The Brains of Men and Machines
Your computer system needn’t cost a fortune.

Some computer kits include little more than a motherboard and a front panel, and you pay extra for everything else you need to make an operating computer.

SWTPC doesn’t do it that way, so you can get your Southwest Technical 6800 Computer up and running at a bargain cost compared with most other systems. It comes complete at $395 with features that cost you extra with many other systems.

The Extras You Get

These extras include 4K of random-access memory, a mini-operating system in read-only memory, and a serial control interface. They give you 1) a considerable amount of working memory for your programs, 2) capability through the mini-operating system to simply turn on power and enter programs without having to first load in a bootstrap loader, and 3) an interface for connecting a terminal and beginning to talk with your computer immediately.

Low-Cost Add-Ons

Now that you have a working computer, you’ll probably want to add at least two features soon, more memory and interfaces for needed accessory equipment. Memory for our 6800 is another bargain. You can get 4K memory boards for just $100 and 8K boards for only $250.

Our interfaces cost little compared with many other systems.

For just $35 you can add either a serial or parallel interface board. (And you won’t have to buy several interfaces on a costly board to get just the one you want.)

Peripheral Bargains

Your computer is no good without at least a terminal for entering data and viewing computer output, and you will probably want a good method of storing programs and data. We offer you a line of high-quality peripherals at low prices. (You can prove this by just comparing prices.)

Buy our CT-64 Video Terminal for only $325 and our CT-VM Monitor with matching cover for $175. Our MF-68 Dual Minifloppy costs just $995, complete with Disk BASIC and a disk operating system. For cassette storage our AC-30 Cassette Interface gives simple control for one or two cassette recorders.

You can get inexpensive hard copy with our PR-40 Alphanumeric Line Printer.

We back up the 6800 system with low-cost software, including 4K and 8K BASIC.

Compare the value you get with our computer and peripherals before you buy. We think you’ll find that SWTPC gives you more for your money in every way.

Enclosed is:	$995 for the Dual Minifloppy	$250 for the PR-40 Line Printer
	$325 for the CT-64 Terminal	$79.50 for AC-30 Cassette Interface
	$175 for the CT-VM Monitor	Or BAC # Exp. Date
	$395 for the 4K 68000 Computer	Or MC # Exp. Date

Name __________________________ Address __________________________
City ___________________________ State ___________ Zip ____________

Southwest Technical Products Corp.
219 W. Rhapsody, San Antonio, Texas 78216
London: Southwest Technical Products Co., Ltd.
Tokyo: Southwest Technical Products Corp./Japan

Circle 102 on inquiry card.
You can now have the industry's finest microcomputer with that all-important disk drive

You can get that all-important software, too

Loading your programs and files will take you only a few seconds with the new Cromemco Z-2D computer. You can load fast because the Z-2D comes equipped with a 5" floppy disk drive and controller. Each diskette will store up to 92 kilobytes.

Diskettes will also store your programs inexpensively—much more so than with ROMs. And you can get much more conveniently than with cassettes or paper tape.

The Z-2D itself is our fast, rugged, professional-grade Z-2 computer equipped with disk drive and controller. You can get the Z-2D with either single or dual drives (dual shown in photo).

Cromemco has the software

You can rely on this: Cromemco is committed to supplying quality software support.

For example, here's what's now available for our Z-2D users: Cromemco FORTRAN IV Compiler: a well-developed and powerful FORTRAN that's ideal for scientific use. Produces optimized, relocatable Z-80 object code.

Cromemco 16K DISK BASIC: a powerful pre-compiling interpreter with 14-digit precision and powerful I/O handling capabilities. Particularly suited to business applications.

Cromemco Z-80 ASSEMBLER: a macro-assembler that produces relocatable object code. Uses standard Z-80 mnemonics.

Advanced controller card

The new Z-2D is a professional system that gives you professional performance.

In the Z-2D you get our well-known 4-MHz CPU card, the proven Z-2 chassis with 21-slot motherboard and 30-amp power supply that can handle 21 cards and dual floppy drives with ease.

Then there's our new disk controller card with special features:

- Capability to handle up to 4 disk drives
- A disk bootstrap Monitor in a 1K 2708 PROM
- An RS-232 serial interface for interfacing your CRT terminal or teletype
- LSI disk controller circuitry

Z-2 users:

Your Z-2 was designed with the future in mind. It can be easily retrofitted with everything needed to convert to a Z-2D. Only $935 kit; or $1115 for assembled retrofit package.

store/Factory

Contact your computer store or Cromemco factory now about the Z-2D. It's a real workhorse that you can put to professional or OEM use now.

Kit: Z-2D with 1 disk drive
(Model Z2D-K) $1495.
Assembled: Z-2D fully assembled and tested (Model Z2D-W) $2095.
Additional disk drive
(Model Z2D-FDD) $495.

Software

(On standard IBM-format soft-sectored mini diskettes)
16K BASIC (Model FDB-S) $95
FORTRAN IV (Model FDF-S) $95
Z-80 Assembler (Model FDA-S) $95

Cromemco
Incorporated
Specialists in computers and peripherals
2400 Charleston Rd., Mountain View, CA 94043 • (415) 964-7400

Circle 30 on inquiry card.
The easy way to get disk storage, FORTRAN IV, and other programming power

Here's a new disk controller and disk drive combination that will set you up for truly powerful disk storage.

The new controller is extremely versatile. You can use it with either our new 5" single disk drive or our 8" dual disk drive. In fact, the controller will interface up to three 5" or four 8" drives.

That means you can have enormous disk storage since the new controller puts 92 kilobytes on each side of a 5" diskette and 256 kilobytes on an 8" diskette. Recording is in soft-sectored IBM format.

FORTRAN IV AND MORE

You can get still more Cromemco disk operation aids. For example, we also offer FORTRAN IV for our computer users.

And as in so many things, we are the first manufacturer in the field to offer this advanced program for the Z-80 µP.

Besides FORTRAN IV we also offer our special BASIC (14-digit precision), our Z-80 Assembler, and now an entertainment diskette with over a dozen of our Dazzler® games.

KEYBOARD CONTROL

The new Model 4FDC disk controller (supplied in our Z-2D) is for our Z-2 computer or any S-100 bus computer using our Z-80 CPU card.

You should also know about these other capabilities of the new controller:

- Its PROM-resident Disk Operating System (RDOS) gives you key-board control of your disk drive and also includes a bootstrap to load our powerful CDOS disk operating system supplied on all Cromemco diskettes.
- The controller will interface your CRT terminal through its RS-232 serial port. May save you an I/O.
- It has 5 programmable interval timers.
- It has vectored interrupts.
- And it has an 8-bit parallel input port and an 8-bit parallel output port.

LOOK TO THE FUTURE

This new disk controller equips you for the future as well as for now. Not only can you now have very large storage, but the features of the controller and the standard IBM format protect you from early obsolescence.

STORES/FACTORY

This new card and the disk drives are in production and available. So contact your computer store or the factory today and you can have the power of FORTRAN IV and a large memory right away.

PRICES

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 4FDC-W Disk Controller assembled</td>
<td>$595</td>
</tr>
<tr>
<td>Model PFD-W 8" dual disk drive assembled</td>
<td>$2495</td>
</tr>
</tbody>
</table>

Disk drives are complete with power supply, case and cables.

SOFTWARE

Purchasers of Cromemco computers or drives may purchase software on 5" or 8" diskettes as follows:

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORTRAN IV</td>
<td>$95</td>
</tr>
<tr>
<td>80 Assembler</td>
<td>$95</td>
</tr>
<tr>
<td>16K BASIC</td>
<td>$95</td>
</tr>
<tr>
<td>Dazzler® games</td>
<td>$95</td>
</tr>
</tbody>
</table>

- CROMEMCO FORTAN IV
- CROMEMCO FORTAN IV
- CROMEMCO FORTAN IV
- CROMEMCO FORTAN IV

Cromemco Incorporated
Specialists in computers and peripherals
2400 CHARLESTON RD., MOUNTAIN VIEW, CA 94043 • (415) 964-7400

Circle 30 on inquiry card.
In the Queue

Foreground

37 ADD MORE ZING TO THE COCKTAIL
Hardware—Ciaricia

68 A FLOPPY DISK INTERFACE
Hardware—Allen

94 THE WATERLOO RF MODULATOR
Hardware—Banks

161 MOUNTING A PAPER TAPE READER
Hardware—Bryant

Background

11 THE BRAINS OF MEN AND MACHINES: Biological Models for Robotics
Robotics—Kent

27 THE IRS AND THE COMPUTER ENTREPRENEUR
Taxes and Business—Hughes

84 THE MOTOROLA 6800 INSTRUCTION SET
Software—Jessop

108 THE SECOND WORLD COMPUTER CHESS CHAMPIONSHIPS
Perfect Information Games—Jennings

122 STRUCTURED PROGRAMMING WITH WARNIER-ORR DIAGRAMS: Part 2
Software—Higgins

144 SIMULATION OF MOTION: Model Rockets and Other Flying Objects
Modelling—Smith

150 A NOVICE'S EYE ON COMPUTER ARITHMETIC
Numbers—Leder

162 NOTES ON BRINGING UP A MICROCOMPUTER
Hardware—Libes

Nucleus

4 In This BYTE

6 What Is This Phenomenon Personal Computing?

38 Letters

120 BYTE's Bits

138, 160 Book Reviews

139 Clubs, Newsletters

165 Technical Forum: A Note on Advances in Technology

168 What's New?

190 Classified Ads

192 BOMB

192 Reader Service
The compleat robotics experimenter must have a thorough background in biological models of behavior and control, as noted in November’s editorial. With this issue, Ernest W. Kent begins the first installment of a four-part series with The Brains of Men and Machines, Part 1: Biological Models for Robotics. Dr. Kent has provided readers with a thoroughly understandable introduction to a number of concepts essential to an understanding of the human brain and its simulation in robotic mechanisms. (Page 11)

Can the experimenter who runs a small computer business deduct the price of additional memory for the computer? What kind of tax records should the small business keep? If you’ve been thinking of opening your own small computer business, read Elizabeth M. Hughes’ The IRS and the Computer Entrepreneur for the answers to these and many more tax questions. (Page 27)

Last month, Steve Ciarcia described an inexpensive 8 channel digital voltmeter driven by a microcomputer. Read Add More Zing to the Cocktail in this month’s Ciarcia’s Circuit Cellar and find out how to add multiple ranges, AC and DC input capability and overvoltage protection to the basic circuit. (Page 37)

When designing a floppy disk interface, the experimenter is faced with the continuous battle of hardware versus software tradeoffs. David M. Allen’s A Floppy Disk Interface balances the two extremes and shows you how to get a floppy disk system up and running. (Page 58)

Paul M. Jessop explores the functional organization of the Motorola 6800 Instruction Set showing Two Programming Points of View. (Page 84)

Robert Bumpous provides A User’s Reaction to the SOL-10 Computer in this issue. Learn a bit more about the Processor Technology computer’s design and assembly procedures in Robert’s article. (Page 86)

In what is probably the world’s simplest such design, Walter Banks describes a neat hack, The Waterloo RF Modulator, used to convey digitally generated video information from a computer to a standard television set. (Page 94)

On a battlefield for (intellectual) titans, the forces of black versus white met recently in Toronto. Who won? It was the artificial intelligence experimenters, who demonstrated their nonartificial intelligence in constructing the programs entered in the Second World Computer Chess Championships, held last August during the IFIPS show. 16 programs met in logical conflict, with CHESS 4.6 conquering all to win the current title. Turn to Peter Jennings’ article for a summary of the action. (Page 108)

In Structured Programming with Warnier-Orr Diagrams, Part 2: Coding the Program, David A. Higgins uses the program design completed in part 1 and demonstrates how to efficiently turn a diagram into a working BASIC program. (Page 122)

Continuing the discussion of motion calculated with a personal computer, Stephen Smith’s article Simulation of Motion: Model Rockets and Other Flying Objects turns to the need for simulating angular degrees of freedom and components of force along different directions. (Page 144)

Are you uncertain as to how basic arithmetic operations such as multiplication and division are performed on your computer? If so, Wayne H. Ledder’s article A Novice’s Eye on Computer Arithmetic may help you out. (Page 150)

Using the RAECO paper tape reader requires a mounting. See Jack Bryant’s article on Mounting a Paper Tape Reader to see how this unit can be installed in an SwTPC 6800’s cabinet. (Page 161)

Building a homebrew system based on one of the many microprocessor chips available today is an interesting challenge. In Notes on Bringing up a Microcomputer, Sol Libes provides some general background information on the process of wiring and checking out a microcomputer based system. (Page 162)
TARBELL SETS STANDARDS
For Hobbyists and Systems Developers

Sales to thousands of hobbyists over the past two years have proven the Tarbell Cassette Interface to be a microcomputer industry standard. Tarbell Electronics continues research and development to produce new and efficient components to fill hobbyists' changing needs.

TARBELL CASSETTE INTERFACE
- Plugs directly into your IMSAI or ALTAIR*
- Fastest transfer rate: 187 (standard) to 540 bytes/second
- Extremely Reliable—Phase encoded (self-clocking)
- 4 Extra Status Lines, 4 Extra Control Lines
- 37-page manual included
- Device Code Selectable by DIP-switch
- Capable of Generating Kansas City tapes also
- No modification required on audio cassette recorder
- Complete kit $120, Assembled $175, Manual $4

TARBELL FLOPPY DISC INTERFACE
- Plugs directly into your IMSAI or ALTAIR* and handles up to 4 standard single drives in daisy-chain.
- Operates at standard 250K bits per second on normal disc format capacity of 243K bytes.
- Works with modified CP/M Operating System and BASIC-E Compiler.
- Hardware includes 4 extra IC slots, built-in phantom bootstrap and on-board crystal clock. Uses WD 1771 LSI Chip.
- 6-month warranty and extensive documentation.
- PRICE:
 Kit $190 Assembled $265

Compatible Disc Drives
Ask about our disc drives priced as low as $525.

TARBELL PROTOTYPE BOARD
Model 1010
- Gold plated edge pins
- Takes 33 14-pin ICs or
- Mix 40-pin, 18-pin, 16-pin and 14-pin ICs
- Location for 5 volt regulator
- Suitable for solder and wire wrap
- ALTAIR/IMSAI compatible
- Price: $28.00

For fast, off the shelf delivery, all Tarbell Electronics products may be purchased from computer store dealers across the country. Or write Tarbell Electronics direct for complete information.

*ALTAIR is a trademark/tradename of MITS, Inc.

Tarbell Electronics
20620 South Leapwood Avenue, Suite P
Carson, California 90746
(213) 538-4251

Circle 105 on inquiry card.
People newly acquainted with the personal computer concept often are baffled by the idea. What does it mean to have and use a personal computer? Why are such computers all of a sudden becoming a prominent technological feature of our culture? In posing these questions and writing a short essay on the subject, a key purpose is to provide a brief overview and summary of personal computing for our newer readers, an exercise which it is necessary to perform from time to time. But the same exercise helps me to review and get a perspective on what is happening, and will, I hope, serve readers familiar with the field as an opportunity for reflection upon the marketplace as it is seen today.

The very fact that I even have to take into account the existence of new readers is a revealing statement about the nature of the growth which has occurred in this field: when BYTE magazine was started by me, my partner Virginia Peschke and several associates in mid-1975, the starting point was essentially zero—the 250-odd subscribers to a newsletter technical publication I had been publishing for about a year. Now, as the 29th monthly issue of BYTE magazine goes to press, the November 1977 issue has just been delivered to over 105,000 people by subscription or sales in over 600 computer stores. As nearly as we can tell, we are still in the exponential growth stage of our circulation and have by no means saturated the prospects for interested readers. But this is only a reflection upon the industry as a whole. We could not support such a large circulation if it weren't for the fact that there is a large and active group of manufacturers who are producing and selling the products which our readers need and use as personal computing oriented people. Why?

Ours is a culture of the mind. Western civilization's most prominent characteristic is that it salutes the individual thinking being (and indeed its generalizations to any sentient beings which may exist in the universe). The individual human mind is the temple from which all the appurtenances of modern civilization spring. Our market oriented civilization, more than any other, tends to recognize and promote the products of the individual thinker, whether engineer, novelist, scientist, manager, student, capitalist, lawyer or a host of other specializations. To think is the standard human mode of operation, a part of the built-in equipment which has evolved in the species Homo sapiens.

The fact that humans have personal values and resultant emotions and feelings is in no way inconsistent with this description of humanity. If I know joy at some aspect of living, the fact that I can perceive such is often enhanced, if not made possible, by the operation of my mind. If I know sorrow at some other aspect of living, the act of knowing is made possible by the operation of my mind. And of course, I generalize this: I am not the only active being on this planet. Every one of the readers of this essay is a unique variation on a similar theme. Into this milieu of a culture which celebrates and promotes individual achievement as a way of life springs an achievement of numerous individuals working in concert, the modern large scale integrated circuit, the computer on a chip. The result is today's real life version of what might have been a science fiction scenario in past decades.

The human mind from which this achievement springs is a portable, fairly efficient, and quite remarkable thinking machine, a product of countless millennia of evolution where the guiding standard has been success as an organism in a complicated environment. The human mind is intricately involved with the phenomenon which is the computer as we know it in this culture: the computer is a genuine manifestation of a hard to define science fiction concept, the “thought amplifier.” As a practical reality, it involves no technological extensions of biology, no mystical force fields, not one iota of built-in enmity for humans. The computer in all its uses is nothing more than an extension of the mind of its user. The programs which we all put into our computers are crystallizations of our own thought processes in a form which can be
Look To The North Star HORIZON Computer.

HORIZON™—a complete, high-performance microprocessor system with integrated floppy disk memory. HORIZON is attractive, professionally engineered, and ideal for business, educational and personal applications.

To begin programming in extended BASIC, merely add a CRT or hard-copy terminal. HORIZON-1 includes a Z80A processor, 16K RAM, minifloppy™ disk and 12-slot S-100 motherboard with serial terminal interface — all standard equipment.

WHAT ABOUT PERFORMANCE?
The Z80A processor operates at 4MHz — double the power of the 8080. And our 16K RAM board lets the Z80A execute at full speed. HORIZON can load or save a 10K byte disk program in less than 2 seconds. Each diskette can store 90K bytes.

AND SOFTWARE, TOO
HORIZON includes the North Star Disk Operating System and full extended BASIC on diskette ready at power-on. Our BASIC, now in widespread use, has everything desired in a BASIC, including sequential and random disk files, formatted output, a powerful line editor, strings, machine language CALL and more.

EXPAND YOUR HORIZON
Also available—Hardware floating point board (FPB); additional 16K memory boards with parity option. Add a second disk drive and you have HORIZON-2. Economical serial and parallel I/O ports may be installed on the motherboard. Many widely available S-100 bus peripheral boards can be added to HORIZON.

QUALITY AT THE RIGHT PRICE
HORIZON processor board, RAM, FPB and MICRO DISK SYSTEM can be bought separately for either Z80 or 8080 S-100 bus systems.

HORIZON-1 $1599 kit; $1899 assembled.
HORIZON-2 $1999 kit; $2349 assembled.
16K RAM—$399 kit; $459 assembled; Parity option $39 kit; $59 assembled. FPB $259 kit; $359 assembled. Z80 I/O board $199 kit; $259 assembled. Prices subject to change. HORIZON offered in choice of wood or blue metal cover at no extra charge.

Write for free color catalogue or visit your local computer store.

NORTH STAR ★ Computers
2465 Fourth Street • Berkeley, California 94710 • (415) 549-0858
You've just run out of excuses for not owning a personal computer.

Clear the kitchen table. Bring in the color TV. Plug in your new Apple II and connect any standard cassette recorder/player. Now you're ready for an evening of discovery in the new world of personal computers. Only Apple II makes it that easy. It's a complete, ready to use computer, not a kit. At $1298, it includes video graphics in 15 colors. It includes 8K bytes ROM and 4K bytes RAM—easily expandable to 48K bytes using 16K RAMs (see box). But you don't even need to know a RAM from a ROM to use and enjoy Apple II. For example, it's the first personal computer with a fast version of BASIC permanently stored in ROM. That means you can begin writing your own programs the first evening, even if you've had no previous computer experience.

The familiar typewriter-style keyboard makes it easy to enter your instructions. And your programs can be stored on—and retrieved from—a cassette interface, so you can swap with other Apple II users.

You can create dazzling color displays using the unique color graphics commands in Apple BASIC. Write simple programs to display beautiful kaleidoscopic designs. Or invent your own games. Games like PONG—using the game paddles supplied. You can even add the dimension of sound through Apple II's built-in speaker.

But Apple II is more than an advanced, infinitely flexible game machine. Use it to teach your children arithmetic, or spelling for instance. Apple II makes learning fun. Apple II can also manage household finances, chart the stock market or index recipes, record collections, even control your home environment.

Right now, we're finalizing a peripheral board that will slide into one of the eight available motherboard slots and enable you to compose music electronically. And there will be other peripherals announced soon to allow your Apple II to talk with another Apple II, or to interface to a printer or teletype.

Apple II is designed to grow with you as your skill and experience with computers grows. It is the state of the art in personal computing today, and compatible upgrades and peripherals will keep Apple II in the forefront for years to come.

Write us today for our detailed brochure and order form. Or call us for the name and address of the Apple II dealer nearest you. (408) 996-1010. Apple Computer Inc., 20863 Stevens Creek Boulevard, Bldg. B3-C, Cupertino, California 95014.

SPECIFICATIONS

- Microprocessor: 6502 (1 MHz).
- Video Display: Memory mapped, 5 modes—all Software-selectable:
 - Text—40 characters/line, 24 lines upper case.
 - Color graphics—40h x 48v, 15 colors
 - High-resolution graphics—280h x 192v; black, white, violet, green
 (12K RAM minimum required)
- Both graphics modes can be selected to include 4 lines of text at the bottom of the display area.
- Completely transparent memory access. All color generation done digitally.
- Memory: up to 48K bytes onboard RAM (4K supplied)
 - Uses either 4K or new 16K dynamic memory chips
 - Up to 12K ROM (8K supplied)
- Software
 - Fast extended integer BASIC in ROM with color graphics commands
 - Extensive monitor in ROM
- I/O
 - 1500 bps cassette interface
 - 8-slot motherboard
 - Apple game I/O connector
 - ASCII keyboard port
 - Speaker
 - Composite video output

Apple II™ is a completely self-contained computer system with BASIC in ROM, color graphics, ASCII keyboard, light-weight, efficient switching power supply and molded case. It is supplied with BASIC in ROM, up to 48K bytes of RAM, and with cassette tape, video and game I/O interfaces built-in. Also included are two game paddles and a demonstration cassette.

Apple computer inc.™

*Apple II plugs into any standard TV using an inexpensive modulator (not supplied).
Order your Apple II now.

from any one of the following authorized dealers:
The idea of a machine that thinks like a man has always fascinated us. If we talk about substantial improvements in processor design, it is relegated to a few technical journals, but if we talk about robots, or write stories about computers with personalities, or make movies about HAL, everyone gets interested, and computer buffs stay up all night trying to figure out how to make their machines behave like that. An artificial "intelligence," in the sense in which we apply that term to our own thought processes, has been a recurring theme dating back to antiquity, despite the fact that no such machine has ever existed. I don't know why this is so, perhaps it springs from a desire to understand our own thoughts, or perhaps the human race is just lonely. We keep hoping for dolphins and Martians to start talking to us too. Whatever the reason, the idea is a potent one, and an enduring source of interest.

Why then don't we build computers that think like men? Well, people have certainly tried, and some very elegant software has been created towards that end, but the results have always been frustratingly limited. You have all heard the old adage that a computer to equal the human brain would require a machine the size of the Empire State Building with the electrical output of Niagara Falls to power it, but that was always just an excuse. Aside from the fact that whoever coined that notion didn't have any idea of what a brain-like computer would require, the fact is that we would have built it anyway, if we'd known how. Moreover, when that guess was made, we were making computers out of 12AX7s, and it's a long way from the 12AX7 to the Z-80. We would certainly build that machine today, if we knew how. What then is the problem? Our big fast machines can do elegant and complex mathematics, even proofs, far beyond our own powers, yet we have the greatest difficulty making them display even the slightest degree of common sense. The System 370 can do amazing things with numbers, but it wouldn't have the intelligence to duck if you swung a club at it. A frog could do better at dealing with its environment.

I assure you that the problem has nothing to do with any mysterious properties of the brain. If we have learned anything about the brain, it is that it is a machine. A complex machine to be sure, but a machine nonetheless. This notion frequently upsets people; they are bothered by the suggestion that they might be "only a machine." I think that this is the wrong interpretation. The statement that the brain is a machine does not mean that it is "only" a machine in the sense of the simple machines of limited ability that we have produced. Rather, it is a statement that extends our concept of what a machine can do. It does not denigrate what the brain can do. Of course, it raises the possibility that we can design a machine that thinks like a man, with all of the attendant problems of philosophy and theology that that raises.

One could take refuge in the notion that brain and mind may somehow be different, but the evidence is that when the brain is manipulated experimentally, all of our mental processes, our sensations and perceptions, our feelings and emotions, our intellectual processes, our memories, even our states of consciousness are manipulated too. The evidence suggests that this manipulation
is predictable and occurs in the same fashion in all individuals.

Why are we having so much trouble making our computers behave in brain-like fashions if both are machines and both information processing machines at that? I think the answer is that we are trying to make a wrench do a screwdriver's job. What I mean is that while all information processing machines may theoretically be capable of imitating all others, Turing didn't say that arc hitecture is quite different from that of computers as we customarily build them, and different in ways that are very instructive with regard to the problem of building a "thinking machine."

The brain and the computer have both developed in an evolutionary manner, with "survival of the fittest" determining what features were retained and what were discarded. The differences in their designs arise from the fact that nature and computer engineers have different notions of what constitutes "fittest." There are two aspects to this difference: the nature of the problems the machine is required to solve, and the nature of the hardware available to build the machine. The successful brains, the ones whose genes contributed to the next generation, were the ones that had good designs for solving problems like recognizing and avoiding dinosaurs, and recognizing and catching frogs. Ability at higher mathematics was never a very important criterion in determining successful design, and our poor brains get quickly strained when they're required to do much of it. Computer design was judged from the beginning in terms of its success at mathematical function, and as a result they are very good at it, but very bad at catching frogs.

The kind of hardware available to computer engineers and to organic evolution was also different, and in part determined the differences in architecture of successful brains and computers. Although the logic gate and the neuron have a great deal in common as we shall see, some of their differences turned out to have far-reaching consequences. The brain never had speed on its side, neurons operate in milliseconds not nanoseconds, but it never lacked for quantity. (You want million bit bytes and ten thousand legged gates? Sure, how many trillion?) The computer engineers on the other hand were limited in quantity by the expense and difficulty of assembly of their components, which dictated designs that were hardware conservative. This was compensated by using the speed of electronic components to substitute for quantity. Thus, our computers emphasize small bytes and few registers, but achieve high data throughput with iterative reuse of these components at great speeds. Bus oriented design and other hardware conservative adaptations arise from these same considerations.

In contrast, parallel multiprocessor designs with hierachical organization, which the brain uses with wild abandon, are only seen in the most primitive form in our current computers and computer networks. The brain also has no compunctions about freely mixing digital and analog computing elements, using each to best advantage where needed. Thus, the brain and the computer each found a design best suited to the problems they are required to solve and the hardware available, albeit big brains can do some computer-like functions, poorly; and big computers can do some brain-like functions, poorly.

Curiously enough, both the brain and the computer seem to have settled on a single basic organization whether the device is large or small. We all know how a computer works in principle, although different machines differ in detail. The processor, the bus, the clock, memory, the IO interface, all are arranged according to the same basic plan in large machines and small. Similarly, the brain of the white rat in my laboratory is of the same design, basically, as the brain reading this page. All the same parts are included in both, and hooked up in the same way. The differences are in capacity and relative development of the parts. Brains are even more similar to one another than computers.

What I am suggesting is that the computer has developed an architecture that is optimized for logical and mathematical problems, but that that is not an optimal architecture if the problem is to display basic common sense, whether it can do Fourier transforms or not. Thus, our machines as presently configured are terribly inefficient at the kinds of problems brains solve easily, and prodigious feats of programming, vast amounts of memory and all the speed that can be mustered give us only the most trivial results.

I am not going to suggest that we try to build a hardware replica of the brain. We don't have the hardware or the knowledge yet. I would like to suggest however that if we are interested in approaches to a science of robotics, it would be very instructive to examine the only model of an intelligent machine that is available to us, and to try to identify principles of operation that could
Is your career growing as fast as ours?

New Products Engineers (Analog and Digital)
Your responsibilities will include new product introduction of state-of-the-art processors, peripherals and controllers to our Systems Integration Division. A BSEE degree or the equivalent is required with a minimum of 3 or more years of related experience.

Diagnostic Programmers
You will design, code and debug assembler language programs for fault isolation, to the chip level, in digital systems. You will also write functional level system exercisers for stand-alone and disc-based real-time operating systems. A technical degree or the equivalent experience is needed, together with a thorough understanding of digital system hardware. Hardware troubleshooting experience and 3 or more years' programming experience, preferably in diagnostics is very desirable, especially with strong assembly language skills.

Test Engineers
You will be responsible for PCB test engineering support for digital products such as CPU's, memories and options. Experience is required in solving engineering problems as they relate to test equipment, diagnostics, test philosophy and component fault isolation. You will also initiate and implement improvements to the testing process and equipment, and provide coordination for the introduction of new products into production. A BSEE degree and two or more years’ experience in PCB test or Test Equipment Design.

Manufacturing Engineers
You will be responsible for providing floor support in the PCB assembly area. A BSME, BSIE or the equivalent with 3 years' experience in Manufacturing Engineering is required. A knowledge of auto-insertion equipment assembly technique and soldering equipment is helpful.

Senior Systems Technicians
This position requires at least 3 years' experience, minimum, and an ASEE degree or its equivalent. Your background should include familiarity with CPU memory, moving head disks and related peripherals.

Special Systems Technicians
You will be working closely with the Special Systems Engineering Department in the design of non-standard computer products. A minimum of 3 years' experience and an ASEE degree or its equivalent is necessary.

To apply for one of the above positions mail your resume to John Prendergast.

Data General Corporation, Route 9, Southboro, MA 01772. Data General is an equal opportunity employer, M/F.
be put to good use with the kinds of hardware that we do have. This is a particularly appropriate time for such an exercise, since the hardware revolution has freed us to a degree from some of the original constraints upon computer design, and the growth of the computer hobby community has provided us with a group of eager experimenters who don’t have a large investment in standard approaches, or a requirement to produce commercially useful business machines. Finally, our understanding of the operation of the brain has undergone something of a revolution in the last ten years, and we are in a much better position to discern the outlines of its architecture than we were when the computer was born. The time is right, the means are at hand, all we need are the geniuses in the basement workshops.

I am not going to tell you how to build a machine to work like a brain, because I don’t know how. What I propose to do is to tell you, in terms of computer concepts, how a brain works. You supply the ideas from there. It is generally very difficult to explain brain operation to the layman, because he doesn’t have the necessary concepts readily available. I have found, however, that it is very easy to explain brain operation to computer people because it can be translated into terms and concepts with which they are already familiar. If you can understand digital and analog electronics, you can understand in principle, if not in detail, how your brain works. You don’t have to understand neurophysiology, neuroanatomy, neuropharmacology, and physiological psychology. (Well, maybe a little bit, but I’ll try to keep it painless.)

First, you have to get a picture of the basic unit of brain structure. This is called a neuron. It is a cell like all the others in your body, but it is specialized for information processing. You can think of it as performing much the same function as a logical gate in a digital machine, or an operational amplifier in an analog machine. In fact, it is a very versatile device and can do either or both jobs. The brain uses neurons, billions and billions of them, to do everything it does. Let’s look at the diagram of a neuron in figure 1. The output of the neuron appears on the long thin part labeled axon. Think of the axon as a wire. The brain uses them for transmitting information over distance. The difference is that this wire transmits only pulse streams, not DC levels. It’s a

Figure 1: The parts of the neuron, the brain’s basic “gate.” Flow of information through this gate is roughly from left to right. Outputs are digital pulse streams transmitted through the axon and its branches to inputs of other neurons. Inputs are signals from other axons, which are summed by an analog process which weights various sources and fires an output pulse when a threshold is reached.
Meet The North Star Family

THE NORTH STAR S-100 FAMILY—four high performance products at attractive low prices. Our boards are designed for use in the North Star HORIZON computer and other S-100 bus computers using 8080 or Z80 processors. Visit your computer store for a demonstration, or write for our free color catalog.

16K RAM BOARD
No other S-100 bus memory can match the performance of the North Star 16K RAM at any price. This low-power board has been designed to work at full speed (no wait states), even at 4MHz with both Z80 and 8080 systems. Memory refresh is invisible to the processor, bank switching is provided and addressability is switch selectable in two 8K sections. Best of all, a parity check option is available. Kit: $399. Assembled: $459. Parity Option — Kit: $39. Assembled: $59.

MICRO DISK SYSTEM
The North Star MOS is a complete floppy disk system with all hardware and software needed to add floppy disk memory and a powerful disk BASIC to S-100 bus computers. The North Star MOS is widely considered one of the best designed and most complete S-100 bus products available. The MDS includes the S-100 interface board with on-board PROM for system startup, Shugart mini-floppy disk drive, cabling and connectors, and DOS and BASIC software on diskette. Kit: $699. Assembled: $799. Additional drive — Kit: $400. Assembled: $450. Single Drive Cabinet: $39. Optional Power Supply: $39.

Z80A PROCESSOR BOARD
The North Star ZPB brings the full speed, 4MHz Z80A microprocessor to the S-100 bus. Execution is more than twice the speed of an 8080, and the ZPB operates in systems both with and without front panels. The ZPB includes vectored interrupts, auto-jump startup, and space for 1K of on-board EPROM. Kit: $199. Assembled: $259. EPROM Option — kit: $49. Assembled: $69.

HARDWARE FLOATING POINT BOARD
If you do number crunching, then this board is for you. The FPB performs high-speed floating point add, subtract, multiply and divide with selectable precision up to 14 decimal digits. Arithmetic is up to 50 times faster than 8080 software, and BASIC programs can execute up to 10 times faster. A version of North Star BASIC is included. Kit: $259. Assembled: $359. Prices subject to change.
Figure 2: An equivalent circuit for the neuron, illustrating some of its important properties as an analog and digital device. This model should be compared to the information in figure 1.

digital wire. All the pulses are always the same height and duration, and can be thought of as binary bits. Only ones and zeros are allowed. Now look at the part labeled axon hillock. That's like a Schmitt trigger. It puts a pulse on the axon whenever the analog voltage in the part labeled cell body crosses a preset threshold value. Whenever this occurs, the voltage in the cell body is reset to the baseline or initial value. This cell body voltage is raised toward the Schmitt trigger's threshold, or dropped away from it, by the action of pulses impinging on the cell body from the axons of other neurons. The place where an axon meets a cell body is called a synapse, and it only transmits in one direction. Think of it as a diode. A synapse may be positive or negative. That is, a pulse at a given synapse may either add to or subtract from the cell body voltage. This is a function of which synapse receives the input, not the nature of the pulse (just like the little inversion circles on logic gate inputs). Remember however that the voltage in the cell body is an analog voltage and is performing an algebraic sum of the inputs. Moreover, the inputs may have different weights. The ones furthest from the axon hillock have the least effect, the ones nearest to it have the greatest effect. Weighting may be reduced greatly by placing the input far out on an extension of the cell body called a dendrite. The effect of an input outlasts the pulse that produces it, so that inputs which do not arrive synchronously in time may still sum within brief time limits. Think of it as a pulse stretcher at each input coupled with a time constant in the cell body. The effect of the finite time constant is to give each input pulse a temporal weighting (ie: the more recently arrived pulses have a greater weight in the sum).

When the inputs to the cell body have summed past threshold at the axon hillock, and a pulse has been placed on the axon as a result, we say that the neuron has “fired.” An equivalent circuit (for our purposes) of the basic neuron is shown in figure 2. If you study figures 1 and 2 for a moment, you will see that the neuron has digital inputs, which are converted to analog values and operated on algebraically in an analog fashion. The result is then converted back to digital form for transmission. Now this is a very powerful tool. It can act as an AND gate (coincidence of several equally weighted inputs required to reach firing threshold), an OR gate (any
THE PROBLEM SOLVING 16K STATIC RAM

Featuring: Bank Select • Memory Protect • Segment Disable • Low Power Consumption
1.3 Amps. • SOL Phantom • Fully Buffered • 4K Boundary Addressing

See the Complete Problem Solver Systems Line at Your Local Dealer

Call Us For The Dealer Nearest You...
(213) 888-1714

Manufacturers of Quantumics Computer Products
BOARD DEGREE AVE. • GARDEN GD. • ENGLEWOOD, CALIFORNIA

Circle 90 on inquiry card.
Figure 3: The brain as it appears anatomically. Above: a view of the brain from the left side. Below: A view from the left of the inside of the brain shown cut in half down the center line. The basal ganglia (striatum) which do not show here would be on either side of the thalamus.

Specifications: The Human Biocomputer
Cell Count: 15 billion (all present at birth)
Structural Completeness: 50% at birth, 100% at age 15 years
Energy Requirements: 20 watts, biochemically fueled
Sugar Consumption: 1 teaspoon per hour
Blood Flow: 1.5 pints per minute (20% of total body requirement)
Oxygen Consumption: 45 cc per minute (STP) (25% of total body requirement)

This illustration was supplied by the author.
High performance, cost effective products for your microcomputer.

The Extensys FOS100 Floppy Disk System provides a high performance floppy disk system based upon multiprocessors in a multiuser environment. The FOS100 accomplishes this through a completely integrated hardware and software system. The hardware consists of a File I/O board, a PerSci controller board and one or two dual PerSci Model 277 floppy disk drives. The File I/O board has an 8080A microprocessor, 1K of PROM and 8K of RAM on-board to provide a separate I/O processor which will handle all disk I/O functions of the system. The PerSci controller board is encased in an attractive cabinet with either one or two dual PerSci drives.

The software, Extensys Multi:processor Operating System, EMOS, provides many large computer capabilities, such as multiprocessor, multiuser operation, individual file security based upon user supplied passwords, system security and IBM compatible format. Additionally, the FOS100 has optional Direct Memory Access (DMA) capabilities when used in conjunction with the Extensys MM16 Memory Manager board.

The Extensys RM64 Memory Board provides up to 64K on one board. Designed for S-100 based computers, the RM64 occupies only one bus slot. Four versions of the same board are available: 16K, 32K, 48K and 64K bytes with the less-than-64K versions easily expandable by inserting memory chips into existing sockets. The Board uses dynamic RAMs with 300 ns access time and "invisible" on-board refresh. Other features include bank select logic for PROM/ROM coexistence plus expansion beyond 64K, write protect circuitry, and multilayer ground plane construction for noise immunity.

The RM64 comes completely assembled and tested with a one year warranty. Delivery is STOCK to 15 days upon receipt of order, with shipping and handling prepaid in the continental United States.
Interaction of inputs from different axons is termed "spatial summation," and interaction of sequential pulses on the same axon is termed "temporal summation." One of the interesting things the brain can do with this capability is to use both place and frequency coding simultaneously on the same line. Another advantage is the ability to represent very large numerical quantities with what might be called a "temporal byte," or integration over a brief time period, of a single input line. As an example, consider the way the brain encodes sensory information from your skin. The type of sensation (i.e., heat, cold, pressure, etc.) as well as the location of the sensation is place coded. That is, what you feel is a function of which line is active. The magnitude of the sensation, how much you feel, is frequency coded on the same line. Thus, the brain structure receiving the information can determine the type and location of the stimulation with a "spatial byte," (place code) which determines the set of active lines, and the intensity of the stimulation with a "temporal byte" of frequency code.

The brain's basic "byte," therefore, has two dimensions, a spatial dimension and a temporal dimension. Two independent sets of information may be encoded in these two dimensions, and they may then interact in the receiving structure in a way determined by that structure. Notice that the spatial aspect of the byte is essentially digital information, and that the temporal aspect of the byte is essentially analog information, although it is encoded in the frequency of digital pulses.

The mathematical treatment of this is an information theorist's nightmare, although it can be done, but from a practical standpoint there are some clear advantages. Digital information output from a structure which determines the type of action to be taken and analog information output from another structure which determines intensity of action required may "gate" one another in a third location to produce an output stream which simultaneously defines the nature and magnitude of the action taken. One could think of it as specifying the enabling of a set of switches with an appropriately coded digital byte while presenting a set of analog values to the switched lines. We do see this sort of thing of course in some electronic IO applications, but the brain makes use of this, and much more complicated interactions, in its internal processing. It may use the information from one aspect of the byte to determine the nature or extent of the operation to be performed on the information in the other aspect of the byte.

Two additional properties of the neuron need to be mentioned to complete our understanding of the basic gate. The first is a different type of inhibitory input. The "negative synapse" described earlier puts an inhibitory input into the cell body to act on the analog sum there and retard the achievement of firing threshold at the axon hillock. This action of course simply antagonizes (with a specified weight) the action of all the positive inputs. Clearly, it does this without regard to which input it is antagonizing. It is also possible to have a "negative synapse" which antagonizes only a specific synaptic input. This is called "presynaptic inhibition," because it may be thought of as a disable input to one of the input one shots.

The final desirable property of the neuron as a computer element is that speed of transmission of pulses down the axon may vary over a wide range (although it is always the same in any given axon). This means that we may use high speed axons to move data quickly, but low speed axons may be employed as delay lines. Since axons can have branches coming off at any point, we may have tapped delay lines. We shall see some stunning examples of the utility of this feature.

It should be apparent by now that the basic neuron is an enormously powerful tool. In practice, few situations call for all of the complexity of this device, and it is frequently seen acting as simply a switch or AND gate or other very domestic sort of creature. Indeed, in many situations, neurons take on a variety of specialized shapes and connections which optimize them for one or another function, to the exclusion of others. In all cases however, their operation may be understood in terms of the basic design we have discussed.

Now that we have some terms for the basic elements, let us take a leap to the other end of the size spectrum and examine the overall structure of the brain. The exact anatomy is actually of little relevance for our purposes, but it may help to have a visual image of the device as we discuss the features of its parts. Figure 3 shows the general appearance of the human brain, together with some of its internal structure. Figure 4 shows the general organization of the parts as they would appear if the brain were taken out of the body, unfolded, and flattened out in a neat plan view.

The functional structures of the brain may be generally divided into two categories, fiber tracts and nuclei (plural of nucleus). Fiber tracts are simply bundles of axons going from somewhere to somewhere else, the cabling and wiring of the brain. The nuclei are groups of cell bodies. Each
Art-by-Computer™ - an unusual gift idea

Reproductions of graphic designs generated on a Tektronix 4051 Graphics Computer/4862 Digital Plotter these black-on-white prints are 9 3/4H by 12 3/4W and are suitable for framing or mounting. Price: $2.00 ea./$20.00 for the set of 12, postage paid. Specify File #s or Set #1. Send check or money order to: Leland C. Sheppard, Dept B, P.O. Box 60051, Sunnyvale, California 94086. California residents add 6% sales tax. Allow 2 weeks for personal checks to clear.

INTERNEAL CAVITY

BASAL GANGLIA

(DIENCEPHALON)

DIENCEPHALON

MESENCEPHALON

PONS

MESENCEPHALON

CEREBELLUM

SPINAL COR

LIMBIC SYSTEM

Figure 4: A "plan view" of the brain showing the relationship of the major parts as it would appear if it could be unfolded.

The nucleus may be thought of as analogous to a central processor with a dedicated function, and (in most cases) a hardwired or ROM program. Most of the nuclei are irregular blobs of cell bodies, but in some cases the cell bodies are arranged in layers and the layers form a folded sheet of cells. In this case it is called a cortex rather than a nucleus, but the idea is the same. (The most famous of course is the cerebral cortex, of which humans are very proud because it is better developed in man than in most species.) The cells in the nuclei may be divided into two types: local neurons, whose function is in the data processing internal to the nucleus, and whose axons do not leave the nucleus, and output neurons which give rise to the axons that make up the fiber tracts and communicate with other nuclei. There are thousands of nuclei, of all levels of size and sophistication. Unfortunately, there is very little system to their names, and the names are either in Latin, or unpronounceable (Nucleus of Darkeschwitz, etc). The fiber tracts are bad too (Habenuolinterpeduncular tract).

The only rational thing to do with the names of neuroanatology is to endure them or ignore them. We shall try to ignore them. It will help however if you will take the time to learn the names of a few of the major divisions of the brain which are shown in figure 4 and to remember their basic relation to one another. The most important items, from bottom to top, are: the spinal cord, the medulla, the pons, the cerebellum, the mesencephalon, the diencephalon (and its two major subdivisions, the thalamus and the hypothalamus), the limbic system, the striatum, and the cerebral cortex.

This bottom to top sequence corresponds in a general way to a sequence of increasingly more global levels of control, from most detailed and specific, to most general and abstract. It also corresponds roughly to the evolutionary sequence from oldest and most primitive to most recent and advanced. All of the apparatus shown here is present by the time the evolutionary level of the mammals is reached.

The basic architecture of the system is hierarchical. Each of the major functions of the system is partially organized at each level of the system, rather than particular structures being devoted to particular major functions. At the lowest levels, there are a multitude of relatively simple processing elements doing similar jobs, and at the higher levels there are a few very complex and powerful processing elements defining system goals and priorities, and organizing the activities of the lower levels to achieve them.

On the input side, the lowest levels gather raw data which is then progressively abstracted, sorted and refined at each stage according to general guidelines which may be hardwired or provided by higher levels. The highest levels then receive abstract symbolic information about the general state of the environment rather than details. ("There is a black cat there" as opposed to "The following points of the visual field are dark.") Similarly, output functions begin at the highest levels, which determine general goals and strategies and transmit these in the form of statements about more limited momentary objectives to lower levels, which in turn send information about desired actions and timing to the lowest levels for execution.

Thus, at each level there are a number of relatively independent processing elements pursuing their own jobs in parallel real time, while trading information with echelons above and below, and laterally with one another. It follows that it doesn't make sense to ask where in the brain any large scale function is processed. Different aspects of it will be handled in different portions of functional subsystems which are represented at all major levels of the physical system. It might sound hopeless to try to follow the operation of such a device, but in practice there is order, not chaos. At the lower levels where semi-independent processors are most numerous, there is least diversity among them. The organization is in many ways like a military command chain, and one doesn't

Continued on page 96
John Montagna, computer engineer (above left), lead this successful network team in generating election results speedily, efficiently and reliably using predominantly TDL hardware and software. Montagna created three programs to get the job done. The text for a SWAPPER program was written and assembled using the TDL TEXT EDITOR and Z80 RELOCATING MACRO ASSEMBLER. The SWAPPER text and all debugging was run through TDL’s ZAPPLE MONITOR. The relocatable object code was punched onto paper tape. A MAIN USERS program updated votes and controlled air display. An ALTERNATE USERS program got hard copy out and votes in. The latter two programs were written in BASIC. Montagna modified the ZAPPLE BASIC to permit time-sharing between the two USERS programs.

Four screens were incorporated, two terminals entered votes as they came in and were used to call back votes to check accuracy. Montagna called on the power and flexibility offered by TDL’s ZPU board and three Z-16 Memory boards.

Montagna’s setup worked constantly for over four hours updating and displaying state-wide and county-wide results without flaw.

“I chose TDL because they have all the software to support their hardware, and it’s good; it has the flexibility to do the job.”

John Montagna

We salute John Montagna and NEW JERSEY PUBLIC BROADCASTING for spearheading the micro-computer revolution.

TDL’s XITAN SYSTEMS have the capacity to do similar tasks for you. Write to us for XITAN information and the name of your nearest TDL dealer.
Seven points to consider before you buy your small computer.

In this magazine, alone, there are probably a dozen ads for small computers. New companies are breaking ground like spring flowers.

How, then, do you determine which computer offers the features you need most...at the price you can afford?

We'd like to propose seven basic questions to help you make an intelligent decision.

1. How complete is the computer system?
 Many buyers of small computers are in for a rude awakening when they have to spend additional money for interfaces.

 The Sol-20 Terminal Computer was the first complete small computer system. Everything you need to make it work is included in the basic package.

2. Is powerful system software available?
 It won't do if your system is "tongue-tied."

 Processor Technology Corporation has devoted more effort to the development of software than any other small computer maker. Our latest offering is the first fully implemented disk operating system for a small computer: PTDOS. It contains over 40 major commands, several languages and numerous utilities. Our high level languages include Extended BASIC, Assembler, FORTRAN, FOCAL and PILOT.*

3. Is the system easy to expand?
 More and more computer owners are expanding their small computers to handle business and other specialized requirements.

 The largest Sol system can handle 64K bytes of RAM memory and operate with a three megabyte on-line disk memory. Sol systems use the S-100 Bus. So you can use a wide variety of hardware.

*Available soon.

4. Is the computer well-engineered?
 Our Sol systems are the most conservatively rated and ruggedly built in the industry, period. In addition we designed them with you, the user, in mind; Sol's are easy to build and a joy to operate.

5. Does it have proven reliability?
 What is the track record? There are over 5,000 Sol systems in the field. Our track record for reliable performance is unparalleled in the small computer field.

6. Does it have good factory support?
 A computer is a complex piece of hardware. So you want to be sure it is backed up with complete manuals, drawings and a factory support team that cares.

 Processor Technology offers the most extensive documentation of any small computer manufacturer. And we maintain a patient, competent telephone staff to answer your questions.

7. Are maintenance and service people accessible?
 Where are they located?

 Processor Technology has maintenance and service people in over 50 cities around the U.S.

 As you continue turning the pages, see how we stack up to the other computers in this magazine. If we've succeeded in whetting your appetite, see your Sol dealer or write for information on the complete family of Sol computers.

 Processor Technology Corporation, Box B, 7100 Johnson Industrial Drive, Pleasanton, CA 94566. (415) 829-2600.
Subsystem B
Each board is a standout. Together, they're a powerhouse.

In the beginning there were boards, thousands of them.
That's how we started in the business.
Making memories and interfaces for other people's computers...and making
them better.
Now that our own Sol has become
the number one small computer, you
might think we're putting less emphasis
on our board business.
Not so.
We're just doing more creative things
with them.

One neat package gets your
computer on the air.

For example, we've built Subsystem
B, which ties together five Processor
Technology modules into a completely
integrated system that makes other
S-100 Bus computers work almost as
well as our Sol.

Subsystem B includes a memory
module, three input/output modules,
a general purpose memory, and
appropriate software.
A specialized software program
called CUTER knits together
your computer and its peripherals to
create an integrated, smoothly
working system.
It's the fastest, cleanest way to get on
line, and it costs less than if
you bought each module separately.
You get your choice of two low
power, reliable memory modules in 8K
or 16K capacity.
Our VDM-I video display module
(still $199 in kit) is the industry standard
display device with over 6,000 in use.
Our CUTS high speed, low cost
($110 in kit) audio cassette interface is
the most reliable on the market and is
supported by our broad line of cassette
software including Extended BASIC,
FORTRAN, PILOT, FOCAL and
numerous others.
And our 3P+S input/output module
offers a low cost way to handle
virtually all the I/O needs of any S-100
Bus compatible computer system.
There are close to 10,000 in the field.
Price is just $149 in kit.
Yes, we may have become the maker
of the Number 1 small computer —
the Sol. But we haven't neglected the
quality of our board business. We
can't afford to...because we use many
of them in our own computers.

For our most recent literature and
price list see your dealer or write
Processor Technology Corporation,
Box B, 7100 Johnson Industrial Drive,
Pleasanton, CA 94566. (415) 829-2600.
Processor Technology
*Available soon.
See it at your Sol dealer...

ARIZONA
Byte Shop Tempe
613 N. Scottsdale Rd.
Tempe, AZ 85281
(602) 894-1129
Byte Shop Phoenix
12854 N. 28th Dr.
Phoenix, AZ 85029
(602) 942-7300
Byte Shop Tucson
2612 E. Broadway
Tucson, AZ 85716
(602) 327-6579

CALIFORNIA
The Byte Shop
1514 University Ave.
Berkeley, CA 94703
(415) 845-6366
The Byte Shop
6041 Greenback Lane
Citrus Heights, CA 95610
(916) 961-2983
Computer Center
1913 Harbor Blvd.
Costa Mesa, CA 92627
(714) 845-0221
The Byte Shop
1122 "B" Street
Hayward, CA 94541
(415) 537-2983
The Byte Shop
16008 Hawthorne Blvd.
Lawndale, CA 90260
(213) 371-2421
The Computer Mart
633-B West Kettie Rd.
Orange, CA 92867
(714) 633-1222
Byte Shop
466 South Lake Ave.
Pasadena, CA 91101
(213) 844-3331
Micro-Computer
Application Systems
2322 Capitol Avenue
Sacramento, CA 95816
(916) 443-4944
Byte Shop
321 Pacific Ave.
San Francisco, CA 94111
(415) 421-8868
The Byte Shop
2626 Union Avenue
San Jose, CA 95124
(408) 377-4885
The Byte Shop
509 Francisco Blvd.
San Rafael, CA 94901
(415) 457-9311
Byte Shop of Tarzana
18423 Ventura Blvd.
Tarzana, CA 91356
(213) 343-3919
The Byte Shop
2989 North Main St.
Waltan Creek, CA 95496
(415) 933-6252

COLORADO
Byte Shop
3101 Walnut St.
Boulder, CO 80301
(303) 449-6233

FLORIDA
Byte Shop of
Fort Lauderdale
1044 East Oakland Park Blvd.
Fl. Lauderdale, FL 33334
(305) 561-2983
Byte Shop of Miami
7825 Bird Road
Miami, FL 33158
(305) 264-2983
Microcomputer Systems Inc.
144 So. Dale Mabry Hwy.
Tampa, FL 33609
(813) 879-9311

GEORGIA
Atlanta Computer Mart
5091-B Buford Hwy.
Norcross, GA 30092
(404) 233-9020
Champaign Computer
5091-B Buford Hwy.
Norcross, GA 30092
(404) 233-9020

ILLINOIS
Champaign Computer
Company
318 N. Neil Street
Champaign, IL 61820
(217) 359-5883
The Numbers Racket
623 Y2 South Wright St.
Champaign, IL 61820
(217) 352-5435

INDIANA
Byte Shop of Terre Haute
5055 N. Chestnut Rd.
Terre Haute, IN 47803
(812) 236-9241

IOWA
The Computer Store
408 S. College Ave.
Bloomington, IN 47401
(812) 334-7001
The Data Domain
7027 N. Michigan Rd.
Indianapolis, IN 46268
(317) 251-3139

KENTUCKY
COMPACT COMPUTER
623 Y2 South Wright St.
Champaign, IL 61820
(217) 352-5435

MICHIGAN
The Computer Store
of Ann Arbor
310 East Washington
Ann Arbor, MI 48104
(313) 985-7616
General Computer Store
2011 Livernois
Taylor, MI 48184
(313) 362-0022

MINNESOTA
computer Mart
3516 W. 7th St.
Minneapolis, MN 55435
(612) 927-5601

NEW JERSEY
hoboken Computer Works
No. 20 Hudson Place
Hoboken, NJ 07030
(201) 420-1644

NEW MEXICO
hoboken Computer Works
3028 Wright St.
El Paso, TX 79905
(915) 561-2983

NEW YORK
The Computer Mart
2011 Livernois
Taylor, MI 48184
(313) 362-0022

RHODE ISLAND
The Byte Shop
205 West 10th Ave.
Newport, RI 02850
(401) 739-4777

SOUTH CAROLINA
Byte Shop
2018 Green St.
Columbia, SC 29205
(803) 771-7824

TENNESSEE
Microproducts & Systems
2307 E. Center Street
Kingsport, TN 37664
(423) 245-8081

TEXAS
Byte Shop
2927 Virginia Beach Blvd.
Virginia Beach, VA 23452
(804) 340-1437

WASHINGTON
Byte Shop Computer Store
14701 N.E. 20th Ave.
Bellevue, WA 98007
(206) 466-0851

WISCONSIN
The Madison Computer
Store
1863 Monroe Street
Madison, WI 53711
(608) 255-5352

BYTE TECHNOLOGY
The IRS

and the

Computer Entrepreneur

Few computer hobbyists ever have enough money to put into expanding, upgrading or otherwise improving their systems. New products for the home computer are appearing almost daily and new needs ("If I only had another 4K of memory...") become visible as the computer receives increased use. It's hardly surprising, then, that many small-systems owners are thinking of ways to make their computers pay for themselves. Many succeed in penetrating the chinks in the armor of the local business community (or whatever) and begin to earn some money from the enterprise.

The ecstasy of turning a dollar from a hobby activity is hard to beat, but after the first burst of excitement, it's necessary to remember the cloud on the horizon: the Internal Revenue Service (IRS), which is interested in all earnings. The purpose of this article is to acquaint you with the additional tax schedules you must prepare and records you must maintain if you start earning money with your computer. On the brighter side, it will also give you an idea of the deductions you can take on the strength of your new status as a small business.

Tax law is complex, however, and an article of this length can only offer a thorough overview of the situation. Anyone starting a small business would be well-advised to augment the information presented here by getting the free IRS publications on the subject which are listed at the end of this article.

Are You a Small Business?

In deciding whether or not you are a "small business" for federal income tax purposes, the main considerations are (a) did you earn any money from the enterprise in question during the past year? and (b) do you want to take deductions based on your status as a small business?

If you take business-based deductions, your business can be a comfortable tax loss, but only for a short time. If you do not produce a taxable profit during at least two of every five consecutive years, you do not qualify as a business, in which case you may find yourself in the uncomfortable position of having claimed deductions in previous years from a nonexistent business. Therefore, unless you seriously intend to expand your money earning computer activities to the point of making a net profit, it's wise to simply report computer income under miscellaneous income on your regular tax form and leave it at that.

Other considerations arise on a state or local level. Before you decide to become a small business, be sure to find out what's involved in your area. Zoning ordinances in some cities render even in-the-home businesses illegal in certain areas. Some cities and states require an annual licensing fee from all small businesses, and state law varies radically regarding which goods or services are subject to sales tax. Inquiring into these matters at the outset will prevent problems later. In most areas, small businesses are not required to incorporate or to register their trademarks, if any (although they are permitted to do so); but all states and some municipalities have laws regarding small businesses which must be taken into consideration. Telephone calls to state and local government offices will usually answer these questions efficiently.

Satisfying the IRS

New small businesses, especially if they are responsible for tax losses in their first
New small businesses, especially if they are responsible for tax losses in their first year or two, are prime targets for IRS audits.

One successful business I know keeps records in paper bags, one marked "expense" and the other "income." year or two, are prime targets for IRS audits. The thought of being audited by the IRS strikes terror into even the most innocent hearts, but if you keep complete and accurate records you can face even that contingency with unruffled calm.

The general rule is keep everything. In detail, this translates into keeping all receipts for business expense, paying as many business expenses by check as possible to provide the additional documentation of a cancelled check, and keeping thorough records of all income from your business. Remember that the IRS is always looking for falsified records of all sorts and has no reason to suppose that you haven't been doing the same, so don't rely on your computer printout or handwritten records to satisfy them. All those odd sized receipts may be a pain to keep, but if you're audited, they'll save the day.

Records needed fall into three categories: income, outlay and miscellaneous. Income records serve as the basis for calculating your total business income at tax time. For example, if you bill someone for a computer service, keep a copy of the invoice you send out and note on it such particulars as date, service, customer's name and address, and postage required to send the bill. When payment is received, mark the invoice with the date of payment and file a photocopy of the check with it. A record of the date of payment is especially desirable if you are paid in cash, and for this reason an inexpensive receipt book can be a worthwhile investment.

Records of outlay serve to document expenditures made for the business. They are especially important because they support any business deductions you claim at the end of the year. Anything purchased exclusively for business use is a safe deduction. Thus, if you buy a cassette which is used solely for business data (as opposed to programs for your private amusement), it counts as a business expense; but if you buy a sheet of stamps, you can only count as business expense those stamps used for business purposes, such as mailing bills or advertising.

