VERSATILITY - UNMATCHED by any other micro-computer system

COMPUTERS
 TERMINALS
 PRINTERS
 SOFTWARE
 TAPE SYSTEMS
 DISK SYSTEMS
 GRAPHICS
 PROM PROGRAMMER
 MEMORY - 4K, 8K, 16K & 32K
 PROGRAMMABLE REAL TIME CLOCK
 CALCULATOR INTERFACE
 A - D CONVERTER

Write, or circle our reader reply number for a catalog describing our complete line of computer hardware and software.

NOW AVAILABLE IN BOTH KIT AND ASSEMBLED FORM.

SOUTHWEST TECHNICAL PRODUCTS CORPORATION
219 W. RHAPSODY
SAN ANTONIO, TEXAS 78216

Circle 113 on inquiry card.
A fast Z80 microcomputer with up to 512 kilobytes of RAM, 4 disk drives and 1 megabyte of disk storage—with CRT terminal and fast printer. Even an optional PROM programmer. Strong software support, too, like FORTRAN IV, Extended BASIC, and Macro Assembler.

PROFESSIONAL GRADE—FOR PROFESSIONALS

Chances are you've already heard that there is a Cromemco System Three Computer. We've proudly previewed it at WESCON on the West Coast and NYPC on the East Coast. But you also know Cromemco. We don't announce until we're ready to ship.

Now we're ready.

And what a computer we've got for you.

It does it all.

It's a complete system—processor, CRT terminal, line printer.

First, it's fast—1 microsecond nominal execution time and 250 nanosecond cycle time.

Its equally fast RAM memory is large and enormously expandable—32 kilobytes expandable to 512 kilobytes. No danger of obsolescence from inadequate RAM capacity.

THE ONLY MICROCOMPUTER OFFERING 4 DISK DRIVES

Further, the System Three comes with two disk drives to give you 512 kilobytes of disk storage. Soft-sectored IBM format. Optionally, you can have four drives with 1 megabyte of storage.

There's disk protection, too, since in the LOCK position disks can't be ejected while they are running.

21-SLOT MOTHERBOARD

This new CS-3 is a computer that won't be outdated soon. It has a 21-card-slot slide-out motherboard and an S-100 bus so that you can plug in all sorts of support circuitry. The heavy-duty 30-amp power supply can easily handle all this.

BROAD S-100 SUPPORT

The S-100 is the bus that Cromemco so strongly supports with over a dozen plug-in circuits ranging from analog I/O to high-speed RAM memory with our bank-select feature.

TRULY POWERFUL SOFTWARE

You have to have software. And Cromemco is far in front there, too. Our FORTRAN IV, for example, is equal to the FORTRAN compilers on large mainframes. Further, it (and our other software) is low-priced.

Our 16K Z80 BASIC is one of the fastest and most capable. Full 14-digit precision.

There's also our Z80 Macro Assembler and Linking Loader. Uses Z80 mnemonics. Allows referencing FORTRAN common blocks.

CRT TERMINAL AND PRINTER

The CS-3 terminal has 80-character lines and a 24-line page with line and page editing.

Note the separate numeric keypad and cursor keypad.

The printer is fast—180 characters per second; 132-column lines.

SEE AT YOUR DEALER

You have to see the CS-3 to fully appreciate it and its low prices starting at $5990 in the rack mount version.

See it at your local dealer shown on the other side of this page. He has a demo to show you.

He also has brochures giving you details.

You know the CS-3 is going to be a sensation.

Better contact your dealer now.
MORE ABOUT THE SYSTEM THREE...

For office situations new System Three can be provided with walnut floor cabinet. Metal bench cabinet also available. Unit is normally rack-mount style.

System Three front panel swings open and 21-slot motherboard/card cage slides forward for easy insertion of extra circuit boards.

Retainer bar secures circuit cards firmly in sockets.

Optional panel PROM programmer has two sockets to facilitate duplicating PROM content.

SEE YOUR LOCAL SYSTEM THREE DEALER

PHOENIX, AZ
BYTE SHOP OF ARIZONA
24 West Camelback
LITTLE ROCK, AR
COMPUTER PRODUCTS UNLTD.
2412 So. Broadway
CARSON, CA
SUNSHINE COMPUTER CO.
20710 S. Leapwood Ave.
CITRUS HEIGHTS, CA
BYTE SHOP OF SACRAMENTO
6041 Greenback Ln.
LOOMIS, CA
KINGMONT ENTERPRISES INC.
9900 King Road
SAN MATEO, CA
COMPUTER TERMINAL
309 S. San Mateo Drive
SUNNYVALE, CA
RECREATIONAL COMPUTERS
1324 South Mary
VAN NUYS, CA
COMPUTER COMPONENTS
5848 Sepulveda Blvd.
ATLANTA, GA
ATLANTA COMPUTER MART
5091-B Buford Hwy
HAiku, Hl
CAPACITY, INC.
P.O. Box A
HONOLULU, Hl
COMPACT COMPUTERS
P.O. Box 10095
KAIIUa, Hl
MICROCOMPUTER ENTERPRISES
741 Kumuahi Pl.
SCHAUMBURG, IL
DATA DOMAIN
1612 E. Algonquin Road
BLOOMINGTON, IN
DATA DOMAIN
406 So. College Avenue
FORT WAYNE, IN
DATA DOMAIN
2805 E. State Blvd.
PIKESVILLE, MD
MODULAR SYSTEMS, INC.
4005 Seven Mile Lane
ROCKVILLE, MD
COMPUTER WORKSHOP
1776 East Jefferson
BURLINGTON, MA
THE COMPUTER STORE
120 Cambridge Street
EDINA, MN
COMPUTER DEPOT
3515 W. 70th St.
ISELIN, NJ
COMPUTER MART OF NEW JERSEY
501 Route #27
EGGERTSVILLE, NY
CORSON COMPUTER CORP.
3824 Main Street
HOLLIS, NY
SYNCHRO SOUND ENTERPRISES
193-25 Jamaica Ave.
CINCINNATI, OH
DATA DOMAIN
7694 Camargo Rd.
DAYTON, OH
DATA DOMAIN
1952 Brown St.
COLUMBUS, SC
BYTE SHOP OF COLUMBIA
2018 Green Street
NASHVILLE, TN
SURYA CORP.
5735 Nolensville Rd.
CORPUS CHRISTI, TX
MICRO SYSTEMS SERVICES, INC.
5361 E. Reeharti, Space H
DALLAS, TX
COMPUSHOP
211 Keystone Pk., 13933 North Central
HOUSTON, TX
ELECTROTEX
2300 Richmond Ave.
HOUSTON, TX
MICROCOMPUTER ORIGIN STORE
1833 Richmond Ave.
MADISON, WI
THE MADISON COMPUTER STORE
1863 Monroe St.
HUNTINGDON, CAMBS, ENGLAND
COMART LTD
39 Gordon Rd.-Little Paxton
WEDEL (HOLSTEIN), GERMANY
DIGITRONIC COMPUTER SYSTEM GmbH
Bel der Doppellöcher 3-5
STOCKHOLM, SWEDEN
DATORISING KONSULT AB
Paddock 2, 10652
ZURICH, SWITZERLAND
COMICRO AG
Badenerstrasse 281

Specialists in computers and peripherals
2400 CHARLESTON RD., MOUNTAIN VIEW, CA 94043 • (415) 964-7400

Circle 34 on inquiry card.
In the Queue

Foreground
84 PROGRAM YOUR NEXT EROM IN BASIC
Memory—Ciarci
178 INTERFACING THE SYKES OEM FLOPPY DISK KIT TO A COMPUTER
Hardware—Hughes
185 GET ON AT THE RIGHT ADDRESS
Hardware—Holman

Background
8 A TWO COMPUTER MUSIC SYSTEM
Music Hardware—Critchfield-Dwyer-Lederer
18 AN APPLE TO BYTE
Product Description—Helmers
56 THE MICROCOMPUTER AND THE PIPE ORGAN
Music Software—Raskin
74 THE BRAINS OF MEN AND MACHINES: How the Brain Analyzes Output
Robots—Kent
114 USER'S REPORT: THE PET 2001
Product Description—Fylstra
152 CIE NET: A DESIGN FOR A NETWORK
Personal Computing Networks—Wilber
166 MICROCHESS 1.5 VERSUS DARK HORSE
Chess—Jennings
168 TAKE A COURSE IN MICROPROGRAMMING
Course Description—Millan
174 CONTROLLING THE REAL WORLD
Applications—Olson
186 THE INTELLIGENT MEMORY BLOCK
System Design—Castleman

Nucleus
4 In This BYTE
6 Don't Ignore the High End...or My Search for Manuscript Editing Paradise
6 Some Enticing Advance Words
14 Letters
27, 151 BYTE's Bits
46 BYTE's Bugs
118 Book Reviews
148 Technical Forum: The Altair (S-100) Bus Forum: PCC 77
170 Programming Quickies
172 Clubs, Newsletters
194, 204, 214 What's New?
222 Classified Ads
224 BOMB
224 Reader Service

BYTE is published monthly by BYTE Publications Inc., 70 Main St., Peterborough NH 03458. Address all mail except subscriptions to above address: phone (603) 924-7217. Address all editorial correspondence to the editor at the above address. Unsolicited manuscripts will be returned if accompanied by sufficient first class postage. Not responsible for lost manuscripts or photos. Opinions expressed by the authors are not necessarily those of BYTE. Address all subscriptions, change of address, Form 3579, and subscription complaints to BYTE Subscriptions, PO Box 590, Martinsville NJ 08836. Second class postage paid at Peterborough NH 03458 and at additional mailing offices—USPS Publication No. 102410. Canadian second class registration No. R321. Subscriptions are $15 for one year, $27 for two years, and $39 for three years in the USA and its possessions. In Canada and Mexico, $17.50 for one year, $32 for two years, and $48.80 for three years. $25 for a one year subscription by surface mail worldwide. Air delivery to selected areas at additional rates available upon request. $25 for a one year subscription by air delivery to Europe. Single copy price is $2.00 in the USA and its possessions, $2.40 in Canada and Mexico, $3.50 in Europe, and $4.00 elsewhere. Foreign subscriptions and sales should be remitted in United States funds. Printed in United States of America. Each separate contribution to this issue and the issue as a collective work copyright © 1978 by BYTE Publication Inc. All rights reserved.
In This **BYTE**

If you don’t know your Rauschpfeife from your Holtzregal, perhaps *The Microcomputer and the Pipe Organ* by Jef Raskin can help. The article introduces readers to pipe organ technology and gives valuable advice to the enterprising experimenter who wants to experiment with programmed passacaglias on a Grossemischung.

Page 56

The study of biological neural computers is an important input to thought and design of robotic systems. This issue contains Ernest W Kent’s third article in a series on *The Brains of Men and Machines*. This installment, *How the Brain Analyzes Input*, gives essential background information on the organization and operation of sensory processing in the nervous systems of mammals such as man.

Page 74

Would you like to do your own EROM programming, but don’t know how to begin? Read Steve Ciarcia’s *Program Your Next EROM in BASIC*. You’ll find an inexpensive circuit for programming and erasing these useful devices.

Page 84

We have seen advance publicity and claims about the PET 2001 by Commodore for some time now. In this issue, Dan Fylstra reports on the realities of *The PET 2001* which arrived at his door October 11 1977.

Page 114

Have you ever thought you might like to Take a Course in Microprogramming? Richard Mac Millan gives his reactions upon taking such a course from the Wintek Corporation. His information may help you decide if the course you think you might like to take is just what you had in mind.

Page 168

A really useful microcomputer should be able to control the environment around it. To do this it must be capable of controlling electronic devices which are not TTL compatible. Hank Olson describes several ways of doing this in *Controlling the Real World*.

Page 174

A mass storage system is essential to the truly usable personal computer. One option for obtaining mass storage is presented in this issue by Phil Hughes’ article *Interfacing the Sykes OEM Floppy Disk Kit to a Personal Computer*.

Page 178

With the cost of microprocessors so low, the barriers to a multiprocessor capability go down. Rather than adding a memory region to your system, why not consider the concept of adding a combined memory and microprocessor subsystem. With an appropriate multiport memory region and control logic, Ken R Castleman’s *The Intelligent Memory Block* is a very real possibility for the homebrewer with higher throughput as a goal.

Page 186
SOROC IQ 120 is the most wanted terminal on the market.

For information concerning the REWARD contact...

SOROC TECHNOLOGY, INC.
165 FREEDOM AVE., ANAHEIM, CA 92801
714-992-2860 / 800-854-0147

Circle 112 on inquiry card.
In this issue, we have included the first two of four users' reviews of fully assembled and tested self-contained computers. The selection criterion is that the "typical user" (in two cases Dan Fylstra, one case Dennis Barbour, and one case myself) was able to purchase an off-the-self computer of the low end "appliance" variety. These machines represent a significant technological achievement in the form of a fairly inexpensive computer with a high level language (BASIC) and limited mass storage facility in the form of audio or modified audio cassette tape. In their class of price and performance circa December 1 1977, these "appliance" computers represent perhaps the ultimate we have seen to date.

As time goes on, I'll update the ultimate, but that is not my purpose in this essay.

Some Enticing Advance Words

Turtles are coming. In mid November 1977, Dan Hillis of the LOGO project at Massachusetts Institute of Technology called BYTE and posed one of those questions which have only one answer. "Would readers of BYTE magazine be interested in an inexpensive kit version of the famous LOGO project turtle robots?" Dan outlined on the phone the idea of a kit with a target price of $250, and suggested that I take a trip to the MIT AI (artificial intelligence) Laboratory to take a look at his prototypes. I was delighted to accept the invitation, which included a heady tour of some of the projects at the AI laboratory and the Architecture Machine project's advanced color video display technology.

The turtle is not yet ready for market, but it is getting close, as can be seen by photo 1 which I took while lying prone on the floor of the laboratory as Dan put the prototype through its paces. The idea is to produce a rugged and childproof motion output device with tail drag plotting capabilities provided by a ball point pen controlled by solenoid. In the past turtle robots have proved to be excellent devices for teaching children programming concepts, both in simulations on screens, and as mechanically mobile output peripherals. The intent is to make the new turtle product virtually indestructible with Lexan plastic housing and wheels, and rugged mechanical and electronic innards. Dan demonstrated some of this indestructibility with a prototype sans housing by dropping it from a height of about two meters onto the carpeted floor of the laboratory.

Of course a turtle is not all hardware, so versions of the LOGO language adapted to personal computer architectures will be required. Dan and his associates (all quite young) at MIT have formed a company which intends to introduce turtles much more formally sometime in early 1978. We'll expect to keep readers informed of this exciting prospect as it develops and gets closer to production.
THE EQUINOX SYSTEM™

When you put it together, it's really together.

Some people build personal computers for the love of building. The Equinox System™ is for people who build for the love of computing.

You put it together. And it's really together.

The Equinox 100™ mainframe combines the 8080A CPU with a front panel programming station featuring ultra-convenient octal keyboard and digital LED readout.

There are low-cost 4K and 8K memories. All your interfacing comes in one kit. Even EQU/AET™ and BASIC-EQ™ languages on easy-loading cassettes.

It's all together now. It's all S-100 compatible. And it's upward-compatible with new Equinox™ equipment, software and systems coming in the months ahead.

See the Equinox System™ at your local computer shop. Call toll-free to 800-648-5311 (BAC/MC accepted). Or write Equinox Division, Parasitic Engineering, P.O. Box 6314, Albany, California 94706. THE EQUINOX SYSTEM™ All together now.

Circle 90 on inquiry card.
The music system described here started out a few years ago as a project in the Soloworks Lab. The idea was to put together a "manipulable" system that allowed students to work with the powerful mathematical idea of synthesis. We felt that mathematics and science students should be able to experience firsthand what could be done by superimposing components that worked together to synthesize some bigger concept.

Real, full-blown professional music seemed like an ideal metaphor for working with this "superimposition" principle. It's easy for a student to see that a musical performance is really a multitude of small, discrete events working in perfect synchronism. But it's even easier to sense that the resultant whole is greater than the sum of its parts. In fact, the "whole" can be a human experience of quite thrilling proportions.

The system that evolved has met this goal very well. Students of varied backgrounds are able (and motivated) to work patiently with complex scores, making the final performance a proof of the power of the principle of superimposition.

But a funny thing happened on the way to this goal. The total system began to look more and more like a "micro" computer science curriculum. The documentation that evolved began to contain much of the jargon that permeates computing, but this seemed to be easier to take when interpreted in terms of the friendlier worlds of music and art.

In writing this condensed description of the system, we therefore decided to leave the jargon in. Our purpose is to not only describe the music system but to suggest that interesting new approaches to teaching computer science might be developed along similar lines. There is equally good promise for teaching computer science subject matter in terms of visual art. Abstract games are another fruitful area. It's probably no coincidence that all these examples illustrate the kind of computing most people would call "fun." There's undoubtedly a deep educational lesson lurking here, but that's another subject.
Why a Pipe Organ?

The system described here is general enough to apply to a variety of musical instruments. It was implemented with a small pipe organ because this illustrates the general kind of performance ensemble used by composers who write orchestral works. A pipe organ has several sets of pipes called ranks, each set having a distinctive tonal characteristic called timbre. The ranks are selected by pressing switches called stop tablets, so that an organist is able to control an entire "orchestra" of sounds by using different stop settings. Further, since most pipe organs have several keyboards (often including one for the feet), the ranks can be played independently. Thus both chorded (several notes played simultaneously) and contrapuntal (independent melody lines played simultaneously) music can be played on one or more keyboards.

The organ is also the original "synthetic music" instrument. This is because a performer can add harmonics to fundamental tones by pressing suitable stop tablets. When the stop tablet marked "8 foot flute" is pressed, one gets flutelike sounds, in the normal register (where A=440 Hz). (The phrase "8 foot" comes from the fact that the largest pipe in the rank is eight feet high.) But when the stop marked "4 foot flute" is pressed, everything sounds an octave higher. If both stops are activated, we then have a sound rich in second harmonics. Traditional organs have stops labeled "8 foot," "4 foot," "2 2/3 foot," "2 foot," etc. However, the stop settings in the computer system described here are software generated, so any harmonic can be specified (of course there are only a finite number of pipes available for playing these harmonics).

Overview of the System

The Music System uses two microcomputers (an Altair 8800b system and an Intellec 8/MOD 80), a small pipe organ, and a Magnavox plasma display graphics terminal. Figure 1 shows how these components are interconnected.

In addition to the hardware, there are three software packages. The first is a graphics music editor that allows a composer to "draw" his score on a graphics display terminal. The editor converts the graphic representation of the score into a MUSIC language program. The program may also be created and edited using a standard text editor, in which case an alphanumeric terminal can be used. Either type of editor is run on the master system. The MUSIC language programs can be saved on a diskette as files.

Before a MUSIC language program can be played, it must be "compiled." Our compiler is a program that accepts MUSIC language programs as input, and outputs an annotated listing of the MUSIC language program along with error messages and an "object" program. The object program consists of instruc-

Jeffrey H Lederer
Tom Dwyer
Margot Critchfield
Project Solo
University of Pittsburgh
Pittsburgh PA 15260
Figure 2: Software block diagram of the computer organ music system.

Photo 2: A set of solenoids used to automatically play the keys. Since this setup plays the keys directly, it could be easily adapted to any standard keyboard instrument including harpsichord and piano.

System Hardware

The slave microcomputer is an Intellec 8/MOD 80 with 8 K bytes of programmable memory, 2 K bytes of read only memory containing a system monitor program, 256 bytes of programmable read only memory that contains the second performance program, 16 latching output ports, and a serial bidirectional IO port. Each latching port is eight bits wide, with each bit dedicated to controlling a pipe valve of the organ. Thus, $16 \times 8 = 128$ pipes can be controlled. The interface between each pipe and its controlling port is a Darlington switching transistor connected as shown in figure 3.

The master computer is an Altair 8800 with 60 K bytes of memory, two diskette drives and two serial ports. One serial port is used as the console line and is connected to a Magnavox plasma graphics terminal. This terminal has a plasma display with 512 by 512 dots. A character generator is used to display 32 lines of 64 characters; the characters can be either a set of standard ASCII characters or a user loaded set (musical symbols in our case). The terminal has a vector generator and dot addressability. Sections of the screen can be selectively erased and written. The graphics terminal is optional, and there is no reason why other lower cost graphics displays couldn't be used if appropriate changes in software were made. The Intecolor 8001 might be particularly appropriate since different colors could be used to distinguish voices in polyphonic music.

The second serial line connects the Altair to the Inticell over a 2400 bps current loop. A special interface had to be built to isolate the two active current loops. The schematic is shown in figure 4.
TARBELL SETS STANDARDS
For Hobbyists and Systems Developers

Sales to thousands of hobbyists over the past two years have proven the Tarbell Cassette Interface to be a microcomputer industry standard. Tarbell Electronics continues research and development to produce new and efficient components to fill hobbyists’ changing needs.

TARBELL CASSETTE INTERFACE

- Plugs directly into your IMSAI or ALTAIR*
- Fastest transfer rate: 187 (standard) to 540 bytes/second
- Extremely Reliable—Phase encoded (self-clocking)
- 4 Extra Status Lines, 4 Extra Control Lines
- 37-page manual included
- Device Code Selectable by DIP-switch
- Capable of Generating Kansas City tapes also
- No modification required on audio cassette recorder
- Complete kit $120, Assembled $175, Manual $4

TARBELL FLOPPY DISC INTERFACE

- Plugs directly into your IMSAI or ALTAIR* and handles up to 4 standard single drives in daisy-chain.
- Operates at standard 250K bits per second on normal disc format capacity of 243K bytes.
- Works with modified CP/M Operating System and BASIC-E Compiler.
- Hardware includes 4 extra IC slots, built-in phantom bootstrap and on-board crystal clock. Uses WD 1771 LSI Chip.
- 6-month warranty and extensive documentation.
- PRICE: Kit $190 Assembled $265

Compatible Disc Drives
Ask about our disc drives priced as low as $525.

TARBELL PROTOTYPE BOARD
Model 1010

For fast, off the shelf delivery, all Tarbell Electronics products may be purchased from computer store dealers across the country. Or write Tarbell Electronics direct for complete information.

*ALTAIR is a trademark/tradename of MITS, Inc.

Circle 121 on inquiry card.
Figure 3: Interface between an organ pipe solenoid and a computer output bit. One such circuit is needed for each pipe to be controlled in this design. The solenoid in each pipe opens a valve that admits air to the pipe.

Figure 4: Interface used to isolate the two 2400 bps active current loops which send information back and forth between the master and slave computers.

MUSIC Language

MUSIC is a high level music notation language that uses the standard 64 character ASCII character set. A MUSIC language program consists of one or more statements; each statement is a single line in length (see figure 5 and listing 1).

There are three types of statements in this language: command, data, and comment statements. Comment statements, which begin with two asterisks, may be placed anywhere in the program; they are ignored by the compiler.

The command statements consist of a single asterisk followed by the command mnemonic and the command's parameters. The commands in this language are divided into three categories: delimiter commands, repeat commands, and context commands.

The delimiter commands separate measures (BAR), parts of measures (CHANGE), and mark the end of the last measure of the program (END). The parameters of the first two commands, when used, set a temporary time signature for a measure.

The repeat commands control the repetition of sections of the score. The limits of a repeated section are bracketed by HEAD and TAIL commands. When necessary, each separate ending of a repeated section starts with an ENDING command, and sections of a score between SIGN commands can be skipped the second time through a repeated section. Repeated sections can be nested within each other.

The context commands are used to change the condition under which the notes of the program are compiled. These commands set the key signature (KEY), time signature (TIME) and metronome setting with or without accelerandos and ritards (TEMPO). A special context command (STOPS) controls the number of voices allowed in each measure and the stop (timbre) settings for each voice.

The notes for a MUSIC language program are placed in the data statements. Each data statement consists of one or more events; each event is separated from the previous event by a semicolon. An event is a note, chord, glissando, tremolo or rest. The notes can be played with different articulations (staccato, legato, or normal). [See the glossary at the end of this article.] Each data statement contains the events to be performed by one voice during a single measure or fraction of a measure.

A normal measure of music consists of a starting BAR command followed by zero or more context commands and one data statement for each active voice. When a context change occurs inside a measure, the form of that measure is slightly different. In this case the measure starts with a BAR command, zero or more context commands and one data statement for each voice. These data statements contain those events that occur before the context change. Following the data statements is a CHANGE command, one or more context commands and one data statement for each voice. These latter data statements contain the events that occur after the context change. Repeat commands may be intermixed with the context commands of a measure.

The voices in each measure are performed concurrently. Each voice is assigned a group of stop settings. Each stop setting takes a note, displaces it a set amount of tones, and assigns that new pitch to a given rank of pipes. Multiple stop settings for a voice will generate multiple pitches for each note in an event. These pitches are played simultaneously. The number of voices and their stop settings are controlled by the STOPS command.

This all sounds pretty complicated, but new users quickly get proficient with the language. Having all the features of musical notation available has proven to be well worth the extra complexity.

Continued on page 48
Your experience with personal computers is going to open an unlimited career at TI.

TI is into personal computers in a big way, and that means a ground floor opportunity is going to be open for you, the personal computing innovator. You’ll be joining the undisputed world leader in creating new products and markets for consumer electronics with the company that invented the calculator on a chip. And it’s all going to happen in TI’s new Management and Technology Center for Consumer Products in Lubbock, Texas. Located in the high, dry, and cool plains of West Texas, Lubbock is about halfway between Dallas and Albuquerque. It is the home of Texas Tech University. You are just a few hours’ drive from skiing in Taos, or touring and shopping in Juarez, Mexico.

Make your career opportunities in the following areas:

Personal Computer Product Marketing Manager

Responsible for establishing distribution channels for personal computer products, developing advertising and sales promotion programs, training, quoting and providing market requirements for new products and software. Requires BS in EE, math, physics or Computer Science. MBA preferred. Minimum of 5 years’ experience in consumer sales or marketing related to desk programmable calculators, minicomputer systems, microcomputer systems, or small business systems.

Systems Programmers

Outstanding opportunities—design, code, integrate and debug operating system modules, including device service routines, self-test diagnostics, and system utilities. Requires BSEE or Computer Science plus minimum of 3 years in assembly programming with some high level language experience.

Digital Design Engineers

Opportunity to design and develop digital subsystems for major new products. Projects will require design-to-cost discipline with internal and external component vendors, vendors of peripheral devices and making trade-offs of hardware and software. Requires BSEE with 2 years’ experience. Prefer experience in design of bubble and/or flexible disk computer memory subsystems.

Product Design Engineer

Responsibility for mechanical design on major new personal computer products. Interface with electrical design engineers, software development personnel, marketing, purchasing, planning and all areas involved in taking a product from concept through initial production. Requires BSME with a minimum of 3 years’ experience in design or closely related field. Knowledge of plastic tooling preferred.

Application Software Specialist

Total responsibility for development of complete application packages for specific business sectors and professionals. Specifications, design, coding, program check-out and documentation for personal computer systems. Requires BA or BS in math or Computer Science or BBA with data processing major with 2-3 years’ experience. Program in high level language on mini, micro, or business computer systems.

Marketing Support Engineers

Project responsibility for future product service direction concerning existing as well as future products. Develop and maintain total service program for personal computer systems and field testing/check-out. Requires BSEE or equivalent with at least 3 years’ experience with programmable desk calculators, minicomputer systems, microcomputer systems, small business systems, or product service management.

Send your resume in confidence to: Bill Toomey / P. O. Box 10508, M.S. 5807, Dept. B/Lubbock, TX 79408.
NETWORKING WITH TELEPHONES?

Dave Caulkins' Personal Computer Network (PCNET), in September 1977 BYTE, sounds like a great idea, for those who live in the Palo Alto CA area; but until PCNET goes national or semi-national there is a method available (on a smaller scale) to computer users right now: Northwestern Bell's Direct Dial Conferencing. Using DDC, up to six computers can exchange data using standard Touch-Tone telephones and modems. For complete instructions and to see if DDC is available in your area contact your local Northwestern Bell business office. There is only one problem with using DDC, it costs $.50 per minute. That can add up to quite a lot in a short amount of time, if you're not careful.

Another way to do the same thing at a fraction of the cost is by using another gadget that Ma Bell provides, Three Way Calling. You can get Three Way Calling (if it's available in your area) simply by asking for it and paying about $2.50 per call.

Three Way Calling by more than one of the persons involved. I have not had the chance to see if DOC is available in your area, but I am sure it is rather surprising that the backlighting method photocopy the pages is not needed with a front side scanner works just fine with bar codes, sometimes even better than a dedicated scanner.

From what I have seen of the coin operated machines and home type machines, they would not be of sufficient quality, but that obtained at copying centers probably would be.

I will admit that I have not tried this idea, primarily because my system is not yet operational. However, I think it is an idea well worth trying.

Clark Jones
225 Pennsylvania NE Apt H
Albuquerque NM 87108

Fred Merkowitz of Micro-Scan Associates, Natick MA, reports that his front side scanner works just fine with photocopies of bar codes, sometimes even better than a dedicated scanner.

COMMENTS ON PROGRAMMING
AND DESIGN STYLE

I would like to thank David A Higgins for his article "Structured Program Design" (October 1977 BYTE, page 146); however, I found that his presentation lacked clarity. There are a large number of reasons why "top-down" structured programming became popular. I feel that Mr Higgins has misapplied his design technique, in the same way he feels top-down programming was misapplied to design.

The Warner-Orr diagrams approach to design should, I feel, be followed (and augmented) by the top-down approach to programming. What happens when a design technique is applied directly to coding is shown clearly by Mr Higgins' own programming example! He claims that the resultant code is easy to read and understand. I stipulate that this is only true if the programmer working on it has the original Warner-Orr diagram. What this same technique applies to his next two points as well. A program is easy to change and maintain only if the program logic flow is immediately evident. If we were to draw lines between all of Mr Higgins' GOSUBs and their destinations, we would end up with another bowl of spaghetti! Again, the documentation he has consists mainly of a title remark at the head of each subroutine, which serves only to relate each subroutine to a bracket in the Warner-Orr diagram.

Continued on page 128
Seven points to consider before you buy your small computer.

In this magazine, alone, there are probably a dozen ads for small computers. New companies are breaking ground like spring flowers.

How, then, do you determine which computer offers the features you need most...at the price you can afford?

We'd like to propose seven basic questions to help you make an intelligent decision.

1. **How complete is the computer system?**
 Many buyers of small computers are in for a rude awakening when they have to spend additional money for interfaces.

 The Sol-20 Terminal Computer was the first complete small computer system. Everything you need to make it work is included in the basic package.

2. **Is powerful system software available?**
 It won't do if your system is "tongue-tied!"

 Processor Technology Corporation has devoted more effort to the development of software than any other small computer maker. Our latest offering is the first fully implemented disk operating system for a small computer: PTDOS. It contains over 40 major commands, several languages and numerous utilities. Our high level languages include Extended BASIC, Assembler, FORTRAN, FOCAL and PILOT.*

3. **Is the system easy to expand?**
 More and more computer owners are expanding their small computers to handle business and other specialized requirements.

 The largest Sol system can handle 64K bytes of RAM memory and operate with a three megabyte on-line disk memory. Sol systems use the S-100 Bus. So you can use a wide variety of hardware.

4. **Is the computer well-engineered?**
 Our Sol systems are the most conservatively rated and ruggedly built in the industry, period. In addition we designed them with you, the user, in mind; Sol systems are easy to build and a joy to operate.

5. **Does it have proven reliability?**
 What is the track record? There are over 5,000 Sol systems in the field. Our track record for reliable performance is unparalleled in the small computer field.

6. **Does it have good factory support?**
 A computer is a complex piece of hardware. So you want to be sure it is backed up with complete manuals, drawings and a factory support team that cares.

 Processor Technology offers the most extensive documentation of any small computer manufacturer. And we maintain a patient, competent telephone staff to answer your questions.

7. **Are maintenance and service people accessible?**
 Where are they located?

 Processor Technology has maintenance and service people in over 50 cities around the U.S.

 As you continue turning the pages, see how we stack up to the other computers in this magazine. If we've succeeded in whetting your appetite, see your Sol dealer or write for information on the complete family of Sol computers.

 Processor Technology Corporation, Box B, 7100 Johnson Industrial Drive, Pleasanton, CA 94566.
 (415) 829-2600.

*Available soon.
Introducing Apple II.
Clear the kitchen table. Bring in the color TV. Plug in your new Apple II™ and connect any standard cassette recorder/player. Now you're ready for an evening of discovery in the new world of personal computers.

Only Apple II makes it that easy. It's a complete, ready to use computer—not a kit. At $1298, it includes features you won't find on other personal computers costing twice as much.

Features such as video graphics in 15 colors. And a built-in memory capacity of 8K bytes ROM and 4K bytes RAM—with room for lots more. But you don't even need to know a RAM from a ROM to use and enjoy Apple II. It's the first personal computer with a fast version of BASIC—the English-like programming language—permanently built in. That means you can begin running your Apple II the first evening, entering your own instructions and watching them work, even if you've had no previous computer experience.

The familiar typewriter-style keyboard makes communication easy. And your programs and data can be stored on (and retrieved from) audio cassettes, using the built-in cassette interface, so you can swap with other Apple II users. This and other peripherals—optional equipment on most personal computers, at hundreds of dollars extra cost—are built into Apple II. And it's designed to keep up with changing technology, to expand easily whenever you need it to.

As an educational tool, Apple II is a sound investment. You can program it to tutor your children in most any subject, such as spelling, history or math. But the biggest benefit—no matter how you use Apple II—is that you and your family increase your familiarity with the computer itself. The more you experiment with it, the more you discover about its potential.

Start by playing PONG. Then invent your own games using the input keyboard, game paddles and built-in speaker. As you experiment you'll acquire new programming skills which will open up new ways to use your Apple II. You'll learn to "paint" dazzling color displays using the unique color graphics commands in Apple BASIC, and write programs to create beautiful kaleidoscopic designs.

As you master Apple BASIC, you'll be able to organize, index and store data on household finances, income tax, recipes, and record collections. You can learn to chart your biorythms, balance your checking account, even control your home environment. Apple II will go as far as your imagination can take it.

Best of all, Apple II is designed to grow with you. As your skill and experience with computing increase, you may want to add new Apple peripherals. For example, a refined, more sophisticated BASIC language is being developed for advanced scientific and mathematical applications. And in addition to the built-in audio, video and game interfaces, there's room for eight plug-in options such as a prototyping board for experimenting with interfaces to other equipment; a serial board for connecting teletype, printer and other terminals; a parallel interface for communicating with a printer or another computer; an EPROM board for storing programs permanently; and a modem board communications interface, or a floppy disk interface with software and complete operating system. And there are many more options to come, because Apple II was designed from the beginning to accommodate increased power and capability as your requirements change.

PONG is a trademark of Atari Inc.

Apple II™ is a completely self-contained computer system with BASIC in ROM, color graphics, ASCII keyboard, lightweight, efficient switching power supply and molded case. It is supplied with BASIC in ROM, up to 48K bytes of RAM, and with cassette tape, video and game I/O interfaces built-in. Also included are two game paddles and a demonstration cassette.

SPECIFICATIONS

- **Microprocessor:** 6502 (1 MHz).
- **Video Display:** Memory mapped, 5 modes—all Software-selectable:
 - Text—40 characters/line, 24 lines upper case.
 - Color graphics—40h x 48v, 15 colors
 - High-resolution graphics—280h x 192v: black, white, violet, green (16K RAM minimum required)
- **Software**
 - Fast extended Integer BASIC in ROM with color graphics commands
 - Extensive monitor in ROM
- **I/O**
 - 1500 bps cassette interface
 - 8-slot motherboard
 - Apple game I/O connector
 - ASCII keyboard port
 - Speaker
 - Composite video output

Apple II is also available in board-only form for the do-it-yourself hobbyist. Has all of the features of the Apple II system, but does not include case, keyboard, power supply or game paddles. $798.

SEE OUR FULL PAGE DEALER AD ON PAGE 119.
An Apple to Byte

It has been a little over a year since I first became aware of the prototype of the Apple II computer on a visit to Palo Alto CA in November of 1976. At the time I first viewed the Apple II prototype, it was little more than a wire wrapped proof of concept in a homebrew masonite box. In the year since my first exposure to the machine Apple II has become what I consider to be one of the best examples of the complete "appliance" computer. This variety of computer is sold as a finished product off the shelves of the retailer's shop or by mail from the manufacturer's warehouse. In late October of 1977, I took delivery on an Apple II with 16 K bytes of programmable user memory. After removing it from its shipping box, I connected it to a color television with the cables and radio frequency modulator supplied, and also connected it to an inexpensive tape recorder with an "index" counter to keep track of position. I was able to turn on power and begin using the computer within five minutes of receipt. After one session in my basement labora-

One User's Review of the Apple II

Photo 1: A concoction of color resembling a byrd. This color doodle was produced using a homebrew joystick plugged into the Apple II's game IO connector, and a BASIC program to implement interactive drawing on the television screen. The photograph was made using 1/15th second exposure and ASA 200 Kodachrome slide film in a 35mm camera with macro lens mounted on a tripod. All the color photographs in this article were taken using this setup.

Photo 7: A concoction of color resembling a byrd. This color doodle was produced using a homebrew joystick plugged into the Apple II's game IO connector, and a BASIC program to implement interactive drawing on the television screen. The photograph was made using 1/15th second exposure and ASA 200 Kodachrome slide film in a 35mm camera with macro lens mounted on a tripod. All the color photographs in this article were taken using this setup.
The AJ 841 I/O.
A completely refurbished IBM Selectric
Terminal with built-in ASCII interface. Just $995.

FEATURES:
• ASCII code.
• 14.9 characters per second printout.
• Special introductory price — $995 (regularly $1,195). 75% discount from original price of new unit.
• Parallel Interface (connector to 3P + S included)
• Order direct from factory.
• Documentation included.
• 30-day warranty — parts and labor.
• High quality Selectric printing.
• Reliable, heavy duty Selectric mechanism.
• Off-line use as typewriter.

AJ 841 WARRANTY AND SERVICE IS AVAILABLE IN THE FOLLOWING CITIES:
Los Angeles / Cincinnati
Philadelphia / Detroit
Hackensack / Dallas
Columbus / Houston
Cleveland / Atlanta
San Jose / Chicago
Boston / New York
Washington, D.C.

For further information call
(408) 263-8520

HOW TO ORDER AN AJ 841 I/O TERMINAL
1. Make cashier’s check or money order payable to:
 ANDERSON JACOBSON, INC.
 Address your request to:
 Personal Computer Terminal
 ANDERSON JACOBSON, INC.
 521 Charcot Avenue
 San Jose, CA 95131
2. Upon written notification, pick up your terminal at the AJ service office located in one of the above cities.
 Allow six to eight weeks for delivery.
3. A final check of your unit will be made at the local AJ service office at time of pickup.
4. For warranty or repair service, return unit to designated service location.
5. Available in U.S. only.

CLIP AND MAIL WITH ORDER

Number of units ________ @ $995 each $ __________
Sales tax at delivery location $ __________
Shipping and handling $35 each (excluding San Jose) $ __________
TOTAL $ __________

NAME ____________________________
ADDRESS ____________________________
CITY ____________________________ STATE ______ ZIP ______
PHONE () ____________________________

Circle 4 on inquiry card.
purposes, I knew that in principle I should be able to create something like photo 1. Later in this account, I will present the detail design of software which will enable the Apple II user to doodle as I did. I make no claims to great artistic genius, but the ability to do this sort of doodling, as well as much more serious computing in a utilitarian mode of operation, is what the personal computer is all about. Apple II is a self-contained package which talks to a color television set owned by its user, an audio cassette recorder supplied by the user, two control paddles supplied by the manufacturer, and a "kluge harp" style audible annunciator which can be programmed to play music or make a variety of noises. Much of the detail of the system design of the Apple II has already been presented in these pages in the form of an article by its designer, Stephen Wozniak, which appeared in the May 1977 BYTE on page 34. This article will survey the reactions I have had to using this system in the four weeks or so following its arrival.

Externals

The physical appearance of the Apple II in its normal usage context is illustrated in photo 2. The package in which the system is contained is a high strength injection molded plastic material with a metal bottom plate. The plastic parts are painted an off-white ivory color. The three piece case consists of a body with a door on the top for access to the internal works and peripheral sockets. The case is almost empty when the Apple II arrives, and when carrying the computer around in its optional leatherette bag my common practice has been to take the cover off and insert various paraphernalia cushioned by foam plastic to avoid damaging the circuit boards. (If I had any peripherals plugged into the IO bus of the machine, this would not necessarily be a good idea.) When zipped up in its carrying bag, the Apple II looks like an overgrown pocket calculator. I have taken this computer in its case to friends' homes and with me on trips by airplane (where it fits under the seat as "carry on" luggage). If the destination of one's travels has a color television, and a miniature cassette recorder is packed with the Apple II, then this computer can be considered to be truly portable and adds but one bag to the normal complement of travel luggage.

While the case is elegantly styled, as can be seen from photo 2, there are two minor problems related to the mechanical design of this case. The problems relate to the top of the case and how it fits into the main body of the computer. One problem is the fact that the adhesion between the paint of the case and the plastic is not strong enough to keep the fasteners in place. After I opened the top a few times both fasteners broke loose. The second mechanical design glitch is the fact that if the cover is moved more than about 5 or 10° from horizontal before it is slid out from under the front edge of the case, a leverage effect will tend to extract the keyboard from its moorings.

A usable configuration of the Apple II as emphasized in photo 2 is made up of the computer, a color television, and a cassette recorder. The standard game paddles which come with the system allow interactive graphic applications. The use of a color television is highly recommended, although a black and white set will certainly work, at the expense of one of the unique features of Apple II, its color display.

There are two methods of sending video data to the television set from the Apple. The best option, which is often used by computer stores to show off the system, is use of direct video. However, stock color televisions or color monitors with direct video entry are rare and expensive. A less satisfactory but quite workable method is the use of a radio frequency modulator to generate a television "station" on channel 3, with connection via the antenna terminals and an FCC approved antenna isolation switch which mounts on the back of the set. This method of driving the television is the
THE FIRST TV CAMERA DESIGNED FOR COMPUTER INTERFACE

SUPERB RESOLUTION—
Observe minute detail with resolution over 1000 TV lines.

VIRTUALLY DISTORTION-FREE—
Image is accurate, linear from center of screen to outer edge with less than 0.2% distortion.

STABLE—
Less than 0.05% drift per 24 hours, less than 0.2% from 10°C to 40°C.

PLUS ALL LINES NEEDED FOR DIGITAL AND ANALOG COMPUTER INTERFACE

THIS UNIT IS "INSTRUMENT QUALITY"
—NOT A VIDEO SYSTEM FOR ENTERTAINMENT VIEWING

APPLICATIONS:

MEDICAL
Tissue analysis
Blood analysis
Neurological—X-Y movement analysis
Optical Instrument data analysis
Other analysis of visual data

INDUSTRIAL
Aerial photography analysis—crop areas, insect infestation
IR Analysis—detect forest fires, direct robot fire fighters
Bottle inspection—using polarized light
Dimension analysis and control, area measurement, displacement measurement
Printed pattern analysis and control
Missile tracking

UNIVERSITY
Analysis of any visual information that can be measured through variation in light intensity
Medical research
Physics research
Laser technology
The main problem with direct RF entry is the tendency of the television set's tuner to pick up RF hash from the digital logic of the computer, a problem which was quite severe in my experience, using a Panasonic color television. The degree of interference is dependent upon the exact positioning of the cable, the television and the computer relative to its various power and peripheral cables. The problem can be minimized, as shown by the fact that in the listings and photos of this article I was able to get a clear picture; but I do not recommend use of a Panasonic television like mine with the Apple II. (Steve Jobs of Apple Computer suggests use of several models of Sony television sets due to superior RF shielding relative to the Panasonic set I used.) If you purchase an Apple II and a color television for it, I highly recommend testing the TV and computer combination prior to settling on a particular television. Some computer stores will convert TV sets to direct video entry, so this provides another option.

Internals

Photo 3 shows the Apple II's interior with the cover removed from the case. The computer is entirely contained on one large printed circuit board on the bottom of the case. At the left is a large metal box containing the switching regulated power supply. The printed circuit board of the keyboard assembly can be seen protruding past the lip at the front edge of the case (bottom of the photograph). Also seen in this picture is a homemade cable running from the game IO connector of the processor board to the joystick box which I built for use with the color sketchpad program to be described. At the top right in this photograph can be seen the RF modulator unit which plugs directly into the main board of the computer. Note that the RF cables contain large toroidal ferrite coil forms with several turns of the cables around them. These are used to minimize (but in my experience with the Panasonic television never totally eliminate) RF hash interference in the television set when the RF modulator technique of video data entry is used.

The Apple II provides a decoded set of eight IO sockets which also feature all the processor bus signals. At the time the Apple II was delivered to me no peripherals were available which used this bus, but I have since seen several advertisements for products to plug into the Apple II bus and the Apple Computer Company is working on peripherals to extend the power of the machine. This bus is completely documented and should work out well for the advanced experimenter.

The Apple hardware includes two fairly gamey peripherals for use in family entertainment situations. One such peripheral is a pair of game IO paddles consisting of an analog input lever and pushbutton switch for each channel. A second such peripheral is the annunciator output which in addition to sounding the "bell" character of ASCII can be programmed by the user with arbitrary pitches, as a sort of music synthesizer.

Photo 3: Removing the cover and looking straight down into the unit, the major internal subassemblies can be seen. At the left is the proprietary switching power supply unit; at the right along the bottom of the cabinet is the main processor board, with room for 48 K bytes of programmable user memory (using 16 K memory parts) and an 8 slot IO bus used to interconnect peripherals. At the right toward the rear of the cabinet (top of photo) is the RF modulator used to drive the television on channel 3. The keyboard can be seen toward the lower edge of the photo.
Look To The North Star HORIZON Computer.

HORIZON™—a complete, high-performance microprocessor system with integrated floppy disk memory. HORIZON is attractive, professionally engineered, and ideal for business, educational and personal applications.

To begin programming in extended BASIC, merely add a CRT or hard-copy terminal. HORIZON-1 includes a Z80A processor, 16K RAM, minifloppy™ disk and 12-slot S-100 motherboard with serial terminal interface—all standard equipment.

WHAT ABOUT PERFORMANCE?
The Z80A processor operates at 4MHZ—double the power of the 8080. And our 16K RAM board lets the Z80A execute at full speed. HORIZON can load or save a 10K byte disk program in less than 2 seconds. Each diskette can store 90K bytes.

AND SOFTWARE, TOO
HORIZON includes the North Star Disk Operating System and full extended BASIC on diskette ready at power-on. Our BASIC, now in widespread use, has everything desired in a BASIC, including sequential and random disk files, formatted output, a powerful line editor, strings, machine language CALL and more.

EXPAND YOUR HORIZON
Also available—Hardware floating point board (FPB); additional 16K memory boards with parity option. Add a second disk drive and you have HORIZON-2. Economical serial and parallel I/O ports may be installed on the motherboard. Many widely available S-100 bus peripheral boards can be added to HORIZON.

QUALITY AT THE RIGHT PRICE
HORIZON processor board, RAM, FPB and MICRO DISK SYSTEM can be bought separately for either Z80 or 8080 S-100 bus systems.

- HORIZON-1 $1599 kit; $1899 assembled.
- HORIZON-2 $1999 kit; $2349 assembled.

16K RAM—$399 kit; $459 assembled; Parity option $39 kit; $59 assembled. FPB $259 kit; $359 assembled. Z80 board $199 kit; $259 assembled. Prices subject to change. HORIZON offered in choice of wood or blue metal cover at no extra charge.

Write for free color catalogue or visit your local computer store.
crystal oscillator. I'll not repeat the details here, but simply summarize: the two phase nature of the 6502 clock is such that the processor turns itself off with respect to the outside world during one phase, and accesses memory during the other phase. By using the phase unused by the processor for access of memory by the video display generation logic, there is never any conflict between the display and the processor's access of memory. As a side effect, since the display generator is always cycling through the low order address bits of the dynamic memory content of the machine, the dynamic memory refresh requirements are met by this regular access of memory for display purposes.

The memory address space of the Apple II is partitioned into three major segments. The region from addresses hexadecimal 0 to BFFF (48 K bytes) is reserved for programmable user memory, implemented with dynamic memory parts. The region from 0000 hexadecimal to FFFF hexadecimal is reserved for systems software in read only memory, and I/O ports are found in the COOO to CFFF region.

The user memory region can have any combination of three 4 K or 16 K byte regions depending upon which memory chips one plugs into three sets of eight sockets. Thus the Apple II can be had with 4 K, 8 K, 12 K, 16 K, 20 K, 24 K, 32 K, 36 K or 48 K bytes of memory at the user's option. For full use of the capabilities of the machine I would not recommend purchasing less than 16 K bytes of memory.

The read only memory regions cover a total of 12 K bytes in the address space, starting at D000 and extending through FFFF. In the versions of Apple II currently being delivered, four 2 K byte read only memory parts are plugged into addresses E000 through FFFF, giving a total of 8 K bytes of systems software and leaving two 2 K byte sockets unused. The present ROM load includes 5 K for the integer BASIC interpreter, 1 K for miscellaneous utility routines, and 2 K for the system monitor program.

Systems Software

As with all the self contained "complete" computer systems, Apple II is ready and willing to act as a personal computer servant as soon as the power is turned on and the "reset" button on the keyboard is pushed. This capability for instant use is achieved by the systems software contained
The Computer for the Professional

Whether you are a manager, scientist, educator, lawyer, accountant or medical professional, the System 8813 will make you more productive in your profession. It can keep track of your receivables, project future sales, evaluate investment opportunities, or collect data in the laboratory.

Use the System 8813 to develop reports, analyze and store lists and schedules, or to teach others about computers.

It is easily used by novices and experts alike.

Reliable hardware and sophisticated software make this system a useful tool. Several software packages are included with the machine: an advanced disk operating system supporting a powerful BASIC language interpreter, easy to use text editor, assembler and other system utilities. Prices for complete systems start at $3250.

See it at your local computer store or contact us at 460 Ward Dr., Santa Barbara, CA 93111, (805) 967-0468.
Tinker-time is over for many small-computer users. You're ready for more powerful, more professional equipment—to replace early kluged systems, or for easier computer ownership.

We're ready too. With Attaché—handsomely produced by iCOM® pros, strengthened by our Pertec Computer Corporation family ties. Already first in Microperipherals, we've expanded our industry commitment, to provide complete turnkey systems backed by PCC's full technical resources.

Take Attaché seriously.
At last a no-nonsense desktop computer: highly advanced, but you don't have to be an engineer to run it. And flexible enough for application versatility.

Heavy-duty powered, Attaché's S-100 bus mainframe offers 10-slot accommodations. For 8080 microprocessor, video, and turnkey monitor boards, for full 64-character ASCII keyboard. With room to spare for user options: plug in 16K memory, cassette interface (KCACR), I/O, process control, and/or iCOM floppy disk interface cards.

With serious software support.
Attaché software options take advantage of iCOM's solid experience: field-proven FDOS-III® Disk Operating System; relocatable assembly language development system; and DEBBI™, the Disk-Extended BASIC by iCOM.

iCOM: right, from the start.
Now the most-trusted name in Microperipherals can satisfy your total system requirements. With a serious computer worth looking into today at your local computer store.
VISIT YOUR NEAREST MITS DEALER

ARIZONA:
Altair Computer Center
1040 E 43rd Street
Tucson, AZ 85711
520/748-7363
Contact: Anand Sperduti
Southwest Micro-Systems, Inc.
3815 North Third Street
Phoenix, AZ
602/987-3378
Contact: Daryl C. Goebel

ARKANSAS:
Apple Computer
Suite 602
4919 North Sheridan Road
Indianapolis, IN 46208
Indianapolis Office Machines
Indianapolis, IN 46229
Contact: Rich Stockhorn, Lou Darby
317/353-9315

ARIZONA:
Altair Computer Center
1040 E 43rd Street
Tucson, AZ 85711
520/748-7363
Contact: Anand Sperduti
Southwest Micro-Systems, Inc.
3815 North Third Street
Phoenix, AZ
602/987-3378
Contact: Daryl C. Goebel

CALIFORNIA:
Apple Computer
1944 University Avenue
Berkeley, CA 94704
415/523-2450
Contact: Steve R. Sarno
Mitsubishi
800 Ninth Street
Santa Monica, CA 90401
213/461-0713
Contact: Dick Halper

COLORADO:
Gateway Electronics of St. Louis
2639 West 44th Avenue
Denver, CO 80211
303/458-5444
Contact: Steve R. Sarno
Mitsubishi
800 Ninth Street
Santa Monica, CA 90401
213/461-0713
Contact: Dick Halper

FLORIDA:
Altair Computer Center of Miami, Inc.
Dade County Airport
Miami, FL 33196
386/688-0569
Contact: Steve R. Sarno
Mitsubishi
800 Ninth Street
Santa Monica, CA 90401
213/461-0713
Contact: Dick Halper

GEORGIA:
Altair Computer Center of Miami, Inc.
Osceola Elementary School
Atlanta, GA 30305
404/231-1881
Contact: Richard Stafford, Lou Darby

ILLINOIS:
Chicago Computer Store
517 South Dearborn
Chicago, IL 60604
312/823-2336
Contact: Lou Van Eerden
Chicago Computer Store
4653 N Sheridan Road
Chicago, IL 60625
773/669-7704
Contact: Philip Boulid

KENTUCKY:
The Computer Store
Suite 7
Municipal Park Plaza
Charleston, WV 25301
304/854-1360
Contact: Steven C. Payne

MICHIGAN:
The Computer Store of Detroit
505-507 West 11 Mile Road
Madison Heights, MI 48071
313/455-2225
Contact: Pete Bland
The Computer Store of Ann Arbor
310 East Washington Street
Ann Arbor, MI 48104
313/765-7156
Contact: Pete Bland

MINNESOTA:
Gateway Electronics of St. Louis
812-23-23 Page Blvd.
St. Louis, MO 63107
314/427-6161
Contact: Lou Elkins

MISSOURI:
Altair Computer Center
611 North 37th Street
Lincoln, NE 68501
402/824-2800
Contact: Steve Conover

NEW MEXICO:
Computer Shack
3120 San Mateo N.E.
Albuquerque, NM 87107
505/683-8822
Contact: Pete Conner

NEW YORK:
The Computer Store of New York
55 West 35th Street
New York, NY 10018
212/221-1204
The Computer Store
269 Orange Blossom Trail
Albany, NY 12211
518/459-6140
Contact: Charlie Olds

OHIO:
Altair Computer Center
5262 North Dixie Drive
Dayton, OH 45434
513/274-1149
The Computer Store of Toledo
2534 East 41st Street
Toledo, OH 43615
Northern Medical Clinic
3700 South Parsons Avenue
Columbus, OH 43207
614/497-1365
Contact: Dr. Robert Bartani

OKLAHOMA:
The Computer Store
5345 East 41st Street
Oklahoma City, OK 73135
405/664-0564
Contact: Ray Koons

OREGON:
Altair Computer Center
1805 S.W. Mmature Avenue
Beaverton, OR 97005
503/664-2314
Contact: Dick Landon

TEXAS:
Swift Computer Centers, Inc.
Suite 208
3208 Bellline Road
Dallas, TX 75234
Contact: Carl Swift
Swift Computer Centers, Inc.
Fort Worth, TX
314/241-4688
Contact: Carl Swift

UTAH:
Allair Computer Center
110 West Madison Street
Richmond, VA 23230
703/644-2238
Contact: John & Judy Polter

VERMONT:
The Computer Store of Burlington
3415 Main Street
Burlington, VT 05401
802/864-0564
Contact: Pete Conner

WEST VIRGINIA:
The Computer Store
Municipal Park Building
Suite 5
Charleston, WV 25301
304/345-1360
Contact: Stephen C. Payne

WISCONSIN:
The Computer Room
8 Hillview Street
Park Ridge, IL 60068
Contact: Anand Sperduti
Southwest Micro-Systems, Inc.
3815 North Third Street
Phoenix, AZ
602/987-3378
Contact: Daryl C. Goebel

CHAPTER 8:
Figure of Merit: $f = (X_j - 5) / o$

How the BOMB Breaks

Micro, the 6502 journal is the name of a new publication put out by Robert Tripp (published bimonthly, $6 per annum, by The Computers, 8th Floor, South Chelmsford MA 01824). We just received the second issue of this photo-offset publication, and the contents should please all users of Apple-II, KIM-1, OSI, PET 2001 and other machines with 6502 central processor chips. The second issue was 30 pages long and contained 12 items listed in its table of contents, along with advertisements of ten companies specializing in the 6502 marketplace the publication addresses. The $6 spent on a subscription to Micro will be well worth it...CH■

Detroit ACM Seminars To Be Held in April

The Metropolitan Detroit Chapter of ACM announces its Sixth Annual Professional Development Seminar, to be held on Tuesday and Thursday evenings during April at the Lawrence Institute of Technology which is accessible by expressway (I-96) from most of Southeastern Michigan.

Topics and instructors include: structured programming, Michael Marcotty; computer networks, Eric Aupperle; data base management systems, Alan Merten; James Fry and Toby Teorey; operating systems, Ronald Sroda; computer graphics, John Dill; and design validation of real time microprocessor software, Ronald Temple.

For a program brochure, write ACM, POB 1091, Warren MI 48090.
The all new
mnemonics
Scelbi has done it again. Here is the great book that lets you cook up appetizing, hot programs for your own '8080'. And, now, it's been completely revised, and republished, to reflect the latest industry standard mnemonics.

This tasty delight of all new second generation software for your '8080' is chock full of mouth-watering applications to satisfy the most fussy palate. It's a mouthwatering delight.

You'll devour the contents of this action-packed, information-stuffed book. Gobble up practical 'how to' facts. The description of the '8080' instruction set. How to manipulate the '8080' stack. Flow charts and source listings. General purpose routines for multiple precision operation. Programming time delays for real time applications. Random number generators. And many, many more basic programming functions you can sink your teeth into.

Three versions now available.

That's right. Now there are three versions of this great book. The DeLuxe Hardcover edition, a must for any library, is only $14.95. The new heavy-duty Vinyl covered edition, for the hard working, heavy computer user, is only $12.95. The same facts are packed into an economical paperback edition for a low, low $10.95.

Floating Point Arithmetic Routines.

The new 2nd edition of the famous Scelbi Cook Book even includes completely assembled floating point arithmetic programs (worth the price of the book alone!) . . . plus input/output processing for your basic I/O programming through interrupt processing. There are code and numeric conversion routines. Real time programming. Search and sort routines. And too many finger-lickin' goodies to mention here.

'8085' users will find a fountain of champagne facts in here too.

'SPECIAL BONUS OFFER!'

Act now and you can own Scelbi's popular '8080' Programmer's Pocket Guide. This compact book, 3"x4½", slips into your pocket, so you can carry it with you everywhere. It's an ever-ready instant reference for operation of your '8080'. It explains the instruction set in painstaking detail, and gives both octal and hexadecimal codes. This valuable book regularly sells everywhere for $2.95. If you order your copy of Scelbi's '8080' Software Gourmet Guide & Cook Book now, you can also purchase the Pocket Guide for a low, low $2.00. Do it now!

Don't delay. Order your copy today.

You've heard about this great book. Here's your chance to own the updated, current edition in one of three versions to fit your budget. It's everything the computer chef needs. And, you can't beat the price . . . or the bonus offer. Order your copy today.

Scelbi's '8080' Software Gourmet Guide & Cook Book. Write to Scelbi Computer Consulting, Inc.; P.O. Box 133 PP STN, Milford, CT 06460.

Dept. B
Table 2: Summary of Apple II features.

Processor: 6502 running at 1.023 MHz

User Memory Capacity: Three banks of eight 4 K or 16 K dynamic memory parts
4 K, 8 K, 12 K, 16 K, 20 K, 24 K, 32 K, 36 K or 48 K bytes

Read Only Memory Capacity:
12 K bytes using 2 K by 8 bit ROM parts, 8 K installed

Standard Peripherals:
Two game paddles (one switch, one variable analog input per paddle)
Programmable annunciator
ASCII keyboard
Audio tape mass storage (approximately 1500 bps)
NTSC color video generation for primary display

Optional:
RF modulator for video coupling to standard television

Expansion Capabilities:
Eight IO connectors with 50 pins:
Full address bus (16 pins)
Full data bus (8 pins)
Timing signals
DMA signals
Device select signals

Software:
System monitor (2 K bytes, ROM)
Utility routines (1 K bytes, ROM)
Integer BASIC interpreter (5 K bytes, ROM)
Full extended BASIC (Applesoft, loaded from tape, requires 16 K user memory)
Applications software examples including games, accounting, etc

in the 8 K byte read only memory. On reset, the system monitor program is entered, with an asterisk (*) returned to the video display as a prompting character. The functions available from this program include hexadecimal manipulations of memory contents: displaying memory, changing memory contents, moving blocks from place to place in memory, comparing blocks in memory, reading or writing memory blocks to tape. At a slightly higher level, there is a "mini- assembler" which does operation code lookup and branch address calculation, and a disassembler which inverts the operation of the assembler. The monitor also includes provisions for machine language tracing of programs, single step execution of machine language programs, and hexadecimal arithmetic of addition and subtraction. This software provides the basis for effective low level use of the 6502 processor, and in fact was used by Apple II’s designer Stephen Wozniak as one of the key software development tools in implementation of the 5 K Apple BASIC interpreter which makes up the remainder of the 8 K software in read only memory.

The 5 K Apple BASIC interpreter is entered from the system monitor through use of a "control B" command followed by a carriage return. This sequence results in the 5 K BASIC interpreter’s prompt of an angle bracket (>). The 5 K interpreter built into the Apple II is an integer BASIC with 16 bit precision and a signed two’s complement number representation. Table 1 summarizes the characteristics of this BASIC. Built into the language are a number of extensions which are used to control special hardware and the graphics of the Apple II color display. These extensions include the commands GR, TEXT, PDL (read a control paddle), SCRN (extract the current color of a point on the screen), COLOR=, PLOT, VLIN (draw vertical line) and HLIN (draw horizontal line). Using this 5 K BASIC I was able to implement the color sketchpad program shown in the listings of this article, in about three evenings of experimentation which mostly concerned defining just what the program must do.

The 5 K BASIC interpreter which is built into the Apple is all that is needed for implementation of most types of interactive games involving color graphics and reaction times on the part of the user. But the 5 K BASIC, even given its string capabilities, is not what one would want to use to do a simulation of a physical system or calculate quantities other than integers.

As an answer to the need for an extended BASIC as a language for the Apple II, there is the "Applesoft" extended BASIC interpreter which can be used in systems with 16 K bytes of memory or more. The name "Applesoft" is a cross between the source of the interpreter, the Microsoft company, and a gross pun ("applesauce"). This interpreter is nearly identical to the Microsoft extended BASIC interpreters which have been made available for a number of personal computer products. The people at Apple have hacked the interpreter to include a few variations on the standard version which address the color display hardware. The only relative novelty of this hack is that in order to get graphics extensions, they had to sacrifice two statements: LET and REM. Thus, on initialization of Applesoft, the user is given the option of having LET and REM but no built-in graphics primitives, or having graphics but no LET and REM statements. Since LET is totally optional in assignments, its loss is hardly felt; but the lack of remarks may be felt by self-documenting code purists who want to use the graphics mode of Applesoft. Of course not having the primitives does not prevent use of the graphics hardware, since like all Microsoft interpreters, Applesoft has PEEK and POKE.
Meet The North Star Family

THE NORTH STAR S-100 FAMILY—four high-performance products at attractive low prices. Our boards are designed for use in the North Star HORIZON computer and other S-100 bus computers using 8080 or Z80 processors. Visit your computer store for a demonstration, or write for our free color catalog.

16K RAM BOARD
No other S-100 bus memory can match the performance of the North Star 16K RAM at any price. This low-power board has been designed to work at full speed (no wait states), even at 4MHz with both Z80 and 8080 systems. Memory refresh is invisible to the processor, bank switching is provided and addressability is switch selectable in two 8K sections. Best of all, a parity check option is available. Kit: $399. Assembled: $459. Parity Option — kit: $39. Assembled: $59.

MICRO DISK SYSTEM
The North Star MDS is a complete floppy disk system with all hardware and software needed to add floppy disk memory and a powerful disk BASIC to S-100 bus computers. The North Star MDS is widely considered one of the best designed and most complete S-100 bus products available. The MDS includes the S-100 interface board with on-board PROM for system startup, Shugart mini-floppy disk drive, cabling and connectors, and DOS and BASIC software on diskette. Kit: $699. Assembled: $799. Additional drive — Kit: $400. Assembled: $450. Single Drive Cabinet: $39. Optional Power Supply: $39.

Z80A PROCESSOR BOARD
The North Star ZPB brings the full speed, 4MHz Z80A microprocessor to the S-100 bus. Execution is more than twice the speed of an 8080, and the ZPB operates in systems both with and without front panels. The ZPB includes vectored interrupts, auto-jump startup, and space for 1K of on-board EPROM. Kit: $199. Assembled: $259. EPROM Option — kit: $49. Assembled: $69.

HARDWARE FLOATING POINT BOARD
If you do number crunching, then this board is for you. The FPB performs high-speed floating point add, subtract, multiply and divide with selectable precision up to 14 decimal digits. Arithmetic is up to 50 times faster than 8080 software, and BASIC programs can execute up to 10 times faster. A version of North Star BASIC is included. Kit: $259. Assembled: $359. Prices subject to change.
primitives and all hardware addresses are documented in the Apple II.

The Applesoft interpreter is loaded from its cassette tape using the LOAD command of the 5 K interpreter. It takes about one minute and 30 seconds to do this load, which results in what 5 K BASIC thinks is a really big application program, but what is in effect the object text of the new interpreter plus a 5 K BASIC program which presents an interactive setup sequence. After loading this pseudo 5 K BASIC text, the user types RUN, and the interactive setup sequence is entered. This sequence includes the option to display a summary of Applesoft BASIC commands which is also available on a reference card. After the setup sequence, the Applesoft interpreter is entered, as indicated by a right square bracket prompt character (]). With a 16 K Apple II system, the user gets the message “5615 BYTES FREE” at the conclusion of the setup sequence.

Running the same rather incomplete benchmark as is found in table 1, I found that the Applesoft interpreter running in an Apple II took 12 seconds for 10000 iterations of a null loop.

Tape Mass Storage
The Apple II tape mass storage system accomplishes its purposes of storing and recovering files of data. I have proven this to my own satisfaction by using the system. For both the 5 K BASIC and Applesoft BASIC, SAVE and LOAD operations feature a “beep” from the Apple II’s annunciator following the leader at the beginning of the file, and at the end of the operation. There is no such audible feedback when using the tape with system monitor commands.

It is the user’s responsibility with the Apple II tape system to keep track of files on a piece of paper or in a log book. The software of the tape system does not include any naming of files in file headers. It also does not include any “verify” command for those of us who would like to make sure that a file is properly written before pulling the plug and closing down at the end of an evening’s programming.

The act of loading a file involves the user positioning the tape just past the start of the leader tone for the file, issuing the proper command up to the point of the carriage return which completes the command line, then simultaneously starting the recorder and hitting the carriage return key.

High Resolution Graphics Software?
The one item of systems software which has been promised but not yet (December

Continued on page 35
The difference is value. Take a look at our low-cost microcomputer’s heavy duty cabinet. Even with the cover removed, it maintains its rigid structural integrity. But we don’t stop there. Quality built Vector Graphic products, from boards and kits to complete systems — such as our Memorite turn-key text editor shown below — beat all competitors in mechanical, thermal and electrical design.

