" The Apple ™

Connection

&

James W. Coffron

The Apple® Connection

An Introduction to the
Techniques and Principles of
Apple Computer Interfacing

The Apple’Connection

An Introduction to
the Techniques and Principles
of Apple Computer Interfacing

James W. Coffron

N
SYBEX

\7s
Berkeley ¢ Paris ¢ Diisseldorf

Cover Design by Daniel Le Noury
Book layout and design by Marlyn Amann

Apple is a registered trademark of Apple Computer, Inc.

BSR X-10 is a registered trademark of BSR-McDonald.

LM135, 235, and 335 are trademarks of National Semiconductor Corporation.
AD558 and AD570 are trademarks of Analog Devices.

Sybex is not affiliated with any manufacturer.

Every effort has been made to supply complete and accurate information. However, Sybex assumes
no responsibility for its use, nor for any infringements of patents or other rights of third parties
which would result. Neither is any liability assumed for damages resulting from the use of the infor-
mation contained hersin. Manufacturers reserve the right to change technical specificatfons and
charactoristics at any time withcut notice.

© 1882 SYBEX Inc., 2344 Sixth Street, Berkeley, CA 84710. World Rights reserved. No part of this
publication may be stored in a retrieval system, transmitted, or reproduced in any way, including but
not limited to photecopy, photograph, magnetic or other record, without the prior agreement and
written permission of the publisher.

Library of Congress Card Number: 82-50620
ISBN 0-89588-085-7

First Edition 1882

Printed in the United States of America
1098765432

This book is for my family—
Carol, Jeffrey, Kelly and Rocky

vii

Contents

Preface xiii
Introduction xv
Introduction to Computer Control 1
1.1: What is Computer Control? 1

1.2: A Practical Example of the Two Basic Concepts 4

1.3: Some New Vocabulary 6

1.4: Summary 15

Software for Output from the Apple 19

2.1: Installing the CMS I/O System 20

2.2: The POKE Instruction 25

2.3: Forming the Address for the POKE 27
2.4: Calculating Data for the POKE 30

2.5: Experiments With the CMS I/O System 35
2.6: Example 1: Lighting a Single LED 38

2.7: Example 2: Lighting a Combination of LEDs
2.8: Example 3: A Counting Program 42

viii

2.9: Example 4: ATraveling Light 44
2.10: Summary 47

Inputting Data to the Apple Computer 49

3.1: Overview of Inputting Data 49

3.2: The CMS Input Board for the Apple Computer 51

3.3: Input Software 52

3.4: Interpreting the Input Information 53

3.5: Calculating the Bits from the Input Variable 57

3.6: Hands-on Example 1: Calculating the Weight of the
Input Word 65

3.7: Example 2: Read a Byte and Determine which Bits Were a
logical1 66

3.8: Example 3: Read a Word and Perform an Action 69

3.9: Example 4: A Combination Lock 70

3.10: Summary 74

Input and Output Hardware for the Apple 77

4.1: Beginning Output Electronics for the Apple 78
4.2: The Enable Circuit 78

4.3: The Read/Write (R‘'W) line 80

4.4: The External Output Strobe Signal 82

4.5: The Output Latches 84

4.6: The Light-Emitting Diodes 85

4.7: Hardware for Inputting Data to the Apple 91
4.8: Enabling the Tri-State Buffer 94

4.9: Summary of Input and Qutput 97

An Application of Computer Interfacing:
A Home Security System 101

5.1: Definition of the Problem 102

5.2: Drawing the House with the Computer 103

5.3: Physical Connections to the Doors and Windows 105

5.4: Connecting the Hardware to the Computer 110

5.5: Software for Interpretation of the Input Lines 113

5.6: Simulation of all Windows and Doors for Program
Development 118

5.7: Masking Off the Alarms with Software 121

5.8: The Complete System 123
5.9: Summary 132

Interfacing the Apple to Home Appliances 135

6.1: Block Diagram of the Problem 136

6.2: How the Solid-State Relay Operates 139

6.3: Electrically Closing the Solid-State Relay = 142
6.4: An Output Port 144

6.5: Software for Control 146

6.6: Summary 148

Analog vs. Digital, and Transducers 151

7.1: Analog Events 151

7.2: Digital Events 154

7.3: Totally Digital Events 155

7.4: Analog and Digital Electronics 155
7.5: Transducers 158

7.6: Summary 159

Analog-to-Digital Conversion for the Apple 164

8.1: Block Diagram of the Problem 164

8.2: The Analog-to-Digital Converter 166

8.3: Calculating the Digital Outputs of the ADC 170

8.4: Connecting the ADC to the Apple Computer 174

8.5: Software for Analog-to-Digital Conversion 179

8.6: Temperature Measuring Circuit (Transducer) 182

8.7: The Complete System for Temperature
Measurement 186

8.8: Some Practical ADC Applications 187

8.9: Summary 189

Digital-to-Analog Conversion for the Apple 193

9.1: What is Digital-to-Analog Conversion? 195
9.2: An Actual Digital-to-Analog Converter 199
9.3: Connecting the DAC to the Apple 204

9.4: Setting any Output Voltage on the DAC 206

9.5: Controlling the DAC with a BASIC Program 211
9.6: Increasing the Output Drive Capability of the

DAC 212
9.7: Summary 214
9.8: Further Study 217
Appendix A: Manufacturers’ Data Sheets 221
Appendix B: Tips on Reading
A Schematic Diagram 241
Appendix C: Glossary 251
Appendix D: List of Vendors 259
Index 261

xi

Acknowledgements:

I would like to thank the staff at Sybex for their help in getting
this book produced. Special thanks to Jim Compton for his assis-
tance with the numerous corrections and revisions to the original
text, and to Jim Horn for his careful and thorough technical
review of the manuscript.

xiii

Preface

If you have recently purchased an Apple® computer, or are
thinking of purchasing one, many questions about the system
have probably arisen in your mind. Many new computer owners
are curious about the potential extent of their computer’s overall
usefulness. While it is true that a specific use for the system is
probably the reason you bought it in the first place, you may
wonder what else it can do.

