

The Apple

Personal Computer

for Beginners

The Apple
Personal Computer
for Beginners

Seamus Dunn and Valerie Morgan
(New University of Ulster)

Englewood Cliffs, New Jersey London New Delhi
Singapore Sydney Tokyo Toronto Wellington

Library of Congress Cataloging in Publication Data

Dunn, Seamus, 1939-
The Apple personal computer for beginners.

Bibliography: p.
Includes index.
1. Apple computer. I. Morgan, Valerie, 1943-

11. Title.
QA 76.8.A66D86 001.64 82-618
ISBN 0-13-039149-2 AACR2
ISBN 0-13-039131-X {pbk.}

British Library Cataloging in Publication Data

Dunn, Seamus
The Apple personal computer for beginners.
1. Apple computer
I. Title II. Morgan, Valerie
001.64'04 QA 76.8.A/

ISBN 0-13-039149-2
ISBN 0-13-039131-X Pbk

c 1982 by Prentice-Hall International, Inc.

/

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without the prior permis
sion of Prentice-Hall International Inc.
For permission within the United States contact Prentice-Hall, Inc., Englewood
Cliffs, N.J. 07632.

PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE-HALL OF AUSTRALIA PTY. LTD., Sydney
PRENTICE-HALL CANADA, INC., Toronto
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo
PRENTICE-HALL OF SOUTHEAST ASIA PTE., LTD., Singapore
PRENTICE-HALL, INC., Englewood Cliffs, New Jersey
WHITEHALL BOOKS LIMITED, Wellington, New Zealand

109876543

Printed in the United States of America

This book is dedicated to the memory of

Vincent McGeown

colleague and friend

--~·:"'

Contents

Preface xiii

I Beginning with Apple I
Looking at Apple 1
Communication with Apple 3
First Word 5
Print with Words 7
Special Keys 8
Special Words IO
More Communication 11
Strings 12
Problems 14

2 Programming 16
Using BASIC 16
Storing in Memory 17
Changing Line Numbers 18
Input 20
Screen Format 22
Screen Format with Strings 23
Input with a String 24
REM 25
Bytes of Memory 26
Variable Names 27
Problems 27

3 Program Presentation 29
Introduction 29
User Presentation 29
Purpose of Program 30

vii

viii

/

Stop 31
List 31
Clear Screen 31
Subroutines 32
Title 33
Reverse Field 33
Flashing Titles 34
Description 34
Spacing 3~
Instruction to User 3 7
Press Any Key 38
Explaining the Answers 39
Problems 40

4 Disk Management 42
Introduction 42
Diskettes 42

42 Initializing a Diskette
Catalog 43
Program Saving
Program Recovery

44
45

Removing a File 46
Changing File Names
Data Saving 4 7

Subprogram 2
Subprogram 3
Subprogram 4

49 Data Recovery
Subprogram 5
Subprogram 6

Program Organization
Subprogram 1

Final Points 5 3
Problems 54

S Graphics SS
Introduction S 5
Low Resolution 55

46

47
48
49

49
so

so
51

Drawing on the Screen S6
A White Screen S8
Colored Screens 59
A Face on the Screen 60
Screen Artist 61
HLIN and VLIN 63
Bar Graphs 64
Color Graph 66
High Resolution Graphics 66
HPLOT and TO 68
Drawing a Circle 69
Colored Circles 72
A Moving Shape 7 3
Problems 76

CONTENTS

CONTENTS

6 Routines and Useful Information
Introduction 77
Left and Right Arrows 77
Screen Editing 78

Stage 1 79
Stage 2 79

The ESC Key 81
Insertion of Missing Words 81
Control Operations 82
Control and C 82
Control and S 83
Control and X 83
Control and G 83
Random Numbers 84
Delays 88
Numbers in Apple 89
Trace/Notrace 91
Problems 93

7 The Use of Machine Code
Introduction 94
The Screen RAM 95

Poke 95
Symbol Numbers
Screen Numbers
Lines and Movement

95
96

Symbol Listing 99
97

Screen Number Conversion
Random Pictures 100
Introduction to Peek 101
Introduction to Call 104

Music 104
Call and Music 104
Playing a Tune 106

A Machine Code Program 109

94

99

Translating machine code 109
An analysis of the program 111
The program in BASIC 113

Poke as a Switch 114
Screen borders 114

Problems 116

8 Strings 117
Introduction 11 7
Definition of Strings 11 7
The VAL Function 118
The LEFTS Function 121
The LEN Function 122
The RIGHTS Function 124
The MIDS Function 125
The CHRS Function 127
CHRS and Quotation Marks 130

ix

77

x

The ASC Function
The STRS Function
Ordering Strings
Problems 13 2

130
131

132

9 Formatting 134
TAB 134
HTAB and VTAB 137
SPC Function 139
Decimal Places 139
Aligning the Decimal Point 143
Extending Decimal Places 145
Using STRS 146
Problems 148

10 A Structured Program ISO
Introduction 150
The Problem to be Programmed 151
The Structure 151
The Program 152
Problems 163

11 Apple in the Classroom 164
Introduction 164
Apple as a Games-player 165
Apple as a Calculator 165
Apple as a Teacher 166
Apple as a Manager 168
Apple as an Aid in Simulations 169
Apple for Learning Programming 171

Appendix A Apple Variations and Hardware 172
Introduction 1 72
Cards and Slots 172
Disk Drives 173
Booting DOS 173
Versions of DOS 174
ITT 2020 175
Bell and Howell 176
Lower-case Letters 176

Appendix B Tape Management 177
Introduction 1 77
Saving a Program 177
Loading a Program from Tape 178

Appendix C Apple Vocabulary 179
Introduction 179
Words 180
Symbols 192

CONTENTS

CONTENTS ~

Appendix D Tables of Peek, Poke and CHRS Numbers 194
Table DI Keyboard Peek and Poke Numbers 194
Table 02 Peek and Poke Numbers 195
Table 03 Peek and Poke Screen Numbers 196
Table 04 CHR$ Numbers 197

Appendix E Other Languages and Software 198
Introduction 198
Integer BASIC 198
Special Integer BASIC Commands 199
Common Facilities 200
Applesoft Words not in Integer BASIC 202
Pascal 202
Why Pascal 202
Using Pascal 203
Pascal and BASIC 203
Other Languages 205
Software 205

Apendix F Base Sixteen Numbers 207
Introduction 207
Base Sixteen 207
Reference Tables 208

Appendix G Answers to Problems 211
Chapter I 211
Chapter 2 212
Chapter 3 214
Chapter 4 217
Chapter 5 220
Chapter 6 223
Chapter 7 224
Chapter 8 230
Chapter 9 235
Chapter 10 240

Appendix H Further Reading 2SO
BASIC 250
Apple and General 251
Apple Associations and Journals 252

Index 2S3

Preface

This book relies very heavily on learning by doing. It can be used most
successfully if the reader is sitting in front of an Apple computer. At all
stages it is necessary to test on the machine the ideas and suggestions
proposed in the book. Many of the techniques will, in fact, only make
sense when they have been typed in and tried.

The book is intended for beginners, in the first instance. It is not
necessary to have had any experience at all with computers, nor is it
necessary to have a teacher available. Anyone who has bought an
Apple, or who has access to one, can begin immediately. The pace is
deliberately slow and careful, especially in the early chapters, and all the
materials have been tried out by a number of beginners.

We have not set out to write an introduction to programming or to the
language BASIC. Any user of the book will certainly learn quite a lot of
BASIC, incidentally; but in order to get the very best possible value
from this work, we recommend that an introductory book on BASIC be
used for reference purposes, and a list is provided in Appendix H. As
well as this the Applesoft BASIC Programming Manual, produced by
Apple Computers, is a useful supplementary book and we recommend
all readers to use this book as well.

There is a mistaken assumption in the minds of many that computers
can be successfully used only by mathematicians. We wish to make it
clear that, although those with a background in mathematics could learn
a great deal about programming on Apple from this book, it was written
with a very general readership in mind. In other words those who are
worried about mathematics need not be afraid of this book.

xiii

xiv PREFACE

The book is divided into 11 chapters each of which deals with a
different Apple facility. New words and new ideas are always introduced
with references to an example or series of examples which are meant to
be tested at once on the computer. Ideally the book should be read from
the beginning, and worked through sequentially since some thought has
gone into the ordering of the various ideas. However, a reader with some
experience who wished to find information about a specific problem
would be able to read the relevant section as a unit in itself.

We have written the book about the basic machine and about its
general operation and have assumed that the user has a floppy disk
system available for off-line storage. We have not referred to printers, or
any other peripheral devices, except in appendices. Nor have we
attempted to cover machine-code programing in any exhaustive way.
We have, however, included a chapter which should make the basic
necessities of machine-code programing available to the user.

At the back there are reference tables of data showing sets of special
numbers associated with Apple. The importance of these is carefully
explained in the text. There are also a number of Appendices which list
and describe a number of other Apple facilities, including hardware,
software, various configurations, Integer BASIC and other languages.

We hope that the book will also serve as a reference book for all
Apple users, including experienced ones. The index is meant to be com
prehensive so that anyone with a query about a particular Apple facility
or routine ought to be able to find a suitable explanation or example.

We would like to express our thanks to Alex Parke of the Industrial
Unit at the New University of Ulster, and Brian Keating of C.E.M.
Microcomputer Services, Belfast, for help with equipment, resources and
advice. Finally, our thanks are also due to our typist, Maxine Pickering,
who had the unenviable job of typing the manuscript.

-

1
Beginning with Apple

LOOKING AT APPLE

A photograph of the Apple is shown on page 3. There are three main
parts: the first part is a light-coloured box with the words Apple II
written on it. At the front there is a keyboard rather like a typewriter, but
with some extra keys. This is the actual computer. The second part is a
television or monitor of some sort. This monitor and the Apple are con
nected together by a cable at the back. These two parts have separate
power lines which are plugged into normal power sockets (that is normal
AC circuits) and each is switched on with a rocker-switch. The third
part is two small boxes with Disk II written on the front. Above this is a
red light with the words "in use" beside it. These·boxes are Disk Drives,
and they are connected to the Apple by a multicolored flat flex. In some
cases there will be only one of these disk drives.

There are a number of different versions of the Apple available, but
this book will be concerned with the Apple II and the Apple II plus
personal computer. Appendix A, at the back of this book (page 172),
describes the various versions, and also indicates what the differences in
operation are. However, it is important to say here that the differences
are very small and almost everything that we describe will be usable on
all Apples. Some machines may have a tape recorder instead of a disk
drive and the operation of this is described on page 1 77.

Make sure that the monitor is properly attached to the computer and
that the disk drive has been fitted carefully. A careful description of how
to do these is given in the Apple manuals. When you are sure that they

2 BEGINNING WITH APPLE

are properly fitted, plug in the two power lines and switch on the
monitor. Do not switch on the Apple as yet.

Among the diskettes that accompany the Apple there is one labelled
System Master DOS 3.3. (If your system uses DOS 3.2.1, tum to the
description of this on page 173). Put this diskette into the disk drive and
close the door. Now turn on the switch at the back of Apple. If you have
two drives, watch to see where the light goes on and label this number
one. This is the one that we will be referring to in this book.

As soon as you switch on the Apple II the word Apple II will appear
at the top of the screen. If all is well, the light on the disk drive will go on,
it will whirr and make clicking sounds, and after a while a square
bracket (]) will appear on the screen. Shortly after this some words will
appear and the screen should then look like this:

..
DOS VERSION 3.3 COATE)
APPLE II PLUS OR ROMCARD

JD
SYSTEM MASTER

If this does not happen, try switching off at the back and then switching
on again. You should also try to tune the screen of the monitor. If none
of these work you should seek help.

When you press any key on the keyboard with single letters or
numbers on it, the corresponding letter or number appears on the screen.
This does not work for the unusual keys, for example the ones with I ESCI
and ICTRLI written on them. These have special functions which will be
explained later. The little ft ashing white square is called the cursor, and it
moves about the screen indicating where the next letter, number or
symbol will appear when you press an appropriate key. To demonstrate
this, type in the word "NEW" and then press the key marked
IRETURNI • This also clears out Apple's memory so that we can begin
right at the beginning.

It is impossible to damage the internal workings of Apple by pressing
keys on the keyboard, so do not worry about this and do not be afraid to
experiment. What follows is a line-by-line demonstration of one
approach.

-
COMMUNICATION WITH APPLE 3

• • ,, \ 1: • • - • • -

- ... - . - -
-... - .- . _-.. _· ':.. '\

The Apple II, with monitor and two disk drives. (This photograph is
reproduced with the permission of Apple Computers UK Ltd.)

COMM UNICATION WITH APPLE

In order to use Apple you have to communicate with it, and to do this
you must learn the kinds of words that it can respond to. It has a
vocabulary of about 98 words. Begin by using trial and error.

Type words on the screen as shown:

]MICKEY MOUSE D

4 BEGINNING WITH APPLE

Notice that, although the cursor on the screen is white, we must repre
sent it as black on the written page.

The kind of diagram that we have just used to contain the words
"MICKEY MOUSE" is one of two kinds that we will use in this book to
distinguish two kinds of presentation. It is intended to represent what
actually appears on the Apple screen. This can result from your typing
or from a computer response, or from a mixture of these.

When you write a phrase like this, nothing else happens because the
machine has received no instructions about how to react (unless you
have chosen an instruction by accident). You must always indicate to
Apple when you are finished for the moment, and wish for a response
from it. This is done by pressing the key marked I RETURN I • Press it
now.

When you do, a bleep will sound, and the screen will look like this: ..
J MICKEY MOUSE
? SYNTAX ERROR
JD

This means two things. Firstly, the words SYNTAX ERROR indicate
that· Apple does not recognize MICKEY MOUSE as a command
meaning anything it can respond to. Secondly, Apple has ignored this
command which it cannot respond to, and is ready to go on to your next
try at communication. Try typing in other words and pressing
IRETURNI when you have finished, to see what happens.

Now type in the number 4 7, using the calculator keys, on the top
row, and then press I RETURN I . This is a number, rather than a word.
Apple responds as shown:

..
J 47

~ JD

This response is different. There is no SYNTAX ERROR message. The
cursor merely moves down a line and continues flashing. It seems as if it
doesn't reject the number, but it doesn't do much with it either.

Perhaps it works like some calculators and performs direct calcula
tions. Type in:

4+7

FIRST WORD 5

Then press IRETURNI • Now type in:

4+7+

Again press IRETURNI • None of those produce very much response. The
cursor merely moves down a line and goes on flashing, waiting for
further instructions. The reasons for these different responses will
becqme clear as we go along.

Now look at the key marked E1 . Although it will be looked at in
more detail later, it is so useful that it ought to be tried at once.

First type in "MICKY" and then press this key once. The cursor will
move back one step on top of the Y of MICKY. Now type in EY to
complete and correct the word. You can now proceed as before, with the
knowledge that if you make a typing error you can use this key (often
called the "delete" key) to go back and correct it.

FIRST WORD

So far we do not seem to have typed in any words that Apple recognizes:
we have not learned how to talk to it. The first word to learn is PRINT.
Type in PRINT 47 and press IRETURNI • Apple responds like this:

..
J PRINT 47

47

JD

Earlier, we indicated that we would use two kinds of displays in this
book. We have already used the way in which we will represent the
screen a number of times. The second kind of display indicates that you
are meant to type in the expressions or set of expressions contained
within it. These will, as a result, appear on the screen. In the first few
chapters of this book we will use the expression CR where we wish you
to press the key marked lRETURNI , in order to get you into the habit of
doing so after every line. CR is short for "carriage return", and referred
originally to typewriters, where the carriage did in fact return after each
line.

To make this clear, when we write:

PRINT47 CR

6 BEGINNING WITH APPLE

this means that you should type in the word PRINT, and then the
number 47 and then press the IRETURNI key.

When we write:
..
] PRINT 47

47

JD
we mean this to represent what the screen should look like. Try some
others like these:

PRINT 1426
PRINT7+3
PRINT 10-4

CR

CR

CR

From now on you will not always be told to press IRETURNI after
each input. However, you must remember always to do so. If you don't,
Apple will just stay blinking at you.

We must also make a distinction between pressing a key and holding
a key. When we say press a key, we mean push it with a finger and let it
go again at once. The alternative to this is to be told to hold a key, which
means push it with a finger and keep it pushed until something else is
done.

For example, if you press the key marked 4 on the top row, the
numeral 4 appears: but holding the fSHIFTI key and pressing the key
marked 4 produces a dollar sign. When this has happened you then
release both keys.

One other small point. Apple does not care a great deal whether or
not you leave spaces between words and numbers. That is to say, it will
treat PRINT 4 + 3 the same as PRINT4 + 3.

The symbols for addition, subtraction, multiplication and division are
shown below:

+ (add)
(subtract)

* (multiply)
I (divide)

Unlike algebra, you should never leave out any of these symbols. The
order in which they are performed by the computer is very important
and is now described.

(a) Any operations put inside brackets are done first:
example (6 + 2)*3 becomes 24.

PRINT WITH WORDS 7

(b) If there are brackets within brackets, the inside ones are done
first:

example (2 + (3 x 4))-7 becomes
(2 + 12)- 7, and this becomes
14-7.

(c) The four arithmetical operations are then performed in this
order:

multiplication, division, addition, and substraction.
(d) If you wish to change this order, then you must indicate the

new order using brackets.
Now try these:

PRINT 5*3

PRINT 16/4
PRINT 7*6/4

CR
CR
CR

PRINT is probably the word in Apple's vocabulary that is used most
often, so it can usually be shortened to?. Try a couple of examples:

? 16*3/4+10
?8+3+4+2-7
? 147+452-124

PRINT WITH WORDS

CR
CR
CR

Now try to use PRINT (or ?) with letters of the alphabet. Some
examples are:-

...
]?A
0
]?APPLE
0
JD

For each word or single letter Apple responds with zero or nought. (The
circle with a line across it on your screen is used by Apple to represent
the number zero. It must not be confused with the letter of the alphabet
0. This is represented by a simple circle.)

So, when asked to PRINT a letter or a word Apple responds with
zero. This is because all letters represent variables for Apple, and they
are all assumed to be equal to zero unless specifically made equal to

8 BEGINNING WITH APPLE

some different number. More about this comes later. Now try printing
letters or words with quotation marks around them, as shown below.
Remember to press IRETURNI •

.
: . J? UA 0 "

A.O.

J? 11 MONDAY"
MONDAY

JD
Try putting any of the possible Apple keyboard symbols inside quota
tion marks. Here is an example:

..
J ?u * IS A 6 POINT STAR"
* IS A 6 POINT STAR

JD

The rule is that Apple always prints exactly the sequence of symbols.
letters or numbers that it finds inside quotation marks. In fact it does not
even need the second set of quotation marks .

.
J? "TUESDAY
TUESDAY

JD

However, there will be occasions later on when leaving out the second
set of quotation marks causes problems, so, at this stage, both sets of
quotation marks will always be used.

SPECIAL KEYS

In addition to the normal keys with letters and numbers on them, there
are some special keys on the Apple keyboard. These are shown below
and are then discussed one by one.

SPECIAL KEYS

lSHIFTI
lREPTI

B
(3
ICTRLI
IESCI
I RESET I

(There are two of these.)
This is short for "repeat"
Arrow left.
Arrow right.
This is short for "control"
This is short for "escape"

9

(a) The ISHIFTI keys. First press the key with the number 4 on
it. A figure 4 will appear on the screen. Then hold the
ISHIFTI key, that is put a finger on this and keep it there.
Then press the key with 4 on it again. This time a dollar sign
'Will appear on the screen. There are two of these !SHIFT I
keys and either can be used to print, on the screen, the
character written on the upper half of some of the normal
typewriter keys.

(b) The lREPTI key. This stands for "repeat" and is easy to
demonstrate. Put one finger on the key with the letter z on it,
and another on the lREPTI key. Hold both of them. The letter z
will be printed repeatedly across the screen.

(c) The "arrow left" and "arrow right" keys. As a result of (b)
above, you will have a couple of rows of zs across the screen.
Press the key which looks like this El : that is, the "arrow
left" key, a few times. The result is that the cursor moves back
to the left along the row of zs but without changing them or
doing anything to them. Now do the same with the "arrow
right" key.

(d) The lCTRLI key. This stands for "control" and is used mainly
in programming and need not concern us much here.
However, hold it with one finger and press the letter G. A bell
like sound will be made. See also paragraph (f).

(e) The lESCI key. This stands for "escape". Unlike the others this
one should not be held down but should simply be pressed
once. Doing this puts the machine into "escape mode". A
number of things can now be done. First, suppose we wish to
clear the screen. Press the IESCI key once, then hold the
ISHIFT I key and press the key [!). The result should be a clear
screen with the cursor at the top left-hand corner.

Now press lESCI again, and then press the key[!) a few
times. The cursor should move to the right. Then try the letter
M. This time the cursor will move down the screen. Now try
the letter I a few times. This moves the cursor back up the
screen. Finally, try the letter J. This moves it back to the left.

10 BEGINNING WITH APPLE

Notice that these four letters form a cross on the keyboard
pointing in these four directions:

All of these four keys work over and over again while Apple is
in escape mode. To get out of this mode, press the space bar
(or almost any other key). Do this now and try pressing/, J, K
or M. Now press lescl again, then try pressing any of the four
keys A, B, C or D. These will move the cursor one place only
and then immediately Apple will be out of escape mode. So if
you wish to use A, B, C and D instead of/, J, Kor M you
have to press IESCI for each single movement.

(t) The I RESET I key. The behavior of this key varies a little
depending on your machine. On most machines, pressing it
returns Apple to the ordinary direct mode with the square
bracket and the cursor. On some machines, you must hold the
I CTRL I key and press I RESET I. It is useful if you get stuck, lose
the cursor, or do not know what to do next.

SPECIAL WORDS

We now consider four special words briefly. They are discussed in
greater detail later on in this book.

(a) HOME. Type in "HOME" and press IRETURNI • This is
another way of clearing the screen.

(b) INVERSE. Type this in and press IRETURNI • Now type in
PRINT "EVERYTHING IS REVERSED", and press
!RETURN I • The effect is to print the words as black lines
against a white background.

(c) NORMAL. Type this word in and press lRETURNI • This
turns the inverse facility off.

(d) FLASH. Type in this word and press IRETURNI • Now type
in PRINT "ON AND OFF" and press IRETURNI • The
words ON AND OFF will flash on and off the screen. Again,
you can turn this facility off by typing in NORMAL and
pressing I RETURN I.

MORE COMMUNICATION 11

MORE COMMUNICATION

The word PRINT, shortened to ? , was the first word of Apple's
language that we met.

The next word to be considered is LET. Oddly enough, the word LET
is not essential and, later on, will be left out. However, it is useful at this
stage because it helps to demonstrate a particular point.

Type in these two lines. Remember to press IRETURNI after each:

LET A=3
PRINT A

The result is that the number 3 is printed on the screen:

CR

CR

..
]LET A=3
]PRINT A
3

JD

To explain this, we must try to understand what happens inside Apple.
The first line LET A = 3 chooses a unit of memory, labels it A, and
stores the number 3 inside it. A is called a variable because any number
could have been chosen, and 3 is called a constant. (The distinction
between variables and constants is a well-known one, and a more
detailed explanation can be found in any introductory book: see
Appendix H, page 250).

Typing in a line enters it on the screen only, but pressing IRETURNI
enters it in the memory. The next line, which is a request to PRINT A
(written ?A) makes Apple take the number that is stored in the unit of
memory called A (i.e. the number 3), and print it on the screen.

It is worth considering this for a moment longer. Any statement typed
on the screen will be acted on by Apple (if it understands it), if the cursor
passes over the line and then the I RETURN I key is pressed.

To demonstrate this use the last example. The screen looks like this:
..

]LET A=3
]?A
3

JD

12 BEGINNING WITH APPLE

Retype this with the 3 in the first line replaced by 7. The response to ? A
will now be 7. Repeat this whole process a few times, using a different
number for A each time.

Now type in ?B. The result will be as shown:

]?B
0

D

That is B = 0. This is because any variable is assumed to be zero unless
another number is deliberately assigned to it, and no other number has
yet been assigned by the user to the space in the memory labelled B.
Now type in the following (remembering to press IRETURNI after each
line):

LET A=S
LETB=4
LETC=A*B
?C

CR
CR
CR
CR

The result should be 20. It is possible to shorten this a little by putting all
of these statements on one line, separated by colons.

LET A=S : LET B=4 : LET C=A *B : ?C CR

Notice that the key IRETURNI needs only to be pressed once, at the end
of the line.

The colon is interpreted by Apple as meaning the end of a statement,
as though the IRETURNI key had been pressed. The word LET can be
left out, if it is desired, so that the last example could be shortened
further to:

A=S: B=4: C=A*B: ?C CR

STRINGS

The following are all examples of strings. They are always placed inside
quotation marks.

(a) "HELLO THERE!"
(b) "ABC493ZYX"
(c) "A *48 + $2"

STRINGS 13

Any collection of letters, symbols or numbers, including recognizable
words and spaces, represents a string. Type in some of these and type in
PRINT (or ?) in front, like this:

? " Z4K9 IS NOT A WORD"

Now try this:

LET A$= "HELLO"
?A$

CR

CR
CR

As with numbers, it is possible to choose a unit of memory to store
strings in, but the letter used must be followed by a dollar sign, as above.
This is read "A-DOLLAR" and the unit of memory labelled A$ has the
word (or string) HELLO stored inside it. So the screen should look like
this:

]LET A$= 11 HELLO"
]?A$
HELLO

JD
Labels like A$ are called string variables because they can be used to
represent any string.

Try the following:

A$= "APPLE": ? A$
B$="PUNK ROCK": ?B$
C$="GOBBLEDEGOOK":? C$

CR
CR
CR

Strings can be added together to make longer strings using an ordinary
plus sign.

A$="COM": B$="PUTER": C$=A$+B$: ?C$ CR

The result is as follows:

]A$= 11 COM":B$= 11 PUTER":C$=A$+B$:?C$
COMPUTER
JD

14 BEGINNING WITH APPLE

Notice that there is no space left between the two strings "COM" and
"PUTER" when they are added together. If you would like to have a
space, there are two ways to do this:

AS="APPLE": B$=" ": C$="BOOK"
?A$+B$+C$

CR
CR

The result is APPLE BOOK. B$ is obtained by leaving a single space
between the two quotation marks.

The second way to do this is as follows:

A$="APPLE": B$="BOOK"
?A$+" "+B$

CR
CR

All of the work so far has involved you in direct communication with
Apple. You have not yet begun to write programs. This kind of interac
tion is called being in command (or immediate) mode. In the next section
we begin to learn how to make Apple act in programming mode.

PROBLEMS

1. Use Apple as a calculator, with the word "PRINT" to do some
arithmetic problems, like the following:
(a) 4.27 + 31.28 + 173.1.
(b) My annual salary is $13452. How much do I get monthly?
(c) What is 6f% of73216?
(d) What is the new price caused by a mark-up of 11 % on 12345?
(e) If I spend $1.34, $1.78 and $0.69, how much change do I get

from $5?
2. To begin with a bill was $172. Therefore, on Apple I write: A =

172 and press IRETURNI • $13 is added to this each week, so on
Apple I write B = 13 and press I RETURN I . I pay off $2 7 each
week, so again, I write C = 27 and press fRETURNI • After one
week, I still owe:

D=A+B-C:?D CR

and the next week, I still owe:

D=D+B-C: ?D CR

and I keep repeating this last line. Try it and see.

PROBLEMS 15

Use Apple to solve this similar problem. A debt of $650 is increased
by 2% each week and is decreased by $71 each week. Use Apple to
write the debt on the screen for each week until it is paid off.

3. Try this. Type in line 1:

A$="A": PRINT A$ CR

Then type in line 2:

A$=A$+A$: PRINT A$ CR

Repeat this line a few times. Begin again with:

A$=" 12345" : PRINT A$ CR

(Remember that CR means press the IRETURNI key.)

2
Programming

USING BASIC

Although Apple can use a number of programming languages, we will
be concerned mainly with the language called BASIC. This is built into
the machine and is available to be used as soon as Apple is switched on.
You cannot harm or destroy the language because it is stored in Read
Only-Memory chips, called ROM chips. As the name suggests, these can
be read from but cannot be written to.

Very occasionally, usually as a result of an unhappy accident, BASIC
is lost, or "goes down" . That is to say, the flashing cursor disappears
and cannot be retrieved. When this happens, and it really is fairly rare,
you have to switch off at the back, and begin again. This brings the
cursor back, but it also means that you lose any program you may have
had in Apple's memory before BASIC went down. It is not a good idea
to be continually switching on and off, so try to avoid it. For example,
try the IRESETI key, before switching off.

BASIC stands for " Beginners All-purpose Symbolic Instruction
Code", and it is a fairly simple language which most people can learn
with a little effort. It has the great advantage that it is an interactive
language. That is, you use it and learn about it by sitting at the machine,
typing in statements and commands, and getting an immediate response.
You don't have to learn it all in a book, or write it all down fi rst. You can
do a little of each as you go along.

We intend this book to be an introduction to the Apple computer. It is
not meant to be an introduction to the language BASIC. If both of these
tasks were attempted the book would become impossibly long and there
would be bound to be some confusion. However, it is inevitable that, in
order to begin to interact with Apple, we will meet and consider in detail
some of the more elementary aspects of BASIC.

It is necessary, though, to have a good introductory book on BASIC

16

STORING IN MEMORY 17

available to supplement the occasionally rather sketchy and hurried
treatment that we must give to some of the less elementary aspects of
BASIC. We have, therefore, compiled a short list of books on BASIC,
any one of which could act as an introduction. The list appears in
Appendix H.

One last point about BASIC. There are many different versions of this
language available and, therefore, books written about it must select
which version or versions they intend to describe. However, there is a
large common core of words and ideas to be found in all dialects of
BASIC and translation is not impossible, even for a beginner, if a good
reference book is used. An encyclopedia of the language has been
published called The BASIC Handbook, by D.A. Lien, published by
Compusoft Publishing, and this tries to include enough detail to make
translation always possible (see Appendix H).

Apple uses two versions of BASIC, but the one we will be concerned
mainly with is calledApp/esoft BASIC. One of the main purposes of this
book is to try and make clear how to use those aspects of App/esoft
BASIC that are unique to Apple, or at least uncommon in other
versions.

STORING IN MEMORY

In Chapter I we found out how to evoke a reaction from Apple by
typing in lines like this:

A=3: B=4: ?A*B CR

and then pressing IRETURNI • Try this now, just as a reminder. Now,
suppose we wished to do this, or something similar, again. We would
have to type it all in again, or move the cursor about. We have not held
on to the line of instructions, or stored it for later use.

This facility to keep lines or sequences of instruction in the computer's
memory, to be called up or used again and again, is made possible by
what is called programming. This is done very simply by numbering
each line that we type in. Here is an example:

1? "THE EDUCATION CENTER," CR

2? "NEW UNIVERSITY OF ULSTER," CR

3? "COLERAINE," CR

4? "20TH. SEPT." CR

S?"DEARSIR," CR

6 ? " WRITING PROGRAMS IS EASY" CR

18 PROGRAMMING

Type· this in, remembering to press lRETURN I at the end of each line. (If
you make a mistake, use the B key). Now type in an instruction without
a line number, similar to the sort discussed in Chapter 1, like this:

? "THIS RESPONDS AT ONCE" CR

and press I RETURN I . The main difference between this and the set of
lines suggested above is that, without a line number, Apple obeys the
instruction, but when numbers are included, it doesn't appear to do
anything. However, the program above with line numbers is all stored in
memory, waiting to be used. To demonstrate this, we introduce a new
word. Type in LIST and press IRETURNl •

As you can see, the program is still in the memory but the instruction
without a line number has disappeared, Type in LIST again. You can list
the program as often as you like. (Notice that Apple translates ? into
PRINT).

So a program is a store of instructions in the form of a set of succes
sive lines. It is retained in memory, waiting to be used. Now, another
new word. Type in RUN and press lRETURNl • The screen should look
like this (well actually there will be lots of other things written above it
on the screen):

..
THE EDUCATION CENTER1
NEW UNIVERSITY OF ULSTER1
COLERAINE1
20TH SEPT.
DEAR SIR1

WRITING PROGRAMS IS EASY

This time the program has been used. That is to say, Apple begins at line
1 and prints THE EDUCATION CENTER on the screen. It then
moves to line 2, and so on. Try running it again: type in RUN and press
I RETURN I. Now list it again. Think about the difference.

CHANGING LINE NUMBERS

If we now decide that the address for the letter being written in this
program is faulty, how can it be changed? For example, suppose that we
now wish to insert a new line after line 3 and before line 4 to indicate
that the address is in Northern Ireland. At present line 4 is:

4? "20TH. SEPT."

CHANGING LINE NUMBERS 19

Now type in:

4? "N. IRELAND," CR

and press IRETURNI. Now list the program, that is type in "LIST" and
press IRETURNI. You will find that the new line 4 has replaced the old
one. You can now retype line 5 as the date:

5 ? "20TH. SEPT." CR

but this replaces the "DEAR SIR" line, so you must now retype this as
line 6. And finally the first line of the letter must be retyped as line 7. The
program is now correct again: list it and run it to check.

Obviously this sort of problem is likely to occur quite often, and with
a long program putting in a line will be a time-consuming job. To make
the program easier to handle, lines should never be numbered in succes
sion, but in steps as shown below.

But first, some ways of removing a program from the memory so that
the memory is clear and you can start again.

List the program already in the memory. Now type in 4 and press
IRETURNI. Now list the program again. Both listings will now be on the
screen, and if you examine them carefully you will find that the second
one does not include a line 4. By typing in the line number 4, by itself,
and pressing I RETURN I you remove that line from the program. Try
another one. Type in 6 and press IRETURNI. Now list the program. Line
6 should now be gone.

List the program again. Now type in the word NEW (remember that
we used it at the beginning). Remember to press IRETURNI. This wipes
out the whole of any program in the memory. If you now type in LIST
and press I RETURN I , nothing appears on the screen except] and the
cursor. This is a very necessary and useful word because it allows us, at
any time, to begin again with a completely free memory. However, be
very careful not to use it unless you are sure you wish to remove every
thing that you have typed in. Once it has been used there is no way of
recovering the program wiped out in this way.

There is one other way of removing a number of lines from a program
without having either to remove them one at a time or to remove the
whole program.

First type this in:

lOOPRINT
120 PRINT "A"
140 PRINT "B"
160 PRINT "C"

CR
CR
CR
CR

20 PROGRAMMING

This is just an example program to make the point. Now type in DEL
100, 140 and press IRETURNI. This DEL is short for DELETE and is used
with a comma between the numbers as shown. Now type in LIST and
press IRETURNI. Line 160 only will be left. To remove this type in 160 and
press I RETURN I.

Now type in this:

10? "THE EDUCATION CENTER," CR

20? "NEW UNIVERSITY OF ULSTER," CR

30? "COLERAINE," CR

40 ? "20TH. SEPT." CR

50 ? "DEAR SIR," CR

60 ? " WRITING PROGRAMS IS EASY" CR

It is now possible to insert missing lines by using intermediate line
numbers. First list the above program. Then type in:

35 ? "N. IRELAND," CR

Now list the program again. You will find that the new line, numbered
35, has been correctly placed by the computer between lines 30 and 40.
This will always happen and makes it much easier to edit programs.

Because of this it is possible to begin a program with any line number
you choose, and use any size of gap between line numbers. It is not
necessary to begin at line 10 or go up in jumps of 10. Many people begin
at line 100 and go up in jumps of 20. The decision is your own. In this
book all program examples will begin at line 100 and go up in 20s. (The
largest possible line number on Apple is 63999.)

INPUT

The program that we have just used allowed us to write an address, a
date and the beginnings of a letter. These are all fixed or specified within
the program. If we would like to be able to vary them we must learn how
they can be put in from the keyboard as the program is being run. To do
this we introduce another new word, INPUT.

This allows us to feed numbers or words into a program. Here is an
example (remember, first, to type in NEW, in order to clear the old
program out of memory):

100 INPUT A CR

120B=4*A
140?B

CR

CR

INPUT 21

We will examine this line by line. An attempt has been made in the
diagram to picture the process that is now described, so keep your eye
on it as well.

First, type in RUN and press IRETURNI. Apple will now go to the
first numbered line, i.e. line 100. The instruction there means, first label a
unit of memory A, and then invite the person using the machine to feed
in a number. It does the inviting by printing a question mark on the
screen and stopping there. So, assuming you have typed in RUN, there
should now be a question mark on the screen.

Type in 7 (or any number) and press =11=ey--u---RN--.I. Apple now stores 7

in the memory unit labelled A, and goes to the next line, numbered 120.
It now labels a new unit of memory B, and stores in it a number which is
four times the number in A, that is 4 times 7, or 28. It then moves to the
next line, line 140, and obeys the instruction there which is to print the
number stored in B on the screen. All of this happens very quickly
indeed.

This process is shown in the diagram below:

program

lOOINPUT A

120B=4*A

140? B

inside memory

A
D

A
[1]

A
!TI
A

[1]

B

~

B
~

Apple screen

? D
the user inputs 7

? 7 D

? 7 D

? 7 D
28

JD
Now type in RUN again, and this time respond to the question mark
with a different number, say 9. Try it a few more times with different
numbers. Now add this line to the program:

90? "WHAT NUMBER DO YOU WANT" CR

and run it again.

22 PROGRAMMING

Later on we will discuss at some length ways in which programs can
be written so that they make sense on the screen to the user. This is one
example of how to begin to do this.

SCREEN FORMAT

Keep the same program, but add the new lines 130 and 13 5 and change
line 140.

90? "WHAT NUMBER DO YOU WANT"
lOOINPUT A
120B=4*A
130C =5*A
135D=6*A
140?B, C, D

CR
CR
CR
CR
CR
CR

Now run the program, and input 2 for A. Apple responds as shown
below.

. .. .
8 10 12

JD
1234567890123456789012345678901234567890

In order to demonstrate the spacing of these numbers, we have written
the numbers 1 to 9, and then 0 for 10, repeatedly across the bottom of
the diagram. These numbers will not, of course, appear on the screen of
your Apple. First notice that the Apple screen is 40 spaces or columns
wide. Then notice that the three numbers 8, 10 and 12 are written with
the first digit on the columns numbered 1, 17 and 33.

This spacing was caused by the commas. In programs which involve
printing numbers on the screen, using commas will always produce this
kind of format.

Now rewrite line 140 as follows (remember that, when we type in a
new line numbered 140, it simply replaces the old one):

140?B; C; D CR

That is, replace the commas by semicolons. Now run the program, and
again input 2 for A. The response is shown below where, again, numbers
are written along the bottom to demonstrate the spacing.

SCREEN FORMAT WITH STRINGS 23

..
81012
JD·
1234567890

The use of semicolons pushes the written responses together with no
spaces at all.

SCREEN FORMAT WITH STRINGS

Remove the last program by typing in NEW. Now copy the following
program:

100 A$= "TOM" CR
120 BS= "DICK" CR
140 C$="HARRY" CR
160? A$, B$, C$ CR

and then run it. The screen will look like this, where again we have used
the row of reference numbers along the bottom:

..
TOM DICK HARRY
JD
1234567890123456789012345678901234567890

The three names are spaced quite like the three numbers, i.e. the first
letter of each begins on the columns 1, 17, 33.

Now replace line 160 as follows:

160? A$; B$; C$ CR

and run the program again. The result is shown below .
.

TDMDICKHARRY

JD
This time no spaces are left at all. If we wished to have a space (or more
than one) between each name, these should be put in beside the names
when they are declared (in lines 100, 120, and 140). For example,
change line 100 to:

24 PROGRAMMING

100 A$="TOM II CR

A space has been left between the M of TOM and the closing quotation
marks. Now run the program again.

INPUT WITH A STRING

We will now return to the letter program to look at how it might be made
more general. First type in NEW and press IRETURNI •

Now we will rewrite the program so that it invites the user to input
each line of the address in turn, and then the date, and then the name of
the person who is receiving the letter. Begin as follows, with two instruc
tions and an input.

100? "PUT IN THE ADDRESS IN FOUR LINES." CR

120? "FIRST, LINE ONE:-" CR

140 INPUT A$ CR

Remember to press IRETURNI after each line. Now run this to see what
it does so far. The screen will look like this:

PUT IN THE ADDRESS IN FOUR LINES.
FIRST~ LINE ONE:-
? 0

The question mark is the invitation to type in the first line of the address.
This will then be stored in the unit of memory labelled AS.

Now type in the rest of the program, as follows.

160? "NOW, LINE TWO:-"
180INPUT B$
200? "NOW, LINE THREE:-"
220INPUTC$
240? "NOW, LINE FOUR:-"
260INPUTD$
280? "NOW THE DATE:-"

CR

CR

CR

CR

CR

CR

CR

300 INPUT E$ CR

320? "NOW THE NAME OF LETTER RECIPIENT:-" CR

340 INPUT F$ CR

360 ? A$: ? B$: ? C$: ? D$: ? E$ CR

380? "DEAR MR. II F$ CR

400? " WRITING PROGRAMS IS EASY " CR

REM 25

This program, which is quite long, is divided into two parts. The lines
numbered from 100 to 340 are to do with input: successively the user is
invited to type in the four address lines, the date, and the name of the
letter recipient. These are stored in AS, BS, CS, DS, ES, FS. The second
part of the program runs from line 360 to 400. These lines print the
information that has been input onto the screen.

Three special points to notice:
(a) In line 360, the instructions to print the four letters of the

address and the date are all typed on one line with colons
between them. This procedure has been described in Chapter
1.

(b) In line 380 the question mark, meaning "print", refers both to
the words DEAR MR. (with a space after them), and to the
variable FS, which is the label of the unit of memory contain
ing the name of the letter recipient. Thus both of these are
printed.

(c) Do not use either a comma or a colon as part of any of the
INPUTS AS to FS.

The letter has not been taken beyond the first line, but it should be
obvious even from this simple example how it would be possible to use
the Apple to produce well-formatted letters, if a printer were attached.

Try running the program. When requested on the screen, type in your
own address and then today's date, and then a surname. Try it a few
times. Then list it again and make sure you understand how it works.

You will notice that, with a long program, the listing happens so
quickly that you cannot read it while it is happening. To stop a listing,
hold the control key and press [!] , and then press any other key to start
it again.

REM

If you wished to make this program easy to read and understand when
listed, you could now add some REM lines. REM is short for "remark"
and it allows you to annotate or write explanatory comments into a
program. This is because Apple ignores all lines beginning with REM
when it is running a program in BASIC. It acknowledges their existence
only when listing a program. Here are some examples of REM state
ments attached to the letter program just completed:

80 REM LETTER PROGRAM ALLOWS
81 REM INPUT OF NAME, ADDRESS, DATE
82 REM AND LETTER RECIPIENT

CR

CR

CR

(continued overleaf)

26

350 REM ROUTINE FOR PRINTING
351 REM LETTER FOLLOWS

PROGRAMMING

CR
CR

We have attached two sets of REM statements, one ·corresponding to
each of the two parts of the program already described: that is, the input
part and the print part. There is, of course, no limit on the number of
REM statements you can make, except memory limitations, and these
are now described.

BYTES OF MEMORY

The number of units of memory available to the Apple user is measured
in bytes, and this depends on the number of Kilobytes in the machine
which you have bought. This could be 16 or 32 or 48 or 64 Kilobytes
and is normally referred to as l 6K or 32K and so on. One K means
1024 bytes, and so 32K means 32768 bytes.

In general terms, a byte is a unit of memory so that when you type a
line of BASIC each character pressed uses a byte of memory. We can
check on the number of free bytes at any time by using the built-in
special function FRE(O). (The zero is not significant, and any number
will do). This can be done in direct mode, as follows:

? FRE(O) CR

Apple responds at once with a number which is the number of free bytes.
However, if you have more than 32K, that is more than 32768 bytes,
Apple will respond with a negative number. In this case write:

? 65536+FRE(0) CR

This function FRE(O) can also be used as a statement within a
program to indicate at specific times how much memory still remains.
Later on in this book we will use it in this way on a number of occasions.
Here is a short example which can be used to show that each character
typed into Apple uses exactly one byte of memory. First type in NEW
and then this program:

lOOINPUT A$
120 PRINT 65536+FRE(O)

CR
CR

Type RUN and press IRETURNI. Apple prints a question mark, so type in
one letter, say A, and press IRETURNI. An Apple with 64K of memory

PROBLEMS 27

should then print 4 7 069, which means that this program and the single
letter A, between them, reduce the available memory to 47069. Now run
it again, and this time respond to the question mark with two letters, say
AB. Apple prints 4 7068, which shows that the extra letter B has used
one extra byte of memory.

Although it is generally true that each character uses a single byte of
memory, there are exceptions. The word PRINT, for example, uses one
byte altogether instead of five.

VARIABLE NAMES

So far we have simply used single letters like A, B, C to represent
variables, and AS, BS, CS to represent string variables. However we can
extend the range of variable names by using two characters for each.
The second character can be any letter or any number. Possible
examples are AP or ATS or A3. Note that the first character must be a
letter.

As well as this it is permissible to use much longer strings as variable
names, and this can be most useful if you are not short of memory. But
remember that only the first two characters are used for recognition
purposes by Apple. To demonstrate this, type in this program.

100 PRENTICE=9
120 PRACTICE=99
140 PRINT PRENTICE
160 PRINT PRACTICE
180PRINTPR

CR
CR
CR
CR
CR

When this is run, each of the lines 140 to 180 prints 99. When the
program is listed it should appear as above. So, although the variable
names PRENTICE and PRACTICE are acceptable to Apple, and look
different, they are both stored in memory as PR, and line 120 changes
the value of PRENTICE to 99. It is also necessary to be careful not to
include within a variable name any word that Apple uses for a special
purpose, such as "PRINT" or "INPUT".

PROBLEMS

1. Write a program which allows you to enter a set of six names and
an amount of money for each name. It should be written in such a
way that:

28 PROGRAMMING

(a) Apple invites you, with a message on the screen, to put in the
information.

(b) When it has all been entered, Apple lists the names and
amounts of money on the screen.
Use the words PRINT, INPUT, REM and FRE.

2. This problem is quite similar to the last one. The program should
allow you to enter a set of four names and addresses where each
address is to be three lines long. That is, a total of 16 inputs will be
demanded. The program should be written so that:
(a) Apple invites you to put in the information;
(b) When it has all been entered, Apple displays the names and

addresses on the screen.
Use the words PRINT, INPUT, REM and FRE, and use Al$,
A2$, A3$ and A4$ for the names. Similarly, use BIS to B4$
for the first lines of the addresses. Then use C 1$ to C4$, and
DI$ to 04$ for the other two lines.

3. Complete the letter program on pages 17 and 18 of the text. It
should, at the end, produce a standard letter to a client, as shown
below. The words in capitals, however, will change with each run
of the program and these should be input at the beginning of the
program. So the program should begin by inviting the input of the
following data:-
(a) Date (Use A$).
(b) Person to whom the letter is addressed (BS).
(c) Reason for meeting (CS).
(d) Date when writer will be available (D$).
(e) Time when writer will be available (E$).
(f) Where the writer will be available (F$).

Education Center,
New University of Ulster,
Coleraine, N. Ireland.
TODAY'S DATE

Dear MR JONES

I would like to arrange a meeting to discuss:
YOUR RECENT ORDER

I would be available on MONDAY 14TH JAN. in MY OFFICE AT
HALF PAST TWO.

I would be grateful if you could come at this time.

Yours sincerely,

Brian McGarvey

3
Program Presentation

INTRODUCTION

When a program has been typed into Apple (or put in from disk) and
you need to use it, you then type in RUN and press I RETURN I. If the
program has been carefully written it ought then to be completely clear
what the program is about, and what the machine (or the program)
wants you to do. This level of well-organized explanation and present
ation needs to be maintained all the way through the program, so that
the user is never placed in the position of not knowing what to do next,
or what the results mean.

This chapter is about this kind of presentation. The techniques used
are very simple and easy to adapt, and some of them are unique to
Apple. It begins with a short three-line program, and adds to this
repeatedly until it ends up as a quite long but well-documented final
program. It is absolutely essential that, at each stage in what follows,
you type in the new lines, list the program to check its accuracy, and run
it to see what it now does. Indeed the two commands LIST and RUN
should be used often when writing in programs as they allow you to get
instant feedback about what is going on.

USER PRESENTATION

We begin by typing in a short three-line program as shown. It is carrying
out a simple arithmetical calculation involving three multiplications and
two additions. However, don' t worry if, to begin with, you do not under
stand what it is doing. Type it in in the usual way remembering to press
the lRETURNI key after each line. The unusual line numbers are because
this is going to be part of a longer program. The rest will be added as we
go along. If you have already been using Apple remember to type in
NEW before starting.

29

30 PROGRAM PRESENTATION

440INPUT A, B, C
460 T=lS* A+24*B+l3*C

SOO?T

CR

CR

CR

Now type in RUN and then press IRETURNI. Apple goes to the first
line, 440 and, because it is an input, responds with ? • It has now labelled
three units of memory A, B and C and is waiting for you to tell it what
numbers to store in each of these. That is, it needs an input of three
separate numbers.

Type in three numbers separated by commas to represent A, B and C,
like this:

3,1,4 CR

Then press \RETURN!. Apple responds immediately with:
...

121

JD
If this does not work, check your program by typing in LIST.

All of this will be easy to do, but it may be difficult to understand
what is going on. No attempt has been made to make the program
understandable to the user in the way it appears on the screen when you
type RUN.

So we will now try to improve this presentation so that it is self
explanatory and can be used by anyone.

PURPOSE OF PROGRAM

The object of this program is to provide a simple method of calculating a
family's daily bill for milk and other dairy products. It is suggested that
milk costs 15c per pint, cream costs 24c a carton and yoghurt costs l 3c.
The letters on line 440 stand for the number of pints of milk (A), the
number of cartons of cream (B), and the number of yoghurts (C). Line
440 invites you to tell Apple what A, B and C are to be in a particular
case by printing a question mark on the screen. You have to enter the
numbers into Apple using the same punctuation pattern: i.e. 3, 1, 4. Line
460 does the sum:

3 PINTS OF MILK AT
1 CARTON OF CREAM AT
4 YOGHURTSAT

lSC
24C
13C

CLEAR SCREEN 31

and calls the total T. Line 500 prints the answer on the screen.

STOP

At various stages in what follows you will want to run the program to
see what is going on, but you may not want to go right through to the
end each time. At any stage you can stop Apple in the middle of the
program by holding the key marked lcTRLI and pressing C. It is some
times also necessary to press I RETURN I.