Based on an 8080A microprocessor and the S-100 bus structure, Vector Graphic microcomputers are compatible (with the exception of minor I/O patches) with all of the current 8080A software.

If you’re designing small business systems, text editors, control equipment, games or even microprocessor development, it will pay you to look into our low cost microcomputers and interface boards, kits or assembled.

Vector Graphic’s microcomputer:
What’s in it for you?

Word processing systems for $7,950 — features normally found in systems costing twice as much.

Rush me details today.
Yes, I’m interested in:
□ Systems □ Boards, kits or assembled □ Microcomputers

Name
Firm
Phone
Address
City/State/Zip

Vector Graphic Inc.,
790 Hampshire Rd., Westlake Village, CA 91361 (805) 497-6853

Sold and serviced nationally.

Circle 100 on inquiry card.
If you want to be better, you have to be willing to make changes. So, when we started designing our H8 Computer back in 1975, we put aside a lot of pre-conceptions to design a better computer. For instance, instead of slavishly adopting an inferior bus as a "standard," we designed our own. We used fifty fully-buffered lines because that's all we really needed with the H8's built-in systems controller. The result? Clean signals, minimum noise and great expansion capabilities.

Next, we picked a male/female connector. Not only is it less expensive than edge connectors, our tests show it's also more reliable! And because it costs less, every H8 motherboard includes all the connectors you need for expansion. There's nothing extra to buy.

The connectors are mounted on the right side of the cabinet at an angle so the boards tilt back. That gives us a couple of significant advantages. First, it allows the boards to be inserted without requiring a taller cabinet. So our circuit board layout is more open, making the boards easier to build - even if you've never built a kit before. Second, the angled mounting provides easy accessibility to all the components on the face of the boards without an extender. (Many times an extender alters the transmission characteristics of the bus, which masks the problem you're trying to solve or even causes new ones.)

And we plan to support the H8 bus in the future you can expect to see many new and exciting accessories for the H8 bus like higher density, lower power memories and a variety of unique I/O interfaces.

We're very happy with our bus, and we think you will be, too.

Who minds being different... as long as you're better.
Continued from page 32

1977) delivered to me in a documented form is the "high resolution" graphics software package. This is perhaps the best attribute of the Apple II's unique color graphics orientation; its potential is shown by a "high resolution demo" program which I was able to get from the company, including a number of graphic whizbangs selected from a list of choices. Perhaps the best in my opinion is something called the "Spirograph," a constantly changing color graphic implementation of a mandala. The illustration of photo 4 is taken from one state of this program's execution approximately six hours into its evolution one evening. The program uses a random number generator which appears truly random (unrepeatable upon reloading from the same tape) to control the course of the pattern. The price of the graphics routines is listed as $10.

Applications Software

A mixed bag of user oriented software is available with Apple as a means of demonstrating the system. This includes a number of tapes with games using the display and paddles, a "Checkbook-Home Management" package, an excellent 16 K Star Trek game which I have used on my system several times, etc. Typical prices are around $10 per tape, with four tapes currently listed in the catalog sheet. Users can expect more offerings as time goes on. It is these applications programs, games and graphic whizbangs, which provide the greatest value to me when demonstrating the concept of a personal computer to friends.

Documentation

Aside from having a well designed hardware configuration, the Apple II is not hidden from the user who wants to figure out what is in his computer. The "preliminary" documentation which I have on the Apple II consists of a loose leaf file bound in a report folder which has proved anything but preliminary in terms of completeness and usefulness. Its contents are not excessively verbose, but all the essentials are present: the specification of the syntax of the 5 K BASIC, how to access systems software hooks from BASIC, the complete address space map of the hardware, and neat comprehensive drawings of all of the system's electronics. When it came time for me to wire up a version of the game paddles in the form of my own joystick hack, I was able to turn to a page of the manual containing a specification of all the signals on the 16 pin game IO connector. This manual is not a tutorial on how the computer works, but it does contain all the information needed for the experienced experimenter to add custom hardware to the system. A "final" version of the manual is in preparation according to the Apple Computer Co, but this preliminary manual is complete enough to stand on its own.

The only items where I found documentation somewhat scanty were the Applesoft BASIC interpreter (documentation limited to a reference card quoting the initialization texts on how to use it), and the lack of documentation of high resolution graphics to date.

Using the Apple II: A Color Sketchpad Program and Joystick

As a means of trying out the Apple II system and its documentation, I set a goal of

Continued on page 40
Basic systems for personal computing

If you are just getting into personal computing and are looking for a starter system, you have two choices: a computer kit with RAM memory only or a fully assembled computer with BASIC-in-ROM. From reading this magazine and talking to computer buffs it should be obvious that it is desirable to have a computer capable of communicating in the programming language BASIC. This language allows you to instruct the computer in English-like phrases and to use any of the thousands of standard programs written in BASIC (there are probably several in this magazine).

If you purchase a (RAM-only) computer kit you will have to buy additional RAM (4K to 8K), a terminal, and cassette interface for a total cost of about $1000 to run BASIC after you get the kit together and working. Your reward for this endeavor will be a wait of about 15 minutes every time you turn the computer on just to load BASIC into the machine!

Your other alternative is a BASIC-in-ROM computer. These machines have BASIC built in so that it is there whenever the computer is turned on. BASIC-in-ROM computers are also usually fully assembled and cost far less than the RAM-only kits because they are mass-produced by the thousands.

But, you must be careful when selecting a BASIC-in-ROM computer. Some models do not have full-feature BASIC. Instead they have Tiny BASIC or 4K BASIC which cannot run most of the standard BASIC programs available. Still others have other shortcomings such as a small calculator-style keyboard which makes program entry difficult, or most important, lack of expansion capability, preventing the computer from growing with you.

Ohio Scientific offers you a line of expandable computers with full-feature 8K BASIC-in-ROM. They all come fully assembled and tested, but give you the option of economizing by supplying the simple things — power supply, keyboard and TV, if desired, so that you get the most computer power for your dollar.

Compare Ohio Scientific's $298 BASIC-in-ROM Model 500 Board (1MHz clock), which has our Version 3.3 BASIC, against other small computers, as in the independent article "BASIC Timing Comparisons" (Kilobaud, Oct. 1977, p. 23). In this test, the Model 500 excelled over all our personal computing competitors, and was second in performance only to our Challenger disk systems, compared against twenty-eight other computer systems. And the Model 500 is our lowest-cost machine! Our larger models are even more dramatic in a comparison with any competitive models.

Having the fastest full-feature BASIC ROMs certainly isn't the only criterion necessary for a superior computer system, but it sure helps. Ohio Scientific offers all the other features necessary, including a full line of computer accessories complete with 15 accessory boards available in over 40 configurations. Many Ohio Scientific accessories are so innovative that no one else in the industry has them — such as dual port memory boards, multiprocessing CPU's and big disks.

Ohio Scientific has other unique features for the personal computerist. For instance, there is Ohio Scientific's Small Systems Journal, published bi-monthly, a full magazine aimed specifically at the owners of Ohio Scientific computers. If you are looking for a personal computer, be sure to look carefully at Ohio Scientific. We think you will find that we have the system for you.
Model 500 Board
A full 8K BASIC-in-ROM computer on a board. This unit contains a 6502 microprocessor with our powerful 8K BASIC-in-ROM, 4K of RAM memory, and a serial port which can be jumpered for 20mA current loop or RS-232. The board can be plugged into any standard OSI-backplane and expanded by our full line of accessory boards. The user must simply supply +5V and -9V power and the serial terminal to be up and running in BASIC.
$298.00

Super Kit
An ideal starter computer system. The Super Kit includes a Model 500 CPU Board with 8K BASIC in ROM, CPU, and 4K of RAM, full buffering for expansion, an eight-slot backplane board, and a Model 440 Video I/O Board. Model 440 provides full CRT functions when connected to a video monitor or modified television set and a standard ASCII keyboard. The user must simply provide +5V and -9V power, an ASCII keyboard, and a modified television set or monitor to have a full computer system with 8K BASIC-in-ROM, 4K user space and a CRT terminal with scrolling.
$398.00

Challenger II-P
Our very popular fully packaged BASIC-in-ROM computer. Challenger II-P contains the Model 500 CPU Board with 4K of RAM, our new 540 32x64 character video display, keyboard and complete audio cassette interface. The unit also has internal power supplies and a four-slot backplane with two open slots for expansion. The user has only to connect a monitor or modified television set to its output, and he is ready to program in BASIC. To store programs and data files, he needs only to connect a conventional audio cassette recorder to the built-in audio cassette interface. The unit is fully assembled and ready to go.
$598.00

Challenger II Disk Systems
The ultimate in personal computing offered by Ohio Scientific is the Challenger II system with single- or dual-drive full-sized floppy disk. Each floppy stores 250,000 characters. The Challenger II is available as a video system with keyboard so that all the user needs is a television or monitor for operation; or as a serial version where the user must supply his own terminal. Challenger II disk systems automatically load in BASIC and now have an extensive library of high-performance programs. The programs are ideal for the advanced hobbyist, educational users, industrial development and small business applications. Challenger II disk systems are very economical. For instance, a 16K disk system with 250,000 bytes of disk storage starts at under $2000.00

For more information contact an Ohio Scientific dealer or send $1 for our 64-page buyers' guide.
When considering cost effective computers for small business applications, the prospective buyer really has only a few choices: Ohio Scientific's factory-assembled fully integrated computer systems, or the multitude of "pot-luck" 100 systems.

First consider the 100 system. It is a computer system defined as a collection of S-100 components. It is offered by computer stores and systems houses who mix CPU boards, memory boards, cases, mini-floppies, full-size floppies and numerous software packages from many different vendors. In many cases the components even vary from system to system. Unfortunately, what is often used in a computer system is simply what the computer dealer has on hand at the moment. This may include off-brand or obsolete boards, among other things.

The end user of these pot-luck 100 systems may experience dissatisfaction with the system. First of all, all S-100 products are NOT compatible with each other, as is commonly assumed. The same is true for hardware products, and most certainly for software products. So although the user may be able to get one or more software packages from the dealer along with the computer system, it can be a battle from there on converting software to run on his computer.

The second problem is service. If the customer moves or the dealer goes out of business, the customer is out of luck because virtually no one will service computer systems of mixed origin. The computer system might even have been built from kits since most S-100 manufacturers offer their products in kit form. Several charge outrageous prices for assembled products. And then there is future expansion — this can be difficult because all S-100 products are not created equal or compatible!

We could go on with this horror story, but let us take a more positive approach and look at the other alternative — the factory-integrated computer system. Ohio Scientific manufactures a full line of computers and accessories which are not compatible with S-100 equipment, but are fully compatible with our full line of expansion accessories. All of our systems-level equipment has always been available only in fully assembled form. When you buy an OSI small business system from a dealer, you are assured of buying a standard computer system that was factory assembled and tested. You can be assured of getting service from any of Ohio Scientific's dealers and direct from the factory, now and in the future, whether you stay in your present location or move across the country.

A standardized system means standard software. You can order any of Ohio Scientific's library of diskettes, put them in your disk drive, and your system will perform immediately. And you can make use of our large dealer-generated software library which runs on all Ohio Scientific disk systems. Finally, regardless of the possible pitfalls with other computer systems, Ohio Scientific's Challenger II and Challenger III business systems stand on their own, based on ultra-high performance and impressive performance/cost ratio. Look carefully at the specifications of the Challenger III system on the following page. Compare the advantages of a factory-integrated and supported computer system with those of a computer system of mixed origin. We think you will agree Ohio Scientific is the only sensible choice in cost-effective small business computing.
- Designed for small business computing.
- Uses the 510 triple processor CPU Board, runs 6502, 6800, 8080 and Z-80 programs.
- Available with up to 1 Megabyte of RAM memory; high reliability static RAM is standard; low-cost dynamic RAM is optional.
- Single- or dual-drive floppy disks store 250,000 characters per surface — 3 to 4 times the storage of mini-floppies.
- Supports our ultra-fast 6-digit BASIC (see “BASIC Timing Comparisons,” Kilobaud, Oct. 1977, p. 23, where Ohio Scientific out-benchmarks all of our competitors) and our new super-fast 9-digit business BASIC.
- Powerful operating systems support all standard I/O ports including multiple terminals, line printers, video display and disk.
- Disk supports: sequential, random and index sequential files.
- Applications software, including:
 - WP-1, a powerful disk-based Word Processor.
 - OMS, a unique data-base management system which supports continuous disk addressing of up to 250,000 characters per file.
- Complete business packages including Accounts Receivable, Accounts Payable, Ledger, Payroll, Inventory and Taxes.
- Two factory-supported terminal options and two factory-supported line-printer options.
- Optional 74-Megabyte hard disk for $6000. Reel-to-reel mag tape coming soon.
- Optional 16-user operating system with time share and distributed processing capabilities.
- Optional rack mounting and rack enclosures.
- Leasing programs and maintenance contracts available through many dealers. Optional nationwide field service coming soon.
- Challenger III systems have extremely high performance-to-cost ratios. For example, a system complete with triple processor CPU, 32K bytes of static RAM, a serial I/O port, dual drive floppy disks (500K bytes of online storage), fully assembled, plus DOS, BASIC and a demonstration program library costs $3481 fully assembled.
- The same system complete with a deluxe upper-lower case x-y addressable CRT terminal, 65-line-a-minute tractor feed line printer and an applications software library sells for about $6000, or rents for a little over $200 a month on a three-year lease!

DEALERS

For more information contact an Ohio Scientific dealer or the factory. Be sure to specify your interest in business systems.
implementing a version of what was called a "Cybernetic Crayon" by Thomas Dwyer, Leon Sweer and Margot Critchfield in an article we published in November 1976. The first requirement was that of creating a joystick input to replace the separate control paddles which are standard from the manufacturer of Apple II. Then with the joystick box tested and working, I would create software which would use the joystick and the Apple II keyboard to create color doodles within the 40 by 40 matrix of the television screen in the low resolution graphics mode of operation.

The creation of a joystick box with the Apple II is a simple matter of wiring. The manual lists the complete set of signals available at the game IO connector, a 16 pin dual in line socket located near the rear of the main board of the computer. The wiring is given in figure 1, showing the essentials of two resistance measurements inputs (PDL(0) and PDL(1) in 5 K BASIC) and three switch inputs. The actual box which I created is shown in photo 5. The joystick, which was purchased from James Electronics, has four 100 K potentiometers, of which only two are used, one on each axis. The switches were pushbuttons removed from an archaic surplus digital test jig (circa 1960 technology). The entire device was mounted in the bottom of a gourmet food container which I purchased retail at a shopping mall for this purpose. (I actually had to buy a matched set of three food containers for about $10, of which one was the right size.) The large hole for the lever of the joystick was drilled first, after which holes for the four #4-40 mounting screws were carefully located and drilled. (Use of a transparent container helped immensely here.) Wiring according to figure 1 was done point to point after mounting the push button switches.

Making a Program...

The wiring of the actual control box was derived directly from the documentation which came with the Apple II (although it required some knowledge of the way a 555 style timer is used to measure a resistance by controlling the width of a pulse (see May 1977 BYTE, page 42, figure 2)). In a similar way, the hook for use of the resistance measurements as controls of a program is built into the 5 K integer BASIC which is part of the Apple II. This hook is the built in function PDL(x) where x is an integer from 0 to 3 corresponding to the four possible paddles which may be used. In the case of the paddle box of figure 1, only PDL(0) and PDL(1) will give any externally variable value when referenced. It is one thing to read the cursor value for a display from these inputs, but it is quite another to use it, as I found.

My first attempt was to use the integer value from 0 to 255 returned by PDL(n) as a direct cursor control for the position of an action being performed on the screen. The only problem here was that when I normalized the values to a range of 0 to 39 appropriate for the 40 by 40 matrix of points of the Apple II, the characteristics of my potentiometers prevented fine control of which point on the screen was addressed (certain points proved totally unaddressable). My second attempt was to use a tabular transfer function to convert observed value to a 0 to 39 coordinate value. After this did not work well, as a final expedient I then reduced the joystick inputs to the logical equivalent of a set of four single pole single throw switches which would input an effective "velocity" value of -1, 0 or +1 for each axis of motion of the joystick. Once I had an effective way of input for the cursor motion commands defined by the joystick, I could begin to design a program to allow definition of color values, and depositing of colors under control of one of the switch inputs of the control box.

The final program, a result of several iterations, is given in listing 1, photographically reproduced from the screen of my television display. The program begins with setting of the "graphics" mode with the GR
In the beginning there were boards, thousands of them.
That's how we started in the business. Making memories and interfaces for other people's computers... and making them better.
Now that our own Sol has become the number one small computer, you might think we're putting less emphasis on our board business.
Not so.
We're just doing more creative things with them.

One neat package gets your computer on the air.

For example, we've built Subsystem B, which ties together five Processor Technology modules into a completely integrated system that makes other S-100 Bus computers work almost as well as our Sol.
Circle 98 on inquiry card.

Subsystem B includes a memory module, three input/output modules, a general purpose memory, and appropriate software.
A specialized software program called CUTER knits together your computer and its peripherals to create an integrated, smoothly working system.
It's the fastest, cleanest way to get on line, and it costs less than if you bought each module separately.
You get your choice of two low power, reliable memory modules in 8K or 16K capacity.
Our VDM-1 video display module (still $199 in kit) is the industry standard display device with over 6,000 in use.
Our CUTS high speed, low cost ($110 in kit) audio cassette interface is the most reliable on the market and is supported by our broad line of cassette software including Extended BASIC, FORTRAN, PILOT, FOCAL and numerous others.
And our 3P+S input/output module offers a low cost way to handle virtually all the I/O needs of any S-100 Bus compatible computer system.
There are close to 10,000 in the field.
Price is just $149 in kit.
Yes, we may have become the maker of the Number 1 small computer— the Sol. But we haven't neglected the quality of our board business. We can't afford to... because we use many of them in our own computers.
For our most recent literature and price list see your dealer or write Processor Technology Corporation, Box B, 7100 Johnson Industrial Drive, Pleasanton, CA 94566. (415) 829-2600.
Listing 1: The color sketchpad program, implemented in 5 K Apple BASIC. Showing complete lack of form, this program is written by its author without REM statements to explain what is going on. See the text of the article for detailed comments.

```
5 DIM Ts<100>
10 OR Ts TO 99: HLIN 0.39 AT 1: NEXT 1
20 C200 Y=10
30 COLOR=0
40 DEPOSIT=0
50 SCOL
60 BLINK=LNG
70 PRINT WAT FREE JOYSTICK=".
80 INPUT DEPOSIT Zone LINES=".
90 COLS=2055
100 KEY PEEK (-16384)
110 GOSUB 8700
120 IF KEY=12 THEN GOTO 1000
130 IF KEY=4 THEN GOSUB (4) THEN 2000
140 IF KEY=8 THEN GOSUB (8) THEN 3000
150 IF KEY=10 THEN GOSUB (10) THEN 4000
160 IF KEY=12 THEN GOSUB (12) THEN 5000
170 IF KEY=14 THEN GOSUB (14) THEN 6000
180 IF KEY=16 THEN GOSUB (16) THEN 7000
190 IF KEY=18 THEN GOSUB (18) THEN 8000
200 PRINT "FILL SCREEN WITH COLOR="";
210 IF COLOR OR CM>15 THEN 1000
220 IF COLOR=0 THEN COLOR=39
230 PLOT 0,0 AT 1: NEXT 1
240 SCOL=0
250 GOSUB 6500
260 GOTO 1000
270 PRINT "ENTER TEXT FOR DRAWING"
280 GOSUB 2600
290 PRINT "PRINT : PRINT"
300 "E";
310 "PRINT : PRINT : PRINT"
320 "E";
330 "RETURN"
340 "BLINK=BLINK-1"
350 "IF BLINK=LNG/2 THEN 3200"
360 "RETURN"
370 "COLOR=0"
380 "IF SCOL=0 THEN COLOR=6"
390 "BLINK=LNG"
400 "GOSUB 3200"
410 "RETURN"
420 "COLOR=SCOL"
430 "PLOT Y*X"
440 "XX=PDL (0) YY=PDL (1)"
450 "IF XX=0 THEN GOSUB 9000"
460 "IF XX=1 THEN GOSUB 6000"
470 "RETURN"
480 "COLOR=SCOL"
490 "PLOT Y*X=X+1"
500 "GOTO 9000"
510 "COLOR=SCOL"
520 "PLOT Y*X=Y+1"
530 "RETURN"
540 "COLOR=SCOL"
550 "PRINT : PRINT : INPUT"
560 "WHAT COLOR="";CENT
570 "COLOR=MOD 16"
580 GOSUB 7500
590 "RETURN"
600 "COLOR=SCOL"
610 "PLOT Y*X=X+1"
620 "RETURN"
630 "IF DEPOSIT THEN 8700"
640 "RETURN"
650 "IF DEPOSIT=0 THEN 8700"
660 "RETURN"
670 "IF DEPOSIT=0 THEN 8700"
680 "RETURN"
690 "IF DEPOSIT=0 THEN 8700"
700 "RETURN"
710 "IF DEPOSIT=0 THEN 8700"
720 "RETURN"
730 "IF DEPOSIT=0 THEN 8700"
740 "RETURN"
750 "IF DEPOSIT=0 THEN 8700"
760 "RETURN"
770 "IF DEPOSIT=0 THEN 8700"
780 "RETURN"
790 "IF DEPOSIT=0 THEN 8700"
800 "RETURN"
810 "IF DEPOSIT=0 THEN 8700"
820 "RETURN"
830 "IF DEPOSIT=0 THEN 8700"
840 "RETURN"
850 "IF DEPOSIT=0 THEN 8700"
860 "RETURN"
870 "IF DEPOSIT=0 THEN 8700"
880 "RETURN"
890 "IF DEPOSIT=0 THEN 8700"
900 "RETURN"
910 "IF DEPOSIT=0 THEN 8700"
920 "RETURN"
930 "IF DEPOSIT=0 THEN 8700"
940 "RETURN"
950 "RETURN"
960 "RETURN"
970 "RETURN"
980 "RETURN"
990 "RETURN"
```

statement, after which a loop contained in line 110 clears the screen to black color with 40 HLIN function calls to draw horizontal lines across the whole screen with the last color value (set by the statement COLOR = 0 in line 100). Lines 120 to 190 then initialize several variables. X and Y are used by the program as the current cursor values, ranging from 0 to 39, initially set approximately to the center of the screen. DEPOSIT and ODEP are flag values used to coordinate whether or not the cursor leaves a trail of color. SCOL is used temporarily to store color values. LNG is the length of the delay loop which controls how fast the cursor blinks, and must be an even number so that it can be divided by 2. BLINK is the running counter for this delay loop. The joystick dead zone limits are defined with a request to the user, and are the number of states between 0 and 255 at either end of the range which will be considered equivalent to the nonzero velocity values for the cursor. With entry of the value 100, the calculation of the dead zone gives nonzero velocity if the input from the joystick measurement is 0 to 100, or 155 to 255 in that direction. With the hardware I built for the external control box, a dead zone of 100 is a typical useful value; nonlinearities in the potentiometers make lower values impossible to use, and higher values make it very difficult to set the joystick to dead center and stop motion of the cursor. The variables ZD and DZ contain the dead zone limits.

The main routine of the color sketchpad program is found in the region from lines 1000 to 1070 of the listing. This "executive" loop begins with a small loop that scans for key input from the Apple II's keyboard. The current output of the keyboard is obtained by the magical incantation on line 1000. Two subroutines are called in this scanning loop at lines 1003 and 1005. The keyboard scanning loop waits until a valid key code (greater than 127) is returned from the keyboard before decoding a keyboard command. The subroutine at lines 3000 to 3350 blinks the cursor and reads the paddle, moving the cursor according to the values XX and YY which are input when the BLINK count has reached zero. The subroutines which implement motion are found at lines 6000, 6500, 7000, and 7500.

Returning to the main keyboard scanning loop, the second subroutine called within this loop is found at lines 8700 to 8820, and is responsible for reading the "DEPOSIT" switch, switch #2, and setting appropriate flags to perform the action of depositing a color. Eventually, at line 1010 a KEY value of an ASCII character code
The Ultimate Turn-on

On/off control everywhere—by computer over the AC wiring

Now it's simple and economical to control AC devices remotely from an S-100 or Apple II computer. Mountain Hardware's new Intro™ system delivers on/off commands over the existing AC lines—so you don't have to string a foot of wire!

Control at any AC outlet. The Intro system impresses a code-modulated 50 KHz control signal on the house wiring. Then decodes the signal at any outlet to switch AC devices on and off. You can control lights, refrigerators, TVs, solenoid valves, sprinklers, burglar alarms—and many other things we leave to your fertile imagination. With the addition of input sensors to your computer system, you can automatically control variables such as temperature and soil moisture.

Here's how it works. You plug in a single AC Controller board at the computer bus and connect the AC Interface Adapter to any convenient 115 VAC outlet. The AC Controller is now connected to address as many as 64 channels remotely. But it's completely isolated from the 115v power, so there's no chance of short or shock.

At any outlet where you seek control, plug in a Dual Channel AC Remote. Then plug one or two devices to be controlled into the box. Every AC remote has two independent 500 watt channels. When commanded by the computer, the Dual Channel AC Remote turns the devices on and off independently. When polled by the computer, the Dual Channel AC Remote sends a signal back, telling the computer the status of each device. Bidirectional communication provides error free operation.

Simple programming. You write your control program in BASIC or Assembler language. Software subroutines for the control programs come with the equipment—along with complete documentation. If you have an S-100 computer, you can program on/off commands at any day and time using our optional 100,000 day Calendar/Clock Board. A self contained power source assures fail safe operation.

Modest prices. The AC Controller, for both the S-100 and Apple II computers, costs $149 in kit form or $189 completely assembled and tested. Each Dual Channel AC Remote costs $99 as a kit or $149 assembled and tested. Thus, a fully operative system in kit form can be yours for as little as $248.

The Calendar/Clock Board for S-100's costs $179 in kit form, $219 assembled and tested. All prices are f.o.b. Ben Lomond, CA. Prices are USA Domestic. California residents add 6% sales tax.

Where to find it. The Intro system can now be found at computer shops throughout the U.S. and Canada. Drop by and ask for a demonstration. Mountain Hardware, Inc., may be reached at Box 1133, Ben Lomond, CA 95005. Phone (408) 336-2495.
Photo 6: An example of another product of the color sketchpad program, in this case illustrating a text tag entered by the program's "T" command to identify when and who did the illustration. The comments on the second line of the text at the bottom refer to an experiment with the program's joystick dead zone parameter.

with a high order bit of "1" is detected in the range 128 to 255, and the inner keyboard scanning loop temporarily ends. Input of the KEY is acknowledged to the keyboard by the magical incantation to the hardware of POKE -16368,0 at line 1015. (All this hardware specific information was elicited from the documentation which came with the system.) After the KEY has been acknowledged, its value is checked and one of five command routines is chosen with a series of IF statements. If none of the valid commands is entered, the GOTO 1000 at line 1070 continues execution of the keyboard scanning loop looking for a valid command.

Turning to the implemented keyboard commands of this color sketchpad program, the "F" command is used to fill the screen with an arbitrary color. The details, found at lines 2000 to 2060, print a message to the user "FILL SCREEN WITH COLOR=" after which the user enters a value from 0 to 15 which is range limited by statements at 2020. (Thus if "F" is hit by mistake, typing an invalid color value outside the range 0 to 15 gets the user back to the main loop without erasing the current picture.) If a valid color is indicated, the screen is filled with that color, erasing all previous work.

The "C" command is used to access the routine starting at line 8500 which prompts the user for a new color value which will be used for drawing. The prompting message from an INPUT statement is "WHAT NEW COLOR?". As in most BASIC interpreters, the question mark comes from the INPUT statement's operation and the actual string found in the program has no question mark. The user response to this INPUT statement at line 8500 is a value limited to the range 0 to 15 by the assignment statement at line 8510 using the MOD function.

The "T" command is used to input a text tag contained in the string T$. This tag is typically output by a reference to the subroutine at line 2600 prior to resumption of the scanning loop after a command is executed. In the example of photo 6 the text tag was used to identify the date and time at which the picture was composed, and the "artist" responsible for it.

Finally, the "J" command is used to reset the joystick dead zone limits in the
EDP books you can’t afford to be without

THE INFORMATION SYSTEMS HANDBOOK
by F. W. McFarlan and R. L. Nolan
759/29X Pub. Pr., $35.00 Club Pr., $25.50

MINICOMPUTER SYSTEMS
Structure, Implementation, and Applications
by C. Weitzman
756/770 Pub. Pr., $19.50 Club Pr., $14.50

DATA PROCESSING DOCUMENTATION
Standards, Procedures and Applications
by W. L. Harper
757/092 Pub. Pr., $24.95 Club Pr., $19.25

INTERACTIVE COMPUTER GRAPHICS
by B. S. Walker, G. R. Grund and E. A. Drawneck
757/661 Pub. Pr., $14.50 Club Pr., $12.30

MICROPROGRAMMABLE COMPUTER
ARCHITECTURES
by A. B. Salisbury
768/03X Pub. Pr., $13.50 Club Pr., $11.40

PROGRAMMING LANGUAGES
History and Fundamentals
by J. E. Sammet
765/653 Pub. Pr., $22.50 Club Pr., $18.50

MICROPROGRAMMING PRIMER
by H. Katzan, Jr.
333/874 Pub. Pr., $17.95 Club Pr., $13.95

THE THINKING COMPUTER
Mind Inside Matter
by R. B. Raphael
769/384 Pub. Pr., $12.95 Club Pr., $10.25

GETTING INVOLVED WITH YOUR OWN
COMPUTER: A Guide for Beginners
by L. Solomon and S. Veit
771/928 Pub. Pr., $10.95 Club Pr., $9.95

ILLUSTRATING BASIC
(A Simple Programming Language)
by D. Alcock
771/928 Pub. Pr., $10.95 Club Pr., $9.95

GAMES & PROGRAMS
Mathematics for Modeling
by R. R. Singleton and W. Tyndall
771/928 Pub. Pr., $9.95 Club Pr., $8.35

MASTER HANDBOOK OF DIGITAL
LOGIC APPLICATIONS
by W. L. Hunter
771/557 Pub. Pr., $11.95 Club Pr., $9.95

APPLYING MICROPROCESSORS
New Hardware, Software, and Applications
Edited by L. Altman and S. E. Scrupske
191/603 Pub. Pr., $15.00 Club Pr., $12.50

MICROPROCESSOR APPLICATIONS MANUAL
by Motorola, Inc.
435/278 Pub. Pr., $26.50 Club Pr., $22.50

MICROPROCESSOR/MICROPROGRAMMING
HANDBOOK
by B. Ward
789/749 Pub. Pr., $9.95 Club Pr., $8.45

ELECTRONIC MUSIC CIRCUIT
GUIDEBOOK
by B. Ward
768/234 Pub. Pr., $9.95 Club Pr., $8.45

Circle 64 on inquiry card.

Introductory offer to new members of the
Computer Professionals’ Book Club

Special $1.89 bonus book comes to you with your first club selection

This new professional club is designed to meet your day-to-day on-the-job needs by providing practical books in your field on a regular basis at below publisher prices. If you’re missing out on important technical literature—today’s high cost of reading curbs the growth of your library—here’s the solution to your problem.

The Computer Professionals’ Book Club was organized for you, to provide an economical reading experience of value. Administered by the McGraw-Hill Book Company, all books are chosen by qualified editors and consultants. Their understanding of the standards and values of the literature in your field guarantees the appropriateness of the selections.

How the Club operates: Every month you receive free of charge The Computer Professionals’ Book Club Bulletin. This announces and describes the Club’s featured book of the month as well as alternate selections available at special members’ prices. If you want to examine the Club’s book of the month, you do nothing. If you prefer one of the alternate selections—or if you want no book at all—you notify the club by returning the card enclosed with each Bulletin.

As a Club Member, you agree only to the purchase of four books (including your first selection) over a two-year period. Considering the many books published annually, there will surely be at least four you would want to own anyway. By joining the club, you save both money and the trouble of searching for the best books.

VALUES UP TO $35.00 WITH MAJOR DISCOUNTS ON ALL OTHER CLUB SELECTIONS. Your bonus books come with the first selection, and you may choose both of them from the books described in this special introductory offer.

EXTRA SAVINGS: Remit in full with your order, plus any local and state tax, and VALUES UP TO $35.00 WITH MAJOR DISCOUNTS ON ALL OTHER CLUB SELECTIONS. Your bonus books come with the first selection, and you may choose both of them from the books described in this special introductory offer.

NO RISK GUARANTEE: If not completely satisfied, return selections for full refund and membership cancellation.

MAIL THIS COUPON TODAY

COMPUTER PROFESSIONALS’ Book Club P.O. Box 582 Princeton Road, Hightstown, New Jersey 08520

Please enroll me as a member and send me the two books indicated. I agree to receive the bonus book at the introductory price of $1.89 plus my first selection, plus tax, postage, and handling. If not completely satisfied, I may return the books within 10 days and request that my membership be cancelled. If I decide to continue, I agree to take a minimum of three additional books during the next two years at special Club prices (minimum 15% discount, after more). I will receive the Club Bulletin 13 times a year. If I want to examine the featured selection, I need take no action. It will be shipped automatically. If, however, I want an alternate selection—or no book at all—I simply notify the Club by returning the convenient card enclosed by the end of the month following the Bulletin’s appearance. Lender, I may return any book and receive a refund for the purchase price within 10 days of receipt. If this is not the case, Membership in the club is continuous but cancelable by me at any time after the four book purchase requirement has been fulfilled. This order is subject to change without notice. Offer good for new members only.

Write Code # of $1.89 bonus book selection here

Write Code # of first selection here

NAME
ADDRESS
CITY
STATE
ZIP

Institutional tax exemption status is not applicable to purchases made through individual Club membership. All prices subject to change without notice. Offer good for new members only.

BYTE March 1978 45
event that the first value entered during initialization was inappropriate.

Summary of the Apple II

As noted at the beginning of this review, I was very enthusiastic about the prospect of this machine from the first word of its existence. To be sure, there are minor annoyances with this product in its present state, like the mechanical problems with respect to its case and keyboard mounting, and the persistent problems of radio frequency interference which I found using my particular color television set as the primary display. But such problems are minor compared to the achievements of this design.

Apple II is a well executed example of the way a personal "appliance" computer should be made circa 1977. It is suited for the relative beginner who knows BASIC but does not know hardware design, as well as for the advanced hacker who feels no qualms about using the system's documentation to create custom peripherals for the system. For the user who wants color graphics, the Apple II is the only practical choice available in the "appliance" computer class.

The accompanying figure detail (taken from figure 1a of David Allen's article, "A Floppy Disk Interface," January 1978 BYTE, page 61, right-hand side) contains a number of drafting errors inadvertently included during the production of the article. The corrections are circled. In addition, IC1, 74193, the count up/down counter, was incorrectly drawn as an input AND gate, and the A1 and A2 inputs of IC22 should be shown connected together. Our thanks to the readers who spotted these errors, and our apologies to David Allen.

Clock Stops

I enjoyed M. F. Smith's article in the November 1977 BYTE on "Using Interrupts for Real Time Clocks." He did a great job in describing how to develop and use a real time clock. So I implemented his program on my AMI PROTO 6800 System, only to find it not functioning properly in updating the clock. After examining the program listing closer, I found the bug at line 29 of your listing on page 53. The index compare was only index by 7 into the constant table, it should be index by 8. After I made this change everything worked.

William W. Barnoc Orboughs Corporation 2473 S Memphis Way Aurora CO 80013

Joystick Gets Stuck

This letter is in reference to "An Inexpensive Joystick Interface," which appeared in the March 1977 BYTE on page 88. I'd like to congratulate Tom Buschbach on a fine article, but there seems to be several mistakes in the schematic.

On the MC1408L-8, A1 is the most significant bit. The schematic shows this connected to the least significant bit of the counter. The eight digital inputs to the digital to analog converter should be reversed in order to obtain a proper sawtooth output.

Also, on IC2, 74193, the count up/down input is shown grounded. This must be held high to enable the count down input.

I have constructed this circuit using a different register chip (8212) and the above changes, and it works very nicely.

William Lemiszki 424 Cambridge St Allston MA 02134

Fractured Factors and Walsh Function Bugs

William Jackson's letter on page 172 of the October 1977 BYTE contains two errors which can be corrected by replacing the fourth equation with:

\[y(x+z) + (x-z) \]

and the fifth equation with:

\[x = (a+b)c. \]

Regarding the September 1977 article "Walsh Functions: A Digital Fourier Series" in the third paragraph on page 196, one reads "\(\sin(11.25°) = 0.99082.\)" The proper value is 0.19509. The value given is that appropriate for 11.25/2°. The sums shown should be, I think, 5.13842, -2.13578, -0.40974 and -1.03218 in table 4. The coefficients would then be 1, -0.4156, -0.0797 and -0.2009. Also the signs for SAL(7) at the bottom of the table should be PNPNNPNP. What was printed is CAL(7).

If I have not made a mistake, the resistors in table 3 would be unchanged, but shouldn't there be some differences in the circuit diagram?

J. S. Lefson
6609 Cot Suc Rd, Apt 203
Montreal, Quebec
CANADA H4V 1E9

Dr Jacoby replies:

Mr. Lefson is correct that SAL(7) in table 4 is misprinted. This can be easily seen by comparison to table 3 or by knowing that the SAL functions themselves are odd about their centers and even about their 1/4 and 3/4 period points, and thus should give identical values to the left and right of center in table 4.

In addition, the values for Sin 78.75° and Sin 101.25° are incorrect and should read 0.98078. I believe that the values for the sums are correct as given as well as the circuit connections (compare to figure 3 for SAL(7)). One point of confusion here might be the signs of the coefficients, since they take into account the inverting op amp configuration and thus appear reversed.
You can buy software from anybody - but ours works in your system.

We only sell one product, Quality.

We have been in business for over nine years building a reputation for providing a quality product at nominal prices — NOT what the traffic will bear. Our software is:

- **Versatile** — as most programs allow for multiple modes of operation.
- **Tutorial** — as each program is self prompting and leads you through the program (most have very detailed instructions contained right in their source code).
- **Comprehensive** — as an example our PSD program not only computes Power Spectral Densities but also includes FFT’s, Inverse-transforms, Windowing, Sliding Windows, simultaneous FFT’s variable data sizes, etc. and as a last word our software is:
- **Readable** — as all of our programs are reproduced full size for ease in reading.
- **Virtually Machine Independent** — these programs are written in a subset of Dartmouth Basic but are not oriented for any one particular system. Just in case your Basic might not use one of our functions we have included an appendix in Volume V which gives conversion algorithms for 19 different Basics; that’s right, just look it up and make the substitution for your particular version. If you would like to convert your favorite program in to Fortran or APL or any other language, the appendix in Volume II will define the statements and their parameters as used in our programs.

Over 85% of our programs in the first five volumes will execute in most 8K Basic’s with 16K of free user RAM. If you only have 4K Basic, because of its’ lack of string functions only about 60% of our programs in Volumes I thru V would be useable, however they should execute in only 8K of user RAM.

All of our programs are available on machine readable media. For those that have specific needs, we can tailor any of our programs for you or we can write one to fit your specific needs.

Soon To Be Released — Vol. VIII-Homeowners Programs
(Includes Federal Income Tax Program)
Continued from page 12

Listing 1: The musical example of figure 5 written in the MUSIC language. "Normal" means that there is to be a slight pause between notes. "Legato" indicates a smooth transition with no gaps.

Figure 5: An example of how musical notation is represented in the MUSIC language.

The Music Editor

An editor is a program that allows a user to easily create and modify files (which of course may be programs). The Music Editor is a program that allows composers to graphically create and modify MUSIC language programs. The Music Editor is written in Altair Extended BASIC 4.0 and runs on the Altair 8800b system using a Magnavox plasma display terminal.

At the simplest level, the editor allows the user to type in and alter statements like any text editor. It also permits the user to copy or move blocks of statements. The editor verifies the syntax of each statement entered.

At a higher level, the editor can be used to graphically display and edit data statements. When entering this level, the editor draws the staves. If an existing data statement is to be altered, the notes of this data statement are drawn; otherwise the staves will be empty, awaiting the input of a new data statement. The user edits a data statement by moving a cursor about the staves and entering commands. Special macro-like commands permit the user to create and copy chords, delete events and insert new ones. Upon leaving this higher level, a data statement in MUSIC is derived from the graphic display of the staves and inserted into a scratch file. Photo 3 shows what a graphics editing session looks like to the user.

Object Language

The MUSIC language is compiled into code for a "make-believe" machine, one with a simple set of instructions. Thus we can say that the object language is in pseudo-machine code. Each object language instruction is two 8 bit bytes in length. The first byte in each instruction is interpreted as an operation code (op code); the second byte is used as a data parameter. There are three classes of object language instructions: set port, wait, and repeat.

Op codes with values of 0 to 253 are interpreted as set port instructions. For example, 3 means turn on the right-most two bits in port 27 (since 3 = 00000011 in binary). These instructions cause the data byte to be deposited in the port number given by the op code itself (each latching port has a unique address). The bit pattern of the data byte specifies which pipe valves attached to that port are to be opened and which ones are to be closed. The pipe valves will remain in that state until they are reset by another set port instruction.

Repeat instructions (op code value of 254) are trapped by the master system. The master processor handles repeats by retransmitting parts of the object program to the slave
Finally, the macro maker of computer printers has gone micro. With a high-speed, desk-top, non-impact printer complete with parallel interface (Model P-1) that's perfect for the home, hobby and small business user. A complete 80-column printer for less than $600.

The new Centronics microprinter is big on performance. It prints clean, clear dot matrix characters at a rate of 150 lines per minute. Yet it’s quiet, compact, comes fully warranted and is backed by Centronics’ worldwide service. It’s even available in a serial interface version (Model S-1) for remote applications.

Of course, buying your small systems printer from the industry’s leading producer of printers is simply a better buy. You get the security, support and systems flexibility only Centronics can bring. Plus the targeted technology that brings out the best in any computer.

So when you think small printers, think big. Think Centronics. For more information, just clip and mail the coupon below.

Centronics Data Computer Corp.
Hudson, NH 03051

Gentlemen: Tell me more about your new microprinters.

Name ________________________________
Address ________________________________
Town ________________________________
State ___ Zip ____________

Centronics® PRINTERS
Simply Better

Circle 17 on inquiry card.
This means turn on the bit pattern for 4 in Port 12:

PORT 12 00000100

This bit goes to 4C in the viola rank.

12 4 C from Voice 1 on 8 ft viola
14 1 C from Voice 1 on 4 ft viola
27 32 The F-A chord in Voice 2 on 8 ft flute
28 2
255 48 Wait for 480 ms
27 0 Clear the chord in Voice 2
28 0
255 12 Pause 120 ms (space between chords)
27 144 The E-G chord in Voice 2 on 8 ft flute
255 48
27 0
255 12
27 36
255 96
12 0
14 0
27 0
255 24

This says turn on the bit pattern for 144=128+16 in Port 27:

PORT 27 10010000

This bit goes to 3G in the flute rank. This bit goes to 3E in the flute rank.

Listing 2b: Here the compiler combines the voices in listing 2a to produce the final object code.

Listings 2a: An example of how the program in listing 1 is compiled in MUSIC. The first step is error checking, followed by the production of intermediate code for each voice.

Voice 1
48 The note 4C is 48 half tones up from C0
-3000 A legato half note gets a timing of 3000 units
-2400 This is the second C
-600 Timing for a normal half note

Voice 2
45 This is 3A
-1200 This is 3F
-300 Timing for a normal quarter note
43 This is 3G
40 This is 3E
-1200 Timing for a normal quarter note
-300 Pause
41 This is 3F
38 This is 3D
-2400 Timing for a normal half note
-600 Pause

Photo 3: The authors' Magnavox plasma display terminal during an editing session. Notes and chords can be created or modified by moving a cursor to the desired position. Entire musical phrases can be copied if desired. Chords or whole measures that repeat need be entered only once.

processor as specified by the data byte of the repeat instruction.

The wait instruction has an op code value of 255. The second byte of the instruction is interpreted as a nonnegative integer. This byte's value fixes a delay period computed in 10 ms units. For example, 255-60 means wait 600 ms.

An object program consists of a series of "frames." Each frame contains zero or more set port instructions and is terminated by a wait instruction. A frame is executed by the slave computer by first executing all set port instructions in a frame almost simultaneously. The set port instructions cause some pipes to be turned on and others to be turned off. If a particular port is not addressed by any set port instruction during a frame, this port's pipes remain in their current state. This new pipe state lasts for the duration given by the frame's wait instruction. At the end of this duration, the next frame's execution begins. Thus each frame causes a combination of pipes to be played for a set length of time. An example of an object program is given in listings 2a and 2b.

The execution of the object program is controlled by two performance programs that couple the master and the slave computers together. There are two reasons why we decided to use a pair of computers to handle the performance of the music: one, the correct latching output ports were already available on the Intellec, and, two, the slave could handle all the real time demands while the master handled the retrieval and loading of "pages" of the score from the diskette. (A page is defined as 256 bytes of object code.)

The slave microcomputer's memory acts as a circular buffer. The master initiates an object program execution by sending a
Go tell it to your computer for $189.

You can have low cost voice entry to your computer with SpeechLab.

Heuristics' original Model 50 SpeechLab™ at $299 was a great success. So, not content to rest on our laurels, we went back to our design bench and came out with the Model 20. It sells for $189 completely assembled and tested for use with any S-100 Bus computer such as Sol, IMSAI, Altair or Cromemco and as the 20A, the Apple.

Now obviously, we had to do a few things to bring the price down. The Model 20 has a somewhat shorter manual. Technically, it's not quite as complex. Don't kid yourself though, the Model 20 does a real job. You can control your computer to do such tasks as data entry, quality control and everything else where you want a "hands-off" operation. Elsewhere in the ad we've illustrated some examples of the kinds of things you can do.

About the Model 20

Heuristics' new Model 20 handles up to 32 words. Software is ROM based. The Model 20 uses 64 bytes per spoken word which is callable from BASIC.

Hardware includes
2 band pass filters with 2 bit amplitude, 2 zero crossing detectors and a linear amplifier.

The combined hardware/software/lab manual includes 10 experiments.

The ROM based speech recognition program occupies 2K bytes of ROM.

The Model 50, still a great buy at $299.

Here's an S-100 compatible system (8080 or Z-80) capable of handling a 64 word vocabulary using 64 bytes per spoken word. You'll get high speech recognition.

Software includes
SpeechBasic BASIC programming language in source and paper tape, assembly language speech recognition program in source and paper tape, hardware and self-test program in source and paper tape. SpeechBasic plot, correlation, recognition and advanced recognition programs are offered in source.

The assembly language program uses less than 4K bytes for a 32 word vocabulary. It loads at 100H. A high core version is available. SpeechBasic BASIC interpreter loads at 0 and requires 8K. A diagnostic program is included.

Documentation includes a 275 page lab manual with 35 experiments and a 100 page hardware manual. All manuals are now available as separate items. The big manual is ideal for schools and colleges as an introduction to speech and pattern recognition.

Hardware includes 3 band-pass filters (6 bits amplitude), 1 zero crossing detector, a linear amplifier, compression amplifier, 6 bit A/D converter and a beeper. The raw waveform is available for advanced experiments. A new noise cancelling microphone is also offered.

Prices (f.o.b. Los Altos, CA)
Model 20A (Apple) $189
Model 20S (S-100 Bus) $189
Model 20 manual $ 15
Model 50 $299
Model 50 lab manual $ 25
Model 50 hardware manual $ 15
(both manuals $35)
Model NC-1 noise cancelling microphone $ 85

More information.

For more information visit your nearest computer store. Most dealers now carry the Heuristics line. Or if more convenient write for literature. Please address Heuristics, Inc., Box B, 900 N. San Antonio Road, Los Altos, CA 94022. Phone (415) 948-2542.

Circle 53 on inquiry card.
header message to the slave. The master then waits for a Block Request (BR) message. At the receipt of each BR message, another page (256 bytes) of the object program is sent to the slave.

After receiving the header message, the slave sends enough BR messages to fill its memory with object code. After receiving enough pages or an end of program instruction, the slave starts executing the object program. After finishing one page of object code, the slave sends out a BR message. The next page sent is placed in the space released by the previous page that was executed. The execution of the object program and the refilling of the buffer proceed concurrently.

After sending the entire object program, the master processor ignores all further Block Request messages. When the slave executes the end of program instruction (which is a WAIT instruction with duration zero), it sends a completion message back to the master processor. The master processor can then inform the user that the slave is ready to accept another program.

This performance system software consists of two programs. The "slave" program is written in Intel 8080 assembly language. Its machine code representation is stored on read only memory in the slave microcomputer. The "master" performance program is written in Extended BASIC 4.0 for the Altair 8800b computer.

The Compiler

The compiler accepts a MUSIC language program and outputs an annotated listing file. If no errors are detected, an object program is then generated and saved on a diskette as a file. Thus the compiler's work can be divided into two phases: error checking and code generation.

The error checking consists of two types of operations: syntax verifying and context checking. A syntax verifier examines each statement to insure that it conforms to the rules of the language. For context commands it checks for correct number and types of arguments and correct placement of this statement in the measure. The repeat command's arguments and placement are checked and the nesting of these statements is verified. Data statement arguments are checked for syntax correctness.

In addition to syntax, the context correctness of data statements is checked. The number of data statements in a measure must equal the number of voices currently active as declared by the last STOPS command encountered in the program. The duration of each data statement must equal the measure duration as declared in the currently active time signature. This checking is a real help to the composer since it handles all the petty details.

The code generation phase of the compiler is divided into four operations: generating repeat instructions, handling context commands, processing data statements, and coordinating measures.

Each repeat command causes one object code repeat instruction to be generated. Repeat instructions cause all the data between HEAD and TAIL commands to be used twice.

The context commands serve a function similar to declaration statements in conventional computer languages. Their main function is to alter the values of the global arrays and variables that determine the note address and note timing calculations. A note address is a number that relates a note to a pipe, while a timing determines how many milliseconds the associated notes are to be held.

The data statement handler processes the data statements to determine the notes to be played for a particular measure. Each voice has its own First-In-First-Out (FIFO) queue for storing information about the events of the current measure. As each event in a voice's data statement is processed, its FIFO queue is filled from the top down. First the notes of the event, then the duration of the event, and finally the duration of the pause between this event and the next one are placed on the queue. At this stage, note values are stored as integer numbers representing a number of semitones above a base pitch, without regard to stop settings. The durations are computed in basic time units regardless of the current tempo setting. The durations are stored as negative numbers in order to distinguish them from note values. Figure 6 shows the general format of a queue for one voice. It represents a sequence of four chords with a rest between the last two.

In this example there is no pause duration between events 2 and 3, indicating that event 2 is played legato with event 3. Event 4 has no note values, therefore it is a rest. Glissandos and tremolos are treated like event macros. They are translated into a series of events by the data statement parser before they are processed onto the queue.

After each voice in a measure has been
parsed, the voice coordination routine generates the object code using the following algorithm:

1. The duration counter for each active voice is set to 0.
2. The duration counter for each voice is examined. Those voices with a zeroed duration counter have their top sequence removed from their queue for processing. (A sequence is all the information from the top of the queue down to and including the first duration of pause found.) The sequence's duration is stored in the voice's duration counter.
3. The voice's bit map is cleared. (The bit map is an array of bits where one bit is used to represent the state of one organ pipe.) As each note value of a voice's sequence is processed, it is expanded into as many note addresses as the number of stop settings defined for that voice. Each note address generated causes a particular bit in the voice's bit map to be set to 1.
4. All the voice bit maps are ORed into a master bit map.
5. The master bit map is compared to the previous master bit map.
6. Those output ports whose bit pattern has changed generate set port instructions with the port's new bit pattern as the data byte of that instruction.
7. To generate the wait instruction, the duration counter for each voice is examined and the minimum duration is found. This minimum duration is subtracted from each voice's duration counter.
8. The minimum duration is multiplied by the tempo variable to yield the actual timing of the object code frame produced. If a frame is within an accelerando or ritard passage, the timing is altered to reflect the gradual change in tempo, the tempo variable is updated, and the duration remaining in the tempo changing passage is decremented. The final actual timing is used to produce a WAIT object code instruction.
9. The current master bit map is labeled as the previous master bit map.
10. The routine now goes back to step 2 if all the queues are not empty; otherwise the next measure in the MUSIC language program is processed.

The queues should empty simultaneously since each voice's data statement should have a duration equal to the one set by the time signature. (This is checked during phase 1 of the compiler.)

The above algorithm was designed to compile multivoice music efficiently. An important feature of this algorithm is that it allows more than one voice to share the same rank of pipes. In addition, it permits the user to generate from each note specified many pitches through the stop setting mechanism. Since the stop settings are performed through software, a user can transpose each note of a voice any number of tones and into any rank of pipes. Listings 2a and 2b show how the above algorithm works for the simple two voice example given in figure 5.

Future Plans

While the system described here is not meant to compete with large dedicated music research systems, it nevertheless has several advantages over a number of other computer controlled music systems. Currently, we have two ranks of pipes with 64 pipes in each rank. However, additional ranks of pipes could easily be added to the system. Each 64 pipe rank requires only eight more latching output ports. The theoretical limit for an Intel 8080 based system is over 2000 pipes. Microcomputers that use memory mapped I/O could conceivably control hundreds of thousands of pipes.

The system can be extended to other musical instruments. By using solenoids, any keyboard instrument can be controlled through the output ports. Alternatively, the solenoids might be placed inside the instrument, driving something like the jacks in a harpsichord directly. To play the harpsichord along with the organ would just require the addition of a harpsichord stop to the MUSIC language.

Electronic synthesizer music is not incorporated in our system because of the high cost of the special hardware needed, but at least three low cost analog output boards designed for Altair (S-100) bus microcomputers have recently been announced. It seems reasonable to expect that the MUSIC language could be applied to these new pieces of hardware.

The voice concept has some application to "synthetic" music composition because it allows the user to create new timbres by specifying nonstandard overtone ranks (eg:

BY 11 March 1978 53
Figure 6: The general format of a queue for one voice used in the MUSIC language.

a 3.1416 foot flute. By assigning dummy stop settings to certain voices, the composer can also isolate the effect of these harmonics during a test performance.

We are planning to eliminate the need to compile and save object programs. An assembly language version of the compiler is being written that will interpret MUSIC language programs in real time. This will be done by sending the bit pattern computed in step 6 of the measure coordinating routine to the designated output port and use the time value generated in step 8 to set an interval timer. This new software system will allow a user to interact with a performance. We also hope to build a subsystem to capture keyboard performance and translate it into a MUSIC language program.

Aside from musical application, the programs written for this system can be used as a realistic basis for explaining many important concepts of computer science in a context that removes much of the mystery surrounding computing. In many ways, this could be the most useful contribution of the music system, suggesting as it does that the teaching of complex ideas has much to gain from a liaison with the creative arts.

A Glossary of Some Musical Terms

Accelerando: A direction telling the musician to make the music gradually faster (increase tempo).

Bar: Vertical line on the musical staff separating the measures of music. Sometimes used as a synonym for a measure.

Glissando: A rapid sliding up or down the musical scale.

Key Signature: The sharps or flats placed after a musical clef to indicate the key.

Legato: A direction telling the musician to play in a smooth and connected manner.

Ritard: A direction telling the musician to make the music gradually slower (decrease tempo).

Semitone: The interval between two tones in the chromatic (well tempered) scale (i.e., the distance between A♭ and A is a semitone).

Staccato: In a broken or clipped manner.

Tremolo: Effect produced by the rapid repetition of a note.
Welcome to the Real World

with the Real-World Interface from The Digital Group

A computer should have a purpose. Or as many purposes as you can imagine. Because a computer belongs in the real world.

And now, the Digital Group introduces the Real-World Interface. A system component that's actually a system in itself, and specifically designed to help you get your computer to control all those tasks you know a computer can control so well.

Automate your sprinkler system. Heat and cool your home. Guard against burglars. Shut off lights... It's all a part of the Real World, easily controlled with the Digital Group Real-World Interface.

Our Real-World Interface is initially made up of three basic components — motherboard and power supply, parallel CPU interface and cabinet — plus three types of plug-ins: AC controller, DC controller and prototyping card. The recommended software packages are Convers, Assembler or Maxi-Basic, in that order.

Some of the features include:

Motherboard & Power Supply
• 12 slots — 11 control cards, one for the interface card
• +5V DC±5% @ 1A, +12V DC ±5% @ 1A, -12V DC ±5% @ 1A contained on board
• May be free-standing (with care)

Parallel CPU Interface
• All buffering for Data Out (25 TTL loads), Address (25 TTL loads) and Data In (10 TTL loads)

• Includes cable and paddlecard for connection to dual 22 on Digital Group CPU back panel. Two 22-pin edge connectors included
• Requires two output ports and one input port

AC Controller
• Eight output devices (2N6342A-2N6343A, -12 amp Triacs); Each output 240V AC max, 12A max RMS
• Control AC motors, lamps, switches, etc.
• Opto-isolated (MCS-2400 or equivalent)

DC Controller
• Eight output devices (2N6055) each output up to 50V and up to 5A
• Control DC motors, switches, solenoids, etc.
• May use internal +12V DC for load or external DC up to 50V DC

Price
• For the motherboard and power supply, parallel CPU interface and cabinet, our kit price is only $199.50, or $260 assembled. Now that's down to earth.

We've only just begun our Real-World Interface System. There are many more plug-ins and applications coming along soon. So write or call The Digital Group now for complete details.

And welcome to our world.

the digital group
P.O. BOX 6528 DENVER, CO 80206 (303) 777-7133

Circle 37 on inquiry card.
One night I got a call from a man who had been wandering through the personal computer stores in the area. He was looking for a computer to operate his huge pipe organ. Inevitably, he was given my phone number, since I had been going around to the same stores telling everyone that I was working on a controller for my pipe organ.

There are several gimmicky reasons for wanting to attach a computer to an organ. My reason is that the combination can provide the performer with a more flexible, easier to play instrument. And then there are all those gimmicks. As it turns out, using a microcomputer can be less expensive than conventional console wiring. Before we get into the subject too deeply, the "organization" of the king of instruments should be made clear.

The performer sits at the console. The performer's hands rest on one or more keyboards called manuals. There are usually from two to four manuals. The feet play on a set of keys placed beneath the bench called the pedals. On most organs since the late 1800s, the console is separate from the rest of the instrument and is connected to it by means of electrical cables. As with the computer, the console is the "command center" of the instrument. In addition to the keyboards there are a number of other controls on the console that will be discussed later.

Blockflotes and Zimbels

The sounding portion of the organ consists of many pipes. Each pipe sounds one note. There are typically many different pipes for a given note, each of which has a different sound quality or timbre. A set of pipes, all of similar timbre, one for each key on a manual, is called a rank. Each rank has a name, many of which are hallowed by centuries of use. Some, like diapason (dia pay zen) or bourdon describe sounds that are characteristic of organs and nothing else. Others, such as trompette or blockflote are reminiscent of trumpets and wooden flutes, respectively. Obviously one rank is a minimum for an organ. (Renaissance portative organs had one rank.) A small organ usually has three or four ranks, controlled from two manuals. The one being installed in my house has 26 ranks. A large organ will have 70 or more. The organ owned by my friend mentioned above has 140 ranks. That is very large, and only a few cathedrals have more. Each rank has 61 pipes, as there are 61 notes on a manual. Thus for a pipe organ of a 100 ranks there are 6,100 pipes. Each rank is turned off or on by a knob or switch labelled with the rank's name. These knobs are called stops. (The terms stop and rank are sometimes used interchangeably, but in this discussion rank will refer to a set of pipes, and stop to the controlling knob.)

A large organ often has four manuals (named great, swell, choir and echo or positiv) each having 61 keys, a 32 note pedalboard, 100 or so stop knobs, and a few dozen assorted controls. Thus there are about 500 controls that the organist must manipulate: a complicated instrument, indeed.
LEARN Microprocessor Operation, Interfacing and Programming with

The New HEATHKIT Microprocessor Course!

Here's the knowledge you need to really use your computer's power!

The more you learn about computers, the more you'll appreciate how important it is to fully understand microprocessor operation and techniques — and here's the easiest, fastest and lowest-cost way to do it! Using Heath's proven self-instruction techniques, the Course gives the knowledge you need to expand your computer interests wisely — and to fully utilize the immense power your own personal computer puts at your fingertips.

Working with the popular 6800 microprocessor, you'll explore this exciting field in 3 easy steps! In step 1, using proven self-instruction text materials, you'll learn about micro-computer basics, number systems and codes, computer arithmetic, programming, 6800 capabilities and interfacing and more. In step 2, with the aid of audio visuals included, you'll go deeper into programming, designing with microprocessors and semiconductor memories. Then, in step 3, you'll actually perform 19 "hands on" experiments with the optional trainer designed to reinforce the theory you've mastered to that point!

The ET-3400 Trainer kit, designed to accompany your course, features the popular 6800 microprocessor. It is actually a miniature digital computer in itself, complete with a 1K ROM monitor program; 6 digit LED display for address and data readout; 17-key hexadecimal keyboard for entering programs, data and control; 256 bytes of RAM (expandable to 512 bytes with the chips supplied in the course); breadboarding socket; 8 buffered LED's for display of logic states; 8 SPST switches for binary input plus an on-board power supply with +5, +12 and —12 volt outputs.

The Course comes complete with 62 electronic components, including a 6280 PIA, two 2112 RAM's, a 1406 digital-to-analog converter, 741 and 301 op amps and more. Includes audio visual aids such as an audio cassette, colorful flip charts and programmed learning text material in two deluxe permanent binders.

Complete the optional exam and receive a Certificate of Achievement and 8.0 Continuing Education Units (CEU's) — a nationally accepted means of recognizing participation in non-credit adult education. (Note: Microprocessor Course requires completion of Digital Techniques Course or equivalent knowledge.)

ORDER ETS-3400
(Course and Trainer kit) $269.95
((Add $3.06 shipping and handling))

FREE SOLDERING IRON!

Included with your Course at no extra cost — this pencil-style soldering iron that's perfect for printed circuit work — a $7.95 comparable value — yours FREE!

MONEY-BACK GUARANTEE!

If you are not 100% satisfied with your Heathkit Course, we will refund the full purchase price of the course text material, less trainer.

NEED DIGITAL TECHNIQUES TRAINING?

Comprehensive Digital Techniques Course — the background you need to understand computer and modern electronics technology! Digital fundamentals, semi-conductor devices for digital applications, Boolean algebra, flip-flops and registers, sequential and combinational logic circuits, digital design and an introduction to computers and more! The course includes programmed instruction text, audio-visual aids, parts for experiments and more.

Digital Design Experimenter/Trainer lets you perform all the experiments in your course, then develop and test your own projects. Features solderless breadboard sockets, 4 binary data switches, 2 "no bounce" switches to pulse logic circuits, 3-frequency pulse clock generators, 4 LED's for visual indication of logic states plus 3 regulated power supplies. Upon completion of the optional final exam, you receive a Certificate of Achievement and 4.0 Continuing Education Units.

ORDER EES-3201 (Course and Trainer Kit) $119.95
((Add $3.64 shipping and handling))

SAVE TIME--ORDER BY PHONE Call (616) 982-3411

OR, MAIL COUPON TODAY!

I enclose □ check □ money order for $________; OR,
(PC residents, add 4% sales tax)

CHARGE to my □ VISA/BankAmericard □ Master Charge
Account #_________________ Exp. Date. ___________ ___________

Master Charge Code #_________________

Signature ____________________________

Necessary to send merchandise
NAME ___

ADDRESS ___

CITY________________________ STATE____ ZIP____

Prices subject to change without notice

Circle 52 on inquiry card.
Key Decisions

And now we come to the microcomputer. It must keep constant watch on 500 switches and control some 6,000 relays, one for each pipe. It must never miss a switch closure or release, and must operate the correct pipes (sometimes dozens simultaneously) within 1/20 of a second. Is this within the capabilities of an 8080? As it happens, it is. But not without a bit of tricky I/O design and some swift algorithms.

For completeness, it should be mentioned that some ranks are not exactly 61 notes. "Unified" ranks often have 75 pipes, and some special ranks have fewer than 61. But fortunately these exceptions are easily handled. The problem is simplified in some organs (a little) by sets of ranks grouped into "straight" chests. Instead of each pipe having its own electrically operated valve (a "unit" chest), each rank in the chest has a valve. Then all notes of the same name (such as all Cs or all F#s) have one valve. This loses some generality, but requires fewer valves and electrical connections. For M ranks of N notes each, a "straight" chest requires M+N valves. A "unit" chest has MxN valves.

Organs also traditionally have couplers, which operate either within a keyboard or between keyboards. An intermanual coupler has the effect of operating a note on one manual when you press the corresponding note on another. (On some old organs both keys actually move when you press one of them. This may have given rise to "phantom of the opera" stories.) A coupler that works within a keyboard plays a note typically one octave higher or lower than the key you are playing, but on the same keyboard. Intervals other than an octave are also available on some organs.

An organ is also separated into divisions. These have the same names as the manuals: typically, great, swell, choir, echo and positiv. The pipes played by the pedals form another division: the pedal division. Each rank belongs to exactly one division. In the traditional organ, a manual can play pipes only in its division. You can couple manuals together, but it is impossible to play a rank in the swell division from the great manual without playing all stops that are pulled in the swell division from the great manual. This separation into divisions has no musical benefits, but is done merely to simplify the construction of the switching in the console. By means of a microcomputer, divisions can be eliminated. The organist can then independently assign any rank to any keyboard. This is the first of a number of nongimmick improvements that can be appreciated by any organist.

The switching in the traditional organ is done by the most incredible collection of electrical, mechanical and pneumatic switches imaginable. That it works at all, being made mostly of slats of wood and strips of leather with silver wires for contacts, seems miraculous. It is not surprising, then, that freedom in interconnection has been restricted in the past.

The wiring from the console to the pipes over distances from ten to over 100 feet
Introducing the SPACE BYTE 8085 CPU
A self-contained computer

$499. end user quantity one, fully assembled, burned in and tested. SPACE BYTE microcomputer products are available now at computer retailers everywhere.

Two RS-232C terminal I/O ports—one for a CRT, the other for a printer with software compatible basic rules.

Fully buffered port. Q passes interface directly with high COM.* FD 3700 or Floppy (8080) disk systems.

The side of the CPU: 8085 CPU & 60% faster than the 8080. It operates at 35Khz, using 568K memory and is fully compatible with all existing 8080 software.

Complete 3270 terminal monitor with 20880, EBCDIC. Including: terminal device, buffer, TCOs, bus, and other thermal devices, * Jumper selectable for use with IBM, VSAC, or any of our other terminal monitors.

The all popular 9500 bus.

Other features include:
- 256K of RAM
- 6 vectorized interrupts
- A programmable 32-bit binary linear counter
- Optional 2705, 2716, BROM PROGRAMMER

THE SPACE BYTE CORPORATION
1720 Pontius Ave, Suite 201
Los Angeles, California 90025
(213) 468-8080

Circle 114 on inquiry card.
reminds one of a cross between the innards of a computer before the mother board was invented and a telephone company switching office. A major advantage of the computerized organ is the elimination of most of this wiring. In a very large organ, the cost of the computer system may be less than the cost of the cabling alone.

When an organist plays a piece, it has a characteristic sound quality produced by a judiciously selected set of stops being activated. A particular collection of stops is called a registration. It is usually desirable to be able to store such combinations. There are a number of buttons called pistons which recall combinations of stops. Logically enough these collections of stops are called combinations or presets. There are often a few fixed presets, and a number of pistons are provided whose registration the organist can change at will. Another advantage of the computer controlled organ is that many more presets are available. 4 K bytes of memory can store hundreds of different combinations, more than on any conventional organ. This amount of memory costs less than one preset done mechanically! And it's a lot easier to install.

