ALGOL and PL/I are called procedures, and where in FORTRAN one would write \(\text{SUBROUTINE } \text{SUB}(X, Y, Z) \), in ALGOL one writes procedure \(\text{SUB}(X, Y, Z) \), and in PL/I one writes \(\text{SUB}: \text{PROCEDURE}(X, Y, Z) \). The situation in ALGOL is especially confusing because a subroutine is written inside the program of which it is a subroutine, at the beginning of that program with all the other declarations (real, integer, and the like). This makes it very difficult, in practice, to figure out where the first statement of an ALGOL main program is, particularly if it has a lot of nested subroutines. You have to start at the beginning of the program and work your way through all the subroutines, each of which is declared by a procedure statement with a matching end (which you have to find); then you suddenly come, with no warning, upon a simple statement like \(I := 1 \) and, believe it or not, that is where you are supposed to start executing.

(10) RETURN. In PL/I you write \(\text{RETURN}(e) \) to correspond to \(\text{RETURN } F = e \) followed by RETURN in FORTRAN, where \(F \) is the name of a function.

(11) FUNCTION. The terms corresponding to the FORTRAN FUNCTION for ALGOL and PL/I are INTEGER PROCEDURE, REAL PROCEDURE, and the like; the adjective before PROCEDURE tells you whether the value of the function is supposed to be an integer, a real number, or whatever.

(12) DIMENSION. In BASIC, one writes DIM instead of DIMENSION. In ALGOL, one writes integer array or real array; in PL/I, one writes DECLARE, which may be shortened to DCL (and usually is). DECLARE in PL/I is an all-purpose declaration having dozens of variations, but DECLARE \(A(100) \), sometimes followed by various other keywords, is roughly like DIMENSION \(A(100) \) in FORTRAN, as is real array
SUPERKIM
MICROPRODUCTS HAS THEM

MICROPRODUCTS announces Superkim, its new singleboard control computer for commercial, industrial and hobbyist uses. Superkim can accommodate 4K RAM and 16K EPROM onboard.

This super controller can be applied to any situation where intelligent control is desirable, such as any manufacturing or production line process where automation is possible or to automatic tool operation or to real-time data collection. The board has a large prototype area suitable for mounting Analog to Digital, Digital to Analog converters, relays and other interface devices.

Superkim is totally compatible with all KIM-I software and most KIM-I and APPLE II hardware interfaces. It has TTY, RS232 and audio cassette interfaces as well as an onboard 5 volt, 3 amp and 12 volt regulator, rectifier diodes and filter capacitor. Superkim has eight latched priority interrupts which are individually resetable under software control. This feature is absolutely essential for implementing highly useful real time systems.

MICROPRODUCTS can supply a hardware interface and a software downloading routine for the APPLE II and a firmware receiver routine, located in a 2716 EPROM, for installation in the Superkim. This greatly facilitates software development for the Superkim because of the powerful MICROPRODUCTS APPLE II Co-resident assembler, the MICROPRODUCTS/ APPLE II Co-resident assembler and the MICROPRODUCTS APPLE II Interface and the large memory available in the APPLE II. The software can be instantaneously transmitted from your APPLE II software development system to your Superkim RAM for instant checkout and use. *KIM-I is a product of MOS Technology

APPLE II
DEVICES BY MICROPRODUCTS

MICROPRODUCTS/APPLE II IR-40 and Centronics Interface 49.95
MICROPRODUCTS/APPLE II 16-bit parallel output port card 44.95
MICROPRODUCTS/APPLE II Co-resident assembler on cassette 19.95
MICROPRODUCTS/APPLE II Co-resident assembler on floppy disc 25.00
MICROPRODUCTS/APPLE II 16K EPROM programable 20.00
MICROPRODUCTS/APPLE II 5 volt, 3 amp board .. 14.95
MICROPRODUCTS/APPLE II 12 volt, 5 amp board ... 129.95
MICROPRODUCTS Superkim single board control computer 395.00
MICROPRODUCTS 16 character alphanumeric LCD .. 795.00
MICROPRODUCTS/KIM-1 improved keyboard with double-sided gold plated pc board ... 30.00

MICROPRODUCTS

Dealers inquired invited California residents add 6% sales tax
2107 Artesia Blvd. Redondo Beach / CA 90278
(213) 374-1673

Why Pay More?

Why pay for more printer than you need? Our series 40 printers offer more features for less bucks than any other commercial quality printer on the market today. A complete stand-alone 40 column impact dot matrix printer with a 64 character ASCII set. Includes power supply, casework and interface electronics. Single quantity price for the parallel ASCII interface model is $425. Serial RS232/current loop interface models start at $575. OEM discounts available.

For more information write to:
MPI 2099 West
2200 South, Salt Lake City, Utah
84119 or call (801) 973-6053.

A [1:100] in ALGOL (the 1 here is the lower bound on subscripts, which may be arbitrary in ALGOL, although it is always 1 in FORTRAN).

(13) REAL. In ALGOL, the REAL attribute refers to representation as a floating point number. [Note that the attribute FLOAT performs this function in PL/I, and that REAL in PL/I is used only to distinguish real from complex numbers.]

(14) INTEGER. BASIC assumes that all numbers are real; integers will be treated as if they are real numbers, which usually works the way we want it to, although some operations like division must be watched carefully. In ALGOL, all integers must appear in integer statements.

(15) COMMON. In PL/I, all main routine variables are common (called "global" in PL/I parlance) to internal subroutines (ie: the subroutine is declared by a PROCEDURE statement within the boundaries of the calling PROCEDURE and its END) unless it is redefined in the subroutine. The EXTERNAL attribute is used to share variables between external procedures. In ALGOL, any variable in a main program may automatically be used in any of its subroutines, unless there is another variable declared in the given subroutine that has the same name.

(16) Assignment statements. In ALGOL, the symbol := is used where = is used in FORTRAN, BASIC, and PL/I. In addition, = is used where .EQ. is used in FORTRAN. Some versions of BASIC permit, and some require, the word LET at the beginning of every assignment statement.

(17) Semicolons. Every statement in ALGOL ends with a semicolon unless it is followed by end. Every PL/I statement is followed by a semicolon.

There are hundreds of other differences between the various algebraic languages, but these are the basic ones which are required to be able to read published algorithms in FORTRAN, ALGOL, BASIC, and PL/I. Most such algorithms, with a few notorious exceptions, are presented in such a way as to use only the rules described above. The reader whose appetite has been stimulated by the possibilities of algebraic languages might do well to supplement his small system knowledge by renting a small amount of time (perhaps $100 worth) on a large system and trying out various features of FORTRAN, PL/I, and the like. This is, of course, in addition to the use of cross assemblers and cross compilers, which still require large systems to produce small system object code.
NEW BASIC SOFTWARE FROM REAL WORLD SIMULATIONS

PRO FOOTBALL HANDICAPPING PROGRAM
Includes user's guide, theoretical development, sample input data and output, make money with your computer! 10K
$26.00

DRAW POKER SIMULATOR
Gardena, CA. Rules (Deck includes Joker), you play against up to six other players controlled by the program. Improve your poker skills. 13K
$18.00

CHESS SCRAMBLE
Exciting new chess game for two players and a computer. Combines the luck element of backgammon with chess skill and strategy 11K
$9.00

MODEL ROCKET/AIRPLANE PERFORMANCE SIMULATOR
Allows you to "fly" your model design before building it. Includes instructions on how to measure or calculate all input data. 10K
$26.00

BEAM DEFLECTION AND STRESS PROGRAM
Allows for variable cross section, any end conditions, elastic bed or discrete supports. Great design aid for books, cantilevered desks, slab bridges, sun decks, etc. 7K
$26.00

ALL PROGRAMS ARE IN NORTH STAR BASIC AND MAY BE ORDERED ON DISK FOR AN ADDITIONAL $2.00. SOFTWARE LIBRARY SPECIAL: TAKE ANY FOUR OF THE ABOVE PROGRAMS FOR $49.00. INSTRUCTIONS ARE INCLUDED FOR CONVERSION TO OTHER BASICS. CALIFORNIA RESIDENTS PLEASE ADD 6% SALES TAX.

HERE IS THE LATEST AND BEST IN 8080/Z80 DISK SOFTWARE

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP/M™ FDOS and Utilities</td>
<td>$145</td>
</tr>
<tr>
<td>Microsoft FORTAN-80</td>
<td>$400</td>
</tr>
<tr>
<td>Microsoft COBOL-80</td>
<td>$625</td>
</tr>
<tr>
<td>Microsoft Disk Extended BASIC</td>
<td>$300</td>
</tr>
<tr>
<td>Microsoft MACRO-80 MACRO Assembler/Linking Loader</td>
<td>$149</td>
</tr>
<tr>
<td>Microsoft MACRO-80 (as above) w Subroutine Library</td>
<td>$219</td>
</tr>
<tr>
<td>Microsoft EDIT-80 Line Editor</td>
<td>$89</td>
</tr>
<tr>
<td>Xitan SUPER BASIC (A3)</td>
<td>$99</td>
</tr>
<tr>
<td>Xitan DISK BASIC (A3+)</td>
<td>$159</td>
</tr>
<tr>
<td>Xitan Z-TEL Text Editor (A3, A3+)</td>
<td>$69</td>
</tr>
<tr>
<td>Xitan Text Output Processor (A3, A3+)</td>
<td>N/A</td>
</tr>
<tr>
<td>Xitan MACRO ASSEMBLER A3, A3+</td>
<td>$69</td>
</tr>
<tr>
<td>Xitan Z-BUG (A3+)</td>
<td>$89</td>
</tr>
<tr>
<td>Xitan LINKER (A3+)</td>
<td>$69</td>
</tr>
<tr>
<td>Xitan Package A3 (as keyed above)</td>
<td>$249</td>
</tr>
<tr>
<td>Xitan Package A3+ (as keyed above)</td>
<td>$409</td>
</tr>
<tr>
<td>Micro Focus CIS Cobol</td>
<td>$500</td>
</tr>
<tr>
<td>Source Disk Based Disassembler</td>
<td>$80</td>
</tr>
<tr>
<td>ZASM Zilog™ Mnemonic Assembler</td>
<td>$45</td>
</tr>
<tr>
<td>XY BASIC Process Control Language</td>
<td>$300</td>
</tr>
<tr>
<td>SMAL/80 Structured Macro Assembler Language</td>
<td>$75</td>
</tr>
<tr>
<td>CBASIC Compiler/Interpreter BASIC</td>
<td>$95</td>
</tr>
<tr>
<td>MAC Macro Assembler</td>
<td>$100</td>
</tr>
<tr>
<td>SID Symbolic Instruction Debugger</td>
<td>$85</td>
</tr>
<tr>
<td>TEX Text Formatter</td>
<td>$85</td>
</tr>
<tr>
<td>General Ledger</td>
<td>$995</td>
</tr>
<tr>
<td>Accounts Receivable</td>
<td>$750</td>
</tr>
<tr>
<td>NAD Name & Address Processor</td>
<td>$79</td>
</tr>
<tr>
<td>QSORT Disk File Sort/Merge Utility</td>
<td>$95</td>
</tr>
</tbody>
</table>

Most software available in a variety of diskette formats including: IBM 8" single and double density; North Star CP/M; Micropolis CP/M; and 5" soft sectored. All Lifeboat software requires CP/M to operate.

Watch for the December 1978 release of the above software on Processor Tech Helios II; Altair Disk; and iCOM Microdisk systems.

Available from computer stores nationwide or order direct from:

LIFEBOAT ASSOCIATES

164 W. 83rd Street □ New York, N.Y. 10024 □ (212) 580-0082
Comments on the RF Entry Method for Video Monitors

Victor A Wiseman
7960 Grand Oaks Ct
Gurnee IL 60031

Photo 1: Author’s system with Processor Technology SOL-20 computer and rear view of RF entry video display.

Photo 2: Typical display of the system.

This is a reply to a statement in Mr Fylstra’s article “Convert Your TV Set to a Video Monitor,” which appeared in the May 1978 BYTE, page 22.

While I will not contest Mr Fylstra’s statements and arguments that the direct video entry method is definitely superior to the radio frequency (RF) entry method, I must take a stand against his statement that the radio frequency entry method “…is enough to display at most about 32 characters per line.” Mr Fylstra has accurately identified and reported the pros and cons of the two methods, but an individual reading his article and contemplating a 64 or 80 character per line display would immediately discard the possibility of the radio frequency entry method. My experiences should prove this to be unfair.

When considering the options I had for adding a video display to my SOL-20, I considered buying a monitor for $180, converting my television for direct entry, and using the radio frequency entry method. Since I already had a portable television suitable for the job, I decided against spending $180 for a monitor. This left me with the direct video and radio frequency entry methods. I then armed myself with a Sams Photo-Fact folder and performed some exploratory surgery on my television. This convinced me that I could use the direct entry method, but it would require some care and time to do properly. I finally decided that the most expedient method would be the radio frequency entry method; the cost was low enough so that, if it didn’t work out, I would not have lost much.

As it turned out, the radio frequency entry method proved entirely satisfactory for my needs and I have been using it for the past year and a half.

Photo 1 shows my system. The processor is a SOL-20 which incorporates everything on a single printed circuit board, including the video display generator. The output of this generator is fed through the black cable coming from the back of the SOL and across the back of the television. This is part of a section of shielded coaxial cable supplied with the SOL-20 kit. It is connected to a small aluminum box containing a Pixe-Verter, a battery pack of 4 AA cells, and an on/off switch (hidden). The radio frequency output from the Pixe-Verter is fed through a twisted pair of solid conductor wires to the small black connector on the back of the television set. This connector was supplied with the set and is used for connecting an external antenna. The upper binding posts are for VHF and the lower are for UHF, the switch in the center is for a local/distant setting (it is set for local).
A Message to our Subscribers

From time to time we make the BYTE subscriber list available to other companies who wish to send our subscribers promotional material about their products. We take great care to screen these companies, choosing only those who are reputable, and whose products, services, or information we feel would be of interest to you. Direct mail is an efficient medium for presenting the latest personal computer goods and services to our subscribers.

Many BYTE subscribers appreciate this controlled use of our mailing list, and look forward to finding information of interest to them in the mail. Used are our subscribers' names and addresses only (no other information we may have is ever given).

While we believe the distribution of this information is of benefit to our subscribers, we firmly respect the wishes of any subscriber who does not want to receive such promotional literature. Should you wish to restrict the use of your name, simply send your request to BYTE Publications Inc, Attn: Circulation Department, 70 Main St, Peterborough NH 03458. Thank you.

This publication is available in microform

Please send me additional information.

University Microfilms International
300 North Zeeb Road 18 Bedford Row
Dept. P.R. Dept. P.R.
Ann Arbor, MI 48106 London, WC1R 4EJ
U.S.A. England

Name______________________________
Institution__________________________
Street_____________________________
City_______________________________
State________________ Zip___________

This message is available in microform.
The television itself is a Sony Model 9-51UW with a 9 inch (13.5 cm) diagonal screen. It is over 11 years old and well-used.

About the Photos

All photos were taken with a Leica M3 with a 50 mm F/2 dual range Summicron lens, using Tri-X ASA 400 35 mm film. The delayed shutter release was used to dampen vibration effects. Photo 1 was taken with existing light from a window on a sunny day at 1/60 second at f/5.6. Photos 2 and 3 were taken at a distance of 21 inches (53 cm) at 1/30 second at f/4. The bright diagonal bands seen on the screen are due to the discrepancy between the shutter speed, the scan rate of the television, and the focal plane shutter of the camera used to take the photos. The darkening at the top of the screen, the heightening of the characters at the top, and the slight slanting of the characters is due to the poor vertical and horizontal linearity of the set. The slight fuzziness of the display at the left of the pictures is due to depth of field restrictions. Overall, photos 2 and 3 accurately represent what is seen by the human eye and brain (eye persistency eliminates the bright diagonal bands).

Photo 2 is a common display of a portion of a program listing using all upper case characters. Photo 3 is a generated display of a selected portion of the available character set. Control characters were eliminated, since they would cause unwanted display functions like carriage returns and screen clearing. Photos 2 and 3 each show one or more lines with 64 characters each.

Photo 3 is most indicative of the limitations of the radio frequency entry method. The lower case characters m and w show a definite merging of the dot pattern. The upper case versions also show this effect to a lesser degree. In normal use, however, the human eye and brain manage to fill in gaps in definition.

I hope this material will show that the radio frequency entry method is capable of producing a very satisfactory video display of 64 characters per line.
space potential of the current 8 bit microprocessors has effectively become saturated.

This saturation of memory address space in the 8 bit 40 pin package microprocessors with a mere eight parts leads to the next new high in semiconductor technology's current innovations: the testing and subsequent approach to volume production of three excellent large scale microprocessors which provide 23 and 24 bit address spaces capable of reaching 8 or 16 million bytes of memory (or peripheral hardware.) I refer of course to the new crop of 16 bit traditional microprocessors introduced by Intel, Zilog and Motorola. Perhaps the first such part was the Intel 8086 announced last spring and most likely in production by the time this is written. (From one contact I heard mention of an even newer 8087, but have not seen any written information on such a part to date.) The second part, announced shortly after the 8086 last spring, is the Zilog Z-8000. But what appeals to my mind, after hearing engineering introductory talks on all three of these new products by representatives of the companies, is the Motorola 68000. It is my own personal favorite, providing a 24 bit byte address space and a relatively simple system design concept without elaborate memory paging and address bus multiplexing requirements. It is the kind of 16 bit microprocessor I like, namely one with a separate 24 bit byte address bus, a 16 bit bidirectional data bus and simple power supply requirements. If I were to build a new system of the homebrew variety at the present time, it is the one I would most likely use. For the moment then, the three processors from Intel, Zilog and Motorola are the best possibilities for overcoming the address limitation problems which become very real as the 64 K dynamic memory parts come to market.

The third major development of the current crop of large scale integration technology is that of new video display controller chips. These parts are actually in production at the present time, and are, no doubt, quietly buried in the designs of many of the personal computing products which have come to the market for the first time in late 1978 and those which will arrive in early 1979. We've already received a number of articles on this kind of device, articles which readers will see in an upcoming special issue on the theme of video graphic interfaces.

The final and most exciting development of recent months was relayed to me by Ken Bowles of the Pascal project at the University of California at San Diego (UCSD) in a phone conversation this past September 20. This is the development of a microcomputer chip set which directly executes the UCSD Pascal compiler's p-code intermediate language. The firm responsible for this innovation is Western Digital, 3128 Red Hill Av, POB 2180, Newport Beach CA 92663. In phone conversation with Dr Larry Lotito of Western Digital I found out some more details about the processor, which he and Ken jokingly call a "sand casting" of the UCSD p-code interpreter. This first high level language machine in microprocessor form will come to market in several forms in January of 1979.

As readers familiar with the development of minicomputer technology into microcomputer form will recall, Western Digital was the semiconductor manufacturer which designed and first supplied the chip sets for the Digital Equipment Corp (DEC) LSI-11 product several years ago. These chip sets consist of a microprogram controller and a set of read only memory programs which emulate the desired computer's architecture. After the first LSI-11 parts had been created and marketed, DEC began its own in house semiconductor fabrication efforts and Western Digital turned out to have less of a
market for its microprocessors than might have been expected.

In the past two years or so, several variations of the basic 16 bit architecture of this chip set have been offered on a custom basis, and at least one such variation has appeared in the form of an advanced S-100 bus computer (MCP-1600). Of course, Western Digital has continued to supply standard parts for the digital systems markets, such as floppy disk controller chips, and serial communications interfaces, among others. With the experience of producing more than one read only memory microcode definition for the MCP-1600 microprocessor system design, it was not hard for the firm to write the microcode needed to emulate a new design, a "P-engine" that executes the intermediate language codes produced by the Pascal compiler developed by UCSD. Western Digital calls the resulting chip set the "Pascal Micro Engine" and considers this name their proprietary trademark. According to Larry, this product will be widely available in several forms in January of 1979. What is significant is that the software development system for this chip set is the UCSD Pascal system without any modification: a com-

PCE ELECTRONICS

16/4+1 EPROM/RAM BOARD Z-80 SOFTWARE

- S-100 Compatible
- Sockets for up to 16 2708's
- Erpom addressable in 4K blocks
- Ram runs at any 1K boundary
- Disable/enable ram or any erpom
- 0 to 4 erpom waitstates
- Solder mask-silk screen

$130-kit $155-assembled

add $5 for 250ns ram

Software on Dajen/Teletek tape or add $5 for 8 CPM disk, send memory map.