It is safe to say that there are more potential future uses of the
system than any purchaser can dream of at present. As you sit
in front of the computer, you can look forward to many hours of
enjoyment using the numerous available application programs,
and the various “off-the-shelf”’ games that can be played on the
system. If you are a beginner in home computers, or computer
languages, these games and programs may seem difficult to
master at first, but this difficulty will soon pass, so do not fear.

At first you may be hesitant to use the system. A “fear of the
unknown” surfaces as you test the machine’s reactions to your
nimble (or not-so-nimble) touches on the keys. Then, your bold-
ness and confidence improves as you discover it is OK to make
mistakes. Nothing drastic happens when you press the wrong

Xxiv

key. The Apple computer is a very forgiving instrument.

Before long, you are deftly running, modifying, and writing
programs. The once-formidable task of using a home computer
has diminished. Soon you find yourself looking for new
challenges and new applications for the computer. At this point
you may start to wonder, “Can I use the computer around the
home? Is it possible to control my appliances, heating, or security
systems with my computer?”

You know these things are possibilities, because you have read
about them. However, you may feel it is far beyond your ability to
accomplish them. If you think that, you will soon see that you are
wrong. The realization of these controls with your Apple com-
puter is not beyond your capabilities. The information required
may be different from that which you use every day, but making
the Apple Connection is a straightforward process, and not very
complex.

The designers of the Apple computer have used valuable fore-
sight in anticipating that system users who do not know or care
much about hardware may wish to create new interfaces between
their system and the outside world. With that in mind, the Apple
computer architecture was designed to make the interfacing job
an easy one. You do not have to be a computer expert to construct
the hardware for controlling external devices or to write the soft-
ware for control. This claim will be borne out as you progress
through the examples outlined in the text.

So if you are ready to come into the world of computer control,
this book is the first step. It will open the door and provide you
with the essential information needed to connect your computer
to a variety of peripheral devices.

Without any further hesitation, turn the pages and learn to
make the Apple Connection.

Xv

Introduction

This book is written for everyone who wants to understand
how the Apple, as well as other home computers, can be interfaced
to the outside world. Specific examples are shown, using the
Apple computer to illustrate the essential concepts of computer
control and interfacing. However, the information and ideas
presented here can be readily adapted to most home computer
systems.

Interfacing and controlling external devices with an Apple
computer will involve the use of both software and hardware. To
that end, this text assumes the reader can write simple programs
in BASIC. An extensive knowledge of BASIC is not required to
get the maximum value from this text. The hardware concepts
are presented with the understanding that many readers may not
be familiar with digital electronics. You do not have to be a soft-
ware or hardware expert to make good use of the information
given in this text.

This book is organized so as to enable the reader to understand
how all the pieces of the interfacing and control puzzle fit
together. The path is straightforward and not complicated, but
you will have to learn some new information and concepts. All

xvi

the essential information for interfacing and controlling external
devices with the Apple and other home computers is given in the
pages that follow.

Chapter 1 starts off with an introduction to, and a definition
of, the concept of computer control and presents some new
vocabulary.

Chapter2 discusses the software required to output informa-
tion to an external device with the Apple computer. The pro-
gramming language is BASIC.

Chapter 3 discusses the software required to input informa-
tion into the Apple computer from an external device.

Chapter 4 introduces the basic hardware concepts necessary
to input and output information to and from the Apple computer.
This chapter is designed for readers who are unfamiliar with
digital electronics, and want to learn only as much about it as they
need for practical purposes.

Chapter 5 presents an application of computer control in the
design of a home security system. It starts with a definition of the
problem and works through the software and hardware concepts
necessary to have a working home security system. After this
chapter you will have a good general idea of how to use the com-
puter in a home security application.

Chapter 8 shows how to interface the Apple computer to
allow automatic control of home appliances that run from 120- or
220-volt AC sources, such as toasters, lamps, and coffee pots.

Chapter 7 discusses the difference between the terms analog
and digital, using examples comparing how each would appear
in an analog or digital environment. This chapter concludes with
an explanation of the term transducer.

Chapter8 showshow to perform analog-to-digital conversion
with the computer. General concepts applicable to most home
computers are discussed. An actual analog-to-digital converter is
connected to the Apple computer, with all important software
and hardware details shown. The chapter concludes with a com-
plete hardware and software system for measuring temperature
with the Apple computer.

xvii

Chapter9 presents the opposite of analog-to-digital conversion,
digital-to-analog conversion. The basic concepts are introduced,
and an actual digital-to-analog converter is connected to the com-
puter. All of the important aspects of the software and hardware
for digital-to-analog conversion are covered.

Finally, the Appendices present some useful reference informa-
tion: a glossary, instructions for reading schematic diagrams,
manufacturers’ data sheets, and alist of vendors for the equipment
described in this book.

The use of computers to control and monitor the environment
around the home is increasing and will continue to increase in
the future. If you want to become involved in the exciting field of
computer control, this book is a good starting point.

Chapter 1

Introduction to
Computer Control

B EFORE WE LAUNCH into the discussions of actual computer
control that start in Chapter 2, let us take some time to explore the
meaning of the term “computer control.” To some, this term may
call up images of futuristic robots, huge, automated factories and
complex spacecraft. To others, computer control may seem like
something which only scientists use—inevitable, but too com-
plicated for them to understand. In fact, scientists and industrial
designers do use computer control in spacecraft and automated
factories, and these applications are quite complex, but the term
can also be applied to much simpler home applications, such as
those described in this book.

1.1: WHAT IS COMPUTER CONTROL?

The overall objective of this book is to enable you to understand
computer control. With this understanding will come new insight,
allowing persons not directly involved with scientific applications
of the computer to see many ways the computer can be applied
in the home. As these home applications of the computer are
developed, you will lose whatever fear you may have of automa-
tion and gain respect for what computer control can do and how

THE APPLE CONNECTION

COMPUTER

INSTRUMENT

The main concept of computer control is that the computer will direct the
action of an external piece of hardware. The link shown here is made by a
cable. However, the link may also be made by transmission at radio frequen-
cies, without a physical connection.