Consider what happens when a single key is pressed. First, any keys that are coupled to it are also activated on its keyboard as well as on other keyboards. For each of those resultant keys, as well as the original key, the applicable stops must be looked up. If there are two couplers and four stops activated for each of the three keyboards involved, no less than 12 pipes must sound. When playing a full chord with many couplers and stops engaged, it is not uncommon for 500 pipes to be operated simultaneously.

Getting Organized

A number of schemes were concocted for driving the pipes and reading the keys. One scheme, which has been used on smaller organs for computer control, was to have each key send out a unique code. Each pipe recognizes its own address. The computer would receive key codes as well as stop and coupler codes, and compute the appropriate pipe addresses. A decoder at each pipe, as well as a diode matrix or other encoder for the console, would be required. Since on a large organ there are over \(2^{12}\) pipes, even a 12 bit code would not be long enough. This would mean assembling two 8 bit words for each pipe. Putting out over 500 of these in 1/30 of a second (considering the number of steps required in the program) would have been impossible. Further, the cost for decoders at each pipe is prohibitive. This ruled out going to a 16 bit computer, since it wouldn't help the decoder problem, and a larger word size seemed to hold few advantages in any other way.

Cost alone ruled out the brute force approach of using a very fast computer. Another way to get high data rates from a microcomputer would be to use direct memory access (DMA) circuitry. With this scheme one DMA device scans the keyboard continuously and enters key depression and release information into memory. The main processor (at its own rate) scans the keyboard image in memory and constructs a list of pipes to be played or quieted. Another DMA scans the list of pipes and controls the pipes accordingly. In essence, three computers would share the same memory and would run asynchronously, each going as fast as conditions allowed. This seemed feasible, and is necessary for larger organs. But for smaller organs the DMA is not needed, as will be seen.

Part of the solution lay in hardware. At one extreme of decoding (as explained above), each pipe has its own decoder. It would be more efficient for each group of, say, eight pipes to have a decoder which detects its code and then accepts the next byte as controlling eight pipes in parallel. The 8 bit control byte 10001001 would mean that the notes C, E and G are to be played, while leaving C#, D, D#, F and F# silent. This would reduce the number of decoders by a factor of 8, and then operates eight pipes at a time. This was fast enough in the IO department, but the time required to assemble the control bytes by masking or rotation was too great. A microcomputer handles bytes with great efficiency, but manipulating individual bits takes significantly more time. A number of algorithms were considered, but it was apparent that they were not suitable.

At the other extreme from a decoder for each pipe is the idea of having no decoders whatever. This idea was put forward early in the design effort, but was discarded as ridiculous. In the end it became clear that the idea was not only feasible, but fast and cheap to implement in hardware. It also made the software much easier to design. It works like this: A very long serial-in/parallel-out shift register is made. It will have at least one output for each pipe. Using available 8 bit shift registers, the 140 rank organ's 2000 electrically operated valves require about 250 shift registers. (The 7000 pipes require only 2000 controlling lines since most of them are on straight chests.) In effect we build a 2000+ bit shift register, a long "tube" through which 1s and
The Dumb Terminal
lets you put it all together.

With the new, lower-priced Dumb Terminal™ Kit, that is. Pick one up and escape, once and for all, the headaches of scavenged teletypes and jury-rigged TV sets. With just a little time and aptitude, you can have a live and working Dumb Terminal right in your own home, garage, or business. One that lets you get it all out of your system—or into it.

Forget the cheap imitations, with their overblown price tags and interminable lists of options. With the Kit, you can build yourself the same, old basic Dumb Terminal that's been selling over 1,500 units a month. With basic, sensible features like a bright 12" diagonal screen, fifty-nine data entry keys, 1920 characters displayed in 24 rows of 80 letters. Plus 33 positive action switches that let you activate functions like 1 of 11 different baud rates, an RS232C interface, or a 20mA current-loop. And more. Not bad for Dumb.

All you need, besides the Kit, is some initiative, and a few basic tools—a good soldering iron, wire cutters, needle-nose pliers, and one or two trusty screwdrivers. The Dumb Terminal Kit provides you with everything else. Including an attractive cabinet, CRT screen, keyboard, PC board, and all essential electronic components. Naturally, you also get illustrated, step-by-step assembly instructions, not to mention an easy-to-understand operator's manual.

So, if you'd like more input on the Dumb Terminal Kit, just fill out the coupon and we'll send you complete, free information.

Oh, and by the way, just by sending in the coupon, you will be made a charter member of the Dumb Terminal Fan Club. A select organization that will send you your own nifty Dumb Terminal Fan Club Kit, containing: an official certificate of membership; an autographed photo of the Dumb Terminal himself; and a bona fide membership card to prove irrefutably you're "One of Us." (Sorry, limit one kit per person.)

And, if you include a trifling $6.00, you can have your very own Dumb Terminal T-shirt. (No limit at all on these.) Simply mail the coupon and get the whole assortment. And find out why members of the Dumb Terminal Fan Club are some of the smartest people around.
0s flow in single file. When all the 1s and 0s (standing for pipes sounding or silent) reach their correct positions, a command (strobe) is sent operating all the pipes at once. If the process is to take 1/60 of a second, the shift register has to move 2000 bits in that time. But this is a rate of 120,000 bits per second (120 kHz) which is within the capabilities of the shift register and the computer but a bit beyond an unaided 8080. Remember that these calculations are for a mammoth size organ. Most organs are significantly smaller and the problems are correspondingly easier.

A similar approach is used for the keyboards. There exists a 33 input parallel to serial converter made for electronic organs. Just two of these integrated circuits would suffice to encode an entire manual. The 500 controls could be transmitted serially to the computer in 1/200 of a second at 100 kHz. The interface would require fewer than 20 "critters." Again, this is for a huge organ. My own home organ would require only ten integrated circuit chips for its console.

The hardware for a large organ can now be summarized. A 500 bit parallel to serial converter for input, a 2000 bit serial to parallel converter for output, one input port and one output port are required. Each pipe also needs a power transistor to handle the 0.5 A at 14 V required by the valves (this is a typical figure). Some of the larger pipes might require two stages or a Darlington power transistor, but there is no real difficulty in the design. Another side benefit accrues at this point: Many pipe organs use electro-pneumatic valves for each large pipe. This is because an all electric valve opens too suddenly. To solve the problem, the traditional builders designed the electrical valve to let air into a small bellows which, in turn, operates the valve that lets air into the pipe. A pair of resistor-capacitor (RC) networks and a diode in the base circuit of the power amplifier for each pipe can give the desired slow attack and release usually obtained by the much more expensive and problematical pneumatic system. This can amount to savings of over $1000 in a large organ. It should be mentioned that some organ manufacturers have been successful in making satisfactory all electric valves with appropriate attack and decay curves. They would not require the RC networks.

Software design was as gradual as the hardware design. There were two breakthroughs necessary before it was clear that the 8080 could work quickly enough. (When this design was being done, by the way, the Z-80 and other faster processors were not yet in production.) But the constraints of the 8080 and the very large organ forced a much tighter and more clever design than would have been developed if we had had more powerful computers and a smaller organ. Given the newer computers, of course, larger and more complex pieces of equipment can be controlled. Many industrial plants have fewer than 200 sensors and 2000 elements that need to be operated in real time. A microcomputer using the techniques outlined here could handle them.

The program begins by sweeping in the console settings. To save time only one bit per word is used. This wastes 7/8ths of 500 words, but memory is cheap. The same trick can be used in output, eliminating the necessity to pack bits into bytes. Thus over one byte per key and one byte per pipe will be sacrificed to gain speed. That amounts to $40 at most in memory costs. It buys us

Photo 3: Another view of the organ showing the swell chest and echo chest.
Computer Mainframe System

First in the TEI family . . . The MCS-112 and 122 Mainframe Systems.

"The Base on Which to Build"

The cabinet
A heavy duty precision formed cabinet of fine craftsmanship. Completely machined and ready for assembly. The exterior is finished in TEI blue. Vented for most efficient thermal characteristics. Furnished with all necessary hardware.

The motherboard
An S-100 bus system high quality mother board with 100-pin edge connectors. Compatible with IMSAI, MITS, Cromemco, TDI and other S-100 bus configured circuit boards. Plug connections for reset switch. Voltage terminals are screw type to power supply leads. All card guides are provided. 19 slots for MCS-112 model and 22 slots for MCS-122 model.

Edge connectors
High quality edge connectors factory mounted and wave soldered to eliminate this nuisance for you. Completely checked out for shorts or open traces. All edge connectors furnished, 12 for the MCS-112 and 22 for the MCS-122. No additional expense when you expand your system.

The power supply
One of a kind . . . using a constant voltage transformer (CVT) with a very high immunity to input line noise . . . greater than 100 db rejection. Line regulation better than ± 1% from an input of 95 to 140 Volt AC at full load to 65 to 140 Volt AC at three quarter load. Designed to meet UL-478 specifications (EDP SPECS). Individual fusing on all input and output voltage lines. See specifications below for power ratings.

The cooling system
A 115 CFM muffin fan with a commercial grade washable filter will provide clean airflow over all circuitry.

The wiring
All wiring is color coded and all is precut to length with connecting lugs factory machined applied.

Specifications

<table>
<thead>
<tr>
<th>Specifications</th>
<th>MCS-112</th>
<th>MCS-122</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>17 3/4 W × 10 D × 7 1/4 H</td>
<td>17 3/4 W × 19 1/2 D × 7 1/4 H</td>
</tr>
<tr>
<td>Power +5 volt DC</td>
<td>17 amps</td>
<td>30 amps</td>
</tr>
<tr>
<td>Power ±15 volt DC</td>
<td>9 amps</td>
<td>4 amps</td>
</tr>
</tbody>
</table>

HOW ... TEI puts it all together for you. Mainframe systems (12 and 92-slot) . . . Floppy and mini-floppy disc drive systems (single, double and triple) 16K RAM . . . a 8080A CPU with addressable "jump to" and autostart capability . . . 16 Channel A/D and D/A converter . . . 3 serial + 3 parallel multiple I/O . . . and other supporting boards . . . and our newest item, the PROCESSOR TERMINAL — A CRT, keyboard, mini-floppy disc and 19-slot mainframe with a 8080A CPU — all housed in one quality aluminum case. All of these fine products at prices you will like. Watch for them all.

Contact your local TEI Dealer or if you are not near one of our dealers, write or call CMC Marketing Corp direct for more information.

CMC MARKETING CORP
5601 Bintliff Suite 515 • Houston, Texas 77036 • Phone: (713) 783-8880

Circle 19 on inquiry card.
speed and simplicity, and it is worth it. While it now seems obvious that this is a useful way to proceed, it somehow took four months to find the solution. This is probably because we are so reluctant to waste memory. A pipe organ costs from $20,000 to whatever you care to spend (a million dollars is not unusual). The computer costs are lost in the small change.

For a small organ, the DMA is not even needed, and the input and output loops are very simple:

1. Point to a memory location.
2. Do an input (or output).
3. Move the contents of the accumulator to that location.
4. Increment the location.
5. Check for done. If not done, do an input (or output), etc.

The loop can be done on an 8080A at 66 kHz. Thus, an entire 20 rank organ can be updated in less than 0.02 second. The DMA would do the same algorithm, but at 1 MHz, and would overlap processing. The 8080 with a 2 MHz clock is just fast enough. An 8085 or Z-80 processor would be more than fast enough. Again, remember that for a typical home or small church organ, the plain old 8080 would have the necessary speed and that we are discussing a worst case design.

Even with IO solved, there still remains the problem of deciding which pipes are to go on and which to go off. At first this was a stumbling block in terms of the time it would take to do the computations. On each console scan, it seemed, a table of couplers would have to be made up, as well as a table of stops. A key depression, through the couplers, results in a number of "virtual" key depressions. Since some virtual keys, being higher or lower on the keyboard than the original key, will go off the end of a keyboard, they must be deleted from the virtual key list. The remaining keys then have to be processed through the stop list to determine which pipes are to be played.

The easiest solution to the coupler spill-over problem is to include a few extra places in the shift register on both ends of each rank. This allows all the ranks to have the same shift register length whatever the actual number of pipes. The first advantage is that out of range virtual key depressions need not be checked for, since they fall into unused sections of the shift register. As with the wasted memory, the cost of the unused shift registers is small. The second advantage is that the electronics for every rank, of whatever kind, can be mass-produced. This makes it less expensive to build, as well as making the software easier to write (aside from merely being faster).
Why you should buy a digital multimeter from the leader in digital multimeters.

If you're shopping for your first multimeter, or moving up to digital from analog, there are a few things you should know.

First, look at more than price. You'll find, for instance, that the new Fluke 8020A DMM offers features you won't find on other DMMs at any price. And it's only $169.*

Second, quality pays. Fluke is recognized as the leading maker of multimeters (among other things) with a 30-year heritage of quality, excellence and value that pays off for you in the 8020A.

Third, don't under-buy. You may think that a precision 3½-digit digital multimeter is too much instrument for you right now. But considering our rapidly changing technology, you're going to need digital yesterday.

If you're just beginning, go digital.

Why not analog? Because the 8020A has 0.25% dc accuracy, and that's ten times better than most analog meters.

Also, the 8020A's digital performance means things like 26 ranges and seven functions. And the tougher your home projects get, the more you need the 8020A's full-range versatility and accuracy. The 8020A has it; analog meters don't.

If you're a pro.

You already know Fluke. And you probably own a benchtop-model multimeter.

Now consider the 8020A: smaller in size, but just as big in capability. Like 2000-count resolution and high-low power ohms. Autozero and autopolarity. And the 8020A has 3-way protection against overvoltage, overcurrent and transients to 6000V!

Nanosiemens?

Beginner or pro, you'll find the meter you now have can't measure nanosiemens. So what? With the 8020A conductance function, you can measure the equivalent of 10,000 megohms in nanosiemens. Like capacitor, circuit board and insulation leakage. And, you can check transistor gain with a simple, homemade adapter. Only with the 8020A, a 13-oz. heavyweight that goes where you go, with confidence.

What price to pay.

$169.*

Of course, you can pay more. Or less. In fact, you could pay almost as much for equally compact but more simplistic meters, and get far less versatility. And, the 8020A gives you the 'plus' of custom CMOS LSI chip design, and a minimum number of parts (47 in all). All parts and service available at more than 100 Fluke service centers, worldwide. Guaranteed, for a full year.

Rugged. Reliable. Inexpensive to own and to operate; a simple 9V battery assures continuous use for up to 200 hours.

Where to buy.

Call (800) 426-0361 toll free. Give us your chargecard number and we'll ship one to you the same day. Or, we'll tell you the location of the closest Fluke office or distributor for a personal hands-on feel for the best DMM value going.

*U.S. price only

Fluke 8020A DMM for Home Electronics Experts: $169

1808-7101
Except to satisfy traditional organists, there is no reason to have intermanual couplers on a computer controlled pipe organ. The original reason for including intermanual couplers was to minimize the limitations imposed by the separation of the pipes into divisions. The computer, by being able to assign any rank to any manual (or to the pedals), eliminates the need for these couplers. They might well be eliminated in my own organ.

Another choice to be made is whether to recalculate all the pipes to be played, or just to modify the previous state on each cycle. It was decided to recalculate from scratch each time to eliminate the possibility of cumulative error. It also means that key bounce is automatically taken care of. In the slight time between updates, an organ pipe cannot even begin to sound. A spurious signal for one cycle is effectively ignored. Continuous pipe-on instructions emitted over a period of approximately 0.1 second or more are required before the slow mechanical valves can react. The higher pitched pipes respond quickly, incidentally, and the low pipes sometimes take nearly a second to begin playing. Organists learn to compensate by playing low notes somewhat early. Without introducing a constant across-the-board delay, it does not seem possible to have the computer compensate for the effect, but it is a place where some experimentation might be interesting. Experienced organists, of course, might look askance at such an innovation, but they needn't be told about all of our ideas.

To summarize: A cycle of the computer organ system starts by pulling in the state of the console. The second part of the cycle (yet to be described) calculates the pipes that should be playing, given the state of the console. The third portion of the cycle sends the pipe commands along the shift register. This process is repeated at least once every 1/30 of a second.

A coupler (of whatever kind) is merely a displacement. It is easily calculated because all keyboards and ranks are the same nominal length. Likewise, engaging a stop is also a displacement of a distance equal to the difference between the bottom of the manual's image in memory and the bottom of the rank's image in memory. Thus, these displacements or offsets can be simply added to yield the offset for a combined coupler-stop setting.

An example, with a simplified organ, will demonstrate how the algorithm operates. Say there is one manual with ten keys numbered one through ten. They are read into memory locations (all numbers will be in base 10 for this discussion) 1001 through 1010. The ranks each have ten pipes, and there are two of them. The first rank is stored in locations 2001 through 2030. The second rank is stored in locations 3001 through 3030. Remember that the area set aside for each rank is larger than the actual space necessary (here three times as large). There are two stop switches, stored in locations 4001 and 4002. There are two couplers. They are stored in 4003 and 4004. The first couplers up five pipes high, the second down three pipes low.

When the low order bit in 4001 is on (or high), the program adds 2010 to the key address to get the pipe address. When the other stop is on, 3010 is added. If the first coupler is on, an additional 5 is added, and the second coupler subtracts 3 (or adds a
Meet the TSC Text Handlers!

Text Editing System

This Editor has caused more talk than any other TSC program. Most users find it hard to believe its power. The TSC Text Editing System will allow extreme ease in any text preparation, whether it be an assembler language program or a legal document.

Included are all the usual edit features plus commands for block move, block copy, tabs, local and global string changes, and overlays. All editor commands can be used as content oriented commands. The commands may also be used in a character, line, or relative position fashion and either in a local or global sense.

Some other unique features include the ability to work forward or backwards through a file, restrictive column zone definitions, a definable tab fill character, plus many more.

The TSC Text Editing System comes complete with assembler language source listing and a very thorough users manual which includes a "Mini-Tutorial" for those wishing to get started immediately.

6800
SL68-24 Manual and Source Listing $23.50
 With Cassette 30.45
 With Paper Tape 31.50

8080
SL80-10 Manual and Source Listing $28.50
 With Paper Tape 37.50

Text Processing System

The TSC Text Processing System is by far the most powerful text formatter available to the micro user. Over 50 commands are provided for easy paging, margin setting, and spacing. Right, left, right and left, and center justification modes are all handled. The TSC Text Processor is actually a formatting language which allows the creation of macros including variables. All of these features allow for very efficient footnote handling, special document preparation, and form letters.

Other features supported include page numbering (either Arabic or Roman Numerals), complete page size control (line length, page length, top, bottom, left and right margins, etc.), tabs, conditional formatting control, exact title placing, contiguous space and text control, plus much, much more.

The Text Processor in conjunction with the Text Editor will give your micro the powers of the best text processing system available. The complete assembler language source listing and extensive users manual are included.

6800
SL68-29 Manual and Source Listing $32.00
 With Cassette 38.95
 With Paper Tape 40.00

8080
SL80-11 Manual and Source Listing $32.00
 With Paper Tape 41.00

8080 SYSTEMS
NOW AVAILABLE!
negative 3; it is all the same thing). The addition is done only once. Say the first stop and the second coupler were operated; then, given a key on at location 1005, to get the proper location to turn the pipe on, one merely adds (2010-3) or 2007 to the key location (1005+2007)=3012. This is indeed the correct pipe.

The microcomputer gives the user another option. When a stop and a coupler are operated, one gets both the note given by the stop and the extra note given by the coupler. With a computer it would be possible to give just the note given by the coupler acting on that stop. Since each stop can have a whole panoply of couplers attached to it, the number of buttons would soon become unworkable. For complete flexibility, the organist would have to be provided with a keyboard and display. One would play the organ by setting up many required presets with whatever degree of flexibility required, and then the easily hit tabs would not activate stops, but would bring in the organist’s choice of registrations.

In the example above, choosing both stops and both couplers would necessitate the addition of six numbers to each key location to obtain the pipe location. In the actual implementation, the program would, for each manual, do the following:

1. Scan the list of stops, and make a table of addends.
2. Scan the couplers, and add them to each stop, extending the list of addends.
3. Add the addends to the locations of the manual that contain a 1 (meaning a key depression).
4. Turn on the low order bit in the indicated word in the pipe image.

Intermanual couplings look just like any other kind of coupling. Say that one manual is stored in 1001 through 1010, and another manual at 1201 through 1210. Coupling the first manual to the second merely means adding 200 to the locations of the first manual. Just which intermanual couplers will be allowed must be carefully specified. If anything is allowed, we may get the following cat chasing its tail effect: Manual 1 is coupled to manual 2 at the same pitch. Manual 2 is coupled to manual 1, but one key higher (a semitone or half step higher in musical terminology). Press C on manual 1. C gets played on manual 2. This forces C# on manual 1. But this makes C# play on manual 2. Every key is thus being played. As implied above, though, intermanual couplings are necessary only on organs where the pipes are separated into divisions. In the computer controlled pipe organ they can and should be eliminated. Everything they can do, and more, can be done by freely assigning ranks to keyboards as desired. I am not sure that all organists will be convinced by this.

Future Fugues

The organ console of the future, as it appears in the light of the computer mediated organ, looks like this: The manuals and pedals are built to the usual AGO (American Guild of Organists) standards. These standards are excellent, and permit an organist to travel from one instrument to another with a minimum of relearning. Instead of the usual arrangement of stops, there are as many rows of stops as there are keyboards. When a stop is to be assigned to a given keyboard, the button in the row representing that keyboard, and in the column representing that stop, is pressed. Any particular registration may be captured by pressing the “capture” button and, while holding it, operating the chosen preset button. The stop buttons should, as on conventional organs, move (or light up) to show what choices have been made. This is not far from conventional practice.

The possibilities in a console screen, with alphanumeric readout, are endless, and would require another article to explore. Similarly, the gimmicks, from very useful ones that record (on a disk or cassette) the performance in terms of keystrokes, to silly ones (for example, connecting the doorbell to the computer, so that the organ plays “Jesu, Joy of Man’s Desiring” when a visitor presses the door button) would again take up too much space here.

Summary

The reasons for using a computer in a pipe organ are these:

1. Simplification of the wiring of the organ.
2. Greater reliability than conventional switching.
3. Lowered expense in medium and large instruments.
4. Much greater control of the instrument by the performer.
5. New freedoms in choosing registrations.

Nothing, it would seem, is lost by going to a microcomputer, and one could keep advantages 1, 2 and 3 above while keeping the appearance and operation of the pipe organ unchanged, in case any organists choose not to use advantages 4 and 5.

Acknowledgements

Certainly at least half of the ideas expressed in this paper are due to my friend and colleague, Doug Wyatt. All of the ideas were developed in collaboration with him. Thanks are also due to Jim Brennan, who owns the incredibly large organ so often mentioned in and photographed with this article, and whose cooperation and inspiration have been essential to the project.
Check the impressive features on Integral’s new IP-125 Impact Printer
only $799

Complete, ready-to-operate ... the first impact printer to offer big printer performance at a mini-printer cost.
Write for complete information or call (617) 926-1011

Integral Data Systems
5 BRIDGE STREET
WATERTOWN, MASS. 02172

... AND FOR VERY LITTLE MORE

- Line lengths to 132 columns
- Instantaneous print rate to 165 characters per second
- Sustained throughput to 80 characters per second
- Print densities of 8.5, 10, 12 and 16.5 characters per inch
- Options program selectable by control codes
- Full CRT screen size multiline buffer (2048 characters)
- Special set of graphic symbols
- Graphics mode dot plotting
- Form feed control
- Eight switch selectable form sizes
- Automatic page boundary skip
- Remote printer selection/deselection
- Automatic line feed on carriage return

IP-225
"The Tractor Impact"
only $949
the pin feed version of the IP-125 with tractor drive forms control plus all the standard features of the IP-125.
wire wrapping center

for quality electronic parts and tools.

WIRE-WRAPPING KITS
Contains: Hobby Wrap Tool WSU-30, (50 ft.) Roll of wire, Prestripped wire 1" to 4" lengths (50 wires per package) stripped 1" both ends.

<table>
<thead>
<tr>
<th>Wire Wrapping Kit (Blue)</th>
<th>WWR-28</th>
<th>$12.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire Wrapping Kit (Yellow)</td>
<td>WWR-28</td>
<td>$12.95</td>
</tr>
<tr>
<td>Wire Wrapping Kit (White)</td>
<td>WWR-28</td>
<td>$12.95</td>
</tr>
<tr>
<td>Wire Wrapping Kit (Red)</td>
<td>WWR-28</td>
<td>$12.95</td>
</tr>
</tbody>
</table>

WIRE-WRAPPING KIT
Contains: Hobby Wrap Tool WSU-30, Roll of wire R-358-0050, (2) 14 DIP's, (2) 16 DIP's and Hobby Board H-PCB-1.

Wire-Wrapping Kit | WK-38 (Blue) | $16.95 |

WIRE-WRAPPING KIT
Contains: Hobby Wrap Tool WSU-30 M, Wire Dispenser WD-30-B, (2) 14 DIP's, (2) 16 DIP's, Hobby Board H-PCB-1, DIP/IC Insertion Tool INS-1416 and DIP/IC Extractor Tool EX-1.

Wire-Wrapping Kit | WK-48 (Blue) | $25.95 |

NEW

For .025" (0.83mm) sq. post "MODIFIED" wrap, positive indexing, anti-overwrapping device.

<table>
<thead>
<tr>
<th>For AWG 30</th>
<th>BW-630</th>
<th>$34.95*</th>
</tr>
</thead>
<tbody>
<tr>
<td>For AWG 26-28</td>
<td>BW-2628</td>
<td>$39.95*</td>
</tr>
</tbody>
</table>

Bit for AWG 30 | BT-30 | $3.95 |

Bit for AWG 26-28 | BT-2628 | $7.95 |

"USE C" SIZE Ni-CAD BATTERIES (NOT INCLUDED)

ROLLS OF WIRE
Wire for wire-wrapping AWG-30 (0.25mm) KYNAR wire, 50 ft. roll, silver plated, solid conductor, easy stripping.

<table>
<thead>
<tr>
<th>30 AWG Blue Wire</th>
<th>50 ft Roll</th>
<th>R-3080050</th>
<th>$1.98</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 AWG Yellow Wire</td>
<td>50 ft Roll</td>
<td>R-30Y0050</td>
<td>$1.98</td>
</tr>
<tr>
<td>30 AWG White Wire</td>
<td>50 ft Roll</td>
<td>R-30W0050</td>
<td>$1.98</td>
</tr>
<tr>
<td>30 AWG Red Wire</td>
<td>50 ft Roll</td>
<td>R-30R0050</td>
<td>$1.98</td>
</tr>
</tbody>
</table>

WIRE DISPENSER
- With 50 ft. Roll of AWG 30 KYNAR wire-wrapping wire.
- Cuts the wire to length.
- Strips 1" of insulation.
- Refillable (For refills, see above)

Blue Wire | WD-30-B | $3.95 |

Yellow Wire | WD-30-Y | $3.95 |

White Wire | WD-30-W | $3.95 |

Red Wire | WD-30-R | $3.95 |

PRE CUT PRE STRIPPED WIRE
Wire for wire-wrapping AWG-30 (0.25mm) KYNAR wire, 50 wires per package stripped 1" both ends.

<table>
<thead>
<tr>
<th>30 AWG Blue Wire 1 Long</th>
<th>WD-50-0100</th>
<th>$0.99</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 AWG Blue Wire 1 Long</td>
<td>WD-50-0200</td>
<td>$0.99</td>
</tr>
<tr>
<td>30 AWG Blue Wire 1 Long</td>
<td>WD-50-0300</td>
<td>$0.99</td>
</tr>
<tr>
<td>30 AWG Blue Wire 1 Long</td>
<td>WD-50-0400</td>
<td>$0.99</td>
</tr>
<tr>
<td>30 AWG Blue Wire 1 Long</td>
<td>WD-50-0500</td>
<td>$0.99</td>
</tr>
<tr>
<td>30 AWG Yellow Wire 1 Long</td>
<td>WD-50-0600</td>
<td>$0.99</td>
</tr>
<tr>
<td>30 AWG Yellow Wire 1 Long</td>
<td>WD-50-0700</td>
<td>$0.99</td>
</tr>
<tr>
<td>30 AWG Yellow Wire 1 Long</td>
<td>WD-50-0800</td>
<td>$0.99</td>
</tr>
<tr>
<td>30 AWG Yellow Wire 1 Long</td>
<td>WD-50-0900</td>
<td>$0.99</td>
</tr>
</tbody>
</table>

30 AWG Red Wire 1 Long | WD-50-1000 | $0.99 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>30 AWG Red Wire 1 Long</td>
<td>WD-50-1100</td>
<td>$0.99</td>
</tr>
<tr>
<td>30 AWG Red Wire 1 Long</td>
<td>WD-50-1200</td>
<td>$0.99</td>
</tr>
<tr>
<td>30 AWG Red Wire 1 Long</td>
<td>WD-50-1300</td>
<td>$0.99</td>
</tr>
<tr>
<td>30 AWG Red Wire 1 Long</td>
<td>WD-50-1400</td>
<td>$0.99</td>
</tr>
</tbody>
</table>

30 AWG Yellow Wire 3 Long | WD-50-1500 | $0.99 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>30 AWG Yellow Wire 3 Long</td>
<td>WD-50-1600</td>
<td>$0.99</td>
</tr>
<tr>
<td>30 AWG Yellow Wire 3 Long</td>
<td>WD-50-1700</td>
<td>$0.99</td>
</tr>
<tr>
<td>30 AWG Yellow Wire 3 Long</td>
<td>WD-50-1800</td>
<td>$0.99</td>
</tr>
<tr>
<td>30 AWG Yellow Wire 3 Long</td>
<td>WD-50-1900</td>
<td>$0.99</td>
</tr>
</tbody>
</table>

30 AWG Red Wire 3 Long | WD-50-2000 | $0.99 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>30 AWG Red Wire 3 Long</td>
<td>WD-50-2100</td>
<td>$0.99</td>
</tr>
<tr>
<td>30 AWG Red Wire 3 Long</td>
<td>WD-50-2200</td>
<td>$0.99</td>
</tr>
<tr>
<td>30 AWG Red Wire 3 Long</td>
<td>WD-50-2300</td>
<td>$0.99</td>
</tr>
<tr>
<td>30 AWG Red Wire 3 Long</td>
<td>WD-50-2400</td>
<td>$0.99</td>
</tr>
</tbody>
</table>

30 AWG Yellow Wire 5 Long | WD-50-2500 | $0.99 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>30 AWG Yellow Wire 5 Long</td>
<td>WD-50-2600</td>
<td>$0.99</td>
</tr>
<tr>
<td>30 AWG Yellow Wire 5 Long</td>
<td>WD-50-2700</td>
<td>$0.99</td>
</tr>
<tr>
<td>30 AWG Yellow Wire 5 Long</td>
<td>WD-50-2800</td>
<td>$0.99</td>
</tr>
<tr>
<td>30 AWG Yellow Wire 5 Long</td>
<td>WD-50-2900</td>
<td>$0.99</td>
</tr>
</tbody>
</table>

30 AWG Red Wire 5 Long | WD-50-3000 | $0.99 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>30 AWG Red Wire 5 Long</td>
<td>WD-50-3100</td>
<td>$0.99</td>
</tr>
<tr>
<td>30 AWG Red Wire 5 Long</td>
<td>WD-50-3200</td>
<td>$0.99</td>
</tr>
<tr>
<td>30 AWG Red Wire 5 Long</td>
<td>WD-50-3300</td>
<td>$0.99</td>
</tr>
<tr>
<td>30 AWG Red Wire 5 Long</td>
<td>WD-50-3400</td>
<td>$0.99</td>
</tr>
</tbody>
</table>

30 AWG Yellow Wire 6 Long | WD-50-3500 | $0.99 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>30 AWG Yellow Wire 6 Long</td>
<td>WD-50-3600</td>
<td>$0.99</td>
</tr>
<tr>
<td>30 AWG Yellow Wire 6 Long</td>
<td>WD-50-3700</td>
<td>$0.99</td>
</tr>
<tr>
<td>30 AWG Yellow Wire 6 Long</td>
<td>WD-50-3800</td>
<td>$0.99</td>
</tr>
</tbody>
</table>

30 AWG Red Wire 6 Long | WD-50-3900 | $0.99 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>30 AWG Red Wire 6 Long</td>
<td>WD-50-4000</td>
<td>$0.99</td>
</tr>
</tbody>
</table>

* KYNAR PENNYWALL

MINIMUM ORDER $25.00. SHIPPING CHARGE $1.00. N.Y., CITY AND STATE RESIDENTS ADD 8% TAX

OK MACHINE & TOOL CORPORATION
3455 Conner St, Bronx, N.Y. 10475 (212) 994-6600 Telex 125091
P.C. BOARD

The 4 x 6.5 x 1/16 inch board is made of glass-epoxy laminate and features solder coated .040 inch copper pads. The board has provision for a one or two bus system. Two independent bus systems are provided for voltage and ground on both sides of the board. In addition, the component side contains 14 individual bus runs and may be cut to length for particular applications.

Typical board is 18 of .040 inch or .062 inch diameter. Also listed are .032 inch and .025 inch diameter for particular applications.

Hobby Board H-PCB-1 $4.99

PC CARD GUIDES & BRACKETS

Guides & Brackets TRS-2 $3.79
QUANTITY—ONE SET (4 pcs.)

PC EDGE CONNECTOR

44 Pin, dual read out, .156" (3.96 mm) Contact Spacing, .025" (0.63 mm) square wire-wrapping pins.

P.C. Edge Connector CON-1 $3.49

P.C.B. TERMINAL STRIPS

- 4 Pole: TS- 4 $1.39
- 6 Pole: TS- 6 $1.89
- 12 Pole: TS-12 $2.89

TERMINALS

- .025 (0.63mm) Square Post
- 3 Level Wire-Wrapping
- Gold Plated

Slotted Terminal WWT-1 $2.90
Single Sided Terminal WWT-2 $2.98
IC Socket Terminal WWT-3 $3.98
Double Sided Terminal WWT-4 $1.98

TERMINAL INSERTING TOOL

For inserting WWT-1, WWT-2, WWT-3, and WWT-4 Terminals into .040 In. diameter terminals:

Slotting Tool WWT-1 $2.90
IC Socket Tool WWT-3 $3.98
Double Sided Tool WWT-4 $1.98

WIRE CUT AND STRIP TOOL

Easy to operate...place wire (up to 4) in stripping slot with sides extending beyond cutter blades...press tool and pull wire is cut and stripped to proper "wire wrapping" length. The hardened steel cutting blades and sturdy construction of the tool assure long life.

Strip length easily adjustable for your applications.

DIP SOCKET

Dual-in-line package, 3 level wire-wrapping, phosphor bronze contact, gold plated pins .025 (0.63mm) sq. .100 (2.54mm) center spacing.

14 Pin Dip Socket 14 Dip $0.79
16 Pin Dip Socket 16 Dip $0.89

RIBBON CABLE ASSEMBLY

SINGLE ENDED

With 14 Pin Dip Plug 24" Long (609mm) SE14-24 $3.55
With 16 Pin Dip Plug 24" Long (609mm) SE16-24 $3.75

With 14 Pin Dip Plug 2" Long (508mm) DE14-2 $3.75
With 16 Pin Dip Plug 2" Long (508mm) DE16-2 $3.95
With 16 Pin Dip Plug 4" Long (1016mm) DE16-4 $4.35
With 16 Pin Dip Plug 8" Long (2032mm) DE16-8 $4.85

TERMINAL INSERTING TOOL

For inserting WWT-1, WWT-2, WWT-3, and WWT-4 Terminals into .040 (1.01mm) Dia. Holes.

INS-1 $2.49

WIRE CUT AND STRIP TOOL

DESCRIPTION

MODEL NUMBER

ADJUSTABLE WIDTH OF STRIPPED WIRE INCHES

Price

24 ga. Wire Cut and Strip Tool ST-108-24 1/4" 1/4" $8.75
26 ga. Wire Cut and Strip Tool ST-108-26 1/4" 1/4" $8.75

Circle 84 on inquiry card.
Buying a dumb terminal used to get pretty expensive. About $1,000. But that was the old, dumb way. Now there is a new, smart way to add a dumb terminal to your system. Our Naked Terminal is $350. Add a keyboard and video monitor at a total cost of about $650. You save around $350!

The Naked Terminal does all that a dumb terminal does. Some things it does better.

It displays 80 characters per line by 24 lines. And it displays it on any screen size: 9, 12, 15 or whatever size you prefer. The $1,000 one doesn't give you a choice. Both upper and lower case characters are displayed in a 5 x 7 font.

Although you spend less money you get more features: half duplex, full duplex, and a block mode that allows editing before transmission. You-know-who doesn't have a block mode.

The Naked Terminal has addressable cursor. And its display offers you lots of switch-selectable flexibility: black-on-white or white-on-black, blinking or non-blinking underline cursor, and variable baud rates.

No software support is required. The Naked Terminal can be configured by dip switch to drop into an existing system, replacing the serial I/O card and stand-alone terminal without making any changes to software.

The Naked Terminal is a complete dumb terminal on an S-100 board. It contains a microprocessor with its own memory, its own software drivers, and its own internal bus. We built it that way so it won't take up any of the 64k memory address space of the S-100 bus. Keyboard and video monitor cables are available at additional cost.

Like all Dynabyte products, the Naked Terminal is completely assembled, socketed, tested and burned in. Dynabyte's guarantee is for a full year - the longest in the industry.

Now isn't the Naked Terminal a smart buy? Learn more about saving 1/3 on a dumb terminal. Ask your local computer retailer. Or write today to Dynabyte, Inc., 4020 Fabian, Palo Alto, CA 94303. Telephone (415)494-7817.
Now Dynabyte builds three Great Memories

New! 16k and 32k fully static RAM's. With either 250 ns. or 450 ns.
Like our 16k dynamic RAM. Built as solid as the 4,400-year-old pyramids.

Ancient Egyptians didn't stop
with just one pyramid. The Great
Pyramid stands on the Plain of
Gizeh with two other monuments
erected for kings and queens.

Dynabyte didn't stop with one
16k dynamic RAM, either. Now
you can get 16k and 32k fully
static RAM's that are built with the
same unmatched engineering
ability and manufacturing skill
that went into Egypt's wonders of
the ancient world.

When we say built, we mean
completely built. Assembled,
tested and burned in. We don't
leave anything undone. That way,
you can buy any Dynabyte
memory and know that it is backed
by a factory guarantee for one full
year. Kits and semi-kits can't
say that.

Our 16k static and our 32k
static are available with either 250
ns. or 450 ns. access time. Our
250 ns. module is completely
compatible with the 4MHz Z-80A
processors. The 450 ns. modules
are compatible with the 8080
and the faster 3MHz 8085 processors.

The Great 16k Static
Memory. 250 ns., $555. 450
ns., $525.
- 4k block addressing along 4k boundaries
- Bank Select
- Write Protect with alarm for
each 4k block
- Full Schmitt trigger buffering
- No DMA restrictions
- Complete S-100 bus com-
patibility, including the Alpha
Micro and Z-2.

The Great 32K Static
Memory. 250 ns., $995. 450
ns., $925.
- 4k boundary addressing
- Full Schmitt trigger buffering
- No DMA restrictions

Why Dynabyte doesn't
build memory kits

Assembling a kit can be fun;
almost anyone can do it.
But how about testing it?
Do you have the test programs
and equipment? Do you know
which memory test program
uncovers pattern sensitivity?
Or which finds shorted data
bits but won't find address
decoder faults?
We do. It's our business. We
have the 200 MHz oscillo-
scopes, the logic analyzers, the
burn-in chambers, and the test
programs. We find the bugs,
even the subtle ones.
Which lets you concentrate
on computing.

- Conservative thermal design
- Complete S-100 compat-
ibility, including the Alpha
Micro and Z-2.

The Great 16k Dynamic
Memory. $399.
- Highly cost effective
- No wait states
- Transparent refresh
- 16k addressing boundaries
- Widest S-100 mainframe and
disk system compatibility

All of Dynabyte's memories
meet rigid industrial grade stan-
ards. Design, components, con-
struction, testing and perform-
ance. But if a module ever needs
repair, we provide factory service
with 24 hour turnaround for both
warranty and non-warranty work.

Ask for the Great Memories by
Dynabyte at your local computer
store. You can also pick up com-
plete product information while
you're there.

But if you haven't got a local
computer store, write Dynabyte,
Inc., 4020 Fabian, Palo Alto, CA
94303. Or telephone (415)
494-7817.

Dynabyte
Builders of Great Memories

Circle 41 on inquiry card.
The Brains of Men and Machines

Part 3: How the Brain Analyzes Input

Perhaps the most remarkable feat performed by organic brains is the resolution of the flood of data flowing from the sensory receptors into conceptually meaningful elements. It is also one of the most difficult tasks faced by the designer of robot systems. Consider the nature of the information which the brain receives about the visual world. Patterns of light, of varying wavelength and intensity, are imaged on the retina of the eye by the lens. This illumination results in a barrage of neural impulses flowing through millions of fibers in the optic nerve and activating neurons in a portion of the cerebral cortex called the primary visual cortex. Obviously, our visual experience is nothing like this barrage of impulses in axons. We "see" objects, colors, groupings of objects, all interpreted in meaningful terms. Our experience of the visual world is thus a far different matter from the visual stimulus which initiates the experience. It is not necessary that a robot have "experience" as we do, but it is necessary for one to resolve the sensory information into behaviorally relevant elements as we do.

To understand the nature of the operations that are being performed, we must carefully discriminate between the terms "stimulus" and "sensation." "Stimulus" refers to the actual physical event that activates a receptor. In the case of vision, this would be a ray of light falling on the retina. Since the intensity and wavelength of this light are determined by properties of the physical object which reflects it, and since there is a fixed relation between the two, we often refer to the reflecting object as the stimulus, with the understanding that its action as a stimulus depends on the properties of the light it reflects. "Sensation" on the other hand refers to a property of our mental experience which results from certain kinds of activation of our receptors. There is a close relation between the sensations we have and the stimuli which produce them. Our senses would be useless if it were not so. However, this close relation often leads us to confuse the two, and this is a great error, because they belong to entirely different worlds. A stimulus is a physical object; a sensation is a mental event.

To clarify the distinction, consider the sensation of the color red. We all know what we mean when we say an object "is red," or that we "see a red object." A moment's reflection though will demonstrate that, strictly speaking, there can be no such thing as a red object. The object can only possess or not possess the properties necessary to reflect light of a particular wavelength. If an
object reflected light of a wavelength which gave rise to the sensation "red," and we were to somehow change the wavelength between the object and the eye, the object would appear to be of some other color. Can we then say that "redness" is a property of the light? No, because the only relevant physical property of the light is its wavelength, and wavelength is not a color. Color is a property of your sensation.

Sounds have wavelengths too, and there the sensation is interpreted as pitch. Wavelength is only a piece of information which the brain can interpret as it will. In your computer, you could make an analogy with ASCII code. We use particular bit patterns to represent letters and numbers, but the same bit patterns could just as easily represent something else. There is nothing that inherently requires the binary pattern 01000001 to be interpreted as A. Similarly, "redness" as an interpretation of a particular something else. There is nothing that seems intuitively "red" about 01000001 to be interpreted as A. Similarly, "redness" as an interpretation of a particular something else. There is nothing that seems intuitively "red" about 01000001 to be interpreted as A.

The situation becomes clearer if one goes into the brain a little further. Sensation is not a result of activating the retina or the optic nerve. If the optic nerve is cut, light falling on the retina produces no sensation, even though the retinal neurons and their axons in the optic nerve are activated. At the same time, however, artificially activating the visual cortex to which the nerve used to project will result in visual sensations. It follows that sensation is, or is dependent upon, the firing of neurons in the visual cortex. Yet, after striking the retina, light never reaches the visual cortex. All that does reach it is a pattern of neural activity in the axons of the retinal cells. Information about the wavelength of the light striking the retina is carried in the optic nerve by place code. That is, the wavelength information is carried to the visual cortex in terms of which lines are active. There is certainly nothing that seems intuitively "red" about which of a set of axons are carrying impulses. Yet, the sensation of "redness" clearly occurs at or beyond the cortex, after that encoding process. If we could somehow change which set of axons were active between the retina and the cortex, the sensation produced by the light would change.

Sensation = Information Processing

Now if we accept the notion that sensations are mental events that are produced, or

WHAT WOULD YOUR PERSONAL COMPUTER SAY IF IT COULD TALK?

GET SPEECH POWER WITH THE COMPUTALKER SPEECH SYNTHESIZER

ARIZONA
Byte Shop of AZ
Tempe, (602) 894-1129

CALIFORNIA
A-Vid Electronics
Long Beach, (213) 598-0444
Byte Shop of Lawndale
Lawndale, (213) 371-2421
Byte Shop of San Diego
San Diego, (714) 565-8006
Byte Shop of Santa Clara
Santa Clara, (408) 249-4221
Computer Center
Costa Mesa, (714) 646-0221
Computerland of San Diego
San Diego, (714) 560-9912
The Computer Mart
Orange, (714) 633-1222
Computer Playground
Westminster, (714) 598-8330
The Computer Store
Santa Monica, (213) 451-0713
Computer Store of SF
San Francisco, (415) 431-0640
Mission Control
Santa Monica, (213) 829-5137
Recreational Computer Centers
Sunnyvale, (408) 730-7480
Westminster Byte Shop
Westminster, (714) 894-9131
Ximel Data
San Francisco, (415) 566-7472

COLORADO
Computer Systemscenter
Atlanta, (404) 231-1691
Datamart, Inc.
Atlanta
Home Supply Company
Rock Hill

ILLINOIS
The Data Domain of Schaumburg
Schaumburg, (312) 997-9700

INDIANA
The Data Domain
Bloomington, (812) 334-3507

KANSAS
Micro-Com, Inc.
Kansas City, (816) 333-8383

MICHIGAN
Computer Mart of Royal Oak
Royal Oak, (313) 576-0900
Computer Store of Ann Arbor
Ann Arbor, (313) 995-7616

NEW JERSEY
Hoboken Computer Works
Hoboken, (201) 420-1644
Computer Mart of NJ
Iselin, (201) 283-0000

NEW YORK
The Computer Tree
Enfield, (607) 748-1223
The Computer Store
New York, (212) 221-1404

NORTH CAROLINA
Byte Shop of Raleigh
Raleigh, (919) 833-0210
Computer Stores of Carolina, Inc.
Charlotte, (704) 334-0240

OHIO
Digital Design
Cincinnati, (513) 561-6733

OREGON
Byte Shop
Portland, (503) 223-3496

PENNSYLVANIA
Marketing Systems
Huntington Valley

SOUTH CAROLINA
Byte Shop
Columbia, (803) 771-7824

TEXAS
The Computer Store
Houston, (713) 522-7845

Circle 22 on inquiry card.
at least determined, by the brain decoding stimulus produced activations of receptor lines according to specified conventions, it becomes clear that the process of sensation is basically one of information processing. The nature of the conscious "experience" of the processed data is a topic we shall take up later. For now, our objective will be to examine the kinds of transformations the brain imposes on its input data and to ask why this particular transformation and not some other is useful to the organism in dealing with the environment. The utility of such a pursuit lies in the fact that the most likely system for detailed examination of distant objects in an artificial robotic system will use an image forming system acting on a grid of sensitive transducers. The problems of information processing in such a system will be exactly those that the brain has solved.

There are about a million light receptive elements in the retina, and the brain produces a complete analysis of their patterns of illumination about ten times per second. If this were done in a straightforward manner, say by examining all the possible permutations of a million bits of information and decoding it against a table of known codes, a tenth of a second's worth of information from the retina would be too big a job even for the brain to handle in a reasonable time. In fact, it goes to some extremes to cut corners in this process, and some of its tricks are of quite general utility. The first step in the process is to make a number of decisions about what not to look at.

If an area of uniform illumination is bounded by an area of some other degree of illumination, the information from the center of the area is superfluous. That is, if one had a system that could detect only boundaries between different illumination levels, the center of a uniform bounded area would not produce a signal. Yet, information about its illumination could be accurately reconstructed by simply extrapolating the illumination level on the inside edge of the boundary clear across to the next boundary. If the level at the inside edge of the boundary did not hold clear across the area, that would mean that there had to be a change, and hence a boundary, somewhere in the middle, and that boundary would be detected. Any change in illumination constitutes a boundary between a lighter and a darker region. Thus, if only boundaries can be detected, extrapolation of levels on either edge of a boundary to the next boundary reconstructs the whole field of illumination.

The reduction in the number of points to be considered which is achieved by considering only boundaries is quite large. Think of a square patch of retina 100 receptor cells on an edge, illuminated at level A on the right half, and level B on the left. If we had to examine every element's illumination to arrive at a picture of this pattern, we would have to examine 10,000 elements. If we now examine only the ones near the boundary between area A and area B, and extrapolate the rest, we have to examine only about 100 elements. In general, the savings go up approximately as the square of the boundary of a uniform area.

We will return in a moment to the matter of how the brain locates spatial boundaries, but first mention should be made of the next shortcut, because their underlying mechanisms are related. Basically, this second trick is to look only at things that change. Aside from the fact that changing patterns of illumination usually imply moving objects, and that these are usually important items in the sensory world, special attention to change also has advantages in terms of processing time. The situation is really very similar to the preceding one, except that here we must think of change as representing a temporal boundary between illumination levels. If we only attend to an element when its illumination changes, and if we always know when it does, we can safely ignore it in the meantime. This is because the illumination during the intervening period of no change must be at whatever level the preceding change brought it to. Thus, it is only necessary to extrapolate the value immediately following a change until the next change is detected.

The eye is sensitive to two dimensions of light, intensity and wavelength, which we perceive as brightness and color. We have discussed the two boundary situations, spatial and temporal, only in terms of brightness so far, but the same arguments apply to boundaries of color. Two areas of equal brightness but different color also must be discriminated. The same mechanisms actually are applicable to both, since the brain handles color by providing some receptor elements with differential sensitivity to different wavelengths. For these elements, a change in wavelength effectively is a change in illumination. It will either be from a wavelength to which the element is sensitive to one to which it is not, or vice versa. The brain handles the color information simply by recognizing the output of these elements as encoding the wavelength information, and interprets it as color. The color
Trace Electronics

32K/16K STATIC RAM

What could you do with this board in your system?

Trace Electronics brings you a highly flexible, lower powered, fully STATIC 32k or 16k memory board for your S-100 Bus computer (Altair, Imma, Sol, Poly, Xitan, etc.). The model 3200 has a capacity of 32768 Bytes with fully buffered address and data lines. All buffered inputs are schmidt triggered for excellent noise immunity and require only minimal bus loading (one low power load). The buffered outputs are rated for driving more than 130 low power loads. Since the board is fully static, there is no refresh or clocking required and is therefore compatible with DMA and other devices.

Low power and high reliability are key features of the design. The TI 4044's (or equivalents) provide storage capacity at up to 65% less power than low power 21L02 chips. The power required is 1.7A at 8V. for model 1600 and 3.3A at 8V. for model 3200. A special thermal design which places a separate regulator on each 4k x 8 section of memory affords a very efficient system of heat dissipation.

The most outstanding feature of the board is its versatile addressing. Each 4k x 8 section is separately assignable to any 4k slot in the computer’s address space. This feature allows the user to make use of the growing amount of software that requires this and avoids the problems associated with only being able to assign the board to a continuous 32k block. In addition, the Megextend™ feature allows up to one megabyte to be addressed providing there is a 4 bit output port in the system. This allows up to 32 model 3200 boards per system, as long as the power requirements are met.

The model 1600 is the same as the 3200 except that it only contains 16k of memory chips. The 1600 may be converted to a 32k board by merely installing the extra 16k of memory chips. The sockets for the additional 16k are installed as a standard feature of the model 1600.

Both models are silk-screened and solder masked on FR4 epoxy board with a gold plated bus connector. They are fully socketed, assembled, tested and burned in.

To order, simply phone Trace Electronics at 215-779-3677 or mail the attached coupon. So as to provide quick delivery all orders will be shipped by the fastest practical means (e.g. Express Mail, Air Mail, UPS Blue Label, etc.). Model 3200 is priced at $999. and Model 1600 is $599. Express shipping is pre-paid. Call or write today.

Trace Electronics, Inc.
215-779-3677
P.O. Box 3247 Hampden Station
Reading, Pennsylvania 19604

Circle 127 on inquiry card.

I would like to order the following:
□ Model 3200 32k Static Memory Assembled and tested $999
□ Model 1600 16k of memory on the above 32k board Assembled with sockets for 32k and tested with 16k $999
□ Model 1601 16k expansion kit for above $499

My address is:
Name ________________________________
Address ________________________________
City ___________________ State __ Zip ________________
Phone ________________________________

Enclosed is a check or money order order for __________
Please charge the amount(s) I've marked above to my credit card:
□ Visa Card No ____________________________
□ Mastercharge Exp date ________________
4 digits above name (Mastercharge only) __________________________
Signature ________________________________

Note: Address for credit card orders must be the same as that on file with the credit card company.

Mail this coupon to: Trace Electronics
P.O. Box 3247 Hampden Station
Reading, Pennsylvania 19604

boundary problem therefore reduces to the intensity boundary problem.

Now let us examine the mechanisms of boundary detection. The temporal boundaries, that is, changes in illumination with time, are responded to selectively by a process that is similar in its results to AC coupling the receptor elements. In fact, AC coupling of analog to digital converters with an appropriate time constant would be a good way to model the process in a robot. In the brain, it is simply a property of the receptor neurons themselves, and the details need not concern us. The interesting thing is that the brain uses this same AC coupled characteristic of the neural elements to detect both spatial and temporal boundaries. A selective sensitivity to change, or temporal boundaries, is inherent in the AC coupling, but a sensitivity to spatial boundaries requires some additional mechanism.

We are all aware of course that the eye moves. We observe it all the time when our gaze turns from one point of fixation to another, or when it follows a moving target. In addition to these motions, however, there is another that is not detectable by ordinary means. Even when the eye seems to be at rest, even when you are holding your gaze as intently as possible on a fixed point, there is still a very fine motion with a frequency of about 10 Hz. The amplitude of this motion, which is rather erratic in its direction, is just sufficient to move the retinal image back and forth over the receptors by a distance equal to a few times the average separation between the sensitive elements. Those elements that are near a boundary are thus swept back and forth continuously from the lighter to darker sides of the boundary at about 10 Hz. This produces in them a changing signal of the sort to which the AC coupled property of the system can respond. At the same time, their neighbors further from the boundary in either the lighter or darker regions to either side are not moved into a region of different illumination level. Hence, they "see" an unchanging input, to which they are insensitive. The receptor elements of the eye itself therefore act as intelligent terminals which transmit only information about boundaries and changes to the higher levels, with an enormous savings in amount of input requiring attention from more sophisticated analyzers.

Now I hear you say, "Yes, but I can see the insides of uniform areas." True, but remember I said your sensations were an arbitrary decoding of the stimulus information, and that the information from areas distant from boundaries was redundant and could be reconstructed by inference or extrapolation. The experience of "seeing" the inside of the area is simply the experience of receiving the appropriate code from the right set of boundary activated elements. In the first place, it is relatively easy to demonstrate that you cannot see anything if there is no change. By virtue of some clever optics it is possible to stabilize an image on the retina so that it does not move with respect to the receptor elements, despite the fine motions of the eye. When this is done, the image seems to disappear about a tenth of a second after it is presented: proof! It is of course still really there on the retina, but your AC coupled system can't respond. Now, consider a green disk with a smaller red disk in the center. It is possible to stabilize just one portion of this image in the same fashion that we stabilized the whole image a moment ago. If we choose to stabilize just the boundary between the green outer ring and the red inner disk, it should not be possible for the brain to detect that boundary. If this is done, not only do you not see the boundary, you also don't see the inner red disk. What do you see? You see an unbroken green disk all the way across. In other words, if no boundary is detected in the middle, the brain not only doesn't see the red disk, it extrapolates the green all the way across from one outer boundary to the other. Think about it the next time you rely on the evidence of your eyes: such evidence must be interpreted with knowledge of the system's characteristics.

The AC coupling is not perfect; there is a "DC leak" around it, but the "changing signal only" property of the neurons is enhanced at each step in the transmission process, until the cells of the visual cortex are found to have almost no response at all to unchanging uniform illumination of the retina. This means that the sensory experience of the interiors of uniform regions is simply what is coded for at the cortex by the byte of information on the boundary conditions. It is not a result of direct translation of retinal illumination conditions on a point for point basis into activation of some set of "experience neurons." It is important to grasp this idea, because it points up the fundamental similarity between the natural brain and the artificial computer. There is no "inner eye" looking out through neural windows. If the encoding process ultimately produces a single neural line that is activated by, say, the sight of a face, then that line being active is sufficient for the processing of response to the face, in man or robot; and at least in us,
No, It Doesn’t Cost a Million Bucks, It Just Works Like It Did!

The MSDD-JOO Floppy Disc System offers you an inexpensive, modern way to get real data processing power from your S-100 Bus Computer System. Disc storage is a must in every microcomputer. With the MSDD-100 system, this power doesn’t cost much more than cassette, and is far faster.

For business applications, disc storage is an absolute must. The MSDD-100 has enough bulk storage capacity to handle hundreds of inventory entries, yet has enough speed to get you to any of these records in just a second or so. That’s power.

Computer programmers know the advantage gained with disc storage. Program development is speeded up greatly. With a disc system, you spend your time writing software, not waiting for slow peripherals such as paper tape. For example, paper tape can be handled at about ten characters per second. Cassette tape runs at maybe thirty characters per second. By comparison, the transfer rate with the MSDD-JOO Disc System is 15,000 characters per second. That’s fast!

You can easily put over 90,000 characters of data on a single diskette, about 5” in diameter. The MSDD-100 controller will allow you to hook up to three separate drives onto your system. That’s over a quarter of a megabyte on line and accessible in a second or two. That’s storage.

For $599, you get the unique, modern MSD-100 Floppy Disc Controller Card, the industry standard Shugart SA-400 Floppy Disc Drive, a comprehensive manual, system utilities software and patches into Altair basic, and a preassembled cable. We offer fully integrated 8K and extended basic languages at nominal extra cost. That’s MSD!

MSD Gets Down to Basics.

Microsoft, the company that created the popular, widely used Altair basic, wrote MSD Disc Basic, 8K and extended versions. Microsoft basic is well know for its power and speed. MSD brings you this language for the MSDD-100 Floppy Disc System. MSD offers the first really compact disc basic, our 8K version, and extended basic, with powerful features such as double precision number processing, formatted data output, multiple data terminals, and most efficient memory usage. This fine software is now available to every MSD-100 user. MSD basic is also fully compatible with the MSDV-100 video system.

The MSDV-100 video display system is a powerful, S-100 compatible video output device. With a high resolution 80 x 24 format. The small system user can now have a sophisticated video display system comparable to the most expensive of video terminals. You don’t have to settle for less anymore!

The MSDV-100 Video Display System is designed around a custom AGH character set. Vertical lines, horizontal lines, and line intersections are part of its well thought-out repertoire. The upper and lower case alphanumeric characters are of the highest quality. The MSDD-100 is a memory mapped, two board device that can be fed into a standard video monitor. Thoroughly developed software is included, with a wide selection of drivers supplied in both basic and assembly language. With MSDV-100 driving software, the MSDV-100 becomes an elegant, sophisticated video terminal with scrolling and cursor control. Full compatibility with MSD basic, of course!

Circle 77 on inquiry card.

BYTE March 1978 79
it is also sufficient for our correlated mental experience.

That this is the nature of the encoding process for our experiences becomes even clearer at higher levels of the encoding process than those involved in the green and red disk experiment. At some level of the process, referred to as "feature extraction," we arrive at a byte of active lines which encodes for some complex pattern. Take for example the repeated patterns of a wallpaper covered wall. It seems that even at this level, the brain continues its policy of dropping redundant information and carrying forward only information on boundaries.

If we look at such a wall, we of course see a continuous pattern repeated all the way to pattern boundaries such as the ceiling floor, edges of intervening furniture, etc. Now suppose we present this same scene to a person with damage to certain high levels of the visual system, having no vision in a particular small region of the visual field. If his injury is at the right level in the feature extracting process, he will report seeing the unbroken wallpaper pattern just as we do, including the region within which he is "blind." It can be demonstrated, however, that his experience of the pattern in the blind region is due to the fact that both he and we are extrapolating the detected pattern across the intervening space between pattern boundaries. His deficit becomes apparent when we create a boundary in the pattern within his blind region. For example, if we inverted a small patch of the pattern, it would constitute a boundary in the pattern, and we would not extrapolate across it. If it occurred in his blind region, however, he would not react to the pattern boundary and would receive the same encoded byte of visual information as before, and claim that he saw an unbroken wallpaper pattern. In an important sense he is blind, yet he has visual experience. You do the same thing. There is a blind spot in the visual field where the optic nerve leaves the retina. You can make small objects disappear by centering them there, but since you can't see boundaries there either, your brain normally extrapolates across it.

Now we might ask, if the brain is reducing complex features of the visual stimulus to a simple code of one or a few lines, does that mean there are things we might not have feature extractors for, and if so, would we be unable to see them? That is probably exactly the case. Experiments suggest that the visual world of simple creatures like frogs is quite impoverished. They have some kinds of elementary feature extractors, and some complex ones for stimuli (eg: bugs) which are important to their behavior, but nowhere near the complex set of feature extractors that a mammal has. In theory it would be possible to have a unique line or coded set of lines activated by every possible combination of activities on the retina, but this would be beyond even the capacity of the nervous system to generate processing elements. Instead, certain decisions are made as to what things are important to see, and decoding for these is provided. This does not imply that you would not see anything when looking at a novel stimulus for which you have no appropriate high level extractors. At the first level, simple features such as edges, arcs, lines and spots are extracted. More complex features are extracted from combinations of these. You might be aware only of the activity of the low level extractors for lines, edges, etc, and fail to recognize it as an object, or you might fail to discriminate it from objects which were not identical, but differed in ways which did not correspond to features you could extract.

As an example, it is possible to fool high level extractors by giving them marginal data. Look at figure 1. About 95 percent of people seeing this picture for the first time are only able to activate low level extractors for patches of bounded light and dark. It is in fact a photograph of the head and upper forequarters of a black and white cow (facing left) against some trees and a fence. Once you know what to look for, you can nudge the "cow extractors" and get an entirely different experience. Indeed, once you've seen it, it's difficult to not see it. (Don't panic if you can't; about 5 percent of people never see it.)

Actually, there is probably no "cow extractor" per se, but rather some assemblage of feature extractors which together constitute a code for "cow." Let's look however at some of the properties which such high level extractors should have. The most important one is that they should be free of constraints on position, orientation, context, etc. That is, if we had to have a separate extractor for every position the stimulus might assume in the visual field, we would need so many elements that the advantages of the feature extractor approach would be lost. Next, they should be capable of implementation by learning, so that the available processing elements can be best used to fit the organism's normal visual environment. Third, they should not be limited to spatial forms, but should include detectors for properties such as motion, distance, and other aspects of our visual...
experience. These are difficult problems, and we have no good notion of the real number or nature of the highest order extractors in the human visual system. We can examine some of their properties by fatiguing the extractors through prolonged exposure to different types of stimuli and looking at the effects on our visual abilities. In animals, we can follow the process by recording activities of neurons in the visual system during presentation of stimuli to the eye.

From these latter experiments, we have a fairly clear notion of the operation of the lower order extractors, and the process seems easily extensible to higher order features. To serve as a general example of the algorithm, I will describe in detail the process by which a feature extractor is formed which can detect a line segment only if it is at a particular angle of inclination to the visual field, but which is location independent. That is, it does not matter where the line is located in the visual field, only that it be a line and that it possess a certain angle of inclination. This sort of unit appears to be one of the typical low level feature extractors of mammalian visual systems.

The basic gating action used is very similar to an AND gate. As we have mentioned, this is one possible mode of action of neurons, which can be implemented by hav-

Figure 1: A white cow with black ears and nose. The head is turned facing you, with the side of the head in shadow. The large white area in the lower right is part of the cow's left flank. Before you "see" the cow, all that appears are white and dark areas. After you "see" the cow, your sensory experience is still the same in terms of the stimuli you are receiving, but your analysis is very different.
Figure 2: The generalized case of the brain's basic approach to processing input. The two output lines at the top discriminate patterns of input at the bottom that are very similar. In reality, the brain chooses only some of these possible connections to facilitate processing.

Figure 3: A small area of the visual field, showing the portions which can influence the output of a single retinal ganglion cell (RGC) when illuminated. Some visual neurons act inhibitory (−), others act excitatory (+).
facilitatory positive connections with other RGCs. Now, when the central spot receives light, it increases the firing rate of the RGC. When the inhibitory surround is illuminated, it decreases the firing rate of the RGC. (In this and all subsequent descriptions, it is to be taken as understood that we refer to the intermittent presentation of the stimulus, either deliberately or through fine motion of the eye, since the AC coupling properties would tend to eliminate the response to any maintained stimulus.) If the entire retinal area which affects our RGC is illuminated, the excitatory and inhibitory effects tend to cancel. Here as elsewhere in the visual system, there is thus little response to diffuse light. Notice that due to the shape of the inhibitory and excitatory regions, a line of light just the width of the excitatory center spot, and crossing the entire active area, would fire retinal elements in both the inhibitory and excitatory regions. However, such a stimulus would fire the entire excitatory central region, but would only fire a small percentage of the inhibitory elements since it only crosses the inhibitory ring in two spots (see figure 5). The response to a line stimulus crossing the central spot would therefore be strongly positive, although less so than to a stimulus which did not touch the inhibitory region.

There are several other basic types of RGC organization with regard to the sizes and shapes of the retinal areas whose illumination affects them. For example, another common type has the inverse of the type of receptive field just considered, that is, an inhibitory center area surrounded by an excitatory ring. We shall not pursue these in detail, but pass on further into the brain with the development of our abstracted inclined line detector. The next way station, the target of the optic nerve, is a nucleus of the thalamus, called the "lateral geniculate nucleus." The axons of the RGCs make synaptic contact with the cells of this nucleus just as the retinal elements made contact with the RGCs. If we record from these cells while testing for retinal areas that excite or inhibit them, we find that

Continued on page 94
“Steve, you just gotta help me!” was my not so usual frantic midafternoon introduction to Jerry. He burst into my office with a manner reminiscent of a storm trooper. The vacuum he created as he rushed toward me around the obstacles in his path caused disturbed paperwork to flutter slowly to the floor in his wake. He stopped abruptly at my desk and held the contents of his hand under my nose, hoping to exact an immediate response from me. Being abruptly summoned and having objects stuffed in my face is not generally how I like to be approached.

“I hope I’m not disturbing you, Steve, but I need some help.” He extended his hand again but knew enough not to stick it in my face. “I accidentally blew one of the EROM chips that contains the data acquisition software you gave me. We have a computer club meeting tomorrow night and I’m supposed to demonstrate my computer. I’m just going to look dumb to all those guys if I don’t have a good demonstration...”

I could understand his plight. If Jerry were to sit down and discuss his problem with his children, I’m sure his 9 year old son would describe it as a classic case of peer pressure. Designing control systems for factories on paper is different from a direct demonstration of one’s capabilities in front of a knowledgeable group of fellow computerists. Jerry was terrified that he would be a flop.

“Hold it Jerry... what’s the problem? You have a computer... I thought you bought an EROM programmer?” I asked, still trying to ascertain the true depth of his difficulty. “You have a listing of the EROM contents.”