LIST

It is also helpful to be able to look at the program, or any part of it,
printed out on the Apple screen whenever you wish. As mentioned
earlier this can be done by typing in LIST and then pressing IRETURNI •
This will produce a display of the whole program, but there are also four
variations on this which can be used when only part of a program is
wanted. These make use of the subtract symbol.

This is thought of in this context as meaning "to".

Example 1. List 440 - 460
This lists all lines from 440 to 460.

Example 2. List - 500
This lists all lines from the beginning to line 500.

Example 3. List 460 -
This lists all lines from 460 to the end of program.

Example 4. List 460
This lists line 460 only.

Try all of these.
It is also possible, when the program is long and the listing is running

off the screen, to stop it at any time by holding the key ICTRLI and
pressing S.

CLEAR SCREEN

If you have been trying some of the things described above, the chances
are that your Apple screen is covered with statements and print. The
result is that when you input RUN followed by IRETURNI the question
mark appears at the bottom of all this, scarcely visible.

Now type in this new line and press IRETURNI •

lOOHOME CR

32 PROGRAM PRESENTATION

This means that you have programmed the "clear-screen" command. As
soon as Apple comes to line 100, after RUN has been typed in, the word
HOME will clear the screen, and Apple will then go on to the next line.
Try it now and see.

This "clear screen" line is most useful and is often used more than
once, especially in long programs. If this is the case it is useful to put it in
what is called a subroutine, which can be called up whenever necessary.

SUBROUTINES

The notion of a subroutine is very simple. In this case we are dealing
with the simple routine for clearing the screen and believe that we may
have to use it more than once within a program. So we place it in a
separate, isolated part of the program, called a subroutine, and call it up
whenever we need it. We put it at line.1000. Type this in:

lOOOHOME CR

and we wish to call it up at line 100, whose place it is now taking. To do
this line I 00 becomes this. Type it in:

100 GOSUB 1000 CR

This means that, when Apple comes to line I 00 the instruction GO SUB
1000 {short for "go to the subroutine at line 1000), sends it to line 1000.
The instruction there makes Apple clear the screen. It will now go on to
the line after line 1000, and if there is no line after it, it will stop. But we
wish it to come back to the line after line I 00 and continue with the
program. So now add the line:

lOlORETURN CR

This has the desired effect of returning Apple to line 440 and allows it to
continue with the calculation.

These two new words GOSUB and RETURN act as a pair. The
program now looks like this:

100 GOSUB 1000 CR

440 INPUT A, B, C CR
460 T=lS* A+24*B+l3*C CR
500? T CR
700END CR

lOOOHOME CR
lOlORETURN CR

REVERSE FIELD 33

Type in LIST and check that your program is the same. You will see
that there is one other new line:

700END CR

This means that Apple will stop when it gets to that line. If it was not
there Apple would go on to line 1000 again, and clear the screen, and so
lose the answer. Apple now acts on these lines in this order:

first

then
then

then
then
then
then

line 100

line 1000
line 1010

line 440
line 460
line 500
line 700

start

subroutine

rest of
program

It is worth mentioning that Apple does not normally need an "END"
line where subroutines are not involved.

Notice also that the word RETURN is different from the key marked
IRETURNI. The first has to be typed in like any other word and is an
instruction within a program. The second is just a key to be pressed
which enters a line of BASIC into the memory and moves the cursor
onto a new line.

TITLE

It always helps to put a title on your programs~ This can be done very
simply, as follows:

120?"
140?"

DAILY MILK BILL" CR

CR

Type these two lines in and run the program. Remember that, if you
wish to centre the title, there are 40 spaces across the Apple screen.
Techniques for doing this will be shown later.

REVERSE FIELD

Letters and symbols are normally printed on the screen as white lines

34 PROGRAM PRESENTATION

against a black background. It is possible to reverse this with words and
lines on Apple so that they become black lines against a white
background. This helps to draw attention to particular words and
commands and is especially suitable for the title. The word which turns
this reverse-field writing on is INVERSE, and the word that turns it off
is NORMAL. Put in these two new lines:

I IO INVERSE
130NORMAL

CR

CR

Now run the program again. The title "***DAILY MILK BILL***"
should now be in reverse field, but unfortunately so is the rest of the line
starting on the left. One way to tidy this up is to put the whole line in
reverse field, but there is an alternative. Retype the three lines 110 to 130
as below:

llOPRINT" "· I CR
120INVERSE: PRINT "***DAILY MILK BILL***" CR

130NORMAL CR

Now run it and this time, only the title should be in reverse field. In line
110 we print the space before the title, and put a semicolon after it to
ensure that Apple goes on printing on the same line. In line 120 we turn
on the reverse field with the word INVERSE and then print the title. In
line 130 we turn it off again with the word NORMAL.

FLASHING TITLES

It is also possible to make the two forms of presentation, that is the
normal and the reverse field appear alternatively in quicker succession
so that the words ftash on and off. The only difference between this and
the format above is that the word INVERSE is replaced by the word
FLASH. So rewrite line 120 as follows:

120FLASH: PRINT "***DAILY MILK BILL***" CR

Now run this program and try this.

DESCRIPTION

We now need a short description of what the program does.

SPACING 35

Type this in:

180? "THIS PROGRAM CALCULATES A DAILY" CR

200? "MILK BILL. MILK COSTS 15C" CR

220?" CREAM COSTS 24C" CR

240?" YOGHURT COSTS 13C" CR

260? "WHEN YOU SEE THE QUESTION MARK" CR

280? "PUT IN THE NUMBER OF EACH" CR

300? "BOUGHT FOR TODAY." CR

Try typing this in and running the program.
There are two problems now: (a) the instructions are very crowded;

and (b) we are still not told exactly how to respond to the ? sign that
Apple prints after them. So we must consider spacing and further
instructions to the user.

SPACING

(a) A single space can be made by putting in an extra line containing just
the word PRINT. For example, type in the line below and run the
program.

lSOPRINT CR

There will be an extra space, that is, a line will be printed with nothing on
it, as a result of the instruction in line 190. It is also possible to put an
extra PRINT (or ?) at the beginning or the end of the appropriate
existing lines. Here it is done at the end of the line, using a colon between
the quotation marks and the ? sign to make Apple move on to a new
line.

180? "THIS PROGRAM CALCULATES A DAILY" : ? CR

200? "MILK BILL MILK COSTS 15C" : ? CR

Do this for each of the lines 180 to 280 by retyping the lines and then
run the program again. Remember also to remove the extra line 190 put
in above. To do this just type in 190 and press I RETURN! •
(b) Large spaces. Obviously this can be done using a line like this:

160?:?:? CR

In most programs such spacing is used quite often and is therefore
best put into a subroutine, as shown.

36 PROGRAM PRESENTATION

2000?:?:?
2010RETURN

CR

CR

Then we call it up whenever we wish to have a larger space between
chunks of writing on the screen. This is done twice in our program, the
current version of which is listed and annotated below. You should now
list your own program and add the new lines to make it exactly like this
one.

Notice that we have left out the CR reminders at the end of each line.
From now on, when presenting programs, we will not include this
reminder after each line, but you must remember to press the IRETURNI
key at the end of each line.

A 100 GOSUB 1000

B 120 ? " ***DAIL y MILK BILL*** II

140?"

C 160 GOSUB 2000

D 180? "THIS PROGRAM CALCULATES A DAILY" : ?
200 ? "MILK BILL.
220?"

MILK COSTS ISC":?
CREAM COSTS 24C" : ?

240?" YOGHURT COSTS 13C" : ?
260? "WHEN YOU SEE THE QUESTION MARK" : ?
280? "PUT IN THE NUMBER OF EACH" : ?
300? "BOUGHT FOR TODAY."

E 320 GOSUB 2000

F 440 INPUT A, B, C
460 T=l5* A+24*B+l3*C
SOOPRINTT
700END

G IOOOHOME
IOIORETURN
2000?:?:?
2010RETURN

Section A. This clears the screen.
Section B. This creates the title.

INSTRUCTION TO USER 37

Section C. This makes a three-line space.
Section D. This describes the program. Note the extra print signs at the

end of each line except line 300.
Section E. This means a three-line space.
Section F. This solves the problems and prints the result.
Section G. Subroutines for clearing screen and making space.

INSTRUCTION TO USER

When this program is now run, the screen looks like this:
..

DAILY MILK BILL

THIS PROGRAM CALCULATES A DAILY
MILK BILL. MILK COSTS 15C

CREAM COSTS 24C
YOGHURT COSTS 13C

WHEN YOU SEE THE QUESTION MARK
PUT IN THE NUMBER OF EACH
BOUGHT FOR TODAY.

?

We must now consider the second problem mentioned above. That is,
we have not yet given explicit instructions about how to input the
numbers. This is done as follows. Type in the two lines:

380? "NOW INPUT THE 3 NUMBERS WITH" : ?
400? "COMMAS BETWEEN THEM."

Now run the program again.
We have now solved all the spacing and presentation problems but, as

no doubt you will have noticed, when we run the program the last two
lines push the title off the top of the screen. The next section shows you
how to stop that happening.

38 PROGRAM PRESENTATION

PRESS ANY KEY

The press any key technique allows Apple to present information in
chunks. This means that you can read some information on the screen,
and then - by pressing any key - bring up the next chunk of informa
tion. Since the technique is normally used quite often in a long program
we will once again put it in a subroutine. This is now shown below. Type
it in.

3000 ? " PRESS ANY KEY"
3010GET A$
3020RETURN

Line 3000 prints the words PRESS ANY KEY on the screen. Apple
then moves down to the next line, line 3010. This uses a new word, GET.
The statement is:

GETA$

This tells Apple to expect an input of one single character, which can be
any character on the keyboard. When this happens it moves on to the
next line, which is:

3020RETURN

and so the subroutine ends. The subroutine is now typed in, so put a line
calling it up as shown:

340 GOSUB 3000

Now run the program again.
This works very well except that the lines NOW INPUT THE

THREE NUMBERS WITH COMMAS BETWEEN THEM are
crowded up against the line PRESS ANY KEY, and the question mark
is also crowded up against the last instruction line. So, to make this more
legible, put in two further lines to make two more major blocks of space.

360 GOSUB 2000
420 GOSUB 2000

EXPLAINING THE ANSWERS 39

EXPLAINING THE ANSWERS

The response from Apple when the numbers have been put in, is to print
the answer on the next line and stop. Some further lines of explanation
and spacing are needed. Try typing these in:

480 GOSUB 2000
500? "THE TOTAL BILL FOR TODAY IS":?
520 ? T ; " CENTS"

540 GOSUB 2000

now run the program.
Finally, it is useful to put some instructions at the end about what the

user may wish to do next. Put in the lines shown:

560? "DO YOU WISH TO DO ANOTHER BILL?" : ?
580? "IF SO, INPUT YES. OTHERWISE NO.":?
600 INPUT A$: IF A$="YES" THEN 100
620 GOSUB 2000
640? "THANK YOU. IF YOU WISH TO START":?
660? "AGAIN, TYPE IN RUN AND PRESS" : ?
680? "RETURN. GOODBYE FOR NOW."

Line 600 may need a little explanation.

600 INPUT A$: IF A$= "YES" THEN 100

Apple responds to INPUT A$ by printing a question mark and waiting
for a response from you. You type in a word and press I RETURN I . If the
word is YES then Apple goes to line I 00, which is the beginning of the
program. If it is any word other than YES it goes on to the next line, i.e.,
line 620.

This complete program now follows. Check yours against this and try
running it a few times.

100 GOSUB 1000
120?" ***DAILY MILK BILL***"

140?"
160 GOSUB 2000

(continued overleaf)

40 PROGRAM PRESENTATION

180? "THISPROGRAMCALCULATESADAILY":?
200? "MILK BILL. MILK COSTS !SC" : ?
220?" CREAM COSTS 24C" : ?
240?" YOGHURT COSTS 13C":?
260? "WHEN YOU SEE THE QUESTION MARK" : ?
280? "PUT IN THE NUMBER OF EACH" : ?
300? "BOUGHT FOR TODAY."
320 GOSUB 2000
340 GOSUB 3000
360 GOSUB 2000
380? "NOW INPUT THE 3 NUMBERS WITH" : ?
400? "COMMAS BETWEEN THEM."
420 GOSUB 2000
440 INPUT A, B, C
460 T=l5* A+24*B+ 13*C
480 GOSUB 2000
500? "THE TOTAL BILL FOR TODAY IS" : ?
520? T ; " CENTS"
540 GOSUB 2000
560? "DO YOU WISH TO DO ANOTHER BILL?" : ?
580? "IF SO, INPUT YES. OTHERWISE NO.":?
600 INPUT A$: IF A$= "YES" THEN 100
620 GOSUB 2000
640? "THANK YOU. IF YOU WISH TO START":?
660? "AGAIN, TYPE IN RUN AND PRESS" : ?
680? "RETURN. GOODBYE FOR NOW."
700END

IOOOHOME
lOlORETURN
2000?:?:?
2010 RETURN
3000? " PRESS ANY KEY"
3010GET A$
3020RETURN

PROBLEMS

1. This is a short program which translates pounds weight into grams.

200INPUT A
210 B=A* 453.593
230 PRINT A, B

PROBLEMS 41

Type this in and then add as many other lines as are necessary to
turn it into a self-explanatory, easily used conversion program. Try
to use as many of the techniques discussed in Chapter 3 as possible.

2. Write another program of this sort which invites the user to put a
small set of numbers one at a time. The program then calculates and
presents the average of these. Again try to make sure the program is
self-explanatory and easy to use.

3. Write a program which will convert any sum of money from one
currency into four other currencies. The program should invite you
to put in the names of the other four currencies and their current
exchange rates. It will then calculate the exchange values and print
all four of these on the screen.

4
Disk Management

INTRODUCTION

Your Apple has at least one disk drive attached to it. (See Chapter 1, page
1). If there are two drives then one is called drive 1 and the other is drive
2. You should establish by simple trial which is which and label them
clearly. The disk drive is joined to the computer by a flat multi-colored
cable. This can be attached to and removed from the computer quite
easily and the procedure for doing this is described very clearly on pages
2 and 3 of the Apple DOS Manual.

It is also possible to use a tape recorder with Apple and there are
some instructions about this given in Appendix Bon page 177.

DISKETTES

If you have spent some time writing and typing in a program which you
would like to keep and use on another occasion, it is very frustrating to
lose it all when Apple is switched off. This problem can be solved using
the disk drive and a storage device called a floppy disk, or a diskette.
This looks like a small square envelope and you should read very
carefully pages 5 and 6 of the Apple DOS Manual, if you do not know
how to insert these into the drives or how to look after them. If the
diskette is a new one, it must first be initialized. That is to say it must be
formatted and made ready to be used with Apple.

INITIALIZING A DISKETTE

If your diskette is already initialized then this section can be skipped for
now. Put the new diskette into disk drive 1, and close the door. Now

42

CATALOG 43

type in a program which can be as long or as short as you wish and is
required only to set the process of initialization in motion. The program
is like a pump-primer. It is usually called the HELLO program and
usually contains a line like line 5, and so this program can always be
identified. Here is an example.

5 HOME : PRINT "HELLO"
10 PRINT "INITIALIZED ON 20TH JULY"
20 PRINT "BY MICHAEL 0 HARA"

When you have written this, or something similar, then type in: INIT
HELLO and press IRETURNI.

We have chosen to call our diskette and this program "HELLO"
because, as described above, this is normally done. But you could
choose to call it something else. When you press I RETURN I the red light
on the front of the disk-drive will come on, and there will be a series of
whirrings and small clacking noises. This will last for about two minutes,
then the red light will go off and the cursor will reappear on the screen.
The diskette is now initialized and ready for use.

CATALOG

Now type in CATALOG and press IRETURNI • The red light will come
on again, the disk-drive will whirr and the following will appear on the
screen:

DISK VOLUME 254
A002 HELLO

The volume number 254 will always be used by APPLE unless you
specify a different volume number when initializing. The A means that
your program was written in App/esoft BASIC, the 002 is a measure of
the length of your program or of the amount of storage which it has
taken up on the diskette.

The word CATALOG is a most useful command. Note the spelling
carefully and use it with any diskette at any time if you want to know
what programs are stored on it. It produces a list on the screen of all the
programs on the diskette currently in the disk drive.

44 DISK MANAGEMENT

PROGRAM SAVING

We will now assume that you have typed in a program and that you
wish to save it to use on another occasion. The procedure is as follows:

(a) Put a diskette in the disk drive 1.
(b) Decide on a name for the program: we will pretend that you

have chosen "example".
(c) Type in SAVE EXAMPLE and press the lRETURNI key.

Immediately the disk drive begins to whirr, the red light comes
on, and the cursor disappears from the screen. When the
operation is complete, the red light will go off, the whirring
will stop and the cursor will re-appear. If you just type in
SA VE and forget tQ put a name after it, and then press
I RETURN I , the cursor will again disappear, but nothing else
will happen. In this case Apple is responding to a command
(i.e. SAVE by itselO, to save the program on a cassette tape;
but since your intention was to save the program on the
diskette, there is a confusion. In this case, press thelRESETlkey
and try again.

(d) If you want to make sure that the program has in fact been
saved type in VERIFY EXAMPLE. If all is well the cursor
will reappear as before. If it has not worked properly, Apple
will respond with FILE NOT FOUND.

(e) You can check if the file has been saved in another way. Type
in CATALOG and press lRETURNI. The same signs will
appear, but the list of the contents of the diskette will also
appear on the screen. Somewhere among them, not necessarily
at the end, the name EXAMPLE should appear. If it does not,
then do it all again. (Note that if the diskette contains more
than 18 files, the names of the first 18 only will appear on the
screen. When you have looked at this list, press the space bar,
and the rest will come up on the screen).

There are a number of other points to be noted about this proce
dure.

(a) If you have more than one disk drive and wish to specify
which one you are going to use, this is done as follows. To
save a program on drive 2, write: SA VE EXAMPLE, D2.
In this case the red light will appear on the second drive and
the process continues as before. Similarly you can specify
which drive you wish to see a catalog of, by writing
CATALOG, D 1 for drive 1. Once you have specified a drive

PROGRAM RECOVERY 45

in this way, Apple will continue to refer to this one without a
direct reference until you specify another.

(b) The name of the program which you choose can be up to 30
characters long. If it is more than this, Apple will remember
the rest but will only write the first 30 on the catalog. It will
thereafter accept either the original long name or the 30
character name. So, for example, the name:

THE APPLE PERSONAL COMPUTER FOR
BEGINNERS

is 41 characters long. Note that we must count the spaces as
characters. Apple will save this on the diskette as:

THE APPLE PERSONAL COMPUTER FO

which is 30 characters long. ·
There are two other small rules about names. They must start
with a letter of the alphabet. After that any symbol can be
used except a comma. So while 007 JAMES BOND is
unacceptable, JAMES BOND 007 is acceptable: and
MURPHY, B. is unacceptable while MURPHY B. is accept
able.

(c) A program saved in this way is called afile and these rules
about names are really rules about files. All such rules
continue to apply to files when, later on, we deal with files of
information as well as program files.

PROGRAM RECOVERY

"Load" is the word used when you wish to recover a program already
saved on a diskette. We load a program from the diskette into Apple's
memory, where we can run it. The technique is very simple:

(a) Insert the diskette into the drive and close the door.
(b) Type in LOAD EXAMPLE. Put the name of the program

which you wish to recover in place of EXAMPLE. Then press
I RETURN! . Apple responds in the normal way. That is, the
red light comes on, the disk drive whirrs and the cursor
disappears from the screen. In a few seconds all of these will
stop, the cursor will return and the program should now be in
memory.

(c) To check this type in RUN (or LIST) and press IRETURNI •
(d) If an error occurs, then begin the process again. Remember

46 DISK MANAGEMENT

that the process of loading the program does not destroy or in
any way change the copy of the program on the diskette.

(e) If errors persist use CATALOG to make sure that the
program you want is actually on the diskette. The program
EXAMPLE, if it exists, will appear on the CATALOG as: A
004 EXAMPLE. Ignore the A, which stands for Applesoft
and the 004, and use just the word EXAMPLE. It is possible
to combine the two commands LOAD and RUN so that the
program begins to run as soon as it is loaded. To do this type
in RUN EXAMPLE instead of LOAD EXAMPLE and then
RUN.
Remember also that if you type in LOAD, by itself, and press
IRETURNI, Apple will again go in search of a cassette tape
file.

REMOVING A FILE

Since a program goes through a large number of stages in its develop
ment, it is very likely that you will end up with a whole series of files con
taining successive versions of your attempts to write a program. You will
often want to remove or delete these earlier versions from your diskette
since they are taking up space unnecessarily.

This is very easy to do. We will assume that you have a program on
the diskette called EXAMPLE. Type in DELETE EXAMPLE and
press return. You can then check that it has gone by typing in
CATALOG and looking at the list of contents. Be very careful with this
DELETE command, because once a file is removed it cannot be
recovered again.

If you try to delete a file that is not on the catalog Apple will give you
the message FILE NOT FOUND.

CHANGING FILE NAMES

Suppose you wish to call a file EXAMPLE, and make a typing error like
this:

SAVE EXAMBLE

and then press IRETURNI • If you then type in CATALOG the list will

contain the name wrongly spelt as above. It is easy to fix this. Type in:

DATA SAVING 47

RENAME EXAMBLE, EXAMPLE

and press IRETURNI. Now type in CATALOG and check ifthe file now
has the correct title.

You can of course use this RENAME command to change any file
name.

DATA SAVING

One of the most important uses of a computer is the storage and subse
quent reuse of data such as lists of names, numbers, prices or book titles.
For this reason many of the programs written for Apple will be used for
generating, storing and allowing reuse of data by businessmen and
teachers. The storage or saving of such data on diskette is almost as
easy as the storage of programs, but it is done by routines written within
programs rather than by typing direct commands (like SAVE or LOAD)
onto the screen. The process is now illustrated by writing a full program.

We will begin with a short routine to input a set of four names and test
marks to Apple's memory. It is called Subprogram 2 because, later on,
we will put another subprogram before it.

Subprogram 2

200 REM INPUT ROUTINE
210HOME
220 DIM A$(4), A(4)
240FORN=l T04
260 PRINT : INPUT "INPUT NAME OF PUPIL " ; A$(N)
270 PRINT : PRINT : INPUT "NOW INPUT SCORE " ; A(N)
280NEXTN

First type this program in, and we will consider it line by line.
(a) Line 210 clears the screen.
(b) Line 220 involves a new notion, that of declaring two data

arrays. In very general terms this means that Apple reserves
or books memory space for four strings and for four numbers.
The word DIM tells it to reserve space. A$(4) tells it to book
enough space for four strings, called A$(1), A$(2), A$(3) and
A$(4). The number four can of course be much greater if
necessary. (In fact, for numbers up to 10, line 220 is not
needed, but it is included here so that you can use numbers
greater than 10 if you wish, and to demonstrate the principle).

48 DISK MANAGEMENT

Similarly A(4) tells Apple to book enough space for four
numbers. {Actually, since A$(0) and A(O) are also counted by
Apple, there is in fact another unit of memory reserved which
we are ignoring in this case to avoid confusion).

(c) Lines 240 and 280, together, make a loop which Apple cycles
through four times.

{d) Line 260 allows you to input the four names, one during each
cycle of the loop created by lines 240 and 280. These four
names are stored in A$(1), A$(2), A$(3) and A${4).

(e) Line 270 does exactly the same for the four scores which are
stored in A{l), A(2), A(3) and A(4).

Now, type in RUN and follow instructions as they appear on the
screen. This is, of course, a practice exercise since we have yet to
complete the program.

We now come to the program that will actually save these four names
and data on the diskette. First type it in carefully and we will, as before,
consider it line by line.

Subprogram 3

300 REM SA VE NAMES ON DISK
320 D$=CHR$(4)
340 PRINT D$; "OPEN NAMES"
360 PRINT D$; "WRITE NAMES"

380 FOR N=l TO 4
400 PRINT A$(N)

420NEXTN
440 PRINT D$; "CLOSE NAMES"
460 PRINT "NAMES NOW SAVED ON DISK"

(a) Line 320 involves some ideas which we have not yet discussed
and must be taken to some extent on trust. CHR$(4) is a
control command and is the equivalent of directly holding the
control key and pressing the letter D. When it is printed, as in
lines 340, 360 and 440, it alerts the computer to the fact that
disk commands are about to be used within a program.

(b) Line 340 opens a file called NAMES. Later on this same file is
closed. The file title NAMES is chosen by the user and can be
any legitimate file title (see page 45).

(c) Line 360 prepares the computer to write a file called NAMES.
This is in contrast with a later situation where it will be asked
to read a file. The file title must be the same as that used in line
340, in this case NAMES.

DATA RECOVERY 49

(d) Lines 380 and 420, together, make a loop which Apple cycles
through four times.

(e) Line 400 prints the data, that is the names or strings entered
earlier into A$(N), onto the diskette.

(0 Line 440 closes the file and again the same file title must be
used as in lines 340 and 360.

(g) The last line, 460, lets us know when the job is finished.

Subprogram 4

The next piece of the program saves the four scores on diskette and
uses almost exactly the same routine. First type it in.

500 REM SAVE SCORES ON DISK
520 D$=CHR$(4)
540 PRINT D$; "OPEN SCORES"
560 PRINT D$; "WRITE SCORES"
580FORN=l T04
600 PRINT A(N)
620NEXTN
640 PRINT D$; "CLOSE SCORES"
660 PRINT "SCORES NOW SAVED ON DISK"

The only differences are in lines 540, 560, and 640, where the file title is
SCORES this time rather than NAMES; and in line 600 where A(N),
the store for numbers, has replaced A$(N), the store for strings.

Make sure that there is a diskette in the drive ready to receive the
data. Then type in RUN and press I RETURN I and follow instructions as
they appear on the screen. This means that we first enter the four names
and scores into Apple's memory, and then save them on the diskette.

DAT A RECOVERY

We must now enter some routines for retreiving this data. First, the
names. Type this in:

Subprogram 5

700 REM RECOVER NAMES FROM DISK
720 D$=CHR$(4)
740 PRINT D$; "OPEN NAMES"

(continued overleaf)

50

760 PRINT D$; "READ NAMES"
780FORN=l T04
800 INPUT A$(N)
820NEXTN
840 PRINT D$; "CLOSE NAMES"
860 PRINT "NAMES NOW RECOVERED"

DISK MANAGEMENT

This routine is almost identical to the routine starting on line 300 for
saving NAMES on disk. The differences are as follows:

(a) Line 760. In this case the word READ has replaced the word
WRITE. That is to say we are now reading from disk rather
than writing to disk.

(b) Line 800 replaces the word PRINT with INPUT. That is,
instead of printing data to the disk file we are inputting data
from the file.

Finally the scores are recovered using an almost identical routine.
Type this in:

Subprogram 6

900 REM RECOVER SCORES FROM DISK
920 D$=CHR$(4)
940 PRINT D$; "OPEN SCORES"
960 PRINT D$; "READ SCORES"
980FORN=l T04
1000 INPUT A(N)
1020NEXTN
1040 PRINT D$; "CLOSE SCORES"
1060 PRINT "SCORES NOW RECOVERED"

The only differences are where the word SCORES replaces NAMES
and in line 1000 where A(N) for scores replaces A$(N) for names.

PROGRAM ORGANIZATION

This program is now almost complete in that it allows you to do three
things:

(a) To enter data into Apple (lines 200 to 280).
(b) To save this data on disk (lines 300 to 660).
(c) To recover this data from disk (lines 700 to 1000).

The only difficulty is that it always follows this order exactly, which is
something of a problem if, for example, you wish only to recover data or

PROGRAM ORGANIZATION 61

only to save data. This program, as it stands, does not allow you to
choose. Since we have already saved some data on disk, how can we go
directly to the data recovery part of the program? To be able to choose
which of the three processes we wish to use we must now enter a new
subroutine which organizes the rest of the program. It will come first and
will off er the user a choice of three possible routines, that is, entering
data, saving data and recovering data. Type this in and we will then
discuss it:

Subprogram 1

100 PRINT : PRINT "WHICH ROUTINE DO YOU WISH TO USE"
DATA ENTRY ... E" 110 PRINT : PRINT "

120 PRINT : PRINT " DATA SAVING ... S"
130 PRINT: PRINT" DATA RECOVERY ... R"
140 PRINT : PRINT "CHOOSE ONE OF THE 3 LETTERS"
150INPUTB$
160 IF B$="E" GOTO 200
170 IF B$= "S" GOTO 300
180 IF B$="R" GOTO 700
190GOTO 100

(a) The lines 100 to 140 are straightforward print statements
which give the user instructions. The list of options is some
times called a menu.

(b) Line 150 prints a question mark on the screen and waits for
an input from the user. This input is stored in Apple's memory
BS.

(c) Line 160. lfthe user chooses the data entry option and presses
the letter E, Apple then goes to that part of the program which
starts at line 200. If the user chooses some letter other than E,
Apple goes on to line 170.

(d) Lines 170 and 180 do similar jobs for the other two options, in
each case sending Apple to the appropriate part of the
program.

(e) Line 190 is a fail-safe line. If the user chooses any letter other
than the three correct ones, the program goes back to line 100
again.

(fj Finally, it is necessary to put a line at the end of each of the
three possible routines which will in each case return the user
to subprogram 1 when that routine is complete. These lines
are:

52

290GOTO 100

680GOTO 100
1080 GOTO 100

DISK MANAGEMENT

Type them in now as they are very important.
The program is now complete except for a print routine, and an

escape routine: i.e. a routine to print the data on the screen and a routine
to allow you to stop. The inclusion of these is left as an exercise for the
reader. Apart from that the program is now complete, and is shown in
total. List your own program and compare it with this one. It will be
necessary to list it in parts since the screen will not hold it all.

80 DIM A$(4), A(4)
100 PRINT : PRINT "WHICH ROUTINE DO YOU WISH TO USE"
110 PRINT : PRINT " DATA ENTRY ... E"
120 PRINT: PRINT" DATA SAVING ... S"

130 PRINT: PRINT" DATA RECOVERY ... R"
140 PRINT : PRINT "CHOOSE ONE OF THE 3 LETTERS"
l50INPUTB$
160 IF B$= "E" GOTO 200
170 IF B$= "S11 GOTO 300
180 IF B$="R11 GOTO 700
190GOTO 100

200 REM INPUT ROUTINE
210HOME

240FORN=l T04
260 PRINT : INPUT "INPUT NAME OF PUPIL /1

; AS (N)
270 PRINT : PRINT : INPUT "NOW INPUT SCORE /1

; A(N)
280NEXTN
290GOTO 100
300 REM SAVE NAMES ON DISK

320 D$=CHR$(4)
340 PRINT D$; "OPEN NAMES"
360 PRINT D$; "WRITE NAMES"

380FORN=l T04
400 PRINT A$(N)

420NEXTN
440 PRINT D$; "CLOSE NAMES"

460 PRINT "NAMES NOW SAVED ON DISK"
500 REM SAVE SCORES ON DISK
520 D$=CHR$(4)
540 PRINT D$; "OPEN SCORES"

Fl"'AL POINTS

560 PRINT D$; "WRITE SCORES"
580FORN=l T04
600 PRINT A(N}

620NEXTN

640 PRINT D$; "CLOSE SCORES"

660 PRINT "SCORES NOW SAVED ON DISK"
680GOTO 100
700 REM RECOVER NAMES FROM DISK
720 D$=CHR$(4)
740 PRINT D$; "OPEN NAMES"

760 PRINT D$; "READ NAMES"

780 FOR N=l TO 4
800 INPUT A$(N}

820NEXTN
840 PRINT D$; "CLOSE NAMES"
860 PRINT "NAMES NOW RECOVERED"
900 REM RECOVER SCORES FROM DISK
920 D$=CHR$(4)

940 PRINT D$; "OPEN SCORES"

960 PRINT D$; "READ SCORES"

980FORN=l T04
1000 INPUT A(N}
1020NEXTN
1040 PRINT D$; "CLOSE SCORES"

1060 PRINT "SCORES NOW RECOVERED"
1080 GOTO 100

FINAL POINTS

53

There are two last points to be made about data files. First, in the
example just completed it would have been possible to have combined
the two save routines, at lines 300 and 500, into one routine. To do this
it is necessary only to put the line:

410 PRINT A(N}

after the current line 400. Then the whole routine from 500 to 680 can
be deleted. The difference is that in this case the two files previously
used, i.e. NAMES and SCORES, are now amalgamated into one file.
Certainly this is more economical of effort, although there will be occa
sions when you will want to use separate files as was shown originally.

54 DISK MANAGEMENT

In this new pattern, it is now necessary also to amalgamate the two
recovery routines. Again it is only necessary to put in the line:

810 INPUT A(N)

and then delete the whole routine from 900 to 1080.
The second point is about the use of file names. In the program just

described, the two file titles, NAMES and SCORES, are part of the
program so that every time this program is used it will create files with
those titles and those titles only. It is easy however to adapt the program
so that you can choose a different file name each time. This will now be
done for the first "SA VE" routine, starting on line 300, but remember
that if you do this you will also have to change the corresponding
"RECOVERY" routine.

First type in the line:

330 INPUT "WHAT FILE NAME " ; N$

Then change lines 340, 360 and 440 as follows:

340 PRINT D$; "OPEN" ; N$
360 PRINT D$; "WRITE" ; N$
440 PRINT D$; "CLOSE" ; N$

In line 330 you choose a file title. This is stored by Apple in NS. Then in
lines 340, 360 and 440 this title is used to name the data file.

PROBLEMS

1. Write a program that will store the numbers 1 to 100 on a diskette
file, and will then recover them. Make sure you have a menu
(see page 51) which allows you to choose whether to store data or to
recover data.

2. Write a mailing list program which allows you to input, save and
recover a list of names and addresses.

5
Graphics

INTRODUCTION

The graphics facility is simply a way of making it possible to put dots or
lines on the Apple screen. There are two forms of this facility, called low
resolution graphics and high resolution graphics.

LOW RESOLUTION

There are a number of new words that must be used each time you wish
to have low resolution graphics. The first is simply GR, which is clearly
a shorthand for the full word GRAPHICS. To see the effect of this best
we will use an example.

First type in NEW and press IRETURNI to clear out any program that
may be in Apple's memory. Then type in HOME and press IRETURNI.

This clears the screen and moves the cursor up to the top left-hand
corner of the screen.

Now type in any short one-line program. This is a dummy program
and is going to be used only as a way of showing how the word GR
affects the screen. This would do:

100 PRINT "WHERE IS THE TOP"'

Type this in and list it a couple of times just to fill the screen up. Then
type in GR, directly, and press IRETURN I. The whole of the top part of
the screen will, as a result, be cleared and the cursor will appear down
near the bottom of the screen.

The effect of this is still not clear, so now type in list and press
!RETURN!. Then type in RUN and press IRETURNI . Type LIST and
RUN a number of times. The screen will look like this:

55

56 GRAPHICS

..

]RUN
WHERE IS THE TOP
JD

So it is now impossible to put lines of print anywhere except on the
bottom four lines of the screen. The top 20 lines have been reserved for
graphics or· drawings. It is as if the top of the screen had been moved
down 20 lines. This is the effect of the command GR.

Another way to make this clear is as follows. Press the letter A and
the lREPT I keys, and hold these two for a while. Eventually there will
be four rows made up entirely of As, but never more than four. Try it
and see.

The word TEXT is used to turn this screen arrangement off. Type it
in now and press I RETURN I • The effect is a bit strange, in that the top
20 lines are now covered with a pattern, but the important point is that it
is again possible to use the full screen for text. If you don't like the
screen like this, type in HOME and press IRETURNI and this wiil clear
it.

DRAWING ON THE SCREEN

The second new word is COLOR. For the moment we will deal only
with black and white, but later in this chapter we will consider the 16
colors that are available. The colors are numbered 0 to 15, but for black
and white work we will use only the number 5. So now type in
COLOR= 5 and press IRETURNI • Nothing obvious happens, but Apple
will remember this and anything that you draw will be coloured white.

Another new word is PLOT. Type in PLOT 20, 20 and press
I RETURN I • The result should be that a white rectangle appears in
approximately the middle of the graphics part of the screen. (You can
now use the control knobs on your TV or monitor to carefully focus this

DRAWING ON THE SCREEN 57

'rectangle'. If you do you will see that the rectangle is in fact made up of
four rows of eight dots).

Now try some other examples, like these:

PLOT 10, 10
PLOTO, 0
PLOT 0, 15

Now try these three in succession. Remember to press I RETURN I
after each.

PLOT3,6
PLOT4,6
PLOT 5, 6

Clearly the first number represents the column number going from left to
right. That is to say, if we now try PLOT 6, 6 another bar will be added
to the right end of the line.

To look at the other direction, try these:

PLOT 5, 12
PLOT 5, 13
PLOT 5, 14

In this case it is the second number that changes and these represent
points moving down the screen from top to bottom.

In fact, the graphics part of the screen is made up of 40 rows and 40
columns, numbered like this, with the example PLOT 2, 3 shown.

0

I

2

0 I 2 3 4 ...

3 --o
4

PLOT 2, 3

68 GRAPHICS

To test this, try PLOT 40, 8. The result is ? ILLEGAL QUANTITY
· ERROR because the first number cannot be larger than 39.

The rows are also limited to the number 0 to 39 as shown, but there is
a complication here. Remember that the screen contains 24 rows
altogether and that the top 20 of these are reserved for graphics and the
bottom four for writing of text. Each of these top twenty is divided into
two narrower rows for graphics to make the necessary total of 40
(numbered 0 to 39). However, if you try to use numbers greater than 39
for rows, Apple will accept them up to 4 7. This is because the screen has
24 rows, and twice this is 48 and so Apple counts from 0 to 4 7.
However, even though the machine will not give you any error message
until you use 48 you must remember not to use numbers greater than 39.
Later on when we write a program we will put in a detection routine for
this problem (see page 62).

We can summarize these new words as follows:

GR
TEXT
COLOR=S
PLOTX, Y

A WHITE SCREEN

Turns on graphics mode.
Turns on text mode.
For black and white work, color 5 is white.
Places a rectangle on column X, row Y.

We will now use these words all together in a short program to make the
whole graphics screen white. The program begins as follows: (it is
numbered rather oddly because it is part of a longer program).

lOOGR
120COLOR=5
180 FOR B=O TO 39
200PLOTB,O
220NEXTB
500 PRINT " PRESS ANY KEY"
520GET A$
540TEXT

Lines 100 and 120 establish graphics mode and set the colour at white.
Lines 180 to 220 generate a loop which puts a white line across the top
of the screen. Lines 500 and 520 hold the screen until the user presses a
key. Line 540 then uses the word TEXT to return the screen to text
mode. Type this program in and run it.

COLORED SCREENS

Now add two more lines and change line 200 as follows:

160 FOR A=O TO 39
200PLOTB,A
240NEXT A

Now run this, and the screen should rapidly fill up with white lines.

COLORED SCREENS

59

If you do not have a color TV or color monitor this section should be left
out since it simply repeats the above experiment but uses it to demons
trate the various possible colors that Apple can produce. Do not type in
NEW as we will be making use of the previous program, which so far
looks like this:

lOOGR
120COLOR=5
160 FOR A=O TO 39
180 FOR B=O TO 39
200PLOTB,A
220NEXTB
240NEXT A
500 PRINT " PRESS ANY KEY"
520GET A$
540TEXT

Now change line 120 and put in four new lines

120 FOR N=l TO 15
140COLOR=N
150 PRINT "COLOR IS NUMBER " N
260GETA$
280NEXTN

Now run this program. First the screen will fill up with a green color. At
least that's what it does on our TV set Yours may be different and at
this stage it is wise to try to tune the set so that the color is as clear and
well-balanced as possible. The message at the bottom of the screen will
read "COLOR IS NUMBER 1 ". We left out number 0 in line 120

~ because it represents black and so nothing would show on the screen.
The screen is being held there by line 260 so press a key and Apple

60 GRAPHICS

will, from line 280, go on to the next color, which on our TV set is a
violet color. Each time the screen is filled up with a color, press a key
and go on to the next color. If you run the program a few times you will
get to know the color numbers that work well with your monitor or TV
set.

A FACE ON THE SCREEN

We now return to a black and white television and remember that we
had filled the screen with white lines (see the program on page 58).

We can now draw on this white screen using black lines. To get black
we must use color number O. Then we use two simple loops to draw a
rectangle as shown. Type this in:

250COLOR=0
260 FOR A=l5 TO 25
280 PLOT A, 10 : PLOT A, 30
300NEXTA
320 FOR A=lO TO 30
340 PLOT 15, A : PLOT 25, A
360NEXTA

The lines 260 to 300 make the top and bottom lines of a rectangle. The
lines 320 to 360 make the left and right lines. Run it and see if it works.

Finally add these lines, and run the whole program. If you do it
correctly it should produce a smiling rectangle face.

380PLOT19, 17: PLOT 21, 17
400 PLOT 20, 20
420 PLOT 18, 23 : PLOT 22, 23
440 FOR A=l8 TO 22
460 PLOT A, 24
480NEXTA

If you are using a color set, put in these lines:

120 COLOR=l l
240COLOR=3
370COLOR=9

SCREEN ARTIST 61

SCREEN ARTIST

The program that we will now produce allows the user to draw a picture
directly on the screen. Only the bones of the program are presented here
and it would be necessary to produce a great deal of description and
introduction, as shown in Chapter 3, if you wished to make it clear to
others how to use the program.

We can begin to draw on the screen at any point and we will call this
point (X, Y) - that is X columns across from top left and Y rows down
from the top left.

The first few lines of the program are like this:

lOOGR
110COLOR=5
120 PRINT "REMEMBER THAT THE TOP LEFT IS 0, O"
140 INPUT "WHAT IS X CO-ORD OF START "; X
160 INPUT "WHAT IS Y CO-ORD OF START "; Y
180 REM PLOT POINTS
260PLOTX, Y

This allows you to decide on your starting point and to plot a point
there. We now need a routine to move this point about the screen. We
will use the set of letters grouped on the left of the keyboard as shown
below:

Q W E

A S D

z x c

It would be reasonable to assume that pressing W means to move up,
pressing X means to move down, A means left, D means right, Q means
up and left, and so on. The effect of these on the values of X and Y are
summarized below. For example, pressing Wand moving up means that
X does not change but Y changes to Y - 1. So, corresponding to W we
have (X, Y - 1).

Q
A

z

w
s
x

E

D

c

X- l, Y-1

X-l,Y

X-l, Y+ 1

X, Y-l

X,Y

X, Y+ 1

X + 1, Y-1

X+ l, Y

x + 1, y + 1

62 GRAPHICS

This can be programmed as follows. We will first show in detail what
happens if you press~, .and then we will write in the rest of the
program.

300GET A$
320IF A$="W" THENY=Y-1: GOTO 180

In line 300 Apple is told to expect an input of one character. If this
character is W, line 320 changes the numbers from (X, Y) to (X, Y-1)
and then goes back to line 180 where this new point is plotted and the
circuit begins again at 300.

The rest of the lines look like this:

340IF A$="E" THENX=X+l: Y=Y-1: GOTO 180
360 IF A$="D" THEN X=X+l: GOTO 180
380 IF A$= "C" THEN X=X + 1 : Y = Y + 1 : GOTO 180
400 IF A$= "X" THEN Y = Y + 1 : GOTO 180
420 IF A$="Z" THEN X=X-1: Y=Y +l: GOTO 180
440 IF A$="A" THEN X=X-1 : GOTO 180
460IF A$="Q" THENX=X-1: Y=Y-1: GOTO 180
480 IF A$="S" THEN 180

520GOTO 180

Type this in and try it.
There are many further refinements possible, and two small ones are

now shown. The values of both X and Y must not be smaller than 0 and
must not be larger than 39. In order to avoid getting an error message
and an aborted program, put in this routine:

180 IF X < 0 THEN X=O
200 IF X > 39 THEN X=39
220IFY < OTHENY=O
240 IF Y > 39 THEN Y =39

Finally you may wish at any stage to stop drawing and escape from the
program. To do this, add this routine:

500 IF A$="F" THEN 540
540 PRINT "PRESS ANY KEY"

560GET A$
580 TEXT : HOME
600 PRINT "THE END FOR NOW"

You should now save this program on your diskette for future use.

HLIN AND VLIN 63

As usual it is possible to put color into the picture. Suppose for
example that you wished at any stage to change the color being used.
First type in the following two lines:

490 IF A$="L" THEN 530
530 INPUT "INPUT THE NEW COLOR NUMBER " ; C :

535 COLOR=C : GOTO 180

This means that when you wish to change the color you press the letter
L. Line 5 30 then invites you to enter the new color and eventually
returns the program, as usual, to line 180.

HUN AND VLIN

These two words allow you to draw horizontal lines and vertical lines.
Begin with HLIN, and type in this example. (Remember to type in NEW
before you start).

100 GR : COLOR=5

120HLIN10, 30 AT 20

Then run this. The result will be a horizontal line across the screen, like
this:

0 10 30 39

That is to say, the statement:

HLIN 10, 30

indicates to Apple where the horizontal line should start (i.e. at 10) and
where it should end (i.e. at 30). The rest of the statement, that is AT 20,
indicates which horizontal row to draw the line on. Now type in NEW
and TEXT and then this program:

64

100 GR : COLOR=S
120 INPUT "STARTING POINT?"; S
140 INPUT "END POINT?" ; E
160 INPUT "HORIZONTAL LINE?"; H
180HLIN S, EAT H
200 PRINT "PRESS A KEY"
220GET A$
240TEXT

GRAPHICS

Now run the program. First line 120 will ask you to input where the line
should start. Suppose you input 2 and then press IRETURNI • Then line 140
will ask you to input where it should end. Put in 25. Then line 160
will ask you to input which horizontal line you wish to draw on:
remember that 0 means the top row and 39 means the bottom row.
Suppose you input 5. So you have asked for a horizontal line to be
drawn from point 2 to point 25 at row number 5. The screen will look
like this:

0 2 25 39

Lines 200 to 240 allow you to go back into text mode before ending
the program.

To show how VLIN works, we need change one line only of this
program. Type this in:

180 VLIN S, EAT H

Now run the program again, and try putting in some numbers.

BAR GRAPHS

Low resolution graphics are very suitable for drawing bar graphs, so we

BAR GRAPHS 66

will look at one example. Here is the data that we wish to turn into a
graph: "One hundred people were asked to choose their favourite color
from a list of 6." Here are the results:

white
red
yellow
blue
green
black

5
38
18
10
26

3

Remember that the biggest number we can deal with is 39, so if another
couple of people had chosen red we would have had to scale all the
numbers down.

Here is the first part of a first attempt at this program. It allows you to
put the data into Apple's memory.

10DIMA(20)

100 GR : COLOR=S
120 INPUT "HOW MANY BARS WILL THE GRAPH HA VE" ; N
140 PRINT "WHEN YOU SEE THE QUESTION MARK PUT IN"
160 PRINT "THE NUMBERS FOR THE BARS, ONE AT A TIME"

180 FOR C=l TON

200 INPUT A(C)

220NEXTC

Line 120 stores the number of bars in the variable N. Lines 140 and 160
give instructions to the user, and lines 180 to 220 use a loop to put in the
N numbers. These are stored in A(C): that is, in A(l), A(2), A(3) and so
on.

The next part draws the graph. Type it in.

240FORC=l TON
260 HLIN 0, A(C) ATC
280NEXTC

Now run this program, put in the numbers and look at the result. A bar
graph is drawn, but it's all a bit crowded. So we can now fiddle around
with the program and make it work better. For example, change line 260
to:

260 HLIN 0, A(C) AT 4*C

66 GRAPHICS

Run this and think about the difference.
Now add the line

261HLIN0, A(C) AT 4*C+l

and run this.
Finally, on both lines 260 and 261 change the word HLIN to VLIN.

COLOR GRAPH

It is possible to choose a different color for each bar in the graph. First
put in these lines:

170 PRINT "THEN PUT IN A NUMBER FOR THE BAR COLOR"
210 INPUT "NOW THE COLOR NUMBER II ; B(C)
250 COLOR=B(C)

Then change line 10 to:

10 DIM A(20), B(20)

Now run the program again and, when the message appears on the
screen, put in a different color for each bar. These are then programmed
in line 250.

HIGH RESOLUTION GRAPHICS

In low resolution graphics the top 20 rows of the screen are isolated
using GR and it is then possible to draw lines and pictures on this. How
ever, the number of points is only 40 by 40 so the lines seem at times a
bit heavy and not really very good for drawing.

In high resolution graphics it is again possible to isolate the top 20
lines of the screen using the instruction HOR, but this time the number
of points is greatly increased to 280 across (numbered 0 to 2 79) and 160
down (numbered 0 to 159). As well as this there are only two instruc
tions used in drawing lines, that is the word HPLOT, and the word TO.
This makes it very easy to draw quite complicated pictures very quickly.
First we must try to imagine what the screen looks like and how the
points are numbered.

The drawing opposite is an attempt to show this. The numbers along
the top start at the extreme left at 0 and end on the extreme right at 279.

HIGH RESOLUTION GRAPHICS 67

The numbers down the side start at the top 0 and end at the bottom of
the graphics screen at 15 9. When referring to points, the number along
the top is shown first, then, after the comma, the number along the side
is given. The example shown is the point 200, 50: that is, move to 200
along the top, and then move down to SO.

There is a slight complication about the last downward number. We
show it as 159, but Apple will accept numbers up to 191 here. This is
because Apple numbers the whole screen including the text lines at the
bottom. It is possible to remove the text lines altogether, and to use the
whole screen for drawing. This will be done later, but, for the moment, it
will be neceSSfll'Y in any program to put in a line to check if the
downward number exceeds 159.

0 200 279
0

50 i------------t{ 200,50 J

We will now write a short program to plot this point 200, 50.

IOOHGR
120 HCOLOR=3
140 HPLOT 200, 50
160 PRINT "PRESS ANY KEY"
180GET A$

200TEXT

Type this in and run it: it is explained below, line by line.

(a) Line 100 uses HGR to put the screen into high-resolution gra
phics mode. So the top 20 lines are cleared and all text
appears on the bottom four lines.

(b) Line 120 sets the color at 3. Notice that the word we now use
is HCOLOR and the number for white is 3. Later on we will

68 GRAPHICS

look at how to use high resolution graphics in color for those
who have a color monitor.

(c) Line 140 plots the point. Notice how small it is compared to
the large rectangle used in low resolution graphics.

(d) The last three lines are just a way of ensuring that the screen
is returned to text mode at the end. They can be left out if you
wish.