— Figure 1.1

it can help you. Another major objective of this book is to show
that computer control does not have to be complicated.

We use the Apple computer in this text as the means of control.
However, the concept of computer control is applicable to almost
any home computer. Further, if you have an Apple computer at
home you have already used computer control and may not have
been aware of it.

To answer the question of what is meant by computer control
we will show several examples of how a home computer is used.
The concept of computer control is quite simple, and is graphically
illustrated in Figure 1.1. In this diagram the computer is connected
in some way to direct the action of another piece of hardware.
This, in essence, is what computer control is all about. The com-
puter is directing the physical or electrical action of an external
hardware device.

In almost any computer control application, the computer
must have a way of understanding how the external hardware is

INTRODUCTION TO COMPUTER CONTROL

3

EXTERNAL
INSTRUMENT

..-- Denotes information flow.
Dota is sent to the exiernal

instrument.
Data is received from the __7 7_—

external instrument. 4.4

The computer will send information to the external device to control the
device’s actions. Information can also be sent from the external device to be
read by the computer.

Figure 1,2 —

responding to its control. Therefore, the computer must not only
direct the action of the external hardware, but monitor it also. In
Figure 1.2 we see that the computer will receive information from
the external hardware. Based on that information, the computer
can modify the directions it gives to the external device.

This simple example illustrates the basic elements of computer
control. The two processes—sending directions to the external
hardware from the computer, and receiving information from the
external device—are the essential concepts of computer control.
At this point in our discussion, it may be valuable to list these two
important concepts:

1. The computer sends directions to the external hardware.

2. The computer receives information from the external
hardware.

These two ideas are the basis for computer control. The purpose
of this book is to explain how these two tasks are performed.

THE APPLE CONNECTION

COMPUTER
OPEN
DOOR
OPEN
WINDOW
Data is sent to the computer from

the doors and windows being
monitored.

Doors and windows send information to the computer to report their status,
either “‘open” or ““closed.”
— Figure 1.3

1.2: A PRACTICAL EXAMPLE OF THE TWO BASIC
CONCEPTS

An example of computer control that most of us can imagine
ourselves using is a home security system. With the help of
diagrams, we will see that this goal can be achieved using only the
two concepts we have outlined. We will return to this example in
Chapter 5 and develop such a system in detail.

Let us start by defining what it is we want the security system to
do. In short, we want our home safe from intruders. Unfortunately,

INTRODUCTION TO COMPUTER CONTROL

COMPUTER

Data is sent from the computer
to turn on an alarm.

The computer will send information to the alarm to inform the user that a
window or door has been opened.

- Figure 1.4

this type of statement is useless for our purpose, because the
word “safe”” conjures up entirely different meanings to different
people. For this example, let us define the function of our security
system a little more precisely: the system will detect any window
or door being opened. When this occurs, the system will indicate
which door or window it is. Finally, the system will sound an
alarm if any door or window is open. This is the definition of
exactly what we wish the system to do. In a later chapter of this
book, we will expand on this system to show many new ideas fora
home security system that is computer controlled.

Using this definition will require that the doors and windows
be capable of sending information to the computer. This is shown
in Figure 1.3. This will involve the second concept that was given
in Section 1.1. That is, the computer receives information from
an external device.

If the computer detects that one of the windows or doors has
been opened, an alarm must be set off. This is shown in Figure
1.4. In order for the computer to set off the alarm, information

6

THE APPLE CONNECTION

from the computer must be sent to the alarm to direct the external
hardware to emit the noise. This type of computer action was
shown as concept number 1 in Section 1.1, where the computer
will send information to an external device.

Looking at Figures 1.3 and 1.4, we can see that all of the functions
we require our system to perform can be done by the computer
using only the two concepts outlined. It is true that we have, so to
speak, “waved our hands” over some important points. For ex-
ample, how does a door or window send electrical information to
a computer? How does a computer sound an alarm? These points
were deliberately ignored. It is possible for a door or window to
be made to send electrical information to the computer and for
the computer to sound an alarm. How that is done is what this
book is all about. We will show exactly how to do these things in
later chapters. It is too early in the discussion to approach these
details yet. We must first understand where we are heading.
From our first example, we can see that the entire subject of com-
puter control can be reduced to the repeated application of the
two basic concepts. These two concepts are what should be
understcod at this time. You may be assured that this text will
cover in detail how to achieve the points glossed over in this first
example.

1.3: SOME NEW VOCABULARY

When we enter a new area of study, a major obstacle we face is
learning the vocabulary essential to the area. Interfacing a com-
puter to control an external device is no exception. This section
will discuss some of the new words that you are likely to encounter
when reading or talking about the topic. If you are reading this
book, and own or have access to an Apple, you are probably also
beginning to read some of the magazines and books now
available on the subject. You may also have friends or associates
who talk “computerese.” All the new terms you may encounter
cannot be defined here, but as the topics in the text warrant it,
new vocabulary will be introduced. The new words given in this
section are meant to help the beginner to understand the
literature (including the Apple documentation) as quickly as
possible,

INTRODUCTION TO COMPUTER CONTROL

7

The two major concepts we have introduced, sending infor-
mation from a computer to an external device, and receiving
information from the external device to be used by the computer,
are referred to as output and input, respectively. These terms are
applied both to the act or event of communicating information
between a computer and an external device, and the information
itself. Thus, output is both the transfer of information from the
computer to the external device and the information sent, and
input is the transfer of information from an external source into
the computer, and the information entered.