Miscellaneous records document your claim to be a business. They include copies of any advertising you do, business correspondence, and announcements (or newsclips) of activities you participated in which mention that you are the proprietor of your business.

The central fact to remember is that the IRS takes nobody's word for anything and looks at any record with a critical eye. Fraud and conspiracy to defraud are ever present, and the IRS is continually on guard against them. Therefore, any record which involves a business other than your own (eg: the company you bought x from), a bank, or another individual (a customer, a news reporter, whatever) helps your cause by providing someone who can attest to your business activities. All of this inevitably sounds paranoid, but a little well-placed forethought and paranoia can save trouble later.

Getting Organized

Naturally, all these documents amount to a lot of paper, usually in odd sized scraps that have the knack of vanishing at inconvenient moments. There are several approaches to making life easier at tax time. One successful "small business" I know uses paper bags. The entrepreneur of this enterprise keeps one marked expense and one marked income by the desk and pitches all documents into one or the other. When preparing tax forms, he sorts the bags, combining related documents into rubber-banded bundles, and, after the forms are mailed, puts all the documents plus a copy of the tax forms into one large paper bag. Stapled shut and labelled with the year, it then takes its place among previous years' bags on a shelf as insurance against the day the IRS decides to audit.

I personally prefer a somewhat more complicated system employing file folders. Each client or type of expense has its own file folder which I can use not only for tax purposes but as a basis for estimating anticipated needs. If the money can be available before the expense arises, life is made easier; and if a service can be offered to a client just as he/she is about to request it, business flows more smoothly.

Regardless of system, however, the principle is the same: keep hard copy proving the legitimacy of every deduction and every bit of claimed income. Try different approaches until you find the one that suits you best, and then stick with it. It's your best defense against allegations of tax fraud.

The Silver Lining

If all this sounds like a lot of trouble, you're right. But it has advantages. And in the language of income tax, "advantage" is spelled deduction. Small business expenses are deductible. What counts as a business expense? Schedule C, the main tax form businesses must fill out (more about this later), lists several categories. Let's consider them one by one.
Ancient Egyptians didn’t stop with just one pyramid. The Great Pyramid stands on the Plain of Gizeh with two other monuments erected for kings and queens.

Dynabyte didn’t stop with one 16k dynamic RAM, either. Now you can get 16k and 32k fully static RAM’s that are built with the same unmatched engineering ability and manufacturing skill that went into Egypt’s wonders of the ancient world.

When we say built, we mean completely built. Assembled, tested and burned in. We don’t leave anything undone. That way, you can buy any Dynabyte memory and know that it is backed by a factory guarantee for one full year. Kits and semi-kits can’t say that.

Our 16k static and our 32k static are available with either 250 ns. or 450 ns. access time. Our 250 ns. module is completely compatible with the 4MHz Z-80A processors. The 450 ns. modules are compatible with the 8080 and the faster 3MHz 8085 processors.

Why Dynabyte doesn’t build memory kits
Assembling a kit can be fun; almost anyone can do it.

But how about testing it? Do you have the test programs and equipment? Do you know which memory test program uncovers pattern sensitivity? Or which finds shorted data bits but won’t find address decoder faults?

We do. It’s our business. We have the 200 MHz oscilloscopes, the logic analyzers, the burn-in chambers, and the test programs. We find the bugs, even the subtle ones.

Which lets you concentrate on computing.

Ancient Egyptians didn’t stop with just one pyramid. The Great Pyramid stands on the Plain of Gizeh with two other monuments erected for kings and queens.

Dynabyte didn’t stop with one 16k dynamic RAM, either. Now you can get 16k and 32k fully static RAM’s that are built with the same unmatched engineering ability and manufacturing skill that went into Egypt’s wonders of the ancient world.

When we say built, we mean completely built. Assembled, tested and burned in. We don’t leave anything undone. That way, you can buy any Dynabyte memory and know that it is backed by a factory guarantee for one full year. Kits and semi-kits can’t say that.

Our 16k static and our 32k static are available with either 250 ns. or 450 ns. access time. Our 250 ns. module is completely compatible with the 4MHz Z-80A processors. The 450 ns. modules are compatible with the 8080 and the faster 3MHz 8085 processors.

The Great 16k Static Memory. 250 ns., $555. 450 ns., $525.

- 4k block addressing along 4k boundaries
- Bank Select
- Write Protect with alarm for each 4k block
- Full Schmitt trigger buffering
- No DMA restrictions
- Complete S-100 bus compatibility, including the Alpha Micro and Z-2.

The Great 32K Static Memory. 250 ns., $995. 450 ns., $925.

- 4k boundary addressing
- Full Schmitt trigger buffering
- No DMA restrictions
- Conservative thermal design
- Complete S-100 compatibility, including the Alpha Micro and Z-2.

The Great 16k Dynamic Memory. $399.

- Highly cost effective
- No wait states
- Transparent refresh
- 16k addressing boundaries
- Widest S-100 mainframe and disk system compatibility

All of Dynabyte’s memories meet rigid industrial grade standards. Design, components, construction, testing and performance. But if a module ever needs repair, we provide factory service with 24 hour turnaround for both warranty and non-warranty work.

Ask for the Great Memories by Dynabyte at your local computer store. You can also pick up complete product information while you’re there.

But if you haven’t got a local computer store, write Dynabyte, Inc., 4020 Fabian, Palo Alto, CA 94303. Or telephone (415) 494-7817.

Circle 37 on inquiry card.
Depreciation

If you buy any income producing property or property used in your business which has a limited useful life that can be reasonably estimated, you may, during the years of its useful life, recover some of its cost in the form of depreciation. If, for example, you buy an item to use in your business that will wear out or need replacement in time, you can deduct a certain percentage of its cost every year of its estimated life. If you are using the item for nonbusiness as well as business purposes, you may only deduct the depreciation for the period of business use. Thus, if you buy a computer which will be used one third of the time for business and the other two thirds of the time for nonbusiness uses, only one third of its annual depreciation can be deducted as a business expense.

There are many ways of calculating depreciation. Tax law surrounding it is too complicated for thorough discussion in an article of this length, but since much of the expense of a small computer business arises from purchases of depreciable property, it is well worth a detailed study if you start your own computer-oriented business.

Taxes on Business and Business Property

This includes tax on business property (if you conduct your business on land you own and on which you must pay property tax); personal property tax, sales tax, gasoline tax, and the like if they were incurred in the ordinary course of business; state imposed corporate franchise tax; and, if you have employees, employment taxes. Of these, only sales tax (in applicable states) and gasoline tax are apt to be worth the computer entrepreneur’s time as deductions, but be sure to deduct all that apply and are documented.

Other Business Property Deductions

If you rent an office from which you conduct your business, the rent is deductible. If you operate from your home, however, you get no such deduction except under very special circumstances which are discussed in greater detail below. Unless you are engaged in your business full time, however, attempting to get this deduction will almost certainly be more trouble than it’s worth.

Routine repairs and maintenance of business property (the office, if any, the computer, etc) are deductible only if they do not increase the value, utility or life expectancy of the repaired item. Thus, the cost of replacing a 2102 programmable memory which gave up the ghost unexpectedly is deductible as a repair cost, but upgrading it to a 2102-1 or adding another 4 K bytes of memory to the system is an improvement and must be treated differently.

If you carry business insurance, the premiums are deductible.

Salaries, Wages, and the Like

If you have employees, there are deductions for salaries, wages, commissions and numerous forms of employee benefits, but you may not deduct any salary, wage or compensation paid to yourself. If you claim deductions in these categories, be prepared to prove that the service paid for (eg: date entry) actually was rendered, that the payment for the service actually was made, and that the rate of pay was reasonable.

You may also deduct the fees of lawyers, accountants and the like whose services your business uses.

Financial Business Deductions

You may claim deductions for bad debts arising from sales or services, for interest on loans made for or by the business, and for a number of other more complex financial matters which arise from certain business tax breaks. Unfortunately, computer entrepreneurs are not likely to qualify for the tax breaks, so I merely mention their existence in passing.

Other Business Expenses

Most of your deductions are apt to fit into this category. If you’re renting an office, you can deduct the costs of heat, light, telephone and trash removal. These are also deductible if you qualify for a deduction for conducting business in your home, but in any event you can safely deduct business long distance telephone calls. The cost of postage is deductible for all business correspondence including mailed advertisements and bills, as is any paper and printing expense which you incur for your business. Similarly, your investment in receipt books, file folders and other supplies used to maintain tax records is deductible.

One of the largest deductions of the computer entrepreneur will probably be for reference and research materials. If you purchase books or magazines which give you information which contributes to the success of your business (eg: an issue of a magazine containing a program for a service you subsequently sell), the cost of the publication is a deductible expense. Memberships in professional societies, subscriptions...
Price/Performance
no one else has put together.

IMSAI Introduces the PCS-80/30
Integrated Video Computer

- 3 mHz microcomputer
- 3K ROM monitor
- 2K RAM
- 8 expansion slots
- 14 mHz integrated intelligent CRT (24 x 80)
- Intelligent Keyboard
- Parallel interface
- 2 serial interfaces
- Graphic and edit CRT functions
- 28 amp power supply
- All for $1499* assembled and tested.

Peripherals:
Printers, floppies—mix and match; standard, mini and high performance double density floppy disks on the same system (an industry first), 1/2" magnetic tape drive, CRT and TV monitors.

Software:
ASSEMBLER, DOS, TTY and ACR BASIC, Commercial/Scientific BASIC, FORTRAN IV and more.

Memory Options:
4, 16, 32 and 64K RAM memory boards.

Send today for your copy of the 250-page IMSAI PCS-80/30 User Manual. Price $3.00. The cost of the manual may be applied towards your purchase of a PCS-80/30 Integrated Video Computer. Use the coupon provided.

Gentlemen:
Send me the IMSAI PCS-80/30 User Manual. Price $3.00. I understand that the $3.00 may be applied towards the purchase of a PCS-80/30 Video Computer System.

Check/Money Order enclosed, Amt. $__________
Charge my □ BAC □ M/C # _______ Exp. Date: ___/___/

Name ____________________________
Address __________________________
City _____________________________
State/Zip __________________________

IMSAI 14860 Wicks Blvd. San Leandro, CA 94577

The Standard of Excellence in Microcomputer Systems
IMSAI Manufacturing Corporation
14860 Wicks Blvd. San Leandro, CA 94577
(415) 483-2093 TWX 910-366 7287

*U.S. domestic price only. PCS-80/30 kits available. Other PCS-80 kits start at $699. Price and specifications subject to change without notice.
to technical journals, the automotive expense incurred by your business, and books and business equipment having a useful life of less than one year can also be deducted.

A lot of things suddenly become deductible when you’re a small business, with the result that care and good judgement are even more necessary than usual in filling out your tax forms. If you have any doubt about the legitimacy of a deduction or your ability to substantiate it, don’t take it. In fact, the first year you file as a small business it’s wise to go easy on everything to technical journals, the automotive expenses, the ins and outs of tax for small business it’s wise to go easy on everything you can follow them through the discussion below.

At the top of figure 1 is a place for your name and social security number. This provides cross-indexing to your Form 1040, filed simultaneously. Below, in A through H, you indicate the general shape of your business: (A) what you do and produce, (B)

<table>
<thead>
<tr>
<th>SCHEDULE C (Form 1040)</th>
<th>Profit or (Loss) From Business or Profession (Sole Proprietorship)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of proprietor</td>
<td>F. J. WILSON</td>
</tr>
<tr>
<td>Social security number</td>
<td></td>
</tr>
</tbody>
</table>

1976

Schedule C

Schedule C

Profit or (Loss) From Business or Profession

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gross income or gains</td>
<td>$45,000</td>
</tr>
<tr>
<td>2</td>
<td>Less: Cost of goods sold and/or operations (Schedule C-1, line 8)</td>
<td>$40,000</td>
</tr>
<tr>
<td>3</td>
<td>Gross profit</td>
<td>$5,000</td>
</tr>
<tr>
<td>4</td>
<td>Other income (attach schedule)</td>
<td>$2,000</td>
</tr>
<tr>
<td>5</td>
<td>Total income (add lines 2 and 4)</td>
<td>$7,000</td>
</tr>
<tr>
<td>6</td>
<td>Depreciation (explain in Schedule C-3)</td>
<td>$1,000</td>
</tr>
<tr>
<td>7</td>
<td>Taxes on business and business property (explain in Schedule C-2)</td>
<td>$2,000</td>
</tr>
<tr>
<td>8</td>
<td>Rent on business property</td>
<td>$1,000</td>
</tr>
<tr>
<td>9</td>
<td>Repairs (explain in Schedule C-2)</td>
<td>$500</td>
</tr>
<tr>
<td>10</td>
<td>Interest (attach statement)</td>
<td>$300</td>
</tr>
<tr>
<td>11</td>
<td>Insurance</td>
<td>$200</td>
</tr>
<tr>
<td>12</td>
<td>Legal and professional fees</td>
<td>$150</td>
</tr>
<tr>
<td>13</td>
<td>Concessions</td>
<td>$100</td>
</tr>
<tr>
<td>14</td>
<td>Amortization (attach statement)</td>
<td>$500</td>
</tr>
<tr>
<td>15</td>
<td>(a) Pension and profit-sharing plan (see Schedule C Instructions)</td>
<td>$800</td>
</tr>
<tr>
<td></td>
<td>(b) Employee benefit programs (see Schedule C Instructions)</td>
<td>$200</td>
</tr>
<tr>
<td>16</td>
<td>Interest on business indebtedness</td>
<td>$100</td>
</tr>
<tr>
<td>17</td>
<td>Bad debts arising from sales or services</td>
<td>$200</td>
</tr>
<tr>
<td>18</td>
<td>Depreciation</td>
<td>$300</td>
</tr>
<tr>
<td>19</td>
<td>Other business expenses (specify):</td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>Telephone (includes business long-distance)</td>
<td>$500</td>
</tr>
<tr>
<td>(b)</td>
<td>Supplies, advertising, and supplies</td>
<td>$300</td>
</tr>
<tr>
<td>(c)</td>
<td>Rent or lease, personal</td>
<td>$100</td>
</tr>
<tr>
<td>(d)</td>
<td>Amortization</td>
<td>$200</td>
</tr>
<tr>
<td>(e)</td>
<td>Total other business expenses (add lines 19(a) through 19(i))</td>
<td>$1,500</td>
</tr>
</tbody>
</table>

Schedule C-1

Cost of Goods Sold and/or Operations

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inventory at beginning of year (if different item last year’s closing inventory, attach explanation)</td>
<td>$1,000</td>
</tr>
<tr>
<td>2</td>
<td>Purchases</td>
<td>$10,000</td>
</tr>
<tr>
<td>3</td>
<td>Less: cost of items written off for personal use</td>
<td>$500</td>
</tr>
<tr>
<td>4</td>
<td>Cost of labor (do not include salary paid to yourself)</td>
<td>$2,000</td>
</tr>
<tr>
<td>5</td>
<td>Materials and supplies</td>
<td>$3,000</td>
</tr>
<tr>
<td>6</td>
<td>Other costs (attach schedule)</td>
<td>$1,000</td>
</tr>
<tr>
<td>7</td>
<td>Total of lines 1 through 5</td>
<td>$15,000</td>
</tr>
<tr>
<td>8</td>
<td>Less: Inventory at end of year</td>
<td>$2,000</td>
</tr>
<tr>
<td>9</td>
<td>Cost of goods sold and/or operations (enter here and on Form 1040, line 29)</td>
<td>$13,000</td>
</tr>
</tbody>
</table>

Did you claim a deduction for expenses of an office in your home? □ Yes □ No

To avoid the possibility of someone taking an erroneous depreciation on an item as a basis for their depreciation, no depreciation is claimed here.
the name under which you do it, (C and D) address, (E) accounting method, (H) inventory evaluation method, and (F and G) two bits of information you don't have to worry about unless you have employees. If you're selling a hardware item, you'll need who sell hardware to examine. The computer entrepreneur with paid employees is rare, so we can assume that in most cases both F and G can be marked "No."

The accounting method you choose in the beginning is the one you'll be stuck with forever, unless you file a request to change it with the IRS. If you choose a method other than "cash" or "accrual," that also must be cleared with the IRS, so most people select one or the other of the more commonplace methods. The difference between the two methods hinges on when you can claim deductions, etc. In the accrual method, payments and bills are taken into account when they are due, not necessarily when the money changes hands. Thus, you can claim a deduction for a business expense which fell due in December on that year's taxes even if you don't get around to paying it until January. At the same time, if someone owes you money in December, you must pay your tax as if it had been received then, even if he/she doesn't get around to paying you until January (or June, for that matter). Using the cash method, bills and payments are taken into account when they are paid. Each method has its advantages and disadvantages, but I would recommend starting with the cash method because of its simplicity. When you can afford an accountant

![Figure 2: Schedule C, back view.](image-url)
Take an even BIGGER Byte!...

with the Heathkit H11 16-Bit Personal Computing System

Based on the world-famous DEC LSI-11, the Heathkit H11 and it’s peripherals are designed to give you all the power and speed you need for total computer versatility. It’s one of the few FULL 16-bit personal computers available to hobbyists today, and equivalent commercial versions would cost literally thousands of dollars more! As with the H8 system, complete “program-ready” software is supplied: the Heath/DEC PDP-11 software includes ED-11 editor; DUMP-AB-PO and DUMP-AB-PB; plus BASIC and FOCAL; and it executes the PDP-11/40 instruction set! The software is supplied in easy-to-use paper tape format, perfect for the H10 paper tape reader/punch. And with Heath’s complete assembly manuals and software documentation, you have the most solidly supported computer system you’ll find anywhere. Sink your teeth into it today!

H11 LSI-11 16-Bit Computer $1295
H11-1 4K Memory 275
H11-2 Parallel Interface 95
H11-5 Serial Interface 95
H10 Paper Tape/Reader/Punch 350
H36 LA36 DEC Writer II 1495

If purchased separately, $3605

Heath System Price $3350

Prices are mail order net F.O.B., Benton Harbor, Michigan. Prices and specifications subject to change without notice.

FREE Heathkit Catalog

Read about computers and nearly 400 other easy-to-build kits.

Use coupon for mail-order catalog or bring to store for retail catalog.

AVAILABLE LOCALLY

Visit the Heathkit Electronic Center nearest you (Units of Schlumberger Products Corporation) and see our Complete Computer Line, Parts and service available. All kits displayed, and sold at slightly higher prices.

ARIZONA — Phoenix, 85017
2727 W. Indian School Rd. 602-279-6247

CALIFORNIA
Anaheim, 92805
330 E. Ball Rd. 714-776-9420
El Cajon, 92021
5600 Polynova Ave. 619-455-8780
Los Angeles, 90007
2308 S. Flower St. 213-749-0261
Pomona, 91770
1555 Orange Grove Ave. N. 714-632-3543
Redwood City, 94065
2001 Middlefield Rd. 415-365-8155
Sacramento, 95825
860 Fulton Ave. 916-486-1575
San Diego (La Mesa), 92041
8303 Center Dr. 714-461-0110
San Jose (Campbell), 95128
2350 S. Bascom Ave. 408-377-8920
Woodland Hills, 91364
22204 Ventura Blvd. 213-883-0531
COLORADO — Denver, 80212
5940 W. 38th Ave. 303-422-4006
CONNECTICUT — Hartford (Aven., 06001)
385 W. Main St. (Rte. 44) 203-678-0723

FLORIDA
Miami (Hialeah, 33012)
4706 W. 10th Ave. 305-823-2260
Tampa, 33614
4019 West Hillsborough Ave. 813-866-2541
GEORGIA — Atlanta, 30342
1968 Peachtree Rd. 404-321-0580
101 Shady Oak Rd. 404-872-6371

MARYLAND
Baltimore, 21224
1713 E. Joppa Rd. 301-681-4466
Rockville, 20852
5541 Nicholson Lane 301-881-5430

MASSACHUSETTS
Boston (Peabody, 01960)
342 Andover St. 781-768-4630
Boston (Wellesley), 02181
165 Horseneck Rd. (Rt. 39 just west of Rte. 138) 781-937-1510

MICHIGAN
Detroit, 48219
18645 W. Eight Mile Rd. 313-519-6400
E. Detroit, 48131
18149 Eight Mile Rd. 313-772-8416
MINNESOTA — Minneapolis (Hopkins), 55343
101 Shady Oak Rd. 612-939-6371

MISSOURI — St. Louis (Bridgeport), 63104
3734 McKelvey Rd. 314-291-1850

NEBRASKA — Omaha, 68134
9207 Maple St. 402-391-0271

NEW JERSEY
Fair Lawn, 07404
35-07 Broadway (Rte. 4) 201-791-6635
Ocean, 07707
1013 State Hwy. 35-07-791-9363

NEW MEXICO
Buena Park, 92821
3470 Sheridan Dr. 714-635-3090
Jenloch, Long Beach
15 Jericho Turnpike 516-334-8161
Rochester, 14624
937 Jefferson Rd. 716-244-5740
White Plains (North White Plains, 10603)
7 Reservoir Rd. 914-761-7690

OHIO
Cleveland (Woodlawn), 44103
10133 Springfield Pk. 216-771-8850
Cleveland, 44129
5441 Pearl Rd. 216-286-2590
Columbus, 43229
5250 Morse Rd. 614-475-7200
Columbus, 43215
49 S. Byrd Rd. 614-537-1867

PAULINE
Philadelphia, 19149
618 Roosevelt Blvd. 215-296-0100
Frazer (Chester Co.), 19015
530 Lancaster Pike (Rt. 30) 610-267-6555
Pittsburgh, 15235
3422 W. Penn Ave. 412-824-3564
RHODE ISLAND
Providence (Warwick), 2535
18645 W. Eight Mile Rd. 313-519-6400
588 Greenwich Ave. 401-738-5160

TEXAS
Dallas, 75231
2715 Ross Ave. 214-826-4053
Houston, 77002
7000 Westheimer 713-523-2090

WASHINGTON — Seattle, 98121
3921 Third Ave. 206-682-2127

WISCONSIN — Milwaukee, 53218
5215 W. Fond du Lac 414-473-8250

Prices are mail order net F.O.B., Benton Harbor, Michigan.

Take an even BIGGER Byte...
to handle such matters, he/she can arrange to change methods if it becomes desirable.

The section labelled income comes next. The total received by your business for sales of products and/or services goes on line 1. You may subtract from it any money lost through returned items, rebates and the like, but these aren't apt to arise in this business. Before completing the rest of this section, look at Schedule C-1 at the bottom.

Line 1 of Schedule C-1 lists beginning of year inventory. If you're dealing in services, this should be 0, and H (at the top) should be "no inventory." Line 2, similarly, will be 0, since you haven't bought any items to add to a non-existent inventory. Cost of labor (line 3) will also probably be 0, since you can't include your own salary or wage and you probably don't have any other employees. Only lines 4 and 5 are likely to contain anything. Materials and supplies are the costs of the tapes, etc, on which you store a customer's data; the paper on which you write programs; the printout paper you use to output hard copy either during a run or to give the customer; the ribbon on your hard copy output device; and anything else in the way of purchased materials that is required for producing the service and/or hard copy you provide the customer. To play it safe, I always include here only documentable purchases of supplies made during the tax year and spell out the items and their prices so the total will make sense. On line 5 (other costs), show such costs as overhead expenses (eg: the cost of running the computer) and shipping costs (if you have to mail someone a printout, for example). I routinely leave line 5 blank, since it's easier to figure these costs with the other expenses of the same type under other business expenses (line 19). Total lines 1 through 5 to get line 6. Since you have no year-end inventory, line 8 should equal line 6.

Now enter the total shown on line 8 of Schedule C-1 on line 2 and subtract. Line 3 in the income section is then gross profit. Miscellaneous income if any (recovered bad debts, interest on business investment, etc) is line 4, and line 5 shows the total business income for the year.

The section marked deductions (lines 6 through 20) comes next. Depreciation (line 6) is calculated and explained in Schedule C-3 on the other side of Schedule C. Deductions for repairs (line 9) and tax on business property (line 7) are similarly itemized in Schedule C-2. Both depreciation and the other deductions mentioned in lines 6 through 19 have been discussed above, but an examination of the deductions shown in lines 19a through 19j in figure 1 might be instructive. Line 19k, of course, is simply the total of these "other" expenses, and line 20 is the total of all business deductions. You can always deduct the postage and telephone expenses your business involves. If you mail out a bill, an advertisement or a prospectus for your business, keep a record of the actual postage amount it requires. The IRS isn't interested in how many stamps you bought or an approximate figure. You must show dollars and cents actually spent for the business and nothing else. Unless you mail all business correspondence from a post office, getting a receipt for your stamps every time, this is a very hard deduction to document, but it can prove worth the effort since, with continually increasing postage costs, a business can involve a sizable postage expense. Similarly, if you make long distance telephone calls for your business, they are deductible and your phone bill and cancelled check can provide some of the necessary documentation. Keep a record of the business phone calls you make, showing the date, the number called, what person or company was reached at that number for business purposes, and a rough note of the purpose of the call and the length of time it involved. This is particularly important if you're doing business by long distance telephone with a friend or a member of your family, since the IRS will inevitably wonder how much of the call was business related.

Another item you can always deduct is any book, magazine or other work which you use as reference or research material. If the publication's business related information has a useful life of less than a year, then its price is fully deductible; if its usefulness exceeds a year it becomes a depreciable investment. For all practical purposes, it's rarely worth depreciating these references. In this field, information is apt to be outdated in a short time, so you might as well deduct the whole price the year you buy the publication. Be careful, though, to only deduct publications which contribute to your business, and keep the publication as evidence both that you bought it (along with the sales receipt) and that it is business related.

Advertising costs are also deducted here. This includes any expenses involved in preparing, printing and distributing advertising for your business. As usual, document the expenses as thoroughly as you can.

To keep all these records, record books, file folders and the like will be needed. These can be listed as supplies and their cost deducted here. Other supplies include any staples of your trade (tape cassettes, print-

Routine repairs and maintenance of business property are deductible only if they do not increase the value, utility, or life expectancy of the repaired item.
NEEDED: PROSTHESIS CONTROLLED BY COMPUTER

I would like to pose a problem to my fellow readers. Recently someone I know suffered a broken neck. He will be paralyzed from the neck down for the rest of his life. All he can do at present is to breathe, talk, see, hear, and nod his head. Someone is supposed to have on the market a microcomputer controlled wheelchair that is run by a breath or voice actuated terminal. It is not hard to imagine a keyboard that can be played like a harmonica, with optical switches set with reeds mounted on diaphragms to act as SPDT momentary contact switches.

The problem is this: Given the current technology in motorized wheelchairs and electromechanical devices (such as articulated arms, spoon holders and page turners), develop a microcomputer operating system that can be entirely controlled from a breath actuated terminal. The operating system should not only control the chair, it should allow the operator to call up all of the usual microcomputer operating systems, such as BASIC and assembler. If the operator chooses to become his own programmer, then he should be able to teach his chair new tricks as well as using the system for entertainment.

Remember also the limitations. A wheelchair can only carry so many batteries. The operator cannot afford to be stuck with an expensive, one of a kind, poorly documented and inflexible system; if he has a programming or hardware problem, he shouldn’t have to go to a highly paid engineering consultant for a fix. If the wheelchair runs away, the operator can’t get off; the system for operating the wheelchair should have enough checks and balances to prevent inadvertent injury.

With the advent of the hobby computer, the time is ripe for victims of amputation and paralysis to take more control of their lives.

Don Baker
Gloucester Pt VA 23062

You point out one of the most encouraging and heartening effects of research in robotics: application of this technology to improve the lives of severely handicapped people.

IBM 5100 PLUG INS, ANYONE?

We have an IBM 5100 32 K installed at our office. I have noticed many ads in your magazine for add on memory for other small systems, and wonder if anyone "out there" may have plug in memory cards to fit the 5100. I sure would like to hear from anyone who does.

AD Phelps
Hood River Distillers Inc
P.O.B 740
Hood River OR 97031

NEEDED: INFORMATION ON COMPUTER CONTROLLED HYDRAULICS

I am an amateur computer hobbyist interested in computer controlled applications. I would like to know if you have any information on sources of miniature or small scale hydraulic components.

Peter Woodall
1645 DeMaisonneuve Blvd #609
Montreal, Quebec
CANADA H3H 2N3

We do not have any information on this subject, but perhaps a reader might care to provide a tutorial on the control of hydraulic systems from computer outputs. As a component of practical robotic systems, hydraulic technology might well be worth exploring.

TOWARD SMARTER MACHINES

Forgive me, but I feel a strong urge to comment on the statement made by Mike Rivers in the September 1977 BYTE (Letters, page 180). When people take a particularly strong interest in a subject, they gen-
Add More Zing to the Cocktail

Last month (page 76) brought you a design for an 8 channel 3 1/2 digit 0 to 2 V digital voltmeter (DVM) interface. The article introduced multiplexed analog data acquisition by means of a construction project.

I'm sure that the majority of the readers who have built the DVM will be satisfied with the results. There is of course that small group of problem makers who don't believe the whole world exists in the range from 0 to 2 VDC; a point well taken.

Actually, I planned to expand the capabilities of the basic DVM all along. I'll elaborate in detail; the end result will be a DVM interface with these additional specifications:

Super Cocktail DVM
- 8 programmable input channels
- AC or DC capability
- programmable gain of 1, 10, or 100
- ranges of 0 to 200 mV, 0 to 2 V, 0 to 20 V, or 0 to 200 V
- input overvoltage protection

I had hoped that by presenting the basic 0 to 2 V interface first, more readers would attempt to build it due to its low cost. The extra capabilities presented this month can be added directly to the previously described hardware interface.

A Quick Review of the Interface Hardware

This DVM is designed around the Motorola MC14433 3 1/2 digit low power complimentary MOS analog to digital converter. The MC14433 is a modified dual ramp integrating analog to digital converter with multiplexed binary coded decimal (BCD) output. With the resistor values chosen it will perform approximately 25 conversions per second.

The full scale voltage value (ie: the value represented by the 3 1/2 digits after any input voltage division) is set by an MC1403 voltage reference integrated circuit. With 2.000 V applied to the VRef input of the MC14433, full scale is ±1.999 V. If 0.200 V is applied, full scale would be ±0.1999 V or ±199.9 mV.

The MC14433 can directly drive one LS TTL load. Since not all parallel input ports are LS TTL compatible, 74LS04s act as buffers and drivers on all digital voltmeter integrated circuit output pins. Data output is of course inverted and must be complemented before use.

Steve Ciarcia
POB 582
Glastonbury CT 06033
Figure 1a: The modified digital voltmeter, an expansion of last month's basic design. Changes include the addition of an input multiplexer, made up of eight dual in line package relays, and IC9, a 1 of 10 decoder. The modification allows the voltmeter to handle a wider variety of input voltages, both AC and DC. All resistors are 5% 1/4 W, and all capacitors are 100 V ceramic, unless otherwise indicated.
The data from the digital voltmeter to the computer is serial and parallel. There are four digit select lines and four binary coded decimal (BCD) data lines:

- pin 23 O3 (Most significant bit)
- pin 22 O2
- pin 21 O1 BCD, digit value outputs
- pin 20 O0
- pin 19 DS1 (Most significant digit)
- pin 18 DS2
- pin 17 DS3 Digit select outputs
- pin 16 DS4

With respect to what the computer sees through the 74LS04 buffers, the digit select output is low when the respective digit is selected. The most significant digit (1/2 digit DS1) goes low immediately after an end of conversion pulse followed by the remaining digits sequencing from the most significant to the least significant digit. An interdigit blanking time of two clock periods is included internally to ensure that the BCD data has settled.

During the 1/2 digit (DS1), the polarity and certain status bits are available. Polarity is on Q2 and a 1 will indicate negative. The 1/2 digit will appear on O3 and a 1 will indicate high.

Enhancements to the Basic DVM Interface

Photo 1 and figure 1 illustrate the fully modified DVM interface. It retains the basic interface structure outlined last month, but with some additional goodies. The interface is designed for attachment to decoded 8 bit parallel input and output ports and can be

Table 1: Power wiring table for figure 1.

<table>
<thead>
<tr>
<th>Number</th>
<th>Type</th>
<th>+5 V</th>
<th>GND</th>
<th>-5 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC1</td>
<td>MC14433</td>
<td>24</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>IC2</td>
<td>1403</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IC3</td>
<td>74LS04</td>
<td>14</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>IC4</td>
<td>74LS04</td>
<td>14</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>IC5</td>
<td>7474</td>
<td>14</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>IC6</td>
<td>CD4053</td>
<td>16</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>IC7</td>
<td>CD4053</td>
<td>16</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>IC8</td>
<td>CD4051</td>
<td>16</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>IC9</td>
<td>7445</td>
<td>16</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1b: A circuit enabling the experimenter to derive +5 VDC from an existing power supply having any output from -12 to -17 VDC. -5 VDC is needed to power the various CMOS switches used in this design (see figure 1c).

Figure 1c: Pin diagram of a Sigma relay, type 191TE1A2-S5 14 pin dual in line package.

Figure 1d: Functional description of one switching section of a CD 4053 CMOS switch. The device acts like a remote controlled single pole double throw switch.

Continued on page 44
Ohio Scientific advances the state-of-the-art of small computers.

From our inexpensive 8K BASIC in ROM Challenger IIP to our powerful triple processor Challenger III, Ohio Scientific offers a full range of products that are technologically superior to anything available on the market today.

Challenger IIP

Challenger IIP from Ohio Scientific is our unique personal computer with BASIC in ROM and 4K RAM for programs in BASIC.

Complete with audio cassette interface and a full computer keyboard, Challenger IIP can be connected to a home TV via an RF converter and it’s ready to go.

Challenger IIP comes fully assembled and tested for only $598.00.

Challenger II

Challenger II from Ohio Scientific is a disk based computer capable of storing up to 500,000 bytes of information on an Ohio Scientific dual drive floppy disk.

Challenger II comes with 16K of RAM (the disk BASIC is automatically loaded into the computer so there is no need for ROM’s) and our powerful Disk Operating System (DOS) which allows the computer to perform big computer functions like random access, sequential and index sequential files in BASIC, and I/O distributors which support multiple terminals and industry standard line printers.

And best of all a 16K Challenger II with serial interface, single drive floppy disk, (250,000 bytes) BASIC and DOS costs only $1,964.00 fully assembled.

Challenger III

Challenger III from Ohio Scientific is the revolutionary, new triple processor computer that allows you to run programs written for the 6502A, 6800 and Z-80 processors.

Incredible as this is, a disk based Challenger III costs only about 10% more than conventional single processor microcomputers. A 32K Challenger III with a serial interface and a dual drive floppy disk assembled and tested costs $3,481.00.

For more information send for our Free, short form catalog, or send $1 for our 64 pg. Small Computing Buyers Guide.

Ohio Scientific

11679 Hayden • Hiram, Ohio 44234
Meet Challenger II from Ohio Scientific.

Unlike any other personal computer available today

Complete with BASIC in ROM and 4K RAM, Challenger II is the ideal computer for programs in BASIC.

BASIC is there the instant you turn the computer on with a full 32 x 64 character video display. Challenger II also comes with an Audio Cassette Interface for program storage. The user simply connects a Video Monitor or a TV via an RF Converter (not supplied) and the machine is ready to use.

Challenger II is ideal for both the home user who is new to computing or the experienced user who wants expansion capabilities. Challenger II comes with a four slot backplane and is expandable via the full Ohio Scientific product line, which includes 15 system boards offered in over 40 different versions.

Ohio Scientific has always maintained upward expandability from old models to new models, which is nice to know considering the rate at which technology is constantly improving. For example, Ohio Scientific's original 400 series products can be plugged right into the new Challenger II. And Ohio Scientific has 2 years of experience in building personal computers, so we're not new to this business unlike some of our competitors.

Complete with a full computer keyboard Challenger II comes fully assembled for $598 from Ohio Scientific.

Check the chart below and compare Challenger II with other BASIC in ROM computers. Unlike other personal computers, Challenger II has a much greater capacity for expansion and the capability to perform big computer functions with all of its big computer features.

<table>
<thead>
<tr>
<th>Processor</th>
<th>6502A</th>
<th>6502 or Z-80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock</td>
<td>1 or 2 MHz</td>
<td>slower</td>
</tr>
<tr>
<td>Display (Lines/Characters)</td>
<td>32/64</td>
<td>25/40 or 16/64</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Full Computer</td>
<td>4 Function</td>
</tr>
<tr>
<td></td>
<td>(Capacitive Contact)</td>
<td>Calculator Type or Full Computer</td>
</tr>
<tr>
<td>Display Characters</td>
<td>256</td>
<td>(Mechanical Contact)</td>
</tr>
<tr>
<td>Lower Case</td>
<td>Yes</td>
<td>128 or 64</td>
</tr>
<tr>
<td>Plotting</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Audio Cassette Interface</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>BASIC</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>String Functions PEEK, POKE, User</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Machine Language Accessible</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Optional Assembler/Editor</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Disk Option Available Now</td>
<td>8K By Microsoft</td>
<td>some have only 4K BASIC</td>
</tr>
<tr>
<td>In Case Memory Expansion Ability</td>
<td>Yes</td>
<td>Not Always</td>
</tr>
<tr>
<td>Expansion Boards Available Now</td>
<td>Yes</td>
<td>Not Always</td>
</tr>
<tr>
<td></td>
<td>36K</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Less</td>
</tr>
<tr>
<td></td>
<td></td>
<td>None</td>
</tr>
</tbody>
</table>
Introducing three boards only Ohio Scientific could build.

Ohio Scientific provides 15 system boards offered in over 40 different versions for Ohio Scientific Computer users. All of the boards are compatible with Ohio Scientific systems and many of them are by far technologically superior to any other microcomputer products on the market. And Ohio Scientific has the technology that made them possible.

500 CPU Board

This board gives you our ultra-fast 8K BASIC in ROM with plenty of user workspace (4K RAM) for as little as $298.00. Use it as a standalone or as the CPU in a large system. BASIC is there the instant you turn it on. And in the October issue of *Kilobaud Magazine*, our version of 8K BASIC came out the winner in a BASIC timing comparison test of all of our competitors. The 500 is the fastest around!

510 Systems CPU Board

This is our unbelievable triple processor board! Complete with the 6502A, 6800, and Z-80 processors, this board allows you to run virtually all programs published for small computers. Available in the Challenger III, the 510 board is ideal for industrial development and research applications. There isn't another triple processor board like the 510 anywhere, except at Ohio Scientific!

560Z CPU Expander Board

The 560Z board is our multiprocessing board with a Z-80 and 6100 chip. This board allows you to run several processors simultaneously and the 6100 chip lets you run powerful PDP8 software with the 560Z. The 560Z board is the only multiprocessing board available for small computers, and Ohio Scientific makes it!

These three state-of-the-art CPUs are only a small part of the picture. Ohio Scientific's advanced technology offers you other unique features such as Multiport Memories, Distributed Processing, Big Disks with up to 300 megabytes on line, and Advanced Software.

Ohio Scientific

11679 Hayden • Hiram, Ohio 44234
Announcing the most advanced disk anywhere for $6,000

The 74 megabyte disk from Ohio Scientific

C-D74 from Ohio Scientific is the ultimate storage device for small computers.

The C-D74 is the first Winchester technology disk for small computers making big system technology affordable and reliable for the small system not under maintenance contract.

The disk uses a non-removable sealed chamber drive with a unique rotary positioner to provide the highest performance disk available today.

The Ohio Scientific C-D74 can store all the records of a medium size company for instant access. And the Winchester technology of the C-D74 means that the drive can run 24 hours a day without worry of disk wear.

There are other important C-D74 applications in business computing and research in computing itself. The disk makes small computers practical for much larger jobs than formerly thought feasible, particularly since most business computing is disk bound and not computer bound.

C-D74 provides an unbelievable 35 millisecond average access time to any of 74 million bytes of information. With a 10 millisecond single track seek, the drive has an incredible data transfer rate of 7.3 megabits per second.

Recommended minimum hardware for the C-D74 is a Challenger with 32K RAM and at least 8K on a Dual Port 525 board, and a single or dual-drive floppy disk.

The drive, cable, interface for an Ohio Scientific Challenger and OS-74 operating system software is $6,000 FOB Hiram, OH.

Equipment rack shown not included.

The state of the art in small computers.
call 1-216-569-3241
The following is a summary of the interface by port allocations. (Note: I have assigned particular octal port numbers to each byte. These designations will run directly with the software driver provided. If the reader wishes to assign some other port numbers, this is fine, but remember to modify the driver software to reflect the changes.)

Command Output Byte (Port 003 Out)

<table>
<thead>
<tr>
<th>Byte</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B7</td>
<td>EOC enable or disable (Disable = 0; Enable = 1)</td>
</tr>
<tr>
<td>B6</td>
<td>AC or DC select (AC = 0; DC = 1)</td>
</tr>
<tr>
<td>B5</td>
<td>2.0 V or 0.2 V VRef select (2.0 V = 0; 0.2 V = 1)</td>
</tr>
<tr>
<td>B4</td>
<td>Gain Code</td>
</tr>
<tr>
<td>B3</td>
<td>Gain Code X10</td>
</tr>
<tr>
<td>B2</td>
<td>Channel select, 0 to 7</td>
</tr>
<tr>
<td>B1</td>
<td>N/A (will result in X1)</td>
</tr>
<tr>
<td>B0</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Status Input Byte (Port 002 In)

<table>
<thead>
<tr>
<th>Byte</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B7</td>
<td>Not used</td>
</tr>
<tr>
<td>B6</td>
<td></td>
</tr>
<tr>
<td>B5</td>
<td></td>
</tr>
<tr>
<td>B4</td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>Out of range</td>
</tr>
<tr>
<td>B1</td>
<td>End of conversion</td>
</tr>
</tbody>
</table>

Data Input Byte (Port 003 In)

<table>
<thead>
<tr>
<th>Byte</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B7</td>
<td>1st digit</td>
</tr>
<tr>
<td>B6</td>
<td>2nd digit</td>
</tr>
<tr>
<td>B5</td>
<td>3rd digit</td>
</tr>
<tr>
<td>B4</td>
<td>4th digit</td>
</tr>
<tr>
<td>B3</td>
<td>1/2 digit value</td>
</tr>
<tr>
<td>B2</td>
<td>BCD digit value</td>
</tr>
<tr>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>B0</td>
<td>Ranging status bit</td>
</tr>
</tbody>
</table>

The most obvious change to the newly modified DVM board is the input multiplexer. Up to this point all the inputs were multiplexed through a CMOS CD4051 integrated circuit. This device performs quite satisfactorily for inputs in the range of 0 to 2 V. The maximum input voltage range it can handle is limited by its supply voltage (in this case ±5 V). Even if the supplies were increased to ±9 V (18 V absolute, which is the maximum supply for a CD4051) a separate voltage divider would still be required at each input channel to keep the applied voltages within safe limits. To have a 0 to 200 V range selectable unit incorporating a CD4051 input maximum would require having eight separate programmable dividers and an overvoltage protection circuit on each channel in case the wrong divider values are chosen.

The preferred approach is to have only one divider network and one overvoltage circuitry, but such an alternative requires that the input multiplexer be capable of handling all input voltage levels from 0 to 200 V! The answer is to use relays. Not the big 10 A clunkers you see in surplus catalogs, but the new generation of (dual in line package) reed relays such as the Series 191 by SIGMA (see photo 2). These particular relays can be driven directly by TTL logic, exhibit maximum 1 ms bounce, and have a rated life of 100 million operations.

The new input multiplexer section consists of dual in line package relays RL1 thru RL8 and a 1 of 10 decoder, IC9. When a latched output port 3 bit channel address is impressed on the input lines of IC9, it puts a 0 voltage level on the output pin corresponding to that address and pulls in the proper channel select relay. The outputs of all eight relays are wired together and are next directed to the overvoltage and gain divider circuitry.

The input impedance of the DVM chip is very high (on the order of 1000 MΩ). Placing a 1 MΩ resistor in series with the relay outputs facilitates the addition of protection circuitry without compromising the interface's capabilities. This current limiting 1 MΩ resistor and two back-to-back zener diodes limit the absolute voltage seen by the MC14433 to about ±4 V (The MC14433's absolute limit is its power supply range, even though its usable input range is ±2 V.). If the correct gains are chosen and programmed to the interface, this protection should never be required. But, no one is perfect.

In addition to this function, the 1 MΩ resistor is one leg of a programmable divider network. Figure 2 shows the input subsystem in simplified terms. An AC to DC converter is also included and will be explained later. SW1 and SW2, parts of IC8, represent the gain selection section. The
SEALS ELECTRONICS, INC.
10728 DUTCHTOWN RD. • CONCORD, TN. 37922
PHONE 615-966-8771
TELEX NO. 55-7444

ALL BOARDS 5-100 BUS COMPATIBLE

PERIPHERAL UNIVERSAL PROCESSOR - PUP-1
Have you seen the Seals Electronics, Inc. Peripheral Universal Processor PUP-1? It is the newest member of the Seals family of performance products. The PUP-1 is designed to meet all the needs and demands placed on a continuous-duty micro-computer by OEM applications. Write or call Seals factory direct for more information.

ORDER DELIVERY: FROM STOCK TO 30 DAYS
Figure 2: A simplified representation of the input section of the expanded digital voltmeter. The amount of gain and the AC to DC conversion option are selectable by means of CMOS switches.

switches are illustrated in a unit gain DC input mode. When an input relay is closed, its applied voltage is sent directly to the DVM integrated circuit input through the 1 MΩ resistor. The AC to DC converter is switched out of the system and with both SW1 and SW2 open, no dividers are in the circuit. If 1.400 V is applied through a closed relay, the DVM will read 1.400 V for that channel. If, on the other hand, 150 V is suddenly switched in on another relay with this SW1 and SW2 setting, the chips would be fried were it not for Z1 and Z2. At voltages of less than 4 absolute (±4 V) the diodes do nothing. When inputs exceed this absolute value, Z1 and Z2 clamp them to 4 V. The data acquired by the computer will indicate an out of range condition, since it is over 2 V, but at least it will not have evaporated.

How Do We Read 0 to 200 V Inputs?

Closing switch 2 forms a 10:1 divider network. If 8 V is applied and switch 1 is closed, the result is:

\[VA = \left(\frac{8}{R_1 + R_2} \right) \times R_2 \]

\[= \left(\frac{8}{1.111 \text{ MΩ}} \right) \times 111 \text{ K} \]

\[= 0.799 \text{ V} \]

As you can see, the result of closing SW1 and applying the 111 K resistor is to divide the 8 V by 10 to get 0.799 V. Proper trimming of this 111 K resistor will give an output of 0.800 V. This value is compatible with the DVM integrated circuit input range, and when read by the computer, will be equal to 0.800 V. The programmer should keep in mind that a divider is used on this channel and should multiply the result by 10 to obtain 8.00 V.

Closing switch 2 forms a 100:1 divider. The mathematics is the same except that the divider resistor is 11.11 K instead of 111 K. An 8 V input appears at the DVM input as 0.080 V, while 150 V becomes 1.500 V.

AC to DC Converter

An additional bonus of this interface is AC to DC conversion on any input channel. Figure 3 shows the schematic of the AC to DC converter section of the interface. Bit 6 of output port 003 controls the application of this function. When it is high, SW3 and SW4 are in the positions shown in figure 2. In this state the AC to DC converter is switched out of the circuit and the DVM gets its input directly from the divider section. When bit 6 is programmed to be a low level, switches 3 and 4 switch to their alternate positions and route the input signal from the divider network through the AC to DC converter. The resulting signal is equal to the average RMS value of the applied input signal. This is basically the same type of circuit as the kind included in many single channel digital meters.

The AC to DC converter consists of three sections of an LM324, IC10. IC10A is a high impedance input buffer with variable offset adjustment. When the converter is switched into play, it must have a high input im-
Volumes VI & VII are finally released!

Volume VI
Yes and it still contains what was previously advertised. A fully disk interactive business package with A/R, Inv., A/P, ledgers, tax totals, payroll records, more.
As a bonus it also contains the Users Manual for our Firmware Ledger package. These 100 extra pages contain report formats, file creation routines and our very powerful program ACBS1 used to create the powerful file structured data base.

$49.95

Volume VII
Here is that Chess program you have been waiting for as well as a disk interactive Medical Billing package with patient history file.
Also included is our disk interactive Word Processing package (revision 0).

$39.95

Add $1.50/Vol. for U.P.S. and handling except to APO and PO addresses. Foreign orders add $8/Vol. for air shipment — US dollars only. No purchase orders over $50.

SRI
SCIENTIFIC RESEARCH
220-B Knollwood
Key Biscayne, FL 33149
Phone orders (800) 638-9194
Information 305-361-1153

AVAILABLE AT MOST COMPUTER STORES
10% discount on purchases of entire set. Offer expires December 30, 1977

OUR SOFTWARE IS COPYRIGHTED AND MAY NOT BE REPRODUCED OR SOLD.
Due to the numerous copyright violations on our earlier volumes — until further notice we are offering a REWARD leading to the arrest and conviction of anyone reproducing our software in ANY way without our written permission. This includes diskettes, paper and magnetic tape, cassettes, records, paper copies, etc.

BYTE January 1978 47
Figure 3: Circuity of the AC to DC converter used by the digital voltmeter. All resistors are 1% except where shown.

The impedance to avoid loading down the divider network. IC10B is the actual AC to DC conversion section. Its output is a current proportional to the AC input voltage. IC10C converts this current to a voltage and provides ripple filtering. One consideration to keep in mind is that, since this is a multiplexing analog to digital converter, the usual DC blocking capacitor at the input of the AC to DC converter has been removed. Given the particular circuit impedances and desired frequency range the converter should cover, the input capacitor had to be removed because it couldn’t respond quickly enough. The result is an AC to DC converter that will pass both AC and DC signals; only the AC converted signals should be used, however.

When a 1.0 V peak AC signal (60 Hz) is applied to the converter, the output should be +0.707 VDC. If by accident the AC converter is switched into a DC signal, the output of the converter will be 1.414 times the true DC input. Keep a close watch on your program command by the interface.

Adding a 199.9 mV Range

Up to this point we have discussed additions to the basic circuit that allow range selections of 0 to 2 V, 0 to 20 V, and 0 to 200 V. Circuit changes can be incorporated to extend the DVM range in the opposite direction. Figure 4 illustrates the voltage reference and range selection setup of this interface. The MC14433 can also be configured to cover a range of 0 to ±199.9 mV. When bit 5 of port 003 is low, switches 5 and 6 are in the positions shown. A ratio-metric converter has a range determined by the applied VRef, which would be 2.000 V in this instance. With SW5 open, the integrating time constant is set by using a 470 K resistor (formed by the series combination of 443 K and 27 K). With bit 5 set to a 1, the converter changes its VRef level to 0.200 V and its integration resistor to 27 K. These changes are the only ones necessary for 0 to 0.2 V range selection.

A Less Complicated Driver

The driver was explained last month in detail. It was designed to be as fast as possible. The relay multiplexer added this month unfortunately cannot operate at that speed without modification. I have included a new driver subroutine written especially for this application (see listing 1).

The interface driver is a relocatable subroutine which is polled by a call instruction. The driver is written for page 140 (octal) but is easily relocatable. It occupies less than one 256 byte page of memory and is written for the Z-80 processor. It is especially designed...
WE BUILD QUALITY AND USER VERSATILITY INTO EVERY "BLUE BOARD"...

And, we build just about any board you'll want for S-100 bus expansion.

When you're thinking about expansion look to the Solid State Music "blue boards." You'll find quality and user versatility built into every one allowing you to expand your system in whatever direction you choose... and, we've been doing it for years.

Right from the start we design our boards with our customers in mind. Extra features are added that will aid in expansion, not hinder program design and development. All first class parts are used and they're checked to make sure you have years of trouble free operation. Plus, every kit comes complete with assembly instructions and user information to make assembly a snap and operation a pleasure.

Talk to your dealer today to get more facts about the "blue boards" or write direct. Compare prices, quality and features. You'll find out why more and more people are using Solid State Music "blue boards" for their S-100 bus expansion.

SPECIAL BONUS OFFER
An 8080 Monitor for 1/2 price!!!

If you buy any of the Solid State Music kits or assembled boards you'll receive a SSM8080 Monitor complete with either eight 1702's or two 2708's and over 50 pages of software information. A $49.95 retail value... just $25.00. Hurry!
Listing 1: An assembly language program for driving the MC14433 3 1/2 digit analog to digital converter, written for the Z-80.
to run with an Extended BASIC which has instructions to access memory and I/O ports, and can call a machine language program.

The driver is exercised by a call instruction. In Digital Group Maxi BASIC, the call instruction looks like this: LET X=CALL (24611,64). The BASIC interpreter goes to decimal location 24611 to execute the call and decimal 64 is put in the DE register pair. To the driver, this call is a signal to perform an analog to digital conversion. The contents of the DE register tell it which channel to convert, whether it should be AC or DC, and which VRef and gain to use. One channel is converted every time the driver is called. The information sent in the DE register at the time of the call is the command output byte (port 003), and each bit has the designations previously listed. The only difference is that bit 7 (the enable disable bit to the analog to digital converter) is sent out as a 0 when doing a call. The driver will set it to an enable condition after it has pulled in the proper relay and allowed a 1.3 ms bounce delay.

When the driver concludes its operation, it has acquired a 3 1/2 digit voltage reading from the DVM which is represented by four bytes. These four bytes are placed in a table in memory. The eight channels of data constitute a 32 byte table. The location of a particular channel's data can be found by a simple expression:

\[
\text{4 byte data location} = L + \left[4(N-1)\right]
\]

where \(L\) = starting address of table
\(N\) = channel number (1 to 8)
Listing 2: A supervisory program for controlling the expanded digital voltmeter written in extended BASIC.

10 REM: CH1: 1/2 DIGITAL AC/DC FRACTIONAL RANGE FOR 500 MILLIVOLTS
20 REM: M: 1/3
30 REM: M: 1/3
40 REM: M: 1/3
50 REM: M: 1/3
60 REM: M: 1/3
70 REM: M: 1/3
80 REM: M: 1/3
90 REM: M: 1/3
100 REM: M: 1/3
110 REM: M: 1/3
120 REM: M: 1/3
130 REM: M: 1/3
140 REM: M: 1/3
150 REM: M: 1/3
160 REM: M: 1/3
170 REM: M: 1/3
180 REM: M: 1/3
190 REM: M: 1/3
200 REM: M: 1/3
210 REM: M: 1/3
220 REM: M: 1/3
230 REM: M: 1/3
240 REM: M: 1/3
250 REM: M: 1/3
260 REM: M: 1/3
270 REM: M: 1/3
280 REM: M: 1/3
290 REM: M: 1/3
300 REM: M: 1/3
310 REM: M: 1/3
320 REM: M: 1/3
330 REM: M: 1/3
340 REM: M: 1/3
350 REM: M: 1/3
360 REM: M: 1/3
370 REM: M: 1/3
380 REM: M: 1/3
390 REM: M: 1/3
400 REM: M: 1/3
410 REM: M: 1/3
420 REM: M: 1/3
430 REM: M: 1/3
440 REM: M: 1/3
450 REM: M: 1/3
460 REM: M: 1/3
470 REM: M: 1/3
480 REM: M: 1/3
490 REM: M: 1/3
500 REM: M: 1/3
510 REM: M: 1/3
520 REM: M: 1/3
530 REM: M: 1/3
540 REM: M: 1/3
550 REM: M: 1/3
560 REM: M: 1/3
570 REM: M: 1/3
580 REM: M: 1/3
590 REM: M: 1/3
600 REM: M: 1/3
610 REM: M: 1/3
620 REM: M: 1/3
630 REM: M: 1/3
640 REM: M: 1/3
650 REM: M: 1/3
660 REM: M: 1/3
670 REM: M: 1/3
680 REM: M: 1/3
690 REM: M: 1/3
700 REM: M: 1/3
710 REM: M: 1/3
720 REM: M: 1/3
730 REM: M: 1/3
740 REM: M: 1/3
750 REM: M: 1/3
760 REM: M: 1/3
770 REM: M: 1/3
780 REM: M: 1/3
790 REM: M: 1/3
800 REM: M: 1/3
810 REM: M: 1/3
820 REM: M: 1/3
830 REM: M: 1/3
840 REM: M: 1/3
850 REM: M: 1/3
860 REM: M: 1/3
870 REM: M: 1/3
880 REM: M: 1/3
890 REM: M: 1/3
900 REM: M: 1/3
910 REM: M: 1/3
920 REM: M: 1/3
930 REM: M: 1/3
940 REM: M: 1/3
950 REM: M: 1/3
960 REM: M: 1/3

20 PRINT
30 INPUT R
40 IF R = "\" THEN GOTO 240
50 LET A$ = "EXI"
60 LET A$: = "Y"
70 LET A$: = "N"
80 LET A$: = "\"
90 LET A$: = "\"
100 LET A$: = "\"
110 LET A$: = "\"
120 LET A$: = "\"
130 LET A$: = "\"
140 LET A$: = "\"
150 LET A$: = "\"
160 LET A$: = "\"
170 LET A$: = "\"
180 LET A$: = "\"
190 LET A$: = "\"
200 LET A$: = "\"
210 LET A$: = "\"
220 LET A$: = "\"
230 LET A$: = "\"
240 LET A$: = "\"
250 LET A$: = "\"
260 LET A$: = "\"
270 LET A$: = "\"
280 LET A$: = "\"
290 LET A$: = "\"
300 LET A$: = "\"
310 LET A$: = "\"
320 LET A$: = "\"
330 LET A$: = "\"
340 LET A$: = "\"
350 LET A$: = "\"
360 LET A$: = "\"
370 LET A$: = "\"
380 LET A$: = "\"
390 LET A$: = "\"
400 LET A$: = "\"
410 LET A$: = "\"
420 LET A$: = "\"
430 LET A$: = "\"
440 LET A$: = "\"
450 LET A$: = "\"
460 LET A$: = "\"
470 LET A$: = "\"
480 LET A$: = "\"
490 LET A$: = "\"
500 LET A$: = "\"
510 LET A$: = "\"
520 LET A$: = "\"
530 LET A$: = "\"
540 LET A$: = "\"
550 LET A$: = "\"
560 LET A$: = "\"
570 LET A$: = "\"
580 LET A$: = "\"
590 LET A$: = "\"
600 LET A$: = "\"
610 LET A$: = "\"
620 LET A$: = "\"
630 LET A$: = "\"
640 LET A$: = "\"
650 LET A$: = "\"
660 LET A$: = "\"
670 LET A$: = "\"
680 LET A$: = "\"
690 LET A$: = "\"
700 LET A$: = "\"
710 LET A$: = "\"
720 LET A$: = "\"
730 LET A$: = "\"
740 LET A$: = "\"
750 LET A$: = "\"
760 LET A$: = "\"
770 LET A$: = "\"
780 LET A$: = "\"
790 LET A$: = "\"
800 LET A$: = "\"
810 LET A$: = "\"
820 LET A$: = "\"
830 LET A$: = "\"
840 LET A$: = "\"
850 LET A$: = "\"
860 LET A$: = "\"
870 LET A$: = "\"
880 LET A$: = "\"
890 LET A$: = "\"
900 LET A$: = "\"
910 LET A$: = "\"
920 LET A$: = "\"
930 LET A$: = "\"
940 LET A$: = "\"
950 LET A$: = "\"
960 LET A$: = "\"
970 LET A$: = "\"
980 LET A$: = "\"
990 LET A$: = "\"

PRINT
FIRST EASY WAY TO BUY A MINICOMPUTER

MINI 12 SPECIFICATIONS

Word Length 12 Bits
CPU IM 6100 fully static CMOS device
Instruction Set Identical to the Digital Equipment Corporation PDP-8E
Clock Rate 4MHz
Major State Time 500NS
Serial Interface 20 MA current loop standard, RS-232
Optional
Baud Rate 110 Standard, Others optional
Memory 8192 words standard, expandable to 32 K words
Control Panel PDP-8E compatible, with additional functions
Parallel Interface 12 input and 12 output lines
Real Time Clock Programmable, from 10 MS to 49.55 seconds
Counter Counts External Events
Expansion Bus 50 line, TTL compatible, terminated bus structure
Binary Loader ROM resident,
Monitor Bootstrap ROM resident
Power Requirements 100/120/200/240 VAC, 50/60 HZ
Dimensions 2" high x 13" wide x 14" deep

I WANT IT!