$25.00

$20.00

SPHINXMON 1.0 A complete system monitor (4K). TDL/Xitan compatible

- Master charge
- 5% for shipping
- VISA
- Calif. residents add 6% sales tax
- COD requires 50% deposit

PCE Electronics
4782 Dewey Drive
Fair Oaks CA. 95628

PET PRINTER ADAPTER

The CmC ADA 1200 drives an RS-232 printer from the PET IEEE-488 bus. Now, the PET owner can obtain hard copy listings and can type letters, manuscripts, mailing labels, tables of data, pictures, invoices, graphs, checks, needlepoint patterns, etc., using a standard RS-232 printer or terminal.

$98.50 ADA 1200B
Assembled and tested

$169.00 ADA 1200C
With case, power supply and RS-232 connector

Order direct or contact your local computer store. Add $3.00 for postage and handling per order.

CmC
150 POCONO RD, BROOKFIELD, CT 06804
(203) 775-9659

Circle 77 on inquiry card.
gressive local dealers to the personal computer trade.

Western Digital, however, considers itself mainly a semiconductor manufacturer, so one of the reasons for the relatively low price on the development system's processor kernel is to promote sale of the chip sets for use in new designs. We can expect to see more than one personal computer manufacturer taking advantage of this development, for the characteristics of the directly executed p-code method allow programs to run from six to eight times faster than would be possible using the LSI-11 versions of the software.

In the LSI-11 version of the UCSD system (or any other conventional processor's version) there are two levels of emulation. At the first level is the hardware needed to execute the instruction set of the particular microprocessor, be it 8080, LSI-11, 6800, 6502 or any other instruction set. The second level comes in when the particular microprocessor runs an interpreter which emulates the P-machine. With the Western Digital innovation, the P-machine is directly executed by the hardware which is seen by the system designer. This direct execution is the reason for the improvement relative to the LSI-11 which uses very similar hardware. Designers who are interested in creating dedicated microprocessor systems that use the most advanced and reliable software development techniques will find this chip set a natural one to use. Designers of personal computing products will also find it useful, for the extremely powerful UCSD Pascal software system fits naturally into the machine.

This announcement of a high level language machine for Pascal is perhaps the high point of the current crop of wonders which include the 64 K memories, large scale microprocessors and video controllers. Some people have disputed the relevance of high level languages like Pascal, on the ground that they demand expensive systems, but the arrival of the relatively inexpensive Western Digital machine next month is perhaps the last word on that argument for now. The nature of the new levels of sophistication in the larger microprocessor chips such as the 8086, Z-8000 and 68000 complement the new heights of memory density in the 64 K chips and further indicate both the need for and practicality of high level languages like Pascal in future personal computers.

YOUR 68000 BASIC BOMBING?

Try our guaranteed Basic with print using statements, renumbering with automatic revectoring, random disc files and more.
(Specify Smoke Signal Broadcasting or cassette) .. $50
Editor — Text Processor with mailing lists and labels, full disc handling capabilities.
(Specify Smoke Signal Broadcasting or Flex) ... $100
Super Payroll includes initial loader, payroll, editor-text processor, 941 and unemployment compensation reports, departmental analysis, up to 10 states and 10 additional cities (or local governments), and more.
(Specify Smoke Signal Broadcasting, Flex, or MSI) $400

6800 Specialists — Custom Programming Our Specialty

AAA Chicago Computer Center
3007½ W. Waveland Avenue
Chicago, IL 60618

MONKEY SEE, MONKEY DO

JUST LIKE A MULLEN CONTROLLER

Thanks to 8 opto-isolator inputs, the CB-1 Controller Board Kit ($88) can "see" a variety of conditions, and pass this information along to your computer, the computer then makes appropriate decisions, and tells the CB-1 what to "do." 8 on-board switches can either drive low power loads directly, or trigger Mullen 500 Watt control modules.

And what can a CB-1 do? Users report applications varying from environmental heating systems to automatic cat feeders... and we hear about more uses all the time. In fact, right now we're hearing about lots of applications thanks to our Controller Board Applications Contest. Stop by your local computer store for details, an entry blank, and an impersonal look at the CB-1.

If your computer would like to move up the evolutionary path and acquire appendages to go along with its intelligence, the CB-1 is the place to start.

Put your computer to work for you... we make it easy.

MULLEN Computer Products

BOX 6214, HAYWARD, CA 94545
The independence of *Buss* is a crucial factor in its significance to users (and prospective users) of Heath Co. computers. Information on new products is presented to Buss readers as it leaks out of Benton Harbor, not held back to suit the plans of the manufacturer. This has been true from its first issue, which directed attention to the 8080 and LSI-11 months before any advertising appeared on the H8 and H11. *Buss* features candid accounts of owners' experiences with their computers—this is far more valuable than an article based on the opinions of a single reviewer. It shares news of compatible hardware & software from other vendors as well as reviews of books that can help you get the most out of your computer system.

Every issue of *Buss* travels by first class mail (outside North America it goes by air for only $2 extra). Your 12-issue subscription can be on its way to you within a week. You have the choice of starting either with the latest issue or with all available back issues. Send $7.50 to Buss, 325-B Pennsylvania Ave. SE, Washington, DC 20003.

As a recent Apple II purchaser, I enjoyed your review of the Apple II (March 1978 BYTE, page 18). I was especially interested to see that you encountered most of the same problems I did, such as the interference with the color receiver. I too am using the M & R Enterprises modulator that installs inside the Apple II along with a low priced GE portable, and the interference with my first setup was pretty bad.

Something about the length of the lead to the TV set got me to thinking. I remember making dipole antennas, and somehow 4 feet seemed like a familiar dimension. Channel 3's picture carrier frequency is about 61 MHz, for a wavelength of about 5 meters. The cable from the modulator to the color set is about 4 feet (1.2 meters) long or almost exactly a quarter wave. That makes it a very good antenna for any harmonics (60 thru 65 MHz) of the Apple clock, character generator, etc. The cable is looped through a large ferrite toroid, which helps quite a bit, but a simple modification makes things even better. All you have to do is add an 18 inch extension cable, thus mistuning the channel 3 antenna, and 90 percent of the interference will disappear.

We just got around the problem of radio frequency interference with our Apple II by use of the M & R Enterprises UHF modulator recently acquired. Without even putting a single toroidal balun core on the coaxial cable, the same Panasonic color television runs without any interference....CH

ILLUSTRATING BASIC
A Simple Programming Language

DONALD ALCOCK

"Here’s a book...to introduce complete beginners to the BASIC language in a charming way. Every page is illustrated in pen and ink style; even the body of the text is hand lettered by the author...Alcock's experience in lecturing about computers to students of all ages shows in his lucid writing and dry humor....Of the many texts on BASIC, this is one of the most engaging." — *Computer Dealer*

Hardcover $10.95
Spiral-bound Paperback $3.95

AN INTRODUCTION TO THE STUDY OF PROGRAMMING LANGUAGES

D. W. BARRON

“One of the most interesting books available in the field of computer science. Not a mathematical treatise, this text might be retitled: 'Everything you always wanted to know about computer languages (but were afraid to ask).’ “ — *Choice*

Hardcover $14.95 Paper $5.95

Cambridge University Press
32 East 57th Street, New York, N.Y. 10022
Texas Instruments Has Introduced the TMS 4164, a Single 5 V 64 K Byte Dynamic Programmable Memory, organized as 64 K byte by 1. It comes in a 16 pin dual-in-line package, and allows upward compatibility with the 16 K byte dynamic programmable memory. The TMS 4164 single 5 V power supply design is TTL compatible, offers lower power dissipation, and is more immune to system noise. Compact layout, and an optimized design and process combination for 5 V only operation result in improved performance.

Access times range from 100 to 150 ns maximum, with minimum cycle times of 200 to 250 ns. Power dissipation is 200 mW maximum or 3 µW maximum per bit. Comparing the 462 mW power dissipation of the 16 K programmable memory at 375 ns cycle time, total maximum power dissipation of the new memory is a reduction of 60 percent, with improved cycle times, while bit density is quadrupled. As a result of the lower power dissipation, the TMS 4164 features a 256 cycle refresh with a 4 ms maximum refresh period.

Due to TMS 4164 refresh compatibility with the 16 K byte programmable memory, the basic refresh controller timing does not require major changes. The only provision required is for an 8 bit refresh counter and multiplexer when upgrading to 64 K byte from a 16 K byte system. Also contributing to higher system operating efficiency is a 1.3 to 1.6 percent refresh overhead time, compared to 2.4 percent on the 16 K byte programmable memory. The TMS 4164 is priced at $125. For further information write to Texas Instruments Inc. Inquiry Answering Service, POB 1443, M/S 669, Houston TX 77001.

Chromatics Inc has introduced the CG series line of full 8 color graphic and alphanumeric readout computers. The line consists of 13, 15 and 19 inch models featuring noninterlaced screen refresh, high resolution shadow tubes, and S12 by S12 or S12 by 256 individually addressable and color selective dots. Each model employs a Z-80 processor with full memory and input and output (IO) structure. The 13 inch model starts at $8995.

A bulletin describing the system may be obtained from Chromatics Inc, 3923 Oakcliff Industrial Ct, Atlanta GA 30340.

This new MKB-2 keyboard is designed for use with the 64 and 80 character display video boards. Standard features on the MKB-2 include: a numeric key pad, upper and lower case, cursor control keys, 2 key rollover, and automatic repeat on all keys. The MKB-2 is assembled in a heavy duty steel case with parallel interface, strobe or pulse and on board regulation (5 V, 12 V), and comes complete with standard DB25S connector and black double injection molded keys.

The price of the MKB-2 is $149. For further information, write to MicroAge, 1425 W 12th Pl #101, Tempe AZ 85281.
A new expanded BITS catalog is now available, featuring books on microcomputing and other related subjects. There are new books on business and calculators, Pascal, artificial intelligence, robotics, programming, hardware, games and much more.

BITS has a complete selection of professionally reviewed microcomputer books (over 150 titles), including a number of self-published works. Their inventory has been expanded to include a greater number of posters and specialty items of interest to the computer enthusiast. Request your free catalog from BITS Inc, Dept 3, POB 428, Peterborough NH 03458.

A 1 year subscription costs $20. For more information, contact Dump Publications, POB 2454, Jacksonville FL 32203.

New Publication Devoted to TRS-80 User

Dump Publications has announced the release of a software publication for users of the Radio Shack TRS-80 microcomputer system. Dump is a monthly periodical incorporating news, information, and running software ready to load from a 33 1/3 revolution per minute disk record. The Dump disk can be loaded into the TRS-80 system with the use of an ordinary phonograph.

Each issue contains a wide variety of programs from finance and education to games and machine language. Programs are provided with complete documentation and line editing information for Level I and II BASICS.

A 1 year subscription costs $20. For more information, contact Dump Publications, POB 2454, Jacksonville FL 32203.

New Text on Basic Pulse Circuits

The basic building blocks of modern computers, radar, television and pulse communication circuits are presented in this programmed text entitled A Programmed Course In Basic Pulse Circuits, by the New York Institute of Technology. This 293 page programmed learning text is organized in a logical sequence of interrelated steps. Discussions on switching devices such as unijunction transistors and silicon controlled rectifiers are included. All devices are solid state, and some material on integrated circuits is presented. Each chapter begins with a set of objectives and concludes with a set of criteria tests to measure progress.

The price of this text is $9.95 and it can be obtained from McGraw-Hill Book Company, 1221 Av of the Americas, New York NY 10020.
THE BEST FOR BOTH WORLDS
Factory prime electronic equipment for both the discerning hobbyist and the professional

The New Hobby World Catalog
Your source for factory prime, professional quality equipment. Computers, add-on boards, IC's, sockets, resistors, supplies, tools, test equipment, books, and more. Shop your buy list at Hobby World. You'll find what you want, and at a solid savings.

This month's specials.

16K MEMORY ADD-ON FOR APPLE OR TRS-80
Hobby World price is only $99.00 (specify when ordering)

NEW FROM SSM. THE CB-1 8080 CPU BOARD AT A HOBBY WORLD SUPER SPECIAL. (See SSM ad for specs)
It's Loaded. It's Blue. IT'S ONLY $119.95

THE NEW ELENCO 3½ DIGIT SOLID STATE MULTIMETER
The ultimate in performance: measures resistance to .01 ohms, voltage to 100 micro-volts, current to one micro-amp. Assembled and tested, with 2-Year warranty. Lists at $99.95. Hobby World: $74.95

WAHL ISO-TIP CORDLESS SOLDERING IRON
Includes ni-cad batteries and wall plug transformer. Lists at $19.95, but Hobby World has it for $14.95!

S-100 WIRE WRAP BOARD
Over 3600 holes, for super versatility. Provisions for 4 regulators. Double-sided, plate-through. All S-100 pins labelled for number and signal. The PT-1. Hobby World Price: Only $30.00

Hobby World
19355 Business Center Drive #6
Northridge, CA 91324

TELEPHONE ORDERS
Inside Calif: 213 855-9200
Outside Calif: 800 423-5387

SEND ME THE FOLLOWING SPECIALS!

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Circuits and How They Work</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beginner's Guide to Computer Logic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer Technician's Handbook</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Build Your Own Working Robot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Programming Microprocessors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beginner's Guide to Computer Programming</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital Electronics: Principles and Practice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microprocessor/Micro-programming Handbook</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer Programming Handbook</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SEND ME A CATALOG!

Name __
Address __
City ___________________ State ________

Satisfaction 100% Guaranteed

POSTAGE/HANDLING $1.50

California Residents add 6% Sales Tax
Charge My MC ____________________
VISA ____________________________

Signature ____________________________
Expiration __________________________

Circle 170 on inquiry card.
16 Bit Microcomputer Module

The TM 990/100M series offers up to 4 K words by 16 bits of erasable read only memory and up to 2 K words by 16 bits of static programmable memory on board. The board also contains two serial input and output (IO) ports; one is intended for remote usage with a terminal or modem, the other for local usage with Texas Instruments' 301 Microterminal, an EIA terminal or a Teletype.

The TM 990/101M series offers three programmable interval timers, up to 17 interrupts and 16 lines of programmable parallel IO. The TM 990 series is supported by Texas Instruments' AMPL prototyping system. A user's manual detailing the hardware and software of the TM 990 board will be supplied with each unit. A wide line of accessories and peripherals also available.

Pricing on the fully assembled and tested TM 990/101M-1 including 1 K word by 16 bit erasable read only memory and 1 K word by 16 bit static programmable memory is $625 in single quantities. Inquiries should be forwarded to Texas Instruments Inc, Inqury Fulfillment, POB 1443, M/S 633 (Attn: TM990), Houston TX 77001.

S-100 Compatible Single Card Plug-In NMOS Memory

This 16 K word by 8 bit programmable NMOS memory system is S-100 and card size compatible. The EMM Model 1104 is a single card plug-in assembly which is fully burned-in and tested. The Model 1104 uses EMM 4 K byte static programmable memories, and no refresh circuitry is required.

Designed specifically for operation with Motorola EXORcisor and MEC 6800 evaluation module is Chrislin Industries' new C16800, 16 K by 8 bit semiconductor memory system. The new memory allows expansion to 32, 48 and 64 K bytes by interchanging the 4027 4 K by 1 bit dynamic memory with the 16 K equivalent. No further modification is required. The C16800 memory board plugs directly into existing EXORcisor connectors.

It allows maximum processor throughput with the use of hidden refresh control logic on board. Data access time is 300 ns and cycle time is 750 ns.

On board memory select is available in 4 K byte increments up to 64 K words of memory. A write disable switch on board makes the programmable memory a read only memory to the outside world.

Complete board power consumption is under 5 W. The board size is 5.75 by 9.75 inches (14.61 by 24.77 cm). For more information, contact Chrislin Industries Inc, 31312 Via Colinas #102, Westlake Village CA 91361.

The system consists of the memory array with support electronics including address and data buffering, timing and control, and voltage regulation. The memory array is divided into four 4 K by 8 bit memory blocks, and each block can be assigned to a 4 K byte address block within a 0 to 64 K byte range. Operating modes are read, write and deposit. The deposit mode is a phase memory cycle consisting of a write followed by a read.

For complete information contact Electronic Memories and Magnetics Corp, 12621 Chadron Av, Hawthorne CA 90250.
PLACE ORDERS TOLL FREE:
800/421-5809 Continental U.S.
800/262-7710 inside California

JADE
Computer Products

EXPANDER'S BLACK BOX PRINTER
This 84-character ASCII impact printer with 80-column capability is portable and uses standard 8½-inch paper and regular typewriter ribbons. Base, cover and parallel interface are included. Assembled and complete with manual and documentation.
only $430.00
(90 day manufactured warranty)

TRS-80 Interface Cable for Black Box Printer
with mating connectors: $48.00
(must be used with expansion module, +8/1 amp supply required.)

Power Supply for TRS-80 Black Box Printer: $49.00

Look!
DYNAMIC RAM BOARDS EXPANDABLE TO 64K
32K VERSION • KITS
Uses 4115 (8Kx1, 250ns)
Dynamic RAM's can be expanded in 8K increments up to 32K.
8K $199.00
16K $255.00
24K $310.00
32K $369.00

64K VERSION • KITS
Uses 4116 (16Kx1, 250ns)
Dynamic RAM's can be expanded in 16K increments up to 64K.
16K $292.00
32K $342.00
48K $578.00
64K $721.00

ALL PRICES SUBJECT TO CHANGE
WITHOUT NOTICE

JADE PARALLEL/SERIAL INTERFACE
S-100 compatible, 2 serial i/O ports, 1 parallel i/O.
Kit JG7/P-S $124.95
Ass. & Tested JG7/P-SA $179.95
Bare Board with manual $30.00

FLOPPY DISK INTERFACE
JADE FLOPPY DISK (Tarbell board)
Kit Assm. & Tested $175.00
S.D. Computer Products "Versa Floppy" Kit Assm. & Tested $159.95

STATIC RAM BOARDS
JADE 8K
Kits: 450ns $125.95
250ns $148.75
Assembled & Tested: 450ns $139.75
250ns $169.75
Bare Board: $25.00
16K - Uses 2114's (low power)
Assembled & Tested: RAM 16 (250ns) $375.00
RAM 16B (450ns) $325.00
MEM-2 Kit: 250ns $285.00
16K with memory management
Assembled & Tested: RAM 65 (250ns) $390.00
RAM65B (450ns) $360.00
32K Static Assembled & Tested: 250ns $795.00
450ns $725.00
250ns Kit $575.00

MOD-690 CPU BOARD
5-10 Compatible 6800 MPU
1K x 8 RAM, PROM expandable to 10K.
$199.95

WRITE FOR OUR FREE CATALOG

JADE COMPUTER PRODUCTS
4901 W. ROSECRANS AVENUE
HAWTHORNE, CALIF. 90250

THE PIGGY IS COMING!

Cash, checks, money orders, and credit cards accepted. Add freight charge of $2.50 for orders under 10 lbs and $1.00 service charge for orders under $10.00. Add 6% sales tax on all parts delivered in California. Discounts available at OEM quantities.

BYE December 1978
PERIPHERALS

24 Channel Digital Input System for Motorola Microcomputers

This single board microperipheral accepts 24 digit inputs. MP710, with an on board power supply, operates with dry relay contacts and MP710-NS with voltage input (wet relay contacts). Each group of eight inputs is isolated from other groups and from the computer bus up to 600 VDC. In MP710-NS, isolation between inputs is 300 VDC.

MP710s are electrically and mechanically compatible with Micromodule and EXORciser microcomputers and operate from their +5 VDC supplies. They are programmed as memory locations and with each input using one memory bit, any read command may be used. When the board is read, logic 0 represents an open contact (low voltage); logic 1, a closed contact (high voltage). Each read command inputs the status of eight channels. Address bits A0 and A1 select the set of inputs to be read. The remainder of the address lines are used to select the board itself. The address block occupied by each board is selectable and can be located anywhere in memory.