HPLOT AND TO

These two words allow us to draw lines on the screen joining any two
points. This can be done directly, without a program. First type in HGR
and press I RETURN I. This puts the screen in graphics mode. Then type in
HCOLOR= 3. This makes the color white. Then type in:

HPLOT 1, 3 TO 130, 100

and press IRETURNI. Now type in:

HPLOT 4, 150 TO 260, 3

Now try as many others as you like, choosing whatever points you
wish.

Now try this (first type in HGR and press IRETURNI , to clear the
screen):

HPLOT 170, 10 TO 140, 140 TO 30, 70 TO 170, 10

and press I RETURN I . If you've done it properly the result should be a
triangle on the screen. This demonstrates how to use the word TO to
chain points together to make a sequence of lines joined end to end.

It is easy now to write a program to draw triangles. The one below is
a simple example which could be much improved as shown in Chapter 3.
First type in TEXT, and then NEW, to clear out any program in
memory, and then type this:

lOOHGR
120 HCOLOR=3
140 INPUT A, B
160INPUT P, Q

180 INPUT Y, Z

DRAWING A CIRCLE 69

This invites you to put in the co-ordinates of the three corners of the
triangle. In each case put in the two numbers, with a comma between
them. The rest of the program is just the HP LOT line:

200 HPLOT A, B TOP, Q TOY, Z TO A, B

Now run it a few times.

DRAWING A CIRCLE

The program for drawing a circle is slightly more mathematical than
usual and so a little bit of extra explanation is necessary; but even if you
don't understand all of it you can type it in and see if it works. You can
then change bits of the program to make the circle smaller or bigger, or
with a different center.

To draw a circle we need to know the following things to start with.
(a) Where is its center? We can choose this: and because we

want, on this occasion, to draw as big a circle as possible we
will put the center of the circle near the center of the screen, so
the first line to consider is:

160 XC=l39: YC=75

where XC is the number we go across and YC is the number
we go down to get the center of the circle. This is not the first
line of the program. We will add bits to this as we go along.

(b) What is the length of the radius? This, of course, depends on
where we put the center. Remember that the screen is 160
units high so the maximum possible value for the radius is 80.
To be on the safe side we will make it a bit smaller, usingR for
the radius:

180 R=75

(c) The line making up the actual outline of the circle will not be a
continuous line, but a series of dots. We must choose the num
ber of dots to use. This is a matter of trial and error, and for
our large circle we chose 90, and call it NP:

140 NP=90

70 GRAPHICS

(d) We also need to declare n because we are going to use the
fact that, in one complete circle or revolution there are 2 n
radians. Use the letters PI to represent the Greek letter n .

200 Pl=3.141593

With the usual introductory lines, the program so far looks
like this:

IOOHGR
120 HCOLOR=3
140 NP=90
160 XC=l39: YC=75
180R=75
200 Pl=3.141593

Make sure that your version on the screen looks like this. The next bit
involves a bit of trigonometry. Each point on the circumference of a
circle can be located with reference to the center of the circle as shown in
this diagram:

R * SIN(ANG)

We have chosen the center C(139,75) in line 160, and the radius R(75)
in line 180. The angle (ANG) will be different for each of the 90 points.
The length of the two lines which determine the position of P from the
center are shown, R *COS(ANG) and R *SIN(ANG). So if we can
compute these two lengths for each of the 90 positions, and in each case

DRAWING A CIRCLE 71

add them to the center numbers, then we can use HPLOT to put a dot
on each. Fortunately the computer does this for us.

The number of points, i.e. 90, has been stored in NP, so using C as the
counter we can set up a loop:

220 FOR C= I TO NP

Now we need the angle size {called ANG) which changes for each point.
Since an angle of 2 n means one full revolution, then the angles we
want will be first one ninetieth of this, and then two ninetieths of this,
and then three ninetieths, and so on until ninety ninetieths (i.e. a full
circle) have been calculated.

i.e. (2*n)*{l/90)
and (2*n)*(2/90)
and (2*n)*{3/90)

down to

(2 * 1C)*(90/90)

Now since C runs from 1 to 90 (in line 220) and since NP is 90, we can
express all this as:

240 ANG=(2*PI) *(C/NP)

We then compute the coordinates of the points corresponding to each
angle.

260 X=R*SIN (ANG)
280 Y =R*COS(ANG)

Finally we plot each point, remembering to add the coordinates of the
center of the circle (XC, YC) to each point.

300 HPLOT X+XC, Y + YC

Finally we close the loop:

320NEXTC

So the second part of the program looks like this:

72

220FORC=l TONP
240 ANG=(2*PI) *(C/NP)
260 X=R*SIN(ANG)
280 Y =R*COS(ANG)
300HPLOTX+XC, Y+YC

320NEXTC

GRAPHICS

List your program and check it with this. Now run it to see if it works.
Remember that you can change the center, the radius and the number

of points, but be careful with the numbers and remember that the screen
is only 160 by 280 points.

COLORED CIRCLES

In high resolution graphics it is also possible to have color, but this time
only 6 colors are available. There are, however, eight color numbers
because 0 and 4 are alternative codes for black, and 3 and 7 are alterna
tive codes for white. We can add a few lines to the circle program just
completed which will demonstrate the available colors.

First remove line 120 by typing in 120 and pressing the IRETURNI key.
Then type in these four new lines:

205FORN=l T07
210 HCOLOR=N
340GET A$
360NEXTN

Then change line 300 as follows:

300 HPLOT XC, YC TO XC+X, YC+ Y

Now run the program. The loop set up by lines 205 and 360 means that
the colors used will range through those available, starting with
HCOLOR = 1. We have deliberately left out 0 which is black, but 4
also represents black, so when it gets to that color, it will seem as if the
circle is being removed. Line 340 stops the program when the circle is
complete. When you press a key, it goes on to draw the circle again, but
with a different color. The change in line 300 means that instead of
simply plotting the points on the circumference of the circle we are
joining the center to each point each time, so the circle is like a wheel
with a great many spokes.

A MOVING SHAPE 73

A MOVING SHAPE

We can now use HPLOT to draw a shape and make it move across the
screen. To begin with the shape that will move must be drawn on squared
paper. Here is an example.

5 10 15 20 25 28
~

[Z]SJ
[Z(6, l}S

s
lLl ~ (24, 4)_

t--
lLJ ~ lL

H ~1,6) ~ L I
LS _L l rs: IS] 1' 1

~ ~ y 1
~ r'-J v
~ ~ v 10

~ ~ ~ [
LS; :(17, 12) 1
~ 1
~ j
~

15

~ ll

~ -(12, 17) I\ v l v 1
y 1

20

£ '
~

~ 1
r- t'-1 N t- 1 ~

'(4, 24) ~ t-t-........ l
r--t-t--1 1--1 _l

25

28 r-t-t-+-
(28, 28):!=

You can, of course, make up your own, but draw it carefully and find
the coordinates of the points as shown.

We are now going to use HPLOT to draw and join these points in this
order:

(6, 1)--+ (17' 12)--+ (24, 4)--+ (28, 28)--+ (4, 24)---+ (12, 17)--+

(1, 6)--+ (6, ·1)

74 GRAPHICS

Note that we put the first point in again at the end. The first thing we will
do is put these numbers, in exactly the order they appear here, into a
data statement, like this:

900DATA6, l, 17, 12,24,4,28,28,4,24, 12, 17, 1,6,6, 1

We will now read these numbers into two arrays, A and B, as follows.
(Since the number of points is less than 10 we need not declare the
arrays.) A is for the X numbers and Bis for the Y numbers.

120 FOR C=l TO 8
140 READ A{C), B(C)
160NEXTC

We want to be able to draw and redraw the shape in a number of posi
tions across the screen so we will have to use two variables to represent
the changes in the position points. We will call them XS and YS and, to
begin with, we will make them equal to zero.

180 XS=O : YS=O

We now need a routine to actually draw the shape and, since we will be
doing this over and over again, we will put it into a subroutine, starting
at line 1000.

1000 REM DRAWS SHAPE
1020 HPLOT XS+A(l), YS+B(l)

1040 FOR C=2 TO 8
1060 HPLOT TO XS+A(C), YS+B(C)
1080NEXTC
llOORETURN

(a) In line 1020 we simply plot the first point.
(b) Then we set up a loop, lines 1040 and 1080, to join this point

to the next one, i.e., using line 1060; and then that one to the
next one, and so on to the end.

We now go to this subroutine for the first time, remembering to declare a
color:

200 HCOLOR=3
220 GO SUB 1000

We then wish to move it and draw it again. So we change XS and YS
as follows, and then go back to line 200 and draw it again.

A MOVING SHAPE

320 XS=XS+3: YS= YS+3
360GOT0200

75

We have added three to both XS and YS, but you can choose your own
numbers. Two more lines are necessary and then you can run the
program.

lOOHGR
999END

If you have copied all of this in correctly you will find that the
program works quite well, but there are two further problems to solve.
The first is that since XS and YS increase by three each cycle of the
program, eventually they get too big and Apple gives you an error
message, "ILLEGAL QUANTITY ERROR IN 1060". So we must
write in a line to trap this error.

340 IF YS > 129 THEN 999

Type this in and run it again.
The second problem is that the shape does not disappear after it has

been drawn. That is, it leaves a trace behind. The way to solve this is to
remove the whole shape each time immediately after it has been drawn.
The routine to do this is simple. We just change the HCOLOR to zero
and draw it again. Since HCOLOR=O means black, the shape will be
erased.

280 HCOLOR=O
300 GOSUB 1000

Type these two lines in and try it again. This solves the problem.
However, the whole process is perhaps a little too fast, so we can slow it
down by putting in the following line. (This technique is described in full
onpage88).

260 FOR Z=l TO 200: NEXT Z

One final refinement. Put in a line that gives you control over the
movement, so that the shape only moves one step when you press a key.

240GET A$

Try this. You may now find that you do not need line 260.

76 GRAPHICS

PROBLEMS

1. Write a program, using high resolution graphics, which will make a
ball bounce repeatedly from the top of the screen to the bottom and,
at the same time, move slo~ly across from left to right.

2. Write a program which Ctraws a grid of hexagons on the screen,
using high resolution graphics.

3. Write a program to draw each of the numerals on the high resolu
tion graphics screen. The program should invite the user to input the
coordinates of the top left-hand corner of the numeral and should
then draw the requested numeral on the screen.

G
Routines and Useful Information

INTRODUCTION

This chapter is an attempt to put together in one place a number of
techniques and sets of information that we have found very useful. None
of these separate pieces is long enough to justify a full chapter, but each
is of considerable importance and interest.

LEFT AND RIGHT ARROWS (+- --+)

Although use of these arrow keys has already been referred to on page
9, it is necessary, before the next section, to be quite sure about what
they do. We will look at three examples.

(a) First type in this line and press IRETURNI .

100 PRINT "ABC DEF"

(b) Now type this in, but do not press !RETURN I as yet.

l20PRINT "ABC DEF"

Now use the arrow-left key(G) to move the cursor back five
spaces until it is on top of the C. Now press IRETURNI.

(c) Finally type this in, and again do not press thelRETURNlkey.

140 PRINT "ABC DEF"

Now use the arrow-left key to move the cursor back five
spaces, as before. Now use the arrow-right key (El) to move
the cursor three spaces to the right until it is on top of the
letter F. Now press I RETURN I

77

78

The result is as follows:

100 ? "A B C D E F"

120? "AB
140? "AB CD E

ROUTINES AND USEFUL INFORMATION

List it to check that this is exactly what was entered. The effect of the
arrow-left key is to move the cursor to the left, so that when you press
I RETURNI , anything to the right of the cursor, including the character it
rests on, is wiped out. The effect of the arrow-right key is to enter
anything it passes over into Apple's memory. (You must of course press
I RETURN I at the end.) So that, in the third example above, the arrow-left
wiped out the letters COE, but the arrow-right reinstated them again.

SCREEN EDITING

If we have typed in a program and discover that one of the lines has
been mistyped we then have two possible ways of correcting this
mistake. One is to type in the whole line again, so replacing the mistaken
line with a corrected version. The other way is shown in detail with an
example. Suppose the line to be corrected is somewhere in the middle of
a program, and is numbered 500.

First type in LIST 500, which places this specific line at the bottom of
the screen close to the cursor and easily accessible.

500 PRINT "INPUP NAME OF BOK"

There are two mistakes on this line:
(a) INPUP should be INPUT.
(b) BOK should be BOOK.

To correct this we must first of all put Apple into escape mode. To do
this simply press the I EScl key once. To get out of escape mode again,
just press the space bar once. (In fact, most other keys will do to get out
of escape mode, but since there are a number of exceptions the safest
thing to do is to use the space bar.)

Put Apple into escape mode now. Press the letter M a few times. The
cursor will move down the screen in a straight line. Now press the letter I
a few times. The cursor will move up the screen in a straight line. When
you press the letter K the cursor will move to the right; and when you
press the letter J the cursor will move to the left. These four keys are
placed on the keyboard in a cross, each roughly pointing in the direction
of movement associated with it, like this:

SCREEN EDITING 79

I

J K

M

Experiment with these four keys, and move the cursor about the screen.
Now return to the line which we wished to correct. Type in LIST 500

and press IRETURNl.

500 PRINT 11 INPUP NAME OF BOK"
JD

There are two stages in this editing process. In the first we use escape
mode to move the cursor back up the screen to the correct position. In
the second we get out of escape mode and actually edit the line using the
arrow-left and arrow-right keys.

Stage l

(a) Press the IEscl key once.
(b) Press the letter I twice. This moves the cursor on top of the

first zero of 500.
(c) Press the letter J once. This moves the cursor on top of the 5

of 500.
(d) Press the space bar once. This puts Apple out of ESCAPE

mode. We are now ready to begin to edit the line.

Stage 2

(e) Use the arrow-right key to move the cursor across the line
until it rests on top of the last letter of INPUP, i.e. the wrong
P.

(0 Press the letter T. This changes the incorrect P into a correct
T.

(g) Use the arrow-right key again to move the cursor over to the
KofBOK.

(h) Then type the rest of the line correctly, i.e. 0, then K, then
quotation marks.

80 ROUTINES AND USEFUL INFORMATION

(i) Press I RETURN I .
U) Now type in LIST 500 and see if it is correct.

There are a number of points to be made about this editing facility.
(a) When you wish to edit a line you must always move the

cursor, in escape mode, to the very first symbol on the line,
that is to the first digit of the line number. (Even when the line
actually spills over onto the next row).

(b) When you press the space bar and begin to actually edit the
line, the cursor must be moved by the arrow-right key to the
very end of the line, even when it overflows into another line.
If the mistake is near the beginning of a line, there is a
tendency to correct it and then press I RETURN I immediately.
If you do this you will wipe out the whole of the rest of the
line.

(c) If the line is very long and overflows onto the next screen-row,
another problem arises. This is best illustrated with another
example. When you first type in the line it looks like this
(including a deliberate mistake):
...

. 600 PRINT"THIS LANE IS GOING TO OVERFLOW INT
: 0 THE NEXT LINE. "

Then, when you type in LIST 600, and press IRETURNI, it looks like this:

..
600 PRINT "THIS LANE IS GOING TO

OVERFLOW INTO THE NEXT LINE
"

If you count the characters and spaces carefully you will find that when
you are typing material in Apple uses the full 40 spaces across the
screen, but when you list it Apple uses only 33 spaces starting from the
left.

Now type in LIST 600 and use the technique described above to edit
this line and correct the misspelling, remembering to keep pressing the
arrow-right key until you reach the end. Now list it again. This time
there will be two large spaces in the line, after TO and after LINE. These
have been caused by the fact that the cursor has been moved across
these spaces by the arrow-right key during editing. If you are not clear
about this, begin again and watch the screen carefully.

The problem is how to avoid making these spaces when editing. There
are a number of solutions. One is to use the arrow-right key only as far
as the end of the first row of the line and then simply to retype all the rest.

INSERTION OF MISSING WORDS 81

The second is to use the arrow-right key until you reach the end of the first
row, then go back into escape mode and use the letter K to move the cursor
until it reaches the first letter of the next line, then leave escape mode and use
the right-arrow key again, and so on. The point is that while Apple is in
escape mode, you are not using the right-arrow and so are not entering the
'spaces' into your line.

A third method involves the use of the poke command and this is
described in the next chapter. This is probably the least troublesome
solution.

THE ESC KEY

There are a number of other uses of the ~ key.
(a) First press I ESCI to put Apple into the escape mode. Then,

hold the ISHIFTI key and press the letter P. This should have
the effect of clearing the screen.

(b) Use the lescl key and the letters I, J and K to move the cursor
to some point on the screen above where the writing on the
screen ends. Then press F. Everything from the position of the
cursor to the bottom of the screen should then disappear.

Do this again and then press E. This removes everything
from the position of the cursor to the end of that particular
line.

INSERTION OF MISSING WORDS

It is possible to use the escape mode to insert a missing word or words
into a line. A well-known mistake is to leave out a word at the beginning
of a line, such as INPUT. First type this in:

100 "WHAT IS THE NAME ";A$

but do not press lRETURNI yet. You have noticed your mistake. First use
the arrow-left key to move the cursor back to the first set of quotation
marks, then press IESCI once. Use the M key to move the cursor down a
line (or more if necessary) to where there is nothing written. Now press
the space bar to get out of I ESC I mode. Then type the missing word
INPUT. Then immediately go back into ESC mode and use the letters I
and J to move the cursor back on top of the first quotation marks. Press
the space bar once, then use the arrow-right key to move the cursor out
to the end of the line. Now press I RETURN I. The screen will look like this:

82 ROUTINES AND USEFUL INFORMATION

..
] 100 11 WHAT IS THE NAME";A$

INPUT
JD

Now type in LIST, and the screen should look like this:
..

i]LIST
~ 100 INPUT 11 WHAT IS THE NAME";A$

~JD
Do this sort of correction a few times and think about what is happen
ing. The point is that while Apple is in escape mode you can move the
cursor wherever you like but nothing is being entered into memory. Only
when you press the space bar and come out of escape mode does Apple
take in what you print or pass over.

CONTROL OPERATIONS

Below the I ESCI key on the keyboard is one with the letters CTRL on it.
This is short for control. This key is used for a number of interesting
operations such as the control of screen listings. To demonstrate these
properly you will need a long program in memory. Put your systems
master disk into disk drive 1, and type in CATALOG. Then choose a
long program, that is one with a large number in front of it. A good
example is LITTLE BRICK OUT. Load this in the usual way. (That is,
type in LOAD LITTLE BRICK OUT, and press the IRETURNlkey)~

CONTROL AND C

Type in LIST and press IRETURNI. Suppose you wish to stop the listing
completely, as soon as it has started. Type in LIST again and press
!RETURN!. Then hold the ICTRLJ key with one finger and press the letter C
with another. The "bell" will ring and the listing will stop with the
message BREAK, and the cursor will return. Now type in RUN and
press IRETURNI. As soon as the program starts, hold lctRLI and press C.
The program will stop at once. (If it doesn't stop, press IRETURNI after
ICTRL I and C. It may also be necessary, in this program, to type in
TEXT to remove the graphics facility).

So, lcr11I with C is a way of aborting the listing or running of a
program at any time.

CONTROL AND G 83

CONTROL ANDS

Type in LIST again, then, as soon as the listing starts, put one finger on
lcTRLI and the other on the letter S. This stops the listing at once. Press
ing any key will start it again.

CONTROL AND X

Type in NEW to wipe out the previous program and then type in the line
below, but don't press IRETURNI:

100 PRINT "THIS LINE IS WRONG

Suppose you suddenly realized that this line was indeed completely
wrong and that you just wanted to abandon it and begin again. Hold the
ICTRLI key and press the letter X. This will have the effect you want. The
screen will look like this:

] 100 ? 11 THIS LINE IS WRONG"-

! J 0

The presence of the symbol "\" is an indication that you have
abandoned this line. If you now type in LIST and press I RETURN I, nothing
will appear.

CONTROL AND G

First, hold the ICTRLI key and press the letter G. Do this a few times. A
sound something like a bell will be made. We can program this as
follows: first type in the line below and then read the following instruc
tions:

100 A$="

You have opened a set of quotation marks. Now hold the ICTRLI key and
press G so that the bell sounds. (Nothing will appear on the screen, but
you are nonetheless entering it into Apple's memory). Now close the
quotation marks, and press IRETURNI. The line now looks like this:

100A$=" "

84 ROUTINES AND USEFUL INFORMATION

And, although there is nothing visible between the quotes, there is in fact
a programmed command there. Now type in:

120PRINT A$

Now type in RUN and press !RETURN I . The result is that the bell
sounds. This is caused by line 120 actually printing A$, which is the bell
sound.

Now change line 120 as follows and add the rest:

120 FOR N=l TO 20
140PRINT A$
160NEXTN

Now type in RUN and the bell will ring 20 times.

RANDOM NUMBERS

A routine to generate random numbers is frequently needed when writ
ing games and simulation programs on Apple. This is done using
Apple's built-in random number function, which is activated by the
statement RND (short for random). First type in this program and then
run it.

lOOHOME

120INPUT A

140FORN=l TOS
160 PRINT RND(A)

180NEXTN

Apple responds by first clearing the screen (line 100) and then printing a
question mark to indicate that it is waiting for you to input A (line 120).
Lines 140 and 180 together create a loop which is cycled round five
times. During each cycle RND(A), that is a random number linked in
some way to the starting value A, is printed. So we can test the effects of
using different values of A by running this program a number of times.
First, type in 4 in response to the question mark. Then press I RETURN I.
The result on one particular occasion is shown opposite. Your sequence
will almost certainly be slightly different.

RANDOM NUMBERS

..
• 748548247
.75659165
.613849493
.0841481608
.695520398

85

Now run this program again and put in 9. Make a note of the last num
ber on the list. Now run it again and put in 0. Repeat this a few times.
The effect of 0 in this program is to produce five copies of the last
random number generated when 9 was input. Run it again and put in
3.7. Try a great variety of numbers. Then run it again and put in -2. The
result is shown:

..
2.99205567E-08
2.99205567E-08
2.99205567E-08
2.99205567E-08
2.99205567E-08

The value of A is obviously important. If you wish to be sure to
produce a different set of numbers each time, then you may use for A
any number greater than 0.

Normally you will use positive numbers and in each case you will
produce a positive decimal with a value of less than I, and with up to I 0
digits. In this form, these random numbers are not very useful, so we
need ways of changing them to make them less cumbersome.

First type in NEW to remove the old program and then put in the
following:

lOOHOME
120FORN=l TO 10
200 PRINT RND(7)

220NEXTN

Run this to make sure that it produces a set of ten quite different num
bers. Then use an auxiliary variable A, and change the program with the
two lines:

140 A=RND(6)
200PRINT A

86 ROUTINES AND USEFUL INFORMATION

Notice that, in order to show that any positive number will do, we keep
changing the number in the brackets after RND.

If you now run this program you will find that changing line 200 and
inserting line 140 does not change what the program does, but it makes
it possible to manipulate this auxiliary variable A.

First type in these two lines, changing line 200 again in the process.

160B=lO*A

200 PRINT A, B

Now run this. This time not only are the random numbers printed, but
each is multiplied by 10 and these are also printed. Then, add line 180
and change line 200 again. (We have used the statement TAB(35) to
make the results easier to read. This is explained in detail in chapter 9:
just type it in for now.)

180 C=INT(B)

200 PRINT A, B TAB(35) C

This time, the integral or whole-number part of each number is placed
by line 180 in C. Then line 200 ensures that this whole number is also
printed on the screen. Try running this program now.

Notice that the last column of numbers are all single-digit whole num
bers. We now have a complete program and this is listed below. Note
that there have been two small changes from the version worked out
above. In line 120 we have replaced 10 by 100, and we have changed
line 200 so that C (the whole number part of each random number) only
is printed. Now run this program, which follows, a few times to make
sure that you know what it is doing. We have ended up with a program
that generates 100 single-digit random numbers each time.

lOOHOME

120 FOR N=l TO 100
140 A=RND(6)
160 B=lO* A

180 C=INT(B)
200PRINT C

220NEXTN

Examine the results carefully, and notice that C can be any one of the 10
numbers 0-9. If you would like C to be one of the 10 numbers from 1 to
10, rather than from 0 to 9, then add 1 to C each time. One way to do
this is to change line 200.

RANDOM NUMBERS 87

200 PRINT C + 1

It is also possible to combine three of these lines (140, 160, 180) into
one as follows:

140 C=INT(lO*RND(2))

The definition of random numbers suggests that each of these numbers
(0 to 9) comes out with equal regularity. The following program tests
this. It simulates tossing a coin as follows. If the random number is less
than 5 (i.e. 0, 1, 2, 3 or 4) then we record a head (lines 200 and 260).
Otherwise (i.e. when the number is 5, 6, 7, 8 or 9) we record a tail. First,
type in NEW, and then the new program below.

100 HOME : INPUT "HOW MANY TOSSES II ; J
120 FOR N=l TO J
140 A=RND(4)
160B=l0*A
180 C=INT(B)
200 IF C < 5 THEN 260
220T=T+l
240GOT0280
260H=H+l
280NEXTN
300 PRINT "NO. OF HEADS"; H
320 PRINT "NO. OF TAILS" ; T

Now type in RUN and press IRETURNI. When the question mark appears
on the screen in response to line 100, input 100, which is the number of
times we wish to simulate the coin-tossing. This is stored in J. Then press
IRETURNI. Do this a number of times, and keep notes of the results. The
number of heads and the number of tails should be close to 50 each time.
Now run it again and put in 1000. This time it will take longer.

Some final points about random numbers. The two lines:

160B=l0*A
180 C=INT(B)

can be replaced by this line:

160C%=10*A

and line 200 changed to:

88 ROUTINES AND USEFUL INFORMATION

200 IF C% < 5 THEN 260

A letter or variable followed by the percentage sign stands for a whole
number or integer. This means that, no matter what IO* A looks like,
only its integral part will be stored in the variable C%.

Suppose we wished only to have the numbers 0, I and 2 rather than
the whole set up to 9. In this case we need only multiply the random
number by 3. (The biggest posible random number will be less than I,
say about 0.999. When this is multiplied by three and the integral part
taken, it cannot be bigger than 2).

Type in this program and try it.

lOOHOME

120FORN=l TO 100

140 A=RND(9)

160B=3*A

180 C=INT{B)

200PRINT C;

220NEXTN

It should produce only the numbers 0, 1 or 2.
Finally, suppose that you wished to have only the numbers 17, 18 and

19 in your set. In this case you would have to add 17 to each number
produced by the above routine.

DELAYS

It is possible to delay or stop the running of a program for a few seconds
when it is necessary to read something on the screen. The routine works
as shown below, where it is put in a subroutine. Type it in and run it.

lOOHOME
120 PRINT "NOW THERE WILL BE A DELAY"

140 GO SUB 1000

160 PRINT "THE DELAY IS NOW OVER"

180END

1000 FOR N=l TO 1000

1010 NEXT N

1020RETURN

NUMBERS IN APPLE 89

In this case Apple cycles round the loop in lines 1000 and 10 l 0, one
thousand times. This takes approximately one second.

NUMBERS IN APPLE

We will now consider the question of how Apple handles large numbers
and the maximum size of number it can cope with. To test this, type in
and run the program shown below:

lOOHOME
120FORN=l TO 10
140PRINT10 "N
160NEXTN

This prints out all the powers of 10 (the inverted v in line 140 means 'to
the power or). The screen looks like this:

..
10
100
1000
10000
100000
1000000
10000000
100000000
1E+09
1E+10

JD
The last number printed out in full is 1 followed by eight zeros.
followed by nine zeros is printed as

..
1E+09

which conventionally means 1 multiplied by 10, nine times. This is called
scientific notation. Now subtract one from each of these numbers and
print this by retyping line 140 like this:

140 PRINT lOAN, lOAN-1

90 ROUTINES AND USEFUL INFORMATION

This produces the same set of numbers as before, and, more-or-less
beside them, the result of subtracting one from each of them. (The limita
tions on the accuracy of some numbers in Apple become clear from this
example as well.) But the important thing, from our point of view, is that
Apple prints 999 999 999 (i.e. nine times) in this form, but when one is
added to this it prints it as IE+ 09, i.e. in scientific notation. In other
words "nine nines" is the largest whole number that Apple can cope
with. After that it gives you an estimate only.

Type in NEW and try this program:

lOOHOME
120FORN=l TO 10
140 PRINT 999 999 995 + N
160NEXTN

This asks Apple to print all the whole numbers, starting with 999 999 996
and up to 1 000 000 005. Run the program and see what
happens.

We will now try to see how Apple handles decimals. First type in this
program:

lOOHOME
1201NPUT A
140PRINT l/A
160GOTO 120

Notice that line 160 sends the program back to the INPUT line, line
120. This means that you can go on inputting numbers for A and then
examining the decimal caused by dividing A into 1. (When you wish to
leave the program, press lcTRLI and C and then press the IRETURNI key).
That is, you can look at 1/3 or 1/7 or 1/103 as decimals. Run the
program. Line 120 will make Apple put a question mark on the screen.
Type in 3 and presslRETURNI. Then type in 7; then 53; then 179. Try as
many numbers as you like. Remember that our problem is to try to
understand how Apple writes decimals.

Here are four responses from this program when the numbers shown
are typed in:

TRACE/NOTRACE

. .

. . .

.

.

? 7
.142857143

? 23
.0434782609

? 107
9.34579439E-03

? 231
4.32900433E-03

?0

91

Obviously some fractions, like 1/23, produce straightforward decimals,
but with a maximum of nine significant figures. (That is, it does not
count the zero after the decimal point as a significant figure.) But other
decimals like 1/231 produce less accurate answers in the scientific
notation form. At what stage does the changeover take place? That is,
when are decimals too small to be written normally?

Run this program again, and put in 100. The response is, not sur
prisingly, .01. Now put in 101. This number will be smaller than .01 and
the response is in scientific notation. In fact Apple will translate any
number smaller than .01 into scientific notation, and at the other extreme
any number greater than 999 999 999 into scientific notation.

The conclusions then are as follows:
(a) Any number numerically less than .01 is changed into scien

tific notation.
(b) Any number numerically greater than 999 999 999 is changed

into scientific notation.
(c) Any number between these two limits is written as an

ordinary number or decimal.
{d) If this number or decimal has more than nine digits, only the

first nine are recorded. If the 10th digit is 6, 7, 8 or 9, then the
ninth digit has I added to it.

TRACE/NOTRACE

This is a useful facility which can help to find a mistake in programming.
The example that follows is a simple program which is designed to test
whether an input number is smaller or larger than 6. To show the value
of the TRACE facility this program has a mistake in its logic. First type
it in:

92 ROUTINES AND USEFUL INFORMATION

lOOHOME
120 INPUT "CHOOSE A NUMBER " ; A
140 IF A< 6 THEN 200
160 PRINT "A IS EQUAL TO OR LARGER THAN 6"
200 PRINT "A IS SMALLER THAN 6"
220END

Now run it a few times. The idea is that at line 140 we test the input
number. If it is less then 6 we send the program to line 200 where it
prints "A IS SMALLER THAN 6". If A is not less than 6, then the
program goes on to the next line (line 160) and prints "A IS EQUAL
TO OR LARGER THAN 6".

But this does not work properly. When A is less than 6, say 4, it
works. But when A is greater than 6, say 9, both messages apear on the
screen. Now type in the word TRACE, press IRETURNI and run the
program. Then put in 9 and press IRETURNI. The screen looks like this:

..
::tt=120?9
: ://: 140 =#:160 A IS EQUAL TO OR LARGER THAN 6
: ://: 200 A IS SMALLER THAN 6
~ ://:220

~JD

This means that the program has first gone to line 120, and waited there
for an input (in this case 9). Note the hash sign(#). This stands for the
word "number", so #120 means number 120. It appears here to indicate
that a trace is being carried out.

List the program, and examine this sequence. Lines 120 and 140
make sense. Since A is not less than 6, then line 160 makes sense. But
then there is nothing to stop the program going on to line 200, which it
should not do. So we have discovered the mistake and now put in a new
line:

180GOT0220

Now run the program, and this time it works. One final point: it is
always necessary to turn the trace facility off at the end of the routine,
by typing in NOTRACE. It is, of course, possible to use the words
TRACE and NOTRACE as parts of a program, rather than typing
them in directly as we have just demonstrated.

PROBLEMS 93

PROBLEMS

1. Using the random number function, write a program to simulate the
tossing of a single dice.

2. Write a program that will present in sequence the verses of the
Christmas song The Twelve Days o/Christmas. The words are:
"On the twelfth day of Christmas
My true love sent to me:
Twelve lords a-leaping
Eleven ladies dancing
Ten pipers piping
Nine drummers drumming
Eight maids a-milking
Seven swans a-swimming
Six geese a-laying
Five gold rings
Four colly birds
Three French hens
Two turtle-doves
And a partridge in a pear tree."

7
The Use of Machine Code

INTRODUCTION

Writing programs in machine-code is not easy and it would be impos
sible in one short chapter to do anything more than demonstrate how to
use machine code programs written by others. In doing this, however, it
is hoped that those interested in learning how to write machine-code will
begin to understand the elements of the process.

We normally write programs in the BASIC language and there are
two main reasons why we might want to use machine-code. Firstly, a
routine written in machine-code will work a great deal more quickly, and
there are occasions when we want things to happen as quickly as
possible. Secondly, a routine written in machine-code is more
economical in its use of memory, and, although this is not a great
problem for us now, if we wished later on to write a very long and
complex program it might become necessary to write at least parts of it
in machine-code.

Both of these reasons suggest that normally it is not necessary to
write a whole program in machine code. It is more likely that most of a
program will be written in BASIC and machine-code will be used for a
small part of it, perhaps one single routine which needs to work fast.
This means that there must be some way of incorporating machine-code
within BASIC. This is done using three BASIC words, POKE, PEEK
and CALL.

We will consider each of these words in detail in what follows. The
rest of this chapter has four sections:

(a) The Screen RAM. This part deals with that section of the
memory associated with the screen. This is called the screen
RAM, and we write about it first because it allows us to deal
directly with memory in a way that is immediately visible to
the eye.

94

THE SCREEN RAM 95

(b) Music. This second part shows how to use Apple to make
music. This process allows us to introduce and use a machine
code program without necessarily understanding the detail of
how it works.

(c) A Machine-Code Program. The third section uses a short and
simple piece of machine-code as an introduction to an under
standing of the processes involved in the construction of such
code. This also allows for a demonstration of one method of
actually getting the program into Apple's memory.

(d) Poke as a Switch. This fourth and last section shows how
changing the contents of units of memory can act as a sort of
switch with respect to certain aspects of Apple's functioning.

THE SCREEN RAM

Poke

This mysterious word is rarely met in BASIC texts and yet it turns up
unheralded in many programs. Perhaps the best way to begin to under
stand it is to do some examples.

Try this:

lOOHOME
120 POKE 1724, 170

Then type in RUN and press I RETURN I . The result is not very dramatic.
The star (*) graphic appears about the middle of the screen which has
been cleared by line 100.

Look at line 120 again:

120 POKE 1724, 170

The star graphic (*) has the number 1 70 associated with it. The
location, that is the center of the screen, has the rather unwieldy number
1724 associated with it. So the line can be read, "poke, into space num
ber 1724, the symbol 170".

Symbol Numbers

In fact each letter, number and symbol on the Apple keyboard has a
poke number associated with it. As well as this the reverse field and flash
version of each of these characters has a different number associated

96 THE USE OF MACHINE-CODE

with it. These characters and their associated numbers are all shown in
Tables DI and D2, pages 194 and 195. Notice that the numbers run
from 0 to 255.

In Table DI there is a copy of the Apple keyboard. Above each nor
mal key are written four code numbers which are associated with that
key. They are, starting with the bottom and lowest of the four numbers
and moving up, the following:

(a) The number representing the symbol in reverse field.
Remember that, normally you must type in INVERSE and
press IRETURNI to be able to access this symbol.

(b) The number representing the symbol in flash mode. Again,
normally you must type in FLASH and press IRETURNI to be
able to make use of this symbol.

(c) The number representing the symbol.
(d) Another number representing the symbol.

For example, look at the key S. The poke numbers and the symbols
associated with them are:

S (in reverse field) . 19
S (in flashing mode) 83
S (normal) 147 or 211

In this way the poke number associated with each symbol can be found.
However, if the number is known, but not the symbol, Table D2
provides an opposite-way dictionary.

Screen numbers

The Apple screen can be thought of as a rectangle 40 spaces wide by 24
spaces high. That is, it is made up of 960 small squares. Each of these is
given a number starting at the top left-hand corner with I 024 and
finishing at the bottom right-hand corner with 2039. (Actually the units
are not squares but rectangles, but the difference need not concern us
here. See page 56.)

If you now add 960 to 1024, you will find that the total is not 2039, so
that some numbers in the sequence are left out. In fact, the way in which
the Apple screen is numbered is a bit strange and needs some explana
tion. It is as if the screen were divided into three equal sections, A, B and
C by lines across from left to right, like this:

THE SCREEN RAM 97

These are then placed side by side like this:

and a little extra is placed at the end. Each little square is then numbered
in sequence right across each row of this long thin rectangle, starting at
the top with 1024 and going on as follows:

Section A
Section B
Section C
Section D

1024-1063
1064-1103
1104- 1143
1144 - 1151

The second row then starts at 1152 and each row has the same pattern.
Since section 0 is not in fact part of the screen, this means that eight
numbers are lost off each row. On the first row these are, as shown
above, numbers 1144 to 1151. An attempt to show the whole pattern is
given in Table 03.

lines and movement

Now try this program. First type it in, and then look at the explanation
that follows.

lOOHOME
120 FOR A=l704 TO 1743
140POKEA, 171
160NEXT A

Line 100 clears the screen. Lines 120 and 160 together create a loop that
allows A to run successively from 1704 to 1743. These numbers repre
sent one full line of locations across the Apple screen (see Table 03). Line
140 pokes the symbol represented by 171, i.e. the plus sign, into each of
these locations. The result, when you run the program, is that a line of
plus signs appears across the screen. The whole thing happens very
quickly, so we slow it down by adding:

98 THE USE OF MACHINE-CODE

150 FOR B=l TO 20 : NEXT B

Now run it again. Suppose we wish to create an illusion of movement.
We do this by removing each plus immediately after it has been placed.

Put in the line:

145 POKE A-1, 160

160 is the symbol for a space and the result of line 145 is that a space,
i.e. nothing, replaces the plus sign placed last time round in space A,
(now space A-1). Now run the program again. Finally there is the
problem that the very last plus is not removed by the loop: because the
last circuit of the loop put in the last plus and removed the second last
plus. In order to remove this last plus add the final line, as follows:

170 POKE A-1, 160

Now run the program again.
Obviously this technique has enormous scope for experiment. Try

making diagonal runs, vertical runs, or simultaneous runs. Of course,
with Apple we can do this sort of thing a good deal more easily using the
graphics techniques, but there are two important points to be made
about this way of doing it.

(a) These screen numbers shown above and in Table 3 are in fact
the addresses of units of memory. So that when we use a line
like:

POKE 1704, 171

we are putting the number 171 into the unit of memory
numbered 1704. That is we are dealing directly with units of
memory, in that we are choosing which units of memory to
deal with and we are choosing what numbers to put in them.
This essentially is what machine-code programming is about,
the direct placement of numbers in chosen memory units. The
numbers we place can mean many things. Here they represent
characters used by Apple, but they can also mean commands
which Apple understands, or the addresses of other memory
units, and so on.

(b} The second important point is that when we use this technique
we can use any character and not just the lines used in
graphics. In the example above we used the plus sign. But if

THE SCREEN RAM 99

we changed the number 171 to 157 we would then be using
the closing square bracket. Try it and see.

In the next section we show how to examine these characters.

Symbol listing

The three programs that follow use the poke technique to show the full
set of Apple symbols on the screen in various ways. First type in NEW
to remove the old program and then type in this program.

lOOHOME
120 FOR N =0 TO 255
140 POKE 1980, N
160NEXTN

Now run this program. This prints in succession each of the symbols to
be found on the Apple keyboard in the centre of the screen. This is
location 1980. However it does this so quickly that the numbers cannot
be read. So add this slowing down line:

150 FOR J=l TO 400: NEXT J

Now try running the program again. Here, each symbol replaces the
previous one, so if we want to display all the symbols at once, a new
program (like this one in many ways) has to be devised. Type in NEW
and then this program:

lOOHOME
120 N=l024
140 FOR A=O TO 255
160POKEN,A
200 N=N+l
220NEXTA

Now type in RUN and press IRETURNI • This demonstrates at once the
problem with the screen numbering and, as well, some of the symbols
are missing because of the unused numbers at the end of the bottom row.

Screen number conversion

To solve these two problems we have written a subroutine which allows
us to treat the screen as though it was numbered from 1 to 960. Change
lines 120 and 160 as shown and put in lines 180 and 240.

100 THE USE OF MACHINE-CODE

120N=l
160 GOSUB 1000
180 POKE P, A : REM N IS CONVERTED TOP BY SUBROUTINE

240END

Line 120 uses N = 1 to represent the first, i.e. the top left-hand corner of
the screen as 1. Line 160 sends the program to the following subroutine,
which translates N into the correct number, i.e. 1024 which is here called
P, and then line 180 pokes the first symbol into this memory unit. In the
next circuit of the program, N has become 2 and again the subroutine
translates this into the correct number. In fact the subroutine translates
each of the numbers from 1 to 960 into the correct memory-unit-number
for the corresponding screen-location. Don't worry too much if you
don't understand how it works. Just type it in and try using it.

999 REM N IS SCREEN NUMBER 1 TO 960
1000 M=INT (NI 40) + 1
1020 R=N-40 * (M-1)

1040 R=R-1
1060IFM<9THEN1120
1080IFM<17THEN1140

1100 X=56 : Y =M-24 : GOTO 2000

1120 X=O: Y =M-1 : GOTO 2000
1140 X=72: Y =M-13: GOTO 2000
1999 REM PIS PROPER SCREEN NUMBER FOR POKE
2000 P=984+M * 40+X+ Y * 88+R
2020RETURN

Random pictures

The next example uses poke and this subroutine to draw a random
picture on the screen, made up of the four symbols #, *, + and $, all in
reverse field. (You can, of course, choose your own symbols.) Table D 1
shows that the numbers corresponding to these are:

35
$ 36
* 42
+ 43

First we choose one of the four numbers 0, I, 2 or 3 randomly.

THE SCREEN RAM

lOOHOME

120 B=INT {4*RND{7))

Then we use this to choose one of our four symbols.

160 IF B=O THEN A=35
180 IF B=l THEN A=36
200 IF B=2 THEN A=42
220 IF B=3 THEN A=43

We also choose one of the 960 screen locations randomly.

140N=INT{960*RND{3))+1

101

Then we poke the number representing the symbol, that is A, into the
chosen screen location, after going to the subroutine described above.

240 GOSUB 1000
260POKEP,A

We then put in a loop to make it repeat over and over again:

280GOTO 120

Now run it and watch what happens. When you want it to stop, hold the
lCTRLl key and press C. If that doesn't work then press IRETURNI.

Don't type in NEW because we will use the subroutine at line 1000
for the next section. Type in DEL 100, 280 and press lRETURNl.

Introduction to peek

The peek statement makes use of the same set of symbol and screen
location numbers as have already been used by poke, that is those in
Tables 02 and 03. It is a way of checking whether or not a memory
location is empty or has a number stored in it.

Notice that characters such as A or ? cannot be stored directly in a
unit of memory. Only numbers can be stored, and so when you wish to
store A or ? , you actually store the numbers corresponding to them
shown in Tables D2 and D3. A method must then be devised for
translating the numbers back into characters.

We will now try to illustrate this process. First we must place a
number in a known memory location using poke. Then we will use peek

102 THE USE OF MACHINE-CODE

to test for its existence. The routine below places the question mark
(poke number 191) in the screen location 461.

lOOHOME
120 A=l91 : REM QUESTION MARK
140 N=461 : REM SCREEN LOCATION
160 GOSUB 1000: REM TRANSLATES N INTO P
180POKEP,A
999END

Type this in and run it. A question mark should appear on the screen.
Suppose we now wish to check this screen row for the presence of a

symbol of any kind. This sort of Ghecking is often necessary and useful,
in games for example. The numbers associated with the screen locations
on this row are 441 to 480. (On Table 03 these are 1448-1487.)

Add these lines to the programs

200FORN=441 T0480
220 GO SUB 1000
240 B=PEEK (P)
260VTAB 1: PRINT N, B
280NEXTN

Lines 200 and 280 together create a loop which allows N successively to
take up the values 441, 442 and so on to 480. Line 220 translates these
into P and line 160 peeks at each of these locations in turn and stores the
number found there in B.

It is to be expected that most of these locations will have nothing
stored in them, and the number corresponding to nothing is 160.

Line 260 prints, for each cycle of the loop, the values of N and B at
the top of the screen, using VT AB 1 (for an explanation of this facility,
see Chapter 9). These are the location numbers and the content num
bers.

Try running this. The results are printed on the screen very quickly,
but if you watch the number on the right very carefully you will see that
although it stays as 160 most of the time it does change to 191 at one
point. You can check this by putting in a slow-down line as follows:

270 FOR Z= 1 TO 500 : NEXT Z

Now run the program again and watch the ·screen carefully. At 461, the
number 160 changes to 191, the number for a question mark, and
immediately changes back. Now put in the line:

THE SCREEN RAM 103

150 IF B=l60 THEN 280

and remove line 270. Now run the program again. This time when
nothing is encountered, that is, when B = 160, that answer is excluded,
so only the result survives.

461 191

However, we poked a question mark into the space, and the peek
routine has produced the number 191. We can translate this using the
table of peek and poke numbers but often it would be more useful to
have a direct translation by the machine. We can use another Applesoft
BASIC function to achieve this. The function is CHR$. CHR is short
for character, and the dollar sign indicates that it represents a string. It is
used to translate code numbers like those on Tables D 1 and D2 back
into symbols. This function is described in more detail in the chapter on
string functions, where some difficulties associated with its use are
described, but in this case there is no problem. Put in the line:

255 A$=CHR$(B)

and change line 260 to:

260 PRINT N, B, A$

This sets A$ equal to the string associated with the number B, and prints
this, i.e. AS, beside the two numbers N and B. The complete program
now looks like this:

lOOHOME
120 A=l91 : REM QUESTION MARK
140 N=461 : REM SCREEN LOCATION
160 GOSUB 1000 : REM TRANSLATION

180POKEP,A

200 FOR N=441TO480

220 GOSUB 1000
240 B=PEEK(P)

250 IF B= 160 THEN 280
255 A$=CHR$(B)
260 PRINT N, B, A$
280NEXTN

999END (continued overleaf)

104

1000 M=INT (NI 40) + 1

1020 R=N-40 * (M-1)
1040R=R-l
1060IFM<9THEN1120
1080 IF M < 17 THEN 1140
1100 X=56 : Y =M-24 : GOTO 2000
1120 X=O: Y =M-1 : GOTO 2000
1140 X=72: Y =M-13: GOTO 2000

THE USE OF MACHINE-CODE

1999 REM PIS PROPER SCREEN NUMBER FOR POKE
2000 P=984+M * 40+X+ Y * 88+R

2020RETURN

Introduction to call

The ways in which we have just been using peek and poke are simple
and obvious to explain because the effects of what we are doing are
immediately obvious on the screen. However, very often the memory
locations into which numbers are poked have nothing to do with the
screen, and so this is not so easy to demonstrate. Indeed, once you have
poked numbers into such memory locations, it is necessary to make the
machine actually go to the first of these memory locations and perform
the activities which the numbers placed in them are codes for. To do this
we use the word call.

MUSIC

Call and music

This program will demonstrate how poke and call are used together to
put a machine-code program into Apple's memory and then to make
Apple go to that part of memory and actually run the program.

Any program written in machine-code looks like a set of numbers.
The program we now list in data statements is used to make Apple play
a note of music. Don't worry about how it actually works since we are
using it simply to demonstrate the process. Later we will show how to
decide what the pitch of the note is to be and what its duration is to be,
but for the moment here is the set of numbers making up the program.
We store them in data statements in two lines of BASIC. We could have
used one line, but it would be a bit long.

lOHOME
100 DATA 173, 48, 192, 136, 208, 5, 206, 1, 3, 240, 9
llODATA 202, 208, ~45, 174, 0, 3, 76, 2, 3, 96, 0, 0

MUSIC 105

We must now use poke to put these numbers into successive memory
units. To do this we must choose a part of Apple's memory that is not,
or is not likely to be, used for something else. How this is done is too
complicated to describe here, but it is perhaps enough to know that on
most Apples the memory units numbered 768 up to 1023 are normally
available. (Note that the next set of memory units, starting at 1024, are
the screen memory locations discussed earlier.) We will leave 768 and
769 for another purpose and begin at 770. Notice that there are 23 num
bers in the program in lines 100 and 110, so the next part of the program
pokes these 23 numbers into the memory units 770 to 792.

120 FOR N=770 TO 792

140READY

160POKEN, Y

180NEXTN

Type this in and run it. The program is now entered into Apple's
memory ready to be used. To do this we need to do two things:

(a) Put the pitch of the note in memory unit 768, and its duration
or length in memory unit 769. We do this using poke in line
240 and 260 below, after inviting the user to choose the values
in lines 200 and 220.

200PRINT: INPUT "WHAT PITCH (0-255) "; P

220 PRINT: INPUT "WHAT DURATION (0-255) "; D

240POKE 768, P

260 POKE 769, D

(b) Tell Apple to go to the memory unit numbered 770 and use
or run the program. We do this in line 300 with the word
CALL.

300CALL 770

The whole program so far looks like this:

lOHOME
lOODATA 173, 48, 192, 136, 208, 5, 206, 1, 3, 240, 9
110 DATA 202, 208, 245, 174, 0, 3, 76, 2, 3, 96, 0, 0

120 FOR N=770 TO 792

140READY

160POKEN, Y

180NEXTN
200 PRINT: INPUT "WHAT PITCH (0-255) "; P

(continued overleaf)

106 THE USE OF MACHINE-CODE

220 PRINT; INPUT "WHAT DURATION (0-255} II; D
240 POKE 768, P
260 POKE 769, D
300CALL 770

Now type in RUN and press IRETURNI. The screen will look like this:

........ •
WHAT PITCH (0-255)

You respond with any number between 0 and 255 and press IRETURNI.
The screen then asks "WHAT DURATION (0-255)". You again
respond and when you press I RETURN I the note should sound. Run this a
few times and try a variety of different numbers between 0 and 255.

Playing a tune

We can now use this as a basis for the creation of a program to play a
tune. In addition to the information already available we must first
decide which numbers correspond to the musical notes on a piano.
Below is our attempt to do this. The first note is the A below middle C.