BUT

HOW'M I GONNA PAY FOR IT?

TLF offers 3 purchase plans:

1) CASH with order - and receive a BONUS CERTIFICATE worth $100 on selected MINI 12 accessories.
2) Send $350 with order and pay balance of $545 when ready to ship or COD to postman.
3) NO INTEREST EASY PAYMENT PLAN

HERE'S HOW IT WORKS:

STEP 1
Fill in coupon below and mail TODAY with your check for $195 to:

TLF
P.O. Box 2298
Littleton
Colorado 80161

You can use your BAC/ VISA, Master Charge or American Express too!
Make all cheques payable to TLF Corporation.

STEP 2
When your MINI 12 is ready to be shipped you send us $200 or pay postman COD.

STEP 3
The balance of $500 is paid in 4 equal monthly installments of $125 each.

TOTAL PRICE ONLY $895

WHAT COULD BE SIMPLER?

And your wife will be happy too! In fact she might just buy it herself (for you of course) for Christmas.

Circle 109 on inquiry card.
Listing 2, continued:

970 IF Y1 >= 2 THEN PRINT CHANNEL *11* IS OUT OF RANGE* ; GOTO 990
980 GOSUB 1330
990 NEXT I
1000 GOTO 170
1010 REM
1020 REM
1030 REM THIS ROUTINE EXAMINES THE MEMORY TABLE
1040 REM AND CONVERTS THE 4 BYTES TO A 1/2 DIGIT VOLTAGE
1050 LET X=EXAM(I)
1060 LET Y=EXP(I)
1070 IF X=128 THEN LET X=0-128
1080 DO H:
1090 LET X=EXAM(I)
1100 DO H:
1110 LET X=EXAM(I)
1120 LET X=EXAM(I)
1130 LET X=EXAM(I)
1140 LET X=128-1
1150 LET Y=INT((X-0.5)*1000+0.5)
1160 LET Y=Y
1170 LET X=128-1
1180 IF Y=1 THEN LET Y=Y/10
1190 REM
1200 REM
1210 REM
1220 REM
1230 REM THIS SUBROUTINE PRINTS OUT THE VOLTAGE VALUES
1240 PRINT CHANNEL *1* IS *
1250 IF Y=1 THEN PRINT *1* ; GOTO 1270
1260 IF Y=128 THEN PRINT *2* ; GOTO 1270
1270 IF Y=1 THEN PRINT *3* ; GOTO 1270
1280 IF Y=128 THEN PRINT *4* ; GOTO 1270
1290 IF Y=1 THEN PRINT "AC" ; GOTO 1270
1300 IF Y=128 THEN PRINT "DC" ; GOTO 1270
1310 END PRINT
1320 RETURN
1330 REM
1340 REM
1350 REM
1360 REM
1370 REM

Listing 3: A sample of the program in listing 2 being used to read five different inputs.

DO YOU WANT TO READ PREVIOUSLY CHOSEN CHANNELS NC
41121 DO WANT 2 READ CH 41121 1 FROM THE
41121 CH 1 CHANNEL AS CHOSEN
41212 DO WANT TO READ CHANNEL 1 Y OR N OR EXIT
41313 ENTER 1 FOR DC OR 0 FOR AC
41414 ENTER 27 Volt or 0 for 0 Volt
41515 DO YOU WANT TO READ CHANNEL 1 Y OR N OR EXIT
41616 DO WANT TO READ CHANNEL 2 Y OR N OR EXIT
41717 ENTER 1 FOR DC OR 0 FOR AC
41818 ENTER 27 Volt or 0 for 0 Volt
41919 DO YOU WANT TO READ CHANNEL 2 Y OR N OR EXIT
42020 DO WANT TO READ CHANNEL 3 Y OR N OR EXIT
42121 DO WANT TO READ CHANNEL 3 Y OR N OR EXIT
42222 DO WANT TO READ CHANNEL 3 Y OR N OR EXIT
42323 DO WANT TO READ CHANNEL 3 Y OR N OR EXIT
42424 DO WANT TO READ CHANNEL 4 Y OR N OR EXIT
42525 DO WANT TO READ CHANNEL 4 Y OR N OR EXIT
42626 DO WANT TO READ CHANNEL 5 Y OR N OR EXIT
42727 DO WANT TO READ CHANNEL 5 Y OR N OR EXIT
42828 DO WANT TO READ CHANNEL 6 Y OR N OR EXIT
42929 DO WANT TO READ CHANNEL 6 Y OR N OR EXIT
43030 DO WANT TO READ CHANNEL 7 Y OR N OR EXIT
43131 DO WANT TO READ CHANNEL 7 Y OR N OR EXIT
43232 DO WANT TO READ CHANNEL 8 Y OR N OR EXIT
43333 DO WANT TO READ CHANNEL 8 Y OR N OR EXIT

To use the converter with BASIC, the program merely calls for a particular channel conversion and then extracts the appropriate data from the table. Listing 2 is a BASIC program which details the entire procedure.

CAUTION:

One caution should be kept in mind when using this interface to measure AC signals: the ground on the interface board is the same ground as the computer. If you use the interface board to read 115 VAC line voltage, a potential short circuit exists unless either the computer or the measured voltage is isolated. Since isolating the computer equipment would constitute a violation of many electrical codes, only isolated AC signals should be read. A common measurement case which meets this criterion is the AC secondary section of a low voltage power supply such as the unit which runs your computer.

Conclusion

I often see construction projects which are beyond the means of some experimenters. With these two articles I’ve attempted to reverse the trend by giving the complete design of a low cost DVM interface. By adding more components, such as relays, this interface can become a full fledged data acquisition system.

I’m sure by now, after seeing designs from me for a serial IO interface, parallel IO, digital to analog converter, and now an analog to digital converter, most readers will realize that I’m constructing a complete computer front end for measurement and control applications in the home and lab. We still need 115 VAC IO interfacing, a real time and time of day clock, and a few other items. When we’re finished we’ll investigate closed loop control and interrupt drivers.

I am always interested in readers’ comments on the ideas for applications. I work interactively, so don’t hesitate to write me (and include a self-addressed stamped envelope for replies).

Next month: a memory jump detector!
the Processor Terminal.

A logical forward step in Microcomputer design

the Processor Terminal. A new design by TEI and look at what you get... a complete, self contained microcomputer system with display and mass storage, a full keyboard and plenty of slot space for additional boards. And that famous TEI CVT power supply that makes brownouts a thing of the past.

Display — A 15" high-resolution black and white video display with an optical filter face plate to reduce glare and improve type visibility. . . . Keyboard — Full upper and lower case ASCII detached keyboard with 8 programmable special function keys. Keyboard status indicators show computer BUSY or READY. And a 16-key numeric cluster pad set up calculator style. . . . Disk Drive & Controller — A Shugart SA-400 mini-floppy disk drive. Soft sectored with a capacity of about 150 KB. IBM compatible format. Controller will handle 4 drives. . . . CPU — 8080A based with a flexible design that allows you to implement a start up "jump to" operation to any dip switch selected byte address you choose. Merely turn on power or press RESET and you are off and running. Excellent for power failure automatic restart. . . . Memory — 16K of static RAM memory. Low power chips. Selectable address assignment and memory protect features. . . . I/O — 3P+3S input/output board. 3 parallel ports and 3 serial ports with selectable baud rates of 75 to 19,200. RS-232C and TTL outputs. . . . Video — A video board provides the support for the video display functions. . . . Mainframe — A 12 slot mainframe with a 17-amp CVT power supply, motherboard assembly, heavy duty aluminum cabinet, fan and washable filter. All edge connectors and card guides provided. . . . Software — CP/M disk operating system and BASIC provided on disk.

the Processor Terminal (Model MCS-PT 112) is fully assembled and tested.

Contact your local TEI Dealer or if you are not near one of our dealers, write or call CMC Marketing Corp direct for more information.

CMC MARKETING CORP
5601 Bintliff Suite 515 • Houston, Texas 77036 • Phone: (713) 774-9526

Circle 17 on inquiry card.
The disk system you want at a price you didn't expect from a company that understands systems.
We know that one of the biggest problems in personal computing is that you're buying with your own personal dollars. That's precisely why you're going to like doing business with us.

We're Vista Computer Company, the personal computer systems brainchild of the business computer systems people at Randal Data Systems. And our V80 Floppy Disk System is a perfect example of how we're prepared to help you get the most out of your personal computing dollars.

$649 buys you the whole kit and kaboodle

The $649 you spend on a Vista V80 Floppy Disk System ($749 assembled) gets you everything you need:

- An 80K byte minifloppy drive (assembled and tested) that can be powered directly by your 8080 or Z-80 computer. (Case and power supply optional.)
- An I/O cable and a single card, S100 bus-compatible controller kit that handles up to four drives and includes a PROM for bootstrap loading (additional drives just $399).
- VOS, the most advanced microcomputer disk operating system available, and our BASIC-E compiler, designed to work with VOS, all on a single diskette. Software functions include instantaneous program loading, named dynamic files, program editing, assembling, debugging, batch processing, and file copying on back-up diskettes.

All backed by the Vista 90-day warranty, membership in VUE (Vista Users’ Exchange), and Dataforce, our associated service company with 115 locations throughout the country.

Test drive the V80 at your local computer store

Drop by your nearest computer store and run the V80 through its paces. Once you find out what it can do for you, you'll see that our combination of high performance and low price is hard to beat and easy to take.

We love to take orders

If you'd like us to ship you a Vista V80 Floppy Disk System, they're available now. Just send us a check or money order for the amount of purchase, or your BankAmericard/ VISA or Master Charge account number with expiration date and authorized signature. California residents add 6% sales tax. Uncertified checks require six weeks processing.

To place your order, or to obtain further information, call or write today.
Vista Computer Company, 2807 Oregon Court, Torrance, CA 90503.
(213) 320-3880.

We never forget it's your pocket.
A Floppy Disk Interface

Once it would have been appropriate to begin this article with a paragraph justifying the use of a floppy disk in a hobbyist system. Today that paragraph is unnecessary for two reasons: First, most of the more ambitious microprocessor users have already convinced themselves of the need for fast programmable memory; second, a growing number of users have begun to discover that the hardware required to interface a floppy disk to a microprocessor doesn't need to be very complex, and certainly not as expensive as some of the purveyors of professional equipment would have us believe. This article presents a straightforward way to control a floppy disk drive with a microprocessor.

While definitely not a project for a beginner, the interface itself is relatively simple and well within the grasp of anyone who has built other computer equipment. It is conceivable that people without an oscilloscope might be able to build the interface blindly and get it working successfully, but I strongly discourage them from doing so. A good oscilloscope, particularly one with dual trace and variable delay features, is highly recommended for testing the interface and drive during construction. Once built and working, the unit should not need any adjustments.

I do not attempt to provide all of the cookbook information necessary to thoroughly educate the novice in the ways of floppy disks. Rather, I provide an overview of one system, cover all the basic features and functions, and draw examples from a working system. I hope to encourage people to build their own systems as an alternative to buying someone else's.

This interface is intended for hardware sectored disks and disk drives, although the basic technique could be extended by the use of more on board buffer memory to permit the use of a software sectored format. This interface is specifically designed for the Memorex 651 drive, but the use of an on board buffer makes the interface independent of the associated processor's speed, and allows it to be used with virtually any processor. At least one person has used a similar interface with a 4004 for three years. The use of an on board buffer did not add to the chip count of the interface; if anything, it reduced it. The chip count is 31, and all chips are small or medium scale integration TTL with the exception of the buffer memory.

Circuit Description

Several basic functions must be provided
The Dumb Terminal lets you put it all together.

With the new, lower-priced Dumb Terminal™ Kit, that is. Pick one up and escape, once and for all, the headaches of scavenged telotypes and jury-rigged TV sets. With just a little time and aptitude, you can have a live and working Dumb Terminal right in your own home, garage, or business. One that lets you get it all out of your system — or into it.

Forget the cheap imitations, with their overblown price tags and interminable lists of options. With the Kit, you can build yourself the same, old basic Dumb Terminal that’s been selling over 1500 units a month. With basic, sensible features like a bright 12” diagonal screen, Fifty-nine data entry keys, 1920 characters displayed in 24 rows of 80 letters. Plus 33 positive action switches that let you activate functions like 1 of 11 different baud rates, an RS232C interface, or a 20mA current-loop. And more. Not bad for Dumb

All you need, besides the Kit, is some initiative, and a few basic tools — a good soldering iron, wire cutters, needle-nose pliers, and one or two trusty screwdrivers. The Dumb Terminal Kit provides you with everything else. Including an attractive cabinet, CRT screen, keyboard, PC board, and all essential electronic components. Naturally, you also get illustrated, step-by-step assembly instructions, not to mention an easy-to-understand operator’s manual.

So, if you’d like more input on the Dumb Terminal Kit, just fill out the coupon and we’ll send you complete, free information.

Oh, and by the way, just by sending in the coupon, you will be made a charter member of the Dumb Terminal Fan Club. A select organization that will send you your own nifty Dumb Terminal Fan Club Kit, containing: an official certificate of membership; an autographed photo of the Dumb Terminal himself; and a bona fide membership card to prove irrefutably you’re “One of Us.” (Sorry, limit one kit per person.)

And, if you include a trifling $6.00, you can have your very own Dumb Terminal T-shirt. (No limit at all on these.) Simply mail the coupon and get the whole assortment. And find out why members of the Dumb Terminal Fan Club are some of the smartest people around.

Name: []
Company: []
Street: []
City: [] State: [] Zip: []
Enclosed is $ [] for an official Dumb Terminal T-shirt(s).
Quantity and size(s) of shirt(s) required: [] S [] M [] L [] XL

Send this application to: Dumb Terminal Fan Club Headquarters /& Leance & Reiser, P.O. Box 17123, Irvine, CA 92714.
Figure 1a: Schematic diagram for the floppy disk interface board. All inputs and outputs are designed and buffered for use with a Motorola 6800 processor and a Memorex 657 floppy disk drive.
in a floppy disk interface, regardless of the actual data transmission method. Outputting step pulses, receiving sector and index pulses, loading the data head, sensing and resetting the file unsafe error bit, and sensing the write protect tab on the diskette are functions which are largely universal to all disk drives. They are handled by the 74175 latches (IC2 and IC20) and 74125 bus drivers (IC6 and IC16) in figure 1. Software takes care of all necessary interlocking and timing relationships between these signals.

One minor exception is in the use of the sector pulses from the drive. I felt that the incorporation of a hardware counter (to convert the individual sector pulses into an address and relieve the processor of the necessity of providing this function in software) was too simple to be left out. The equivalent function in software would yield an excessive and unnecessary overhead in time and software. As such, the two counter packages, which provide the processor with a complete sector address rather than a series of sector pulses, were a welcome expense.

Data passage between the buffer memory and the disk drive is processor independent. The processor simply requests the desired transaction (read or write). Actual data movement is carried out solely by the interface circuits.

Movement of data in this system takes place in two phases, regardless of whether the transaction is a write or read. When writing, the processor loads the data destined to be recorded onto a sector of the diskette into the onboard buffer memory. When the entire sector's data has been assembled in this buffer, complete with necessary preambles, data separators, track and sector identifiers, postambles, and whatever else is needed by the chosen format, this block of sector data can be moved to the disk drive in a single operation. The actual operation does not occur until the processor commands the interface board to write.

After receipt of the write command the interface waits until it sees the leading edge of a sector pulse. This sector pulse sets a flip flop, IC30B, which remains set throughout the operation and resets on the leading edge of the next sector pulse. The entire transaction is therefore synchronous with the sector pulses. This same synchronization is present during a read operation as well. For example, reading of disk data into the onboard buffer is started and stopped by sector pulses. In this way, format independence is accomplished because the entire sector is read into the buffer in a single operation. The processor is completely uninvolved with this transfer of data. It does not re-enter the picture until the read operation is complete, at which time it begins dissecting the received information. During this dissection process, the processor must search through the onboard buffer looking for the beginning of data markers (and other landmarks of the particular recording format involved) to locate the desired data in the buffer and transform it from serial to 8 bit parallel form.
"INDUSTRIAL" WIRE WRAPPING TOOL
Model BW 520 is a battery operated wire-wrapping tool, also available in reversible models for wrapping and unwrapping operations. The rechargeable nickel cadmium battery is self contained in the handle of the tool. Also available with "Backforce" device to prevent overwrapping.
Uses any 24AWG thru 32AWG wrapping bits and sleeves.

OK MACHINE & TOOL CORPORATION
3455 Conner St., Bronx, N.Y. 10475 / (212) 994-6600 / Telex 125091

"HOBBY" WIRE WRAPPING TOOL
For AWG 30, .025" (0.63mm) sq. post, "MODIFIED" wrap, positive indexing, anti-overwrapping device.

OK MACHINE & TOOL CORPORATION
3455 Conner St., Bronx, N.Y. 10475 / (212) 994-6600 / Telex 125091
Note that, in this system, the actual SECTOR pulses from the disk drive are not used to start and stop the transactions; rather, they are divided by 2 in the first stage of the sector address counters. This means that although 32 physical sectors could be recorded per track on the diskette, this system will record only 16.

Each sector contains 256 bytes of data instead of 128. I did this to facilitate future double-density operation. The size of the buffer is 256 bytes of data plus some extra for preambles, checksums, and so on, for both single or double density operation. Only the number of sectors per track will be charged: they will increase from 16 for single density to 32 for double-density. For purposes of this article, single density operation is assumed.

The interface board knows nothing about the particular recording format involved, but merely collects a sector's worth of information (ie: everything appearing between two successive sector pulses) from the disk drive and gives it to the processor. The processor must know all about the organization of the data in the sector. The software completely controls the organizing and formatting of this data.

Although it is feasible to configure the buffer memory as an 8 bit wide parallel buffer, the serial configuration has several advantages including the lowest cost and chip count. It also permits efficient utilization of low cost memory chips such as the 2102A. Although it would seem logical to use serial shift registers for the buffer, doing so destroys the processor’s ability to randomly access the buffer. Another reason for using serial data transmission is that conversion to parallel format, when receiving data from the disk, would necessitate some form of data synchronization information so that the packing of the serial data into the parallel buffer can be coordinated. Without this information, bit 1 might end up in bit 8's location. This synchronization function must be provided in any case. Postponing the problem until a time when the processor is processing the data, instead of the time when the disk drive and interface are exchanging data, allows the interface hardware to be format independent. This means that, with little

Figure 2: Sequence of main events when reading from or writing to the floppy disk.

Read:
- 0-1.5 s seek time
- step in or out
- load head
- 30 ms head settling time
- 0-16 s wait for presector
- issue read command
- same subroutine used by both read and write
- 5-10 ms wait as presector passes
- 10 ms transfer of data
- move data from buffer to main memory
- check for errors
- :Return from routine

Write:
- move data from main memory to buffer
- step in or out
- load head
- 30 ms head settling time
- 0-16 s wait for presector
- same subroutine used by both read and write
- issue write command
- 5-10 ms wait as presector passes
- 10 ms transfer of data
- check for errors
- :Return from routine
Since 1972 we've been a place where people and computers get together.

Do you know anyone who wants to learn how computers work? Or how to program? Without masses of technical jargon? Then send them to People's Computers! We're a bimonthly magazine devoted to demystifying computers. Our pages aren't padded with ads they're packed with articles, tutorials, interviews, listings, games, reviews and letters. People's Computers covers:

- **Computerese** - basic principles about how computers work: tutorials on how to program.
- **Education** - ready-to-use programs; tips on how to write computer-assisted educational materials; reports on educational uses of computers.
- **Blue Sky** - Tiny BASIC and Tiny PILOT were born in our pages; there's now talk of robots and ...
- **People & Computers** - examination of the growing impact of computers on our lives and society.
- **Fun & Fantasy** - computer games; whimsical odds and ends; and our swashbuckling hero—FORTRAN Man!

Some Comments about People's Computers:

"One of the first, if not the first, of the people-oriented computer publications . . . At $8 a year, it is a good bargain. You'll like it."

— Kildau

"The editorial flavor is . . . intended to be readable and enjoyable for the neophyte. Our resident non-computer people at Byte grabbed the first issue so quickly that it became difficult to find a copy . . . Should be sampled to be believed."

— Byte

"People's Computers has been plugging away for years as a force for good in the community". Personal Computing

"For the novice as well as the experienced computer user . . . an informal style, many useful annotations . . . a sounding board for novel ideas." Computer Notes

"Here's a first rate magazine for people who want to know about minicomputers and microcomputers . . . Powerful, low-cost technology is taking off - keep up with it by reading People's Computers". — The Workbook

people's computers

Please start my one-year subscription (six issues) to People's Computers and bill me for just $8.

NAME ________________________________
ADDRESS __________________________________
CITY/STATE __________ ZIP ___________
Outside the U.S., add $4 for surface postage. Airmail rates on request.

Unconditional Guarantee: If you ever wish to discontinue your subscription for any reason, we will refund the complete amount for the remainder of your subscription.

- □ Visa Card Number ____________________________
- □ Mastercharge Expiration Date ___________

Send this form or a facsimile to: People's Computers, Dept 53, 1263 El Camino Real, Box E. Menlo Park CA 94025

Circle 86 on inquiry card.
or no change to the interface board, any hardware sectored format can be accommodated by the use of appropriate software. With the present amorphous state of the home computing industry, format independence has to be a significant advantage.

In figure 1, the three 2102As (ICs 4, 14 and 24) form a 3072 by 1 bit buffer memory. The three 74177 counters (ICs 5, 15 and 25), which are associated with the three 2102As, allow storage of the serially accessed disk data in the randomly accessed memories. These counters are incremented for each bit of disk data passed, and provide addresses for the 2102As during both the read and write operations. During reading, the disk provides clocking information in the form of SEP CLOCK on the Memorex disk drive. SEP CLOCK is used to clock the counters and address the memory. During writing, the interface card must provide clocking information to the disk. The crystal oscillator provides this write clock information for the disk drive as well as for the counters which address the memory.

The preceding has explained the functioning of the counters and the addressing of the 2102A buffer during data exchanges between the disk drive and the interface card. Movement of data between the interface card and the processor takes place before or after the interface's dialogue with the disk drive, as shown by the sequence of operations for read and write commands in figure 2. During this processor activity, the address counters take on a completely different function. The processor can randomly access any bit in the memory buffer. Therefore, the address for the buffer comes from the processor rather than from the address counters.

During this time, the addresses on the processor's bus, which are present at the preset inputs of the 74177s (ICs 5, 15, 25), are gated through to the 2102As. When the processor attempts to read from or write to the buffer it will be accessing only one bit at a time, since the buffer is only one bit wide. The 6800's read and write line is gated directly to the read and write line of the 2102As. Write data from the processor will be fed to the data input lines of the 2102As via a three state device enabled by the proper address decoding from the processor bus (IC1). When the processor reads from the buffer memory, address decoding (IC1B) enables a three state bus driver and places one bit of data from the buffer on the processor bus.

During a diskette read operation, it is desirable to use the received clock to strobe the received data into memory. In order to satisfy the minimum write pulse width requirements of some 2102 type programmable memories, it is necessary to use a one-shot (IC22) triggered by the trailing edge of the receive clock to generate the actual write strobe. The received data is latched in a 7474 (IC31B) and maintained until the end of the write strobe. Note that while it would normally be poor practice to use the write strobe to change both address and data, the architecture of this interface and of most 2102 type programmable memories permits this. The actual value of the address present at the edges of the write strobe appears to be irrelevant, provided that the address is stable. In this design, the address and the data change after the trailing edge. This arrangement has been tested with several types of programmable memories, from fast new ones to slow obsolete ones. There were no problems in any instance.

During a write operation, a 4 MHz crystal provides clock pulses to the disk drive and address counters for the 2102As. A 4 MHz crystal could be used for standard density operation with the proper circuit modifications. The write clock and write data signals (outputs of IC17 and IC28B) are combined into a composite clock and data signal and fed to the disk drive via three paralleled sections of a 7416 high power inverter (ICs 10A, B, and C). Three sections are used to provide adequate signal current into the low impedance line receiver within the disk drive. Although line receivers are recommended by Memorex for the received clock and received data signals at the interface, standard TTL inputs (with the addition of the pull up resistors shown in the schematic) have proven to be adequate.

Software

The schematic of figure 1 does not represent a floppy disk controller, but only an interface. The processor intelligence is needed to make the system a controller. The bulk of the effort in establishing a system of this type occurs in the writing of the necessary software. This approach keeps the hardware costs low and allows the frugal experimenter to substitute his or her own software writing ability for the out of pocket hardware expenses.

Two phases in any read or write operation of the system were previously mentioned. A third phase is necessary prior to any actual reading or writing. The disk drive's data transfer head must be stepped...
to the proper track. Then the system must interrogate the hardware's sector address counters in order to know when it is permissible to issue a read or write command.

Stepping to the Proper Track

There are either 64 or 77 tracks on floppy disk systems (the Memorex 651 uses 64). When power is first applied to the system, the position of the data transfer head is unknown. It is necessary to find over which track the head is positioned. Unfortunately the disk drive tells us nothing about the location of the head unless it is sitting at the very first track of the system (track 0). Some disk drives have an additional sensor at the very last track. Consequently, during initialization of these systems it is necessary to step the data transfer head in toward track 0 until the track 0 sensor is tripped. If track 0 is requested (as shown in the flowchart of figure 3 for the stepping routine), the program will step the data transfer head in, while searching for a TRACK 0 signal. An 8 bit register remembers where the head is located. Once the head is stepped away from track 0, the software has no way of determining what track is currently accessed unless it knows how many step pulses have been issued. Every time a step pulse is issued, this counter will be incremented or decremented appropriately unless the track 0 signal appears, in which case the counter is cleared. This step routine is written as a subroutine, shown in listing 1, such that it can be called with the desired track parameter passed as a value in another register.

Stepping takes place in response to individual pulses from the interface. The pulses are formed in software by turning a hardware bit on, and then off. The width of the pulse will be determined by the processor's execution speed. Since two or more instructions are involved, the width will be several microseconds. Several NOPs can be inserted in the software as a safety measure.

Listing 1: Stepping in or out routine written for the Motorola 6800 processor.

```
FA3D 66 A055 STEPS LDA A REPTRK
FA40 H1 38 LDA A A53
FA42 2F 03 BHE H5
FA44 7F FF0F JMP ADDERR
FA47 01 00 LDA A 80
FA49 26 0F BNE STP2
FA4B C4 80 STP1 LDA B $80
FA4D F5 9C00 BIT B $9C00
FA50 27 04 RES #4
FA52 01 1B BSR STP3
FA54 70 F5 BRA STP1
FA56 7E A054 CLR ACTTRK TRACK ZERO FOUND
FA58 39 RTS
FA5A H1 A054 STP4 LDA A ACTTRK
FA5D 26 01 BNE #13
FA5F 39 RTS
FA60 26 04 BNE #14
FA62 00 06 BSR STP0
FA64 22 E4 BRA STP2
FA66 BC 09 BSR STP1
FA68 20 F0 BRA STP3
FA6A 7E A054 STP4OUT INC ACTTRK
FA6B C6 01 LDA B #1 STEP OUT PULSE
FA6F 20 05 BRA STP4
FA71 7A A054 STP5 LDA A ACTTRK
FA74 C6 02 LDA B #2
FA76 F7 9C00 STP4 STA B $9C00 BEGIN STEP PULSE
FA79 5F BRA CLR B DELAY
FA7A 01 NOP
FA7B 01 NDF
FA7C F7 9C00 STA B $9C00 END STEP PULSE
FA83 09 BRA STP3 PEX
FA88 26 FB BNE STP3
FA89 39 RTS
```

Figure 3: The stepping routine, which moves to any track that is requested.
Since a stepping motor is involved (some of the newer drives incorporate linear actuators which are faster), a considerable time delay between step pulses must be allowed to prevent the stepper motor from overshooting the wrong track. The software stepping routine incorporates a 30 ms delay. Memorex specifies a 20 ms delay, and some other manufacturers call for 10 ms delays or less. The builder should adjust the delay parameter to generate the necessary delay.

Waiting for the Proper Sector

Since counters are built into the hardware, the sector address will be accurately known within one diskette revolution after application of power. Anytime the software reads the state of the sector counters, it will receive the binary number of the physical sector currently passing under the data transfer head. The use of this information now becomes somewhat involved.

At some time in the future, a read or write command will be issued. Where that occurs is a function of the time when the command is issued relative to the position of the diskette at the moment of issuance. If the user wants to write at logical sector 4 of the current track, for instance, the write command is issued prior to the appearance of physical sector 4 beneath the data transfer head. In other words, the command should take place while the data head is over sector 3 because the actual writing must begin at the leading edge of the sector pulse that introduces physical sector 4.

Things are actually more complex than this. The counters which address the on board buffer memory must be reset prior to the beginning of the actual read or write operation. Otherwise, the buffer addresses would begin in the middle of the buffer. In order to guarantee sufficient time for resetting the counters, some finite time interval must occur during the preceding physical sector. The only way to insure this is to locate the end of second preceding physical sector and issue the read or write command at the beginning of the immediately preceding physical sector.

The flowchart in figure 4 shows a subroutine which, when given the desired sector to be read from or written to, will loop while interrogating the sector counters until the presector is found. Although the software of listing 2 appears to ignore the need to guarantee some resetting time for the buffer address counters, this is not the case. Since there are two physical sectors for each logical sector (32 physical sectors per track versus 16 logical sectors) the software is sensing...

Figure 4: A routine which searches a single track until it finds the required presector.

Listing 2: Interrogation routine written for Motorola 6800. This routine checks each of the sector headings on a track until it finds the requested presector of the desired sector.

Figure 4: A routine which searches a single track until it finds the required presector.

Listing 2: Interrogation routine written for Motorola 6800. This routine checks each of the sector headings on a track until it finds the requested presector of the desired sector.
OUR OWN SOFTWARE OUR OWN HARDWARE
A perfect team from the Digital Group

Something new has been added to our great line of Digital Group hardware: DIGITAL GROUP SOFTWARE!

With all new languages, enhancements to existing languages and new sophistication designed to give the Digital Group system user the greatest capabilities yet available in a microprocessor.

Most importantly, you can rest assured that the same painstaking attention we devote to quality in our hardware has gone into Digital Group Software. Our software works — as simply as that.

Here are just a few of the Digital Group Software packages:

WOPROC
This simple-to-learn, user-oriented Word Processing System is text-editing and a whole lot more. WOPROC automatically takes care of the menial tasks of typing, easily corrects errors and prints exactly as you desire. In short, WOPROC doesn't stop at merely editing text: it also processes this text in a variety of ways. Use it to prepare and print anything that could be prepared with a typewriter.

CONVERS
Through incorporation of a variety of software concepts, CONVERS, a unique, highly-flexible package, has evolved. It offers a combination of easy programming, high memory efficiency and fast operating speed ideally suited for many types of applications.

The potential capabilities of this type of language are breathtaking, but for now the Digital Group recommends our preliminary version to those users already familiar with computers.

BUSINESS-BASIC
By adding a significant number of extensions, our standard Digital Group Maxi-BASIC has been converted to Business-BASIC — an extremely productive and powerful language for business-oriented microcomputer users.

OPUS/ONE and /TWO
These software packages are major extensions of BASIC-type languages. This language's major emphasis has been to maximize function and capability and is particularly well-suited to personal/business type applications.

Z80 ASSEMBLER II
An updated version of Z80 Assembler I with added capabilities.

We've tried to give you a glimpse of what Digital Group Software has in store for you. If you have one of our systems already, you know our quality. And if you're just looking around, take a look at our hardware.

Then you'll know how well our software works, too.
Listing 3: The WRITSV routine allows writing to the disk, and the READSV routine is used to read data from the disk. When either of these two routines is entered, the correct track and sector have been found and the data transfer head is already loaded and allowed to settle.

Read and Write Commands

One bit of a status word is used to identify a read or write command. In the schematics, logical 1 means read and logical 0 means write. Another bit is used as the transaction request bit. Setting this byte to logical 1 enables the hardware to execute a data transaction when the next sector pulse occurs. During this period of time the processor must not read from or write to the on board buffer, since this will immediately set the address counters to the value present on the processor's address bus. The processor needs to know if the disk drive is talking to the buffer memory. Therefore, a busy or ready bit is incorporated into the hardware. Proponents of interrupt driven systems should note that a separate flip flop is set at the end of a read or write transaction. This should be reset in software prior to issuing a new command. Hardware will reset the flip flop automatically at the beginning of each transaction in the event that software does not do this. This flip flop can be used as a flag for a testing loop, or it can be tied to an interrupt line to generate an interrupt upon completion of the read or write transaction. The software examples used here incorporate a flag testing loop routine.

Operating Sequence

Sometime prior to the passing of the data to or from the disk drive, the head load delay must be energized to permit the data transfer head to come into contact with the diskette. The mechanical properties of this mechanism dictate that some time must be allowed for settling prior to the commencement of any data movement. Various philosophies exist on the subject of how long and how often the head should remain loaded. Some feel that the head should be loaded continuously during periods of usage, and that frequent loading and unloading of the head causes aggravation of the head as well as a media wear problem. The software I use assumes just the opposite: The less time the head and media are in contact, the less wear will occur. Memorex drives are particularly vulnerable to wear, since they use metal heads instead of newer ferrite and ceramic heads. A Memorex drive using this software and operating in a suitably clean environment for several months has had no detectable wear to either the data head or the diskette. I feel that this is due to the fact that the data head is never in contact with the media for more than a fraction of a second at a time. The accumulated contact time is kept very low.

In the software of listing 3, the data head is loaded just after the stepping routine, immediately following the arrival at the proper track. Recall that the system will begin its search for the pre-presector after the proper track has been accessed. The sector wait algorithm contains a 30 ms delay during which the head load mechanism can settle. An extra delay loop should be inserted at the entry of the sector wait routine if additional settling time is necessary. The accumulated system delay, including the sector wait routine, will probably be adequate.

Figure 5 shows the sequence of operations for read and write commands and includes the movements of data relative to the mechanical operations. For a clearer description, see photo 1. If a wire operation is to take place, the first step in the process should be setting up the data in the interface's onboard memory buffer. Some sort of structure must be chosen for the various
FULLY ASSEMBLED PRODUCTS FOR THE TRULY COMPATIBLE SS-50 6800 BUS.

Our Basic Floppy Disc System (BFD-68) must, in all modesty, be called superb. It comes completely assembled with a disc controller that is plug compatible with the SWTPC 6800. The cabinet and power supply are capable of handling up to 3 Shugart Mini-Floppy Drives. One drive is included in the price of the BFD-68 and others may be added easily at any time. Or you may save money by ordering the dual-drive BFD-68-2 or triple drive BFD-68-3 (pictured). Price: BFD-68 $795, BFD-68-2 $1139, BFD-68-3 $1479, SA-400 Drive $360.

The BFD-68 includes our Disc Operating System Software. The software provides direct commands to name and rename files, transfer memory to disc and disc to memory and to automatically jump to the starting location of any program loaded from disc to memory. The direct command names are: RUN, GET, GETHEX, CLOSE, SAVE, DELETE, APPEND, RENAME, COPY, LIST, LINK and PRINT. In addition, the Disc File Management subroutines are available to create files under your program control.

A bootstrap PROM is included on the controller board to initiate the Disc Operating System which loads into a 4K memory board located at 7000 or optionally at D000. Thus, you can be up and running from a cold start in just a few seconds.

SUPER SOFTWARE: Free patches are provided for SWTPC BASIC version 2.0 and Co-Resident Editor/Assembler. These patches allow the SAVE and LOAD commands to work with the disc or the cassette at your option.

M-16-A: The M-16-A is a single power supply fully STATIC 16K memory system. It is fully buffered and requires only half the power of a similar size system using low power 2102's. With the M-16-A, you can expand your system to 48K, add one of our EPROM boards, our BFD-68 disk controller board and still have room to spare. The M-16-A is switch selectable to any 4K starting address and hardware write protect is included. Price $529.

P-38: The P-38 series modules are available in 3 configurations. The basic P-38 is an 8K EPROM board containing room for 8 2708's. Like all our products, it is completely assembled. As a bonus, one 2708 is included which contains SMARTBUG, our 1K Mikbug compatible monitor program. The P-38 is switch selectable to any 8K location. Price $179.

The P-38-1 contains all the features of the basic P-38 plus a built in interface to the POP-1 and the Oliver Paper Tape Reader. Price $229.

The P-38 FF is a plug-in interface card for the ICOM Frugal Floppy and the other ICOM full size floppy disks. It contains all the features of the P-38-1 plus an additional 2708 with the ICOM bootstrap software. ICOM's 6800 FDOS-II is included on diskette. Price $299.

The PS-1 power supply kit provides plus and minus 16 volts required for the P-38 series boards. Also, it allows a wiring modification to be made to the 8 volt supply that will increase its output by one volt. Price $24.95.

NEW PRODUCT: The POP-1 is a 2708 EPROM programmer that is contained in a separate cabinet outside the 6800 and connected by ribbon cable. The POP-1 uses a separate self-contained power supply for the programming voltage. There is plenty of power to program 2708's from any manufacturer — no need to choose only the most expensive 2708's. The POP-1 interfaces to the SMOKE SIGNAL BROADCASTING P-38-1 EPROM board and complete software is provided on cassette. The software allows you to duplicate an existing 2708 (making changes if you wish) or to transfer a block of RAM to EPROM. An adaptive programming technique is used that allows most 2708's to be programmed within 15 seconds. Instructions are also provided showing how to modify the POP-1 to program the TMS 2716. Price $129.

ALL OUR PRODUCTS EXCEPT THE PS-1 ARE COMPLETELY ASSEMBLED. MASTERCHARGE AND VISA CARDS WELCOME.

SMOKE SIGNAL BROADCASTING
P.O. Box 2017, Hollywood, CA 90028 • (213) 462-5652

Circle 99 on inquiry card.
zones which must be recorded onto each sector. Memorex recommends that a preamble of 128 logical 0s be written to the disk starting at the beginning of the sector. What goes onto the disk after that is dependent on the whims and opinions of the programmer. In the prototype system, a single logical 1 follows the preamble and serves to indicate that the next following bit is the first bit of the first word of data. 256 8-bit words are then written with the least significant bit first. This is followed by a 16-bit checksum, a 16-bit binary number to indicate the sector and track numbers, and zeroes for a postamble, which will end when the hardware encounters the sector pulse for the next sector. I make no claims for the elegance or efficiency of this format. It was expedient and has worked for months in a small developmental system. To set up the on-board buffer with this information, a routine converts the source data from 8-bit parallel to serial (1 bit per address) in the buffer. After the buffer is set up, the mechanical movements and commands can be issued.

Operating

If the interface is wired correctly with properly working parts and the software is bug free, the system should work without any adjustments. However, if you build the hardware and write the software from scratch, there are many chances for error. I highly recommend that you build and test one section at a time. When testing the data circuits, a good quality oscilloscope, preferably dual trace with delayed sweep, is desirable. The read and write operations are conducted independent of the processor. This simplifies troubleshooting because bad software will not complicate the situation. I suggest that you start by wiring the sector counters and verifying their proper operation by reading sector addresses into the processor. Once the sector counters are working, the sector wait software can be written and tested by observing the varying time that the software is tied up (by looking for the desired sector). This varying time is formally known as the rotational latency, and will be between 5 and 160 ms.

Next, wire the step in, step out, and track 00 signals. The stepper motor can be manually tested by shorting the stepping lines to ground. It is much more dramatic to write some simple software to exercise this function. At this time the stepping speed can be set and the malfunctioning of the stepper motor can be observed at excessively high step rates. The first step in testing the operation of the on-board buffer memory is to transmit data back and forth between the interface and the processor. Doing so will bypass the oneshot, address counters, etc, and make testing much simpler. Once the memory is found to be functional, communication with the disk can be tested. Grounding pin 11 of IC30B will force the hardware to execute a continuous string of read or write commands depending on the state of flip-flop 31A. Flip flop 31A can be used to choose either read or write commands. When writing, the normally present reset signal at the timer counter (pin 13 of IC26) will be lifted. This allows the counter to count pulses from the oscillator. Pulses from the clock gate, pin 6

Figure 5: Timing diagram for read and write operations. Also shown is the physical and logical layout of the data on the floppy disk.
A 16K RAM board for only $289? Central Data's got it!

Central Data's 16K RAM board comes completely assembled, tested and burned in for only $289. Our competitors find that hard to beat. But, the low price is not all we offer.

The Central Data 16K RAM board is complete when you buy it from us, but we offer the added feature of expandability to 32K. Someday you'll need more than 16K, and when that day comes, you'll be ready. The cost of adding 16K to your present Central Data 16K RAM board is $250. A 32K RAM board, assembled, tested and burned in, is $525.

The invisible refresh feature of our board means that the performance of your system can never be degraded by wait cycles. Some of our competitors find that hard to beat too.

Our RAM board is S-100 compatible, and it has an access time of 450ns.

Each Central Data board comes with a one-year warranty.

With a price that low and features that good, how can you afford to pass up our board?

To order your 16K RAM board or to receive more information, write to us at Central Data today.

Central Data
PO Box 2484, Station A
Champaign, IL 61820

Circle 16 on inquiry card.
Photo 1a: Data as it appears when first received from the disk drive for eventual storage in the buffer memory.

Photo 1b: An example of data which has been received from the disk drive and rearranged for storage in the buffer memory.

of IC28A, will be a continuous stream of pulses separated by 4 µs. Pulses from the data gate, pin 8 of IC17, will be dependent on the raw data coming from the 2102As. If the raw data is a steady high, the signal from the data gate will be similar to that from the clock gate with the exception that the two signals will be displaced in time. When the two signals are combined at pin 8 of IC28B, they are interleaved. While the interface is in forced write mode, the clock pulses from the clock gate are applied to the address counters, pin 8 of IC25. These counters should be counting properly. Whatever data is stored in the 2102As should be coming out serially on the raw data line.

To test the read function, you will need a working disk drive and a prerecorded diskette. With the head loaded, a stream of data and clock pulses similar to those observed in the write circuits should be present at SEP CLOCK and SEP DATA. The one-shot should fire (pin 1 of IC22) on the trailing edge of each clock pulse. The one-shot's output should appear at the address counter's input and at the read and write line of the 2102As, pin 3 of ICs 4, 14 and 24. The 1 bit SEP DATA latch IC is set at the leading edge of any SEP DATA pulse and reset by the trailing edge of the one-shot's output.

The only other circuit of any complexity is that of the interrupt flag. If a read or write operation is terminated normally by the occurrence of the second sector pulse at the "busy" flip flop (pin 11 of IC30B), then resetting the flip flop will clock the interrupt flip flop on (pin 9 of IC27B) and either generate an interrupt or be used as a flag. This interrupt flip flop will remain on until software clears it by setting the interrupt clear flip flop, or until hardware clears it as soon as the transaction request flip flop, pin 6 of IC30A, is set in preparation for another read or write operation.

All other circuits are address decoding, latching, or bus driving functions and do not bear explanation here.

Drive Power

The lowly power supply is usually the least considered element in a system until it has to be paid for or fixed. Most floppy disk drives are extremely inefficient, due principally to the stepper motor. In the Memorex design the stepper motor consumes 24 V at 2 A. I have had only one troublesome power supply problem. It turned out to be due to an induced transient caused by a snapping action in the rectifier diodes during recovery and turn off. The resultant noise caused problems everywhere. I solved this by simply shunting the diodes with .05 or .1 µF capacitors.

Intercabling

Memorex offers a version of its drive for use with twisted pair signal lines and a printed circuit edge connector in place of the 93 Ω coaxial cable and captive pin connector of the original. This newer version should definitely be specified when buying from Memorex. For intercabling of six to eight feet between the interface card and the drive, twisted pairs will be adequate and virtually any connector will suffice. Each twisted pair should consist of a signal wire paired with a ground wire and have one or two twists per inch. If you have a high
CHEAPER BY THE BYTE

The Dual Digital Cassette Storage System
Only $450 Only from Pheripheral Vision

For the first time ever there's an inexpensive, reliable system for mass data storage. Peripheral Vision introduces the Phi-Deck Cassette Storage System for the S-100 Bus. For only $450.

That's right. $450. That gets you two Phi-Decks, controller card kit and power supply. Which means you get more bytes per buck. Take a look.

The features:
• Controller card supporting mutiple drives
• Computer-controlled operating system — an 8080 version of PhiMon
• Large data capacity:
 - 254,000 8-bit bytes on C-30 cassettes
 - 508,000 8-bit bytes on C-60 cassettes
• Software error rate less than 1 bit in 10⁸

What our system allows you:
• Indexed software controlled program file
• Indexed random retrieval
• Multipass compilers
• Duplication and backup of important data
• Large data files — lists, names, business accounts
• System residence

What our software operating system offers:
• 8080-based design
• Cyclic redundancy check (CRC) error detection
• System retries after soft errors
• Automatically bypasses hard errors
• Block size from 1 to 256 bytes or 256-byte increments
• Phi Deck Monitor Operating System

How to get connected:
With Peripheral Vision's new four-port I/O board. It's another one of our bargains. Only $85. To save you bucks.

We've only given you a glimpse of our exciting new cassette storage system and the four-port I/O board. For more details, just fill in the coupon below. For cheap little bytes.

O.K., I'll byte! Send me details on your cheaper way to store data and get it connected!

Name_________________________
Address_______________________
City/State/Zip_________________

Circle 87 on inquiry card.
density application you should consult the manufacturer of the drive for recommended cabling, since comparatively high speed signals are involved.

Error Conditions

Three fundamental types of errors should be allowed for in the system:

- Desired data not accessible due to improper recording, dirt, or noise during reading.
- Wrong data accessed due to wrong track or sector.
- FILE UNSAFE error flagged by disk drive.

All three types of errors must be discovered by the software in order to establish reliable operation.

The FILE UNSAFE error is probably the most common type encountered. It typically results from attempting to write to a write protected diskette or attempting to write while the door of the drive is open. Malfunctions of the electronics within the disk drive will also cause a FILE UNSAFE error. These are quite rare, at least in Memorex drives. Since this type of error is typically due to the operator, Memorex recommends that manual intervention be required to reset the error condition.

Accessing wrong data because of being on the wrong track or sector will occur if the step rate of the pulses formed by the stepping software is too fast for the stepper motor or if electrical noise causes the sector counters to miscount. This type of error can only be detected during a read operation, and only if the sectors being read are formatted with information describing their intended physical location on the diskette. This is the purpose of the track sector identification (TSID) word included with each record written to the disk. When the record is read, the track sector identification is checked to see if it agrees with what was supposed to have been read. If it does not, an error has occurred. In practice this type of error should never occur unless there is some serious malfunction due to faulty design, improper operation, or bad software. In my prototype software, all operations halt when this type of error occurs and the operator is required to restart it.

The first of the three errors listed above is supposedly the most common. In my experience, though, it is quite rare if the drives and diskettes are kept clean and operated properly. The error is detectable by virtue of the checksum, a binary sum of all bytes of recorded data which is recorded at the end of the data field in the record. When the operating software reads a sector, it computes its own checksum and compares it to the recorded checksum. If the two sums disagree, an error has occurred.

Improvements

Since one step has already been taken in making the interface useful in an interrupt driven system, it might be sensible to make the interface more completely interrupt driven. In other words, eliminate the requirement that the processor wait during the rotational latency. This could be accomplished by simply adding latches and comparators to the sector counters' circuitry such that the processor could issue a desired sector number and a read or write command, then go about its business while the comparators search for the proper sector and initialize the read or write operation. This feature would probably only increase the chip count slightly and might be a worthwhile addition to units used with sophisticated disk operating systems.

The design I've discussed has been furnished to Midwest Scientific Instruments Inc for manufacture under license. The addressing structure of the Midwest Scientific version differs from that shown in the schematic of figures 1 and 2 in that they added peripheral interface adapter (PIA) chips, through which all communication between the processor and the interface must pass. This does not change the fundamental operation of the system, but it does increase the chip count. Budget minded users with the ability to build their own hardware are advised to build their own system, since it is basically not very complicated.

As an aid to persons building their own systems, the complete software, excerpts of which are used in this article, consisting of a 1 K byte microdisk operating system, is available for $10 in source form for the 6800 processor. Send to David M Allen, 1317 Central Av, Kansas City KS 66102. This software is written to utilize the routines of MIKBUGTM and provides named files of assignable length. Persons interested in hardware and software systems based on the interface discussed here should contact Midwest Scientific Instruments Inc, 220 W Cedar, Olathe KS 66067, (913) 764-3273.
THE AJ 841 I/O—A COMPLETELY REFURBISHED IBM SELECTRIC TERMINAL WITH BUILT IN ASCII INTERFACE—JUST $995

Features:
- ASCII code
- 14.9 characters per second printout
- Special introductory price—$995 (regularly $1,195). 75% discount over original price of new unit.
- Choice of RS 232 Serial Interface* or Parallel Interface (requires 3P + S)
- Order direct from factory
- 30 day warranty—parts and labor
- Nationwide service locations

AJ 841 WARRANTY AND SERVICE IS AVAILABLE IN THE FOLLOWING CITIES:
Los Angeles Cincinnati
Philadelphia Detroit
Hackensack Dallas
Columbus Houston
Cleveland Atlanta
San Jose Chicago
Boston New York
Washington, D.C.

HOW TO ORDER AN AJ 841 I/O TERMINAL
1. Make cashier’s check or money order payable to: ANDERSON JACOBSON, INC.
 Address your request to:
 Personal Computer Terminal
 ANDERSON JACOBSON, INC.
 521 Charcot Avenue
 San Jose, CA 95131
2. Upon written notification, pick up your terminal at the AJ service office located in one of the above cities. Allow six to eight weeks for delivery.
3. A final check of your unit will be made at the local AJ service office at time of pick up.
4. For warranty or repair service, return unit to designated service location.

CLIP AND MAIL WITH ORDER

<table>
<thead>
<tr>
<th>SELECT EITHER:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ RS 232 Serial Interface (Available March 1978)</td>
<td>☐ Parallel Interface (requires 3P + S)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of units</th>
<th>@$995. each</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Sales Tax</td>
<td>$</td>
<td></td>
</tr>
<tr>
<td>Shipping and handling $35.00 each (excluding San Jose)</td>
<td>$</td>
<td></td>
</tr>
</tbody>
</table>

| TOTAL | $ | |

NAME ____________________________

ADDRESS ____________________________

CITY ____________________ STATE _______ ZIP _______

PHONE (_____) ____________________________

CLIP AND MAIL WITH ORDER

Circle 3 on inquiry card.

ANDERSON JACOBSON

Anderson Jacobson, Inc., 521 Charcot Avenue
San Jose, California 95131, (408) 263-8830

$995.

ANDERSON JACOBSON

Anderson Jacobson, Inc., 521 Charcot Avenue
San Jose, California 95131, (408) 263-8830

Circle 3 on inquiry card.
Some people build personal computers for the love of building. And the systems they buy are usually more fun to build than to operate.

The Equinox System™, on the other hand, is designed for people who build for the love of computing. When you put it together, it's really together. Ready to work for, and with, you in the development of your own professional, intellectual, business and even social interests.

The Equinox System™ goes together easily with construction aids like parts legends and solder masks. The Equinox System™ fits together perfectly, and will continue to be a perfect fit with future hardware and software. And it's all S-100 compatible, so you'll be able to work together with the largest group of peripherals, software, suppliers and system users in personal computing.

Mainframes, interfacing, memory, software—The Equinox System™ has it all together now.

Really together.

THE MAINFRAMES

The Equinox System™ offers an important choice in mainframes.

The Equinox 100™ mainframe integrates the popular 8080A CPU into a powerful front panel programming center. For users who prefer another CPU, however, we also offer the Equibox™—a fully engineered cabinet, power supply and S-100 bus board system ready for installation of your choice of CPU.

It would be difficult to forego the speed and convenience of the Equinox 100™ front panel, however. It allows you to work in concise octal digits on a 12-key keyboard and digital LED display. It allows you to monitor and/or alter the contents of any CPU register, register pair, I/O device or memory location. And the Equinox 100™ front panel will perform these operations while fully halted, single-stepping, or Slow-Stepping™ at a programmable rate!

It is, quite simply, one of the most powerful, intelligent and wonderfully convenient front panels in the world. Comparisons of The Equinox System™ mainframes don't stop at the front panel.

Both Equinox 100™ and Equibox™ compare directly to full-scale and mini-computers in reliability of operation. Both Equinox 100™ and Equibox™ are equipped with massive 26-amp Constant Voltage (ferro-resonant) power supplies to protect your programs from in-home appliance loads, system loads, and even area-wide line voltage drops as low as 90 VAC.

And the exclusive Noiseguard™ system on our 20-slot bus board produces signals that are "textbook clean," eliminating a major source of data errors and interfacing problems that plague most other personal computer systems. Plus, there are dozens of other features to make your mainframe more convenient: carrying handle and tilt-up stand, key-operated power switch for system security, spare power regulators for your small peripherals, and more.

It's no wonder that Equinox™ mainframes have been acclaimed as a major advance in personal computers. Equinox 100™ or Equibox™—each has the features you want all together in one elegant package.

THE INTERFACING

Interfacing your input/output devices to your mainframe can be a frustrating, expensive and time-consuming process.

That's why The Equinox System™ offers all the interfacing you're likely to need in one low-cost kit.

The Equinox I/O Interface is a single board that plugs right into your Equinox 100™ bus. And you're ready to plug in 3 audio cassette units with individual motion control, a "Teletype" or RS-232 terminal, and any 8-bit parallel device... including graphics display, line printer or paper tape reader.

The Equinox I/O Interface has 1K bytes of RAM and ROM on board, preprogrammed with powerful Cassette Operating Executive (COPE) software. COPE handles dozens of interfacing and data handling tasks to increase the efficiency of your software. Your programs can store and retrieve cassette data with a single CALL COPE instruction. Data is formatted, checked and transferred in blocks up to 64K bytes with a single READ or WRITE instruction. COPE can even bootstrap your programs.
All Equinox software is designed to make full use of COPE capabilities. So loading your Equinox software is as simple as selecting an address and pressing RUN. Cassette data storage has never been more convenient.

The Equinox I/O Interface is programmed for the highly-reliable 300 baud Kansas City Standard for cassette data transfers...but can be reprogrammed for faster rates in the future. Your TTY/RS-232 channel also features user-programmable rates up to 4800 baud. And you have access to all COPE routines.

There is no more cost-effective way to handle your system interfacing. And the Equinox I/O Interface is even more attractively priced when purchased with a complete system.

THE MEMORY

You can get your Equinox System together with more low-cost memory.

The Equinox System™ is the first system to offer the ECONORAM III 8K X 8 memory board with the advanced SynchroFresh™ natural-timing refreshing system.

Configured as two individually addressable 4K blocks, the ECONORAM III comes assembled, tested and guaranteed to work perfectly in your Equinox System™ for one full year. It is also available as a lower-cost kit.

For tight budgets, the K-Ration™ 4K X 8 static memory kit is also available for your Equinox System™. This high-efficiency design is one of the most widely used, lowest power and lowest cost memories available for S-100 systems.

And the memory savings are even greater when you purchase your Equinox System™ all together!

THE SOFTWARE

The Equinox System™ now includes two primary software packages:

EQUATE for text-oriented programming, editing and assembly, and

BASIC-EQ for number-oriented programming.

Both of these powerful programming languages have been greatly enhanced by full integration with our COPE interfacing software.

EQUATE gives you the power of a fully programmable text language. Using EQUATE, you can create programs to edit copy, keep inventory, manipulate your files of addresses or recipes, and more.

EQUATE is also one of the most powerful editors/assembly available.

EQUATE writes, assembles and executes your programs. It is fully symbolic, accepts global symbols and assembles programs larger than available memory.

EQUATE is also an extraordinary text editor which works interactively with you to edit by character, string or line. It also offers first number editing of memory contents in octal, hex or decimal.

Yet, EQUATE is extremely compact, occupying only 4K of memory with 8K total memory required.

BASIC-EQ is a powerful, interactive, high-level programming language designed for math and science applications. Its primary use is in the manipulation of numbers, although it is capable of string oriented operation. Our version, BASIC-EQ, occupies 5K of memory.

Both BASIC-EQ and EQUATE are supplied on cassette, ready to load themselves into your Equinox System™. They are competitively priced...and are even more attractive when purchased together with your Equinox System™.

GET IT TOGETHER!

For more information and ordering:

BY MAIL Send check or money order to Equinox Division, Parasitic Engineering, P.O. Box 6314, Albany, California 94706

BY PHONE 800-848-5311. BankAmericard/Visa and Master Charge accepted.

IN PERSON See The Equinox System™ at your local computer shop.

*A trademark of Teletype Corporation.
Taxing Situations at Home

If you're working out of your home you may only claim deductions if some part of your home is used regularly and exclusively "(a) as your principal place of business, (b) as a place of business used by your patients, clients and customers in meeting or dealing with you in the normal course of your trade or business, or (c) in connection with your business if it is a separate structure that is not attached to your dwelling unit." [Page 23 of the 1976 Federal Income Tax Forms package containing Form 1040, Schedules A and B, Schedule C, Schedule D, Schedule E, Schedules R and RP, Schedule SE, Form 2441. Dept of the Treasury, Internal Revenue Service.] This means that if some portion of your home is used solely for business purposes on a regular basis, you can deduct a percentage of your light, heat, telephone, trash removal, and rent or house payment for it. Thus, if you use 15% of your house in this way, you can deduct 15% of each of the expenses listed. Some people figure their percentage on the basis of the number of rooms in the house (thus, if one room of a 5 room house is so used, 20% is deducted); but I prefer the floor space method, whereby 200 square feet out of 1000 total square feet of floor space must be used for business purposes to justify a 20% deduction. This method reduces the risk of challenge. Be wary of taking this deduction, however, since using the area in question for any nonbusiness purpose can make a deduction illegitimate. Also, since computer entrepreneurs are most likely to work on their businesses at irregular intervals, it may be impossible to claim that the area is used on a regular basis for business. If you can legitimately claim these deductions, however, they increase the total deductible business expense considerably.

Line 20, which is the result of all these entries and computations, shows the sum of all deductions (lines 6 through 19k). If this is larger than the sum on line 5 (total income), enter the difference, preceded by a minus sign on line 21 as net business loss. If it is smaller, again enter the difference on line 21, preceded this time by a plus sign, as your net business profit. In either case, enter the figure that appears on line 21, with its appropriate sign, on line 29, business income or (loss) (attach Schedule C), of form 1040.

Schedule C-4, expense account information, probably won't apply to computer entrepreneurs. Only expense account allowances which, added to salary, exceed $25,000 need be entered.

Schedule SE

Schedule SE is for computing your social security self-employment tax. If you aren't making a profit above a certain amount (currently $400, subject to change by law) you don't have to pay social security tax; but it's advisable to fill out the form anyway, because it proves that you owe no social security tax.

As usual, there is a place at the top for your name, social security number and type of business. (See figure 3; Schedule SE has no printing on back.) Part I is for those engaged in farm self-employment. It doesn't apply to nonfarm people and can be ignored. Part II, for nonfarm self-employment, however, does apply. Fill in line 5a with the net profit or loss figure calculated for line 21 of Schedule C. Lines 5b, c, d and e probably will not apply. Line 6, the total of lines 5a through 5e, represents total nonfarm self-employment income. Some adjustments to your business income permitted in the figuring of Schedule C are not allowable in figuring your income for the purpose of Schedule SE; the latter are covered on line 7. These adjustments include, for example, net operating losses from a previous year, income of public officials, rentals received from certain kinds of real estate, and the like. They are not likely to affect computer entrepreneurs, so I only note their existence here and refer you to the IRS instructions for Schedule SE. Business income (or loss) plus these adjustments is shown on line 8.