The price of the MP710 is $355 in quantities of one to nine. For further information contact Burr-Brown, International Airport Industrial Park, Tucson AZ 85734.

Process Control Output Module

The PCO-1A process control output module provides two complete 4 to 20 mA or 10 to 50 mA process control circuits on one Wyle microcomputer system output module. The 4 to 20 or 10 to 50 ranges are independently selectable for each circuit, and both outputs are short circuit protected. The PCO-1A is priced at $345 per module (2 output circuits). Contact Wyle Laboratories/Computer Products, 3200 Magruder Blvd, Hampton VA 23666.

Microprocessor Analog Interface Module

The Wince Analog Interface Module enables laboratory and control engineers to interface thermocouples and other transducers to a microprocessor and interface the microprocessor to motors, servos, etc. Options include a 16 channel multiplexer, an 8, 10 or 12 bit analog to digital converter and one or two 8 bit digital to analog converters. The base price is $99. Write to Wintek Corp, 902 N 9th St, Lafayette IN 47904 for further information.

Computer Video to UHF RF Interface Modulator

The Micro-Verter is designed to interface microcomputers to color or monochrome television receivers as an alternative to the video monitor. The Micro-Verter operates in the UHF channels above channel 14, beyond the normal range of switching harmonics, and is designed to interface directly with the Apple II as well as with most other microcomputers. It comes complete with video cable and radio frequency (RF) output stub coupler and requires no direct connection to antenna terminals except in special cases. The radio frequency signal is coupled directly into the UHF tuner input via a 1 cm stub coupler on the back of the modulator. The approximate size of the unit is 2 by 3.5 by 4.5 inches (5.5 by 8.5 by 11.5 cm) and it is priced at $35. For more information contact ATV Research, 13th and Broadway, Dakota City NE 68731.
Introducing the simple TRS-80 Up-grade

Fast, easy, guaranteed expansion to 16K at less than half the price of Radio Shack.

Ithaca Audio makes it simple
No false starts and finding you need some little item or special tool. Our 'Kit contains all the parts: 8 prime dynamic RAMs and a complete set of preprogrammed jumpers. No matter which model you have (even if you later purchase Level II software), you're covered.

Complete Instructions
Our easy-to-follow directions cut installation time to just minutes. You can do it yourself—with no soldering! All you need is a household screwdriver.

100% Guarantee
Like our kit, simple: if a part ever fails, we replace it, FREE.

Available now, only $140
Order from your favorite retailer. If by chance he hasn't stocked them yet we'll ship him your Kit right away.

For technical assistance call or write to:

ITHACA AUDIO
Phone: 607/273-3271
P.O. Box 91 Ithaca, New York 14850

Available off-the-shelf at these fine computer dealers.

BYTE December 1978 215
PERIPHERALS

Z-80 Arithmetic Processing Unit

Fully compatible with the Zillog Z-80 MCB, this high speed arithmetic processing unit board (HAPUB) provides the hardware necessary to accomplish arithmetic, trigonometric, inverse trigonometric, logarithmic, exponential and square root functions. HAPUB simplifies software and allows the Z-80 to perform other operations while accomplishing these functions. Also featured are fixed point integer single and double precision (16 and 32 bit), and floating point single precision (32 bit) operation with bidirectional conversion capability. The board is compatible with the Zilog Z-80 card cage and 8 bit bidirectional data bus and costs $749. Contact Signal Laboratories Inc, 202 N State College Blvd, Orange CA 92668.

Power-One has announced an addition to their Hi-Vol series triple output DC power supply line. The new model, designated HCAA-60W, is built in the industry standard package size for a 60 W triple output open frame power supply. This model outputs 5 V at 6 A with adequate overvoltage protection, +12 to 15 V at 1 A, and -12 to 15 V at 1 A. The -12 to 15 V output may be changed to -5 V at 0.4 A by jumpering two printed circuit board terminals. Targeted for use in systems requiring multiple DC voltages, the HCAA-60W will power combinations of most semiconductor devices including TTL, PMOS, NMOS, CMOS and linear devices. Total isolation between the 5 V, ±12 V and ±15 V outputs allows the user to arrange polarities to suit specific applications.

Standard features include 115/230 VAC ±10% AC input capabilities, ±0.05% line and load regulation, and full protection against short circuit and overload. Maximum output ripple is 3 mV peak to peak.

Each unit is tested and burned in and carries a 2 year warranty. The size is 9.0 by 4.87 by 3.2 inches (22.86 by 12.37 by 8.13 cm) and it weighs 7.5 pounds (3.36 kg). The price is $84.95 from Power-One Inc, Power-One Dr, Camarillo CA 93010.

Triple Output DC Power Supply

Power-One has announced an addition to their Hi-Vol series triple output DC power supply line. The new model, designated HCAA-60W, is built in the industry standard package size for a 60 W triple output open frame power supply. This model outputs 5 V at 6 A with adequate overvoltage protection, +12 to 15 V at 1 A, and -12 to 15 V at 1 A. The -12 to 15 V output may be changed to -5 V at 0.4 A by jumpering two printed circuit board terminals. Targeted for use in systems requiring multiple DC voltages, the HCAA-60W will power combinations of most semiconductor devices including TTL, PMOS, NMOS, CMOS and linear devices. Total isolation between the 5 V, ±12 V and ±15 V outputs allows the user to arrange polarities to suit specific applications.

Standard features include 115/230 VAC ±10% AC input capabilities, ±0.05% line and load regulation, and full protection against short circuit and overload. Maximum output ripple is 3 mV peak to peak.

Each unit is tested and burned in and carries a 2 year warranty. The size is 9.0 by 4.87 by 3.2 inches (22.86 by 12.37 by 8.13 cm) and it weighs 7.5 pounds (3.36 kg). The price is $84.95 from Power-One Inc, Power-One Dr, Camarillo CA 93010.

Hard Copy Graphics Terminal

This plotter system, called Panographic-84, has a resolution of 100 steps per inch in the X and Y directions and a cumulative error of less than .020 inches (.05 cm) in 10 inches (25.4 cm) of travel. The drives are stepping motor operated for zero drift and no adjustments. Interfacing with a computer is via eight wires from the plotter to a parallel port. When driving the plotter from BASIC language programs, complete handshaking is not required since the plotter response is considerably faster than the speed at which BASIC can drive it. If the user wishes to drive the plotter from a machine language routine, full handshake capability is available. The polarity of handshake signals is switch selectable.

Options available at present consist of a computer operated pen lifter and a vacuum formed plotter cover. Software provided with the system is written in BASIC and listings of these short routines are provided.

The price for the plotter kit without pen lifter and cover is $995. The pen lifter kit sells for $85, as does the molded plotter cover. A factory assembled plotter with pen lifter and cover sells for $1400. For more information, write to Pan Dynamics Inc, 2950 Nebraska Av, Santa Monica CA 90404.
This is a one time purchase of NEW surplus keyboards, recently acquired from the Telecommunications Division of the Singer Corporation.

The keyboard features 128 ASCII characters in a 63 key format including a "N" key, rollover, lightly weighted switch control, escape and repeat functions.

Stapled panel and positive feel switches, makes the professional quality keyboard an excellent buy at only $64.95. Limited Quantities.

Quiet Buss

* $2995

8803-11

168 switch (MSA)

HEXDECIMAL KEYBOARD

* $34.95

Mini Switch Hexadecimal keyboards are designed for microcomputer systems that require 16 key input.

Each assembly consists of 16 hexadecimal keys and MSAs to form a 4x4 character array. The consoles are protected in the lower left corner and labeled with a DEC 'HEX'. Includes complete circuitry. A total of 16 characters can be displayed. Key code can be selected in one of 2 different code sets. Schematics included.

S-100 Mother Board

* $24.88

GOLD 100 PIN MINI UNIVAC KEYBOARD

- Fully loaded 128 ASCII characters in 63 key format
- M OS encoder circuitry
- Key rollover, lighted shift lock, control, escape and repeat functions
- SLOPED PANEL AND POSITIVE FEEL switches - makes this professional quality keyboard an excellent buy at only $64.95.

CONNECTORS

- IBM 25P male plug & hood

- DB25P female

* $395

100 PIN MSA-AI/ART

APPLE II 8K MEMORY

* $34.95

- Multicomputer system
- Exclusive design
- Single +5 volt supply

CRT TERMINAL

- Sanders Associates

These used video display terminals were in working condition when purchased from the reservation division of a major U.S. manufacturer.

The terminals are RS-232 and should easily interface to most micro-computers or other serial devices.

Please include $35.00 for shipping, the balance will be refunded.

MEMORY

DYNAMIC

1-7 8-32 32

1105 8K1 11.50 11.50

1106 8K16 13.00 12.25

(Apple II & TRS80)

1106 8K16

- As you may be aware, publishers require advertisers to submit their ad copy 60 to 90 days prior to "press" date. That much lead time in a volatile market place, such as memory circuits, makes it extremely difficult to project future costs and availability.

To obtain the best pricing on memory we have made volume commitments to our suppliers, which in turn affords us the opportunity to sell these circuits at the most competitive prices.

S-100 PROTOTYPE BOARD

- Includes roller socket design, no soldering, no box assembly, no tie wrapping for $500 systems.

- Also available as a kit, please inquire for unit pricing.

TELETYPE MODEL 43

- 60 of 10

* $29.95

- RS-232 Interface "K" 46/47500

DISKETTES

- APPLE/TRS-80 Mini - Soft sector

- COLOR GRAPHICS SOUND + SHIPPING

SPECIAL

- APPLE II 16K MEMORY

- COLOR + GRAPHICS + SOUND

MEMORY

SPECIAL

- APPLE II 16K MEMORY

DISPLAY

- APPLE II 16K MEMORY

DIP SWITCH

- Miniature Switches

WIRE WRAP

- Wire Wrap Center

IC SOCKETS

- Wire Wrap low profile pins

DISCOUNT

- Wire Wrap Limited Edition"K" 4153-4159

TRANSMITTER

- Power Adapter

SPECIAL

- Power Adapter

SPECIAL SPECIAL

- Power Adapter

SPECIALS

- Power Adapter

SPECIAL SPECIAL

- Power Adapter

SPECIAL SPECIAL

- Power Adapter

SPECIAL SPECIAL

- Power Adapter
Mass Storage Unit Expands System 88 Filing Capabilities

PolyMorphic Systems has increased the storage capacities of its System 88 microcomputers through the introduction of a new option, the 88/MS, which consists of two drives for 8 inch floppy disks. One disk can hold 1.2 M bytes, or more than 500 pages of text. A System 88 microcomputer with one or two 88/MS units can handle all the files and processing needs of most small businesses and professional offices.

Present owners of any System 88 microcomputer can add the 88/MS mass storage unit with no changes in their equipment's operating system. Ready to use packages are available for doing tasks such as accounts receivable.

For more information on the 88/MS, contact PolyMorphic Systems, 460 Ward Dr, Santa Barbara CA 93111.

Short Length Cassettes Designed for Personal Computers

Microsettes are short length, high quality cassettes designed for microcomputers. They feature a premium quality Philips cassette and high energy audio tape. Each cassette comes in a hard, 2 piece Norelco style box with two extra labels. The 50 foot length of tape in the C-10 Microsette provides slightly more than five minutes of recording per side. For additional information about the C-10 Microsette write to Microsette Co, 777 Palomar Av, Sunnyvale CA 94068.

Circle 596 on inquiry card.

Floppy Disk Systems Software

Transparent to RT-11

The new Remex-11 floppy disk systems are integrated hardware and software units that connect directly to the PDP-11 Unibus or LSI-11 Q bus. The systems are available with a utility function that permits data interchange between IBM 3740 diskettes and any RT-11 supported device.

The new plug compatible versions of the Remex-11, the Remex 11/11 and 11/12, are completely software transparent to the RT-11 software on the LSI-11 computers while offering added features. The Remex-11 provides read only memory bootstrapping as a standard feature as well as individual write protect switches to each drive, busy and error status indicators, and an automatic reinitialize function.

For increased performance while still maintaining media compatibility with PDP-11 and LSI-11 systems, the Remex 11/21 and 11/22 are available. These systems will accept up to four diskette drives. Data can be transferred in 16 bit words, and up to 65 K words can be transferred in a single input/output (I/O) operation. For additions, the data buffer in the RT-11 controller can be increased to two full sectors.

The Remex 11/31 and 11/32 employ 16 sector and track soft sectoring format. A contiguous file allocation structure increases throughput by as much as 50 percent.

Both media compatible and expanded capacity systems connect to the PDP-11 by a bus extension cable; therefore no 10 slot is required.

Remex-11 prices begin at $3195 complete. For further information contact Marketing Manager, Remex Division, Ex-Cell-O Corp, 1733 E Alton St, Irvine CA 92713.

Circle 597 on inquiry card.

New Floppy Disks from Omni Products Company

New floppy disks are available from Omni Products Co, POB 223, Marlton NJ 08053. The disks include a full IBM compatible, soft sectored version, as well as Shugart compatible, hard sectored and Memorex compatible, hard sectored versions. They are designed to meet or exceed IBM and ANSI standards, and a written guarantee is furnished. Prices are $4.50 in quantities through nine and $4 for orders of more than 50. Include $1.50 for shipping per order. NJ residents should include 5% sales tax.

Circle 598 on inquiry card.
16K E-PROM CARD

Imagine having 16K of software on line at all time!

S-100 (lmsa/Altair) Buss Compatible!

$59.95 kit

SPECIAL OFFER:

Our 2708's (456NS) are $8.95 when purchased with above kit.

NEW PRODUCTS FOR 1979

New products are scheduled for delivery during January 1979. Some may be available sooner. Call.

Z-80 CPU KIT

$129

For S-100 Buss. Features Jump on Reset capability. We feel this board has the most correct PAM and VSYNC signal for trouble free operation. Complete kit. More data on request. (For 4MHz ADD $10)

16K STATIC RAM KIT

$295

For SS-50 (S.W. TECH. 6800) Buss. Fully static uses 2114 RAM's. 450 NS. At last, a quality RAM board for this popular Buss at an affordable price. Complete kit. Additional Data on request.

DUAL DENSITY FLOPPY DISC CONTROLLER

COMPUTER PARTS

<table>
<thead>
<tr>
<th>Computer Parts</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z-80 - 8080A-</td>
<td>$19.95</td>
</tr>
<tr>
<td>Z-80A - 24.95-2812 - 2.25</td>
<td></td>
</tr>
</tbody>
</table>

ALARM CLOCK CHIP

N.S. MMS3515A.A. Six Digits. With full data. New! $2.49 each

FULL WAVE BRIDGE

4 AMP, 200 PIV. 69c 10 FOR $5.95

2708 EPROMS

Now full speed! Prime new units from a major U.S. Mfg. 450 NS. Access time, 1K x 8. Equiv. to 4-1702 A's in one package.

$15.75 ea.

$9.95 4 FOR $50.00

MOTOROLA 7805R VOLTAGE REGULATOR

Serves standard 7806 except 750 MA output. TO-220, 5VDC output. 4c each or 10 FOR $3.95

16K STATIC RAM KIT

$295.00

COMPLETE KIT

16K STATIC RAM KIT

FULLY S-100 COMPATIBLE!

FULLY STATIC, AT DYNAMIC PRICES!

WHY THE 2114 RAM CHIP?

We feel the 2114 will be the next industry standard RAM chip. We've heard the horror stories about some Dynamic RAM Boars having trouble with DMA and FLOPPY DISC DRIVES. Who needs these kinds of problems? And finally, even among other 4K Static RAM's, the 2114 stands out. Not all 4K static Rams are created equal! Some of the other's have sticky chip enable lines and various timing windows just as critical as Dynamic RAM's. Some of our competitors' 16K boards use these "tricky" devices. But not us! The 2114 is the only logical choice for a trouble-free, straightforward design.

BLANK PC BOARD WITH DOCUMENTATION - $33.00

SUPPORT IC'S + CAPS - $19.95

LOW PROFILE SOCKET SET - $12.00

2114's 4K RAM's - 8 FOR $69.95

NATIONAL SEMICONDUCTOR

JUMBO CLOCK MODULE

$6.95

12 FOR $60.00

COMPARISON TO AT TWICE OUR PRICE!

Digital Research Corporation

OF TEXAS

P. O. BOX 4012477/GARLAND, TEXAS 75040 214-271-2461

TERMS: Add 30¢ postage, we pay balance. Orders under $15 add 75¢ handling. No C.O.D. We accept VISA, Mastercharge and American Express cards. Tex. Res. add 5.9% Tax. Foreign orders (except Canada) add 20% P & H. 90 Day Money Back Guarantee on all goods.
S-100 Bus Prototyping Circuit Board
Accommodates up to 70 Integrated Circuits

Manual Details New Temperature Switch
An 8 page manual detailing the properties and applications of Midwest Components Inc's temperature switch is available from the company. This switch utilizes a reed switch and temperature activated magnets for sensing. For this manual, write to Midwest Components Inc, POB 787, 1981 Port City Blvd, Muskegon MI 49443.

Intelligent Keyboard Has Capacitive Keyswitches
This new solid state keyboard uses a second generation microprocessor and low profile capacitive keyswitches. The keyboard uses an 8 bit single integrated circuit processor with on chip read only memory, programmable memory and erasable read only memory. All key functions are software controllable. The microprocessor permits automatic repeats, multiple application programs in a single intelligent encoder, field program changes using new firmware, serial and parallel input/output (IO), and n-key rollover (3 key rollover being standard). The switches have a life expectancy of 100 million operations. The legends are selectable from a wide selection of symbols and letters in a host of languages and disciplines.

For further information about this keyboard, contact C P Clare & Company, 3101 W Pratt Av, Chicago IL 60645.

8080 Processor Board Offered
This S-100 bus 8 bit processor board uses the 8080A processor. 74LS244 bus drivers are utilized to provide low power with higher drive capability. A switch selectable jump on reset circuit is provided for use in systems without a front panel. Low profile sockets are provided for all integrated circuits.

The 8080 board is $175 assembled and $120 in kit form. For more information write to Electronic Control Technology, 763 Ramsey Av, Hillside NJ 07205.
APPLE II SERIAL I/O INTERFACE *
Part no. 2
Baud rate is continuously adjustable from 0 to 30,000 • Plugs into any peripheral connector • Low current drain, RS-232 input and output • On board switch selectable 5 to 8 data bits, 1 or 2 stop bits, and parity or no parity either odd or even • Jumper selectable address • SOFTWARE • Input and Output routine • jumper selectable • Can output in correspondence code compatible • Auto scroll • Non-destructive cursor • Cursor inputs: up, down, left, right, home, EOL, EOS • Scroll up, down • Requires +5 volts at 1.5 amps, +12, -12, and -5 volts at 30 mA • All 7400, TTL chips • Char. gen. 2513 • Upper-case only • Board only $15.00 ; with parts $42.00 ; assembled and tested $62.00.

MODERN *
Part no. 109
• Type 103 • Full or half duplex • Works up to 300 baud • Originate or Answer • No coils, only low cost components • TTL input and output • Connect 8 ohm speaker and crystal mic. directly to board • Uses XR FSK demodulator • Requires +5 volts • Board $7.60 ; with parts $27.50.

DC POWER SUPPLY *
Part no. 6085
• Board supplies a regulated +5 volts at 3 amps, +12, -12, and -5 volts at 1 amp • Power required is 8 volts AC at 3 amps, and 24 volts AC.C.T. at 1.5 amps • Board only $12.50 ; with parts excluding transformers $42.50.

TAPE INTERFACE *
Part no. 111
• Plays and records Kansas City Standard tapes • Converts a low cost tape recorder to a digital recorder • Works up to 1200 baud • Digital in and out are TTL-parallel • Output of board connects to mic. in of recorder • Earphone of recorder connects to input on board • No coils required • Supplies +5 volts, low power drain • Board $7.60 ; with parts $27.50.

8K STATIC RAM
Part no. 300
• 8K Altair bus memory • Uses 2102 Static memory chips • Memory protect • Gold contacts • Wait states • On board regulator • S-100 bus compatible • Vector input option • TRI state buffered • Board only $22.50 ; with parts $160.00.