If you have ever used an Apple computer, you have made use of
input and output. When you press a key on the keyboard, the com-
puter is inputting the information you pressed. When the letter
you pressed on the keyboard appears on the screen of your video
monitor or TV, the computer is outputting information. We do
not usually think of the keyboard or the video monitor in the Apple
computer as devices for input and output, because they are integral
parts of the computer system. In fact, although these components
are part of the system, they are external to the computer’s central
processing unit, or CPU. Ordinarily, we think of input and output
as being performed through external devices connected to the
computer by, say, a cable. These devices might include the special
applications we will be developing in this book, or commercially
available peripherals.

Consider the case of a printer attached to a system. When the
Apple computer gives a printout, the printer is operating under the
control of the computer. During the time the printer is printing and
causing the paper to scroll, the computer is outputting information
to the printer. If you have a floppy disk drive or tape cassette
attached to your Apple system, the computer is controlling these
devices. When the computer writes your program onto the disk or
the tape cassette, it is outputting information. When the computer
reads a program from the floppy disk or the tape cassette, an input
event is occurring.

Figure 1.5 illustrates the general concept of input and output.
These two terms are sometimes combined and abbreviated to the
single term I/0O. Whenever the computer is controlling an external
device or performing input and output events, the computer is
said to be “performing I/0O.”

THE APPLE CONNECTION

EXTERNAL
INSTRUMENT

COMPUTER

@) (—

EXTERNAL
INSTRUMENT

(b) J<=§

a) This is an example of output. The computer is sending information to the
external device.

b) This is an example of input. The computer is receiving information from
the external device.

l— Figure 1.5

The next term we will discuss is transducer. This word is used
quite a lot in discussing I/0 with a computer. To illustrate what a
transducer is, let us return to our example of a home security
system. In this case we constructed a means by which the com-
puter would receive input information concerning the physical
position of a door or a window. The information that would be
input to the computer is electrical. The door or window gives out
only physical movement information. That is, all the door or
window can do is move. Therefore, we need some type of device
that will change the physical movement of the door or window into

INTRODUCTION TO COMPUTER CONTROL

9

electrical information that can be input to the computer. The
device that allows this to occur is called a transducer.

This example is one type of transducer. As we will see in
Chapter 5, the device used is a simple switch, open when the win-
dow is open and closed when it is closed. In general, a transducer
is a device or piece of hardware which produces an electrical
output when given a physical input, which translates one form of
energy or information into another. In the example just given the
transducer must be capable of converting movement into elec-
trical information. Other examples of transducers are:

1. Temperature transducer
2. Pressure transducer

3. Revolutions per minute transducer

As you can see, transducers are classified by the type of infor-
mation they translate into electricity. Figure 1.6 shows how a
transducer would fit into the computer input path from an external
source.

An example of a transducer that you have probably used is the
keyboard on the Apple computer. The keyboard must convert the
keypush into electrical information that the computer can input.

At this time you may wonder if a transducer is used when the
computer is outputting information. In the example of the home
security system, the computer would sound an alarm if an open
window or door were detected. The alarm would be aloud bell or
siren. This type of device receives electrical signals from the com-
puter and produces a physical effect, the motion of air, or sound.
Broadly, any device that translates one form of energy into another
(including electricity into sound) can be called a transducer. In
the context of computer control, however, these types of devices
are not generally put into the class of transducers. Instead, they
are grouped together generally as output devices, or simply called
by their specific names: bell, motor, relay, fan, heater, and lights.
Figure 1.7 shows how a relay is used to activate these devices to
output information from the computer.

The next term to discuss is digital. Many people are already
familiar with this particular word. In a general sense the term
means that there are discrete values that a particular event can

10

THE APPLE CONNECTION

- Figure 1.8

(@)

TRANSDUCER converts movement into

elecirical information.
COMPUTER

ELECTRICAL
INFORMATION

DOOR can open
or close.

J

(b) EXTERNAL
SOURCE:
DOOR
COMPUTER
TRANSDUCER
ELECTRICAL PHYSICAL N
INFORMATION INFORMATION

a) A transducer will transform the physical movement of the door into electrical information which
can then be input to the computer.

b) This block diagram shows where a transducer fits in the computer input path. The transducer will
have a physical event input to it; that is, it will record a physical event. The output of the transducer
will be an electrical signal related to the physical event being input to it.

INTRODUCTION TO COMPUTER CONTROL

11

COMPUTER

The outputs signal to close the
relay. The relay closes and
turns on the light.

120v
LIGHT

A physical device that will transform the electrical output of the computer into a physical event. This
device, a relay, will transform the electrical output of the computer into movement of the relay contacts.

Figure 1,7 —

equal. For example, the television channels are assigned certain
frequencies, out of an infinite number of possible frequencies.
We can say that selecting a TV station is a digital process, because
the channel values can only be those specified and nothing in
between. We do not have channel 2.5, for example, we have channel
2or3.

The term digital is usually contrasted with the term analog.
Digital systems count discrete units; analog systems measure over
a continuous range. This topic is discussed at greater length in
Chapter 7.

When applied to a computer, the term digital means there are
discrete voltage levels present in the information. All information
sent out by the computer (output) or received by the computer
(input) must be made up of two voltage levels. All information that
is used by the Apple computer consists of these two voltages. This
is the reason the Apple computer is called a digital computer.
There are discrete values for the information; further, there are
only two discrete values.

12

THE APPLE CONNECTION

The two voltage levels for the information used in the Apple
computer are given the labels 0 and 1. These are the only choices
each digit may take in base 2, the binary notation used in almost all
computers. All information processed by a computer is expressed
in combinations of these two digits. Also, a logic in which every
statement is either “‘true” or *“false” is a binary logic. In computer
logic, the digits 0 and 1 are assigned to these two values, and are
called “logical 0" and “logical 1.” For these reasons, the two terms
“binary” and “digital” are often used almost interchangeably in
the computer field. In digital electronics the actual voltage value
of a 0 or a 1 may vary among different types of digital equipment.
In some types of digital systems, a 0 may be equal to — 1.9 volts
and a 1 may be equal to —1.5 volts. In other digital systems a 0
may be equal to 0.0 volts and a 1 equal to 9.0 volts. The voltage
values used in the Apple computer are called TTL (Transistor-
Transistor Logic) voltage levels. These voltage levels are approx-
imately 0.0 to 0.8 volts for a logical 0, and 2.4 to 5.0 volts for a
logical 1. We will discuss exactly what is meant by these voltage
levels in Chapter 6. For now it is important to understand that
there are only two distinct voltage levels present in the Apple
computer when information is output or input.