The nonfarm optional method, lines 9 through 11, may be used by those who did make a net profit and whose profit is both less than $1600 and less than two thirds of their gross profit. It involves comparing two thirds of your gross nonfarm profit (or $1600, whichever is smaller) with $1600 and calculating your social security tax on the smaller amount. For most computer entrepreneurs, this won't apply, at least during the first few years.

Social security self-employment tax is calculated in part III. Enter your business profit or loss (from line 8 or line 11) on line 12b. Add to it (on line 12a) any farm earnings (probably 0 in this case) and add them on line 13. If the resulting amount is less than $400, you owe no tax and can stop filling in the schedule right there; if it is greater than $400, you must total your wages and tips, etc, subject to FICA (the
Federal Insurance Contributions Act) on lines 15a through 15c and subtract the total from the maximum amount subject to social security tax, which is shown on line 14. The result of this subtraction goes on line 16 and whichever amount is smaller, line 13 or line 16, goes on line 17 as the basis of your social security tax. In 1976, the maximum amount of earnings subject to social security was $15,300, and whoever had this much or more was required to pay $1208.70. The tax on any amount less than the maximum was computed by multiplying the amount by 0.079. These figures are subject to change, however, and should be used only as a general gauge of tax amounts.

Being Prepared
Most people begin their computer enter-

prises in the hope of picking up a little cash to help improve their home systems. They rarely bother to account for expenses, assuming that they would have "spent the money anyway," and they usually pay little heed to profits apart from spending them quickly for more or better computing equipment. But hobby income is taxable, and if one suddenly finds him/herself with a product or service that is selling like the proverbial hotcakes, he/she can also build up a hefty tax bill without realizing it. Similarly, if one doesn't record the expenses that the enterprise entails, a thousand dollars could easily be spent to attain an income of only $227. Either way, it can get uncomfortable.

Keeping even the most simplified records from the start will help solve these problems.
Then when the point is reached at which taxable income is emerging, it is possible to convert fairly painlessly to the more detailed documentation that is desirable to support tax forms. It is important, however, to start keeping records of some sort immediately. Paper bags work well for some people, a simple spiral notebook for others (there are perhaps as many systems as there are people), but without records, no tax losses can be claimed, no business expenses can be substantiated, and no firm idea of the enterprise's success or failure can be developed.

Auditory Nerves

Any tax form is regarded as potentially fraudulent and, if it comes up for review, it is winnowed for any defect. (I have been reviewed in the past and it resulted in my receiving a larger refund.) New small businesses are especially subject to review, so extreme care is necessary when documenting expenses; but that care can pay off as a handsome tax loss or a watertight set of forms with which even the most eagle-eyed taxman can find no fault. If you operate on the principle that you must be able to prove the legitimacy of anything you claim, you need have no fear.

Conclusion

If you're trying to make some money with your home system, why not start recording what the enterprise is costing you and what you're earning from it? You may be a small business already and you may be able to derive tax benefits from that status. Almost more important, wouldn't it be nice to know whether or not your enterprise is profitable? Give it a try, and before long you'll find that the additional tax forms hold no terrors for you.

USEFUL GOVERNMENT PUBLICATIONS
Available from the Internal Revenue Service (free, on request)

- Tax Guide for Small Business — publication 334
- Recordkeeping for a Small Business — publication 583
- Tax Information on Depreciation — publication 534
- Tax Withholding and Declaration of Estimated Tax — publication 505

THE ALPHA-1 SYSTEM

RATED A BEST BUY IN MASS STORAGE SYSTEMS

HARDWARE

- Stores greater than 500K bytes per side of a C-60 tape.
- Access a file in 17 seconds average on a C-60 tape.
- Load 8K of data in less than 11 seconds (6250 baud).
- 100% Interchangeability of cassettes with no adjustments required or allowed.
- Compatible with all popular S-100 Bus Microcomputers.
- Audio track under computer control.
- Eliminates the need for ROM/PROM monitors.

SOFTWARE

- MCOS, a powerful stand-alone cassette operating system, is operationally much simpler than a D.O.S., handles variable length named files, will update a file in place, packs or copies tapes with a single command.
- EXTENDED BASIC with MCOS permits array handling and concatenation of files, plus all capabilities of MCOS.

PRICES START AT $240

FREE BUYERS GUIDE

If you are shopping for a tape or disk system for your S-100 Bus Computer System, you do not have all the facts until you have the MECA "BUYERS GUIDE TO MASS STORAGE." This 10 page guide book provides a framework for evaluating cassette, cartridge, and disk-based systems. Write for your copy today.

For complete information including the Dealer nearest you, write or phone:

MECA

7026 O.W.S. Road, Yucca Valley, CA 92284
(714) 365-7686

Circle 50 on inquiry card.
Now you can gain all the speed and flexibility of a disk-based PolyMorphic microcomputer system without scrapping your POLY 88.

Our POLY 88 Upgrade-to-Disk Kit enables you to quickly and easily convert your POLY 88 into a complete System 8813, a very versatile disk system with one, two or three floppy disk drives.

You retain all the essential parts of your POLY 88 system (including the powerful BASIC software library) and gain the increased access speed and programming flexibility of PolyMorphic's remarkable new System 8813.

Our POLY 88 Upgrade-to-Disk Kit contains everything you need to perform a quick "disk transplant" on your POLY 88 at home, using a few simple tools. Each upgrade kit contains a brushed aluminum front panel and walnut cabinet with one, two or three floppy disk drives, controller, power supply, fan and 2K of ROM. You also receive two copies of our system disk, containing our powerful disk operating system, fully extended BASIC and versatile text editor and assembler. The single-drive POLY 88 Upgrade-to-Disk Kit costs $1,450.

Why wait? Drop by your nearest PolyMorphic Systems dealer today and have him demonstrate the speedy and flexible new System 8813 for you. Then, ask him to show you just how quickly and easily you can perform a disk transplant on your POLY 88.

If you can't drop by your dealer, please call us at (805) 967-0468. Or write PolyMorphic Systems Inc., 460 Ward Drive, Santa Barbara, CA 93111.

Perform a disk transplant on your Poly 88.

The Poly 88 Disk Kit.
The Motorola 6800 Instruction Set

Two Programming Points of View

When faced with the problem of trying to hand assemble a machine language program, the task of looking up each of the op codes in the manufacturer's data can be quite daunting. Admittedly, some become familiar before very long but the less common instructions still cause problems (do you 6800 users remember the hexadecimal op code for TPA?). Two solutions to this dilemma are suggested here. The first is suitable for "switch flippers" and the second for users of MIKBUG and other systems with hexadecimal dump and load functions.

The First Solution: Use Instruction Fields

Anyone who has seen the programming books for the DEC PDP 8 will be familiar with the principles involved. In the PDP 8 instruction set, the first three bits of the 12 bit word define the type of instruction and the remaining bits each have a separate function. This is of course a gross simplification and is not true for memory reference and immediate instructions but it underlines the basic ideas. Now, study of the 6800 op codes reveals some interesting facts at the bit level. These are outlined in figure 1.

Branch to subroutine occurs in an unexpected place but it is easy to remember if thought of as Jump, mode immediate. The generalization in group 1 bit 6 that a zero implies accumulator or stack pointer addressing does not hold true for compare index register (CPX), where it implies index register addressing. Naturally, the store instructions (STA, STS and STX) do not exist in immediate mode in the published definition of the 6800 instruction set.

The Second Solution: The Ordered Manual Lookup Table

The appropriate information is contained in figure 2. This should be a great boon to anyone who, for lack of memory or 10
devices, has no assembler. The table is arranged in such a way that the first hexadecimal digit is the horizontal coordinate, just as the x component comes first in a pair of Cartesian coordinates. The credit for inspiring this technique must go to Mr. Fugitt (March 77 BYTE, page 36) for his 6502 table, but this table for the 6800 is somewhat more useful for both assembling and disassembling because of the way the codes fall into groups and the addressing modes fall into neat vertical lines.

By way of a final word, the table can, if reduced small enough, make a very handy reference card. Mine has, on the front, tables to convert between hexadecimal, octal and decimal, and, on the reverse, the conditions required for branches, the restart vectors, details of the control code register and the stack register.

The Ordered Manual

Lookup Table

<table>
<thead>
<tr>
<th>ACCA</th>
<th>ACCB</th>
<th>X</th>
<th>E</th>
<th>I</th>
<th>D</th>
<th>X</th>
<th>E</th>
<th>I</th>
<th>D</th>
<th>X</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEI</td>
<td>BLE</td>
<td>SWI</td>
<td>CLR</td>
<td>CLR</td>
<td>CLR</td>
<td>STS</td>
<td>STS</td>
<td>STS</td>
<td>STX</td>
<td>STX</td>
<td>STX</td>
</tr>
<tr>
<td>CLI</td>
<td>BG T</td>
<td>WAI</td>
<td></td>
<td></td>
<td></td>
<td>LDS</td>
<td>LDS</td>
<td>LDS</td>
<td>LDX</td>
<td>LDX</td>
<td>LDX</td>
</tr>
<tr>
<td>SEC</td>
<td>BLT</td>
<td></td>
<td>TST</td>
<td>TST</td>
<td>TST</td>
<td>B SR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLC</td>
<td>BGE</td>
<td></td>
<td>INC</td>
<td>INC</td>
<td>INC</td>
<td>CPX</td>
<td>CPX</td>
<td>CPX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEV</td>
<td>ABA</td>
<td>RTI</td>
<td></td>
<td></td>
<td></td>
<td>ADD</td>
<td>ADD</td>
<td>ADD</td>
<td>ADD</td>
<td>ADD</td>
<td>ADD</td>
</tr>
<tr>
<td>CLV</td>
<td>BPL</td>
<td></td>
<td>DEC</td>
<td>DEC</td>
<td>DEC</td>
<td>ORA</td>
<td>ORA</td>
<td>ORA</td>
<td>ORA</td>
<td>ORA</td>
<td>ORA</td>
</tr>
<tr>
<td>DEX</td>
<td>DAA</td>
<td>BVS</td>
<td>RTS</td>
<td>ROL</td>
<td>ROL</td>
<td>ROL</td>
<td>ADC</td>
<td>ADC</td>
<td>ADC</td>
<td>ADC</td>
<td>ADC</td>
</tr>
<tr>
<td>INX</td>
<td>BVC</td>
<td></td>
<td>ASL</td>
<td>ASL</td>
<td>ASL</td>
<td>EOR</td>
<td>EOR</td>
<td>EOR</td>
<td>EOR</td>
<td>EOR</td>
<td>EOR</td>
</tr>
<tr>
<td>TPA</td>
<td>TBA</td>
<td>BEQ</td>
<td>PSH</td>
<td>B B</td>
<td>ASR</td>
<td>ASR</td>
<td>ASR</td>
<td>STA</td>
<td>STA</td>
<td>STA</td>
<td>STA</td>
</tr>
<tr>
<td>TAP</td>
<td>TAB</td>
<td>BNE</td>
<td>PSH</td>
<td>B B</td>
<td>ROR</td>
<td>ROR</td>
<td>ROR</td>
<td>LDA</td>
<td>LDA</td>
<td>LDA</td>
<td>LDA</td>
</tr>
<tr>
<td>NOP</td>
<td>CBA</td>
<td>INS</td>
<td></td>
<td></td>
<td></td>
<td>BIT</td>
<td>BIT</td>
<td>BIT</td>
<td>BIT</td>
<td>BIT</td>
<td>BIT</td>
</tr>
<tr>
<td>SBA</td>
<td>BRA</td>
<td>TSX</td>
<td>NEG</td>
<td>NEG</td>
<td>NEG</td>
<td>SUB</td>
<td>SUB</td>
<td>SUB</td>
<td>SUB</td>
<td>SUB</td>
<td>SUB</td>
</tr>
</tbody>
</table>
A User's Reaction to the SOL-10 Computer

When I first saw the Processor Technology SOL it was love at first sight. After acquiring the SOL system, I found that it has everything (almost) a hobbyist needs in one package.

The SOL-10 system which I purchased consists of a single 10 inch by 16 inch board computer, a keyboard, a power supply and cabinet. Figure 1 shows a memory map of the system which gives an idea of its overall structure. Processor Technology also makes the SOL-20 which has a heavier duty power supply and backplane for five extra S-100 cards.

The SOL single board computer is a complete beginning system. The board contains an 8080A processor with fully buffered data and address buses which are brought to a connector at the center of the board where an S-100 compatible backplane daughter board can be plugged in. It also has a complement of 10 ports. The board and operating system are oriented around the parallel keyboard input port and video display output port. 1 K of the 2 K of programmable memory on the board is used to store the 64 character by 16 line video display contents. The output of the display driver is an EIA composite video signal (1.0 to 2.5 V peak to peak) which will drive any standard monitor or even a modified TV set. The full 128 upper and lower case ASCII character set is available for display. With the addition of a video monitor the system becomes a smart video terminal with either full or half duplex communications modes selectable from the keyboard.

The SOL design has an asynchronous serial interface port with switch selectable data rates from 70 to 9600 bps. This serial I/O port has both an RS-232 and 20 mA current loop output. Also included is an 8 bit
Go tell it to your computer for $189.

You can have low cost voice entry to your computer with SpeechLab.

Heuristics' original Model 50 SpeechLab™ at $299 was a great success. So, not content to rest on our laurels, we went back to our design bench and came out with the Model 20. It sells for $189 completely assembled and tested for use with any S-100 Bus computer such as Sol, IMSAI, Altair or Cromemco and as the 20A, the Apple.

Now obviously, we had to do a few things to bring the price down. The Model 20 has a somewhat shorter manual. Technically, it’s not quite as complex. Don’t kid yourself though, the Model 20 does a real job. You can control your computer to do such tasks as data entry, quality control and everything else where you want a “hands-off” operation. Elsewhere in the ad we’ve illustrated some examples of the kinds of things you can do.

About the Model 20
Heuristics' new Model 20 handles up to 32 words. Software is ROM based. The Model 20 uses 64 bytes per spoken word which is callable from BASIC.

Hardware includes
2 band pass filters with 2 bit amplitude, 2 zero crossing detectors and a linear amplifier.
The combined hardware/software/lab manual includes 10 experiments.
The ROM based speech recognition program occupies 2K bytes of ROM.

The Model 50, still a great buy at $299.
Here’s an S-100 compatible system (8080 or Z-80) capable of handling a 64 word vocabulary using 64 bytes per spoken word. You'll get high speech recognition.

Software includes
SpeechBasic BASIC programming language in source and paper tape, assembly language speech recognition program in source and paper tape, hardware and self-test program in source and paper tape. SpeechBasic plot, correlation, recognition and advanced recognition programs are offered in source.

The assembly language program uses less than 4K bytes for a 32 word vocabulary. It loads at 100H. A high core version is available. SpeechBasic BASIC interpreter loads at 0 and requires 8K. A diagnostic program is included.

Documentation includes
a 275 page lab manual with 35 experiments and a 100 page hardware manual. All manuals are now available as separate items. The big manual is ideal for schools and colleges as an introduction to speech and pattern recognition.

Hardware includes 3 band-pass filters (6 bits amplitude), 1 zero crossing detector, a linear amplifier, compression amplifier, 6 bit A/D converter and a beeper. The raw waveform is available for advanced experiments. A new noise cancelling microphone is also offered.

Prices (f.o.b. Los Altos, CA)
Model 20A (Apple) $189
Model 20S (S-100 Bus) $189
Model 20 manual $ 15
Model 50 $299
Model 50 lab manual $ 25
Model 50 hardware manual $ 15
(both manuals $35)
Model NC-1 noise cancelling microphone $ 85

More information.
For more information visit your nearest computer store. Most dealers now carry the Heuristics line. Or if more convenient write for literature. Please address Heuristics, Inc., Box B, 900 N. San Antonio Road, Los Altos, CA 94022.
Phone (415) 948-2542.

Heuristics INC

Circle 49 on inquiry card.
Figure 2: One minor printed circuit bug found by the author in testing out the SOL computer was the run from point L to point M from U86 to the data rate selection switch. If 4800 bps operation is desired as an option, the run in question has to be broken and a jumper wire from point K to point M on the board has to be substituted.

parallel IO port which allows a user to drive any external peripheral.

An option which I think is important to any system is the cassette interface. This option, used with the SOL, allows the user to read or write programs or data to a cassette tape at a software selectable rate of 300 bps or 1200 bps using standard asynchronous Manchester coded signal at 1200/2400 Hz or 600/1200 Hz.

The SOL-PC board itself is a high quality double sided G-10 type material with plated thru holes. There is an excellent solder mask on the board with all component locations clearly labeled. The unit I received, which was Revision D of the board, had two defects which Processor Technology asked the assembler to change: two lines crossed on the same side of the board and two lines to the S-100 bus were reversed. Both were easy to correct and I'm sure these defects will have been corrected on the next revision of the board.

I also discovered what I think is another error on the board. In the circuit that selects the serial data rate there is a jumper that enables either 2400 or 4800 bps to be switch selectable. The board had the switch permanently connected to the 2400 bps position. This caused the serial IO to work improperly when 4800 bps was selected. Because there are lines feeding from this circuit to the cassette interface circuit, the cassette interface would not work properly. The problem is easily corrected by breaking the lines between the L and M jumper contacts (see figure 2).

There is a moderate amount of large scale integration on the board. The 8080A processor, the ASCII 7 by 9 dot matrix encoder, the two UARTs used for the serial and cassette tape interfaces and the 5204 (512 by 8) EROMs in the personality module are the LSI chips used. The programmable memory for the computer and display is made up of 2102 parts. All of the IO select switches and the IO connectors are located at the rear of the board for easy access. The personality module is located along the back edge to allow an easy change of the operating system.

The system timing is derived from a 14.31818 MHz crystal controlled oscillator that feeds the video character generator, UARTs, and 8080 clock divider circuits, MSI and SSI TTL along with an AH 0026 dual MOS clock driver supply the 8080 clock signals. There is an RC charge-up circuit that provides an automatic reset signal when power is turned on and a controlled “wait” period immediately after the reset signal.

The keyboard supplied as part of the SOL-10 system is a custom unit from Key Tronics which connects to the SOL-PC board through a ribbon cable connector which plugs into a header on the board. The keyboard uses no LSI encoder and no mechanical contacts and can easily be disassembled for cleaning.

The keyboard is easy to assemble and check out. All of the data bits are latched so that they can be examined at leisure. The strobe bit is only on for a very short time, two to ten µs. There is only one tricky part of the keyboard assembly procedure. This is the installation of the four SIP resistor networks. Extra care must be used in installing these since they are not as clearly marked as most of the other items, and the two different sets of values will not allow the keyboard to work properly if interchanged.

The power supply for the SOL-10 consists of a power transformer, an external filter capacitor for the 5 V supply and a regulator card to supply the required vol-
Software systems from TSC are designed for tough business and industrial uses on the job or just plain fun off the job. Whether you are looking for a system to be used primarily in a working situation or a system for the home, look into TSC software.

Assembly Language Programs (Include Source Listings)
- SL68-29 6800 Text Processing System* $32.00
- SL68-24 6800 Text Editing System* $23.50
- SL68-26 6800 Mnemonic Assembler* $23.50
- SL68-19 6800 Micro BASIC Plus* $15.95
- SL80-9 8080 Space Voyage $12.00
- SL68-5 6800 Space Voyage* $12.00
- SL68-27 6800 Disassembler $ 9.00
- SL68-28 6800 Program Relocator $ 8.00
- PD80-2 8080 Game Package II $14.00
- SL80-8 8080 Blackjack $ 6.50
- MUB-68 Multi-User System—Write for details

Program-of-the-Month Club™
One year membership for $2.00. Discounts offered with no obligations.

To Order: Include 3% postage, $1.00 handling, on orders under $10.00, and Indiana residents add 4% sales tax. Check your dealer!

TSC Monthly Feature:

8080 Text Editing System
At Last! An 8080 version of the famous TSC 6800 Text Editing System.

Written in assembly language, approximately 5k is required allowing local, global, content, character and line operations. For example, with one command you can change the second occurrence of the string “12345” in the next 35 lines to the string “XYZ”.

Included are Tabs, Overlay, block Move and Copy, Header, Append and Zones. This Editor is actually better than many large scale computer Editors! Source listing included.

- SL80-10 8080 Text Editing System $28.50
- PT80-3 Optional Paper Tape $ 9.00
Photo 1: Processor Technology SOL, with cabinet cover removed to reveal its inner secrets.

tages (12 VDC at 150 mA, 5 VDC at 2.5 A, -12 VDC at 200 mA) to the SOL-PC and keyboard. The SOL-20 system power supply, in addition to these voltages, provides 16 VDC at 1 A unregulated, -16 VDC at 1 A unregulated, and 8 VDC at 6 A unregulated for the backplane Altair (S-100) bus daughter board. The regulated 5 V to the SOL-PC board has an over voltage crowbar on its output which, on my original version, had an overly sensitive turn on characteristic. Processor Technology has since sent a revision which corrected this problem.

The SOL system cabinet is sheet metal with solid walnut sides. It is designed to house the SOL-PC, the keyboard, power supply, backplane and five additional S-100 cards in a fan cooled card cage. The cabinet is constructed so that the power supply is isolated from any radio frequency interference (RFI) switching transients in the memory or processor cards. The whole system looks well shielded, which is an important consideration in this age of CBers. The walnut sides come sanded but unfinished; they look nice but take a lot of time to finish properly.

The assembly manual that came with the system describes the assembly procedure very well. It features the kind of complete, step by step format that kit builders have come to expect. It seems very complete, including pictures and drawings of how to assemble the components and subassemblies into a useful computer and terminal. However, there were no flowcharts, block diagrams or explanations of how the different sections of the computer are supposed to work, or how they interact with each other. As of this writing (spring 1977) I have still not received two sections of my manual, operating procedures, and theory of operation. Most of the information that I have on the operation of the machine has come from an article in the February Digital Design by Lee Felsenstein of LGC Engineering and Robert Marsh (vice president of Processor Technology), who are the co-developers of the SOL terminal system. This article gives a fairly complete though not detailed description of the operation and interactions of the SOL system components.

The CONSOL operating system, which is the minimal operating system, is stored in 1024 K bytes of EROM starting at C000. This operating system has seven commands that can be executed from the keyboard, sufficient to allow the operator to enter his or her own programs or prerecorded programs and execute them. The following are the commands available through CONSOL:

1. DUMP ADDR1 ADDR2 dumps the contents of memory between address 1 and address 2 onto the CRT terminal in a hexadecimal format.
2. ENTER ADDR1 enters hexadecimal format data into memory starting at address 1.
UNDERSTANDING MICROCOMPUTERS answers these and hundreds of other questions clearly in this profusely illustrated, easy-reading "must" book. You'll find fundamental concepts behind the operation of virtually all microcomputers, written in simple English so that anyone can gain the extra knowledge needed to read and understand computer magazines, manufacturers' literature, and feel "at home" around computers. Here are just a few items discussed...

- How a CPU is organized and how it follows sequences of directives to solve problems
- Illustrates basic instructions from almost every class of microprocessor
- Discusses common memory addressing modes—illustrates typical uses

What you must know to tell a computer what to do when using machine language programming methods

- Explains use of flow charts, program worksheets, hand assembly of source codes into object codes, memory maps, purpose of an Editor, Assembler, Monitor
- Benefits of using a high level language
- Introduction to BASIC
- How a computer communicates. Types of commonly used input/output devices and their operational concepts
- Practical aspects of selecting a small computer system
- Plus, hundreds of other practical facts and information

Now available in hardcover for only $14.95... and paperback for only $9.95. Order yours today!

If you are at all curious about small computers, you must own this 300 page no-nonsense text that reads like a simple book! Includes an easy-to-use glossary of key microcomputer oriented words. UNDERSTANDING MICROCOMPUTERS. The name says it all. Order your copy now!

SCELBI COMPUTER CONSULTING INC.
Dept. 000
Post Office Box 133 PP STN
Milford, CT 06460

Price shown for North American customers. Master Charge, Postal and Bank Money Orders preferred. Personal checks delay shipping up to 4 weeks. Pricing, specifications, availability subject to change without notice. SCELBI Books are available in many fine Computer Stores.

IMPORTANT! Include 75¢ postage/handling for each item delivered by U.S. Mail Book Rate; or $2 for each item shipped First Class or via UPS.

Circle 94 on inquiry card.
3. **EXecute ADDR1** executes a program in memory starting at address 1.

4. **Terminal** is a program designed to allow the SOL system to be used like a standard CRT terminal with serial 20 mA or RS232 interface. This ability could make the SOL system very attractive to a small business user who needs an inexpensive terminal.

5. **TL** (tape load) loads a prerecorded cassette tape into memory at an address specified by the tape. The information supplied with the software doesn't give a very good definition of how the TL command looks at the tape header data. Because of this, it is very difficult for the user to configure a tape-header for any data he or she would like to store on a cassette.

6. **BAsic** executes a program located at address 0000, typically BASIC.

7. The final command is the **MODE** command which calls a program that allows all the other commands to be entered on the keyboard and recognized by the computer system.

The early version of CONSOL which I received does not have a command to dump data from memory into a cassette tape. This is a great disadvantage when trying to develop a program. Whether the program being developed bombs out or is successful, it is nice to have a copy so it doesn’t all have to be typed in again.

The purchaser of a SOL system is also supposed to receive a 5 K BASIC operating system with the purchase of the on board audio cassette interface. This 5 K BASIC includes two computer video games. I had not yet received this when this article was written in the spring of 1977.

I ordered my SOL system on September 4, 1976 and anxiously awaited its arrival. Only a portion, the SOL-PC, arrived on November 18, 1976 along with part of the manual. When I opened the box I was confronted with what appeared to be a rather large, random accumulation of parts. However, all of the parts called out in the parts list were there. The assembly would have gone faster if the components had been sorted, placed in small bags, and marked as to the section of the assembly procedure they were for.

The procedure given in the manual calls for construction and checkout to proceed together. To follow the manual you must have a power supply and keyboard to properly assemble the complete SOL system. Because I didn’t have either of these items, I was only able to proceed with the assembly until I came to the first step, which required the power supply; there I stalled. I spent all of Christmas 1976 lurking around the mailbox, awaiting the delivery of the rest of my system. Finally, on January 4, it arrived and off to my basement “laboratory” I scurried, not to emerge “til the beast was up and running.”

After much soldering, bending and clipping, I reached the point of the first operations test. I plugged in my TV monitor, turned on the SOL system power, hit the MODE key, and typed in the DUMP command. Nothing! All I could get was the CURSOR in the upper left hand corner of the screen. This is when the lack of block diagrams and explanations of the system really hit me. After what seemed an extremely long time, I managed to solve the problem. The display uses the first several words of user memory to store the line and character positions for the video display, and somehow, in my haste to complete the assembly, I had bent a pin under one of the memory chips. Dumb, but almost impossible to locate. Once this problem was solved, the rest of the system went together very smoothly.

The total assembly time, excluding the
time I spent looking for my own error, was about 36 hours. The sanding and coating of the walnut cabinet sides took about five more hours. I used clear satin polyurethane finish of the type found in most hardware stores. This is a very hard, clear, fast drying resin that puts a tough, mar resistant sealer on the side panels.

Overall, I feel that the Processor Technology entry in the microprocessor race is a good buy. I have had what seems to me excessive delays but I believe that now that the production of these units is in full swing, there should be a minimal amount of lead time on the system hardware. Processor Technology says that they have sold almost 1,000 of these systems. The software development, however, seems to be lagging well behind the hardware as might be expected from the history of computer science in general.

If you are planning to develop your own software or plan on buying it somewhere other than Processor Technology, the SOL system will serve you nicely. The CONSOL routine provides a step up from the front panel toggle switch design philosophy of most of the other microcomputer manufacturers and I feel it warrants the purchase of this system.

Editors' Note:

At the time this article was edited (August 15 1977) a SOL-20 with 16 K memory and CONSOL was resident in our office at BYTE. 5 K BASIC is now being delivered, according to Terry Holmes of Processor Technology.

The Following Comments Were Received from Bob Bumpous with His Author's Proofs on October 7 1977.

Since completing my SOL-10 I have written a couple of short programs to test the various hardware options of my system.

I have also purchased the SOL upgrade kit which adds the larger power supply fan and backplane and an IMS 8 K memory.

I have received the two missing sections of my manual and my BASIC tape. I have not yet been able to run BASIC due to a problem I'm having getting my cassette tape interface to operate properly.

I have also received my SOLOS operating system; all of the functions except the tape interface seem to work well.
The Waterloo RF Modulator

In recent months a number of projects have taken advantage of the special input characteristics of Schmitt trigger TTL parts. They have been used as oscillators, monostable multivibrators and signal conditioning elements. This reminds me of a simple circuit I used as a video radio frequency generator when I worked on a low cost terminal development project.

As can be seen from the schematic, IC1A is a conventional free running Schmitt trigger oscillator running at one third of the desired television channel carrier frequency. For example, channel 3 would require it to oscillate at about 20 MHz. IC1B acts as a buffer whose output is a square wave at the fundamental frequency of the oscillator. A square wave has odd order harmonics, the second of which is at three times the fundamental, the third at five times, and so on.

Q1 modulates the generated radio frequency output by varying the effective power supply voltage to IC1. Since standard video is one volt peak to peak, the modulation depth is about 20 percent in this circuit when using a standard 5 V supply.

Most low cost television sets have a hot chassis, therefore a simple capacitive connection is provided by connecting a 6 inch piece of 300 ohm twin lead to the output of IC1B and the computer's ground, and taping a second piece of 300 ohm twin lead to the top of the first making physical contact but not direct electrical contact. The second piece of twin lead is then connected to the set's antenna terminals.

As with all radio frequency devices, normal caution should be exercised with this device in preventing unwanted interference. (For example, don't leave your antenna connected to the set if you want to keep peace with your neighbors.)

Figure 7: The Waterloo RF Video Modulator. This circuit works by modulating the power supply voltage of a digital integrated circuit. The frequency of oscillation is set by resistor R1 and should be adjusted for best reception on the chosen channel. Capacitive coupling between two DC isolated sections of ordinary twin lead gets the signal into the television set without any worries about AC ground problems.
MSD What You See is What You Get!
Now, A Video System You Can Afford!

MSDV-100 Video Display System:

The Video Display System is a high quality 80 character, 24 line video output device for the S-100 bus. Many advanced features have been incorporated which are not normally found on units costing many times the price.

The character set includes upper and lower case characters as well as full punctuation. Any character can be underlined, a feature useful in word processing. A character can also be made to blink at a user selectable rate, often used for alarm or warning situations. Additionally, a character can appear in reverse field (black on white) or, if composite video is used, individual characters can be intensified.

Also included in the MSDV-100 is the ability to generate high quality continuous forms overlays. Charts, graphs, or order entry forms are easy to produce on the video screen.

A third significant feature of the Video Display System is the ability to display grey scale elements in any of nine levels in any of 1920 positions on the screen. This is especially useful for bar graphs and for grey scale graphics or animations.

MSDD-100 Floppy Disc System:

The MSDD-100 Floppy Disc System is a significant advance in low cost, high density mass storage systems. Using the industry standard Shugart SA-400 minifloppy™ drive and a highly reliable LSI controller, the single card MSDD-100 Floppy Disc System represents a major cost/performance breakthrough for the hobbyist and businessman.

Many features not provided on larger disc systems are standard on the MSDD-100 Disc system. The controller will support up to three drives and provides all of the disc timing functions, therefore no software timing loops are required. A very flexible onboard vectored interrupt structure is provided, a valuable feature for use in modern multi-tasking applications.

The disc controller design is totally synchronous, requiring no "one shots". Ease of maintenance is evidenced by the fact that there are no adjustments required for operation.

Internally, the MSDV-100 is a two-board S-100 based system which occupies 2K of RAM address space and two I/O ports, user selectable. The microcomputer can write to the screen directly with horizontal retrace synchronization if desired for a flicker free, very high speed display.

Software support for the MSDV-100 is complete with both machine language code, including fully commented source listings, and a comprehensive Basic software package implementing all MSDV-100 features. Assembly language drivers allow the sophisticated user to easily customize the system for specialized applications.

Programs are provided that permit the user to link the video system to high level programming languages such as Basic. A link program, provided in Basic, permits the user with no knowledge of assembly language programming to immediately obtain video output. The link fully implements the forms capability of the MSDV-100, including direct cursor addressing, as well as the other advanced features of the Video Display System.

Also included are disc driver routines for Altair Basic, which allow program and data storage on disc, and permit sector level I/O through Basic. Many programs and files may be kept on a single disc, and cassette I/O is retained. These drives work with 8K, 3.2, 8K 4.0, Extended 3.2 and 4.1 versions of Basic.

MSD Sales and Service

2785 So Colorado Blvd Suite 110 Denver, CO 80222 (303) 758-1717

Sanyo Monitor (VM420) $150
Micro-Floppy Disc System $499
Video Display System $365
(Assembled) $385
Additional Drivers $350 ea.
Diskettes $4.25 ea.
Power Supply not included.

To place order, send check, money order or BA or MC Card # with exp. date and signature. Uncertified checks require 6 weeks processing. Phone orders accepted.

Please send me the following: AMOUNT

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>City, State, Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL:

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>City, State, Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Circle 71 on inquiry card.
sense organs, and the design and execution of movements in space, lend themselves perfectly to parallel processing in small subunits. Here the brain can vastly outperform our typical current computers which have only one, or at most a few, processing units capable of simultaneous operation. For example, all of the data in the visual field is available simultaneously on the surface of the retina. Rather than dealing with it point by point, the brain sucks it all in at once in one enormous byte and sets to work on the analysis of many small areas of the visual field simultaneously. (We shall examine its algorithms in detail later.)

Even with the small cheap processors available to us now, we could obviously never afford to match the brain in quantity. However, we don't have to go to the other extreme and try to do it point by point serially with a single very fast processor as has been typically attempted. The job is just too large for even the fastest machine to do this way, and there are certain advantages as well in terms of the feature extraction process to having a basically parallel system. On the other hand, we do have a speed advantage and it certainly should be possible to simulate the operation of a number of the brain's processors with only one of ours in the same time frame. (There will be some increase in complexity where the results of neighboring units are interactive.) Just how to optimize this sort of tradeoff is, of course, a matter for much study. A first step which we shall take here will be to examine some of the tricks and shortcuts in the feature extraction process that the brain itself uses to save time.

The third system characteristic which results from the brain's hierarchical organization is high survival value. We will learn nothing about Asimov's first two "laws" of robotics (the protection of human beings) by studying the brain. The third law, ensuring the survival of the robot, has always been a major concern of brain architecture. It is annoying, but not usually fatal when the big machine in the computer center develops a fault. When it happens to a brain, or in the situations we will send them into, a robot, the whole device may be destroyed. The redundancy inherent in the brain's basic structure is, of course, valuable in this regard, but there is more to it than that. Recall two facts about the brain: There is an evolutionary order of development to its structure, and the major functions have representation at all levels. These two facts are related. Whereas our computers have never been expected to incorporate pieces of earlier models, the brain in the present form contains most of the parts of its earlier forms. The simplest early brains obviously had to be capable, in their own inelegant way, of getting the organism around in the environment and surviving. During the course of evolution, more complex structures capable of more sophisticated handling of the same basic functions became available. Rather than eliminating the older structures and duplicating their functions, the newer ones simply took control of the older and used them as subprocessors. A fairly general principle of organization evolved in which the higher level structures control the lower not by turning them on when needed, but by inhibiting their actions except as desired. The beauty of this system is that if a higher center is suddenly damaged, the older, more primitive units which it normally holds in inhibition are released to function on their own. Thus, damage tends not to eliminate vital functions, but only to downgrade the complexity with which the job can be performed. This is especially true of functions such as defense.

The typical result of damage to higher brain centers is a "nasty" animal, ie: one which can adequately fight, but which fails to make fine discriminations about the appropriate stimulus conditions for doing so, and which defaults in the safe direction by attacking any strong stimulus source. Of course this kind of thing has its limits, and this is particularly true of the most highly developed brains where some of this type of organization is sacrificed in order to give the highest centers direct access to the lowest for feedforward in the control of complex operations.

In the case of damage to lower centers, the multitude of processing elements available allows some of the higher levels to be reprogrammed to take over the functions of lower level systems by simulating their operation. The process takes a little time to organize, but it can be quite effective if the organism can survive for a few weeks while reorganization takes place.

While it is apparent that it is not possible to give a definite answer to the question of where a function of any complexity is performed in the brain, it may be useful (for orientation to the device) to identify some of the anatomical divisions of the brain shown in figures 3 and 4 with some of the functions which have important representation at those levels.

The lowest level of the central nervous system, the spinal cord, is a major route of input and output to the rest of the brain. With the exception of a few special cases, most of the sensory input from the body and most of the output to the muscles passes through this structure. Although it contains
FREE SOFTWARE in DR. DOBB'S JOURNAL

COMPLETE SYSTEMS & APPLICATIONS SOFTWARE
User documentation, internal specifications, annotated source code. In the two years of publication, DDJ has carried a large variety of interpreters, editors, debuggers, monitors, graphics games software, floating point routines and software design articles.

INDEPENDENT CONSUMER EVALUATIONS

PRODUCT REVIEWS & CONSUMER COMMENTS
Dr. Dobb's Journal publishes independent evaluations of products being marketed to hobbyists. It is a subscriber-supported journal. Dr. Dobb's carries no paid advertising; it is responsible only to its readers. It regularly publishes joyful praise and raging complaints about vendor's products and services.

“THE software source for microcomputers. Highly recommended.”
Philadelphia Area Computer Soc.
The Data Bus.

“It looks as if it's going to be THE forum of public domain hobbyist software development.”
Toronto Region Association of Computer Enthusiasts (TRACE), Newsletter

“The best source for Tiny BASIC and other good things. Should be on your shelf.”
The Computer Hobbyist, North Texas (Dallas) Newsletter

& LOTS MORE!

* Hot News & Raging Rumor

* Systems Projects

Dr. Dobb's Journal
of Computer Calisthenics & Orthodontia

Please start my one-year subscription (ten issues) to Dr. Dobb's Journal of Computer Calisthenics & Orthodontia and bill me for just $12.

NAME __
ADDRESS __
CITY/STATE _______ ZIP ________

Unconditional Guarantee: If you ever wish to discontinue your subscription for any reason, we will refund the complete amount for the remainder of your subscription.

[] Visa Card Number ________________________
[] Mastercharge Expiration Date ____________

Signature ________________________

Outside the U.S., add $4 for surface postage. Airmail rates on request.

Mail this coupon or a facsimile to: Dr. Dobb's Journal, Dept 53, El Camino Real, Box E, Menlo Park CA 94025

Circle 86 on inquiry card.
immense fiber tracts, it should not be considered merely a cable. The nuclei of the spinal cord perform many important functions as intelligent terminals on both the input and output sides. Moreover, some simple actions are processed entirely at the level of the spinal cord from input to output. Everyone has seen an example of such a "spinal reflex" in the knee jerk produced by their doctor's rubber hammer.

The medulla andpons are also importantly involved in “intelligent terminal” types of IO activities, but at the so-called supra-segmental level of control. That is, these structures are frequently concerned with coordinating the activities of the IO routines in the cord so as to direct activities that involve the entire body rather than individual segments such as a single limb. For example, the pattern of motor activity involved in walking requires the coordination of the entire body to maintain balance as the center of gravity shifts, etc (such things as the decision to walk, and the choice of direction are in the province of higher centers). The medulla andpons also have important relations to a number of the special senses such as hearing and balance which are not represented throughout the body. Some of this sensory information is utilized immediately as input to supra-segmental reflexes, and some is processed for output to higher centers.

A complex physiological organism requires a great deal of regulation of its internal environment; the temperature must be exact, the heart rate must be regulated, inhalation must be controlled. These “housekeeping” routines also have representation at this level of the brain.

The mesencephalon is in many ways similar to the pons and medulla in its functions. In general, there is a transition from higher to lower degrees of abstraction in these IO systems as one progresses from the mesencephalon down to the medulla. The mesencephalon is in addition one end of a system, originating in the limbic system of the forebrain, which is important in regulating the type and intensity of the high level processing performed by the more advanced structures of the forebrain. There are two systems of the brainstem (medulla, pons, and mesencephalon) which may be mentioned in this context. The first is a system known as the reticular formation which has important functions in the brain analogous to the vectored interrupt system of the computer. It continually monitors the input of all the sensory systems, more for quantity of activity than for detailed analysis, and controls the degree of activation of various portions of the higher centers on this basis. Thus, it can immediately arouse the brain when a novel or intense stimulus is encountered, and jump the whole system to a stage of attention to, and analysis of, the important event. It also seems to exercise similar functions on the output side of operations.

The second “system” of the brainstem might be called the “amine” system, because it consists of a set of interacting nuclei which use various compounds of the chemical class known as “amines” in their operation. This system has a great deal to do with the mode of operation of the rest of the brain. Like the reticular formation, with which its activities are integrated, it sends its axons into all parts of the brain to make synaptic contacts with large groups of neurons in the forebrain and the brainstem and cord. Since the axons of these few neurons make millions of synaptic connections with vast numbers of neurons, we might expect that their function was a regulatory bias rather than the transmission of very specific information, and this appears to be the case. These nuclei are involved in such functions as regulation of waking, sleeping, and dreaming states, and apparently other “altered states of consciousness” since the hallucinatory drugs such as LSD are thought to exert their major effects here. Problems in some of these amine systems appear to underlie such abnormal operational modes as schizophrenia. Some portions of the amine system also regulate the intensity and selection of the various detailed patterns of activity generated by higher structures. Thus, in Parkinson’s disease, which involves a disorder of part of this system, the ability to execute voluntary activities is impaired, although the conception of them is not. The systems of the brainstem thus exert a very major control over the general types of activity in which the higher levels of the device engage. A very interesting development here is the closing of this loop by return projections from the highest levels of the brain, the cortex, which allows the machine to gain control over its own status. This loop is fundamental to the phenomenon of consciousness.

Lying above the pons is the structure known as the cerebellum. This device is a subprocessor for some types of motor output. It is basically involved in the parallel to serial conversion of output that is not to be continuously modified by feedback control to the higher levels which specify its input. It can accept a parallel byte which defines an action to be undertaken, modify it to incorporate the current status of many variables of limb position, loading, etc, and
Many books on microprocessors and their use are now on the market, and most of them have names that sound alike. But Osborne & Associates' books have dominated this market since 1975, when our first book appeared. With rave reviews from all over the world, with more than three hundred university text adoptions, our books are all best sellers. In fact, "An Introduction To Microcomputers: Volume I — Basic Concepts" now holds the world's record in sales volume for any computer textbook sold for a profit.

If you want information on microprocessors, begin with the Osborne books.

For the microcomputer user, a series of books provide complete programs, written in BASIC. All these books are by Lon Price and Mary Batchers.

"Some Common Basic Programs" 200 pages. Book No.: 21002 $7.50

"Payroll With Cost Accounting — In BASIC" 400 pages. Book No.: 22002 $12.50

"Accounts Payable and Accounts Receivable" Book No.: 23002 $12.50 Available early 1978

"General Ledger" Book No.: 24002 $12.50 Available mid 1978

"8080A and 8085 Assembly Language Programming" By Lance Leventhal.
This book is for the assembly language programmer or student; it explains assembly language programming for the 8080A and 8085 microcomputers. The book contains numerous examples. 400 pages. Book No.: 31003 $7.50

The "Programming For Logic Design" series of books show how to use microprocessors in a digital logic environment.

"8080 Programming For Logic Design" By Adam Osborne. 300 pages. Book No.: 4001 $7.50

"6800 Programming For Logic Design" By Adam Osborne. 300 pages. Book No.: 5001 $7.50

"Z80 Programming For Logic Design" By Adam Osborne, Susanna Jacobson and Jerry Kane. Book No: 7001 $7.50

The "Programmiing For Logic Design" series of books are available ready 1978.
convert the instruction to a series of sequenced operations with specified durations. Damage to the cerebellum has no effect on conscious processes, but seriously impairs the performance of muscular actions.

Above the mesencephalon, we encounter the diencephalon. The two major subdivisions, thalamus and hypothalamus, are quite different. The hypothalamus is heavily involved in the sorts of housekeeping functions mentioned earlier. It controls the secretions of the endocrine system, for example, and is involved in a wide range of functions such as temperature regulation. In its role as chief executive of internal operations it, of course, must continually monitor internal conditions. These internal conditions in turn are frequently the ultimate sources of the whole brain's functional orientation. Thus, if the hypothalamus detects a low level of sugar in the blood, it initiates a state which we experience as hunger. This state represents a reorganization of the brain's systems for the control of goal directed behavior which causes the organism to engage in food seeking behavior. The hypothalamus thus contains part of the brain's analog of a computer's priority interrupt system. On the output side, the hypothalamus is important in changing the state of the internal body functions to correlate with higher priority interrupts. For example, if the limbic system initiates a "danger encountered" state, which we experience as fear, the hypothalamus must see to it that the body is mobilized for action with regard to blood flow, adrenaline levels, etc. The hypothalamus is also an important link in the limbic system-mesencephalon organization that in general specifies goals based on drives and emotional states for use in selection of overt behavioral activity.

The thalamus, the other major component of the diencephalon, functions as a very high level IO processor which prepares information for, and in part organizes the activity of, the cerebral cortex. Arrival of sensory input in the thalamus is sufficient for some rudimentary conscious experience of sensation, at least in some sensory modalities, but any very detailed resolution of the experience requires the enormous digital processing power of the cerebral cortex. In many respects, the various cortical areas act as subprocessors doing detail work for the various nuclei of the thalamus which route the information to and from them. Some thalamic-cortical systems are concerned with simple feature extraction of the input data, others with extrapolation of current events, and yet others with transmission of these extractions and extrapolations to other parts of the brain which, for example, evaluate them for relevance to current drive states or return sets of similar data from memory.

In this activity, the limbic system functions in the analysis of current and extrapolated data for relevance to the organism's needs. Thus, when we are hungry and see food, the limbic system in conjunction with the other structures mentioned earlier initiates a state which enables the sensory signal of food to initiate appropriate behavior, which is generated in detail by the cortex-thalamus-striatum apparatus. We experience the operation of this state of the limbic system as pleasure. If on the other hand, the limbic system recognizes unfavorable situations, other states are generated (experienced as fear or anger) which cause other sorts of detailed actions to be generated.

The striatum, like the cerebellum, is importantly involved in the organization of motor output. It generates patterns of movement on the basis of input from analytic cortical areas, which are regulated in intensity by inputs from the amine systems under the direction of the limbic system, and it outputs these patterns both to the movement controlling areas of the cortex, and more directly to lower motor mechanisms. Unlike the cerebellum, the movements generated in the striatum are under continuous control of the cortex, and since the cortex is continually receiving and processing sensory information from the environment, a closed loop system is formed. This system is importantly involved in "voluntary" and learned movements.

We have already mentioned most of the functions of the cortex since it is of necessity involved in almost all the higher functions of the other brain structures. Its operation is essentially that of a vast decoding and encoding network which gives analytic and synthetic power to the operation of the other systems. Without it, their operation would be the same in type, but would be much reduced in capability due to the loss of capacity for fine distinctions and discriminations on the one hand, and large scale generalizations and synthesis on the other. The cortex first appears in other than rudimentary form with the evolutionary appearance of the mammals. Their behavioral diversity and plasticity as compared with the stereotyped, reflexive, instinctive behavior of the reptiles is probably associated with this structure.

This brings me to the final general point I want to make about the brain before we consider the detailed operation of some of its functions. One of the most important features of the brain is that it learns. Our
Everything you need in small computer systems!

LEAR SIEGLER ADM 3A TERMINAL
- **Kit**: $739.95
- **Assembled**: $849.95

HAZELTINE 1500 VIDEO TERMINAL
- **Assembled**: $1149.00
- **Kit also available**

MODULAR 1 INTELLIGENT TERMINAL
- **Assembled**: $1659.00

IMSAI 8080 MICROCOMPUTER
- **With 22 slot**: $649.95

SPECIAL BUYS
- IMSAI Double Density Persci Drive: $2295.00
- Sorac IQ 120 Video Terminal: $959.00
- DEC LA 160 Printer: $2795.00
- Compucolor 8001 Color Computer: $2595.00
- ICOM Microfloppy System: $989.00
- North Star Microfloppy Disk Kit: $599.00
- Cromemco Z-2 Kit: $565.25
- Javelin 9" Video Monitor: $159.95
- Micropolis Model 1053MOD2: $1799.00
- IMSAI AP44-44 Col. Printer Kit: $329.00
- TDL Xitan Alpha 1 Computer Kit: $699.00
- ICOM Model FD 3712: $2795.00

NEW!

CENTRONICS 779 PRINTER
- **703 SERIAL PRINTER**: $1099.00
- **761 PRINTER**: $1695.00

OKDATA MODEL 110 LINE PRINTER
- Friction Feed: $1149.00
- Tractor Feed: $1279.00
- RS 232C Serial Interface: $260.00

MODEL 22 LINE PRINTER
- Tractor Feed: $2249.00

TELETYPE MODEL 43 PRINTER
- **IMSAI PC S-80/15 8085 COMPUTER**
- **Kit**: $749.00
- **Assembled**: $929.00

We carry a full line of the following: TDL, Centronics, Seals, Hazeltine, Micropolis, Hayden, IMSAI, Cromemco, Compucolor, Icom, Lear Siegler, Okidata, DEC, Javelin, North Star, Peripheral Vision. Same day delivery and shipping on most items. Full modern repair facilities on premises for complete servicing of everything we sell.

SYNCHRO-SOUND ENTERPRISES, INC.
The Computer People
193-25 Jamaica Avenue, Jamaica, New York 11423
212/468-7067 TWX: 710-582-5886
Hours 9-4 daily Visiting our new showroom and Saturday Working units on display Dept. BBB BankAmericard MasterCharge

Circle 104 on inquiry card.
computers learn in a limited sense during programming, and some programs can learn to improve their performance on the basis of experience. This latter type of learning is characteristic of the way the brain operates, and it applies the process to almost everything it does.

You will notice that when I described some of the general functions of the different regions of the brain, I made no mention of memory. This is because we have no idea where it is. Indeed, the evidence suggests that the brain's memory is incorporated into its structure at whatever point the stored information is to act. Its memory then may be thought of as being distributed throughout its structure. At present, we can offer only speculation as to the physical nature and detailed processes of the brain's memory storage. Fortunately, we know a great deal about the operation of the brain's memory as a "black box" so that we can understand how it enters into the brain's algorithms, and we do not really need to understand its detailed physical nature to effectively use its principles of operation. Our current memory chips are a little inferior to the brain's memory in terms of capacity, but they are superior in speed and accuracy. Some programmable scratch memory and ROM chips associated with each of a robot's processing elements would do nicely, especially if supplemented by a disk for slow mass storage.

Researchers identify at least two types of learning that the brain permits, both very pragmatic. It has found that things that have occurred sequentially several times are likely to do so again, so it learns to associate them and act in anticipation. Thus, if the reflexive response of the nervous system to a painful stimulus applied to the foot is to quickly flex the leg, and if such a painful stimulus is repeatedly preceded by a "neutral" stimulus such as a bell sound, the brain will quickly learn to flex the leg whenever the bell sounds. This is the so-called "Pavlovian conditioned reflex." The potential utility of this scheme is obvious. Assuming the natural reaction to the painful stimulus is of use to the organism, then performing the reaction in response to the antecedent neutral stimulus allows the organism to get a jump on the world and perform more efficiently. This kind of action, although not the capacity to learn it, is employed in some computer memory systems which anticipate the next address call. Two limitations of this type of learning should be noted. The first is that the only thing that can be learned is the early performance of the natural response to the second stimulus. Thus, the organism's behavioral repertoire is not expanded, just made more efficient. The other is that all that is necessary for this type of learning is temporal contiguity of the events; it does not matter whether or not the anticipation is successful in improving the results. If you tape an electrode to the foot so that a shock following a bell occurs whether or not the leg flexes, the flexion of the leg still gets conditioned to the bell.

A second type of learning in which the brain engages is called "operant conditioning." This is the type of learning that permits us to expand our behavioral repertoire and base such expansions on the quality of the results. Simply stated, this type of learning is based on the principle that behaviors immediately preceding a reward are increased in future probability of occurrence. "Reward" here refers either to some pleasing event occurring, or some unpleasant state being terminated. Thus, behaviors that lead to good results will tend to recur. If we now add to this the second principle, that the behaviors immediately preceding the reward are the most strongly affected, it follows that more efficient behavioral routes to the reward are more strongly affected than less efficient ones. In this fashion, whole new behavioral patterns are built up out of successful components of more or less random exploratory behavior, and these quickly become welded together into tight and effective behavioral sequences.

The more developed brains rely very heavily on learning to produce most of their behavioral patterns. Less developed ones rely most heavily on prewired inflexible behaviors. Thus, evolutionarily primitive brains, such as those of fish, amphibians and reptiles, while capable of limited learning, generally rely on wired in behavior patterns that are available at birth. The advantage is early ability of the immature organism to fend for itself. The disadvantage is inflexible behavior that cannot easily adapt to an environment that differs from that in which the species evolved. Advanced mammals on the other hand, particularly man, are characterized by heavy reliance on learned behavior, which results in the protracted state of infantile helplessness followed by enormous behavioral flexibility and adaptiveness.

The parallel with our current attempts at robots is obvious. The major hurdle is designing a system that can operate in a generalized environment rather than being restricted to a specialized one with which it is preprogrammed to deal. The answer is also obvious. A successful robot must be capable of operant conditioning including the ability to be rewarded for successful at-
The difference is value. Take a look at our low-cost microcomputer's heavy duty cabinet. Even with the cover removed, it maintains its rigid structural integrity. But we don't stop there. Quality built Vector Graphic products, from boards and kits to complete systems — such as our Memorite turn-key text editor shown below — beat all competitors in mechanical, thermal and electrical design.

Based on an 8080A microprocessor and the S-100 bus structure, Vector Graphic microcomputers are compatible (with the exception of minor I/O patches) with all of the current 8080A software.

If you're designing small business systems, text editors, control equipment, games or even microprocessor development, it will pay you to look into our low cost microcomputers and interface boards, kits or assembled.

Vector Graphic's microcomputer:

What's in it for you?

Rush me details today.
Yes, I'm interested in:
- [] Systems
- [] Boards, kits or assembled
- [] Microcomputers

Name __________________________
Firm __________________________
Phone __________________________
Address __________________________
City/State/Zip ____________________

Vector Graphic Inc., 790 Hampshire Rd., Westlake Village, CA 91361 (805) 497-6853

Sold and serviced nationally.

Word processing systems for $7,950 — features normally found in systems costing twice as much.

Circle 112 on inquiry card.
Control your Premises!
with INTROL

the Intelligent
Remote Control System

Mountain Hardware's new INTROL™ system is a sophisticated remote control system that communicates over the standard 110 VAC power lines. The AC Controller™ board is an S-100 compatible board that is capable of controlling up to 64 remote units anywhere in your building. The AC Remote™ unit has two independently controllable AC sockets that can turn two 500 watt appliances on or off. The computer can also "poll" the remote to check its status (on or off).

Programs can easily be written in Basic or assembly language to monitor and control remote devices. All future remotes (temperature indicator, remote terminal, and status sensor) will be compatible with the AC Controller board. An Apple II version is also available.

A functional INTROL system requires one AC Controller board and at least one remote unit. Complete documentation is provided with each component of the INTROL system along with software subroutines for your own controller programs.

PROROM Advanced 8K Memory System

PROROM is a 7.5K EPROM + 512 RAM board that is S-100 compatible. It has a built in programmer which allows you to program the AMI-6834 EPROMs one byte at a time without special software. The kit is complete with sockets, manual, 256 bytes of RAM and one 512 byte PROM, preprogrammed with an 8080 system monitor.

KIT ASSEMBLED

AC Controller ...$149 $189
AC Remote ...$99 $149
PROROM ..$164 $214

Available now at most computer stores or directly from Mountain Hardware, Inc. Visa and Master Charge accepted. Calif. res. add 6% sales tax. (408) 336-2495.

Mountain Hardware, Inc.
Box 1133 Ben Lomond, CA 95005

BIBLIOGRAPHY

Elementary
Carlson, N., Physiology of Behavior, Allyn and Bacon, NY 1977.

Advanced
More Than Just Hardware.

When you put the MSI 6800 Computer System together with our FD-8 Floppy Disk Memory, you have the best 6800 hardware package available today.

But to make a computer system work, you need more than just powerful hardware, you need powerful software . . . and MSI has what you need.

MSI Disk Extended BASIC Available in Both Compiler and Interpreter Versions

The new Software Dynamics BASIC Compiler is now available from MSI in an FD-8 Disk Version. The Compiler, with random and sequential disk data files, runs 50 times faster than the interpreter version making it ideal for business applications.

The Excellent TSC Editor In An FD-8 Disk Version

TSC's new text editing system is clearly the most powerful editor available for any microcomputer system. The FD-8 disk version allows you to edit and assemble long source files from disk and to place object code on disk as well.

MSI Reverse Assembler

Our Reverse Assembler for the FD-8 allows disassembly of object code programs, complete with creation of symbol tables, labels, and equate statements. The source code is placed on disk where it can be edited and reassembled.

Interpretive Debugger

An Interpretive Debugger is now available for MSI and SWTP 6800 systems. IDB is the most complete debugging package ever released for 6800 systems.

Hardware and software . . . MSI offers a complete computer system for the hobbyist, professional, and businessman. Send for our new 1978 Catalog and get all the details about these and many other fine MSI products.

Midwest Scientific Instruments

220 West Cedar
Olathe, Kansas 66061
(913) 764-3273
TWX 910 749 6403 (MSI OLAT)
TELEX 42525 (MSI A OLAT)
Where KAISSA Founders on a Bug

and CHESS 4.6 Conquers All

The Second World

Computer Chess Championships

About the Author

Peter Jennings is author of MICROCHESS, a 6502 chess playing program developed for the KIM-1, and seen in operation at the PC 77 show in Atlantic City NJ. MICROCHESS 1.5 versus DARK HORSE is a match that Peter expects to report upon in the near future to give personal computer users an idea about the prospects of entering small systems in international chess competition.

The Second World Computer Chess Championships were held on August 7, 8, and 9 1977 at the Hotel Toronto in downtown Toronto Canada under the sponsorship of the International Federation for Information Processing (IFIP). 16 programs from the United States, Canada, USSR, United Kingdom, Switzerland, Netherlands, West Germany and Sweden competed in a 4 round Swiss style tournament for the world title.

The event drew large audiences of spectators including computer and chess experts from around the world. In attendance was Mikhail Botvinnik from the Soviet Union, world human chess champion during the period from 1948 to 1963. Also attending the event was Hans Berliner, former world correspondence chess champion and author of J.Biit, an earlier chess playing program. Lively expert commentary was provided by international master and computer chess author, David Levy, who is watching computer chess developments very closely these days because his wager of 1968 that no computer chess program will beat him in a tournament before August 1978 is about to run out.

The trend evidenced by the competing programs seems to be toward larger programs running on faster machines. Three of the programs ran on Amdahl 470/V6 computers, and CHESS 4.6 was running on CDC's Cyber 176. At the other end of the spectrum, OSTRICH was the only program running on a computer at the tournament site. A Data General Supernova was used. Communications were provided to remote data centers as distant as England, Germany, and California for the nonportable programs.

The 16 entrants were initially ranked on the basis of previous play before the tournament. In the first round, the eight superior programs were played against the
CHESS 4.6

For the next three years CHESS 4.6 will be the reigning world champion computer chess program. CHESS 4.6 was written in the CDC assembly language by David Slate and Larry Atkin at Northwestern University in Illinois, and runs on the CDC Cyber 176 located at Arden Hills MN. Initial work on the program began in the spring of 1968 and revisions have followed almost continuously since that time. Different versions of the program have held the US Computer Chess Championship title in 1970, 1971, 1972, 1973 and 1975. The program placed second in 1974, and second at the First World Computer Chess Championships, also that year.