RF MODULATOR *
Part no. 107
• Converts video to AM modulated RF, Channels 2 or 3 • So powerful almost no tuning is required. On board regulated power supply makes this extremely stable. Rated very highly in Doctor Dobbs Journal. Recommended by Apple. • Power required is 12 volts AC.C.T., or 5 volts DC • Board $7.60 ; with parts $13.50.

TIDMA *
Part no. 112
• Tape Interface Direct Memory Access • Record and play programs without bootstrap loader (no prom) has FSK encoder/decoder for direct connections to low cost recorder at 1200 baud rate, and direct connections for inputs and outputs to a digital recorder at any baud rate • S-100 bus compatible • Board only $39.00 ; with parts $110.00.

RS 232/TTL INTERFACE
Part no. 600
• Converts RS-232 to 20mA current loop, and 20mA current loop to RS-232 • Two separate circuits • Requires +12 and -12 volts • Board only $4.50 ; with parts $7.00.

ELECTRONIC SYSTEMS
To Order:
Mention part number and description. For parts kits add "A" to part number. In USA, shipping paid for orders accompanied by check, money order, or Master Charge, BankAmericard, or VISA number, expiration date and signature. Shipping charges added to C.O.D. orders. California residents add 6.5% for tax. Outside USA add 10% for air mail postage, no C.O.D.'s. Checks and money orders must be payable in US dollars. Parts kits include sockets for all ICs. Components, and circuit board. Documentation is included with all products. All items are in stock, and will be shipped the day order is received via first class mail. Prices are in US dollars. No open accounts. To eliminate tariff in Canada boxes are marked "Computer Parts" Dealer inquiries invited.

Circle 125 on inquiry card.
Single Chip Z80-SIO for LSI Microcomputer System

A high speed, dual channel, multi-protocol serial data communications controller circuit, the single chip Z80-SIO, has been introduced by Zilog, 10460 Bubb Road, Cupertino CA 95014. The SIO is designed to work with Zilog's Z-80 microcomputer family and also interfaces with most other 8 bit and 16 bit processors. The serial IO controller, an N/MOS 40 pin device, is a peripheral component that can control communications peripherals and format data in data communications networks. Each of the SIO's full duplex channels has four control lines for most commonly used modems. Applications include fiber optics, microwave transmission and satellite communications. For systems with 2.5 MHz clock rate, the SIO's data rate goes up to 550 K bits per second, while in a 4 MHz system, it's up to 880 K bits. Price is $49 in small quantities. Circle 622 on inquiry card.

Complex Sound Generator Integrated Circuit

The SN76477N, a complex sound generator integrated circuit, has been announced by Texas Instruments, POB 84, M/S 812, Sherman TX 75090. This IC can be used to generate virtually any complex sound: siren, gunshot, jet engine, whistle, pinball sounds, etc. Since it is an integrated injection logic (I2L) linear integrated circuit with low power consumption, it is ideally suited for battery powered applications. The SN76477N contains a voltage controlled oscillator, super low frequency oscillator, white noise generator, noise filter, oneshot, mixer, an attack and decay envelope generator. The desired sound is externally programmed by the user through logic and analog inputs. New sounds can be implemented or modified quickly. The SN76477N is designed for operation from -10°C to 40°C. It is offered in a 28 pin package. Price is $1.65 in quantities of 100. Circle 623 on inquiry card.

A low cost single channel direct memory access controller (DMAC) has been introduced by Western Digital Corp, 3128 Red Hill Av, POB 2180, Newport Beach CA 92663. The DM 1883 is said to be fully compatible with all popular microprocessors built today. It includes the following features: control of all memory handshaking and device control; full 16 bit memory address and block length capability; block or word move; automatic end of block (EOB) shutoff and interrupt on EOB or error detection; and the option of auto load and bus timeout interrupt. The DM 1883 is powered by a single +5 V supply. Circle 624 on inquiry card.

Second Sourced TR 1953 USART Replaces 8251

The second sourced TR 1953 universal synchronous and asynchronous receiver transmitter (USART) is said to be the lowest priced replacement for the 8251. The TR 1953's complete compatibility with the 8251 USART is further enhanced by synchronous and asynchronous operation, with 5 to 8 bit characters on both modes. Internal or external character synchronization and automatic sync insertion is featured in the synchronous mode; 1, 16 or 64 times bps rate, 1, 1½ or 2 stop bits and false start bit rejection on the asynchronous mode. The TR 1953 comes in a 28 pin package, with TTL compatible IO, and operates on a single +5 V supply. Write to Western Digital Corp, 3128 Red Hill Av, POB 2180, Newport Beach CA 92663 for a sample. Circle 625 on inquiry card.
The EW-2001 A “Smart” VIDEO BOARD KIT At A “Dumb” Price!
A VIDEO BOARD + A MEMORY BOARD + AN I/O BOARD – ALL IN ONE!

- STATE OF THE ART TECHNOLOGY USING DEDICATED MICROPROCESSOR I.C.
- NUMBER OF I.C.s REDUCED BY 50% FOR HIGHER RELIABILITY
- MASTER PIECE OF ENGINEERING
- FULLY SOFTWARE CONTROLLED

$199.95
Priced at ONLY
Basic Software Included

SPECIAL FEATURES:
- S-100 bus compatible
- Parallel keyboard port
- On board 4K screen memory (optional)* relocatable to main computer memory
- Text editing capabilities (software optional)
- Scrolling: up and down through video memory
- Blinking characters
- Reversed video
- Provision for on board ROM
- CRT and video controls fully programmable (European TV)
- Programmable no. of scan lines
- Underline blinking cursor
- Cursor controls: up, down, left, right, home, carriage return
- Composite video
- *Min. 2K required for operation of this board.

DISPLAY FEATURES:
- 128 displayable ASCII characters (upper and lower case alphanumeric, controls)
- 64 or 32 characters per line (jumper selectable)
- 32 or 16 lines (jumper selectable)
- Screen capacity 2048 or 512
- Character generation:
 - 7 x 11 dot matrix
 - Options:
 - Sockets $10.00
 - 2K Static Memory
 (with Sockets) $45.00
 - 4K Static Memory
 (with Sockets) $90.00
 - Complete unit, assembled and tested with
 4K Memory $335.00
 - Basic software on ROM $20.00
 - Text editor on ROM $75.00

DEALER
INQUIRIES WELCOMED

ASCII KEYBOARD KIT $74.00

Additional Improvements: Double Size Return Key
Control Characters Molderd on Key Caps
- Power: +5V 275mA
- Full ASCII Set
- Optional Serial Output
- Selectable Positive or Negative Strobe, and Strobe Pulse Width
- 2 Key Roll-Over
- 3 User Definable Keys
- P.C. Board Size:
 - 17-3/16" x 5"

OPTIONS:
- Metal Enclosure Painted
 - Blue and White $27.50
- 18 Pin Edge Con. $ 2.00
- I.C. Sockets $ 4.00
- Serial Output Provision
 - (Shift Register) $ 2.00
- Upper Case Lock Switch for Capital Letters and Nos. $ 2.00
- Assembled (on Sockets) $90.00

APPLE II I/O BOARD KIT
Plugs Into Slot of Apple II Mother Board

- 18 Bit Parallel Output Port
 - (Expandable to 3 Ports)
- 1 Input Port
- 15mA Output Current Sink or Source
- Can be used for peripheral equipment such as printers, floppy discs, cassettes, paper tapes, etc.

OPTIONS:
- 1 free software listing for
 - SWTP PR40 or IBM Selectric
- Price:
 - 1 Input and 1 Output
 - Port for $49.00
 - 1 Input and 3 Output
 - Ports for $64.00
 - Dealer Inquiries Invited

ELECTRONICS WAREHOUSE Inc.
1603 AVIATION BLVD.
REDONDO BEACH, CA. 90278
TEL. (213) 376-8005
WRITE FOR FREE CATALOG
Minimum Order: $10

By 11 December 1978 223
A Single Board Microcomputer System

The SYM-1 is a complete microcomputer including keyboard, display and operating software. Some of the features of this stand-alone system include:

- A SY6502 microprocessor device;
- 1 K bytes of user programmable memory, expandable to 4 K bytes in board sockets;
- 28 key audio response keypad;
- RS-232 and current loop interface electronics and card cage are available for use with S-100 boards.

The SYM-1 is priced at $269. Contact SynerTek, 3050 Coronado Dr, Santa Clara CA 95051.

New Microcomputer System from OSI

Ohio Scientific has announced a new microcomputer system, designated the C3-OEM. Its applications include use as a general purpose computer or controller in large equipment such as medical diagnostic equipment, scientific equipment, analytical equipment and industrial control applications. It is also suited for small systems software since it will run

- software for the 6502, 6800, 8080 or Z-80.

Its features include:

- Single chassis construction, which can be either tabletop mounted or rack mounted, including dual 8 inch floppy disks for 500 K bytes of on line storage, 32 K bytes of static programmable memory, one RS-232 port, and Ohio Scientific's triple processor board which supports the 6502A, 6800 and Z-80 processors. The system comes complete with a 6502 disk operating system and BASIC for disk and multiple processor switching software.

- The smallest system, VP-80, includes 32 K bytes of programmable memory.

All VP series units include a video display offering programmable screen formats with up to 80 characters per line and 24 lines per frame. The video processor has graphic capabilities and supports an optional light pen. Reverse video, blinking and highlight for single characters or fields are included, as well as an underline or block cursor.

The entire VP series includes the CP/M disk operating system. Also available are several BASIC interpreters and the C-BASIC compiler. Text editing and assembler are included with the software.

Low Priced Microprocessor Comes Completely Assembled

This complete ready to use microprocessor offers an economical solution for both scientific applications and industrial usage. The MICRO-68 computer system is priced at $495 and comes completely assembled. Built around the Motorola/AMI/Hitachi 6800 processor, the MICRO-68 comes with its own integral power supply, 16 bit keyboard, 6 digit LED display, and 128 words of programmable memory. The 512 MON-1 Bug programmable read only memory contains all the software necessary to load programs easily, inspect and edit them as necessary, insert break points for debugging, and execute. Memory expansion to 64 K bytes and full 16 bit input and output can be obtained via the edge connectors, which are provided for. All of the memory lines of the MICRO-68 can be buffered on board. The MICRO-68 comes in a hardwood cabinet with a transparent smoked Plexiglas lid. The unit measures 9 by 16 by 2 inches (22.86 by 40.64 by 5.08 cm). Contact EPA Electronic Product Associates Inc, 1157 Vega St, San Diego CA 92110.
DIODES/ZENERS

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN914</td>
<td>100v 10mA</td>
<td>0.05</td>
</tr>
<tr>
<td>IN4004</td>
<td>600v 1A</td>
<td>0.08</td>
</tr>
<tr>
<td>IN4007</td>
<td>100v 1A</td>
<td>0.15</td>
</tr>
<tr>
<td>IN4148</td>
<td>75v 10mA</td>
<td>0.15</td>
</tr>
<tr>
<td>IN4733</td>
<td>5.1v 1W Zener</td>
<td>0.25</td>
</tr>
<tr>
<td>1N753A</td>
<td>6.2v 500mW Zener</td>
<td>0.25</td>
</tr>
<tr>
<td>1N759A</td>
<td>12v</td>
<td>0.25</td>
</tr>
<tr>
<td>1N5243</td>
<td>13v</td>
<td>0.25</td>
</tr>
<tr>
<td>1N5244B</td>
<td>14v</td>
<td>0.25</td>
</tr>
<tr>
<td>1N5245B</td>
<td>15v</td>
<td>0.25</td>
</tr>
</tbody>
</table>

SOCKETS/BRIDGES

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-pin pcb</td>
<td>0.20</td>
</tr>
<tr>
<td>20-wire</td>
<td>0.25</td>
</tr>
</tbody>
</table>

TRANSISTORS, LEDS, etc.

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N2222</td>
<td>NPN (2N222 Plastic)</td>
<td>0.15</td>
</tr>
<tr>
<td>2N2907</td>
<td>PNP</td>
<td>0.15</td>
</tr>
<tr>
<td>2N3906</td>
<td>NPN (Plastic - Unmarked)</td>
<td>0.10</td>
</tr>
<tr>
<td>2N3904</td>
<td>PNP (Plastic - Unmarked)</td>
<td>0.10</td>
</tr>
<tr>
<td>2N3054</td>
<td>NPN 15A 60v</td>
<td>0.35</td>
</tr>
<tr>
<td>2N3567</td>
<td>NPN 15A 60v</td>
<td>0.50</td>
</tr>
<tr>
<td>TIP125</td>
<td>NPN Darlington</td>
<td>0.95</td>
</tr>
<tr>
<td>TR1802</td>
<td>LED Green, Red, Clear, Yellow</td>
<td>0.15</td>
</tr>
<tr>
<td>D.L.747</td>
<td>7seg 5/8" High countode</td>
<td>1.95</td>
</tr>
<tr>
<td>MAN77</td>
<td>7seg countode (Red)</td>
<td>1.25</td>
</tr>
<tr>
<td>MAN3610</td>
<td>7seg countode (Orange)</td>
<td>1.25</td>
</tr>
<tr>
<td>MAN82A</td>
<td>7seg countode (Yellow)</td>
<td>1.25</td>
</tr>
<tr>
<td>MAN74A</td>
<td>7seg countode (Red)</td>
<td>1.50</td>
</tr>
<tr>
<td>FND359</td>
<td>7seg countode (Red)</td>
<td>1.25</td>
</tr>
</tbody>
</table>

INTEGRATED CIRCUITS UNLIMITED

8789 Clairemont Mesa Boulevard, San Diego, California 92111

(714) 278-4394 (Calif. Res.)

SPECIAL DISCOUNTS

- All orders shipped prepaid
- No minimum
- Open orders invited
- COD orders accepted

Discounts available at OEM Quantities California Residents add 6% Sales Tax

All IC's Prime/Guaranteed. All orders shipped same day received.

24 Hour Toll Free Phone 1-800-854-2211 American Express / BankAmericard / Visa / MasterCharge

Circle 180 on inquiry card.
Function Generator Kit

- Provides 3 basic waveforms: sine, triangle and square wave
- Frequency range from 1 Hz to 100 kHz
- Output amplitude from 0 to 6 V peak to peak
- Uses a 12 V supply or a 2 V supply
- Includes chips, P.C. board, components and instructions.

JE200 $14.95

4-Digit Clock Kit

- Bright, 257 ft., red display
- Sequential flashing colon
- Times to 99 minutes, 59.99 seconds
- Quartz crystal controlled
- Three stops in one: single event, cummulative and taylor (sequential timing)
- Uses 3 penlite batteries
- Size: 4.5 x 1.25 x .90

JE900 $39.95

6-Digit Clock Kit

- Bright 300 ft. common cathode display
- Uses MMS514 clock chip
- Switches for hours, minutes and hold modes
- Includes all components, case and wall transformer
- Size: 3-1/4 x 1-3/4 x 1-1/2

JE730 $14.95

Jumbo 6-Digit Clock Kit

- Four 530 ft. and two 300 ft. common anode displays
- Includes MMS541 clock chip
- Switches for hours, minutes and hold functions
- Hours easily viewable to 20 feet
- Simulated walnut case
- 115 VAC operation
- 12 or 24 hour operation
- Includes all components, case and wall transformer
- Size: 6-3/4 x 3-1/8 x 1-3/4

JE701 $19.95

The incredible "Pennywhistle 103"

$139.95 Kit Only

The Pennywhistle kit is a simplified version of an electronic whistle and is built from auto parts which can be controlled with a key and a switch or a number pad. It can be controlled directly with a headphone jack and is adapted for home or other commercial use. It utilizes standard and basic components and is based on non-pressured, readily available auto parts.

Data Transmission Method
- Frequency: 2700 Hz (1/4063 kHz)

Maximum Data Rate
- 2700 Hz

Data Format
- Alternating binary (return-to-zero line encoding)

Frame Length
- 1000 ms for max

Possible Messages
- Upto 20 characters

Physical Dimensions
- All components mounted on a specially designed guide

Includes:
- A total of 20 separately mounted auto components
- A small 6-key pad

Requires a 9VDC adapter. Frequency Counter and Optional Accessories to align (9" of cable)

TRS-80 16K Conversion Kit

Expand your 4K TRS-80 System to 16K. Kit comes complete with:
- 8 each UDPA16 (16K Dynamic Rams)
- Documentation for conversion

TRS-16K $115.00

COMPUTER CASSIETTES

- 6 EACH 15 MINUTE HIGH QUALITY C-15 CASSIETTES
- PLASTIC CASES INCLUDED
- 12 CASSIETTE CAPACITIES
- ADDITIONAL CASSIETTES AVAILABLE @7-15-82.50 ea

CAS-6 $19.45 (Case and Cassettes)

SUP 'R' MOD II

UHF Channel 33 TV Interface Unit Kit

- Wide Band B/W or Color System
- Converts TV to Video Display for home computers, CCTV camera, Apple II, works with Gotemo Display, SSL-20, IRS-80, Challenger II, etc.
- MOD II is pre-turned to Channel 33 (UHF)
- Includes coaxial cable and antenna transformer

MOD II $29.95 Kit

Custom Cables & Jumpers

DB 25 Series Cables

Part No. Cable Length Connectors Price
DB25P-4 4 ft. 2-DB25P $15.95 ea
DB25P-6 6 ft. 2-DB25P $15.95 ea
DB25S-5 5 ft. 2-DB25S $17.95 ea

Dip Jumpers

DJ11-1 1 ft. 1 pin $1.95 ea
DJ11-2 1 ft. 2 pins $2.95 ea
DJ11-4 1 ft. 4 pins $5.95 ea
DJ11-16 1 ft. 16 pins $9.95 ea

For Custom Cables & Jumpers, See JAMECO 1978 Catalog Page 85

CONNECTORS

25 Pin-D Subminiature

DB25 (50 pair) $2.95 ea
DB25S-5 $3.40 ea
DB25P-4 200 pair $2.95 ea

63-Key Unencoded Keyboard

This is a 63-key, terminal keyboard newly manufactured by a large computer manufacturer. It is unencoded with SPST keys, unused in any kind of PCB boards. Also includes 100 plastic 1/4" x 4" buttons. Most application in stock.

$29.95/each

Hexadecimal Unencoded Keypad

19-key pad includes 10-keys, ABCDEF and 2 optional keys and shift key.

$16.95/each

Circle 200 on inquiry card.
Get Your Feet Wet with a Solderless Breadboard Without Wringing Your Wallet Dry

The PB-6 Pronto-Board Kit comes complete with a preassembled breadboarding socket, two preassembled solderless bus strips, four 5 way binding posts, a metal ground base plate, non-marring feet and all required hardware. When complete, its 630 tie points permit flexible configurations as many as six 14 pin dual-in-line package integrated circuits. Of the four binding posts, one is grounded to the ground base plate permitting high distributed capacitance and low distributed inductance for enhanced high speed circuit operation. The three remaining 5 way binding posts can be used to interconnect the circuit on the PB-6 to power and signal lines and the outside world. Kit is priced at $15.95 from Continental Specialties Corp, 70 Fulton Ter, New Haven CT 06509. Circle 546 on inquiry card.

Compucruise Reduces Fuel and Repair Expenses

Compucruise is an automotive microcomputer combining a 20 button backlit keyboard, 5 digit blue fluorescent display, and appropriate sensors to provide a fuel management system, trip computer, clock and digitally displayed cruise control. Compucruise monitors speed, distance, fuel flow, time, battery voltage and choice of three temperatures, inside, outside or coolant. Its fuel management system indicates average fuel consumption, fuel used and remaining, plus distance and time to empty. The precision quartz crystal computer features time, elapsed time, trip time, stopwatch and alarm. The trip computer displays distance, time and fuel to arrival. A total of 44 functions can be commanded by the touch of a button. Compucruise features cruise control that will accelerate your vehicle to any preselected road speed, can be instructed to adjust to traffic flow and has a resume feature. Either metric or English units can be displayed. With a command module no larger than a hand held calculator, Compucruise can be flush or bracket mounted, and complete hardware and installation instructions are included. The price is $189.95 from Zemco Inc, 136 Saranap Av, Walnut Creek CA 94595. Circle 546 on inquiry card.