The next term to discuss is data. This term is used in many dif-
ferent ways when discussing digital computers. For our purposes
the term data will refer to the digital information that will be input
to, or output from, the Apple computer. Physically, datain a com-
puter can be thought of as a series of electrical pulses occurring at
specified times.

Since the information processed by the Apple computer is
digital, it can be referred to as digital data. That is, the Apple
computer will output digital data, and input digital data only. No
other type of data is acceptable. If you are a beginner in com-
puters, other types of data may not occur to you at this point.
However, as we proceed in this text we will see other meanings
for the term data.

Let us now discuss the term bit. To define this term, we must
first look at how digital data will appear in the Apple computer.
Figure 1.8 shows what one typical piece of data would look like to
the Apple computer. We see in Figure 1.8 that the data is composed

INTRODUCTION TO COMPUTER CONTROL 13

8 DATA LINES

(N
<

APPLE COMPUTER

10011010

Data lines can be any combination
of logical 1s and 0s.

Data output lines from the computer can be set to any combination of logical
1s or 0s.

Figure 1.8 —

of eight single 1s, 0s or any combination of the two. Each unit of
digital data is called a bit. The word is short for “binary digit.”
There are eight bits in the data shown in Figure 1.8.

The next new term is byte. A byte consists of eight bits that are
communicated at the same time. The bits are said to be in parallel.
We can, therefore, describe the digital data output and input by
the Apple computer as data bytes. The Apple computer will either
output or input digital data in units of eight bits. This information
will become important when we discuss how to select exactly
how many 1s and 0s will be present in the data byte. Figure 1.9
shows some different data bytes.

As we will see, the position of bits in a byte is significant, becausea
byte represents a number in base 2. Just as the position of numerals
in a base 10 number determines their values as powers of 10, the
position of numerals in a base 2 number (or bits in a byte) deter-
mines their values as powers of 2. For example, in the base 10

14 THE APPLE CONNECTION
0O 0 0 o 0 0 O BYTE 1
1 1 1 1 1 O BYTE 2
0O o0 1 1 1 1 0 O BYTE 3
1 0 0 0 1 1 1 1 BYTE 4
1 1 1] 1 1 1 1 BYTE 5
. /
v
Eight bits per unit of output or input
Examples of different data bytes. Each byte consists of a combination of
eight digits, either logical 1 or logical 0, called bits.

— Figure 1.9

number 357, the numeral 3 represents 3 X 102 In the number 35,
the same numeral represents 3 X 10'. Likewise, in the base 2
number 100, the numeral 1 represents 1 X 22, and in the number
10, it represents 1 X 2. In both number systems, the rightmost
numerals represent powers of zero. As data bytes, all base 2
numbers are filled out to eight places by adding zeroes. Our
examples above would thus be represented as 00000100 and
00000010. Of these eight bits, the leftmost bit represents the
highest power of 2 (or weight), 27, and is called the most significant
bit (MSB). The rightmost bit, 2°, is called the least significant bit
(LSB).

Sometimes, when discussing data input and output, people will
refer to the data as “data words.” A data word is the number of
bits the computer treats as a unit and processes simultaneously.
For the Apple computer the data word will be eight bits, and so
data byte and data word are synonymous (for eight-bit computers).
For other types of computers, the data word may be longer than
eight bits.

Another term that is used often in computer interfacing and
computer control is nibble. A nibble consists of four bits of digital
data. Figure 1.10 shows some examples of data nibbles. In the Apple
computer the data byte will consist of two parallel (simultaneous)
nibbles. This is shown in Figure 1.11.

INTRODUCTION TO COMPUTER CONTROL 15

0 0 0 0 NIBBLE 1
1 1 NIBBLE 2
0 1 0 1 NIBBLE 3
1] 0 0 NIBBLE 4
0 0 1 1 NIBBLE 5
—

4 BITS = NIBBLE

Examples of different data nibbles. Each nibble consists of four bits.
Figure 1.16 —

0 0 1 1 1 1 0O o0
-—— —
NIBBLE NIBBLE
. J/
\'

BYTE = 2 NIBBLES = 8 BITS

A data byte consists of two parallel nibbles.
Figure 1,11 —

1.4: SUMMARY

In this chapter we have introduced the topics that will be
covered in this text. The chapters to come will show how to cor-
rectly input and output information from the Apple computer to
control external devices. We next discussed the two basic concepts
of computer control, using the example of a home security
system. In this example it was shown that the computer must
send information out to the external device and the computer
must be capable of getting information back from the external
device.

16

THE APPLE CONNECTION

The next section of the chapter was devoted to introducing
some new vocabulary that is used when discussing computer
control. This vocabulary is used in industry and in the literature.
It is presented here so you may start to learn the language that is
common to computer control. We will use all of these terms in
this text. The definitions given are summarized below for your
convenience.

Words Defined in This Chapter

1.

Input: The computer receives information from an ex-
ternal device.

Output: The computer sends information to an external
device.

Transducer: Any device that converts a physical event
into electrical information.

. Digital: Having discrete output values. The selection of a

television station is digital because the channels that can be
tuned in are a certain preset value. In a digital computer
there are discrete voltage values for the information.

Binary: Having two possible states or values. In a digital
computer there are two and only two voltage levels
associated with the information processed. Binary refers
to this fact.

. Data: This is the information that is output, input, or

processed by the Apple computer.

. Bit: Abitis one of the eight places in a digital data word

used by the Apple computer. A bit will be either alogical 1
or a logical 0.

Byte: A byte consists of eight parallel bits.