First Second
Octave Octave

A 228 114
B 204 102
c 192 96
D 171 85
E 152 76
F 144 72
G 128 64

We can now use these to put in the pitches of the various notes of our
tune. We also need fixed numbers for the duration of notes, and for this
we allow the following values: Crotchet, 240; Quaver, 120; Semiquaver,
60, and so on.

The tune we have chosen is an old Irish air called The Cliffs of
Doneen. It is shown at the top of page 107.

We first make a list of the number pairs for the notes of this tune and
store them in data lines. First remove the lines numbered from 200 to
300 in the above program, and keep the lines numbered 10 to 180. Then
type in lines 200 to 206 which contain the set of data for the pitches of
the notes of the tune. There are 54 notes, so there are 54 numbers.

MUSIC 107

inJl J a 1 r n ! J J. J' 1 J s 1

'5r U !rJ J1!J Jlj f E1 I

Sfr [J lrJ jJIJiD J Ir ij I
9 10 11 12

200DA.TA.171,152,128,114,102,85,l02, 114,128, 152,171,171,171

202DA.TA.102,96,85, 76,85, 102, 171, 152, 128, 114, 128, 114, 102

204DA.TA.102,96,85, 76,85, 102, 171, 152,128, 114, 102, 114, 128

206DA.TA 114, 102, 102, 114, 128, 114, 102, 85, 102, 114, 128, 152, 171, 171, 171

Then type in lines 220 to 226 which contain the set of 54 data for the
lengths of these same notes.

220 DATA 40, 40, 40, 240, 60, 60, 240, 60, 60, 120, 180, 60, 240

222 DA.TA. 60, 60, 240, 60, 60, 120, 120, 60, 60, 240, 60, 60, 240

224 DATA 60, 60, 240, 60, 60, 120, 120, 120, 120, 120, 40, 40, 40

226DATA120,240,60,60,180,60,60,60,240,60,60, 120, 180,60,240

Now we will store these numbers in arrays so that we can easily call
them up later on.

First the pitches, in an array called P.

240 FOR C=l TO 54
260 READ P(C)

280NEXTC

Then the durations, in an array called D.

108

300 FOR C=l TO 54

320 READ D(C)

340NEXTC

THE USE OF MACHINE-CODE

We must now remember to declare these arrays with a DIM statement
at the start of the program.

20 DIM P(60), D(60)

Then finally a loop which pokes the first pitch and duration into memory
locations 768 and 769 and immediately afterwards calls the program i~
machine-code to play the first note. Then it cycles round to do the same
for the second note; and so on for all 54 notes.

360FOR C=l TO 54
380 POKE 768, P(C)

400 POKE 769, D(C)

420CALL 770

440NEXTC

The whole program looks something like this, with the addition of
some explanatory REM statements.

lOHOME
20 DIM P(60), D(60)

99 REM MACHINE CODE PROGRAM

100 DATA 173, 48, 192, 136, 208, 5, 206, 1, 3, 240, 9

110 DATA 202, 208, 245, 174, 0, 3, 76, 2, 3, 96, 0, 0

120 FOR N=770 TO 792

140READ Y
160POKEN, Y

180NEXTN

199 REM DATA FOR PITCHES OF NOTES

200DATA 171, 152, 128, 114, 102,85, 102, 114, 128, 152, 171, 171, 171

202DATA102, 96, 85, 76, 85, 102, 171, 152, 128, 114, 128, 114, 102

204DATA102,96,85,76,85,102,l71,l52,l28, 114, 102, 114, 128

206 DATA 114, 102, 102, 114, 128, 114, 102, 85, 102, 114, 128, 152, 171, 171, 171

219 REM DATA FOR DURATIONS OF NOTES

220 DATA 40, 40, 40, 240, 60, 60, 240, 60, 60, 120, 180, 60, 240

222 DATA 60, 60, 240, 60, 60, 120, 120, 60, 60, 240, 60, 60, 240
224 DATA 60, 60, 240, 60, 60, 120, 120, 120, 120, 120, 40, 40, 40

226DATA120,240,60,60, 180,60,60,60,240,60,60, 120, 180,60,240

240 FOR C=l TO 54

260 READ P(C) : REM PITCHES

280NEXTC

A MACHINE-CODE PROGRAM

300 FOR C=l TO 54

320 READ D(C): REM DURATIONS
340NEXTC
359 REM ROUTINE TO PLAY TUNE

360 FOR C=l TO 54
380 POKE 768, P(C)

400 POKE 769, D(C)

420CALL 770

440NEXTC

109

The program will now allow you to play any tune, but it might be a good
idea to write in two routines to save on disk and recover from disk the
long lists of data in lines like 200 to 226 since these will change for each
new tune.

A MACHINE-CODE PROGRAM

Translating machine-code

Very often, in books and magazines, it is possible to find a short
program for the Apple written in machine-code which it would be nice to
be able to use. Unfortunately, unless you know how to interpret it, the
way such programs are presented is often difficult to understand. Here is
an example. It doesn't do anything very dramatic, but we have
deliberately chosen one which is short and has a clear and recognizable
output. In fact it prints the words PRENTICE HALL in the middle of
the screen.

Memory Unit Hex- Mnemonic
Addresses Codes Codes

0300 2058FC JSR FC58

0303 A200 LOX 00

0305 BO 1103 LDAX 0311

0308 90 B404 STAX 04B4

030B ES INX

030C EOOE CPX OE

030E DOF5 BNE B

0310 60 RTS

0311 DOD2C5 DATA

0314 CED4C9 DATA

0317 C3C5AO DATA

031A AO CS Cl DATA

0310 cc cc DATA

110 THE USE OF MACHINE-CODE

This program is perhaps slightly better presented than usual in that there
are headings to the columns. This listing is in three parts. The column on
the left is a list of what appears to be numbers starting at 0300 and
ending at 031 D. The presence of letters is perhaps a bit puzzling. These
are numbers written in base sixteen and they represent the addresses of
units of memory. (If you would like to know more about base sixteen see
Appendix F.) When 300 is translated from base sixteen to the usual base
ten it becomes 768, which is the number of the unit of memory where we
usually begin to put machine-code programs. This was described on
page 105.

The second column, headed hex-codes, is the machine-code program
written in base sixteen. The first row is 20 58 FC. We must first translate
these into base ten. When we do they become 32 88 252. We must then
put these three numbers into the three memory units starting at 0300,
that is into 0300, 0301 and 0302. In base ten these would be 768, 769
and 770. So we can set out the first few lines of the program again, like
this:

Memory Unit Hex- Mnemonic
Addresses Codes Codes

Hex Dec Hex Dec

0300 768 20 32 JSRFC58
0301 769 58 88
0302 770 FC 252
0303 771 A2 162 LDXOO
0304 772 00 0

We will discuss the third column, mnemonic codes, later. It is now a
simple matter to rewrite the rest of the program in this manner, although
it is also necessary to change all the hex-codes into numbers in base ten.
This can be done using the table in Appendix F, but in this case the
complete listing is shown below.

We are translating both the memory addresses in column I, and the
hex-codes in column 2, into base ten because that is the form in which
we will need them when we use POKE and CALL in our BASIC
program later on to run this machine-code program. This is because
BASIC always uses base ten. But for those experienced and knowledge
able about machine-code programs, there are other simpler ways of

A MACHINE-CODE PROGRAM 111

placing the numbers in memory and running the program, for example
using the monitor. This is done by inputting the numbers in base sixteen,
and, since this is the most common way of doing it, programs are
usually given with the numbers in base sixteen, as they were at the begin
ning of this section. For beginners, however, it is wiser to use BASIC
programs with numbers in base ten.

An analysis of the program

We now present the whole program again in a more detailed and
analysed form. This part tries to make sense of exactly what the code
does at each stage, but if you do not understand this next part, or if you
find it difficult, you can still go on with the rest of the activity of learning
how to use machine-code programs. That is to say, you can use them
without knowing exactly how they work. There are now six columns.
The first two columns on the left are the memory addresses in both base
sixteen and base ten. These are often described as HEX and DEC. In the
next two columns the codes are given in both forms. The column headed
mnemonic codes follows, and finally there is the comments column,
which tries to explain what these mnemonic codes mean.

We have also divided the program up into nine sections, which we will
now explain one at a time.

Memo1y Unit Hex- Mnemonic Comments
Addresses Codes Codes

Hex Dec Hex Dec

A 0300 76B 20 32 JSR FC5B Jump to a Built-in Subroutine at FC58

0301 769 58 BB

0302 770 re 252
B 0303 771 A2 162 LDX 00 Loads Zero into X-register

0304 772 00 0
c 0305 773 BD 1B9 LDAX 0311 Puts in ACC Data From 0311

0306 774 11 17
0307 775 03 3

D 030B 776 90 157 STAX 04B4 Store ACC in Screen Memory 04B4

0309 777 B4 IBO

030A 77B 04 4

E 030B 779 EB 232 INX Add One to Register X
F 030C 7BO EO 224 CPXOE Compare Contents of X with OE that is 14

0300 781 OE 14

(continued overleaf)

112 THE USE OF MACHINE-CODE

(continued from previous page)
G 030E 782 DO 208 BNE B Branch Back 11 Steps if X Not Equal to 14

H
I

030F 783 rs 24S

0310 784 60 96 RTS Return From Subroutine to BASIC

0311 78S DO 208
0312 786 02 210
0313 787 cs 197
0314 788 CE 206
031S 789 04 212
0316 790 cs 201
0317 791 C3 19S
0318 792 cs 197
0319 793 AO 160
031A 794 AO 160
031B 795 ca 200
031C 796 Cl 193
0310 797 cc 204
031E 798 cc 204

Section A has the comment, "jump to a built-in subroutine at FC58".
The mnemonic code is JSR FC58. The mnemonic code means exactly
the same thing, but is a shorthand version which most programmers can
usually recognize. Apple does not understand this (unless an assembler
is being used), so it is there for the benefit of the programmer. It tells
him, or reminds him, what the hex command 20 stands for. Look again
at the program and note that the first three hexes are marked 20 58 FC
and then look at the MNEMONIC JSR FC58. From this you can see
that 20 stands for JSR (Jump to Sub Routine): and the address of the
memory location where the subroutine begins is FC58. Note that we
write this back-to-front in the actual program, that is we put it 58 FC
not FC58. In fact FC58 is the address of the first line of a built-in Apple
subroutine which clears the screen. It works in the same way as HOME
in BASIC.

The next section, B, is, "loads zero into X-register". This is the equiva
lent of LET X = 0 in BASIC. The mnemonic code is LDX 00, and the
hex-codes are A2 and 00.

Section C says, "puts in accumulator data from 0311 ". It means, "go
to memory unit 0311 and take the number stored there, and put it into
the accumulator". Now look down the program to line 0311 in section I.
The number stored is DO, and this is put in the accumulator. In base ten
it is 208 and it represents the letter P. The rest of the lines after 0311 in
section I are all similar in that each contains a number representing a
letter. These stand for PRENTICE HALL, with two spaces between the

A MACHINE-CODE PROGRAM 113

two words. This can be shown in a table like this:

PRENTICE HALL
208 210 197 206 212 201 195 197 160 160 200 193 204 204

The program will call for each of these in turn, but to begin with it has
taken P. In fact the command in section C, LDAX, adds the value con
tained in X (0 at this stage) to the memory address given, i.e. 0311.

Section D stores the contents of the accumulator (the hex-code for
this is 9D) in the screen-memory unit 04B4 (which is 1204 in base ten.
You can see from Table D3 on page 196 that this is near the middle of the
screen). Again the command ST AX adds the number in X (still O) to the
memory address 04B4.

The next section, section E, adds one to X. This is described as INX,
and the hex-code is E8.

The next section, F, compares the contents of X (which is now 1) with
OE in base sixteen or 14 in base ten. The codes are CPX and EO.

Section G is BNE B. This means, "Branch back if contents of X Not
Equal to B" (in base ten, B is equal to 11). The hex-codes are DO for
BNE and F5 for B. (To make sense of this, you subtract F5 from FF
and add 1). Since the contents of X is just one, we branch back 11 steps
to line 305 again. The circuit is repeated 11 times altogether and the
result is that the numbers shown above representing PRENTICE HALL
are now in the 11 memory units starting at 04B4 or 1204.

So that, after 11 circuits we go on to the section H at address number
0310. This is the equivalent of "return" in BASIC.

The program in BASIC

All that now remains is to write a short program to poke the numbers
making up this program into the designated memory units. Here is our
version:

10 DATA 32, 88, 252, 162, 0, 189, 17, 3, 157, 180

11DATA4, 232, 224, 14, 208, 245, 96, 208, 210, 197, 206, 212

12 DATA 201, 195, 197, 160, 160, 200, 193, 204, 204

lOOHOME
120 PRINT "MACHINE CODE DEMO"

140 FOR N=768 TO 798

160READ A

180POKEN,A

200NEXTN
220 PRINT "CODE LOADED PRESS SPACE BAR" : GET Z$

240CALL 768
260 PRINT "PROGRAM RUN"

114 THE USE OF MACHINE-CODE

Lines I 0 to 12 contain the numbers for the program shown on page 111
under HEX-CODES, DEC. Check that they are the same. Lines 140 to
200 poke these numbers into the memory units shown beside the hex
codes. Line 240 uses CALL to run the program. The result will be that
the words PRENTICE HALL appear on the screen. Try it and see.

Notice that the actual translation from the original presentation of the
program on page I 09 has involved nothing more than changing the
addresses into base ten and the hex-codes into base ten, poking these
and then calling the routine.

This technique can be used with any machine-code routine written for
the 6502 microprocessor which is the one used in the Apple and in many
other machines. However there are two small points to remember:

(a) The memory addresses used in other programs may not
always be those most suitable for Apple so you may have to
translate these into the numbers beginning with 0300, as in the
example above. It may also be the case that memory
addresses are ref erred to within the program as in sections C
and D. These will then also have to be changed.

(b) Apple has a number of built-in subroutines which other
machines may not have and vice-versa, so this should also be
borne in mind when copying programs which were not written
for Apple.

POKE AS A SWITCH

As well as being used in the ways already described, poke, peek and call
have a number of other functions usually relating to specific memory
locations or built-in subroutines. For example, poke can be used as a
switch to change the Apple, or some aspect of its functioning, from one
mode to another. There are some examples of this described in the
Applesoft-BASIC Programming Manual (see Appendix H, page 251).
The following is a useful example of this sort of routine.

Screen borders

As we know the screen is 40 spaces wide by 24 spaces high. We can,
however, change these dimensions using poke. We begin with an
example of how to use this facility to help to edit a program. First type
this in:

lOOHOME
120 PRINT "THE APPLE PERSONAL COMPATER FOR BEGINNERS"

POKE AS A SWITCH 115

The mis-spelling of COMPUTER in line 120 is deliberate. Now suppose
you wish to correct this without having to retype the whole line. On page
78, earlier, we described a number of ways of doing this, but the
simplest method is as follows.

First, to remind us of the problem, type in LIST 120, and use the I ESC I
key and the I and J keys to move the cursor on top of the one in 120.
Then press the space bar and use the arrow-right key to move the cursor
along the line to the mis-spelling. Correct this, and continue to move the
cursor out to the end of the line. Then press IRETURNI • Now list line 120
again. As a result of this editing a large space now appears between the
0 and the M of the word COMPUTER. Run the program and it is even
more obvious.

This happens because when you list a program Apple presents it on
the screen as though the screen was only 33 spaces wide, starting from
the left. So, when editing, the gap on the right made up of 7 spaces
becomes incorporated into the line. We need a technique for changing
the width of the screen to 33 spaces. First, retype the line 120 as it was
originally, then type in H 0 ME and press I RETURN I to clear the screen.
Type in POKE 33, 33 and press I RETURN I, then list line 120 again, then
repeat the editing process, using IESCI, I, J and the arrow-right key. This
time, when the cursor reaches the end of the written line, at the letter 0
of computer, it moves immediately down to the beginning of the next
line, and so leaves out the seven-space gap on the right.

The command POKE 33, 33 is a sort of switch. The first 33 is a
memory address and the second 3 3 is the screen width. To return to the
normal screen width, type in POKE 33, 40. (You could also press the
I RESET I key or type in TEXT and press I RETURN I). Experiment with this.
Try typing in POKE 33, 12 and then list the program.

In a similar way we can use poke and memory address 3 2 to set the
position of the left border of the screen. Here is a program which com
bines these two:

lOOHOME
120 VTAB 10: PRINT "THIS IS OUTSIDE"
140 VTAB 11 : PRINT "THE WINDOW."
160 POKE 32, 20 : REM SETS LEFT BORDER

180 POKE 33, 16 : REM SETS WIDTH

200HOME
220 PRINT "THIS IS A WINDOW"

240 PRINT "IT IS 16 SPACES WIDE"
260FORN=l TOSOO: NEXTN

280GOT0220

116 THE USE OF MACHINE-CODE

Type it in and try it. Finally it is also possible to set a top and a bottom
to the window on the scre~n. Add these two lines to the program above:

185 POKE 34, 8 : REM SETS TOP OF WINDOW
190 POKE 35, 16 : REM SETS BOTTOM

and change lines 220 and 240 as follows:

220 PRINT "TOP IS 16 WIDE"
240 PRINT "SIDE IS 8"

Now run the program again.
These poke numbers are summarized as shown below:

Poke Number RangeofX Normal
X Value

Poke 32, X Oto 39 0
Poke 33, X I to40 40
Poke 34, X Oto 23 0
Poke 35, X Oto24 24

PROBLEMS

Function

Left Border
Screen Width
Screen Top
Screen Bottom

I. Use the program written in this chapter for playing a tune as a basis
for the development of a full Melody Maker program. It should
allow you to input a tune, save it on disk, play the tune, and so on.

2. Write a program so that two players can play the game Counters. A
set of 40 counters are placed on the screen using a poke. Each
player in turn "removes" one, two or three of them. The player to
take the last counter loses. This means that when a player presses
the keys I, 2, or 3, an appropriate number of counters disappears
from the screen. This should be done using poke.

8
Strings

INTRODUCTION

We have met strings at various times in this book (see page 12), and this
chapter is about ways of manipulating and displaying them. In order to
do this effectively, Apple has a set of eight quite powerful string func
tions. Each function either separates out a part of the string or changes
numbers into strings or strings into numbers. We will consider each of
them in turn.

DEFINITION OF STRINGS

More often than not strings are made up entirely of letters of the
alphabet and are simply English words. However, it is not necessary for
this to be so. A string can be made up of any collection of symbols or
graphics or numerals, and the important point is that quotation marks
must be put around strings when they are used or declared in programs.

A string can be made up entirely of numerals so that it looks exactly
like a number, except for the quotation marks.

A=47 A is a number
A$= "4 7" A$ is a string

This may not seem to be a very important distinction, but it is vital
and the importance rests in the different sort of manipulations that can
be performed with numbers as opposed to strings. For example, num
bers can be added together in the conventional sense. Type this in and
run it:

100A= 20
120B=30
140C= A+B
160PRINT C

117

118 STRINGS

The result of this addition of 20 and 30 is, not unexpectedly, 50! But
suppose these were in the form of strings. Type in the program below
and run it. (Remember to type in NEW first):

100 A$= "20"
120 B$="30"
140 C$=A$+B$
160PRINTC$

The result is 2030. That is, addition of strings results in what is called
concatenation rather than normal arithmetic addition. To think of this in
another way, if these two strings had contained alphabet letters or other
non-numeric characters, then placing them side by side would seem less
strange. This is done on page 13.

THE VAL FUNCTION

The first string function that we consider is the VAL function. It can be
used to "translate" strings into numbers, according to the following
rules.

Firstly, if the string in question is made up of, or begins with, letters,
graphics, or any non-numeric characters, then use of the VAL function
produces 0. Some examples:

A$="JOE"
B$="SD007"
C$="A99"

VAL(A$)=0
VAL(B$)=0
VAL(C$)=0

This process can be tested within a program.

100 PRINT VAL("JOE")
120 A$= "PC49"
140 PRINT VAL(A$)

Type this in and run it. The result should be two zeros. .
Secondly, if the string is made up entirely of numerals the VAL func

tion translates this string into the corresponding number.

A$="99"
B$="1234"
C$="4.7"

VAL(A$)=99
VAL(B$)=1234
VAL(C$)=4.7

THE VAL FUNCTION 119

Again, you can test this within a program as follows. Type this in and
run it:

100 PRINT VAL("99")
120 A$="4312"
140 PRINT VAL(A$)

Thirdly, if the string begins with numerals, but also contains letters or
symbols, the VAL function translates this string into the initial number
value, disregards the letters etc., and disregards any numbers which
follow them.

G$="12AB"
H$="4X5Y"
1$="9870"

J$="9PQ2"

VAL (G$)=12
VAL(H$)=4
VAL(1$)=987

VAL(J$)=9

This function can be useful in programs when checking whether or
not an input is appropriate. Here is an input program, where the second
line simply prints the input.

100 INPUT "WRITE YOUR NAME" ; A$

140PRINT A$

Run this program and respond to the question mark with JOE - or
something similar. Apple accepts this quite happily and then prints it on
the screen. Now run the program again, but this time respond to the
question mark with a number; say 87. Again, Apple accepts this quite
happily because AS in line 100 is a string, and both JOE and 87 are
acceptable strings. Therefore, when the input variable (AS) is a string
variable then Apple cannot distinguish numbers from words.

Add line 120 to the program so that it now looks like this:

100 INPUT "WRITE YOUR NAME" ; A$
120 IF V AL(A$) < > 0 THEN 100
140PRINT A$

Then run it again and try responding with a number, say 43. This time
Apple will not accept it and returns to line 100. This is because in line
120 if VAL (AS) is not equal to zero then the program returns to line
100. Obviously VAL(AS) is only equal to zero when AS is not a number,
that is, when A$ is a letter or symbol combination.

Many programmers would argue that all input statements should use
string variables and that number variables should not be used at all. The

120 STRINGS

argument is that if a number input is needed, it is possible to use the
VAL function to turn it into a number once it has been input as a string.
But, more importantly, when input as a string it is possible to use all the
string functions to manipulate it and format it in a way that is difficult, if
not impossible, with numbers.

This kind of manipulation and formatting can be demonstrated as
follows. Suppose, at the start of a program, the user is invited to input
the data and suppose further that this is done according to a fixed for
mat. That is June 14th 1902 would be entered as 061402. Similarly
February 5th 1912 would be 020512. The first two digits represent the
month, and if it is one digit, a zero is written in front of it. The third and
fourth digits represent the day, and the fifth and sixth digits represent the
year.

lOOHOME
120INPUT"WHATISTHEDATE"; A$

We now wish to break this six-character string into three parts in order
to make the date easier to read. We must first remember that, since we
used AS in line 120, this six-figure digit is a string and not a number; so
we first use the VAL function as follows:

140T=VAL(A$)

Tis now a six-digit number which can-be subjected to normal arithmetic
manipulation, and so the rest of the program, shown below, applies
simple arithmetic to this to separate the month (called M), the day (D)
and the year (Y).

160 A=INT(T/100)

180 Y =T-100* A

200 M=INT(A/100)

220 D=A-lOO*M

T=020512
A=0205
100* A=020500

Y =12 (THE YEAR)

M=02 (THE MONTH)
100*M=0200

D=OS (THE DAY)

240PRINT "MONTH", "DAY", "YEAR"

260 PRINT M, D, Y

THE LEFTS FUNCTION 121

There are also three functions which allow us to isolate particular bits
of individual strings. They are LEFT$, RIGHT$, and MIDS. We will
consider each in turn, as well as the LEN function.

THE LEFT$ FUNCTION

This is best explained using examples. Type in the program below and
run it. The resulting printouts are shown on the right.

Program

100 PRINT LEFT$("BASIC", 1)

120 PRINT LEFT$("BASIC" I 2)
140 A$="EDUCATIONAL"
160 PRINT LEFT$(A$, 9)

Printout

B
BA

EDUCATION

So the LEFT$ function prints the specified number of characters
starting on the left of the string. This function is often very useful in
programs because it allows us to test input by examining its first letter
only.

100 PRINT "DO YOU WISH TO:-"

120 PRINT : PRINT " BEGIN AGAIN"

140 PRINT: PRINT" READ LIST"
160 PRINT : PRINT " SA VE ON DISK"
180INPUT A$
200 IF LEFT$(A$, l)="B" THEN 1000
220 IF LEFT$(A$, l)="R" THEN 2000
240 IF LEFT$(A$, l)="S" THEN 3000

In this incomplete program the first letter of the response is examined
and compared with the first letter of each possible response. This techni
que is found most often in this next short routine, which is also
incomplete. The two lines 1000 and 2000, ref erred to in lines 120 and
140, have not been included.

100 INPUT "DO YOU WISH TO PLAY AGAIN " ; A$
120 IF LEFT$(A$, l)="Y" THEN 1000
140 IF LEFT$(A$, l)="N" THEN 2000
160 PRINT "TRY AGAIN" : GOTO 100

122 STRINGS

This routine shows how to isolate the first letter of strings.
We now look at a routine which prints the first letter; then the first

two letters; then the first three letters, and so on. First type in NEW and
press IRETURNI. Then type in this program:

lOOHOME
120INPUT A$

140FORN=l T07
160PRINT LEFT$(A$, N)

180NEXTN

Now type in RUN and, when the question mark appears, type in a word
like STRETCH. The figure 7 in line 140 can be changed to whatever
number you wish. Do not remove this program for a moment as it will
be used again with the next string function.

THE LEN FUNCTION

This function simply counts the number of characters in a string. The
word LEN is short for length. One immediate use of this can be found in
the last program. Type in the new line 130 below and also change line
140 as shown.

130L=LEN(A$)

140FORN=l TOL

Now type in RUN and press IRETURNI. Respond to the question mark by
typing in any word. Line 130 finds the number of characters in this
word, and calls it L. Line 140 sets up the loop to run for L times.

We can now use this LEN function to demonstrate how long a string
Apple can handle. First remove the old program by typing in NEW.
Then type in the following, noting that in line 120 A$ is to contain
exactly 63 As. Line 130 actually prints out the number so you can first
run the program and check that it is exactly 63.

lOOHOME
120A$="AAAA ... "
130 PRINT LEN (A$)

When you are sure that the A$ in line 120 is a string made up of 63 As
then remove line 130 by typing in 130 and pressing IRETURNI. Now add
this line:

THE LEN FUNCTION 123

140 B$=A$+A$+A$+A$

BS is, therefore, a string made up of four times 63 or 252 As. Again use
a temporary line to see how this looks. Type in this line and then run the
program.

150PRINTB$

The result of this should be that over six full rows of As appear on the
screen. Now remove line 150 and type in these three lines.

160INPUT C$
180 B$=B$+C$
200 PRINT B$, LEN {B$)

Line 160 invites you to input another string. Line 180 joins this new
string to the end of the 25 2 As already in BS. Line 200 pr.in ts this
extended string BS, and its length.

When the question mark appears on the screen as a result of line 160,
input a string of five As. Then press IRETURNI. Apple responds like this:

?STRING TOO LONG ERROR IN 180

JD
Therefore, the existing 252 As joined to this new input of five As (mak
ing a total of 257 As) produces a string that Apple considers to be too
long. Run the program again and put in four As. Again, an error
message appears. Run it again with three As and the new enlarged
string, BS, is printed out by line 200. At the end it also prints 255, which
is the length of the string, or the number of characters it contains. So the
longest possible string that Apple will accept has 25 5 characters.

Finally, add the lines below, changing lines 160 and 200 as shown.

160 C$="AAA"

200 FOR N=l TO LEN(B$)
220 PRINT LEFT$(B$, N)

240NEXTN

Now run this program.
One last demonstration of the use of the LEN function concerns situa

tions where there is a need to place a program heading, or something
similar, in the center of the screen. First, remember that the screen is 40

124 STRINGS

spaces wide, and suppose the heading is a string, AS. Then find the
length of that string using LEN (AS). Then, subtract this from 40 to find
the total number of spaces left. Divide this number by two to find how
many of these extra spaces to put on each side of AS.

In Chapter 9 we will use the TAB function with this to move the
cursor to the right spot. In the meantime, you can use the direct mode to
find the necessary number of spaces. Type this in directly:

AS="HEADING": ?(40-LEN(A$))/2

The result will be 16.5. So you can choose between 16 and 17 spaces.
Now type in this heading with 16 spaces:

llOPRINT" HEADING''

THE RIGHT$ FUNCTION

This is very similar to the LEFTS function. The difference is obvious
and implicit in the word. With LEFTS we are able to select a part of the
string, starting on the left: so, with RIGHTS we can select part of the
string, starting on the right.

Some examples with the resulting printout are now shown.

Program

100 PRINT RIGHT$("APPLE", 1)

120 PRINT RIGHT$("RETURN" I 4)

140 A$= "ABCD"
160FORN=l T04
180 PRINT RIGHT$(A$, N)
200NEXTN

Printout

E

TURN

l

D
CD
BCD
ABCD

A short example now follows which illustrates the essential difference
between the LEFTS and RIGHTS functions. It makes use of the begin
ning of a famous sentence that reads the same from left to right as it does
from right to left. The sentence is ABLE WAS I ERE I SAW ELBA.
Type in the program below.

THE MIDS FUNCTION

lOOHOME
120 A$="ABLE WAS I"
140 FOR N=I TO LEN(A$)
160 PRINT LEFT$(A$, N), RIGHT$(A$, N)
180NEXTN

Now type in RUN.

THE MID$ FUNCTION

125

This is probably the most useful of the string formatting functions and is
in some ways the most sophisticated. First, some examples. (Remember
to type in NEW to remove the old program.)

Program Printout

100 PRINT MID$("DRONES", 3, 2) ON

120 PRINT MID$("DRONES" I 3, 4) ONES

140 PRINT MID$("DRONES", 4) NES

160 B$= "ZYXWV"

}
y

180 FOR P=l TO 4 YX
200 PRINT MID$(B$, 2, P) YXW
220NEXTP uxwv

So a statement like this:

MID$(A$, 4, 6)

means, "make a substring six characters long by beginning at the fourth
character of AS".

A slightly more complex use of this function is now described, line by
line. The program accepts an input of a number from 1 to 7 where these
numbers represent days of the week. Therefore Sunday is 1, Monday is

126 STRINGS

2, and so on. The program then translates the number you have input
into the first three letters of the appropriate day.

100 HOME : INPUT "INPUT DAY AS A NUMBER 11
; D

This line clears the screen and invites the input.

120D$=" .. SUNMONTUEWEDTHUFRISAT11

This sets up a string made up of two dots, followed by a long word made
up of the first three letters of each day. It is placed in D$.

140 A$=MID$(D$, 3*D, 3)

In line 140 the MID$ function is used to select the appropriate three
letters from the long string DS. This is done in two stages, first by using
the 3, which is by itself, in the brackets, to specify a string three
characters long. Then the middle part of the material inside the brackets,
3*D, will select the appropriate starting point for the three-letter string
to be printed.

When D= 1, we expect the outcome to be SUN. In this case 3*D
becomes 3, and the MIDS function becomes MIDS(DS, 3, 3). This
means begin at the third character and take three characters. The first
two characters are dots, which are there as spacefillers, and the third
character is the first letter, S, of SUN. So SUN is selected and called A$.

Finally, put in a print line.

160PRINT A$

So the whole routine looks like this:

100 HOME: INPUT "INPUT DAY AS A NUMBER II: D

120 DS=" .. SUNMONTUEWEDTHUFRISAT"

140A$=MID$(D$, 3*D, 3)

160PRINT A$

You ought to be able to write a similar routine for the 12 months. The
two routines can then be put together, and the program converted to
translate as follows:

Day 3, 14th day of month 7, 1850, into
Tuesday, July 14th, 1850

THE CHR$ FUNCTION 127

THE CHR$ FUNCTION

In the chapter on peek and poke we discovered that each character on
the Apple keyboard has four numbers associated with it: two for normal
mode, and one each for the reverse-field and flash modes. These num
bers and the corresponding characters can be seen in Tables D 1 and D2
on pages 194 and 195. The CHRS function (CHR is short for character)
is used to translate some of these numbers directly into the correspond
ing characters, so that you do not need to look up the table. It uses only
normal mode, however, so reverse-field and flash mode characters are
translated into their normal mode equivalents. Unfortunately, the num
bers used for the characters in association with CHRS do not match
exactly the numbers used in association with peek and poke, although
there are certain broad similarities. The CHRS numbers are shown in
Table D4, page 197. They are known generally as ASCII codes
(American Standard Code for Information Interchange).

You will notice also that there are some numbers in Table D4 which
have no character-equivalents and some characters which have two or
more numbers. Some of the numbers with no character-equivalents are
used for special control functions. For an example, type in PRINT
CHR$(7) and press IRETURNI. This causes the bell to ring. Now type in
the short program that follows:

lOOHOME
120FOR N=l TO 10
140INPUT A
160 A$=CHR$(A}
180 B$=B$+A$
200PRINTB$
220NEXTN

Line 100 clears the screen. Lines 120 and 220 combine to produce a
loop which Apple cycles through 10 times. Inside this loop, line 140 is
an input line, and the A means that this input is to be a number. Line
160 uses the CHRS function to translate that input number into a string
character as shown in Table D4, and it is called AS. Line 180
accumulates these characters into another string, BS, and line 200 prints
the total BS to date, each time.

Suppose we wished to turn BS into N. IRELAND. Look up Table D4
and find the numbers corresponding to these characters. They are as
follows:

78 46 32 73 82 69 76 65 78 68
N IRELAND

128 STRINGS

Now run the program and respond to the question mark by typing in the
number for N, i.e. 78, and then pressing I RETURN I . Then type in the next
number, that is 46, and press IRETURNI. Continue in this way.

This CHR$ function is used most often in association with the peek
statement. One example of this association has already appeared in
Chapter 7 (page 103). We use the peek command to find out what
number is stored in a unit of memory. For example, if we poke the
character M in reverse field into a unit of memory, it is not the reverse
field M but an associated number (in this case 13, see Table 02) that is
placed in the unit of memory. If we then peek at that unit of memory,
what is produced is that number, i.e. 13, not the reverse-field letter M. If
we want to translate the 13 into its corresponding letter, reverse-field M,
we have to use the CHR$ function.

Unfortunately, as we have already said, the CHR$ numbers and the
peek and poke numbers do not correspond exactly and some adjust
ments are necessary. For example, in Table 02, the peek and poke
number associated with reverse-field M is 13. In Table 04, there is no
number for the reverse-field M, so we have to use the number for M, i.e.
77. So in order to adjust the peek and poke number for reverse-field M
to the corresponding CHR$ number we must add 64 to the number
found by peeking. This turns it into the number to be used with CHR$.
This may seem very confusing but, in practice, it works quite easily. We
will now look carefully at one part of each of Tables 02 and 04
together, as shown, in order to illustrate this.

Character

@

A
B
c

M

/\

Peek number

0
1
2
3

13

30
31

CHR$number

64
65
66
67

77

94
95

Remember that from the peek numbers these characters are in reverse
field. Now, a short program using this table.

THE CHRS FUNCTION

lOOHOME

120 POKE 1724, 13

140 A=PEEK(l 724)

160 A$=CHR$(A + 64)
180PRINT A$

129

First type this in and run it. It is a little contrived since it is just designed
to illustrate the point. Line 120 pokes the number 13 (standing for
reverse-field M), into the screen location 1724. (Only because we wish to
peek at it.) Line 140 peeks at this location and calls what it finds there A.
Of course, we know it finds 13. Line 160 adds 64 to A before using the
CHRS function to translate this number, i.e. 77, into the letter M.
However, we will not normally know what the peek number is in
advance, so we need to carry out tests to discover what changes may
need to be made. We know, for example, that if A is less than 32, it must
be changed to A+ 64. So we put in this test line:

150 IF A <32 THEN A=A+64

This means that if A is less than 32, then 64 will be added to it. If A is
not less than 32, then the program just goes on to the next line. We now
need to change line 160 to:

160 A$=CHR$(A)

This translation is also necessary for the set of numbers between 128
and 191 inclusive. To cover this we need the line:

155IFA>127ANDA<192 THEN A=A+64

We have noticed that the reverse-field characters can not be recovered
using CHRS. When the original poked symbol was in reverse-field, this
table translated it into the same symbol, but in direct-field. The same is
true for fl.ashing characters. Type in this line 1 SS as shown, and then
remove line 120 and change line 140 to:

140INPUT A

Now run the program and when the question mark appears, use Table
02 to feed in a peek number. The rest of the program should then
translate this into the appropriate character via the CHRS function. The·

130 STRINGS

whole program now looks like this. Line 200 has been added to allow
you to test as many numbers as you wish.

IOOHOME
140INPUT A
lSOIF A <32THEN A=A+64
155IFA>127 AND A< 192 THEN A=A+64
160 A$=CHR$ (A)
180PRINT A$
200GOTO 140

CHR$ AND QUOTATION MARKS

A particularly useful CHRS number is 34. That is the one that
produces a quotation mark on the screen. This makes it possible to get
Apple to print quotation marks during the run of a program, thus getting
round the problem that quotation marks are normally used to specify
material to be printed, but are not printed themselves when the material
appears on the screen.

100 PRINT "MY NAME IS" ; CHR$(34) ; "PRENTICE HALL" ; CHR$(34)

The output from this is:
...

MY NAME IS "PRENTICE HALL"

THE ASC FUNCTION

This is the inverse or opposite of the CHRS function. It translates the
first letter of a string into its corresponding CHRS number. As an
example, remember that CHR$(65)=A (see Table 04). Now type in
this program.

100 A=ASC("A")
120 B=ASC("AT")
140A$="ATE"
160 C=ASC(A$)
180PRINT A, B, C

Now run this. The result should be

THE STRS FUNCTION

..
; 65 . . 65 65

131

This means that the ASC function returned, in each case, the CHRS
number 65 associated with A. If we wished to have a record of the
numbers associated with each letter of a string, and not just the first
letter, we can use the MIDS function, as follows.

100 A$="APPLE"
120FORN=l TOLEN(A$)
140 B$=MID$(A$, N, 1)

160 A=ASC(B$)
180 PRINT B$, A
200NEXTN

This produces the CHRS numbers for the letters of Apple as shown .
.

A 65
p 80
p 80
L 76
E 69

THE STR$ FUNCTION

This function acts as the opposite of the VAL function. That is, it takes a
number and translates it into a string. This will not change how the set of
characters making up the number looks on the screen, but it allows you
to manipulate it by means of the various string formatting functions
described earlier in the chapter. Some examples of this will be shown in
Chapter 9 where the whole problem of formatting is discussed. To
illustrate how STRS works, type in this program:

100A=44.25
120 B$=STR$(A)
140FORN=l TOLEN(B$)
160 C$=MID$(B$, N, 1)
180C=VAL(C$)
200PRINT C
220NEXTN

132 STRINGS

In line 100, the variable A represents a number. Line 120 converts it
into a string. The next five lines apply string formatting techniques to
this string, which results in each separate character being isolated,
translated back into a number, and printed. Run it and see if it works.

ORDERING STRINGS

It is often useful to be able to put strings in alphabetical order. This is
very simple using Apple because strings can be compared in exactly the
same way as numbers .usi~g the signs > , = and < . When we find that
AS < BS, it means that, according to alphabetical order, AS comes
before BS. Type in this program and try it.

100 A$= "AABC11

120 B$="ABCD"
140 IF A$< B$ THEN 200
160 PRINT B$, A$

180GOT0220
200 PRINT A$, B$
220END

Run this program and it should put the two strings AS and BS in correct
alphabetical order. Now change lines 100 and 120 as shown:

100 INPUT "FIRST WORD II ; A$
120 INPUT "SECOND WORD II; B$

Now run the program, and type in whichever two words you choose.
The program will put them in alphabetical order and print them.

A routine to sort a longer list of words into alphabetical order is
shown in Chapter 10.

PROBLEMS

1. Use random numbers to select, from a deck of 52 cards, two poker
hands each with five cards. The two hands should be presented on
the screen each time. Remember to write a routine to check that any
particular card has not been "dealt" already.

2. Write a program for crossword puzzlers to help them find the
answer to clues where all but one or two of the letters are known.
The program should print on the screen every possible word that

PROBLEMS 133

can be made by putting all the letters of the alphabet in the
appropriate spaces. It should also allow users to decide whether
they wish to use all 26 letters of the alphabet or just the five vowels.

3. Write a program which allows you to put in a passage of prose and
then counts the number of occurrences of each letter of the alphabet
within the passage. Use GET AS as the input device and provide
responses which allow you to:
(a) Indicate when you have completed a passage;
(b) Abort a piece of work and begin again;
(c) Delete mistakes.
Use CHRS and ASC to allow you to edit out spaces and punctua
tion marks.

9
Formatting

TAB

We have already shown (Chapter 2, page 22) how the use of commas
and semicolons can be used to place numbers and strings in particular
columns - or at least to separate them into distinct columns. There are
some disadvantages and limitations with this method of formatting infor
mation. For example, we cannot use it to choose which column we
would like to use. We can solve this problem using the TAB function.
This is short for tabulation and it allows you to specify precisely on
which column to begin writing numbers or strings. Here is a simple
example:

lOOHOME
120 PRINT " NAME" TAB (25) "SCORE" TAB (32) "RANK"

140PRINT " DOMINIC MURRAY" TAB (25) 50 TAB (32) 3

First line 100 clears the screen. Then line 120 prints the word NAME on
the left of the screen. It then uses TAB (25) to move the cursor out 24
columns from the left edge of the screen to column 25, and prints the
word SCORE on columns 25 to 29. Finally it uses TAB (32) to move
the cursor to column 32 and prints the word RANK in columns 32 to
35. The use of TAB (25) and TAB (32) again on line 140 makes sure
that DOMINIC MURRAY, the score 50, and the rank 3, are all printed
starting on exactly the same columns, as the headings on the line above.
Now add these lines to the program:

160 PRINT "BARRY MURPHY" TAB (25) 28 TAB (32) 15

180PRINT "DAN BRADSHAW" TAB (25) 73 TAB (32) 1

and run it again. You will notice that the names are aligned on the left.

134

TAB 135

That is, the first letter of each name is lined up with the one above. It
would be interesting on some occasions to have a technique to align
them to the right, with the last letters in the same column.

To do this we must find the length of each name, but because the lines
get a bit cluttered we will first put each word and name in a variable, as
follows (first type in NEW, and then these lines):

IOOHOME

I20 A$="NAME": B$="SCORE": C$="RANK"

I40 NI$= "DOMINIC MURRAY"
I60 N2$="BARRY MURPHY"

ISO N3$= "DAN BRADSHAW"

We will now find the lengths of the names as follows:

200 A =LEN (A$)

220 NI=LEN (NI$)

240 N2=LEN (N2$)

260 N3=LEN (N3$)

We then use the TAB function to move the cursor out a fixed number of
spaces, say 20, less the length of the string in question, here called either
A, Nl, N2 or N3. This will make each name start on such a column so
that they all end on column 20. So the print part of the program now
looks like this:

300 PRINT TAB (20-A) A$ TAB (25) "SCORE" TAB (30) "RANK"

320 PRINT TAB (20-NI) NI$ TAB (25) 50 TAB (32) 3

340 PRINT TAB (20-N2) N2$ TAB (25) TAB (32) I5

360 PRINT TAB (20-N3) N3$ TAB (25) 73 TAB (32) I

We can also use TAB to center a program heading, that is to place it
in the center of the top of the screen. This was discussed on page 124.
Remember that there are 40 spaces across the Apple screen. First we
use the LEN function to find the length of the heading. Then subtract
this length from 40, and divide by two. Here is an example (first type in
NEW):

IOOHOME
I20 A$="***MILK BILL***"

I40 PRINT TAB ((40-LEN (A$))/2)A$

We can use the TAB function to draw a sine curve as follows. The

136 FORMATTING

main axis lies down the middle of the screen, so if you wished to see this
curve in the normal way, you would have to turn Apple onto its side.
First we will type in the program and then discuss it line by line:

lOOHOME
110 Pl=3.141593
120 FOR X=O TO 4* PI STEP.2
140 Y =SIN(X}
160 Y =20*Y +20
180 IF Y < 1 THEN Y=l
200 PRINT TAB(Y} "*"
220NEXTX

Line 100 clears the screen. Lines 120 and 200 together make a loop
which takes x in small steps of0.2 from 0 to 4*PI. Line 140 putsy equal
to SIN(x) each time. However, you will remember that SIN(x) always
lies between - 1 and + 1. That is, the range looks like this:

- 1 - 0.5 0 + 0.5 + 1

If we now multiply each number in the range by 20 it looks like this:

- 20 - IO 0 + IO + 20

Now add 20 to each of the numbers above, and it looks like this:

0 10 20 30 40

which is exactly the range across the screen. So line 160 scales up each
value according to this pattern: that is, each value of y is multiplied by
20 and then 20 is added to it. Line 180 takes account of a peculiarity of
the TAB function, which is that if in TAB (A) the number A is less than
1, the TAB function treats A as though it were 15. This line makes sure
that it is always at least A. Line 200 then moves the cursor out y spaces,
using TAB (y) and prints a star on the next space.

Now run this program a few times to see what happens. Remember
that the range from 0 to 4*PI in line 120 represents two full cycles of the
curve. You can experiment with this by changing the range and by
changing the step used. To do this, change line 120 as shown and type in
lines 50 and 60.

50 INPUT "NUMBER OF Pl" ; A
60 INPUT "STEP TO BE USED" ; B

120 FOR X=O TO A* PI STEP B

HTAB AND VTAB 137

Now run the program, and when "NUMBER OF PI" appears on the
screen, type in 2. Then when STEP TO BE USED appears, type in 0.1.
Run it a number of times, and each time try different numbers:

HTAB AND VTAB

HT AB behaves very much like TAB in that it moved the cursor
horizontally across the screen. A simple example will demonstrate
exactly how it works.

lOOHOME
120 PRINT "1 2 3 4 5 6 7"
140HTAB 3: PRINT "NEXT"

When you run this the screen will look like this:

1234567
NEXT

JD
Line 120 is there only to number the columns so that we can see exactly
where the first letter of the word NEXT is printed. As you can see,
HT AB 3 means that the first symbol printed will be on column 3.

Now change line 140 as follows:

140 PRINT "A"; : HTAB 4: PRINT "B"; : HTAB 7: PRINT "C"

Now run this again and the screen should look like this:
..

1234567
A B C

JD
Note the semicolons in line 140. These are there to ensure that the letters
A, B and C are all printed on the same line. Try running the program
with these semicolons left out.

Here is another example of the use of HT AB.

lOOHOME
120FOR N=l TO 4
140 PRINT HTAB N : PRINT "LINE NUMBER" N
160NEXTN

138 FORMATTING

Type this in and run it.
VT AB is perhaps more interesting than HT AB in that it has no other

equivalent in Applesoft BASIC. The screen has a total of 24 rows and
VT AB sends the cursor to whichever row is indicated by the number
following it. First, type in new, and then this program:

lOOHOME
120 VTAB 1 : PRINT "TOP"
140 VTAB 12 : PRINT "MIDDLE"
160VTAB 22: PRINT "BOTTOM"

Now type in RUN and press IRETURNI • Notice that in line 160 we used
VT AB 22 and not VT AB 24. This is because the ending of the program
uses up the bottom two lines. Now type in NEW again and then this
program:

lOOHOME
120 PRINT "FIRST LINE"
160 VTAB 1 : PRINT "BURST PIPE"

Now type in RUN and press IRETURNI • The words BURST PIPE will
appear on the top line, but the words "FIRST LINE" will seem not to
appear at all. To demonstrate what is happening, put in an extra line:

140GET A$

Now run the program again. First the screen will clear, then the words
FIRST LINE will appear, from line 120. Now press the space bar (line
140) and watch the screen carefully. The words BURST PIPE {line 160)
will replace FIRST LINE. Run this a few times until you are clear about
what is happening.

The next short program makes use of the top line of the screen. This
allows you to use the bottom part of the screen for a permanent message
or a picture drawn with the poke commands (as in Chapter 7).

First type in NEW and then this program:

lOOHOME
120 VTAB 1 : INPUT "FIRST PLAYER'S TURN-INPUT 1 OR 2 " ; B
140VTAB1: INPUT "SECOND PLAYER'S TURN-INPUT 1OR2 "; B
160GOTO 120

Of course the logic of this program is not followed through since the
inputs are, for the moment, ignored. But this routine could easily be

DECIMAL PLACES 139

adapted for use in a program which needed to keep putting instructions
at the top of the screen.

SPC FUNCTION

This function is to help in formatting by allowing us to make a specified
space between any two columns. It is most useful when you have a set of
numbers arranged in a set of fixed columns with all the numbers in each
column containing the same numbers of digits. Here is an example:

lOOHOME
120 FOR N=lO TO 24
140PRINTN SPC(S) N+lOOSPC(S) N+lOOO
160NEXTN

Type this in and try it.
This technique can be very useful if we are dealing with numbers that

are of a specified width. For example, if we are dealing with examination
results, expressed as percentages, we ·might assume that they would all
lie between 10 and 99. Then, if we want to list the results with the marks
on the left and the names on the right, the SPC function is a useful way
of formatting these results. However, it has to be typed in along with
each line, so it can be a bit cumbersome. Type in the example below, first
remembering to clear out the old program:

lOOHOME
120 PRINT "SCORES" SPC(4) "NAMES"
140 PRINT : PRINT
160 PRINT 34 SPC(8) "SULLIVAN P."
180 PRINT 35 SPC{S) "MARRIOTT s. II

Now run this.

DECIMAL PLACES

When calculations are performed on numbers involving division or the
square root function, the results often have eight or nine decimal places.
For example, type in this program and run it:

lOOHOME
120FORN=4T09

(continued overleaf)

140

140 A=SQR(N)

160 PRINT N, A
180NEXTN

FORMATTING

The result is as follows:
..

4 2
5 2.23606798
6 2.44948974
7 2.64575131
8 2.82842713
9 3

The numbers on the right are found by taking the square root of those
on the left, and this is done in line 140 using the built-in Apple function
SQR.

If we wish to express these answers with only three figures after the
decimal point, then we can use the following technique, which is
demonstrated first of all with a single number.

A= 32.1459265

To reduce this to a number with only three decimal places we do three
things:

(a) Multiply by 10 three times. Remember that, in Applesoft
BASIC, this will look like this 10 I\ 3.

(b) Take the integral part, or whole-number part, of this using the
INT function.

(c) Divide by 10 three times.

This set of processes is now shown with the number chosen.