Master System Clock for LSI-11

A master system clock for use with Digital Equipment Corporation (DEC) LSI-11, LSI-11/2, and PDP-11/03 computer families has been announced by Nortek Inc, 2432 NW Johnson St, Portland OR 97210. The dual width module combines the features of a KW-11L real time clock, a KW-11P programmable clock, and adds an RT-11 compatible date and time clock. An independently powered microprocessor helps insure that date, time and programmable count are maintained when the processor is not running. Simple operating system modifications eliminate the need for manually setting these values on power up. 13 programmable time rates from 1 MHz to once per hour are available. The programmable clock may also be used as an external event counter.

The basic unit with standard power supply and installation instructions is priced at $600. An optional battery backup power supply is available to provide protection against power failures for up to 24 hours. Circle 548 on inquiry card.

Low Cost Erasable Read Only Memory Eraser

The Information Central E-PROM Eraser is a 2 part unit consisting of a 2537 A ultraviolet lamp and a base that holds up to two erasable read only memories. It operates from 115 VAC. The price is $45; Illinois residents should add 5% state tax. For more information contact Information Central Inc, 5521 N Broadway, Chicago IL 60640. Circle 547 on inquiry card.

Attention Builders: Cases to House Prototype Electronic Circuits

These Design Mate cases are designed to house prototype electronic circuits. They are made of high impact one-piece insulated plastic and feature a slope front panel, a metal bottom and include mounting screws.

There are two models of the Design Mate case: the DMC-1 measures 6.75 by 7.5 inches (16.15 by 19.05 cm) with a height that slopes from 1.5 to 3.25 inches (3.81 to 8.26 cm); the DMC-2 measures 5.63 by 6.0 inches (14.30 by 15.24 cm) with a height that slopes from 1.5 to 3 inches (3.81 to 7.62 cm). The DMC-1 is $6.95 and the DMC-2 is $5.95. For further information contact Continental Specialties Corp, 70 Fulton Ter, New Haven CT 06509. Circle 550 on inquiry card.
BUY FROM THE BIGGEST

NCE/CompuMart
1250 North Main Street, Department KBC8
P.O. Box 8610 Ann Arbor, Michigan 48107

PET
IN STOCK NOW
$795

THE PET
CONNECTION
PET with 8K user
memory $795.00
Second Cassette drive $99.95
RS-232 Printer Adapter — assembly board $69.95
With power supply, case $189.95
Roper — PET controller $19.95
Video Buffer — add a
conventional monitor $18.95
BETA — PET to S-100 I/O
motherboard $149.95
Assembled $199.95
LAMINATED — inexpensive page
memory supplement for the PET
16K. $14.95
256K $29.95

SELECfICBASED TERMINA L FOR PET $895
The KIM-1 Interface Module connects PET to the new
Selectric III. It can be used as a printer or as a
printer with the VIA User Port for
bidirectional I/O ideal for Word
Processing applications. Sale price if bought with PET $795

LOW-COST PRINTER FOR PET $895
This is a completely refurbished
Type 2230 terminal ready to
plug into your PET interface to
use as a printer
INTRODUCTORY
PRICE $395

READER/PUNCH
NEW ASCII INTERFACES
FOR Reader/Punch
5 LEVEL PAPER
TAPE/READER
PUNCH
USED (90 day warranty) $170.00
Documentation $10.00

KIM-1
The original fully expandable single
board computer
Assembled $179
with power supply $209
EXPAND YOUR KIM SYSTEM
KIM-1 to 5-100 Board $125
KIM-1 to 5-200 Board $150
KIM-1 to 5-300 Board $195
KIM-1 with expansion board $149
MICRO TECH POWER SUPPLY
Assembled $89.95
KIM ENCLOSURE
Only $9.95

WE WANT TO BUY
USED MICROCOMPUTERS
Any Quantity
Urgently needed:
• Peripherals
• Manufacturers surplus
• Closed stores stock

CASH AVAILABLE
Call Today: (313) 994-3200

TC-71 SELECTIC TERMINALS
Top-quality printing terminal
with RS-232C, ASCII, VITTERTIC, DEC-DCB
Autocontrol, Dual Serial (for
Telephone Answering System),
and ASCII keyboard, ready to plug
into your PET for immediate
use. Assembly, documentation,
and power supply $187

PIXIE-VERTEK
The original video to V.F. printer
converter. Connects to a TV in a
video monitor
HI PLOT
DIGITAL GRAPHICS
Reg. $59.95 NOW $35.95

MATROX VIDEO RAMS S-100
A-1: 4MB $295
A-2: 8MB $525
A-3: 16MB $795

WEBSTER Tape reader —
$295

CompuColor ll
Model 2: 8K RAM $1495
Model 3: 16K RAM $2395

10 DAY RETURN PRIVILEGE
• 90 day limited warranty
• Newest, most exciting products
• Personal computing
• Outstanding values
• All items fully assembled and tested
• Send for our catalog for more detailed
information.

Hams! Add a
PET to your rig.
Computerize your station with
Hazeltine's PET—We build complete
and include software. You supply
the unit into your PET and
you're ready to display printouts
taken from a teleprinter
Remote Display and
Cost-Effective Data Handling.
ASSEMBLED KITS
$99.95
SECON D CASSETTE
FOR PET $99
The peripheral from Commodore
adds the ability to record and
playback up to 100 WPM
5 LEVEL PAPER
TAPE/READER
PUNCH
NOW $749.00

ASSEMBLED KITS
$99.95
SECOND CASSETTE
FOR PET $99
The peripheral from Commodore
addsthe ability to record and
playback up to 100 WPM

Hazel tine 1400
Only $749.00
Now a 5th Generation
in Terminals:
Introductory Sale Price —
Immediate Delivery

12" CRT Monitor
Remote screen control
Uses 8048 microprocessor
State-of-the-art design

A full capability terminal completely
assembled with a 90 day warranty
for less than you'd pay for a kit.

NOW $269.00

Rockwell AIM65
• Easy assembly, no soldering required
• Assembly $45.95; $105 assembled
• Easily extends to 128 K bytes
• Prefab power supply
• Ready to use in less than an hour

Sym-1
From Syntek
$269.00

• 24 x 80 display
• RS-232C interface
• 110 to 9600 Baud
• 12" CRT Monitor
• Remote screen control
• Uses 8048 microprocessor
• State-of-the-art design

A full capability terminal completely
assembled with a 90 day warranty
for less than you'd pay for a kit.

NOW $269.00

Hazardtine 1400
Only $749.00
Now a 5th Generation
in Terminals:
Introductory Sale Price —
Immediate Delivery

12" CRT Monitor
Remote screen control
Uses 8048 microprocessor
State-of-the-art design

A full capability terminal completely
assembled with a 90 day warranty
for less than you'd pay for a kit.

NOW $269.00

Rockwell AIM65
• Easy assembly, no soldering required
• Assembly $45.95; $105 assembled
• Easily extends to 128 K bytes
• Prefab power supply
• Ready to use in less than an hour

Sym-1
From Syntek
$269.00

• 24 x 80 display
• RS-232C interface
• 110 to 9600 Baud
• 12" CRT Monitor
• Remote screen control
• Uses 8048 microprocessor
• State-of-the-art design

A full capability terminal completely
assembled with a 90 day warranty
for less than you'd pay for a kit.

NOW $269.00

Rockwell AIM65
• Easy assembly, no soldering required
• Assembly $45.95; $105 assembled
• Easily extends to 128 K bytes
• Prefab power supply
• Ready to use in less than an hour

Sym-1
From Syntek
$269.00

• 24 x 80 display
• RS-232C interface
• 110 to 9600 Baud
• 12" CRT Monitor
• Remote screen control
• Uses 8048 microprocessor
• State-of-the-art design

A full capability terminal completely
assembled with a 90 day warranty
for less than you'd pay for a kit.
NLS LEADS AGAIN!!
THE NEW MS-15 MINISCOPE

FEATURES
- Automatic and line sync modes.
- Power consumption less than 15W.
- Vertical Gain — 0.01 to 50 V/div.
- 12 settings.
- Weight is only 3 pounds.

15 megahertz bandwidth.
External and Internal trigger.
Time Base — 0.1 microseconds to 0.6 seconds — 21 settings.
Battery or line operation.

From the originator of the Digital Voltmeter, Non-Linear Systems comes the MS-15 Miniscope. It is a fine electronic instrument with a great deal of measuring capability and excellent accuracy. Its design is modern, utilizing the latest in low-power integrated circuits. Its compact design offers a free-stand or table top versatility, servicing most electronic equipment. It is handheld or portable so its use is restricted to the bench.

SPECIFICATIONS:

Vertical input: 110-190V/110 to 100V/10A nom. range. Each channel independently variable.
Horizontal input: 20V/20A nom. range. Each channel independently variable.
Input level: 1 V/div to 200 V/div in range of 0.2 V/div to 20 V/div.
Time base: 100 ns/div to 100 ms/div in range of 1 microsecond to 1 second.

Leather Carrying Case $318.00
Probe $45.00

FREE PROBE Just send in this COUPON and BYTE MAGAZINE and receive 41-141 PROBE FREE with purchase of MS-15 MINISCOPE.

TOLL FREE
(1-800) 423-5633

167238, Roscoe Blvd, Sepulveda, CA 91343

Priority One Electronics

Phone orders welcome (1-800) 895-8952

Order must include your phone no.
Measures DC Volts, AC Volts, Ohms and Current.
- Automatic polarity, decimal and overload indication
- Rechargeable batteries and charger included
- Measures DC Volts, AC Volts, Ohms and Current
- Automatic polarity, decimal and overload indication
- Rechargeable batteries and charger included
- Measures DC Volts, AC Volts, Ohms and Current
- Automatic polarity, decimal and overload indication

Purchasing any of the LM series Meters and buy the LEATHER CASE for 1C

3 LEVEL GOLD WIRE WRAP SOCKETS

Sockets purchased in multiples of 50 per type may be combined for total price.

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 pin</td>
<td>$10.90</td>
</tr>
<tr>
<td>2 pin</td>
<td>$7.94</td>
</tr>
<tr>
<td>3 pin</td>
<td>$11.45</td>
</tr>
<tr>
<td>4 pin</td>
<td>$9.45</td>
</tr>
<tr>
<td>6 pin</td>
<td>$7.45</td>
</tr>
</tbody>
</table>

LIQUID CRYSTAL DIGITAL CLOCK-CALENDAR

- For Auto, Home, Office
- Small size (2x2 in)
- Push button for second release for date
- Clocks may be ordered with either 24-hour or 12-hour format in a variety of colors.
- LCD-120 portable model runs on 12 volt system and is backlit.

PIRAT'S ONE ELECTRONICS

Visit our new retail location!

Visit our new retail location!
Logic Probes and Digital Pulasers

CSC model P-1 Logic Probe - Net Each

Digital IC Testers and COUNTER

MAX 100 PORTABLE FREQUENCY COUNTER
MAX 100 is a portable, high-precision frequency counter that sets new limits in design, performance and value in a compact, portable design. It gives you continuous readings from 50 Hz to a guaranteed 100 MHz, with digital accuracy Fast readings with 10 Hz update rate and 10 Hz sampling rate. Precise readings, anywhere from 0.1 nsec to 10 nsec, or from 1 mV to 100 MHz. A single push button is used to select the frequency range, and another to select the display format. The counter also provides a direct reading of the frequency with no calculation required. It has a built-in battery charger that automatically charges the battery while in use. It's perfect for use in the laboratory, on the job site, or in the field.

SPECIFICATIONS
Frequency Range: 50 Hz to 100 MHz guaranteed; 100 MHz types: 3 GHz, 10 GHz, 20 GHz, 30 GHz, 50 GHz, 60 GHz
Bandwidth: 1 GHz
Display: 4 digits
Resolution: 0.1 nsec
Accuracy: ±3
Input Impedance: 1 MΩ
Power Requirements: 100 to 120 VAC
Dimensions: 7 x 4 x 2.5 inches
Weight: 2.5 pounds

CSC Model MAX-100 Frequency Counter - Net Each $124.95

MAX 100 ACCESSORIES
Model 100-CAL: Multi-accessory calibrator, Net Each $4.95
Model 100-CAC-1: 100 VAC charger eliminator, Net Each $6.95
Model 100-CAC: 220 VAC charger eliminator, Net Each $6.95
Model 100-SPC: Input switch with kick leads, Net Each $14.95
Model 100-SPC-Low Level, Net Each $24.95
Model 100-CV: Cassette adapter, Net Each $9.95

Digital IC Testers

These handheld units provide a comprehensive view of circuit conditions. Simple to use and easy to interpret, they feature a large backlit display and bright, white LED indicators that make readings easy to see. They include a built-in battery charger and a single push button that selects the measurement range. They are perfect for use in the laboratory, on the job site, or in the field.

CSC Model LM-1 Logic Monitor - Complete $59.95

LOGIC MONITOR 2
This unit monitors all types of digital systems, from simple logic circuits to complex microprocessors. It features a large, easy-to-read display, bright, white LED indicators, and a built-in battery charger. It is perfect for use in the laboratory, on the job site, or in the field.

LOGIC MONITOR 3
This unit monitors all types of digital systems, from simple logic circuits to complex microprocessors. It features a large, easy-to-read display, bright, white LED indicators, and a built-in battery charger. It is perfect for use in the laboratory, on the job site, or in the field.

CSC Model LM-2 Logic Monitor - Complete $112.95

SALE
PrioriTY ONE ELECTRONICS

We stock the entire A Product line. "Faster and Easier" line

DIP JUMPERS
FLAT RIBBON CABLE
ASSEMBLIES WITH DIP CONNECTORS

Available with 14, 16, 18 and 20 contacts.
Mats with standard IC sockets. Fully assembled and tested.
Integrated molded-on strain relief.
Line-by-line probability.

Visit your new retail location at
167238 Bosque Blvd. Septulpeca, CA 91345

Send for our latest brochure. Orders less than $75.00 include 10% shipping and handling. Excess refunded. Retailers please include your phone number

Circle 306 on inquiry card.
You can get your Electric Selectric here

GT/E Novar Selectric Terminals

MODELS AND PRICES:
- MODEL 5541 (IBM 2741-Type Terminal, EBCD or Corresp. Code) - $695
- MODEL 5550 (w/built-in cassette drive for offline data storage or use as memory typewriter, EBCD or Corresp. Code) - $1195
- MODEL 5560 (ASCII code w/cassette drive) - $1295

I/O TYPEWRITER ONLY SPECIAL:
- MODEL 725 IBM Selectric includes keyboard pickup switches, output solenoids, and magnet driver PCB to coordinate input/output signals.

FEATURES: Available in EBCDIC or IBM correspondence code versions with ASCII translation and other major companies. Printing speed is 15 characters per second. Data transfer rate between IBM model 725 Selectric Typewriter (or your own 15" carriage Selectric I or Selectric II) and other devices is 10 kbytes/second, servicable by any IBM technician. Tapes have been attached to the bottom of the typewriter without physical alteration of the factory mechanism.

See, PERSONAL COMPUTING, September 1978, "Techno Turkey and his Electric Selectric," by Lloyd Prentice and Peter Henry. In this advertisement to PERSONAL COMPUTING or to Meares Prentice or Henry does not imply their endorsement of PACIFIC OFFICE SYSTEMS or its products.

GOLD

EDGEBORAD CONNECTORS

Texas Instruments, world leader in semi-conductor technology, is introducing its new improved 4A4 connector and TRI-TEK is proud to offer it for the first time to our customers. The 4A4 represents the best value in the industry on this popular connector style.

Heavy gold plating gives you up to seven times the gold in the critical contact areas at reduced cost. T.I. had the technology and TRI-TEK has the 1.5mm soldering connections for 5-100ohm machines such as Lineal, Vactor, Commerical. Will fit all After manufacturer boards.

SPECIFICATION:
- **Product:** Z80 CPU
- **Price:** $20
- **Features:** Famous single chip processor with all the power of the 8008 plus 80 additional operations. Single +5V supply and single clock. Directly interfaces with standard static and dynamic RAMs. Z80 CPU.

Z80 ACTC

Programmable four channel device that provides counting and timing functions for the Z80 CPU. Z80A CPU.

Z80 PIO

Parallel interface controller is a two port TTL compatible interface with the CPU. Z80A CPU.

Z80A ROM

Full documentation included PLUS interface instructions where indicated. All equipment is shipped insured FOB Palo Alto within 14 days after check clearance. Details are ordered, Prices may change without notice.

PACIFIC OFFICE SYSTEMS, INC.

2600 El Camino Rea, Suite 502
Palo Alto, Calif. 94306

(415) 321-3866

POWER OF AMP

250mW output current capability. Operates on a low as 3V. Input parameters are programmable for system optimizing. Electronic shut down allows output to float. Packaged in 8 pin mini-dip. Lm1080N.

GOLD

EDGEBORAD CONNECTORS

Texas Instruments, world leader in semi-conductor technology, is introducing its new improved 4A4 connector and TRI-TEK is proud to offer it for the first time to our customers. The 4A4 represents the best value in the industry on this popular connector style.

Heavy gold plating gives you up to seven times the gold in the critical contact areas at reduced cost. T.I. had the technology and TRI-TEK has it.

Solder full H43153-50 $3.39 10/33.00 Wire wrap H43111-50 $3.39 10/33.00

PRECISION VOLTAGE REFERENCE.

AD584 is a precision monolithic IC which has programmable outputs of 0.15, 1.5V, 3.5V and 2.3V @2.5% maximum error full -55 to +150° operation. AD584, 78 P, (in 8 pin TO-5 can).

TRI-TEK INC.

7808 North 27th Avenue
Phoenix, Arizona 85021

Charge card telephonic orders (800) 800-8800 will be accepted 9-5:30 P.M. except weekends.

Telephone: (602) 991-9832. No collect calls please.

GOLD

EDGEBORAD CONNECTORS

Texas Instruments, world leader in semi-conductor technology, is introducing its new improved 4A4 connector and TRI-TEK is proud to offer it for the first time to our customers. The 4A4 represents the best value in the industry on this popular connector style.

Heavy gold plating gives you up to seven times the gold in the critical contact areas at reduced cost. T.I. had the technology and TRI-TEK has it.

Solder full H43153-50 $3.39 10/33.00 Wire wrap H43111-50 $3.39 10/33.00

PRECISION VOLTAGE REFERENCE.

AD584 is a precision monolithic IC which has programmable outputs of 0.15, 1.5V, 3.5V and 2.3V @2.5% maximum error full -55 to +150° operation. AD584, 78 P, (in 8 pin TO-5 can).

TRI-TEK INC.

7808 North 27th Avenue
Phoenix, Arizona 85021

Charge card telephonic orders (800) 800-8800 will be accepted 9-5:30 P.M. except weekends.

Telephone: (602) 991-9832. No collect calls please.

GOLD

EDGEBORAD CONNECTORS

Texas Instruments, world leader in semi-conductor technology, is introducing its new improved 4A4 connector and TRI-TEK is proud to offer it for the first time to our customers. The 4A4 represents the best value in the industry on this popular connector style.

Heavy gold plating gives you up to seven times the gold in the critical contact areas at reduced cost. T.I. had the technology and TRI-TEK has it.

Solder full H43153-50 $3.39 10/33.00 Wire wrap H43111-50 $3.39 10/33.00

PRECISION VOLTAGE REFERENCE.

AD584 is a precision monolithic IC which has programmable outputs of 0.15, 1.5V, 3.5V and 2.3V @2.5% maximum error full -55 to +150° operation. AD584, 78 P, (in 8 pin TO-5 can).

TRI-TEK INC.

7808 North 27th Avenue
Phoenix, Arizona 85021

Charge card telephonic orders (800) 800-8800 will be accepted 9-5:30 P.M. except weekends.

Telephone: (602) 991-9832. No collect calls please.

GOLD

EDGEBORAD CONNECTORS

Texas Instruments, world leader in semi-conductor technology, is introducing its new improved 4A4 connector and TRI-TEK is proud to offer it for the first time to our customers. The 4A4 represents the best value in the industry on this popular connector style.

Heavy gold plating gives you up to seven times the gold in the critical contact areas at reduced cost. T.I. had the technology and TRI-TEK has it.

Solder full H43153-50 $3.39 10/33.00 Wire wrap H43111-50 $3.39 10/33.00

PRECISION VOLTAGE REFERENCE.