“I’ve been meaning to get a programmer one of these days, but it costs a fortune. I wouldn’t use it enough to justify the expense. I called Bob and he let me look at the assembly listing of an EROM programmer. I brought it along so we could cut another on your system. I’ve never been very good at assembly language programming. The listing of his programmer looks quite involved. I’m sure I wouldn’t be able to incorporate it into my operating system by tomorrow night. You just gotta help me, Steve... please?”

His pleading was a bit sickening but I could understand what he was going through. “Jerry, why don’t you write your own quick programmer?” I asked. “What do you think it entails?” The reason for this line of questioning wasn’t to antagonize or delay him, but rather to get a handle on what may be a problem for more people than Jerry.
"What do you mean? How to do it? You write an assembly language program that gets the address and data to the EROM and you hold it there until it's burned in, and step to the next address. But it's all those program loops to keep track of the address, data and timing. I really bought this computer to use on BASIC, remember?"

"You've done some extensive BASIC programming, haven't you? You have a computer with plenty of parallel input and output ports, don't you? Write the EROM programmer in the language you understand best. True, it can be written in assembly language, but it can just as well be written in BASIC."

"Huh?" he grunted, still not quite believing me. "What do you mean?"

I felt I had his interest now. I was telling him that solving his dilemma need not entail using any more than the canned software supplied with his system, and that he didn't have to get involved with the "black magic" of assembly language.

"You already said that programming an EROM entailed getting the address and data to the EROM and stepping the address sequentially. Right?" I said.

"Yes, but BASIC?" he responded.

"Sure, why not BASIC?" I said. "By using INP and OUT commands, address and data can be set, and PEEK and POKE commands allow the interface data to be read into or from memory." It was important to convince him of the true value of high level languages. "You have a monitor program resident in your system that could allow you to just key the EROM data list into memory somewhere, don't you?"

"Yes, but"

"No buts! Just write a BASIC program that transfers this memory table one byte at a time to the read only memory." I felt I was really on the move now; I was going to "learn" him something if it killed him.

"Yes, but my BASIC is an interpreter. It runs pretty slowly. It's no match for an assembly language program. Assembly language loaders can program an EROM in 100 seconds; BASIC would be an order of magnitude" It was necessary to interrupt him at this point. Jerry was caught up in the old argument of potential versus accomplishment.

"Jerry, except for the time taken for data entry and printing, how long do your average BASIC programs run?"

"Oh, 5 or 10 minutes I suppose; why?" Jerry was not so curious that he had forgotten his problem, but his responses had become less acidic.

"And what do you do in between program runs or when you go upstairs for supper?" As oblique as my question may have seemed, I was driving to a point.

"I leave the computer on, of course, so I don't have to reload the BASIC. Everybody does that. Don't you?" His response was reminiscent of a child not sure whether he would be reprimanded for raiding the cookie jar or not telling that he raided the cookie jar.

"Jerry, what you just said is that if no operator interaction is required with the computer, execution time is irrelevant. Furthermore, if you started a program like an EROM loader on off peak use periods, you couldn't care less if it took a minute or an hour to run."

"Yes . . . but . . . well, I guess you're right." He had apparently never thought to use BASIC.

"In conclusion, Jerry, what language are you best able to program?" I had to be careful I didn't come across too strongly, but it was never too late to learn.

"BASIC, of course. I know how to program in assembly language, but" he continued, still believing that there was something wrong about taking a different approach to the accepted norm.

"Then program the bloody EROM in BASIC! In fact, I had the same problem a few weeks ago and built the interface board already. If you drop over to my house this evening, I'll show you how it works and give you an EROM." The look on Jerry's face was one of relief, but I was sure he'd eventually realize I could have answered his question when he first walked in. It was
important that he understand what he was trying to accomplish as well as obtain satisfactory results.

This seems like an overamplified introduction to a simple construction article, but I find it easier to present such topics if I explain how I got involved with them. There's no reason that read only memory programmers should remain as black magic to the personal computer enthusiast. There are a number of 2708 EROM programmers on the market in the $100 to $150 range. But most of the readers who correspond with me say they only want to program one or two for bootstraps and the like. It is for this reason I'd like to present a $9 EROM loader which, when tied to parallel ports such as those described in a previous article (November 1977 BYTE, page 10), can provide this function. Rather than be completely confusing, maybe I ought to start at the beginning.

What is an EROM?

If you presently own a personal computer, even in its minimum configuration, it contains programmable memory. Most likely the memory you own is made of semiconductor memory chips configured as boards with 4 K, 8 K, 16 K or more bytes. Programmable memory means that any element can be addressed and read from or written to (that is to say, programmed) individually. Addressing is random and is determined by program necessity rather than configuration. Any number of electronic elements can function as programmable memories. TTL 7474 flip-flops, bistable relays, core memory, etc, can all function in this manner, but are not necessarily cost effective for personal computer applications. Since the majority of programmable memory storage in personal computers is of the semiconductor type, one major problem is created. Semiconductor programmable memory is volatile. When the power is removed, the data is destroyed.

One solution to the volatility of semiconductor programmable memory is to configure a certain quantity of the storage as nonvolatile read only memory (ROM). ROMs exhibit the same random addressing capabilities as volatile programmable memory, but the data stored in them is permanent. The required bit patterns are programmed into them during manufacture, or during a special postmanufacturing procedure, and any time power is applied, these bit patterns will be the same. Most computer systems containing read only memory use this vehicle to store bootstrap loaders or monitor routines that allow ease of system startup.

A further extension of the read only memory is the programmable read only memory, or PROM. When a programmable read only memory comes from a manufacturer, no program data is stored in the device. To use this type of read only memory, a special programmer is required to alter the internal structure of the chip and impress specific bit patterns permanently into the addressable memory locations.

It is often desirable to have the nonvolatility of ROMs and the read and write capabilities of semiconductor programmable memories. An effective compromise is the EROM or erasable read only memory. It is used as a read only memory for extended periods of time, erased occasionally and reprogrammed as necessary. Erasure is accomplished by removing the EROM integrated circuit from the system and exposing the chip (covered by a transparent quartz window) to ultraviolet light. I'll describe erasure and programming later.

The erasable read only memory technology used by Intel and most other manufacturers is a stored charge type called a FAMOS transistor, for floating gate avalanche injection metal oxide semiconductor. It is similar to what is known as a P-channel silicon gate field effect transistor with the lower, or "floating," gate totally surrounded by an insulator of silicon dioxide. The 1 or 0 storage value of the FAMOS cell is a function of the charge on the floating gate. A charged cell will have the opposite storage output of an uncharged cell. By applying a 25 V charging voltage to selectively addressed cells, particular bit patterns making up the program can be written into the memory. This charge, because it is surrounded by insulating material, can last for years. When this silicon dioxide insulator is exposed to intense ultraviolet light, it becomes somewhat conductive. The result is erasure of all programmed information as the charge leaks away.

There are many erasable read only memories on the market: 1702s, 2708s and 2716s are the major ones. For the most part, experimenters have moved away from the very difficult-to-program 1702s toward the more desirable and more easily programmed 2708s. An added benefit is the fourfold increase in storage capacity of the 2708. The 2716 is the newest version of this erasable technology on the market, and at the time of this writing is considerably more expensive than the 2708. It is for this reason that the methods outlined in this article are used for programming 2708s.
Fastest S-100 Dynamic Memory

The D-32 is the fastest S-100 memory board available.

Highest Speed
The D-32's high speed is based upon precise control of timing and conservative design. It operates in S-100 bus systems with cycle timing independent of the bus. Memory cycle timing is derived from a precision digital delay line, which is four times more accurate than other techniques. Power consumption is minimized by the performance of dynamic refresh cycles only when required and by timing them with a 35khz oscillator. During normal program execution, refresh cycles occur following instruction fetch (MI) cycles, and are fully transparent.

Maximum Reliability
The D-32 is as reliable as static memory boards, since close attention has been paid to the proper engineering discipline to maximize reliability. These details include: the use of molded ceramic bypass capacitors for superior noise immunity, keeping trace lines to the edge connector to a minimum to suppress noise spikes on the bus, precisely-controlled timing and a multi-layer PC board with internal power and ground planes for superior noise immunity.

Expandability
The D-32 has a fully-transparent, dynamic refresh. Each 4096 byte block is addressable at any 4K page boundary. Extended address selection allows expandability to one megabyte co-resident in the system.

Main Features
• immediately available, fully assembled and tested
• static board reliability
• 32K byte memory
• fastest S-100 board available
• independently addressable 4-K blocks
• extended address selection for expansion to one megabyte
• 5 megahertz typical performance,
 4 megahertz worst-case
• cycle timing independent of S-100 bus
• precision digital delay line for highest speed
• fully-transparent dynamic refresh
• lowest power consumption
• internal ground plane to increase noise immunity
• S-100 compatible

Immediate Availability
The D-32 is immediately available at more than 125 TDL dealers nationwide. They will show you this fully-assembled, tested and burned in D-32. If your dealer doesn't carry TDL hardware/software products, write or call:

Sales Department • Technical Design Labs Inc.
Building H • 1101 State Road • Princeton, N.J. 08540
609-921-0321
Cable Address: XITAN PRIN • TWX 510-685-9280

Circle 123 on inquiry card.
Figure 1: A 2708 erasable read only memory reader and programmer. During reading, the 2708 (IC5) receives a 10 bit address on address lines A0 thru A9. The eight bits of data stored at that location will then appear as outputs on lines D0 thru D7. The circuit is shown attached to three 8 bit output ports and one 8 bit input port of a microcomputer. (The port numbers chosen are peculiar to the author's system and are necessary to fully describe the software interaction.) During programming, bit B6 of output port 18 is set high, which causes the interface to enter the write mode. This signal raises the voltage level on the 2708 select pin from 0 V read enable to a +12 V program mode enable. The eight data output lines now become data input lines. The program mode signal also gates output port 16 through ICs 1 and 2 to these data input lines and presents the data to be stored to the 2708. Each 8 bit data byte is then burned in for 100 ms in 1 ms pulses using ICs 3 and 4.

The 2708 is an ultraviolet erasable read only memory. It is configured as 1024 single byte memory locations (eight bits per byte). Figure 1 illustrates a simple interface that allows the user to both read and program a 2708.

When reading the contents of the memory, a 10 bit address is presented to address lines A0 thru A9, and the eight bits of data stored in that location will appear as outputs of the memory on D0 thru D7. The interface is attached to three 8 bit output ports and one 8 bit input port. 10 bit addressing is accomplished by using two bits of port 18 in addition to the eight bits of port 17. When B7 and B6 of port 18 are at a zero level, the 8 bit stored data is read by input port 16. The port numbers chosen are peculiar to my system. Any four user defined available parallel 10 ports that accomplish the same functions can be chosen instead, substituting for the ports I used.

Programming is straightforward. B6 of the output port 18 is raised to a 1 level to
set the interface to the write mode. This signal raises the voltage level on the 2708 chip select pin 20 from a zero volt read enable to +12 V program mode enable. The eight data output lines now become eight data input lines to the memory. The program mode signal also gates output port 16 through a pair of 74125s to these data input lines and presents the "data to be stored" to the 2708.

According to the manufacturer's specifications for the 2708, it takes 100 seconds to fully program or "burn in" the EROM. A little simple division would lead one to believe that each address byte should be programmed for 100 ms. Yes and no! Each byte has a cumulative programming time of 100 ms, but it is done in 1 ms pulses. All addresses must be cycled through the program sequence before repeating the pulse on a particular location. In plain English, as each byte is addressed it is given a 1 ms program pulse. To accumulate 100 ms per byte, the program must be repeated 100 times. More on this later.

IC3 and two sections of IC4 provide the +25 V program pulse to the 2708. IC3 is set for a duration of 1 ms and is triggered by a logic 0 to 1 transition at its input. The 2708 both sources and sinks current through programming pin 18, so a combination of devices is necessary rather than a simple open collector driver. In the write mode, when CS/WE pin 20 is at +12 V and between programming pulses, pin 18 has to be pulled down by an active device because it sources a small amount of current. The 1 ms programming pulse itself is about 30 mA and cannot be easily accommodated without emitter follower configured Q1. This pulse should be between 25 and 27 V at pin 18. Three 9 V transistor radio batteries will suffice for this application or a commercial 24 V, 50 mA power supply can be used. Most supplies can be resistor trimmed to produce the desired 25 to 27 V.

Using the Interface with BASIC

The logic behind this interface is simple: set an address and read data, or set an address and write data. Every EROM programmer I have seen uses an assembly language routine to sequence the operation. This interface is no exception. It will run faster if controlled in that manner, especially if wired to the memory bus for read operations rather than through IO ports. It does not have to be controlled through BASIC.

BASIC is the predominant high level language in personal computer use today.
100 REM FIRST WE CLEAR THE OUTPUT AND SET IT
110 REM TO THE READ MODE
130 OUT 18,0
140 FOR N=0 TO 3
150 FOR M=0 TO 255
155 OUT 17,M : OUT 18,N
160 PRINT " ADDRESS "; (N•256)+M;"= "; INP16
170 NEXT M
180 NEXT N
200 END

Listing 1: A BASIC program used to read the contents of an erasable read only memory. This program and the programs in listings 2 and 3 were written in 8 K Zapple BASIC marketed by Micro Com.

100 OUT 18,0 : REM SET TO READ MODE
110 LET X = 26000 : REM
114 REM SET X=DECIMAL ADDRESS OF THE
115 REM START OF THE MEMORY TABLE
120 FOR N=0 TO 3
130 FOR M=0 TO 255
135 OUT 17, M : OUT 18, N
140 POKE X, INP16
150 LET X = X + 1
160 NEXT M
170 NEXT N
180 PRINT " TABLE LOADED"
200 END

Listing 2: A BASIC program used to read the contents of a 2708 erasable read only memory and store the data in memory.

90 FOR T =1 TO 100
100 LET A=64 : OUT 18,A : REM 64 IS BIT 6 SET
110 REM THIS SETS THE INTERFACE TO THE PROGRAM MODE
120 LET X = 26000
130 REM X IS THE START OF THE MEMORY TABLE
140 FOR N=0 TO 3
150 FOR M=0 TO 255
155 LET D = PEEK X
160 OUT 17,M : OUT 18,N+A : OUT 16,D
165 REM LINE 160 SETS THE ADDRESS + DATA BYTES
170 OUT 18,N+A+128 : REM 128 IS THE PROGRAM PULSE BIT
180 OUT 18,N+A : REM RESET B7
190 LET X=X+1
200 NEXT N
210 NEXT M
220 LET M=0 : LET N=0
230 NEXT T
240 PRINT "DONE"
250 END

Listing 3: A BASIC program used to program a 2708.

It is only natural for an experimenter proficient in BASIC to consider using this method. It is important to remember that most BASIC systems use interpreters and will perform operations very slowly compared with assembly (machine) language programs; but, if fast operation is not a particular requirement, BASIC can perform the same functions.

Reading the contents of a 2708 is a simple procedure, as shown in listing 1. Obviously, it takes a long time to print the 1024 bytes in the memory chip even though formatting would speed it up. Another operation which is useful is to read the 2708 and load it into memory, such as in the case of a utility program or interface driver. The concept is the same, but the print statement is deleted. The new program, which reads the EROM and loads it into memory, is shown in listing 2.

Programming the 2708 is no more complicated than reading it. There are two sources for the data to be placed in the 2708. It can come from a 1 K byte listing presently resident in memory (such as that produced by an assembler), or via keyboard entry. Keyboard entry, while possible, is very time-consuming and requires that an array be produced with 1024 variables. If keyboard entry is desirable, it would be far better to use an existing resident monitor program to load memory directly from the keyboard and produce a memory-resident table which is then transferred to the 2708.

The program write pulse timing takes advantage of the fact that BASIC is slower than assembly language. To load a memory with data, output port 18 bit B6 is set to a logic 1 level. This enables the program pulse generator, IC3, and data input source through the 74125s. After the address and data words are sent to the outputs, port 18 bit B7 is raised to a logic 1, causing the oneshot to fire. The duration of the pulse is 1 ms. If this were an assembly language program, a timing routine would have to be used to time out 1 ms before stepping into the next address and data combination. BASIC takes approximately 5 ms to interpret and execute each of the commands used in this program. With such interpretation delays, the program can’t possibly overdrive the programming sequence, and therefore needs no timing loops. As stated earlier, to meet manufacturers’ specifications, 100 1 ms sequences must be performed. If you reprogram the algorithm for another language, or use a BASIC interpreter, make sure the timing is comparable. Such a program is shown in listing 3.

... About a 2 Minute 2708 Write Cycle?

This program is not very fast, and in fact, takes 30 to 40 minutes to run for the full 100 loops. This is fine if you aren’t in a hurry, but a better way is to write an intelligent programming routine. Yes, the manufacturer states that to be absolutely sure the 2708 is programmed, 100 loops should be executed. But, it has been my experience with the many 2708s I’ve programmed using this interface, that it takes only one loop. This is not to say that all devices will perform similarly, but it does lead to some interesting programming compromises. Eliminate the FOR and NEXT loop at lines 90 and 230 in listing 3. Next, at line 230, insert
Price/Performance
no one else has put together.

IMSAI Introduces the PCS-80/30
Integrated Video Computer

☐ 3 mHz microcomputer
☐ 3K ROM monitor
☐ 2K RAM
☐ 8 expansion slots
☐ 14 mHz integrated intelligent
CRT (24 x 80)
☐ Intelligent Keyboard
☐ Parallel interface
☐ 2 serial interfaces
☐ Graphic and edit CRT
functions
☐ 28 amp power supply
☐ All for $1499* assembled
and tested.

Software:
ASSEMBLER, DOS, TTY and ACR
BASIC, Commercial/Scientific BASIC,
FORTRAN IV and more.

Memory Options:
4, 16, 32 and 64K RAM memory boards.

Peripherals:
Printers, floppies—mix and match;
standard, mini and high performance
double density floppy disks on the same
system (an industry first), ½" magnetic
tape drive, CRT and TV monitors.

Send today for your copy of the 250-page
IMSAI PCS-80/30 User Manual. Price
$5.00. The cost of the manual may be
applied towards your purchase of a PCS-
80/30 Integrated Video Computer. Use
the coupon provided.

Circle 55 on inquiry card.

IMSAI®
The Standard of Excellence
In Microcomputer Systems
IMSAI Manufacturing Corporation
14860 Wicks Blvd., San Leandro, CA 94577
(415) 483-2093 TWX 910-365 7287

*U.S. domestic price only. PCS-80/30 kit available. Other PCS-80 kits start
at $699. Prices and specifications subject to change without notice.
a program that will read the data. After each complete loop, read the 2708 byte by byte and compare it to the source table in memory. If it is equal, then stop. Programming is done. If any one or more bytes do not correspond, return and sequence through another complete program cycle. In my experience with premium 2708s, I have yet to require a second loop. This will allow fast temporary writing for program checkout. When the software is finalized, reprogram the 2708, when time allows, with the full 100 loops to ensure longevity of the stored data. While conceptually it may seem more feasible to rewrite only errant data bytes, in practice this is not advised.

Erasing an EROM

When 2708s are bought directly from a manufacturer they come completely erased (every byte is hexadecimal FF). If you plan to write a 2708 program once and you either don’t want to modify it or you don’t make mistakes, forget about erasing. The majority of experimenters will undoubtedly want to reprogram 2708s and similar erasable read only memories. It then becomes necessary to know how to erase them. We all know that the 2708 is ultraviolet erasable. However, duration, distance from the light source, and intensity determine the quality of the erasure.

People concerned about maintaining manufacturer’s specifications during the programming sequence should also be advised of the proper erasing methods. Unlike the test-read-after-write loop method for programming, 2708s are usually removed from the circuit during erasing. It is therefore advisable to perform the procedure correctly or it will have to be repeated.

The typical 2708 can be erased by exposure to high intensity shortwave ultraviolet light with a wavelength of 2537 Å. The recommended integrated dose (ultraviolet intensity X exposure time) is 12.5 Watt-seconds per square centimeter (Ws/cm²). The time required to produce this exposure is a function of the ultraviolet light intensity.

Choice of a particular ultraviolet eraser should be equally divided between cost and safety. A commercial unit not only specifies its intensity (which allows computation of exposure time), but also includes some very important interlocks. It is conceivable that some homebrew erasers might have improper shielding that can allow the ultraviolet light to escape or be accidently turned on while being viewed. Such possibilities can lead to permanent eye damage.

One of the most cost effective erasers on the market is the UVS-11E by Ultra Violet products in San Gabriel CA. This $59.50 unit is made especially with the home computer market in mind and includes some very important safety features. The lamp will not operate unless properly seated in its holding tray and, if lifted from the tray, will automatically shut off. At the standard exposure distance of 1 inch (2.54 cm), the UVS-11E produces an intensity of 5000 µW per square centimeter (µW/cm²). Exposure time for the 2708 is easily calculated. Exposure time \(T_E\): \[T_E = \frac{J}{I} \]

where:

\(J \) = required erasure density of device,
\(I \) = incident power density of eraser.

For a 2708 which requires 12.5 Ws/cm²:

\(I = 5000 \mu W/cm^2 \),
\(J = 12.5 \text{ Ws/cm}^2 \),
\(T_E = \frac{12.5}{5000 \times 10^{-6}} = 2500 \text{ seconds} \); or

\(T_E = 41.6 \text{ minutes for complete erasure} \).
In Conclusion

"Well, Jerry, it wasn't all that bad, was it? We got your 2708 programmed with plenty of time to spare and now you know how easy it is to do it yourself." I sensed he felt relieved that he didn't have to cancel his grand computer expo for the computer club that evening.

"Thanks, Steve. I knew that anyone with as much computer junk in his cellar as you have had to have the solution to my problems. It's so much easier when you're working with someone experienced in these matters."

The temporary glow produced by his first statement quickly subsided. I got this strangely familiar tinge of pain as I started to recognize the now familiar line. Other co-workers had involved me in computer gambling and stock market schemes that turned into real fiascos. Rather than argue in my defense, I just shrugged off the desire to take the 2708 back from Jerry, throw it on the floor, and jump on it. How do I get myself into these things? Sanity prevailed and I just said softly, "We'll see."

Next month: remote AC control.
they have response patterns rather similar to the RGCs. That is, central spots and oppositely acting surrounding rings, etc. The active fields tend to be somewhat larger, but it appears that the thalamic cells receive positive inputs from RGCs whose positive centers are close together, so that essentially the same pattern is maintained. This is illustrated for a typical "on-center, off-surround" thalamic cell in figure 6. Actually, at this level there is a great deal of additional processing going on that has to do with modifications on the basis of data returning from the cortical areas to which the thalamic cells project, and also data from other brain regions which have input to the visual analysis system. We shall speak more of these other inputs later, but for now we shall follow our line detector system on to the cortex.

The axons of the thalamic cells make contact with a class of cortical cells known as "simple field cells." These cells typically respond preferentially to more complex stimuli, such as lines of light at particular inclinations, and particular locations. Usually, it is found that a column of cortical simple field cells deals with the analysis of some small area of the retinal image, and contains a large number of such line analyzers. Each is responsive to a line at a slightly different angle, but all are concerned with the same small area. Figure 7 shows how such a line detector can be constructed from the output of the thalamic cells. What is required is that the thalamic cells which have a positive influence on the firing of the cortical simple field cell are selected to be ones that have their own circular excitatory centers in the visual field in a straight line at some angle to the vertical. If the inputs to our cortical cell are so selected (selective convergence), then the optimal stimulus for firing it will be a line of light which passes through the excitatory central spots of all the lower echelon thalamic cells' receptive fields. Such a stimulus will produce a strong (but sub-maximal) firing in each of

Figure 6: The convergence pattern of retinal ganglion cell (RGC) units on a thalamic cell, showing the spatial relations of the receptive fields of the RGCs which project to the same thalamic cell.
Volumes VI & VII are finally released!

Volume VI
Yes and it still contains what was previously advertised. A fully disk interactive business package with A/R, Inv., A/P, ledgers, tax totals, payroll records, more.

As a bonus it also contains the Users Manual for our Firmware Ledger package. These 100 extra pages contain report formats, file creation routines and our very powerful program ACBS1 used to create the powerful file structured data base.

$49.95

Soon To Be Released—Vol. VIII—Homeowners Programs
(Includes Federal Income Tax Program)

Volume VII
Here is that Chess program you have been waiting for as well as a disk interactive Medical Billing package with patient history file.

Also included is our disk interactive Word Processing package (revision 0).

$39.95

Add $1.50/Vol. for U.P.S. and handling except to APO and PO addresses. Foreign orders add $5/Vol. for air shipment — US dollars only. No purchase orders over $50.

SCIENTIFIC RESEARCH
220-B Knollwood
Key Biscayne, FL 33149
Phone orders 800-327-6543
Information 305-361-1153

AVAILABLE AT MOST COMPUTER STORES
10% discount on purchases of entire set. Offer expires December 30, 1977

OUR SOFTWARE IS COPYRIGHTED AND MAY NOT BE REPRODUCED OR SOLD.
Due to the numerous copyright violations on our earlier volumes — until further notice we are offering a REWARD leading to the arrest and conviction of anyone reproducing our software in ANY way without our written permission. This includes diskettes, paper and magnetic tape, cassettes, records, paper copies, etc.
LINE STIMULI WHICH FAIL TO EXCITE ORIENTED SIMPLE FIELD CELL

EXCITATORY CENTER OF ORIENTED CORTEX SIMPLE FIELD LINE DETECTOR

INHIBITORY SURROUND OF ORIENTED CORTEX SIMPLE FIELD LINE DETECTOR

SMALL AREA OF VISUAL FIELD

FIELD TENDS TO EXCITE ORIENTED FIELD CELLS, ALL OF WHICH RESPOND TO A LINE AT THE SAME ANGLE, BUT WHOSE SPECIFIC SENSITIVE LOCATIONS WITH REGARD TO RETINAL POSITION DIFFER, AND ARE SPREAD OVER A WIDE AREA, AS SHOWN IN FIGURE 9. AGAIN, CERTAIN CONVERGENCE PATTERNS ARE SELECTIVELY IMPLEMENTED. IN THIS CASE THE CONVERGENCE PRINCIPLE IS PARALLELISM.

IN ACTUALITY, THE CONNECTIONS ARE NOT SO STRAIGHTFORWARD AS I HAVE SUGGESTED; THERE IS MUCH UP AND DOWN TRAFFIC FROM THALAMUS TO CORTEX AND BACK. THERE IS MUCH UP AND DOWN TRAFFIC BETWEEN DIFFERENT LEVELS OF THE CORTEX AS WELL. THE PRINCIPLE HOWEVER IS ESSENTIALLY AS ILLUSTRATED. BY CONTINUING THIS TYPE OF OPERATION, AND BY COMBINING OUTPUTS OF DIFFERENT TYPES OF CELLS, IT IS CLEAR THAT FEATURE EXTRACTORS OF ANY DESIRED DEGREE OF COMPLEXITY COULD BE BUILT. ARC DETECTORS, EDGE DETECTORS AND NUMEROUS OTHER TYPES ARE ALREADY AVAILABLE AT THE SIMPLE FIELD CELL LEVEL. AT THE LEVEL OF MORE COMPLEX FEATURE EXTRACTORS, WHICH MAY BE IN AREAS OF CORTEX OUTSIDE THE PRIMARY VISUAL CORTEX, IT IS VERY DIFFICULT TO DETERMINE THE EFFECTIVE STIMULUS FOR A CELL SIMPLY BECAUSE OF THE ENORMOUS NUMBER OF STIMULI THAT IT MIGHT RESPOND TO.

IN A MONKEY BRAIN, FOR EXAMPLE, A CELL HAS BEEN REPORTED BY ONE RESEARCHER WHICH RESPONDED ONLY TO THE OUTLINE OF A HAND. IT IS NOT NECESSARY FOR US TO SPECIFY ALL THESE TYPES OF FEATURE EXTRACTORS FOR OUR PURPOSES. THE PARTICULAR SET THAT WAS MOST USEFUL TO A HUMAN'S BRAIN WOULD PROBABLY DIFFER FROM THE MOST USEFUL SET FOR A ROBOT BRAIN. IT IS SUFFICIENT TO SEE THE PRINCIPLES BY WHICH THE FEATURE EXTRACTORS CAN BE CONSTRUCTED. LET US REVIEW THESE.

FIRST, IT IS CLEAR THAT NOT ALL POSSIBLE COMBINATIONS OF RETINAL RECEPTOR ACTIVA-

Figure 8: Lines of light which are not optimally placed do not activate the simple field cell since they either do not strike sensitive elements, or strike excitatory and inhibitory areas equally.

Figure 9: The development of a complex field cell of the cortex which responds to lines at certain angles, but without reference to spatial location over a large retinal region.
The 2650 is designed for you

The Central Data 2650 Computer Board system has been carefully designed and built with you in mind. We've also designed software and memory to go with the 2650 so that you'll have a complete system. You deserve quality equipment, and we've built it for you. Take a look at the 2650 board features and see for yourself.

- a 2650 microprocessor
- an 80 character by 16 line display
- a 300 Baud cassette interface
- a powerful 1K Supervisor Program
- one parallel input port and one bit settable output port
- 2048 bytes of read-write memory for the video display and your programs
- expands to S-100 bus
- low price of $275

The 2650 board comes assembled, tested and ready to plug in and comes with a full one year guarantee. The price includes a Signetics 2650 Microprocessor Manual and a Computer System Manual from Central Data.

We offer the Editor/Assembler and 8K Basic software packages for the 2650 system, and our S-100 24K memory board allows full expansion of the system. (16K and 32K memory boards are also available.) Each software package costs only $20. The 24K memory board is $395. All software comes with a cassette tape and a program listing.

With all these features you can't afford to pass up the Central Data 2650 system.

Please send me the following:

☐ 2650 computer system board ($275)
☐ 16K RAM ($289)
☐ 24K RAM ($395)
☐ 32K RAM ($475)
☐ Editor/Assembler ($20)
☐ Basic ($20)
☐ Additional information

I enclose $ _____________
Ill. residents add 5% sales tax.

Name ____________________________
Address ____________________________
City ____________________________
State ____________________________
Zip ____________________________

Central Data • P.O. Box 2484, Sta. A • Champaign, Ill. 61820

(217) 359-8010
tion are encoded by higher level cells. Rather, some types of features are settled upon as useful building blocks, and these are encoded by cells upon which the outputs of certain lower level cells converge. The particular set of lower level cells is selected on the basis of the spatial relationship of their receptive fields on the retina. This is the principle of selective convergence. Look again at figure 2; it is as if we had abandoned such a generalized system in favor of a more limited but more economical one by omitting some branches, and bringing several more from selected places together at each stage. Second, the response of the higher echelon cell is frequently fine tuned by provision of lateral inhibition. That is, lower echelon cells frequently have inhibitory projections both to their neighbors to either side at the same level, and to the neighbors of the higher echelon cell to which they send excitatory projections. The arrangement of these inhibitory projections is often chosen to help the cell discriminate against stimuli which are similar enough to the target feature to potentially generate some responding, if not full responding, in the cell. Thus, in the simple cortical field cell line detector in figure 8, if the angle of the line were only slightly off of the desired angle, it still might cross the on-centers of several of the thalamic cells which input to the cortical cell, and cause some considerable response in the cortical cell. It should of course only activate some other angle detector. This difficulty is surmounted by the fact that in order to cross the first cell’s line of on-centers at a small angle, the stimulus would also have to cross a large amount of territory which inhibited the thalamic cells’ output. (If the angular discrepancy is large of course there is little problem.)

The third principle of general relevance is related to the problem of how much input will be required to fire a higher echelon cell. Recall that the neurons are not functioning strictly as AND or OR gates, in that a certain percentage of inputs active is all that is required for firing. This ALMOST gate principle is one of enormous power, and we shall have more to say about its application to intelligence in a later article; but for the moment look at what happens in the sensory system if we let the percentage of inputs required for firing be an adjustable parameter. If we required that all the lines be active as in a conventional AND gate, we would have a perfectly accurate system, like any good conventional computer. We would also have a slow and insensitive system. To get all the inputs properly set up, we would need to wait for perfect alignment of the image, probably close up for good resolution, and have good illumination to avoid any marginal situations. It would be accurate, but your ancestors would never have reached reproductive age if they’d had to wait on that kind of situation before decoding the stimulus as a wolf. On the other hand, if we let the system be sloppy and fire feature extractors when only a small number of relevant input lines are active, we will get quick results, with a lot of errors. In particular, we would be unable to make fine discriminations amongst similar stimuli which would activate many lines in common.

This kind of error is easily demonstrated. Briefly flash a picture of a circle with a small piece missing on a screen, and your subjects will report that they saw a complete circle. Only if they get to examine the image longer will they be able to discriminate the broken circle from a complete one. Now clearly both modes of processing have their uses, and it would be nice to adjust the percentage input requirements of the ALMOST gates to suit the task at hand. This is done in the brain by axons from control regions of the brain outside the sensory system which make diffuse and widespread contact with large numbers of sensory processing elements. These inputs carry no specific visual information, but by excitatory or inhibitory action they can bias the processing elements towards or away from firing threshold, thus increasing or decreasing the amount of input from lines carrying specific information which is required before firing occurs. When this process is driven beyond normal limits, as with various drugs, the feature extractors can be biased so close to firing that little or even no input is required. The result is a variety of visual distortions and hallucinations.

A fourth point worth noting is that the system resembles a pipelining type of processor. As soon as the cells of any echelon have fired in response to the current state of their inputs, succeeding echelons begin dealing with that fact while the earlier echelon begins to respond to the next state of their inputs. It is not clocked, it just all trickles through as fast as it can, but that only means that some things take longer to recognize than others. There is no need for it all to be processed in lockstepped stages like a real pipelining system. However, information can be siphoned off the line at any stage as well as being passed on to the next. If you need to catch a fast moving object, you can respond to information about its position, which is encoded fairly early in
The Dual Digital Cassette Storage System
Only $585. Only from Peripheral Vision

For the first time ever there's an inexpensive, reliable system for mass data storage. Peripheral Vision introduces the Phi-Deck Cassette Storage System for the S-100 Bus. For only $585.

That's right. $585. That gets you two Phi-Decks, controller card kit and power supply. Which means you get more bytes per buck. Take a look.

The features:
• Controller card supporting multiple drives
• Computer-controlled operating system — an 8080 version of PhiMon
• Large data capacity:
 254,000 8-bit bytes on C-30 cassettes
 508,000 8-bit bytes on C-60 cassettes
• Software error rate less than 1 bit in 10^8

What our system allows you:
• Indexed software controlled program file
• Indexed random retrieval
• Multipass compilers
• Duplication and backup of important data
• Large data files — lists, names, business accounts
• System residence

What our software operating system offers:
• 8080-based design
• Cyclic redundancy check (CRC) error detection
• System retries after soft errors
• Automatically bypasses hard errors
• Block size from 1 to 256 bytes
• Phi Deck Monitor Operating System

How to get connected:
With Peripheral Vision's new four-port I/O board. It's another one of our bargains. Only $85. To save you bucks.

We've only given you a glimpse of our exciting new cassette storage system and the four-port I/O board. For more details, just fill in the coupon below. For cheap little bytes.

O.K., I'll byte! Send me details on your cheaper way to store data and get it connected!

Name
Address
City/State/Zip

Circle 92 on inquiry card.
Circle 43 on inquiry card.

Electronics Control Technology

FACTORY ADDRESS: 763 RAMSEY AVENUE, HILLSD, NEW JERSEY 07205
MAILING ADDRESS: P. O. BOX 6, UNION, NEW JERSEY 07083
PHONE (211) 686-8080

BUILD YOUR OWN VIDEO TERMINAL FOR $95 “PLUS”*

- Serial ASCII or BAUDOT
- Full X-Y Cursor control
- 138 Characters, including upper and lower case
- 16 lines X 64 characters
- S108 Compatibility
- No Supporting Software required

The SCT-100 Single Card Terminal interfaces directly to any computer or modem having serial ASCII or BAUDOT capability. It requires only the addition of a standard ASCII keyboard and a television monitor. It is available as a partial kit for $95.00 including the PC board, character generator ROM, and the 8570 microcomputer. The complete SCT-100 kit is $155.00 ($185.00 prewired & tested).

To order, call or write today. MC, VAC Accepted.

XITEX CORP. P.O. Box #20887, Dallas, Texas, 75220
Phone (214) 620-2993

* The SCT-100 Single Card Terminal interfaces directly to any computer or modem having serial ASCII or BAUDOT capability. It requires only the addition of a standard ASCII keyboard, and a television monitor. It is available as a partial kit for $95.00 including the PC board, character generator ROM, and the 8570 microcomputer. The complete SCT-100 kit is $155.00 ($185.00 prewired & tested).

To order, call or write today. MC, VAC Accepted.

XITEX CORP. P.O. Box #20887, Dallas, Texas, 75220
Phone (214) 620-2993

We have emphasized the development of a particular feature extractor to clarify the process involved. The emphasis on selective convergence should not obscure the fact that each lower echelon cell’s outputs usually go to many higher echelon cells, not just one. Further, these outputs may be involved in the extraction of entirely different features at each of the higher echelon cells to which they project. It is not the case then that we have a grand convergence that starts with a million bit byte of retinal elements and gates itself down to a few high level cells. Rather, we come out the other end of the process with a “byte” containing even more lines than the input byte. The difference is that the bits in the input byte represent the spatial pattern of illumination on the retina in a simple point for point code. The bits in the output byte of the system each represent the occurrence or non-occurrence of a complex pattern of features in the visual world, and can be used to directly activate appropriate responses. Thus, the output byte and the output byte of the visual system each contain the same basic information — the content of the visual world. However in the output byte the information is recoded so that the bits each represent highly useful pieces of information about the patterns occurring among the input bits. Referring again to figure 2, the real situation would be one in which there were as many cells at the top of the figure as at the bottom, with each convergent tree leading to a top level cell containing many elements in common with other convergent trees, just as the two shown do.

We have dealt so far only with the processing of spatial patterns of retinal illumination. There are many other things which are dealt with; motion detection by sequential activation of retinal elements is one example. Depth perception by comparison of the patterns from the two retina is another. One that deserves special mention here is the handling of intensity information. This is done in the brain by use of the analog information in the cell’s “temporal byte.” That is, each line carries one bit in the “spatial byte” which encodes the existence of some set of conditions at the retina related to which cells are activated. The rate of firing of the line encodes, in pulse frequency analog form, information about the strength of that activation. For low echelon cells, this is essentially information about the intensity of the light falling on the receptors. At higher echelons in the process, without having to wait for a detailed analysis of its surface markings based on more extensive processing.
Everything you need in small computer systems!

LEAR SIEGLER ADM 3A TERMINAL
- Kit $759.95
- Assembled $854.95

ADM 1A TERMINAL
- Assembled $1529.00

ADM 2A TERMINAL
- Assembled $1995.00

CENTRONICS 779 PRINTER
- 703 SERIAL PRINTER $2395.00
- 761 PRINTER $1695.00

HAZELTINE 1500 VIDEO TERMINAL
- Assembled $1149.00
- Kit also available

MODULAR 1 INTELLIGENT TERMINAL
- Assembled $1659.00

HAZELTINE 1500 VIDEO TERMINAL
- Assembled $1149.00

IMSAI 8080 MICROCOMPUTER
- With 22 slot $649.95

SPECIAL BUYS
- IMSAI Double Density Persis Drive $2285.00
- Sorac IQ 500 Video Terminal 959.00
- DEC LA 180 Printer 2769.00
- Compucolor 8001 Color Computer 2595.00
- ICOM Microfloppy System 989.00
- North Star Microfloppy Disk Kit 599.00
- Cromemco Z-2 Kit 565.25
- Javelin 9" Video Monitor 159.95
- Micropolis Model 1053MOD 1799.00
- IMSAI AP44-44 Col. Printer Kit 329.00
- TDL Xitan Alpha 1 Computer Kit 699.00
- ICOM Model FD 3712 2795.00

OKIDATA MODEL 110 LINE PRINTER
- Tractor Feed $1149.00
- Friction Feed $1279.00
- RS 232C Serial Interface $260.00

MODEL 22 LINE PRINTER
- Tractor Feed $2249.00

TELETYPE MODEL 43 PRINTER
- $1299.00

IMSAI PC S-80/15 8085 COMPUTER
- Kit $749.00
- Assembled $929.00

We carry a full line of the following: TDL, Centronics, Seals, Hazeltine, Micropolis, Hayden, IMSAI, Cromemco, Compucolor, Icom, Lear Siegler, Okidata, DEC, Javelin, North Star, Peripheral Vision. Same day delivery and shipping on most items. Full modern repair facilities on premises for complete servicing of everything we sell.

SYNCHRO-SOUND ENTERPRISES, INC.
The Computer People
193-25 Jamaica Avenue, Jamaica, New York 11423
212/468-7067 TWX: 710-582-5886
Hours 9-4 daily Visit our new showroom
and Saturday Working units on display
Dept. 888 BankAmericard + Master Charge

Circle 119 on inquiry card.
sensory system, it is information about the "degree of certainty" of the cell in question with regard to its identification of a feature. This information derives from both intensity and spatial information, since both higher pulse rates and more lines active will increase the firing of the cell. This is an example of the way in which the brain may combine digital and analog information in a single decision process. The nature of what is being encoded by intensity at the higher levels of the process may be better understood by applying the "degree of certainty" concept to the lowest levels, where the temporal byte represents light intensity. Obviously the low level element has the greatest degree of certainty that it is being illuminated when it is being illuminated most strongly. At higher levels, number of inputs and activity of inputs can trade off with regard to drive on the receiving cell, and this is generally appropriate, because the degree of certainty about the existence of the feature to be decoded is increased if there is either a broad agreement among the inputs, or if the inputs are themselves "very certain." In general in the brain, "He who yells the loudest has the most to say." Since cells don't have egos, it works.

In any realistic approach with present day hardware, this would probably have to be modeled using a byte of several bits in place of each single line in the brain. "Which byte" would be equivalent to "which axon," and the bit pattern would carry the information carried by the temporal byte on the axon.

Given that the number of conceptual features into which the visual world could be subdivided is virtually unlimited, whereas the number of available bits in the systems' output byte is merely enormous, how does the brain decide which features to encode? Some of it, the simplest parts, are undoubtedly the result of evolutionary selection, hardwired at birth. Much of it however is probably developed in response to the type of visual environment in which the animal grows up. There is evidence, for example, that if a kitten is exposed to a visual world containing only vertical lines at a certain period of its development, its visual cortex will be rich in line detectors with a near vertical orientation, and poor in detectors for other orientations. Apparently this pattern persists throughout later life. It seems similar to a PROM.

Finally, we should mention some types of nonvisual input to the process that carry very specific correction information. Try this experiment. Look across the room while moving your head from side to side. Notice...
YES YOU CAN

Put The VERSATILE 2 To Work Now!

Even if you've NEVER used a computer, you can begin to operate the VERSATILE 2 immediately. It's all been done for you: a compact computer that needs no extras, and a complete software library.

Great for HOBBYISTS • TEACHERS • BUSINESSMEN

HOME You don't have to be a programmer or electronics technician. Or know anything more than how to plug it in, and read our manual. Get your hobby going without hassle.

CLASSROOM Get your kids right to work learning BASIC, playing games and solving math and accounting problems without worrying about what makes the computer go.

OFFICE Stop drowning in paperwork. And quit worrying about which system will work best for you. With our business accounting package, you can concentrate on business while the VERSATILE 2 concentrates on maintaining your records compactly, and permanently on diskette.

SPECIFICATIONS

Z-80 CPU
Video display with graphics on 9” 64x16 screen
16K Static RAM Memory
Serial and Parallel I/O Ports with standard RS-232 Connector provided at rear of unit
ROM to drive RS-232

EXPANDABLE
Add memory, printer, and up to 3 external mini-floppy disk drives.

OPTIONS
8K Memory Boards at $195.00 each.

HOME SOFTWARE LIBRARY

Five diskettes are included to give you immediate programming capabilities.

DISK #1 contains a Disk Operating System and 12K Extended BASIC. Easy to use statements include: IF THEN, GOTO, READ, EXIT, FOR, NEXT. You get complete line editor, multi-statement lines and multi-dimension arrays. A BASIC teaching program on this diskette will have you quickly programming in BASIC.

DISK #2 has many games including STAR TREK, BLACKJACK and STAR WARS. There’s room left over for you to add your own.

DISK #3 is a Home Accounting Package with programs like Budgeting, and Checkbook Balancing.

DISK #4 contains a Small Business Accounting Package. Included are programs for Payroll, Inventory Control, Accounts Payable and Receivable, Taxes, Invoicing, Check Printing, and much more.

DISK #5 is a formatted blank diskette for you to enter your own programs.

VERSATILE 2

$2495 Assembled and Tested. 6 Month Warranty. 30-day delivery or available direct from dealers.

See us at the Second West Coast Computer Fair – Booth #115

Scientific Sales, Inc.
175 W. Wieuca, Suite 210
Atlanta, GA 30342
(404) 252-6808

COMPUTER DATA SYSTEMS
5460 Fairmont Drive
Wilmington, Delaware 19808
(302) 738-0933

Alexander and Company, Inc.
5518 Florin Road
Sacramento, CA 95823
(916) 422-9070

(69x105) $2495 Assembled and Tested. 6 Month Warranty. 30-day delivery or available direct from dealers.

Circle 24 on inquiry card.
that the world seems to stay still, even though you are moving its image around on your retina. Now move the image around on the retina in a different way. Place your fingertip against your lower eyelid and lightly jiggle the eyeball while looking across the room (keep the other eye closed). Notice that this time the world seems to jump around as the image is moved about on the retina. Why the difference? In both cases the image is moving around on the retina. The answer is that movement of the image caused by moving the head in the usual manner is naturally an everyday problem for the brain in interpreting the visual world. It solves the problem by using feedforward information from the motor nuclei which control the movement of the head and body to correct the interpretation of the relative motion of image and retina to precisely allow for the motion as it occurs. Since you don't usually go around jiggling your eyeball with your finger (I assume), your brain has never developed a mechanism to pre-correct for doing so, and you see the motion. There are more subtle nonvisual inputs to the processing too, such as your motivations, but these are poorly understood and beyond the scope of these articles.

Now the hard part. How might we model such a visual system with current digital technology? As a start, let's examine what would be required of a "brute force" approach if we didn't care what it cost. It would seem the most straightforward method would be to have a set of microprocessors at each echelon modeling the activity of each of the elements at that level. Since with straight digital techniques we would have to code intensity on a byte of several bits length, each lower echelon input element talking to an upper echelon unit would have to present a byte rather than a line. This means (say) eight lines for each converging step and each lateral inhibition, instead of one. Each processor would then accept a number of bytes from elements at a lower level, which it would process according to a small ROM program, and a number of bytes laterally from its neighbors, which data would also figure in the result. The ROM program would determine the type of response of the "cell," and its output would be a byte on a bus that ran to a number of yet higher echelon processors, and laterally to its own neighbors. If we really wanted to model the brain's operation, this would all be conducted with handshaking logic and the processors would all have their own private clocks. Each processor would simply continually compute the result of whatever
If you want information on microprocessors, begin with the Osborne books.

PROGRAM BOOKS WRITTEN IN BASIC

Payroll With Cost Accounting
Accounts Payable And Accounts Receivable
General Ledger

These books may be used independently, or implemented together as a complete accounting system. Each contains program listings, user's manual and thorough documentation. Written in an extended version of BASIC.

#22002 (400 pages), #23002*, #24002*

Some Common BASIC Programs
76 short practical programs, most of which can be used on any microcomputer with any version of BASIC. Complete with program descriptions, listings, remarks and examples.

#21002 (200 pages)

ASSEMBLY LANGUAGE PROGRAMMING

8080A/8085 Assembly Language Programming
6800 Assembly Language Programming

Assembly language primers in the classical sense, these books treat assembly language as a means of programming a microcomputer. Full of simple programming examples.

#31003 (400 pages), #32003*

AN INTRODUCTION TO MICROCOMPUTERS

Volume 0 - The Beginner's Book
If you know nothing about computers, then this is the book with which to start. It tells what computers are all about and describes their component parts. When you've read this, you'll be ready for Volume I.

#6001 (300 pages)

Volume I — Basic Concepts
The world's best selling computer text describes those characteristics common to all microprocessors yet specific to none. All hardware and programming concepts you will ever need to know are explained at an elementary level.

#2001 (350 pages)

Volume II — Some Real Products (revised June 1977)
Every common microprocessor and all support devices are described. Only data sheets are copied from manufacturers. Major chip slice products are also discussed.

#3001A (1250 pages)

PROGRAMMING FOR LOGIC DESIGN

8080 Programming For Logic Design
6800 Programming For Logic Design
Z80 Programming For Logic Design

These books describe the meeting ground of programmers and logic designers: written for both, they provide detailed examples to illustrate effective usage of microprocessors in traditional digital applications.

#4001, #5001, #7001 (300 pages each)

PRICE QTY AMT

6001 Volume 0 — The Beginner's Book	$ 7.50
2001 Volume I — Basic Concepts	7.50
3001A Volume II — Some Real Products	15.00
4001 8080 Programming For Logic Design	7.50
5001 6800 Programming For Logic Design	7.50
7001 280 Programming For Logic Design	7.50
31003 8080A/8085 Assembly Language Programming	7.50
21002 Some Common BASIC Programs	7.50
22002 Payroll With Cost Accounting	12.50

*6 1/2%, SF Bay Area residents only
*5%, California residents outside SF Bay Area
*Payment must be enclosed for orders of 10 books or less.
* I have enclosed:
 • check
 • money order
 TOTAL AMOUNT OF PURCHASE

NAME ________________________________

ADDRESS ________________________________

STATE ______ ZIP ______

SHIPPING CHARGES

□ 4th class no charge, allow 3-4 weeks within USA, not applicable to discounted orders
□ 5.60 per book, UPS allow 10 days in the U.S.
□ 1.50 per book, special rush shipment by air in the U.S.
□ 3.00 per book, foreign air mail

*This book is not yet available. Please notify me when it is published:
Please send information on:
□ 23002 Accounts Payable and Accounts Receivable
□ 24002 General Ledger
□ 32003 6800 Assembly Language Programming

F3

BYTE March 1978 105
inputs it had available at any instant and output the result. When the input from any of its information sources changed, the output would change. With a processor and a ROM to represent each cell, such things as the weighting of percentage input from any ALMOST gate action, and the continuous alteration of output on the basis of the output of lateral neighbors, are simple. Such a system would be fast, powerful, and incredibly expensive. Let's say we chose for a minimal system running off a 64 by 64 grid of photosensitive elements. Further let's say we want to keep the ratio of input to output at each echelon approximately unity, so we wind up with about 4,000 highest echelon feature extractors. (Not bad; that means the system can recognize 4,000 different complex stimuli.) Then let's say we want to carry the analysis to a depth of five echelons. (That determines the complexity of the stimuli which can be extracted by the highest level. Remember that the brain only took four echelons to get to the complex field cell. Hypercomplex cells can handle some very advanced extraction problems.) At this point, however, we are talking about 20,000 processors. Even at 8008 prices, that's not exactly cheap.

Now suppose we try to trade speed for cost. The system just described obviously runs much faster than the real brain. A first step might be to have single processors at each echelon doing the work of many, even all, of the 4,000 elements at that echelon. Suppose we could update the output of a single simulated element in 100 µs. That means we could do all 4,000 in each echelon in about half a second. That's not too bad; it's still pipelining the processing from echelon to echelon, so the system would see a picture updated every half second with a (½ second x number of echelons) delay between the stimulus event and the final analysis. Even if we pulled some information off the pipeline early for rapid action, however, it's still too slow for real time work. (If you ever have the equipment at hand, try playing catch in a room illuminated with two second strobe light flashes. Anything below ten per second gets difficult.) Two complexities also appear when we try to update the simulated elements of an echelon serially. One is that the program for each element is different, which makes our ROM a little more complex. The other is that the output of each element in the array depends in part on the current output of its neighbors, including the ones you haven't gotten to yet in the current pass. With only one pass across the array per update, a “lateral lag time” error would
THE SSB $150 FLOPPY DISCOUNT

Affordable
The tribe at Smoke Signal Broadcasting took our BFD-68 disk system and scalped the price, but not the features to create the ABFD-68 (Affordable Basic Floppy Disk). We appreciate the fact that the computer hobbyist gave us our start and we haven't forgotten you.

$649 Assembled
Compare Price. Our SS-50 bus compatible disk system is $150 less than the assembled price of the leading S-100 disk system. And you can at least double that savings when you buy one of the computers manufactured by MSI or SWTPC that use the superior 6800 microprocessor.

Programmable
The BFD-68 is well known for its fine software. The system comes with the best disk operating system available and we offer a multitude of other compatible software products. These include a BASIC interpreter with disk file handling capability. By the way, our DOS now easily handles true random access files as well as sequential. Also, we have a super fast BASIC compiler for business applications. In addition, a Text Editor, 2 Assemblers, a Trace Disassembler useful for program debugging and an Object to Source Code Generator are all stock items available for immediate delivery. A word processor will be available very soon.

Reliable
We delivered our first mini-floppy disk system a year ago — 6 months ahead of any other 6800 based mini system. Thus, we've had twice the experience in building reliability into the system. Our NEW disk controller was designed using all we have learned in the past year about system reliability.

The ABFD-68 contains all the built in reliability of our regular BFD-68 plus you save money by supplying your own cabinet and power supply for the disk.

Available
We've shipped literally tons of our BFD-68 disk system in the past year and have learned to keep our production up with demand. Give us a call and chances are we'll be able to ship you the new ABFD-68 from stock and charge it to your Master Charge or Visa card. Better yet, ask us for the name of the computer store nearest you that carries our complete line of computer products.

SMOKE SIGNAL BROADCASTING
P.O. Box 2017, Hollywood, CA 90028 • (213) 462-5652

Circle 106 on inquiry card.
Circle 18 on inquiry card.

MATRIX PRINTER

- S100 Bus Compatible
- 40 Characters Per Line
- 90 Lines Per Minute
- Crisp Clear Copy
- Software Controlled
- Type Fonts - Script - Justification - Generate
- Any 7 Dot Matrix
- Symbols or Characters

- Inexpensive
- Reliable
- Dependable
- Attractive Cabinet Included
- Complete with Software
- Uses Plain Paper
- Kit $375

$426.80 COMPLETE (Assembled)

DISKETTE INTERFACE

- S100 Bus Compatible
- Uses FD1771 With On-Board Crystal
- Simple - easy to program
- Handles up to 4 Drives
- Just Plug in Interface

- $225 COMPLETE
- Miniflappy Drive $356 each
- SAB0 Drive $596 each
- SAB01 Drive $610 each
- 1K On-Board PROM and CP/M Software $100

- Hook Up Drive and Run Your Program

VISAS - MASTER CHARGE - CHECK - MONEY ORDER
CENTURY DATA PRODUCTS, INC.
1758 TULLY CIRCLE NE / ATLANTA, GEORGIA 30329
404/325-7878

THE BETTER BUG TRAP

Altair/IMSAI compatible board catches program bugs and provides timing for real-time applications.

Four hardware breakpoint addresses. Software breakpoints only possible at instructions in RAM, Better Bug Trap breakpoints can be in ROM or RAM, and data or instructions in memory, input/output channels, or stack locations.

- Board can stop CPU or interrupt CPU at a breakpoint.
- Real-time functions: watchdog timer, real-time clock (for time of day clock), interval timer.
- Sophisticated timesharing made possible!
- Unique interrupt structure: generates a CALL instruction to your subroutine anywhere in memory, not a RST!
- Addressed as memory. All parameters set easily by software.

All this and more for about the price of a real-time clock board, but nothing else does the job of the Better Bug Trap.

- $180, assembled and tested. 2 manuals plus software. 90 day warranty. Shipped UPS. Delivery from stock.

BIBLIOGRAPHY

The Electric Pencil II is a Character Oriented Word Processing System. This means that text is entered as a continuous string of characters and is manipulated as such. This allows the user enormous freedom and ease in the movement and handling of text. Since lines are not delineated, any number of characters, words, lines or paragraphs may be inserted or deleted anywhere in the text. The entirety of the text shifts and opens up or closes as needed in full view of the user. The typing of carriage returns as well as word hyphenation is not required since lines of text are formatted automatically.

When text is printed, The Electric Pencil II automatically inserts carriage returns where they are needed. Numerous combinations of line length, page length, line spacing and page spacing allow for any form to be handled. Character spacing, BOLD FACE, multicolumn as well as bidirectional printing are included in the Diablo versions. Right justification gives right-hand margins that are even. Pages may be numbered as well as titled. This entire page (including the large titles and logo) was printed by the Diablo version of The Electric Pencil II in one pass.

Now on CP/M

You've probably seen The Electric Pencil in action by now. It's the most powerful 8080/Z80 character oriented word processor on the market today. Michael Shrayer is now proud to present the new Electric Pencil II.

NEW FEATURES: *** CP/M Compatible *** Disk Operating System Supports Two Disk Drives *** Simple File Management *** Quick and Easy Disk Storage and Retrieval *** Dynamic Print Formatting *** Multicolumn Printing *** Print Value Chaining *** Page-at-a-time Scrolling *** New Bidirectional Multispeed Scrolling Controls *** New Subsystem with Print Value Scoreboard *** Automatic Word and Record Number Tally *** Cassette Backup Capability *** Full Margin Control *** End-of-Page Control *** Non-Printing Text Commenting *** Line and Paragraph Indentation *** Centering, Underlining and BOLD FACE

The Electric Pencil II is now available on CP/M. Standard printer versions $225. Diablo printer versions $275.

System Hardware MUST include:

8080 or Z-80 Based Microcomputer
Printer (Diablo Hy-Term, TTY, etc.)
Video Display (VDM-1, VTI or SOL)
CP/M Supported Disk System or...
North Star Mini-Floppy Disk or...
Cassette Interface (Tarbell or SOL)

The Electric Pencil II is now available on CP/M. Standard printer versions $225. Diablo printer versions $275.

MICHAEL SHRAYER SOFTWARE
3901 Los Feliz Boulevard
Los Angeles, CA 90027
(213) 665-7756

The Electric Pencil I is still available for non CP/M users as follows:

<table>
<thead>
<tr>
<th>Versions</th>
<th>Printer</th>
<th>Video Interface/Mass Storage</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS,SV,SP</td>
<td>TTY or similar</td>
<td>SOL/Cuter,VDM-1/Tarbell,VTI/Tarbell</td>
<td>$100.</td>
</tr>
<tr>
<td>SSN,SVN,SPN</td>
<td>TTY or similar</td>
<td>SOL/NStar,VDM-1/NStar,VTI/NStar</td>
<td>$125.</td>
</tr>
<tr>
<td>DS,DV,DP</td>
<td>Diablo Hy-Term</td>
<td>SOL/Cuter,VDM-1/Tarbell,VTI/Tarbell</td>
<td>$150.</td>
</tr>
<tr>
<td>DSN, DVN,DPN</td>
<td>Diablo Hy-Term</td>
<td>SOL/NStar,VDM-1/NStar,VTI/NStar</td>
<td>$175.</td>
</tr>
</tbody>
</table>

Demand a demo from your dealer!
Our MacroFloppy™
goes twice the distance.
For $695.

Introducing the Micropolis MacroFloppy™ 1041 and 1042 disk drive sub-systems. For the 5-100/8080/Z-80 bus. Packing 100% more capacity into a 5¼-inch floppy disk than anyone else. 143K bytes, to be exact. For as little as $695.

The MacroFloppy:1041 comes with the Micropolis Mod I floppy packaged inside a protective enclosure (without power supply). And includes an S-100 controller interconnect cable. Micropolis BASIC User’s Manual. A diskette containing Micropolis BASIC, and a compatible DOS with assembler and editor. The 1041 is even designed to be used either on your desk top, or to be integrated right into your S-100 chassis.

The MacroFloppy:1042 comes with everything the 1041 has, and more. Such as d.c. regulators, its own line voltage power supply, and, to top it off, a striking cover. Making it look right at home just about anywhere.

Both MacroFloppy systems are fully assembled, tested, burned-in, and tested again. For zero start-up pain, and long term reliability. They’re also backed up by our famous Micropolis factory warranty.

And both systems are priced just right. $695 for the MacroFloppy:1041 and $795 for the MacroFloppy:1042.

You really couldn’t ask for anything more. At Micropolis, we have more bytes in store for you.
For a descriptive brochure, in the U.S. call or write Micropolis Corporation, 7959 Deering Avenue, Canoga Park, California 91304. Phone (213) 703-1121.
Or better yet, see your local dealer.

MICROPOLIS™
More bytes in store for you.

Circle 70 on inquiry card.

Book Reviews

If you enjoy playing chess, then you should thoroughly enjoy Chess and Computers by David Levy. This 145 page paperback book is loaded with chess games played by computers. The games are computer versus computer and computer versus human. When you settle down with this book, it would be a good idea to set up your chessboard and play the games. As with any good chess book, half the enjoyment is found in playing along, duplicating the moves in these games, reading the comments by the author, and adding your own comments.

The initial chapter recounts two of the early (1700s) so-called chess playing machines. The automaton chessplayer developed by Baron von Kempelen is detailed with much emphasis placed not only on the sham it produced, but also on the mechanics of the machine itself. The chess playing machine of Torres y Quevedo is also discussed in this initial chapter. Although this machine played a king and rook against a rook endgame, the idea of the tree structure is quite evident in the mechanics of the device.

Chapter 2 is entitled “How Computers
MetaFloppy™ goes beyond.

The Micropolis MetaFloppy™ gives you more than four times the capacity of anyone else's 51/4-inch floppy. Because it uses 77 tracks instead of the usual 35.

The field-proven MetaFloopy, with thousands of units delivered, comes in a complete family of models. And, like our MacroFloopy™ family of disk drives, MetaFloopy is designed for the S-100/8080/Z-80 bus.

For maximum capacity, choose our new MetaFloppy 1054 system. Which actually provides you with more than a million bytes of reliable on-line storage. For less money than you'd believe possible.

The MetaFloppy 1054 comes complete with four drives in dual configuration. A controller, power supply, chassis, enclosure, all cabling. A new BASIC software package. And a DOS with assembler and editor. There's even a built-in Autoload ROM to eliminate the need for cumbersome button pushing.

If that's more storage than you need right now, try our MetaFloppy 1053, with 650,000 bytes on-line. Or our MetaFloopy 1043, with 315,000 bytes on-line. Either way, you can expand to over a million bytes on-line in easy stages, when you need to, or want to.

In other words, if your application keeps growing, we've got you covered. With MetaFloopy.

The system that goes beyond the floppy.

For a descriptive brochure, in the U.S. call or write Micropolis Corporation, 7959 Deering Avenue, Canoga Park, California 91304. Phone (213) 703-1121.

Or better yet, see your local dealer.

MICROPOLIS™

More bytes in store for you.

Play Chess. Needless to say, it requires a second and third reading. Levy assumes the reader has a basic knowledge of chess and chess playing by computer. He introduces the tree structure and its importance to game playing by computer. Some of the chess ideas stressed include: center square occupation; mobility and quantity of pieces; and the subtle features which make the difference between a good and a poor chess player. Any good chess player knows that the secret to winning involves the ability to look ahead throughout the game.

In this way, the player is in a position to gauge future game conditions and their values to himself and his opponent. The computer carries this look ahead feature to great lengths. Here is where the tree structure comes into play and Levy includes many details of this important aspect.

Chapters 3 and 4 are historical in that they recount the early and modern eras of computer chess. The early history of computer chess dates to before 1960 while the modern era brings us up to the mid 1970s. Throughout this book, and especially in these two chapters, the games played by computer are listed. This is the time to get out your board and play along with the book. The remarks and the games are well worth reading twice. As you read and play the games listed in these two chapters, you can see that the programs are improved as they grow in age and wisdom.

There are more interesting games in chapter 5. Since this chapter deals with computer chess tournaments, you would expect to see the better games played by computer. You won't be disappointed. The last two chapters concern themselves with future developments in the area of computer chess. Levy also takes time to mention his bet that no computer program will be able to beat him by 1978.

This book offers something for the chess player as well as for the computerist. The games are numerous and the remarks are good. The computer jargon is interesting and non-technical.

Len Gorney
Box 96 RD 1
Clarks Summit PA 18411

The publisher has just informed us that a second volume of Chess and Computers is due to be published soon.
The disk system you want at a price you didn't expect from a company that understands systems.
We know that one of the biggest problems in personal computing is that you're buying with your own personal dollars. That's precisely why you're going to like doing business with us. We're Vista Computer Company, the personal computer systems brainchild of the business computer systems people at Randal Data Systems. And our V80 Floppy Disk System is a perfect example of how we're prepared to help you get the most out of your personal computing dollars.

$649 buys you the whole kit and kaboodle

The $649 you spend on a Vista V80 Floppy Disk System ($749 assembled) gets you everything you need:
- An 80K byte minifloppy drive (assembled and tested) that can be powered directly by your 8080 or Z-80 computer. (Case and power supply optional.)
- An I/O cable and a single card, $100 bus-compatible controller kit that handles up to four drives and includes a PROM for bootstrap loading (additional drives just $399).
- VOS, the most advanced microcomputer disk operating system available, and our BASIC-E compiler, designed to work with VOS, all on a single diskette. Software functions include instantaneous program loading, named dynamic files, program editing, assembling, debugging, batch processing, and file copying on back-up diskettes.

All backed by the Vista 90-day warranty, membership in VUE (Vista Users' Exchange), and Dataforce, our associated service company with 115 locations throughout the country.

Test drive the V80 at your local computer store

Drop by your nearest computer store and run the V80 through its paces. Once you find out what it can do for you, you'll see that our combination of high performance and low price is hard to beat and easy to take.

We love to take orders

If you'd like us to ship you a Vista V80 Floppy Disk System, they're available now. Just send us a check or money order for the amount of purchase, or your BankAmericard/ VISA or Master Charge account number with expiration date and authorized signature. California residents add 6% sales tax. Uncertified checks require six weeks processing. To place your order, or to obtain further information, call or write today. Vista Computer Company, 2807 Oregon Court, Torrance, CA 90503. (213) 320-3880.

Vista
We never forget it's your pocket.
User's Report: The PET 2001

About a year ago Commodore Business Machines Inc, a well-known maker of pocket calculators, startled everyone in the personal computer industry by announcing its PET computer, a self-contained unit with keyboard, display, cassette drive and built-in BASIC for $495. The announcement was greeted with considerable enthusiasm and skepticism, for Commodore obviously was stretching the state of the art in technology, manufacturing and mass distribution.

Now the first PETs have been delivered, and a few computer stores have begun advertising their availability. The PET’s price has risen to $595, and in the meantime other personal computers with comparable price and performance characteristics have come on the market. Many people are wondering which computer represents the best buy in terms of hardware and software capabilities, expandability, availability and delivery, warranty and service, and software support. If you are considering purchase of such an “appliance” computer, this review should help you make your own informed judgments on these issues.

I ordered a PET a few days after the finished product was shown at the National Computer Conference in Dallas TX last June, and hence I received one of the early units (apparently number 17 off the production line) without a complete user manual describing everything the PET can do. By the time this is printed a better user manual should have been published; so bear in mind that this is a preliminary review, written in late October 1977, and based on experience with my PET, conversations with Commodore engineers at trade shows, and precious little documentation. I have not been able to test some of the PET’s many features, in particular the expansion options, due to the dearth of information from Commodore. For a more complete picture, talk to your computer dealer and, if possible, to other PET owners before you make a purchase decision.

General Specifications

Picture 1 illustrates the attractive overall appearance of the Personal Electronic...
The LATEST in Tape Systems

4800 BAUD CASSETTE RECORDER

An ASYNCHRONOUS NR2 type Recorder with remote motor start/stop. Error rate 10⁻⁸ at 4800 BAUD. Can be used from 110 to 4800 BAUD into a UART or "Bit Banger PIA" - no clocking required. This is not an audio recorder. It takes RS232 or TTL signals from the terminal or computer and gives back the same signals. No audio interface is used. Motor start/stop is manual or through TTL or RS232 signals.