A
10/\3*A

INT (10 I\ 3*A)
INT (10/\ 3*A)/10/\ 3

32.145926!'
32145.9265
32145

32.145

As you can see, this process reduces the number of figures after the
decimal point to three. This technique can be put into the original
program used at the beginning of this section as follows. Type in this line
and then run the program:

150 A=INT (10/\ 3* A)/10 /\ 3

DECIMAL PLACES 141

The result is as follows:

4 2
5 2.236
6 2.449
7 2.645
8 2.829
9 3

There is still a problem however in that the INT function always takes
the whole number part of a decimal even when the number is much
closer to the next whole number up. So the method used above may
sometimes introduce an unacceptable level of inaccuracy.
Look at these ex~ples:

INT (3.2) = 3
INT (3.9) = 3

It would clearly be more logical to consider 3.9 to be closer to 4 than to
3. Fortunately we can make this happen very easily by adding .5 to the
decimal before applying the INT function, so that 3.2 would become 3. 7
and its integer remains 3, whereas 3.9 becomes 4.4 and is printed out as
4.

Type in the following program which demonstrates this process.

lOOHOME
120 FOR A=3 TO 4 STEP .1
140B=INT (A+.5)
160 PRINT A, B
180NEXTA

The result looks like this:
..

3 3
3.1 3
3.2 3
3.3 3
3.4 3
3.5 3
3.6 4
3.7 4
3.8 4
4 4

142 FORMATTING

In other words, all numbers up to but not including 3.6 are rounded
down to 3, while all numbers from 3.6 to 4 are rounded up to 4. (Surpris
ingly, Apple treats the integral part of 3.5 + .5 as 3). We can now com
bine these two facilities and, at the same time, show how to generate as
many decimal figures as we wish. Remember that, when we wished to
have three decimal figures in A, we used this routine:

A=INT(lO /\ 3* A)/10 /\ 3

So, obviously, if we wished to have four decimal figures we could use
10 I\ 4 and, more generally, for P decimal places, we would use 10 I\ P.
Therefore this routine becomes:

A=INT(lO/\ P* A)/10/\ P

then, in order to ensure that correct rounding up or down takes place, we
change this to:

A=INT(lO/\ P*A+.5)/10/\ P

Now type in the program below, remembering to type in NEW to
remove the old program.

lOONEW
120 A=SQR(2)
140FORP=l T08
160 B=INT (10/\ P* A+.5)/10 /\ P
180 PRINT P, B

200NEXTP

Now run this program. It will print out the square root of 2 to l, 2, 3, 4,
5, 6, 7 and finally 8 decimal places as follows:

1 1. 4
2 1. 41
3 1. 414
4 1. 4142
5 1. 41421
6 1.414214
7 1.4142136
8 1.41421356

ALIGNING THE DECIMAL POINT 143

Sometimes it is necessary to apply this technique on a great variety of
occasions and with a number of variables. In order to make this happen,
without having to type in the whole process each time, it is useful to use
a predefined function as follows:

DEF FNA(X)=INT (lOO*X+.5)/100

(If you have not met this facility in BASIC for creating a predefined
function using DEF and FN, look it up in any introductory book.)

Here is an example of this process. First type in this program:

lOOHOME
140 INPUT 11WRITE TOTAL PROFIT II ; p
160 T=P/2: D=P/3: H=P/6
200 PRINT : PRINT "TOM'S SHARE IS " T
220 PRINT : PRINT "DICK'S SHARE IS " D
240 PRINT : PRINT "HARRY'S SHARE IS II H

This program takes the annual profit (which you choose in line 140) in a
company and divides it among the three owners, Tom, Dick and Harry
in the proportions shown. Run the program and put in 1000 for the
profit. The results given for Dick and Harry all have too many decimal
figures, so add these two lines.

120 DEF FNA(X)=INT (lOO*X+.5)/100
180 T=FNA(T) : D=FNA(D) : H=FNA(H)

And run it again. This time the results will have two decimal figures
only.

ALIGNING THE DECIMAL POINT

First type in this program:

lOOHOME
120 PRINT "PUT IN FOUR NUMBERS"
140 FOR N=l TO 4: INPUT A(N): NEXT N
160FORN=l TO 4: PRINT A(N): NEXT N

Run this program. Line 100 clears the screen, and line 120 instructs you
to put in four numbers. Line 140 uses a loop to allow you to put in four
numbers, and these are stored in the arrays A(I), A(2), A(3) and A(4). A

144 FORMATTING

question mark will appear on the screen. When it does, put in 1234, and
press IRETURNI • Another question mark appears, inviting the input of a
second number. This time, put in 123.4 and press IRETURNI: then 12.34
and finally 1.234. Line 160 prints these four numbers as shown.

······································
1234
123.4
12.34
1.234

Obviously it would be much more sensible if the decimal points in these
numbers were always below each other. The following routine makes
this possible. It involves a slightly complex mathematical technique
using logarithms. This will be explained, briefly, after the program has
been typed in, but even if you do not understand it fully, you will
probably still be able to use it successfully in programs.

First, add these lines to the above program:

160FOR N=l TO 4
180 IF ABS(A(N)) < 1THEN300
200 A=ABS(A(N))

220 B=LOG(A)/LOG(lO)

240 C=INT(B)
260 PRINT TAB(lO-C) A(N)

280GOT0320
300 PRINT TAB(ll) A(N)
320NEXTN

Lines 160 and 320 make the loop for printing the four numbers. Line
180 checks if each number A(N) is smaller than I. If it is, it begins with
the decimal point and so can be printed directly. Apple then goes to line
300 and prints the decimal point in the 11th column, using TAB(lO).

If A(N) is not less than 1, it goes on to line 200, which makes sure
that A(N) is positive. Then line 220 finds the logarithm of A(N) to the
base I 0 and line 240 makes C the whole number part of this logarithm.
This mathematics ensures that C is always one less than the number of
digits to the left of the decimal point. Line 260 then uses the TAB
function, with C, to align the numbers so that the decimal point lies in
the 13th column again.

EXTENDING DECIMAL PLACES 145

EX TEN DING DECIMAL PLACES

We have already shown (in Chapter 6, page 89) how Apple writes
decimals to at most nine significant figures. It is sometimes necessary,
especially in some mathematical investigations, to know a great many
more figures than this. The following program divides a number x by a
number y, and gives as many decimal figures as you wish. First type it in
and then read the explanation below.

IOOHOME
110 INPUT "INPUT FIRST NUMBER"; X
120 PRINT : INPUT "INPUT SECOND NUMBER"; Y
140 : INPUT "HOW MANY DEC. PLACES" ; C
160 Z=INT(X/Y)
180 PRINTZ".";
200 X=lO*(X-Z*Y)
220 IF X=OTHEN 320
240 Z=INT(X/Y)
260PRINTZ;
280C=C-l
300 IF C > 0 THEN 200
320END

Lines 100 to 140 clear the screen, input x and y for the fraction x/y, and
input for c the number of decimal figures required. Lines 160 and 180
produce the number to be written in front of the decimal point and write
it down with the decimal point. Line 200 computes the new x, that is the
new top line of the fraction. If the division has been exact then this x will
be zero, and this is checked in line 200. If not, line 240 produces the first
decimal figure, and line 260 prints it. (The semicolons make sure that
these numbers are all printed across the screen.) Line 280 reduces the
number of decimal figures still needed by 1, and line 300 checks if the
process has been completed. If it has not, the program returns to line
200 and computes the new x, and so it continues.

Now run the program and input the fraction 15/13. That is, input 15
for x and 13 for y. Then input 20 for c. It would b~ interesting to adapt
this program to check whan a full cycle has been completed and the true
decimal representation of the fraction has been achieved.

146 FORMATTING

USING STR$

As mentioned in Chapter 8 (page 131), it is possible to use the STRS
function to translate a number into a string and then use the string func
tions to format it. We will consider one such program now, and we will
take it line by line.

lOOHOME
1201NPUTZ

This clears the screen and invites the input of a number, which in this
case is meant to represent a sum of money. The rest of the program will
use ~ome of the techniques developed elsewhere in this book, to arrange
things so that this sum of money, Z, is always printed and aligned in this
format:

...
.

$14.00
$325.10

$6.24

That is, there are always two figures after the decimal point, the dollar
(or pound) sign appears first, and the decimal points are aligned.

(a) 14
(b) 243.7
(c) 4.01
(d) 74.347
(e) 9

We must, therefore, take account of each of these possibilities. The next
line fixes the fourth posibility, that is where there are more than two
figures after the decimal point.

140 Z=INT(lOO*Z+.S)/100

Then use the STRS function to change Z into the string ZS. (Remember
that the dollar sign is used to represent a string as well as money.)

160 Z$=STR$(Z)

Now use the LEN function to find the length of this string and subtract I
from it.

USING STR$ 147

180 L=LEN(Z$)-l

There are now four possibilities:
(a) If L= 0 then the number must have taken the form of a single

digit input like (e) above, where the input is 9. Remember that
the length of this would be 1. Any other form of input would
make L greater than 0. In this case we wish to change the 9
into 9.00. To cover this situation we need two new lines.

200 IF L=O THEN 280
280 Z$=Z$ + ".00"

In line 280 ZS is 9, so it is changed to 9.00 by the addition
of the string" .00".

(b) The second possibility is where there are two figures given
after the decimal point, like (c) above, where the input is 4.01.
We now use this line:

240 IF MID$(Z$, L-1, l)="." THEN 300

Since we have taken away from the length of the string
altogether, the condition in this line will be satisfied: that is the
character isolated by the MIDS function will be the decimal
point, so it then moves to line 300, which begins the print
routine and is discussed below.

(c) The third possibility is where there is only one figure given
after the decimal point, like {b) above where the input is 243.7.
If this is so then the condition in line 240 above will not be
satisfied, since the subtraction of 2 from the length of the
string will remove this one figure, and the decimal point. So
the L- 1 in the MID$ function must become L. This is given
in line 260 below.

260 IF MID$(Z$, L, 1) =I\. II THEN 320
320 Z$=Z$+ "O"

Changing L- 1 back to L makes sure that the decimal point is
included and so the condition in line 260 is fulfilled and, in line
320, the necessary extra zero is added to the end of the string
ZS. -

(d) The fourth possibility is where the number is simply a two
digit number with no decimal point, like 14. In this case, sub
tracting 1 from L in line 180 and another 1 in line 240 will

148 FORMAlTING

make L equal to zero and an error will occur. This is solved
by line 220.

220 IF L= 1 THEN 260

The program so far looks like this (with the addition of line 300):

lOOHOME
120INPUTZ

140 Z=INT(lOO*Z+ .5)/100

160 Z$=STR$(Z)

180 L=LEN(Z$)-l

200 IF L=O THEN 280
220 IF L= I THEN 260

240 IF MID$(Z$, L-1, l)="." THEN 300

260 IF MID$(Z$, L, l)="." THEN 320

280 Z$ =Z$ + ". 00"

300GOT0340

320 Z$=Z$+ "O"

The four possibilities have now been taken account of and the
printout routine follows:

340 Z$= "$" +Z$

360 A=LEN(Z$)
380 PRINT TAB(20-A)Z$

Now run this several times and try putting in the numbers in 1 to 5
above. If you wish to put in a lot of numbers one after another to test the
routine thoroughly, put in the extra line:

400GOTO 120

PROBLEMS

1. Using some of these formatting techniques, write a program to
allow you to input successive items from a shopping list or bill. For
each item, there should be three other inputs: that is, price of each;
percentage discount; number of each. The program should calculate
a totals column and a final overall total. The complete set of infor
mation should be presented in formatted tabulated columns on the
screen.

PROBLEMS 149

2. Write a stock-keeping program which allows you to create a list of
items in stock, the number of each in stock, and the number at
which reordering is necessary. This information should be presented
on the screen after entry in a suitably tabulated form. There should
be a further routine to allow you to update the number of each item
and this should include a message about the extent to which each
item is above or below the reorder number. Finally, it should be
possible to save and recover the list with a disk.

10
A Structured Program

INTRODUCTION

This chapter will show you how to develop a program longer and more
complex than any we have tried up to now. Its main purpose is to show
how such long and apparently complex programs can be constructed
out of a set of small, more-or-less compact, units. Each of these is
simple, has a single function , and can be fitted easily into the overall
structure.

As well as this, such a program allows us to use, in a real .context,
many of the techniques and facilities which earlier chapters have
described. These have often been presented in isolation and this may
have disguised the fact that they are routine components of the great
majority of programs.

There is, further, the intention to demonstrate a general procedure for
structuring BASIC programs so that not only are they easier to write,
but also so that they can be read and understood easily. This structuring
has two main characteristics. Firstly, it is circular, in the sense that the
set of subroutines involved is thought of as being placed around a central
organizing routine. The second characteristic, which has already been
briefly referred to, is that each subroutine is thought of as a single unit
performing a single task. The central organizing routine places the use of
these subroutines in the correct order for any specified task. Therefore, if
you know what each subroutine does, you can easily follow the logic of
the program, by reading the chained sequence of subroutines.

It must be added that such a structuring does not allow you to avoid
the kind of interactive trial-and-error programming that we have demon
strated all the way through this book. Within each subroutine it will be
necessary to engage in the normal heuristic process of test-running,
debugging and so on, but the organization of these separate routines into
a structured whole will be relatively simple.

150

THE STRUCTURE 161

THE PROBLEM TO BE PROGRAMMED

The directors of a small business want to ~e able to keep a record of the
names of all their customers and their customers' current accounts.
They want to be able to update this record at any time by adding new
names, deleting lapsed names, changing the current accounts of all
customers, changing the current account of a specific customer, making
a list of all the current accounts that are in the red, and so on. They also
want to be able to send a number of standard letters to specific kinds of
customers: for example, a letter to those in the red, or a letter stopping
credit. Finally, they want to be able to record this information on disk
and recover it at will.

It is possible to extend this list of desirable routines, according to the
requirements of a particular business. However, we will demonstrate
below a solution to this problem which incorporates most of the routines
suggested. The final program needs just over 6K of memory. It is always
possible, of course, to remove some of the routines.

THE STRUCTURE

The program structure has four major blocks, shown in the diagram
below. Each block will be described in general terms to begin with, and
then the routines necessary to bring it to life will be described in detail.