AD584 is a precision monolithic IC which has programmable outputs of 0.15, 1.5V, 3.5V and 2.3V @2.5% maximum error full -55 to +150° operation. AD584, 78 P, (in 8 pin TO-5 can).

TRI-TEK INC.

7808 North 27th Avenue
Phoenix, Arizona 85021

Charge card telephonic orders (800) 800-8800 will be accepted 9-5:30 P.M. except weekends.

Telephone: (602) 991-9832. No collect calls please.
Incredible! but True
Precut wire is Cheaper than cutting your own!

Fast • Reliable • Economical
- No more cutting & stripping by hand
- Good, clean, uniform strip
- Cheaper than using bulk wire

PRE CUT WIRE BULK WIRE
100 pcs of 3" at $0.82 = 31/4'/.ft.
100 pcs of 6" at $1.06 = 26'/.ft.
100 pcs of 9" at $1.29 = 21/2'/.ft.
Wire Kit #1 at $6.95 = 2 1/4'/ft.

#30 Kynar stripped 1" on each end. Lengths are overall Colors: Red, Blue, Green, Yellow, Black, Orange, White Wire packaged in plastic bags. Add 25¢/length for tubes.

WIRE WRAP TOOLS
It's Like getting it for $2800

HOBBY WRAP
Model BW 630 with
FREE (6.95 Value) WIRE KIT#1
$34.95

SOLDERLESS BREADBOARDS
- Batteries & Charger
- WSU 30 Hand Wrap Unwrap Strip Tool $6.25
- WSU 30 M, for Modified Wrap 7.25
- BT 30 Extra Bit 2.95

INTERCONNECT CABLES
- Ribbon cable connectors for connecting boards to front panels, or board to board
- SINGLE ENDED DOUBLE ENDED

WIRE WRAP SOCKETS
- End & Side Stackable

EDGE CARD CONNECTOR SALE!

ORDERING INFORMATION
- Orders under $25 and COD's, add 2%
- All others shipped F.O.B. LA UPS
- For Blue Label (A) or 1st Class, add $1
- We accept Visa & Mastercharge
- Most orders shipped same day

PAGE DIGITAL ELECTRONICS
135 E. Chestnut St. #5 Monrovia, CA 91016 (213) 357-5005
HEATHKIT SOFTWARE DOCUMENTATION WRITER

At Heath Company, software documentation is an integral part of the final product. Since Heath is expanding in the microprocessor products area, our writers are needed to continue the Heath traditions in the software documentation area.

We are seeking applicants with:
- An enthusiasm for personal computing
- A desire and ability to communicate software concepts
- A degree in programming or the equivalent of one semester of assembly language

Heath offers a competitive salary with excellent fringe benefits, challenging opportunity and a pleasant work environment.

Send resume and salary requirements or phone collect to: H. T. Carson
HEATH COMPANY
Sutton Harbor, Michigan 49022
(616) 992-3251

TRS-80 SOFTWARE

Muti !l shipboard
File Handling (16K RAM req.)
Loan Payment/Amortization
Prime Numbers
iBusword
Day of the Week
Hambrabi
Pollution
Tie-Tax-Toe
Slot Machine (with graphics)
Petals Around the Rose

20% off on order of three or more
One each of all of the above

— Business Systems —

Advanced Amway Distributor
Business System
Streamlined Amway Distributor
Business System
Amway SA/1/SA-2R Verification Program

Circle Enterprises
P. O. Box 546
Groton, CT 06340

DEALER INQUIRIES WELCOMED!

Circle 48 on inquiry card.

RS32C Computer Compatible
Paper Tape Transmitter/Model 612

Stops and starts on character at all speeds, uses manual control or X-on, X-off 90-260 volt, 50-60 Hz power. 50-9600 baud, up to 150 char/sec synchronous or asynchronous; ganged internal or external clock, RS-232C current loop or parallel output, reads 5.8 level tape, 7.11 frames per character, even or odd parity. Desk top or rack mount.

Addmaster Corporation
416 Juniper Serra Drive
San Gabriel, CA 91776
(213) 285-1121
Telex 674770 Addmaster SGAB

Circle 31 on inquiry card.

TRS-80 Z-80 , 8080

Professionally written software for the serious user.

Subroutines and interactive programs from $5 in the following areas:

- Math
- Finance
- Science
- Astronomy
- Statistics
- Electronics
- Navigation
- Investments
- Real Estate
- Amateur Radio
- Music Analysis
- Digital Design
- Music Synthesis
- Utility Functions

Performance Guaranteed.
Write for free catalog.

BENCHMARK COMPUTING SERVICES
P. O. Box 385-B1
Providence, Utah 84332

Circle 161 on inquiry card.

TRS-80

16K MEMORY EXPANSION KIT $79.95

DISK DRIVES $399.00
CENTRONICS 779 TRACTOR PRINTERS $1179.00

TRS-80 & PET SOFTWARE.
SEND FOR FREE CATALOG.

APPARAT, INC.
6000 E. Evans Ave. Bldg. 2
Denver, CO 80222
303-768-7279

THE COMPUTER HARDWARE STORE INC.

Dealers for:
APPLE II IMSAI
VECTOR GRAPHIC
KIM I, II
COBOL
WIN

With:

ALPHA-1 CASSETTE SYSTEM
16 Bits

ALPHA MICRO
TECHNICO STARTER SYSTEM

Catalog Available
816 FRANKLIN ST., ALEX. VA
703-546-0665

Circle 9 on inquiry card.

LS-446 Bus Microprocessor Module - Contains up to
Altimet and S-446 modules but features 16 address lines
On-board addressing. All 32 lines $79.95.
- 6K RAM Board (111A) $119.95 (Pin Through Video 8845)
- CPU Board (99030800) $79.95 (Color Video 98471)
- Real Time Clock
- 844 Microprocessor Card Price List free
- 444 Microprocessor Card Manual $3.70
- Ohio Scientific Challenge II.1 Manual 9.00
- PET Technical Manual (Our Own) with Schematics 11.00
- KIM II User Manual 4.95
- KIM I User Manual 4.95
- KIM I Catalog (Our Own) free
- KIM Computer Enclosure 6.95
- AC/DC Computer Technical Manual 7.25
- Technical Data Price List free
- Computer Surplus Price List free
- Universal 16-8 Memory Brochure free
- 2-Way Radio Price List free
- 6800, 8080, and memory IC Price List free
- Assembly. KIM, DIF/1, or PET Required for 52.00
- Ohio Scientific Price List free
Ohio Scientific Price List free
Manual 5800 and 8802 Software
Computer Class (Ohio Scientists) 34.95
- Micro
Wind Generators and Solar Calif. Casing 2.00

Silent Spur
Electronic Communications Co
P. O. Box 385, Chicago, IL 60690
or Visit Retail Store
10360 Central Avenue
815-569-8000

Circle 71 on inquiry card.

Circle 327 on inquiry card.

Circle 212 on inquiry card.

Circle 181 on inquiry card.

Get your “computer nut” the perfect gift. The original single board computer (an abacus) comes in a display case with “Break Glass in Emergency” printed on the front.

Send $14.95 plus $2.50 postage and handling to:
Intelligent Design
2535 Hayward Drive
Santa Clara CA 95051

Circle 1 on inquiry card.
MINIATURE SOLID STATE
202 VIDEO CAMERA KIT
FEATURING A 100 x 100 BIT SELF SCANNING CHARGED COUPLED DEVICE

ADDITIONS
- IN THE FUTURE
 WE WILL SUPPLY A
 COMPUTER VIDEO INTERFACE CARD
- All clock voltages operate at 6V
 requiring no adjustments
- Higher video output signal
- We supply the power board, so only
 a 5V 1 Amp power source is needed
- The circuitry has been simplified for
 easier assembly
- Two level TTL output is supplied for
 interfacing

We supply all semiconductors, boards, data sheets, diagrams, resistors and capacitors, and 8MM lens. Sorry we do not supply the case, batteries and 5V supply.

$349.00 KIT
Add $75.00 to assemble and test
Add $2.00 Postage and Handling
QUEST Electronics

Cosmac Super Elf Computer $106.95

Compare features before you decide to buy any other computer. There is no other computer on the market today that has the performance of the Super Elf for the price. The Super Elf is a small single board computer that does many big things. It is an excellent computer for training and for learning programming with its machine language and yet it is easily expanded with additional memory, Tiny Basic, Acct, Keyboards, video character generation, etc.

The Super Elf includes a PROM monitor for program loading, editing and execution with SINGLE STEP for program debugging which is not included in others at the same price. With SINGLE STEP you can see the microprocessor chip operating with the unique output address and data bus displays before, during and after execution. Also, CPU mode and instruction cycle are shown on several LED indicator lamps.

An RCA 1961 video graphics chip allows you to connect your own TV with an inexpensive video modulator to do graphics and games. There is a speaker system included for writing your own music or using many music programs already written. The speaker system may also be used to drive relays for control purposes.

A 24 key HEX keyboard includes 16 HEX keys plus read, reset, run, stop, and memory protected.

Super Expansion Board with Cassette Interface $89.95

This truly a costless value! This board has been designed to allow you to decide how you want it optioned. The Super Expansion Board comes with 4X of low power RAM fully addressable anywhere in 64K with built-in memory protection and a cassette interface. Provisions have been made for all other options on the same board and it fits neatly into the hardwired cabinet alongside the Super Elf. The board includes slots for up to 616 of EPROMs (2708, 2725, 2716, or Ti 2716) and is fully socketed ($12.00 value). EPROM can be used for the monitor and Tiny Basic or other purposes. A 6K Super ROM Monitor $19.95 is available as an option in the EPROMs which have been programmed with a program loader/editor and error checking multi-line cassette read/write software (relocatable cassette file) and another optional from the super expansion board. It includes register save and re-load, video graphics driver, blinking cursor and block move capability. The Super Monitor is written with subroutines allowing users to take advantage of monitor functions.

Auto Clock Kit $19.95

RCA Cosmac VIP Kit $29.00

Video computer with games and graphics.

Not a Cheap Clock Kit $14.95

Includes everything except case. 2-PC boards. 6-50 LED displays. 314 clock chip, transformer, all components and full instructions. Green and orange displays also available. Same kit but 80 displays. Red only $21.95.

60 Hz Crystal Time Base Kit $4.40

Converts digital clocks from AC line frequency to crystal time base. Outstanding accuracy. Kit includes: crystal clock, MM3897, crystal, resistors, capacitors and trimmer.

Digital Temperature Meter Kit $19.95

NiCad Battery Fixer/Charger $31.75

Beautiful hardwired case w/ LED readout. 514 in. $31.75

PROM Eraser $49.95

Erases all PROM except 7452. A great item that makes sure. $49.95

Clock Calendar Kit $22.95

CT7015 direct drive chips displays date and time on 5.4 LEDS with AM-FM indicator. AlarmOff feature includes buzzer. Complete with all parts, power supply and instructions. $22.95

1976 IC Update Master Manual $24.95

Stopwatch Kit $26.95

Full six digit battery operated. 2-50 seconds. 25 hours crystal controlled. Time to 59 1/2 min. 59 sec. 99 1/100 sec. Times to start and stop. 7250 components minus case. Full instructions.

D Connectors RS232

25 Pin Subminiature $9.95

DB25P 2.95

DB25S 3.95

Cover 1.50

DB25S Complete Set 6.50

S-100 Computer Boards

8K Static RAM Kit $127.00

16K Static RAM Kit $265.00

24K Static RAM Kit $425.00

32K Dynamic RAM Kit $449.00

64K Dynamic RAM Kit $945.00

8K X 4 EPROM kit (less PROMS) $135.00

Video Interface Kit $135.00

Motherboard $39.00

Sinclair 31/2 Digit Multimeter

Batt. AC/DC, 1mV and 1mA resolution. Resolution to 200µA with 1% accuracy. Small, portable, complete with case. It covers all your needs. $59.95

Video Modulator Kit $8.95

Converts your TV into a high quality monitor without affecting normal usage. Complete kit with full instructions.

2.5 MHz Frequency Counter Kit

Complete kit less case $37.95

30 MHz Frequency Counter Kit

Complete kit less case $47.75

1978 1C Update Master Manual $24.95

FREE Send for your copy of our NEW 1978 QUEST CATALOG. Include 4¢ stamp.

FREE Send for your copy of our NEW 1978 QUEST CATALOG. Include 4¢ stamp.

Same day shipment. First line parts only. Factory tested. Guaranteed money back. Quality IC's and other components at factory prices.

INTEGRATED CIRCUITS

<table>
<thead>
<tr>
<th>Circuit</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74118</td>
<td>8-bit parallel-in, parallel-out shift register</td>
<td>$2.95</td>
</tr>
<tr>
<td>74123</td>
<td>4-bit parallel-in, parallel-out shift register</td>
<td>$2.95</td>
</tr>
<tr>
<td>74128</td>
<td>8-bit parallel-in, parallel-out shift register</td>
<td>$2.95</td>
</tr>
</tbody>
</table>

FREE Send for your copy of our NEW 1978 QUEST CATALOG. Include 4¢ stamp.
Compact Microcomputer Boards

A miniature printed circuit board for Motorola 6800 parts is now available. The single sided board measures 2 by 4 inches (5 by 10 cm) and has circuits etched for the 6802 processor, 6846 read only memory, 6810 programmable memory and 6850 ACIA IO port.

Other addresses for additional programmable memory may be enabled by painting the back of the card with photo resistant paint, and etching away the unused metal cladding. The board alone sells for $15.

Also available is a miniature, fully operational single board computer called the Ace, with 1 MHz clock, programmable timer, and a 2 K byte read only memory monitor. This full scale 6802 system provides for parallel data output rates of up to 50 k bps interleaved with serial output at rates of up to 500 k bps and comes completely assembled and tested with female connector for RS-232 and 20 pin IO power connector for $99.

For more information write Lumberg Computer Company, 1220 W Alameda #104, Tempe AZ 85282.

Circular 576 on inquiry card.

Automotive Computer Provides Driver Controlled Information Center

This self-contained driver-operated automotive computer instantly displays such data as miles to go, vehicle location, estimated time of arrival, miles per gallon, cost per mile and 19 other functions. The Prince On-Board Computer, which is 10½ by 2½ by 1¼ inches (26.67 by 6.35 by 3.18 cm) and weighs less than one pound (0.45 kg), is easily installed in cars, trucks or vans by connecting a speed transducer and fuel flow transducer, both supplied with the computer.

Function controls are color coded.

The main programming keyboard and memory entry and recall bars are sized and located for easy access. Large 0.3 inch (0.76 cm) high intensity light emitting diode displays are recessed and filtered for optimum legibility day or night.

Other features of the unit include a memory scan and audio alarm which is automatically activated one mile before reaching a programmed location.

The unit costs $400. Contact the Prince Corp, POB 6, Holland MI 49423.

Circular 574 on inquiry card.

Wire Wrap Jumpers Save Time

American Data Cable wire wrap jumper cables provide a means for making temporary or permanent electrical connections between 0.025 inch (0.0635 cm) square terminal posts, such as those commonly used in integrated circuit sockets and printed circuit connectors. Small components such as diodes, resistors, and capacitors can also be temporarily connected using the jumpers.

These cables offer an alternative to wire wrap or clip lead connections during the development and testing of electronic equipment. They are fully insulated and can be installed in a few seconds, generally without turning off equipment power.

These wire wrap jumpers are available in lengths from 4 inches (10.16 cm) to 6 feet (1.82 m) in five colors. Both assortments and color code by length bulk packs are available. Contact American Data Cable Inc, 903 San Antonio Rd, Los Altos CA 94022.

Circular 572 on inquiry card.

Low Voltage Miniature Soldering Iron

The Soldercraft Model 6A is a miniature low voltage production soldering iron designed for versatile microcircuit and fine instrument work. This soldering iron, when powered by a multitap 18 W low voltage transformer, will provide controlled temperatures of 700° F at 6 V, 625° F at 5.5 V, 555° F at 5 V and 480° F at 4.5 V from its 3/32 inch (0.25 cm) tip. The heat is generated entirely within the tip, which provides maximum efficiency and faster heat recovery.

The Model 6A is priced at $6.90 and can be obtained by writing to the Mitchell-Hughes Co, 7534 Atoll Av, N Hollywood CA 91605.

Circular 575 on inquiry card.
CHRISTMAS GIFTS for YOUR FAVORITE COMPUTER

TWO NEW S100 PRODUCTS FROM WAMECO

FPB-1 FRONT PANEL BOARD

* DIRECT PLUG IN REPLACEMENT FOR IMSAI
* HEXADECIMAL READOUTS FOR DATA, ADDRESSES, AND PORT
* USES LOW COST SEVEN SEGMENT DISPLAYS
* CAN SINGLE STEP BY INSTRUCTION OR BY BYTE

$50 BARE

WD-1 FLOPPY DISC CONTROLLER

* WILL CONTROL MINI OR FULL SIZE FLOPPY DISCS
* WILL CONTROL UP TO EIGHT FLOPPIES AS CONFIGURED, WITH SIMPLE MODIFICATION 'WILL CONTROL UP TO 64
* USES CPM

$45 BARE

WAMECO INC. S-100 PRODUCTS (bare board price)

* QMB-9 Nine Slot Mother Board $35.
* QMB-12 Thirteen Slot Mother Board $40.
* MEM-1A 8 KBYTE 2102 Ram Memory Board $30.
* MEM-2 16 KBYTE 2114 Ram Memory Board $30.
* EPM-1 4 KBYTE 1702 EPROM Board $30.
* EPM-2 16 or 32 KBYTE 2708/2716 EPROM Board $30.
* RTC-1 RealTime Clock Board $30.
* CPU-1 8080 CPU Board $30.

WAMECO DEALERS AND DISTRIBUTORS:

DENMARK
Piehsen A/S, Saabagade 35, 1480 Copenhagen Phone 33-23754
ENGLAND
Leathersoft Ltd., 13 Cathedral View Winchester SOI 3PR
FRANCE
Euro Computer Shop 16, Rue Louis Pasteur 75100 Paris Phone 01/425-825-825
GERMANY
ABC Computer-Shop GMBH Schellingstr. 15, 8000 Munich 40 Phone 089/228292
JAPAN
Ogawa Enterprise Corp. 7-1-1 Chuo, Setagaya, Chiyoda-Ku Tokyo, 101 Phone 03/255-9885
UNITED STATES
* Computer Ware, Inc. 314 West Southern Tempe, AZ 85281 Phone (602) 968-6112
* CALIFORNIA
Adress Micro Computer Systems 279 French Street Bakersfield, CA 93308 Phone (805) 393-1326
* Advanced Computer Products 1310 "B" East Edinger Santa Ana, CA 92705 Phone (714) 560-8413
* Anchor Electronics 2102 Walnut Ave, Santa Clara Phone (408) 248-3699
* Byte Shop Computer Store 1400 E. Camino Real Santa Clara Phone (408) 249-6221
* Byte Shop of Palo Alto 2232 E. Camino Real Palo Alto, CA 94306 Phone (415) 327-5800
* Computer Board Box 1541-K Loma, CA 93038 Phone (805) 533-3572
* Colby Computer Systems 4670 N. El Capitan Fresno, CA 93710 Phone (209) 266-9846
* Electronics Systems P.O. Box 9941 San Jose, CA 95197 Phone (408) 228-0084
* Hobby World 5716 West Manchester Los Angeles, CA 90040 Phone (213) 641-4230
* Hollywood Systems 9100 Sunset Blvd, Suite 1-2 Hollywood, CA 90069 Phone (213) 377-9726
* Jade Computer Products 4901 West Rossmore Blvd, Hawthorne, CA 90250 Phone (213) 675-3133
* Jack E., House, Inc. P.O. Box 136 San Bernardino Phone (714) 888-1360
* Mikro 419 Portofino Avenue San Carlos, CA 94070
* PCE Electronics 4732 Dewey Drive Fullerton, CA 92832 Phone (714) 965-7031
* S Color Systems San Luis Obispo, CA 93401 Phone (805) 544-5441
* Colorado Bole and Clive 718 9th Street Gueley, CA 95149 Phone (415) 356-7754
* Byte Shop of Colorado Springs 549 N. Circle Drive Colorado Springs, CO 80909 Phone (303) 633-7075
* The Computer Broker 2800 W. Standard Morrison, CO 80465 Phone (303) 997-6441
* Computer Technology 3400 West 44th Ave, Denver, CO 80212
* Mid-Mod Computer Co. 521 S. Broadway Denver, CO 80202 Phone (303) 778-6230, 773-8681
* Hawaii
Makaha Microsystems Limited 153 Royal Hawaiian Ave, Wahiawa. Phone (808) 922-2152
* New Jersey
William Electronics Supply * DISTRIBUTOR 1813 Woodbridge Avenue Edison, NJ 08817 Phone (201) 986-3700
* Minnesota
P.O. Inc. 1425 First Avenue North Moorhead, MN 56560 Phone (218) 233-6682

WAMECO INC. 3107 LANEVIEW DRIVE, SAN JOSE, CALIF. 95132

Dealer Inquiries Invited!
University Discounts Available

Circle 388 on inquiry card.