Tape speed is 3.2"/second nominal; 1.6"/sec. optional. 110 volt, 60 Hz, 5 watts. (220 Volts on special order). Can use high quality audio cassettes (Philips Type) or certified data cassettes. Can be used in remote locations from a 12 Volt battery.

Recommended for DATA LOGGING, WORD PROCESSING, COMPUTER PROGRAM RELOADING and DATA STORAGE. Especially recommended for 6800 systems, 6502 systems, 1800 systems and beginners with the 8080 systems. Manual control except for motor start/stop. 6800 or 8080 software for file or record searching available on request. Used by major computer manufacturers, Bell Telephone and U.S. Government for program reloading and field servicing.

MODEL CC-8 $175.00

PROVIDES MONITOR AND TAPE SOFTWARE in EPROM. EXPANDS MIKBUG with 1 K of ADDITIONAL ROM PROGRAM.

This is a complete tape controller for the SWTP 6800 system. Has 3 K of EPROM space for your own programs. A 1 K ROM (2708) is provided with all tape and monitor functions. The ROM program is identical to our extensive 6800 ROM program.

Has one ACIA for one or two tape drives, one USART for an additional Serial port and a 4 bit parallel port for motor control. Will control one or two CC-8 or 3M3A drives with the software provided. Can be used with other tape drives controllable with 4 TTL bits if appropriate software changes are made.

Extra serial port is provided for your use with a second terminal or printer. (RS232, TTL or 20 ma)

The ROM program supplements the MIKBUG program and is entered automatically on reset.

AVAILABILITY - Off the shelf.

6800 CONTROLLER for SWTP

$190.00, Tested & Assemb. ($160.00, Kit)

PROVIDES MONITOR AND TAPE SOFTWARE in ROM TERMINAL and TAPE PORTS on SAME BOARD CONTROLS ONE or TWO TAPE UNITS (CC-8 or 3M3A)

This is a complete 8080, 8085, or 280 system controller. It provides the terminal I/O (RS232, 20 mA, or TTL) and the data cartridge I/O, plus the motor controlling parallel I/O latches. Two kilobytes of on board ROM provide turn on and go control of your Altair or Imsai. NO MORE BOOTSTRAPPING. Loads and Dumps memory in hex on the terminal, formats tape cartridge files, has word processing and paper tape routines. Best of all, it has the search routines to locate files and records by name, five, and four letter strings. Just type in the file name and the recorder and software do the rest. Can be used in the BiSync (IBM), BiPhase (Phase encoded) or NRZ modes with suitable recorders and interfaces.

This is Revision 7 of this controller. This version features 2708 type EPROM's so that you can write your own software or relocate it as desired. One 2708 programmed is supplied with the board. A socket is available for the second ROM allowing up to a full 2K of monitor programs.

Fits all S100 bus computers using 8080 or 280 MPU's. Requires 2 MHz clock from bus. Cannot be used with audio cassettes without an interface. Cassette or cartridge inputs are RS232 level.

AVAILABILITY - Off the shelf.

2S10 (R) CONTROLLER

$190.00 ($160.00 Kit)

Z 80 BOARD for SWTP COMPUTER: Now you can use the 8080/Z80 software programs in your SWTP 6800 machine. Replaces your MPU board with a Z80 and ROM so that you are up and running with your present SWTP memory and MPC card. $200 assembled and tested. ($160 kit)

AVAILABLE—November '77.

OVERSEAS: Export Version 220 volt 50 Hz. Write factory or: Megatron-Datameg, 8011 Putzbrunn, Munich, Germany; Nippon Automation 5-16-7 Shiba, Minato-Ku, Tokyo, Japan; Hobbydata, FACK 20012, Malmo, Sweden; G. Ashbee, 172 Ifield Road, London SW 10-9ag: Trintronics, Ltd., 186 Queen Street W., Toronto, Ontario, Canada; EBASA, Enrique Barges 17, Barcelona 14, Spain; ARIES, 7, rue Saint Phillipe du Roule, 75008 Paris; Microlem 20131, Milano, Italy; Eagle Electric, Capetown, S. Africa.

For U.P.S. delivery, add $3.00 Overseas and air shipments charges collect. N.J. Residents add 5% Sales Tax. WRITE or CALL for further information. Phone Orders on Master Charge and BankAmericard accepted.

National Multiplex Corporation

3474 Rand Avenue, South Plainfield NJ 07080 Box 288 Phone (201) 561-3600 TWX 710-997-9530
PET keyboard and cassette drive. The keyboard is a flat, calculator style unit with 73 keys. The upper case shift positions on 64 of the keys are occupied by graphic characters. At the right are the cursor control and insert/delete keys and a numeric keypad.

The PET includes a 9 inch (22.9 cm) enclosed, black and white, high resolution CRT display which presents 1000 characters, arranged in 25 lines of 40 characters each. The display is memory mapped (ie: continuously read out of a section of programmable memory separate from the BASIC program and data memory), and is easily controlled from BASIC using PRINT and POKE statements. (PET owners who have not already done so may want to experiment with direct access, via POKE statements, to the display memory, which starts at location 32768.)

Built-in software provides a winking cursor and automatic scrolling from the bottom of the display. The cursor can also be moved
CP/M™ LOW-COST MICROCOMPUTER SOFTWARE

CP/M™ - Microcomputer Control Program

CP/M™ is a time-tested diskette operating system for Intel 8080 or Zilog 80-80 microcomputers which use up to four IBM-compatible diskette drives. The CP/M disk operating system, along with its system utilities, is a proprietary software package which has operated in thousands of computer systems including OEM products, industrial applications, as well as microcomputer development and personal computing systems. CP/M supports named dynamic files with a powerful context editor for program creation and modification and includes a fast 8080 assembler, dynamic debugger with a self-contained assembler/disassembler, along with various file utilities. Optional software includes macro assembler, symbolic debugger, and various high level languages. The resident portion of CP/M operates in less than 4K bytes, with a minimum usable memory of 16K bytes. Hardware-dependent portions of CP/M are easily adapted to nearly any 8080 or Z-80 computer system using our "CP/M Alteration Guide" which gives the step-by-step procedure for tailoring CP/M to your specific equipment.

MAC™ - CP/M™ Macro Assembler

MAC, the CP/M macro assembler, is upward compatible from our standard assembler as well as the latest Intel macro assembler. In addition to full expression analysis, MAC allows IF, ENDIF, and ELSE groups for conditional assembly, MACRO definitions for macro grouping, IRPC, IRP, and REPT to repeat source statements during assembly with optional LOCAL symbols, and MACLIB for macro library access. Macro libraries are included with MAC for assembling Z-80 instructions and for performing sequential disk input/output. A symbol table can be selectively written to a diskette file for program debugging using SID. The "Macro Assembler Language Manual and Applications Guide" shows you how to effectively use macros to define macro-based languages, implement high level control structures, and perform operating system calls using predefined input/output macros. The MAC macro assembler occupies a 12K region of memory and requires concurrent operation with CP/M, resulting in a minimum usable memory of about 24K.

SID™ - CP/M™ Symbolic Instruction Debugger

SID is a powerful symbolic debugger for programs generated in the CP/M environment. Upward compatible from our standard debugger, SID uses symbol information produced by MAC for high level reference to memory and instructions in the program under test. SID expands upon the assembler/disassembler, breakpoint, and trace features of our standard debugger to include symbolic expressions, decoded memory locations by symbol reference during trace and display, 8-bit and 16-bit display and set functions, along with "pass counts" and permanent breakpoints. SID utility functions allow you to monitor program "hot spots" as well as collect traceback information from a breakpoint. In particular, the SID histogram utility shows the relative frequency of execution in various parts of a program under test so that you can "fine tune" for most effective execution. SID operates in a 6K region, and requires symbol information from MAC to use the SID symbolic features.

Additional Software: A variety of additional CP/M-compatible software packages are on the market: three different disk BASIC systems are available from Digital Research and independent suppliers, which support both scientific and business applications. Preprogrammed business packages can be purchased from independent suppliers for general ledger, sorting, mailing list, and text processing functions. Further, an ANSI Standard FORTRAN compiler is again available through Microsoft, with more high level languages coming. Finally, a healthy CP/M user's group has been active for over a year, where you can obtain quality software available at a very low cost and add your own programs to a community of enthusiastic users. Write us for particulars!

Please send me the following:

- CP/M™ System Diskette and Documentation (Set of 6 manuals) for $100.
- CP/M™ Documentation (Set of 6 manuals) only for $25.
- MAC™ Diskette and Manual (CP/M™ Serial No. ______) for $90.
- MAC™ Manual only for $15.
- SID™ Diskette and Documentation (CP/M™ Serial No. ______) for $75.
- Send more information on CP/M high level languages and optional packages.

NOTE: Due to the proprietary nature of CP/M™ software, please enclose your CP/M Serial No. when ordering MAC or SID without the CP/M diskette.

- BankAmericard No. _______ Exp. Date ______
- Master Charge No. _______ Exp. Date ______
- Check or M.O. enclosed.
- Check or M.O. enclosed.
- California residents add 6% sales tax.
- Total amount enclosed ______
- Name ______
- Address ______
- City ______ State ______ Zip ______

Post Office Box 579 - Pacific Grove, California 93950

Please send me the following:

- CP/M™ System Diskette and Documentation (Set of 6 manuals) for $100.
- CP/M™ Documentation (Set of 6 manuals) only for $25.
- MAC™ Diskette and Manual (CP/M™ Serial No. ______) for $90.
- MAC™ Manual only for $15.
- SID™ Diskette and Documentation (CP/M™ Serial No. ______) for $75.
- Send more information on CP/M high level languages and optional packages.

NOTE: Due to the proprietary nature of CP/M™ software, please enclose your CP/M Serial No. when ordering MAC or SID without the CP/M diskette.

- BankAmericard No. _______ Exp. Date ______
- Master Charge No. _______ Exp. Date ______
- Check or M.O. enclosed.
- California residents add 6% sales tax.
- Total amount enclosed ______
- Name ______
- Address ______
- City ______ State ______ Zip ______

Post Office Box 579 - Pacific Grove, California 93950

Additional Software: A variety of additional CP/M-compatible software packages are on the market: three different disk BASIC systems are available from Digital Research and independent suppliers, which support both scientific and business applications. Preprogrammed business packages can be purchased from independent suppliers for general ledger, sorting, mailing list, and text processing functions. Further, an ANSI Standard FORTRAN compiler is again available through Microsoft, with more high level languages coming. Finally, a healthy CP/M user's group has been active for over a year, where you can obtain quality software available at a very low cost and add your own programs to a community of enthusiastic users. Write us for particulars!
Photo 3: A simple example of the PET's graphic capabilities. This display was created with a series of 23 BASIC PRINT statements. The graphics characters in each character position run together to form the figures. The playing card illustrates the use of the reverse field option.

 commodore Radio Shack PET TRS-80 EITHER WAY... We've got software for you!

Show your friends what your computer can do. Learn programming techniques the enjoyable way—by playing and modifying these game programs. Just drop in the cassette and save hours of typing time. All programs run on 8K PETs and 4K TRS-80s (slightly simplified).

INTRODUCTORY SPECIAL: Play POKER against your computer. Match wits to corner ONE QUEEN on a graphic chessboard. Enrich your KINGDOM amid wars, famine, earthquakes, assassinations, etc. Test your bravery as a MATADOR in a bullring. Nearly 1000 lines of BASIC. 33% discount price until March 31 for all four $9.95

STIMULATING SIMULATIONS by Dr. C. W. Engel: Ten original simulation games such as Diamond Thief, Monster Chase, Lost Treasure and Space Flight, complete with a 64 page illustrated book giving flowcharts, listings and suggested modifications $14.95

6502 ASSEMBLER IN BASIC (for PET only): Accepts all standard 6502 instruction mnemonics, pseudo-ops, and addressing modes plus new TEXT pseudo-op. Evaluates binary, octal, hex, decimal, and character constants, symbols and expressions. Uses PET line number and cursor editing features for assembler source code. Supports execution of assembled programs with keyboard and display I/O. Fully documented and easily understood and modified $24.95

ORDERS: Check, money order or VISA/Master Charge accepted. We guarantee you functioning programs, readable cassettes and prompt delivery. Our catalog, $1 or free with any cassette, fully documents these and other programs and describes our royalty program for software authors. For a FREE flyer, use reader service card, or send a self-addressed stamped envelope for faster service.

Personnel Software™ P.O. Box 136-B3, Cambridge, MA 02138

VISA/MC telephone orders welcome at (617) 783-0694

in any direction using the cursor control keys (see the keyboard layout shown in photo 2), and the insert/delete key can be used to "push apart" characters on a line to make room for changes or to delete characters and "close up" the space which they formerly occupied. These features provide a convenient way to modify a BASIC program without having to retype entire lines: just list the lines on the display, use the cursor control and insert/delete keys to make changes directly on the display, and press the return key after each line is satisfactorily modified. A key is also provided to clear the screen or to send the cursor to the "home" position (upper left-hand corner).

Character Set

The PET's standard character set includes 64 upper case alphabetic, numeric and special characters, and 64 graphic characters, which are generated by pressing the shift key and one of the regular character keys (see photo 2). Each character is formed on the screen in an 8 by 8 dot matrix, and each character position on the screen is contiguous to those around it, so that graphic characters can be run together to form lines, solid areas and other shapes and figures. Furthermore, a "reverse field" feature, applicable on a character by character basis, changes each white dot to black and each black dot to white. This in effect gives 64 additional graphic characters. Any of these characters, including the reverse field and cursor control characters, can be inserted into a BASIC language PRINT statement, so that interesting graphics effects can be created quite easily. A simple example of the PET's graphics capabilities is shown in photo 3. In general, the PET's graphics capabilities are better adapted for drawing pictures of this sort than for plotting mathematical functions.

For the person who is more interested in alphabetic text than in graphics capabilities, the PET provides an upper and lower case character set with a limited number of graphic characters. The lower case option, which is applicable to the entire screen at once, is enabled by means of a POKE statement which changes the setting of an address line on the character generator read only memory. The effect is to produce a lower case letter in place of the graphic character which normally appears when an alphabetic key is pressed in upper case shift. (Yes, you must press the shift key to get lower case, and omit the shift key to get upper case!) This is illustrated in photo 4.
Keyboard

A much criticized feature of the PET is the design of the keyboard itself. It is a calculator style keyboard rather than a true typewriter keyboard. The keys are small and flat (about a half inch square and a quarter inch deep). They are tightly packed next to each other and are arranged in vertical rows rather than the slanting rows used on a typewriter keyboard. Although the alphabet follows the usual typewriter layout, the PET keyboard really cannot be used for touch typing because of the size, depth and spacing of the keys. The keyboard is said to be reliable and long lasting, but I did find that the space bar would not register correctly unless it was pressed squarely in the middle. Certainly the keyboard lowers the cost of the unit somewhat, and Commodore points out that their keyboard provides a larger number of keys and hence more graphic characters, but it is definitely more difficult to use. As a result many personal computer users may try to interface a separate typewriter style ASCII keyboard to the PET.

A BASIC program can obtain input of numeric quantities and character strings from the keyboard using an INPUT statement. But Commodore BASIC also includes a GET statement, which allows the program to capture each key from the keyboard as it is pressed without the scanning, editing and conversion normally performed by the BASIC system on input. This feature makes it easy to implement interactive keyboard games.

Cassette Drive

Also built into the PET's cabinet is an audio cassette recorder, which can be used for saving and loading programs and data. This device is hand operated much like an ordinary cassette recorder, but the motor can be started and stopped under software control, and the state of the manual switches can be sensed to a limited extent by software (yet the PET will still try to save a program on cassette if you've pushed PLAY instead of PLAY and RECORD). The cassette drive is said to be "modified by Commodore for much higher reliability of recording and record retention." The exact recording method used by the PET is not yet documented, but it appears to operate at a speed in the range of 1000 to 1400 bits per second. Because all information is recorded redundantly, the effective data transfer rate is about half this much. But the redundant recording enables the PET to detect and correct many recording errors. In my experience, data storage on the PET cassette drive has been remarkably reliable and trouble free.

Operating System

An elegant cassette operating system in the built-in read only memory supports named tape files of both programs and data, with file names up to 80 characters long. A SAVE command writes a program onto a tape cassette, and the thoughtfully provided VERIFY command can then be used to reread the program from cas-
More Than Just Hardware.

When you put the MSI 6800 Computer System together with our FD-8 Floppy Disk Memory, you have the best 6800 hardware package available today.

But to make a computer system work, you need more than just powerful hardware, you need powerful software . . . and MSI has what you need.

MSI Disk Extended BASIC Available in Both Compiler and Interpreter Versions

The new Software Dynamics BASIC Compiler is now available from MSI in an FD-8 Disk Version. The Compiler, with random and sequential disk data files, runs 50 times faster than the interpreter version making it ideal for business applications.

The Excellent TSC Editor In An FD-8 Disk Version

TSC's new text editing system is clearly the most powerful editor available for any microcomputer system. The FD-8 disk version allows you to edit and assemble long source files from disk and to place object code on disk as well.

MSI Reverse Assembler

Our Reverse Assembler for the FD-8 allows disassembly of object code programs, complete with creation of symbol tables, labels, and equate statements. The source code is placed on disk where it can be edited and reassembled.

Interpretive Debugger

An Interpretive Debugger is now available for MSI and SWTP 6800 systems. IDB is the most complete debugging package ever released for 6800 systems.

Hardware and software . . . MSI offers a complete computer system for the hobbyist, professional, and businessman. Send for our new 1978 Catalog and get all the details about these and many other fine MSI products.

Midwest Scientific Instruments

220 West Cedar
Olathe, Kansas 66061
(913) 764-3273
TWX 910 749 6403 (MSI OLAT)
TELEX 42525 (MSI A OLAT)
sette and compare it to the program still in memory to verify that it was written successfully. This is an essential feature when dealing with audio cassettes, if only for the user’s peace of mind. A LOAD command will search down the tape for a named program and then load it into memory. Similarly, a data file, written on tape from BASIC by means of OPEN, PRINT# and CLOSE statements, can be searched for and read by another BASIC program using OPEN and INPUT# statements.

With a little care, programs can be chained together: a program segment in memory can automatically load the next program segment from cassette and continue execution. I was able to do this by placing LOAD and GOTO statements (separated by a colon) on the same BASIC line; the old program segment seems to be completely erased and replaced by the newly loaded segment, but data values are preserved.

The PET’s built-in operating system is capable of handling multiple cassette drives and apparently other peripheral devices as well. A second cassette drive interface is in fact included in the basic PET.

Commodore BASIC

Table 1 summarizes the features of the powerful BASIC interpreter built into the PET Commodore BASIC, developed by the folks at Microsoft who brought you Altair BASIC, features real numbers, integers and strings, multidimensional arrays, a full set of mathematical functions, and a variety of extensions for string handling, input and output on external peripherals and machine language access.

Commodore claims that the PET’s BASIC is at least 20 percent faster than other microcomputer BASICSs, and the tests which I have run support this claim. In addition, Commodore BASIC is efficient in its use of memory, for it encodes BASIC statements as they are entered so that keywords such as PRINT and INPUT occupy only one byte. Another feature which can save time and memory space, especially when large arrays are involved, is the use of integer variables (which occupy two bytes) in place of real variables (which require five bytes). Programs are also stored on cassette in encoded form. This speeds up the process of saving and loading programs, but makes it more difficult (especially in the absence of documentation) to enter BASIC programs from an external device such as an ASCII keyboard or a paper tape reader, or to write programs, such as macroprocessors, which must manipulate program text as data.

For readers unfamiliar with Altair BASIC, the PET’s character string handling functions are worth mentioning. LEFT$, RIGHT$ and MID$ are used to extract a substring of specified length and position from a character string. LEN returns the length of a string, and VAL and STR$ convert numeric quantities to character string form and vice versa. ASC obtains the internal character code for a given character, and CHR$ converts a character code into a single character string for handling as such in BASIC.

Machine Language Access

The PET user is not restricted to working in BASIC, for the PET is designed to support entry and debugging of machine language programs, and even other languages and programming environments. The BASIC user can examine or modify any memory location with the PEEK and POKE statements, or call a machine language subroutine via the USR function. Some nonstandard IO devices can be handled with the aid of the

Table 1: A brief summary of the features and performance of Commodore BASIC. The BASIC interpreter was developed for Commodore by Microsoft Inc, Albuquerque NM, designers of the original Altair BASIC. According to Commodore's engineers, the PET's BASIC actually includes some additional features not documented in the preliminary users' manual, from which this information was taken.
WAIT statement, which repetitively tests a memory location (such as a PIA port) until specified bits are set. Finally, the SYS command can be used to transfer "complete control of the PET" to a machine language subsystem previously loaded into memory.

According to Commodore's engineers, it is possible to save and load machine language programs on cassette, and undoubtedly an assembler in read only memory will be offered some time in the future. A machine language monitor, similar to MOS Technology's TIM, but utilizing the PET's keyboard and video display, has been developed for the PET. It was originally intended to reside in the PET's read only memory, but was squeezed out by other software and is now loadable from cassette, according to the latest word I've heard. As of this writing, Commodore has not released the machine language monitor on cassette, nor any documentation describing its capabilities.

Expansion

One of the nicest aspects of the PET's design is the degree to which expansion provisions have been built into the basic unit. The main printed circuit board is connected by means of plugs to the keyboard, CRT and built-in cassette. It includes four edge connectors which reach the outside world through openings at the base of the PET's cabinet. These edge connectors provide:

1. A second cassette drive interface with read, write, motor control and sense lines.
2. An 8 bit programmable IO port, actually the unused portion of an MOS Technology MCS6522 Versatile Interface Adapter (VIA).
4. The microprocessor's address, data and control buses.

Provision for expansion is built into the PET's read only memory operating system as well. The second cassette drive and the IEEE 488 instrument interface appear to be fully supported by BASIC through the OPEN, CLOSE, PRINT#, INPUT#, GET# and CMD statements. Use of the VIA port and the address, data and control buses may require some machine language programming, although much could be done with the PEEK, POKE and WAIT statements.

THE ALPHA-1 SYSTEM
V RATED A BEST BUY
IN MASS STORAGE SYSTEMS

HARDWARE
• Stores greater than 500K bytes per side of a C-60 tape.
• Access a file in 17 seconds average on a C-60 tape.
• Load 8K of data in less than 11 seconds (6250 baud).
• 100% interchangeability of cassettes with no adjustments required or allowed.
• Compatible with all popular S-100 Bus Microcomputers.
• Audio track under computer control.
• Eliminates the need for ROM/PROM monitors.

SOFTWARE
• MCOS, a powerful stand-alone cassette operating system, is operationally much simpler than a D.O.S., handles variable length named files, will update a file in place, packs or copies tapes with a single command.
• EXTENDED BASIC with MCOS permits array handling and concatenation of files, plus all capabilities of MCOS.

PRICES START AT $240

FREE BUYERS GUIDE
If you are shopping for a tape or disk system for your S-100 Bus Computer System, you do not have all the facts until you have the MEC "BUYERS GUIDE TO MASS STORAGE." This 10 page guide book provides a framework for evaluating cassette, cartridge, and disk-based systems. Write for your copy today.

For complete information including the Dealer nearest you, write or phone:

MECA
7026 O.W.S. Road, Yucca Valley, CA 92284
(714) 365-7686

Circle 65 on inquiry card.
Photo 5: The PET props open for easy service access. Besides the main printed circuit board, the unit contains a TV chassis type circuit board and a third board in the cassette recorder.

And if the PET follows the pattern of other personal computers, additional systems and application software are likely to be offered by independents as well. Many application programs in BASIC can be found in books and in the files of large scale computer systems. Some of these programs are copyrighted and most will require some modification to fit the features of Commodore BASIC, but far less effort should be required to adapt such existing programs than to write the programs from scratch.

The PET has considerable potential in schools and universities, and it appears that many of the currently active software developers are especially interested in educational applications. I would not be surprised to see the PET show up in classrooms and university computer centers across the country, taking the load off game program burdened timesharing systems, and spurring new courses and educational research projects.

Availability and Delivery

Initially Commodore followed a policy of “cash now, delivery later” which meant, in my case, delivery on October 11 1977 of a PET which I paid for in late June. This was nominally within Commodore’s contractual obligation to deliver in 90 days. This situation should change, however, as Commodore builds up its manufacturing volume and works off the backlog of initial orders. As this is written, I have heard that a few dealers have demonstration units on display in their stores, and at least one dealer has begun accepting orders on credit cards. Someday you may be able to buy a PET at your local computer store and carry it home, but until then you should probably base your plans and expectations on “worst case” estimates of delivery time.

Warranty and Service

Service has always been a problem in the personal computer industry. It represents an even bigger problem for Commodore, since the PET will be distributed through calculator dealers as well as computer stores, to ordinary consumers as well as to computer hobbyists. Commodore’s approach to the problem has been to design the unit to be serviced as easily as possible. The PET cabinet props open for easy access, as shown in photo 5. The entire unit contains only three individually replaceable printed circuit boards. The main board can be snapped out and returned to the factory or replaced by a Commodore dealer. A 1 K byte diagnostic routine is included in the PET’s read only memory,
Problems for Computer Solution by Steve Rogowski, Teacher Edition. A collection of mathematical problems designed to stimulate thought and encourage research by students towards the goal of a final solution. The subjects range from arithmetic through calculus and on to problems that have yet to be resolved. An analysis of each problem provides ideas on logical approaches to a solution, and a sample program demonstrates one possible final solution. $9.95.

Take a Byte of APL

APL—An Interactive Approach Second Edition, Revised, by Gilman and Rose. Here's an excellent way to introduce yourself to the APL language. APL is rapidly becoming one of the most popular high level languages in the computer field because of its clarity and conciseness. Gilman and Rose have extensively updated their popular book to include the latest information about the language and the various forms of it which are now in use. Since the examples are all carefully spelled out, APL—An Interactive Approach is particularly recommended for those who do not have access to an APL terminal. Answers to all problems are included. $11.95.

Chemistry with a Computer by Paul A Cauchon. People are always looking for details of applications for the computer. It is one thing to say "gee whiz wouldn't it be nice if..." but such thoughts are but the stimulus to action. One result of a "gee whiz" idea is a series of educational and tutorial BASIC programs for use by teachers of chemistry, invented by Paul A Cauchon and published by Educomp Corporation. This book contains a collection of tutorial, simulation and problem generation programs which can be employed to advantage by teachers in high schools or colleges wherever a BASIC facility is available. If you're a chemistry professor or teacher by trade, or just a hobbyist interested in chemistry, this book will prove to be an invaluable tutorial aid. $9.95.

Chemistry with a Computer

The Underground Buying Guide, by Dennis A King. Here at last is a source book for all those hard to find suppliers! It's designed especially for computer hobbyists, experimenters, hams and CB'ers, and can tell you where to buy items like connectors, discrete components, electronic music supplies, instrumentation, analog to digital and digital to analog converters, and synthesizers. The list goes on to include Teletypewriters, speakers, microcomputer software, cassette units, floppy disks and many other items. It will be an invaluable addition to your reference library. $5.95.

PCC's Reference Book of Personal and Home Computing. Ever try to find the addresses of some manufacturers of, say, tape cassette or floppy disk interfaces for micros? Frustrating, isn't it? Well PCC has done something about it. This book lists hundreds of companies and stores selling hardware, software, and services. Survey articles on software, hardware, kits, applications and the future for the experienced and the not-so-experienced user of micros. Also included in this edition are bibliographies for further reference, book reviews, and an index of the articles from the major hobbyist magazines. $5.95.

---DIAL YOUR BANK CARD ORDERS ON THE BITS TOLL FREE HOT LINE: 1-800-258-5477.

You may photocopy this page if you wish to leave your BYTE intact. All orders must be prepaid.

The statement numbered 20464 was not typed by the user, and the statement numbered 4120 was listed twice by the LIST command. After the bad memory chips were replaced, these symptoms disappeared.

so that with special test equipment this board is “self-diagnostics.” The second board, for the CRT display, is virtually identical to the same section of a chassis in a conventional TV set. The third board, for the cassette drive, is similar to the circuit board found in an ordinary audio cassette recorder.

Commodore believes that the PET could be serviced by a TV repairman equipped with a brief service manual. It is not yet clear, however, just how or whether TV repairmen might be licensed to repair PETs under warranty. Presumably experienced computer hobbyists could read the service manual and diagnose problems with their own PETs, requesting replacement parts from the factory, but how Commodore might react to this possibility is an open question. Of course, there is always the problem of latent bugs in the read only memory software, which a TV repairman might have some trouble diagnosing. Seriously, the only realistic approach to handling software problems is for hobbyists and PET dealers to document carefully with examples any anomalous behavior of their PETs, referring the information back to the software developers.

At present, however, PETs are being serviced only at Commodore’s headquarters in Palo Alto CA. The user must arrange to ship the unit to Palo Alto and must be prepared to wait up to eight weeks for the PET to be fixed.
The Commodore PET 2001 is an eminently usable machine, as is illustrated by this display of a 6502 assembler written in the machine's version of the BASIC language. This assembler was originally written in FORTRAN for use on large systems, and implementing it in BASIC was a relatively mechanical job of translating statements and typing them into the PET.

Although eventually Commodore may have a nationwide service network for the PET, my informal service experience with the early unit which I received has been quite similar to that reported by owners of other personal computers. I was unlucky enough to receive a unit with three bad memory chips which caused a variety of strange effects such as those illustrated in photo 6. For several weeks after I received the PET I was unable to get anyone at Commodore on the phone and was left to fend for myself. I suspected a memory problem, but my memory test programs written in BASIC apparently were not exhaustive enough to locate the faults. Finally John Feagans, one of the designers of the PET, called me, quickly diagnosed the problem and mailed me a machine language memory diagnostic program and some replacement memory chips. With these aids I was able to find and replace the defective chips in a couple of hours.

Conclusion

The PET may well be an "appliance" computer, suitable for the most casual computer user or, with appropriate application software, for the average consumer. But it is also a powerful tool in the hands of an experienced computer hobbyist. The options and flexibility built into the PET, ranging from string handling and machine language access to the second cassette interface and the IEEE 488 bus, make it quite suitable for expansion and enhancement. As a small illustration, despite the problems I have had with my PET, I have been able to debug and put into use several thousand lines worth of BASIC programs. Among these is a 6502 assembler written in BASIC, a program of about 700 lines which I originally wrote in FORTRAN for use on an IBM 360 and a DECSYSTEM 10.

For the casual user, the PET is a very low cost computer which can be programmed easily in BASIC, for use in schools, for playing games and for fairly complex calculations in engineering, statistics and the like. A better keyboard, a disk and a reliable printer would make it suitable for some business applications. In fact, Commodore is said to be considering development of a PET II computer which would incorporate several of these features. Whether the PET evolves into a general-purpose computer with a variety of programming systems and peripherals will depend on Commodore's future moves and on the activity of PET owners.

The PET is far from the only alternative in the marketplace today, but it is a strong contender. If you are contemplating a purchase, you would do well to compare its features against other offerings, talk to owners of the PET and other computers, and think about what you really want from a personal computer. I hope that this review article will help you in your evaluation.
In conclusion, I would like to say that his last point, that his program is logically correct, is valid. Inasmuch as the purpose of designing before programming is to produce a logically correct solution to a problem, Mr Higgins has done well, but he should have stopped there. From there on, top-down structured programming should have taken over.

Douglas Drury
31 Brookmount Rd
Toronto, Ontario
CANADA

A COMMENT ON C FOR THE DEC 10

In his article “C: A Language for Microprocessors?” in October 1977 BYTE, J Gregory Madden mentions rumors about a C compiler for the DEC-10. I would like to direct his attention to a technical report from MIT. That report is MAC TR-149, “A Portable Compiler for the Language C” by Alan Snyder, May 1975. The compiler described in this report exists on the PDP-10 and HIS-6000 compilers.

Paul Dietz
Dept of Computer Science
Cornell University
Ithaca NY 14850

WAI T AND C?

The article “C: A Language for Microprocessors?” by J Gregory Madden (October 1977 BYTE, page 130) was in most respects a well-written tutorial revealing the overall flavor of the language. However, one of the proponents of a new C compiler for the DEC PDP-11, I would like to correct several important inaccuracies in the article.

Contrary to what is said on page 132, column 2, the method for changing the value of a variable in the calling function is not an “explicit exception to the call by value rule,” but rather employs a pointer argument.

Structures may not appear as arguments or the returned value of a function as claimed on page 136, column 2; but pointers to structures may so appear.

In the structure declaration on page 136, column 2, the initialization section should appear after the structure-name, not before it.

This reader was also momentarily confused by the use of “equivalence” on page 134 to mean assignment of a new value to a variable (eg: x = x+1). Mr Madden’s astute judgment that the C language is appropriate for microprocessors will soon be vindicated. We at Yourdon have just completed a C compiler and suitable documentation for the DEC PDP-11 running under DEC’s RSX-11 operating system, and we anticipate offering an Intel 8080 version in early 1978. It will soon be transplantable to other DEC systems, including RT-11 for LSI-11s. What should also make Mr Madden happy is that C compilers from Yourdon are implemented in the C language and produce optimized source code in assembler language for the host machine!

Carroll Zahn
Senior Staff Consultant
Yourdon Inc
1133 Av of the Americas
New York NY 10036

ALARMING SYSTEMS?

In reply to M Barlow’s letter in November 1977 BYTE, a Universal Alarm Annunciator is available from S & T Systems. The basic annunciator system consists of a microprocessor based controller with 96 optically isolated inputs. Alarm indications are displayed on a video monitor with as many as 14 alarm indications displayed at any one time.

Options available include a dual drive floppy disk for storing action procedures, a printer to produce a hard copy record of activities, and a tape reader for loading alarm messages. The system with the disk option sells for less than $14,000. More information can be obtained from S & T Systems, 1302 Fawst St, Tullahoma TN 37388.

Joe B Thompson
S & T Systems
1302 Fawst St
Tullahoma TN 37388

COMMENTS ON APL AND OTHER TOPICS—FROM MALAYSIA

I am one of your new readers. Every time I savour your many fine articles, I may be wrong, but wouldn’t an 8 K EROM like the 2708 suffice to decode all characters unique to APL for the video display? It could be configured as 64 by 16 by 8 (character by row by column). I count 48 special characters including overstrikes, with room for more. Once a standard has been established and demand rises, then a mask programmed version is not too far off. This shouldn’t set the hobbyist back more than $25, perhaps less, now that the nonerasable plastic versions are in the pipeline. I am neglecting “burn-

Great Locations
ComputerLand

Now Open:
3020 University Drive N W
Huntsville, AL 35805
(205) 539-1200
7674 Dublin Blvd
Dublin, CA 94560
(415) 828-8090
1074 San Pablo Avenue
El Cerrito, CA 94530
(415) 233-5010
22634 Foothill Blvd
Hayward, CA 94542
(415) 538-8080
6840 La Cienega Blvd
Inglewood, CA 90302
(213) 776-8080
24001 Via Fabricante, #904
Mansion Vejas, CA 92630
(714) 770-0314
4233 Convoy Street
San Diego, CA 92119
(714) 563-9992
117 Fremont Street
San Francisco, CA 94105
(415) 546-1592
San Jose, CA
Call Information
421-42nd Avenue
Santa Monica, CA 90403
(213) 572-8080
Santa Rosa, CA
Call Information
471 E. Thousand Oaks Blvd
Thousand Oaks, CA 91360
(805) 495-9554
104 W 1st Street
Tustin, CA 92680
(714) 544-0542
1815 Ignacio Valley Road
Walnut Creek, CA 94597
Call Information
2422 So. Colorado Blvd
Denver, CO 80222
(303) 759-4685
2475 Black Rock Turnpike
Fairfield, CT 06430
(203) 374-2227
Astro Shopping Center
Kirkwood Highway
Newark DE 19711
(302) 734-9656
Cumberland Square North
2423 Cobb Parkway (Rt 41)
Smyrna, GA 30080
(404) 935-0406
50 East Rand Road
Arlington Heights, IL 60004
(312) 255-6488
9511 N Milwaukee Avenue
Niles, IL 60646
(312) 967-1914
10935 S. Cicero Avenue
Oak Lawn, IL 60453
(312) 422-8080
813-B Lyndon Lane
Lousiville, KY 40222
(502) 425-8308
60605 Fredericks Road (Rt. 355)
Rockville, MD 20855
(301) 948-7676
2927-28th Street S E
Kentwood, MI 49508
(616) 942-2931
29673 Northwestern Hwy
Southfield, MI 48034
(313) 356-8111
419 Amherst Street (Rt 101-A)
Nashua, NH 03060
(603) 889-5238
2 De Hart Street
Morganston, N J 07760
(201) 539-4077
6427 Niagra Falls Blvd
Buffalo, NY 14215
(716) 836-6591
225 Eimiro Road
Ithaca, NY 14850
(607) 277-4888
1288 SOM Center Road
Cleveland, OH 44144
(216) 461-1200
3330 Anderson Lane
Austin, TX 78757
(512) 452-5701
6439 Westheimer
Houston, TX 77057
(713) 977-0909
1500 South 330th Street
Parkway Center Suite 12
Federal Way, WA 98003
(206) 838-9363
Washinglon, D.C
Call Information
52-58 Clarence Street
Sydney, NSW Australia 2000
29-3753
SEE US AT THE WEST COAST COMPUTER FAIRE MARCH 3. 4, 5 SAN JOSE, CALIFORNIA

Circle 33 on inquiry card.
The Best Game in Town.

Welcome to ComputerLand. An incredible adventure into the world of personal computers. A one-of-a-kind shopping experience.

Each ComputerLand store presents everything you ever wanted to know about computers. And then some.

Take our Game Room for starters. You'll find excitement for the whole family in our endless variety of challenging computer games. You can battle the Klingons in an out-of-this-world game of Star Trek. Create an electronic work of art with a computer controlled TV. Test your skill in a game of computerized hangman.

You can even plot your bio rhythm.

But we're more than just fun and games. Each ComputerLand store offers a knowledgeable and personable staff of professionals to serve you.

Plus the greatest available selection of micro components. Whether it's a data processing system for your business or a computer controlled sprinkler system for your home, you'll find whatever you need at ComputerLand.

Read on.

Genuine Service.

We want to supply you with the one system that's right. Rather than a complete system that isn't. Or a limited system that is.

That's why, at ComputerLand, you deal with real professionals who are also real people. People who speak your language.

... In addition to BASIC, COBOL or FORTRAN.

People, in short, who can offer both the novice and the old hand the same expert guidance in selecting the optimum system he or she needs.

Yet, assisting in the purchase is only the beginning of ComputerLand's service. If the kit you bought requires a little more do-it-yourself than you yourself can do, we provide assembly assistance.

If that complex program proves to be just that, we provide programming assistance.

And if your system breaks down, our in-store service department will get you back up and running.

Right now!

Great Selection.

Your first stop at ComputerLand may well be your last stop.

ComputerLand offers the finest quality and a complete inventory of tools, books and accessories. What's more, at ComputerLand, we deal in product. Not promises. Our inventory is on our own shelves. Rather than the manufacturer's. So you can take delivery on tomorrow's components today.

Which means, simply put, that at ComputerLand, you get exactly what you want.

Exactly when you want it.

Be Our Guest.

Begin with the grand tour of our exhibit areas. "Test-drive" any of our individual systems.

Then tell us your needs. We'll sit down and talk about the system that's right for you. It's as easy as that at ComputerLand.

The great computer store. RATED G.

Call or write for the address of the ComputerLand store nearest you. Franchise opportunities available.

ComputerLand

1922 Republic Avenue, San Leandro, CA 94577 (415) 895-9363

Circle 33 on inquiry card.
Introducing

Bit Pad.

The new, low-cost digitizer for small computer systems.

Bit Pad is the newest product from Summagraphics, the leading producer of professional digitizers. It has a small 11-inch active area and a small $555 price tag. But the list of applications is as big as your imagination.

Better than a joystick or keyboard for entering graphic information, it converts any point on a page, any vector, any distance into its digital equivalents. It's also a menu for data entry. You assign a value, or an instruction to any location on the pad. At the touch of a stylus, it's entered into your system.

Who can use it? Anyone from the educator and the engineer to the hobbyist and the computer games enthusiast. The data structure is byte oriented for easy compatibility with small computers, so you can add a power supply, stand-alone display, cross-hair cursor and many other options.

$1,000.00 creativity prize. You can also add $1,000.00 to your bank account as a reward for your inventiveness. Just write an article on an original Bit Pad application and submit it to any national small-computer periodical. If the editors publish it — and the decision is solely theirs — Summagraphics will pay you $1,000.00. Contact Summagraphics for rules concerning this offer.

35 Brentwood Ave., Box 781, Fairfield, CT 06430
Phone (203) 384-1344. TELEX 96-4348

Summagraphics
Corporation

Philip Yap Sue-Ken
4 Pesiaran Syed Putra
Kuala Lumpur 08-06 W MALAYSIA

MATHEMATICS SURVEY
BY A READER

In the personal computer magazines I have read, I have not seen any reference to the practical role of mathematics in computing. Since I have had eight years experience in teaching college mathematics, and held an advanced degree in that subject, I find myself curious about this aspect. To do really well, do you need to know any more than how to punch the buttons on a cheap hand calculator?

This is not a question about what you need to get started: obviously all you need to get started is patience (lots of it), hard work and a willingness to learn. But does mathematics have a place in the growth and development of the hobbyist, and if so, how much of what kind? Are there specific situations where math was or would have been a big help? I am not limiting things to subjects of the traditional curriculum, but include things like binary arithmetic, Boolean algebra, model theory, statistics, etc.

In short, I am attempting to find out what hobbyists are doing (or not doing) with mathematics. I am preparing a questionnaire, which not only has a few questions but leaves a generous amount of space for comment on what is, what ought to be, or even on how stupid it is to fill out a questionnaire! I welcome any kind of response, including insults, so long as they are in good taste.

Bennett Sawey
318 N Maple St. #16
Truth or Consequences NM 87901

I would wager that you will find mathematical concepts high on the list of "practical theory" embraced by many users of personal computers. . . CH

A COMMENT . . .

On page 174 of October 1977 BYTE, you pose the problem of determining whether two numbers A and B are nearly equal, to within some small range DELTA. You further specify that the
language in use has no absolute function, and then offer the horrendous solution:

IF (A-B)<0
and (A-B)>DELTA
or (A-B)<DELTA
THEN . . .

A much simpler solution is:

IF (A-B)<DELTA
and (B-A)<DELTA
THEN . . .
or the equivalent:

IF B>(A-DELTA)
and B<(A+DELTA)
THEN . . .

However, even shorter is:

IF (A-B)<DELTA2
THEN . . .

where DELTA2 is DELTA squared.

Incidentally, in floating point systems you never need an absolute value function if you have a square root function, since SQRT(A*A) will obtain ABS(A). The ABS function is a convenience, and in some systems may be less susceptible to roundoff.

KOMPUTAR UPDATES FROM DAVID BRADER

I have received questions from BYTE readers regarding my November 1977 article on "Komputar." Some of the questions are general enough to have a published reply for those who thought about writing but as yet have not.

About the 8 K byte dynamic memory, . . . The design is complete, but during debug I found that the $1 bargain chips I bought were not all functional. The board requires 16 IMS4060 or similar chips, but only two have worked so far. Until I can afford to purchase 16 new (rather than used) memory chips, the project is halted. The design appears to function as intended but I will not publish or give out information until it is completely tested. I can say this much:

1. It is an 8 K dynamic memory system that is self-contained on one 4.5 by 6.5 inch (11.4 by 16.5 cm) vector card.
2. It refreshes itself invisibly to the rest of Komputar.
3. It uses +5 VDC, +12 VDC, and -5 VDC.
4. It uses 4 K by one 22 pin TMS-4060 memories or similar.
5. The cost (wire wrap model) with new chips is $180.

I have been asked about printed-circuit boards for Komputar. I did a cost analysis of the system as designed (roughly $750 with 8 K of memory and a surplus multivoltage power supply), and then a time estimate for the printed circuit artwork. The results caused me to decide against putting out the effort for Komputar in its present form. I am considering some modifications to the design which will be upward compatible.

If these work out over the next few months, I will reconsider committing Komputar to printed circuit boards.

Readers have frequently asked about software. The TIM chip has many subroutines which can be tapped if you are coding in assembly language. A 2.2 K byte Tiny BASIC is available from Microcomputer Associates in Santa Clara CA. Other software is advertised in publications such as BYTE.

Talking about TIM, people asked what will interface to it. Any ASCII serial input, ASCII serial output, or ASCII parallel input devices, such as: A Teletype ASR-33, HP 2644A terminal.

We've gathered the family to show you why PERCOM's™ Number 1

In cassette data systems for microcomputers.

Pardon us for doing a little boasting, but we're proud of our family. Proud of each member's reputation for performance and reliability. And pleased that we can offer the best in cassette data systems and data terminal interfacing at low, home-computing prices.

It took more than guts and a little luck to forge a position of leadership. We're number 1 because you get more when you buy PERCOM™. The reason, simply, is experience. Every product described in this ad is based on nearly 10 years of crucial involvement in the design and manufacture of computer peripherals that use cassettes for mass storage.

Experience. It's why we developed a more reliable data cassette for home computing. Why our interfacing units provide both cassette and data terminal interfacing. Why you get the fastest, most reliable cassette data rates from PERCOM™ Experience. It's the reason for PERCOM™.

Not only have we developed the best cassette data systems, . . .

PERCOM DATA COMPANY, INC.

DEPT B
318 BARNES • GARLAND, TEXAS 75042
Phone: (214) 276-1968

Circle 91 on inquiry card.

BYTE March 1978 131
a homebrew television keyboard terminal, high speed paper tape reader, etc., etc.

Having worked in the digital electronics area for several years, I took it for granted that anyone could get the parts that I could. I goofed! I have gotten letters requesting names of sources for some of the parts used in Kompuutar. This has caused two things to happen. One, I have tried to find a source for the "special" parts required. Two, I have tried to substitute more available parts in the design.

Two substitutions were decided on. The HP hexadecimal LED displays (HP 5082-7340) are replaced with TI L311 hexadecimal LED displays which are available and cost less. The Intel 3624-4 PROM is replaced by the Intel 2704 EROM. This second substitution impacts the power supply requirements and backplane wiring. With these two substitutions, I found that Jade Company of Lawndale CA (see advertisement in November 1977 BYTE, page 243) can supply all the ICs required, plus program the Intel 2704. I am sure other companies can also supply these items and recommend shopping around for the best prices.

The changes to the backplane and modifications to wiring, due to the substitutions, are available. For these and a helpful hints package, send $2 to the address below, to cover the cost of Xerox and mailing.

David Brader
Kompuutar Works Ink
POB 483
Electric City WA 99123

ON COMPUTERS AND DNA

Have you ever seen a computer reproduce itself? Well, neither have I, and that is the crucial difference between misapplication of computer technology and recombinant DNA research. If a computer gets out of the laboratory, it just sits there. If an organism gets out of the laboratory, it might just decide to have progeny, and if those progeny are pathogenic and can thrive, we're in trouble, big trouble. That's where the threat is.

I'm writing in response, of course, to the letter by Mark Bizer in the December 1977 BYTE.

BJ Luberoff PhD
Editor, Chemtech
The American Chemical Society
48 Maple St
Summit NJ 07901

Now That You Bring Up the Subject:

Politically, banning research in a given area will only drive the search for truth underground, witness a long series of historical martyrs to the under-
standing of Nature starting with the Prometheus legend. The real dangers are unknown, in the same way that the dangers of atomic energy were unknown some 50 years or more in the past. But the potential benefits of genetic engineering make the risk well worth the challenge. CH

RAMBLING RUMORS ABOUT TI

Recently, in San Diego CA, by one of those rare coincidences, I happened to fall into conversation with a person who introduced himself as a member of Texas Instruments' design section for pocket calculators. He has read BYTE from day one and was familiar with all TI matters therein, including my letter about the SR-51 working on the PC-100A printer.

It was a mellow evening and a pity I did not have a tape recorder and was not more alert in my questions to him. As for the SR-51 on the printer, some work and some do not. He said the SR-51A was primarily a repackaged SR-51 for cosmetic reasons. The printer itself has very little intelligence except for a character generator. The decision of what to print and where is a function of the calculator that is mounted on the printer.

As many of us know, the printer has very few moving parts: essentially a stepper motor that advances the rubber drive wheel for paper movement. The printer mechanism can be thought of as a single horizontal row of dots, although the row is actually staggered to aid in heat dissipation. Internal timing in the PC-100A compensates for the staggered dot positions. The stepper steps several times in order to work through one print line.

Q: Can the PC-100A be made into a portable printer to work off batteries away from a power socket?
A: Not likely because of the high current pulses required of its operation. The paper used in the PC-100A was purposely chosen to be insensitive for greater permanence. Note the caution concerning sunlight and fluorescent light for some papers. Since the paper is insensitive, much greater heat is required. An incidental feature of the high heat is that the print head tends to stay clean when compared with other papers.

The answer to many of my questions was, "TI is a very aggressive company with the desire to make lots of money by filling the needs of the marketplace. When the bonafide need for a new product arises, if it is in TI's area of expertise, TI will be there, front and center," for example:

Q: What will TI do to enter the personal computer area?
A: It is a very aggressive company....

One interesting tidbit from our long discussion is the fact that TI has used the same chip set in most of their recent pocket calculators of every sort. The processor in their new TI-59 is the same as was used in the old SR-50, and even the SR-50 was not the first use. The firmware and the firmware chips have varied greatly, and it is basically the firmware that determines overt functions and operations. When I asked why the TI-59 cannot compute a factorial, he said, "Oh, it can compute a factorial, but we needed the button for something else. The factorial is in the ROM of the chip, but you can't get at it."

Q: Will there be hidden gold on the TI-59?
A: Probably not. We worked our butts off to insure that all features are overt and well-documented. The TI-59 offers much more than the SR-52, hidden gold and all.

Q: Could you have given the TI-57 more than a mere 50 program steps?
A: Easily, but once again that was a marketing decision. More than 50 would have helped to compete, but it would

Can you tell our previously-owned Execuport 300's from our new ones? (No fair, peeking at the price.)

Now you can buy a great refurbished Execuport 300 portable terminal, at a fraction of the price of a new one.

These units have been rebuilt to "like-new" standards; are covered by our standard one-year warranty, and offer the same, solid, dependable performance you expect from an Execuport 300, but maybe couldn't afford before.

For more information call Charles Kaplan, Computer Transceiver Systems Inc., East 66 Midland Avenue, Paramus, NJ 07652. (201) 261-6800.

Only $1795. (You peeked!)
Write and run machine language programs at home, display video graphics on your TV set and design microprocessor circuits—the very first night.

ELF II features an RCA COSMAC COS/MOS 8-bit microprocessor addressable to 64k bytes, DMA, interrupt, 16 registers, A//L 256 byte RAM, full hex keyboard, two digit hex output display, 3 slot plug-in expansion bus, stable crystal clock for timing purposes and a double-sided plug-in PCB board plus RCA 1601 video IC to display any segment of memory on a video monitor or TV screen.

SPECIFICATIONS

- **ELF II** is a 8-bit microprocessor/minicomputer
- A thoughtful gift for anyone who must stay up to date in computers and electronics
- **ELF II** is priced at $9.95 and is available for immediate delivery.

NOW AVAILABLE

- ELF II explodes into a giant when you plug the GIANT BOARD into ELF II's expansion bus. This powerful board includes cassette I/O, RS 232-C, CRT, P 1/0 and system monitor/editor—meaning your ELF II is now the heart of a full-size system with unlimited computing power. $79.95 kit, $12 p.h.
- **4K Static RAM** addressable to any 4K page to 64k. $9.95 kit, $1.50 p.h.
- **Prototype (Kipper)** Board accepts up to 16 IC's of various sizes. $17.80 kit, $1.50 p.h.
- Expansion Power Supply. $34.95 kit, $2.50 p.h.
- Gold plated 80-pin connector. $5.70 p.h.

Tiny Basic

- ASCII keyboard, controller board, D-A, A-D converter, cabinet

RCA COSMAC microprocessor/minicomputer

MANY USEFUL FEATURES

- Play Games
- Create graphics
- Animated effects
- Learn how to

Send Today

- 333 Litchfield Road
- New Milford, CT 06776
- Phone (203) 354-9735
- Send info on other kits.

For Anyone Who Must

- **Send info on other kits.**

ON SOFTWARE PROTECTION

The major use of microprocessors will not be in personal computers, but rather as logic replacements. Trade secret law will generally offer no protection against legitimate reverse engineering.

Consider, for example, a washing machine which, as a result of a new and nonobvious cycle sequence, provides an improvement over the prior art. Instead of implementing the new control with conventional logic, a microprocessor may be used instead. There is absolutely no reason why the new method of washing clothes, ie: the new machine cycle sequence, cannot or should not be protected by a patent. On the other hand, there is no way to "hide" the invention once it is embodied in the machine, and thus the law of trade secrets offers no hope for protection.

As for "software packages" sold in the form of tape cassettes, for example, it is true that patent protection is probably not available. But the law of trade secrets will be of equally little use, it is copyright protection which will probably be the best approach in such cases.

San Diego is seldom foggy, but it got foggy that night.

Webb Simmons
1559 Alcala Pl
San Diego CA 92111

Send info on other kits.
Let's Get Personal in Anaheim
June 6-8, 1978

A rewarding personal experience is in store for you June 6-8 at the NCC '78 Personal Computing Festival… the most comprehensive personal computing event ever held. The Festival, a separate feature of the National Computer Conference, will include approximately 30 program sessions, commercial exhibits of consumer computing products and services, plus a contest and exhibit of microprocessor systems and applications. All Festival activities will take place in the Disneyland Hotel Complex, just a few minutes from the Anaheim Convention Center, site of this year's NCC.

Plan now to attend the big, new NCC '78 Personal Computing Festival. The program will include special paper, panel, and tutorial sessions on such topics as speech synthesis and recognition, computerized music systems, hardware and software design, computer graphics, and small business systems. All papers will be published in a softbound volume, *Festival Digest '78*, which will be available during NCC.

Festival exhibits will provide an extensive display of commercial offerings by organizations serving the personal computing field. More than 100 companies, occupying over 175 booths, will display systems, components, terminals, software, kits, disc and tape cassettes, relevant publications, and related hobby items.

Rounding out the Festival will be a contest featuring microprocessor systems, devices, and applications ranging from home-brew DOS and graphics terminals to educational applications and computer games. Prizes will be awarded for the best exhibits.

Don't miss the year's most exciting personal computing event. For more information, return the coupon or call AFIPS at 201/391-9810.

☐ Please keep me up-to-date on Festival plans and activities.
☐ My company is interested in exhibiting at the Festival.
☐ Please send me information on the special NCC Travel Service.

Name ____________________________
Company __________________ Division ______
Street ____________________________
City __________ State ________ Zip ______

NCC '78 Personal Computing Festival

BYT

c/o AFIPS, 210 Summit Avenue
Montvale, N.J. 07645
telephone: 201/391-9810

Circle 81 on inquiry card.
Continued from page 6

The urge to solve the problem of automated editing tools with a small system has been growing within me for some time. Prior to starting this publication, I had often used the text editor of IBM's TSO software in preparation and testing of programs and job control in a large system timesharing environment. Earlier I had some experience with a more sophisticated editor, TECO on a DEC PDP-6. As a result of this experience, I dreamed of the possibility of a multiple window display, upper and lower case graphics, and lots of characters. Since then, as I found myself getting into word pushing with a vengeance as a daily way of life, the need for a practical approach to automated editing of manuscripts has become more important. I have seen examples of what a fast computer and good software can do in demonstrations of some automated editing tools used with PDP-10 hardware at Stanford Research Institute (now known as SRI International). Recently I have seen similar examples at Massachusetts Institute of Technology's Artificial Intelligence Laboratory. Ah, the frustration mounts! When would I find the time or money to duplicate such tools?

In many respects, I feel like the proverbial "shoemaker's child," running around "barefoot" with respect to the very technology about which I am most concerned. To be sure, I am a little hypocritical when I make this comment, for I do have a quite complete experimental laboratory in my basement: it currently has a loose federation of four different microcomputer systems talking to each other with programmed inter-port communication, each system specializing in a particular phase of the music control problems I spend my spare time upon. But this homebrew system is not a production tool for daily use in the office. Its status is anything but frozen, and as I experiment with the system it begins to resemble a bar of butter on a hot summer day. I am loath to use it as a production tool, for its very charter as a test bed for experiments is inconsistent with using it for regular work. Our present concept of automation in the editorial office has consisted of an IBM Correcting Selectric II typewriter on each editor's desk, the best electromechanical system, but far short of a computer text editing system.

Knowing full well that my personal homebrew system had limitations, I started a process of defining the requirements of a production text editing system which would fit my needs at the office and would be consistent with a "low" price tag using pro-
ducts drawn from the small systems field. It is in this activity of defining an editing system with as much standard hardware and software as I could get, that I found myself examining that class of complete systems characterized by extensive system software, extensive memory, video displays and mass storage on floppy disks. The activity of specifying such an editing system is the extent to which I have carried the search as of this writing in early December 1977. During 1978 I hope to see a practical fulfillment of this concept in one system. The result will not come up to the level of what I have seen at SRI in the way of high resolution displays and interactive text manipulation concepts, but I expect to get a workable and useful approximation at a price which I can afford. The requirements of the minimum system which will meet present goals are fairly simple to state:

- The editing software must have a sophisticated programmable nature allowing definition and execution of macrooperations (with multiple levels of conditional execution).
- The editing hardware and software must support upper and lower case video displays with enough capacity to allow multiple simultaneous "windows" of information about the article file being edited. Initially, a command language oriented to an ASCII keyboard will suffice for interaction.
- The editing system must support software of a good floppy disk operating system with all the usual utilities, a macroassembler and one or more compilers.
- The editing system must read, convert, edit, reconver and write IBM compatible EBCDIC text files on floppy disk media.

These requirements are based upon what I think I can get within the constraints of price (under $8000 to $10000 per system) and little or no software development or engineering design time on the part of myself and my associates at BYTE. Let's explore some of the reasons why these features might be important.

Programmable Editing . . .

As a individual thoroughly schooled in the uses and abuses of algorithms, one of my dearest wishes is to be able to specify procedures for the alteration of manuscript text, rather than mere "find" or "find and replace" or "delete" as found in most crude character oriented text editor programs.
LEARN TO PROGRAM
MICROCOMPUTERS

And at an affordable price. The Modu-Learn™ home study course from Logical Services.
Now you can learn microcomputer programming in ten comprehensible lessons. At home. In your own time. At your own pace.
You learn to solve complex problems by breaking them down into easily programmed modules. Prepared by professional design engineers, the Modu-Learn™ course presents systematic software design techniques, structured program design, and practical examples from real 8080A micro-computer applications. All in a modular sequence of 10 lessons...more than 500 pages, bound into one practical notebook for easy reference.
You get diverse examples, problems, and solutions. With thorough background material on micro-computer architecture, hardware/software trade-offs, and useful reference tables. All for only $49.95.
For $49.95 you learn design techniques that make software work for you. Modu-Learn™ starts with the basics. Our problem-solution approach enables you to "graduate" as a programmer.
Circle the reader service number below to receive our free descriptive brochure and course outline.
Use your Master Charge or VISA card to order today. Call Pat at (415) 965-8365.

Articles Policy

BYTE is continually seeking quality manuscripts written by individuals who are applying personal computer systems, designing such systems, or who have knowledge which will prove useful to our readers. For a more formal description of procedures and requirements, potential authors should send a self-addressed, stamped envelope to BYTE, Authors' Guide, 70 Main St, Peters­

As noted earlier, I was spoiled at one time in my life when I had about six months exposure to Digital Equipment Corporation's TECO text editor on a PDP-6 at the University of Rochester, Rochester NY. That taste was enough to convey the power of an editor in which I could compose conditional text alteration procedures, and execute them in real time to edit my files. (The files I was editing were a number of FORTRAN programs for John Conway's game of Life, implemented at the expense of my grades as a physics graduate student.)

For those unfamiliar with TECO, which is still used in a number of forms on Digital Equipment Corporation's computers, all I can say is that it is addictive. I had no such feelings for the IBM TSO editor which I used later in my experiences, or for the quickly implemented and quite crude text editor I have since written for my homebrew system. The TECO I used six years ago has probably evolved considerably since I used it, but that one taste was enough to leave me in love with the method.

The idea of programmable character oriented text editing language is simple: the ability to program use of primitives for scanning text in search of matches to a syntax pattern, and conditionally modify the text based on local context. A classic example with which I deal all the time at a manual level is the case of a decimal number followed by zero or "n" blanks, then a double quote mark ("), or one or more variations of the abbreviations, and full spellings of the singular or plural form of the English language word "inch." In Backus-Naur form, this syntax might be noted:

\[
\begin{align*}
\langle \text{inch-expression} \rangle & : = \langle \text{number} \rangle \langle \text{blanks} \rangle \langle \text{inch-units} \rangle \\
\langle \text{inch-units} \rangle & : = \langle \text{inch} \rangle \\
& \text{|}\quad \langle \text{inches} \rangle \\
& \text{|}\quad \langle \text{in} \rangle \\
& \text{|}\quad \langle \text{inch} \rangle
\end{align*}
\]

The object of the macro to be composed for this case is recognition of this syntax or approximations of it, and replacing each instance with a standard representation of the measurement which includes metric equivalents calculated from the original English measurement. Ignoring the semantics of the transformation, the resulting syntax should be:

\[
\begin{align*}
\langle \text{inch-cm-expression} \rangle & : = \langle \text{number} \rangle \langle \text{blank} \rangle \langle \text{inch-units} \rangle \langle \text{metric-inches} \rangle \\
\langle \text{metric-inches} \rangle & : = (\langle \text{number} \rangle \text{ cm})
\end{align*}
\]

This "inches to centimeters" transformation...
is the prototype of a number of similar operations which convert any one of the usual English system units to metric within text. At present I do this manually with a pocket calculator featuring metric conversions, and a blue pencil for recording the results. With some ingenuity, a text editor of the sort I am looking for can probably handle most such conversions semiautomatically with interactive approval of the results during execution of the macro.

As frosting on the whole macro text editing capability, it would be most useful to record a library of symbolically referenced procedures such as "inches to centimeters" as they are developed, so that they can be called as needed through a simple sequence in the text editing command language. This may not be achievable through standard software which is used honoring the principle of "no software development" on my part.

Capacious Upper and Lower Case Displays.

An editing system for manuscript materials without upper and lower case facilities is a contradiction in terms as far as I am concerned. One can certainly put up with upper case only text editing hardware in the context of any one of a number of existing high level languages and assemblers. But this absence of upper and lower case capabilities in such systems' software and hardware is an archaic carry-over from the earlier days of data processing and computing, when keypunches and Teletypes dominated the technology. The job of manuscript editing is impossible without a full upper and lower case capability. In judging articles for the magazine, I often will not accept a manuscript from an author which is typed upper case only, unless one or more exceptional conditions exist.

The use of video displays rather than hard copy is also crucial. I have no intention of waiting for a slow mechanism and creating mounds of waste paper as a result of the editing process. To be sure, hard copy will be used, but only in the form of a confirmation printout of the original state of the file supplied after the act of keying a manuscript to disk, and possibly as a final review of the results of the technical editing. An electronic display is essential to allow quickly scanning and examining details of text without the speed limitations of mechanical displays. The displays must be capacious also, since a mere 12 lines by 80 characters, or 16 lines by 80 characters, does not give a big enough field.

The ideal goal, which I have seen in the systems at the artificial intelligence laboratories mentioned earlier, is at least one full page of text, where a "full page" means perhaps 50 to 60 lines of text. This is the rough equivalent of the capacity of a page of single spaced typewritten copy. This capacity is then allocated to multiple logical windows on the data using the systems software of the text editor. Such a display does not exist in any inexpensive practical form for the small system field, although it can of course be simulated. There are several Altair (S-100) bus products on the market which put up 2.4 or 25 line displays of 80 char-
If I purchase two such boards and two video monitors side by side vertically (or horizontally), I can come close to that design goal using standard off-the-shelf components.

The concept of assigning logical "windows" on the file's data is essential. In each article I edit, I have numerous categories of information which are logically separate, though related by belonging to the same entity. There is always the main body of text of the article; there is the captions list with subcategories based on the type of illustrative material being captioned; there is always a main body of text of the article; there is the captions list with subcategories based on the type of illustrative material being captioned; there is always a set of summary information such as the author's name, "about the author," the author's address, etc. There are sometimes additional optional materials such as glossaries, boxes of text which are auxiliary arguments not part of the main text, etc. Often it is necessary to scan one such logical subset of the article while retaining a segment of another such subset in view. For example, when checking a glossary item, the main text might be scanned while the glossary is maintained on the display. Or, when making a change of phrasing to clarify an author's point, the original text should remain on display while the modification is being made, just as I can always see the original text when I make pencil corrections in the manual method of editing. The ability to allocate multiple windows pointing to the same data set is only effective when the display area is big enough so that each window is of nontrivial size.

IBM Compatible Media...

The requirement of IBM compatible floppy disk media is the only one which is driven by an external consideration specific to the context of BYTE publications. If the editing software were being used by an individual in an isolated situation, there might not be a need for either IBM compatibility or full size floppy disks. But here at BYTE we have an existing system of production which employs equipment that is supplied by IBM which uses floppy disk media for temporary storage of manuscript information during the typesetting and production process which happens after the technical editing of articles. The cleanest interface to this existing system is to have the input keying operations performed prior to the technical editing, then physically transport one floppy disk along with the source documents of the article to the editorial offices. After the technical edit is completed, the floppy disk is then returned to the production department along...
with the source documents, with all technical changes effected by the technical editors, rather than transcribed by production editors from penciled or typed corrections to a printed manuscript.

An Approach to Selecting Such a System’s Hardware

With this rough functional description of what I want, how do I go about converting the idea into a working system with off-the-shelf hardware and software? This question is what caused me to begin a process of examining some of the more complete product offerings by various manufacturers which had the potential for meeting the required specification. The fact that I will even consider several of the former kit manufacturers for the personal computing marketplace as the principal suppliers is evidence of the maturity of this field as it has grown over the past few years.

My first and most important criterion is that the system must be purchased in complete form from one manufacturer (complete meaning "assembled, tested and demonstrated"). I do not want finger pointing (at least initially) due to conflicts over the ambiguous definitions of different manufacturers’ hardware and software conventions. In my case, this will probably be accomplished by dealing directly with the manufacturer since we already have an established business relationship as a magazine; for readers of the magazine this can be accomplished by using a computer store as the local equivalent, with the proprietor selling a complete and working system demonstrated in the store before purchase. I may mix and match peripherals from other sources at a later time, but such
incremental additions or modifications will only be done with the backup of a known working configuration.

The second and equally important criterion is that the supplier must be able to supply a complete set of systems software, already developed and operational, at the time of delivery of the system. This software includes a disk operating system, the text editor framework for the manuscript editing operations, and the usual macroassembler, linking loader and compilers of a "minicomputer-like" small system.