CHESS 4.6, like almost all chess programs, plays chess by generating the possible legal moves for each side and evaluating the resultant position. The evaluation of this resultant position usually requires the generation of subsequent moves until a value can be ascertained, or until the time allotted to the evaluation has expired. Because of the number of moves normally available in a chess position (average 42), the number of terminal positions which must be evaluated grows exponentially with the depth of the search. Many programs restrict the number of moves they examine as a means to extend the depth of search. CHESS 4.6, on the other hand, conducts a full width search but is consequently restricted in the maximum depth to which it can evaluate a position. It must also evaluate each terminal position as rapidly as possible.

The evaluation of each position is based upon the material and positional factors. The material factor is considered to be the most important as most chess players will agree. The positional factor is limited in importance to less than the value of 1½ pawns in material difference. The value of any given position is based on the material difference between the sides and on penalty and bonus points allocated for positional factors such as: the pieces under attack, the pawn structure (doubled, isolated, passed or backward pawns), the rook positions (squares controlled, enemy king tropism, doubling, file control and seventh rank), the bishop position (square control and development), the knights (king and center tropism, and development), the queen position (square control and king tropism) and the king position (safety, center and pawn tropism). Two different algorithms are used: one for positions involving an even material position, and a "mop up" algorithm for positions in which one side has a clear material advantage.

For further discussion of the evaluation routines the reader is directed to a chapter in reference 1 by David Slate and Larry Atkin in which they describe their program in some detail.

The CHESS 4.6 program plays extremely good chess. It is capable of beating 99.5 percent of all USCF rated players in the United States under tournament conditions. Perhaps even more remarkable is its play in blitz games. With restrictions of a five minute time limit for 60 moves, the program has already beaten many master players including David Levy, Hans Berliner and Lawrence Day. If any program has a chance to beat David Levy before next August, it will be CHESS 4.6. The authors will be working hard to improve the program between now and next summer.
Game 1: White: DUCHESS. Black: KAISSA.

For the record, here is the full listing of the victory of DUCHESS over KAISSA.

In the first round of play, KAISSA was unexpectedly defeated by DUCHESS in an upset which will long be remembered. Post game analysis fingered a bug in KAISSA introduced by a last minute "improvement" of the program.

White: DUCHESS	Black: KAISSA

1. P-K4	P-Q4
2. PxP	N-KB3
3. P-Q4	NXP
4. N-KB3	P-KN3
5. B-K2	B-N5
6. P-QB4	O-O
7. N-B3	B-N5
8. P-K3	B-Q6
9. P-B5	P-Q4
10. O-O	P-K3
11. Q-N3	P-N3
12. NxN	Pxn
13. B-KN5	P-Q4
14. P-KP3	B-N2
15. P-B3	R-K1
16. R-K1	B-B5
17. N-Q2	B-B4
18. P-K3	K-Q3
19. B-K1	P-B4
20. PxP	BxP
21. R(K1)-QB1...

Better is R(R1)-QB1. White has a positional advantage due to the control of the open file and the weak placement of Black's knight.

21. N-N3	Q-Q2
22. B-N4	Q-O4
23. Q-B6	P-B3
24. B-K2	R(R1)-Q1
25. Q-R4	R-K2
26. B-N5	Q-B4

Position after 26...Q-B4.

This is the move which was apparently caused by a bug in the KAISSA program.

27. R-B2	N-N4
28. P(Q1)-Q1	B-B3
29. Q-N3	P-QR4
30. P-KN4	Q-K3

Black's queen is terribly restricted.

31. R-B6	P-R5

KAISSA sacrifices the rook pawn in order to draw DUCHESS' queen away from the long diagonal.

32. QxP	R-Q3

The KAISSA program rejected Q-R8 as an important threat, and had consequently not fully analyzed the continuation which follows.

33. RxR	QxR
34. Q-R8ch!	R-K1

If 34...K-N2, then 35. Q-B8ch KxQ, 36. R-K6ch B-N2, 37. R-B8, and mate follows.

35. QxRch	K-N2
36. P-N5	B-K1
37. B-QB4	K-Q2
38. QxQ	B-N4
39. B-B4	B-N3
40. B-Q5	K-K2
41. R-B8	B-N2
42. R-B4	K-N3
43. BxP	B-K3
44. B-K3	B-Q5
45. Q-N5	B-Q5
46. B-B3	K-Q2
47. P-QR4	N-Q3
48. R-B6	N-B4
49. BxP	Resigns.

Weaker or untried programs. The previous world champion, KAISSA, from the Institute for System Studies in Moscow, was paired with ninth ranked DUCHESS from Duke University in Durham NC. It was expected that KAISSA would have an easy win.

Both KAISSA and DUCHESS utilize an "opening book" computer chess strategy. KAISSA's book contains 10,000 possible opening positions, whereas DUCHESS' book contains only 3,000. The use of an opening book allows the programs to play rapidly for the first few moves of each game while maintaining a line of play previously determined to be the best by human chess masters. Only two of the programs entered in the tournament played without opening books.

After 25 moves, the DUCHESS program, playing white, was judged by David Levy to have only a marginal positional advantage over black. To this point, KAISSA had used only 14 minutes of its available time while DUCHESS had used 59 minutes.

Under the rules of the tournament, each side must complete 40 moves in the first two hours, and at least ten moves in each succeeding half hour. Several programs, including KAISSA, made use of their opponents' time by preparing replies to the most probable move expected. Very often, the expected move would be played, and the program could respond instantly.

On move 26, KAISSA unexpectedly moved its queen from Q4 to B4. Although this move appeared to be of little significance, four moves later it became apparent that black was in trouble. KAISSA's black queen was dangerously restricted and DUCHESS was threatening checkmate. A rook sacrifice was necessary to prevent the immediate loss, but a win for black was almost impossible from that point onward. After move 48, DUCHESS was declared the winner, and the previous world champion...
IMSAI COMPUTER

MODEL 8080 MICROPROCESSOR SYSTEM

Inclu des CPU, mainframe with 22 card slots, front panel, and power supply. Comes assembled and ready to plug in and enjoy!

$875

Assembled and tested

8K RAM BOARD

- **250 nS ACCESS**
- **LOW POWER**
- **NOT A KIT**

- S100 bus: plugs right into Altair/IMSAI, or any computer using the "Altair" bus
- Convenient dip switch selection of address assignment and wait cycles
- Memory protection dip switch selectable in increments of 256, 512, 1K, 2K, 4K, or 8K bytes
- Fully buffered address lines allow use in large computer systems

$225

Assembled and tested

16K 2708 EPROM BOARD

Includes all support circuitry and sockets ready to plug-in 16 2708's.

$99

2708's not included

- Allows convenient storage and alteration of your own customized computer programs
- S100 bus: plugs right into Altair/IMSAI, or any computer using the "Altair" bus
- Dip switch selection of memory address assignment
- Dip switch selection of memory wait cycles
- Assembled and tested, not a kit

8K 2708 EPROM PROGRAMMER BOARD

Complete system for "burning in" programs into the electrically alterable 2708 memory.

$145

2708's not included

- S100 bus Altair/IMSAI compatible
- Complete 2708 programming system
- Doubles as 8K non volatile program storage
- Assembled and tested, not a kit

2708 EPROMS

- **$18.50 21L02 250 nS**
- **$1.75**

Top quality parts – not seconds

SOROC IQ-120 TERMINAL

- RS-232 compatible 24 lines x 80 characters including block mode option

$995

8080 A

- **$14**

Power supply 12 volt

$9.95

PER SCI DUAL DRIVE

- 8-inch floppy with IMS cabinet and power supply

$1400

Many other parts available – Just call or write for free catalog

NEW PRODUCTS COMING – WATCH FOR OUR ADS – INFORMATION AVAILABLE

WE WELCOME INQUIRIES
had been upset in the first round by a previously unknown program.

It was learned the following day that the disastrous move had been the result of a bug in the program introduced when the programmers made last minute changes the evening before the tournament. The complete score of this game is printed in game 1, along with commentary.

The tournament favorite, CHESS 4.6, met Don Beal's BCP in the first round of play. Due to a system failure, the CDC Cyber 176 used by CHESS 4.6 was not available at the scheduled start of play. Tournament rules allow each team up to 30 minutes of down time during which the chess clock may be stopped. When this period has expired, the clock must run and the time used is deducted from the two hours available for the first 40 moves.

CHESS 4.6 had almost an hour on their clock when service was restored. However, they wasted no time in defeating the English program in a rapid 27 move game which was the first game to end in the first round, despite the delays.

At the end of round one, CHESS 4.6, DUCHESS, CHAOS, MASTER, DARK HORSE, and OSTRICH had one point, BELLE, BLACK KNIGHT, ELSA, and BLITZ V had one half point, and the others had no points. For the second round, the programs all played against opponents with the same number of points from the first round.

KAISSA showed the strength it had not displayed in the first round, defeating TELL,

Table 1: The Second World Computer Chess Championships' results at a glance. In this table, each program's results in the four rounds of the tournament are summarized. A point (1) is awarded for each win, a half point (1/2) for each draw, and zero for each loss. In the notation of each round, the score color and opponent are given in the notation s (c, n) where s is the score for the round (1, 1/2 or 0), c is the color which the program played (B or W for black or white) and n is the number of the opponent in this list of programs.
4800 BAUD CASSETTE RECORDER

An ASYNCHRONOUS NRZ type Recorder with remote motor start/stop. Error rate 10⁻⁸ at 4800 BAUD. Can be used from 110 to 4800 BAUD into a UART or "Bit Banger PIA" – no clocking required. This is not an audio recorder. It takes RS232 or TTL signals from the terminal or computer and gives back the same signals. No audio interface is used. Motor start/stop is manual or through TTL or RS232 signals.

Tape speed is 3.2''/second nominal; 1.6''/sec. optional. 110 volt, 60 Hz, 5 watts. (220 Volts on special order). Can use high quality audio cassettes (Philips Type) or certified data cassettes. Can be used in remote locations from a 12 Volt battery.

Recommended for DATA LOGGING, WORD PROCESSING, COMPUTER PROGRAM RELOADING and DATA STORAGE. Especially recommended for 6800 systems, 6502 systems, 1800 systems and beginners with the 8080 systems. Manual control except for motor start/stop. 6800 or 8080 software for file or record searching available upon request with order. Used by major computer manufacturers, Bell Telephone and U.S. Government for program reloading and field servicing.

AVAILABILITY – Off the shelf.

MODEL CC-8 $175.00

PROVIDES MONITOR AND TAPE SOFTWARE in EPROM. EXPANDS MIKBUG with 1 K of ADDITIONAL ROM PROGRAM.

This is a complete tape controller for the SWTP 6800 system. Has 3 K of EPROM space for your own programs. A 1 K ROM (2708) is provided with all tape and monitor functions. The ROM program is identical to our extensive 8080 ROM program.

Has one ACIA for one or two tape drives, one USART for an additional Serial port and a 4 bit parallel port for motor control. Will control one or two CC-8 or 3M3A drives with the software provided. Can be used with other tape drives controllable with 4 TTL bits if appropriate software changes are made.

Extra serial port is provided for your use with a second terminal or printer. (RS232, TTL or 20 ma)

The ROM program supplements the MIKBUG program and is entered automatically on reset.

AVAILABILITY – Off the shelf.

6800 CONTROLLER for SWTP

$190.00, Tested & Assemb. ($160.00, Kit)

PROVIDES MONITOR AND TAPE SOFTWARE in ROM TERMINAL and TAPE PORTS on SAME BOARD CONTROLS ONE OR TWO TAPE UNITS (CC-8 or 3M3A)

This is a complete 8060, 8085, or Z80 system controller. It provides the terminal I/O (RS232, 20 mA, or TTL) and the data cartridge I/O, plus the motor controlling parallel I/O latches. Two kilobytes of on board ROM provide turn on and go control of your Altair or Imsai. NO MORE BOOTSTRAPPING. Loads and Dumps memory in hex on the terminal, formats tape cartridge files, has word processing and paper tape routines. Best of all, it has the search routines to locate files and records by means of six, five, and four letter strings. Just type in the file name and the recorder and software do the rest. Can be used in the Bisync (IBM), BiPhase (Phase encoded) or NRZ modes with suitable recorders and interfaces.

This is Revision 7 of this controller. This version features 2708 type EPROM's so that you can write your own software or relocate it as desired. One 2708 programmed is supplied with the board. A socket is available for the second ROM allowing up to a full 2K of monitor programs.

Fits all S100 bus computers using 8080 or 280 MPU's. Requires 2 MHz clock from bus. Cannot be used with audio cassettes without an interface. Cassette or cartridge inputs are RS232 level.

AVAILABILITY – Off the shelf.

2S10 (R) CONTROLLER

$190.00 ($160.00 Kit)

Z 80 BOARD for SWTP COMPUTER: Now you can use the 8080/Z80 software programs in your SWTP machine. Replaces your MPU board with a Z80 and ROM so that you are up and running with your present SWTP memory and MPC card. $200 assembled and tested. ($160 kit)

AVAILABLE – November ’77.

OVERSEAS: Export Version 220 volt 50 Hz. Write factory or: Megatron-Dataem, 8011 Putzbrunnen, Munchen, Germany; Nippon Automation 5-16-7 Shiba, Minato-Ku, Tokyo, Japan; Hobbydata, FACK 20012, Malmo, Sweden; G. Ashbee, 172 Field Road, London SW 10-9ag: Trintronics, Ltd., 186 Queen Street W., Toronto, Ontario, Canada; EBASA, Enrique Barges 17, Barcelona 14, Spain; ARIES, 7, rue Saint Philippe du Roulé, 75008 Paris; Microlem 20131, Milano, Italy; Eagle Electric, Capetown, S. Africa.

For U.P.S. delivery, add $3.00 Overseas and air shipments charges collect. N.J. Residents add 5% Sales Tax. WRITE or CALL for further information. Phone Orders on Master Charge and BankAmericard accepted.

National Multiplex Corporation

3474 Rand Avenue, South Plainfield NJ 07080 Box 288 Phone (201) 561-3600 TWX 710-997-9530
from Switzerland, in a remarkable 16 moves, the shortest game of the tournament. TELL, written by Johann Joss, was European champion in 1975, and placed third in 1976.

In an interesting game, DARK HORSE, playing without the aid of an opening book, used a nonstandard opening against CHAOS, a program with an opening book of 7,500 positions. Since none of the book openings had prepared CHAOS for the very unusual N-QB3 move, it had to revert to its middle game analysis rather than responding instantly with a table lookup result. After three moves:

1. N-QB3 P-K4

2. N-B3 N-QB3

3. P-K4

the position was transposed to a standard Four Knight's game usually obtained by:

1. P-K4 P-K4

2. N-KB3 N-QB3

3. N-B3.

CHAOS, having discarded its opening table, was now unable to recognize that this was a standard position, and wasted precious time analyzing the position to determine the correct response (see figure 1).

At the end of the first two rounds of

Table 2: Technical characteristics of contestants. This table lists the major characteristics and source of each program entered into the Second World Computer Chess Championships. A total of 33 people were actively involved in the design and programming of the 16 programs entered in the contest; while no personally owned microcomputers were entered in the 1977 championships, we expect some future editions of the contest to include contestants from the world of personal computers.
A BIT OF Everything

The Best of Creative Computing
Volume I
The Best of Creative Computing
Volume II. Culled from pages of Creative Computing Magazine, these two volumes provide fiction, fun, foolishness, and plenty of nuts and bolts commentary and programming information for anyone curious or serious about the wonderful world of personal computing. $8.95 per volume.

Structured Programming in APL by Dennis P. Geller and Daniel P. Freedman

"...Our approach is to present the fundamentals of structured programming in APL. Students may go on from here to learn to write faster programs or more compact programs, or more aesthetic programs; this we hope is where they learn to write working programs." From the Preface. $8.95.

APL—An Interactive Approach Second Edition, Revised, by Gilman and Rose. Here's an excellent way to introduce yourself to the APL language. APL is rapidly becoming one of the most popular high level languages in the computer field because of its clarity and conciseness. Gilman and Rose have extensively updated their popular book to include the latest information about the language and the various forms of it which are now in use. Since the examples are all carefully spelled out, APL—An Interactive Approach is particularly recommended for those who do not have access to an APL terminal. Answers to all problems are included. $11.95.

How to Program Microcomputers by William Barden, Jr. Here is a guide to assembly language programming of the Intel 8080, Motorola MC6800, and MOS Technology MCS6502 microprocessors. It is written especially for beginning programmers with hobbyist microcomputers based on one of these three chips. The topics covered range from data manipulations at the bit level up to handling of tables and lists and from simple adds and subtracts up to floating point operations. $8.95.

Bar Code Loader by Ken Budnick is the key that unlocks the door to Paperbyte™ Software Books. Included in this publication is a brief history of bar codes, a look at the Paperbyte™ Bar Code format including flowcharts, and a general bar code loader algorithm. Well documented programs with complete implementation and checkout procedures are included for 6800, 6502 and 8080/Z-80 based systems. Individuals with computers based on these processors can use the software directly. Individuals with other processors can use the provided functional specifications and detail examples to create equivalent programs. $2.00.

DIAL YOUR BANK CARD ORDERS ON THE BITS TOLL FREE HOT LINE: 1-800-258-5477.

In New Hampshire, call: 924-3355

Send to:
BITS, Inc.
70 Main Street
Peterborough NH 03458

Check Payment method:

My check is enclosed
____Bill my MC No. __________________________ Exp. date __________
____Bill my BAC No. __________________________ Exp. date __________

Total for all books checked $_____

Postage, 50 cents per book for ____ books $_____

Overseas, 75 cents per book for ____ books $_____

Grand Total $_____

You may photocopy this page if you wish to leave your BYTE intact.
The shortest game of the tournament was KAISSA's defeat of TELL in the second round.

1. P-K4 P-K4
2. N-KB3 N-QB3
3. B-N5 N-B3

The Berlin defense. As Fred Reinfeld pointed out, "The drawback of this once popular defense is that it leads to a weak pawn position for Black."

4. O-O NxP
5. P-Q4 NxP
6. NxB PxB
7. Q-N3 N-QB4
8. R-K1ch N-K3
9. N-QB3 P-QB4
10. Q-K5 P-KR4
11. N-Q5 B-K2
12. B-N5?

12. ... Q-R4
13. BxR P-QN3?
14. QxN P-R3
15. Q-N8ch N-B1
16. QxN mate

play, only two programs, CHESS 4.6 and DUCHESS, had two wins to their credit. These two programs played each other in the third round. After a hard fought 50 move game, CHESS 4.6 extended its winning streak to three games.

Throughout the tournament, the moves of the OSTRICH program were punctuated by the familiar clatter of Monroe Newborn's ASR 33 Teletype, audible to the entire audience. On the sixteenth move of his game against BLACK KNIGHT, the Teletype began to clatter madly. It was obviously in an open loop. The cover was removed, and an urgent call was made for any ASR 33 experts in the audience. Unable to continue play, OSTRICH was forced to resign from the game. Later it was learned that, although the Teletype was making the noise, the fault lay with the serial IO interface of the minicomputer, and not with the terminal.

Problems were not confined to the on-site minicomputer. In the final round of play, CHESS 4.6 was matched with BELLE, running on a PDP-11 located at the Bell Telephone Laboratories in Murray Hill NJ. The game was interrupted for several minutes because BELLE was experiencing communications difficulties.

An interesting aspect of the BELLE system was the use, for the first time, of a microprogrammed hardware move generator added to the PDP-11. This feature allowed a much faster generation of positions for analysis and is thought by many to be the route to better chess playing computers. In this case, it was not enough. After 52 moves, CHESS 4.6 mated BELLE to win the game, and the tournament.

The final results, shown in table 2, show that CHESS 4.6 was the undisputed champion with four wins, KAISSA and DUCHESS tied for second with three wins each, and CHAOS and BELLE tied for third with two wins and a draw each.

Prizes of another sort went to the following programmers and their programs:

1. One programmer inserted (just for fun) a message into his program to print "POSSIBLE MATE IN x MOVES" each time a mat threat was discovered in the analysis. When the position became dangerous during round 1, the number of possible mate threats became enormous. The programmer was unable to interrupt the program as it listed page after page of possible mate combinations in 2, 3, 4, ... 16 moves. As a result, the opponent's move could not be entered and the game was lost due to a time forfeit. None of the mate threats were irrefutable. By round 2, the message had been removed.

2. A bug in another program was not a new one. It had been in the program for nearly ten years. Unable to locate the exact cause of a fatal run time error which occurred sporadically during the program execution, the programmer devised a subtle solution to prevent the program from abending during a game by trapping the error code before the operating system could react to it and initiating an error recovery routine which would restart the program and skip the error prone analysis. A message was directed to the line printer to inform the programmer that the recovery routine had been called. This procedure had allowed the program to compete successfully in several tournaments without a single fatal abend.
Introduction To Microcomputers, Volume 0, is written for the absolute beginner, the person who "knows nothing" and needs the elementary understanding necessary to ask questions and decide where he wants to go. "The Beginner's Book" tells you what microcomputer systems are all about: the component parts, options available, and what they can do for you. Volume 0 also gives an introduction to microcomputer logic. $7.50.

Getting Involved With Your Own Computer by Leslie Solomon and Stanley Veit answers the questions: "What can small computers do? Which is best for my purposes?" Whether your interest is business applications, word processing, education, security, etc., this lucid text will bring you in touch with an exciting new world destined to affect us all. $5.95.

Payroll With Cost Accounting in BASIC is now available. The book includes program listings with remarks, descriptions, discussion of the principles of each program, file layouts, and a complete user's manual with step-by-step instructions, flow charts and sample reports with GRT displays. All 35 programs are written in the widely used computer language BASIC, and work together to produce a payroll, right down to the printing of paychecks and maintaining of employee records. $12.50.

Microprocessors: From Chips to Systems by Rodnay Zaks is a complete and detailed introduction to microprocessors and microcomputer systems. Some of the topics presented are: a comparative evaluation of all major microprocessors, a journey inside a microprocessor chip, how to assemble a system, applications, interfacing (including the new S-100 bus) and programming and system development. $9.95.

Microprocessor Interfacing Techniques by Austin Lesse and Rodnay Zaks describes the complete assembly of a microprocessor system: assembling a processor; I/O techniques; interfacing to a keyboard, LED display, Teletype, printer, floppy disk, video display, cassette-tape; industrial interfacing: analog to digital and vice versa; techniques; communications; and standards, including Altair (S-100), IEEE-488, CAMAC. A complete case study is presented for a multi-channel communication system and a chapter is dedicated to troubleshooting techniques. Actual interconnects are presented for a number of microprocessors including the 8080 and the 6800. $9.95.

DIAL YOUR BANK CARD ORDERS ON THE BITS TOLL FREE HOT LINE: 1-800-258-5477.

In New Hampshire, call: 924-3355

Send to:
BITS, Inc.
70 Main Street
Peterborough NH 03458

Check Payment method:

Total for all books checked $_____

Postage, 50 cents per book for ____ books $_____

Overseas, 75 cents per book for ____ books $_____

Grand Total $_____

Prices shown are subject to change without notice. All orders must be prepaid.
In unusual cases, processing may exceed 30 days.

You may photocopy this page if you wish to leave your BYTE intact.
Game 3: The final game of the tournament was **BELLE** versus **CHESS 4.6**, listed here.

White: **BELLE**
Black: **CHESS 4.6**

1. P-K4
2. N-KB3
3. P-Q4
4. N-B3
5. P-K5
6. P-QR3
7. PxP
8. B-N5ch
9. B-Q3
10. N-N5
11. N-B3
12. PxP
13. B-K3?
14. 8xORP
15. 0-0
16. RxR
17. 8-0B5
18. N-87
19. O-R1
20. OxO
21. R-R1
22. P-B3
23. R-R4
24. PxN
25. R-KN4
26. B-B2
27. R-QR4
28. RxP
29. B-N1
30. K-R1?
31. N-Q4
32. N-K2?
33. N-N1
34. R-R5
35. P-B3?
36. R-P4?
37. PxP
38. K-R2
39. R-R4?
40. K-N3
41. K-R3?
42. R-R8
43. K-N4
44. K-R3
45. K-R2
46. R-QB8ch?
47. R-KN8?
48. R-N7?
49. R-KR7
50. R-QR7
51. R-R3?

Position after 51. R-R3?

51. ...
52. K-R1

round 1, the error recovery routine was called three times. In round 2, it was called ten times; in the third round, 20 times. But in round 4, the position of the game somehow triggered a tight loop around the patched code. The run time error was triggered 800,000 times. The error recovery routine was called 800,000 times, and 800,000 lines of printed output awaited the programmer at the data center the next day. The program did not abend, but it also did not win. It probably spent most of its time in the error recovery routines.

The standard of play evidenced by the programs competing in this tournament shows considerable improvement over that demonstrated three years ago in Stockholm at the First World Computer Chess Championships. Still, no program available at this time is capable of defeating a master ranked player in regular play. Room for improvement still lies in the need for the incorporation of long range plans into the computer chess algorithms. This is an aspect of chess play which is vital to good human strategy and yet completely lacking from all conventional computer chess programs.

Also needed are some fundamental improvements in the end game play of the programs. Most of the current algorithms suffer the consequences of the "horizon effect," a term coined to describe the blunders made when a program fails to see threats or opportunities one or more levels below the maximum number of plies it has searched. This is a particular problem in end game strategy, where short term heuristics are not necessarily relevant to the winning combination.

Current advances in artificial intelligence, pattern recognition and multiprocessors are likely to enable significant improvements in the chess ability of future computer systems over the next few years. It is now quite conceivable that master level play will be achieved within this decade, and yet it is still entirely possible (if not probable) that grand master play will not be achieved in this century.

BIBLIOGRAPHY

Practical Microcomputer Programming:
The Intel 8080 by W J Weller, A V Shatzel, and H Y Nice. Here is a comprehensive
source of programming information for the present or prospective user of the 8080
microcomputer, including moving data, binary arithmetic operations, multiplication
and division, use of the stack pointer, subroutines, arrays and tables, conversions,
decimal arithmetic, various IO options, real time clocks and interrupt driven processes,
and debugging techniques.

This 308 page hardcover book is well
worth its $21.95 price and should be in
every 8080 or Z-80 user's library.

A Collection of Programming Problems
and Techniques by H A Maurer and M R
Williams. Here is a book that presents you
with problems—nearly 400 of them:
problems and games like chess, bridge, NIM;
practical problems such as applications of
the law of science, Kramer's rule for solving
simultaneous equations, and applications of
Latin squares to problems of probability;
and more advanced computer science topics
such as the use of Backus Naur form. One
quarter of the book is devoted to an appen-
dix that gives stymied readers hints on how
to proceed with solutions of the problems.
The most valuable feature of the book is its
careful and thorough explanation of the
use of algorithms to solve problems. No
dyed-in-the-wool programmer or experi-
menter will be able to read this book for
very long before trying to solve the tantal-
zizing and well presented problems. $13.95.

The First Book of KIM. Attention KIM
users! Here is the book you've been waiting
for. In it you'll find a beginner's guide to
the MOS Technology KIM-1 microcomputer
as well as an assortment of games including
Card Dealer, Chess Clock, Horse Race,
Lunar Lander and Music Box. Also featured
are diagnostic and utility programs for
testing both the computer and external
equipment (such as cassette recorders), and
chapters on expanding memory and con-
trolling analog devices. This 176 page
volume should prove an essential addition to
any KIM user's library. $9.00.

Top Down Structured Programming
Techniques by Daniel McCracken who has
called structured programming "a major
intellectual invention." What is structured
programming? Clement McGowan and
John Kelly answer this question in their
lively, well written book, Top Down Struc-
tured Programming Techniques. Discover
the three basic types of flowcharts and
how to optimize them. One section deals
with the best ways to manage programs
being written by a team of programmers.
An important feature of this book is its
universality: practically any program in any
language can be improved by using the ideas
described in it. $15.95.

6800 Programming for Logic Design
8080 Programming for Logic Design by
Adam Osborne. These books are sequels to
Adam Osborne's previous books, An Intro-
duction to Microcomputers, volumes 1 and
2. They explain how an assembly language
in a microcomputer system can replace
combinatorial logic such as TTL logic and
the like. If you're a logic designer, you'll
discover how to do your job in a new way.
If you're a programmer, you'll find many
new and valuable techniques including the
use of macros, high level languages, peri-
pheral interface adapters (PIAs), and so on.
Also included are complete chapters on
assembler language, direct digital logic
simulation, and large sections devoted to
the implementation of all these ideas
using the Motorola 6800 processor and
the 8080 processor. $7.50 each.
LEARN TO PROGRAM MICROCOMPUTERS

And at an affordable price. The Modu-Learn™ home study course from Logical Services. Now you can learn microcomputer programming in ten comprehensible lessons. At home. In your own time. At your own pace. You learn to solve complex problems by breaking them down into easily programmed modules. Prepared by professional design engineers, the Modu-Learn™ course presents systematic software design techniques, structured program design, and practical examples from real 8080A micro-computer applications. All in a modular sequence of 10 lessons...more than 500 pages, bound into one practical notebook for easy reference. You get diverse examples, problems, and solutions. With thorough background material on micro-computer architecture, hardware/software tradeoffs, and useful reference tables. All for only $49.95.

For $49.95 you learn design techniques that make software work for you. Modu-Learn™ starts with the basics. Our problem-solution approach enables you to "graduate" as a programmer.

Circle the reader service number below to receive our free descriptive brochure and course outline. Use your Master Charge or VISA card to order today. Call Pat at (415) 965-8365.

NCC Personal Computing Festival

A Personal Computing Festival will share the public spotlight in conjunction with the 1978 National Computer Conference to be held June 5-8 in Anaheim CA. A call for papers has been issued for the Festival program to be held June 6-8 at the Disneyland Hotel adjacent to the Anaheim Convention Center. Included as part of the 3 day program will be presentations of invited papers, contributed papers, and tutorials, as well as panel discussions relevant to personal computing. Letters of intent to participate as an author, panelist or session chairperson must be submitted by February 1 1978. Authors who have received notification of acceptance must submit final papers by March 15 1978 in a specified camera ready format.

Chairperson of the Festival program is Jim C Warren Jr, editor, Dr Dobbs Journal of Calisthenics and Orthodontia, Woodside CA. According to Warren, archeological clues for the 3 day program will be presented with emphasis on the following areas, although papers and session proposals on other topics are encouraged:

- Tutorials for computer novices.
- Speech synthesis and speech recognition.
- Computer driven and computer assisted music systems.
- Computer graphics and video art.
- Personal computers for the physically disabled.
- Personal computers for education.
- Business systems using "home" computers.
- Hardware and software design and implementation.
- Standards for hardware, interfaces and software.

Papers presented during the Festival program will be published in a softbound book, Festival Digest 78, which will be available during the NCC.

Potential authors should immediately send a "letter of intent" including an abstract of their proposed talk to: Jim C Warren Jr, Star Route POB 111, Redwood City, CA 94062; (415) 851-7664. Festival author kits, which will be mailed to authors, contain instructions and the necessary materials for preparing the camera ready copy.

Session chairpersons must submit two copies of a 250 word abstract describing the scope of the proposed session and tentative title of presentations by February 1 1978. In the case of panel sessions, the prospective organizer should list proposed panelists, their titles and affiliations, and a brief biography of each speaker. Prospective session chairmen will be notified as to the disposition of suggested sessions by February 10 1978.

In addition to the Festival program, there will be an exhibit of personal computing products and services and an exhibition of individually designed home and hobby computers and applications. Information on NCC 78 may be obtained from AFIPS, 210 Summit Av, Montvale NJ 07645 or by calling (201) 391-9810.

When Is ASCII Not ASCII?

One reader recently wrote in complaining that a product advertised as an ASCII keyboard was in his opinion not an ASCII keyboard. He is quite correct. ASCII is the American Standard Code for Information Interchange, a 7 bit definition of data and command codes maintained by ANSI, the American National Standards Institute. The crux of this reader's comment about the product in question is that:

- First, the keyboard in question only defined an ASCII subset.
- Second, the control sequences generated by this keyboard were not what he wanted.

To the first point, one might comment that rare is the keyboard which can generate all 128 possible codes of an ASCII set; it is sometimes hard enough finding one which gives both upper and lower case. But just because the full ASCII set is not generated does not mean that we don't have an ASCII keyboard. If the keyboard generated EBCDIC (Extended Binary Coded Decimal Information Code, IBM's nonASCII code) or other codes, then it could validly be said not to be an ASCII keyboard; but this reader's keyboard did indeed put out ASCII codes for ASCII graphics. To the second point, one might comment that the ASCII definition says nothing about how the codes are generated in a particular piece of hardware. In many instances, the CTRL key does indeed act as a shift key of sorts, but this is not the only possible way to generate control character values in hardware given human inputs.
An Interesting Point About the State of Computer Technology

In a recent conversation, Stephen M. Hicks of FORTH Inc. made an interesting point about personal computers and the present state of public awareness of technology: the personal computer viewed as a toy to present day technology what the “electronic set” was to technology and educational techniques in an earlier era. When mechanical construction toys first caught on, the public was aware of numerous examples of existing structure in transportation and general industry that could be modeled and emulated through the learning device of the construction toy. Viewing the personal computer as an educational toy, the present day consumer has a means of learning about and understanding what goes on in computer systems (which are seen throughout industry and commerce today) via working examples of programs and applications. This general awareness of computer systems and their extensive effects is perhaps part of the waning public fascination with computers...

ACM’s New Special Interest Group on Personal Computing

The Association for Computing Machinery has chartered a new Special Interest Group on Personal Computing called SIGPC. SIGPC will be operated exclusively for educational and scientific purposes in the design and applications of computer systems for home, clerical, small business, management and recreational uses. It also includes the technology of such systems in software and hardware, and emphasizes techniques appropriate to the integration of such tools as graphics, speech, data management and music systems. Dr. Patia Isaksson, who chaired the 1977 National Computer Conference, has been appointed chairperson of SIGPC. To join SIGPC, write to the Association for Computing Machinery, POB 12105, Church Street Sta., New York NY 10249.

MORE 6800 SOLUTIONS:

FOR SWTPC 6800

- A5-1 ANALOG INTERFACE MODULE
 - FAST, ACCURATE A/D, D/A CONVERSIONS
 - EIGHT ANALOG INPUT CHANNELS
 - ONE HIGH-SPEED ANALOG OUTPUT
 - OCCUPIES ONE I/O SLOT
 - $67.50 KIT $115.00 ASSM.

- SC-1 SERIAL INTERFACE CARD
 - RS-232 SERIAL INTERFACE
 - FULL CONTROL SIGNALS IMPLEMENTED
 - MOST VERSATILE SERIAL I/O
 - AVAILABLE
 - $30.00 KIT $40.00 ASSM.

FOR MOTOROLA “D2”

- DA-1 UPGRADE KIT
 - CONVERTS D2 TO TERMINAL I/O
 - RETAINS FULL CASSETTE I/O CAPABILITY
 - INCLUDES RT/68MX ROM - MONITOR/OR.S.
 - USES USE OF BASIC, EDITORS, ASSEMBLERS, ETC.
 - RS-232 SERIAL INTERFACE
 - DA1 w/70 p. MANUAL $69.95

- MOTOROLA MMS68104 16K RAM
 - 16K BYTES DYNAMIC RAM
 - ENGINEERED SPECIFICALLY FOR “D2”
 - EXORCIST - TYPE BUSS
 - $95.00 ASSEMBLED

U.S. Orders Postpaid

Master Charge & VISA Welcome

Write or call for Free Catalog.

MICROWAVE SYSTEMS CORPORATION
P.O. BOX 954 • DES MOINES, IOWA 50304 • (515) 279-9856

An Interesting Point About the State of Computer Technology

Hobbyists! Engineers! Technicians! Students!

Write and run machine language programs at home, display video graphics on your TV set and design microprocessor circuits — the very first night — even if you’ve never used a computer before!

RCA COSMAC microprocessor/mini-computer

SPECIFICATIONS

ELF II features an RCA COSMAC processor, which has the following characteristics:

- 4K by 8-bit memory addressability
- 64k bytes with DMA, intercept, 16 registers, ALU, 256 byte RAM, full hex keyboard, two digit hex output display, 5 pin plug-in expansion bus, 1/2 duty crystal clock
- Communications interface and a double-sided 16k byte through PC board plus RCA 1861 video IC to display any segment of memory on a video monitor or TV screen.

- INCLUDES RT/6BMX ROM - MONITOR/OR.S.
- USES USE OF BASIC, EDITORS, ASSEMBLERS, ETC.
- RS-232 SERIAL INTERFACE
- DA1 w/70 p. MANUAL $69.95

- MOTOROLA MMS68104 16K RAM
- 16K BYTES DYNAMIC RAM
- ENGINEERED SPECIFICALLY FOR “D2”
- EXORCIST - TYPE BUSS
- $95.00 ASSEMBLED

- 16K BYTES DYNAMIC RAM
- ENGINEERED SPECIFICALLY FOR “D2”
- EXORCIST - TYPE BUSS
- $95.00 ASSEMBLED

- FAST, ACCURATE A/D, D/A CONVERSIONS
- EIGHT ANALOG INPUT CHANNELS
- ONE HIGH-SPEED ANALOG OUTPUT
- OCCUPIES ONE I/O SLOT
- $67.50 KIT $115.00 ASSM.

- RS-232 SERIAL INTERFACE
- FULL CONTROL SIGNALS IMPLEMENTED
- MOST VERSATILE SERIAL I/O
- AVAILABLE
- $30.00 KIT $40.00 ASSM.

- FAST, ACCURATE A/D, D/A CONVERSIONS
- EIGHT ANALOG INPUT CHANNELS
- ONE HIGH-SPEED ANALOG OUTPUT
- OCCUPIES ONE I/O SLOT
- $67.50 KIT $115.00 ASSM.

- RS-232 SERIAL INTERFACE
- FULL CONTROL SIGNALS IMPLEMENTED
- MOST VERSATILE SERIAL I/O
- AVAILABLE
- $30.00 KIT $40.00 ASSM.

- FAST, ACCURATE A/D, D/A CONVERSIONS
- EIGHT ANALOG INPUT CHANNELS
- ONE HIGH-SPEED ANALOG OUTPUT
- OCCUPIES ONE I/O SLOT
- $67.50 KIT $115.00 ASSM.

- RS-232 SERIAL INTERFACE
- FULL CONTROL SIGNALS IMPLEMENTED
- MOST VERSATILE SERIAL I/O
- AVAILABLE
- $30.00 KIT $40.00 ASSM.

- FAST, ACCURATE A/D, D/A CONVERSIONS
- EIGHT ANALOG INPUT CHANNELS
- ONE HIGH-SPEED ANALOG OUTPUT
- OCCUPIES ONE I/O SLOT
- $67.50 KIT $115.00 ASSM.

- RS-232 SERIAL INTERFACE
- FULL CONTROL SIGNALS IMPLEMENTED
- MOST VERSATILE SERIAL I/O
- AVAILABLE
- $30.00 KIT $40.00 ASSM.

- FAST, ACCURATE A/D, D/A CONVERSIONS
- EIGHT ANALOG INPUT CHANNELS
- ONE HIGH-SPEED ANALOG OUTPUT
- OCCUPIES ONE I/O SLOT
- $67.50 KIT $115.00 ASSM.

- RS-232 SERIAL INTERFACE
- FULL CONTROL SIGNALS IMPLEMENTED
- MOST VERSATILE SERIAL I/O
- AVAILABLE
- $30.00 KIT $40.00 ASSM.

- FAST, ACCURATE A/D, D/A CONVERSIONS
- EIGHT ANALOG INPUT CHANNELS
- ONE HIGH-SPEED ANALOG OUTPUT
- OCCUPIES ONE I/O SLOT
- $67.50 KIT $115.00 ASSM.
Structured Programming with Warnier-Orr Diagrams

Part 2: Coding the Program

In part 1 we carefully constructed a design structure. In order to make the most of that structure a few words about programming style are in order. While it is true to a certain extent that any method of coding the structure will produce a logically correct program, matters of syntactical errors resulting from shoddy coding techniques as well as problems with maintainability seem to indicate that a great deal of care should be exercised in the construction of the actual program code.

For this particular example, I'll use a fairly standard version of BASIC that

```
OPEN FILES
SET INITIAL VALUES
READ FIRST RECORD

BEGIN YEAR
    BEGIN MONTH
        BEGIN DAY
            MOVE CHECK NUMBER, CHECK "EQ", CHECK AMOUNT TO PRINT LINE
            MOVE RUNNING BALANCE TO PRINT LINE
            PRINT A LINE
            PRINT SECOND LINE (0,1)
            SPACE ONE LINE
        END DAY
    END MONTH
    PRINT HEADINGS
    INITIALIZE RUNNING BALANCE
    PRINT STARTING BALANCE
    BEGIN DAY
        MOVE DEPOSIT AMOUNT, DEPOSIT DESCRIPTION TO PRINT LINE
        ADD DEPOSIT AMOUNT TO RUNNING BALANCE
        MOVE RUNNING BALANCE TO PRINT LINE
        PRINT A LINE
        SPACE ONE LINE
    END DAY
    END MONTH
    PRINT CURRENT BALANCE
    GET NEXT RECORD

PRINT SECONDS LINE
CLOSE FILES
```

Figure 1: Final Warnier-Orr diagram description of the checkbook balance report program (reproduced from part 1).
runs on a J100 Jacquard Systems computer. The concepts and construction rules are just as applicable to Tiny BASIC, assembly language, and especially APL. Obeying the following five coding conventions will help you write a program that will execute on the first time.

Coding Convention 1: Names Should Be Indicative of Function

For versions of BASIC that only allow one letter names, this is often a little hard, but for most other languages with multiple character symbols, it is a must. For instance, a field that contains an amount should be labeled AMOUNT, an address field should probably be called ADDRESS, and so forth. Cutesy names: SNEEZY, DOPEY, GRUMPY, HELL (a perennial favorite label for adolescent COBOL programmers) are to be strictly avoided.

Coding Convention 2: Comments Should Be Used Freely

Comment lines in programs written in obscure languages, APL for instance, should probably outnumber actual lines of code. Comment lines are especially useful for explaining unclear methods of calculation, complex decisions, etc.

Coding Convention 3: Every Bracket of a Warnier-Orr Diagram Should Represent a New Subroutine

Languages that do not permit subroutines or languages that limit the levels of nesting of subroutines are very tricky to use and should be avoided if at all possible. Save your spare change for three or four weeks and go buy a better version of BASIC; there are plenty of good ones on the market. In BASIC, each subroutine should be clearly labeled with REMark statements.

Coding Convention 4: Subroutines Should Be as Short as Possible

If a subroutine contains too many statements it is difficult to understand and maintain. It also means you are probably doing something in this subroutine that should be put in another subsequent subroutine. In most high level languages a practical limit of 10 to 20 statements is appropriate.

Figure 2: This a a flowchart chosen at random for comparison to a Warnier-Orr representation.
This rule is standard structured programming practice.

Coding Convention 5: GO TOs Should Be Avoided

In higher level languages, GO TOs can often and should be eliminated entirely. However, in versions of BASIC that do not have a DO verb and in assembler, GO TOs are often necessary. Utmost care is urged whenever a GO TO is used; it should only be used as a last resort. In assembly language, use of arbitrary jumps or branches should be avoided.

When coding the program, the order of the subroutines is not crucial. The only piece of code that must be fixed in any certain location is the highest level bracket which must be the first executable line, or lines, of code. One possible way of coding the first section is to omit the first bracket and consider the code as the main program. For BASIC, subroutine calls are left unnumbered until the subroutine is actually written. In this case, we use nnn to indicate an unknown number.

100 REM CHECKBOOK BALANCE REPORT PROGRAM
110 REM BEGIN PROGRAM
120 GOSUB nnn
130 REM YEAR (1, Y)
140 LET ENDYR = FALSE
150 GOSUB nnn
160 IF ENDYR = FALSE THEN GOTO 150
170 REM END PROGRAM
180 GOSUB nnn
190 END

Another way to program this section would be to have the above piece of code as a subroutine to an even higher level procedure as follows.

80 REM CHECKBOOK BALANCE REPORT PROGRAM
90 GOSUB 110
95 END

. 100 through 160 as above
200 RETURN

Either way of coding is acceptable. Note that the GO TO in statement 160 is used to create the structure of a DO UNTIL, a feature that is not available with this particular BASIC.

The center path of the Warner-Orr diagram is the easiest to begin to code at this point. So the code for the YEAR, the MONTH, and the DAY routines is shown next; for the subroutine YEAR:

250 REM YEARLY PROCEDURE
260 REM BEGIN YEAR
270 GOSUB nnn
280 REM MONTHS (1, M)
290 LET ENDMO = FALSE
300 GOSUB nnn
310 IF ENDMO = FALSE THEN GOTO 300

For the subroutine MONTH:

350 REM MONTHLY PROCEDURE
360 REM BEGIN MONTH
370 GOSUB nnn
380 REM DAYS (1, D)
390 LET ENDAY = FALSE
400 GOSUB nnn
410 IF ENDAY = FALSE THEN GOTO 400
420 REM END MONTH
430 GOSUB nnn
440 RETURN

For the subroutine DAY:

450 REM DAILY PROCEDURE
460 REM BEGIN DAY
470 GOSUB nnn
480 REM TRANSACTIONS (1,T)
490 LET ENDTRN = FALSE
500 GOSUB nnn
510 IF ENDTRN = FALSE THEN GOTO 500
520 REM END DAY
530 GOSUB nnn
540 RETURN

The TRANSACTIONS process breaks down as follows:

550 REM TRANSACTIONS ROUTINE
560 REM CREDIT (0,1) OR DEBIT (0,1)
570 IF CDFLAG = CREDIT THEN GOSUB nnn ELSE GOSUB nnn
580 REM END TRANSACTION
590 GOSUB nnn
600 RETURN

Subroutine DEBIT is coded a bit differently from the way it was designed for one simple reason. BASIC will let you output from the same fields that were read in as input; many languages do not. Therefore, the only code remaining in the subroutine is the subtraction of the amount from the running balance and the print commands.

610 REM DEBIT PROCEDURE
620 LET RNBAL = RNBAL - AMOUNT
630 PRINT ON PRINTER: DAY, CHKNUM, DESC1, DRAMT, CRAMT, RNBAL
640 IF DESC2 = SPACES THEN PRINT ON PRINTER: DESC2
650 PRINT ON PRINTER: SPACES
660 PRINT ON PRINTER: RETURN

The symbol \(\pi \) is the not equal to operator. Note that this code makes no attempt to format the output line. Although the facility is available with this version of BASIC, it differs greatly from other line formatting BASICSs around, and would serve only to confuse the immediate issue.

The Model 150 plugs into one slot of an S-100 computer and "grabs" fifty-six major signals. Fifty-six. That's more troubleshooting and training visibility than any other logic analyzer can offer you. Need to look at signals external to the bus? No problem. The Model 150 even incorporates a fully-independent 8-channel analyzer identical to the popular Model 100A (See Popular Electronics, Feb. 1977.)

A remote-control plug-in pod provides fingertip control over all triggering, data collection and display functions. So plug the Model 150 into your computer — you may never unplug it again.

How does this grab you?

The Model 150 plugs into one slot of an S-100 computer and "grabs" fifty-six major signals. Fifty-six. That's more troubleshooting and training visibility than any other logic analyzer can offer you. Need to look at signals external to the bus? No problem. The Model 150 even incorporates a fully-independent 8-channel analyzer identical to the popular Model 100A (See Popular Electronics, Feb. 1977.)

A remote-control plug-in pod provides fingertip control over all triggering, data collection and display functions. So plug the Model 150 into your computer — you may never unplug it again.

How does this grab you?

The Model 150 plugs into one slot of an S-100 computer and "grabs" fifty-six major signals. Fifty-six. That's more troubleshooting and training visibility than any other logic analyzer can offer you. Need to look at signals external to the bus? No problem. The Model 150 even incorporates a fully-independent 8-channel analyzer identical to the popular Model 100A (See Popular Electronics, Feb. 1977.)

A remote-control plug-in pod provides fingertip control over all triggering, data collection and display functions. So plug the Model 150 into your computer — you may never unplug it again.

How does this grab you?

The Model 150 plugs into one slot of an S-100 computer and "grabs" fifty-six major signals. Fifty-six. That's more troubleshooting and training visibility than any other logic analyzer can offer you. Need to look at signals external to the bus? No problem. The Model 150 even incorporates a fully-independent 8-channel analyzer identical to the popular Model 100A (See Popular Electronics, Feb. 1977.)

A remote-control plug-in pod provides fingertip control over all triggering, data collection and display functions. So plug the Model 150 into your computer — you may never unplug it again.

How does this grab you?

The Model 150 plugs into one slot of an S-100 computer and "grabs" fifty-six major signals. Fifty-six. That's more troubleshooting and training visibility than any other logic analyzer can offer you. Need to look at signals external to the bus? No problem. The Model 150 even incorporates a fully-independent 8-channel analyzer identical to the popular Model 100A (See Popular Electronics, Feb. 1977.)

A remote-control plug-in pod provides fingertip control over all triggering, data collection and display functions. So plug the Model 150 into your computer — you may never unplug it again.

How does this grab you?

The Model 150 plugs into one slot of an S-100 computer and "grabs" fifty-six major signals. Fifty-six. That's more troubleshooting and training visibility than any other logic analyzer can offer you. Need to look at signals external to the bus? No problem. The Model 150 even incorporates a fully-independent 8-channel analyzer identical to the popular Model 100A (See Popular Electronics, Feb. 1977.)

A remote-control plug-in pod provides fingertip control over all triggering, data collection and display functions. So plug the Model 150 into your computer — you may never unplug it again.

How does this grab you?

The Model 150 plugs into one slot of an S-100 computer and "grabs" fifty-six major signals. Fifty-six. That's more troubleshooting and training visibility than any other logic analyzer can offer you. Need to look at signals external to the bus? No problem. The Model 150 even incorporates a fully-independent 8-channel analyzer identical to the popular Model 100A (See Popular Electronics, Feb. 1977.)

A remote-control plug-in pod provides fingertip control over all triggering, data collection and display functions. So plug the Model 150 into your computer — you may never unplug it again.

How does this grab you?

The Model 150 plugs into one slot of an S-100 computer and "grabs" fifty-six major signals. Fifty-six. That's more troubleshooting and training visibility than any other logic analyzer can offer you. Need to look at signals external to the bus? No problem. The Model 150 even incorporates a fully-independent 8-channel analyzer identical to the popular Model 100A (See Popular Electronics, Feb. 1977.)

A remote-control plug-in pod provides fingertip control over all triggering, data collection and display functions. So plug the Model 150 into your computer — you may never unplug it again.

How does this grab you?

The Model 150 plugs into one slot of an S-100 computer and "grabs" fifty-six major signals. Fifty-six. That's more troubleshooting and training visibility than any other logic analyzer can offer you. Need to look at signals external to the bus? No problem. The Model 150 even incorporates a fully-independent 8-channel analyzer identical to the popular Model 100A (See Popular Electronics, Feb. 1977.)

A remote-control plug-in pod provides fingertip control over all triggering, data collection and display functions. So plug the Model 150 into your computer — you may never unplug it again.

How does this grab you?

The Model 150 plugs into one slot of an S-100 computer and "grabs" fifty-six major signals. Fifty-six. That's more troubleshooting and training visibility than any other logic analyzer can offer you. Need to look at signals external to the bus? No problem. The Model 150 even incorporates a fully-independent 8-channel analyzer identical to the popular Model 100A (See Popular Electronics, Feb. 1977.)

A remote-control plug-in pod provides fingertip control over all triggering, data collection and display functions. So plug the Model 150 into your computer — you may never unplug it again.

How does this grab you?

The Model 150 plugs into one slot of an S-100 computer and "grabs" fifty-six major signals. Fifty-six. That's more troubleshooting and training visibility than any other logic analyzer can offer you. Need to look at signals external to the bus? No problem. The Model 150 even incorporates a fully-independent 8-channel analyzer identical to the popular Model 100A (See Popular Electronics, Feb. 1977.)

A remote-control plug-in pod provides fingertip control over all triggering, data collection and display functions. So plug the Model 150 into your computer — you may never unplug it again.
Figure 3: The original flowchart converted into Warnier-Orr diagram. This is a much simpler
looking diagram and is easier to follow and explain to someone. Since it is broken down into
sections it can be programmed as a series of subroutines that can be easily maintained and
modified.
MICRO BUSINESS '78™ will provide a series of marketing forums and exhibits to introduce the small independent businessman to the new low-cost, high-power business microcomputer that will reduce his company's costs, place him in a more flexible marketplace and provide timely data information.

Emphasis will be on the small budget requirements for purchase of an in-house computer. The show will demonstrate the latest systems, exhibiting complete hardware and software from small hand-held programmable calculators to full turn-key computers.

- Latest in Word Processors
- Newly-Released Business Software
- Low-Cost Text Editing Typewriters
- Modularized Computers

THE LOW COST, dependability, simplicity of operation, and cost savings advantages of microcomputers will be discussed in a series of lectures to remove the many misconceptions the average businessman may have about the microcomputer technology. Lectures by such companies as IBM, Commodore Business Machines and Radio Shack will present the businessman with the latest information about application, service and investment.

Author Adam Osborne will discuss business software. OTHER LECTURES on the program include:

- Small Business Computing Systems
- Evaluating Your Business Computer Needs
- Software Companies
- The Mainframe Companies & The Small Computer
- The Small Business Computer Company
- Computer Stores and the Small Business System
- Retail Mass Marketing of Microcomputers

Sponsored by: INTERFACE AGE Magazine

EXHIBITORS: PLACE YOUR RESERVATION NOW!
Produced & Managed by:
Show Company International
8657 Melrose Avenue
Los Angeles, California 90069
(213) 659-2050
Ed Tavetian

DATE: MARCH 17, 18, 19, 1978
PLACE: PASADENA CONFERENCE CENTER
PASADENA, CALIFORNIA
The CREDIT process is very similar to the DEBIT process.

The only remaining subroutines to be coded appear below:

The program is finished with the BEGIN PROGRAM and the END PROGRAM subroutines, which are not developed here, and the replacing of the untagged GOSUBs coded before. The modules for which a GOSUB was generated should probably remain a part of the program even though they contain no code. They make maintenance much easier. The entire working program with formatting and other embellishments appears in listing 1.

Conclusion

The art of programming has become a process which can be taught to anyone who needs to use it, which is something that we have not been able to accomplish until very recently. Admittedly, the technique for developing programs presented here is sometimes tedious and not very creative, but it will get the job done. In the personal computer field a lot of enthusiasts probably enjoy programming on the fly and spending all night debugging. But for those who don't, including myself, and who aren't satisfied with just running someone else's canned programs, there is an alternative. As the pioneer in this methodology, Jean-Dominique Warnier, puts it: "If you don't have time to do it right, do you have time to do it over?" Realistically, one cannot say that this methodology is the ultimate in software design or that it is completely right. It is not. Something is sure to come along in the future that is better. But, for now, it is certainly a large step in the right direction.

Once I finished reading about the ease with which Warnier-Orr diagrams could be used I decided to take a sample flowchart and convert it into the Warnier-Orr form to see how much of a difference there actually was. I happened to be working on an article by Geoffrey Gass (entitled "Starfleet") which contained a large number of flowcharts. Choosing one at random I converted it. Figure 2 is the original flowchart. Figure 3 is the converted diagram. I think the Warnier-Orr form is much easier to read and understand.

When designing with flowcharts it is sometimes difficult not to cross lines or have a great deal of redundancy in the program which makes it difficult to follow. All the arrows going across the paper are very distracting and hard to follow. The Warnier-Orr diagram does not have this disturbing problem. It is very easy to follow the program through the various subroutines.

The Warnier-Orr diagram lends itself to structured program writing. If you consider each of the separate brackets another subroutine it is very easy to write the program just as it stands from top to bottom. When we use conventional flowchart techniques we end up leaping about the program to perform statements that are at various parts of the same routine. In my opinion the Warnier-Orr diagram is a quantum leap in the direction of aid for structured program designers.

Listing 1: BASIC source listing for the checkbook balance report program.

Each of the subroutines can be matched with one of the brackets in the diagram of figure 1. The individual modules that do not contain any code should be left as they are to facilitate easy maintenance in the future.

Ray Cote
Coop Editor
Listing 1, continued:

330 IF ENDMO = FALSE THEN GOSUB 310
340 350 REM END YEAR
360 GOSUB 1390
370 RETURN
380 390 REM ****************************
400 REM MONTHLY PROCEDURE
410 420 REM BEGIN MONTH
430 GOSUB 1210
440 450 REM DAYS (1, D)
460 LET ENDYR = FALSE
470 GOSUB 580
480 IF ENDYR = FALSE THEN GOTO 470
490 500 REM END MONTH
510 GOSUB 1340
520 RETURN
530 540 REM ****************************
550 REM DAILY PROCEDURE
560 570 REM BEGIN DAY
580 GOSUB 1500
590 600 REM TRANSACTIOMS (1,T)
610 LET ENDTR = FALSE
620 GOSUB 720
630 IF ENDTR = FALSE THEN GOTO 620
640 650 REM END DAY
660 GOSUB 1430
665 RETURN
670 680 REM ****************************
690 REM TRANSACTIONS PROCEDURE
700 710 REM CREDIT (0, 1) OR DEBIT (0, 1)
720 IF CDFLAG = DEBIT THEN GOSUB 800 ELSE GOSUB 890
730 740 REM END TRANSACTION
750 GOSUB 965
760 RETURN
770 780 REM DEBT PROCEDURE
790 800 LET RUNBL = RUNBAL - AMOUNT
810 IF DESCC = ' ' THEN PRINT : SPACES : DESCC
820 PRINT : SPACES
830 RETURN
840 850 REM ****************************
860 REM CREDIT PROCEDURE
870 880 LET RUNBL = RUNBAL + AMOUNT
890 PRINT : DAY; ': DESCC; ': AMOUNT; ': RUNBAL
900 PRINT : SPACES
910 RETURN
920 930 REM ****************************
940 REM END TRANSACTION
950 960 LET OLDDAY = DAY
970 INPUT FROM CHECKS: DAY, CHKNUM, CDFLAG, DESCC, DESC2, AMOUNT
980 PRINT : DAY, ENDTR, ENDYR = TRUE
990 RETURN
1000 1010 REM ****************************
1020 REM END OF FILE
1030 1040 RETURN
1050 1060 REM ****************************
1070 REM BEGIN PROGRAM PROCEDURE
1080 1090 OPEN 'CHECKS', Symbolic, INPUT: CHECKS
1100 PRINT : 'CHECKBALANCE REPORT'
1120 PRINT : 'FOR THE MONTH OF ', MONTH; YEAR
1130 PRINT : SPACES, 'BALANCE FORWARD OF ', BALANC
1140 LET RUNBAL = BALANC
1150 PRINT : 'DAY CHECK# FOR DEBIT CREDIT BALANCE'
1160 RETURN
1170 1180 REM ****************************
1190 REM BEGIN MONTH
1200

Happy New Year

MAKE YOUR COMPUTER PRODUCTIVE
WITH SOFTWARE WRITTEN
IN NORTHSTAR BASIC

REM General Ledger
and Statements $75
REM Mailing Labels $50
REM Federal Income Tax $200,
Schedule A and B
And More to Come...
REM System Descriptions $2 each

REM System supplied on Diskette
with Program Documentation
and Operating Manual

RUN Benson & Costello
29-02 23 Avenue
Astoria, New York 11105
212-932-3316

Additional programs now in progress—
please write for further information.

Circle 7 on inquiry card.
Circle 2 on inquiry card.