Block 1
Title

!
Introduction
Description
Instructions

~~~ ~~~~~~-

Block 2 ... =B....;;..;lo;;...;;c..;;,;;k~3 ___ _ 
Menu 4 Direction-pointers 

J t 
Block 4 
Subroutines 

Block 1 is to do with titling the program, introducing it to the user, 
and presenting it in a readable manner. This is often left out, but should 
not be, because, although its absence does not detract from the logical 
flow of the program, the program is more difficult to use, to follow, and 
to understand without it. There are four possible components for this 



152 A STRUCTURED PROGRAM 

block suggested in the diagram, although all four will not be necessary in 
every program. 

Block 2 is a list of the subroutines available in the program, often 
called a menu. The user reads this and chooses the routine that he or she 
wishes to use. This is the heart of the program. All roads lead out of it, 
but they will eventually come back to it (with one exception). Therefore, 
if you choose an item from the menu, the program will take you to it, but 
when you are finished it will return to the menu. The one exception is, of 
course, when you have finished using the program for a while and wish 
to stop the machine. 

Block 3 uses a series of GOSUB statements to organize the ordering 
of the actual subroutines which do the work. When you choose an item 
from the menu it is often the case that, in order to successfully complete 
it, the program must go to a number of subroutines in succession. Block 
3 organizes this process separately for each menu option. Of course, the 
last statement in any such organization returns the program to the 
menu. 

Block 4 is simply the set of subroutines, each of which is self
contained, each of which performs a single task, and each of which, on 
completion, redirects the program to block 3. 

THE PROGRAM 

We first present an enlarged version of the initial diagram with some 
more detail. Several of the possible menu items are given in block 2, 
some of the corresponding subroutine organization is shown in block 3, 
and 12 possible subroutines are numbered in block 4. 

Block 1, in this case, needs only a title and a few lines of description. 
These are shown below, in lines 10 to 910. Line 10 reserves space for 25 
names in A$(25), for 25 account balances in B$(25), for the correspon
ding data for those in the red in C$(25) and 0$(25) and for the reference 
numbers of these debtors in Z(25). Of course, this is only an example 
program and the capacities of the variables can be increased up to the 
limit of your Apple's memory. 

10 DIM A$(25), B$(25), C$(25), 0$(25), 2(25) 
100Z$="ACCOUNTS": L=LEN (Z$) 
llOHOME: PRINTTAB((40-L)/2);: INVERSE: PRINTZ$: NORMAL 

120PRINT: PRINT 
123 PRINT "THIS PROGRAM KEEPS A RECORD OF ALL" 

125 PRINT: PRINT "CUSTOMERS AND THE STATUS OF THEIR" 



THE PROGRAM 163 

130 PRINT: PRINT "CURRENT ACCOUNT. IT CAN BE UPDATED WHEN" 
135 PRINT: PRINT "YOU WISH AND A SEPARATE LISTING OF ALL" 
140 PRINT : PRINT "CUSTOMERS WHO ARE IN DEBT CAN BE" 
145 PRINT : PRINT "GENERATED AT ANY TIME. IT IS ALWAYS" 
150 PRINT : PRINT "POSSIBLE TO ADD A NEW NAME OR TAKE" 
155 PRINT : PRINT "A NAME AWAY FROM THE LIST, OR TO PUT" 
160 PRINT : PRINT "THE LIST INTO ALPHABETICAL ORDER." 
900 PRINT : PRINT TAB(l5) ; : INVERSE : PRINT "PRESS ANY KEY" 

:NORMAL 
910GETZ$ 

Block I 
Title 

! 
Introduction 
Description 
Instructions 

--~~~- --------------------
Block 2 Block 3 --------------------Menu Direction-pointers 
Begin again GOSUB2500 : GOSUB3000 : 
Add a name ----•~ GOSUB7000 : GOTO 1000 
Delete a name ....... _____ GOSUB4500 : GOSUB3000 : 

GOSUB7000: GOTOIOOO 

Finish for now 
GOT06500 

+ + 
Block 4 
12 Subroutines 

I .Begin file creation 
2. Alphabetical order 
3. Updating current accounts 
4. Listing customers in debt 
5. Add name to list 
6. Delete name from list 
7. Save data on disk 
8. Recover data from disk 
9. End of program 

10. Prints data on screen 
11. Letter to debtors 
12. Letter stopping credit 



154 A STRUCTURED PROGRAM 

It is worth pointing out that, at the end of this chapter, there is a 
listing of the variables used in the program. 

Block 2, the menu, is shown below. It includes 12 possible options and 
a corresponding letter code for each. The line numbers run from 1000 to 
1170, and the last of these uses Z$ as the variable for holding whichever 
letter code is chosen. Lines 1010 and 1020 give simple instructions, and 
lines 1030 and 1040 give the user valuable information about how much 
memory is available and about the number of customers currently 
entered. 

lOOOHOME 
1005PRINT: PRINT TAB(l8);: INVERSE: PRINT "MENU": NORMAL 
1010 PRINT: PRINT "CHOOSE ONE OF THE ITEMS BELOW" 
1020 PRINT "AND PRESS THE APPROPRIATE KEY." 
1030 PRINT: PRINT "NO. OF FREE BYTES IS "65536+FRE{O) 
1040 PRINT : PRINT "NO. OF CUSTOMERS ENTERED " N 
1050 PRINT : PRINT : PRINT "TO BEGIN AGAIN ..................... B" 
1060 PRINT "TO ADD A NAME TO THE LIST ......................... A" 
1070 PRINT "TO DELETE A NAME FROM THE LIST ................ D" 
1080 PRINT "TO PUT IN A/BETICAL ORDER ........................ O" 
1090 PRINT "TO UPDATE CURRENT ACCOUNT .................... U" 
1100 PRINT "TO EXAMINE LIST OF DEBTORS ....................... E" 
l llO PRINT "TO SEND LETTER RE DEBT ............................... L" 
1120 PRINT "TO SEND STOP-CREDIT LETTER ....................... C" 
1130 PRINT "TO PRINT LIST ON SCREEN .............................. P" 
1140PRINT ''TO SAVE ON DISK ........................................... S'' 
1150 PRINT "TO RECOVER FROM DISK ................................ R" 
1160 PRINT "TO FINISH FOR NOW ...................................... F" 
ll70GETZ$ 

Block 3 runs from line 1500 to line 2220. It is shown below and has 
two parts. In lines 1500 to 1600 Apple examines the letter you have 
chosen from the menu and directs Apple to begin following an 
appropriate sequence of GOSUBS. Notice that line 1600 deals with the 
problem which arises if you input a letter which does not appear on the 
menu at all. 

1500 IF Z$="B" THEN 2000 
1510 IF Z$="A" THEN 2020 
1520 IF ZS="D" THEN 2040 
1530 IF Z$="0" THEN 2060 
1540 IF Z$="U" THEN 2080 
1560 IF ZS= "E" THEN 2100 



THE PROGRAM 

1580 IF Z$= "L" THEN 2120 
1585 IF Z$="C" THEN 2140 
1590 IF Z$="P" THEN 2160 
1595 IF Z$="S" THEN 2180 
1597 IF ZS= "R" THEN 2200 
1599 IF Z$="F" THEN 2210 
1600 PRINT : PRINT "TRY AGAIN" : GOTO 1000 
2000 GOSUB 2500 : GOSUB 3000 : GOSUB 7000 : GOTO 1000 
2020 GOSUB 4500 : GOSUB 3000 : GOSUB 7000 : GOTO 1000 
2040 GOSUB 5000 : GOSUB 7000 : GOTO 1000 
2060 GOSUB 3000 : GOSUB 7000 : GOTO 1000 
2080 GOSUB 3500 : GOSUB 7000 : GOTO 1000 
2100 GOSUB 4000: GOTO 1000 
2120 GOSUB 7500 : GOTO 1000 
2140 GOSUB 8000 : GOTO 1000 
2160 GOSUB 7000 : GOTO 1000 
2180 GOSUB 5500 : GOTO 1000 
2200 GOSUB 6000 : GOTO 1000 
2210 GOTO 6500 
2220 GOTO 1000 

155 

So, if you choose code letter B on the menu, for begin, Apple picks this 
up on line 1500 and directs you to line 2000. Line 2000 means that you 
go in turn to three different subroutines and then back to line I 000 
which is, of course, the menu. 

A similar structure works for each of the 12 menu options, except for 
"FINISH FOR NOW" which goes to line 2210, which is simple: GOTO 
6500. This is a short finishing and switching off routine. 

Block 4 is a set of 12 subroutines to carry out the actual tasks 
involved in manipulating the customers' accounts. Each of these is now 
shown separately, with a short comment. 

Subroutine 1 is the input or the begin routine. It allows you to input 
names and sums of money in order to create the initial file of names and 
balances. It is quite a short routine running from lines 2500 to 2580. 

2500HOME 
2505 INPUT "HOW MANY CUSTOMERS II ; N 
2510FORC=l TON 
2520 PRINT : PRINT "CUSTOMER NUMBER II c 
2530PRINT: INPUT "INPUT NAME II; A$(C) 
2540 PRINT : INPUT "THE CURRENT BALANCE " ; B$(C) 
2550NEXTC 



156 A STRUCTURED PROGRAM 

2560 PRINT: PRINT: PRINT "THAT WAS THE LAST ONE" 
2565 PRINT : PRINT " PRESS ANY KEY" 
2570GETZ$ 
2580RETURN 

Subroutine 2 is the routine for putting the names- into alphabetical 
order. It runs from line 3000 to line 3085. The technique involved is a 
variation of a well-known ordering routine called a Sort, which is 
discussed in most introductory books. There are a number of different 
forms of Sort: this particular form is called a Bubblesort. 

3000HOME 
3005 PRINT " ALPHABETICAL ORDER" 
3010PRINT: PRINT "THIS PROCESS MAY TAKE SOME TIME." 
3020 PRINT "TRY TO BE PATIENT. II 

3025 J=O 
3030FOR C=l TO N-1 
3035 IF A$(C) < A$(C+l) THEN 3060 
3040X$=A$(C+l): Y$=B$(C+l) 
3045A$(C+l)=A$(C): B$(C+l)=B$(C) 
3050 A$(C)=X$: B$(C)=Y$ 
3055 J=J +l 
3060NEXTC 
3065 IF J > 0 THEN 3025 
3070 PRINT : PRINT : PRINT "NOW IN ALPHABETICAL ORDER" 
3075 PRINT : PRINT " PRESS ANY KEY" 
3080GETZ$ 
3085RETURN 

Subroutine 3 is concerned with updating the current accounts of 
customers. It allows you to do this in two ways (which means that most 
of the internal routines have to be used twice). Either you simply look at 
the whole list of names, one at a time; or you choose a specific account 
by putting in the customer's name At every stage the routine, as written 
here, gives the user the fullest possible options. Because of this, the 
routine is a bit long and cumbersome. It might be a useful idea to change 
it into two separate routines, one for dealing with the whole list, the other 
for dealing with individual cases, or to omit one of the options if memory 
space is likely to be a problem. It runs from line 3500 to 3980. 

3500HOME 
3505Z$="FILE UPDATE": L=LEN (Z$) 
3510 PRINT TAB ((40-L)/2)Z$ 



THE PROGRAM 157 

3520 PRINT : PRINT "DO YOU WISH TO PICK A SPECIFIC CUSTOMER" 
3530 PRINT: PRINT "OR GO THROUGH THE WHOLE LIST:-" 
3540 PRINT : INPUT "INPUT W OR S " ; Z$ 

3550 IF LEFT$ (Z$, l)="S" THEN 3830 
3555 IF LEFT$ (Z$, l)="W" THEN 3570 

3560 PRINT : PRINT "TRY AGAIN" : GOTO 3520 

3570FOR C=l TON 
3580PRINT: PRINT: PRINT" CUSTOMER "C" IS "A$(C) 

3590 PRINT : PRINT : PRINT 11 CURRENT BALANCE IS " B$(C) 
3600 PRINT : INPUT "DO YOU WISH TO CHANGE THIS ACCOUNT " ; Z$ 
3610 IF LEFT$ (Z$, l)="Y" THEN 3640 
3620 IF LEFT$ (Z$, l)="N" THEN 3780 

3630 PRINT : PRINT " TRY AGAIN" : GOTO 3600 
3640 PRINT : PRINT "DO YOU WISH TO ADD ON OR TAKEAWAY " 

3650 PRINT : INPUT "INPUT A ORT " ; Z$ 
3660 IF LEFT$ (Z$, 1) = "T" THEN P = -1 : GOTO 3690 
3670 IF LEFT$ (Z$, l)="A" THEN P=l: GOTO 3690 
3680 PRINT : PRINT "TRY AGAIN" : GOTO 3640 
3690 PRINT : INPUT " HOW MUCH " ; E 
3710Y$=STR$ (VAL (B$(C))+E*P) 

3720 PRINT : PRINT "OLD BAL CHANGE NEW BAL" 

3730 PRINT: PRINT B$(C), E*P, Y$ 
3740 PRINT : INPUT "IS THIS CORRECT (Y /N) " ; Z$ 
3750 IF LEFT$ (Z$, 1) = "Y" THEN 3775 
3760 IF LEFT$ (Z$, 1) = "N" THEN 3690 
3770 PRINT : PRINT "TRY AGAIN" : GOTO 3740 

3775 B$(C)=Y$ 

3780NEXTC 
3790 PRINT : PRINT " PRESS ANY KEY" 
3800GETZ$ 
3810RETURN 
3830 PRINT : INPUT "NAME OF CUSTOMER " ; Z$ 

3840FORC=l TON 
3850 IF A$(C) =Z$ THEN 3880 
3860NEXTC 
3870 PRINT : INPUT "NOT ON LIST. TRY AGAIN (Y /N) " ; Z$ 
3872 IF LEFT$ (Z$, 1) = "Y" THEN 3830 

3874 IF LEFT$ (Z$, l)="N" THEN 3980 
3876 GOTO 3870 
3880PRINT: PRINT" CUSTOMER "C" IS "A$(C) 
3890 PRINT : PRINT " CURRENT BALANCE IS "B$(C) 
3895 PRINT : INPUT "DO YOU WISH TO CHANGE THIS ACCOUNT " ; Z$ 



158 

3900 IF LEFT$ (Z$, l)="Y" THEN 3915 

3905 IF LEFT$ (Z$, l)="N" THEN 3810 
3910 PRINT : PRINT "TRY AGAIN" : GOTO 3895 

A STRUCTURED PROGRAM 

3915 PRINT: PRINT" DO YOU WISH TO ADD ON OR TAKE AWAY" 
3920 PRINT : INPUT " INPUT A ORT II ; Z$ 
3925 IF Z$="T" THEN P=-1 : GOTO 3940 
3930 IF Z$= "A" THEN P= + 1 : GOTO 3940 
3935 PRINT : PRINT "TRY AGAIN" : GOTO 3915 
3940PRINT: INPUT\\ HOW MUCH II; E 
3950Y$=STR$ (VAL (B$(C))+E*P) 

3955 PRINT : PRINT "OLD BAL CHANGE NEW BAL" 
3960 PRINT: PRINT B$(C), E*P, Y$ 
3962 PRINT : INPUT "IS THIS CORRECT {Y /N) " ; Z$ 
3964 IF Z$="Y" THEN 3980 
3966 IF Z$="N" THEN 3940 
3968 PRINT : PRINT "TRY AGAIN" : GOTO 3962 
3970NEXTC 
3972 PRINT : PRINT " PRESS ANY KEY" 
3974GET ZS 
3980B$(C)=Y$: RETURN 

Subroutine 4 is a technique for selecting those customers whose 
current balance is negative, i.e. in the red. These are counted by Z(N) 
and are stored in C$(N) and D$(N). (Line 4095 uses a quite complex 
notion which you may have to think about for a little while.) The routine 
runs from line 4000 to 4140. 

4000HOME 
4005 PRINT " CHECK DEBT" 

4010D=l 
4020FORC=l TON 
4030 IF VAL (B$(C)) < 0 THEN 4050 
4040 GOTO 4070 . 

4050Z(D)=C 

4060D=D+l 
4070NEXTC 
4080 PRINT : PRINT "CUSTOMERS IN DEBT ARE:-" 
4085 PRINT : PRINT 

4090FORC=l TOD 
4095 C$(C)=A$(Z(C)) : D$(C)=B$(Z(C)) 
4100 PRINT C$(C), D$(C) 
4110NEXT C 



THE PROGRAM 

4120 PRINT : PRINT " PRESS ANY KEY" 

4130GETZ$ 
4140RETURN 

159 

Subroutine 5 allows the user to add a name to the list of customers. It 
is a very simple process and needs only a short routine. It runs from line 
4500 to 45 30. 

4500HOME 

4502 PRINT " ADD NAME ROUTINE" 

4505N=N+l 
4510 INPUT \\ NEW NAME II ; A$(N) 

4515PRINT: INPUT" BALANCE "; B$(N) 

4520 PRINT : PRINT " PRESS ANY KEY" 
4525GETZ$ 

4530RETURN 

Subroutine 6 is the opposite of subroutine 5, in that it allows the user 
to delete a customer's name from the list. It also takes account of the 
situation where the name to be deleted is not typed in exactly as stored in 
Apple. It runs from line 5000 to line 5100. 

5000HOME 
5002 PRINT " DELETE A NAME" 

5005 PRINT : INPUT "NAME TO BE REMOVED " ; T$ 

5010FORC=l TON 
5015 IF A$(C)=T$ THEN 5060 

5020NEXTC 
5025 PRINT : PRINT "NAME NOT ON LIST. REMEMBER TO PUT IT" 
5030PRINT: PRINT "IN EXACTLY AS ORIGINALLY." 
5035 PRINT: PRINT "DO YOU WISH TO TRY AGAIN (Y /N)" 

5040 PRINT : INPUT " " ; Z$ 

5045 IF Z$="Y" THEN 5005 

5050 IF Z$= "N" THEN 5100 
5055 PRINT : PRINT " TRY AGAIN" : GOTO 5035 

5060 FOR D=C TO N-1 
5065 A$(D)=A$(D+l): B$(D)=B$(D+l) 

5070NEXTD 
5075 A$(N)=" II 

5080 N=N-1 
5085 PRINT : PRINT "NAME AND RECORD NOW REMOVED" 

5090 PRINT : PRINT " PRESS ANY KEY" 

5095GETZ$ 
5100RETURN 



160 A STRUCTURED PROGRAM 

Subroutine 7 is used to save the records on disk. It is almost identical 
to the one which has already been discussed at some length in Chapter 
4. It runs from line 5500 to line 5580. 

5500HOME 
5502 D$=CHR$ ( 4) 
5503 PRINT "NAMES AND DATA BEING STORED" 
5505 PRINT D$ ; "OPEN NAMES" 
5510 PRINT D$ ; "WRITE NAMES" 
5520FORC=l TON 
5525 PRINT A$(C) : PRINT B$(C) 
5530NEXTC 
5540 PRINT D$ ; "CLOSE NAMES" 
5550 PRINT: PRINT "NAMES AND DATA NOW STORED" 
5560 PRINT : PRINT "PRESS ANY KEY" 
5570GET Z$ 
5580RETURN 

Subroutine 8 is used to recover the records from disk and is again 
very similar to the one described in Chapter 4. It runs from line 6000 to 
line 6120. Notice that you must remember how many records you have 
stored, so it is always a good idea to make a note of how many records 
have been stored on it. 

6000HOME 
6010 PRINT : INPUT "HOW MANY NAMES WERE STORED ";N 
6020 D$=CHR$ ( 4) 
6025 PRINT "NAMES AND DATA BEING RECOVERED" 
6030 PRINT D$; "OPEN NAMES" 
6040 PRINT D$; "READ NAMES" 
6050 FOR C = 1 TO N 
6060 INPUT A$(C): INPUT B$(C) 
6070NEXTC 
6080 PRINT D$; "CLOSE NAMES" 
6090 PRINT " RESULTS NOW RECOVERED" 
6100 PRINT : PRINT : PRINT " PRESS ANY KEY" 
6110GETZ$ 
6120RETURN 

Routine 9 is the "finish" routine and is not a subroutine in the normal 
sense. It runs from line 6500 to line 6540 and ends with the word END 
rather than the word RETURN. In this it is different from all others. 



THE PROGRAM 

6500 PRINT : PRINT : PRINT 
6510 PRINT "THANK YOU FOR NOW. IF YOU WISH TO" 
6520 PRINT : PRINT "BEGIN AGAIN, TYPE IN 'RUN' AND" 
6530 PRINT : PRINT "PRESS RETURN." 
6540END 

161 

Subroutine 10 runs from line 7000 to line 7050. It prints the data on 
the scre~n for examination. Line 7015 breaks the data up into 
"screenfuls" of at most 15 records, so that they don't run off the top of 
the screen before you can read them. 

7000HOME 
7005 PRINT "NAMES" TAB(l8) "BALANCES" 
7007FORC = 1 TON 
7012 PRINT LEFT$ (A$(C), 12) TAB(20) VAL (B$(C)) 
7015 IF INT (CI 15) =(CI 15) THEN 7025 
7020 GOTO 7035 
7025 PRINT : PRINT " PRESS ANY KEY" 
7030GETZ$ 
7035NEXTC 
7040 PRINT : PRINT " PRESS ANY KEY" 
7045GETZ$ 
7050RETURN 

Subroutines 11 and 12, starting at lines 7500 and 8000, are not 
included, since they require the use of a printer, which is not discussed in 
this book, but space has been reserved for them by putting in a short 
message as shown. 

7500HOME 
7510 PRINT "THIS ROUTINE IS NOT YET INCLUDED." 
7520 PRINT : PRINT "WHEN YOU GET A PRINTER IT WILL" 
7530 PRINT: PRINT "BE EASY TO PUT IT IN." 
7540 PRINT : PRINT " PRESS ANY KEY" 
7550GETZ$ 
7560RETURN 

8000 REM PRINTER ROUTINE 
8005HOME 
8010 GOTO 7510 

The twelve routines in block 4 are now shown together below, with a 
shorthand for each, and the first line number of each. 



162 A STRUCTURED PROGRAM 

No. Letter Shorthand First Line 
on menu 

1 B INPUT or BEGIN. File Creation Begin 2500 
2 0 Alphabetical order Alpha 3000 
3 u Updating current accounts Update 3500 
4 E Selecting customers in debt Debt 4000 
5 A Add a name to list Add 4500 
6 D Delete a name from list Delete 5000 
7 s Save data on disk Save 5500 
8 R Recover data from disk Load 6000 
9 F End of program End 6500 

IO p Print data on screen Read 7000 
11 L Send letter to debtors Letter 7500 
12 c Send letter stopping credit Credit 8000 

It would clearly be possible to remove any one of these subroutines or 
to attach any number of new subroutines by changing the appropriate 
parts in blocks 2 and 3, and simply deleting or inserting these routines in 
block 4. The program is, in a sense, modularized. 

The variables used in this program are now listed. 

(a) Array Variables 
AS ()Names of Customers 
BS ( ) Current account balance figures 
CS ( ) Nam es of customers in debt 
DS ( ) Current account balances of customers in debt 
Z(25) List of numbers of customers in debt 

(b) String Variables 
ZS A casual variable used for pause routines etc. 
XS An auxiliary variable used in the alphabetical order routine 
YSSameasXS 
TS Used in delete routine to hold temporarily the name to be 

removed 
( c) Other Variables 

L Length of strings 
N Number of customers 
C Counts from 1 to N in loops 
D Counts the number of debtors 
J Conditional variable used in alphabetical order routine 
E Amount to be added to or taken from current account 
P Used to hold sign of E (i.e. plus or minus) 



PROBLEMS 163 

It is a good policy to keep a list of variable names like this in all 
programs, for two reasons. First, if there is a breakdown the variable 
involved can be more easily located. Second, it avoids the danger of 
using a single variable name for two different things. 

It is not suggested that every single program can be modularized in 
exactly this way, but it ought to be possible to develop some kind of 
comparable structure whatever the form of the problem. 

PROBLEMS 

1. Write a bibliography program which allows you to input a list of 
books. Each entry should include the author's name, the title of the 
book, the publisher and the year of publication. The menu should 
allow the following options: 
BEGIN a new list 
READ a current list 
ADD a name to a list 
DELETE a name from a list 
CHANGE any specified entry 
SA VE the list on disk 
RECOVER the list from disk 
FINISH for now 

As well as the subroutines necessary for these, it should also 
include a routine for putting the list into alphabetical order and a 
routine for holding the screen. 

2. Write a test standardization program. This should allow the input of 
names and scores of a class, and should then calculate the mean and 
standard deviation of these scores. The user should then be invited 
to choose a new mean and a new standard deviation and the 
program should then calculate a new score for each name. The data 
should be displayed on screen in three columns, i.e. names, scores, 
standardized scores. There should be routines for saving on disk, 
recovering from disk, putting in alphabetical order, adding and 
taking away names, changing all the scores, and so on. 



11 
Apple in the Classroom 

INTRODUCTION 

This section tries to describe a set of activities which a teacher might use 
in introducing Apple into his or her classroom. Although these activities 
are presented in a particular order, this does not mean that we think that 
this order is very important. In certain circumstances changes in the 
ordering would be sensible and even necessary. As well as this it has 
been assumed that, for some of these activities, suitable software is avail
able or can be constructed . In some cases this is probably over
optimistic, but the quality and quantity of good Apple software is 
improving all the time and we hope that this book will help teachers and 
others to become more expert at both writing software and improving or 
revising bought software. 

The ideas that follow are meant as a very general guide and no special 
kind of school or range of school ages is specified. Many of the sugges
tions would work very well in a primary school for example, but are 
generally not intended exclusively for that age. 

We are very clear, however, that all school subjects can bepefit from 
using the machine. That is to say, we would not support at all the notion 
that mathematics and the sciences have a better case than the other 
disciplines. In particular, the sophisticated string-handling and word
processing capacity of Apple makes it as capable of dealing with words 
as with numbers. 

We also believe that the potential of machines like Apple is very great 
and that as time goes on the range and complexity of the tasks that they 
can accomplish successfully will be greatly extended. 

In practical terms, therefore, we believe that all users should join an 
Apple User's Club either locally or nationally so as to keep in touch with 
developments in software and add-on hardware (see Appendix H). 

164 



APPLE AS A CALCULATOR 165 

APPLE AS A GAMES-PLAYER 

To begin with, it is necessary to overcome any inhibitions and anxieties 
that children may have about playing with Apple. They must become 
adept at setting the machine up, loading programs from disk, pressing 
keys, using the I RETURN I , lCTRLl and I ESCI keys, avoiding the I RESET I 
key, and so on. 

Games, probably bought from a software house to begin with, are the 
ideal introduction. Not only do they act as an immediate stimulus but 
they build up a degree of motivation and interest that is hard to acquire 
in any other way. It is even likely, after some experience, that children 
will take on the onerous task of typing in long game programs from 
books and magazines, even before they have had any experience of 
programming. 

Although many of the most popular games are arcade-type games, 
like Starwars, not all games that can be played on Apple are trivial or 
unintellectual. Many of these, such as Mastermind or Noughts and 
Crosses (or Tic-Tac-Toe) have a logical or mathematical dimension that 
is important educationally. This is not to mention complex games like 
Draughts, Chess and Go. 

APPLE AS A CALCULATOR 

The first chapter of this book shows how to begin to use Apple as a 
simple calculator. This usually involves the use of the word PRINT (or 
its shorthand, ?). At a very elementary level children can go to Apple to 
check answers to arithmetical calculations. One effect of this is to put 
some emphasis on the importance of the "ordering" of calculations and 
on the ambiguity of statements like: 

20-10-4 

For example, we can compare the answer to: 

?20-10-4 

with the answer to: 

?20-(10-4) 

and discuss why these are different. 
It is also an interesting and important mathematical notion to be able 

to store numbers in variables. This can be done on Apple and, at the 



166 APPLE IN THE CLASSROOM 

same time, a simulation of the process can be developed in the 
classroom. For example, we can input the following lines, remembering 
to press the I RETURN! key after each. 

A=4 
B=S 
C=A+B 
D=A*B 
?A,B,C,D 

Alongside this we can have a set of small cardboard boxes labelled A, B, 
C and D. The first line A= 4 can be represented visually by putting four 
counters in the A box. This process is then continued for each of the 
other boxes. 

This sort of exercise allows children to develop some kind of mental 
imagery about the internal processes of the machine. 

A similar activity is possible with strings. Suppose the school is called 
"St. John's Academy". Then: 

A$="ST." 

B$=" JOHN'S" 
C$=" ACADEMY" 

D$=A$+B$+C$ 
?D$ 

(Note: there is a space between the quotation marks and the J and the 
A in lines 2 and 3 above.) Boxes can be used again to represent the 
memory units and this time will be labelled A$, B$, and so on. 

APPLE AS A TEACH ER 

At a very elementary level it is possible to write a little program to allow 
children to practice addition. Suppose, for example, we wish to add two 
two-digit numbers each time. First, we can create the numbers with these 
two lines: 

100 A=INT(l00*RND(4)) 
120 B=INT(lOO*RND(7)) 

We then find the answer with: 



APPLE AS A TEACHER 

140C=A+B 

We then display the problem and invite an answer (D) from the child: 

160 PRINT " "A 
180 PRINT "+ "B 
200 PRINT" __ " 

220INPUTD 

Then check if the answer is correct. 

and so on. 

240 IF C=D THEN? "CORRECT" : GOTO 280 
260 PRINT "SORRY. THIS 1$ NOT CORRECT" 
280 PRINT "DO YOU WANT TO TRY ANOTHER?" 

167 

This is just the bones of a program and a great deal can be done to 
dress it up and present it in an interesting and fascinating way. What 
about using graphics to make the screen "explode" when a correct 
answer is given! 

Of course, this program can easily be adapted for subtraction, mul
tiplication, division and so on. It can also, with very little extra thought, 
become a word-completion or sentence-completion program. 

These are simple examples of Computer Assisted Learning (shortened 
to CAL). It is possible to develop these into quite a complex suite of 
such programs and, as time goes on, most teachers will do this. But the 
alternative is to buy commercial versions of such programs and adapt 
these to your own needs. 

For older primary children more complex problems become possible, 
such as completing sequences, plotting points, visual representations of 
fractions, completing symmetrical shapes, rotations, solving simple 
equations, and many more. For secondary children the possibilities are 
even greater and are limited only by the imagination of the teacher or 
programmer. 

The program that follows is an example which is more complex both 
in its content and in the amount of programming necessary to make it 
work. It uses two random numbers, generated in lines 120 and 140, to 
produce linear sequences of numbers. A set of six numbers in a linear 
sequence is then written on the screen with a bar, equal in length to each 
number, drawn beside each number. The user is then invited to put in the 
next two numbers in the sequence. 



168 APPLE IN THE CLASSROOM 

lOOHOME 
120 A =INT ( 5 * RND (7) + 1) : REM FIRST TERM 
140B=INT (6*RND(8)+1): REM TERM DIFFERENCE 
160 FOR C= 1 TO A : PRINT "*" ; : NEXT C 
180 PRINT TAB(35)A 
200PRINT 
220 FOR N=l TO 5 
240D=A+N * B 
260FOR C=l TOD: PRINT"*";: NEXT C 
280 PRINT TAB(35)A+N * B 
300PRINT 
320NEXTN 
340 PRINT "-" TAB (36) "?" 
400 PRINT : PRINT 
410 INPUT "PUT IN THE NEXT NUMBER " ; Al 
420 Bl=A+6 * B 
440IF Al=Bl THEN 480 
460 PRINT : PRINT "TRY IT AGAIN" : GOTO 400 
480 PRINT : PRINT 
490 INPUT "NOW THE NEXT ONE " ; A2 
500B2=A+7 * B 
520 IF A2=B2 THEN 560 
540 PRINT : PRINT "TRY IT AGAIN" : GOTO 480 
560 PRINT : PRINT "WELL DONE" 

APPLE AS A MANAGER 

There are a number of ways in which Apple can be used to store and 
generate records of class activities. An example of this is the "Test Stan
dardization" program in the problems attached to Chapter 10. This 
allows a teacher to store and, perhaps more importantly, to standardize 
any set of scores generated by a class. 

Let us take another example. Suppose a teacher has created a set of 
mathematics workcards (called Cl, C2, etc.) which has a complex 
organizational structure. A very small subset of this structure is shown 
below: 

Stage 1. Choose one of: C 1 C2 C3 
Stage 2. Do C4 - which includes short test. 
Stage 3. If score 50, or less, do CS. 

If score greater than 50, do C6. 



APPLE AS AN AID IN SIMULATIONS 

Stage 4. After CS, do C7 and CS. 
After C6 do C9 

Stage 5. Do card 10. 

169 

It would be a relatively simple task to write a program which would 
"advise" each pupil about which card to use next. 

The first few steps in such a program are shown below. To begin with, 
the child is asked to indicate whether or not he/she is a beginner. If he/ 
she is a beginner then the problem is immediately solved: do Cl, C2 or 
C3. If the child is not a beginner then further information is necessary: 

100 HOME : PRINT "ARE YOU A BEGINNER?" 
120INPUT A$: IF A$="YES" THEN 180 
140 IF A$="NO" THEN 240 
lSOGOTO 100 
180 PRINT : PRINT "CHOOSE ONE OF THE CARDS NUMBERED:-" 
200 PRINT "Cl, C2, C3" 
220END 
240 PRINT : PRINT "WHAT CARD HA VE YOU JUST COMPLETED?" 
260INPUT A$ 
280 IF A$= "Cl II OR A$= "C2" OR A$= "C3" THEN 1000 

Again, commercial programs for purposes of this sort will often be 
available, and will certainly become available as time goes on. 

In more general terms the machine can be used to manage or advise 
about, or to control any complex set of educational decisions or 
structures. In this sort of system the machine acts simply as a record
keeper and patternkeeper and so is able, very quickly, to compare 
individual performances or courses or patterns with a more general 
established or expected set. 

APPLE AS AN AID IN SIMULATIONS 

The programs on "tossing a coin" and "tossing a dice" in Chapter 6 are 
elementary examples of simulation programs. Instead of actually 
throwing a dice or a coin 200 times, it is possible to get Apple to 
simulate this process and produce a set of likely outcomes. Clearly the 
random number function will allow Apple to be used to produce figures 
of this sort for any such problem. 

There are many situations in subjects like biology and geography 
where such random number techniques are useful in that they allow a 



170 APPLE IN THE CLASSROOM 

complex set of natural phenomena linked by probabilistic relationships 
to be observed and studied in the classroom. Usually the real complexity 
of the situation and the interrelationships have to be severely over
simplified but, nonetheless, their structure and the processes through 
which they operate can be partially retained even in an oversimplified 
simulation model. An example now follows. 

A factory is about to employ a new workforce of 1,000 people. Some 
of these will be junior managers and some will be shopfloor workers. No 
exact figures are decided upon, but it is expected that the probability of 
becoming a junior manager is 1/4 or 0.25, so that the probability of 
working on the shopfloor is therefore 3/4 or 0. 75. 

After three years there will be a promotions exercise. Of the junior 
managers some will become senior managers, and the probability of this 
is about 1/ 10 or 0.1. The others will remain junior managers, and the 
probability of this is therefore 9/10 or 0.9. Of those working on the 
shopfloor, some will be promoted to fore men. The probability of this is 
reckoned to be 1/3 or 0.33. The others will remain on the shopfloor and 
so the probability of this is 2/3 or 0.67. 

Use a simulation exercise based on random numbers to see how many 
of the 1,000 workers might end up in each of the four employment 
categories, that is, 

(a) Senior management 
(b) Junior management 
(c) Foremen 
( d) Shopfloor workers 

Admittedly, this problem is fairly easily solved using simple arithmetic 
and the rules of probability. But that would leave out to some extent the 
random element and the "real-life" notion that the probabilities quoted 
are not precise. 

Here is a program which can be used. As always, it is fairly unadorned 
and a great deal more can be done with it, but at the end it produces 
figures of those actually in each of the four categories, and compares 
these with the numbers "expected" if precise arithmetic were used. 

lOOHOME 
120 INPUT "INPUT TOTAL NO. OF WORKERS II; w 
140 Cl=O: C2=0: C3=0: C4=0 
160FORN=l TOW 
180 A=INT (4*RND(3)+1) : REM WORKERS OR MANAGEMENT 
200 B=INT (5*RND(S)+1) : REM MANAGEMENT PROMOTION 



APPLE FOR LEARNING PROGRAMMING 

220 C=INT (3*RND{3)+1) : REM WORKERS PROMOTION 
240 IF A=l THEN 280: REM MANAGEMENT 
260 GOTO 360 : REM WORKERS 
280 REM Cl IS NEW SENIOR MANAGEMENT 
300 IF B <· 3 THEN Cl =Cl+ 1 : GOTO 440 
320 REM C3 IS JUNIOR MANAGEMENT 
340C2=C2+1 : GOTO 440 
360 REM C3 IS NEW FOREMEN 
380IFC=1 THEN C3=C3+1 : GOTO 440 
400 REM C4 IS THE NUMBER NOT PROMOTED 
420C4=C4+1 : GOTO 440 
440NEXTN 
450 PRINT : PRINT : PRINT : PRINT 

171 

460 PRINT "SENIOR" TAB{8) "JUNIOR" TAB(16) "FORE" TAB{24) "SHOP" 

480 PRINT "MANAG" TAB(8) "MAN AG" TAB(l6) "MEN" TAB(24) 
"FLOOR" 

500 PRINT : PRINT 
520 PRINT Cl TAB{8) C2 TAB(l6) C3 TAB{24) C4 TAB(28) "ACTUAL NOS" 

540 PRINT WI 10 TAB(8)3*W I 20 TAB{l6)W I 4 TAB(24)W / 2 
TAB{28) "EXPECTED NOS" 

APPLE FOR LEARNING PROGRAMMING 

This aspect of Apple's potential use in schools can easily be forgotten in 
all the other more obviously functional and applied uses which we have 
described. But for those children who wish to learn how to program and 
who may take examinations in computer science, or similar subjects, 
then a machine like Apple is most valuable. 

In the past, learning to program was often a theoretical exercise with 
long delays between writing the program and testing it. With Apple there 
is an immediate feedback.and any attempt at programming can be tested 
on the spot. A great deal can be done with a very limited set of BASIC 
statements and commands and, once these have been taken in, there is 
tremendous scope for experiment and practical work. 

There are also many side-effects from this kind of exercise. These 
range from the development of physical skills, like typing, to the logical 
skills necessary to predict the consequences of a series of simple state
ments and commands. 



Appendix A Apple Variations and Hardware 

INTRODUCTION 

The Apple which you are using will be either an Apple II or an Apple II 
Plus. This will be written on the front, just above the keyboard. There 
are two main differences between these two versions of Apple, as 
follows. 

When it is switched on normally, without a disk-drive attached, Apple 
II comes up with Integer BASIC and this is indicated by a prompt on 
the screen like this, >. This means that Integer BASIC is built into the 
machine and is available as soon as Apple is switched on. You cannot 
harm or destroy the language because it is stored in Read-Only-Memory 
chips called ROM chips. As the name suggests, these can be read from 
but cannot be written to. However, Apple II Plus has Applesoft BASIC 
in ROM instead, and when you switch it on this is what becomes avail
able and this is indicated by the prompt, ] , on the screen. 

The other main difference is that Apple II Plus has an autostart ROM 
which, as the name suggests, automatically switches on a disk-drive {if 
attached) and loads the operating system from a diskette in drive 1. This 
is not true of Apple II and the method for using disks with this is 
described below. 

CARDS AND SLOTS 

Now switch your Apple off and remove the cover by pulling up at the 
rear edge until it comes apart from the box. Now slide this cover off 
carefully and look into the Apple. At the very back, furthest away from 
the keyboard, there is a row of eight slots numbered 0 to 7. These are 
used to plug or slot in a variety of additional boards or cards to the 
Apple so that it is possible to attach numerous peripherals like disk-

172 



BOOTING DOS 173 

drives, printers, graphics boards and so on. It is also possible to plug in 
cards which add new facilities to Apple. For example, if you have an 
Apple II Plus and wish to have Integer BASIC as well as the resident 
Applesoft BASIC, then it is possible to buy an Integer BASIC card and 
instal it in slot 0. 

DISK DRIVES 

We have assumed in this book that your Apple will have at least one 
floppy disk-drive attached. If this is so you will find that a card for this 
has been installed, and it is most likely to be in slot 6, although it could 
be in any slot from 1 to 7. This card should have marked on it very 
clearly the words Drive 1 and Drive 2 with arrows pointing to the 
appropriate connectors. So this single card can be used to operate either 
a single disk-drive or two disk-drives. 

It is possible to have up to three of these disk-drive cards and so to 
have up to six disk-drives, and ways of addressing these are given in the 
Apple DOS manuals (see Appendix H). These cards again can be 
installed in any of the slots except number 0, but normally they appear 
in slots 4, 5 and 6. 

BOOTING DOS 

In order to be able to use the disks it is necesary to add some new 
commands to the BASIC language. These commands take the form of 
words like OPEN, CATALOG, RENAME and so on. Ifno disk-drive is 
attached these words are not required, and so normally BASIC does not 
contain them. The process of adding these commands is called booting 
DOS, where DOS stands for Disk Operating System. 

There are currently two established versions of DOS being used by 
Apples. These are called DOS 3.2 and DOS 3.3. A further complication 
is the possibility that your Apple may have what is called a language 
card (sometimes mistakenly called a Pascal card and sometimes a RAM 
card) installed in slot 0. We will discuss all of these variations below. 

The procedure for booting the DOS depends on which version of 
Apple you are using, so there are essentially two possibilities, and we will 
consider each in turn. 

(a) If you have the Apple II system with DOS 3.2 this means that 
you will not have the automatic ROM, so proceed as follows: 



174 APPLE VARIATIONS AND HARDWARE 

(i) Check which slot contains the disk-drive card. It is 
normally slot 6. 

(ii) Turn the Apple on at the back, and turn the monitor on 
as usual. 

(iii) Put the disk called Sytem Master into disk-drive 1. 
(iv) Type in PR:/1:6, and press I RETURN I. The red light on the 

front of the disk-drive will come on, there will be a 
whirring sound and the screen will print something like 
this: 

........................................................ 
DISK II MASTER DISKETTE VERSION 3.2 

DATE 
D 

The result is that DOS has been booted and the new 
operating commands have been added to BASIC 
although the Apple will not appear to do anything very 
different. 

There are two further points to be made. 
(i) You could have typed in IN-#:6 instead of PR :#:6. 
(ii) The 6 refers to the slot number, so if your disk-drive card 

has been placed in some other slot then this number must 
be changed accordingly. 

(b) If you have Apple II Plus with the automatic ROM and DOS 
3.3 then proceed as follows: 
(i) As always check which slot contains the disk-drive card. 

It is normally slot 6. 
(ii) Put the disk called System Master into disk-drive num

ber 1. 
(iii) Switch Apple on at the back. The red light will come on, 

there will be a whirring sound and the screen will print a 
message like that shown above, but referring to DOS 
3.3. The essential difference in this case is that you do 
not have to type in PR 6. 

VERSIONS OF DOS 

The essential difference between the two versions of DOS being used is 
in the way they format the diskettes. In the earlier version of DOS the 
diskette was divided into 13 sectors, but DOS 3.3 divides the diskette 



ITT2020 175 

into 16 sectors. This is done mainly to accommodate the language card 
which is discussed below. The main consequences of the change is an 
increase in the amount of storage space available on each diskette (from 
approximately 103,000 bytes to 127,000 usable bytes). 

For someone who has diskettes formatted in both ways (i.e. with 13 
sectors and with 16 sectors), DOS 3.3 allows the use of both sets, but 
DOS 3.2 only allows the use of those with 13 sectors. 

In DOS 3 .3 then there are two systems depending on the format of the 
diskette to be used. With a 16 sector diskette the normal booting system 
as described above is used. However, if you have a developed system 
written or saved on a 13-sector diskette there are two possibilities open 
to you. One is to transfer all the programs and data from the 13-sector 
diskette to a new 16-sector diskette using a program called Muffin. This 
is available on the DOS 3.3 systems disk. The other alternative involves 
using a conversion disk called BASICS, which allows DOS 3.3 systems 
to deal directly with 13-sector diskettes. The procedure is to insert this 
BASICS disk into disk-drive 1 and turn Apple on at the back. In 
response to this Apple will print on the screen the words, "INSERT 
YOUR· 13 SECTOR DISKETTE AND PRESS RETURN". You 
should then insert your 13-sector diskette into Disk-Drive 1 as ins
tructed. 

The final variation occurs if you have what is called the Language 
Card installed in slot 0. The main reason for installing the language card 
is that it is then possible to use other languages like Pascal and 
FORTRAN. These languages use 16-sector diskettes and so it is 
necessary to have DOS 3.3 installed. The parts necessary to do this are 
normally included when you buy the language card. 

You will also be given a BASICS diskette and a DOS 3.3 diskette so 
that it is possible for you to use both 13-sector and 16-sector diskettes, 
as described above. If you are also going to use Pascal (or another 
language), the appropriate disks will be included and there is some 
discussion of these in Appendix E. 

ITT 2020 

A version of the Apple is produced in Europe and is called the ITT 
2020. It is almost identical to Apple and much Apple software will run 
on it, and vice versa. The most immediately obvious difference is the 
color of the plastic case, although it looks like the Apple shape. As well 
as this, underneath the lid the design of the main inside board is a bit 
different. 

The important difference is in the software and in particular in the 



176 APPLE VARIATIONS AND HARDWARE 

way the two machines treat high resolution graphics. The main BASIC 
is called Palsoft rather than Applesoft and they differ with respect to 
their treatment of graphics. 

As we have described in Chapter 5 the Apple high resolution 
screen is divided into 280 points across the screen and 160 down the 
screen. The ITT has 360 points across the screen and 160 down. One 
consequence of this is that, on the ITT 2020, horizontal and vertical 
lines are differently scaled. For example, a program which will draw a 
square on Apple will produce a rectangle on the ITT 2020. 

As well as this, the HPLOT command differs on the two systems. On 
Apple you can write: 

HPLOT 0,0 TO 0,100 TO 100,100. 

On the ITT 2020 this must be changed into two statements, i.e.: 

HPLOT 0,0 TO 0, 100 
HPLOT 0,100 TO 100,100. 

The result of these differences is that some Apple programs will not run 
on the ITT 2020 either because of the BASIC or because the video 
system is different. 

BELLAND HOWELL 

A similar Apple-based look-alike machine is sold in the USA by Bell and 
Howell. This is in fact an Apple in another case, and there are no 
incompatibility problems. 

LOWER-CASE LETTERS 

Although Apple does not have the facility for producing lower-case 
letters there are a number of devices on the market which can be added 
to the machine to make this possible. This can be in the form of a ROM 
chip which is simply plugged in, or a slot-in card which is put into one of 
the eight slots at the back of the Apple board. 



Appendix B Tape Management 

INTRODUCTION 

Although most Apple systems are likely to haye disk-drives, not all 
owners will be able to afford them, so this is a short introduction to the 
use of cassette tapes and a tape recorder for the purposes of saving and 
recovering programs. 

The process of connecting a tape recorder to Apple and of making 
sure that it can "listen" properly and "talk" properly to Apple is 
described in the Applesoft tutorial and will not be repeated here. The 
essential point is that the volume control on the recorder must be set 
properly and this proper position is found by trial and error in the first 
instance. When it has been found it should be marked clearly so that it 
can be properly aligned each time the recorder is used. It is worth 
pointing out that saving and loading text or data files is not dealt with 
here as the processes are either impossible or too complex to describe. 

SAVING A PROGRAM 

The procedure for doing this is now outlined in detail. The steps to be 
followed are given in the correct order, so you should proceed exactly as 
described. 

(a) If you have not already done so, type in the program that you 
wish to keep. 

(b) Put a cassette into the tape recorder and make sure it is 
rewound. 

(c) Type the word SAVE but do not as yet press the IRETURNI key. 
(d) Hold the record key and press the play key so that both stay 

down. The cassette tape will begin to move as it begins to 
record. 

177 



178 TAPE MANAGEMENT 

(e) Press the IRETURNI key. The cursor will then disappear, and 
after ten to fifteen seconds Apple will give a "beep" sound. 
This indicates that recording has begun. When the recording 
has been completed this "beep" will sound again and the 
cursor will reappear. 

(f) When the cursor reappears, press the stop key on the tape 
recorder. Your program has now been saved. 

(g) Remove the cassette, and label it carefully so that you know 
what program has been saved on it. 

LOADING A PROGRAM FROM TAPE 

This is the opposite process and it echoes the "save" process fairly 
faithfully. Again the steps should be carefully followed. 

(a) Insert the tape and make sure it is rewound. 
{b) Type the word LOAD but do not as yet press the IRETURNI 

key. 
(c) Press the play key and make sure that it stays down so that 

the tape is running. 
(d) Press the IRETURNI key. The cursor will then disappear. After 

some seconds {less than twenty usually) Apple will give a 
"beep" sound to indicate that the program is being loaded into 
Apple. When this loading has been completed this "beep" will 
sound again and the cursor will reappear. 

(e) When the cursor reappears, press the stop key on the tape 
recorder. Your program has now been loaded. 

(f) Now type in RUN and press IRETURNI • 
For the benefit of the disk users it is as well to point out that using 
LOAD or SAVE without a file name implies that cassette tape is being 
used, so that if a system with disks is being used, the cursor disappears, 
and nothing happens. In other words, disk users must always include a 
file name. 



Appendix C Apple Vocabulary 

INTRODUCTION 

Apple recognizes certain words, symbols and letters as having a special 
meaning. For example, the question mark means "print" and the dollar 
sign indicates a string. A complete list of these reserved words now 
follows, as well as a list of all Apple symbols, such as the comma. 
Included in this list are all the words used in DOS commands and a 
small number of words associated with machine-code commands. 

The expressions are listed in alphabetical order, and beside each 
expression there are three pieces of information. 

(a) A short description of the meaning or purpose of the words. 
However, it is emphasized that these are by their nature 
sketchy descriptions and the reader should check the syntax 
carefully in the Applesoft BASIC Programming Reference 
Manual, details on page 25 1 ). 

(b) A reference to the appropriate page number in this book, 
where it occurs. 

(c) An indication of the categories into which the word fits accor
ding to these divisions: 
DIR - Can be typed in directly outside a program. 
PRG - Used mainly within a program. 
FN - Is a function. 
STRFN - Is a string function. 
DOS - Is used by the Disk Operating System. 
{This is not adhered to with complete strictness because 
although many words can in theory be used directly, they 
rarely are and are not so classified). 

179 



180 APPLE VOCABULARY 

WORDS 

Expression Description 

ABS Used with numbers, and always produces 
the number as positive even when used 
with a negative number. (PRG, FN) 

AND This is the logical AND to combine two 
conditionals. (PRG) 

APPEND A DOS command used within a program 
with PRINT CHR$(4) to add data to the 
end of a sequential file. (PRG, DOS) 

ASC Produces a number corresponding to the 
first character of the string in brackets. 
(PRG, STRFN) 

ATN A mathematical function, the inverse TAN 
function. The result will be in radians. 
(PRG,FN) 

BLOAD A DOS command which loads a machine-
code file. (DIR, DOS) 

BRUN A DOS command which executes a 
machine-code file. {DIR, DOS) 

BSA VE A DOS command which saves a machine-
code file. (DIR, DOS) 

CALL Used to call or execute a machine-code 