BYE December 1978 241
CONVERT ANY TV TO A HIGH QUALITY MONITOR

* Hot Chassis or Transformer sets
* 64-80 characters per line
* By-passes tuner & I.F.
* Normal viewing unaffected
* Safe - Easy Installation
* ACVM Hi-Resolution $24.95 ppd
* RFVM Ch2-6 Modulator $9.95 ppd

VAMP INC. | Box 29375
Los Angeles, Calif. 90029

Calif. Residents add 6% Sales Tax

Circle 284 on inquiry card.

BASIC COMPUTER SHOP NOW OPEN IN A K R O N

Easy Freeway access from anywhere in Northeastern Ohio. Many systems on display with applications software up and operating.

OPEN MONDAY THROUGH SATURDAY 11 AM till 7 PM

The Basic Computer Shop
2671 W. Market Street
Fairlawn Plaza
Akron, Ohio 44313
(216) 867-0808

Circle 238 on inquiry card.

CANADIANS

Announcing

HAMILTON LOGIC SYSTEMS

Specializing in logic devices, microprocessors, memories, TTL, CMOS, etc.

Send for your catalogue

Box 7
STONEY CREEK
ONTARIO

Circle 157 on inquiry card.

SUPPLIES

- FLOPPY DISKS, MINI OR STANDARD MEMOREX OR 3M
- 3M DATA CARTRIDGES
data disc
- 3M DIGITAL CASSETTES
- 3M OR MEMOREX AUDIO CASSETTES 5-6
- 3M DISK CARTRIDGES

WE OFFER:
* COMPETITIVE PRICING
* IMMEDIATE DELIVERIES (Any Quantity)
* UNCONDITIONAL GUARANTEE

BETA BUSINESS SYSTEMS
830 VICKERS ST., AC
SAN DIEGO, CA 92117
(714) 568-4025

Circle 304 on inquiry card.

FREE DISKETTE CASE

Attractive Durable Plastic

with each purchase of 10 Diskettes at regular price of $3.65

DEALER INQUIRIES WELCOME

V R DATA CORP.
777 Henderson Blvd.
Folcroft, PA 19032
Call Collect: 215-583-5101

Circle 307 on inquiry card.
Circle 314 on inquiry card.

RONDURE COMPANY
2522 BUTLER ST.
DALLAS, TEXAS 75235
214-630-4621

THE COMPUTER ROOM

ASCII SELECTRIC
Printer Mechanism: Heavy duty input/output, Series 745.
Weight: 120 lbs. Dimensions: 29”Hx39”Wx33”D.
Print Speed: (14.8 characters per second)
Platen: 15” wide, pin feed or form feed device optional (132 print positions).
Parallel output only—15 characters per second accepts 7 bit ASCII parallel
with strobe & prints on Selectric. The unit still works as a typewriter in off-line
mode.

DATEL SELECTRIC (IBM Selectric Mechanism)
Specifications:
Size: 21”Hx21”Dx8”H.
Power Input 115 Volt Hz
Interface: RS232
Weight: 54 lbs. (Shipping weight 65 lbs.)
15” Carriage
15 CPS
Correspondence code
Half Duplex
132 Print Positions, 10 Pitch

“As Is” Complete
Working $395.00
Reconditioned $695.00
Used $395

ASCII Selectric with ASCII parallel electronics.
Immediate Delivery—Shipped from inventory.

NOVATION DC3102A
Used Working $150.00
RS232 Connection 300 Baud.

TI 990/4
Single Board 16 Bit Micro
Computer NEW $250.00

SHUGART MINI-FLOPPY DRIVE

NEW PRICE
Model SA-400 $325.00 ea.

FLAT PACK ACOUSTICAL MODEM PICK-UP
Useable with most modem chip/kits
Used $17.50 (w/print) $25

ORDERING INFORMATION:
We ship the same day we receive a certified check or money order.
Texas residents add 5% sales tax. Please call if you have a question.
Write for our CATALOG of many parts, terminals, printers, etc.
All items subject to availability. Your money returned if we are out
of stock.

SHIPPING INFORMATION:
Modems: $2.00 each; 2 for $4.00 UPS.
Large items & Parts: Specify Freight or Air Freight Collect.
Foreign Orders: Add appropriate freight or postage.
We now take Master Charge and Visa orders. Specify full number,
bank number and expiration date.

All items subject to availability. Your money returned if we are out
of stock.

ATTENTION TRS-80 & APPLE USERS
IN TIME FOR CHRISTMAS
A PRINTER FOR YOUR COMPUTER

$995.00
MODEL 3S-80 for TRS-80
Ready to plug into your expansion interface.

MODEL 3S-PP
for computers with 8 bit serial port.

MODEL 3S-SS
for computers with RS-232 port.

$1095.00
MODEL 3S-AA
Includes RS-232 card for Apple I
Specify model number on order.

- Ready to plug into your computer
- Very high quality print
- Completely refurbished IBM 731 I/O
Selectric terminal in a new table
- Upper & lower case removable type ball
- Special I/O interface
- Heavy duty re-mfg. IBM power supply

TERMS: VISA, MASTERCHARGE,
Cashier Check or Money Order.
C.O.D. with 10% down.
Shipping Via Air or Truck collect.

3 S SALES
P.O. BOX 45944
TULSA, OK 74145
918/622-1058

Circle 356 on inquiry card.
Thinking of changing jobs?
If you have a degree in engineering, chemistry, physics, geology or computer science, The Career Advertiser can make you aware of the job opportunities you might otherwise miss. Nationwide in scope — Arranged to save your time.
The Career Advertiser
Department 4
P.O. Box 4067 Fort Hill Station
Lynchburg, VA 24502

Six months (12 issues) $5.00
Please send payment with order.
FREE SAMPLE COPY ON REQUEST
Your name kept confidential — Not an agency

Circle 83 on inquiry card.

Now available...
Compucolor II

Personal Color Graphics Computer
at $1495.00

STANDARD FEATURES:
- 13" Color CRT
- Special Graphics Pkg.
- 16K Extended Disk Basic
- 8K RAM Memory
- 72 Key Keyboard
- Minidisk Drive

SADDLE BROOK STEREO INC.
203 Market St.
Saddle Brook, N.J. 07662
Phone: (201) 843-7500

Circle 337 on inquiry card.

At last...the mechanical interface!

TURN YOUR ELECTRIC TYPEWRITER INTO A LOW COST, HIGH QUALITY HARD COPY PRINTER.

The all new I/O Pak from Rochester Data, Inc. interfaces the keyboard of any commercially available electric typewriter with any computer. The result: low cost, high quality hard copy.

Write today for more information. Distributor inquiries invited.

USER LIST $395.00 . Quantity and distributor discounts available.

ROCHESTER DATA, INC.
3100 MONROE AVENUE
ROCHESTER, NY 14618

Circle 310 on inquiry card.

LSI-1/2 ©SALE
KD11-HA© LSI-1/2 Microcomputers

Quantity Price
1 - 9 $500.00
10 up $460.00

COMPLUGARD
Building Automation That Saves

To order, call or write:
F. Ferragamo
Compugard Corporation
4708 Baum Boulevard
Pittsburgh, Pennsylvania 15213
(412) 622-6200

© Registered trademark of Digital Equipment Corp., Maynard, MA

Circle 47 on inquiry card.

TRS - 80

SPECIAL PROMOTION SALE
SAVE 10%, 15% or more on ALL Computers, Peripherals, Software, and ALL other fine Radio Shack® products.
NO TAXES on out-of-state shipments.
FREE Surface delivery in U.S.
WARRANTIES will be honored by your local Radio Shack® store.
Offered exclusively by Radio Shack® Authorized Sales Center
1117 Conway
Mission, Texas 78572
(512) 585-2766

Circle 304 on inquiry card.

Distr. inquiries invited.

DISKETTES
VERBATIM for Your DRIVE

MINI Soft Sector $3.90 Ea. in boxes of 10
10 Sector $4.10 Ea. in boxes of 10

STANDARD
CP/M 1.4 for Northstar $325
Disk & Horizon
PLASTIC BOX for Standard $145

DISTRIBUTION CTR 1500 with $1000
Complete 1 x 2 x 3 computer system: Hazeltine 1500 Horizon-2, Centronix 799
Wax, Master Charge, Cash, C.O.D.

Circle 211 on inquiry card.

ASSOCIATES
IDEA ASSEMBLERS P.O. BOX 1491 GALESBURG, IL 61401
INTRODUCES — THOUGHTWARE!
Designed To Make The Operation Of Your Personal Computer Easier And More Fun

THE TRS-80 POKE GRAPHICS WORKSHEET

DECORATE ROOMS, USE INSTRUCTION IN MAINTENANCE OR SCHOOL CURRICULUM.

Yours for only $1.95...

THE TRS-80 RASTER GRAPHICS WORKSHEET

COMPUTER GRAPHICS FOR HOME OR KINDERGARTEN.

Yours for only $1.95...

THE LINE MINDER

Rules and dimensions, formulas and illustrations for creating beautiful and accurate artwork.

YOURS FOR ONLY $1.95...

OUR VARIABLE MINDER (It's the Real Deal!)

Saves time and effort in developing software. Works with the Line Minder... at $1.95, this 3 for $3.00 price...

YOUR CHOICE OF TITLE BELOW. DON'T WRITE IT OFF — IT WILL BE IN DEMAND...

4. Eternal Spring 5. Flowering Tree 6. Fresh Snow
7. From the Novelettes 8. Global Warming 9. Horizon's Edge
10. Horizons Beyond

AND OUR SELECTION OF NOTE PADS

KEEP THEM HANDS - LET YOUR IDEAS SPEAK FOR THEMSELVES...

PAPER PADS...

5. Shakespeare's 6. Stylized Flowers

WRITE COMPANY NAME, ADDRESS, PHONE NUMBER AND YOUR NAME ON A PIECE OF PAPER.

Circle 117 on inquiry card.
BECKIAN ENTERPRISES

EDGE CARD CONNECTORS: GOLD PLATED:

- Body: Non brittle, solvent resistant, high temp. G.E. Valox. The finest you can buy.
- Contacts: Bifurcated Phos./Bronze; Gold/Nickel.

ALTAIR S-100: 25 Row Spacing.
- 25/50 Dip Sold: $2.50 ea.; 5 pcs. $12.50 ea.
- 50/100 Dip Sold: $3.95 ea.; 5 pcs. $19.75 ea.
- 50/100 Sold. Eye: 6.95 ea.; 5 pcs. 34.75 ea.
- I.M.S.A.I CARD GUIDES: 0.16 ea.

SUBMINIATURE CONNECTORS (DB 25 SERIES, RS 232):

- DB 25 Female Socket: 3.60 ea.; 5 pcs. 18.00 ea.
- DB 5122-1 Grey Hood: 1.20 ea.; 5 pcs. 6.00 ea.
- DB 5126-1A Black Hood: 1.30 ea.; 5 pcs. 6.50 ea.
- D 20418-2 Hardware Set: $0.75 ea.; 5 pcs. $3.75 ea.

SAVED: BUY A SET (1 DB25F, 1 DB25M, Any Hood):
- 1 Set: $6.35 ea.; 5 sets: $31.75 ea.

NOTE: For Hardware, (D20418-2) Add $.85/each.

WHISPER FANS:

Excellent computer cabinet cooling. This is the quietest fan you will find. Only measures 4 3/4 square by 1 1/4 deep. U.L. Listed.
- $21.00 ea.; 5 pcs. $105.00 ea.

I.C. SOCKETS, GOLD:
- Dip solder: Tin.
- 14 pin $0.38 ea.; 16 pin $0.38 ea.
- 14 pin 0.38 ea.; 16 pin 0.17 ea.

SUBMINIATURE WIRE WRAP 3 TURN:
- $2.10 ea.; 5 pcs. 10.50 ea.

CROMECO S-100: 25 Row Spacing.
- 50/100 Dip Sold: $6.50 ea.; 5 pcs. $32.50 ea.

OTHER CONNECTORS AVAILABLE:

- **100" Contact Ctrs., 140" Row Spacing:**
 - 22/44 Dip Sold: $2.30 ea.; 5 pcs. $11.50 ea.

- **156" Contact Ctrs., 140" Row Spacing:**

- **156" Contact Ctrs., 200" Row Spacing:**
 - 15/20 W/Wrap 3: $1.05 ea.; 5 pcs. 5.25 ea.
 - 22/44 Dip Sold: 2.30 ea.; 5 pcs. 11.50 ea.
 - 36/72 Sold. Eye: 3.45 ea.; 5 pcs. 17.25 ea.
 - 43/86 Wrap 3: 5.50 ea.; 5 pcs. 27.50 ea.

POLARIZING KEYS FOR ALL OF THE ABOVE:

Specify: IN Contact or BETWEEN Contact.
- 1 to 49 pcs. $0.10 ea.; 50 pcs. + Up $0.08 ea.

SPECIAL: 12/24 Pin, 156" Cont./Ctrs., 200" Row Spacing

TELEPHONE INTERFACE & PARALLEL USER PORT
- $1.25 ea.; 5 pcs. + Up $1.10 ea.

WRITE FOR LARGE QUANTITY DISCOUNTS. DEALER INQUIRIES ARE WELCOME.

WE ARE CONNECTOR (EDGE CARD) SPECIALISTS. IF YOU DO NOT SEE WHAT YOU NEED IN THIS ADVERTISEMENT, PLEASE WRITE US. WE WILL REPLY.

TERMS: Minimum Order $10.00; Add $1.25 for handling and shipping. All orders over $25.00 in USA and Canada: WE PAY THE SHIPPING.

NOTE: CA residents please add 6% sales tax.

MAIL ORDERS TO Beckian Enterprises
P.O. Box 3089
Simi Valley, CA 93063

MAIL
SUBMISSIONS TO Beackian Enterprises
Simi Valley, CA 93063

SUBMISSIONS

SUBMISSIONS TO Beckian Enterprises
Simi Valley, CA 93063

DISCOUNT PRICES ON

DEC* LSI-11 COMPONENTS

Manufactured and tested by Digital Equipment Corporation. Compatible with DEC PDP*-11/03 and Heathkit H-11. Or build your own computer using the card cage assembly. All cards 8.5 x 5 in.

KDI1-HA LSI-11/2 Central Processor Unit. Includes power fail/auto restart, I/O DMA port, real time clock input, vector interrupt handling, firmware debugging and ASCII console routines, List $695.00 $599

MSV11-DA 4k x 16-bit RAM, List $416.00. $350

MSV11-DB 8k x 16-bit RAM, List $850.00. $675

MSV11-DC 16k x 16-bit RAM, List $1375.00. $1095

MSV11-DD 32k x 16-bit RAM, List $2400.00. $1925

H9281-BB 8-slot card cage and backplane. $155

MICROPROGRAMMING, INC.
1351 Lare Industrial Blvd.
Burnsville, MN 55337
Phone: (612) 894-3510

DISCOUNT PRICES ON

DEC* LSI-11 COMPONENTS

Manufactured and tested by Digital Equipment Corporation. Compatible with DEC PDP*-11/03 and Heathkit H-11. Or build your own computer using the card cage assembly. All cards 8.5 x 5 in.

KD11-HA LSI-11/2 Central Processor Unit. Includes power fail/auto restart, I/O DMA port, real time clock input, vector interrupt handling, firmware debugging and ASCII console routines, List $695.00 $599

MSV11-DA 4k x 16-bit RAM, List $416.00. $350

MSV11-DB 8k x 16-bit RAM, List $850.00. $675

MSV11-DC 16k x 16-bit RAM, List $1375.00. $1095

MSV11-DD 32k x 16-bit RAM, List $2400.00. $1925

H9281-BB 8-slot card cage and backplane. $155

MICROPROGRAMMING, INC.
1351 Lare Industrial Blvd.
Burnsville, MN 55337
Phone: (612) 894-3510

Trademark of Digital Equipment Corporation
WANTED: My 4 K PET needs more memory. Anyone with access to eight MOS 6550 programmable memories please write Barry Swartz, 3727 Tartan Ln, Houston TX 77021, (713) 663-6401.

FOR SALE: Altair factory assembled 2510 board. Wired for TTY and RS232. Never used. Best offer. Write or call Robert Cardamone, 304 S Penn St, Punxsutawney PA 15676, (414) 938-4186.

FOR SALE: RS-232 interface for Diablo printer with CDC interface advertised in May and June 1978 BYTE. $250. H Stone, 64 Morgan Cir, Amherst MA 01002.

FOR SALE: Set of BYTE magazines September 1975, number 1 to July 78, volume 3, number 7 (complete, except November 1977, volume 2, number 11), 32 magazines total. Excellent condition. Best offer. (614) 339-3452.

WANTED: For MBT Inc (model 015) Disk Memory Unit: specifications, schematics and maintenance manual. This company is now out of business. I have been unable to obtain technical information through normal channels. Bert Richardson, 13 Fern St, Natick MA 01760.

FOR SALE: Kleinachim teletypewriter TI-11/7 FG with reperforator/transmitter, Baudot code. Used and working, $100. Tektronix type C dual trace plug-in unit for $85 or similar scope, $150. M H Research R-1008 plus and minus 300 V DC power supply, $25. Locarte 3 A 20 V DC power supply (not isolated from AC line), $20. Lambda LT 205SM 0 to 32 V, 0 to 2 A power supply, $75. HP 4143 0 to 35 V, 0 to 2 A power supply, $20. All items plus shipping. S Lei, POB 5312, Fargo ND 58102.

FOR SALE: Texas Instruments TI-59 programmable calculator and PC-100A printer complete with extra paper rolls, magnetic cards and programming manuals. All for $300. Peter Ludwig, 921 Fernwood Av, Plainfield NJ 07062, (201) 263-0200 (ext 3576) days or (201) 753-9780 evenings.

FOR SALE: Heathkit H-8 Computer System; expertly assembled and tested. Includes 24 K static programmable memory, serial and cassette input/output, 16 K video terminal, alphanumeric printer, all standard Heathkit software plus Extended BASIC, all documentation. I am graduating from college and must sell, asking $1755 and I will ship it. Call or write Darriin Harrington, 927 J St, # 498, Davis CA 95616, (916) 756-7932.

NEW UNCLASSIFIED POLICY

Readers who have equipment, software or other items to buy, sell or trade should send in a clearly typed notice to the Editor. To be considered for publication, an advertisement must be clearly non-commercial, typed double spaced on plain white paper, contain 75 words or less, and include complete name and address information.

These notices are free of charge and will be printed one time only on a space available basis. Notices can be rejected from individuals or bona fide computer users clubs only. I will engage in no correspondence and your confirmation of placement is appearance in an issue of BYTE.

Please note that it may take three or four months for an ad to appear in the magazine.

FREE: Data cable with the sale of a Persi 1070 intelligent disk controller $500 assembled and tested. TDL SMB board (demonstration model). Two serial input/outputs, one parallel interface and TDL 2 K Zappie Monitor in read only memory and 2 K programmable memory. Fully assembled and tested, $220. TDL software package A with 12 K BASIC, 2-80 assembler, Z-TEL, text output processor, all run under all subkernels. Manuals and notebook. $198. Call or write Ted Nakamura, 3421 Onyx St, Torrance CA 90403, (213) 371-8138.

FOR SALE: Best prices. S-100 bus 16 by 64 video interface (ASCII and block graphics), assembled $100. 8 K programmable memory, assembled $100. Prototyping board, including buffers and regulator on board $20. Full ASCII keyboard, including user defined keys $35. Call or write Philip Nakamura, 8100 Stanford St Berkeley CA 94702, (415) 542-9711.