ALPHA Z-80 $495 ASSEMBLED

- 12 SLOT MOTHER BOARD
- 12 CONNECTORS (S-100 BUS)
- 17 AMP POWER SUPPLY
- HEAVY DUTY CABINET WITH FAN
- Z-80 CPU BOARD: All Sockets Included, Gold Contact Fingers, High Quality Glass Epoxy PC Board, Double-Sided, Plated Through Holes, Requires Only +8 VDC / 800 MA.

NOTE: 22 SLOTS/30 AMP POWER SUPPLY - $595.

ADS also sells IMSAI and NORTH STAR Assembled at Kit Prices • LEAR SIEGLER ADM 3A Assembled at $888.00. TERMS: Cash with Order. Prices include Freight. (N.C. Residents add 4% Sales Tax.)

ADS

ALPHA DIGITAL SYSTEMS

Data Acquisition, Computation and Control

ROUTE 4 BOX 171A
BOONE, NORTH CAROLINA 28607

NEW FOR THE 6800

PROGRAMMING THE 6800 MICROPROCESSOR

— Bob Southern —

A self-instructional workbook for assembly language and machine code programming of the 6800 family of microprocessors and peripherals.

- Binary and Hex Numbers
- Accumulator Operations
- Index Register
- Branching - Symbolic and Machine Code
- ACIA
- PIA
- Subroutines
- Interrupt and Stack Operations

— More than a text, this self-instructional workbook is like a personal tutor, available anytime, anywhere.
— Starts right at the beginning, with binary numbers, and works up to interrupt, with lots of programmed input/output in between.
— Already tested with class-sized groups.
— Includes complete listings of running programs.

SEND ONLY $6.75 — U.S. Funds for U.S. delivery
— Canadian Funds for delivery in Canada.

Postage is included in the above price.

DISTRIBUTED BY

ALGONQUIN COLLEGE BOOKSTORES
1385 Woodroffe Ave.
Ottawa, Ontario
Canada K2G 1V8

Circle 1 on inquiry card.
as the human mind. However, all animal minds seem to function in essentially the same manner. As a matter of observation, emotion, language and intelligence seem to have a direct relationship to the physical size of a particular species' brain. It may be possible to synthesize the mental functions of less intelligent animals; insects, rodents, primates. One might even consider synthesizing the infant human mind. While we may not actually create complete minds, it is possible to develop the basic foundations of self-evolving intelligence.

Innovations in cybernetics are making it possible to give the computer necessary perceptual input. Vocal input and output devices and digital "eyes" are making it possible for the computer to hear, see, and stimulate its environment in order to obtain new information.

I would like very much to communicate with anyone interested in the study of artificial intelligence. Perhaps by coordination of efforts we can make more rapid progress.

Scott Jarol
3401 E Shaw Butte Dr
Phoenix AZ 85028

MORE MUSINGS ON AI'S WHYS

I have been reading with some interest the ongoing discussion in "Ask BYTE" of the relative merits of artificial intelligence and robots. I feel however that all sides have missed the central question which is: what effect can we reasonably expect the microcomputer or, for that matter, any new tool or technique to have on the quality of human life?

On one extreme is the possibility that the great increase in productivity for the average worker which will result from use of microcomputers will allow us to enjoy a significantly better standard of living than would be otherwise possible. At the other extreme is the probability that this same increase in productivity will enable us to support the ever-increasing masses of humanit y, which are living than otherwise possible. At the other extreme is the probability that this same increase in productivity will enable us to support the ever-increasing masses of humanity, which are increasing masses of humanity, which are already almost beyond imagining, without measurable benefit to ourselves.

The central question, stated in its simplest form, is an old one. Who do you feed first, your family or someone else's?

As for artificial intelligence, the raw materials (a monolithic central processor and monolithic mass memory) are already available and the incentives become stronger daily as human workers price themselves out of the market. My only hope is that the robots we develop will be offspring we can be proud of.

Mark Williansen
607 Barron Av
Evanston IL 60202

GETTING UV BULBS

The article on the "Coffee Can Special" (January 1977 BYTE, page 91) by Lawrence Burbey Jr failed to men-

tion the type of lamp to use.

We built a similar device months ago and after much difficulty we found the GE 4511 lamp was cheap, worked well and was relatively easy to obtain.

Stephen Pumple
The Computer Place
186 Queen St W
Toronto CANADA MSV 1Z1

D1 or D2?

Your response to Paul E Pennington in the September 1977 BYTE /page 178/ contains an error. The Motorola MEK6800D1 does contain the MIBUG monitor. The Motorola MEK6800D2 contains the JBUG monitor. I am sure of this since I possess both units.

J C Hauser
67 Fisher Rd
Rochester NY 14624

A NORTH GERMAN
COMPUTER CLUB?

Call for interested individuals in (northern Germany to form a hobbyist com puter club. Please contact Ilja Burkoff, Parkallee 105, D-28 Bremen. Tel: (0421) 347-175.

Since your magazine is being read internationally, could you coax your advertisers into leaking the names and addresses of foreign dealers and distributors in their ads?

Ilja Burkoff
Management Consultant
Parkallee 105
D-28 Bremen W GERMANY

TYPEBALLS

In the October 1977 BYTE (page 12) you seem to be answering a question that reader Rob Loring really wasn't asking. If I read his letter correctly, he was asking where he could buy a Selection typeball with both human-readable characters and also machine-readable bar codes. Nowhere did he say he wanted to design one, he just wanted to buy one. IBM sells at least two such typeballs for the quite reasonable price of $24 each. Both have upper and lower case plus numerals and special characters. If neither of these will do the job, there are at least three others available, at $32 each from the Datatype Corporation, 1050, N W 163rd Dr, Miami FL 33169, (305) 625-8451. There is certainly no need whatever to reinvent the wheel, or the typeball.

Jim Day
17042 Gunther St
Granada Hills CA 91344

The balls IBM and Datatype sell are optically encoded, yes, but not in the format of the bar codes used in our Paperbyte/TM software representations. The availability of the IBM optically-scannable fonts was brought home to

- - - -FREE EXAMINATION - - - - - -

MICROPROCESSORS AND MICROCOMPUTER SYSTEMS

By G. V. Rao
AMECOM Division, Litton Systems Inc.

Now you can have a thoroughly up-to-date guide to the state of the art in microprocessors and microcomputers—written by one of the nation's leading experts. Turn to this compact, explicit volume for expert coverage of presently available hardware and software. Subjects of special interest include the use of silicon in microcomputer technology... organization of low-cost microcomputer systems... MNOS memory... charge-coupled devices... and an extensive treatment of data communications. Time-saving reference tables enable you to quickly choose a specific chip for a desired application. Scores of illustration make every subject easy to understand and apply by novice and specialist alike. $24.95, 268 pages, 120 illus.
Discover New Ways To Solve Problems And Play Games...

PERSONAL COMPUTING

Learn more about personal computing at a full day Saturday IEEE Computer Society Instructional Workshop in a city near you:

1978 Spring Workshop Registration Form

* IEEE COMPUTER SOCIETY

To register, fill out and return the coupon below with a stamped, self addressed envelope and the tuition fee at least two weeks before the meeting. The tuition fee includes course text, manuals and other handout materials.

Students with ID .. $25
IEEE Members .. $60
Non members .. $85

IEEE or IEEE Computer Society Membership. Number

Name ________________________________
Address ________________________________
City/State/Zip ____________________________

My payment for $ ______ is enclosed

I am registering for Workshop Date

on __________________________ at ________________

Mail To: IEEE Computer Society
71 North Moger Avenue
Mount Kisco, New York 10549

For further information: Call Cary Ringel (201) 488-1200

The origin of billion, according to the Concise Oxford Dictionary, is "French, coined in the 16th century out of bi- & million to denote the second power of a million; meaning afterwards changed in France [so US] but not in England."

Great Britain and Germany know a "thousand million" as a "milliard." But why stop there? Both the UK and the US have a simple scheme for higher powers of 1000 using Latin Numerical Prefixes (LNP) as follows:

UK LNP: billion = milliard
US LNP: trillion = thousand x thousand

And so on...

The decimal point is written raised (.79) in England, rather than as a period, and is pronounced point seven nine, not point seven T nine. Where the UK and the US use a comma, most of Europe uses a space. No doubt a literal translation of our "floating point" is as amusing to the Germans as the literal translation of their "showing comma" is to us.

Michael J Cook
1658 S Stelling
Cupertino CA 95014

Two TIPS FROM TEXAS

To answer part of Jan Kok's question in the September 1977 BYTE (page 179), According to the Oxford English Dictionary, billion was created in the 16th century as the second power of million:

10^2 = 10^2

Similarly trillion was the third power and quadrillion the fourth. (May I speculate that the need arose from inflation and expansion?) The OED also stated that French mathematicians changed the usage of the words (presumably in the development of the metric system) to indicate the number of thousands rather than millions. American usage probably arose when we adopted the metric system for money, though we never got around to adopting (until now) the rest of the system.

I can not find a specific reference to the European usage of the comma where we use the point, but I wouldn't be surprised to learn it was adopted by the French with the metric system, partly to be different and partly based on different use of punctuation in French.

I would also like to suggest an answer to Ira Rampil's request for an alternative cutting device for Stit-N-Wrap. I use a pair of small blunt nosed scissors (Revelon 2051) which are sold for clipping hairs from ears and noses without damage. The broadened ends mean the tips are stiff, and do not twist around the wire and will not scrape the circuit board.

Mike Firth
104 N St Mary
Dallas TX 75214

SR-52 AND PR-100 EXPERIMENTS

Webb Simmons in September 1977 BYTE (page 176) discovered that the Texas Instruments SR-51 calculator can be coupled to a PR-100A to provide printout capability. I have obtained similar results when I used my SR-51A. Unhappily, a more recent version of the SR-51, (the SR-51-11), cannot be connected to the PC-100A because of a redesign of the battery compartment. Although the SR-50A has a print cradle connector similar to the SR-51, and fits on the printer, apparently it is not preprogrammed for printout.

Incidentally, the "other" position of the PC-100A 3-position switch is for the new TI-55 and TI-59 programmable calculators.

Ralph Mednick
6 Hopkins Rd
Peabody MA 01960

SR-52 AND PR-100 EXPERIMENTS, CONTINUED

I read with interest the letter from Webb Simmons in the September 1977 BYTE (page 176) concerning use of the Texas Instruments SR-51 with the PC-100A printer. I connected my SR-51 to the printer after selecting the SR-52 mode as Webb indicated. The print mode worked fine but I never could get the trace mode to work. Every time I selected the trace mode I got a "1" and a "2" on my printout. The trace mode works fine with my TI-59 calculator so I know there is nothing wrong with the printer. Perhaps all SR-51s are not the same. I would be interested to hear what luck other readers have had with this experiment.

Carl Oehmann
9048 Posada Way
Sacramento CA 95826

MORE ON SR-51 AND PC-100A COMBOS

I wish to thank you and Webb Simmons (September 1977 BYTE, page 176) for the note, "More Hidden Gold: PC-100A Operates with SR-51."

132 INTE, January 1978 Circle 50 on inquiry card.
In fact, the Texas Instruments’ PC-100A also works perfectly well with the SR-51A hand calculator in exactly the same way as does the SR-51.

However, the SR-51-II does not have the 12 pad connector strip, so that it is not possible to obtain hard copy from a PC-100A and SR-51-II combination. This development seems to make used (but in good condition) SR-51 and SR-51A model calculators desirable items.

One must also note that the new Hewlett-Packard HP-10 seems to be designed to fill the same needs as an SR-51 and PC-100A combination.

Around our laboratory there are four SR-51As and one SR-51; the proud owners of these calculators now want some PC-100As. (They will probably pool resources to get one.)

I wonder, however, if the SR-50 and SR-40 were also designed to fit a PC-100A?

Philip S Barker
59 Acadia Bay
Winnipeg, Manitoba R3T 3J1
CANADA

SIMULATING ONESELF?

I just received the October 1977 issue of BYTE, and I was reading an article by Mr. Chung entitled “An 8080 Simulator” (page 70). It is on this article that I wish to comment.

While there are clearly useful applications for simulators that allow the execution (or interpretation) of assembly (or even machine) language programs of some machine on a different machine, it escapes me why one would want to emulate one machine’s instruction set on itself. An apparent exception is the tester and debugger presented in the article. It appears that by interpreting each instruction individually it is possible to discontinue execution of the program at any point, called a breakpoint.

A break may occur because the user wished to discontinue execution when certain conditions were satisfied, or even each time execution passed some address in the program. Both are obviously extremely useful when debugging. Upon detecting a break, the debugger presumably could enter a command mode where the user could examine and change memory locations and registers. Eventually execution could be resumed through some command, at which point the debugger would start interpreting the instructions again, watching for breakpoints. All very useful, but very slow. Each instruction is interpreted by the debugger, and consequently the debugged program’s execution time might well be increased by several orders of magnitude.

I would like to propose a much more efficient method for implementing the same facility. Readers familiar with the DECSystem-10 debugger DDT will recognize the technique I am about to present. It hinges on the following:

![Simulating Oneself?](image-url)
simple concept: Replace the instruction in the breakpoint address with a subroutine call instruction. (I am not familiar with the 8080 instruction set so I am not able to give a particular instruction, although I do not doubt that one exists.) This call would be to a routine in the debugger. The rest is easy. The routine saves the program registers, restores debugger registers (saved earlier) and dispatches to the command interpreter routine. This routine must be clever in two respects: first, if the user attempts to examine a breakpointed location, this must be detected. This is so that the original instruction may be displayed. Of course the breakpointed location will still contain the "call" instruction, which is not what the user wants to see. (By the same token, if he wants to modify the breakpointed location, we must modify the saved breakpoint instruction [in a breakpoint instruction table somewhere], not the actual instruction in the breakpointed location, which of course will hold the "call" that caused the breakpoint to begin with.) Second, when the user resumes the execution of the program, the debugger must first (individually) execute the saved breakpoint instruction (remember to first restore registers) before returning to the main code.

If my presentation was lucid, it should be clear that this technique is quite a lot more efficient than Mr. Chung's method of interpreting each instruction. It will execute the program at processor speed, up to the breakpoint.

I read your journal with great interest and enjoy it immensely. I hope that this contribution will be of use to your readers and add to the excellence of BYTE.

Ralph Salas
29C Wycoma Way
Waltham MA 02154

Use of the 8080 simulator is an excellent way to trace the operations of a program, in a mode which depends on human responses rather than on absolute speed. It is thus not clear that the floating breakpoint technique would be the best method to employ. (I coined the term "floating breakpoint" to describe the act of setting a breakpoint, then restoring original code at the breakpoint while inserting a new breakpoint after the next instruction in sequence. An article by Robert Grappel and Jack Hemenway in the December 1977 BYTE (see "Jack And The Machine Debug" page 79) goes into the general design at such a floating breakpoint method of single step execution and tracing. Where tracing or debugging of read only memory software is involved, the simulator technique is the only one which will work, since breakpoints cannot be set in read only memory.
In a recent phone call, Chuck Adams at Texas A & M University reported that the 8080 simulator by Kin-man Chung proved an excellent tool in the understanding of some otherwise undocumented software he was looking at.

COMMENTS ON WALSH FUNCTIONS

It was interesting to see the article on Walsh functions by B F Jacoby appearing in your September 1977 issue (page 190). The application of Walsh functions was a very active field about five years ago, but interest has dropped off since then mainly because advances in digital circuits have made it possible to use digital circuits in the Fourier domain. However, it is still very useful for designers to know about Walsh functions because they offer excellent solutions to many design problems. In the past couple of years we have seen several waveshaping circuits that actually used Walsh functions although the designers apparently had developed the circuits by trial and error. The material in your article would have led them quickly to the solution.

The mention of my own work applying Walsh functions to electronic music synthesis has brought in several inquiries. The use of Walsh functions for this purpose was first suggested to me by Dr Carl Frederick in 1972. A summary of my work can be found in Journal of the Audio Engineering Society, volume 21, number 8 (October 1973), and in volume 23, number 7 (September 1975), as well as in our own Electronotes publications. At about the same time, Hal Chamberlin was doing a comparative study of Walsh and Fourier synthesis and we published this report. To my knowledge, there are probably only a few music synthesis projects using Walsh functions still under investigation, although quite a few are still in use.

Any reader looking for more information on Walsh functions can find additional references listed in my papers mentioned above, or they may write to us for any special needs since we have lists containing hundreds of references.

Bernie Hutchins, editor
Electronotes
1 Pleasant Ln
Ithaca NY 14850

Walsh functions are far from dead, however. For example, the IEEE Transactions on Computers has a table of contents category “Walsh Transforms” which is represented by one paper in the August 1977 issue (volume C-26, number 8). For electronic music, however, the need of weighted resistors makes them more complicated as a design element than a number of simpler techniques.
Circle 97 on inquiry card.

BYTE SHOP EAST

GRAND OPENING!

Come to the Grand Opening of our new Byte Shop East, Inc. at:

130 East 40th St.
(Corner of Lexington Ave.)
New York, NY 10016
(212) 889-4204

Hours: 11-7 Tuesday through Friday
10-5 Saturday
Closed Sunday, Monday

We specialize in Small Business applications and Educational Packages that use personal computers. Come and see our complete line!

NOTE: Our store in Levittown is still going strong. Come visit us at:

27-21 Hempstead Turnpike
Levittown, Long Island
(516) 731-8116
Two blocks east of Wantagh Pkwy.

Hours: 12-9 Tuesday through Friday
10-5 Saturday
Closed Sunday, Monday

16K Static RAM

250 nsec last
State of the art TMS 4044-25
Fully static • No clocks • No refresh • No wait

• IMSAI/ALTAR/POLY 88/SOL 20
S-100 bus compatible, requires 8V only.

• COMMERCIAL QUALITY COMPONENTS
First quality factory parts, fully socketed, buffered.

• VERSATILE Each 4k addressable to any 4k slot,
on-board memory protect, RAM disable.

FULLY ASSEMBLED, TESTED $375

KITS AVAILABLE AT $355

Delivery: Stock to 4 weeks Phone orders welcome Post Paid
Washington residents add 5.4% sales tax

Enter my order for □ Assembled and Tested $375 □ Kit $355
(Add 4% for charge cards.)

Name ________________________________ Phone ________
Address ___________________________ City ________ State _____ Zip ________

Payment Enclosed: □ Check □ Money Order
□ VISA □ Master Charge Exp. Date __________

Card Number ___________________ 4-Digit No. Over Name ________

Signature __________________________

Seattle Computer Products, Inc.
16611-11th S.E., Renton, WA 98055 (206) 255-0750

This is the first text on 8080 assembler programming which I have run across, and as such is a welcome supplement to (or replacement for) previous books on the subject. The new book is an introduction to 8080 assembler written for beginners; beginners here meaning those who do not know any assembler language. The book would be very hard going for someone who did not know BASIC, FORTRAN, or some other higher level language; the authors assume familiarity with loops, subroutines and programming in general. Most of the sample programs in the book could be used on any 8080 machine; some of the IO and interrupt sections are machine dependent. The authors use an Altair and a minicomputer based cross assembler.

The first three chapters introduce binary arithmetic, logical operations and the basic structure of the computer. This section concludes with an introduction to the concept of programming and what an assembler does. The next few chapters concentrate on the most common tasks faced by the programmer: moving data, memory addressing modes, binary arithmetic and logical operations. The third logical segment (CSECT?) concerns the use of the stack, of subroutines, and of tables and arrays. Next the authors describe and illustrate simple and complex IO, conversion between binary and other ways of representing data (decimal, BCD, hexadecimal, ASCII), and graphical representation. The latter is contained in the complex IO chapter where a dot matrix printer is made to print in the Russian alphabet using “RUSKII” (Russian Unified Standard Key for Information Interchange, an invention of the authors). Decimal arithmetic and digital to analog conversions are then taken up, and the final two chapters proper are devoted to interrupts. There is a final chapter on debugging, and then appendices which give source and object code for the debugger, a loader, the cross assembler, and a table used to produce the Russian alphabet.

Generally I found the book excellent. I was only able to find a couple of relatively trivial typos (on page 153 RAR should be RAL, and on page 182 OSVCE should be
CSVCE), and the illustrations were very good. I would have liked to have seen a section on floating point arithmetic, and it would have helped to give a table of the instruction set somewhere, but the authors must presume this is available elsewhere.

John A Lehman
716 Hutchins #2
Ann Arbor MI 48103

An important element in the title of this book is "interactive." APL, A Programming Language, is indeed interactive. Throughout the book this feature is not only accented; it is capitalized upon. One does not merely read the book. A budding APL programmer can either interact with an APL workspace that has been preprogrammed to track the book or, when this is not practical, he or she can interact with the computer surrogate found interwoven into the text in the form of a listing which includes both human input and computer response.

APL An Interactive Approach gives an understandable presentation of APL operators (also called APL functions), user programs (called defined functions), workspace management, and information which can best be described as "advanced topics." Although these "advanced topics" might not be implemented on home microcomputer APL systems of the near future, the
Don Lancaster’s ingenious design provides software controllable options including:

- Scrolling
- Full performance cursor
- Over 2K on-screen characters with only 3MHz bandwidth
- Variety of line/character formats including 16/32, 16/64, ..., even 32/64
- User selectable line lengths

TELL ME MORE! () Send instruction manual for the TVT-6 Kit with full operational details, $1 enclosed.

SEND FREE CATALOG

PAIA ELECTRONICS, INC.

DEPT. 1-B, 1020 W. WILSHIRE BLVD., OKLAHOMA CITY, OK 73116

adage that too much is better than too little seems pertinent.

The general tone of the book is technique and, as could be expected, the type of technique emphasized is the use of APL functions. (Branching is not discussed until halfway through the book. However, the authors have chosen to stress the alternatives to branching which APL provides in order to combat what must be a natural tendency to branch.) Technique is but one course and, “One course neither a meal nor a graduate makes!” I believe that additional emphasis is needed on program (function) organization, the use of functions as subroutines, debugging, and error correction. An additional appendix on “error messages, their causes and corrections” and an expanded appendix on “APL functions,” both comprehensive enough to be used as stand alone work aids, would have been helpful.

A revised printing of the second edition has been released recently, the major change being an easier to read type style. Information relating to the use of the IBM 5100 portable computer was also included.

Is this book for you? Assuming you have a strong desire for information concerning APL, I would say, “Yes.” If your interest is casual and you expect programming languages to be more conversational than BOO KSTORE x1. (DES IRE > N I L) ? N EE D = 'Y ES ' then my answer would not be so unequivocal. (Note: + can be read as “GOTO” and x1 as “IF;” I leave the rest to you!)
SOl User’s Society

On a hot Sunday afternoon, about 30 owners of Processor Technology SOL computers gathered in a Stanford University auditorium to organize the SOL Users’ Society (SOLUS). The meeting was arranged by Bill Burns, Ron Findlay, Dave Fylstra, and Ben Milander, who had been conducting preliminary SOL users’ meetings at the Homebrew Computer Club. As the SOLUS steering committee, these four men discussed the goals, structure, and functions of SOLUS.

It was decided that SOLUS will have a cooperative but independent relationship with Processor Technology. The goals of the society are: to facilitate communication among SOL users and to provide a mechanism for exchange of SOL compatible hardware and software products by independent sources. Membership is open to owners of SOL computers or of other computers configured like the SOL. The Society is primarily a personal computer users’ group, although a commercial interest group may be formed within SOLUS.

The item above is from Stan Sokolow, the editor of SOLUS News. To get in touch with SOLUS, write to Stan Sokolow, 1690 Woodside Rd #219, Redwood City CA 94061.

The International Classified Advertiser for Computer Hobbyists (Bitbucket)

Bitbucket is published twice a month and sent via first class mail. Computerfest announcements, club meeting schedules, interclub requests, and news articles (flea markets, special events, etc) are published free of charge. Bitbucket is mailed free to all clubs. To send for more information, write Bitbucket, M C Corporation, publisher, POB 314, Libertyville IL 60048.

SR-52 Users’ Club

Here’s a club for owners and users of Texas Instruments programmable calcula-
Circle 63 on inquiry card.

THE BETTER BUG TRAP

DEBUG AND
CONQUER

Altair/IMSAI compatible board catches program bugs and provides timing for real-time applications.

Four hardware breakpoint addresses. Software breakpoints only possible at instructions in RAM. Better Bug Trap breakpoints can be in ROM or RAM, and at data or instructions in memory, input/output channels, or stack locations.

Board can stop CPU or interrupt CPU at a breakpoint.

Real-time functions: watchdog timer, real-time clock (for time of day clock), interval timer.

Sophisticated timesharing made possible!

Unique interrupt structure: generates a CALL instruction to your subroutine anywhere in memory, not a RST!

Addressed as memory. All parameters set easily by software.

All this and more for about the price of a real-time clock board, but nothing else does the job of the Better Bug Trap.

$180, assembled and tested. 2 manuals plus software. 90 day warranty. Shipped UPS. Delivery from stock.

Prototype boards for SWTP 6800 and other systems —

The larger board (SWT-2) is the same size as the system memory board and plugs into a memory location. The smaller board (SWT-1) is the same size as an I/O board and plugs into and input/output connector location. The proper Molex connectors are provided. Please add $1.50 per order for shipping, handling and insurance.

Prototype boards for S-100, Heath H-8 and others available.

<table>
<thead>
<tr>
<th>Board</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWT-2</td>
<td>$ 15.95</td>
</tr>
<tr>
<td>SWT-1</td>
<td>$ 8.95</td>
</tr>
</tbody>
</table>

Adapter boards available to interface Heath H-8, Radio Shack Z-80, and Intel SBC 80/10 computers to the S-100 bus. Permits use of North Star and other floppy disk interfaces with these systems.

Order from your nearest dealer or —

Celetron

P.O. Box 6215, Syracuse, New York 13217 (315) 422-6666

Adapters. Membership is open to anyone. The club is neither sponsored by nor officially sanctioned by Texas Instruments. To date there are over 700 members. The club publishes a newsletter, 52 Notes, which contains programs, routines, and various other information. Write to R C Vanderburgh, 9459 Taylorsville Rd, Dayton OH 45424.

RICH

The Rhode Island Computer Hobbyists hold meetings on the third Tuesday of every month. Upcoming meetings will feature presentations of solar energy projects, the new Heath line, and terminals for the deaf, to mention a few. The new NET message service allows anyone with a terminal and a modem to dial a club computer to get news and receive or leave messages. Contact the Rhode Island Computer Hobbyists, POB 599, Bristol RI 02809.

Lincoln NE Computer Club

Computer hobbyists in the Lincoln NE area are invited to join the Lincoln Computer Club. The club was formed in early 1977, and has been meeting monthly ever since. Meetings are held the first Wednesday of each month at 7 PM at the South Branch Library at 27th Av and South St. For further information contact Hubert O Paulson Jr, 422 Dale Dr, Lincoln NE 68510.

Computer Amateurs of South Jersey

A new club, the Computer Amateurs of South Jersey, invite the participation of all interested parties, both novices and professionals. User groups have been formed for the 6800, 6502 and the 8080 processors. Meetings are held at 7:30 PM on the last Tuesday of each month at the National Park Municipal Building, 7 S Grove Av, National Park NJ. For additional information please call (609) 541-8296 or write Charles Knott, 3088 Congress Rd, Camden NJ 08104.

Tidewater VA Computer Club

This club, located in the tidewater area of Virginia (Norfolk, Virginia Beach, Chesapeake, Portsmouth) has a membership of about 100. Club meetings are held in the Electronics Computer Programming Institute, Janaf Office Building, Janaf Shopping Center in Norfolk at 7:30 PM on the first and third Tuesdays of each month. Contact C Dawson Yeomans, 677 Lord Dunmore Dr, Virginia Beach VA 23462.
Electronotes

This is the newsletter of the Musical Engineering Group. Bernie Hutchins has been publishing this unique and valuable newsletter since the early 1970s. It contains technical material pertaining to electronic music and related subjects. There are 20 to 25 pages in every issue, all of them informative. To submit articles or to subscribe, write to B A Hutchins, 1 Pleasant Ln, Ithaca NY 14850.

Calculator Lib

There exists in Oxnard CA a man named Gene Hegedux who edits a newsletter called Calculator Lib. This publication is devoted to the spreading of information and ideas about calculators. In it are various tricks, hidden secrets and humorous items about calculators (not just programmable calculators, either). To subscribe contact Gene Hegedus, POB 2151, Oxnard CA 93034.

Alamo Computer Enthusiasts

ACE is a group of microcomputer enthusiasts in the San Antonio TX area who have gotten together to publish a newsletter. The club meets on the fourth Friday of each month at 7:30 PM in room 104, Chapman Graduate Center, Trinity University. Contact John Stanton, 7517 Jonquil!, San Antonio TX 78233.

Southern Illinois Computing Association

The Southern Illinois Computing Association (SICA) draws its members from the academic, business, professional and hobbyist fields. The organization meets the first Monday of the month at Southern Illinois University, Carbondale IL. For further information and a current copy of the organization’s newsletter, contact James E Honey, SIU General Stores, Carbondale IL 62901.

Computer Hobbyist Group of North Texas

This group, led by Neil Ferguson, president, and Bill Lewis, vice president, is located in the Dallas area. It is an informal club in which people display their systems, exchange information, and so on. Their newsletter, The Printed Circuit, looks good and contains vital club information, classifieds, and coming events. If you want to become a member, or get more information, contact Neil Ferguson, POB 1344, Grand Prairie TX 75051.

“We’ve Got It!!”

A NEW ADDITION TO OUR STOCK OF SURPLUS ELECTRONIC EQUIPMENT

The IBM Selectric® Based 1/0 Terminal $695.00

- INTEGRAL MODEM
- BCD OR CORRESPONDENCE CODE
- TABLETOP MOUNTING
- 22"W, 22"D X 8"H, 58 LBS
- ASCII CONVERSION AVAILABLE
- DOCUMENTATION INCLUDED

OTHER SURPLUS STOCK

- KEYBOARDS – ASCII ENCODED $40.00—$60.00
- CRT TERMINALS
- TAPE DRIVES $650.00
- EQUIPMENT CABINETS
- POWER SUPPLIES
- PRINTERS TRANSFORMERS
- WIRE-CABLE

Send for a free catalog or call Bill Blaney toll free 800-258-1036. In N.H., 603-885-3705

WORLDWIDE ELECTRONICS, INC.
10 Flagstone Drive, Hudson, New Hampshire 03051

Visit Our Store

SPEAK “KAAMPYUTAOLKER”

MODEL CT-1 SYNTHESIZER 395.00
CSRI SOFTWARE SYSTEM 35.00
DEMONSTRATION CASSETTE 2.95

WRITE FOR INFORMATIVE LITERATURE

COMPUTALKER CONSULTANTS
P.O. BOX 1951, DEPT. B, SANTA MONICA, CA 90406
executed (or shall I say, "understood"?) by the computer system. When we figure out what it is that we want to get done, then the process of automating that intention reduces to a purely mechanical procedure.

The amplification of our thoughts represented by a computer's operation comes in several ways. The computer can automate and execute procedures orders of magnitude faster than a human brain can operate; a computer can record procedures in some form of storage, for recall at the direction of its user; by requiring explicit and consistent instructions, a computer acts as a tireless crusader for consistency and accuracy in our knowledge of innumerable subjects. Ralph Waldo Emerson commented that "...a foolish consistency is the hobgoblin of little minds, adored by little statesmen and philosophers and divines." With the aid of these new mental amplifiers, we might add computers to the list of "little minds."

As a mental amplifier, the computer is perhaps the "ultimate tool" of our tool making species. Recognizing the nature of the computer as such a tool helps one to understand the multiple facets of personal computing. The general-purpose computer system is not confined by design to any particular application; its generality is the secret of its enthusiasm with users. Computers are indeed used in dedicated applications, and with great success, as evidenced by the newest crop of complicated video game machines, computer controlled sewing machines, and computer controlled automotive systems. But in such dedicated applications, we merely use the results of the amplified thoughts of the designer of the application system, and if those thoughts disagree with our own thoughts on the way the system should work, then there is little prospect for improvement or customization of the application. The general-purpose computer in contrast is oriented toward an interactive user who needs the mental amplification process in an individualized context. The key to such computers' enthusiastic reception as "personal computers" is this flexibility which is present in the user who knows how to program with the tools available and can proceed to create an application or modify a canned application to fit a custom situation.

Think of an analogy to the piano or any other musical instrument which requires some skill to play. As an avocational pianist, I buy a "stock" program for an "appli-
cation" of the piano, for example a Scott Joplin piano rag, a Waldteufel salon style Viennese waltz, or a piano sonata by Beethoven. I do not pretend to be an original "programmer" of the music, so I purchase the printed form of these works and proceed to play them in my own imperfect style, customized as it were to my own characteristics as a piano player. (I can buy completely canned music, too, in the form of mass produced record albums of famous artists which are musically the equivalent of game programs purchased for specific games machines and written by the games' artists.) The piano is my general-purpose musical instrument which can be adapted to any one of a wide diversity of musical styles and emotional states. In a like manner, the personal computer as a general-purpose computer is not confined to any one mode of operation — it merely provides a mechanism for implementation.

The users of the personal computer in the past have tended to be those individuals who have most to gain from this personal thought amplifier, namely individuals involved in personal endeavors which can benefit from the automation of thoughts. Since everyone thinks to a greater or lesser degree, the market for personal computer equipment may in principle be limited only by the size of the human population; but for the near term it is those individuals who are involved with intellectual processes from art to business who benefit most from the small computer. The art of computer programming is a skill which I view as essential, in the same way that the art of driving is required to take advantage of the mobility of the automobile. Not everyone need be the programming equivalent of a skilled race or rally driver, but for people now growing up with programmable computers readily available, a programming skill analogous to the ordinary person's automobile driving skills is required. Anyone who would think otherwise is ignoring the essence of what makes the personal computer personal.

So, then, what does it really mean to have a personal computer? At an emotional level, it enhances one's understanding and thought processes through the ability to perform simulations and experiments; it gives one the opportunity to experience a joy of creation and practical benefits at whatever level programming is done. It gives its user a tool for understanding and interacting with the world which was not previously available and which enhances the human thought processes by allowing simple automation of well-defined operations. The total feedback in both spiritual and material benefits can be enormous.
Since becoming involved in personal computing, I've only met a few real applications oriented users. Most microcomputer owners are either hardware oriented, eg: hams or other electronics hobbyists, or they are software hackers. Both groups tend to love their machines for their own sake and not necessarily because they are useful. The users I've met who are more interested in the answers they get than in how they got them have all been running financial programs. Despite this thin showing, I believe that the next large group to "discover" personal computing is going to be applications oriented. They will be the business people and hobbyists who need more computing power than is available in a pocket calculator, but who can't justify access to a large computer.

Among this group will be the model rocket and aircraft builders. Those people delight in creating miniature NASAs, but they have always lacked one important resource, computing power. The government and the aerospace industry invest a great deal of effort in simulating flights long before any hardware is put together. Few hobbyists could do this until now. In this article, I'll show how a microcomputer can be used to simulate the flights of model or amateur rockets and aircraft. The simulations can be used as aids in design and "mission" planning. I also hope to demonstrate the desirability of personal computing as an adjunct to other pastimes.

As in my previous articles, these simulations are intended to serve as examples. The techniques involved can be applied in almost any real world application. The lunar lander game, for example, served to illustrate how simulations are separated into degrees of freedom, and how speed and position are predicted for steps into the future. Those concepts were also applied when we simulated the motion of an automobile suspension system. That simulation illustrated how forces could depend directly on the motion being simulated. It also served to introduce some powerful numerical techniques. All of these concepts will apply to the flight simulations. In addition, I'll show how to calculate the effects of a force which acts in two degrees of freedom at the same time. I'll also introduce angular motion and demonstrate the way in which a simulation keeps track of how fast a body is turning and where it is pointing. While developing a flight simulation in detail, I'll try to point out specific areas where these new techniques can be applied to the earlier applications.

Let's begin, in fact, by outlining a game

Table 1: Drag coefficients for various bodies. These coefficients include the body area and air density term (1/2 x 1.192 kg/m^3). They are intended to be used in an equation of the form:

$$ DRAG = SPEED^2 \times C_d $$

If larger or smaller bodies are used, a simple ratio of areas will convert the coefficient.
simulation you can program. In the lunar lander game, aerodynamic forces were neglected, but these forces must be considered for atmospheric flight. They also present a good example of forces which act in more than one degree of freedom. We will investigate them through the use of a simple game I'll call EVEL. The object of the game is to select the ramp angle and speed with which to leap a motorcycle over a given number of cards and land successfully on the downward ramp. The motion will be in two degrees of freedom, vertical and horizontal. The forces will be gravity and aerodynamic drag.

We have seen in the previous articles how gravity affects speed, and most people have an intuitive understanding of drag. Drag is the force you feel when you hold your hand out the window of a moving car. It is the resistance of air to a body moving through it and it acts directly opposite the motion. Drag is calculated in much the same way as the force created by an automobile shock absorber. In that example the force was the speed multiplied by a damping coefficient. To calculate drag, we will multiply the speed squared by a constant called the drag coefficient (symbolically \(\text{Cd} \)). Drag coefficients for some common bodies are given in Table 1. \(\text{Cd} \) takes into account the size, shape and surface texture of the body. In our simulations, it will also include a factor for the density of the air (1.19 kg per cubic meter). More detailed simulations will take into account the changes in air density and temperature which occur at higher altitudes and adjust the aerodynamic forces accordingly. To avoid this complication, we will restrict our simulations to altitudes within a few thousand meters of sea level. The formula we will use for calculating drag is

\[
\text{DRAG} = \text{SPEED}^2 \times \text{Cd}
\]

If the only motion is upward, the drag acts only in the vertical degree of freedom. There are also cases in which it acts only horizontally; but in general, there will be motion in both directions, and the drag, which acts directly opposite the motion, will be felt in both degrees of freedom. Because of its dependence on the square of the speed, we cannot calculate separate vertical and horizontal drags. We must calculate one force and apportion it between the two degrees of freedom.

Figure 1 shows a typical case. Here a daredevil motorcyclist has just left his takeoff ramp. Suppose we know from a previous simulation step that his vertical speed is 30 meters per second (m/sec) and his horizontal speed is 40 m/sec. To calculate drag, we must first find the total speed. Our fortunate selection of degrees of freedom now becomes apparent, because the vertical and horizontal velocities can be seen to form two sides of a right triangle. We can compute the third side, or hypotenuse, by applying the theorem of Pythagoras \(\left(C^2 = A^2 + B^2\right) \). The total velocity will be equal to the square root of the sum of the squares of the speeds in each degree of freedom. In this case, the daredevil is moving at \(\sqrt{30^2 + 40^2} = 50 \text{ m/sec} \). Using \(C_d \) from Table 1, we calculate a drag of \(0.25 \times 50^2 = 625 \text{ newtons} \), acting at some angle between horizontal and vertical. This angle is called the flight elevation (symbolically GAMA in some computer programs). It can be found using a little trigonometry. If we let horizontal be 0 degrees, and let vertical be 90 degrees, then GAMA is equal to the arc tangent of the vertical divided by horizontal velocity. In this case, GAMA = \(\arctan \left(\frac{30}{40}\right) = 36.87 \text{ degrees} \). Knowing the angle, it is easy to apportion the drag. The forces which result are called components of drag. The vertical component (symbolically \(Dv \)) is given by \(Dv = \text{DRAG} \times \sin \text{GAMA} \). The horizontal component, \(Dh \), is given by \(Dh = \text{DRAG} \times \cos \text{GAMA} \). In
Figure 2: The direction of flight is called the flight elevation (GAMA). The direction the rocket is pointing is called the body elevation (THETA). The difference between them is called the angle of attack (ALPHA = GAMA - THETA).

In the current example, \(D_v = 625 \times \sin(36.87) \approx 375 \text{ newtons} \) and \(D_h = 625 \times \cos(36.87) \approx 500 \text{ newtons} \). You can check these calculations by noting that \(\sqrt{375^2 + 500^2} = 625 \). Readers familiar with trigonometry will be able to confirm that

\[
\text{DRAG} = \sqrt{D_v^2 + D_h^2}
\]

in every case. This is the same formula we used to find the total speed, so it should not be surprising to find that the vertical and horizontal speeds are also referred to as components.

The effect that the components of drag have on the components of speed depends, of course, on the mass. If our daredevil is fairly small, and rides a light motorcycle, the total mass in flight might be 150 kg. During a step of 0.1 seconds, the horizontal speed will decrease by \(500/150 \times 0.1 = 0.333 \text{ m/sec} \). A similar change occurs in the vertical speed, but there we must also include gravity. Remember from the previous simulations that each second, gravity subtracts 9.8 m/sec from the vertical speed. In 0.1 seconds it will change from 30 m/sec to \(30 - (375/150 + 9.8) \times 0.1 = 28.77 \text{ m/sec} \). Knowing the new speeds, you can compute the new position, the new drag and the new flight elevation. The simulation can be stepped forward again and again until the daredevil returns to earth.

Because the drag components depend on the square of the speed, it will probably be necessary to use the predictor-corrector formulas from my previous article to obtain realistic results. The initial conditions of total speed and ramp angle must be chosen.

For the first simulation step set GAMA equal to the ramp angle and let the vertical speed component equal \(\text{SPEED} \times \sin(GAMA) \) and the horizontal component equal \(\text{SPEED} \times \cos(GAMA) \). Figure that a car is about 6 meters long, a bus about 15 meters, and the Snake River Canyon is 1451 meters wide. Good luck.

In many respects, a rocket or aircraft in flight is much like our daredevil. It will be moving horizontally and vertically and will be acted upon by gravity and drag. There are some other forces to be considered, however. For example, early in a rocket’s flight, its engine will be producing thrust. Unless the rocket is pointing directly upward or directly parallel to the ground, we will also have to apportion this force between horizontal and vertical directions.

One way to do this is to assume that the rocket always points in exactly the direction it is moving. The flight elevation angle, GAMA, can then be used to apportion thrust just as it was used for drag. At each simulation step, the program can interpolate a table to find the value of thrust corresponding to the current time. It then computes the components and applies them to predict new speeds and position. In this manner we can build a two degree of freedom rocket trajectory simulation. This simulation might also be used for a game. Set up a duel between two artillery battalions, or better still, program a real time simulation like the lunar lander game of my first article and try to hit a moving target.

For most flight vehicles, the tendency to point in the direction of movement is a desirable characteristic. Unfortunately, this is not generally the case. Vehicle imperfections, the effect of wind, and just the fact that it takes a finite amount of time to turn the vehicle, all affect the pointing of a rocket. In order to indicate where the rocket is pointing, we define another angle, the body elevation angle (symbolically THETA). THETA tells us where the vehicle is pointed and is used to apportion thrust. The difference between THETA and GAMA is called the angle of attack (symbolically ALPHA). It is illustrated in figure 2.

Unlike GAMA, there are no components which may be used to compute THETA. We must keep track of it with a third degree of freedom. Just as altitude is calculated as the position in the vertical degree of freedom, THETA may be calculated as the position in this third, or angular, degree of freedom.
Angular motion is handled in exactly the same way as the linear motions we have already been simulating. Just as position has its angular equivalent, so do speed, force and mass. It is as easy to calculate the speed with which a body turns as it is to find the speed with which it falls.

First we must calculate the angular equivalent of a force. These are called moments (also called "torque"), and have metric units of newton meters. As the units imply, each moment has a force as part of its definition, but it also depends on how much leverage the force has. For example, suppose you apply a force of 10 newtons to the end of a 15 cm (0.15 meter) wrench. A moment of $10 \times 0.15 = 1.5$ newton meters will be transferred to the bolt. If a 25 cm wrench were used, a moment of $10 \times 0.25 = 2.5$ newton meters would result, and the bolt would be proportionately tighter. In rocket flights a moment results as an aerodynamic effect whenever $\text{THETA} \neq \text{GAMA}$. It has its own coefficient, C_m. For small angles of attack, this coefficient is multiplied first by the square of the speed (linear speed, not angular) and then by the angle of attack ($\text{ALPHA} = \text{THETA} - \text{GAMA}$). The aerodynamic moment is therefore caused because the rocket is trying to point itself in the direction it is moving.

The next element to be considered in the angular equation is the equivalent of mass. This is called moment of inertia, and the leverage concept applies to it also. The moment of inertia (usually shown symbolically as an upper case I) depends on the mass of the body, and also how widely spaced the mass is. For example, a 50 kg set of bar bells would have a much larger moment of inertia than a single 50 kg weight. The units of I are kilogram meters. Like mass, moment of inertia is a property of matter. In our rocket simulation, both may change as fuel is burned, but their values can be determined at any given time. It is general practice to construct tables of mass and moment of inertia which parallel the thrust table we have already introduced. In each simulation step, our program will interpolate the table to find the current value of moment of inertia and use it to find the effect of the moments. The value of the metric units will now become apparent.

Just as the force in newtons was divided by the mass in kilograms to find exactly the
A Model Rocket Simulator

Listing 1: This BASIC program illustrates the use of an angular degree of freedom to apportion a force between two linear degrees. It simulates the flight of a model rocket that might be built from widely available kits. During the early part of the flight (approximately 1 meter), the rocket rides on a guiding rod. The rod prevents the body from turning, so angular motion must be suppressed in the simulation. After leaving the launcher, the vertical, horizontal and angular pitching motions are all considered.

A short time later, however, the fuel will be exhausted and the thrust will drop to zero. Because the only reason for computing THETA was to apportion the thrust, angular motion may be neglected from this point until the vertical position becomes zero (rocket returns to earth) and the simulation ends.

This type of simulation is particularly useful for determining the effect of wind on a rocket. The tendency a rocket has to point in the direction it is moving also causes it to turn into the wind. The highest altitude may not, therefore, be achieved with a vertical launch. By running a series of simulations on his/her personal computer, a model rocket builder can determine in advance the ideal launch angle for various steady state wind speeds. The plots shown in figure 3 illustrate this type of study.

Note that in each case the horizontal degree of freedom is aligned with the wind. Because the forces and moments in this simulation depend on the motion, the predictor-corrector method has been applied. To conserve space, however, it is not the fourth order method used in the automotive simulation of last month's article, but a shorter second order version. Improved accuracy would result if you were to implement the longer formulas. You may also want to customize the output. For example, a plot of angle of attack versus time might be interesting. To print out ALPHA in degrees, use (L-G) x 57.295 to convert from units of radians. Special output exactly at apogee (maximum altitude), impact, or motor burnout might also be helpful in evaluating performance. The code is well-commented, so feel free to dig in and adapt this program to your own needs.
change in speed each second, so the moment in newton meters can be divided by the moment of inertia in kilogram meters to find exactly the change in angular speed. In angular degrees of freedom the units of speed are radians per second and the position will be computed in radians. There are 2π radians in a full circle, so 1 radian equals 57.296 degrees. Because most BASIC interpreters perform trigonometric calculations in radians, these units are to be preferred. Conversion to degrees is easily made for input and output.

Once the effect of each moment is known, it is multiplied by the time step size and added to the speed in exactly the same technique used for linear motion. Similarly the angular speed is multiplied by step size to update the angular position. The predictor-corrector method may be applied by saving moments, and speeds from previous steps. I have included a BASIC program with this article which involves both the predictor-corrector formula and angular motion in a three degree of freedom (pitch plane) trajectory simulation. Noting the similarity between the angular and linear equations used there should make this technique easier to understand.

The concept of angular motion is easily transferred to other applications, but to make best use of it you really need some familiarity with the forces and moments which may appear. For example, an automotive enthusiast will already understand how the road surface induces motion in the body of a car. We saw last month how to simulate that motion for one wheel. If you include two wheels, the front and back on one side, a second degree of freedom in body motion is introduced. Most people would recognize that, but only someone familiar with automobiles might realize immediately that the two ends of the body will not move up and down entirely independently. The second degree of freedom must be an angular one. It will measure the pitching motion of the car while the original degree measures its overall up and down motion. The forces created by each set of suspension parts will contribute to the linear motion, and will be multiplied by their leverage (perhaps their distance from the driver's seat) to determine their affect on the angular motion. At each step, the angular motion will be combined with the linear motion to compute new forces, moments, etc, and the procedure will begin again. Just how those angular motions are combined with the linear ones, and how the leverage of a force is determined, will be the subjects of the fourth and last article in this series.

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{figure3a}
\caption{Trajectories with no wind.}
\end{figure}

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{figure3b}
\caption{90° launch with wind.}
\end{figure}

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{figure3c}
\caption{Trajectories with 10 m/sec wind.}
\end{figure}
A Novice's Eye
on Computer Arithmetic

Wayne H. Ladder
8 Overlook Dr
Medway MA 02053

Now that you have your shiny new microcomputer you want to use it for something. No matter what the application, somewhere in it you have to use numbers: to count, do arithmetic, input from a keyboard, or output to a terminal of some sort. If you are operating with a higher level language such as BASIC or FORTRAN there is no problem since all the number manipulation programs are already included. Most of us, however, must work in assembly language or even machine language, and if you have never been there before it can be a discouraging situation when you don't get the expected results.

The purpose of this article is to explain how simple numbers are often represented in a computer and how to do the four basic arithmetic operations. Since the real world of people is decimal, not binary oriented, we have to convert from one to the other. Since most computer peripherals talk in a language called ASCII, I will also show how to translate that into binary and vice versa.

Binary Number System

All the computers you are liable to run into operate on the binary number system, where each element has two possible states, usually designated as 1 and 0. Let's consider an arbitrary 8 bit computer, meaning that the internal arithmetic and logic of the computer handles data that consists of eight bits at a time.

When counting in either the binary or decimal number system the first number is designated by 0 and the second number by 1. We run into difficulties when we try to express the number 2. In the decimal number system it is easy, 2. In the binary number system we have already used up the two allowable states with the first two numbers. What we need is an additional bit of information. When this bit is added we can now designate the number 2 by 10. This extra digit on the left represents a weight of $2^1 = 2$. (The rightmost digit has a weight of $2^0 = 1$.)

Each digit position in a number is assigned a weight dependent on where in the number it occurs. To obtain these weights take the base number and raise it to a power equal to the position of the digit in the number. The rightmost digit is the least significant digit and has the position index of zero. Following these two rules the weights for the decimal number system are: $10^0 = 1$, $10^1 = 10$, $10^2 = 100$, etc. In the binary number system the base number is 2 instead of 10. Substituting, we have the following weights: $2^0 = 1$, $2^1 = 2$, $2^2 = 4$, etc.

To translate a binary number into a decimal number just add up the weights of the digits which are 1s. Table 1 shows how the decimal numbers from 0 through 16 are written in binary and two other forms of numbering common in computers: hexadecimal, which uses a base of 16, and octal, which uses a base of 8.

The octal and hexadecimal forms are used to save you from writing out long strings of 1s and 0s which are hard to read and give plenty of opportunity for mistakes. For hexadecimal notation six new digit values are needed to allow a total of 16 different digits, representing four bits. To fill this need the letters of the
Decimal Number	Binary Number	Hexadecimal	Octal
0 | 0 0 0 0 0 0 0 0 | 0 0 | 0 0 0 0
1 | 0 0 0 0 0 0 0 1 | 0 1 | 0 0 0 1
2 | 0 0 0 0 0 0 1 0 | 0 2 | 0 0 1 0
3 | 0 0 0 0 0 1 1 0 | 0 3 | 0 0 1 1
4 | 0 0 0 0 1 0 0 1 | 0 4 | 0 1 0 0
5 | 0 0 0 1 0 1 1 0 | 0 5 | 0 1 0 1
6 | 0 0 1 1 1 0 0 1 | 0 6 | 0 1 1 0
7 | 0 1 0 1 1 0 1 0 | 0 7 | 0 1 1 1
8 | 0 1 1 0 0 0 1 1 | 0 8 | 0 2 0 0
9 | 0 1 1 0 1 1 0 0 | 0 9 | 0 2 0 1
10 | 0 1 1 1 1 1 1 0 | 0 A | 0 2 1 0
11 | 0 1 1 1 1 1 1 1 | 0 B | 0 2 1 1
12 | 0 1 1 1 1 1 1 1 | 0 C | 0 3 0 0
13 | 0 1 1 1 1 1 1 1 | 0 D | 0 3 0 1
14 | 0 1 1 1 1 1 1 1 | 0 E | 0 3 1 0
15 | 0 1 1 1 1 1 1 1 | 0 F | 0 3 1 1
16 | 1 0 0 0 0 0 0 0 | 1 0 | 0 4 0 0

Table 1: Binary, octal, decimal and hexadecimal equivalents of the decimal numbers 0 through 16.

The alphabet A through F are used to represent the numbers 10 through 15. To convert a binary number to hexadecimal start at the least significant end and count off binary digits in groups of four. If the last group does not contain four digits visualize additional 0s to make four binary digits. Consider each 4 digit group as a separate number and write its hexadecimal equivalent (refer to table 1). For example:

binary 1110111101000111
separated 0001 1010 1110 0100 0111
hexadecimal 1 A E 4 7

To convert from hexadecimal to binary notation just reverse the procedure. Replace each hexadecimal digit with its binary equivalent, remembering to add leading 0s so that each of the hexadecimal digits forms a 4 digit binary number.

Octal conversion is the same except the binary number is broken into groups of three. For the previous example:

binary 1110111101000111
separated 011 010 111 001 000 111
octal 3 2 7 1 0 7

Conversion from octal back to binary is done by replacing each octal digit with its 3 digit binary equivalent.

Let's return to our 8 bit computer. If table 1 is expanded to eight binary digits (bits) the largest number that can be formed would be decimal 255 (binary 11111111). Counting 0, this gives 256 different numbers that can be expressed with eight bits. In some applications 256 numbers are enough, but if you were going to balance your checkbook a maximum balance of $2.55 would be rather useless. I will return to this limitation shortly and show you how to get around it; but first, in the context of balancing checkbooks, what happens when a number is negative? If we accept 0 as a positive number then we can assign one bit of the number to be the sign, a 1 for negative and a 0 for positive. Notice that we have lost a bit from the numerical value and now can only have 128 different values each with two signs for a total of 256 different numbers. However, 0 is not considered a valid number, so there are only 255 usable numbers. This type of notation is called a sign-magnitude representation of a number. Using this notation, \(-1\) is written as:

\[
\begin{array}{c}
\text{sign bit} \\
\hline
10000001 \\
\text{magnitude}
\end{array}
\]

If you were going to add two signed numbers (say +3 and \(-1\)) your program
would have to take into account several things first. First, if you simply added the two numbers, the result would be wrong:

\[
\begin{align*}
+3 & \quad 00000011 \\
-1 & \quad 10000001 \\
\text{sum} & \quad 10000100 = -4
\end{align*}
\]

Wouldn’t it be nice if there were a number notation that would allow identification of positive and negative and give a correct answer when added together? Consider adding +1 to -1 to get 0. What 8 bit binary number added to 1 gives 0?

8 bit binary number \(11111111\)

\[
\begin{align*}
+1 & \quad 00000001 \\
\text{sum} & \quad 100000000 \\
\end{align*}
\]

The binary number which is all 1s can be called \(-1\). What would \(-2\) be?

\[
\begin{align*}
-2 & \quad 11111110 \\
+2 & \quad 00000010 \\
\text{sum} & \quad 100000000
\end{align*}
\]

We can take any positive number up to 127 decimal (01111111 binary) and subtract it from 0 (assume there was a ninth bit equal to 1 so 0 is really 100000000). The resultant binary number is called the 2’s complement. The most significant (leftmost) bit is a true sign bit in the 2’s complement notation, but negative numbers have an altered magnitude value. When two such 2’s complement notation numbers are added the answer is correct. Consider the previous example of adding +3 and -1:

\[
\begin{align*}
+3 & \quad 00000011 \\
-1 & \quad 11111111 \\
\text{sum} & \quad 100000010 = +2 \text{ (in 2's complement notation)}
\end{align*}
\]

Now consider adding +1 and 3:

\[
\begin{align*}
+1 & \quad 00000001 \\
-3 & \quad 11111101 \\
\text{sum} & \quad 11111110 = -2 \text{ (in 2's complement notation)}
\end{align*}
\]

One method of finding the 2’s complement of a number has been mentioned which required subtraction from binary 0. A simple method that can easily be done on paper, especially if you are prone to making errors in binary subtraction like me, is to first rewrite the number substituting 1s for 0s and 0s for 1s, then add binary 1 to the result. For example, the 2’s complement of +5 is:

\[
\begin{align*}
+5 & \quad 00000010 \\
\text{substitute} & \quad 11111101 \\
\text{add 1} & \quad 11111110 \\
\text{sum} & \quad 11111111 = -5
\end{align*}
\]

To check, we should be able to take the 2’s complement of -5 and end up with +5:

\[
\begin{align*}
-5 & \quad 11111111 \\
\text{substitute} & \quad 00000000 \\
\text{add 1} & \quad 00000001 \\
\text{sum} & \quad 00000010 = +5
\end{align*}
\]

Substituting 1s for 0s and 0s for 1s is called complementing and is usually found as an instruction in the computer instruction set. Adding 1 is usually available as an instruction also. Sometimes both instructions can be combined into one step. In summary, to make a number negative (if you have no negate instruction):

- Clear the accumulator.
- Add the number to the accumulator.
- Complement the accumulator.
- Add 1 to the accumulator.

The accumulator now contains the negative of the original number in 2’s complement notation. One interesting property which comes along with this 2’s complement form is the fact that all states of the 8 (or n) bits are valid and there is only one zero state. The largest negative number, however, has no positive value equivalent.

Let’s return to the problem of not having enough bits to make a big enough number. If we use two successive byte size memory locations to represent a number we have 216 (65,536) possible numbers. Using 2’s complement notation we can have any number from -32,768 to +32,767. If that is not enough you can expand in increments of eight bits until your needs are satisfied. There is a problem now, since the computer only operates on eight bits at a time. When a number is spread over more than one memory location it is called a multiple precision or extended precision number. If two locations are used for each number it is
Get Your FREE Subscription*
Find out all the LATEST details about the
SECOND
WEST COAST
COMPUTER FAIRE
COMIN’ ON STRONG

• A Major Conference Program
 (published Faire Proceedings to be available, on-site)
• Banquets with Fascinating Speakers
• A MASS of Exhibits

4 Months Before the Second Faire,
the following 61 companies had already formally requested exhibit space:

Administrative Systems, Inc.
Alexander Computers
Anderson Jacobson, Inc.
Apple Computer, Inc.
Automated Business Systems
Berg Publications
BIT's
Business Solutions, Inc.
Byte Publications
Byte Shops of Arizona/Micro Age
California Business Machines
Camelot Publishing Co.
Cherry Electrical Products Corp.
CMC Marketing Corp.
Computacolor Corp.
Computer Kits
Computer Room
Computer Warehouse Store
Creative Computing
Cromemco, Inc.

Digital Group
Digital Research
Dymax
Electronics Emporium International
Godbout Electronics
Heuristics, Inc.
Ibex
Integrand Research Corp.
Interface Age Magazine
International Data Systems, Inc.
Ithaca Audio
Jade Co.
Logical Machine Corp.
Micromation, Inc.
Motorola, Inc.
Mountain Hardware, Inc.
Neutronics
Newman Computer Exchange, Inc.
North Star Computers, Inc.
Osborne & Assoc., Inc.
Page Digital Electronics
Paratronics, Inc.
People's Computer Co.
Phonics, Inc.
Processor Technology
Promedics Data Corp.
Quay Corp.
RCA Laboratories
SD Sales Co.
Smoke Signal Broadcasting
Solid State Music
Southwest Technical Products Corp.
Standard Engineering Corp.
Sybex, Inc.
Technical Publishing Co.
Technico, Inc.
Tri-Tek, Inc.
United Technical Publications
Vector Graphic, Inc.
Ximedia Corp.
Xybek

FIRST West Coast Computer Faire
HAD

• almost 13,000 people
• around 180 exhibitors
• almost 100 conference sessions
• four banquet speakers
 all in just TWO days

SECOND West Coast Computer Faire

March 3 - 4 - 5, 1978
9am-6pm. 9am-6pm. Noon-5pm
San Jose Convention Center, San Jose, California
in the middle of Silicon Valley

*Get the FREE Silicon Gulch Gazette
for all the latest details:

• Send us your name & mailing address

“hot news” and “raging rumor” regarding home & hobby computing.