. Nibble: A nibble consists of four parallel bits. Two

parallel nibbles will equal one byte.

19

Chapter 2

Software for Output
from the Apple

IN THIS CHAPTER we will discuss the programming
necessary to output digital information from the Apple com-
puter to the outside world. We start the discussion assuming the
reader is familiar with the versions of the BASIC programming
language used on the Apple. There are no other assumptions
made. Each new topic will be clearly discussed, and examples
will be given.

The examples given in this chapter are designed to be used with
the Creative Microprocessor Systems (CMS) I/O system. The CMS
I/0 board is a visual means of testing your Apple I/O programs.
It will install directly into the Apple computer, and data can be
output and input with it. You do not have to purchase this board
to benefit from this chapter. However, you will learn more about
writing this kind of program if you use the CMS 1/O board (or an
equivalent device) while studying the examples given. Information
regarding availability of the CMS I/O system for the Apple com-
puter is given in Appendix D.

20 THE APPLE CONNECTION

24-pin ribbon cable comes
out of the rear of the Apple

computer.

C=

Plugs into one of eight Apple 170 slots.

8 LEDS
—

00000000
D7 Do

D7 DO

(0000aa

T~
8 SPST SWITCHES

Pictorial diagram of the Creative Microprocessor Systems I/O system PC
boards. One board, CMS AP1, is inserted into one of the eight I/O slots in the
Apple computer. The second board, CMS AP2, is connected to board 1 via a
24-pin ribbon cable. The second board is intended for user interaction with
the Apple 1/O system.

- Figure 2.1

2.1: INSTALLING THE CMS 1/0 SYSTEM

Before we start learning the software required for inputting
and outputting data with the Apple computer, we must first learn
how to install the hardware into the computer. This discussion
will bring out some important general information about the
physical connections necessary to perform computer control
with the Apple.

The CMS 1/0 system comprises two printed circuit (PC) boards
and an interconnecting cable. One of the PC boards plugs directly

SOFTWARE FOR OUTPUT FROM THE APPLE

21

[/O CONNECTOR
SLOTS

Bhadsiaaaaaannn
R RN RN RN ETY)

170 CONNECTOR SLOTS
N —

b)

Photograph above shows where the eight I/O connectors in the Apple
computer are located. Photograph below shows several of the slots in detail.
These I/O slots are the means by which external devices communicate with
the computer.

Figure 2.2 —

into the Apple computer. The second PC board will connect to
the first board via a 24-pin ribbon cable. See Figure 2.1 for a
diagram of these two boards. Let us now go over the details of
how to connect the first board directly to the Apple computer.

Figure 2.2 shows the inside of an Apple computer; the top cover
has been removed. In Figure 2.2(a) there are eight physical connec-
tors (“‘slots”) in a row. (Figure 2.2(b) shows a section in detail.)
Some of these connectors may already have PC boards installed. It
is through these connectors that external instruments are controlled
by the Apple computer.

22 THE APPLE CONNECTION

Pin 1 will be marked on the
cable header.

24-PIN RIBBON
CABLE

CMS AP1

Plugs into the Apple computer,

Diagram showing how to install the 24-pin ribbon cable into the CMS /O
board. Care should be taken to insure that pin 1 is located in the correct
place.

“— Figure 2.3

If you have a printer or a disk drive connected to the Apple,
notice that this peripheral device is connected by a cable to a PC
board installed into one of the eight sockets inside the computer.
We will be installing the CMS 1/O system into one of the empty
sockets.

1t should be mentioned before we begin that static electricity is
easily generated, and can seriously damage a computer’s circuitry.
Rodnay Zaks’ Don’t! (or How to Care for Your Computer) (Sybex,
1981) describes ways of avoiding this problem.

The procedure for installing the CMS /O system is as follows:

1. Turn off the power on your computer and any other
peripherals. Always turn off the power when installing
any hardware into the computer.

2. Remove the top cover to expose the eight connectors.

3. Install the 24-pin ribbon cable into the 24-pin socket on the
CMS I/O board labeled “CMS AP1.” It is important to
install the 24-pin connector with pin 1 in the correct place.
See Figure 2.3 for a diagram showing how to physically
install the cable into the respective PC boards.

SOFTWARE FOR OUTPUT FROM THE APPLE 23

&({\'L BACK OF THE APPLE

CABLE

SOCKET

COMPONENTS ON THIS SIDE

/

PC BOARD CMS AP1

KEYBOARD OF APPLE COMPUTER

(Top view)

Block diagram showing how to install the CMS AP1 board into one of the I/O
slots inside the Apple computer. Be certain the computer is turned off before
you insert or remove any PC board from the computer I/O slots.

Figure 2.4 —

4. Install the PC board labeled “CMS AP1” into one of the
empty sockets. I/O slot 5 would be a good choice as it is
seldom used. It is important to install the PC board cor-
rectly, so that the cable is at the rear. Figure 2.4 shows a
diagram of how the PC board is to be physically installed
into the Apple computer.

24 THE APPLE CONNECTION

24-PIN RIBBON CABLE

PC BOARD into any
emply slot

CMS AP2

J/

/ E_ - PC BOARD locoted in o

- - convenient place so
- ‘ you can see it while
you use the computer.

Diagram showing how the CMS /O system will appear with the Apple com-
puter once it is correctly installed.

- Figure 2.5

5. Make a note of which I/O slot the PC board was installed
into. The slots are numbered from 0 to 7. Refer to Figure
2.2 to see where the number of each I/O slot is printed.
Later in this chapter we will see why this information is
important.

6. Run the ribbon cable through one of the slots at the back of
the Apple computer frame. The cable will then connect to
the second PC board, labeled “CMS AP2.”

7. Connect the remaining end of the 24-pin ribbon cable into
the second PC board. Care should be taken to insure that
pin 1 of the cable is connected to pin 1 of the socket on the
second PC board.

8. At this time your system will appear as shown in Figure
2.5. Now your system is ready for use with the CMS input
and output boards.