FOR SALE: HP-67 calculator for sale, programmable, autostack and much more. Unused, will accept reasonable bid. Call (913) 642-4663.

FOR SALE: MITS Altair 8800A, 8 K programmable memory, serial input/output and audio cassette IO, all documentation, $450. Bright 2610 magnetic tape drive, 800 bits per inch, 27.5 inches per second with two controllers for Data General line of minicomputers. Tape unit was working with one of the controllers when removed from system, condition of other controller unknown. Schematics and manuals included, $850. L DL 3, $125. Write Alcaraz, Monte Vista CA 95014, (408) 257-4805.

FOR SALE: Dual trace oscilloscope, Heath IO-4510, 15 MHz, with calibrators, manuals. Like new, $545. Digital Multimeter, Heath IM-2202 with manual. Like new, $160. Swan 350 Ametek True RMS Power Supply, 117 V power supply, 32 V, 12 A power supply $125. HP 4143 0 to 35 V, 0 to 2 A power supply, $20. All items plus shipping. S Lei, POB 5312, Fargo ND 58102.

WANTED: For my needs. Two months old and completely untested. Best offer takes it. Bill Vaughn, 2415 Richview Ci, Garland TX 75040, (214) 495-2371 evenings.

WANTED: Software for the VIM-1 on cassette or list. Nordic, 13709 Peyton Dr, Dallas TX 75240.

WANTED: Software for the VIC-1 on cassette or list. Nordic, 13709 Peyton Dr, Dallas TX 75240.

FOR SALE: SwTPC 6800 mainframe, no cards, just motherboard and power supply. Assembled and tested. $150. James Vanprooyen, Weeks 19,200, 1900 E State St, State College PA 16801, (814) 236-3816.

BYTE ISSUES: I have BYTE numbers 1 thru 15, except number 11. Best offer takes them. Thomas G McBride, 178 Mitchell St, West Orange NJ 07092.

FOR SALE: SwTPC 6800 mainframe, no cards, just motherboard and power supply. Assembled and tested. $150. James Vanprooyen, Weeks 19,200, 1900 E State St, State College PA 16801, (814) 236-3816.

FOR SALE: AMI EVK-300 system MB8001 calculator. With 2 K programmable memory, 2 K erasable read only memory and programmer. Monitor, Microscope/Disa read only memory. Four parallel and one serial ports to 19,200 bps, $700, 18 K board for the above, $390. Zvi Peshkess, (513) 355-3164.
FOR SALE: KIM I and power supply; complete, working. First $200 takes it and I will ship it. Send SASE for return of late checks. Send certified check or money order to Judy Upchurch, 107-G Tall Oaks Dr, Greensboro NC 27408.

APPLE OWNERS: I am a collector of Apple software and have some of the programs for the Apple II. Send me your programs on disk or cassette and I will trade them on a one-to-one basis. Dave Gasson, 5163 W 56th St, Rolling Hills Estates CA 90274, (213) 378-3823.

FOR SALE: Digital Group Z-80 system. 34 K; four digital cassette drives (Philco); monitor; monitor, all software (MaxiBASIC, Business BASIC, assembler, Star Trek, chess, etc). Total price as kit over $3350. Up and running for $3100. John Case, 6703 Timberhill, San Antonio TX 78236, (512) 681-7504.

FOR SALE: SwTPC 6800 Computer System; 16 K programable memory, serial IO, AC30 cassette interface and SMOKE Signal Broadcasting BFD-68 disk system. All complete, $1400 or best offer. Craig Colvin, 817 Cheyenne Dr, Walnut Creek CA 94598, (415) 937-0778.

FOR SALE OR TRADE: BYTE volume 1, #1 through #10. All ten issues, total condition, $75 or best offer. Don Erickson, 6059 Essex St, Riverside CA 92504, (714) 739-3709 anytime.

WANTED: A Flexwriter with upper and lower case characters suitable for computer generated letters. Workings or notes on Ericson, Box 32, Essex St, Riverside CA 92504, (714) 739-3709 anytime.

FOR SALE: MOS technology KIM 1 microcomputer, manuals and power supply included, $150. KIM 3 8 K memory board, manual and power supply included, $100. Martin Goldberger, 15 West 72 St, New York NY 10023, (212) 874-3176 evenings after 6 PM and weekends.

HELP! I was too ambitious. I have 20 M6800 chips in original factory packages. Will sell for $15 each or trade all 20 for a minifl oppy drive in good condition. Bill Ganoe, 1634 E Drachman, Tucson AZ 85719.

FOR SALE: Complete Poly 88 system with 41 K programable memory, 3 K erasable programable memory, 8080A processor, 16 by 64 video, graphics, hardware scroll, 300 and 2400 bps cassette, real time clock, serial port, four parallel ports, single step hardware, 2708 erasable programable memory programmer, two DAC, 16 channel ADC, 9 inch monitor, cassette deck, all hardware, documentation, and extensive software support. There is one $100 slot left for a card of your own. I will consider any offer over $2200. Michael Dunn, 45 Livingston Rd # 501, Scarborough, Ontario CANADA M1E 1K8, (416) 266-1625.

INFORMATION WANTED: For U.S. TDM 114A40 data set. I would like one and I need to test it, repair (if necessary), and use it. I would be willing to trade printing or programming or pay for information, etc. Write: Robert R. Heller, 51A Star Route, Wendell MA 01379 (no phone).

FOR SALE OR TRADE: Heathkit Digital Tech niques Course and Trainer, Model 15 Teletype parts including keyboards, Kaypro, manuals, and smaller parts. Will trade for Heathkit microprocessor trainer, G2/C, Kaim, PBO 160, Yao Caroline is, GUAM 96943.

FOR SALE: Altair 8800 mainframe with processor board, 1 K programable memory, 2 K programable memory board. Ideal for hardware oriented beginner. Asking $250. Randy Sodstrom, 4501 Goldfinch, Madison WI 53714, (608) 222-9056.

FOR SALE: Digital Group Z-80A board system including processor, IO, video terminal cassette and mother board assembled. Also two 8 K memory boards with ICs and sockets plus Maxi -BASIC, Editor, paper tape, plus AS/400 Keybaord and Encoder. Will take best offer. Asking $500. Olrrich Laznicka, 24 Payson Rd, Belmont MA 02178, or call (617) 494-4978 after 6 PM weekdays or weekends.

FOR SALE: Digital Group complete Z-80 PhindExck system with speech synthesizer. Major components include two dual phidecks, monitor, keyboard, 32 K static memory, finished cabinet, VOTRAX speech synthesizer, and substantial software. Assembled and perfect condition. Best offer over $3000 (price new $3750). John Tyler, 24 Watson Av, E Setauket NY 11733, (516) 473-4142.

FOR SWAP: Will swap BYTE issues May, November or December 1977, for September 1976 or January, February or April 1977. Bert Honroe, Schuurmanslaan 65, 3070 Kortenberg BELGIUM.

IBM 370 5BM: Did anyone ever try to connect a 3705-1 Bridge storage module (core). They are available now as modeled 1S1, can be converted to model 3s having FIT storage. If anyone did, please get in touch. I'm having problem in the sense latch. Bert Honroe, Schuurmanslaan 65, 3070 Kortenberg BELGIUM.

FOR SALE: Two Innovation 200 double density 8 inch disk drives, $200 each. Three Innovation 420 double density 8 inch disk drives, $300 each. 4 board Z-80 System (Z-80 4BD) largely factory assembled with 10 A power supply, $900. CBS Phil Deck Drive System (kit) with PHI-F, $300. Two blank 8 K memory boards. One 10-4 kit. Robert Frieden, 359 Wilson Av, Kent OH 44420, (216) 673-7181.

FOR SALE: Digital Group TVC-64 board; operates fine, with OS/Program and documentation. Also Radio Shack keyboard video terminal added. $175 for both. Bob Howarth Jr, RFD # 1, Box 182, Lisbon NH 03585.

FOR SALE: For SWAP: Will swap BYTE issues May, November or December 1977, for September 1976 or January, February or April 1977. Bert Honroe, Schuurmanslaan 65, 3070 Kortenberg BELGIUM.

FOR SALE: Poly 88 chassis with two Altair 4 K static memory boards, WAMECO 8080 processor board, Vector Graphic Reset-n-go programmable and read only memory board, Multi ple IO board with 4800 bps digital cassette deck. All are in excellent working condition. Will include nonworking 5 D Sales Z-80 processor board. Sell system for $500 or will sell separately. W R Giffen, PBO 781, Richardson TX 75080.

FOR SALE: PDP BL minicomputer with 4 K core and teletype interfaces. I Ehrlach, 284 Hendrix St, Philadelphia PA 19116.

FOR SALE: WinneX M6800 processor with ASCII keyboard, ACIA, monitor, two PAs, 5 K memory/ memory supplies, and cassette tape IO. $250 or best offer. Bob Watson, 2653 Pebble Beech Dr, Flagstaff AZ 86001, (602) 526-2312.

FOR SALE: AKI keyboard, matrix encoded, power supply and 5 level paper tape punch, $50. 5 level paper tape reader, $50. Ron Rogers, PBO 17147, Baton Rouge LA 70893.

WANTED: Cylindrical slide rule (such as Thatcher or Fuller) and pocket circular slide rule (such as Carpenter or Sperry) or any other unusual old slide rules. Also need pocket mechanical calculator (Curta). Describe and price. Dr George Wentz, PBO 626, San Marcus TX 78666, (512) 392-2872 after 7 PM.

FOR SALE: Centronics Printer # 100; used, $750. Aaron Epstein, 5437 Laurel Canyon Blvd, Suite 208, N Hollywood CA 91607, (213) 762-0020.

FOR SALE: Ithaca Audio Z-80 board, $35; Percom Data C1-8122 cassette interface, $70; D C Hayes board, $50. All bare boards with cables installed. TDL Macro assembler, text output program, Z-Tel, Zapple, text editor, $120 for all software. Kim, Calgary CANADA, 2B3-6B63.
---|---|---|---|---|---
1 | AAA Chicago Computer Center 207 | 134 | EMM/Semi 182 | 297 | Page 235
2 | Addemaster Corporation 236 | 138 | Ezcon 187 | 298 | PAIA Electronics 172
3 | Administrative Systems 161 | 148 | Forethought Products 190 | 299 | PCE Electronics 206
4 | AJA Software 201 | 150 | Gamma Technology 238 | 301 | PerCom Data 75
5 | Alpha Micro Systems 82, 83 | 153 | Goddard 105 | 299 | Perici Inc 15
6 | Altos 42 | 153 | Graham Dorian Enterprises CII | 302 | Personal Software 91
7 | Ambico 171 | 156 | GRT Corporation 33 | 303 | Personal Systems Consulting 106
8 | Apparet Inc 236 | 167 | H & E Computer Systems 243 | 305 | Priority 231, 322, 233
9 | Apple Computer 8 | 171 | Hamilton Logic Systems 242 | 306 | Processor Technology 6, 7
10 | Apple Computer 9 | 175 | Health Company 17 | 307 | Recreational Programmer 142
11 | Apple Computer 9 | 176 | Health Company 236 | 310 | Rochester Data Inc 244
12 | Araic Electronic 13 | 176 | Hobby World 211 | 313 | Rockwell 160
13 | Artem Electronics 113 | 176 | Houston Instruments 35 | 314 | Rendon Computer Systems 235
14 | Artec House 125 | 177 | HUN Electronics 197 | 328 | Rochester Information System 167
15 | ATV Research 242 | 178 | Idea Assemblers 244 | 335 | S 100 196
16 | AVR Electronics 238 | 178 | Infinite 244 | 337 | Saddie Brook Stereo Inc 244
17 | Avion 21 | 179 | Integrated Circuits Unlimited 225 | 352 | Scientific Research 67, 73, 78
18 | Basic Computer Shop 242 | 180 | Intelligent Design 236 | 353 | Scientific Research 67, 73, 78
19 | Backend Enterprises 245 | 182 | International Data Sciences 126 | 354 | Sedco/BYTE Primer 137
20 | Benchmark Computer Services 236 | 187 | ITSS 133, 136, 138, 139, 155 | 355 | Seattle Computer Products 115
21 | Beta Business Systems 242 | 190 | Ithaca Audio 81 | 356 | Semiconductors 164
22 | Betti 157, 204 | 200 | Ithaca Audio 215 | 357 | Michael Shyarver Software 143
23 | BYTE Enterprises 157 | 205 | Jade 213 | 358 | SHARP 178
24 | Computer Factory 127 | 207 | Jameco Electronics 226, 227 | 359 | Software Controls 198
25 | Computer Hardware Store 236 | 210 | Leland Sheppard 133 | 360 | Southeastern Systems 141
26 | Computer Interface Technology 238 | 212 | Lifebeat Associates 201 | 361 | Software Controls 198
27 | Computer Lab of NJ 183 | 212 | M & M & S Software 236 | 362 | Structured Systems Group 121
28 | Computeland 10, 11, 87, 191 | 214 | Manchester Equipment 244 | 363 | Structured Systems Group 142
29 | Computer Mart of NJ 238 | 216 | Micro Focus LTD 147 | 364 | Summaprograms 79
30 | Computer Mart of NJ & PA 171 | 216 | Micro Mail 167 | 365 | Sybenx 181
31 | Computer Plus 196 | 219 | MicroDaSys 19 | 366 | Synchro Sound 103
32 | CP Ads 187 | 219 | Microfocus 190 | 367 | TEO 157
33 | CRT Micro Computer 183, 206 | 219 | Microproducts 200 | 368 | Ten 145
34 | Control Data Corp 177 | 219 | Microprogramming 245 | 369 | Talon 145
35 | Cromacon 1, 2 | 221 | Micropro International 177 | 370 | Technical Systems Consultants 123
36 | Cyber-Score 178 | 221 | Microsofts 176 | 371 | Telecommunications Services 238
37 | Data Discount Center 182 | 223 | The Micro Works 129 | 372 | Terrapin 99
38 | Datasoft 173 | 223 | MicroWorld 191 | 373 | Terminal Systems 238
39 | DataSys 173 | 223 | Mikos 230 | 374 | Terminal Systems 238
40 | Datasci 244 | 223 | Moomr/Thinner Toys 23, 97 | 375 | Tires Sales 243
41 | Digital Pathways 144 | 223 | Motorola Semiconductor Products 175 | 376 | Tires Sales 243
42 | Digital Research (CA) 119 | 226 | mpsi 200 | 377 | Top 100
43 | Digital Research (TX) 219 | 228 | Mullen Computer Boards 207 | 378 | Total Information Systems 243
44 | Digital Research & Eng 199 | 228 | Multional Multiplex Corp 149 | 379 | Total Information Systems 195
45 | Digital Research (CA) 119 | 228 | Netronics Research 163 | 380 | Total Information Systems 195
46 | Digital Research (CA) 119 | 229 | New England Electronics 109 | 381 | Trans Data Corp 183
47 | Dynabyte 12, 13 | 229 | New England Personal & Business Computer Show 95 | 382 | Trans Enterprises 189
48 | Ed-Pr Int 165 | 229 | New England Recruiters 242 | 383 | Transport Co 172
49 | Electrolab 230 | 229 | Newman Computer Exchange 229 | 384 | Tri Tek 234
50 | Electronic Systems 192 | 229 | North Star Computer 5, 29 | 385 | University Microfilms International 203
51 | Electronic Controls 192 | 229 | Northwest Microcomputing Systems 59 | 386 | US Robotics 198
52 | Electronic Controls 205 | 229 | Neolonic Products 111 | 387 | Vamp 242
53 | Electronic Systems 221 | 230 | Ohio Scientific Instruments 37, 40, 41 | 388 | Vector Electronics 179
54 | Electronics Warehouse 223 | 230 | OK Machine & Tool 99 | 389 | VR Data Corp 242
55 | EMM/CMP 166 | 230 | Oliver Advanced Engineering 199 | 390 | Warnaco 241
56 | EMM/CMP 166 | 230 | Optimal Technology 238 | 391 | Worldwide Electronics 238
57 | EMM/CMP 166 | 230 | Osborne & Associates 131 | 392 | Xtent 184
58 | EMM/CMP 166 | 230 | Owens Associates 242 | 393 | Xtent 185
59 | EMM/CMP 166 | 230 | Pacific Digital 197 | 394 | Xtent 185
60 | EMM/CMP 166 | 230 | Pacific Office Systems 234

Pascal Blazes Into First Place

"A 'Tiny' Pascal Compiler, Part 1," page 58, by Chung and Yuen placed first in the September BOMB. Second place went to "WADUZITDO," page 166, by Larry Kheriaty. These articles placed 2.0 and 1.5 standard deviations above the mean, respectively; first and second prizes of $100 and $50 will be sent to the authors. In third place was "The Mathematics of Computer Graphics," page 22, followed by "Graphic Manipulations Using Matrices," page 156, in fourth.

The BOMB (BYTE's Ongoing Monitor Box) is our monthly forum in which readers rate the articles in BYTE. To participate, see the card at right.
Our programs will let you realize the full potential of your hardware.

We developed these programs because we needed them in our businesses, and, try as we might, could not purchase them. They’re on-line now, working for us and others around the country.

As users ourselves we know the problems from your perspective — not just as a manufacturer of software. The bugs are out and they’re ready now to go to work helping make your life easier, keeping you in better control of your business.

Our first four program packages are: • Apartment Management • Cash Register • Inventory • Payroll

Here’s a typical program

To give you an idea of the thoroughness of these programs, here’s a summary of what the inventory package does for you. Gives a detailed listing of items in inventory and itemizes all goods sold from inventory, including which sales person sold what, when it sold and for how much . . . recaps on one sheet this same inventory activity information . . . investigates and changes any information in inventory, on request . . . prints list of items to be re-ordered . . . provides profit analysis comparing sales personnel and/or various products. And it can be inter-connected with our cash register package as well, for total program management.

Each of our initial programs is conceived, proven and offered with this same exacting thoroughness and attention to detail.

We stay with you after the sale

We’re in this for the long haul and our support program is dedicated to that objective. Registered program owners receive:

- Periodic newsletters which include users’ ideas and information exchange, plus tips to owners on further increasing benefits of the package through updated operational flexibility.
- Availability of software technicians to provide immediate answers to questions, via phone or mail.
- Customer rewrites and adaptations available on request, at added cost.

CBASIC-2 free

It takes the world’s most powerful commercial basic to run our programs and we deliver it to you free.

Each of our program packages contains a disk with CBASIC-2 Compiler, CBASIC-2 Run Command and your Graham-Dorian software programs in INT and BAS file form. You also receive User’s Manuals and Hard Copy Source Listing. At a price which pays for itself!

CBASIC-2 was developed and written by Software Systems, the people who wrote CBASIC, and includes many powerful enhancements.* All systems are compatible with any Z-80 or 8080 CP/M® system. They are deliverable in standard eight-inch disk — either double or single density — or mini-floppy disk.

Give us a call or fill out the Reader Service Card in this issue. We promise a response within 24 hours of receipt. That’s the kind of information service we expect, and know you do too.

*CBASIC-2 may be purchased separately from Graham-Dorian Software Systems for $89.95.
"I own a fast-growing business and before I bought my computer system I put in a lot of late hours keeping up with my accounting and inventory control. Now the computer does my number crunching quickly, so I have time after hours to have some fun with the system. My son and I started out playing Star Trek on the system, and now we're learning to play chess.

"When I was shopping around for my system, the guys in the computer stores demonstrated all the unique features of the minifloppy. I've got to admit that at first I didn't really understand all the technical details. But now that I use the system every day, I really appreciate the minifloppy's fast random access and data transfer. I like the reliability, too.

"I'm glad I went with Shugart drives. Look, when you lay out your own money for a system, you want dependable performance and good value. Do what I did. Ask for the system with the minifloppy."

If it isn't Shugart, it isn't minifloppy.

Shugart Associates
435 Oakmead Parkway, Sunnyvale, California 94086

For a list of manufacturers featuring Shugart's minifloppy in their systems, circle reader response number.

TM minifloppy is a registered trademark of Shugart Associates

Circle 312 on inquiry card.