COMPUTER FAIRE
BOX 1579, PALO ALTO CA 94302
\((415) 851-7664 \)
called double precision; if three are used it is called triple precision, etc. (However, it remains a binary number. In large machine floating point representations this terminology has a different meaning.)

One more item needs to be mentioned before I describe multiple precision arithmetic. All computers have some sort of means to detect an accumulator overflow (or underflow). In our 8 bit example this is a ninth bit at the extreme left of the number. The status of this bit can be controlled and tested. It increases by 1 when the addition of the eight bits causes a carry and decreases by 1 when the subtraction of the eight bits causes a borrow. When a rotate instruction is executed this bit receives the most significant bit and loads the least significant bit on a rotate left. It receives the least significant bit and loads the most significant bit on a rotate right. This extra bit is known by different names, such as overflow, carry, and (in the PDP-8) the link.

The steps shown in the box will vary from machine to machine, depending upon how the instruction set is organized. For example, the 6800 instruction set has ADC for add with carry input, and the 8080 instruction set has a similar variation. In these cases, there is no need to rotate the accumulator from the carry flag prior to the second addition, since the ADC instruction type takes into account the old value of the carry.

How do you do a 2's complement of a double precision number? Start with the accumulator and carry set to 0s. Add the least significant part of the number. Complement and add 1 as before. The accumulator now contains the 2's complement of the least significant part, so store it. Rotate left to load any carry into the least significant bit. Store the contents of the accumulator (the carry) in any convenient location. Add the most significant part of the number to the accumulator. Complement it only. Now add the previously stored carry. The contents of the accumulator are now the most significant part of the 2's complement. As in the simple addition case, machines with an ADC instruction can often use the previous setting of the carry flag as part of the addition.

Addition

All computers can add. They typically add some specified memory location to the contents of an accumulator (a built-in memory location in the processor). When adding two or more numbers together you must be careful not to allow the resulting sum to get so large that you get an incorrect answer. For instance, when using 2's complement notation you can add together two numbers which are positive and get a negative answer if a carry into the sign bit occurs. Also be sure the accumulator and carry are initialized to 0.

Subtraction

Some computers do subtraction directly, but be careful. They may only subtract magnitudes. You have to do

An Example of Double Precision Addition

<table>
<thead>
<tr>
<th>Step Number</th>
<th>Procedure</th>
<th>Resulting Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1&2</td>
<td>Clear carry bit and accumulator.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Add A2 to the accumulator.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Add B2 to the accumulator (gives C2 in accumulator).</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Store contents of accumulator in the memory location assigned for C2. Set accumulator to 0; preserve status of carry bit.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Rotate accumulator left one bit.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Add A1 to the accumulator.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Add B1 to the accumulator (gives C1 in accumulator).</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Store contents of accumulator in the memory location assigned for C1. Set accumulator to 0.</td>
<td></td>
</tr>
</tbody>
</table>

To check, write out all 16 bits and add:

A = 1100110111101000
B = +000110011101100
C = 1110011111000100

A = 11001101
B = 00011001
C = 11100111

A

To

A

B

C

The simple addition of two double precision positive numbers, A and B, to obtain an answer C. In this example the subscript 1 denotes the most significant part of the number and the subscript 2 denotes the least significant part. To add two double precision numbers:

1. Clear the accumulator to all 0s.
2. Set the overflow, carry (or whatever the extreme leftmost bit is called) to 0. Often these two steps can be combined into one.
3. Add A2, the least significant part of A, to the accumulator.
4. Add B2 to the accumulator. At this point the accumulator contains the sum of the least significant parts of A and B. If any carry has occurred due to this addition the carry bit will be a 1. If no carry has occurred, it will be 0.
5. Store the contents of the accumulator in the memory location assigned for C2. Set the accumulator to 0, but preserve the state of the carry bit.
6. Rotate the accumulator left one position. This will load the carry bit from the previous addition into the least significant bit of the accumulator.
7. Add A1 to the accumulator.
8. Add B1 to the accumulator. At this point the accumulator contains the sum of the most significant parts of A and B plus any carry from the least significant parts.
9. Store the contents of the accumulator in the memory location assigned for C1.
SPEAK!
AT THE
SECOND
WEST COAST
COMPUTER FAIRE
A Conference & Exposition

Personal & Home Computers

- Tutorially Talk about our Tantalizing Thinkertoys
- Comprehensively Comment on your Complex Computer Calisthenics
- Describe Daring Digital Deeds

CHOOSE YOUR OWN TOPIC(S)

Topics at the FIRST West Coast Computer Faire included:

- Tutorials for the Computer Novice
- Residential Energy & Computers
- Human Aspects of System Design
- Computers & Systems for Very Small Businesses
- Legal Aspects of Personal Computing
- Entrepreneurs
- Amateur Artificial Intelligence
- Speech Recognition & Speech Synthesis by Home Computer
- Computer Art Systems
- Tutorials on Software Systems Design
- Music & Computers
- High-Level Languages for Home Computers
- Electronic Mail
- Multi-Tasking on Home Computers
- Computer Networking for Everyone
- Homebrew Hardware
- Personal Computers for Education
- Bus & Interface Standards
- Amateur Radio & Computers
- Microprogrammable Microprocessors for Hobbyists
- Commercial Hardware

NOTE: The Conference Proceedings of the First West Coast Computer Faire carries over 320 pages of these tutorials & technical presentations, many discussing the state-of-the-art in home & hobby computing. The Proceedings is immediately available from Computer Faire (within California, $13.40; outside California, $12.68; foreign, please write for rates-payment must accompany order), or from your local computer store (a disgustingly dis-service to you if it’s not!).

FOR YOUR TALK TO BE PUBLISHED

abstracts & camera-ready papers will be needed.

CALL or WRITE:

COMPUTER FAIRE
BOX 1579, PALO ALTO CA 94302
(415) 851-7664

Deadline for submitting camera-ready, full-text paper in specified format: 1978 Jan 16

© Copyright 1978 by California Computer Faire, Inc.

Circle 113 on inquiry card.
checking of each number to see which is larger and in what order the subtraction takes place in order to determine ahead of time what the sign should be. Sign bits must be set to 0 so they don’t give false indication of magnitude. The sign bits must be put back into the answer if you are using signed number notation. All of this takes a lot of extra software and time. If you are using 2’s complement notation you can subtract directly and the sign will automatically come out correct. Most of the common microprocessors use 2’s complement notation and have no problems subtracting directly.

If direct subtraction is not possible in your computer, all is not lost. Consider subtraction by addition of a negative number. If you want to perform \(A - B = C \), for example, use 2’s complement notation and first make \(B \) negative by taking its 2’s complement and then add \(A \) to get the answer \(C \). Notice that even if \(A \) or \(B \) is negative to begin with, the answer will still be correct in 2’s complement notation without any extra software to keep track of the sign. This will also work for multiple precision numbers. You still have to be careful not to use numbers which are large enough to cause inadvertent sign bit changes.

Multiplication

Two problems immediately confront us when we consider multiplication. First, if you multiply two 8 bit numbers together, the result is 16 bits long; and second, you simply can’t add up 2’s complement numbers and always get the correct answer. For instance, if you add \(-3\) three times the answer would be \(-9\) (equivalent to 3 times \(-3\)) which is correct, but what would you do with a negative multiplicand as in \(-3 \times 3\)? To solve this problem and use successive addition to do multiplication the first step is to convert all numbers to a positive absolute value without sign. If you have been using 2’s complement notation it is an easy procedure to convert. Rotate left to load the sign bit into the carry bit. Test the carry bit. If it is 0, the number is positive; if it is 1, the number is negative. If the number is positive, just rotate right to restore it to its original value and set all 0s into a location assigned to be the sign of the number. If the number is negative, first rotate right to restore the original, then take the 2’s complement of it to get the number positive and finally, with an all zero accumulator, set the carry bit to 1 and rotate right. Store this in the sign location. What we have done is separate the number into its sign and magnitude. Now if the signs are added we get the correct sign for the answer directly which should be stored in a location assigned to the sign of the answer. Two generalized techniques may be used to find the magnitude of the answer.

Successive addition may be used by adding \(A \) to itself \(B \) times. If the instruction set allows decrementing a number, use that instruction to decrease \(B \) by 1 each time you add \(A \) to the accumulator until \(B \) reaches 0. At that point you have the magnitude of the answer. If the instruction set allows incrementing but not decrementing, first take the 2’s complement of \(B \) and use incrementing of the now negative number until it reaches 0. The disadvantage of using successive addition is that you have to do a potentially large number of additions which can take a lot of time.

A second technique that requires only a few operations is a direct copy of how you do binary multiplication by hand. For example, let’s multiply two 4 bit binary numbers by hand:

\[
\begin{array}{c}
1101 \\
\times 1010
\end{array}
\]

\[
\begin{array}{c}
0000 \\
1101 \\
0000 \\
1101 \\
\hline
10000010
\end{array}
\]

Notice that all we have to do is add \(A \), a shifted version of \(A \) or 0, depending on which digit of \(B \) is used and whether it is a 1 or 0. Notice also that two 4 bit numbers produce an 8 bit answer, so if you don’t restrict the number size, you have to use multiple precision shifting and addition.

A technique that is sometimes useful when you want to multiply by a constant is to recognize that shifting a number left one position is equivalent to multiplying by 2. Shifting left two positions is equivalent to multiplying by 4, three positions is multiplying by 8, etc. By shifting and adding the various shifted numbers in a fixed format you can do the equivalent of multiplying very quickly by a constant. For example, to multiply by 5, shift left twice and add it to the original:

\[5A = (4 + 1)A = 4A + A\]
Division

Division is the most difficult operation to do. First, handle the separation of magnitude and sign as under multiplication and use the same technique of adding signs to get the correct answer sign. The problem with division is that seldom does the answer come out exactly even. Usually there is a remainder. You have to decide how far you want to carry out the answer and what rules you are going to use for rounding off. You may also have the binary equivalent of a decimal point to consider.

One method of dividing is by successive subtractions. For example, to divide A by B, count how many times you can subtract B from A before the remainder is 0 or negative. If the remainder goes to 0, the value of the count is the exact answer. If the remainder becomes negative that means you went one step too far. Reduce the count by 1, add B back to A, and test the remainder to see how to round off. This will give you a whole number answer. It will also locate the binary equivalent of a decimal point if you want to carry the answer further.

Alternatively, you can add B successively, counting the number of times, until the sum equals or exceeds A. Equal to A means the answer is exact, and exceeds A means you went one step too far.

One very limited type of division is very easily done. If you are dividing by 2, 4, 8, 16, etc, all you have to do is rotate the number to the right the appropriate number of times. However, you must be careful of rotating a 1 through the carry bit and having it appear in the most significant bit of the number. To avoid this be sure the carry bit is cleared to 0 before each rotate. A check of the carry bit after the last rotate can be used for round off determination. If it is a 1, round off the answer to the next higher number.

Interfacing to a Nonbinary World

As mentioned earlier, the world is decimal oriented and we should be able to talk to the computer with decimal digits, and indeed our terminals have decimal keys and decimal outputs. Our terminals, however, talk to our computers in yet another language, usually ASCII.

Notice the codes for the decimal ASCII digits 0 through 9 as seen in any table of ASCII codes. If you consider only the least significant four bits you have the binary value of the associated decimal digit. There are two ways of extracting the binary value from the ASCII code. You can first load the ASCII character into the accumulator and then subtract 0110000 or mask it by "anding" the accumulator with 1111. So now you have converted one decimal digit into its binary equivalent. Unfortunately, very often you need more than one decimal digit to make the number. The simplest way to handle this is to use a fixed format. This means you have to enter leading Os so a number will always have the same number of digits and the order in which they are entered defines their decimal rank (units, tens, hundreds, etc). Since each digit is now known it may be placed in a location assigned to its rank after it has been converted to binary. You now have a fragmented number which is not usable for arithmetic. It must first be made into a single binary number.

As an example, let's assume we are using a 3 digit fixed format and the decimal number we are entering is 27. First we type a 0 for the hundreds digit which is stored in a location, HUNS, as a binary 0, using one of the ASCII to binary conversion techniques. Then we type a 2 and a 7 which are converted to binary and stored in locations TENS and UNITS, respectively. Now to make it all one big binary number.

First test the hundreds digit. It is 0 in this case, so jump to testing the tens digit. It is not 0, so multiply the binary equivalent of 10 (1010) by the contents of the TENS location, in this case 2, and store it in the answer location. In the more general case what you do is multiply each decimal digit by the binary equivalent of its rank and add up all the partial products. Finally, you have to convert the binary number into whatever notation you are using for doing arithmetic.

After the arithmetic, or whatever, is completed, the next step is to output it in recognizable form (ie: ASCII to the output device). The procedure is essentially a reverse of the input steps.

First convert the binary number into its fragmented equivalent. Using the above example, first subtract the binary equivalent of decimal 100 (1100100). In this case, the first attempt produces a negative answer, which means there are zero hundreds in the number and the HUNS location should be set to 0. Next try subtracting binary 10s until the result goes negative, then add one
back. The number of times you can subtract 10s before it goes negative is equal to the value of the 10's digit. The remainder is the value of the units digit. These digits may now be converted to ASCII by simply adding 0110000 to each digit location. The final step is to transfer each digit (now in ASCII) to the output device (TTY or CRT terminal, etc) in the proper order.

It is possible to write a program that will work under a variable format for input and output to eliminate the need for leading 0s. This is more complicated since you have to count how many individual entries of digits are made and then arrange them in reverse order knowing the last entry is the units digit regardless of how many digits there are.

One last point: always verify each arithmetic program you write, either in the computer (best way) or write it out step by step by hand. Use extreme values for numbers, like 0, 1, and the maximum number your program is supposed to work with. Finally, select a number at random and try it. If they all work correctly, chances are your program is totally correct.
I The Prices? Low!
The Stock? On Rand!
The Deadline For Orders?

Feb. 28 1978

The Company?
Computer Enterprises!

<table>
<thead>
<tr>
<th>Credit Card Price</th>
<th>Cash Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lear Siegler ADM-3A Kit</td>
<td>$764</td>
</tr>
<tr>
<td>IMSAI 8080 with 22 Slots Kit</td>
<td>$614</td>
</tr>
<tr>
<td>North Star Micro Disk System Kit</td>
<td>$623</td>
</tr>
<tr>
<td>Polymorphic VTI/64 Kit</td>
<td>$162</td>
</tr>
<tr>
<td>Comp. Enterp. Extender Board with connector</td>
<td>$ 13</td>
</tr>
<tr>
<td>Comp. Enterp. Cable A for IMSAI</td>
<td>$ 14</td>
</tr>
<tr>
<td>Seal 8K 450ns RAM Asmbl.</td>
<td>$235</td>
</tr>
<tr>
<td>Vector Graphic 8K 450ns RAM Asmbl.</td>
<td>$234</td>
</tr>
<tr>
<td>Vector Graphic PROM/RAM Kit</td>
<td>$ 83</td>
</tr>
<tr>
<td>George Risk ASC II Keyboard Kit</td>
<td>$ 62</td>
</tr>
<tr>
<td>INetronic’s ELF II RCA COSMAC Microcomputer -wired & tested</td>
<td>$146</td>
</tr>
</tbody>
</table>

ORDER NOW FOR THESE EXCITING NEW PRODUCTS!

North Star Horizon 1 Computer System | $1497 | $1439 |
North Star Horizon 2 Computer System | $1871 | $1799 |
IMSAI VIO-B Kit | $ 234 | $ 225 |
IMSAI VIO-C Kit | $ 297 | $ 286 |

Ask For Your FREE Computer Enterprises Catalog Today!

Shipping charges: $1.00 per CPU on larger units; $1.50 per kit. $2.00 min. per order.

Delivery is stock to 30 days on most items. Shipment is immediate for payment by cashier’s check, money order or charge card. Allow 3 weeks for personal checks to clear. N.Y. State residents add appropriate sales tax. Availability, prices and specs may change without notice.

Write or Call

Write or Call

P.O. Box 71
Fayetteville, N.Y. 13066

Phone (315) 637-6208 Today!

Reviewing a dictionary is usually a simple straightforward task. How much can one really say about a book of definitions? Aside from stating whether or not the dictionary gets the job done, how else does one discuss its attributes? Normally, I would agree to let the matter drop with a few quick sentences. This time, however, I don’t feel that that kind of treatment is really adequate.

In Weik’s dictionary we have the most comprehensive collection of computer software and hardware terms I have seen to date in one volume. While not as detailed as some books have tried to be, Weik’s book still manages to give clear, concise explanations of the items included. This is accomplished by liberal use of cross-indexing and by the supportive use of excellent illustrations and examples. Particularly impressive are the electronic diagrams which even a novice could understand.

In addition to the over 10,000 terms included from the first edition of the dictionary, some 2500 terms from areas such as microprocessors, minicomputers, computer networks, modems, coding schemes, data base theory, and information theory have been added. All of the original definitions have been reviewed to ensure that they are up to date as well.

This book is not without its flaws. The indexing is quite often confusing, eg: for “bus driver” one is told to look under “driver, bus.” But at least the user is directed by the text, which is more than can be said for a lot of dictionaries which never give a clue as to where to look for the definitions of a phrase. There are some dubious inclusions, such as the definition of “machine,” as well as many omissions, particularly in the area of microcomputer hardware.

However, this book is good for quick, simple, accurate definitions of a lot of useful terms. No reference shelf would be complete without it.

Blaise Liffick, Editor.
Mounting a Paper Tape Reader

Jack Bryant
Mathematics Department
Texas A&M University
College Station TX 77843

Several months ago I ordered a RAECO paper tape reader. It arrived (a near record) 12 days later. Its very complete documentation, seven mimeographed pages, included a mounting template and circuit diagram. For $32.50 postpaid, it has to be a "best buy" among paper tape readers. But where could I mount it? Some unused panel space on my SwTPC 6800 processor's box seemed ideal.

The RAECO documentation suggests a 100 W light bulb 1 foot above the reader for illumination. This seemed a little extreme, and while looking around the junk box for something less blinding, I ran across a metal snuff box and a brass cable clamp. I could vaguely recall having seen some automobile lights with a linear filament. Sure enough, the Eveready #211 (two bulbs for $.79 at an auto parts outlet) fit exactly. Photo 1 should tell most of the story.

I removed the front panel from the computer (this is for a SwTPC 6800 system) and used the template furnished by RAECO and a sabre saw to cut a hole for the reader. I soldered the brass clamp to the lid of the snuff box and drilled three holes through the lid and panel. I then used 1/8 inch aluminum pop rivets in two of the holes to fasten the lid to the panel. My cable clamp was tight enough to mount the light bulb so I didn't have to use any other fasteners. I soldered a wire to the light bulb end sticking out and ran it through the one remaining hole. (The tip of the bulb base is the only place which will take ordinary solder.) Figure 1 shows two possible alternatives for a lamp power source; I used alternative a. Chassis ground furnishes the return. Since the light bulb is being run on (at most) 4 V, it should last forever.

For the cover, I drilled a few 1/4 inch holes in the snuff box top with a broom handle used to back up the top during drilling. (Mind your fingers, it tends to slip away easily.) I used a file to smooth out the rough spots, and then finished everything off with a coat of black paint.

The RAECO optical paper tape reader Model TPR-1 is available from RAECO, POB 14, Readville MA 02137.

Photo 1: The RAECO tape reader, installed in an SwTPC 6800 system with an automobile lamp and homebrew enclosure above the sensors.

Figure 1: Lamp (L) is an Eveready #211 12 V automobile dome lamp. T1 is the SwTPC 6800 power transformer. I used the 7.25 V winding.
The following is my recommended procedure to follow when building a microcomputer from a chip set. This procedure makes the assumption that you’ve already acquired or drawn up a complete set of plans from which to wire your computer. Many people follow this route, as opposed to the kit route, particularly since manufacturers, such as Intel, have sold chip sets to schools and students at special reduced prices. Designing then building a computer is a great way to learn about the hardware required in microprocessor systems. However, these tips can also be used in troubleshooting kits. Getting a homebrew computer up and running and debugged requires this sort of step by step technique, so that elimination of errors is made as easy as possible through checkout as each new element is introduced.

Start by wiring up the microprocessor chip itself. Connect the power supply lines to the integrated circuit socket. Without the microprocessor chip in the socket, turn on power, check the voltages at the proper terminals of the socket and verify that they are correct. This is important since microprocessors (and other integrated circuits) are not very tolerant of incorrect supply voltages.

Next, connect up the clock circuit and install the microprocessor itself. Turn on power and check the clock signal at the pins of the microprocessor socket with an oscilloscope. The scope should be a DC coupled unit with good frequency response; 20 MHz or better is desirable but in a pinch a 10 MHz scope can be used. Check that the correct phase relationships exist between the clock pulses. For example, with the 8080 microprocessor the pulse widths and spacing are quite critical, and must be within the specifications on the manufacturer’s data sheet or strange things can happen. Be sure the clock frequency is correct. An oscilloscope can typically measure this to about 5% accuracy, with higher accuracy possible if you calibrate against a reference frequency or use a good frequency meter instead. In systems utilizing programmable timers, incorrect clock frequency can cause interface problems.

If everything checks out so far, then it is time to let the microprocessor chip execute an instruction. Still without any memory connected, the microprocessor can execute an instruction.

For example, on the 8080, we can tie the data lines low causing the execution of a NOP (00) instruction. An even better procedure is to let the data and memory address lines float (nothing connected). This will cause the RST7 (FF) instruction to be found on the data lines. This restart instruction will execute a call to a subroutine, an operation which pushes information onto the stack (which does not exist at this time). Since no memory is present, and the instruction does not change, an “infinite loop” of RST7 instructions results. The net result is that the address lines of the processor will scan
through all the addresses in memory as return addresses are continually pushed onto the stack. The 8080 processor will continue cycling through all the memory address locations, even though no memory is connected. Similar test conditions can be established with other microprocessors as well.

Now, with the memory still disconnected, connect an oscilloscope to each address line and check that it is cycling through the 64 K addresses of a 16 bit address space. You should see a count in binary fashion as shown in figure 1.

If any of the adjacent memory lines are shorted together, a very common problem, you will see the lines changing together. In this case, check carefully for solder bridges (if your processor was built from a kit) or shorts (if hand wired) between adjacent memory address lines. If there is no signal on any line, check for disconnections. Be sure that the addressing is sequencing in the correct binary order before proceeding further, for the processor must produce a valid address sequence under dummy instruction conditions if it is to do useful processing later.

If you use the NOP (no operation) instruction the same pattern should be observed; the use of a NOP instruction is required in most processors for this test.

In many processor designs, a set of buffer integrated circuits is used to isolate the external address and data buses from the processor in order to provide a higher power drive capability. If your processor design employs such buffering circuits, the next step is to wire up the sockets for these buffers and associated control logic. Then you should install the buffering integrated circuits after checking all power wiring. Then the tests performed for the processor alone can be repeated, looking this time at the outputs of the address buffers, and using the data bus buffers' system side to present the RSTT (8080) or NOP instruction to the processor side of the data bus buffers.

If everything is correct to this point, then connect up the memory. Wiring up a memory board is done in a manner quite similar to that used in getting the processor itself going. The first step is to complete all wiring and check out power voltages at the memory integrated circuit sockets. Then plug the board into the system and repeat the processor address test described previously to verify that the address lines at the typical memory socket and at inputs to decoding logic are functional. The low order lines of a memory address typically go directly to memory integrated circuits.

After the directly connected address lines are verified in the system, turn off power and plug in the integrated circuits for address decoding of the high order address lines to the memory board. With the system powered up again, repeating the NOP loop test should show decoding of the memory board select for some percentage of the time it takes to cycle through all addresses, and decoding of various chip selects for a smaller percentage of time. Thus if the memory board is an 8 K byte board with 4 K bit static chips, board select should be decoded 1/8 of the time (12.5 percent duty cycle) and chip select for each 4 K byte segment should be decoded 1/16 of the time (6.25 percent duty cycle) as the processor cycles through all possible addresses.

Once decoding of the memory board has been verified, remove power again, and install all the memory integrated circuits of

![Figure 1: Much of the behavior of a system can be checked out simply by looking at the address bus: the lines which contain the processor's current requests to memory address space. The simplest initial test of a processor is some form of null operation loop which continuously scans all possible addresses in memory address space. When observed with an oscilloscope, such a loop (see text) will produce a regular set of square waves with the lowest frequency on the high order address bit and the highest frequency on the low order address bit. Here we see the expected scope display as the probe is applied (top to bottom) to address bits A₀ thru A₄.](image)
the system as well as memory board output
bus drivers.

At this point, we make the assumption
that your processor design includes some
method of setting the contents of memory.
This might be a set of toggle switches which
can take over the address and data bus from
the processor in order to load memory. It
might also be use of a read only memory
monitor program which you write, thor­
oughly desk debug, and program into read
only memory circuits. Whatever the method
is, the details necessary for loading memory
manually must be wired up and tested next.

Now try entering a very short program
which will put the processor in a tight loop.
The shortest and simplest loop possible is a
single jump instruction, repeatedly jumping
to itself. For example, on the 8080, if the
program should be located at hexdecimal
memory address 0000 it would be as fol­

0000 C3 00 00 JMP 00 00

When this program is executing, check
the memory address lines and data lines with
the scope. You will observe the memory
address lines counting only the three ad­
dresses and at the first address time hexa­
decimal C3 should be observed on the data
bus lines. At all other times the data bus
should be hexdecimal 00.

If things look good so far, then wire up
an output port (00 is a good one for an
8080). As with the other segments of the
design, the wiring of the output port sockets
comes first, then power pins are tested
thoroughly. Finally, the appropriate inte­
grated circuits are inserted into the sockets
of the IO port logic and we can proceed to
check it out. In this example, a simple
latched 8 bit output port is used for pur­
poses of illustration. Write a minimum pro­
gram to check its operation. The following
little program can be used on the 8080:

0000 D3 00 OUT 00
0002 C3 00 00 JMP 00 00

This very tight loop will cause a pulse to
be generated on the "out" control line.
Check for the presence of this pulse. Check
the memory address lines for the correct
counting pattern and the data lines for the
proper data patterns. This should be done
with the scope synchronized by the out
pulse which occurs once each time around
the loop. With the scope synchronized in
this manner, it is possible to check the
memory address lines and data lines to be
sure that the correct logic levels are occur­
ring at the proper times in the execution
loop.

If operation is not correct check the data
lines for shorts or opens. Shorts usually
occur between adjacent lines which means
that identical bit patterns will be observed
on adjacent lines. Opens lead to missing bit
patterns on the open lines.

Now check the operation of the output
port with the following 8080 program loop:

0000 3C INR A
0001 D3 00 OUT 00
0003 C3 00 00 JMP 00 00

This will cause a binary count bit pattern to
appear on the data lines of 8080 output port
00. These lines should be checked with the
scope. Again check for shorts between adja­
cent lines and opens.

If operation of longer programs is not
correct, but the previous short loops op­
erated correctly, then check for swapped high
order memory address lines. This will usually
cause unexpected jumps in the execution of
the program. Or if the processor seems to be
executing every other instruction, check for
an open address line.

A final thing that you should do after
you get the system running is to look at the
response times on the bus. Check to see that
the data coming back to the memory is
within the proper timing relationships as
found in the manufacturer's specifications.

Check to be sure that the data is stable
before the microprocessor strobe occurs.
Problems may be caused by slow memory
chips and can lead to unexpected random
errors in execution of a program. Such
specifications should be checked under
"worse case" conditions (such as at elevated
temperatures) so that when normally run­
ing the system timing errors do not occur
with any significant probability.

These steps are typical of the methodical
process of checking out (and building) a new
computer system. The considerations dis­
cussed here are typical, but by no means
cover all the possible systems and all possible
conditions to check out. Once you get to the
point of executing programs, most of the
important steps have been successfully accom­
plished.

A key point to remember is that digital
hardware only does what you tell it to do by
way of design and wiring. Finding bugs in
new hardware, like finding bugs in programs,
is a process of setting up key conditions of
the system then checking actual responses
against those to be expected if the system
were working perfectly. It requires a will­ingness
to learn to understand the expected modes of operation, plus a bit of
ingenuity.
A Note on Advances in Technology

Since it seems that megaword computers are of high interest, readers might be interested an article in the May Scientific American, page 36, about "Amorphous Semiconductors" for memory applications. This development offers higher density, lower complexity, lower costs (because of manufacturing method) and higher reliability than any of the recently marketed magnetic bubble memory systems, plus the cycle times are far below anything in common use, 50 to 100 ns and even lower times anticipated in the near future. After reading about "Amorphous Semiconductors" it is very apparent that they are going to play a major role in changing the world of computing on a scale matched only by that of the innovation of LSI chips a few years ago. I'll be watching BYTE for further developments in this line.

See also a recent Scientific American article on the physics of synchrotron radiation, and the possible effect of small X-ray synchrotron technology on the fabrication of ordinary crystalline integrated circuits with X-ray lithography. The article "Uses of Synchrotron Radiation" was in June 1977 Scientific American, written by Ednor M Rowe and John H Weaver. The reference to X-ray lithography is found on page 41 and begins "Further afield, synchrotron radiation promises to transform the technology employed in making integrated circuits..."
WIRE WRAP WIRE

| TEFZEL blue #30 Reg. price | 100 ft $13.28 Our price 100 ft $2.00; 500 ft $7.50. |

MULTI COLORED SPECTRA WIRE

<table>
<thead>
<tr>
<th>Footage</th>
<th>10'</th>
<th>50'</th>
<th>100'</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 Cond.</td>
<td>#24</td>
<td>$2.50</td>
<td>9.00</td>
</tr>
<tr>
<td>12</td>
<td>22</td>
<td>3.00</td>
<td>11.00</td>
</tr>
<tr>
<td>14</td>
<td>22</td>
<td>3.50</td>
<td>13.00</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>5.00</td>
<td>20.00</td>
</tr>
<tr>
<td>29</td>
<td>22</td>
<td>7.50</td>
<td>28.00</td>
</tr>
</tbody>
</table>

Great savings as these are about 1/4 book prices. All fresh & new.

TOUCH TONE ENCODER KIT

Simplicity itself to complete. No other parts required, no crystal required. The back of the touch pad has etched & drilled Pcb board and you solder the encoder chip to it. Add your own small speaker & 9 volt battery and you are done. A touch of the pad produces the proper tone signal from the speaker. We furnish schematic and instructions.

SP-149-B $12.95

TOUCHTONE ENCODER CHIP

Compatible with Bell system, no crystal required. Ideal for repeaters & w/specs. $6.00

LAMBDA POWER SUPPLIES

<table>
<thead>
<tr>
<th>LM-D-12-OVP 12 volts DC 10 amp</th>
</tr>
</thead>
<tbody>
<tr>
<td>$60.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LV-EE 5-OVP 5 VDC 74 Amp</th>
</tr>
</thead>
<tbody>
<tr>
<td>$75.00</td>
</tr>
</tbody>
</table>

VIATRON CASSETTE DECKS

The computer cassette deck alone $35. Set of Control boards for above $40.

VIDEO DISPLAY

FROM VIATRON SYSTEMS. Accepts composite video signals. 9 inch transistorized CCTV black & white CRT monitor. Ready to go, checked out. 115 volt AC 60 cycle. With circuit diagram.

$75.00

FAST CHARGE AA NICADS

$1.25 each

IR NIGHT VIEWER $199.00

Custom made, complete with light source & viewer in one piece. Comes with carrying strap. Ready to operate with 6 volt lantern battery. Guaranteed by the manufacturer. See in total darkness. Great for scientists, viewing nocturnal animals & birds, criminal investigation . . . observe without being observed, and a ball for just plain snooping!!!! Sorry to say but no shipments to Calif. (lens may vary slightly from pic)

SPL-21 $199.00

Please add shipping cost on above. Minimum order $10
**FREE CATALOG NOW READY **
SP-10
P.O. Box 62, E. Lynn, Massachusetts 01904
Career Opportunities with vigorous New Firm

Join this "start-up" operation on the SAN FRANCISCO PENINSULA manufacturing low cost computer equipment.

- SENIOR TECH WRITER
 Lead responsibility for hardware and software publications for a small business.

- APPLICATIONS PROGRAMMERS
 Familiar with BASIC and COBOL, Exp. programming business-oriented packages.

Attractive salary structure, complete benefits. Contact DURANGO SYSTEMS, 10101 Bubb Road, Cupertino, CA 95124. (408) 996-1001.

REMEMBER THE NAME
DURANGO SYSTEMS INC.
WE'RE WORTH YOUR TIME... WE COULD BE YOUR FUTURE!

TYSON'S CORNER, VIRGINIA
(WASHINGTON, D.C. AREA)
THE COMPUTER SYSTEMS
"Specializing in Systems"

FEATUREING:
Processor Technology
Poly/Graphic
DIET
\t
Diet

SOFTWARE FOR HOME, SCHOOL & SMALL BUSINESS
Our staff will help you select the best computer from each manufacturer to complete the system best suited to your needs.

SPECIAL: LEAR-SIEGEL AOM 3A

COMPUTER SYSTEMS STORE
1954 CHAIN BRIDGE ROAD, MCLEAN, VA 22101
TELEPHONE (703) 821-8333
OPENING SOON
ALEXANDRIA VA • NORFOLK, VA • BALTIMORE MD • ORLANDO FLA

Are you in the process of designing a turn-key computer system?

Do you have problems interfacing the hardware?

Then you need the hardware specialist
COMPUTER MACHINE SERVICE.

CMS is in the business of assembling and repairing of microcomputers and equipment.

CMS is not in the business to sell computer equipment.

Our primary objective is to provide assembly service of the highest quality as well as prime quality repair service on microcomputers and data communications equipment.

For information call: 213-328-9740
or 213-328-9760
Or write: Computer Machine Service
2909 Oregon Court
Torrance, CA 90603

FOR ALL YOUR HARDWARE PROBLEMS
CMS IS THE ONE TO CALL.

THE COMPUTER HARDWARE STORE INC.
Dealers for:
APPLE II, IMSAI
VECTOR GRAPHIC, KIM-1
TECHNICO, OAE
CYBERNEK, JIM-PAC
TERMINALS, PRINTERS
BUSINESS SYSTEMS, BOOKS
SOFTWARE AND MUCH MORE

CATALOGUE AVAILABLE
818 Franklin Street
Richmond, Virginia 23219
(804) 780-0348

TEXAS
Computer Headquarters for
Houston & Austin

Get honest help from our experi-
cenced expert personnel in selecting
kit or assembled equipment and
applications programs.

See us for Cromemco, Vector
Graphics, TDL, IMSAI, PerSci,
Soroc, Lear Siegler, Pol y 88, Diablo,
TI-810, and AJ-841

Hours: 12-6:30 p.m., Mon.-Sat.

MOS
Microcomputer Origin Store
Div of CPU Corporation
Houston: 1853 Richmond, 527-8008
Austin: (512) 746-8040

COMPUTER MART
OF NEW HAMPSHIRE
DEALERS FOR:

TDL ICOM IMSAI
DIGITAL GROUP
KIM-1 APPLE II
MICROMATION
ALPHA
MICRO
SYSTEMS
TEI AND MANY MORE

170 MAIN STREET
NASHUA (603) 883-2386

CALIFORNIA
APPLIED
TECHNOLOGY

32K-MEMORY CARD-$410
$100 STATIC KIT
2708E-PRON-$14
2708 PROGRAMMED-$20
WITH 8080 SYSTEMS MONITOR
80 MAJOR COMPUTER PRODUCT LINES
AND AN EXHAUSTIVE LINE OF
ELECTRONIC COMPONENTS

COMPUTERS,

HARDWARE AND SOFTWARE
CUSTOM HARDWARE AND SOFTWARE
RESEARCH AND DEVELOPMENT

P.O. BOX 1234
TWENTY-NINE PALMS, CA. 92277
714-387-6996

FREE BASIC PROGRAM AND CATALOG
"ALEX IS COMING"
The Motorola 6809: Some Rumors from Austin

Notes by Carl Helmers

For some time now, it has been general knowledge that Motorola is working on a new design for a microprocessor to be made available at some unspecified time in 1978. Recently, I elicited some advance information that suggests some of the major features of the new Motorola 6809 design: information well worth sharing with readers.

The new Motorola 6809 is going to be an evolutionary design improvement creating a major new processor architecture that will be a joy for both low level programmers and designers of systems programming. One of the major enhancements is the increased ability to do 16 bit arithmetic and indexed addressing relative to the older 6800 design. A rundown of the new architecture reveals the following features:

- The A and B registers of the 6809 act like the separate accumulators of the 6800, but can also be concatenated A:B to become the 16 bit "D" accumulator (double accumulator). This D accumulator can be used for the usual 16 bit arithmetic operations of addition, subtraction, load, store, and comparison.

- Expansion of the indexing capabilities with the inclusion of a second "Y" index register 16 bits wide, thus allowing the processor to maintain two 16 bit index registers. As anyone using the 6800 can attest, a major portion of the code often boils down to loads and stores of the index register in order to use memory to emulate existence of two index registers. This technique will not be needed with the 6809.

- Addition of one more 16 bit stack pointer, the "user stack," which can be used together with the existing systems stack to enhance data management techniques.

- And of course, with a wealth of 16 bit pointers in the processor, the 6809 design implements all the register to register transfer operations and register to memory (memory to register) transfers one might expect, including stack operations.

- With all this machine state data sitting around in the processor, what happens when an interrupt occurs? People have occasionally complained about the time taken by the complete state save done by the 6800 in response to an interrupt; the wealth of data on the 6809 compounds this timing problem. Motorola's answer with the 6809 is to create a new additional hardware interrupt input line, the "fast interrupt" line, which accomplishes the vectoring of the interrupt while saving only the return address and the condition codes. (When such fast interrupts are used, it is of course the programmer's responsibility to take care of preservation of any registers or machine state information used in the interrupt handling routine.)

Care and Attention to Addressing

With all the 16 bit pointers present in the 6809 design, one might ask: "Why?" The basic reason for incorporating such pointers in the design is to achieve a number of benefits in the process of calculating addresses. Since in any large system, a good portion of the tricky problems of software design concern allocating and managing memory address space resources, this makes the 6809 a very attractive high level language machine. Features concerned with address calculation include:

- Extension of program counter relative references beyond the concept of relative branches (and long relative branches) to include data references using the program counter as an index or base register.

- Addition of a fast multiplication (8 bit operands, 16 bit unsigned product) operation to enhance calculation of array offsets in high level language code.

- Existence of the user stack concept for data management independent of program flow management at run time.

- A full complement of indexed addressing modes, with 0, 5, 8, or 16 bit offsets, allowing indirect, "auto increment" or "auto decrement" indexed references with increments of 1 or 2, from either index register or either stack pointer.

Miscellaneous Hardware Features

All this attention to the software orientation of the 6809 architecture by the engineers at Motorola is not without equivalent attention to the hardware details. Useful new hardware features include an on chip clock design which requires simply an external crystal to set frequency, a slow memory wait line which allows for long memory access cycles (or contention in multiprocessor systems), and the introduction of an instruction fetch synchronization signal that can be used to advantage by hardware hackers who want to know when instruction is begun for reasons as varied as the number of systems applications for such a machine.

Anticipations . . .

This information on the Motorola 6809 is a substantial rumor about current information on the design; further details must await final design, which is currently in progress. But from what I've heard to date, it looks like the 6809 is well on its way to becoming a software oriented "dream machine" among microprocessors. Readers can expect more definitive information on this processor toward the middle or end of 1978 when Motorola releases more official information. Perhaps we'll see some personal computer products with the 6809 as their central processors toward the first part of 1979. Designers of new products in that time frame would be well advised to take a look at whatever preliminary information Motorola can be cajoled to release about this new product.

6800 Based Self-Study Course

Designed for use with the Micro-68a microcomputer trainer, this 90 page microprocessor self-study course teaches concepts through simple exercises involving actual use of the computer. The Micro-68 Lab Manual includes 13 chapters, each one a complete lesson on topics such as input output, interrupts and the basic instruction set. The manual is $5, and the Micro-68a computer is $544.50 complete with keyboard, power supply and cabinet, from Electronic Product Associates Inc, 1137 Vega St, San Diego CA 92110, (714) 276-8911.
Hobby Computer Kits

1 MODEM Part no. 109
Type 103
Full of half duplex
Works up to 300 baud
Originator or Answer
No coils, only low cost components
TTL input and output
Connect 8 ohm speaker and crystal mic. directly to board
Uses XR FSK demodulator
Requires +5 volts
Board only $7.60, with parts $27.50

2 RS-232/TTL INTERFACE Part no. 232
Converts TTL to RS-232, and converts RS-232 to TTL
Two separate circuits
Requires +12 and -12 volts
All connections go to a 10 pin plated edge connector
Board only $4.50, with parts $7.00

3 TAPE INTERFACE Part no. 111
Play and record Kansas City Standard tapes
Converts a low cost tape recorder to a digital recorder
Works up to 1200 baud
Digital in and out are TTL
Output of board connects to mic. input of recorder
Earphone of recorder connects to input on board
Requires +5 volts, low power drain
No coils
Board only $7.60, with parts $27.50

4 TELEVISION TYPEWRITER Part no. 106
Stand alone TVT
32 char/line, 16 lines, modifications for 64 char/line included
Parallel ASCII (TTL) input
Video output
1K on board memory
Output for computer controlled curser
Auto scroll
Non destructive curser
Curser inputs: up, down, left, right, home, EOL, EOS
Scroll up, down
Requires +5 volts at 1.5 amps, and -12 volts at 30mA
Board only $39.00, with parts $145.00

5 UART and BAUD RATE GENERATOR Part no. 101
Converts serial to parallel and parallel to serial
Low cost on board baud rate generator
Baud rates: 110, 150, 300, 600, 1200, and 2400
Low power drain +5 volts and -12 volts required
TTL compatible
All characters contain a start bit, 5 to 8 data bits, 1 or 2 stop bits and either odd or even parity
All connections go to a 44 pin gold plated edge connector
Board only $12.00, with parts $35.00

6 RF MODULATOR Part no. 107
Converts video to AM modulated RF, Channels 2 or 3
Power required is 12 volts AC C.T., or +5 volts DC
Board only $4.50, with parts $13.50

4K/8K STATIC RAM Part no. 300
8K Altair bus memory
Uses 2102 Static memory chips
24K Blocks
Blocks can be addressed to any of 16 4K sections
Vector input option
TRI state buffered
Board only $22.50, with parts $160.00

TIDMA Part no. 112
Tape Interface Direct Memory Access
Record and play programs without bootstrap loader (no prom)
Has FSK encoder/decoder for direct connections to low cost recorder at 625 baud rate, and direct connections for inputs and outputs to a digital recorder at any baud rate
S-100 bus compatible
Comes assembled and tested for $160.00

APPLE 1 MOTHER BOARD Part no. 102
10 slots - 44 pin (.156) connectors spaced ¼ inch apart
Connects to edge connector of computer
Pin 20 and 22 connects to X & Z for power and ground
Board has provisions for by-pass capacitors
Board costs $15.00

7 D. C. POWER SUPPLY Part no. 6085
Board supplies a regulated +5 volts at 3 amps, +12, -12, and -5 volts at 1 amp
Board has filters, rectifiers, and regulators
Power required is 8 volts AC at 3 amps, and 24 volts AC C.T.
at 1.5 amps
Board only $12.50

TO ORDER
Mention part number and description. For parts kits add “A” to part number. Shipping paid for orders accompanied by check, money order, or Master Charge, BankAmericaCard, or VISA number and signature. Shipping charges added to C.O.D. orders, Calif. res. add 6.5% for tax. Parts kits include sockets for all ICs, components, and circuit board. Documentation is included with all products. Dealer inquiries invited.

ELECTRONIC SYSTEMS
P.O. Box 212, Burlingame, CA 94010
(408) 374-5984
A Personal Computer from Olivetti

The Olivetti P6060 Personal Minicomputer features built-in extended BASIC, a printer with plotting capability and a wide variety of interfacing options for peripherals. The system includes up to 80 K bytes of programmable memory accommodating both the operating system and a user working file (8 K to 48 K bytes), single or dual drive floppy disk, 32 character upper and lower case ASCII display, 80 column, 80 character per second thermal printer, and a keyboard with special function keys and 1 key abbreviations for most BASIC keywords. The printer features graphics supported by system software for scaling, framing, offsetting, axis drawing and alphanumeric labeling. The extended BASIC features random file handling and matrix operations. Two standard character serial IO ports, an RS232 interface, and a direct memory access (DMA) channel are available for interfacing the P6060 to a wide variety of devices. A basic configuration with 8 K user memory and a single floppy disk is priced at $7950, while a system with 16 K user memory and dual drive floppy costs $10,000. For more information contact Olivetti Corporaton of America, Personal Minicomputers, 500 Park Av, New York NY 10022, (212) 371-5500.

Complete Disk Based System for $2599

The complete OSI Challenger system includes an 8080 processor, 16 K of programmable memory, a system monitor and disk bootstrap in ROM, a floppy disk based on the GSI 110 drive, and a stand alone CRT terminal with a Sanyo video monitor. Software includes a disk operating system, a disk based assembler and editor, a debugger with breakpoint, high speed dump and disassembly capabilities, and an 8 K disk based BASIC with multidimensional arrays, strings, a full complement of mathematical functions, and machine language access features. The complete system is priced at $2,599, or $2,099 without the CRT terminal and monitor. Options include a dual drive floppy disk for $1,590, and 13 accessory boards which provide up to 192 K bytes of programmable memory, 16 K bytes of EROM, digital to analog and analog to digital conversion, parallel and serial IO, cassette interface, video graphics display, and multiprocessing capabilities. Also offered are two dot matrix printers by OKI Data, the CP110 which prints 80 character lines at 65 lines per minute for $1,500, and the Model 22 which prints 132 character lines at 125 lines per minute with upper and lower case and form size control for $2,900. The Challenger is available from Ohio Scientific Instruments, 11681 Hayden St, Hiram OH 44234, (216) 569-7905.

Intelligent Terminal with Floppy Disk

The Omron 8035 combines an 8080 based programmable intelligent terminal with a floppy disk subsystem to create a complete program development facility. The system includes 20 K to 65 K bytes of programmable memory, 500,000 bytes of space on a dual drive floppy disk, an RS232 interface operable at rates up to 9600 bps, and a FDDS operating system with editor, assembler and debugger. Priced from $7,200 in single quantities depending on the configuration, the 8035 is available from Omron Electronics Inc, 432 Toyama Dr, Sunnyvale CA 94086, (408) 734-8400.

16 Bit Computer Features National PACE

This fully assembled unit offers an expandable system built around the National PACE 16 bit microprocessor. The Micro M16 comes with an EROM bootloader, low and high speed current loop and RS232 serial ports, and two 1200 bps audio cassette ports. A mother board accommodates up to four memory cards, each with 16 K 16 bit words of programmable memory, four IO cards, and an optional front panel card. A parallel IO port card includes two 16 bit input and two output ports as well as EROM sockets for IO device handler software. System software includes an 8 K macroassembler, a linking and relocating loader, a conversational editor and a debugger with snapshot and breakpoint capabilities. The M16 provides 8 K PACE BASIC which features direct IO and memory access, waits for input or timer, built-in hexadecimal conversion and program tracing for debugging purposes, as well as the usual BASIC language features. Enclosed in a gunstock walnut veneer cabinet, the M16 is available from Micromega Corporation, 11311 Stemmons Fwy, Suite 12, Dallas TX 75229, (214) 231-4777.

OSI's Model 500 Computer

Ohio Scientific has announced the new Model 500 processor board can be used as a stand alone computer or as the processor in a larger system. The board accepts 8 K or read only memory, 4 K of programmable memory, 750 bytes of programmable read only memory, an ACIA-based serial port, a 6502 processor, and full buffering for expansion. It is available completely assembled with an 8 K BASIC package for $298. The Model 500 is software and hardware compatible with Ohio Scientific's 400 kits and Challenger products. The board is available enclosed with power supply as the Model 500-1 for $429, and in an 8 slot Challenger case as the Model 500-8 for $629. For further information, contact Ohio Scientific, Hiram OH 44234.
All Prime Quality — New Parts Only
Lowest Prices — Satisfaction Guaranteed

EDGE CARD CONNECTORS:

Bifurcated Contacts. Not tin. Gold over nickel. 50/100 Pin (.100, 1.25, +.156 Pin spacing). Double Read out.

50/100 Altair Type — Dip Solder Pins	$4.25 ea 5 pcs $4.00 ea
50/100 Imsai Type — Dip Solder Pins	$4.25 ea 5 pcs $4.00 ea
50/100 Imsai Type with Guides	$4.50 ea 5 pcs $4.25 ea

Imsai Guides only $.30/pr 5 pr $.25/pr

All other contacts available: Solder Eyelet, Wire Wrap, etc. All gold.
Many other types available: 10/20, 15/30, 18/36, etc.
When ordering: specify type of contact.

2708 1KX8 PROM 450 NS
$16.75 ea
5 pcs or more $15.70 ea

8080A — PRIME
$12.00 ea
5 pcs $11.50 ea

SAVE:
Buy a complete set:
1 Plug, 1 Socket, 1 Hood (any) $6.50/set
5 Sets $6.25/set

All other contacts available: Solder Eyelet, Wire Wrap, etc. All gold.
Many other types available: 10/20, 15/30, 18/36, etc.
When ordering: specify type of contact.

25 PIN SUBMINIATURE CONNECTORS:

Gold Plated Contacts.

DB25P Plug $2.60 ea 5 pcs $2.25 ea
DB25S Socket $3.75 ea 5 pcs $3.50 ea
DB5121-1 Hood (grey) $1.00 ea 5 pcs $.95 ea
DB5122-1A Hood (black) $1.10 ea 5 pcs $1.00 ea

SAVE:
Buy a complete set:
1 Plug, 1 Socket, 1 Hood (any) $6.50/set
5 Sets $6.25/set

Write for larger quantity discounts.
Dealers welcome.

ORDER FROM:

Beckian Enterprises
P.O. Box 3089 Simi, Calif. 93063

4K RAM BOARD
Assembled and tested.

4K RAM BOARD KIT
450ns Access RAMs
Fully Buffered
Low Power
Static
5V only
4½ x 6 inch board

$79.95

Buy 4 RAM Board kits at $79.95 each and an 8 slot Mother Board is yours FREE.

Includes 8 connectors and card guides.

4K PROM BOARD

— Low Power
— 5 V Only
— Industry Standard Bipolar PROM
— Compatible With Our Bus

KIT WITH 2K OF PROM $79.95

Additional 2 K of PROM $40.00

2102 — $1.20 Multiples of 25 only.
Low power, 450 n.s. Access and cycle.
DANA 2000A Multimeter
Regularly $199.50 Our Price $165.00

MAKE CHECK OR MONEY ORDER PAYABLE TO:
Kathryn Atwood Enterprises
P.O. Box 5203, Orange, CA 92667

Discounts available at OEM quantities. For orders less than $25.00 total, add $1.25 for shipping. California residents add 6% sales tax. Estimated shipping time 2 days ARO with money order. For checks allows 7 days for check to clear.
A 6800 Based Integrated System

This 6800 based system features a keyboard, 20 character alphanumeric display, 40 character per line impact printer, single or dual tape cassette drives, minifloppy disk, RS232C ports, and 9 slot card cage integrated into one case. Programmable memory expansion to 65 K bytes and 16 K byte EROM cards are also available as options. Software for the system includes a powerful 6 K byte operating and debugging system optionally available in ROM, a BASIC interpreter, FORTRAN compiler and linking loader. The ROM debugger features interactive translation of assembly language mnemonics, tape, disk and printer commands, multiple breakpoints and other functions. The system is available in two configurations: the DE68DT which includes a minifloppy disk drive, and the DE68C which fits into a smaller case without the minifloppy. Prices start at $2200 in single quantities, from Digital Electronics Corporation, 415 Peterson St, Oakland CA 94601, (415) 532-2920.

A Minifloppy Based Desk Top Personal Computer

The System 8813 is a compact complete disk based microcomputer. The central unit, no larger than a stereo component, includes 16 K bytes of programmable memory and room for three minifloppy disk drives, in a walnut case with a brushed aluminum front panel. Included in the package is a video monitor, keyboard with cable, and complete system software on diskette.

System software allows you to put the system to work immediately, running applications in either assembly language or in fully extended BASIC. The small separate keyboard permits convenient use of the system at desk or table. The high speed video display exhibits results in graphics and alphanumericics. Because it uses minifloppy disks, the 8813 allows convenient storage and fast access to programs and data by means of simple user commands. Prices for the 8813 start at $3250, from PolyMorphic Systems, 460 Ward Dr, Santa Barbara CA 93111, (805) 967-0468.

An F8 Based System

This system features the Mostek F8 microprocessor with a 128 byte scratch pad memory, a 1 K byte system monitor in ROM, and a memory interface with 65 K byte addressing range. The system is housed in an attractive commercial grade cabinet with a 12 slot mother board, a heavy duty 15 A power supply, 8 K bytes of programmable memory, a 20 A current loop or RS232 serial interface, and three 8 bit parallel I/O ports. A 5 K BASIC interpreter is included and an 8 K BASIC and resident assembler and editor are planned. The F800 system costs $499 as a kit or $699 assembled and tested. Additional 4 K memory boards are $129 in kit form or $199 assembled and tested. Other accessory boards are planned. The F800 is available from Microdata Systems, 2 Mack Rd, #101, Woburn MA 01801, (617) 935-9870.

Turnkey Business System Offers Security

The Mesa Two small business computer comes complete with packaged programs for accounts receivable, accounts payable, inventory, payroll and general ledger. Designed to be operated by clerical personnel, the system features on line source data validation, passwords, and audit trails from financial statements back to source documents, providing security and management control "without the need for data processing technicians." The Mesa Two can also communicate with the manufacturer's central IBM 370 computer for larger scale applications. The system includes a processor with 64 K bytes of memory, 10 million bytes of mass storage, a keyboard and display, and a 165 character per second printer. The Mesa Two is available from A O Smith Corporation, 3533 N 27th St, Milwaukee WI 53216, (414) 447-4470.

This Altair (S-100) bus compatible system uses a 12 button keyboard and a 10 digit LED display controlled by a monitor program in ROM to implement "front panel" functions such as examining and altering the contents of any register, memory location or IO device. Single step, slow step, halt, run and reset functions are also provided. The 8080A based Equinox 100 comes with a constant voltage 20 A power supply and a shielded, actively terminated 20 slot bus board. An attractive aluminum case with a smoked Plexiglas front and a key operated power switch are included in the basic system, with a swing open top, tilt up stand and carrying handle available as options. The Equinox 100, a joint venture of Parasitic Engineering and Morrow's MicroStuff, is available for $699 in kit form from Parasitic Engineering, POB 6314, Albany CA 94706, (415) 547-6612.
A powerful new tool for every serious 8080 user — professional and novice alike. Priceless timesaver for engineers, technicians, and programmers. Saves time and money in the lab, on the production line, or in the field.

Convenient pocket size — 3½ by 7½ inches — gives quick and easy access to all vital reference data. No more searching here and there for codes, instructions, or definitions. It’s all there — at your finger tips — everything you need to successfully use the 8080A and — Intel’s new 8085 microprocessor.

Features cross listing, for rapid assembly and disassembly, of MACHINE CODES and MNEONICS • Concise description of 8080 and 8085 OPERATIONS, SIGNALS, PINOUTS, and INSTRUCTIONS • Convenient cross version of OCTAL, HEXIDECIMAL, DECIMAL, ASCII, and EBCDIC codes • Easy-to-read tables of powers of two, eight, and sixteen ... and much more ...

Sturdy • Handsome • Easy-to-use • Data Packed

Your timesaver will give many years of professional service.

$12.95 each (plus postage & California sales tax) — 25% discount for 4 or more.

MoneyBack Guarantee: You must be fully satisfied or simply return the guide within 15 days for full and prompt refund.

For Teletype, SDP1, Jot, Kim 8800 Users. A reliable, inexpensive, yet complete, self-contained Communicating Terminal, completely assembled, burned-in, and tested. $39.95

Specifications: 16 lines x 20 characters, 16 micro-seconds per character. Complete from 100 to 5000 baud. Full automatic character recognition on the input data. Built-in error correction on the output data. Data rates: 50, 100, and 200 characters per second. Directions are given at the start of each line.

Features: Only terminal—no relay switching required. Simple prompt statements make operation easy. All instructions and data are of the ASCII code.

Features: Only terminal—no relay switching required. Simple prompt statements make operation easy. All instructions and data are of the ASCII code.

For those who want to build their own terminals, use the included SDP1 (or Jot, Kim 8800) cable and plug to plug the SDP1 to the 8000A or 8001.

CONEY ROAD, DEPARTMENT C1, SHEARMAN OAKS · CALIFORNIA 91403
The Model MCS-PT processor terminal is a self-contained computer system with display and disk storage, a full keyboard and a 12 slot mother board. It may be used either as a stand alone processor or as a processor terminal in a larger system. Features of the MCS-PT include a 15 inch (38.0 cm) high resolution monitor, a full upper and lower case ASCII keyboard with eight user designated special function keys and a 16 key numeric cluster pad. One Shugart SA-400 Minifloppy disk drive is standard.

The 12 slot mainframe contains a CPU board that features an 8080 processor and a special circuit that implements a start up "jump to" routine to any user selected byte address. 16 K bytes of memory are provided with additional memory as an optional item. A disk controller which will handle four drives and a video board are also standard items. The IO board provides three parallel and three serial ports with selectable data rates of 75 to 19,200 bps.

The whole unit is housed in a heavy duty aluminum cabinet with power provided by a constant voltage transformer power supply. A fan, washable filter and all edge connectors and card guides are furnished. Software provided includes CP/M DOS and BASIC on disk. The MCS-PT fully assembled and tested is priced at $3495, or $2995 in kit form. The unit is also available without the disk drive and controller at $2495 assembled or $2195 in kit form. For more information contact CMC Marketing Corporation, 7231 Fondren Rd, Houston TX 77036, (713) 774-9526. Circle 601 on inquiry card.

The venerable PDP-8 lives on in Digital Equipment Corporation's new DECstation, which incorporates a single chip version of the 12 bit processor. The central element of the new system is an integrated processor and display unit, the VT78, which includes a video terminal with upper and lower case ASCII characters, 16 K 12 bit words or programmable memory, a real time clock and a floppy disk interface. Five IO ports on the back of the VT78 are designed to be connected to peripherals with simple cables like those used in a component stereo system. The ports include two serial interfaces with data rates from 50 to 19,200 bps, a parallel interface for units such as printers, a floppy disk interface, and one to facilitate local input of programs. The DECstation runs under OS/78, an extended version of the PDP-8's operating system OS/8 Version III, and offers FORTRAN and BASIC compilers, the PAL-8 assembler, and various utilities. The standard DECstation configuration, which includes the VT78 and a dual drive floppy disk, is priced at $4,095. More information is available from Digital Equipment Corporation, Maynard MA 01754, (617) 897-5111, ext 3300.

Circle 604 on inquiry card.

System, Not Peripheral

On page 252 of November 1977 BYTE, the Apple II press release was incorrectly categorized as a "peripheral." This complete computer system should have been placed in the "systems" category.

Our apologies to Steve Jobs and Steve Wozniak.
LOW PROFILE IC SOCKETS
14 PIN - $ 18 22 PIN - $ 22
16 PIN - $ 22 28 PIN - $ 48
18 PIN - $ 25

AUGAT WIRE WRAP SOCKETS
16 PIN Gold Plated
$ 49 ea. 10 FOR $3.95
LIMITED STOCK

TRIMMER CAP
2 - 20 PF CER 4/$1
Mil Quality

P. C. MOUNT VOLUME CONTROL
Nylon Shaft. 1K or 100K.
YOUR CHOICE 4/$1

16K E-PROM CARD
S-100 (IMSAI/ALTAIR) BUSS COMPATIBLE
IMAGINE HAVING 16K
OF SOFTWARE ON LINE AT ALL TIME!