routine. It is followed by a number which 
is the address of the memory location of 
the beginning of the routine. (DIR, PRG) 

CATALOG A DOS command used to list on the 
screen the contents of a diskette inserted in 
one of the disk drives. Can be used with a 
drive number as in CATALOG, D2. 
(DIR, DOS) 

Page 

130 

94 

43 



WORDS 181 

Expression Description Page 

CHR$ Produces a character corresponding to the 
number in brackets. (PRG, STRFN) 48 

CLEAR Used to set all variables to zero or 
equivalent. Can also be used as a state-
ment within a program. (DIR, PRG) 

CLOSE A DOS command used, both within a 
program and directly, with PRINT 
CHR$(4) to close a data file. (DIR, PRG, 
DOS) 48 

COLOR Used in low-resolution graphics to choose 
a color, using an appropriate number as in 
COLOR=4. (See HCOLOR.) (DIR, 
PRG,GRAPH) 56 

CONT Used to make Apple continue with a 
program after it has gone into dfrect mode 
as a consequence of the word STOP or the 
word END. (DIR) 

cos The mathematical cosine function. The 
number used with COS (in brackets) must 
be in radians. (PRG, FN) 70 

DATA See READ. 74 

DEFFN Used to define a function which can then 
be used again and again. (DIR, PRG, FN) 143 

DEL Removes or deletes lines from a program 
as in DEL 100, 160. This removes all lines 
from 100 to 160 inclusive. Notice that the 
numbers are separated by a comma. (DIR, 
PRG) 20 

DELETE (a) A DOS command used to remove a file 
from a diskette. The title of the file must be 
used, as in DELETE FILENAME. Again 
it is possible to specify the drive to be used 



182 APPLE VOCABULARY 

Expression Description Page 

as in DELETE FILENAME, D2. (DIR, 
DOS) 46 

DELETE (b) A DOS command used with PRINT 
CHR$(4) to remove a data file from a 
diskette. (DIR, PRG, DOS) 

DIM Allows for booking of a set of units of 
memory for numbers or strings. (PRG) 108 

DRAW Draws a shape, defined by a shape-table, 
in high-resolution graphics. Not used in 
this book. (DIR, PRG, GRAPH) 182 

END Ends a program. Need not be the last line 
of the program. (PRG) 33 

EXEC A DOS command similar to RUN used to 
execute files containing BASIC statements 
as data. (DIR, PRG, DOS) 

EXP The exponential function produces a num-
ber equal to the mathematical constant e, 
raised to the power of the number in 
brackets. (PRC, FN) 

FLASH This causes all output to the screen to 
flash, that is to change quickly and 
repeatedly from black on white to white on 
black. It is turned off by NORMAL. 
(DIR, PRG) 10 

FOR Used with TO and NEXT (and sometimes 
STEP). Creates a loop. Rarely used as a 
direct command. Used mainly within 
programs as a statement. Use colons as 
separators. (DIR, PRG) 47 



WORDS 183 

Expression Description Page 

FP If Apple is in Integer BASIC this puts it 
into Applesoft (i.e. floating point) BASIC, 
if it is posible. (See INT.) (DIR) 

FRE Used with a number in brackets, so may 
be thought of as either a statement or a 
function. Produces a number indicating the 
number of bytes of memory still free or 
available. (PRG, FN) 26 

GET Apple anticipates a single character input 
from the keyboard. (PRG) 38 

GO SUB Used with RETURN and, sometimes with 
ON. Sends Apple to a specified subroutine. 
RETURN acts as the end of the sub-
routine and sends Apple back to the line 
after GOSUB. (PRG) 32 

GOTO Sends Apple to appropriate line in 
program, as in GOTO 200. Most often 
used as a statement. Used with ON, IF 
and THEN. (DIR, PRG) 51 

GR Changes the screen for low-resolution gra-
phics. The top 20 lines are then reserved 
for graphics, while the bottom four lines 
are used for text. This is turned off by 
TEXT. (See HGR and HGR 2.) (DIR, 
PRG,GRAPH) 55 

HCOLOR Used in high-resolution graphics to choose 
a color, using an appropriate number as in 
HCOLOR = 4. (See COLOR.) (DIR, 
PRG,GRAPH) 67 

HGR Changes the screen for high-resolution 
graphics. The top 20 lines are then 
reserved for graphics, while the bottom 



184 APPLE VOCABULARY 

Expression Description Page 

four lines are used for text. Uses page one 
of high resolution graphics. This is turned 
off by TEXT. (See HGR2 and GR). (DIR, 
PRG,GRAPH) 66 

HGR2 Same as HGR, except that the complete 
screen is reserved for high-resolution gra-
phics. Can only work if Apple has at least 
24K of memory. (DIR, PRG, GRAPH) 

HIM EM Changes the address of the highest 
memory location available to programs in 
BASIC. (DIR, PRG) 

HLIN Used in low-resolution graphics to draw a 
horizontal line across the screen. For 
example HLIN 12, 30 at 20. (DIR, PRG, 
GRAPH) 63 

HOME Clears all text off the screen and moves the 
cursor to the top left-hand comer. (DIR, 
PRG) 10 

HP LOT Used in high-resolution graphics to plot a 
point, or to draw a line using the word TO. 
(DIR, PRG, GRAPH) 68 

HTAB This is followed by a number between 1 
and 255, as in HTAB 25. This moves the 
cursor out to the twenty-fifth position on 
the current line. (DIR, PRG) 137 

IF Used with THEN and with GOTO. Sets 
up a condition which allows Apple to 
decide which of two things to do next. 
(PRG) 39 

INIT A DOS command used to initialize a new 
diskette. (DIR, DOS) 42 

INPUT Apple anticipates an input from the key-



WORDS 185 

Expression Description Page 

board (or from the diskette) which may be 
a number or string. (PRG) 20 

INT (a) Produces the integral part of the num-
her inside the brackets. (PRG, FN) 86 

(b) If Apple is in Applesoft BASIC this 
puts it into Integer BASIC (if 
available). See FP. (DIR) 

INVERSE This causes all output to the screen to be 
printed as black on a white background. It 
is turned off by NORMAL. (DIR, PRG) 10 

IN://: This is followed by a number between 1 
and 7 and this refers to one of the eight 
slots for extra cards at the back of the 
Apple. It tells Apple to expect INPUT 
from whatever device is attached to this 
slot. (DIR, PRG) 174 

LEFTS Produces a part of the string in brackets, 
starting from the left. (PRG, STRFN) 121 

LEN Produces a number equal to the number of 
characters in the string. (PRG, STRFN) 121 

LET An optional word used to set a variable 
equal to a constant. (PRG) 11 

LIST Puts a listing of the current program on the 
screen. (DIR) 18 

LIST A-B List that part of the program between lines 
A and B, including A and B. (PRG) 18 

LIST-B List all lines in a program up to a specified 
line, i.e. B. (PRG) 18 

LIST-A List all lines in a program from a specified 
line onwards, i.e. A. (PRG) 18 



186 APPLE VOCABULARY 

Expression Description 

LOAD 

LOCK 

LOG 

Used with disk drive to copy a program 
from diskette or cassette to Apple's 
memory. Must be followed by the 
program's name, as in LOAD 
FILENAME, when loading from diskette, 
but is used without a file name when load
ing from cassette. (DIR) 

A DOS command used to ensure that a file 
on a diskette cannot be erased, as in 
LOCK FILE. This lock can be removed 
by the UNLOCK command. A locked file 
on a diskette will have a star beside it in 
the CATALOG. (DIR, DOS) 

The mathematical logarithm function to 
the exponential base. (PRG, FN) 

LOMEM Changes the address of the lowest memory 
location available to programs in BASIC. 
(DIR, PRG) 

MAXFILES A DOS command used to specify the 
number of active files to be permitted 
When it is not used three files are assumed. 
It should be used with caution. (DIR, 
DOS) 

MIDS Produces a part of the string in brackets, 
according to fixed rules. (PRG, STRFN) 

MON A DOS command used to monitor the 
information passing between Apple and 
disks. Useful mainly when having 
problems with disk files. Turned off by 
NOMON. (DIR, DOS) 

NEW Wipes any existing program from Apple's 
memory. Can be used within a program. 
(DIR, PRG) 

Page 

45 

144 

121 

19 



WORDS 187 

Expression Description Page 

NEXT See FOR - used to make a loop. (DIR) 47 

NO MON A DOS command used to turn off the 
MON command. (DIR, DOS) 

NORMAL Used to turn off the INVERSE or the 
FLASH command, so that output to the 
screen is normal again. (DIR, PRG) 10 

NOT Used to present a negative conditional. 
(PRG) 

NOTRACE Used to turn off the TRACE command. 
(DIR,PRG) 91 

ON Used with GOTO and GOSUB to direct 
Apple to one of a set of lines or sub-
routines according to an index number. 
(PRG) 

ONERR This may be used to stop Apple from leav-
GOTO ing a program and halting execution when 

an error occurs. Used with RESUME. 
(PRG) 

OPEN A DOS command used within a program 
with PRINT CHRS( 4) to open a data file. 
(PRG,DOS) 48 

OR This is the normal 0 R to distinguish two 
conditionals. (PRG) 

POL Used to make effective the paddles or 
game controls. PDL(O) or PDL(l) nor-
mally refers to first two paddles. The 
values of these range from 0 to 255. (DIR, 
PRG) 

PEEK Used to find the number stored in a 
particular unit of memory. (PRG) 94 



188 
APPLE VOCABULARY 

Expression Description Page 

PLOT Used in low-resolution graphics to plot a 
point. (DIR, PRG, GRAPH) 56 

POKE Used to place a particular number in a 
specified (numbered) unit of memory. 
(PRG) 94 

POP This has the effect of RETURN without a 
corresponding GOSUB. (DIR, PRG) 

POS Used with PRINT to specify the position 
of the cursor with respect to the left-hand 
margin. Positions are numbered from 0 to 
39. (DIR, PRG) 

POSITION A DOS command used within a program 
with PRINT CHRS to extract data from a 
specified field in a data file. (PRG, DOS) 

PRINT Can be used to print characters and num-
hers on the screen or on other specified 
devices. Can often be shortened to?. 
(DIR, PRG) s 

PR# This is used in the same way as IN# 
except that it implies PRINTING out to a 
device attached to the slot number 
specified. (DIR, PRG) 174 

READ (a) Used with DATA and RESTORE to 
allow a set of numerical data (or str-
ing) to be placed within a program 
from the start rather than input during 
a program run. (PRG) 74 

READ (b) A DOS command used within a 
program with PRINT CHR$( 4) to 
read from a data file. (PRG, DOS) 48 

RECALL This loads or recalls arrays of data from a 
cassette tape. Used with STORE. (DIR, 
PRG) 



WORDS 189 

Expression Description Page 

REM Short for REMARK, this allows a 
program to be annotated. (PRG) 25 

RENAME A DOS command used to change or 
REN AME a file on a diskette. (DIR, 
DOS) 47 

RESTORE Used with READ and DAT A to reinstitute 
a set of data already used within a 
program. (DIR, PRG) 

RESUME Used with ONERR GOTO. (PRG) 

RETURN Used in association with GOSUB as an 
indication that a subroutine has ended. 
(PRG) 32 

RIGHTS Produces a part of the string in brackets, 
starting on the right. (PRG, STRFN) 121 

RND Produces a random number of up to nine 
digits between 0 and 1. (PRG, FN) 84 

ROT Used with ORA Wand XDRA W to 
establish angle of rotation for the shape. 
(DIR, PRG, GRAPH) 

RUN Causes program to be executed. Can be 
used with a line number, such as RUN 
200. (DIR, PRG) 18 

SAVE Used with disk-drive to copy a program 
from memory to diskette or cassette. Nor-
mally used outside a program as a direct 
command, but can be used in a program. 
When saving a program on diskette this 
command must be followed by the name of 
the program. If it is used without a file 
name this implies the use of a cassette tape 
rather than a diskette. See LOAD. (DIR, 
PRG) 44 



190 APPLE VOCABULARY 

Expression Description Page 

SCALE Used to establish an enlargement factor 
when using DRAW and XDRA W. (DIR, 
PRG,GRAPH) 

SCRN Used to establish the color code of any 
point on the low-resolution graphics 
screen. (DIR, PRG, GRAPH) 

SGN Changes a negative number to - 1 and a 
positive number to + 1 and leaves zero as 
zero. (PRG, FN) 

SHLOAD This loads a shape table from a cassette 
tape. (DIR, PRG) 

SIN The mathematical sine function. The num-
her in brackets must be in radians. (PRG, 
FN) 70 

SPC Produces the number of spaces specified in 
the brackets following the function. (PRG, 
FN) 139 

SPEED Establishes the speed at which characters 
are sent to the screen (or other devices). 
The range is 0 to 25 5 and the format is, 
SPEED = 120. (DIR, PRG) 

SQR Produces the square root of the number in 
brackets. (PRG, FN) 140 

STEP See FOR and TO. Used to indicate size of 
step used in a loop. (PRG) 136 

STOP Used as a temporary stop. (PRG) 31 

STORE Used to save or store arrays of data on 
cassette tape. Used with RECALL. (DIR, 
PRG) 

STR$ Changes a number into an ''identical" str-
ing. (PRG, STRFN) 131 



WORDS 191 

Expression Description Page 

TAB Used to move the cursor out the number of 
spaces specified in the brackets. (PRG, 
FN) 86 

TAN The mathematical tangent function. The 
number in brackets must be in radians. 
(PRG,FN) 

TEXT This turns off the graphics screen modes 
established with the words GR or HGR or 
HGR2. (DIR, PRG, GRAPH) 56 

THEN Used with IF to indicate one of two 
possible results of conditional statements. 
(PRG) 39 

TO See FOR. Used with FOR, STEP and 
NEXT in loops. (PRG) 47 

TRACE Used to debug programs. It causes the line 
number of each executed line to appear on 
the screen as it is executed. It is turned off 
by NOTRACE. (DIR, PRG) 91 

UNLOCK A DOS command used to remove the 
effect of LOCK on a diskette file. This 
makes it possible for the file to be erased. 
(DIR, DOS) 

USR A machine-code transferral statement. 
(PRG) 

VAL Produces a number, from the left of a 
string, if it is numeric. (PRG, STRFN) 118 

VERIFY Used with SA VE to check that APPLE 
has copied program correctly on to 
diskette. Must specify name of program. 
(DIR) 44 

VLIN Used in Low Resolution Graphics to draw 



192 APPLE VOCABULARY 

Expression Description Page 

a vertical line down the screen. For 
example VLIN 10, 30 at 20. (DIR, PRG, 
GRAPH) 63 

VTAB This is followed by a number between 1 
and 24, as in VT AB 12. This moves the 
cursor to the beginning of the twelfth line 
across the screen starting from the top. 
(DIR, PRG) 137 

WAIT Used to make a program pause, this being 
dependent on the status of a specified 
memory location. (DIR, PRG) 

WRITE A DOS command used within a program 
with PRINT CHR$(4) to write to a data 
file. (PRG, DOS) 48 

XDRAW Used with ORA W to erase shapes drawn 
on the screen. (DIR, PRG, GRAPH) 

SYMBOLS 

Expression Description Page 

= There are two meanings of this: the normal 
equality meaning and the notion of a vari-
able Ax becoming a specified value. 11 

/\ This means "to the power of". 89 

I The symbol for division. 6 

* The symbol for multiplication. It must not 
be left out, as it sometimes is in algebra. 6 

+ The symbol for addition. 6 

The symbol for subtraction. 6 



SYMBOLS 193 

Expression Description Page 

< This means "is less than". 62 

> This means "is greater than". 62 

<> This means "is not equal to". 119 

<= This means "is less than or equal to". 

>= This means "is greater than or equal to". 

Used to separate two or more statements 
used in a single line of BASIC. 12 

Used in PRINT statements to place num-
bers side by side or to concatenate strings. 23 

Used in PRINT statements to space out 
the numbers and strings being printed. 22 

? Used as shorthand for PRINT. 7 

$ Used with variable names to indicate string 
variables. 13 

% Used with variable names to indicate 
integer variables. 87 

IRETURNI This key is pressed when the user wishes to 
key indicate that he has completed an input of 

some sort. 4 

" " Used around strings to indicate beginning 
and end. 8 



Appendix D Tables of Peek, Poke and CHR$ Numbers 
Table D 1 Keyboard Peek and Poke Numbers 

The bottom number represents the symbol in reverse mode; the second 
number represents the symbol in ftash mode; the top two numbers 
represent the symbol in normal mode. 

225 226 227 228 229 230 231 232 233 234 253 
161 162 163 164 165 166 167 168 169 170 189 
97 98 99 100 101 102 103 104 105 106 125 
33 34 35 36 37 38 39 40 41 42 61 

! II # $ % & I ( ) * = 

241 242 243 244 245 246 247 248 249 240 250 237 
177 178 179 180 181 182 183 184 185 176 186 173 
113 114 115 116 117 118 119 120 121 112 122 109 
49 50 51 52 53 54 55 56 57 48 58 45 

1 2 3 4 5 6 7 8 9 0 : -

209 218 197 210 212 217 213 201 207 208 192 
145 151 133 146 148 153 149 137 143 144 128 
81 87 69 82 84 89 85 73 79 80 64 
17 23 5 18 20 25 21 9 15 16 0 

Q w E R T y u I 0 p @ 

193 211 196 198 199 200 202 203 204 251 235 
129 147 132 134 135 136 138 139 140 187 171 
65 83 68 70 71 72 74 75 76 123 107 

1 19 4 6 7 8 10 11 12 59 43 

A s D F G H J K L ; + 

218 216 195 214 194 206 205 236 238 239 222 252 254 255 
154 152 131 150 130 142 141 172 174 175 158 188 190 191 
90 88 67 86 66 78 77 108 110 111 94 124 126 127 
26 24 3 22 2 14 13 44 46 47 30 60 62 63 

z x c v B N M 
' I /\ < > ? 

224 
160 
96 

SPACE BAR 32 



PEEK ANO POKE NUMBERS 196 

Table D2 Peek and Poke Numbers 

Symbols Rev. Flash Normal Symbols Rev. Flash Normal 
Mode Mode Mode Mode Mode Mode 

@ 0 64 128 192 32 96 160 224 
A 1 65 129 193 33 97 161 225 
B 2 66 130 194 " 34 98 162 226 
c 3 67 131 195 * 35 99 163 227 
D 4 68 132 196 s 36 100 164 228 
E 5 69 133 197 % 37 101 165 229 
F 6 70 134 198 & 38 102 166 230 
G 7 71 135 199 39 103 167 231 
H 8 72 136 200 ( 40 104 168 232 
I 9 73 137 201 ) 41 105 169 233 
J 10 74 138 202 * 42 106 170 234 
K 11 75 139 203 + 43 107 171 235 
L 12 76 140 204 44 108 172 236 
M 13 77 141 205 45 109 173 237 
N 14 78 142 206 . 46 110 174 238 
0 15 79 143 207 I 47 111 175 239 
p 16 80 144 208 0 48 112 176 240 
Q 17 81 145 209 1 49 113 177 241 
R 18 82 146 210 2 so 114 178 242 
s 19 83 147 211 3 51 115 179 243 
T 20 84 148 212 4 52 116 180 244 
u 21 85 149 213 5 53 117 181 245 
v 22 86 150 214 6 54 118 182 246 
w 23 87 151 215 7 55 119 183 247 
x 24 88 152 216 8 56 120 184 248 
y 25 89 153 217 9 57 121 185 249 
z 26 90 154 218 58 122 186 250 
[ 27 91 155 219 59 123 187 251 
\ 28 92 156 220 < 60 124 188 252 
1 29 93 157 221 - 61 125 189 253 

" 30 94 158 222 > 62 126 190 254 
31 95 159 223 ? 63 127 191 255 



Table 03 Peek and Poke Screen Numbers 

Columns 

First no. on row 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 I 2 3 4 S 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 Last no. on row 

1024 
1152 
1280 
1408 
1536 
1664 
1792 
1920 
1064 
1192 
1320 
1448 
1576 
1704 
1832 
1960 
1104 
1232 
1360 
1488 
1616 
1744 
1872 
2000 
Missing numbers 

Rows 1 
2 
3 
4 
5 . . . . . .... 1546 . . 
6 
7 
8 
9 

10 . . . . . 1197 ........ 
11 
12 
13 
14 
15 . . . . . . . . . . . . . . . . 
16 
17 
18 
19 
20 ................ 
21 
22 
23 
24 

1144-1151 1656- 1663 
1272- 1279 1784-1791 
1400- 1407 1912- 1919 
1528- 1535 2040-2047 

I 1063 
2 1191 
3 1319 
4 1447 

... . . . . . . . .. 1566 5 1575 
6 1703 
7 1831 
8 1959 
9 1103 

... 1212 10 1231 
II 1359 
12 1487 
13 1615 
14 1743 

. . . . . . . . ...... 1862 15 1871 
16 1999 
17 1143 
18 1271 
19 1399 

1503 20 1527 
21 1655 
22 1783 
23 1911 
24 2039 

... 
co 
0) 

,, 
m 
m ,.. 
J> 
z 
c ,, 
0 ,.. 
m 
z 
c: s: 
m 
m 
:D 
en 



PEEK AND POKE NUMBERS 197 

Table 04 CH R$ Numbers 

No As No As As shown 
symbols shown symbols shown 

0 64 @ 128 192@ 32 96 160 224 
1 65 A 129 193 A 33 ! 97 ! 161 ! 225 ! 
2 66 B 130 194 B 34 " 98 " 162 " 226 " 
3 67 c 131 195 c 35 # 99 # 163 # 227 # 
4 68 D 132 196 D 36 $ 100 $ 164 $ 228 $ 
5 69 E 133 197 E 37 % 101 % 165 % 229 % 
6 70 F 134 198 F 38 & 102 & 166 & 230 & 
7 71 G 135 199 G 39 I 103 I 167 I 231 I 

8 72 H 136 200 H 40 ( 104 ( 168 ( 232 ( 
9 73 I 137 201 I 41 ) 105 ) 169 ) 233 ) 

IO 74 J 138 202 J 42 * 106 * 170 * 234 * 
11 75 K 139 203 K 43 + 107 + 171 + 235 + 
12 76 L 140 204 L 44 ' 108 ' 172 ' 236 ' 
13 77 M 141 205 M 45 - 109 - 173 - 237 -
14 78 N 142 206 N 46 . 110 . 174 . 238 . 
15 79 0 143 207 0 47 I 111 I 175 I 239 I 
16 80 p 144 208 p 48 0 112 0 176 0 240 0 
17 81 Q 145 209 Q 49 I 113 I 177 1 241 1 
18 82 R 146 210 R 50 2 114 2 178 2 242 2 
19 83 s 147 211 s 51 3 115 3 179 3 243 3 
20 84 T 148 212 T 52 4 116 4 180 4 244 4 
21 85 u 149 213 u 53 5 117 5 181 5 245 5 
22 86 v 150 214 v 54 6 118 6 182 6 246 6 
23 87 w 151 215 w 55 7 119 7 183 7 247 7 
24 88 x 152 216 x 56 8 120 8 184 8 248 8 
25 89 y 153 217 y 57 9 121 9 185 9 249 9 
26 90 z 154 218 z 58 : 122 : 186 : 250 : 
27 91 [ 155 219 [ 59 ; 123 ; 187 ; 251 ; 
28 92 \ 156 220 \ 60 < 124 < 188 < 252 < 
29 93 1 157 221 1 61 = 125 = 189 = 253 = 
30 94 /\ 158 222 /\ 62 > 126 > 190 > 254 > 
31 95 - 159 223 - 63 ? 127 ? 191 ? 255 ? 

(These are ASCII codes. ASCII is short for American Standard Code 
for Information Interchange. Although the numbers 96 to 255 produce 
codes which are the same as those produced by the smaller numbers, 
there are occasions when Applesoft BASIC does not recognize them as 
being the same. This is true, for example, with logic operations on strings 
and when using a printer.) 



Appendix E Other Languages and Software 

INTRODUCTION 

Applesoft Extended Floating Point BASIC is the language used in the 
descriptions, explanations and examples throughout this book. It is 
probably the language most often used on Apple, but other languages 
are available, and a few notes about some of these will now be given. 

INTEGER BASIC 

On most Apples, Integer BASIC is available as well as Applesoft (see 
Appendix A). You can tell when you are in Integer BASIC by the form 
of the prompt sign which appears with the flashing cursor. In Applesoft 
BASIC this is a closing square bracket,], but in Integer BASIC it is >, 
that is a right-facing arrowhead. The main difference between the two 
BASICs is, as suggested by their names, that Applesoft Floating Point 
BASIC can work directly with numbers involving decimal fractions, 
whilst Integer BASIC can only operate directly with whole numbers or 
integers. There are, also, a number of important differences between the 
commands used in the two languages and between the ways in which 
they execute commands. 

A considerable range of commands which can be included in an 
Applesoft program will not work in Integer BASIC. This means either 
that the facility in question is not available at all or that it has to be 
achieved through some other programming technique. 

Commands which are available in Applesoft, but not in Integer 
BASIC, are shown in the list at the end of this Appendix. The most 
important differences from our point of view restrict both the graphics 
facilities and the string-handling facilities of Integer BASIC as compared 
with Applesoft BASIC. 

198 



SPECIAL INTEGER BASIC COMMANDS 199 

SPECIAL INTEGER BASIC COMMANDS 

There are, however, a few commands in Integer BASIC which have no 
equivalent in Applesoft. 

AUTO. This is a command which tells Apple to number the lines in a 
program automatically, starting at a specified initial number and increas
ing in tens. For example this command: 

AUTO 100 

will make Apple begin numbering the program lines at line 100, followed 
by 110, 120, and so on. You will not have to put in any line numbers, as 
they will appear automatically on the screen when you press I RETURN I at 
the end of a line. If you want a gap other than 10 between successive line 
numbers you can specify this. For example, AUTO 500, 100 will make 
Apple begin numbering lines at 500 and it will then go up in hundreds as 
follows: 500, 600, 700. 

Indeed, Apple will number anything you type in whilst the AUTO 
command is in operation, including a RUN command. This means that 
when you type in RUN and press IRETURNI to test your program, RUN 
will become part of the program. To get out of this problem, hold 
the lctRLI key and press X. Then you can type in RUN without it being 
numbered as a line. lctRL I and X can also be used to insert lines with 
numbers out of the automatic sequence. So if you suddenly realize you 
have forgotten a line or need some extra operation you can 
hold lctRLl and press X and then type in a line with a number of your 
own choice. 
MAN. The lctRLI and X command will allow you to insert one line or 
type in the RUN command, but if you want to stop the AUTO function 
altogether you need to use I CTRL I and X, and follow this by typing in 
MAN. This returns you to a situation where you must number each line 
yourself. 
DSP. This is short for DISPLAY and is a facility which allows you to 
look at the current value of any particular variable. If you type DSP A 
this will cause Apple to print out the current value of the variable A. If 
you want the DSP function to operate during the run of a program, that 
is to show you the current value of one or more variable at some point or 
points during the operation of the program, you must use DSP as part of 
the program, that is with a line number: for example, 140 DSP A. 
MOD. This function is related to Integer BASIC's inability to handle 
decimals. When a calculation involving division is carried out a problem 
arises in Integer BASIC if the answer is not a whole number. Thus while 



200 OTHER LANGUAGES AND SOFTWARE 

PRINT 25/5 

will produce the expected answer, that is 5 

PRINT 28/5 

will also produce the answer 5 because Integer BASIC cannot use 
decimal fractions, but will only give you the number of times 5 can be 
divided into 28. It does this and then ignores the remainder. To get infor
mation about the remainder it is necessary to use MOD. which is short 
for MODULO. So in a division calculation where we need to know 
whether there is a remainder and, if so, what it is, we have to use a two
stage operation. Here is an example: 

10 PRINT 28/5 
20 PRINT 28 MOD 5 

If we run this Apple will respond 

........................................................ 
5 
3 

that is, 5 goes into 28 five times and their is a remainder or 3. 

COMMON FACILITIES 

There are a number of cases where the same facility is available in both 
Applesoft and Integer BASIC, but the command used to activate it 
differs. These are now listed with comments. 

Applesoft 
command 

CLEAR 
HOME 
INVERSE 
NORMAL 

X% 

<> 

Integer 
command 

CLR 
CALL-936 
POKE 50, 127 
POKE 50, 255 

x 
# 



COMMON FACILITIES 201 

These differences are almost self-explanatory. The alternative form of 
HOME, that is CALL-936, can also be used as a substitute for HOME 
in Applesoft. The X% means that the variable in question in Applesoft is 
an integer, and, of course, it is unnecessary to give it a special symbol in 
Integer BASIC so X by itself will do. The signs < > and #, of course, 
mean "is not equal to". 

There are a few other differences that need mention. 

(a) Applesoft has two words which do more or less the same job, 
that is TAB and HT AB, whereas Integer BASIC just has 
TAB. 

(b) In Applesoft we can use the word ON as follows: 
ON X GOTO 100, 120, 140, 160 
ON X GOSUB 100, 120, 140, 160, 

In Integer BASIC this is replaced by a function version of the 
same notion: 

GOTO 
GO SUB 

100 + 20*X 
100 + 20*X 

(c) In Applesoft BASIC a program line is checked for syntax 
errors by the machine when the program is run, so that error 
messages usually appear only when the program is tested by 
running it (except in 9bvious cases, such as where you have 
omitted the line number). With Integer BASIC, however, each 
line is checked when you press IRETURNI after typing it in. This 
means that some types of errors are more immediately sig
nalled. 

( d) Only the first two characters of a variable name are significant 
in Applesoft BASIC, whilst in Integer BASIC all the 
characters in a variable name are significant. So whilst 
variables called DULL and DUCK would be regarded as the 
same in Applesoft, Integer BASIC would be able to 
distinguish them. 

(e) The END command is optional in Applesoft BASIC 
programs. 

(t) In Applesoft BASIC, NEXT may be used alone in a loop. 

lOFORN=l TO 10 
20NEXT 

In Integer BASIC the NEXT must always be followed by a 
variable name, so line 20 above would have to be NEXT N. 



202 OTHER LANGUAGES AND SOFTWARE 

APPLESOFT WORDS NOT IN INTEGER BASIC 

ATN 
CHRS 
cos 
DATA 
DEFFN 
DRAW 
EXP 
FLASH 
FN 
FRE 
GET 
HCOLOR 
HGR 
HGR2 
HPLOT 
INT 

PASCAL 

INVERSE 
LEFTS 
LOG 
LOMEM 
MIDS 
NORMAL 
ON-GOSUB 
ON-GOTO 
ONERR-GOTO 
POS 
READ 
RECALL 
RESTORE 
RESUME 
RIGHTS 
ROT 

SCALE 
SH LOAD 
SIN 
SPC 
SPEED 
SQR 
STOP 
STORE 
STR$ 
TAN 
USR 
VAL 
WAIT 
XDRAW 

This language is also now available on Apple. However, you must first 
instal a language card (see Appendix A) and, if necessary, update from 
DOS 3.2 to DOS 3.3. There is a considerable amount of literature avail
able about Pascal and Apple Computers produce a manual about how 
to use their particular version of it (see also Appendix H). Here we will 
refer only to the ways in which it differs from BASIC and to some 
aspects of its use that are of some interest. 

WHY PASCAL 

Pascal is the best known example of what is called a structured 
language, or rather a language that allows and encourages structured 
programming. In detail this is a complex notion but its general meaning 
is obvious. A structured program is one where each routine is isolated 
and self-dependent and where the complete set of routines are put 
together in a coherent and logical way. As well as this the programming 
techniques to be used, especially in programming loops, discourage the 
undisciplined movement from one section of the program to another. 
This is usually done, for example in BASIC, by writing GOTO with a 
line number. To do this is to go against the modular spirit of structured 
programming. 



PASCAL AND BASIC 203 

USING PASCAL 

First of all Pascal is not an interactive language on Apple. This means 
that you do not get quick and repeated feedback at regular intervals 
while generating and debugging a program. You must write the whole 
program, or at least a full routine from the program, then ask Apple to 
compile it, that is (essentially) to translate it into machine-code, and 
then, if it is bug-free, to run it. If it has mistakes in it these may be found 
during the compiling stage and they will be reported on the screen; 
alternatively they may not become obvious until you try to run the 
program. This last normally means that, although the program is 
technically acceptable in that it does compile, it does not do the job that 
you want it to do. 

PASCAL AND BASIC 

Perhaps the best way to illustrate the way Pascal differs from BASIC is 
to show a short program in each language doing precisely the same 
thing. That is, it asks for a set of data and draws a bar-graph to illustrate 
this data. 

First the BASIC program. This accepts the data input, checks each 
input against a number of criteria - is it greater than zero? Is it an 
integer? Is it greater than forty? And so on - and uses a subroutine (lines 
170 to 200) to actually draw the bars of the graph on the screen. It is not 
a very elegant program, full of GOTO and GOSUB statements, and it is 
quite difficult to be sure about what is going on. (We may have cheated a 
bit by making it more awkward than it needed to be.) 

SHOME 
10 INPUT "INPUT THE NUMBER OF DATA POINTS "; N 
25 PRINT "NOW INPUT EACH DATA POINT" 
27PRINT 
29 FOR I = 1 TO N 
30 INPUT '' II ; NUMBER 
40 LTH =INT (NUMBER) 
50 IF NUMBER > (LTH + 0.5) THEN LTH = LTH + 1 
SOIFLTH > OGOTO 100 
70LTH=0 
SOGOSUB 170 
SO GOTO 150 

lOOIFLTH < 40GOTO 140 



204 

110LTH=40 
120 GOSUB 170 
130GOTO 150 
140 GOSUB 170 
lSONEXTI 
160END 
170FOR J = 1 TO LTH 
180 PRINT"*"; 
lSONEXTJ 
193 IF LTH = 40 GOTO 200 
19SPRINT 
200RETURN 

OTHER LANGUAGES AND SOFTWARE 

Now the Pascal program to do the same job: 

PROGRAM EXPASCAL; 

VAR X, Y, N: INTEGER; 
NUMBER : REAL ; 

PROCEDURE DRAW (LENGTH : INTEGER) ; 
VAR I : INTEGER; 
BEGIN 

FOR I : = 1 TO LENGTH DO 
WRITE ('*') ; 
WRITELIN; 

END; 

BEGIN 
PAGE (OUTPUT); 
WRITE ('INPUT THE NUMBER OF DATA POINTS ') ; 
READLN(N); 
WRITELN ('NOW INPUT EACH DATA POINT') ; 
WRITELN; 
FOR X : = 1 TON DO 
BEGIN 
READLN(NUMBER) ; 
Y: =ROUND(NUMBER); 
IFY < OTHENDRAW (0) 

'° ELSE IF Y > 40 THEN DRAW ( 40) 
ELSE ORA W (Y) 
END 

END. 



SOFTWARE 205 

The first line names the program and the next two lines declare the 
variables to be used. This is done in every Pascal program, but it only 
happens at the beginning, no matter how long the program. Then a 
procedure called DRAW is defined. The procedure will be called on later 
to draw the bars, and is seven lines long. The rest of the program accepts 
input, rounds off the input to integers using the ROUND statement, and 
in the last three lines before the two END lines checks the data against 
the same criteria as before, using IF and ELSE. In each case it calls on 
the ORA W procedure already defined to make the bar lines. 

The advantages of this should already be obvious to some extent, but 
in larger programs this method, that is declaring procedures and then 
calling on them, lends to better program legibility and the probability of 
fewer bugs. Notice also that we can use full-length words like LENGTH and 
NUMBER for variables. 

OTHER LANGUAGES 

A great many other languages are now available on Apple and the 
existence of the language card adds greatly to the variety of possibilities. 
As well as this, other language implementations are being produced 
regularly. For example, the well-known educational language LOGO is 
now available and part of its graphics system is also available in Apple 
Pascal using the name Turtle Graphics. 

Apple Pilot is a version of another edu.cational language specially 
designed for Apple. It allows inexperienced programmers to produce 
programs in a fairly straightforward Computer-Assisted Learning mode 
using a very small number of simple commands. 

There is now an Apple FORTRAN, which allows those who have become 
used to this language over the years to use it on the Apple, and there is also 
an Apple COBOL system. Finally, the artificial intelligence language LISP is 
now also available. 

SOFTWARE 

It would be impossible to do more than skim the surface of the range of 
software that can now be purchased to be used with Apple. Some of this 
like VISICALC can, with a range of business problems, actually func
tion as a sort of language in. itself. In fact VISICALC is now just one of 
a range of programs for businessmen which appear under this label and 
which cover a variety of techniques. 



206 OTHER LANGUAGES AND SOFTWARE 

Data base management systems are also now available with consider
able levels of sophistication for a great variety of uses. Programs 
dedicated to the needs of specific types of businesses such as Hotel 
Management, Estate Agencies, Investment Houses, Stock Control 
Agencies, and so on are also available. 

Finally, there is a system of television viewdata accession available, 
and a number of quite sophisticated music programs allowing for com
position, playing and analysis. 



Appendix F Base Sixteen Numbers 

INTRODUCTION 

We discovered in Chapter 7 that we need sometimes to be able to trans
late numbers from base ten to base sixteen and vice versa. In order to 
describe properly the whole idea of bases in arithmetic and the particular 
importance of base sixteen in computing we would need much more 
space than we have available here. We can, however, try to make the 
actual translation process as simple and direct as possible. We do this 
now in two ways: firstly by describing briefly the process and secondly 
by using reference tables. 

BASE SIXTEEN 

Our number system is based on two important practices. Firstly, we use 
a limited or finite number of symbols to represent numbers. In our 
normal counting we need only use ten symbols, that is the set: 0, 1, 2, 3, 
4, 5, 6, 7, 8, 9. We know that we can represent any number by using 
these ten symbols in various combinations and repetitions. This raises 
the second practice, which is that the meaning or value of each symbol 
depends on its position with respect to the other symbols. For example 
we know that the four in 34 7 means four tens because the seven must 
mean seven units. So in base-ten arithmetic we need ten symbols and we 
know what they mean by looking at where they are placed. 

This means that, in base sixteen, we need sixteen symbols and to 
make up the full set we make use of letters of the alphabet as follows: 

Base sixteen 
Base ten 

-0 12 3 4 5 6 7 8 9ABCDEF10 
- 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

207 



208 BASE SIXTEEN NUMBERS 

We have written the same numbers in base ten for comparison. Note 
that in base ten when we reach 9, the next number, i.e. ten, uses the 
symbols 0 and I again like this, 10, meaning one ten and zero units. So 
in base sixteen in parallel to this, when we reach F (or 15), then the next 
number, i.e. sixteen, uses the symbols 0 and I again in the same way. 
Therefore in base sixteen, I 0 means one sixteen and zero units. 
Similarly 20 means two sixteens and zero units (that is 32 in base ten), 
and so on. This also means that the base ten number 99 - which means 
nine tens and nine units - is paralleled in base sixteen by FF - which 
means fifteen sixteens and fifteen units. In both cases the next number is 
I 00 which means ten tens in base ten, and sixteen sixteens in base 
sixteen. The process continues in this way. 

REFERENCE TABLES 

We now present two tables which allow us to translate directly, from 
and to base sixteen, all base sixteen numbers from 00 to FF. 

Table FI translates from base sixteen to base ten. It is used as follows. 
Suppose we wish to change the number C7 into base ten. We start on 
the left, where it says First Digit, and find the row with a C. Then move 
along this row to the column with 7 at the top where it says Second 
Digit. The number you will find there is 199. So C7 in base sixteen is 
equivalent to 199 in base ten. 

Table F2 does the translation from base ten to base sixteen. Start on 
the left where it says First Digits and find the row with a 12. Then move 
along this row to the column with a 7 at the top where it says Last Digit. 
The number you will find is 7F. So 124 in base ten becomes 7F in base 
sixteen. 



REFERENCE TABLES 209 

Table Fl. Base Sixteen to Base Ten 

Second Digit 
0 1 2 3 4 5 6 7 8 9 A B C D E F 

0 000 001002003 004 005 006 007 008 009 010 011012013 014 015 
1 016 017 018 019 020 021022023 024 025 026 027 028 029 030 031 
2 032 033 034 035 036 037 038 039 040 041042043 044 045 046 047 
3 048 049 050 051052053 054 055 056 057 058 059 060 061062063 
4 064 065 066 067 068 069 070 071072073 074 075 076 077 078 079 
5 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 

First 6 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 
Digit 7 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 

8 128 129 130 131132 133 134 135 136 137 138 139 140 141 142 143 
9 144 145 146 14 7 148 149 150 151 152 153 154 155 156 157 158 159 

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 
B 176177178179180181182183184185186187188189190191 
c 192 193 194 l95 196 197 198 199 200 201 202 203 204 205 206 207 

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 
E 224 225 226 227 228 229 230 231 232 233 234 235 236 23 7 238 239 
F 240 241 242 243 244 245 246 24 7 248 249 250 251 252 253 254 255 



210 BASE SIXTEEN NUMBERS 

Tobie F2. Base Ten to Base Sixteen 

First 
Digits 

Last Digit 

0 I 2 3 4 S 6 7 S 9 
0 00 01 02 03 04 OS 06 07 OS 09 
I OA OB OC OD OE OF I 0 11 12 13 
2 14 IS 16 17 IS 19 IA IB IC ID 
3 IE IF 20 21 22 23 24 25 26 27 
4 2S 29 2A 2B 2C 2D 2E 2F 30 31 
S 32 33 34 3S 36 37 3S 39 3A 3B 
6 3C 3D 3E 3F 40 41 42 43 44 45 
7 46 4 7 4S 49 4A 4B 4C 4D 4E 4F 
S 50 SI S2 S3 S4 SS S6 S1 SS 59 
9 SA SB SC SD SE SF 60 61 62 63 

10 64 6S 66 67 68 69 6A 6B 6C 6D 
11 6E 6F 70 71 72 73 74 1S 16 77 
12 7S 79 7A 7B 7C 7D 7E 7F SO SI 
13 S2 S3 S4 SS S6 S7 SS S9 SA SB 
14 SC SD SE SF 90 91 92 93 94 9S 
15 96 97 9S 99 9A 9B 9C 9D 9E 9F 
16 AO Al A2 A3 A4 AS A6 A7 AS A9 
17 AAABACADAEAF BO Bl B2 B3 
IS B4 BS B6 B7 BS B9 BA BB BC BD 
19 BE BF CO Cl C2 C3 C4 CS C6 C7 
20 CS C9 CA CB CC CD CE CF DO D 1 
21 D2 D3 D4 DS D6 D7 DS D9DADB 
22 DCDDDEDF EO El E2 E3 E4 ES 
23 E6 E7 ES E9 EA EB EC ED EE EF 
24 FO Fl F2 F3 F4 FS F6 F7 FS F9 
25 FA FB FC FD FE FF 



Appendix G Answers to Problems 

CHAPTER 1 

1. (a) ?4.27+31.28+173.l CR 
208.65 

(b) ?13452/12 CR 
1121 

(c) ?(6.5/100) *73216 CR 
4759.04 

(d) ?12345+(11/100)*12345 CR 
13702.95 

(e) ?5-(l.34+1.78+0.69) CR 
1.19 

2. A=650 : B=.02 : C=71 CR 
D=A+B* A-C: ?D CR 
592 

D=D+B*D-C: ?D CR 
532.84 
472.4968 

410.946736 
348.165671 

3. The result is that eventually there are four complete rows made up 
entirely of the letter A. 
The result this time is that four rows fill up more quickly with 
repetitions of 12345. 



212 ANSWERS TO PROBLEMS 

CHAPTER 2 

1. 20 REM NAMES AND 
30 REM BANK BALANCES 
40 PRINT "INPUT 6 NAMES. IN EACH CASE PUT IN" 
50 PRINT "NAME AND THEN PUT BALANCE ON NEXT LINE" 
55 PRINT : PRINT "THE FREE MEMORY IN BYTES IS" 
60 PRINT 65535+FRE (0) 

lOOINPUT A$ 
llOINPUT A 
120INPUTB$ 
130INPUTB 
140INPUTC$ 
l50INPUT C 
l60INPUTD$ 
170INPUTD 
l80INPUTE$ 
lSOINPUTE 
200INPUTF$ 
210INPUTF 
220 PRINT A$, A 
230 PRINT B$, B 
240 PRINT C$, C 
250 PRINT D$, D 
260 PRINT E$, E 
270 PRINT F$, F 
275 PRINT : PRINT "THE FREE MEMORY NOW IS" 
280 PRINT 65536+FRE (0) 

2. 20 REM NAMES 
30REMAND 
40 REM ADDRESSES 
45 PRINT "FREE MEMORY IS" 
47 PRINT 65535+FRE (0) 
50 PRINT "INPUT 4 NAMES AND ADDRESSES, IN EACH" 
60 PRINT "CASE PUT THE NAME IN AND" 
70 PRINT "THEN THE ADDRESS IN 3 LINES" 
80 PRINT "DO NOT USE ANY COMMAS OR FULL COLONS" 
90 PRINT "FIRST ONE" 

lOOINPUT Al$ 
110 INPUT Bl$ 



ANSWERS TO PROBLEMS 213 

3. 

120 INPUT Cl$ 
130 INPUT 01$ 
135 PRINT "NEXT ONE" 
140 INPUT A2.$ 
150 INPUT B2$ 
160 INPUT C2.$ 
170 INPUT D2.$ 
175 PRINT "NEXT ONE" 
180 INPUT A3$ 
190 INPUT B3$ 
200 INPUT C3$ 
210 INPUT D3$ 
215 PRINT "LAST ONE" 
220 INPUT A4$ 
230 INPUT B4$ 
240 INPUT C4$ 
250 INPUT D4$ 
255 REM PRINT OUT BEGINS 
260 PRINT Al$, Bl$ 
270 PRINT, Cl$ 
280PRINT, 01$ 
290 PRINT A2$, B2.$ 
300 PRINT I C2$ 
310 PRINT, D2.$ 
320 PRINT A3$, B3$ 
330 PRINT, C3$ 
340 PRINT, D3$ 
350 PRINT A4$, B4$ 
360PRINT, C4$ 
370 PRINT, 04$ 
380 PRINT "FREE MEMORY NOW IS" 
390 PRINT 65535+FRE (0) 

10 REM STANDARD LETTER 
15HOME 
20PRINT" STANDARD LETTER" 
30 PRINT "WHEN RESPONDING TO QUESTIONS DO NOT 

USE ANY COMMAS" 
40 PRINT "PUT IN TODAY'S DATE" 
50INPUTA$ 
60 PRINT "NOW INPUT LETTER RECIPIENT" 



214 ANSWERS TO PROBLEMS 

70INPUTB$ 
80 PRINT "NOW INPUT REASON FOR MEETING" 
90INPUTC$ 

100 PRINT "NOW TYPE IN THE DATE WHEN" 
105 PRINT "YOU WILL BE AVAILABLE" 
110INPUTD$ 
120 PRINT "NOW TYPE IN THE TIME WHEN" 
125 PRINT "YOU WILL BE AVAILABLE" 
130INPUTE$ 
140 PRINT "FINALLY TYPE IN WHERE" 
145 PRINT "YOU WILL BE AVAILABLE" 
150INPUTF$ 
200 PRINT "EDUCATION CENTER" 
210 PRINT "NEW UNIVERSITY OF ULSTER" 
220PRINT "COLERAINE, N. IRELAND" 
230PRINT A$ 
240 PRINT "DEAR "B$ 
250 PRINT 11 I WOULD LIKE TO ARRANGE" 
260 PRINT "A MEETING TO DISCUSS" 
270 PRINT " II C$ 
280 PRINT "I WOULD BE AVAILABLE ON "D$ 
290 PRINT 11IN"F$ 11AT"E$ 
300 PRINT 111 WOULD BE GRATEFUL IF YOU COULD" 
310PRINT 11 COMEATTHISTIME" 
320 PRINT II YOURS SINCERELY" 
340 PRINT II STUART MARRIOTT" 

CHAPTER 3 

1. 5HOME 
IO PRINT II **WEIGHT CONVERSION**" 
IS PRINT 
17 GOSUB 2000 
20 PRINT "THIS PROGRAM CONVERTS POUNDS WEIGHT": PRINT 
25 PRINT "INTO GRAMS. ONE POUND IS TAKEN": PRINT 
30 PRINT "TO BE EQUAL TO 435.592 GRAMS" : PRINT 
40 PRINT "WHEN YOU SEE THE QUESTION MARK": PRINT 
50 PRINT "PUT IN THE NUMBER OF POUNDS YOU": PRINT 
60 PRINT "WISH TO CONVERT" 
65 GOSUB 2000 
70 GOSUB 3000 



ANSWERS TO PROBLEMS 

75 GOSUB 2000 
80 PRINT "NOW INPUT THE NUMBER AND PRESS RETURN" 
85 GOSUB 2000 

200INPUT A 
210 B=A * 453.592 
220 GOSUB 2000 
230PRINT "THE NUMBER OF POUNDS IS:- "A 
240 PRINT "THE NUMBER OF GRAMS IS:- "B 
250 GOSUB 2000 

215 

260 PRINT "DO YOU WISH TO MAKE ANOTHER CONVERSION?": PRINT 
270PRINT "IF SO, INPUT YES, OTHERWISE NO.": PRINT 
280 INPUT A$: IF A$ = "YES" THEN 5 
290 GOSUB 2000 
300 PRINT "THANK YOU. IF YOU WISH TO START AGAIN" 
310 PRINT : PRINT "TYPE IN 'RUN' AND PRESS 'RETURN' II 

320 PRINT : PRINT "GOODBYE FOR NOW." 
330END 
2000FORN=l T04: PRINT: NEXT: RETURN 
3000 PRINT " 
3010GET A$ 
3020RETURN 

2. 5HOME 

**PRESS ANY KEY**" 

lOPRINT" ***AVERAGING***" 
20 GOSUB 2000 
40 PRINT "THIS PROGRAM ACCEPTS A SET OF NUMBERS": PRINT 
50 PRINT "FINDS THEIR TOTAL AND CALCULATES": PRINT 
60 PRINT "AN AVERAGE. PUT THEM IN ONE AT A " : PRINT 
70 PRINT "TIME. AFTER THE LAST ONE PUT IN -99." 
80 GOSUB 2000 
82 GOSUB 3000 
85 GOSUB 2000 
90C=0: T=O 

lOOINPUT A 
110 IF A=-99 THEN 160 
120T=T+A 
130C=C+l 
140 GOSUB 2000 
150GOTO 100 
160AV=T/C 
170 GOSUB 2000 



216 

180 PRINT "YOU PUT IN II c "NUMBERS" 

190 PRINT " THEIR TOTAL IS:- " T 
200PRINT "THEIR AVERAGE IS:- "AV 
210END 

ANSWERS TO PROBLEMS 

2000 PRINT : PRINT : PRINT : RETURN 
3000 PRINT I I 

3010GET A$ 
3020RETURN 

3. SHOME 

***PRESS ANY KEY***" 

lOPRINT" ***MONEY CONVERSION***" 
20 GOSUB 2000 
40 PRINT "THIS PROGRAM ACCEPTS A SUM OF MONEY": PRINT 
50 PRINT "IN ONE CURRENCY AND CONVERTS IT": PRINT 
60 PRINT "INTO THE EQUIVALENT AMOUNT IN 4": PRINT 
70 PRINT "OTHER CURRENCIES. YOU CHOOSE THE OTHER ": PRINT 
71 PRINT "CURRENCIES AND INPUT THE II: PRINT 
72 PRINT "RATE OF EXCHANGE FOR EACH": PRINT 
80 GOSUB 2000 
82 GOSUB 3000 
85 GOSUB 2000 
90 PRINT "INPUT THE NAME OF THE FIRST OF THE FOUR": PRINT 
95 PRINT "CURRENCIES YOU WANT TO CONVERT": PRINT 
97 PRINT "YOUR OWN MONEY INTO": PRINT 

lOOINPUT A$ 
110 PRINT : PRINT "INPUT THE NAME OF THE SECOND CURRENCY": 

PRINT 
120INPUT B$ 
130 PRINT: PRINT "INPUT THE NAME OF THE THIRD CURRENCY": PRINT 
140INPUT C$ 
150 PRINT : PRINT "INPUT THE NAME OF THE FOURTH CURRENCY": 

PRINT 
160INPUTD$ 
170 GOSUB 2000 
180 PRINT "NOW PUT IN THE CURRENT EXCHANGE RATE": PRINT 
190 PRINT "FOR EACH OF THESE CURRENCIES." : PRINT 
200 PRINT A$ : INPUT A : PRINT 
210 PRINT B$ : INPUT B : PRINT 
220 PRINT C$: INPUT C : PRINT 
230 PRINT D$: INPUT D : PRINT 
240 PRINT "NOW INPUT THE NUMBER OF UNITS OF": PRINT 



ANSWERS TO PROBLEMS 

250 PRINT "YOUR OWN CURRENCY THAT YOU WISH": PRINT 
260 PRINT "TO HA VE CONVERTED TO THE OTHER 4": PRINT 
270INPUTT 
280Al=T *A 
290Bl=T * B 
300Cl=T * C 
310Dl=T * D 
320 PRINT "THE AMOUNT GIVEN IS:- "T: PRINT: PRINT 
330 PRINT" ***EXCHANGE VALUES***" 
340 PRINT : PRINT A$,Al 
350 PRINT : PRINT B$,Bl 
360PRINT: PRINT C$,Cl 
370 PRINT : PRINT D$,D 1 
400END 

2000 PRINT : PRINT : PRINT : RETURN 
3000 PRINT" ***PRESS ANY KEY***" 
3010GET A$ 
3020RETURN 

CHAPTER 4 

1. lOOHOME 
105 PRINT "SAVING NUMBERS 1-100 ON DISK" 
110 PRINt : PRINT "WHICH ROUTINE DO YOU WISH TO USE" 
120 PRINT : PRINT " 
130 PRINT : PRINT " 

DATA SAVING ..... .S" 
DATA RECOVERY ...... R" 

140 PRINT : PRINT "CHOOSE ONE OF THE TWO LETTERS" 
150INPUTB$ 
170 IF B$= "$" THEN 300 
180 IF B$="R" THEN 500 
lSOGOTO 100 
300HOME 
310D$=CHR$ (4) 
320 PRINT D$; "OPEN NUMBERS" 
330 PRINT D$; "WRITE NUMBERS" 
340FORC=l TO 100 
350PRINTC 
360NEXTC 
370 PRINT D$; "CLOSE NUMBERS" 

217 

380 PRINT : PRINT: PRINT "NUMBERS 1 TO 100 NOW STORED ON DISK" 



218 

390GOTO 110 
500HOME 
510 REM RECOVER NUMBERS 
520 D$=CHR$ ( 4) 
530 PRINT D$; "OPEN NUMBERS" 
540 PRINT D$; "READ NUMBERS" 
550 FOR C=l TO 100 
560INPUTC 
570NEXTC 
580 PRINT D$; "CLOSE NUMBERS" 

ANSWERS TO PROBLEMS 

590 PRINT : PRINT "NUMBERS 1 TO 100 NOW RECOVERED FROM DISK" 
600GOTO 110 

2. 10 REM MENU 
20C=0 
23HOME 
30PRINT II ***MAILING LIST***" 
40 PRINT : PRINT "THIS PROGRAM ACCEPTS A LIST OF NAMES" 
50 PRINT : PRINT "AND ADDRESSES AND ALLOWS YOU TO" 
60 PRINT : PRINT "STORE THEM ON DISK AND RECOVER THEM" 
70 GOSUB 3000 
80 PRINT: PRINT: PRINT "DO YOU WISH TO :-" 
90 PRINT : PRINT " BEGIN A NEW LIST ... B" 

100 PRINT : PRINT" LOOK AT THE CURRENT LIST ... L" 
110 PRINT : PRINT" RECOVER A LIST FROM DISK ... R" 
120 PRINT : PRINT " SA VE A LIST ON DISK ... S" 
130 PRINT: PRINT "CHOOSE THE APPROPRIATE LETTER" 
140 INPUT Z$: IF Z$="B" THEN 200 
150 IF Z$= "L" THEN 700 
160 IF Z$="R" THEN 900 
170 IF Z$="S" THEN 500 
180GOTO 130 
200C=l 
210HOME 
215 PRINT : PRINT " BEGINNING A LIST" 
220 PRINT : PRINT "PUT IN THE NAME, SURNAME FIRST" 
230 PRINT : PRINT "DO NOT USE ANY COMMAS" 
240 INPUT A$(C) 
250 PRINT : PRINT "THE ADDRESS WILL BE LIMITED TO 3 LINES" 
260 PRINT : PRINT "DO NOT USE ANY COMMAS" 



ANSWERS TO PROBLEMS 

270 PRINT : PRINT : PRINT "INPUT THE FIRST LINE OF THE ADDRESS" 
280 INPUT B$(C) 

219 

290 PRINT : PRINT : PRINT "INPUT THE SECOND LINE OF THE ADDRESS" 
300 INPUT C${C) 
310 PRINT : PRINT : PRINT "INPUT THE THIRD LINE OF THE ADDRESS" 
320 INPUT D$(C) 
330 PRINT : PRINT : PRINT "DO YOU WISH TO ADD ANOTHER NAME?" 
340 PRINT : PRINT "IF SO INPUT 'YES', OTHERWISE 'NO' " 
350 INPUT Z$: IF Z$= "YES" THEN 380 
360 IF Z$="NO" THEN 70 
370GOT0330 
380 C=C +I: GOTO 220 
500HOME 
505 PRINT " SAVING ON DISK" 

510 D$=CHR$ (4) 
520 PRINT D$; "OPEN ADDRESS" 
530 PRINT D$; "WRITE ADDRESS" 
540FORN=l TOC 
550 PRINT A${N) 
560 PRINT B${N) 
570 PRINT C${N) 
580 PRINT D${N) 
590NEXTN 
600 PRINT D$; "CLOSE ADDRESS" 
610 PRINT "NOW SAVED ON DISK" 
615 GOSUB 3000 
620GOT080 
699 REM LISTING ON SCREEN 
700HOME 
705 PRINT : PRINT "NAMES ADDRESSES" 
710FORN=l TOC 
720 PRINT : PRINT "NUMBER" ,N 
730 PRINT : PRINT 
740 PRINT A$(N),B${N) 
750 PRINT ,C${N) 
760 PRINT ,D$(N) 
770 PRINT : PRINT 