9. Replace the top cover of your system and turn on the
power.

SOFTWARE FOR OUTPUT FROM THE APPLE 25

2.2: THE POKE INSTRUCTION

It was stated earlier that the reader is assumed to be familiar
with BASIC. You are not expected to be an expert programmer,
but you should know enough to be able to write simple BASIC
software and run programs using the Apple computer. We will
introduce new information based on that assumption.

To get started, you must know how to direct digital information
from a BASIC program out to the CMS 1/O board. If you can
direct the information to the CMS I/O board, then you can direct
information to any type of /O board. The CMS 1/0 system is used
as a tool to promote understanding. After this initial discussion,
several examples and problems will be given. These are designed
to let the reader get ‘“hands-on” experience using the software
necessary for outputting information on the Apple computer.
The CMS /O board will allow the user to instantly verify whether
or not the software written is operating correctly.

Let’s Get Started

To output digital information from a BASIC program, we will
use an instruction that may be new to some Apple users: POKE. A
full description of the POKE instruction can be found in the Apple
user’s manual. We will describe this instruction in enough detail
here so that you will feel comfortable in its use.

The form of the POKE instruction is:

POKE address, data

That is, if we were using the POKE instruction in a BASIC pro-
gram, it would appear as shown. This will be made clearer as we
present different examples of the POKE instruction. Let us now
discuss the two parts of the POKE instruction, address and data.

The address used by the POKE instruction will indicate the
physical space in the Apple computer where the information will
be sent out from the program. For example, when we put the
CMS 1/O card into a particular I/O slot of the Apple computer, a
number is specified as the “address” of that slot.

More than one number may be specified for a particular 1/0 slot.

26

THE APPLE CONNECTION

10 A=150

20 FORT=1TO70

30 POKE —16256, data
S, jom—

ADDRESS

Data will be sent 1o this address.

170 SLOTS

%&‘9
4 Vs

A X

ADDRESS of each 1/0 slot.

As the program is executing, the POKE address will be electrically matched
with the address of the correct 1/0O slot for outputting data.

— Figure 2.6

However, the complexities of I/0 addressing are beyond the
scope of this book. Therefore, we will use only one of the available
address numbers. A detailed discussion of the I/0 system for the
Apple computer can be found in the Apple II Reference Manual
(Apple Computer Inc., 1979, 1981).

An address in computer programming can be likened to the
address of a house. The only way the mail carrier knows where to
deliver a letter is by matching the address on the envelope with

SOFTWARE FOR OUTPUT FROM THE APPLE 27

the address on the house. To extend this analogy, think of the
address on the envelope as the address specified in the POKE
instruction. The address of the house will be the address of the
I/O slot. An Apple computer will match the address of the
“envelope” (POKE address) with the address of the “house” (I/O
slot address) and deliver the information. (See Figure 2.6.)

The second element in the POKE instruction is the data. This
will be the actual digital information to be sent to the address
specified. In our analogy of the address and the mail carrier, we
may think of the data as the actual letter that was delivered.

The address specifies where in the entire system to send the in-
formation. The data is the information. With this broad overview
of the POKE instruction, let us get into some specifics.

2.3: FORMING THE ADDRESS FOR THE POKE

We have discussed the concept of the address in the POKE in-
struction, but we have not shown exactly how to use the address.
In this section we will show how to calculate the correct address,
depending on which I/O slot in the system your output device or
PC board is plugged into. It should be noted that calculating an
address can be much more complicated than we will show.
However, if you are just starting to learn the interfacing of a com-
puter, you will find this introduction to be a good entry point.
What we will show here will work and work well. Only when you
begin to tackle more sophisticated interfacing problems will a
greater understanding of address calculation be required.

To begin, you must first know that each of the output slots in the
Apple computer has a limited set of address numbers associated
with it. Unlike a street address, the address in a computer system
can be negative. That is, it may be a number preceded by a minus
(—) sign. It is critical in a program not to leave off the minus sign
on the address if it requires one.

Figure 2.7 is a list of the I/O slots and their corresponding ad-
dresses in the Apple computer.

Remember that there are actually several numbers which may
be used to specify a particular I/O slot. The addresses listed in the
table are those used in this text.

28

THE APPLE CONNECTION

Slot Number Address

— 16256
— 16240
— 16224
— 16208
—16192
—16176
—16160
— 16144

NOOOAEWN-—=O0O

The Apple 1/O connector slots and their addresses.
— Figure 2.7

Using this information, we can select the proper address for the
POKE instruction simply by knowing into which I/O slot the
output device is installed. For example, if the CMS I/O board were
plugged into slot 3, then the address would be equal to —16208.
The corresponding form of the POKE instruction would be:

POKE —16208,data

‘Notice that in this example of the POKE instruction, only the
address was specified. The content of the data is not important to
us yet. The data will be sent to whichever output device “resides”
at the specified address. In this case, it will be the CMS I/O board.
Therefore, the data will be electrically sent to it.

You may want the flexibility of using the same output device in
any of the Apple I/O slots. If your BASIC program includes a
POKE statement with a specific address as an input value, then
that address will need to be altered depending on which slot the
output device is connected to when the program is run again. For
example, if we had written a BASIC program to communicate
with aCMS I/Oboard plugged into slot 4, the address in the POKE
instruction would be —16192. Suppose we saved that program. At
some later time we wish to recall the program and run it, but now
the CMS I/O board has been changed to a different slot, say slot 5.

SOFTWARE FOR OUTPUT FROM THE APPLE 29

C=

REQUEST SLOT
NUMBER FROM USER

A

READ SLOT NUMBER
INTO St

Flowchart showing the major steps involved in entering the POKE address
as a BASIC variable.

Figure 2.8 —

Before the program will execute correctly, the address at the
POKE instruction will have to be changed to —16176.