KIT FEATURES:
1. Double sided PC Board with solder mask and silk screen and
 Gold plated contact fingers.
2. Selectable wait states.
3. All address lines and data lines buffered!
4. All sockets included.
5. On card regulators.

KIT INCLUDES ALL PARTS AND SOCKETS! (EXCEPT 2708's)
ADD $25 FOR ASSEMBLED AND TESTED

WOW! DEALER INQUIRES INVITED
SPECIAL OFFER: Our 2708's (450 NS) are $12.95 when purchased with above kit.

FULLY STATIC! $149.00 KIT

KIT FEATURES:
1. Double sided PC Board with solder mask and silk screen layout.
 Gold plated contact fingers.
2. All sockets included!
3. Fully buffered on all address and data lines. BUSS COMPATIBLE
4. Phantom is jumper selectable to pin 67.
5. FOUR 7805 regulators are provided on card.

PRICE WAR!
For a limited time only:
Buy two 8K Kits for $129 ea.

8K LOW POWER RAM KIT!

KIT FEATURES:

NEW!
4K STATIC RAM'S
2114. The industry standard. 18 PIN DIP. Arranged as 1K X 4. Equivalent to
FOUR 21LO2's in ONE package! TWO chips give 1K X 8, with data.
2 FOR $24 450 N.S.! 8 FOR $85

5450 NS!
2708 EPROMS 450 NS!
Now Full Speed! Prime new units from a major U.S. Mfg. 450 N.S. Access
time. 1K x 8. Equiv. to 4 1702 A's in one package!
$15.75 ea.

NEW!
8 POSITION DIP SWITCH
By CTS. Fits 16 Pin Socket. $1.95

Digital Research Corporation
CALL FOR OUR CATALOG!
WE PAY POSTAGE!

P. O. BOX 401247 • GARLAND, TEXAS 75040 • (214) 271-2461
Multitasking Operating System
Rivals IBM 360/91

This multiuser, multitasking operating system for 8080 and Z-80 based computers is modeled after the IBM System/360 Model 91 operating system used at the University of California, Los Angeles. It supports more than 25 user terminals with 64 K bytes of memory, and permits one user terminal to control many concurrently running tasks. Functions include block and line editing, file merging and transfer, interterminal communication, passwords and user accounting, task status reports and a system log, disk map display and print queue support. The system includes a disk based 8 K BASIC compiler which generates reentrant code. The developers claim that the system provides highly efficient resource management by maintaining dynamic, noncontiguous files, dynamically allocated memory and extensive disk buffering. The FAMOS™ system costs $1750 and must be used with a special Interrupt board ($300) for the Altair (S-100) bus. The system is available from MVT Microcomputer Systems Inc, 21822 Sherman Way, Canoga Park CA 91303, (213) 348-2030.

APPLE II I/O BOARD KIT
Plugs Into Slot of Apple II Mother Board

FEATURES:
- 16 Bit Parallel Output Port (Expandable to 3 Ports)
- 1 Input Port
- 15mA Output Current Sink or Source
- TTL or CMOS Compatible Addressable anywhere in memory output area
- Can be used for peripheral equipment such as printers, floppy discs, cassettes, paper tapes, etc.

KIT INCLUDES:

PRICE:
- 1 Input and 1 Output Port for $49.00
- 1 Input and 3 Output Ports for $64.00

DEALER INQUIRIES INVITED

LD-130
3 digits
A/D CONV.
$11.95

2708
E PROM
1Kx8 450ns
$14.95

EMM 4200
"static"
4K RAM
$13.95

APPLE II 1/0 BOARD KIT
ASCII KEYBOARD KIT

3RD GENERATION ONLY $63.00

FURTHER IMPROVEMENTS, MORE FEATURES
- TTL Logic Circuits
- Power: +5V, 275mA
- Upper and Lower Case
- Full ASCII Set (Alpha Numeric, Symbols, Control)
- 7 of 8 Bits Parallel Data
- Optional Serial Output
- Selectable Positive or Negative Strobe, and Strobe Pulse Width
- 'N' Key Roll-Over
- Fully Debounced
- Carriage Return Key
- Repeat Function Key
- Shift Lock, 2 Shift Keys
- 4 User Defineable Keys
- P.C. Board Size: 17-3/16" x 5"

OPTIONS:
- Metal Enclosure (Painted IBM Blue and White) $25.00
- 18 Pin Edge Con. $2.00
- I.C. Sockets $4.00
- Serial Output (Shift Register) $2.00
- Upper Case Lock Switch (for Capital Letters and Numbers) $2.00

KIT INCLUDES: Keyboard, P.C. Board, all required components and assembly manual.

NOTE: If you have this 63 Key Teletype Keyboard you can buy the Kit without it for $44.95.
We proudly welcome our newest memory board family member, designed from the ground up for full compatibility with the Heath Company HS. Organized as two independent blocks for flexibility: one 8K block (locatable on any 8K boundary) and one 4K block locatable on any 4K boundary. Has the same basic features of our ECONORAM II™—all static design, dipswitch address selection, switch selected write protect and phantom, sockets for all ICs, full buffering—plus the required hardware and edge connector to mate mechanically with the H8. Now you can have our 12K board for the price of the Heath Company’s 8K... with the performance you’ve come to expect from products carrying the ECONORAM™ name.

Also available: H8 4K to 8K conversion kit ($90). If you have a Heath Company 4K memory, plug in these ICs and you’ll have a full 8K. Kit includes eight TH044 memories and matching sockets.

This 8K x 8 static memory is a consistent winner, whether you plug into an Altair, IMSAI, or any other S-100 bus computer. Configured as two independent 4K blocks, with separate protect for each block and vector interrupt provision if you try to write into protected memory. Handles DMA devices. All address and data lines fully buffered. Tri-state outputs for use with bi-directional busses. Selectable write strobe (writes on either PWR or MWRITE), and dipswitch selectable address. We guarantee 450 ns speed, although many users report running this board in conjunction with 4 MHz Z-80s without using the on board wait state provision. The mechanical quality matches the design, with gold-plated edge fingers, legended and solder masked board, sockets for all ICs, and industrial grade or better components. Join the thousands who have made this our most popular computer board!

Kit form ... $130
Assembled, tested, 1 year warranty $150
Spectacular Four ECONORAM II™ kits 4/$475

This 8K x 8 dynamic memory is a good winner, whether you plug into an Altair, IMSAI, or any other S-100 bus computer. Configured as two independent 4K blocks, with separate protect for each block and vector interrupt provision if you try to write into protected memory. Handles DMA devices. All address and data lines fully buffered. Tri-state outputs for use with bi-directional busses. Selectable write strobe (writes on either PWR or MWRITE), and dipswitch selectable address. We guarantee 450 ns speed, although many users report running this board in conjunction with 4 MHz Z-80s without using the on board wait state provision. The mechanical quality matches the design, with gold-plated edge fingers, legended and solder masked board, sockets for all ICs, and industrial grade or better components. Join the thousands who have made this our most popular computer board!

Assembled 8K x 8 ECONORAM III™ $149.00

New and dynamic:

ECONORAM III™

Here is the first 8K x 8 dynamic RAM that performs well enough to merit the ECONORAM™ name. Thanks to the SynchroFresh™ timing process, refresh fits naturally into the timing of the S-100 bus... now you can have half the power of statics, but without the traditional timing hassles you’ve come to associate with dynamic memories.

In addition to low power, this board runs at zero wait states with an 8080 CPU, and is configured as two separate blocks for maximum versatility. Not a kit: shipped assembled, tested and ready to plug into any S-100 bus computer (Altair, IMSAI, etc.). 1 year warranty.

Assembled 8K x 8 ECONORAM III™ $149.00

CPU POWER SUPPLY ($50)

Gives a full 5V at 4A with crowbar overvoltage protection, along with +12V at 1/4A, -12V at 1/4A, and adjustable bias supply (5 to 10V at 10 mA). Although intended for use with small computer systems, this is also an excellent supply for bench and development work.

10 SLOT MOTHERBOARD ($90; 18 SLOTS $124)

Add one of these on to an existing S-100 system, or use as the nucleus of a stand-alone system. Both kits come with all edge connectors and include on-board active, regulated terminations to minimize crosstalk, overshoot, ringing, and other glitches that can occur with unterminated lines. Includes lots of bypass caps and heavy power traces.

ACTIVE TERMINATOR ($29.50)

Plug this board into any S-100 motherboard to clean up the problems associated with unterminated lines. Uses the same circuitry as our Motherboards.

ECONORAM VI™ is here—

12K x 8 memory kit for the Heath H8

$235.00

New products—new prices... new and dynamic:

ECONORAM II™

Here is the first 8K x 8 dynamic memory that performs well enough to merit the ECONORAM™ name. Thanks to the SynchroFresh™ timing process, refresh fits naturally into the timing of the S-100 bus... now you can have half the power of statics, but without the traditional timing hassles you’ve come to associate with dynamic memories.

In addition to low power, this board runs at zero wait states with an 8080 CPU, and is configured as two separate blocks for maximum versatility. Not a kit: shipped assembled, tested and ready to plug into any S-100 bus computer (Altair, IMSAI, etc.). 1 year warranty.

Assembled 8K x 8 ECONORAM III™ $149.00

*SynchroFresh is a trademark of Thunker Toys

FREE FLYER: These are just a few of the items we carry for the computer enthusiast. We also stock a broad line of semiconductors and passive components. Contact us for more information.

GODBOUT ELECTRONICS
800 2335, OAKLAND AIRPORT, CA 94614

Circle 47 on inquiry card.

By 11 January 1978 177
Extended Monitor for the KIM-1

"XIM" (Extended IO Monitor) is a programming and debugging package for the KIM-1 computer. It provides commands to move, compare or search blocks of memory, set break points, calculate branch displacement, load ASCII characters and dump hexadecimal data, and display the processor registers. "XIM" occupies just under 1 K bytes of memory and is easily relocated. A 45 page user's manual with source listing is included, with object code on paper tape for $10 or on KIM-1 cassette for $12.

A New BASIC Compiler

Software Dynamics is offering a new BASIC compiler said to feature floating point arithmetic, subscripting, formatted output and character string manipulation. The compiler requires 16 K bytes of programmable memory space. The price of the compiler is $150, and the manual sells for $10. For more information, contact Software Dynamics, 17914 Laurelbrook Pl, Cupertino CA 90701, (213)962-6492.

Real Time Warfare Game

Encounter is a game that exploits the real-time response capabilities of a computer. Unlike most board games, there is no taking turns between two players; each player attacks and defends as many places on the field as he is mentally able to maintain. Parameters such as the speed of play, configuration of the playing field, location of "home" and "blockout" districts, "birthrate" of new men, and the game time limit can be altered at will. Encounter is designed for an Altair (S-100) 8080 or Z-80 based system with a Processor Technology VDM-1 and two ASCII keyboards. Complete source code is provided, with paper tape for $16.95 or with Tarbell tape for $19.95, from Objective Design Inc., POB 20325, Tallahassee Fl. 32304.

A New 8080 Assembly Language

"XIM" occupies just under 1 K bytes of memory and is easily relocatable. A 45 page manual is included, with object code on paper tape for $10 or on KIM-1 cassette for $12, from Objective Design Inc., POB 20325, Tallahassee Fl. 32304.

A Basic New Assembly Language Debugger

The Dynamic Debugger is a diagnostic program for 8080 assembly language which has been announced by Computer Mart of New Jersey. The program features an automatic breakpoint mode to facilitate debugging. The price is $30 on paper tape or cassette, or $35 on diskette from the Computer Mart of New Jersey, 501 Route 27, Iselin Nj 08830, (212)283-0600.

An IBM 1130 Simulator for Nova Computers

Ion Corporation has announced its new ELLIPSE 1130 processing system designed to simulate the IBM 1130 on a Data General Nova computer. This makes available a wide variety of COBOL, APL, RPG, FORTAN IV and other types of programs to the Nova user with no modifications needed. Contact Ion Corporation, 11300 Rockville Pike, Suite 104, Rockville MD 20852, (301) 770-1885.

Software Package #1

Software Package 0.5 is a set of extensions to Processor Technology's Software Package #1 (a basic assembler, editor and operating system for the 8080). New features include automatic insertion and preceding of line number commands to find and change or insert strings, and an efficient tape driver for Tarbell and Dajen cassette interfaces. Complete source code is supplied for $14.95, with object code on paper tape for $19.95 or on Tarbell tape for $24.95, from Objective Design Inc., POB 20325, Tallahassee Fl. 32304.

A New 8080 Assembly Language Debugger

The Dynamic Debugger is a diagnostic program for 8080 assembly language which has been announced by Computer Mart of New Jersey. The program features an automatic breakpoint mode to facilitate debugging. The price is $30 on paper tape or cassette, or $35 on diskette from the Computer Mart of New Jersey, 501 Route 27, Iselin Nj 08830, (212)283-0600.

A Basic New Assembly Language Debugger

The Dynamic Debugger is a diagnostic program for 8080 assembly language which has been announced by Computer Mart of New Jersey. The program features an automatic breakpoint mode to facilitate debugging. The price is $30 on paper tape or cassette, or $35 on diskette from the Computer Mart of New Jersey, 501 Route 27, Iselin Nj 08830, (212)283-0600.

A New 8080 Assembly Language Debugger

The Dynamic Debugger is a diagnostic program for 8080 assembly language which has been announced by Computer Mart of New Jersey. The program features an automatic breakpoint mode to facilitate debugging. The price is $30 on paper tape or cassette, or $35 on diskette from the Computer Mart of New Jersey, 501 Route 27, Iselin Nj 08830, (212)283-0600.
<table>
<thead>
<tr>
<th>DIODES/ZEONES</th>
<th>SOCKETS/BRIDGES</th>
<th>TRANSISTORS, LEDS, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1N914 100v 10mA .05</td>
<td>8-pin pcb .25 ww .45</td>
<td>2N2222 NPN (Plastic .10) .15</td>
</tr>
<tr>
<td>1N4005 600v 1A .08</td>
<td>14-pin pcb .25 ww .40</td>
<td>2N2907 NPN .15</td>
</tr>
<tr>
<td>1N4007 1000v 1A .15</td>
<td>16-pin pcb .25 ww .40</td>
<td>2N3068 NPN .10</td>
</tr>
<tr>
<td>1N4148 75v 10mA .05</td>
<td>18-pin pcb .25 ww .75</td>
<td>2N3054 NPN .35</td>
</tr>
<tr>
<td>1N753A 6.2v z .25</td>
<td>22-pin pcb .45 ww 1.25</td>
<td>2N3055 NPN 15A 60v .50</td>
</tr>
<tr>
<td>1N758A 10v z .25</td>
<td>24-pin pcb .35 ww 1.10</td>
<td>TIP125 NPN Darlington .35</td>
</tr>
<tr>
<td>1N753B 12v 15z .25</td>
<td>26-pin pcb .35 ww 1.45</td>
<td>LED Green, Red, Clear .50</td>
</tr>
<tr>
<td>1N4733 5.1v z .25</td>
<td>40-pin pcb .50 ww 1.25</td>
<td>D.L.747 7 seg 5/8" high com-anode 1.95</td>
</tr>
<tr>
<td>1N5243 13v z .25</td>
<td>Molex pins .01 To-3 Sockets .45</td>
<td>XANT72 7 seg com-anode 1.50</td>
</tr>
<tr>
<td>1N5244B 14v z .25</td>
<td>2 Amp Bridge 100-vpr 1.20</td>
<td>FND 359 Red 7 seg com-cathode 1.25</td>
</tr>
<tr>
<td>1N5245B 15v z .25</td>
<td>25 Amp Bridge 200-vpr 1.95</td>
<td></td>
</tr>
</tbody>
</table>

C MOS

4000 .15	7400 .15	- T T L -
4001 .20	7401 .15	7472 .55
4002 .20	7402 .20	74133 .45
4004 .35	7403 .20	74H01 .75
4006 .12	7405 .15	74H03 .75
4007 .35	7405 .15	74H06 .95
4008 .95	7406 .35	74L01 .75
4009 .30	7407 .55	74L02 .35
4010 .45	7408 .25	74L03 .30
4011 .20	7409 .15	74L04 .35
4012 .20	7410 .10	74L10 .35
4013 .40	7410 .10	74L20 .35
4014 .1.10	7412 .30	74L30 .45
4015 .95	7413 .45	74L47 .95
4016 .35	7414 .10	74L51 .45
4017 .10	7416 .25	74L72 .45
4018 .110	7417 .40	74L73 .40
4019 .60	7420 .15	74L74 .45
4020 .85	7421 .45	74L75 .55
4021 .335	7422 .45	74L79 .55
4022 .95	7423 .15	74L83 .25
4023 .25	7424 .30	74L93 .55
4024 .25	7425 .30	74L123 .55
4025 .35	7426 .35	74L50 .25
4026 .195	7427 .40	74L51 .55
4027 .50	7441 .1.15	74L52 .25
4028 .95	7442 .45	74L586 .65
4030 .35	7443 .85	74L590 .95
4033 .150	7444 .45	74L593 .95
4034 .245	7446 .65	74L607 .85
4035 .125	7446 .95	74L713 .100
4040 .1.35	7447 .95	74L715 .95
4041 .69	7448 .70	74L751 .95
4042 .95	7450 .25	74L820 .95
4043 .95	7451 .25	74L825 .95
4044 .95	7453 .20	74L826 .95
4046 .1.75	7454 .25	74L83 .95
4049 .70	7460 .40	74L84 .95
4050 .50	7470 .45	74L85 .95
4051 .95	7470 .40	74L86 .95
4066 .95	7470 .20	74L87 .95
4069 .40	7470 .15	74L88 .95
4071 .35	7470 .10	74L89 .95
4081 .70	7470 .05	74L90 .95
4082 .45	7470 .00	74L91 .95

9000 SERIES

9301 .85	-	8266 .35
9309 .35	-	LM320K5 (7905) 1.65
9322 .85	-	LM320K12 1.65
95H03 .55	-	LM320T5 1.65
9601 .75	-	LM320T12 1.55
9602 .50	-	LM320T15 1.55

MEMORY CLOCKS

74S188 (8223) 3.00	-	LM320K5 (7905) 1.65
172A 6.95	-	LM320K12 1.65
MM5314 3.00	-	LM320T5 1.65
MM5316 3.50	-	LM320T12 1.55
2102-1 1.75	-	LM320T15 1.55
2102L-1 1.95	-	LM308 (Mini) .75
TR 1802B/ TMS 6011 6.95	-	LM339 .95
8080AD 15.00	-	7805 (340T5) .95
BT1 1.50	-	LM340T12 1.00
BT23 1.50	-	LM340T15 1.00
BT24 2.00	-	LM709 (8,14 PIN) .25
21078-4 4.95	-	LM711 .45

INTEGRATED CIRCUITS UNLIMITED

7889 Clairemont Mesa Boulevard, San Diego, California 92111
(714) 278-4394 (Calif. Res.)

All orders shipped prepaid
No minimum
Open accounts invited
COD orders accepted
Discounts available at OEM Quantities
California Residents add 6% Sales Tax
All IC’s Prime/Guaranteed. All orders shipped same day received.

24 Hour Toll Free Phone 1-800-854-2211
MasterCharge / BankAmericard / AE

SPECIAL DISCOUNTS

<table>
<thead>
<tr>
<th>Total Order</th>
<th>Deduct</th>
</tr>
</thead>
<tbody>
<tr>
<td>$35 - $99</td>
<td>5%</td>
</tr>
<tr>
<td>$100 - $300</td>
<td>10%</td>
</tr>
<tr>
<td>$301 - $1000</td>
<td>15%</td>
</tr>
<tr>
<td>$1000 - Up</td>
<td>20%</td>
</tr>
</tbody>
</table>

Circle 52 on inquiry card.
New Micro Store Catalog

Want to Build Your Own Altair ($100) Card Frame?

The crate information packet is a complete set of plans for constructing an Altair ($100) compatible card frame and power supply. The design can be adapted to any of the available Altair ($100) mother boards, and can be built from commonly available materials for about $150. The plans include information on sources of materials, tools, parts for the power supply, and front panel options. Either a full size or a twelve slot card frame can be built. The information packet is $19.95; also available are pre-punched and drilled front and rear panels for $11.95 each or $20 per set, from Objective Design Inc, POB 20325, Tallahassee FL 32304. Circle 111 on inquiry card.

User Manual Available for BASIC-E

Users of the BASIC-E compiler on the CP/M operating system for 8080 based computers will profit from this excellent, 200 page reference manual and user's guide. It goes far beyond most BASIC manuals and indeed beyond most textbooks on BASIC programming. Besides its comprehensive coverage of BASIC language features, including character string handling and disk file definition and access, the manual provides information on interaction with the user's terminal in BASIC, compiler options and error codes, a guide for beginners, and hints on problem solving and programming techniques. 16 appendices offer examples of BASIC-E programs and treat topics such as how a program works, compilers versus interpreters and structured programming techniques. The manual itself is priced at only $15, while a floppy disk containing the latest BASIC-E compiler and runtime monitor, a formatting procedure, letter writer and name file manager, a file transfer facility for object files, and miscellaneous other programs sells for $60, from John K Jacobs, JEM Company, 2555 Leavenworth St, Suite 301, San Francisco CA 94133, (415) 673-8962. Circle 510 on inquiry card.

Manuals for Floppy Disk Controller Chip

These two manuals describe how to use the NEC uPD972 floppy disk controller chip, which provides most of the functions needed to control up to four full size or minifloppy disk drives (see "What's New?" March 1977 BYTE, page 105). Complete assembly language listings, schematics for host processor connections, timing diagrams and narrative text included. The 70 page manual for the full size floppy drive and the 44 page manual for the minifloppy drive are $10 each from NEC Microcomputers Inc, 5 Milita Dr, Lexington MA 02173, (617) 862-6410. Circle 511 on inquiry card.

Datapro Reports on Microcomputers

This new 36 page report provides detailed specifications on 144 models of microcomputers, and comments on their potential applications. The report distinguishes between original equipment manufacturer (OEM) microcomputers, micro development systems and hobbyist microcomputers, and evaluates products in each category. Offerings from 57 vendors are covered, and names and addresses of vendors are included. Reprinted from the June supplement to Datapro Reports on Minicomputers, the new report is available for $12 per copy from Datapro Research Corp, 1805 Underwood Blvd, Delran NJ 08075, (609) 764-0100. Circle 508 on inquiry card.

This catalog describes the hardware, software and custom services available from Wintek Corporation, including the WINCE 6800 series micromodules, software such as the PL/W high level language, relocating linker and BASIC, consulting, and in-house courses on microprocessors. The catalog is available from Wintek Corporation, 902 N 9th St, Lafayette IN 47904, (317) 742-6802. Circle 605 on inquiry card.
MICROCOMPUTER

MICROPROCESSORS:
- 6800: $19.95
- 6800A: $15.95
- 8008: $8.75
- 8080A: $18.95

PROMS:
- 7202: 5.00
- 2103: 15.00
- 2104: 20.00
- 2106: 38.00
- 2107: 4.50
- 5200A: 4.00
- 5204A: 6.00
- 834: 16.95
- 834-1: 14.95
- 8223B: 4.00
- 82129B: 4.25
- 8223B: 2.70

8080A SUPPORT DEVICES:
- 8212: 3.95
- 8214: 9.95
- 8216: 4.50
- 8224: 4.95
- 8227: 8.75
- 8238: 8.00
- 8251: 12.00
- 8253: 28.00
- 8255: 12.00
- 8259: 25.00

6800 SUPPORT DEVICES:
- 2702A: 5.00
- 2704: 15.00
- 2708: 20.00
- 2716: 38.00
- 3601: 4.50
- 2701: 4.95
- 2705: 2.75
- 2706: 2.60

6800 SUPPORT DEVICES:
- 2707: 16.95
- 2708: 25.00

6810P: $4.95
6820P: $8.00
6828P: $11.25
21L02 (450): $1.50
21L02 (250): $1.40
21L02: $1.25

6850P: $12.95
6851: $12.50
6852: $11.95

2104: $4.50
2107A: $4.95
2107: $4.50

DYNAMIC RAMS:
- 2513 UP: 6.75
- 2513 DOWN: 6.75
- 2513 DOWN (4): 5.95
- 2513 DOWN (5): 5.95

CHARACTER GENERATORS:
- 2513 UP: 5.75
- 2513 DOWN: 5.75
- 2513 DOWN (4): 5.75
- 2513 DOWN (5): 5.75

PERCISI DISK AND CONTROLLER

- USE WITH PROVISIONS FOR ONBOARD 2708 AND POWER ON JUMP

JADE Z80 KIT

S-100 COMPATIBLE

- WITH EIGHT LEVEL VECTOR INTERRUPT

$110.00 KIT

BARE BOARD $35.00

JADE 8080A KIT

- WITH EIGHT LEVEL VECTOR INTERRUPT

$110.00 KIT

BARE BOARD $35.00

TV Game Chip

Now Only

$10.95

JADE PARALLEL/SERIAL INTERFACE KIT
$124.95 KIT

JADE VIDEO INTERFACE KIT
$89.95 KIT

Computer Products
5351 WEST 144TH STREET
LAWNDALE, CALIFORNIA 90260
(213) 679-3313

RETAIL STORE HOURS M-F 9-7 SAT. 9-6
Discounts available at OEM quantities. Add $1.25 for shipping. California residents add 6% sales tax. CATALOG FREE WITH $10.00 ORDER
Print 9 Part Forms

Multiple forms of up to nine parts, such as airline tickets, invoices and warehousing slips, can be handled by this terminal. The Terminet Multi-Form Printer (MFP) prints 80 or 132 characters per line on 8.5 by 11 inch (21.6 by 27.9 cm) paper at 30 characters per second. Other options include magnetic or paper tape and TWX Direct Distance Dial (DDD) capability. The MFP is $1575 with 30 to 60 days delivery, or $3220 with a single magnetic cassette drive, from General Electric Data Communications Dept., AS&P, Waynesboro VA 22980, (703) 942-8161.*

Circle 581 on inquiry card.

Cassette Interface for Altair 680b

This board provides an audio cassette interface using the Kansas City recording standard for the MITS Altair 680b computer. The board includes a digital demodulator and a motor control circuit for starting and stopping tape motion. Complete documentation including test point waveforms is provided. Altair 680b BASIC Version 1.2 provides facilities for saving and loading software using the cassette interface, and is available on an audio cassette. The 680b KCACR is available from MITS, 2450 Alamo SE, Albuquerque NM 87106. *

Circle 585 on inquiry card.

Cassette Storage for Terminals

This tape cassette drive is designed to operate with terminals and data collection devices. It offers an RS232C interface running at 110 or 300 bps. The Model 815 Datacassette weighs only 6 pounds (2.7 kg) and is priced at $950. A battery operated model, weighing 10 pounds, is priced at $1095. Delivery time is 45 days, from Techtran Industries Inc, 200 Commerce Dr, Rochester NY 14623, (716) 334-9640.*

Circle 586 on inquiry card.

Selectric Terminal Features Microprocessor

This device uses a built-in microprocessor to make a Selectric typewriter behave like a standard ASCII terminal. It offers an RS232 interface and is fully buffered, with switch selectable data rates of 110, 134.5, 150 and 300 bps. When off line the terminal can be used as a standard office typewriter. Since the terminal employs a microprocessor it can be modified to meet special interfacing requirements, and is available with two empty card slots for user supplied interface circuits. The unit is priced at $2125 in single quantities with 60 day delivery; attractive OEM discount schedules are also available, from CPT Corporation, 1001 S 2nd St, Hopkins MN 55343, (612) 935-0381.*

Circle 587 on inquiry card.

Selectric Terminal Features Microprocessor

Experiment with This Keyboard

This user definable keyboard is ideal for the experimenter who wants to use the full APL character set, a special notation for music, or something more exotic. 100 keys are included with hot stamped letters, and 90 keys may be encoded by the user into any configuration of eight bits. Or, some keys may be used as separate switch closures to control external circuitry. Ten keys are used to directly control the eight encoding bits. Facilities are included for shifting character codes (as between upper and lower case), an electronic shift lock, and positive and negative strobe signals. Eight LEDs are provided for display of the encoding bits, and 12 additional LEDs can be used for status display. The keyboard can be configured to transmit the full 128 character ASCII set with 25 keys left over for special functions. All decoding is done with a diode matrix. The keyboard is available from Computer Electronics Inc, Box 4386, 37 Joseph Ct, San Rafael CA 94903, (415) 472-2425.*

Circle 589 on inquiry card.

Versatile Video Memory Board

The Solid State Music VBI video interface board for the Altair (S-100) bus offers 16 lines of 32 or 64 characters, upper case, lower case and Greek letters, video inversion (black on white or white on black), and 128 by 48 graphics. Software is included for cursor control, scrolling and graphics display. Output of the board can be parallel or composite video, suitable for a video monitor. The VBI is $189.95 as a kit or $246.95 as assembled and tested from Solid State Music, 2102A Walsh Av, Santa Clara CA 95050, (408) 246-2707.*

Circle 584 on inquiry card.
EROM Programmer for Micro Designer

This accessory for the Mini-Micro Designer (MMD-1) microcomputer trainer makes it possible to program a 256 byte 1702A erasable read only memory (EROM) in about 4 minutes. Programming data can be obtained from any block of memory in the MMD-1 or from a master EROM which is to be copied. After programming, the contents of the EROM can be verified against the source data. The programmer is attached to the MMD-1 through an included 40 pin connector and ribbon cable assembly. The MMD-PP programmer is $166 in kit form or $222 assembled, from E & L Instruments Inc, 61 First St, Derby CT 06418, (203) 735-8774.

Add a Cassette or Plotter to Your Teletype

This unit prints up to 21 columns of numeric and limited alphabetic data at a rate of 3 lines per second. The printing mechanism has a 5 million line life and uses a cassette loaded ink ribbon. Options include a date and time clock, event counter and paper low indicator. RS232 and 20 mA current loop interfaces simplify connection to a microprocessor. The MDC 300 printer starts at $595 in single quantities from Master Digital Corporation, 1308 F Logan Av, Costa Mesa CA 92626, (714) 751-8271.

New Plasma Display Terminal

This new plasma display terminal is designed to compete with ruggedized alphanumeric and graphic cathode ray tube (CRT) terminals in the $8,000 to $15,000 price range. The plasma display features a neon orange color twice as bright as a CRT screen, with a 20 to 1 contrast ratio. The flat display plate eliminates distortion and allows a wide viewing angle, while the 50,000 Hz "refresh" sustaining voltage produces a flicker free display fixed in place by the matrix of lines "printed" on the glass plates, with a resolution equivalent to that of a 60 mesh halftone screen. The display panel itself is only a half inch deep, and it can be combined with back projection techniques to produce a display partly from film and partly from the computer, or "drawn" by the operator.

The plasma display panel consists of two glass plates printed with parallel conductor lines at right angles to each other. The space between the plates is filled with neon gas, and an oscillating voltage is applied across the gap, just below the threshold required to ionize the gas. When voltages are applied across two intersecting lines, a glowing plasma path is established at the point of intersection and thereafter sustained by the oscillating voltage. The neon "dot" can be selectively erased by dropping the voltage across the intersecting lines below the sustaining level. This selective erasing capability makes the plasma display especially suitable for real time animation.

Developed at the University of Illinois as part of the PLATO computer aided instruction system, plasma display panels are now produced by several manufacturers in the US and abroad. The Model PD2000 terminal (pictured) incorporates the plasma panel in a commercial terminal design. Also offered are the PD1000 and the PD3000, the latter designed for airborne or shipboard environments. The terminals are available from Interstate Electronics Corporation, 707 E Vermont Av, POB 3117, Anaheim CA 92803, (714) 772-2811.

Instrumentation Printer Offers Serial Interface

This unit prints up to 21 columns of numeric and limited alphabetic data at a rate of 3 lines per second. The printing mechanism has a 5 million line life and uses a cassette loaded ink ribbon. Options include a date and time clock, event counter and paper low indicator. RS232 and 20 mA current loop interfaces simplify connection to a microprocessor. The MDC 300 printer starts at $595 in single quantities from Master Digital Corporation, 1308 F Logan Av, Costa Mesa CA 92626, (714) 751-8271.

Control 128 Devices from One Port

This interface system allows you to control up to 128 separate devices or circuits through one 8 bit port or an ASCII serial interface. Devices controlled may include room lights, sprinkler systems or laboratory experiments. The system consists of a mother board and a series of interface boards, with LEDs to display the status of each board and the 8 bit bus. An enclosure is available which allows all of the LEDs to show through a red Plexiglas front panel. The XPRES interface system is available from CRC Engineering Inc, POB 6263, Bellevue WA 98007, (206) 865-7038.

Circle 589 on inquiry card.

Circle 587 on inquiry card.

Circle 590 on inquiry card.

Circle 581 on inquiry card.
PERIPHERALS

Video Board Features
Dedicated Microcomputer

This new video interface board, designed around the Mostek 3870 chip, illustrates how a dedicated microcomputer can be used to reduce costs and implement additional features not easily realized with conventional logic. Operating under the control of the program in its built-in memory, the 3870 helps provide ASCII and Baudot serial interfaces, multiple data rates up to 300 bps, full XY cursor control, screen clear, clear to end of line, page mode and autoscroll. Though the same size as an Altair (S-100) bus, the board uses only the power connections, and includes a rectifier and filter for stand alone use with a 6.3 VAC, 1 A transformer. Designated the SCT-100, the board is available from Vectron, POB 20887, Dallas TX 75220, (214) 350-5291, in three forms: an assembled and tested unit for $185, a complete kit for $155, and a printed circuit board, 3870, and character generator ROM for $85.

Circle 561 on inquiry card.

Video Output for Scope or Monitor

The V052K video interface board includes all address decoding necessary for direct display of characters from memory, or for display of characters received one at a time from an I/O port, with automatic cursor updating. Video output can be either in the form of a composite video signal, appropriate for a video monitor, or a set of "XYZ" TTL level signals appropriate for the horizontal, vertical and intensity inputs of many oscilloscopes. This Altair (S-100) bus interface displays 30 lines of 64 characters, and also has a 128 byte non-displayable buffer memory. Upper case, lower case and Greek characters are provided in a 7 by 9 dot matrix. The V052K kit is $399 from IOR, Box 28823, Dallas TX 75228, (214) 358-2671.

Circle 563 on inquiry card.

A Synthesizer and Music Language

The Solid State Music Synthesizer Board (SB-1) is a waveform synthesizer card designed to interface with the S-100 bus. With this card, a microcomputer may be programmed to play a monophonic solo in an instrumental "voice" that is controlled by software. Polyphonic capability is provided for in the MUX language for multiple cards. The music is written by the user by means of high level language interpreter called MUX which is entered into the system via an ASCII keyboard, paper tape, floppy or other input medium.

The MUX language contains the operational routines and lookup tables to generate the following:

a. the musical note
b. the voicing envelope (attack and decay)
c. loudness or volume commands
d. octave selection (9 octave range)
e. memory retention of two waveforms
f. waveform selection (voicing change) 8 in memory
g. repetition effects
h. 1/64th note through whole note
i. dotted note, double dotted note
j. time signature
k. repeat measure
l. key signature

Any 256 byte increment from 8000 hexadecimal to FF00 hexadecimal can be used for this board by presetting a switch on the card. The kit costs $250, and an assembled and tested version is $350. Contact Solid State Music at 2102A Walsh Av, Santa Clara CA 95050, (408) 246-2707.

Circle 562 on inquiry card.

Wire Wrappable Prototyping Board

This Altair (S-100) bus prototyping board features an all wire wrapable format, a dedicated regulator and three additional etched TO-220 locations, pre-numbered integrated circuit locations, and provisions for filter capacitors and flat cable connectors for interfacing purposes. The board will accommodate all sizes of integrated circuits, from as many as 81 14 or 16 pin sockets to as many as 12 36 or 40 pin sockets. An instruction manual is included. The board is $39.95 from Orange Digital Electronics, POB 2311, Mission Viejo CA 92675.

Circle 564 on inquiry card.
Fantastic $avings on Terminal Components

We have obtained a fairly large supply of professional CRT video monitors, encased in attractive metal cabinets with a simulated mahogany finish. We do not know the bandwidth capabilities of these 12" (diagonal) units; we have used them, however, to test our 24 x 80 video display board and have found them perfectly satisfactory. These units were manufactured by or for one of the largest data communications firms in the country. We are not allowed to use the name, and the nameplates had to be removed. Many of you have probably seen these units functioning. They are equipped with a standard video connector and have all the normal controls. They operate at 110 V, 60 cycles.

The units are in reasonably good condition cosmetically, although nearly all of them have a defect in the plastic anti-glare screen in front of the CRT tube. This screen could be readily removed or replaced.

We estimate that these units would sell new for between $150 and $200. We are offering them for sale in both functional and in non-functional condition.

12CRT Used, operable* $59.95
12CRTNF Used, complete, known non-functioning $39.95

*Units have been tested but are sold as-is. They are not represented as reconditioned units and may require minor repairs or adjustments.

Add the following charges for handling-shipping-insurance:
- $2.50 Eastern Time Zone
- $3.00 Central
- $4.00 Mountain
- $5.00 Pacific

MiniMicroMart, Inc. also stocks a complete line of kits for building video display units.

Write for information

COMMERCIAL MODEMS — Limited Supply — Acoustical coupler type and direct hard wire variety. Both operate at standard Bell Telephone frequencies, at up to 300 baud; they are Bell 103 compatible. They appear to be in new or equal-to-new condition. They are intended for communicating from a terminal to a time-share computer. Standard RS232C type connectors are supplied.

KEYBOARDS — Limited Supply

Attractive communications style keyboards; some in cases which match the monitor shown above. They are not ASCII encoded but the coding could be changed in software with PROMs or by replacing the circuitry with an encoding I.C. They key switch modules are of Cherry manufacture with an excellent feel. A schematic and limited modification information is supplied.

KBN brand new, in case $37.95
KBU used, in case 27.95
KBUD used, in case, minor cosmetic defects 22.95
KBUNC used, no case 19.95

Add $2.50 for handling-shipping-insurance.

Write for free 64-page catalog featuring hundreds of items for minicomputer systems.

MiniMicroMart, Inc. 1618 James Street, Syracuse, N.Y. 13203 (315) 422-4467

Circle 67 on inquiry card.
What's New?

MASS STORAGE

New Drive for Miniature Data Cartridges

Utilizing the 3M DC100A miniature data cartridge, this new tape transport measures only 3 by 4.125 inches (7.6 by 10.2 by 10.5 cm) and costs as little as $250 in single quantities, including "intimate" electronics. The Model 200 Minidrive can record up to 772,000 bytes of data on a single cartridge, at a recording density of 1600 bits per inch and a data rate of 48,000 bits per second. The "intimate" electronics include the motor drive and read head amplifiers, the write head driver, optical tachometer for tape speed control, track selection logic, solid state beginning and end of tape detectors, and film protect and cartridge in place detectors. A servo and data card, peripheral interface adapter card, control logic card, and card cage with printed circuit backplane can be added to form a complete controller and interface. The manufacturer supplies direct interfacing for the Intel 8080 and Motorola 6800 microprocessors, as well as interfaces tailored to the LSI-11, Nova, Interdata and Altair computers. One controller can "daisy chain" up to four Minidrives, providing access to as much as 1.3 million bytes of storage with an average access time of 9 seconds.

In single quantities, the 1 track low density (168,000 byte capacity) version of the Model 200 sells for $250, while the 2 track high density (772,000 byte capacity) version is priced at $350. A complete 1 track drive and controller costs about $485 in single quantities. Substantial quantity discounts are available to OEM buyers. The Model 200 is made by the Quantex division of North Atlantic Industries Inc., 200 Terminal Dr., Plainview NY 11803, (516) 681-8350.

Circle 554 on inquiry card.

Floppy Controller Includes Status Panel

The EPA Micro-68b floppy disk system now includes a disk status monitoring panel and write protect switches. Available in either single ($2495) or dual ($3295) configurations, the Micro-68b disk includes the interface necessary to plug into either the 6800 exorciser or the Altair (S-100) bus. The status panel contains indicators for drive selection, write protection, CRC error and disk status. Housed in a ruggedized, light blue aluminum cabinet to match the Micro-68b computer, the unit is available from Electronic Product Associates Inc., 1157 Vega St., San Diego CA 92110, (714) 276-8911.

Circle 557 on inquiry card.

At Last, a Solid State Disk

40 times faster than the fastest electromechanical rotating disk memory, the CCDISC contains a solid state charge coupled device memory with a capacity of up to 1 million bytes in 128 K byte increments. Capacities up to four megabytes can be achieved by daisy chaining these solid state "disks." Average access time is 250 µs, making the CCDISC ideal for paging, program swapping, timesharing and distributed network applications. The unit is plug compatible with the rotating magnetic head-per-track disk memory interfaces made by the manufacturer, Alpha Data Inc., 20750 Marilla St., Chatsworth CA 91311, (213) 882-6500. CCDISC memories are available eight weeks after receipt of order and cost $3195 in OEM quantities.

Circle 556 on inquiry card.

3M Cartridge Drive Interface

This Altair (S-100) bus compatible interface board controls up to eight Quantex Model 600 3M cartridge tape drives. The board includes software in ROM to dump and load named files from anywhere in memory, search for a file name or list all files on a cartridge, rewind, unload, erase, skip blocks, and other functions. Data is recorded with phase encoding using a cyclic redundancy character check for error detection and correction. The Quantex Model 500 drive uses the DC-300A tape cartridge, containing 300 feet of 1/4 inch tape. Data is recorded at 48,000 bits per second, 1600 bits per inch serially on 1, 2 or 4 tracks. With proper formatting more than 2 million bytes can be stored on a cartridge. The AQ-86 interface board is priced at $425, and a single Quantex Model 600 cartridge drive at $825, from Galt Electronics, 9924 Lanham Severn Rd., Seabrook MD 20801, (301) 459-1496.

Circle 568 on inquiry card.

Attention IBM 5100 Users: An Intelligent Floppy Disk

This floppy disk storage system includes its own microprocessor and plugs directly into the IBM 5100 serial I0 port, requiring no changes to the 5100 hardware or software. The Command/S100 has its own file management system controlled by simple commands and is compatible with both BASIC and APL files created under BASIC can be read under APL and vice versa. The floppy disk format is compatible with the IBM 3740. The system comes with a $100 tape cartridge containing ten BASIC key files and 14 APL functions. A single drive system is priced under $3000, and a dual drive system under $4000, from Sykes Datatrornics Inc., 375 Orchard St., Rochester NY 14606, (716) 458-8000.

Circle 569 on inquiry card.
Now low-cost memory stacks up in reliability!

Introducing a new generation of ECONORAM* dynamics with SynchroFresh™ reliability

Meet ECONORAM* III with SynchroFresh™, the 8Kx8 dynamic memory for S-100 bus computers that really works. And uses less than half the power of static designs. And costs just $149 for an assembled 8K.

Unlike previous attempts at building a low-cost dynamic memory, ECONORAM* III is entirely reliable... because of SynchroFresh™, a new approach to memory refresh that is simple, elegant and totally effective.

SynchroFresh™ was invented by George Morrow, designer of the original ECONORAM*. Instead of arbitrarily interrupting your CPU to perform memory refresh cycles, Morrow designed SynchroFresh™ to weave refresh invisibly into the natural timing of the S-100 bus. SynchroFresh™ circuitry simply monitors your computer's machine states, utilizing all of the normal opportunities for memory refresh. It's that simple.

And simplicity means reliability and dramatically lower cost. That's why a SynchroFresh™ design was chosen for the first ECONORAM* dynamic, to follow in the footsteps of the largest-selling static memories for personal computers.

ECONORAM* III with SynchroFresh™ is an 8Kx8 dynamic board, configured as two individually addressable 4K blocks for flexibility. It is available assembled, tested and warranted for one full year for just $149. This unprecedented warrantee offers a full refund of purchase price if ECONORAM* III does not run reliably with your S-100 CPU—evidence of our confidence in its performance.

It is also available as a kit with complete assembly instructions and documentation for $159.

ECONORAM* III with SynchroFresh™ in assembled or kit form, may be ordered directly from Thinker Toys™ Write 1201 10th Street, Berkeley CA 94710 or call (415) 527-7548. Call BAC/MC orders toll-free to 800-648-5311. Or ask your computer store to order it for you.

NEW LOW PRICE
$149
8K assembled, tested, warranted
1 year

A product of Morrow's Micro-Stuff for
Thinker Toys™

*ECONORAM is a trademark of Godbout Electronics.
FOR SALE: Dura 941 data terminal, includes IBM Selectric typewriter, 8020 coding, paper tape punch and reader. Unit is in good working order except for punch which has an electrical problem. For sale as is $300; points and instructions included. Freight collect. Will make an ideal hard copy printer even without the punch, and where else can you get a Selectric typewriter for $300? Write Jim Parish, Apt 305, 401 W Johnson St, Philadelphia PA 19144.

FOR SALE: completely assembled and tested Solid State Music 16 K true static memory board; list, 200 ns; low power, $5 A @ 8 V; fully buffered with memory inputs in 4 K blocks and automatic unprotect on power up, $500 or best offer. Tim Wadkins, P.OB 3074, San Leandro CA 94578.

FOR SALE: One MIT'S serial ID board, Morrow's casette interface board with all options. Will accept best offer for each or both. Victor Chen, 1618 Mikea, Berkeley CA 94709.

WRITE: A working SC/MP (bit bunit) and working keyboard as sold by NS for $200 for a good frequency counter. Also for sale: A 8223 PRogrammable, complete except for 12 VDC, 300 mA furnished by user, price: $20. James Upchurch, 3407 Dauphine Dr, Beaver Spring 33767.

WANTED: Cuse or Digital IO printer to run with a Cromemco Z80 system. Also, does anyone have any information on how to interface an x86 Poloron to a microsystem? William Brady, 156 Drake Ln, Sunntown PA 18483.

FOR SALE: Altair 8808 assembled and tested, and high speed paper tape reader and high speed paper tape punch. The whole works for $450. Dave Woodhouse, 172 Hickory Creek Rd, Frankfort IN. 10/23. After 7 PM call (515) 695-5216.

FOR SALE: IMSAI 8080 computer, 22 slot motherboard, 8 K program memory, M10 board serial, parallel and cassette interface boards, professionally assembled and tested in excellent condition. Complete with input and output cables and manuals. Call (215) 643-2467 after 6 PM. William Schmidt, 1426 Jonathen Way, Ambridge PA 19602.

FOR SALE: QSI 400 System with: 400 CPU board, 440 video graphics board, 430 cassette IO board, 1 K RAM, keyboard, power supply, case, and extras. Fully socketed, $750 or offer. B Fabry, Rt 2, Box 22A, Morgantown WV 26505. (304) 296-2459.

FOR SALE: Unfinished computer project worth much more than $800 of RM 8608, 4 K program memory, TV terminal, Phillips cassette 40 tape deck, edge connectors, TTL, CMOS and Intel ICs, designing and specifying the book, capacitors, keyboard, more. Go for $550 or best offer. T P Douglas, P.O.B 1012-V, La Junta CO 81050. (503) 398-9894.

BACK ISSUES WANTED: BYTE numbers 7 thru 10 (March thru June 1976). Prefer undamaged originals, but will accept Xerox or microfiche copies with publisher's permission. Send your asking price and description to Carl S Zimmerman, POB 53, APO NY 09378.

JOB WANTED: I am looking for interesting and challenging work in the computer field. I have worked with computers for over six years, know most common assemblies and compiler languages, and will be graduation from the University of Pennsylvania in May with a degree in computer engineering. If you are trying to find a person to handle a tough but interesting job, please write me for my complete resume. Steve Mascioca, P.O.B 961, Locust Walk, Philadelphia PA 19174. All offers carefully considered.

FOR SALE: Minimem MERLIN graphics display board, 5-100, new, assembled, $269. Mark O'Keefe, 1323 9th St, David City NB 68632. (402) 367-4387 after 8 PM.

FOR SALE: Digital Equipment Corporation DK8EP programmable real time clocks $399. Other PDP8 modules for sale or trade. Free list. Want 8 K care or any other DEC peripherals or components. KZ00Y, 11 Square Hill Rd, North Caldwell NJ 07006.

4 K MEMORY BOARDS: Solid State Music (MB-2) assembled, socketed, tested, with full speed 2102s. Two available. $75 each. TTY paper tape, 11 in, 12 inch core diameter roll, lightly oiled buff. Perfect for ASR-33. $10 per 28 case roll plus $48 lb. Dan S Parker, 1003 3rd St #3, Davis CA 95616. (916) 758-2431 after 6:00 PM. Orders shipped within 24 hours.

FOR SALE: Data modems. One new, acoustically coupled, never used, cost $270. Salvage at $15. One used, tested, and in perfect working order. $75. Call evenings. C Loper (714) 272-4361.

WANTED: First seven BYTES. Will consider additional issues in order to obtain first seven. Good copies acceptable also. Send quotes to: Joseph Heck, 101 Waukechus St, Jamaica Plain MA 02130.

FOR SALE: Texas Instruments Silent 700 Terminal, Model KSR733 with modem cable, maintenance manual (worth $25) and four rolls of paper. Original price $950. Will sell for $800 or best offer. Terry Higbee, 5071 Scott Cir, LaPalma CA 90633. (714) 523-2548.

WANTED: Best seven BYTES. Will consider additional issues in order to obtain first seven. Good copies acceptable also. Send quotes to: Joseph Heck, 101 Waukechus St, Jamaica Plain MA 02130.

FOR SALE: Texas Instruments Silent 700 Terminal, Model KSR733 with modem cable, maintenance manual (worth $25) and four rolls of paper. Original price $950. Will sell for $800 or best offer. Terry Higbee, 5071 Scott Cir, LaPalma CA 90633. (714) 523-2548.

FOR SALE: HP 9820A programmable calculator with memory option 275, 9866A line printer, Data Commun interface, Z80A ROMs: String Variables, Advanced Pro II, Data Comm I, Data Comm III, Perry B Pink, 82 3 Diere Park Dr, Highland Park IL 60035. (312) 432-2998.
EXPANDO RAM KIT

32K FOR $475.00

- MEMORY CAPACITY
- MEMORY ADDRESSING
- MEMORY PROTECTION

SKU: 32K-128K, 512K using Mos-tek 684115 with 512K boundary protection. Utilizes DIP switches, PC board comes with sockets for 32K operation. Orders now being accepted. Allow 5 to 8 weeks for delivery.

Buy an $100 compatible BK Ram Board and upgrade the same board to a maximum of 32K in steps of 8K at your option by merely purchasing more RAM chips from S.D. Sales: At a guaranteed price — Look at the features we have built into the board.

PRICES START AT $35.00 FOR EACH ADDITIONAL 8K RAM.

Z-80 CPU BOARD KIT — $139.

- The best CPU Board kit available, each kit comes with a complete Z-80 CPU chip with manual — $39.95

- All address lines & data lines buffered.

- Quality plated through PC board, parts plus sockets provided for all IC's. Add $10 extra for Z-80 CPU which allows 8KHz operation.

$8 LOW POWER RAM — $159.95

- Fully assembled and tested. Not a kit. Price — $9-10. Dual compatible, uses low power static 7220Z-500nV fully buffered on board regulated, quality plated through PC board, including socketed pin 1.8 pos. dip switches for address selected.

$40 DIGITAL LED READOUT THERMOMETER — $29.95

- Features. Litronics digital 1/2" display

- Uses Silicaox L0131 single chip CMOS

- 1/2" converter KIT includes all necessary parts (except case). AC line cord and power supply included. $G.90 P board operation.

The Whole Works - $79.50

DIgITAL LED READOUT THERMOMETER — $29.95

- Feature. Larges LED 1/2" displays open from 418.4 12 to 9999.9 0.01 sec 11-59 sec. 5.24 to 15V AC or 12V DC supply provided. All necessary parts included. Special designs $7.95.

6 DIGIT ALARM CLOCK KIT

- Features. Litronix dual 1/2"/display, Mostek 230 2500 super clock chip, single I.C. segment driver, SCR digit drivers. Kit includes all necessary parts (except case). Optional. X10 preferred. Eliminate the hassle.

AC KFMR - $1.50 Case 50.

5 Digit Countdown Utility Darkroom Timer KIT

- Features. Large LED 1/2" displays open from 418.4 12 to 9999.9 0.01 sec 11-59 sec. 5.24 to 15V AC or 12V DC supply provided. All necessary parts included. Special designs $7.95.

$60 DIGITAL ASSEMBLY KIT — $19.95

- Features. BCD 7447 's at $1.29.

- MOSIOK DAS ASSORT ELECTRONIC COIL ASSEMBLY — $14.95

- BOARD KIT HOME KIT Special Design $34.95 Case 5.00.

60 MICROPROCESSOR CHIPS

- MICROPROCESSOR CHIPS

- BCD 7447 — $1.29.

- MOSIOK DAS ASSORT ELECTRONIC COIL ASSEMBLY — $14.95

- BOARD KIT HOME KIT Special Design $34.95 Case 5.00.

Z-80 PROGRAMMING MANUAL

In DEPTH DETAIL OF THE Z-80 CPU MICRO-COMPUTER

S.D. Sales Special $9.95

CALL IN YOUR BANKAMERICAN CARD (VISA) OR MASTER CHARGE ORDER IN OUR OFFICE OR CALL TOLL FREE 1-800-527-3460 DEALER (INVITED)
To get further information on the products advertised in BYTE, fill out the reader service card with your name and address. Then circle the appropriate numbers for the advertisers you select from this list. Add a $1 stamp to the card, then drop it in the mail. Not only do you gain information, but our advertisers are encouraged to use the marketplace provided by BYTE. This helps us bring you a bigger BYTE.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>130</td>
<td>2</td>
<td>130</td>
<td>3</td>
<td>132</td>
</tr>
<tr>
<td>3</td>
<td>131</td>
<td>4</td>
<td>134</td>
<td>5</td>
<td>138</td>
</tr>
<tr>
<td>5</td>
<td>140</td>
<td>6</td>
<td>140</td>
<td>7</td>
<td>142</td>
</tr>
<tr>
<td>7</td>
<td>144</td>
<td>8</td>
<td>145</td>
<td>9</td>
<td>147</td>
</tr>
<tr>
<td>9</td>
<td>147</td>
<td>10</td>
<td>148</td>
<td>11</td>
<td>149</td>
</tr>
<tr>
<td>11</td>
<td>149</td>
<td>12</td>
<td>150</td>
<td>13</td>
<td>152</td>
</tr>
<tr>
<td>13</td>
<td>152</td>
<td>14</td>
<td>153</td>
<td>15</td>
<td>155</td>
</tr>
<tr>
<td>15</td>
<td>155</td>
<td>16</td>
<td>156</td>
<td>17</td>
<td>158</td>
</tr>
<tr>
<td>17</td>
<td>158</td>
<td>18</td>
<td>159</td>
<td>19</td>
<td>161</td>
</tr>
<tr>
<td>19</td>
<td>161</td>
<td>20</td>
<td>162</td>
<td>21</td>
<td>164</td>
</tr>
<tr>
<td>21</td>
<td>164</td>
<td>22</td>
<td>165</td>
<td>23</td>
<td>167</td>
</tr>
<tr>
<td>23</td>
<td>167</td>
<td>24</td>
<td>168</td>
<td>25</td>
<td>170</td>
</tr>
<tr>
<td>25</td>
<td>170</td>
<td>26</td>
<td>171</td>
<td>27</td>
<td>173</td>
</tr>
<tr>
<td>27</td>
<td>173</td>
<td>28</td>
<td>174</td>
<td>29</td>
<td>176</td>
</tr>
<tr>
<td>29</td>
<td>176</td>
<td>30</td>
<td>177</td>
<td>31</td>
<td>179</td>
</tr>
<tr>
<td>31</td>
<td>179</td>
<td>32</td>
<td>180</td>
<td>33</td>
<td>182</td>
</tr>
<tr>
<td>33</td>
<td>182</td>
<td>34</td>
<td>183</td>
<td>35</td>
<td>185</td>
</tr>
<tr>
<td>35</td>
<td>185</td>
<td>36</td>
<td>186</td>
<td>37</td>
<td>188</td>
</tr>
<tr>
<td>37</td>
<td>188</td>
<td>38</td>
<td>189</td>
<td>39</td>
<td>191</td>
</tr>
<tr>
<td>39</td>
<td>191</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reader Service inquiries not solicited. Correspond directly with company.

BOMB Analysis for the October 1977 Issue

First place (and a $100 bonus) went to David A Higgins' article on “Structured Program Design” using Warnier-Orr diagrams, page 146. His article had a range of 1.37 standard deviations above the mean of 13 articles. Second place and a $50 bonus went to David Kruglinski's “How to Implement Space War,” page 86. His article ranked 1.26 standard deviations above the mean. The standard deviation in October's analysis was 24% of the mean, indicating a relatively wide spread of evaluations. Be sure to indicate your reactions to this month's issue by rating each article on the BOMB evaluation card and forwarding it to our office. The BOMB card is your direct line to the editors' desks.
A component product line developed for the independent dealer. Guaranteed, nationally advertised products. Complete JIM-PAK program includes national advertising, direct mail programs, store display racks, stock rotation plan and return policy. For dealer information, write or call JIM-PAK, 1021 Howard Avenue, San Carlos, CA 94070 (415) 592-8097.

SEE YOUR LOCAL JIM-PAK DEALER TODAY...

QUALITY PRODUCTS

<table>
<thead>
<tr>
<th>TTL</th>
<th>LINEAR</th>
<th>RESISTORS</th>
<th>SWITCHES</th>
</tr>
</thead>
<tbody>
<tr>
<td>74HC</td>
<td>74LS</td>
<td>74AC</td>
<td>74F</td>
</tr>
</tbody>
</table>

CAPACITORS

- Aluminum Electrolytic
- Ceramic Disc

SOCKETS

- DIP
- SOT

CONNECTORS

- DIP
- SOT

DIODES

- 1N4001
- 1N4002
- 1N4007

TRANSISTORS

- 2N3904
- 2N3905
- 2N3906

DATA BOOKS

- Reference Data Book

Circle 55 on inquiry card.
Get up and running right!...

with the Heathkit H8 8080 Personal Computing System!

H8 8080A 8-Bit Computer $375
H8-1 4K Memory 140
H8-3 4K Chip Set 95
H8-5 Serial I/O and Cassette Interface 110
H9 Video Terminal 530
ECP-3801 Cassette Recorder/Player 60
If purchased separately, $1310.00
Heath System Price $1244.50

NEW! Microprocessor Course AND TRAINER
Learn the operation and programming of microprocessors with our effective self-study course and trainer!

When you invest in a personal computing system, you want it to perform. So you need software. But putting a complete hardware-software system together can be difficult. Especially if all of the components are not designed to work together. The H8 computer, software and peripherals were developed as a total system. And we include the software (at NO extra cost) so you can start programming right away. Benton Harbor BASIC with unique statements and commands and efficient compression techniques lets you put more program in less space. The HASL-8 2-pass assembler generates efficient machine language code. The TED-8 line-oriented text editor and BUG-8 terminal console debugging program permit fast entry, editing and debugging of programs. The H8's intelligent front panel provides efficient one-button program loading, and lets you "see" what's going on in the machine — in memory, in registers and at I/O ports.

While the H8 and its software gets you up and running, our peripherals complete the "system". The H9 12" CRT video terminal is complete with ASCII 67-key keyboard, long and short-form displays, auto-scrolling, plot mode, cursor and more. And our ECP-3801 cassette recorder/player provides convenient mass storage for all your programs on easy-to-handle cassettes.

All this, plus complete documentation, service support through the Heathkit factory or Heathkit Electronic Centers nationwide*, and self-instructional programming courses make Heath your BEST choice for a truly practical and versatile computer system that's ready and waiting for your commands.

Send for your Heathkit Catalog or visit your Heathkit Electronic Center.

*See listing page 34

Circle 48 on inquiry card.