I highly recommend that potential users of a system either purchase or examine the manuals of the system they intend to buy, going over the manuals for purposes of evaluating completeness and quality of hardware and software support. In the past month or so, two examples of excellent documentation in a small computer system have come to my attention. One example is the so-called "preliminary" (but not very "preliminary" by most standards of documentation) manual of the Apple-II computer, discussed in the review appearing separately in this issue. A second example is provided by a system I am examining as a potential candidate for the editing function: the Technical Design Laboratories' Xitan product which has been seen publicly at a number of shows and computer stores. I recently travelled to New Jersey to visit TDL at the invitation of Roger Amidon. During that day long visit, aside from the usual rituals of visiting a company manufacturing for this field, I had opportunity to examine much of their software in operation, and to examine their version of a high capacity 80 by 25 character display with upper and lower case graphics. I picked up a pile of approximately 3 inch thickness filled with the excellent manuals for their software, which includes a FORTRAN IV with nearly complete ANSI features plus extensions, a macroassembler, CP/M by Digital Research as an optional operating system, a data base management system for the FORTRAN processor called "Micro-SEED," and the ZTEL text editing language which was the most important attraction of the trip. From the documentation, I was able to learn that much of the capability I would like to have for a text editing system used with manuscripts is likely to be available more or less off-the-shelf in ZTEL. There will be some custom work required, to be sure: for example, the editor does not support multiple editing windows, and will not be able to symbolically store debugged text editing macros on the floppy disk without some thought. But it may prove to be most of what I was looking for, especially with the use of two of the 80 character by 25 line display boards TDL is now manufacturing.

At the time of this writing, no decision has been made yet as to the details of such an editing system, nor have we purchased any equipment. I intend to review the manuals of a number of the manufacturers who offer good combinations of hardware and software which are potentially usable in this system concept before any final decision and purchase is made. But now that I have made the investment of reading the manuals, TDL seems to be a company which is well worth looking at.

ALPHA Z - 80 $495

- 12 SLOT MOTHER BOARD
- 12 CONNECTORS (S-100 BUS)
- 17 AMP POWER SUPPLY
- HEAVY DUTY CABINET WITH FAN
- Z-80 CPU BOARD: All Sockets Included, Gold Contact Fingers, High Quality Glass Epoxy PC Board, Double-Sided, Plated Through Holes, Requires Only + 8 VDC / 800 MA.

NOTE: 22 SLOTS/30 AMP POWER SUPPLY - $595.

ADS also sells IMSAI and NORTH STAR Assembled at Kit Prices + LEAR SIEGLER ADM 3A Assembled at $888.00. TERMS: Cash with Order. Prices include Freight. (N.C. Residents add 4% Sales Tax.)

Z-80 is a registered trademark of Xilog Inc.
Which Brings Me Back to My Original Point...

The theme which introduced this diversion into editing hardware and software is that there are machines in existence right now, which are marketed as finished products, and which, with various degrees of software support, can be had at moderate prices in the $3000 to $8000 range through computer stores. This class of machines is what is needed to do "serious" personal computing. The characteristics of this class of machines, which has been maturing lately in the marketplace, might be given as: 16 K bytes of programmable memory and up, dual floppy disk drive, terminal, optionally some form of printer, and availability in a fully integrated form which needs no assembly from kits. Styles and configurations vary, of course, but the important point is that for the price of a good pickup truck, one gets a computer which can be effectively used for both utilitarian and frivolous computational uses at the whim of its owner. If the processor is an 8080 or Z-80, then Gary Kildall's CP/M operating system sold by Digital Research is frequently used with this kind of system, and often there is both a compiled high level language (for example TDL's or Cromemco's FORTRAN IV compilers) and a macroassembler. Rumor has it that PASCAL compilers exist which will be available shortly for this type of disk based system.

Your MicroComputer can be a Money-Making Machine with SOFTWARE from SYNCHRO-SOUND

Here are two Software packages that enable you to profitably make full use of the potential in your small computer system: Synchro-Sound's interactive business systems designed for use on an 8080- or Z80-based microcomputer with floppy disks and a hard-copy printer. Written in Microsoft Basic (known as Altair Basic*), the software supports file maintenance, query and reporting functions. This support includes creation, modification and deletion of customer records and processing of transactions to be posted against the files.

ACCOUNTS RECEIVABLE PACKAGE
The A/R module creates a history file of charges, credit and payment records for audit purposes. Payments can be applied to a particular invoice, or to the oldest open items. Batch Mode for monthly statements, aged receivables schedule, and delinquency notice as well as on-line inquiry mode for specific information are both fully implemented.

INVENTORY PACKAGE
The inventory system maintains a current listing of stock items featuring on-line transaction processing. Reporting functions include a master inventory listing with price and cost data, reorder alerts, vendor specification, and summary valuations. Year-to-date usage records are kept for each inventory item to facilitate sales analysis.

Operators Manual & Disk—Single Copy $500.00
Operators Manual only—$35.00 refundable upon purchase of Software Package. Microsoft Disk Basic—Single Copy $350.00

SYNCHRO-SOUND Enterprises, Inc.
193-25 Jamaica Avenue
Jamaica, New York 11423
212/468-7067 TWX 710-582-5886

Hours 9-4 Daily Working Systems and Saturday on display

Dept. BS BankAmericard/Master Charge

*Altair is a trademark of MITS, Inc.
Subscribe to COMPUTER... AUTOMATICALLY
...with a membership in the IEEE Computer Society

COMPUTER

the basic membership journal of the IEEE Computer Society - carries over 40 pages of tutorial and survey papers each month, providing lively coverage of the entire range of hardware and software design and application, with each issue focusing on a single major theme. Typical special issues zero in on such topics as Computers in Automation, Computers in Medicine, and Computer Networks.

In addition to these timely, readable technical articles, COMPUTER's regular features include

- conference and workshop reports
- book reviews
- new products and applications
- calls for papers
- Computer Society Repository — a unique microfiche and hard-copy collection of nearly 4000 papers on computer research
- Open Channel — a unique forum for gripes, new ideas, and oddball proposals
- Microsystems, a new section devoted to the low-cost yet powerful computer systems that have appeared over the last two years

SPECIAL BONUS OFFER through February 1978

Microprocessors and Microcomputers, 138 pages of selected reprints from COMPUTER, together with an introduction by our technical editor.

If you join the IEEE Computer Society between now and February 28, 1978, you will receive free this handsome 138-page volume.
Membership Application

If you are:
- an IEEE member who wishes to join the Computer Society **
- an individual who wishes to join both the IEEE and the Computer Society **
- an individual joining the Computer Society as an affiliate member **

Full Signature
Date

Publication Options

If, in addition to your automatic subscription to *Computer* Magazine, you would also like to receive:
- IEEE TRANSACTIONS ON COMPUTERS (1116) $3.00
- IEEE TRANSACTIONS ON SOFTWARE ENGINEERING (1117) $3.00
- JOURNAL OF SOLID STATE CIRCUITS (1410) $2.00
- JOURNAL OF OCEANIC ENGINEERING (1420) $2.00
- PROCEEDINGS OF THE IEEE (1101) $4.50

Use the numbers to identify your plant activity and your own work. If more than one activity is involved, use the code number for the most prevalent. Note: If you select "other" for work and plant code or "other personnel" for job function code, be sure to explain on the lines provided.

WORK AND PLANT (Enter codes) Plant __ Your own work ____

1. Large computers
2. Minicomputers
3. Microcomputers
4. Computer peripheral equipment
5. Data processing systems (system integration)
6. Office and business machines
7. Test, measurement, and instrumentation equipment
8. Communications systems and equipment
9. Navigation and guidance systems and equipment
10. Consumer entertainment electronic equipment
11. Consumer electronic appliances
12. Other consumer electronics
13. Industrial controls, systems, and equipment
14. Components and subassemblies
15. Materials and hardware
16. Aircraft, missiles, space and ground support equipment
17. Oceanography and support equipment
18. Medical electronics
19. Industrial companies within OEM incorporating electronics equipment in their product, not elsewhere classified
20. Independent research, test, and design laboratory and consultant (only if you are not connected with a manufacturing company)
21. Government agency and military
22. Industrial companies using and/or incorporating any electronic products in their manufacturing, research, or development activities
23. Communication (radio, TV, police)
24. Transportation services (airline, railroads, etc.)
25. Computer and data processing services: service bureaus, software services, timesharing, consulting
26. All other commercial users
27. Power generation equipment manufacturer
28. Power production (atomic, electrical, etc.)
29. Power generation
30. Power transmission
31. Power distribution
32. Utilities, except power (telephone, telegraph, pipelines, etc.)
33. Distributor
34. School, university, or library
35. Others (explain)

JOB FUNCTIONS (Enter code) __

1. General and corporate management
2. Design and development engineering (circuits, components, equipment systems)
3. Engineering services (evaluation, quality control, reliability standards, test)
4. Basic research
5. Manufacturing and production
6. Engineering support (draftsman, lab assistant, technician)
7. Purchasing and procurement
8. Marketing, including sales
9. Computer systems operations
10. Engineering systems planning and design (utilities)
11. Operations including construction & maintenance (utilities)
12. Dean, professor, instructor, etc.
13. Student
14. Other personnel (explain)

JOB CATEGORY (Enter code) __

1. Management
2. Engineering

Mail the completed application and full remittance (check payable to IEEE) to: IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854.
Favorites from the BITS Library

- Introduction to Microcomputers, Volume 0, by Adam Osborne. $7.50
- Introduction to Microcomputers, Volume I, by Adam Osborne. $7.50
- Introduction to Microcomputers, Volume II, by Adam Osborne. $15.00
- Computer Power and Human Reason, by Joseph Weizenbaum. $5.95
- Dictionary of Microcomputers, by Philip E Burton. Hardback, 169 pages. $12.50
- How to Buy and Use Minicomputers and Microcomputers, by William Barden. 240 pages. $9.95
- The Underground Buying Guide, by Dennis A King. $5.95
- PCC's Reference Book of Personal and Home Computing. $5.95
- Understanding Microcomputers and Small Computer Systems, by Nat Wadsworth. $9.95
- The Thinking Computer, Mind Inside Matter, by Bertram Raphael. 322 pages. $6.95
- Computer Lib, by Theodore Nelson. 126 pages. $7.00
- Microcomputer Design, by Martin Research. $14.95
- Payroll With Cost Accounting, by Rudd A Crawford and David H Copp. $4.35
- Understanding Microcomputers and Small Computer Systems, by Nat Wadsworth. $9.95
- The Thinking Computer, Mind Inside Matter, by Bertram Raphael. 322 pages. $6.95
- Computer Lib, by Theodore Nelson. 126 pages. $7.00
- Microcomputer Design, by Martin Research. $14.95
- Payroll With Cost Accounting, by Rudd A Crawford and David H Copp. $4.35

Praised by many critics as the best books in their field, The Art of Computer Programming, Volumes I, II and III, are part of a projected seven volume omnibus survey of computer science now being completed by Donald E Knuth.

- Volume I, Fundamental Algorithms, begins with a thorough discussion of the mathematics used in computer programming, followed by a treatment of information structures, stacks, arrays, linked lists, dynamic storage allocation, and trees. 634 pp; $21.95.

- Volume II, Seminumerical Algorithms, is concerned with random numbers, statistical tests, random sequences, as well as arithmetic (floating point and multiple precision), polynomials, and rational arithmetic. 624 pp; $21.95.

- Volume III deals with Searching and Sorting, and as the name implies, the emphasis is on algorithms for sorting, including combinatorial properties of permutations, internal sorting, optimum sorting, and external sorting. Also included is a section on sequential searching, hashing, digital searching, and more. 722 pp; $21.95.

A hypothetical assembly language called MIX has been developed by the author to illustrate programming examples throughout the series. MIX is easily convertible to other assembly languages.

Prof Knuth writes with style and wit (among many memorable quotes is one from McCall's Cookbook!). This classic work belongs on the reference shelf of everyone seriously interested in computer science.
Projects in Sight, Sound and Sensation by Mitchell Waite. Dedicated to "all space cowboys." Detailed theory and practice of seven fascinating amateur electronic projects, along with a detailed appendix on how to make PC boards. $5.25.

What to Do After You Hit Return or PCC's First Book of Computer Games. This is PCC's first book of computer games, a compendium which includes descriptions of numerous games, and listings of 37 selected BASIC games. $8 New Second Edition.

Game Playing With Computers by Donald D Spencer, published by Hayden. Topics include numerous mathematical problems, casino games, board games, unusual gambling games, and miscellaneous logic games. Numerous BASIC language programs and listings are included to show details. $16.95.

Chess Skill in Man and Machine edited by Peter W Frey. This is a most fascinating book, concerning itself with the when, how, and why of computer chess. $14.80.

The Best of Creative Computing Volume I. The Best of Creative Computing Volume II. Culled from pages of Creative Computing Magazine, these two volumes provide fiction, fun, foolishness, and plenty of nuts and bolts commentary and programming information for anyone curious or serious about the wonderful world of personal computing. $8.95 per volume.

The 8080A Bugbook is an excellent source book covering all aspects of the 8080A processor chip. Hardware and software are discussed with equal thoroughness. Chapters cover what a microprocessor is; generating a device select pulse, clock cycles and timing loops, input and output, subroutines, interrupts, external flags and stacks, and the 8080A instruction set. Numerous examples are included to aid the reader in understanding the material. Each section concludes with a series of thought provoking questions. $9.95.

The BITS Catalog

At last! The BITS catalog is here! We've carefully screened and evaluated scores upon scores of microcomputer books and reference texts. Now we offer what we believe to be the most authoritative, most comprehensive catalog of personal computing publications available anywhere. It's a reference work in itself. Catalog sent with every order. Or simply circle the BITS number on your BYTE reader service card.

Order by Telephone

WATS up? The BITS toll free hotline is now available for customer orders. Dial your bank card orders Monday through Friday between 9:00 a.m. and 5:00 p.m. Eastern Standard Time. 1-800-258-5477. In New Hampshire, call 924-3355. Before you dial, please have ready your BankAmerica or Master Charge credit card number and expiration date, the titles of the books you wish, and your shipping address.

To call about an order—please dial (603) 924-3355.
SAVE 10-20% ON LEADING LINES

FLOPPY DISKS
Best price & delivery on floppy disk interfaces

North Star Micro Disk, kit List $599 $599
Above, assembled List $799 699
Vista Micro Disk, kit List $649 549
Above, assembled List $749 649
New Micropolis MacroFloppy (143 kilobytes), assembled 695
Dual Micropolis MetaFloppy (630 kilobytes) 1895
(MICROMATION, TARBEll, & other interfaces and drives also available.)

Z-80 S-100 CPU BOARDS
Digital Innovations reg. st $69.95 $129.95
North Star 4 MHz reg. $199.00 169.95
TDL ZPU reg. $289.00 229.00
Assembled and tested (any of above) — LIMITED TIME SPECIAL ADD $ 40.00
(CROMENCO, ITHACA AUDIO, and others available.)

S-100 ADAPTERS for Heath H-8, Radio Shack TRS-80, or Intel SBC — Introductory offer:
ONLY $ 49.95

S-100 MEMORY BOARDS
North Star 16K Dynamic RAM
Kit List $399 $329
Assembled List $469 379
Dynabyte 16K Dynamic RAM,
Assembled & Tested List $399 319
SD 32K Dynamic w/8K, kit 149
SD 32K Dynamic w/16K, kit 249
SD 32K Dynamic w/32K, kit 449
Cybercom ISSM1 16K Static w/4K, kit 139
Assembly (for any of above items) ADD 50

MAINFRAMES
North Star Horizon 1, kit List $1999 $1349
Above, Assembled & Tested List $1999 1599
North Star Horizon 2, kit List $1999 1699
Above, Assembled & Tested List $2349 1939
IMSAI 8080 w/22-slot, kit List $469 584
IMSAI 8080 w/32-slot, kit List $699 5094
IMSAI VDP 80/1000 List $15995 654
TDL Xitan 1 List $789
(Also save on CROMENCO, POLYMORPHIC, & SOLID STATE MUSIC.)

NAKED S-100 SYSTEM
Z-80 CPU, 8K, 16x64 Video interface and interface to keyboard, kit $ 596
Above, Assembled 745
Add $1.50 per board and $10 per system for handling, shipping, and insurance.
SEND FOR FREE 64-PAGE CATALOG.

The Altair
(S-100) Bus
Forum:
PCC 77

An Altair (S-100) forum was held at Personal Computing 77 in Atlantic City NJ in August 1977. The forum, led by William Goble, dealt with some of the problems of, and the future of the Altair (S-100) bus structure. As secretary for the group, I have tried to collect the ideas from the forum. I have also taken some liberties in adding additional information gathered at PCC 77 relating to the discussions.

Expansion of the Bus
1. Eight extra lines are not available on the bus for a 16 bit data bus.
2. 16 standard address lines are available plus four semistandard (A16 to A19) lines used by Technical Design Labs (TDL).
3. Expansion to a 16 bit data path can be achieved by:
 a. Ignoring conflicts on some Altair (S-100) lines, using them and ensuring your system will work (12 to 17, 59 to 66).
 b. Multiplexing data down the present data lines a byte at a time (the Alpha System does this, as does the 8080, etc, during a multibyte instruction): this entails a smart processor board. It could slow the processor timing or cause speed limitation problems with the bus. (This can also be used with 12 bit processors.)
 c. Using two parallel Altair (S-100) boards: a wasteful technique, but one which simplifies some problems.
 d. Using a ribbon connector on the top of the cards to connect extra data and address lines: this means that only the expanded precision cards are affected. Noise problems can be reduced in the connector by alternating ground lines and power lines with data and address lines. (32 data and 32 address lines would allow for any foreseeable expansion.)

Method b is most practical for immediate
expansion. Method d is needed for long-range expansion for 32-bit microprocessors (perhaps as a 16-bit path used in conjunction with b to achieve 32 bits).

Problems with the Altair (S-100) Bus

1. Noise

Two examples of bad Altair (S-100) bus layout were cited. The noise on these buses was such that intermittent operation of the system resulted. Noise on the bus can be caused by the following:

a. Crosstalk

Crosstalk occurs between adjacent lines along the length of the bus. The bus consists of the mother board plus the traces before ending at individual components on all boards in the system. High frequency signals are likely to be transferred from line to line. Spacing layout, construction materials of the mother board, and reflections (see next section) can all seriously affect crosstalk.

b. Reflections

When a signal reaches the end of the bus, part of the signal is reflected. Reflection can occur with any wave-like phenomenon, including light waves, sound waves, or high frequency electrical signals. It happens when the wave strikes a medium of different characteristics than the original medium (different density, for example, in the new medium). Reflection can be stopped by proper termination of the line. Two types of termination devices are in use in some Altair (S-100) bus designs. The effect of present terminators has not been studied in detail (even by the designers) to get comparative effects. However, the general consensus is that any attempt at termination is good.

2. Speed

There is a limit to the Altair (S-100) bus's speed. This occurs due to a propagation delay of from 1 to 10 ns down the bus, and as a result of noise from reflection and the increase of crosstalk with speed. The speed limit changes with different design layouts. One manufacturer who had run computer simulations on their design would claim only 4 MHz with complete confidence (it was the cleanest system I saw). With at least two other systems running into trou-
Deep Within Every Novice Lurks a Computer Hacker Waiting to Get Out

Help free the novice in your life with two outstanding selections from BITS...

Your Home Computer, by James White, is a clearly written nontechnical description of personal computers that requires no prior knowledge of computers or electronics. The emphasis is on understanding; over 100 illustrations are included. Topics include: computing and you; communicating inside a computer; computer thought processes; fixed memory; inputs and outputs; peripherals; systems components; how to choose a microcomputer; and so on. Your Home Computer is the ideal book for readers who thought they could never understand how computers work. And the best part is that it's easy and fun to read. Yours for $6.

The perfect book for the layman or woman, How You Can Learn to Live With Computers is a lively account of these ubiquitous machines and their role in present society. Author Harry Kleinberg begins with some elementary logic and shows how a simple hardware circuit can be used to illustrate logical concepts. $8.95.

BITS Inc
70 Main St
Peterborough NH 03458

For ease in ordering, use the coupon on page 147, writing in the name(s) of the book(s) you want.

Please note that processing may exceed 30 days in unusual cases.

bles even at 2 MHz, there is a real question of bus design and proper termination. Claims of some manufacturers with fast buses were in open question.

Conclusions were that if you have noise problems, add a terminator (terminator boards are available) and see what happens. On a well-designed system with proper termination and shielded layout of the mother board, the real speed limit should be about 10 MHz. On nonterminated unshielded systems, the speed limit will probably be about 3 MHz. Some study is needed to know more exactly, however.

3. Incompatibility

Several of the originally undefined pins have now been multiply defined (12, 13, 14, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67). These all have various definitions. There is no real way to correct or prevent these inconsistencies, since the individual designer can arbitrarily use the lines. For the user, however, we need to know the exact bus structure for each board so we can check for compatibility with our own systems. Thus all Altair (S-100) bus products should include a bus description showing which leads used on their individual boards are input, output, bidirectional, unused and speed (if clocks). A list of compatible and incompatible boards, and perhaps some outline of how to achieve compatibility would also be helpful.

In any case, the following de facto standard usage of lines is building up due to usage:

<table>
<thead>
<tr>
<th>Pin 14</th>
<th>Battery backup (Seals, Ithaca Audio) (also being wired to top of board by most battery backup boards)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin 60</td>
<td>A16 Address (TDL)</td>
</tr>
<tr>
<td>Pin 61</td>
<td>A17 (TDL)</td>
</tr>
<tr>
<td>Pin 62</td>
<td>A18 (TDL)</td>
</tr>
<tr>
<td>Pin 63</td>
<td>A19 (TDL)</td>
</tr>
<tr>
<td>Pin 66</td>
<td>RFSH Refresh for dynamic memory (Z-80 systems) (Cromemco, SD Sales)</td>
</tr>
</tbody>
</table>

4. Electrical

Some mention was made of government regulations and lack of shielding and interlock devices on boxes housing microprocessors. A question of UL approval of a device with different voltage sources on adjacent connectors was also raised. No one knows the status of the rumors, but it could cause problems for commercially packaged devices in the future.
5. Duplication of data lines

With bidirectional bus drivers readily available, the use of eight extra lines for data in and data out is questionable. Some manufacturers are moving from data in and data out to bidirectional usage. This can cause difficulties in some designs of memory in a system. Although separate data in and data out lines cause inefficient use of space, there is some use in board design. Also, despite any inefficiencies, it is the standard; but on any bus expansion to 16 or 32 data lines, a bidirectional bus would be best.

General Comments

The Altair (S-100) bus has its problems. However, it is widely used (over 100 manufacturers produce products for it). It is speed limited, but then, the PDP-8 has not changed speed much in a decade. (The PDP-8 still compares well in benchmarks too!) Inconsistency in Altair (S-100) line definitions has usually caused few problems to users. Noise problems on the bus can usually be cleared up by adding termination or shielding, or by getting a new mother board. It has proved to be a workable basis for many design applications.

However, many designers will see its obvious faults and readily define a simpler bus, so we will see new buses in the future.

REFERENCES

The Passing of a Pioneer

It is with some sadness that we note the passing of one of this century's greater innovators, Dr Peter Goldmark Sr. Included in more than 150 inventions were pioneering contributions to practical long playing record technology. Dr Goldmark's recent work since being retired from CBS Laboratories concentrated on innovative uses of cable television, domestic satellites and electronics publishing — all areas which border on many of our readers' interests as users of computers.
The CIE Protocols

Overview of the Protocols

Two kinds of protocols are needed to transmit messages from one CIE to the next. First the stations that want to talk to one another must agree on the language they will use for talking to one another, and second, the stations along the path between the two stations must agree on the language they will use among themselves for transmitting messages between the end points. For brevity, we can call the first one an end-to-end protocol and the second an interstation protocol. All these protocols share an important property that can be used to help them coexist with other non-CIE Net protocols, be they experimental variations or completely different protocols: each interstation transmission and each end-to-end message starts with a code that identifies the protocol set being used. In addition, each of the different end-to-end messages contains a crucially placed parameter line that identifies which (of a possible set of variations) is the appropriate way to interpret it.

The interstation protocol itself breaks down into two parts. When the stations first establish a connection, they must first negotiate the parameters they will use to initialize themselves. Once the stations are prepared to proceed, then they need a protocol that is adapted to the transmission of network traffic and additional interstation control information. For brevity, we will call the protocol in which the initial negotiations are transacted the initial connection protocol. Similarly, the protocol for transmitting interstation control information will be called the station control protocol. Since network messages will typically be so long that stations will generally wish to subdivide them into transmission blocks, we will call the main interstation protocol for handling network traffic the block framing protocol.

Most interstation traffic will be concerned with the transmission of network messages, so I propose optimizing the interstation protocol toward the block framing protocol in this fashion. When two stations are first connected, they will use the initial connection protocol to establish the parameters for all future conversations over the connection. The initial connection protocol is not very highly coded and so gains a very wide accessibility to a wide variety of protocol interpreters at the cost of inefficient utilization of the interstation channel. (Thus, the initial connection protocol can be used to establish the identity of the protocol set to a protocol interpreter that is prepared to handle protocols quite different from those I am proposing here. In fact, the initial connection protocol identifies itself in the first four characters transmitted over the connection.) At the end of the initial connection protocol, the stations agree to subsequently use the block framing protocol for all future transmissions. That protocol is quite highly coded for efficient utilization of the channel bandwidth and is optimized to handle transmission blocks of network messages; the station control protocol is
of Community Information Exchanges

Part 2: Protocols

Figure 1: Backus-Normal Form (BNF) Notation. I occasionally show the format of network messages, etc., in a slightly formal language very close to BNF. In this notation I present a bunch of equations that define formal words (enclosed in <pointy brackets>) in terms of other formal words, things that must appear literally in the thing being defined (enclosed in "double quotes") and informal English descriptions (not enclosed in anything at all). Each equation has a formal word on its left side, the definition sign (:: =), and the definition on the right side. A definition can include a list of alternatives (separated by exclamation points), of which exactly one must be chosen. Each alternative is a sequence of items that appear in the thing being defined (in the order they are indicated). Each item can be a formal word (whose definition is given in another equation), an informal description, a double-quoted literal item, an optional item (enclosed in [square brackets]) or a list of alternatives (enclosed in {curly brackets}). (Also note that, in spite of the fact that all literal items in my BNF definitions will be given in lower case, the distinction between upper and lower case is to be ignored. Thus, the literal "reply" should not be distinguished from "Reply," "REPLY" or "RepIY.".) For example, my version of BNF can be defined by the above equations by using these same conventions.
The five different types of messages are distinguished by a characteristic word just at the point where their formats diverge. Finally, the message frame provides for encryption, compression or segmentation of the message contents. Encryption is especially important if people are to trust the network to transmit their private messages through an unknown number of computers belonging to people whose intentions are unknown. Compression is provided just to economize the use of narrow channels. A uniform means of segmentation lets people

Figure 2: Interstation transmission formats. The interstation transmissions of a CIE Net use the syntax of this definition. The two main components of the protocol are initial connection transmission used to negotiate parameters of initialization between the two stations, and the interstation message block or block framing protocol which is used for the bulk of network traffic. The design is optimized for the block framing protocol (end to end message frame), since this will be the predominant form of transmission on the network.
send files that are much longer than the network can gracefully handle as single messages. The five different kinds of messages sharing the message frame are:

- mail for people;
- file retrieval and storage;
- messages directed to other nets;
- messages containing or requesting statistical information; and
- replies to the other four classes of messages.

The Block Framing Protocol

The block framing protocol provides a number of features to ensure that messages are reliably transmitted between adjacent stations. (It bears some resemblance to the ARPA Net's Very Distant Host protocol and to a protocol known as DDCMP of Digital Equipment Corporation's DECnet.) It provides for error detection and retransmission. It provides for the proper sequencing of blocks in the face of lost or duplicate error-free transmissions. It will accommodate the half-duplex line discipline where it must, and it will capitalize on the full-duplex line discipline where it can. It uses the radix-41 representation for arbitrary binary data so that the programs that relay message blocks can be written in string BASIC. It also provides facilities to allow adjacent stations to test their connection and programs.

Message blocks have a format that is shown in figure 2. A block contains a head and a body; to provide error resistance on the telephone line, the head and body are each represented in a special radix-41 code (to be described in the third part of this series next month), and are separately protected by check digits. The block head has a 1 digit checksum, which is the sum (modulo 41) of the three (radix-41) digits representing it. The body, on the other hand, has a 2 digit checksum that makes the sums of the odd numbered (ie: first, third, fifth, etc) and even numbered (radix-41) digits of the <block body> both zero. For example, if there are an odd number of digits in the <block body>, then the first <block body checksum> digit protects the even numbered <block body> digits. (Thus, the checksum calculation can proceed independently of the <block length>.) This interlacing helps resist noise that comes in bursts, as is most often the case with phone lines: noise is relatively unusual, but when it does occur, it tends to come in bursts.

Note: The third part of this series contains full bibliographic citations of selected cogent references, such as ARPA Net specifications.
occurs, it typically lasts long enough to wipe out several consecutive characters. With the transmission coded as several interlaced groups of digits that are separately protected, the chances are quite good that a burst of noise will be detected in at least one of the groups. Berlekamp observes that no error detecting code can resist more errors than can be represented by the check digits; two radix-41 check digits can detect 1681 of the possible error combinations. The particular scheme mentioned here is optimized to detect errors that are confined to two adjacent digits, but it can also detect isolated errors.

Transmission blocks have numbers, assigned by counting (modulo 8) from zero; blocks going in each direction are numbered independently. Each transmission block includes its own number and the number of the next expected block in the other direction. Each station remembers the block number its partner most recently expected and takes care to get no more than four blocks ahead of its partner. Any arriving block that is in error is rejected, and thus treated just the same as lost transmissions. A station that has four unacknowledged blocks outstanding can then conclude that the first of them was in error and should attempt to retransmit it. The duplicate transmissions resulting from this procedure can be detected because the window is half the size of the total space of block numbers: if an arriving block has the number of a block that has been received since the last time it was expected, it is a duplicate and can be discarded.

The fields of a <block head>, then, are as follows:

- The <block length> is the number of 16 bit words in the <block contents>.
- The <acks> field is the number of the next expected block.
- The <block #> field contains the number of this transmission block.
- The <xmitdir> field is the <short sender addr>.
- The <special> flag is a 0 if the <block contents> are <data contents>, or a 1 if they are <special contents>.

A special block contains a number of 16 bit words that are used for maintaining the interstation link. They are distinguished by an operation code in the more significant 8 bit byte and can optionally contain data in the less significant 8 bit byte. They are:

0 — The message is complete, i.e. the next data block starts a new message.
1 — Turn the line around. This one is used when the line is a half-duplex line, and so the stations must take turns transmitting.
2 — This block is just an acknowledgement; don’t reply to it.
3 — I have buffers for some more data blocks; please send them. The number of data blocks that can be accommodated is given by the optional data and overrides all previous allocations.
4 — Goodbye, I’m signing off. Don’t expect any more transmissions from me.
5 — Please reset yourself, I’d like to go back to the state of swapping <greeting>.
6 — Echo this message, please; I’d like to see if it got to you OK. (Only the <block contents> are echoed.)
7 — This is the echo you requested. (All echo request bytes in the block are changed to echo reply bytes when the block is echoed.)
8 — Ignore the data part of this word.
9 — Something is wrong.
10 — Discard this block (but acknowledge it).
11 — Selective negative acknowledgement: the optional data part gives the number of a block whose head arrived intact but whose body did not.
12 — Ignore the <block #> of this block and process its <special contents> immediately. (This word must be the first in the <special contents> to assure proper processing of the block.)

Note that these protocols say nothing about certain necessary operations. They are the steps by which the adjacent stations rendezvous and include operations like phoning a station’s host computer, logging into its operating system and provoking the appropriate programs. The details of these operations are idiosyncratic to the host systems and cannot profitably be specified here. These protocols only cover the communications between the stations after their rendezvous has been established.

The End-to-End Protocol

The end-to-end protocol specifies that an end-to-end message consist of a uniform message header and one of five different kinds of message contents; the formats are shown in figure 3. In addition, the <message tail> (wherein resides the message contents) can be encrypted or compressed, or can contain only part of a long message. The <message head> contains all the informa-
Everything you’ve ever wanted to know about microcomputers in ONE complete book for only $10.95

The ultimate book about microcomputers. Written by experts ... SCELSI and BYTE. Over 400 pages. A collector’s item, featuring The Basics from the first 16 issues of BYTE and SCELSI’s classic library of books. Your microcomputer bookshelf is incomplete without this priceless edition.

You can’t buy information organized like this anywhere. This is the book that everyone who is into microcomputers needs for reference, for ideas, for clues to problem solving. It is a truly authoritative text, featuring easy-to-read, easy-to-understand articles by more than 50 recognized professional authors, who know and love microcomputers from the ground up. Logical and complete, it features many glossaries, and is illuminated with profuse illustrations and photographs.

The Scelbi/BYTE Primer is divided into four logical sections, that take you from point "O" through building and programming your own computer... step-by-step-by-step.

How does a microcomputer do it? Lots of "how to" theory. Introducing you to microcomputer operation. 6800, 6502, Z80 CPU chip capabilities. RAM and ROM memories. Addressing methods.

The Scelbi/BYTE Primer

Over 400 pages. Selected articles from BYTE and SCELSI books. Profusely illustrated. Many photographs. $10.95, plus 50¢ shipping and handling.

How to control peripherals. Transmission of information to and from computers. Magnetic recording devices for bulk storage. Analog to digital conversion. How a computer can talk. Other I/O techniques. And more.

And that's only the beginning! Others have spent millions acquiring the type of microcomputer information found within the 400 pages of The Scelbi/ BYTE Primer. But, it costs you only $10.95, plus 50¢ for postage and handling, complete! You know the quality of Scelbi and BYTE. This is your assurance of excellence throughout this MUST text. Order your copy today! And, get one for a friend!

Order your copy today!

SCELSI COMPUTER CONSULTING INC.
Post Office Box 133 PP STN
Dept. B
Milford, CT 06460

BITS
70 Main Street
Peterborough, NH 03458
1-800-258-5477

Prices shown for North American customers. Master Charge, Postal and bank Money Orders preferred. Personal checks delayed shipping up to 4 weeks. Pricing, specifications, availability subject to change without notice.

Circle 101 on inquiry card.
It may not be obvious at first glance why message replies should be optional. Actually, there are two reasons, both of which derive from a desire to reduce network traffic by eliminating superfluous replies. Since the overall design for a CIE Net includes a very real possibility of lengthy transmission delays, the sending CIE may have lost interest in proper transmission of a message long before its reply arrives. Thus, the sending CIE is allowed the option of omitting any request for a reply just to simplify its own bookkeeping. On the other hand, many ARPA Net messages are sent that don’t need replies on the lowest level either because they are acknowledged on a higher level, or

Figure 3: End to end message frame formats. This BNF text describes a syntax for data sent using the interstation protocol for each link of a transmission. Note that buried in the message protocol is the address information for both the source and the destination. All messages passed along the CIE Net are strings of data created according to this format.
because the sender really cares very little whether they arrive at all. It would seem that, on the assumption that the same phenomenon will arise in a CIE Net, the sending process should be allowed to tell its CIE not to request a reply to be sent within the end-to-end protocol level. Note that a <reply head> containing a <message ID> must be included in a message for which a reply is expected at almost any level.

End-to-end messages should be arbitrarily limited in size to facilitate their transmission through volunteer relay stations and intermediate CIEs that are only loosely organized into a highly variable network. The consideration here is buffer allocation in the intermediate CIEs because they must handle whole messages rather than the smaller transmission blocks that are the concern of the relay stations. (Note that messages of any length can still be accommodated by several messages containing the appropriate <partial tail>s.) Probably the appropriate size would be somewhere between 1000 characters and 8000 characters; the lower limit is that of a single packet in the ARPA Net (which, according to Kleinrock, et al, can entirely contain 89% of the ARPA Net messages), and the upper limit is about the point at which operating systems begin to hassle their users. Message sizes in a CIE Net will probably be longer than in the ARPA Net because of the absence of the flurry of messages the ARPA Net needs to set up (and delete) the connection needed for the "real" message. The statistics of ARPA Net mail are probably a better indication of what to expect in the CIE Net: those messages typically run from 600 to 1400 characters. However, a CIE Net will probably contain a lot of messages that are even longer for two reasons. ARPA Net mail statistics exclude the transfer of files containing computer programs or extended documents; both of those tend to be longer than the installments of a running dialogue. Also, people who are relatively unfamiliar with the ARPA Net mail facilities tend to send messages that are 3000 to 8000 characters long, rather than the more usual shorter messages; those people are probably more representative of the participants in a CIE Net, at least when it first becomes operational. Thus, the standard maximum message size in a CIE Net should probably be somewhere between 5000 and 8000 characters.

The Mail Protocol

The mail protocol will look familiar if
you know about the ARPA Net mail protocol. The protocol (see figure 4) is a compromise between the current ARPA Net mail protocol, its proposed replacement and the different requirements of a CIE Net. It specifies a <mail tail> to consist of a bunch of header lines, a blank line, and then the text of the mail. The header lines are intended to be intelligible both to a human and to an automatic message handling program; the text of the message is only intended to be intelligible to a human. The <user name> in a <mail address line> is intended to be a name that is intelligible to the appropriate destination CIE, and the <user name> in the <mail sender line> is intended to be intelligible to the sending CIE if a response is generated by a highly automated mail processing program. The only reservation is that a distinguished user name, manager, is to be reserved for mail sent to the people operating the CIE by people who don’t know their names.

The header lines are grouped at the front of a mail message and are set off from the <mail body> by an empty line. The header lines are suggestively titled, but two of them should be explained somewhat further. The "from:" lines serve as signatures, and the "sender:" (or "sent-by:") line tells who actually sent the message; the <mail sender line> can start with "from:" if the person sending the message also signs it. The "enclosures:" line indicates the parts of the <mail body>; that can profitably be thought of as separate enclosures, such as other mail messages or files being forwarded. The <number>s are offsets into the <mail body>, with the first character of the <mail body> being numbered zero. Any enclosure whose end is implied by the beginning of the next enclosure or the end of the message can be indicated by a single number; other enclosures must be indicated by a hyphenated pair of numbers. Then, the automated mail systems have the information they need to help the recipient detach the enclosures. Any enclosure can, at the sender’s option, be described by a parenth sized comment to further aid the recipient.

Figure 4: <mail tail> formats. Within the message frame protocol the type of message is determined by the type of tail applied to it. This <mail tail> enters the syntax of figure 3 as one of the options for a <real tail>. Mail messages contain the <mail body>, which is the message being sent, along with a variety of items specific to electronic mail activities carried over the net.

```
<mail tail> ::= <mail head> . <crlf> <mail body>
<mail head> ::= "mail" <gap> <mail address lines>
   <mail sender line> [ <optional mail headers> ]
<mail address lines> ::= <mail address line> [ <mail address lines> ]
<mail address line> ::= { "to" ! "cc" ! "bcc" } <colon> <addresses> <crlf>
<colon> ::= <gap> "." <gap>
<addresses> ::= { <individuals> ! <group> } [ "" <addresses> ]
<individuals> ::= <individual> [ "," <individuals> ]
<individual> ::= <mailbox> [ "(" <personal name> ")" ]
<mailbox> ::= <user name> { "@" ! <gap1> "at" ! <gap1> }
   <net address>
<user name> ::= <name>
<personal name> ::= <name>
<gap1> ::= ( a · gap · containing at least one character)
<group> ::= <name> <colon> [ <individuals> ]
<name> ::= ( any sequence of letters, digits, blanks, periods and dashes, but not 
   containing the string "at")
<mail sender line> ::= { "from" ! "sender" ! "sent-by" } <colon> <individual> <crlf>
<optional mail headers> ::= <optional mail header> <crlf> [ <optional mail headers> ]
<optional mail header> ::= <date header> ! <enclosure header> ! "in-reply-to" <colon> <source net addr> <colon> <message i.d.> ! 
   { "from" ! "keywords" ! "password" ! "precedence" ! "authentication" ! 
      ( any sequence of letters and dashes not otherwise specified here for 
      the left end of a line in a <mail head> ) } <colon> <line>
<date header> ::= "date" <colon> { <date> ! <line> }<crlf>
<enclosure header> ::= "enclosures" <colon> <enclosure list>
<enclosure list> ::= <enclosure item> [ "," <enclosure list> ]<crlf>
<enclosure item> ::= <gap> <number> ! 
   [ "" <number> ] [<gap> "(" <name> ")" ]<crlf>
<mail body> ::= the mail's body
```
There is a new direction in the field of Science Fiction. The early period, the time of Gernsback, Burroughs and robots, gave way to the middle period of interstellar travel, Russell and Campbell. Now a new wave of authors, led by the most farsighted of the 'old timers' is taking Science Fiction into its young adulthood. Experimentation is now mixed creatively with the tested craftsmanship of the masters. The great work of the past is now the foundation of the future. The best is yet to come, and GALILEO is where you’ll find it.

Our stories are chosen for quality of theme, plot, and characterization from authors both new and established. Regular features include ‘The Aleph’: a preview of coming books, the only advance listing of its kind available anywhere (How's that for future fiction!), and ‘Pro-File: short biographical sketches of the men and women who have created each issue. Special feature articles attack such provocative issues as the fears of nuclear energy, the blessing or curse of genetic research, and the true unlimited potential of private exploration and exploitation of space. Edited and published by a staff of dedicated professionals and idealistic volunteers, each issue has been specially illustrated by many of the outstanding artists in the SF field today, taking full advantage of our large format.

Our intention in publishing GALILEO is to pick up where editors like John W. Campbell left off. Science Fiction is—or should be—quality entertainment and literature. It is the most important literature of our time, or any time. . . . History teaches, science leads. Our GALILEO offers a vision of mankind’s future through the eyes of the poet and the scientist. There can be no true appreciation of the present, or the past, without the perspective of the future.

But the most important difference between GALILEO and other SF magazines...is care. GALILEO is the carefully crafted product of individuals working to the best of their ability to offer you the finest Science Fiction magazine of our age—your age.

Science and theory are the raw materials...what mankind might do with them is Science Fiction. You can indulge your love for Science Fiction with as little as $6 for 6 issues (our special introductory offer), or $10 for 12 issues (about 83 cents per copy). Get the best of the future, now!

This is one voyage I don’t want to miss. Sign me up for the special subscription rate I have marked below. My check is enclosed.

[] 6 issues for $6 (saving $3) [] 12 issues for $10 (saving $8!)
Foreign subscriptions: 50 cents per issue additional.

Name: .. Town: ..
Street: .. State:
Zip: ...
Send to: GALILEO, Dept. 1B, 339 Newbury Street, Boston MA 02115
Large amounts of junk mail can be a real problem when the recipient must pay to store it for the time before examining it. There is, however, a partial solution that involves a novel use of passwords. A CIE could offer its users the option of splitting their file for incoming mail into two pieces, one having a negotiated maximum size and the other requiring a negotiated password for admittance. Then, an incoming mail message would be placed in the "goodguy" mail file if it included the proper password in its header; otherwise it would be placed in the junk mail file if there was room; otherwise it would be rejected. Presumably, people using such a facility would spread their goodguy mail password around and occasionally change it when it eventually spreads too far.

The most glaring flaw in this scheme is that a single energetic source of junk mail could prevent people from receiving legitimate mail from people who, for any of a large number of conceivable reasons, didn't happen to know the appropriate goodguy password.

The File Protocol

The file protocol illustrated is not too well thought out and should be taken as an extremely skeletal suggestion of what a file protocol should look like. Its main notable features are that it leaves file name format and user access assertion largely unspecified so that idiosyncrasies of diverse host systems can be accommodated gracefully. It allows a CIE to tell a second CIE to move a file to a third CIE in a manner similar to the DAP portion of the Digital Equipment Corporation's DECnet. Its most obvious shortcoming is that it treats files as indivisible atoms; perhaps it should also include a facility to subdivide a file like DECnet does. This would help conserve transmission bandwidth and buffer space by allowing people to selectively move small parts of files when appropriate. However, that would commit the <file tail> format to some particular file structure, and that commitment would be stronger than the commitments implicit in the <partial tail> or <enclosure item>. I omit that facility because it will be of limited utility at first, it is well-isolated from the rest of the protocols, it is highly arbitrary, and it can be added later.

One should note that the file protocol involves sending information (eg: passwords) through the net that, one might think, was better kept out of hands that are not completely trusted. That's not quite the case, however. Those passwords should more properly be thought of as very highly specialized tokens of limited utility. For example, a process requesting a file retrieval could arrange with its CIE for the storage of one file of a specified maximum size by file retrieval from a particular foreign CIE. Part of the negotiation would involve the file requesting process and the CIE agreeing on a password to be used just for that purpose (and then discarded by the CIE). Then, that password would be included in the file retrieval request and used in the file storage request it sends back with the requested file. The negotiation process would presumably also include the choice of an account to which the required file space should be charged; then the <file store info> wouldn't need to contain account names.

The file protocol includes a couple of things that can be idiosyncratic to the CIE's host system. The information (and its format) contained in <file access> and a <file name> varies widely between operating systems, and so it would be inappropriate for these protocols to say anything more about them than that they cannot contain a <crlf>. By the same token, a fair portion of the operating systems in captivity cannot gracefully append information to a file that preexists; a CIE with such a host should feel free to reject a file message whose <file store info> contains the "appe" verb. In other words, even though this specification gives the format of a request to append information to an extant file, it does not require that such requests be acceptable to all CIEs.

The Reply Protocol

All replies in the end-to-end protocols are sent via the reply protocol. This is at variance with both the ARPA Net and DECnet, which extend each of their other protocols to include a separate idiosyncratic reply protocol. The reason for the difference is that both the other nets are oriented toward connections, over which flow many related messages, rather than being oriented toward the messages themselves. (Of course, the message orientation of a CIE Net is derived from the way it allows for very long transmission delays, which would require much longer connection lifetimes.) The <reply tail> can optionally include a word (eg: file) giving the general area of its relevance; it then contains more specific information on the disposition of the message for which it is replying or requesting a reply.

The reply protocol covers use of the <reply head> and the <reply tail>, whose formats are shown in figure 3. A <message>
MICRO BUSINESS '78™ will provide a series of marketing forums and exhibits to introduce the small independent businessman to the new low-cost, high-power business microcomputer that will reduce his company's costs, place him in a more flexible marketplace and provide timely data information. Emphasis will be on the small budget requirements for purchase of an in-house computer. The show will demonstrate the latest systems, exhibiting complete hardware and software from small hand-held programmable calculators to full turn-key computers.

- Latest in Word Processors
- Newly-Released Business Software
- Low-Cost Text Editing Typewriters
- Modularized Computers

THE LOW COST, dependability, simplicity of operation, and cost savings advantages of microcomputers will be discussed in a series of lectures to remove the many misconceptions the average businessman may have about the microcomputer technology. Lectures by such companies as IBM, Commodore Business Machines and Radio Shack will present the businessman with the latest information about application, service and investment.

Author Adam Osborne will discuss business software. OTHER LECTURES on the program include:
- Small Business Computing Systems
- Evaluating Your Business Computer Needs
- Software Companies
- The Mainframe Companies & The Small Computer
- The Small Business Computer Company
- Computer Stores and the Small Business System
- Retail Mass Marketing of Microcomputers

Sponsored by: INTERFACE AGE Magazine

EXHIBITORS: PLACE YOUR RESERVATION NOW!

Produced & Managed by:
Show Company International
8687 Melrose Avenue
Los Angeles, California 90069
(213) 659-2050
Ed Tavetian
Another option for \texttt{<file tail> in figure 3} is a \texttt{<file tail>}, used when the data sent in the end to end message frame is an arbitrary data file.

\begin{verbatim}
<file tail> ::= "file" <line> <crlf> <file commands>
<file commands> ::= <file retrieve> <crlf> | <file commands> |
| <file store> <crlf>
<file retrieve> ::= <file access> <crlf>
| "rei" <gap> <file name> <crlf>
| "dest" <net address> <crlf> <file store info>
<file access> ::= "acce" <gap> (a <line> that will convince the recipient of this message to grant the required access, typically containing a subscriber name, password and account)
<file name> ::= <line>
<file store info> ::= <file access> <crlf> {"stor" | "acce"} <file name>
<file store> ::= <file store info> <crlf> "data:" <line> <crlf> (the file's contents)
\end{verbatim}

\texttt{<reply head>} gives it a "name," which it needs if it is ever to be acknowledged in the end-to-end protocol; it also provides a concise means by which an immediate reply can be requested at the top level of the end-to-end protocol. All end-to-end acknowledgements are carried in \texttt{<reply tail>}. A \texttt{<reply head>} can contain one of the words "rsvp" or "later"; the former requests an immediate reply, and the latter merely informs the destination CIE that a reply may be requested at some later time.

A \texttt{<reply tail>} also provides a means by which replies can be requested at a time after the original \texttt{<message>} was sent. This part of the \texttt{<reply head>} is much more portentous than the previous paragraph indicates: when a CIE receives a message with a \texttt{<reply head>}, it must remember sufficient information to generate a reply upon a later request. Having sent a reply, it must still hold the relevant information against the reply's getting lost in the net. A \texttt{<reply head>}, then, means that the destination CIE must keep a permanent record of the \texttt{<message>} containing it! Clearly, that is too much to ask of any practical cheap CIE; the remedy is to permit the destination CIE to flush its records after an unspecified retention period, most likely ranging from a few milliseconds to a few weeks. If it is asked to reply to a message of which it has no memory, it can reply "unknown." Of course, end-to-end acknowledgement will be impractical for \texttt{<message>es} sent to a CIE with a very short retention period, but that is a matter more properly left for a CIE's subscribers to work out with the operators of their own and competing CIEs.

The \texttt{<reply tail>} also provides a means for replies to be sent from (or requested of) other levels in the end-to-end protocol; the optional qualifier (such as "file") gives that detail. Thus, an unqualified positive reply (ie: "reply ok") to a mail message needn't mean anything more than that the message arrived at the CIE and was dispatched to the program that handles mail. A positive reply qualified as coming from the mail program (ie: "reply mail ok"), however, necessarily means that it was intelligible to the mail program and that it was correctly placed in the proper mail file. The echo and discard verbs are included to provide a method to detect and localize bugs in the general framework of programs comprising a CIE; for instance a "reply reply discard" message containing a \texttt{<message ID>} in its \texttt{<reply head>} will elicit a "reply ok" message from a CIE that exists and believes itself to have a reply program. If a "reply reply echo" doesn't elicit an echo, then the reply program itself could be malfunctioning in some basic way.

This flexibility allows the user to decide the appropriate level at which replies should be generated or whether they should be generated at all. (Presumably the appropriate programs will have user interfaces that don't turn the flexibility into a burden on the user.) Two restrictions should be observed, however, to avoid loops. The first is quite intuitive: the reply to a "reply [xxx] echo" should be embedded in the appropriate type of "reply [xxx] ok" message. The second restriction is that all "reply [xxx] please" messages should refer to the original message of concern; if a "reply reply please" message inadvertently gets sent that doesn't refer to itself, then the receiving CIE should feel free to discard it without comment. Also note that a "reply [xxx] echo" message is the only one that can elicit a reply without itself containing a \texttt{<message ID>} in a \texttt{<reply head>}.

This completes the presentation of a sketch of a design for the communications protocols of a CIE Net. The BNF-like notation of figures 1 to 5 defines the grammar of the message protocols; some more of the details of the design and its operation will provide the substance of the third and final part of this series next month.
CONFERENCE PROCEEDINGS

of the largest convention ever held
Exclusively Devoted to Home & Hobby Computing

over 300 pages of conference papers, including:

(Topic headings with approximate count of 7"x10" pages)

Friday & Saturday Banquet Speeches (16)
Tutorials for the Computer Novice (16)
People & Computers (13)
Human Aspects of System Design (9)
Computers for Physically Disabled (7)
Legal Aspects of Personal Computing (6)
Heretical Proposals (11)
Computer Art Systems (2)
Music & Computers (43)
Electronic Mail (8)
Computer Networking for Everyone (14)
Personal Computers for Education (38)
Residential Energy & Computers (2)
Systems for Very Small Businesses (5)

Entrepreneurs (6)
Speech Recognition &
Speech Synthesis by Computer (14)
Tutorials on Software Systems Design (11)
Implementation of
Software Systems and Modules (10)
High-Level Languages for Home Computers (15)
Multi-Tasking on Home Computers (10)
Homebrew Hardware (8)
Bus & Interface Standards (17)
Microprogrammable Microprocessors
for Hobbyists (18)
Amateur Radio & Computers (11)
Commercial Hardware (8)

---- plus ----
Names & addresses of the 170+ exhibitors at the Computer Faire

Order now from:
Computer Faire
Box 1579
Palo Alto CA 94302
(415) 851-7664

Proceedings: $12.00 ($11.95, plus a nickel, if you prefer)
Shipping & Handling: .68 (Write for shipping charges outside U.S.A.)
Outside California: $12.68 Payment must accompany the order
Californians Add: .72 6% Sales Tax
Inside California: $13.40 Payment must accompany the order.

april, 1977 · san francisco

©77-1-10 by Computer Faire
BOX 1579, PALO ALTO CA 94302 00a (415) 851-7664

Circle 131 on inquiry card.
Microchess 1.5 versus Dark Horse

When the Second World Computer Chess Championships were held in Toronto last August (see January 1978 BYTE, page 108), the opportunity arose to challenge one of the best chess programs in the world to a friendly match against my microcomputer. A match was arranged between Microchess version 1.5 and Dark Horse for the day after the tournament.

Dark Horse is a program written by Ulf Rathman of Stockholm SWEDEN. It is written in FORTRAN IV and occupies 24 K words of programmable memory with 60 bit words on a CDC 6600 computer. On average, it is capable of analyzing 12,000 positions per move made. In addition, it utilizes its opponent's time by preparing replies to expected moves. Although Dark Horse is considered to be a small program by classical mainframe computer chess standards, its strategy is efficient and it finished in sixth place at the World Computer Chess Championships.

Microchess is a program I wrote for the

<table>
<thead>
<tr>
<th>White: Microchess</th>
<th>Black: Dark Horse</th>
</tr>
</thead>
<tbody>
<tr>
<td>It was decided by a coin toss that Microchess would play white. Since neither program makes use of an opening book, the opening is a little unorthodox. However, by move 3 the position looks like a normal opening.</td>
<td></td>
</tr>
<tr>
<td>1. N-QB3</td>
<td>P-K3</td>
</tr>
<tr>
<td>2. N-KB3</td>
<td>N-QB3</td>
</tr>
<tr>
<td>3. P-K4</td>
<td>N-KB3</td>
</tr>
<tr>
<td>4. P-K5</td>
<td>N-KN5</td>
</tr>
<tr>
<td>5. P-Q4</td>
<td>P-Q4</td>
</tr>
<tr>
<td>6. B-KN5</td>
<td>B-K2</td>
</tr>
<tr>
<td>7. BxB</td>
<td>QxB</td>
</tr>
<tr>
<td>8. B-K2</td>
<td>Q-N5</td>
</tr>
<tr>
<td>9. R-QN1</td>
<td>O-O</td>
</tr>
<tr>
<td>10. P-QR3</td>
<td>Q-K2</td>
</tr>
<tr>
<td>11. O-O</td>
<td>P-QN3</td>
</tr>
<tr>
<td>12. P-QH4</td>
<td>Q-N5</td>
</tr>
<tr>
<td>13. P-KN3</td>
<td>B-N2</td>
</tr>
<tr>
<td>14. B-N5</td>
<td>P-QR3</td>
</tr>
<tr>
<td>15. N-QR2</td>
<td>O-QR4</td>
</tr>
<tr>
<td>16. BxN</td>
<td>BxB</td>
</tr>
<tr>
<td>17. P-N3</td>
<td>P-QN4</td>
</tr>
<tr>
<td>18. Q-K1</td>
<td>QxQ</td>
</tr>
<tr>
<td>19. R(B1)xQ</td>
<td>PxP</td>
</tr>
<tr>
<td>20. N-N4</td>
<td>PxP</td>
</tr>
<tr>
<td>21. NxB</td>
<td>PxP</td>
</tr>
</tbody>
</table>

Dark Horse evaluates the pawns captured plus the resultant pawn on the seventh rank as more valuable than the lost bishop.

22. N-K2ch	K-R1
23. R(N1)-B1	R(B1)-K1
24. N-B6	K-N1
25. RxP	P-QR4
26. R(K1)-K2	P-R5
27. N-N4	R(K1)-QB1
28. R-N2	P-QB4
29. N-Q3	P-R6
30. R(N2)-Q2	PxP
31. NxP	R-B5
32. N-B4	P-R7

Dark Horse, which prints out the expected continuation, expected 33. RxP RxR, 34. RxR RxN, 35. R-K2, winning a knight for the pawn. It did not foresee 35. R-R8ch (mate in one) because it truncated the analysis at 6 ply on this continuation. A search to 9 ply would be necessary to determine the threat.

| 33. P-B3 | ... |

Microchess did not take the pawn because it expected the same continuation that Dark Horse projected, with the loss of a knight. The threat of P-R8ch was not evaluated correctly due to a bug in the program. This blunder resulted in a loss for Microchess.

33. ...	P-R8 (Q)ch
34. K-N2	NxP (K5)
35. N-N3	Q-B6
36. K-R3	RxN
37. PxR	QxPch
38. K-R4	Q-N5 Mate!

Microchess took 47 minutes while Dark Horse required only 11 minutes of processor time for the game. Part of this difference is explained by Dark Horse's ability to compute responses on its opponent's time.

Although Microchess was defeated by Dark Horse, it was not as one-sided a game as might be expected given the difference in computing power. Further improvements in Microchess will probably bring it close to the playing level of Dark Horse and other programs in its class, but at a slower speed.
Circle 48 on inquiry card.

DARK HORSE

Position after 32. . . . P-R7.

KIM-1 in 1976. Commercial versions are available for the KIM-1, and a translated version is available for the 8080. Version 1.5 is an extended version of the original program. It occupies 2.5 K of programmable memory and runs on a KIM-1 with expansion memory. Although it plays better chess than the first version of Microchess, it is incomplete and requires further development.

Because of the complexity of chess analysis, time becomes an important factor both for micro and mainframe programs. One expected solution to the problem is the use of multiple microprocessors to process portions of the analysis in parallel. Such a distributed network can reasonably be expected to play as well as Chess 4.6, if not better, provided the heuristics used are equally powerful. I would not be surprised to see this type of equipment in use at the Third World Computer Chess Championships in 1980 to be held in Tokyo and Melbourne.

The following programs are available from MicroWare Ltd, 27 Firstbrooke Rd, Toronto, Ontario M4E 2L2 CANADA:

Take a Course

As is becoming the case for more and more people, my job is bringing me into contact with the quickly evolving field of microprocessors and their applications. This I find fortunate because for several years I have had an intense interest in these gadgets and their potential use in certain hobbyist applications.

My employer and I agreed that it would be useful for me to learn as much as possible about microcomputers in order to evaluate their future impact upon the transportation field. (I'm an engineer in automotive electronics.) To that end I started looking around for a seminar that I might attend.

One that caught my eye, a course given by Wintek Inc, offered a "free" microcomputer to each participant. The 3 day seminar that was being offered included a discussion of microcomputer hardware and software as well as hands on experience in a laboratory. The program was based on the 6800 processor family for illustrative and training purposes.

Having signed up for the Wintek course in advance, I presented myself at the appointed time and place (a meeting room at a local Sheraton Inn). The Wintek program was presented by Dr Paul Wintz and Jim Wilson, the founders of the company.

Of the 35 participants, most were either engineers who, like myself, wanted to broaden their knowledge of microcomputer programming, or they were professional programmers looking to increase their understanding of small systems applications. Several turned out to be computer hobbyists as well. Most seemed to be lured to this particular course by the offer of a free microcomputer.

Material for the course was organized into a large 3 ring binder which provides an excellent reference after the course is concluded. The first morning (Tuesday) we spent learning our way around the 6800 system. The bus structure was described in some detail as was the addressing of memory. The 6800 instruction set was introduced as well as the various addressing modes that may be applied to each instruction.

Wintek has developed its own read only memory monitor program which it calls FANTOM II. FANTOM II is resident in a 1 K read only memory on the 1 card computer Wintek gives its students, and is socketed so that it can be replaced with either a 2704 or a 2708 if desired.

FANTOM's use was reviewed before lunch on the first day. After lunch the class broke into two groups with one going into the first lab session and the other continuing in a lecture.

Lab consisted of a cluster of video terminals each connected to a Wintek 1 card microcomputer. Students worked in pairs on problems outlined in the course notes. An instructor was always available for assistance. The first afternoon in the lab was spent using the monitor program to load a simple routine into the computer and then debug it.

At coffee break, the two groups switched: students coming out of the lecture took a turn at the lab work. The rest of the course was spent alternately in the lab and in the class.

The Wednesday lecture discussed the various types of memories, their applications and trends to look for in the future. The IO devices of the 6800 family were also covered. The 6850 serial IO port (really an intelligent UART style interface device) was presented both as hardware and in terms of its use when programming to communicate with external equipment. The 6820 was then discussed. This device is a dual programmable 8 bit parallel IO port. Both the serial device and the parallel device interface directly with the 6800.

Finally, time was spent learning the various ways that interrupts can be handled.

One of the best features of this course was the lab work. Working from simple programs to ones of more complexity with the aid of an instructor helps to build confidence in oneself. My lab partner and I worked our way through a program that generated a time delay via a count down loop, then used the loop as a basis for a timekeeping function. The terminal's bell function was used to mark the seconds and then the whole thing was integrated into a program that performed a digital clock function.

By the time Thursday rolled around we were trying to service interrupts from the video terminal in the middle of the timekeeping program. For those with more proficiency at machine language programming, there were more challenging projects, including a program to decode Morse code.

Lecture for Thursday turned to a comparison of the various microprocessor

Richard Mac Millan
19104 Alpenglow Ln
Brookville MD 20729

BYTE March '98
families currently available. The advantages and drawbacks of each were compared. The area of applications that each is best suited for was discussed. Software aids to programming such as assemblers, editors, debuggers and compilers were explained and their operations were illustrated.

While understandably Wintek's products and services were mentioned at appropriate places throughout the course, no real hard sell was used. Their products were used primarily as an illustration of what is available to the user and as such was a useful part of the curriculum.

The Wintek computer given to each course participant consists of a 6800 processor, a 6820 peripheral interface adapter (PIA), a 6850 asynchronous communications interface adapter (ACIA) (serial IO for communication with a Teletype or RS-232 compatible terminal), two 6810 128 by 8 random access memory chips, a 1 K read only memory containing Wintek's FANTOM II monitor, a 600 kHz clock and a bps rate generator. Providing power (5 V, 12 V, -12 V), a reset button and a terminal is all that is required to be up and running.

Extra memory is available from Wintek but it is dynamic, requiring an extra card just for the refresh circuitry. The hobbyist would probably want to use a handful of 2102s instead. Provision is made on the Wintek card for two more memory chips, bringing the total read/write memory to 512 by 8.

I mentioned at the beginning that several of us in the class happened to be hobbyists. By the time we all had had a chance to actually work on the computers, most of us who were at first uncommitted became converts. We left clutching our microcomputers with thoughts of borrowing a terminal and writing our own programs.

Now, most hobbyists would hesitate to spend $500 of their own funds to attend a course like this. That much money would buy a lot of goodies or even a basic home system. Happily, many employers are willing to invest in such a program where there is a likelihood that the participant will bring state of the art knowledge and very useful experience back to work.

People who, like myself, are looking for a generalized survey of the current state of the art, in addition to some actual programming experience, might do well to seek a group such as Wintek in order to take a course. While I may not have finished the course an expert microprogrammer, I certainly have learned the basics necessary to know where to start on nearly any microprocessor project.
The Capital of New Mexico is Santa Fe

Loring C White
26 Boswell Rd
Reading MA 01867

This article demonstrates how software can be written to allow your computer to be used as an educational device. Having just gone through the exercise of helping my children learn all the states and their capi-
It occurred to me that this might be readily automated using a computer and BASIC.

The program in the listing is written to run in MITS 8 K BASIC in about 3 K bytes of memory. It easily fits into my Altair system which has 12 K bytes of memory.

All the states and their capitals are listed in the DATA statements beginning on line 600. The arrays A$ (I) and B$ (I) are initialized with the BASIC READ statement embedded in a FOR...NEXT loop at lines 20 to 40. As you can see by the logic, each state and its corresponding capital are listed as a pair of strings in the DATA statements.

As the variable I goes from 0 to 49 the first state name will be in A$ (0) and the capital of the first state will go into B$ (0); the nth state name will go into A$ (n) and the nth state capital will go into B$ (n).

In operation, the program is a loop which keeps generating random state selections and quizzes the student. A number I between 0 and 49 is chosen at random in line 105 using the RND function, which returns a value from 0 to 1. The corresponding state A$ (I) is selected and the question is generated. The student answers with an input which is stored in Z$. If the input from the student in Z$ is equal to the capital B$ (I) of the selected state the program will execute the “reward” subroutines. If the answer is not correct, then the question is repeated one time. If the correct answer is not given the second time, the computer then provides the correct answer and repeats the question in order to aid in the learning process. If the correct answer is given, the student is rewarded with a positive response, such as “Right on; carry on” or “You’re exceptional.” This response is also selected using a random number generator in order to provide a bit of variability in the reward statement. After ten states and capitals are provided, the computer gives a score summary with a percent evaluation of the student’s responses.

The above programming concept can be applied to almost any teaching situation where an answer word or phrase can be directly associated with a question. The questions and answers are conveniently stored in the data lines within the program and are separated only by commas.

We have had fun making up this program and managed to learn a few of the states and their capitals in spite of it all!
 Clubs and Newsletters

Philadelphia Area Computer Society

The Philadelphia Area Computer Society was formed to educate computer users in the Philadelphia area and to inform the general public about computer technology and its implications for the future. Membership is open to all persons interested in any aspects of the computer arts and sciences.

Dues are $10 for regular membership and $5 for students. Both include a subscription to The Data Bus as well as participation in group purchase programs and club projects. Members also receive borrowing privileges in the Society’s software and literature library.

PACS meetings are held in the LaSalle College Science Building at the corner of 20th and Olney (12 blocks north of US 1 on Broad St). Write to PACS, POB 1954, Philadelphia PA 19105.

NCCS

The Northwest Computer Society meets at the Pacific Science Center in Seattle on the first and third Wednesday of each month at 7:30 PM. The first meeting of the month is usually formal, involving a featured speaker or a demonstration. The second meeting of the month is usually more informal, with discussion and problem solving. The group also publishes a newsletter, Northwest Computer Club News.

Call Roy Gillette at 524-0596 (evenings) for more information, or write Northwest Computer Club, POB 242, Renton WA 98055.

The New York Amateur Computer Club

The New York Amateur Computer Club is a group of people with varying backgrounds, abilities, and interests whose common goal is “to promote the free exchange of information about computers for personal use, and to encourage fellowship among those interested in computing.”

Club dues are $10 annually, from July 1 thru June 30, or $5 if you join after January 1. Prospective members are sent one or two issues of The Newsletter free of charge and are encouraged to attend club meetings as guests. For more information, contact The New York Amateur Computer Club, Church St Station, POB 106, New York NY 10007.

Association of Computer Experimenters

This group, located in Hamilton, Ontario, puts together a huge newsletter, IPSO FACTO, which has all kinds of information. The last issue I saw had several articles on cassette interfacing, including the Kansas City Standard, Data Formatting, etc. For more information, contact Tom Crawford at 50 Brentwood Dr, Stoney Creek, Ontario CANADA L8G 2W8.

Central Florida Computer Club

The Central Florida Computer Club has been in existence for over a year and has over 50 members. You can contact them by writing to John W Neel, 2821 Sunset Rd, Apopka FL 32703.

NCCCCC (NC5)

On May 5 and 6 the Northern California Community College Computing Consortium (whew) Spring Conference will be held at Sierra College, 5000 Rocklin Rd, Rocklin
CA 75677. Contact Perry Edwards at (916) 624-3333 for details, or write to him at the above address.