780 PRINT "* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *" 
790 GOSUB 3000 
800NEXTN 



220 ANSWERS TO PROBLEMS 

810PRINT: PRINT: PRINT "THAT WAS THE LAST ONE" 
820 GOSUB 3000 
830GOT080 
SOOHOME 
905 PRINT " RECOVERING FROM DISK" 
910 PRINT "HOW MANY ADDRESSES WERE STORED" 
920INPUTC 
930 REM RECOVER ADDRESSES FROM DISK 
940 G$=CHR$ ( 4) 
950 PRINT G$; "OPEN ADDRESS" 
960 PRINT G$; "READ ADDRESS" 
970FORN=l TOC 
980 INPUT A$(N) 
990 INPUT B$(N) 

lOOOINPUT C$(N) 
1010 INPUT D$(N) 
1020NEXTN 
1030 PRINT G$; "CLOSE ADDRESS" 
1040 PRINT" NAMES NOW RECOVERED" 
1050 GOSUB 3000 
1060GOT080 
2000 PRINT : PRINT : PRINT : RETURN 
3000 PRINT : PRINT : PRINT "PRESS ANY KEY" 
3010 GET A$ : IF A$=" "THEN 3010 
3020RETURN 

CHAPTER 5 

1. lOOHOME 
180 X=O : REM FIRST X 
200 HGR : REM SETS GRAPHICS MODE 
220 Yl =0 : REM FIRST Y 
240 CH=4 : REM CHANGE IN Y 
260Y2=Yl+CH: REM NEXTY 
279 REM NEXT LINE ENSURES THAT Y IS WITHIN LIMITS 
280 IF Y2 > =0 AND Y2 < 160 THEN 380 
319 REM NEXT 3 LINES EFFECT CHANGEOVER 
320 HCOLOR=O : HPLOT X, Yl 
340CH= -CH 
350X=X+4 
360GOT0260 



ANSWERS TO PROBLEMS 

379 REM NEXT FEW LINES PLOT POINTS 
380 HCOLOR=3 
400 HPLOT X,Y2 
420 HCOLOR=O 
440 HPLOT X,Yl 
460Yl=Y2 
480GOT0260 

2. 5 DIM X(30), Y (30) 
50X=10: Y = 17.3 : REM COO RDS OF A HEXAGON SIDE 

lOOHGR 
110HCOLOR=7 
120 FOR M=O TO 3 : REM M COUNTS HEXAGONS ACROSS 
130 FOR N =0 TO 6 STEP 2 : REM N COUNTS HEXAGONS DOWN 
139 REM NEXT 4 LINES MAKE SIDES OF A HEXAGON 
140HPLOT (6 * M+l) * X,N *YTO 6 * M * X, (N+l) * Y 
150HPLOT6 * M * X, (N+l) * YTO (6 * M+l) * X, (N+2) * Y 
160HPLOT (6 * M+3) * X,N * YTO (6 * M+4) * X, (N+l) * Y 
170 HPLOT (6 * M+4) * X, (N+l) * Y TO (6 * M+3) * X, (N+2) * Y 
250NEXTN 
260NEXTM 
299 REM NEXT LINES MAKE TOP AND BOTTOM OF HEXAGONS 
300 FOR A=O TO 180 STEP 60 
302 HPLOT X+A, 0 TO X+A+20,0 
304NEXTA 
310 FOR N =2 TO 8 STEP 2 
320 FOR M=O TO 3 
330 HPLOT (6 * M+l) * X,N * Y TO (6 * M+3) * X,N * Y 
335 IF M=3 THEN 360 
340 HPLOT (6 * M+4) * X, (N-1) * Y TO (6 * M+6) * X, (N-1) * Y 
360NEXTM 
370NEXTN 
375END 

3. lOOHOME 
120 PRINT "THIS PROGRAM MAKES ALL THE NUMERALS" 
125 PRINT "FROM 0 TO 9 ON THE HIGH RESOLUTION" 
130 PRINT "SCREEN." 
140 PRINT : PRINT "EACH NUMERAL IS MADE INSIDE A BOX" 
145 PRINT "WHICH LOOKS LIKE THIS." 
150 PRINT: PRINT "TO SEE THE BOX PRESS ANY KEY." 

221 



222 ANSWERS TO PROBLEMS 

155 PRINT "WHEN YOU HA VE LOOKED AT IT AND WISH" 
160 PRINT "TO GO ON, PRESS ANY KEY AGAIN." 
170GETZ$ 
180 HGR : HCOLOR=3 
200 HPLOT 20,20 TO 20,120 TO 120,120 TO 120,20 TO 20,20 
210 HPLOT 20,80 TO 120,80 
220 HPLOT 80,20 TO 80, 120 
250GETA$ 
260 TEXT : HOME 
280 PRINT "FIRST YOU MUST CHOOSE WHERE ON THE" 
290 PRINT : PRINT "SCREEN YOU WISH TO PLACE THE TOP" 
300 PRINT : PRINT "LEFT -HAND CORNER OF THE BOX FOR THE" 
310 PRINT : PRINT "NUMERAL. REMEMBER THAT THE TOP OF THE" 
320 PRINT : PRINT "SCREEN RUNS FROM 0 TO 279 AND THE " 
330 PRINT: PRINT "SIDE RUNS FROM 0 TO 191." 
340PRINT: INPUT" HOW FAR ACROSS THE TOP ";X 
350 PRINT : INPUT "HOW FAR DOWN THE SIDE "; Y 
360 PRINT: INPUT "NOW CHOOSE A NUMERAL ";N 
365 IF N=O THEN N=lO 
370 A=X: B=X+3: C=X+5 
380P=Y: Q=Y +3: R=Y +5 
400 HGR : HCOLOR=3 
420 ON N GOSUB 2000, 2005, 2010, 2015, 2020, 2025, 2030, 2035, 2040, 2045 
440GET A$ 
450TEXT: HOME 
460 PRINT: INPUT "DO YOU WANT ANOTHER ";A$ 
470 IF A$="YES" THEN 340 
480 IF A$= "NO" THEN 500 
490GOT0460 
500END 

2000 HPLOT B,P TO B,R : RETURN : REM 1 
2005 HPLOT A,P TO C,P TO C,Q TO A,Q TO A,R TO C,R : RETURN : REM 2 
2010 HPLOT A,P TO C,P TO C,R TO A,R: HPLOT C,Q TO A,Q : RETURN: 

REM3 
2015 HPLOT A,P TO A,Q TO C,Q : HPLOT B,P TO B,R : RETURN : REM 4 
2020 HPLOT C,P TO A,P TO A,Q TO C,Q TO C,R TO A,R : RETURN : REM 5 
2025 HPLOT A,P TO A,R TO C,R TO C,Q TO A,Q : RETURN : REM 6 
2030 HPLOT A,P TO C,P TO C,R : RETURN : REM 7 
2035 HPLOT A,P TO C,P TO C,R TO A,R TO A,P : HPLOT A,Q TO C,Q : 

RETURN : REM 8 
2040 HPLOT C,R TO C,P TO A,P TO A,Q TO C,Q : RETURN : REM 9 
2045 HPLOT A,P TO C,P TO C,R TO A,R TO A,P : RETURN : REM 0 



ANSWERS TO PROBLEMS 

CHAPTER 6 

1. 90HOME 
100 PRINT"*** TOSSING A DICE***" 
110 PRINT : PRINT : PRINT "HOW MANY TIMES DO YOU WISH TO" 
120 PRINT : PRINT "TOSS THE DICE" : PRINT 
130INPUTN 

223 

140 PRINT: PRINT "THE RESULTS OF EACH TOSS ARE NOW SHOWN." 
150 PRINT : PRINT "WITH A SUMMARY AT THE END": PRINT 
160FORC0=1 TON 
170 R=INT (6 * RND (5)+1) 
180PRINTR; 
190 IF R=l THEN A=A+l 
200 IF R=2 THEN B=B+ 1 
210 IF R=3 THEN C=C+l 
220 IF R=4 THEN D=D+l 
230 IF R=5 THEN E=E+ 1 
240 IF R=6 THEN F =F + l 
250NEXTCO 
260 PRINT : PRINT : PRINT : PRINT : PRINT "NUMBER OF TIMES l 

OCCURS IS "A 

270 PRINT : PRINT "NUMBER OF TIMES 2 OCCURS IS "B 
280 PRINT : PRINT "NUMBER OF TIMES 3 OCCURS IS "C 
290 PRINT : PRINT "NUMBER OF TIMES 4 OCCURS IS "D 
300 PRINT : PRINT "NUMBER OF TIMES 5 OCCURS IS "E 
310 PRINT : PRINT "NUMBER OF TIMES 6 OCCURS IS "F 

2. 40 DIM A$(12),B$(12) 
50 FOR N =l TO 12: READ A$(N) : NEXT N 
60FORN=1 TO 12 : READ B$(N) : NEXT N 
90 REM VERSES LOOP 

lOOFOR C=l TO 12 
llOHOME 
120 PRINT "ON THE "B$(C) " DAY OF CHRISTMAS" 
130 PRINT "MY TRUE LOVE SENT TO ME : " : PRINT 
132 REM LOOP FOR A SINGLE VERSE 
135 FOR K=C TO 1 STEP -1 
136 IF C=l THEN 140 
137 IF K < > 1 THEN 140 
138 PRINT " AND" 
140 PRINT A$(K) 
150NEXTK 



224 

170 REM DELAY INCREASING FOR 
171 REM LONGER VERSES 
180 FOR 0=1TO3200+1200 * C: NEXT Q 
190NEXTC 

ANSWERS TO PROBLEMS 

1000 DATA A PARTRIDGE IN A PEAR TREE, TWO TURTLE DOVES, 
THREE FRENCH HENS 

1005 DATA FOUR COLLY BIRDS, FIVE GOLD RINGS, SIX GEESE 
A-LAYING 

1010 DATA SEVEN SWANS A-SWIMMING, EIGHT MAIDS A-MILKING 
1012 DATA NINE DRUMMERS DRUMMING 
1015 DATA TEN PIPERS PIPING, ELEVEN LADIES DANCING, 

TWELVE LORDS A-LEAPING 
1030DATA FIRST,SECOND,THIRD,FOURTH 
1040 DATA FIFTH,SIXTH,SEVENTH,EIGHTH 

1050 DATA NINTH, TENTH, ELEVENTH, TWELFTH 

CHAPTER 7 

1. 100 DATA 173,48, 192, 136,208,5,206, 1,3,240,9,202,208,245, 174,0,3, 76,2,3,96,0,0 
110 FOR X=770 TO 792 
120READY 
130POKEX,Y 
140NEXTX 
300 DIM A(200),B(200) 
400HOME: PRINT" WRITING MUSIC" 
405 PRINT : PRINT "DO YOU WISH TO:-" 
407 PRINT : PRINT 
410 PRINT" BEGIN A NEW TUNE ........................................................ B" 
415 PRINT" FINISH FOR NOW .............................................................. F" 
420 PRINT : PRINT" LIST NOTES ON SCREEN ................................. L" 
425 PRINT " SA VE A TUNE ON DISK .................................................... S" 
430 PRINT : PRINT " RECOVER A TUNE FROM DISK ...................... R" 
432 PRINT " PLAY THE TUNE ................................................................. P" 
433 PRINT : PRINT" CHANGE A NOTE ON TUNE ........................... C" 
434 PRINT" ADD NEW NOTE TO TUNE ............................................. A" 
435 INPUT Y$: IF Y$="B" THEN 451 
437 IF Y$= "F" THEN 452 
438 IF Y$="L" THEN 454 
440 IF Y$= "S" THEN 456 
442 IF Y$="C" THEN 458· 
444 IF Y$= "A" THEN 460 



ANSWERS TO PROBLEMS 225 

445 IF Y$= "R" THEN 462 
447 IF Y$="P" THEN 464 
450 PRINT : PRINT " TRY AGAIN" : GOTO 400 
451 GOSUB 500 : GOTO 400 
452 GOSUB 3000 : GOTO 400 
454 GOSUB 2500 : GOTO 400 
456 GOSUB 1500 : GOTO 400 
458 GOSUB 1700 : GOTO 400 
460 GOSUB 1800 : GOTO 400 
462 GOSUB 1600 : GOTO 400 
464 GOSUB 2000 : GOTO 400 
500HOME: PRINT" 
501 PRINT 
502PRINT" 

WRITING MUSIC": Z=O 

*************" 

505 PRINT "INPUT EACH NOTE AS A 3-SYMBOL" 
507 PRINT "COMBINATION AS SHOWN BELOW. N STANDS" 
509 PRINT "FOR NATURAL ANDS FOR SHARP." 
510 PRINT : PRINT " G G2N OR G2S" 
512 PRINT" F F2NORF2S" 
515 PRINT" E E2N" 
517 PRINT" D D2NORD2S" 
520PRINT" c C2NORC2S 
522PRINT" B B2N" 
525PRINT" A A2NORA2S" 
527 PRINT" G GlNORGlS" 
530PRINT" F FlNORF2S" 
532PRINT" E ElN" 
535PRINT" D DlNORDlS" 
537PRINT" c ClNORClS MIDDLEC" 
540PRINT" B BIN" 
545PRINT" A AlN ORAlS" 
550 PRINT : PRINT " PRESS A KEY" 
560GETY$ 
565 PRINT : PRINT "NOTE THAT EACH OCTAVE RUNS FROM A TOG" 
570 PRINT : PRINT "WHEN YOU SEE THE QUESTION MARK INPUT" 
575 PRINT "THE 3-LETTER COMBINATION FOR THE FIRST" 
580 PRINT "NOTE AND PRESS RETURN. THEN INPUT THE" 
585 PRINT "NUMBER, AS REQUESTED, FOR THE DURATION OF" 
590 PRINT "THE NOTE. AT THE END, TYPE IN END." 
650 PRINT : PRINT : PRINT "NOW INPUT A NOTE IN THE 3-LETTER 

FORM:-" 
651 PRINT : PRINT : INPUT "REMEMBER TO USE END TO STOP " ; Z$ 



226 ANSWERS TO PROBLEMS 

652 IF Z$="END" THEN 1030 
653 L$=LEFT$ (Z$,1) : M$=MID$ (Z$,2,l): R$=RIGHT$ (Z$,1) : Z=Z+ 1 

655 IF XI > 0 THEN Zl=Z: Z=Xl 
660 L=ASC (L$)-64 
661 IF L > 7 THEN 680 : IF L < 1 THEN 680 
665 M=VAL (M$) : IF M=2 THEN M=15: GOTO 670 
666 IF M= 1 THEN 670 
667GOT0680 
670R=ASC (R$) 
672 IF R=78 THEN R=l: GOTO 685 
675 IF R=83 THEN R=8 : GOTO 685 
680 PRINT : PRINT " TRY AGAIN " : GOTO 650 
685 PRINT: PRINT: PRINT "NOW INPUT LENGTH OF NOTE:-" 
687 PRINT : PRINT "240 FOR A MINIM'; 
690 PRINT: PRINT "120 FOR A CROTCHET" 
694 PRINT : PRINT " 30 FOR A SEMI-QUA VER" 
695 PRINT : PRINT : INPUT " " ; W : B(Z) = W 
696 IF INT (WI 15)=W I 15 THEN 700 
698 PRINT : PRINT : PRINT " TRY AGAIN" : GOTO 695 
700 N=L+M+R-2 
710 ON N GOTO 750, 760, 770, 780, 790, 800, 810, 820, 830, 840, 850, 860, 870, 

880,890,900,910,920,930,940,950,960,970,980,990, 1000, 1010, 1020 
750 A(Z)=228: GOTO 650 
760 A(Z) =204 : GOTO 650 
770 A(Z)=192: GOTO 650 
780 A(Z)=171: GOTO 650 
790 A(Z)=l52: GOTO 650 
800A(Z)=144 : GOTO 650 
810 A(Z)=128: GOTO 650 
820 A(Z) =216 : GOTO 650 
830 A(Z)=l92: GOTO 650 
840 A(Z)=181: GOTO 650 
850 A(Z)=l61 : GOTO 650 
860 A(Z)=144: GOTO 650 
870 A(Z)=l36: GOTO 650 
880A(Z)=121: GOTO 650 
890A(Z)=114: GOT0650 
900A(Z)=l02: GOTO 650 
910A(Z)= 96: GOT0650 
920 A(Z) = 85 : GOTO 650 
930A(Z)= 76: GOTO 650 



ANSWERS TO PROBLEMS 

940 A(Z) = 72 : GOTO 650 
950A(Z)= 64: GOTO 650 
960A(Z)=l08: GOTO 650 
970 A(Z) = 96 : GOTO 650 
980A(Z)= 90: GOTO 650 
990A(Z)= 80: GOTO 650 

IOOOA(Z)= 72: GOT0650 
1010 A(Z) = 68 : GOTO 650 
1020 A(Z)= 60: GOTO 650 
1030 IF XI > 0 THEN Z=Zl 
1040RETURN 
1500 D$=CHR$ (4) 
1502PRINT: PRINT: INPUT" WHAT FILE NAME ";NS 
1505 PRINT D$ ; "OPEN " ; N$ 
1510 PRINT DS ; "WRITE " ; N$ 
1515FORJ=l TOZ 
1520 PRINT A(J) : PRINT B(J) 
1525NEXTJ 
1530 PRINT D$ ; "CLOSE " ; NS 
1535 PRINT " NOW SAVED ON DISK. PRESS ANY KEY" 
1540GETY$ 
1550RETURN 
1600 INPUT "HOW MANY NOTES WERE SAVED " ; Z 
1605 PRINT: PRINT: INPUT" WHAT FILE NAME "; N$ 
1610 D$=CHR$ (4) 
1615 PRINT D$; "OPEN " ; N$ 
1620 PRINT D$ ; "READ " ; N$ 
1625FORJ=l TOZ 
1630 INPUT A(J) : INPUT B(J) 
1635NEXTJ 
1640 PRINT D$ ; "CLOSE " ; NS 
1645 PRINT "NOW RECOVERED FROM DISK. PRESS ANY KEY" 
1650GETY$ 
1660RETURN 
1700 HOME : PRINT "WHAT IS THE NO. OF THE NOTE" 
1705 PRINT : INPUT ''THAT YOU WANT TO CHANGE '' ; Xl 
1710 PRINT : PRINT "REMEMBER TO INPUT END AFTER THIS" 
1715 PRINT : PRINT " PRESS ANY KEY " : GET Y$ 
1720 GOTO 650 
1800HOME 
1810 HOME : PRINT "THE NOTES WILL BE ADDED TO THE" 

227 



228 ANSWERS TO PROBLEMS 

1820 PRINT : PRINT "END OF THE TUNE. AS USUAL WHEN" 
1830 PRINT : PRINT "YOU WISH TO STOP, TYPE IN END." 
1840 GOTO 650 
.2000FORJ=l TOZ 
2010 POKE 768,A(J) : POKE 769,B(J) : CALL 770 
2020NEXTJ 
2030RETURN 
2500HOME: FORJ=l TOZ 
2510 PRINT A(J), B(J) 
2515 IF INT (JI 20)=1I20 THEN 2517 
2516 GOTO 2520 
2517 PRINT " PRESS A KEY" : GET Y$ 
2520NEXTJ 
2530 PRINT : PRINT " PRESS ANY KEY" : GET Y$ : RETURN 
3000 HOME: PRINT "THANK YOU FOR NOW.": END 

2. lOHOME 
15 PRINT " COUNTERS" 
20 PRINT : PRINT "A GAME FOR 2 PLAYERS. EACH PLAYER" 
30 PRINT : PRINT "CHOOSES ONE OF THE NUMBERS 1, 2 OR 3" 
40 PRINT : PRINT "EACH TIME. THAT NUMBER OF COUNTERS" 
50 PRINT : PRINT "IS THEN TAKEN AWAY" 
60 PRINT : PRINT "FROM AN ARRAY OF 40 COUNTERS." 
70 PRINT : PRINT "THE PLAYER WHO TAKES THE LAST " 
80 PRINT : PRINT "COUNTER IS THE LOSER." 
90 GOSUB 2000 : REM PRESS A KEY 

lOOHOME 
105 INPUT "NAME OF lST PLAYER " ; Z$ 
110 PRINT : INPUT "NAME OF 2ND PLAYER " ; Y$ 
120 REM A-SYMBOL NO : B-POKE NUMBER : C-STOP NUMBER 
140HOME 
150 A=32 : B=281 : C=4 
160 REM FIRST ROW 
170 FOR Z=B TO B+39 STEP C 
lSOFORY=OTO 2 
185 N =Z + Y : GOSUB 3000 
190POKEP,A 
192 N =N +40 : GOSUB 3000 : POKE P, A 
194N=N+40: GOSUB3000: POKEP, A 
200 NEXT Y : NEXT Z 
210B=B+160 : REM NEXT ROW 



ANSWERS TO PROBLEMS 

220 IF B=921 THEN 240 
230GOTO 170 

240Z=281 

250G=G+l 
260 REM CHOOSE WHOSE TURN 

229 

265 FOR W =1024 TO 1063: POKE W, 160: NEXT W: REM CLEARS TOP 
ROW 

270 IF INT (GI 2)=G I 2 THEN 300 
280 VTAB 1 : PRINT "YOUR TURN " Z$ : PRINT 
290GOT0310 

300VTAB 1: PRINT "YOUR TURN "Y$: PRINT 

310 INPUT" ... ?"; N 
320 ON N GOTO 340, 360, 380 

330GOT0270 
340 GOSUB 1000 : Z=Z+4 
350 GOTO 250 : REM NEXT TURN 
360 FOR V=l TO 2: GOSUB 1000: Z=Z+4: NEXT V 
370 GOTO 250: REM NEXT TURN 
380 FOR V =l TO 3 : GOSUB 1000 : Z=Z+4 : NEXT V 
390 GOTO 250 : REM NEXT TURN 
400 IF INT (GI 2)=G I 2 THEN 430 
410 G$=Z$: Zl=Zl + 1 
420GOT0440 
430G$=Y$: Y2=Y2+1 
440 PRINT : PRINT "HARD LUCK II G$ \\ YOU LOSE" 
450 PRINT : INPUT "PLAY AGAIN -YORN-" ; A$ 

460 IF A$= "Y" THEN 500 
470 IF A$= "N" THEN 510 
480GOT0440 
490GOT0510 
500G=G+1 : HOME : GOTO 150 
510 PRINT : PRINTY$ " 'S SCORE IS " Zl 
520 PRINT : PRINTZ$ " 'S SCORE IS " Y2 
530END 

1000 A=l60: FOR Y =0 TO 2 
1005 N=Z+ Y: GOSUB 3000: POKE P, A 
1010 N=N +40: GOSUB 3000: POKE P, A 
1015 N=N+40: GOSUB3000: POKEP, A 
l020NEXTY 
1021 IF Z=317 THEN Z=Z+l20 

1022 IF Z=477 THEN Z=Z+ 120 



230 

1023 IF Z=637 THEN Z=Z+ 120 

1024 IF Z= 797 THEN 400 
1040RETURN 
2000 PRINT : PRINT : PRINT " PRESS ANY KEY" 

2010GET A$ 
2020RETURN 
3000 REM CONVERTS SCREEN NUMBERS 

3010M=INT (NI 40)+1 
3020 R=N-40 * (M-1) 
3030R=R-1 
3040 IF M < 9 THEN 3070 
3050 IF M 17 THEN 3080 

3060 Xl=56: Yl=M-24: GOTO 3100 
3070 Xl=O: Yl=M-1: GOTO 3100 

3080X1=72: Yl=M-13: GOTO 3100 
3090 REM PIS SCREEN NO FOR POKE 

3100P=984+M * 40+Xl+Yl * 88+R 
3110RETURN 

CHAPTER 8 

1. 40 REM 5 CARD POKER 
45HOME 

ANSWERS TO PROBLEMS 

60 PRINT : PRINT : PRINT "THIS GAME DEALS 2 HANDS OF 5 CARDS" 
90 DIM Z$(13), A$(13, 4), X(l3) 

95 REM READ CARD NUMBERS 

100 FOR Z=l TO 13 
110 READ Z$(Z) 

120NEXTZ 
125 REM READ CARD SUITS 
130FOR Y=l TO 4 
140 READ Y$(Y) 
lSONEXT.Y 
160 X$="0F" 
205 REM STORE ALL CARDS IN A$(13, 4) 
210FOR Y=l TO 4 
220 FOR Z=l TO 13 
230 A$(Z, Y)=Z$(Z) +"II +X$+" II+ Y$(Y) 

240NEXTZ 



ANSWERS TO PROBLEMS 

250NEXTY 
270X=0 
275 REM CHOOSE TWO HANDS 
280FORM=l T02 
290 FOR N=l TO 5 
300 A=INT (52 * RND (2) + 1) 
310X=X+l 
315 REM CHECK IF THE CARD IS NEW 
320FOR W=l TO 10 
330 IF X(W)=A GOTO 300 
340NEXT 
350X(X)=A 
360IF A< 14 THENY=l: GOT0400 
370 IF A > 13 AND A < 27 THEN Y =2 : GOTO 420 
380 IF A > 26 AND A < 40 THEN Y =3 : GOTO 440 
390 IF A > 39 THEN Y =4 : GOTO 460 
400 PRINT A$(A, Y) I N : PRINT 

410GOT0480 
420 PRINT A$(A-13, Y), N: PRINT 

430GOT0480 
440 PRINT A$(A- 26, Y) I N : PRINT 
450GOT0480 
460PRINT A$(A-39, Y), N: PRINT 
470GOTO 480 
480NEXTN 

485PRINT "-------
490 NEXT M 
SOODATA "ACE", "2", "3", "4", "5", "6" 
510DATA "7", "8", "9", "10" 
520 DATA "JACK", "QUEEN", "KING" 
530 DATA "HEARTS", "CLUBS", "SPADES", "DIAMONDS" 

2. 5 DIM B$(26), A$(50) 

20 FOR Z= 1 TO 26 : READ B$(Z) : NEXT Z 
30 FOR Z=l TO 5: READ C$(Z) : NEXT Z 
40HOME 

100 PRINT" ****CROSSWORDS****" 

231 

110 PRINT: PRINT "IF YOU HAVE A WORD WITH 'ONE' OR 'TWO' " : PRINT 
120 PRINT "LETTERS MISSING THIS PROGRAM WILL" : PRINT 
130 PRINT "HELP YOU" : PRINT 
200 PRINT : PRINT : PRINT "FIRST COUNT THE NUMBER OF LETTERS" 



232 ANSWERS TO PROBLEMS 

202 PRINT : PRINT : PRINT 
205 INPUT "IN THE WORD AND INPUT THIS--" ; N 
210 GOSUB 2000 
225 PRINT : PRINT : PRINT "NOW INPUT THE LETTERS OF THE WORD" 
230 PRINT: PRINT "ONE AT A TIME. WHEN THE LETTER IS NOT" 
235 PRINT : PRINT "KNOWN INPUT A DASH LIKE '-' " 

237 PRINT : PRINT "USE THE MINUS SIGN FOR THIS" : PRINT : PRINT 

238 FOR C=l TON 
239 INPUT " : : : : : : : : " ; A$ 
240 IF A$="-" THEN 250 
245GOT0255 
250B=B+l 
255 A$(C) =A$ 
260NEXTC 
270 PRINT: PRINT: PRINT "THE WORD SO FAR IS:-" 
275 PRINT : PRINT : PRINT 
280 FOR C=l TON 
290 PRINT A${C)" " 

300NEXTC 
305PRINT 

310 INPUT "CHECK THIS. IS IT CORRECT?--" ; Z$ 
320 IF Z$="NO" THEN 200 
330 IF Z$="YES" THEN 350 
340GOT0310 
350 IF B = l THEN 400 
355 IF B=2 THEN 500 
400 PRINT : PRINT : PRINT : PRINT : PRINT 
402 FOR Z=l TO L 
403PRINT" 
405FORC=l TON 
410 IF A$(C)="-" THEN 440 
420 PRINT A${C) ; 
430GOT0460 
440 GOSUB 3000 
460NEXTC 
465 PRINT : PRINT : PRINT 
467 FOR G=l TO 1000: NEXT G 
470NEXTZ 
480END 
500 FOR Z=l TO L 
505FOR Y=l TOL 



ANSWERS TO PROBLEMS 

507 PRINT : PRINT : PRINT : PRINT " 
510 FOR C=l TON 
515 IF A$(C)="-" THEN 540 
520 PRINT A$(C) ; 
530GOT0560 
540 IF X=l THEN 550 
541 X=l 
543 GOSUB 3000 
544GOT0560 
550 GOSUB 3500 
555FORW=l TO 1000: NEXTW 
560NEXTC 
561 X=O 
565 PRINT : PRINT : PRINT 
570NEXTY 
580NEXTZ 
585END 

II 

1000 DATA A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P, Q,R,S,T,U,V,W,X,Y,Z 
1010 DATA A,E,I,0,U 

233 

2000 PRINT : PRINT : PRINT "DO YOU WISH TO INCLUDE 'ALL' 
THE LETTERS" 

2005 PRINT : PRINT "IN YOUR LIST OF POSSIBLE SOLUTIONS" 
2010 PRINT : PRINT "OR CAN IT BE CONFINED TO THE VOWELS?" 
2015 PRINT : PRINT 
2020 INPUT "INPUT 'A' OR 'V' " ; P$ 
2030 IF P$="A" THEN 2050 
2040 IF P$= "V" THEN 2055 
2045 GOTO 2000 
2050L=26: RETURN 
2055 L=S : RETURN 
3000 IF L=26 THEN PRINT B$(Z) ; : RETURN 
3010 IF L=S THEN PRINT C$(Z) ; : RETURN 
3500 IF L=26 THEN PRINT B$(Y) ; : RETURN 
3510 IF L=S THEN PRINT C$(Y) ; : RETURN 

3. !HOME 
SPRINT" ***LETTER COUNTER***": PRINT 

10 PRINT : PRINT "THIS PROGRAM ALLOWS YOU TO TYPE IN A" 
20 PRINT : PRINT "PASSAGE OF PROSE; IT THEN COUNTS THE" 
30 PRINT : PRINT "NUMBER OF TIMES EACH LETTER OCCURS" 
40 PRINT : PRINT : PRINT "THE FOLLOWING CODES ARE USED :-" 



234 ANSWERS TO PROBLEMS 

50 PRINT : PRINT "9 ... MEANS STOP ALTOGETHER." 
60 PRINT: PRINT"< ... MEANS DELETE THE LAST ENTRY." 
70PRINT: PRINT"* ... MEANS END OF INPUT." 
75 PRINT : PRINT : PRINT : PRINT " PRESS ANY KEY" 
76 GETZ$ : IF Z$=" " THEN 76 
80 PRINT : PRINT : PRINT "AFTER ABOUT 160 LETTERS THE MACHINE" 
90 PRINT : PRINT "DOES AN INTERIM COUNT SO THERE WILL BE" 

100 PRINT : PRINT "A SHORT DELAY EACH TIME YOU REACH" 
110 PRINT: PRINT "THIS NUMBER OF LETTERS." 
120 PRINT : PRINT : PRINT "AS SOON AS YOU SEE THE QUESTION MARK" 
130 PRINT : PRINT "BEGIN TO TYPE IN YOUR PASSAGE" : PRINT : PRINT 
180 DIM K(26) 
190 REM B$ CUMULATES THE LETTERS 
200B$="" 
210 A=O : REM A COUNTS THE LETTERS 
220 REM A$ IS THE CURRENT LETTER 
229 PRINT "?" ; 
230 GET AS : IF A$= " " THEN 230 
240 IF AS= "9" THEN 500 : REM ABORT 
250 IF AS="< "THEN GOSUB 1000: REM REMOVES THE LAST LETTER 
260 IF AS="*" GOTO 340: REM END OF PASSAGE 
270 B$=B$+A$ 
280 PRINT AS ; 
290 IF AS=" " THEN 230 
300 REM TESTS FOR STRING TOO LONG 
310A=A+l 
320 IF A > 160 THEN 350 
330GOT0230 
340PRINT 
350 L=LEN (B$) 

360 FOR C=l TO L 
370 C$=MID$ (B$, C, 1) 
380 K=ASC (C$) 
390 REM TESTS FOR PUNCTUATION MARKS 
400 IF K < 64 THEN 430 
410K=K-64 
420 K(K) =K(K) + 1 
430NEXTC 
440 IF A$="*" THEN 460 
450 A=O : GOTO 230 
460 REM PRINT OUT OF RESULTS 



ANSWERS TO PROBLEMS 

469 PRINT : PRINT : PRINT : PRINT : PRINT 
470FOR C=l TO 13 
472Pl$=CHR$ (C+64): P2.$=CHR$ (C+77) 
480 PRINT Pl$ TAB ( 8)K(C) TAB ( 15)P2$ TAB ( 22)K(C+ 13) 
490NEXT 
SOOEND 
999 REM DELETION SUBROUTINE 

1000 LE=LEN (B$) 

1005PRINT 
1010B$=LEFT$ (B$, LE-1) 
1020 PRINT B$ ; 
1030 AS="" 
1040RETURN 

CHAPTER 9 

I. 20 DIM A$(20) I Al$(20) I D$(20) 
30 DIM A(20), B(20), C(20), D(20) 
40T=0 

100 A$="DETAILED ACCOUNT" 
110 L=(40-LEN (A$)) I 2 
llSHOME 
120 PRINT TAB ( L)A$ 
130 PRINT : PRINT : PRINT : PRINT "YOU PUT IN THE LIST OF 

ITEMS BOUGHT," 

140 PRINT : PRINT "THE PRICE OF EACH, THE DISCOUNT ON" 
150 PRINT : PRINT "EACH IN% TERMS, THE NUMBER OF EACH" 
160 PRINT : PRINT "BOUGHT. AN ITEMIZED AND DETAILED" 
170 PRINT : PRINT "BILL IS THEN PRODUCED." 
200 REM INPUT ROUTINE 
210 PRINT : PRINT : PRINT : PRINT 
215 INPUT "HOW MANY 'ITEM-TYPES' WERE BOUGHT? ... "; N 
230FORC=l TON 
240 PRINT : PRINT "NUMBER " C 
245 PRINT : PRINT 
250 INPUT "INPUT NAME OF ITEM ... "; A$(C) 
260 PRINT : PRINT "INPUT PRICE OF THIS ITEM. IF IN" 
263 PRINT : PRINT 
265 INPUT "PENNIES PUT DECIMAL POINT IN ... " ; A(C) 
266M=A(C): GOSUB 1000: Al$(C)=M$: REM FORMATTING 

236 



236 ANSWERS TO PROBLEMS 

268 PRINT : PRINT 
270 INPUT "INPUT% DISCOUNT ON THIS ITEM ... "; B(C) 
275 PRINT : PRINT 
280 INPUT "INPUT NUMBER OF THIS ITEM BOUGHT ... " ; C(C) 
290NEXTC 
300 PRINT : PRINT : PRINT "THAT WAS THE LAST 'ITEM-TYPE' " 
400FORC=l TON 
410D(C)=C(C) * (A(C)-(A(C) * B(C) I 100)): REM TOTAL PRICE PER 

ITEM TYPE 
412 T=T +D(C) 
415M=D(C) 
420 GOSUB 1000: REM FORMATTING 
425 D$(C) =M$ 
430NEXTC 
498 REM PRINTING ON SCREEN 
499HOME 

500 PRINT: PRINT "ITEM" TAB( 10) "PRICE" TAB( 18); 
505 PRINT "DIS" TAB( 24) "NO" TAB( 32) "TOTAL" 
510 PRINT "NAME" TAB( 10) "EACH" TAB( 18) ; 
512 PRINT "COUNT" TAB(24)" "TAB(32) "PRICE" 

515 PRINT : PRINT 
520 FOR C=l TON 
525 P=LEN (0$(C) ) : 0=38-P 
526 R=LEN (Al$(C)) : S=l5-R 
530 PRINT A$(C) TAB( S)Al$(C) TAB( 18)B(C) TAB( 24)C(C) TAB( Q)D$(C) 

540NEXTC 
550M=T: GOSUB 1000: T$=M$: REM FORMATTING 
570PRINT: PRINT: PRINT "COMPLETE TOTAL IS:- "T$ 
999END 

1000 REM FORMATS AS DOLLARS 
1020 M=INT (100 * M+.5) I 100 
1030 M$=STR$ (M) 
1040 A=LEN (M$)-2 
1050IF A=OTHEN 1090 
1060 IF MID$ (M$,A,l)="." THEN 1120 
1070A=A+l 
1080IF MID$ (M$,A,l)="." THEN 1110 
1090 MS=M$+ ".00" 
llOO GOTO 1120 
1110 M$=M$ + "O" 



ANSWERS TO PROBLEMS 

1120 M$="$" +M$ 
1140RETURN 

2. 5 0A$= "STOCK CONTROL" 
10 DIM A$(20), A(20), B(20), C(20) 
50 A$= "STOCK CONTROL" 
55HOME 
57 PRINT TAB{ (40-LEN (A$))/ 2)A$ 

237 

60 PRINT : PRINT : PRINT "CHOOSE ONE OF THE FOLLOWING BY" 
61 PRINT : PRINT "PRESSING THE APPROPRIATE KEY" 
65 PRINT : PRINT : PRINT " BEGIN A NEW LIST .................................. B" 
67PRINT: PRINT" SAVE ONDISK ........................................... S" 
69 PRINT : PRINT " RECOVER FROM DISK ................................ R" 
70 PRINT : PRINT " PRINT LIST ON SCREEN .............................. P" 
72 PRINT : PRINT " UPDATE QUANTITIES ................................ U" 
74 PRINT : PRINT" FINISH FOR NOW ...................................... F" 

100 GET B$: IF B$=" "THEN 100 
102 IF B$= "B" THEN 120 
104 IFB$="S" THEN 125 
106 IF B$= "R" THEN 130 
108 IF BS= "P" THEN 135 
110IFB$="U" THEN 140 
112 IF B$="F" THEN 145 
118GOT055 
120 GOSUB 200 : GOTO 50 
125 GOSUB 400 : GOTO 50 
130 GOSUB 600 : GOTO 50 
135 GOSUB 800 : GOTO 50 
140 GOSUB 1000 : GOTO 50 
145 GOTO 2500 
200 REM BEGIN INPUT ROUTINE 
205HOME 
210 INPUT " HOW MANY ITEMS?" ; N 
220 FOR C=l TON 
225PRINT: PRINT: PRINT "NUMBER "C 
230 INPUT " NAME OF ITEM " ; A$(C) 
235 GOSUB 2000 
240 PRINT : PRINT : PRINT " NUMBER or THIS" 
250 INPUT " ITEM IN STORE " ; A(C) 
255A(C)=INT (A(C)) 



238 

260 PRINT : PRINT " PRICE OF " 

270 INPUT II THIS ITEM It i B(C) 
275 B(C)=INT (100 * B(C)+.5) I 100 

ANSWERS TO PROBLEMS 

280 PRINT : PRINT "MINIMUM NUMBER ALLOWABLE" 
290 INPUT "BEFORE RE-ORDERING " ; C(C) 
295 C(C) =INT (C(C) ) 

300NEXTC 
310RETURN 
400 REM SAVE ON DISK 
410 D$=CHR$ (4) 
412PRINTD$ 
415 PRINT 0$; "OPEN STORES" 
420 PRINT 0$; "WRITE STORES" 
425 FOR C=l TON 
430 PRINT A$(C): PRINT A(C): PRINT B(C): PRINT C(C) 

440NEXTC 
445 PRINT 0$; "CLOSE STORES" 
450 PRINT : PRINT "NOW SAVED ON DISK. PRESS ANY KEY" 
460GETZ$ 
470RETURN 
600 REM RECOVER FROM DISK 
605 PRINT : INPUT "HOW MANY ITEMS WERE SAVED ";N 
610 PRINT "NOW BEING RECOVERED FROM DISK" 
615 D$=CHR$ (4) 
620 PRINT 0$; "OPEN STORES" 
625 PRINT S$; "READ STORES" 
630 FOR C=l TON 
635 INPUT A$(C): INPUT A(C) 

640 INPUT BCc:> : INPUT C ( C) 
645NEXTC 
650 PRINT D$; "CLOSE STORES" 

655 PRINT : PRINT "NOW RECOVERED FROM DISK. PRESS ANY KEY" 
660GETZ$ 
665RETURN 

800 REM PRINT LIST ON SCREEN 
810 Al$="NAME OF ITEM":A2$="NUMBER" 
815 A3$= "PRICE" :A4$= "MIN" 
820HOME 
825 PRINT TAB(2)Al$ TAB( 15)A2$ TAB( 22)A3$ TAB( 32)A4$ 
830 PRINT : PRINT 
835FORC=l TON 



ANSWERS TO PROBLEMS 

840 PRINT TAB ( 12- LEN (A$(C)))A$(C) TAB( lS)A(C) TAB (22)B(C) 
TAB(32)C(C) 

845 IF INT (C/lS)=C/15 THEN 855 
850GOT0880 

855 PRINT : PRINT " PRESS ANY KEY" 
860GETZ$ 
880NEXTC 
970 PRINT : PRINT " PRESS ANY KEY" 
975 PRINT : PRINT 
980GETZ$ 
990RETURN 

1000 REM UPDATE LISTS 
1020FORC=l TON 
1025HOME 
1030 PRINT "HOW MANY OF "A$(C)" WERE SOLD" 
1035PRINT 
1040 INPUT" "; Nl 

1050 A(C)=A(C)-Nl 
1060 IF A(C)=C(C) THEN 1100 
1065 IF A(C) < C(C) THEN 1130 
1070 PRINT : PRINT "YOU HA VE "A(C)-C(C) " MORE THAN" 
1080 PRINT ''PREFERRED MINIMUM IN STOCK. 11 

239 

1085 PRINT : PRINT "REMEMBER THAT THE PREFERRED MIN IS ";C(C) 
1090 GOTO 1170 
1100 PRINT : PRINT "YOU ARE NOW AT THE DECLARED MIN "C(C) 
1110 PRINT "OF THIS ITEM. YOU SHOULD NOW REORDER" 

1120GOTO 1170 
1130 PRINT : PRINT "YOU HAVE NOW GOT "C(C)-A(C)" LESS" 

1140 PRINT "THAN THE DECLARED MINIMUM OF "C(C) 
1150 PRINT "YOU SHOULD REORDER URGENTLY." 
1170 PRINT : PRINT " PRESS ANY KEY" 
1180GETZ$ 
1185NEXT C 
llSORETURN 
2000 REM REDUCE LENGTH OF NAME 
2010L= LEN (A$(C)) 
2020 IF L < 13 THEN 2030 
2025A$(C)= LEFT$ (A$(C) 112) 
2030RETURN 
2500 PRINT: PRINT "GOODBYE FOR NOW." 
2510END 



240 

CHAPTER 10 

1. 9 DIM A$(100),A(l00),B(l00) 

lOHOME 
11 PRINT"-----------

12PRINT 
13 PRINT "**********CLASS TESTS***********" 

14PRINT 
IS PRINT"-----------

ANSWERS TO PROBLEMS 

20 PRINT : PRINT : PRINT "THIS PROGRAM ACCEPTS THE NAME AND 
TEST" 

21 PRINT : PRINT " MARK OF 60 OR MORE CLASS MEMBERS. IT" 
22 PRINT : PRINT "WILL THEN STANDARDIZE THE SCORES TO" 

23 PRINT: PRINT "ANY GIVEN MEAN AND STANDARD DEVIATION" 
44 GOSUB 8000 
45GOTO 1630 

100 GOSUB 2400: GOSUB 1700: GOSUB 13000 
110 GOSUB 14000: GOSUB 3000: GOTO 1630 
120 GOSUB 2000: GOSUB 3000: GOTO 1630 
140 GOSUB 4500: GOSUB 13000: GOSUB 14000: GOSUB 3000: GOTO 1630 
160 GOSUB 4000: GOTO 1630 
180 GOSUB 1612: GOSUB 13000: GOSUB 14000 
181 GOTO 1630 
190 GOSUB 1600: GOSUB 3000: GOSUB 13000: GOSUB 14000: GOTO 1630 
200 GOSUB 5000: GOTO 1630 
210 GOSUB 7000: GOSUB 2500: GOSUB 2600: GOTO 1630 
220 GOSUB 1600: GOSUB 3000: GOSUB 13000: GOSUB 14000: GOTO 1630 
240 PRINT "BYE" 
245END 

1600HOME 
1601 PRINT "INPUT NEW SCORES" 
1602FOR1=1 TON: PRINT A$(1); TAB (15); : INPUT A(I) 
1604NEXTI 
1606 PRINT: PRINT "NEW MARKS ENTERED.": GOSUB 8000 
1610RETURN 
1612HOME 
1613 INPUT "NAME OF STUDENT ";N$ 
1615 FOR l=l TON: IF A$(1)=N$ THEN 1625 
1616NEXTI 
1617 PRINT : PRINT "NOT ON LIST": GOSUB 8000: GOTO 181 
1625 INPUT "NEW MARK" ;A(I) 
1628RETURN 



ANSWERS TO PROBLEMS 

1630HOME 
1632 PRINT FRE (0) " FREE BYTES "N" PUPILS" 
1633 PRINT : PRINT "DO YOU WISH TO :-" 

241 

1637 PRINT : PRINT "BEGIN AGAIN ............................................................ B" 
1638 PRINT: PRINT "READ LIST ................................................................... R" 
1639PRINT: PRINT "ADD NAME TO ........................................................... A" 
1640 PRINT : PRINT "DELETE NAME FROM LIST ..................................... D" 
1641 PRINT : PRINT "CHANGE ONE SCORE ............................................. C" 
1642 PRINT : PRINT "CHANGE ALL SCORES ............................................ T" 
1643 PRINT : PRINT "SA VE ON DISK ........................................................... s II 
1644 PRINT : PRINT "INPUT FROM DISK ..................................................... I" 
1645 PRINT : PRINT "FINISH FOR NOW ...................................................... F" 
1648 PRINT : INPUT " CHOOSE A LETTER " ; A$ 
1649 A= VAL (A$): IF A< > 0 THEN 1648 
1650 IF AS="B" THEN 100 
1652IF AS="R" THEN 120 
1655 IF AS="A" THEN 140 
1656 IF AS= "D" THEN 160 
1657 IF AS= "C" THEN 180 
1658 IF AS= "T" THEN 190 
1659 IF AS="S" THEN 200 
1660 IF AS="I" THEN 210 
1661 IF A$="F" THEN 240 
1662 GOTO 1630 
1700HOME 
1701 PRINT "DATA IS NOW PRINTED AGAIN FOR CHECKING" 
1702FORI=l TON 
1703 PJUNT : PRINT 
1704 PRINT A$(I}; TAB( 22}A(I} 
1706 GOSUB 8000 
1708NEXTI 
1710RETURN 
2000HOME 
2010 FOR I=l TON 
2020 IF INT (I/20) =I/20 THEN GOSUB 8000 
2040PRINT A$(1}; TAB( 22);A(I), INT (10*B(I)+.5)/10 
2050NEXTI 
2055 GOSUB 8000 
2060RETURN 
2400HOME 
2405 INPUT "HOW MANY PUPILS? II ;N 
2413 PRINT : PRINT : PRINT : FOR I=l TON 



242 

2415 IF I= 1 THEN 2417 
2416 PRINT "NOW NEXT PUPIL": PRINT 
2417 INPUT "PUPIL'S NAME ";A$(I) 
2418 PRINT : PRINT 
2419 INPUT "NOW THE SCORE ";A(I) 
2420 PRINT : PRINT 
2422NEXTI 
2425 PRINT "THAT WAS THE LAST PUPIL" 
2430 GOSUB 8000 
2450RETURN 

ANSWERS TO PROBLEMS 

2500 PRINT : PRINT : PRINT "MEAN NOW BEING COMPUTED" 
2502S1 =0:S2=0 
2505FORI=l TON:SI=Sl+A(I):S2=S2+(A(I)) A 2 
2510NEXTI 
2515 Ml =Sl IN : 5=52 IN-Ml" 2: P=SQR (S) 
2517M2=INT (10.,, Ml+.5) I 10: Pl=INT (10*P+.5)I10 
2520PRINT: PRINT "MEAN OF ORIGINAL SCORES "M2," STD.DEV. "Pl 
2525 GOSUB 8000: RETURN 
2600 PRINT : PRINT : PRINT "MEAN BEING COMPUTED" 
2602 SI =0:52=0 
2605 FOR I=l TO N:5l=Sl +B(I):S2=52+ (B(I)) "2 
2610NEXTI 
2615 Ml=Sl/N:5=S2/N-Ml A 2:P=SQR (S) 
2618 M3=INT (10 * Ml+.5)/10: P2=INT (10.,, P+.5)/10 
2620 PRINT : PRINT "MEAN OF STD.SCORES "M3"STD.DEV. "P2 
2625 GOSUB 8000: RETURN 
3000HOME 
3001 INPUT "DO YOU WISH ALPHABETICAL ORDER? " ; A$ 
3004 IF LEFT$ (A$, l)="Y" THEN 3009 
3005 IF LEFT$ (A$, l)="N" THEN 3220 
3006 PRINT : PRINT "TRY AGAIN": GOTO 3001 
3009 PRINT : PRINT "NAMES BEING ALPHABETIZED" 
30101=0 
3011 FOR I=l TO N-1 
3020 IF A$(1) < A$(I+ 1) THEN 3200 
3030 X$=A$(I+ l):Xl=A(I+ 1) :X2=B(I+ 1) 
3040 A$(I+ l)=A$(1):A(I+ l)=A(l):B(I+ l)=B(I) 
3050 A$(I) =XS:A(I) =Xl :B(I) =X2 
3060 J=J +l 
3200NEXTI 



ANSWERS TO PROBLEMS 243 

3210IF J > 0 THEN 3010 
3215 PRINT : PRINT "NOW IN ALPHABETICAL ORDER": GOSUB 8000 
3220RETURN 
4000HOME 
4005 INPUT "NAME TO BE REMOVED ";B$ 
4010 FOR I=l TON 
4020 IF A$(I)=B$ THEN 4100 
4030NEXTI 
4035 PRINT : PRINT "NOT ON LIST": PRINT 
4037 GOTO 4125 
4100FOR J=I TO N-1 
4110 A$(J)=A$(J + l):A(J)=A(J +l):B(J)=B(J+ 1) 
4120NEXTJ 
4122 A$(N)=" ":A(N)=O:B(N)=O 
4123N=N-l 
4124 PRINT : PRINT "NOW REMOVED": GOSUB 8000 
4125PRINT: INPUT "ANOTHER ";A$ 
4126 IF LEFT$ (A$,l)="Y" THEN 4000 
4127IFLEFT$ (A$, l)="N" THEN 4130 
4128PRINT: PRINT "TRY AGAIN": GOTO 4125 
4130RETURN 
4500HOME 
4501 INPUT "NAME OF NEW STUDENT ";C$ 
4510 PRINT : INPUT "SCORE OF STUDENT ";C 
4520N=N+l 
4530 A$(N) =C$:A(N) =C 
4540 PRINT : PRINT "NEW STUDENT ENTERED" 
4542PRINT·: INPUT "ANOTHER ";A$ 
4543 IF LEFT$ (A$,l)="Y" THEN 4501 
4544 IF LEFT$ (A$,l)="N" THEN 4550 
4545 PRINT : PRINT "TRY AGAIN": GOTO 4542 
4547 GOSUB 8000 
4550RETURN 
5000 D$=CHR$ ( 4) 

5005 PRINT D$; "OPEN RECORDS" 
5010 PRINT D$; "WRITE RECORDS" 
5015FORI=l TON 
5020 PRINT A$(I) 
5030NEXTI 
5040 PRINT 0$; "CLOSE RECORDS" 



244 

5078 PRINT D$; "OPEN MARKS" 
5079 PRINT D$; "WRITE MARKS" 
5120 FOR I=l TON 
5130 PRINT A(I) 
5140NEXTI 
5170 PRINT D$; "CLOSE MARKS" 
5210 PRINT D$; "OPEN STD.MARKS" 
5215 PRINT D$; "WRITE STD.MARKS" 
5220 FOR I=l TON 
5225 PRINT B(I) 
5230NEXTI 
5235 PRINT D$; "CLOSE STD.MARKS" 
5275 PRINT : PRINT "NOW SAVED ON DISK" 
5277 GOSUB 8000 
5280RETURN 

7000HOME 

ANSWERS TO PROBLEMS 

7001 PRINT "HOW MANY PUPILS WERE RECORDED" 
7002 INPUT "ON THIS DISK II ;N 
7005 D$=CHR$ (4) 
7006 PRINT D$; "OPEN RECORDS" 
7007 PRINT D$; "READ RECORDS" 
7008 FOR I=l TON 
7009 INPUT A$(I) 
7010NEXTI 
7020 PRINT D$; "CLOSE RECORDS" 
7060 PRINT D$; "OPEN MARKS" 
7065 PRINT D$; "READ MARKS" 
7070FORI=l TON 
7075 INPUT A(I) 
7080NEXTI 
7090 PRINT D$; "CLOSE MARKS" 
7100 PBINT D$; "OPEN STD.MARKS" 
7105 PRINT D$; "READ STD.MARKS" 
7110 FOR I=l TON 
7120 INPUT B(I) 
7130NEXTI 
7150 PRINT D$; "CLOSE STD.MARKS" 
7155 PRINT: PRINT "RESULTS NOW RECOVERED" 
7156 GOSUB 8000 
7160RETURN 
8000 PRINT : PRINT : PRINT " PRESS ANY KEY" 



ANSWERS TO PROBLEMS 

8010GET A$ 
8020RETURN 
13000 PRINT : PRINT "MEAN BEING COMPUTED" 
13002 Sl=O:S2=0 
13005 FOR I= 1 TO N :Sl =Sl + A(I) :S2=S2+ (A(I)) A 2 
13010NEXTI 
13020 Ml=Sl IN: S=S2 IN-Ml A 2: P=SQR (S) : O=INT (10 * P+.S) / 10 
13030 PRINT: PRINT "MEAN IS "INT (10 * Ml+.5) / 10, "STD.DEV IS"Q 
13035 GO~UB 8000 
13040 RETURN 
14000HOME 
14010 INPUT "CHOSEN MEAN ";M2 
14020 INPUT "STD DEV IS ";SN 
14030 IF Q =0 THEN 14080 
14040 FOR l=l TON 
14050B(l)=M2+((A(l)-Ml) I SQR (S)) *SN 
14060NEXTI 
14070 GOTO 14090 
14080 FOR l=l TO N:B(l)=M2: NEXT I 
14090 PRINT: PRINT "SCORES NOW STANDARDIZED" 
14100 GOSUB 8000 
14110 RETURN 

2. 10 DIM A$(2, 35), A(35) 

20HOME 
30 PRINT " BIBLIOGRAPHY" 
40 PRINT : PRINT : PRINT 
50 PRINT "THIS PROGRAM ALLOWS YOU TO ENTER A" 
55 PRINT : PRINT "BIBLIOGRAPHY, SA VE IT, RECOVER AND" 
60 PRINT: PRINT "AMEND IT." 
65GOSUB420 
70GOSUB440 
75GOSUB462 
80 PRINT : PRINT 
85 INPUT " READ LIST AGAIN ";A$ 
90 IF LEFT$ (A$, l)="Y" THEN 115 
95 IF LEFT$ (A$, l)="N" THEN 120 

100 PRINT : PRINT "TRY AGAIN'': GOTO 80 
115 GOSUB 500 
120 GOSUB 530: GOSUB 440 

245 



246 

130 GOSUB 500: GOSUB 530: GOTO 440 
140 GOSUB 560 
150 PRINT : PRINT 
160 INPUT" ADD ANOTHER ";A$ 
162 IF LEFT$ (A$, l)="Y" THEN 140 
163 IF LEFT$ (A$, l)="N" THEN 170 
165 PRINT : PRINT "TRY AGAIN": GOTO 150 
170 GOSUB 530: GOTO 440 
190 GOSUB 580 
191 PRINT: INPUT" ANOTHER ";A$ 
192 IF LEFT$ (A$, 1) = "Y" THEN 190 
193 IF LEFT$ (A$,l)="N" THEN 200 
194PRINT: PRINT "TRY AGAIN": GOTO 191 
200GOT0440 
220 GOSUB 600 
221 PRINT : INPUT" CHANGE ANOTHER ";A$ 
223 IF LEFT$ (A$, l)="Y" THEN 220 
224 IF LEFT$ (A$, 1) = "N" THEN 230 
225 PRINT : PRINT "TRY AGAIN": GOTO 221 
230GOT0440 
250 GOSUB 650: GOTO 440 
280 GOSUB 750: GOTO 440 
300 PRINT : PRINT " BYE" 
310END 
420 PRINT : PRINT : PRINT "PRESS ANY KEY" 
425GET A$: RETURN 

ANSWERS TO PROBLEMS 

440 HOME : PRINT 65536+FRE (0) " FREE BYTES "N" BOOKS IN" 
441 PRINT : PRINT "DO YOU WISH TO : II 
442 PRINT : PRINT "BEGIN A NEW LIST ........................................ B" 
443 PRINT : PRINT "READ A CURRENT LIST .................................. R" 
444 PRINT : PRINT "ADD A BOOK TO LIST ................................... A" 
445 PRINT : PRINT "DELETE A BOOK FROM LIST .......................... D" 
446 PRINT : PRINT "CHANGE A BOOK ON LIST ............................ C" 
447 PRINT: PRINT "SAVE LIST ON DISK ....................................... S" 
448 PRINT : PRINT "INPUT LIST FROM DISK .................................. I" 
450 PRINT : PRINT "FINISH FOR NOW .......................................... F" 
451 PRINT : INPUT "CHOOSE A LETTER " ; A$ 
452 IF AS= "B" THEN 75 
453 IF AS= "R" THEN 130 
454IF AS= "A II THEN 140 
455 IF AS="D" THEN 190 



ANSWERS TO PROBLEMS 

456 IF A$="C11 THEN220 
457 IF AS= "S" THEN 250 
458 IF A$= "111 THEN 280 
459 IF A$= "F" THEN 300 
461 PRINT : PRINT "TRY AGAIN" : GOTO 451 
462 HO:t-1E : INPUT "HOW MANY BOOKS " ; N 
463 PRINT : FOR l=l TON : PRINT "THIS IS BOOK NUMBER " I 
465 PRINT: PRINT "INPUT AUTHOR LIKE THIS JONES M." 
466 INPUT "USE NO COMMAS " ; A$(0, I) 
467 PRINT : INPUT "NAME OF BOOK " ; A$(1, I) 
470 PRINT : INPUT "PUBLISHER " ; A$(2, I) 
473 PRINT: INPUT "DATE OF PUBLICATION. 0 IF UNKNOWN 11 

; A(l) 
475 PRINT : PRINT : NEXT I 
477 PRINT : PRINT "THAT WAS THE LAST ONE" : GOSUB 420 
480RETURN 
500 HOME : FOR l=l TON : PRINT I 
501 FOR J =0 TO 2 : PRINT A$(J, I) : PRINT 
505 NEXT J : PRINT A(I) : PRINT 
510GOSUB420: NEXT I 
515 PRINT: PRINT: PRINT "THAT WAS THE LAST ONE": GOSUB 420 
520 PRINT : PRINT : RETURN 

247 

530 PRINT : INPUT "ALPHABETICAL ORDER-YES OR NO-" ; A$ 
532 IF LEFT$ (A$, 1) = "Y11 THEN 538 
533 IF LEFT$ (A$, 1) = "N" THEN 536 
535 PRINT : PRINT " TRY AGAIN" : GOTO 530 
536 GOSUB 420 
537RETURN 
538 J=O: FOR l=l TO N-1: IF A$(0, I)< A$(0, l+l) THEN 542 
539 X$=A$(0, I+l): Y$=A$(1, l+l): Z$=A$(2, l+l): X=A(l+l) 
540 A$(0, I+l)=A$(0, I) : A$(1, I+l)=A$(1, I) : A$(2, I+l)=A$(2, I) 

A(I+ l)=A(I) 
541 A$(0, l)=X$: A$(1, l)=Y$: A$(2, l)=Z$: A(l)=X: J=J+l 
542NEXTI 
543 IF J > 0 THEN 538 
544 PRINT : PRINT : PRINT "IN ALPHABETICAL ORDER." 
545 GOSUB 420 
549RETURN 
560N=N+1 : HOME : INPUT "NAME OF AUTHOR II ; A$(0, N) 
562 PRINT : INPUT "BOOK TITLE II ; A$(1, N) 
564 PRINT : INPUT "PUBLISHER " ; A$(2, N) 
565 PRINT: INPUT "PUBL. YEAR "; A(N) 



248 

570RETURN 
580 HOME : INPUT "INPUT NAME II ; T$ 
587FORl=l TON 
589 IF A$(0, l)=T$ THEN 592 
590NEXT I 
591 PRINT : PRINT "NAME NOT ON LIST" : PRINT 
592 FOR J=I TO N-1 

ANSWERS TO PROBLEMS 

593 A$(0, D=A$(0, J+l) : A$(1, D=AS(l, J+l) A$(2, D=A$(2, J+l) 
A(J)=A(J + 1) 

594NEXTJ 
596 A$(0, N)=",,: A$(1, N)=" II: A$(2, N)=" II 
597N=N-l 
598 PRINT: PRINT: PRINT "BOOK HAS BEEN REMOVED.": GOSUB 420 
599RETURN 
600HOME 
601 INPUT "AUTHOR TO BE CHANGED? " ; S$ 
604 FOR l=l TON 
606 PRINT : IF A$(0, I) =S$ THEN 620 
608NEXT 
609 PRINT : PRINT : PRINT "NOT ON LIST" 
610RETURN 
620 PRINT : PRINT "NAME ENTRY II ; A$(0, I) 
621 PRINT : PRINT 
622 INPUT "NEW NAME? " ; A$(0, I) 
623 PRINT : PRINT "BOOK TITLE II A$(l, I) 
624 PRINT : PRINT 
625 INPUT "NEW TITLE? II; A$(1, I) 
626 PRINT : PRINT "PUBLISHER II ; A$(2, I) 
628 PRINT : PRINT 
629 INPUT "NEW NAME? II ; A$(2, I) 
630 PRINT : PRINT "YEAR II ; A(I) 
631 PRINT : PRINT 
632 INPUT "YEAR? II ; A(I) 
635RETURN 
650HOME 
652 PRINT: PRINT: PRINT ''DATA BEING SAVED" 
655 PRINT : PRINT : INPUT "WHAT FILE NAME " ; K$ 

657 Z$=CHRS ( 4) 
659 PRINTZ$; "OPEN" ; KS 
660 PRINT ZS ; "WRITE" ; K$ 
662 FOR V =0 TO 2 



ANSWERS TO PROBLEMS 

664FORI=l TON 
665 PRINT A$(V, I) 
666NEXTI 
669NEXTV 
688 FOR I=l TON 
690 PRINT A(I) 
692NEXTI 
696 PRINT Z$ ; "CLOSE" ; K$ 
698RETURN 
750HOME 
751 INPUT "HOW MANY BOOKS ARE STORED ON THE DISK" ; N 
752 PRINT : INPUT "WHAT IS THE FILE NAME " ; K$ 
753 PRINT: PRINT: PRINT "DATA BEING RECOVERED" 
755 Z$=CHR$ ( 4) 
757 PRINTZ$ ; "OPEN" ; K$ 
760 PRINT Z$ ; "READ" ; K$ 
762FORV=OT02 
764 FOR I=l TON 
765 INPUT A$(V, I) 
766NEXTI 
767NEXTV 
788 FOR I=l TON 
790 INPUT A(I) 
792NEXTI 
795 PRINT Z$ ; "CLOSE" ; K$ 
797GETY$ 
798RETURN 

249 



Appendix H Further Reading 

BASIC 

Listed below is a short selection of the great many books about BASIC. 
Look at as many as you can and try to find one that suits your own 
needs. 

Each of these books, with one exception, can be used as an 
introductory text. The exception is the one by Lien already mentioned 
on page 17. This is an encyclopedia of the BASIC language and is a 
most useful reference book. 

Alcock, D. Illustrating BASIC. Cambridge: Cambridge University 
Press, 1977. 

Bishop, P. Computer Programming in BASIC. Walton-on-Thames, 
Surrey: Nelson, 1979. 

Coan, J.S. Advanced BASIC: Applications and Problems. Rochelle 
Park, N.J.: Hayden Book Company, Inc., 1977. 

Coan, J.S. Basic BASIC: An Introduction to Computer Programming in 
BASIC. Rochelle Park, N.J.: Hayden Book Company, Inc., 1978. 

Deitel, H.M. Introduction to Computer Programming with the BASIC 
Language. Englewood Cliffs, N.J.: Prentice-Hall, 1978. 

Dwyer, T.A. and Crutchfield, M.A. BASIC and the Personal Computer. 
London: Addison Wesley, 1978. 

Eagle, M.R. An Introduction to BASIC. London: Bell and Hyman, 
1976. 

Farina, M.V. Programming in BASIC, the Time-sharing Language. 
Englewood Cliffs, N.J.: Prentice-Hall, 1968. 

Hubin, W.N. BASIC Programming for Scientists and Engineers. 
Englewood Cliffs, N.J.: Prentice-Hall, 1978. 

Lien, D.A. The BASIC Handbook: An Encyclopedia of the BASIC 
Computer Language. San Diego, Ca.: Compusoft Pulishing, 1979. 

250 



FURTHER READING 251 

Monro, D.M. Interactive Computing with BASIC, a First Course. 
London: Edward Arnold, 1978. 

Scott, P.E. Programming in BASIC: a Beginners' Course, London: 
Hodder and Stoughton, 1975. 

APPLE AND GENERAL 

This second list of books is more general and contains books about 
Apple or about small computers in general. 

Apple Computer Inc., The Applesoft Tutorial. Cupertino, California, 
1979. (This is a good introduction to some aspects of Applesoft 
BASIC.) 

Apple Computer Inc., Applesoft BASIC Programming Reference 
Manual. Cupertino, California, 1978. (A detailed reference manual 
of all Applesoft words and commands.) 

Apple Computer Inc., Apple 2 BASIC Programming Manual. 
Cupertino, California, 1978. (An introduction to Integer Basic.) 

Apple Computer Inc., DOS Version 3.2. Cupertino, California, 1979. 
(This is about DOS 3.2.) 

Apple Computer Inc., The DOS Manual. Cupertino, California, 1980. 
(This is about DOS 3.3.) 

Apple Computer Inc., Apple 2 Reference Manual. Cupertino, California, 
1979. (A detailed reference book to all aspects of the Apple's 
physical make-up, the monitor and memory organization.) 

Bradbeer, R., The Personal Computer Book. Farnborough, Hants.: 
Input Two-nine, 1980. (This is a good general introduction to small 
computers with lots of useful addresses and lists.) 

Inman, D. and K. Apple Machine Language. Reston, Virginia: Reston 
Publishing Company, Inc., 1981. 

Leventhal, L.A. 6502 Assembly Language Programming. Berkeley, Ca.: 
Osborne/McGraw Hill, 1979. (An introduction to writing machine
code on the microprocessor used in the Apple, i.e. the 6502.) 

Lewis, T.G. Pascal Programming for the Apple. Reston, Virginia: 
· Reston Publishing Company, Inc., 1981. 

Waite, M. Computer Graphics Primer. Indianapolis, Indiana: Howard 
W. Sams & Co., Inc., 1979. 

Zaks, R. Programming the 6502. Berkeley, California: Syken, 1980. 



252 FURTHER READING 

APPLE ASSOCIATIONS AND JOURNALS 

(a) BASUG (British Apple Systems User Group) produces a 
newsletter which is available from PO Box 174, Watford, 
WD2 6NF, England. They also publish a journal called Hard 
Core. Contains an up-to-date list of user groups in United 
Kingdom. 

(b) Windfall is a journal for Apple users, published monthly, 
available from Europa House, 68 Chester Road, Hazel 
Grove, Stockport, Cheshire SK 7 5YB, England. 

(c) Apple Orchard is published in the USA and is available from 
PO Box 1493, Beaverton, OR.97075, USA. 

( d) International Apple Core is an organization made up of Apple 
computer user groups throughout the world. It publishes 
Apple Orchard (above), and can be contacted at PO Box 976, 
Daly City, California 94017, USA. 

(e) A.P.P.L.E., 304 Main Ave. Sth., Suite 300, Renton, Wa. 
98055, USA. The American user group. Publishes software 
and a journal. 



Index 

A 

ABS, 180 
add, 6, 192 
addresses, 98, 109, 110, 114 
aligning decimal point, 143 
alphabetical order, 15 6 
AND, 180 
APPEND, 180 
Apple 

as a games-player, 165 
as a manager, 168 
as a teacher, 166 
as an aid in simulations, 169 
associations, 25 2 
in the classroom, 164 
Orchard, 252 
vocabulary, 179 

A.P.P.L.E., 252 
Applesoft BASIC, 17, 43, 114, 140, 

179, 198 
array variables, 162 
arrows (cursor movement), 5, 9 
ASC function, 130, 180 
ASCII codes, 127, 197 
ATN, 180 
AUTO, 199 

B 

bar graphs, 64 
base sixteen, 110, 111, 207, 208, 209, 

210 

253 

base ten, 111, 207, 208, 209, 210 
BASIC, 16, 17, 94, 110, 150, 250 
BASUG (British Apple Systems User 

Group), 252 
beginning with Apple, 1 
bell sound, 84 
BLOAD, 180 
books,250 
BRUN, 180 
BSAVE, 180 
Bubblesort, 156 
bytes of memory, 26 

c 

calculator, Apple as, 165 
CALL, 94, 104, 105, 110, 180, 200 
cassette tape file, 46 
CATALOG,43,47, 180 
changing file names, 46 
changing line numbers, 18 
CHR$ (character$), 48, 49, 103, 127, 

128, 130, 181, 197 
CHR$(4), 48, 49, 50 
CHR$ and quotation marks, 130 
circles, 70, 72 
CLEAR, 181 
CLEAR SCREEN, 10, 31 
CLOSE, 48, 49, 181 
CLR,200 
COBOL,205 
COLON, 12, 193 
COLOR, 56, 66, 181 



254 

color graphs, 66 
colored circles, 72 
colored screen, 5 9 
command mode, 14 
commas, 22, 193 
constant, 11 
CONT, 181 
control and C, 82, 90 
control and G, 82 
control and S, 82 
control and X, 82 
control operations, 82 
COS(ANG), 70, 71, 181 
CTRL key, 9, 25, 82 
cursor, 2, 11 

D 

down, 9, 81 
left ( ..- ), 5, 9, 77, 78, 137 
movement, 5, 9, 79, 80, 137 
right (-+ ), 9, 77' 78, 13 7 
up,9, 79 

data, 74, 181 
recovery, 49 
saving, 47 
statement, 7 4, 104, 107 

decimal places, 139, 143, 145 
decimals, 90, 91, 139, 143 
DEF FN, define function, 143, 181 
definition of strings, 11 7 
DEL, 20, 181 
DELETE, 46, 181, 182 
delays, 88 
delete routine, 159 
DIM, dimension statement, 108, 182 
DIR, 179 
disk drives, 1, 2 
disk management, 42 
diskettes. 1. 42 
division (/), 6, 192 
dollar sign, strings, 13, 193 
DOS, 179 
DOS commands, 179 
DRAW, 182 
drawing a circle, 69 
drawing horizontal lines, 63 
drawing vertical lines, 63 
DSP, 199 

E 

END, 33, 182, 201 
equals sign, 11, 192 
ESC key, 9, 78, 79, 81, 115 
escape mode, 10, 78, 79, 81 
EXEC, 182 
EXP, 182 
extending decimal places, 145 

F 

face on the screen, 60 
fail-safe line, 51 
file not found, 44, 46 
filenames, 45, 51 
files, 45 
finish routine, 160 
first word, 5 
flash, 10, 34, 182 
flashing titles, l 0, 34 
floating point, 198 
FN, 179 
FOR ... NEXT, 47, 88, 182 
formatting, 22, 122, 125, 134 
FORTRAN, 205 
FP, 183 
FRE (O), 26-27, 183 

G 

games-player, Apple as, 165 
GET, 38, 183 
GOSUB, 32, 152, 183, 201 
GOTO, 51, 183, 201 
graphics (GR), 55, 183 

H 

high resolution, 66 
low resolution, 55, 64 

Hard Core, 252 
hash sign ( # ), 92 
HCOLOR, 67, 183 
HEX, 111, 207-210 

INDEX 

Hex-codes, 109, 110, 111, 207-210 
HGR, 66, 183, 184 
HGR2, 184 



INDEX 

high resolution graphics, 66 
HIMEM, 184 
HLIN (horizontal line), 63, 184 
holding a key, 6 
HOME, 10, 31, 184 
HPLOT, 68, 70, 73, 184 
HTAB, 137, 184 

I 

IF,39, 184 
illegal quantity error, 59, 75 
immediate mode, 14 
IN*-, 174, 185 
initializing a diskette, 42, 184 
INPUT, 20, 154, 184, 185 
input with a string, 24 
insertion of missing words, 81 
instruction to user, 3 7 
INT, integral part, 84, 86, 140, 141, 

142, 146, 185 
Integer BASIC, 198-202 
inverse, 10, 33-34, 185 

J 

journals, 252 

K 

kilobytes, 26 

L 

LEFTS, 121, 122, 185 
left arrows, 77 
LEN, 121, 122, 123, 124, 135, 146, 

185 
LET, 11, 184 
line numbers, I 7 
lines and movement, 97 
LISP, 205 
LIST, 18, 19,31,45, 185 
LIST A-B, 185 
LOAD, 45, 178, 186 
loading a program from tape, 1 78 
LOCK, 186 
log, 144, 186 

LOG0,205 
LOMEM, 186 
loop, 48, 88, 89 
low resolution graphics, 55, 64 

M 

machine code, 94, 109, 110 
MAN, 199 
manager, Apple as, 168 
MAXFILES, 186 
memory, 26 
memory units, 12, 21, 24, 26, 100, 

109, 110, 111 
menu, 51, 151 
MIDS, 121, 125, 126, 147, 148, 186 
missing words, insertion, 81 
mnemonic codes, 109, 110 
MOD, 199 
MODUL0,200 
MON, 186 
monitor, 1, 2, 59 
more communication, 11 
moving shape, 73, 97 
multiply, 6, 192 
music on Apple, 95, 104 

N 

NEW, 19, 186 
NEXT, 47, 187, 201 
NOMON, 187 
NORMAL, 10, 33-34, 187 
NOT, 187 
note length in music, 105 
NOTRACE, 91, 92, 187 
number, hash sign ( =# ), 92 
numbers in Apple, 89, 90, 91 

0 

octave in music on Apple, 106 
ON, 187, 201 
ONERR,GOTO, 187 
OPEN, 48, 187 
OR, 189 
ordering strings, 13 2 
other languages, 198 

255 



256 

p 

Pascal, 202 
PDL, 187 
PEEK, 94, 101, 128, 129, 187, 19S, 

196 
percentage sign, 8 7, 19 3 
PILOT, 20S 
pitch in music, 1 OS, 106 
playing a tune, 106 
PLOT, S6, S7, 61, 187 
POKE, 94, 9S, 104, 10S, 110, llS, 116, 

188, 19S, 196, 200 
poke as a switch, 9S, 114 
POP, 188 
POS, 188 
POSITION, 188 
press any key, 38 
pressing a key, 6 
PRG, 179 
PRINT, S, 188, 193 
print on screen routine, 161 
prir=it: with words, 7 
PR , 174, 188 
problems, 14-lS, 27-28, 39-40, S4, 76, 

93, 116, 132-3, 148-149, 163 
program, 16, 29, lSO, 1S2 

organization, SO, 1 SO, 1 S 1 
presentation, 29, lSO, lS 1 
purpose, 30 
recovery, 4S 
saving, 44 

programming mode, 14 
purpose of program, 30 

Q 

question mark (print), 7, 193 
quotation marks, 8, 12, 83, 117, 130, 

193 

R 

random numbers (RND), 84, 100 
random pictures, 100 
read,48,SO, 74, 188 
RECALL, 188 
recovering from disk, 4S, 161 
REM, 2S, 189 
removing a file, 46 

removing a program, 19 
RENAME, 47, 189 
REPTkey, 9 
RESET, 115 
RESET key, 10 
RESTORE, 189 
RESUME, 189 
RETURN in GOSUBS, 32, 189 
RETURN key, 4, 193 
reverse field, 10, 33-34 
RIGHT$, 121, 189 
right arrows, 9, 77 
RND, 84, 189 
ROM chips, 16 
ROT, 189 
RUN, 18, 45, 189 

s 

SA VE, 44, 189 
saving on disk, 44, S3, 160 
SCALE, 190 
scientific notation, 89 
screen artist, 61 

coloured, 59 
editing, 78 
format, 22 

with strings, 23 
number conversion, 99 
numbers, 96, 97, 99, 10 l, 196 
RAM,94,9S 
size for graphics, S6, 57, 67 
white, 58 
width, 22 

SCRN, 190 
selection routine, 159 
semicolons, 22, 23, 137, 193 
SGN, 190 
shift key, 6, 9 
SHLOAD, 190 
simulations, Apple as an aid, 169 
SIN(ANG), 70, 71, 136, 190 
sine curve, 135, 136 
software, 205 
sorting alphabetically, 1S6 
SPC function, 139, 190 
spacing, 35 · 

with commas, 22 
with semicolons, 22, 23 

special keys, 8 
special words, 10 

INDEX 



INDEX 

speed, 190 
SQR, square root, 140, 190 
STEP, 136, 190 
STOP, 31, 190 
stop listing, 25 
STORE, 190 
storing in memory, 17 
STRFN, 179 
STR$ function, 131, 146, 190 
strings, 11 7, 131 

length, 123 
variables, 13, 162 

subprogram, 4 7 
structured program, 150 
subroutines,32,35, 150 
subtract, 6, 192 
symbol listing, 99 
symbol numbers, 95, 194, 197 
syntax error, 4 
systems master disk, 1, 82 

T 

TAB, 86, 134, 135, 136, 191, 201 
tabulation, 134 
TAN, 191 
teacher, Apple as, 166 
TEXT, 56, 82, 115, 191 
THEN, 39, 191 
title, 33 
TO, 47, 191 
TO in high resolution graphics, 68 
to the power of, 89, 192 

TRACE, 91, 92, 191 
Turtle Graphics, 205 

u 

units of memory, 98 
UNLOCK, 191 
update routine, 156 
user presentation, 29 
using BASIC, 16 
USR, 191 

v 

VAL function, 118, 119, 131, 191 
variable, 11, 27 
variable names, 27 
verify, 44, 191 
VISICALC, 205 
VLIN, (vertical line), 63, 191 
VTAB, 102, 137, 192 

w 

WAIT, 192 
white screen, 58 
windfall, 252 
write, 48, 50, 192 

x 

X DRAW, 192 

257 





ISBN 0-13-039131-X 