65 Notes

65 Notes is the monthly publication of the HP-65 users club. It contains mainly programming twists and information concerning the HP-65. Also included are programs and club information. Contact Richard J. Nelson, 2541 W Camden Pl, Santa Ana CA 92704.

San Diego Computer Society

This group publishes a well put together newsletter, Personal Systems. It contains club information, programs and so on. The San Diego based club has special interest groups on the Z-80, 6800 and 1802, as well as groups on biofeedback, education, graphics, and word processing in the legal profession. The address is San Diego Computer Society, POB 9988, San Diego CA 92109.

The Computerist

This newsletter, edited by Mark Browne and Geoff Wattles, covers four different clubs: The Minnesota Computer Society (MCS); Small Computer Engineering Association of Minnesota (SCEAM); University Microcomputer Group (UMG); and Advanced Technology Research Association (ATRA). The newsletter contains information concerning all the clubs, including meeting dates. The March dates are as follows: SCEAM: March 30; UMG: March 1, 8, 15, and 22; MCS: March 5; ATRA: March 7, 14, 21, 28. For more information concerning the clubs, write to Mark Browne, 3504 Stevens Av S, Minneapolis MN 55408.

Homebrew Computer Club

The Homebrew Computer Club meets regularly at the Stanford Linear Accelerator Center Auditorium (SLAC). During the past two years, attendance has increased from thirty people to over two hundred. The Homebrew Computer Club, which also publishes a newsletter, can be reached at POB 626, Mountainview CA 94042.

West Virginia Computer Society

Oscillations is the name of the West Virginia Computer Society's newsletter, which features short articles about new microprocessor developments, video games, local computer news, and so on. For information on the time and location of local meetings, contact Bill England at WVCS, 167 Iroquois Trail, Ona WV 25545.

Digital Micro Systems

ED SMITH'S SOFTWARE WORKS
Announces A
M6800 SYSTEM RELOCATING ASSEMBLER AND LINKING LOADER
for SwTPCo or Altair 680b

ATTENTION ALL NON DISC 6800 OWNERS: Now you can produce large object programs without the restriction of requiring enough memory storage to contain the text needed for large size object programs. By using our Relocating Assembler and Linking Loader you create your programs in smaller, more easily handled segments which can be assembled separately and then linked together at load time. This, in effect, allows assembly of programs whose object code alone would require most of your system memory. Load time linking also provides the capability of setting up program libraries, which can be called by any program without having to include the text in each assembly. This assembler has as many features new to the personal computing market, such as relocatable code, a full alphabetized cross reference listing, both local and global labels, listing of execution time, character labels, use of a break character in labels, variable column print and terminal listing formats, and for all those PR-40 forty column printers out there the ability to produce an 80 column professional looking assembly output listing. The assembler also includes a mini-editor to allow consistent correction of assembly errors, load and save source code, generate new source code, list source code, etc. The source code uses the TSC Text Editor format so that their program may be used to complement and expand the included editing functions.

The Relocating Assembler and the Linking Loader are furnished on a 3 1/2 inch floppy diskette provided with a comprehensive Instruction Manual and an extensively commented assembly listing complete the M68AS assembler package.

A disc oriented version of the Relocating Assembler and Linking Loader is also available from Smoke Signal Broadcasting.

<table>
<thead>
<tr>
<th>M6800 DiagAssembler/Trace</th>
<th>$10.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>M6800 Source Generator</td>
<td>$5.00</td>
</tr>
<tr>
<td>M6800 Relocater</td>
<td>$10.00</td>
</tr>
<tr>
<td>M6800 Binary Loader</td>
<td>$10.00</td>
</tr>
<tr>
<td>Package of all 4 programs</td>
<td>$55.00</td>
</tr>
</tbody>
</table>

16K STATIC RAM
THE WAY YOU LIKE IT

Assembled and tested $595
16K kit ... $525
8K kit ... $295
Kit with all but 2114 memories $88
BIANK BOARD $35

COMPARE THESE FEATURES:

- 5 100 BUS COMPATIBLE
- COMPLETELY STATIC WITH NO CLOCKED CHIP-SELECT OR REFRESH
- WILL RUN ON Z-80 SYSTEMS AT 4 MHZ WITH NO WAIT STATES
- WILL RUN ON ALPHA MICROSYSTEMS AM-100 AND ON DMA SYSTEMS
- USES 2114 MEMORIES--AN INDUSTRY STANDARD
- HAS INDIVIDUALLY ADDRESSABLE 4K BLOCKS OF MEMORY
- SOFTWARE WRITE PROTECTION IN 4K BLOCKS
- PAGING OR BANK SELECT FEATURE FOR MEMORY EXPANSION AND LOW SOFTWARE OVERHEAD TIMESHARING SYSTEMS
- COMPLETELY BUFFERED ADDRESS AND DATA LINES
- SINGLE 5 VOLT POWER SUPPLY
- HIGH QUALITY, LOW PROFILE SOCKETS FOR ALL IC'S
- SOLDIER MASKED P.C. BOARD AND SCREENED PARTS PLACEMENT LEGEND FOR EASE OF CONSTRUCTION AND DEPENDABILITY

S-100 BUS TERMINATING BOARD $25
S-100 EXTERENDER BOARD $16

Digital Micro Systems
BOX 1212, OREM, UTAH 84057
(801) 224-2102

Circle 38 on inquiry card.

Byte March 1978 173
Controlling the Real World

Hank Olson
POB 339
Menlo Park CA 94025

For many experimenters, the microprocessor is an excellent source of mind stimulation, and that is a laudable end in itself. But after you figure out how a computer works, perhaps build one, and play various games with it, you might want to try your hand at process control.

Industry looks upon the microprocessor as the controller of processes, whether as large as a steel rolling mill or as small as a telephone instrument. And, indeed, the microprocessor may be one way to help solve the automobile emission problem, the fuel crisis in home heating, and a myriad of other current social problems.

The output of an appropriate set of ones and zeros by the microcomputer (after it has digested all its inputs and instructions) is all that is required to solve the problem, theoretically. However, there still remains a fair gap between the microcomputer output and the closure of a solenoid valve in a piece of machinery, for instance.

Figure 1 shows one such real world application, an SCR (silicon controlled rectifier) optocoupler used to control a 117 VAC line operated device with microcomputer output logic voltages. This circuit will certainly work, but the light bulb load will light only to half brilliance because the SCR conducts only on the positive half cycle of the AC line voltage. One way of getting around this is to modify the circuit, as shown in figure 2, by using a diode bridge in conjunction with the SCR photocoupler. This is an old trick developed to allow SCRs to be used for full-wave control. It came into use before the introduction of the Triac.

There is another way of achieving full wave AC control: Use a dual SCR optocoupler such as the Monsanto MCS6200. Since there are two light emitting diodes and two photo-SCRs (each LED controls its own photo SCR), one can connect the LEDs in series and the photo SCRs in reverse parallel to create the equivalent of a Triac photocoupler. This connection is shown in figure 3. (The MCS6200 is useful for other applications, of course, such as polarity reversal.)
The MCS-1 and MCS6200 are rather limited in their current handling capability, however. The MCS-1 will carry 250 mA and the MCS6200 will carry only 150 mA. This sort of capability is fine for lighting small light bulbs, but hardly suitable for the types of loads found in real process controls.

When working with 117 V AC control schemes, zero voltage turn on and zero current turn off are desirable design goals. If we had a logic controlled device capable of closing the AC connections only when the AC voltage is crossing through zero, a number of problems would be solved. (AC voltage alternates sinusoidally, crossing the zero voltage point twice per cycle.) The large inrush current that can occur when an AC switch is closed at (or near) the positive or negative peak of the AC sine wave can be eliminated by such a zero voltage turn on device. Zero current turn off techniques have the added advantage of not interrupting large currents in mid flow. If the AC load is a pure resistance such as a light bulb or heater, the zero voltage and zero current points are coincident in time; but, in general, AC loads will have inductive or capacitive reactance. The current and voltage waveforms will therefore be not quite in phase. For general use, we wish our logic controlled AC switch to have both zero voltage turn on and zero current turn off. Such a device is the modern solid state relay.

The Monsanto MSR100B is a good example of the solid state relay. As with other optically coupled devices, the solid state relay maintains complete isolation from the logic level controlling system. The MSR100B is shown in block diagram form in figure 4. The device is rated for 10 A at 120 VAC. So up to 1.2 kW can be controlled with only TTL level inputs. The modern solid state relay has a myriad of protective features built into it (see figure 4). The zero voltage turn on and zero current turn off features contribute most to the desirability of the solid state relay since they can attenuate line transients and radio frequency noise.

Figure 3: Using a dual SCR optoisolator for full wave control of an AC operated device.

Figure 4: A typical solid state relay. Units such as this Monsanto MSR 100/200 have many convenient features. The zero voltage and zero current switching abilities eliminate damaging high current surges to the load, as well as high voltage transients experienced with inductive loads. The input filter prevents short duration noise (<10 µs) of signal strength from falsely switching the relay. The output filter suppresses transient signals generated either from inductive loads or long lines.
interference that could get back into the processor and unload memories or modify programs. Solid state relays are made by International Rectifier Corp (Crydom), Amphenol (Runkel Ramo), C P Clare, Douglas Randall (Kidde), Electrol, Gordos, Gould (Allied Control), Grayhill, Heineman Electric, Potter and Brumfield, Teledyne, and Theta-), to name a few. It is a good idea to study the features of the various relays available, since there are so many variations. 10 A is a common current rating, but units are available with up to 40 A current capacity.

We next consider the DC side of things. Where is DC used for these types of applications? The automobile is one answer. The auto industry hopes to use microprocessors, but must operate them from +12 VDC for reasons of practicality. The SCR optocoupler in figure 1 can not be used for DC control, unless one wishes the DC being controlled to latch "on." That is, once the controlling diode turns the photo SCR "on" (with a DC supply of the proper polarity), the SCR will stay on no matter what the control current does. In order to control DC, it is a better plan to use a more conventional optocoupler, ie: one that has a phototransistor as the output device. Such optocouplers are widely available from most of the semiconductor producers. Among the producers of optocouplers are Fairchild, Hewlett-Packard, Litronix, Monsanto, Motorola, and Texas Instruments.

An example of the use of optocouplers for isolated DC control is shown in figure 5. A Monsanto MCT-1 is used in this circuit, which has a characteristic like that shown in figure 6. The MCT-1 is an early optocoupler, and it has a rather low ratio of collector output current to photo diode input current (about 35%). Newer optocouplers, using photo Darlington transistors, can have a ratio of 500% or more. That is, for an optocoupler with a 500% current transfer ratio, 10 mA of control diode current will cause 50 mA of current to flow in the collector of the output (Darlington) photo transistor.

Most optocouplers are restricted to output currents of 100 mA or less with photo transistor voltage ratings of 30 V or less. (There are exceptions, like the Monsanto MCA2200, which will stand 200 V.) A capability of 30 V and 100 mA means that optocouplers can handle relatively small loads of only a few watts. This is not a problem, since the optocoupler can be

Figure 5: Use of an optocoupler to directly control a relatively small load.

Figure 6: Monsanto MCT-1 solid state relay characteristics for various LED currents.

Figure 7: Use of an external NPN transistor to increase load current control capabilities.
followed by a power transistor whose current gain, voltage rating, and current rating can increase the capability to control hundreds of watts. Three ways that this can be done are shown in figures 7, 8 and 9. Note that using an external transistor to increase voltage or current capability may cause an inversion of the logic, but this can be easily corrected either in software or by the addition of a single 7405 inverter section on the logic side of the optocoupler.

Many devices used in process control have inductive reactance as part of their impedance. As a result, when switching relays, solenoids or motors with transistors (whether directly from the photo transistor of the optocoupler or by means of an external transistor) it is desirable to add "inductive kick" protection. The inductive kick occurs when the transistor attempts to turn off the inductive load. At this point, the collector voltage can easily exceed the maximum rating. A diode across the inductive load will protect the transistor as shown in figure 10.

Another method of protection is the use of a thyrite varistor as in figure 11. The thyrite varistor must be chosen so as to draw reasonable current when the normal coil voltage is present across it; thyrite varistors are nonlinear resistors and draw abnormally high current when the voltage across them increases (during the inductive kick).

For general reference on the subject of the various optically isolated couplers discussed here, references 3, 4, and 5 are recommended. The catalogs of such producers as Monsanto are also useful; brief application data often accompany the data sheets.

REFERENCES

Interfacing the Sykes OEM Floppy

Phil Hughes
POB 2847
Olympia WA 98507

This article shows how I interfaced a Sykes 7158 OEM floppy disk kit to a SwTPC MP-68 computer system. The system presented is not the ultimate design but it has been built and it operates properly. I consider it a good basis for the development of a disk operating system.

First, let's look at the Sykes kit. The 7158 kit consists of an Orbis disk drive and a controller designed and built by Sykes which employs a 6502 microprocessor. This is one of the smarter controllers. The interface consists of only an 8 bit bidirectional bus and five control lines for hardware requirements. Software commands such as track select, read sector X and reset are used. Additional commands such as step head in and step head out are available but are only used for diagnostic purposes. Cost of the 7158 kit is about $1300.

Alternatives to the 7158 kit are the 7258, 7358, and 7458 kits which are similar but include two, three or four disk drives. Notice that the controller can handle up to four disk drives. Another alternative is the 9158 and its multiple drive relatives 9258, 9358 and 9458. These units offer greater packing density and therefore greater storage capacity. The capacity of a 7000 series drive is 256,256 bytes and 630,784 bytes for the 9000 series. If you need the extra capacity a 9000 series kit may be a better choice. However, this is Sykes' own format and is not likely to be compatible with anything else. The 7000 series units are compatible with the IBM 3741 format.

If you are unfamiliar with the IBM floppy disk format it is composed of 77 tracks numbered 0 through 76. Each track is divided into 26 sectors numbered 1 thru 26. Each sector consists of four fields as shown in figure 1.

Power requirements for the disk and controller are shown in table 1. A commercial power supply can be purchased or you can build your own supply. Figure 2 is a schematic of a power supply which supplies the needed voltages, offers voltage adjustment on the +24 and +5 supplies and has both adjustable current limiting and over-voltage protection on the 5 V supply.

Once the power requirements are satisfied we can get to the interface. My design goal here was to build the complete interface on a circuit board which would fit into an IO slot on the MP-68. This feat is shown in photo 1. This interface was built on a Personal Computing Company board using quasi wire wrap techniques. This means that
Disk Kit to a Personal Computer

Photo 2a: Top view of the Orbis disk drive used by Sykes in its 7158 system, with the floppy disk inserted.

Photo 2b: Bottom view of the Orbis disk drive used by Sykes, showing the built-in control electronics and belt drive for the disk spindle. The Sykes interface (photo 3) has been removed for this picture.
Photo 3: The Sykes floppy disk controller board. This board mounts on the bottom of the Orbis drive; it contains a 6502 processor with read only memory programming needed to implement the high level command sequences available on the bidirectional interface.

All the ICs were placed in wire wrap sockets and all other connections were soldered. I found this to be a very workable compromise.

The schematic of the interface is shown in figure 3. The heart of the interface is a 6820 Peripheral Interface Adapter (PIA). Support components are needed to interface to the disk controller bus. Also I built four level indicators and permanently connected them to TP1 thru TP4. These indicators proved very helpful during both hardware and software debugging.

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Controller</th>
<th>Drive</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>+24 ± 10%</td>
<td>1.5 A max</td>
<td>.75 A idle</td>
<td>1.5 A</td>
</tr>
<tr>
<td>-12 ± 10%</td>
<td>100 mA</td>
<td></td>
<td>100 mA</td>
</tr>
<tr>
<td>+5 ± 5%</td>
<td>3.0 A</td>
<td>.75 A</td>
<td>3.75 A</td>
</tr>
</tbody>
</table>

Table 1: Disk interface DC power requirements. The power supply of figure 2 was designed and built to meet these requirements; for those desiring to omit this detail, Sykes makes available a power supply module for the controller and drive.

Figure 1: Sector layout. The sector layout is fixed by the design of the controller. Each sector has 128 bytes of data, and an identification number which contains track and sector information in the "soft" format for floppies.
The software which I have developed is reasonably primitive but should be a valuable tool for use in the development of a disk operating system. It performs four functions. They are read (R), write (W), exit (X) and start (S). The read and write functions transfer the first 8 K bytes of memory to and from specified locations on the disk. The user is prompted for the location which is indicated by one character from A to P. This character is converted to a track address and the function is performed. After each operation the disk status byte is returned to the control terminal. The exit function returns control to the Motorola MIKBUG monitor. The start function performs a JMP to location 0100, the start address of the SWTPC software.

Table 2: Controller status byte. Each bit of this byte determines one flag signal sent back to the computer. Detailed information is included in the Users Manual For Series 7000/9000 OEM Systems Kit which is supplied with the drive when it is purchased.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Hexadecimal Value of Bit</th>
<th>Bit Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deleted Record</td>
<td>80</td>
<td>Bit 7</td>
</tr>
<tr>
<td>Fault</td>
<td>40</td>
<td>Bit 6</td>
</tr>
<tr>
<td>Track 00</td>
<td>20</td>
<td>Bit 5</td>
</tr>
<tr>
<td>Disk Protect</td>
<td>10</td>
<td>Bit 4</td>
</tr>
<tr>
<td>CRC Error</td>
<td>08</td>
<td>Bit 3</td>
</tr>
<tr>
<td>Busy</td>
<td>04</td>
<td>Bit 2</td>
</tr>
<tr>
<td>Ready</td>
<td>02</td>
<td>Bit 1</td>
</tr>
<tr>
<td>Data Service</td>
<td>01</td>
<td>Bit 0</td>
</tr>
</tbody>
</table>

Figure 2: Power supply for disk system. This power supply uses the 723 voltage regulator IC to actively regulate a 24 V 2 A supply for the disk motor(s), and electronics supplies of -12 V at 0.35 A and 5 V at 4 A.
Using these basic functions, programs such as the Editor, Assembler, and BASIC can be loaded into memory and written out to disk so that they can be subsequently loaded from disk. The advantage: It takes about 30 seconds to load the disk load routine from cassette at 30 cps and then disk IO is performed at about 10,000 bytes per second. If you modify the Editor, Assembler, and BASIC so that they do not use the memory where DISKLD is located you will be able to load each program directly from disk.

For example, the following sequence can be used to modify 8 K BASIC so that it will preserve the memory used by the disk load routine and save 8 K BASIC on disk.

- Load 8 K BASIC from cassette or paper tape.
- Change memory location 0044-0045 to hexadecimal 2DFF. This is the upper memory limit that BASIC will attempt to use.
- Load DISKLD from cassette or paper tape and start.
- DISKLD should respond with "22LDR>.
 The 22 is the status as defined in table 2. If the status is other than 22 or 02 you should look it up in table 2 and determine what the problem is.
- In response to "LDR>" enter "W" (for write).
- In response to "ID--" enter the ID you wish to save BASIC under. (B is a logical choice.)
- DISKLD should respond with the status again (which should be 02) followed by another status and the "LDR>" message.
If the status is correct from the previous sequence you should now be able to load BASIC from the disk and start its execution by the following sequence.

- If the system has been powered down or DISKLD is not loaded, load it from tape and start.
- If the status is correct enter "R" for read.
- In response to "ID—" enter the ID of BASIC ("B").
- If the status is correct enter "S" to start execution.

For those who wish to dig in and start writing some fancy software DISKLD contains the following functional units.

- DCNTRL — Calls the PIA initialization routine, prompts the user for the desired function (R, W, X or S) and transfers control to the requested routine.
- DINIT — Sets up the PIA.
- DCOMM — Issues the command in the A accumulator to the disk and returns disk status in the A accumulator and PIA address in the index register (X).
- DIPLR — Prompts for ID and performs an 8 K byte disk read.
- DIPLW — Prompts for ID and performs an 8 K byte disk write.
- DTERM — Issues a terminate command to the disk controller, returns the status to the control interface and returns control to DCNTRL. Used by DIPLR and DIPLW.
- DISKLD — Designed to work with MIKBUG and with the disk interface connected to IO slot 0. The EQUs at the beginning of the program set up this environment and can be changed to meet the requirements of different configurations.

The hardware interface requirements are defined in detail in the documentation supplied with the disk kit. These basics should make the SwTPC interface more understandable:

- D1 to D8 are eight bidirectional data lines. Their direction and contents are defined by the status of the DOT and DATA control lines. Note that Sykes defined the high order bit as D1 and the low order bit as D8. (Motorola and SwTPC define D7 as the high order bit and D0 as the low order bit.)
- RESET is a bidirectional, ground asserted signal. The interface is designed so that only the processor can send a reset command to the disk controller.
- FLAG is a controller originated, ground asserted signal. This signal informs the computer that the disk controller requires service.
- DATA is a computer originated, ground asserted signal. When asserted, the data lines (D1 thru D8) will contain a data byte. When not asserted, the data lines will contain either a command (from the computer) or a status (from the disk controller).
- DOT is a computer originated, ground asserted signal. When asserted it indicates that the direction of transfer on the data lines is from the computer to the disk.
- STROBE is a computer generated, ground asserted signal indicating that information is being transferred on the data lines.

Section A of the PIA is used to handle the data lines. The peripheral control line CA2 is used to supply strobe information. The two low order bits of section B of the PIA are used to control the DOT and DATA control lines. Bit 7 of the B section of the PIA is used to receive flag information from the disk controller. Initially CA1 (PIA section A interrupt input) was to be used for the flag function; however, the current design of the DISKLD program can loose a flag status change. Using PB7 has proved to be easier to handle.

For those who wish to develop a disk operating system from the basic hardware and software I have the following suggestions. The easiest type of disk allocation system to handle and integrate into

Listing 1: Software of the primitive disk interface software used to test out the drive and provide a minimum level of mass storage function. DISKLD performs four functions:

\[R = \text{read a block from disk.} \]
\[W = \text{write a block to disk.} \]
\[X = \text{exit the DISKLD program.} \]
\[S = \text{start a program at the assumed entry point of hexadecimal 100.} \]

This program was assembled and listed using a printer with narrow width, so comments are somewhat restricted. The terminal command interpretation is done by means of a sequence of comparisons at addresses 2E14 to 2E22.

Continued on next page
existing programs is allocation of contiguous disk space to a given file. This type of allocation has the disadvantages of needing a disk clean up routine to compact unused space and also results in more wear at the beginning of the disk but is much easier to develop than a system which allows allocation by sectors or pages. Because of the relative ease of implementation the following ideas are based on the contiguous allocation design.

Disk Directory

Track 0 should contain a directory of all the files on the disk. I think the following information should be contained in each disk directory entry:

- **File Name:** 1 to 6 character name used to locate the file.
- **Type:** An indicator to show if the file is a source program, an absolute object program, etc.
- **BOE:** Beginning of extent. The track and sector where the first record of this file is located.
- **EOE:** End of extent. The last track and sector which is allocated to this file.
- **Delete Flag:** Indicates that this file has been deleted. This is used by the compact routine to compress out released space.
- **Creation of Date and Time:** This information is optional but space should be allocated for it in case it is added at a later date.

All of this directory information could be easily contained in 32 bytes with space left over for expansion. This would result in four directory entries per sector or 104 files per disk if all of track 0 were used to contain this information. Actually, sector 1 of track 0 should be reserved for disk header information and pointers, thus leaving 25 sectors or 100 entries.

Disk Utilities

The following utility routines are necessary to manage the disk system:

- **List Directory:** This program lists directory entries so that the user can determine what is on the disk and perform any desired housekeeping.
- **Define or Delete File:** This program allows the user to delete an existing file (ie: set the delete flag in the directory) and to define the characteristics (name, size, type) of a new file.
- **Pack Disk:** This utility moves files so that all allocated disk space is contiguous and updates the file directory, removing the entries for deleted files. When this operation is completed all free disk space is at the end of the disk.
- **Copy File:** Performs a disk to disk copy or a load from tape to disk or save from disk to tape.

Disk IO Subroutines

The following subroutines must be made available to the applications programs to perform disk IO.

- **OPEN:** Sets up IO information about the file.
- **CLOSE:** Deactivates the file and updates the directory entry to indicate any change.
- **READ:** Transfer a file block to memory.
- **WRITE:** Transfer a file block to disk.
- **POS:** Position a file to a specified file block.

File Control Block

This is a table which is used to maintain current information about a file while it is being used (open). This table is generated at the time a file is opened. At close time, it is used to furnish the necessary information to update the file directory.

Operation Control Block

This is a packet which is created by the applications program to tell the disk IO handler what operation is desired and on what file. Error status can be returned to the application by the disk IO handler in this block.

These are all the basic pieces necessary to put together a disk operating system. Once this is accomplished the applications programs must be modified to use these new IO routines. If all this sounds like a lot of work, it is; but when you have all this completed and debugged you should know everything about 6800s and disk IO. In fact you have learned so much you can start over and do it so much better. Thus, on goes the endless saga of system software.
Get On at the Right Address

The 8080 processor “wakes up” at 000 000 (split octal) as people with home-brew systems probably know. My system has a bootstrap programmable read only memory which initializes my IO ports (keyboard, cassette interface, and video display) and allows me to load a program. Many available programs originate at 000 000 and, although they can be relocated, it is more convenient to leave them. Also, the very useful instruction RST (restart n) makes use of memory originating at 000 000, and, to be effective for different programs, this memory must be programmable. The problem is to get to the bootstrap first, but reserve programmable memory starting at 000 000 for programs.

The following simple circuit allows an immediate software jump to some other memory location besides 000 000 (in this circuit it is 140 000) where the bootstrap is located. Programs can then be loaded into programmable memory starting at 000 000. Note that, after the first instruction is executed, addressing returns to normal in every respect (until another system reset).

The circuit is based on two exclusive OR gates. While the address mode line is high, address lines 13 and 14 will be inverted. This happens at system reset (power on, for instance). At this point the 74193 begins counting SYNC pulses (one every machine cycle) and at the beginning of the fourth machine cycle, clocks a low onto the address mode line, thereby restoring normal addressing. In effect the processor is putting out address 000 000, but the memory interprets it as 140 000. The bootstrap programmable read only memory instruction to jump to 140 003 is at this location. A JMP instruction takes three machine cycles so that, just as the second machine instruction is beginning, addressing returns to the normal mode and you’re on your way starting at 140 003.

Figure 1: A circuit designed to allow programmable memory to reside at location 0 in an 8080’s memory address space, while still allowing a ROM bootstrap permanently in memory. Following system reset, this simple circuit forces the system’s address lines to map location 0 into location 140 000 for the first instruction’s execution. If the first instruction is a jump to location 140 003, the bootstrap can be initiated at 140 003 by an RST 0 instruction forced onto the data bus during the system reset process. (Addresses other than 140 000 can be assigned to the bootstrap ROM with appropriate modifications of the decoding circuit.)
The Intelligent Memory Block

Adding Processors to Enhance Performance

Multiprocessing

If you were to poll a group of computer hobbyists on how to increase the power of a particular microcomputer system, you would most likely get two suggestions, namely "add memory and IO devices" and "substitute a faster processor with a more powerful instruction set." If someone suggested "add a few more processors," he/she might draw stares of disapproval. However, the idea is not as far fetched as it may sound. Multiprocessor systems exist in the world of big computers (to wit, the IBM 360/65 and the UNIVAC 1108, to name but two) and work well in their environment (see reference 1 at the end of this article). In fact, the arguments for multiprocessing may be much stronger in the microcomputer world. At any rate, the old one processor per computer rule needs reexamination in light of the availability of $20 processor chips.
The Dumb Memory Block

Suppose you find the need to add a 4 K by 8 bit block of solid state memory to your microcomputer. Currently available kits cost from $80 to $150 for a system with static memory and buffered buses. Notice that adding a $20 microprocessor to the 4 K memory block represents only about a 20% increase in parts costs. This article examines how one can transform a dumb memory block into a slave computer simply by adding a microprocessor (and a few dollars worth of TTL logic) to the board.

Figure 1 diagrams a typical 4 K by 8 bit programmable memory block. The block address decoder raises the BS (block select) line, enabling the board whenever the four high order address bits from the

Figure 2: The modification of a “dumb” memory block through addition of a second processor and dual port addressing produces an intelligent memory block. Initialization of the additional processor is accomplished by mapping the last address of the 4 K memory block into a hardware control word as well as memory.

About the Author

Ken Castleman has a PhD in electrical engineering and works at the Jet Propulsion Laboratory in Pasadena CA. His professional specialty is digital image processing, with emphasis on medical images. However, microcomputing is one of his hobbies and, since 1973, he has built five microcomputers, three of which were his own design. This article was motivated by a profound philosophical belief that multiprocessor systems have a role to play in the future of microcomputing but that development in this field is currently lagging.
processor specify this 4 K block of memory. The address bus buffers and data bus transceivers prevent the memory chips (32 or so of them) from loading down the central buses. A few TTL gates generate the required control signals.

Adding Intelligence

Figure 2 illustrates the addition of an MC 6800 or MCS 6502 microprocessor to the 4 K by 8 bit memory block of figure 1. We shall call this microprocessor the local processing unit (LPU) to distinguish it from the central processing unit. In figure 2 the address bus buffers have been replaced by a bank of 2 input address multiplexers. This allows the memory block to receive addresses from either the central or the local address bus. The block select signal controls the bus routing and the local processor disable logic. The latter forces the local processor to stop and release the data bus. The local address decoder allows the local processor to access other devices in addition to the local 4 K memory block. It is significant that the hardware complication is small, assuming we can accomplish the local processor disable function as simply as figure 2 implies.

Adding the local processor transforms the 4 K memory block into a microcomputer. While it has no IO, it can execute in-block programs operating on in-block data. Since the central processor can still read and write the memory, it can handle the necessary IO, and even load the program for the local processor to execute.

We now have a multiprocessor system where the central processor and the local processor share the 4 K block of memory. The central processor can load the local processor program and data into the block and go about its business while the local processor processes the data. When the local processor is finished, the central processor can read the results out of the block. Proper division of labor between the two processors can produce an extremely effective computer system.

The Chain of Command

Considerable cleverness is required for interfacing the two processors to avoid a hopelessly slow and undebuggable mess. Let us now establish a reasonable set of interface requirements.

1. Local processor operation should be transparent to the central processor. This means the central processor should be able to read and write the intelligent memory block as if it were an ordinary dumb memory block. Thus the central processor software need not take special notice of the intelligent memory block.

2. The local processor should, by default, have control of the local address and data buses when the central processor is working elsewhere in its address space.

3. Memory access conflicts should be resolved in favor of the central processor by stopping the local processor and awarding the local address and data buses to the central processor. The central processor can then complete its memory access without delay. (This assignment is arbitrary since we could have just as easily given memory access priority to the local processor.) Care must be taken when generating such conflicts to avoid excessive delay of either processor.

4. Both processors, in general, should run at full speed.

5. Minimum computing time should be lost when conflicts occur.

Interfacing Processors

Ordinarily the local processor has control of the local address and data buses. When both processors attempt to access the block simultaneously, one processor (in this case the local processor) must be stopped immediately and made to release the buses to the other processor. This procedure is reminiscent of DMA (direct memory access) operation.

Timing Is Everything

The timing of microprocessor operation is controlled by the system clock. We now investigate this area in the hope of finding a resolution for memory access conflicts. The Motorola MC 6800 and the MOS Technology MCS 6502 microprocessors use a 2 phase nonoverlapping clock sig-
Figure 3 illustrates the specifications for 6800 and 6502 clock pulses (see references 2 thru 4).

Basically, the microprocessor uses Φ_1 to set up the address and RW lines, and Φ_2 to transfer data to or from the specified address. In a memory read operation the microprocessor puts the address on the address bus during Φ_1 and it remains there throughout Φ_2. During Φ_2, the memory responds by putting eight bits on the data bus. The data is latched into the microprocessor at the fall of Φ_2. For memory write operations the address is set up during Φ_1 as before, but this time the microprocessor puts eight bits on the data bus during Φ_2. The byte is latched into memory at the fall of Φ_2.

Both operations may be summarized as follows. First, the microprocessor updates the address lines about 200 to 300 ns into Φ_1 and the address is stable throughout Φ_2. Secondly, the memory has the rest of Φ_1 and all of Φ_2 to decode the address and the RW line and either put a byte on the data bus or prepare to accept a byte which the microprocessor puts on the bus at the beginning of Φ_2. Finally, the actual data transfer occurs at the fall of Φ_2 when the byte on the data bus is latched into the microprocessor or the memory.

Marking Time with a Rubber Ruler

Getting back to the problem of establishing an interface between the central processor and the local processor, suppose we run both clocks in synchronization. Notice that conflicts will appear during Φ_1 when the central processor sends out an address inside the local block ($BS = 1$). At this point the local processor must be stopped immediately. Since the READY line cannot accomplish this during write operations we need another solution.

Notice in figure 3 that Φ_1 has 4.5 μs as an upper limit on its duration. No law requires all Φ_1s to be the same length. We can hold the local processor in Φ_1 for up to 4.5 μs if we choose. Thus, we can resolve our conflicts with "clock stretching" (see references 4 and 5). We can hold the local processor in Φ_1 and take it off the buses until the central processor is finished accessing the block. At that point we allow the local processor to go on into Φ_2 and continue its operation. This is particularly nice since conflicts also go away during Φ_1 when the central processor addresses a location outside the local block. As soon as the conflict terminates we can put the local processor back on the buses and let its clock continue in phase with the central processor clock. This operation is diagrammed in figure 4 for a conflict lasting two clock cycles.

Notice that we have achieved our stated goals.

1. In operation, the central processor is unaware of the existence of the local processor.
2. The local processor proceeds unmolested when the central processor is working elsewhere in memory.
3. The central processor never has to wait for access to memory.
4. Except during conflicts, both processors run at full speed.
5. The local processor has to wait only while the central processor is actually using the local buses.

Putting It All Together

Referring back to figure 2, we see that when the four high order address bits select the local block, the local processor
Figure 4. Resolving a conflict by the method of clock stretching. In a 2 processor system built with the 6502 or 6800, lack of a memory wait facility requires substitution of a clock stretching method of direct memory access. Here during the asserted state of the BS (block select) signal, the local processor (L) has its clock stretched while memory is accessed by the central processor (C).

disable logic freezes the local processor in \(\Phi_1 \). The multiplexers route the central address bus to the memory while three state bus transceivers route the central data bus. The DBE input makes the data bus float during the stretched \(\Phi_1 \). [While the 6800 also has a TSC (three state control) input which makes it release the address bus, this input acts too slowly (700 ns) for our purposes.] Anyway, only a few gates are required to generate control signals, and the interface is established at little increase in total cost.

Exerting Some Control

Something has to start the LPU and attend to its hardware control functions. A sense of universal justice suggests we should put the central processor in control since it already has its own IO and startup capability. In figure 2 the control register is an 8 bit latch which allows the central processor to supply hardware control signals to the local processor. The central processor can address the control register as the highest byte in the block. When the central processor writes the high byte of the local memory block it simultaneously sets up the control register. The local processor can modify this byte of local memory but not the control register. Either processor can, of course, read the byte but neither can read the control register itself.

The control register allows the central processor to RESET, HALT and INTERRUPT the local processor at will. The RESET function is useful for initiating program execution after the local processor program is loaded. Coming out of RESET, the local processor vectors to a starting address stored at the top of its address space (see references 3 and 4). The NMI and IRQ interrupt lines of the local processor can also be commanded by the central processor through this control word.

Communicating and Cooperating

We must now establish a protocol for communication between central processor software and local processor software. Suppose we wish the local processor to handle mathematical jobs (such as floating point arithmetic, transcendental functions, etc) or perhaps to update in real time spacecraft position during a complex Star Trek game. Some planning is required to establish an effective division of labor between the microprocessors.

As an example, assume the programmer allocates the local memory block as shown in figure 5. The block is viewed as a contiguous region of 4096 bytes with the top byte dedicated to the central processor's local processor control word as described. The central processor must load the program initially and start the local processor by bringing it out of RESET through the local processor control word. Then the local processor might execute a loop checking specified locations allocated to requests looking for pre-established processing request codes from the central processor. When the central processor wants a processing task done it stores the data in the input
Figure 5: Memory allocations within a shared memory block must be understood the same way by software of both the central processor and the local processor. Here we show a schematic representation of a workable allocation scheme for use of the local processor to perform subroutines while the central processor goes about other business. The only position which is fixed in the hardware of the design in figure 2 is use of hexadecimal location nFFF in the 4 K block as a command word.

data area, stores a task request code at the request location, and goes about its business. The local processor soon detects the request and begins program execution to accomplish the task. Periodically the central processor checks the words allocated to status in the local memory block to see if the task has been completed. When the local processor finishes the task it stores a completion code in a status byte. On its next status check the central processor discovers that the task is complete and it can use the output data now available in the output region of the local memory block.

In this context the intelligent memory block looks like a self-executing subroutine. The central processor and local processor programs must, of course, agree upon all request and status codes and upon the locations of all variables used in communication. Care must also be taken to ensure that any central processor access to the local memory does not modify data crucial to the computational tasks of the local processor during its active execution of a task. Other approaches to the communication problem also could be used. For example, the local processor with appropriate hardware could generate a central processor interrupt each time it completes a task. This would relieve the central processor of periodic checks for task completion.

The Danger of Overstretching

The upper limits on Φ_1 and Φ_2 duration quoted in figure 3 exist because the 6800 and 6502 microprocessors are dynamic devices. If the internal registers are not refreshed often enough they forget their data and program execution goes haywire. Thus it is relevant to ask if we are in danger of stretching Φ_1 to the breaking point. First, it is necessary for the central processor program, stack and zero page to be located outside the local block. If a central processor program executes out of the local memory block, the local processor will be locked out much longer than the maximum time limit. If the stack of the central processor is in the local memory block, several operations, such as interrupt service and return from interrupt take too long. The zero page, since it is frequently referenced in many programs as a scratch data area, is similarly not a very good choice. Observing these conditions, a 6800 central processor would never address the local block for more than two consecutive clock cycles with the VMA (valid memory address) output high. Thus at 1 MHz operation, Φ_1 would never be stretched beyond 2.5 μs.

The 6502 has no VMA output and, in the worst case (shift instructions addressing data in an absolute X indexed mode), would access the local block for four consecutive clock cycles (see reference 3). At 1 MHz clock operation this stretches Φ_1 to the legal limit of 4.5 μs. We can circumvent this possibly marginal situation with one of the 6502A parts which can run at speeds up to 2 MHz.

Another Way

For 6800 and 6502 microprocessors there is an alternative memory sharing technique which does not involve clock stretching and results in maximum speed for both processors. This technique is known as clock multiplexing. The central and local processor clocks are run in opposite phase. While the central processor is in Φ_1 the local processor is in Φ_2 and vice versa. Two input multiplexers and data transceivers switch the address and data buses from central processor to local processor and back every clock cycle. This way the memory is always connected to whichever processor is in Φ_2 at the moment. Since data transfers only take place in Φ_2 this is adequate.
Clock multiplexing gives both processors unlimited access to the memory. The only penalty is that faster memory is required for the same clock frequency. Since the memory sees the address only for one \(\Phi_2 \) period it has less time to prepare for a data transfer.

Note that the clock sharing technique can be used to implement multiple processor systems with more than two processors. This is possible if we dedicate one phase of the clock to the central processor, and dedicate an exclusive memory address space region (and the second clock phase) to each local processor. Figure 6 shows a hierarchy diagram of a 5 processor system along with an address space allocation diagram for the central processor. All four local processors use the \(\Phi_2 \) clock of the central processor as their \(\Phi_1 \) clock; since the central processor can never address more than one local processor's local memory block at a time, there is never any conflict between local processors.

Getting Fancy

The intelligent memory block is a bona fide microcomputer in its own right. The local processor, with its vast unused address space, is capable of much more than playing butler to the central processor. For example, the local processor could do some external interface job like refreshing a video display or running a multichannel analog IO interface.

Now that we have shed the "one computer-one processor" myth, our horizons have broadened indeed. A 16 K byte microcomputer might just as well have one dumb and three intelligent 4 K blocks as four dumb blocks. What started as an inexpensive way to augment a memory block has landed us knee-deep in exotic computer architecture. Each local processor could even have several sub-local processors working for it in a 3 level architecture, and of course, the possibilities do not end there. At $20 per microprocessor chip, a small computing budget could support a lot of advanced architecture in the family microcomputer. In response to the question "why an intelligent memory block?" one might respond "for twenty bucks, why not?"

REFERENCES

This special report will be sent free to all subscribers to
BUSS
the independent newsletter for users of Haestkit® computers.
For the next 12 issues send $6.60 to:
Charles Floto
267 Willow St. 'B'
New Haven, CT 06511

Circle 46 on inquiry card.

Circle 136 on inquiry card.

Circle 3 on inquiry card.

Circle 23 on inquiry card.

Circle 7 on inquiry card.

Circle 126 on inquiry card.

Circle 87 on inquiry card.

Circle 67 on inquiry card.

Circle 134 on inquiry card.

Circle 8 on inquiry card.

Circle 2 on inquiry card.

“LSI-11 vs. 8080 & 6800: is the HILL worth twice as much?”

PRINTED CIRCUIT
BOARDS
(BARE BOARDS ONLY)

29.95 EA.
YOUR CHOICE OF
5-100 BUS
8K WW EXT
8K WW EXT

OR
6000 BUS

We also stock components for all above boards.
Guaranteed, if not completely satisfied return for refund.
We back everything we sell.
SEND SASE FOR OUR CATALOG TO:
BARNES ELECTRONICS
P.O. BOX 673
OAK RIDGE, TN. 37830
PAYMENT TERMS CASH WITH ORDERS.
ALL ORDERS F.O.B. OAK RIDGE, TN.
TN. RES. ADD 4% AND ADD $12 PER BOARD
FOR HANDLING AND SHIPMENT.
(WE ACCEPT MASTER CHARGE AND B.A.C.)

PRINTED CIRCUIT
BOARDS

Circle 6 on inquiry card.

Circle 125 on inquiry card.

Circle 23 on inquiry card.

DATA ACQUISITION SYSTEM ON A CHIP
National semiconductor's ADC0816 contains an 8 bit
A/D converter with latched tristate outputs, 16 channel
multiplexer with latched address inputs, and a 256 register
ladder on chip. Conversion time is
50 microseconds, absolute
accuracy is ± 1/2 LSB.
Single 5 V supply, TTL and
microprocessor compatible.
$26.00 ea., pp. Data S .50
Send check or money order to:
YESTRONICS
P.O. Box 1892
South Hackensack
New Jersey 07606
New Jersey residents add 5% sales tax.

DATA ACQUISITION SYSTEM ON A CHIP

Circle 11 on inquiry card.

Circle 7 on inquiry card.

Circle 87 on inquiry card.

Digital Group
System owners—now you have MC/OS.
The most sophisticated and advanced
Z-80 operating system for both disk or
PHI-Decks. MC/OS's approach to file
management rivals those found in large
computer installations. MC/OS allows
user programs full file access, tremen-
dously enhancing your systems' capa-
bility.
The following is a partial list of programs
available from us that run with MC/OS.

Basic Compilers — Two of them!
FORTRAN IV Super Compiler
Relocation, Memory Assembler
Powerful Word Processor
BASIC Language Course

You owe it to yourself to find out. Send
for complete catalog now!

Circle 66 on inquiry card.

Circle 65 on inquiry card.

Circle 64 on inquiry card.

UPGRADE YOUR MOTOROLA
EVALUATION KIT

8K Static RAM
2 - 4K write protected blocks
500 nsec. version - $334.95

Backplane and Card Cage
2 slot and 3 slot versions with
daisy chain connector
5 slots - $124.95
10 slots - $144.95
Connectors (installable) - $50

Unregulated Power Supply - $149.95

Industrial quality, Motorola EXR/EXR compatible hardware by
American Technologies

P.O. Box 23001
Rochester, N.Y. 14692
716-244-8070
DEALER INQUIRIES INVITED

Circle 112 on inquiry card.

Circle 55 on inquiry card.

Circle 25 on inquiry card.

CATCH-A-PULSE II
LOGIC PROBE

10 Nsec SPEED AT 3.5 to
15V LEVELS
ONLY $39.95

Simple with
RTL, TTL, CMOS, MOS, and Microcircuits using
3.5 to 15V power supply. Threshold automatically
programmed. Autonomous resetting memory. No
adjustments required. Visual indication of logic levels
using LEDs to show high, low, or open circuit
inputs. Simple to use, lightweight, small case
eliminates need for heavy test equipment.
Send $39.95
Mail residents add 10% sales tax

Circle 135 on inquiry card.

Circle 75 on inquiry card.

Circle 15 on inquiry card.

UPGRADE YOUR MOTOROLA
EVALUATION KIT

Circle 10 on inquiry card.

Circle 50 on inquiry card.

Circle 20 on inquiry card.

PRINTED CIRCUIT
BOARDS

Circle 5 on inquiry card.

Circle 1 on inquiry card.

Circle 15 on inquiry card.

DIGITAL GROUP

P.O. Box 4069 Pompano Beach, Fla. 33063

Circle 105 on inquiry card.

Circle 45 on inquiry card.

Circle 35 on inquiry card.

DATA ACQUISITION SYSTEM ON A CHIP

Circle 145 on inquiry card.

Circle 75 on inquiry card.

Circle 15 on inquiry card.
A 6800 Based System for OEMs

Designed for the original equipment manufacturer, the Astral 2000 is available as a stand alone single board computer or in one of two enclosures complete with power supplies and 12 position mother board. Separate cards contain the processor, memory, IO and floppy disk interface. System software includes an extended 8 K BASIC, assembler, text editor and disk operating system. Two front panels are available: one complete with register and data switches and hexadecimal and binary displays; and one with only power on, reset and interrupt switches for turnkey applications. The full front panel includes two clocks for real time measurement and control. Memory boards include 8 K of programmable memory, 8 K of read only memory, and a combination board with 8 K of each type of memory. An IO board provides four 8 bit ports, and an iCOM FD3700 Intelligent Interface can also be connected to the computer. A monitor program resides in the computer's memory. Prices for the Astral 2000 start at $1500 from Astral Computer Co, 991 Commercial St, Palo Alto CA 94303, (415) 494-8048.

A Little Bit of Micro Power

Little Bit is a single card microcomputer having performance characteristics optimized for the requirements of bottom end applications where hardware simplicity, ease of application, and low cost are primary considerations. Complete software, firmware, training and programming services are available. Programs for assisting in software development for Little Bit and the F8 microcomputer system are available nationally through a computer time sharing service. Little Bit cards cost $125 each in quantities of 100, from Environmental Technology Inc, 2821 West Sample, South Bend IN 46619, (219) 233-1202.

The Space Byte Corporation has announced their line of software development systems featuring the Space Byte 8085 processor and 2708/2716 EROM programmer, Hazeltine 1500 video display, iCOM 3712 dual floppy disk drive system and 32 K bytes of static memory. System software includes iCOM FDOS III operating system and 8080, 8085, Z-80 relocatable macro assembler, utility programs and disk extended BASIC. Also available is CP/M, FORTRAN-80 and the Space Byte microcomputer system available nationwide through a computer time sharing service. Little Bit cards cost $125 each in quantities of 100, from Environmental Technology Inc, 2821 West Sample, South Bend IN 46619, (219) 233-1202.
What's New?

Furniture Designed to Hold Computer Equipment

These desks are specially made to support video displays, terminals, word processing stations and similar equipment. Options such as cutouts for cables, cable channels to eliminate loose cords, pedestals and storage compartments are available. Standard sizes range from 36 inches to 60 inches wide in a variety of colors, from Electronic Systems Furniture Co, 1215 E El Segundo Blvd, El Segundo CA 90245, (213) 322-4612.

Circle 637 on inquiry card.

Low Cost Logic Probe

This low cost probe features light emitting diodes which indicate high and low logic states and pulses for either TTL or CMOS logic families. Separate dual window comparators drive the high and low LEDs. The pulse detection circuit catches pulses as short as 300 ns with a positive or negative going leading edge. Individual pulses cause the LED to blink for a tenth of a second, while a pulse train flashes it continuously. The probe obtains power from the system under test through a standard phono jack power connector, with a mating input impedance is over 300 K ohms. The LP-2 logic probe is $24.95 from Continental Specialties Corp, 44 Kendall St, New Haven CT 06509, (203) 624-3103.

Circle 638 on inquiry card.

Fuel Your Appetite for a 16 Bit System

An 8 page brochure describes the Alpha Micro system, a powerful Altair (S-100) bus compatible package with a timeshared operating system including utilities, a multiuser structured file system with password security, disk file management for floppy or hard disk, AlphaBASIC extended compiler and reentrant run time software, free form text editor and formatter, multiple pass macroassembler and 16 bit microprocessor with hardware floating point capabilities. The microprocessor is built from the Western Digital WD-16 chip set, also used in the LSI-11. The brochure is available from MicroAge, 803 N Scottsdale Rd, Tempe AZ 85281.

Circle 642 on inquiry card.

New Test Equipment and Hobby Catalog

This 32 page catalog features a complete line of electronic kits and factory assembled instruments, burglar and fire alarm systems, citizens' band accessories and hobbyist kits. New test instruments include a portable digital multimeter, and function generator, a portable color generator, a digital frequency counter, two new oscilloscopes, a self service tube tester and a digital power supply. New hobbyist products include an ignition and engine analyzer and an alpha brainwave monitor. The catalog is available from EICO Inc, 108 New South Rd, Hicksville NY 11801, (516) 681-9300.

Circle 644 on inquiry card.

End Stackable Sockets

These low cost sockets can be stacked end to end to build a continuous strip socket. The CS2 line is available in all sizes from 8 to 40 pins, from Circuit Assembly Corp, 3169 Redhill Av, Costa Mesa CA 92626, (714) 540-5490.

Circle 640 on inquiry card.

TI's First Personal Computer?

Billed as a "personal computer/calculator," the SR 60A is said to form the heart of a versatile business system that provides the power of a computer with the simplicity of use and low cost of a calculator. The SR 60A uses a microprocessor to control an optional letter quality typewriter and up to two digital cassette drives with file management capability. Serial communications capability also is available. The SR 60A is capable of handling business problems such as inventory, payroll, general ledger, accounts receivable and others. Over 250 programs are available for the machine. Under program control, a small alphanumeric display prompts the user for inputs and performs the calculations, while a 20 character alphanumeric printer can be used to record results. The basic machine provides up to 2640 program steps or 330 data registers, expandable to 7920 program steps or 990 data registers. Prices for the SR 60A start at $1995 from Texas Instruments Inc, Inquiry Answering Service, POB 53 (Attn: SR 60A), Lubbock TX 79408.

Circle 659 on inquiry card.

Attention Readers, and Vendors...

Where Do New Product Items Come From?

The information printed in the new products pages of BYTE is obtained from "new product" or "press release" copy sent by the promoters of new products. If in our judgment the neat new whiz-bang glitzmo or save the world software package is of interest to the personal computing experimenters and homebrewers who read BYTE, we print the information in some form. We openly solicit such information from manufacturers and suppliers to this marketplace. The Information is printed more or less as a first in first out queue, subject to occasional priority modifications.
4K RAM BOARD
Assembled and tested.

See kit below.

4K RAM BOARD KIT
450ns Access RAMs
Fully Buffered
Low Power
$79.95
Static
$239.00
5V only
4 1/2 x 6 inch board

Buy 4 RAM Board kits at $79.95 each and an 8 slot Mother Board is yours FREE.

Includes 8 connectors and card guides.

MOTHER BOARD
8 SLOT 44 PIN BUS
50 Pin Edge Connector

Mother Board $20.00 ea
Connectors 2.50 ea
Card guides for above $10.00 per set.

KIM INTERFACE

Board plugs into Kim expansion connector
Connector for our Mother Board
Full memory decoding
Write protect for (4) 4K bytes
Address and data Bus buffers

2102 — $1.20
Multiples of 25 only.
Low power, 450 n.s. Access and cycle.

8K EPROM BOARD
5 Volt only For our bus

MAKE CHECK OR MONEY ORDER PAYABLE TO:
Kathryn Atwood Enterprises
P.O. Box 5203, Orange, CA 92667

Discounts available at OEM quantities. For orders less than $25.00 total, add $1.25 for shipping. California residents add 6% sales tax. Estimated shipping time 2 days ARO with money order. For checks allows 7 days for check to clear.

Electrolabs
415-321-5601
POB 6721, Stamford, CA 94305

ESAT-100A: REVISED DESIGN! For Teletype, SC/MP, Jolt, Kim, SBC80, COSMAC. Electrolabs Stand Alone Terminal. Completely assembled, burned in and tested. Very reliable. $239.00

KIM INTERFACE

SYSTEM BUY OF THE YEAR! TEALTRONIC 2500

includes BIOS bidirectional matrix printer, ASCII keyboard, wide band video monitor, FOUR Shuger 800 floppy drives, high speed CPU structured from 2900 bit slice chips to execute in IBM’s ALC business language and containing 25K of memory. Regulated, protected cool running supplies for all of these items.

NOTE: In Europe these fetch $19,000. One of these with a LS1-11 would be incomparable! $5775

Verbatim
Removeable Magnetic Storage Media
manufactured by
Information Terminals Corp.

MINIDISKETTES

$1.20
$4.99
$4.35
$4.65
$4.45

F034-1000 (Soft Sector, IBM Std.) $5.99
FD32-1000 (Soft Sector, IBM Std.) $4.99
R-300 Digital Direct $5.25
MD525-16 (8KB) $139
MD510-100 (8KB) $19,000

F034-1000 (Soft Sector, IBM Std.) $5.99
FD32-1000 (Soft Sector, IBM Std.) $4.99
R-300 Digital Direct $5.25
MD525-16 (8KB) $139
MD510-100 (8KB) $19,000

All New In Console $3900

BYE March 1978 197
The Programmable Scientist.

The MP7400 Analog IO System is electronically and mechanically plug compatible with the Motorola Micromodule and Exerciser microcomputers. Each analog system can accommodate up to 64 single ended or 32 differential input channels and two output channels. A high gain instrumentation amplifier handles input levels as low as 10 mV. The unit interfaces to the microprocessor through a set of memory locations. In single quantities, an input only board with eight differential channels is $295, while a fully loaded board with 32 differential channels and two output channels is $595, from Burr-Brown Research Corp, Int'l Airport Industrial Pk, POB 11400, Tucson AZ 85734, (602) 294-1431.

This floppy disk drive and microprocessor based controller is designed to emulate paper tape and magnetic tape. The unit can be used for data collection or offline preparation of messages which can then be transmitted through the optional built in acoustic coupler. The unit will operate with any standard printer or video terminal through an RS232 interface. The program controlling the unit resides on a floppy disk rather than in read only memory, so the system can be easily updated. The Digilink with RS232 interface is $1199, $1299 with a built-in originate only acoustic coupler, and $1699 with a 1200 bps Bell 202 compatible coupler, from Digicom Data Products Inc, 1440 Knoll Circle, Suite 108, San Jose CA 95112, (408) 279-8711.

The Before Boards are prototyping boards for the Altair (S-100) bus and the SWTPC (S5-50) bus, offered both with and without a regulated power supply circuit. The S-100 Before Board is supplied with a 100 pin edge connector and can accommodate 56 14 pin or 50 16 pin dual inline packages, and has an extra wide A row to accommodate .4 to .6 inch wide packages. It includes the power supply circuit and is priced at $29.95. The S-100x version of the board omits the power supply circuit for $28.45. The 6800 Before Board is designed to be used with 50 pin Molex connectors and is priced at $23.95, while the 6800x version, which omits the power supply circuit, is $22.46. The boards are available from Multi-Tek Inc, POB 201 Union Square, Milford NH 03055, (603) 673-5011.

3RD GENERATION ASCII KEYBOARD KIT *ONLY $63.00

FURTHER IMPROVEMENTS—MORE FEATURES
- TTL Logic Circuits
- Power: +5V 275mA
- Upper and Lower Case
- Full ASCII Set (Alpha Numeric, Symbols, Control)
- 7 or 8 Bits Parallel Data
- Optional Serial Output
- Selectable Positive or Negative Strobe, and Strobe Pulse Width
- 'N' Key Roll-Over
- Fully Debounced
- Carriage Return Key
- Repeat Function Key
- Shift Lock, 2 Shift Keys
- 4 User Defineable Keys
- P.C. Board Size: 17-3/16" x 5"

OPTIONS:
- Metal Enclosure (Painted IBM Blue and White) $25.00
- 18 Pin Edge Con. $2.00
- I.C. Sockets $4.00
- Serial Output (Shift Register) $2.00
- Upper Case Lock Switch for Capital Letters and Numbers $2.00

KIT Includes: Keyboard, P.C. Board, all required components & assembly manual.

NOTE: If you have this 63 Key Teletype Keyboard you can buy the Kit without it for only $44.95
Industrial Quality Analog Input Systems
Bidirectional Telephone Interface for 6800 Systems
Cartridge Tape System for Intel

These analog input systems for Motorola microcomputers offer 12 bit resolution on digital conversion and better than 0.25% full scale range throughput accuracy. The boards feature input and overvoltage protection and excitation and bridge circuitry. The model MP7608 provides eight differential input channels which accept signals ranging from ±10 mV to 5 V, while the model MP7608-I is a current input system designed to interface to 4 to 20 mA current loop signals. Both are priced at $595 in single quantities, from Burr-Brown Research Corp, Int Airport Industrial Pk, POB 11400, Tucson AZ 85734, (602) 294-1431.

This touch tone transmit module contains a central office quality tone transmitter and receiver and is suitable for applications such as automatic dialing and receiving and automatic credit card verification. The module is built on an industry standard 4.5 by 6.5 inch 44 pin printed circuit board and is priced at $1499 in single quantities, from Wintek Corp, 902 N 9th St, Lafayette IN 47904, (317) 742-6802.

Designed for use with the 3M DC100A tape cartridge, this system consists of a single or dual drive mechanism with power supply and cabinet, and a low cost controller for the Intel Microcomputer Development System and the SBC 80 microcomputer. The controller can also be used with the 3M DCD-1 mini cartridge drive. The Datamax mechanism features a low error rate, 100 K byte capacity, and a data transfer rate of 2350 bytes per second. The controller and mechanism are available from HT Instruments Inc, 4121 Redwood Av, Los Angeles CA 90066, (213) 822-4296.

MICROPROCESSORS FROM CHIPS TO SYSTEMS
Rodnay Zaks
420pp, 150 illustr, ref C201 $9.95

Our Bestseller. This book is the result of the author's experience in teaching microprocessors to more than 2000 persons. It presents a comprehensive introduction to all the aspects of microprocessors, from the components to the assembly of a system. The difficulty of each chapter is graduated from the basic concepts to the actual technical details. It is read by students, technicians, managers, engineers, educators, doctors and by all those who wish to understand rapidly and efficiently all the important aspects of microprocessor use, selection, or application.

CONTENTS: Fundamental Concepts... Internal Operation of a Microprocessor... System Components... Comparative Microprocessor Evaluation... System Interconnect... Microprocessor Applications... Interfacing Techniques... Microprocessor Programming... System Development... The Future...

ALSO AVAILABLE: MICROPROCESSOR ENCYCLOPEDIA
• VOL I: 8-BITS, ref E6 $15.00
• VOL II: BIT-SLICE, ref E5 $15.00

TO ORDER
• BY PHONE: call (415) 848-8233
BankAmericard/Mastercharge accepted
• SHIPPING: no charge when payment included.
ADD: $1.00/book for fast shipping.
• TAX: in California, add sales tax.
OVERSEAS: 88 French Franche. Write to: SYBEX-EUROPE, 313 rue Lecourbe 75015 - PARIS, France Tel:(1)8282502
2161 Shattuck Ave, Berkeley, Ca 94704 Tel: (415) 848-8233

MICROPROCESSOR INTERFACING TECHNIQUES
Austin Lesa, Rodnay Zaks
350pp, 320 illustr, ref C207 $9.95

FROM KEYBOARD TO FLOPPY DISK: All the basic concepts and techniques for assembling a complete microcomputer system are presented in detail, with over 320 illustrations or diagrams, including teletype, keyboard, floppy disk, CRT display, analog/digital interfacing. One chapter is dedicated to the bus standards, including S100, and IEEE488, and one chapter to testing and debugging.

CONTENTS: Introduction... Assembling the Central Processing Unit... Basic Input-Output... Interfacing the Peripherals... Analog Conversion... Bus Standards... Case-study: a 33-channel Multiplexer... Digital Trouble-Shooting... Conclusion-Evolution.

DISTRIBUTION/TRANSLATION INQUIRIES INVITED
What's New?

SILICON

Single Chip 8 Bit Digital to Analog Converter

This microprocessor bus compatible chip incorporates a complete 8 bit digital to analog converter. The NS5018 includes a 5 V stable reference, a high slew rate buffer amplifier, a digital to analog converter and an 8 bit input latch. The device has a typical settling time of 2 μs, requires supply voltages of 15 and −15 V and is priced at $6.95 in quantities of 100 from distributors or direct from Signetics, 811 E Arques Av, Sunnyvale CA 94086, (408) 739-7700.

Circle 829 on inquiry card.

Chip Offers Memory Plus I/O Ports

The INS18154 combined memory and input output chip is well suited to low end microprocessor applications. It includes 128 bytes of programmable memory and two 8 bit parallel I/O ports. The chip is designed so that each bit in either port can be set, reset or read with a single microprocessor instruction. The 40 pin package is priced at only $8.75 in 100 piece quantities, from National Semiconductor Corp, 2900 Semiconductor Dr, Santa Clara CA 95051, (408) 737-5000.

Circle 830 on inquiry card.

cybercom BOARDS

MB-1 MK-8 Computer RAM (not S-100), 4KX8, uses 2102 type RAMs, PCBD only $22.00

MB-2 1720A EROM Board, 4KX8, S-100, switchable address and write cycles, kit less PROMS $50.00

MB-4 Basic 4KX8 ram, uses 2102 type ram, may be expanded to 8KX8 with piggybacking, S-100 board, PC board $29.95

MB-6 Basic 8KX8 ram uses 2102 type ram, memory project in 256 to 6K switchable S-100 bus. PCBD $26.00

MB-7 16KX8, Static RAM uses P410 Protection, fully buffered. PCBD $9.95 KIT $400.00

MB-8 2708 EROM board, S-100, 8KX8 or 16KX8 kit without PROMS $55.00

MB-9 4KX8 RAM/PROM Board uses 2112 RAMS or 82S129 PROM kit without RAMs or PROMS $75.00

MB-10 Two serial I/O ports with full handshaking 20/60 μs current loop Two parallel I/O ports. KIT $130.00

MB-11 64 16 video board, upper lower case Greek, composite and parallel video with software, S-100, Kit $150.00 PCBD $29.95

FP-1 Music synthesizer board, S-100, computer controller wave forms, 9 octaves, 1V rms 1% distortion, includes software kit. $100.00 Allard Compatible Mother Board, 11 x 11½ x ½. Board only $42.00 With 15 connectors $99.00 Extended Board full size. Board only $99.00 With connector $109.00

Solid state music Cybercom boards are high quality glass board with gold finger contacts. All boards are check for shorts. KIT only have solder mask. 90 day guarantee on Cybercom kits.

WAMECO INC.

MEM-1 8KX8 fully buffered, S-100, uses 2102 type rams. PCBD $26.00

Mother Board 1 12 slot, terminated, S-100, board only $9.00

CPU-1 8080A Processor board S-100 with 8 level vector interrupt PCBD $35.00

10% discount on 10 or more of WAMECO PCBD in any combination.

RTC-1 Realtime clock board. Two independent interrupters. Software programmable. PCBD $30.00 EPM-1 1720A 4K Eeprom card $30.00

Special 2102AL-4 ½. Less Power than 2102E series $2.50; 32; $1.45: 64: $1.40 2102AL-2 250 NSEC $1.80 ea: 32-63 $1.70: 64- $1.60.

9060A AMD 8060A (Prime) $15.00 8212/745412 Prime $3.50 8214 Prime $3.30 8216 Prime $3.50 8224 Prime $3.50 8228 Prime $3.50 8251 Prime $3.50 8255 Prime $3.50 1702A-6 AMD 402A Prime $3.50

TMS-6011 UART Prime $6.95 1721 Char Gen Upper Prime $9.95 2513 Char Gen Lower Prime $9.95 1720A Intel Not Prime $2.95 2708,35 sec $16.95 2708,32 sec $12.95

8K BYTE RAM with Factory Parts. 450 NSEC $129.95

Order MB-6A with 210ZAL-4 or WAMECO MEM-1 with MIKOS #1 250 NSEC $139.95

Order MB-6A with 210ZAL-2's or WAMECO MEM-1 with MIKOS #3 8080A CPU $95.00 with 8 level vector interrupt. Order WAMECO CPU-1 & MIKOS #2

Check or money order only. If you are not a regular customer and your order is large please send either a cashier's check or a postal money order, otherwise there will be a delay of two weeks for the check to clear. All items post paid in the U.S. Calif. residents add 6% tax. Money back 30 day guarantee. We cannot accept returned IC's that have been soldered to. Prices subject to change without notice. $10 minimum order, $1.00 service charge on orders less than $10.

Mikon

419 Portofino Drive San Carlos, California 94070 Please send for IC, Xistor and Computer parts list.

Audio-Digital-Audio Processors, Anyone?

The DF331 and DF332 are complete analog to digital and digital to analog coders and decoders, respectively, which together meet the need for per channel voice frequency "codes" in pulse code modulation telephony and audio applications such as microprocessor analysis of speech. The DF331 converts up to an 8 kHz bandwidth signal into a high speed serial digital format, while the DF332 accepts the serial digital format and converts it back to an audio signal. The code made with these parts meets all Bell standard 255 law specifications, uses a low power CMOS design and avoids expensive trimmed resistive conversion techniques. The pair of 14 pin chips is priced at $9.76 in 100 piece quantities, from Siliconix Inc, 2201 Laurelwood Rd, Santa Clara CA 95054, (408) 246-8000.

Circle 730 on inquiry card.
Point Of Sale COMPUTER

$179.50

Manufactured by TRW Data Systems for the fast food industry. Designed for error-free data entry. The operator simply blackens the appropriate box on a 6 mark sense card and inserts it into the form reader. The CPU searches internal programmable drum memory for unit price and extends it by quantity, displaying the customer's total on the LED module.

Memory system is capable of handling over 40 regular items. Accumulated data may be printed by a master computer.

This point of sale computer makes a super bank sense data terminal. The TRW 1308 is shipped complete with cable and wall socket.

Brand new in factory cartons. Original cost $7,000. Weight 100 lbs. shipped freight. Complete documentation not secured at present time.

BARREL STOCK on Test 'Em Yourself 'N Save

- **Hexadecimal Keyboard**
 - **$34.95**
 - Made with new typewriter-style keys.
 - Suitable for communication systems as well as in computers, calculators, and digital circuits.

- **Regulated Power Supply**
 - **$199.95**
 - Delivers 5 volts at 8 Ampers along with three other regulated outputs.
 - This used supply is sold "as is," but we'll test it to be the best you'll ever see in a regulated power supply. 75 lbs. Schematics included.

CONNECTORS

<table>
<thead>
<tr>
<th>Connector Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-232</td>
<td>$29.50</td>
</tr>
<tr>
<td>DB25P male plug</td>
<td>$39.50</td>
</tr>
<tr>
<td>DB25F female plug</td>
<td>$39.50</td>
</tr>
</tbody>
</table>

ENDLESS DISKETS

Please specify format. 160 x 160 or 32 sector.

- **NEW DISKETS**

TELETYPE MODEL 43

- **$29.95**
 - Hexadecimal type 203A Model 100 ASCII decoder-encoder. Good for Baudot, ASCII, and friends. Can be easily modified to suit a particular customer's needs.
 - Board generates 128 ASCII code combinations.
 - Joins a dual 50 pin connector, same as the teletype Model 33. Data sheet and associated manual furnished.
 - Immediate delivery.

BBM

- **$45.00**
 - Shipped Freight Collect

FREEDOM

- **$13.95**
 - Connects signals from Apple I and other mini-computer systems to TV frequency. Complete with directions and metal case. Assembled.

SPEAKERS

- **$69.00**
 - 24 Miniature pair perfect for TV game systems, alarm systems, and intercoms. Biamplified with speaker wire.

TRANSISTORS

<table>
<thead>
<tr>
<th>Transistor Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1N4148</td>
<td>$3.95</td>
</tr>
<tr>
<td>2N3904</td>
<td>$1.15</td>
</tr>
<tr>
<td>2N3906</td>
<td>$1.15</td>
</tr>
<tr>
<td>2N3906</td>
<td>$1.15</td>
</tr>
<tr>
<td>2N3906</td>
<td>$1.15</td>
</tr>
</tbody>
</table>

IC SOCKETS

- **$29.95**
 - **$15.95**
 - **$9.95**

SOLAR CELLS

- **$119**
 - 12 volt, 175 ma. Good for general use. Rate voltage charging battery.

MINIATURE SWITCHES

- **$9.98**
 - 10 x 10 x 10 mm, 2-pole, 2 position switch.

DIP Switch

- **$15.95**
 - 10 x 10 x 1.5 mm, 2 poles.

FREE

- **$29.95**
 - **$19.95**
 - **$9.98**

DISCOUNT

- **$45.00**
 - **$29.98**
 - **$9.98**

HEXADECIMAL KEYBOARD

- **$34.95**
 - Made with new typewriter-style keys.
 - Suitable for communication systems as well as in computers, calculators, and digital circuits.

REGULATED POWER SUPPLY

- **$199.95**
 - Delivers 5 volts at 8 Ampers along with three other regulated outputs.
 - This used supply is sold "as is," but we'll test it to be the best you'll ever see in a regulated power supply. 75 lbs. Schematics included.
SELECTRIC I/O TERMINALS (by GTE/Information Systems), includes 8080 interface plus software ASCII translation and I/O driver routines, 15" carriage, interchangeable type spheres & carbon/fabric ribbons, built-in modem optional.

MODEL 5541 (IBM correspondence code, 2741 type terminal): $895

MODEL 5550 (contains code, with built-in cassette tape drive for off-line data storage or use as memory typewriter): $1495

MODEL 5560 (ASCII code, with cassette tape drive): $1495

IBM SELECTRIC TYPEWRITER with magnets, switches & magnet driver PCB (from GTE/IS Terminal: above), includes instructions for 8080 printer/driver interface (output only).

Typewriter mechanism complete, cleaned & adjusted $325

Aluminum case & Power Supply: +5V, ±12V, ±24V $75

MODEMS:
Send/receive Bell-103 Type by Vadic Corp. (requires +5V: J12V); $75

Also 202-type modems, some with reverse channel transmission &/or auto answer features, $90

PAPER TAPE READER (Addmaster 601-1): 50 cps, LEO sensor reads 5-8 level tapes, bidirectional stepper motor, includes TTL serial interface plus 8080 parallel interface instructions, Requires +5V & ±24V; $300

INTERDATA Model One 8 Bit MINICOMPUTER, includes full front panel, 4K core memory (16K addressable), plug-in teletype port, plus software; $1698

FORM TRACTORS, variable width MOORE FORMALINER for 15" IBM Selectrics $50

PACIFIC OFFICE SYSTEMS, INC.
2600 EL CAMINO REAL, SUITE 502
PALO ALTO, CALIF. 94306
Tel: (415) 321-3866

90 day warranty against defects in material or workmanship on all used equipment. Full documentation included PLUS interface instructions where indicated. Availability subject to prior sale. Prices may change without notice.

COMMERCIAL GRADE EQUIPMENT AT HOBBYIST PRICES!

SELE" ELECTRIC TERMINALS

Modems

Mini Computers

NO RISK / 7 DAY APPROVAL ON ALL MAIL-ORDERS. FULL REFUND ON RETURNS.

SELECTRIC TERMINALS

Compu
c

Tape Drives

Power Supplies

Cables

COMPUTER COMPONENTS, INC.
4705 Artesia Blvd., Lawndale, CA 90260 (213) 370-4842

Lawndale, CA Store Open Mondays 10 AM - 7 PM

5848 Sepulveda Blvd., Van Nuys, CA 91411 (213) 786-7411

Circle 137 on inquiry card.
16K E-PROM CARD
S-100 (IMSAI/ALTAIR) BUSS COMPATIBLE

$69.95 (KIT)

IMAGINE HAVING 16K OF SOFTWARE ON LINE AT ALL TIME!

KIT FEATURES:
1. Double sided PC Board with solder mask and silk screen and Gold plated contact fingers.
2. Selectable wait states.
3. All address lines and data lines buffered!
4. All sockets included.
5. On card regulators.

KIT INCLUDES ALL PARTS AND SOCKETS! (EXCEPT 2708's) ADD $25 FOR ASSEMBLED AND TESTED

WOW! DEALER INQUIRES INVITED
SPECIAL OFFER: Our 2708's (450 NS) are $12.95 when purchased with above kit.

FULLY STATIC! $149.00 KIT

KIT FEATURES:
1. Double sided PC Board with solder mask and silk screen layout.
 Gold plated contact fingers.
2. All sockets included!
3. Fully buffered on all address and data lines.
4. Phantom is jumper selectable to pin 67.
5. FOUR 7805 regulators are provided on card.

PRICE WAR!
For a limited time only:
Buy two 8K Kits for $129 ea.

8K LOW POWER RAM KIT!

Fully Assembled and Burned In — $179.00
Blank PC Board With Documentation — 29.95
Low Profile Socket Set — 13.50
Support IC's (TTL and Regulators) — 9.75
Bypass CAP's (Disc and Tantalums) — 4.50

3W AUDIO AMP MODULE

Fully assembled and tested.
With schematic, 4, 8 or 16 OHMS.

$3.95 NEW!

POWER RECTIFIER
Stud Mount. 1N1204A. Has an NCR House number. 12 AMP 400 PIV.
75c ea. 4/$2.50

NEW!
4K STATIC RAM'S

2114. The industry standard. 18 PIN DIP. Arranged as 1K X 4. Equivalent to FOUR 21102's in ONE package! TWO chips give 1K X 8, with data.

2 FOR $24
450 N.S.1
8 FOR $85

450 NS!

2708 EPROMS

Now Full Speed! Prime new units from a major U.S. Mfg. 450 N.S. Access time, 1K x 8. Equiv. to 4 1702 A's in one package!

$15.75 ea.

Special Offer: $12.95 ea. when purchased with our 16K EPROM Kit.

MOBILE SPECIAL

CD 4001 - 5 For $1
CD 4040 - $1 Each
CD 4011 - 5 For $1
CD 4042 - 2 For $1
CD 4013 - 3 For $1
CD 4049 - 3 For $1

Z - 80 PROGRAMMING MANUAL

By MOSTEK, the major Z - 80 second source. The most detailed explanation ever on the workings of the Z - 80 CPU CHIPS. At least one full page on each of the 158 Z - 80 instructions. A MUST reference manual for any user of the Z - 80. 300 pages. Just off the press! A D.R.C. exclusive!

$12.95

TERMS: ORDERS UNDER $15 ADD $.75. NO C.O.D. WE ACCEPT VISA, MASTER CHARGE AND AMERICAN EXPRESS CARDS. MONEY BACK GUARANTEE ON ALL ITEMS. TEXAS RESIDENTS ADD 5% SALES TAX.

Digital Research Corporation
P. O. BOX 401247 • GARLAND, TEXAS 75040 • (214) 271-2461

CALL FOR OUR CATALOG!
WE PAY POSTAGE!

Circle 135 on inquiry card.
Summagraphics Corporation has announced the Bit Pad data tablet, a new input peripheral designed specifically for small system users.

The unit is designed for fast data collection of X, Y values. The small size (11 by 11 inches, 27.9 x 27.9 cm) and compact design make the Bit Pad portable and adaptable to a variety of applications. It can be interfaced to any microcomputer using its standard 8-bit parallel output.

Applications include medical treatment, opinion sampling, education, real estate, design, games, research, computer animation and so on.

It can be used as a variable keyboard for menu picking, for inputting data for inventory control or parts programming, etc. The price is $555.

Contact Summagraphics Corporation, 35 Brentwood Av, Fairfield CT 06430, (203) 384-1344.

Circle 584 on inquiry card

This cassette based mass storage system is offered in two versions for popular personal computers. Pictured is the Alpha 1 system for Altair (S-100) bus computers. The controller card plugs into the bus, controls up to four drives and will bootstrap from tape without the need for a read only memory monitor. A stand alone cassette operating system or a system with extended BASIC is available for the Alpha 1. Prices start at $240. The CMS system is said to be plug compatible with the Radio Shack TRS-80 computer, with prices starting at $399. Each cassette drive can store up to 500 K bytes and can record or play back information at 780 bytes per second (data rate 6250 bps). Average access time to information anywhere on the cassette is 17 seconds. The units are available from MECA, 7026 Old Woman’s Spring Rd, Yucca Valley CA 92284, (714) 365-7686.

Circle 581 on inquiry card.

A video graphic display and matching printer with plotting capabilities are now available for the Wang 2200 series computers. The 2282 Graphics CRT has a 12 inch (30.5 cm) diagonal screen with 800 by 512 addressable dots. Vectors are generated by turning on a series of dots approximating a line. The 2231W-3 printer provides an accurate hard copy of a graphics image by printing strips of 800 dots by 8 dots. Alphabetic information can also be printed at 120 characters per second. The 2282 is $3600 and the 2231W-3 is $3800 from Wang Laboratories Inc, 1 Industrial Av, Lowell MA 01851, (617) 851-4111.

Circle 580 on inquiry card.
RS-232/TTL INTERFACE

Part no. 232
- Converts TTL to RS-232, and converts RS-232 to TTL
- Two separate circuits
- Requires +12 and -12 volts
- All connections go to a 10 pin gold plated edge connector
- Board only $4.50; with parts $7.00

Tape Interface

Part no. 111
- Play and record Kansas City Standard tapes
- Converts a low cost tape recorder to a digital recorder
- Works up to 1200 baud
- Digital in and out are TTL-serial
- Output of board connects to mic. in of recorder
- Earphone of recorder connects to input on board
- Requires +5 volts, low power drain
- Board $7.60; with parts $27.50
- No coils

DC Power Supply

Part no. 6085
- Board supplies a regulated +5 volts at 3 amps, +12 and -12 volts at 1 amp.
- Board has filters, rectifiers, and regulators
- Power required is 8 volts AC at 3 amps, and 24 volts AC C.T. at 1.5 amps.
- Board only $12.50

8K Static RAM

Part no. 300
- 8K Altair bus memory
- Uses 2102 Static memory chips
- Memory protect
- Gold contacts
- Wait states
- On board regulator
- S-100 bus compatible
- Vector input option
- TRI state buffered
- Board only $12.00; with parts $35.00

TIDMA

Part no. 112
- Tape Interface Direct Memory Access
- Record and play programs without bootstrap loader (no prom)
- Has FSK encoder/decoder for direct connections to low cost recorder at 625 baud rate, and direct connections for inputs and outputs to a digital recorder at any baud rate.
- S-100 bus compatible
- Comes assembled and tested for $160.00

Apple I Mother Board

Part no. 102
- 10 slots - 44 pin (.156) connectors spaced 3/8" apart
- Connects to edge connector of computer
- Pin 20 and 22 connects to X & Z for power and ground
- Board has provisions for bypass capacitors
- Board cost $15.00

Modem

Part no. 109
- Type 103
- Full or half duplex
- Works up to 300 baud
- Originates or Answers
- No coils, only low cost components
- TTL input and output-serial
- Connects to speaker, can be directly to board
- Uses XR FSK demodulator
- Requires +5 volts
- Board only $7.60; with parts $27.50

Television Typewriter

Part no. 106
- Stand alone TVT
- 8 char./line, 16 lines, modifications for 64 char./line included
- Parallel ASCII (TTL) input
- Video output
- 1K on board memory
- Output for computer controlled cursor
- Auto scroll
- Non-destructive cursor
- Cursor inputs: up, down, left, right, home, EOL, EOS
- Scroll up, down
- Requires +5 volts, low power drain
- Board $7.60; with parts $27.50

To Order:

Mention part number and description. For parts kits add "A" to part number. Shipping paid for orders accompanied by check, money order, or Master Charge, BankAmerrick, or VISA number, expiration date and signature. Shipping charges added to C.O.D. orders. California residents add 6.5% for tax. Parts kits include sockets for all ICs, components, and circuit board. Documentation is included with all products. Dealer inquiries invited. 24 Hour Order Line: (408) 374-5984.

Circle 44 on inquiry card.
Wire Wrap Boards for LSI-11

These wire wrap boards can be used to build your own memory and input output systems for the LSI-11 computer. Each board, designed for insertion of wire wrap pins, can accommodate about 130 standard 14 pin and 16 pin dual in line packages, plus passive components. A ground shield is provided on one side of the board. The WW-11.5 half size version sells for $35 in single quantities, while the WW-11 full size version is $75, from Artec Electronics Inc, 605 Old County Rd, San Carlos CA 94070, (415) 592-2740.

A Pilethora of Peripheral Boards

A variety of peripheral boards are now available for the do-it-yourselfer, including a universal asynchronous receiver transmitter (UART) board (pictured), a full duplex, 300 bps modem, a TTL compatible RS232C interface, a Kansas City standard cassette tape interface, a 32 or 64 character per line video display board, and an RF modulator board with power supply to interface a video signal to a television set. Also available are an 8 K byte static memory board for the Altair (S-100) bus, and a mother board, 8 K memory board, and serial IO board for Apple I computers. All circuit boards come with complete instructions and parts lists, and are designed to use inexpensive, easy to find parts. Parts kits and fully assembled units are also available. Prices for the boards range from $5 to under $40, from Electronic Systems, POB 212, Burlingame CA 94010, (415) 573-7788.

Graphics for Your SOL Computer

This kit adds a 128 horizontal by 48 vertical point graphic display capability to your SOL computer or VDM-1 video display board. A piggyback printed circuit board mounts directly on the SOL or VDM-1 board to add graphics. Software, supplied on a SOL CUTS cassette and paper tape, provides: a driver routine to manipulate individual points, links to the SOL's BASIC S, demonstration plotting programs and an animation program for John Conway's game of Life. The kit is available for $50 from KEA Micro Design, POB 6531 Station A, Toronto, Ontario CANADA MSW 1X4.

Circle 604 on inquiry card.

Space Saving Terminal

The Transactor data terminal consists of a single line 32 character gas discharge display with a 5 by 7 dot matrix for easy reading, and a 53 key Teletype style keyboard. It can be attached to almost any computer, with an RS232 or 20 mA current loop interface. Switches allow the user to select the operating mode including 110 to 9600 bps data rate, full or half duplex, even, odd or no parity, five to eight data bits, and one or two stop bits. Lightweight and small, the Transactor is housed in an attractive and sturdy aluminum case that measures only 6 by 15 by 11 inches (15.2 by 38.1 by 27.9 cm). A stylized molded case is available. Price of the standard Transactor I in quantity is $595, from Computerwise Inc, 4006 E 137th Ter, Grandview MO 64030, (816) 765-3330.

Circle 608 on inquiry card.
SPECIAL

8K STATIC RAM KIT

Prime Factory Kit
Cybercom div. Solid State Music
90 Day Guarantee

Only: $129.95

SOLID STATE MUSIC

MB9 STATIC RAM/ROM KIT Less Memory 72-200

VB1A VIDEO INTERFACE Kit

$129.95

Bare Board

25.95

102 PARRELL I/O And Kludge Kit

49.95

Bare Board

25.95

TOY I/2 I/O Kit

119.95

SB-1 MUSIC SYNTHESIZER Kit with Software

174.95

MT-1

15-Slot Mother Board

39.95

X8 1 EXTENDER BOARD Bare Board

8.99

SSM 8080 MONITOR V1

ON 2-2708
47.00

ON 8-1702A
47.00

NEW 1978

IC MASTER

- Over 40,000 IC's listed.
- Over 2,000 pages.
- Updated every 90 days.

Retail Value

$55.00

Your Price

$46.00
Prototyping Package for 8080 Systems

Designers can quickly construct custom interface systems using the BLC 80/10 board level computers with the aid of this prototyping package. The BLC 80P package includes a BLC 80/10 computer board with 1 K bytes of programmable memory, a system monitor in 2 K bytes of read only memory, and an additional 2 K bytes of blank memory. A prototyping board with space for 114 16 pin sockets or an equivalent mix of other sockets is also included. The boards are housed in a four slot card cage which also serves as a backplane and system bus. Two power cables are supplied as well as two 50 conductor ribbon cables for connection to external circuits. The BLC 80/10 has jumper selected options for RS232 or current loop interfaces, and cables are supplied for a CRT terminal and for a Teletype writer. Documentation includes a hardware reference manual, user’s guide and schematics. The BLC 80P is priced at $878 from National Semiconductor Corp, 2900 Semiconductor Dr, Santa Clara CA 95051, (408) 737-5166.

Printer for Motorola Exorciser

Designed for use with the Motorola Exorciser or Micromodules, this impact printer produces lines of up to 80 5 by 7 dot matrix characters at a speed of 110 characters per second (about 65 lines per minute). The print head moves in both directions on 8.5 inch (21.6 cm) wide roll paper and uses a conventional Teletype ribbon. A peripheral interface module and interconnecting cable are included with the printer, making the device functionally equivalent to a Centronics 306 type printer. The MDOS and EDOS operating systems for the Exorciser provide drivers and commands for the new device. A 230 V, 50 Hz version is available for European users. The EXOPrint printer is $1725 from Motorola distributors or from the manufacturer. Contact Motorola Semiconductor Products Inc, Technical Information Center, POB 20924, Phoenix, AZ 85008, (602) 244-6815.

Printer Offers 6 or 12 Characters per Inch

The DP-1000 series printers feature a dot matrix impact printing element capable of printing 64 alphanumeric and special characters in 40 characters per line at 1.25 lines per second on standard single or multiple copy paper rolls. Three RS232C configurations allow convenient interfacing to most microcomputers, modems and teleprinters. Data rates from 110 to 2400 bps are available. Single or double width characters are selected with an external control line, allowing either 6 or 12 characters per inch to be intermixed on a line. Prices start under $700 with substantial quantity discounts, from Anadex, 9825 DeSoto Av, Chatsworth CA 91311, (213) 998-8010.

Multifunction Floppy Controller for LSI-11

Several common functions have been combined in this dual width interface card for the LSI-11. The interface controls up to three Shugart SA-400 mini floppy drives, provides a direct memory access dynamic memory refresh controller, and includes sockets for up to 4 K or 8 K 16 bit words of programmable read only memory. The floppy controller performs several functions automatically including track seek and verify, cyclic redundancy code generation and checking, and drive motor timeout shutoff. The floppy memories hold up to 16 K of 2708 type chips or up to 8 K of 2716 type chips. The -5 V power supply for these chips is generated on the board. Provisions have been made for mapping the LSI-11 bootstrap addresses onto these chips or onto fusible link read only memories. The MDC11 combined board is priced at $510, the mini floppy drives at $325, the MREF11 dynamic memory refresh controller alone is $195 and the PROM11 read only memory section alone is $170, from Andromeda Systems Inc, 14701 Armita St, Panorama City CA 91402, (213) 781-6000.
DIODES/ZENERS

<table>
<thead>
<tr>
<th>Code</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN914</td>
<td>100v</td>
<td>10mA</td>
</tr>
<tr>
<td>IN4005</td>
<td>600v</td>
<td>A</td>
</tr>
<tr>
<td>IN107</td>
<td>600v</td>
<td>10mA</td>
</tr>
<tr>
<td>IN4148</td>
<td>75mA</td>
<td></td>
</tr>
<tr>
<td>IN753A</td>
<td>6.2v</td>
<td>z</td>
</tr>
<tr>
<td>IN758A</td>
<td>10v</td>
<td>z</td>
</tr>
<tr>
<td>IN14ZA</td>
<td>12v</td>
<td>z</td>
</tr>
<tr>
<td>IN4733</td>
<td>5.1v</td>
<td>z</td>
</tr>
<tr>
<td>IN5243</td>
<td>13v</td>
<td>z</td>
</tr>
<tr>
<td>IN5244B</td>
<td>14v</td>
<td>z</td>
</tr>
<tr>
<td>IN5245B</td>
<td>15v</td>
<td>z</td>
</tr>
</tbody>
</table>

SOCKETS/BRIDGES

<table>
<thead>
<tr>
<th>Code</th>
<th>Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-pin pcb</td>
<td>.25</td>
<td>WW</td>
</tr>
<tr>
<td>14-pin pcb</td>
<td>.25</td>
<td>WW</td>
</tr>
<tr>
<td>16-pin pcb</td>
<td>.25</td>
<td>WW</td>
</tr>
<tr>
<td>18-pin pcb</td>
<td>.25</td>
<td>WW</td>
</tr>
<tr>
<td>22-pin pcb</td>
<td>.25</td>
<td>WW</td>
</tr>
<tr>
<td>24-pin pcb</td>
<td>.35</td>
<td>WW</td>
</tr>
<tr>
<td>28-pin pcb</td>
<td>.35</td>
<td>WW</td>
</tr>
<tr>
<td>40-pin pcb</td>
<td>.50</td>
<td>WW</td>
</tr>
</tbody>
</table>

- Molex pins .01
- 2 Amp Bridge 100-prv 1.20
- 25 Amp Bridge 200-prv 1.95

TRANSISTORS, LEDS, etc.

<table>
<thead>
<tr>
<th>Code</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N2222</td>
<td>NPN</td>
<td>(Plastic) .15</td>
</tr>
<tr>
<td>2N2907</td>
<td>PNP</td>
<td>.15</td>
</tr>
<tr>
<td>2N3906</td>
<td>PNP</td>
<td>.10</td>
</tr>
<tr>
<td>2N3054</td>
<td>NPN</td>
<td>.35</td>
</tr>
<tr>
<td>2N3055</td>
<td>NPN 15A</td>
<td>60v</td>
</tr>
<tr>
<td>TIP125</td>
<td>PNP</td>
<td>Darlington</td>
</tr>
<tr>
<td>LED Green, red, clear</td>
<td></td>
<td>.15</td>
</tr>
<tr>
<td>D.L.747</td>
<td></td>
<td>7 seg 5/8" high com-anode .95</td>
</tr>
<tr>
<td>XAN72</td>
<td></td>
<td>7 seg com-anode</td>
</tr>
<tr>
<td>FND 359</td>
<td></td>
<td>Red 7 seg com-cathode</td>
</tr>
</tbody>
</table>

MOSFETS

<table>
<thead>
<tr>
<th>Code</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM320K5 (9006)</td>
<td></td>
<td>1.65</td>
</tr>
<tr>
<td>LM320K12</td>
<td></td>
<td>1.65</td>
</tr>
<tr>
<td>LM320T6</td>
<td></td>
<td>1.65</td>
</tr>
<tr>
<td>LM320T12</td>
<td></td>
<td>1.65</td>
</tr>
<tr>
<td>LM320T15</td>
<td></td>
<td>1.65</td>
</tr>
<tr>
<td>LM340T24</td>
<td></td>
<td>.95</td>
</tr>
<tr>
<td>LM340T26</td>
<td></td>
<td>2.15</td>
</tr>
<tr>
<td>LM340K12</td>
<td></td>
<td>2.15</td>
</tr>
<tr>
<td>LM340K15</td>
<td></td>
<td>1.25</td>
</tr>
<tr>
<td>LM340K18</td>
<td></td>
<td>1.25</td>
</tr>
<tr>
<td>LM340K24</td>
<td></td>
<td>.95</td>
</tr>
<tr>
<td>LM723</td>
<td></td>
<td>.50</td>
</tr>
<tr>
<td>LM725</td>
<td></td>
<td>1.75</td>
</tr>
<tr>
<td>LM739</td>
<td></td>
<td>1.50</td>
</tr>
<tr>
<td>LM741 (8/14)</td>
<td></td>
<td>.25</td>
</tr>
<tr>
<td>LM747</td>
<td></td>
<td>1.10</td>
</tr>
<tr>
<td>LM750</td>
<td></td>
<td>1.25</td>
</tr>
<tr>
<td>LM750 (3005)</td>
<td></td>
<td>.95</td>
</tr>
<tr>
<td>LM305S (3005)</td>
<td></td>
<td>.95</td>
</tr>
<tr>
<td>LM709 (8/14 PIN)</td>
<td></td>
<td>.25</td>
</tr>
<tr>
<td>LM711</td>
<td></td>
<td>.45</td>
</tr>
<tr>
<td>LM75451</td>
<td></td>
<td>.65</td>
</tr>
<tr>
<td>NE555</td>
<td></td>
<td>.50</td>
</tr>
<tr>
<td>NE556</td>
<td></td>
<td>.95</td>
</tr>
<tr>
<td>NE566</td>
<td></td>
<td>.75</td>
</tr>
<tr>
<td>NE567</td>
<td></td>
<td>1.35</td>
</tr>
</tbody>
</table>

INTEGRATED CIRCUITS UNLIMITED

7889 Clairemont Mesa Boulevard, San Diego, California 92111
(714) 278-4394 (Calif. Res.)

- All orders shipped prepaid
- No minimum
- Open accounts invited
- COD orders accepted
- Discounts available at OEM Quantities
- California Residents add 6% Sales Tax
- All IC's Prime/Guaranteed. All orders shipped same day received

8266 .35
MCT2 .95
LM320K12 1.65
8038 3.95
LM201 .75
LM320T6 1.65
LM320T12 1.65
LM320T15 1.65
LM340T24 .95
LM340K12 2.15
LM340K15 1.25
LM340K18 1.25
LM340K24 .95
LM723 .50
LM725 1.75
LM739 1.50
LM741 (8/14) .25
LM747 1.10
LM750 1.25
LM750 (3005) .95
LM305S (3005) .95
LM709 (8/14 PIN) .25
LM711 .45
LM75451 .65
NE555 .50
NE556 .95
NE566 .75
NE567 1.35

4000 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9301</td>
<td>.85</td>
<td></td>
</tr>
<tr>
<td>9309</td>
<td>.35</td>
<td></td>
</tr>
<tr>
<td>9322</td>
<td>.85</td>
<td></td>
</tr>
<tr>
<td>95H03</td>
<td>.50</td>
<td></td>
</tr>
<tr>
<td>9501</td>
<td>.75</td>
<td></td>
</tr>
<tr>
<td>9502</td>
<td>.50</td>
<td></td>
</tr>
</tbody>
</table>

9000 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>74S188 (8223)</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td>1702A</td>
<td>6.95</td>
<td></td>
</tr>
<tr>
<td>M5314</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td>M5316</td>
<td>3.50</td>
<td></td>
</tr>
<tr>
<td>2102-1</td>
<td>1.75</td>
<td></td>
</tr>
<tr>
<td>2102-1L</td>
<td>1.95</td>
<td></td>
</tr>
<tr>
<td>74S188B</td>
<td>6.95</td>
<td></td>
</tr>
<tr>
<td>74S00AD</td>
<td>15.00</td>
<td></td>
</tr>
<tr>
<td>8713</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>8723</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>8724</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>21078-4</td>
<td>4.95</td>
<td></td>
</tr>
</tbody>
</table>

Circle 57 on inquiry card.
SOFTWARE

Management Problem Solving Library

Here's a library of programs for financial analysis complete with a two year updating service. Each program in the library is described in a user manual, and is said to be tested in a user environment prior to distribution. Library updates are issued quarterly and can be obtained for a nominal copying fee. The programs include present and future value problems, loan amortization problems, depreciation schedules for various depreciation methods, a complete real estate investment package, a cash budgeting program, and an elementary float analysis of check clearing. Versions are available for MITS Disk Extended BASIC and for North Star BASIC. The programs are available from Business Computer Systems, 216 Collier Dr, Springfield IL 62704, (217) 787-3448.

Circle 588 on inquiry card.

MIKADOS Adds Disassembler

The Mini Instant Keyboard Assembler, Debug and Operating System (MIKADOS) now includes a disassembler as well. The assembler translates assembly code directly to machine language as it is entered, resolving jumps and relative branches, and the disassembler produces a pseudo assembly code listing of a machine language program in memory. Other features include setting and clearing of breakpoints and ASCII and hexadecimal IO. The disassembler is offered to existing MIKADOS users for $5. The whole package fits in 3 K bytes of memory, comes with a 28 page user manual and a 90 day limited warranty against bugs, and costs $17.95 from Inpro Micro Systems, POB 7776, Van Nuys CA 91409.

Circle 590 on inquiry card.

Learn BASIC from Your Computer

This 6800 based package is designed to coach and prompt you to learn BASIC commands and programming techniques. Part I presents fundamental BASIC commands, while Parts II and III teach techniques of character string formatting, and reading and writing characters to cassette using BASIC and MIKBUG. Each part is priced at $12.95, with discounts for combinations of the three parts. An introductory sampler package is also offered for $6.95. The packages are supplied on cassette using the "Kansas City" recording standard, and can be read by the Southwest Technical Products AC-30 interface, and will run on a 12 K byte 6800 system.

Contact Computerware Software Services, 830 First St, Encinitas CA 92024.

Circle 586 on inquiry card.

New Business Forms for Small Computers

Computer forms designed for hobbyists and small systems users have been introduced by the Kenmor Company. Invoices, statements and other stock items made specifically for microcomputers are available in quantities of up to 5,000 sets. Company names or logos can be imprinted, and custom forms can also be supplied. The product line is aimed at small businesses, hobbyists, physicians, dentists, accountants, etc, who wish to update their billing and record systems.

Contact Kenmor Corporation, 675 McLean Av, Yonkers NY 10704, or call Roberta Pink at (914) 965-3006.

Circle 587 on inquiry card.

Build Your Own Software System

The System Kit is a collection in book form of 8080 assembly language program modules and narrative text describing module functions and interfacing conventions (for parameter passing and register and memory use). It consists of building blocks for an operating system, a runtime linker and a mini loader which enables you to construct a custom system of your own design. The modules are grouped into a nucleus and four surrounding layers or “shells.” Functions provided by the modules include clock, IO and console handling, memory and queue management, event processing and timeshared task scheduling, and similar operations. The System Kit is $30 from La Forge Enterprises, POB 410, Boalsburg PA 16827, (717) 564-2440.

Circle 592 on inquiry card.
Mind Massagers from BITS

The Thinking Computer: Mind Inside Matter by Bertram Raphael. Artificial intelligence, or AI, is the branch of computer science concerned with making computers "smarter." It is a growing, vital field that is, unfortunately, the subject of much popular misunderstanding. The Thinking Computer: Mind Inside Matter is a lucid introduction to AI that does much to overcome this misunderstanding. With a minimum of technical jargon, this book discusses the capabilities of modern digital computers and how they are being used in contemporary AI research. It discusses the progress of AI, the goals, and the variety of current approaches to making the computer more intelligent. $6.95.

Projects in Sight, Sound, & Sensation by Mitchell Waite. Dedicated "to all space cowboys." Detailed theory and practice of seven fascinating amateur electronics projects, along with a complete and detailed appendix on how to make PC boards. The projects included in this book are: The Syntheshape, an art generator that can be used to generate innumerable complex and beautiful patterns on the screen of an oscilloscope. An electronic music box that will play over 3000 possible melodies when the lid is lifted. A way to control muscle tension and achieve deep relaxation. The laser-light show "transmutes light into fascinating patterns in a darkened room. Other projects include a Kirlian camera, a digital ESP machine, and neon-light randomizer. $5.25.

The Great International Math On Keys Book, from Texas Instruments. Do you need a numerical algorithm for calculating exchange rates in a hotel on a foreign trip? Or figuring those mysterious "points" when facing the ammunitions of charisma of a banker at mortgage time? This book is a compendium of simple explanations and step by step procedures for accomplishing numerical solutions to numerous commonly encountered situations in daily life. Each entry is characterized by a statement of the problem, including the elements of theory required, and the keystrokes needed to solve the problem on an algebraic entry calculator. This is an invaluable sourcebook of information for the person who is inclined to manipulate numbers. $4.95.

Chess Skill in Man and Machine edited by Peter W Frey. This is a most fascinating book, concerning itself with the when, how, and why of computer chess. The when describes past ACM computer chess tournaments, with the details of more than a dozen games. The how consists of the basics of both human chess skill and computer chess theory. It includes a detailed description of the best computer chess program to date (Northwestern University's CHESS 4.5), an end game program called PEASANT, and of various search strategies and heuristic computer chess theory which should enable one to write his own chess program. The book ends with the why concerning the contributions, now and in the future, of computer chess to understanding artificial intelligence, human intelligence, and learning. The only difficulty for the hobbyist's computer chess program is the need for a large computer for the fast processing of search strategies and large core storage for the program and its results. $14.80 hardcover.

How to Solve Problems by Wayne A Wickelgren. When confronted by a problem, many of us spend more time puzzling over how to solve it than in actually doing so. This book analyzes and systematizes the basic methods of solving mathematical problems. The methods are described in terms of a modern theory derived from research in computer simulation of thinking. Examples illustrating these methods include chess problems, logical puzzles, and railroad switching problems frequently encountered in science and engineering. Whether your interest in solving problems is professional, recreational, or both, you will find this a helpful book. $6.50 softcover.

DIAL YOUR BANK CARD ORDERS ON THE BITS TOLL FREE HOT LINE: 1-800-258-5477.

In New Hampshire, call: 924-3355

Send to:
BITS, Inc.
70 Main Street
Peterborough NH 03458

Name ____________________________
Address ____________________________
City ____________________________ State Zip Code ________

Check Payment method: [] My check is enclosed [] Bill my MC No. __________ / ______ / ______ Exp. date ________
[] Bill my BAC No. __________ / ______ / ______ Exp. date ________

Total for all books checked $________
Postage, 50 cents per book for ________ books $________
Overseas, 75 cents per book for ________ books $________
Grand Total $________

Prices shown are subject to change without notice. All orders must be prepaid.

You may photocopy this page if you wish to leave your BYTE intact.

Circle 10 on inquiry card.
BREAD BOARD JUMPER WIRE KIT

Each kit contains 350 wire picks in different lengths. The wire picks are made of 30 gauge solid copper wire with a durable plastic coating. The kit is designed for easy and precise wiring. The wire picks are suitable for all types of wiring applications.

SOCKET JUMPERS

The kit includes two rows of 0.05" sq. and 0.10" sq. posts on patterns of 100th". The socket jumpers are made of high-quality materials and are designed for durability and reliability. The kit is suitable for all types of socket applications.

JUMPER HEADERS

The kit includes 120 jumpers, each with two rows of 0.05" square outlets. The jumpers are made of high-quality materials and are designed for durability and reliability. The kit is suitable for all types of jumper applications.

INTRA-CONNECTOR

Provides both straight and right angle functions. The kit includes straight and right angle connectors and adapters. The kit is suitable for all types of connector applications.

CRYSTALS

The kit includes various types of crystals, including oscillators, filters, and diode crystals. The kit is designed for high-quality performance in all types of crystal applications.

PARATRONIC JUMPER TRIGGER EXPANDER

The kit includes 16 additional bits, providing digital delay and synchronization. The kit is designed for high-quality performance in all types of trigger applications.

CONNECTORS PRINTED CIRCUIT EDGE-CARD

The kit includes various types of connectors, including edge cards, connectors, and headers. The kit is designed for high-quality performance in all types of connector applications.

MICROPROCESSOR COMPONENTS

The kit includes various types of microprocessor components, including microcontrollers, microprocessors, and memory modules. The kit is designed for high-quality performance in all types of microprocessor applications.

SPECIAL REQUESTED ITEMS

The kit includes various types of special requested items, including custom parts and components. The kit is designed for high-quality performance in all types of special request applications.

PARATRONIC ACCESSORIES

The kit includes various types of accessories, including mounting rails, connectors, and headers. The kit is designed for high-quality performance in all types of accessory applications.

CONTINUOUS SERVICE PROTO BOARD 6

The kit includes a proto board, allowing for continuous service and easy access to components. The kit is designed for high-quality performance in all types of continuous service applications.

LOGIC MONITOR

The kit includes a logic monitor, allowing for easy monitoring of logic signals. The kit is designed for high-quality performance in all types of logic monitoring applications.

CONCLUSION

The kit includes various types of components, allowing for easy and precise wiring. The kit is designed for high-quality performance in all types of component applications. The kit is available for $3.95 ea.
New Catalog of Circuit Design Aids

The 24 page Complete Bugworks catalog describes more than 155 circuit design and educational products. The contents include solderless sockets, breadboards and accessories, plug in functional modules called "outboards," designer "breadboxes" which include power supplies, controls and displays, and the MMD-1 Mini-Micro Designer microcomputer development system. The hardware is supported by a set of 16 texts including the popular Bugbook series of combined texts and lab manuals. The catalog is available from E & L Instruments Inc, 61 First St, Derby CT 06418, (203) 735-8774.

Game Playing with BASIC

This book includes over 60 computer games and puzzles such as three-dimensional Tic Tac Toe, Nim, Roulette, Go-Moku, and many others. The author describes the rules of each game and includes illustrative flowcharts and diagrams. The last chapter contains 26 games and puzzles for reader solution. Game Playing with BASIC, written by Donald D. Spencer, is available paperbound for $6.95 from Hayden Book Company Inc, 50 Essex St, Rochelle Park NJ 07662, (201) 843-0550.

Care and Feeding of Floppy Disks

This free brochure offers suggestions for the safe handling and storage of floppy disks. The publisher manufacturers a storage cabinet and indexing system for keeping track of a library of floppies, priced at $59.95 for a limited time. The brochure is available from Advance Access Group Inc, 10326 W Cermak, Westchester IL 60153, (312) 562-5210.

Learn BASIC with This Self Instruction Course

The EC-1100 course combines programmed instruction text with practical demonstration programs and practice problems to teach BASIC language formats, commands, statements and procedures. The course goes beyond conventional BASIC texts to give the student an introduction to the creative and problem solving aspects of programming in BASIC. The EC-1100 course is keyed to the Heath computer systems, but it could be a useful supplement for other computers using BASIC. The course is priced at $29.95 and is further described in a free catalog available from Heath Company, Dept 350-450, Benton Harbor MI 49022.

Computer Store Survey Rates Manufacturers

An opinion survey of the nation's computer stores rates the top 37 personal computer manufacturers on 17 performance parameters such as delivery, packaging, warranty, pricing and reliability. Prepared from questionnaires and telephone interviews covering 450 stores, the survey also deals with businessness problems, trends, and market characteristics as seen by store managers. For more information including prices, contact Image Resource, 717 Lakefield Rd, Suite B, Westlake Village CA 91361, (805) 493-6277.

How to Fix Your Own Cassette Recorder

The Workbench Guide to Tape Recorder Servicing shows you how to fix problems with portable cassette recorders, open reel tape decks and 8 track cartridge players. It covers topics such as how to disassemble any machine in short order, how to make sense out of manufacturers' specifications sheets, and how to pinpoint problems in tape transport mechanisms. Written by G Howard Poteet, the book is $10.95 from Parker Publishing Company Inc, West Nyack NY 10994.

Highlights from Creative Computing

This book contains a collection of articles, fiction, foolishness, puzzles, programs, computer games and reviews from the Volume 2 (1976) issues of Creative Computing magazine. During this period, home computers just began coming on the scene. This volume reflects the transition from minis and timesharing terminals to the new micro-systems, although the diversity of the contents guarantees there will be something for just about everyone.

15 new computer games are described with complete listings and sample runs for each; 67 pages are devoted to puzzles, problems, programs, and things to do with your computer or terminal. Frederik Pohl drops in for a visit along with ten other imaginative storytellers. The staggering diversity of this book makes it an ideal point from which to jump into the amazing world of recreational or educational computing.

Book of MUMPS

This new book describes applications of MUMPS, the Massachusetts General Hospital Utility Multiprogramming System. MUMPS is a powerful interpretive language featuring text editing and searching capabilities, a hierarchical file system, and a shared data base with multiple users, which has been used for many medical applications. The 48 page Book of MUMPS lists 230 MUMPS application programs and 197 institutions which are using MUMPS. Information is also included on the MUMPS Users' Group (MUG) and its application library, MUMPS vendors and other MUMPS publications. The book is $2 from the MUMPS Users' Group, 700 S Euclid Av, St Louis MO 63110, (314) 454-3364.

PUBLICATIONS
TOUCH TONE ENCODER KIT

Simplicity itself to complete. No other parts required, no crystal required. The back of the touch pad has etched & drilled PC board and you solder the encoder chip to it. Add your own small speaker & 9 volt battery and you are done. A touch of the pad produces the proper tone signal from the speaker. We furnish schematic and instructions.

SP-149-B $12.95

WIRE WRAP WIRE

<table>
<thead>
<tr>
<th>Footage</th>
<th>10'</th>
<th>50'</th>
<th>100'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cond. 24</td>
<td>$2.50</td>
<td>$9.00</td>
<td>$15.00</td>
</tr>
<tr>
<td>Cond. 22</td>
<td>3.00</td>
<td>11.00</td>
<td>18.00</td>
</tr>
<tr>
<td>Cond. 22</td>
<td>3.50</td>
<td>13.00</td>
<td>21.00</td>
</tr>
<tr>
<td>Cond. 24</td>
<td>5.00</td>
<td>20.00</td>
<td>30.00</td>
</tr>
<tr>
<td>Cond. 22</td>
<td>7.50</td>
<td>28.00</td>
<td>45.00</td>
</tr>
</tbody>
</table>

Great savings as these are about 1/4 book prices. All fresh & new.

TOUCHTONE ENCODER CHIP

Compatible with Bell system, no crystal required. Ideal for repeaters & w/specs. $5.00

LAMDA POWER SUPPLIES

LM-D-12-OVP 12 volts DC 10 amp
$60, LV-EE 5-OVP 5 VDC 74 Amp $75.00

MULTI COLORED SPECTRA WIRE

<table>
<thead>
<tr>
<th>Footage</th>
<th>10'</th>
<th>50'</th>
<th>100'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cond. 8</td>
<td>$2.50</td>
<td>$9.00</td>
<td>$15.00</td>
</tr>
<tr>
<td>Cond. 12</td>
<td>3.00</td>
<td>11.00</td>
<td>18.00</td>
</tr>
<tr>
<td>Cond. 14</td>
<td>3.50</td>
<td>13.00</td>
<td>21.00</td>
</tr>
<tr>
<td>Cond. 24</td>
<td>5.00</td>
<td>20.00</td>
<td>30.00</td>
</tr>
<tr>
<td>Cond. 29</td>
<td>7.50</td>
<td>28.00</td>
<td>45.00</td>
</tr>
</tbody>
</table>

VIDEO DISPLAY from Viatron systems. Accepts composite video signals. 9 inch transistorized CCTV black & white CRT monitor. Ready to go, checked out. 115 volt AC 60 cycle. With circuit diagram.

$75.00

FAST CHARGE AA NICADS $1.25 each

IR NIGHT VIEWER $199.00

Custom made, complete with light source & viewer in one piece. Comes with carrying strap. Ready to operate with 6 volt lantern battery. Guaranteed by the manufacturer. See in total darkness. Great for scientists, viewing nocturnal animals & birds, criminal investigation . . . observe without being observed, and a ball for just plain snooping!!!! Sorry to say but no shipments to Calif. (lens may vary slightly from pic)

SPL-21 $199.00

Please add shipping cost on above. Minimum order $10
FREE CATALOG NOW READY # SP-10
P.O. Box 62, E. Lynn, Massachusetts 01904
What's New?

Microprocessor Course on TV

An instructional course in microprocessors for industry, designed around the Micro-68 training computer, is now available in the form of 30 half hour color video cassette sessions. The course was developed by Electronic Product Associates Inc in conjunction with Colorado State University. Course materials include the textbook *Understanding Microprocessors*, the 6800 Programming Manual and System Design Reference Manual, the Micro-68 Lab Manual and Micro-68 User's Manual, and a course study guide. The cassette package may be purchased for $7060 including one Micro-68 computer trainer and one set of documentation, or it may be leased for as little as $875 and $140 for the computer trainer. Additional computer trainers are available at the discounted price of $533. A 30 minute preview tape may be rented for a week for $50. The course is available from the university or from Electronic Product Associates Inc, 1137 Vega St, San Diego CA 92110, (714) 276-8911.

Gang Write Your EROMs With This Programmer

The Model 16 gang programmer is capable of programming nearly one million bytes of erasable read only memory per hour. The unit simultaneously programs 16 EROMs; includes a built in calibration mode; provides ROM continuity tests which detect faults in memory, socket connections, and programmer electronics; automatically pretests the programmer voltages; and computes checksums to ensure the Integrity of the programmed information. RS232C serial interface is included, and an interactive alphanumeric display simplifies operation. The Model 16 measures 8 by 13 by 23 inches (20.32 by 33.02 by 58.42 cm), weighs 38 pounds and costs $4800 from Data I/O Corp, POB 308, Issaquah WA 98027, (206) 455-3990.

Universal Emulator Features Flexible Assembler

This Z-80 based development system combines a flexible assembler with a memory emulation module to provide a development system for any microprocessor. The assembler can handle arbitrary instruction mnemonics including multibyte op codes like those of the Z-80. The assembler's symbol table can be set up with the mnemonics for an 8080, 6800, 8085, etc, and programs for the selected microprocessor can then be assembled. The system comes with a Z-80 processor, 32 K bytes of memory, 4 K bytes of emulator memory, and a dual drive floppy disk. An operating system, editor, assembler and utilities are provided. Also included are up to four buffered connectors which are designed to plug into 2708 EROM sockets in the target system. Priced at $5995, the emulator is available from M & E Associates, 10439 N Stelling Rd, Cupertino CA 95014.

Dual Density Floppy Controller Chip

The FD1781 floppy disk controller and formatter chip is completely compatible with TTL and will accommodate the interface systems of most disk manufacturers. Its features include automatic track seek with verification, selectable track to track stepping, head settling and engage times, double buffering of data, and an 8 bit bidirectional bus interface for communication with the computer. It provides data, data strobe and address mark IO for reading and writing data and can handle a variety of encoding and formatting methods. The FD1781 is available from Western Digital Corp, 3128 Red Hill Av, Newport Beach CA 92663, (714) 557-3550.

Protect Circuit Boards with These Conductive Bags

CP302 Statfree Conductive Bags are made of electrically conductive non-woven nylon material to protect MOS, CMOS and other sensitive electronic components from static electricity. The bags come in sizes from 5 by 8 inches (12.7 by 20.32 cm) to 10 by 18 inches (25.4 by 45.72 cm) and have a tensile strength in excess of 7500 pounds per square inch. The manufacturer will imprint a company name and model number on the bags. Prices start at $21.50 per 100 bags, from Charleswater Products Inc 3 Walnut Park, Wellesley MA 02181, (617) 237-5942.

216 BYTE March 1978
ASCII KEYBOARD...
With direct addressable interface to S-100 or other bus

OR...
COMPLETE VIDEO TERMINAL
Can all be housed in attractive enclosure below

FEATURES

- 49 keys plus space bar, shift, and shift lock.
- Minimum 10 additional keys for control, lower case, system reset, etc. (some illuminated).
- Outputs TTL compatible.
- Keyboard interface is tri-state; address decoding capability eliminates need for external I/O board.
- Serial board (w/RS232 interface) or complete video terminal fits into cabinet under keyboard.
- Single supply voltage (plus 12V or plus 5V), less than 150 mils drain.
- Excellent commercial quality (manufactured by Cherry).
- Attractive, sturdy cabinet in simulated walnut and black vinyl.

Through a fortunate purchase of new and used surplus keyboards, coupled with some imaginative design, we are able to offer professional quality I/O capabilities for any minicomputer system or for use as a stand-alone remote terminal. Simply add a video monitor for converted TV set and save at least 50% by buying one of the keyboard-video interface combinations described below.

KEYBOARD ONLY $ 44.95
Above configured to serve as addressable input port with cable 54.95
Above, as direct plug-in to the S-100 bus 69.95
Keyboard with serial board incl. RS232 interface 84.95

With 16x64 video board (adapted version of Xitex's SCT-100) upper and lower case, 128 characters, with both serial ASCII and BAUDOT capabilities, full X-Y cursor control, kit 249.00
Above, built and tested 299.95

With 24 x 80 video board (adapted version of Dynabyte 57), upper and lower case, addressable cursor and block mode editing, built and tested 399.95
Above units are supplied as stand-alone units. For direct interface to system bus ADD $ 10.00
When interfaced to an S-100 bus, video board can be in main cabinet for service convenience. Please specify use.

Reconditioned 12-inch 14 MHz monitors $ 109.95
New monitors and modems available.

Keyboards without interface or case — available at greatly reduced prices.

Above keyboards are used, in excellent condition, and are guaranteed for 90 days. Limited quantity of new units available — ADD $30.00 to any of above prices.
Add $2.00 for handling, shipping, and insurance.

Send for free 64-page catalog of other values.

MiniMicroMart, Inc. 1618 James Street, Syracuse, N.Y. 13203 (315) 422-4467
Circle 74 on inquiry card.
XOFF Junk Characters Forever

Make Printed Circuit Boards with This Film

This film can be used without cameras or chemicals to make printed circuit boards, component placement decals, front panel faces and similar patterns directly from a printed page as in a magazine construction article. A six step process is used to complete a transfer in less than 15 minutes. Prices for the film range from $5.49 for a small package of six 4 by 6 inch (10.16 by 15.24 cm) pieces to $7.95 for a large package of three 9 by 12 inch (22.86 by 30.48 cm) pieces, from Printed Circuit Products Co, POB 4034, Helena MT 59601. Circle 598 on inquiry card.

Hand Held Speech Synthesizer

The Phonic Mirror HandiVoice hand held speech synthesizer enables vocally impaired individuals to talk. The device produces phonemes rather than words and hence can articulate virtually any English word through some combination of phonemes. Two models of the synthesizer are available: the HC 120 which features a numeric keyboard and liquid crystal display, similar to a pocket calculator, with vocabulary selections made via three digit codes, designed for individuals with lower motor skills and higher cognitive skills, and the HC 110, which features a touch sensitive display board with 128 stations representing words, pictures or symbols, designed for individuals with lower cognitive skills and higher motor skills. The synthesizer electronics were originally developed for industrial use by Votrax, a division of Federal Screw Works. Sold only after referral by a professional speech pathologist or therapist, special education teacher or physician, the Phonic Mirror HandiVoice is manufactured by HC Electronics Inc, a division of American Hospital Supply Corp, One American Plz, Evanston IL 60201, (312) 866-4237. Circle 600 on inquiry card.

Wrap Your Own with These Rolls

Industrial quality AWG30 wire wrapping wire is now available in convenient 50 foot rolls on 1 5/8 inch diameter spools. The wire comes in four colors, red, white, blue and yellow, from OK Machine and Tool Corp, 3455 Conner St, Bronx NY 10475, (212) 944-6600. Circle 599 on inquiry card.

Radio Shack Offers the 8080A

That old stalwart, the 8080A microprocessor chip, can now be purchased in Radio Shack stores around the country as stock number 276-2510 (most likely in a bubble pack). The 100% prime chip is priced at $17.95. This fact like nothing else symbolizes the microprocessor's penetration into the everyday world of consumer electronics. Circle 601 on inquiry card.

New TV Interface RF Modulator Handles Color and Sound

The Pixle-Plexer Model PXP-4500 is a special RF modulator for multiplexing and interfacing color and luminance video signals plus audio to any TV set through the antenna terminals. Features include a 3.5 MHz color subcarrier oscillator and a 4.5 MHz audio subcarrier complete with varactor diode modulator for FM sound insertion. The PXP-4500 may be operated as a simple monochrome character display or a multiplexer plus modulator for color difference inputs and audio subcarrier signals. The device is built from a single integrated circuit on a 1.5 by 3 inch (3.81 by 7.62 cm) board with printed circuit RF coils. A single 15 V power supply (optionally -12 V and 5 V) at 50 mA is required. The kit comes complete with assembly instructions and a data sheet on the integrated circuit. The PXP-4500 is $24.50 from computer stores nationwide or direct from the manufacturer, ATV Research, 15th and Broadway, Dakota City NB 68731, (402) 987-3771. Circle 603 on inquiry card.
Logic Analyzer Plugs Into Altair (S-100) Bus

The Model 150 "Bus Grabber" logic analyzer electrically and mechanically interfaces to the Altair (S-100) bus, monitoring 56 key bus signals without the need for the numerous and unwieldy input probes associated with nondedicated instruments. Included in the 56 signals are the address and data bus and the microprocessor status, interrupts and control signals. In addition to the 56 dedicated signals, eight user defined signals interface to the plug-in board through an optional flat ribbon assembly. The associated probe tips can be used with ball clips, wire wrap pins or integrated circuit clips on any kind of equipment. Triggering of up to 24 bits, display formatting and operational modes of the logic analyzer are controlled from a small handheld pod connected to the plug in board through a ribbon cable.

Data "grabbed" from the Altair (S-100) bus or other signals are displayed as ones and zeroes on an ordinary oscilloscope connected through the horizontal, vertical and (optionally) blanking inputs. Signals can be captured and stored in the analyzer's 16 bit wide by 16 word deep data memory and displayed on the oscilloscope as a series of eight truth tables, each 8 bits wide by 16 words deep. Data can also be formatted into hexadecimal and octal binary groupings.

The Model 150 logic analyzer is available in kit form for $369 or assembled for $449, with an optional external 8 bit probe set for $9.95, from Paralronics Inc, 800 Charcot Av, San Jose CA 95131, (408) 263-2252.

Circle 624 on inquiry card.

New Probe for Capacitance Meter

This chip probe for ECD Corp C-Meter expands the capability of the hand held 3-1/2 digit battery operated capacitance meter to function as a unique inexpensive portable measuring tool for chip capacitors. Costing $39, the chip probe consists of a pair of tweezers connected to a double banana plug by a small diameter coaxial cable. The probe plugs directly into the C-Meter's standard banana jack input terminal. The cable capacitance is cancelled by the C-Meter "offset adjustment" located on the front panel. Connection to the chip capacitor terminals is made simply by permitting the tweezer tines to touch the capacitor terminal ends. The probe is designed for use with chips whose terminal spacing is from 0.02 inches to 0.300 inches and with values greater than 0.1 picofarads. The ECD C-Meter, which features auto-ranging, measures from 0.1 picofarads to 200,000 microfarads and automatically indicates the capacitor's value on its large LCD display. The C-Meter is $289 from ECD Corp, 196 Broadway, Cambridge MA 02139.

Circle 625 on inquiry card.

In Circuit Debugging for COSMAC Based Systems

In Circuit Debugging for COSMAC Based Systems

The CDP185030 COSMAC Micromonitor is a hardware and software debugging tool which can be attached by means of a single cable connection to the system under test. Controlled by its own microprocessor, the device uses the 1802 processor, power supply, clock, memory and other components of the system under test to run a user program. The Micromonitor provides an extensive set of debugging facilities, including 43 commands to examine and modify registers and memory, set breakpoints based on flag lines, interrupts and memory requests, and run the program in full speed, single instruction or single machine cycle modes. Self-contained in an attach case, the Micromonitor includes a built in keyboard, display and status indicator lights. It is priced at $1600 in single quantities and is described in the PD18 brochure from RCA Solid State Division, POB 3200, Somerville NJ 08876.

Circle 627 on inquiry card.

Millennium Arrives in Logic Analyzers

This diagnostic tool is designed to allow technicians of limited skill to isolate component faults in microprocessor based products. The Microsystem Analyzer combines signature analysis with a circuit emulation to ease troubleshooting of complex products. An umbilical cord is plugged into the microprocessor socket of the system under test, and bit patterns are generated which cause predictable bit streams to appear at various points in the system. The analyzer is designed for universal use, by incorporating one processor for operator interaction functions and a second processor for functions related to the system under test. Operator interaction is carried out through a function oriented keyboard and a 20 character alphanumeric display. Test programs may be keyed into the unit's programmable memory or stored in read only memory chips which can be plugged into the unit. The unit's mother board and card cage provide room for optional expansion boards. Options include a real time trace feature and an RS232 connection for remote use. The Microsystem Analyzer is priced at $2475, while the signature analysis probe option is $455, from Millennium Systems Inc, 19020 Prunenridge Av, Cupertino CA 95014, (408) 966-9109.

Circle 626 on inquiry card.
LED ALARM CLOCK

12 hr. LED Alarm Clock uses 3½ digit 8" LED Display with AM/PM indicators and colonies. Direct drive PIN to PIN interface with S1996A IC. Just add switches, AC Supply, Alarm, Display and IC. Only

$7.95 or 2/$15.00

Circle 97 on inquiry card.

FOR SALE: 160/150 Modular Computer, $1000, including complete instruction manual, rack mounts, CPU, memory, I/O, tape drive. Contact W. J. O'Leary, Box 914, Jamaica, NY 11434.

FOR SALE: Software: IBM 5170 Processor Definition Language. Includes manual, documentation, and source code. For 1403 or 1406. Will mail. Contact W. H. Johnson, 456 Main St, New York, NY 10010.

FOR SALE: IBM 360/65 Hardware and software. Includes manuals, schematics, and spare parts. For sale as a complete system or individual parts. Contact J. S. Brown, 789 Main St, New York, NY 10001.

FOR SALE: IBM 360/70 Computer with 48 K memory, 1403 card reader, 1407 card punch, 1406 tape reader, 1405 printer, 1440 printer. Complete system with manuals, $3000. Contact J. A. Smith, 123 Main St, Springfield, MA 01101.

FOR SALE: IBM 360/73 Computer with 48 K memory, 1403 card reader, 1407 card punch, 1406 tape reader, 1405 printer, 1440 printer. Complete system with manuals, $3000. Contact J. A. Smith, 123 Main St, Springfield, MA 01101.

FOR SALE: IBM 360/74 Computer with 48 K memory, 1403 card reader, 1407 card punch, 1406 tape reader, 1405 printer, 1440 printer. Complete system with manuals, $3000. Contact J. A. Smith, 123 Main St, Springfield, MA 01101.

FOR SALE: IBM 360/75 Computer with 48 K memory, 1403 card reader, 1407 card punch, 1406 tape reader, 1405 printer, 1440 printer. Complete system with manuals, $3000. Contact J. A. Smith, 123 Main St, Springfield, MA 01101.

FOR SALE: IBM 360/77 Computer with 48 K memory, 1403 card reader, 1407 card punch, 1406 tape reader, 1405 printer, 1440 printer. Complete system with manuals, $3000. Contact J. A. Smith, 123 Main St, Springfield, MA 01101.

FOR SALE: IBM 360/78 Computer with 48 K memory, 1403 card reader, 1407 card punch, 1406 tape reader, 1405 printer, 1440 printer. Complete system with manuals, $3000. Contact J. A. Smith, 123 Main St, Springfield, MA 01101.

FOR SALE: IBM 360/82 Computer with 48 K memory, 1403 card reader, 1407 card punch, 1406 tape reader, 1405 printer, 1440 printer. Complete system with manuals, $3000. Contact J. A. Smith, 123 Main St, Springfield, MA 01101.

FOR SALE: IBM 360/84 Computer with 48 K memory, 1403 card reader, 1407 card punch, 1406 tape reader, 1405 printer, 1440 printer. Complete system with manuals, $3000. Contact J. A. Smith, 123 Main St, Springfield, MA 01101.

Inquiry Service

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AAA Chicago Computer Center 195</td>
<td>46</td>
<td>Charles Floto 193</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Alpha Digital 142</td>
<td>47</td>
<td>Forethought Products 167</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>American Technologies 193</td>
<td>48</td>
<td>Gallagher Research Inc (GRI) 155</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Anderson Jacobson 19</td>
<td>49</td>
<td>Hamamatsu Corp 21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Apple Computer 16, 17, 119</td>
<td>50</td>
<td>DC Hayes 106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Atwood Enterprises 197</td>
<td>51</td>
<td>Heath 34, 57, CIV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>AVR Electronics 193</td>
<td>52</td>
<td>Heuristics 51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Barnes Electronics 193</td>
<td>53</td>
<td>Hobby World 207</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Benson & Costello 171</td>
<td>54</td>
<td>IEEE Computer Society 144, 145</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Berg Publications 172</td>
<td>55</td>
<td>IMSA 91, CII</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>BITS Inc, 125, 132, 146, 147, 150, 211</td>
<td>56</td>
<td>Integral Data Systems 69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Burroughs Inc 151</td>
<td>57</td>
<td>Integrated Circuits Unlimited 209</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>California Applied Technology 195</td>
<td>58</td>
<td>International Data Systems 137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>California Industrial 201</td>
<td>59</td>
<td>James Electronics 212, 213</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Canada Systems 167</td>
<td>60</td>
<td>John Fluke Manufacturing 65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Carterfone 93</td>
<td>61</td>
<td>LE Labs 195</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Central Data 97</td>
<td>62</td>
<td>Lear Siegler 61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Centronics 49</td>
<td>63</td>
<td>Logical Services 138</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Century Data Products 108</td>
<td>64</td>
<td>McGraw Hill Books 45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>CMC Marketing 63</td>
<td>65</td>
<td>Meca 123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Component Sales 140</td>
<td>66</td>
<td>Meshna 215</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Comptronics 141</td>
<td>67</td>
<td>Micro Business 78 163</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Computalkiev 75</td>
<td>68</td>
<td>Micro-Com 193</td>
<td></td>
<td></td>
</tr>
<tr>
<td>137</td>
<td>Computer Components 202</td>
<td>69</td>
<td>Micro 101, 108</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Computer Data Systems 103</td>
<td>70</td>
<td>Micropolys 110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Computer Depot 126</td>
<td>71</td>
<td>Micropolys 111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Computer Enterprises 102</td>
<td>72</td>
<td>Microwave 141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Computer Hardware Store 195</td>
<td>73</td>
<td>Midwestern Scientific Instruments 121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Computerland 128, 129</td>
<td>74</td>
<td>Mikos 200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Computer Mart of NH 195</td>
<td>75</td>
<td>Mini Micro Mart 148, 217</td>
<td></td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>Computer Stop 195</td>
<td>76</td>
<td>Mountain Hardware 43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Computer Systems Store 194</td>
<td>77</td>
<td>mp 136</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Computer Transceiver 133</td>
<td>78</td>
<td>MS 79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Cromemco 1, 2</td>
<td>79</td>
<td>Multi Micro Media Corp 106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Dal Data Inc 93</td>
<td>80</td>
<td>National Diagnostics 195</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Data Search 136</td>
<td>81</td>
<td>National Multiplex 115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Digital Group 55</td>
<td>82</td>
<td>NC 78 135</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Digital Micro Systems 173</td>
<td>83</td>
<td>Netronics 138</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Digital Research 117</td>
<td>84</td>
<td>Netstar Computer 23, 31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>Digital Research Corp 203</td>
<td>85</td>
<td>Ohio Scientific 36, 37, 38, 39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Disc 3 194</td>
<td>86</td>
<td>OK Machine & Tool 70, 71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Dynabyte 72, 73</td>
<td>87</td>
<td>Oliver Advanced Engineering 64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Electrolabs 197</td>
<td>88</td>
<td>Osborne & Associates 105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Electronic Control Tech 100</td>
<td>89</td>
<td>Owens Associates 193</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Electronic Systems 205</td>
<td>90</td>
<td>Pacific Office Systems 202</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Electronic Warehouse 198</td>
<td>91</td>
<td>PAIA Electronics 156</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Editor's Notes

- For the December 1977 BYTE, author Ira Rampil receives a BOMB bonus check of $100 for first place for "A Floppy Disk Tutorial," page 24, and authors Kurt J. Schmucker and Robert M. Tarr receive a bonus of $50 for their second place article, "The Computers of Star Trek," page 12. See page 27 for how BOMB card ratings are scored. Fill in the card opposite this page; BYTE's editors read each one.
IMSAI Introduces
the VDP-80

Until now, owning real computing power meant paying unreal prices. Announcing the IMSAI VDP-80 Video Data Processor, a complete computer, intelligent terminal and megabyte floppy disk mass storage system. All in one compact cabinet. All for just $5995* A complete desk top DP center.

For small business applications, the VDP-80 places a stand-alone computer at your fingertips. And, our full line of add-on peripherals, assures that the system can be expanded as your needs do.

For the large business user, with an existing central mainframe, the VDP-80 is the ultimate remote processor. You have the advantage of powerful local processing capability, plus the epitome in cost-effectiveness for implementing a distributed data communications network.

Take a close look at the following features. Then you'll know why we call our VDP-80 the desk top DP center.

- **Powerful, High-Speed, Central Processor.** 3 mHz Intel 8085 microprocessor. 32K RAM memory (expandable to 196K). Parallel and serial I/O. Asynch, synch and bisynch communications. Programmable baud rates (.05-56 KB).

- **Megabyte Mass Storage.** PerSci dual floppy, double density disk drive standard. One million byte storage capacity. Three floppy disk drives can be added-on, providing 4 million bytes of on-line storage.

- **Drives Printers, Plotters, Terminals, Modems and Tape Drives.** Supports up to six terminals or modems, and four tape drives. Drives plotters, serial printers and line printers (up to 300 lpm).

- **12" CRT, 24x80 Field, User Programmable Font.** Character and line insert/delete allows fast program correction and text editing. Inverse video and programmable field allows highlighting or enlarging of information display. Titled fields protect information blocks from being written over accidentally. Programmable font (up to 256 different characters) allows foreign language and special purpose character forms.

- **Commercial BASIC, FORTRAN IV, DOS Software.** Built-in ROM monitor allows extensive debugging and diagnostics. BASIC, interactive or compiler version. FORTRAN IV level 2 ANSI compiler. DOS-enhanced CP/M.*

Distributed processing, financial reporting and analysis, word processing, whatever your application, the VDP-80 is your answer.

Dial (415) 483-2093, and we'll tell you how you can put our $5995* DP Center on your desk top. When it comes to small business computers, Just Ask IMSAI.

*Base price VDP-80/1000, $5995. with 32K RAM memory and dual double density floppy disk drive. U.S. Domestic Price Only. Features and prices subject to change without notice.

**CP/M is a trademark of Digital Research Corporation.
This 8-bit machine, by itself, is as versatile as a lot of systems that include peripherals.

Skeptical? For starters, because of its unique design, the H8 is the only machine in its price class that offers full system integration, yet, with just 4K of memory and using only its "intelligent" front panel for I/O, may be operated completely without peripherals!

In addition, by using the features of its built-in Pam-8 ROM panel control program, the H8 actually allows you to dig in and examine machine level circuitry.

Responseing to simple instructions the "intelligent" panel displays memory and register contents, lets you inspect and alter them even during operation. And for greater understanding, the front panel permits you to execute programs a single instruction at a time. The result is a powerful, flexible learning tool that actually lets you "see" and confirm each detail of H8's inner workings.

If you need further evidence, consider the fact that H8's system orientation allows you an almost unlimited opportunity for growth. Memory is fully expandable, the 8080A CPU extremely versatile, and with the addition of high speed serial and parallel interfae you gain the added flexibility of I/O operation with tape, CRT consoles, paper tape reader/punches, and soon floppy disk systems!

The H8 offers superior documentation including complete step-by-step assembly and operation manuals, is backed by 54 years of Heath reliability, and comes complete with BASIC, assembler, editor, and debug software — others charge over $60 for!

H8, simplicity for the beginner, sophistication for the expert and at $375* just right for you.

*Prices are mail order net. F.O.R. Benton Harbor, Michigan. Prices and specifications subject to change without notice.

Suggested price for the HS:

FREE

Be sure to use coupon on page 34 of this magazine to order your FREE Heathkit Catalog!