However, this particular problem can be avoided by letting the
program determine the address for the POKE instruction. This
could be done by following the flowchart shown in Figure 2.8.
The BASIC program prints a message asking the user which I/0
slot the card is installed into. Based on that answer, the program
will set the variable S1 equal to the correct address obtained from
a table of addresses.

Figure 2.9 shows one way a program could be written to realize
the flowchart of Figure 2.8. A point to be stressed here is that the
address of the POKE instruction can be a BASIC variable. After
the address is calculated by the program the form of the POKE
instruction would be:

POKE S1,data

where S1 is the number that corresponds to the address of a par-
ticular I/O slot.

30 THE APPLE CONNECTION

a)

10

883838388

100
110
120

b)

10

888

PRINT “WHAT SLOT NUMBER ARE YOU USING?”
INPUT A1

IFAl = OTHEN S1 = —16256

IFA1 = 1 THEN S1 = —16240

IFAl = 2THEN S1 = —16224

IF Al = 3THEN S1 = —16208

IFAl = 4THEN S1 = —16192
IFAl = 5THENS1 = —16176
IFAl = 6 THEN S1 = —16160
IFAl = 7THEN S1 = —16144

REM: GOTO main program

PRINT “INPUT THE SLOT NUMBER"”
INPUT Al

LET S1 = —16256+(16*Al)

REM: GOTO main program

—Figure 2.9

a) A BASIC program to allow the user to enter the slot number of the output
device. The program will then look up the correct slot address. In this way
the programmer can use the same program regardless of which 1/O slot the
I/0 device may be installed into.

b) Another technique for realizing the flowchart of Figure 2.8.

2.4: CALCULATING DATA FOR THE POKE

Before we examine the calculation of the data portion of the
POKE instruction in detail, let us discuss exactly what the data
will do. The output section of the Apple computer supports (that
is, performs or allows) what is called 8-bit, or byte, output. What
this means is that there are eight physical, electrical lines over
which information is passed from the Apple computer to the ex-

ternal output circuits. (See Figure 2.10.)

SOFTWARE FOR OUTPUT FROM THE APPLE

31

(LS8) DO N
—
D1 > 8 BITS or BYTE. Each line
D2 > has a label. The position
D3 of the lines is important,
D4 : > because each line repre-
D§ sents a bit of data, and
D6 > each bit has a different
COMIﬂ%IE (MSB) D7 *f numerical weight.
/ I
8 DATA OUTPUT LINES

Block diagram showing that there are eight physical output lines over which
data will be transferred from the Apple computer to the external output
device. The output lines originate from any of the eight I/0 slots located inside
the Apple computer.

Figure 2,10

It is not really important to know why there are only eight lines.
To perform computer interfacing and computer control, we
simply make use of this fact. When the POKE instruction is ex-
ecuted in a BASIC program, the data that is output is contained in
these eight bits.

All of the information that can be transferred to the output
device in a single POKE instruction is included in the eight bits.
This means that a person using an output device with the Apple
must keep in mind what each of the eight bits in the transfer does,
when using the POKE instruction.

For example, one of the eight bits might turn on alight. Another
may sound an alarm. Yet another might open a door, etc. Further,
all eight bits may be used together to form a unique combination
to which the output device may respond. The main point is that
the programmer using the POKE instruction must be able to
generate any information wanted with the eight bits.

We will concentrate, in these early discussions, on showing
how to set any bit that will be used in the POKE instruction

32

THE APPLE CONNECTION

to a logical 1 or a logical 0. These terms were introduced in
Chapter 1, but if you are new to the field of digital logic, they still
may not mean much. However, if you are interested in learning
how to electrically control hardware with a computer, then you
must become aware of exactly what these terms mean.

As you progress through the chapters of this book, you will
develop a greater understanding of these and other related con-
cepts. For now we will define logical 1 and logical 0 as precisely
as possible, and use the terms in our explanation. When the ex-
amples of outputting information are given, you will have a good
idea of exactly how to set any of the eight bits to a logical 1 or a
logical 0. This will be true even if you do not yet fully understand
exactly what a logical 1 or logical 0 means to the external device.

Logical 1 and 0 can be defined by the ranges of voltage levels
they correspond to. These definitions will apply to the Apple
computer and most other home computers. A logical 1 is a voltage
level greater than 2.4 volts and less than 5.0 volts. Any time a
digital line is set to a logical 1, the voltage on that line will be
within these limits. A logical 0 is a voltage level of less than 0.8
volts and greater than 0.0 volts.

These definitions will help you relate physical actions to the
logical definitions we will deal with in computer control. For ex-
ample, suppose we say that all eight bits or lines are a logical 1.
This means that all of the lines are set to a voltage that will fall
within the range specified for a logical 1.

With this brief introduction, let us discuss how any of the eight
output lines can be set to alogical 1 or a logical 0 under software
control. There are two key facts to keep in mind at this time. First,
we must remember that all eight bits are output to the Apple 1/0
slot connector at the same time. That is, all eight bits are output in
“parallel.” This was illustrated in Figure 2.10. The other important
point to note is that the position of the lines within the 8-bit
parallel output is significant. The lines are labeled DO-D7. The D
stands for data, and the number 0-7 stands for the position of the
line within the eight parallel bits. D7 is the most significant bit
(MSB), and DO is the least significant bit (LSB).

Using these two pieces of information, let us examine the eight
bits or lines. Remember from Chapter 1 that when eight bits are
taken together at the same time, they are called a ‘‘byte.” We will

SOFTWARE FOR OUTPUT FROM THE APPLE 33

Bit Position Wolght
DO 1
D1 2
D2 4
D3 8
D4 16
D5 32
Dé 64
D7 128
Each bit position has a numerical weight, corresponding to its value as a
power of 2.

Figure 2.11—

use this definition throughout the remainder of the text. In a
single byte there are eight individual bits.

Since the bits are parallel, or independent of each other, we can
use software to set any of the bits to a logical 1 or a logical 0,
regardless of the logical state or value of any other bit. In fact, we
must be able to do this to achieve computer control. To accomplish
this, the software must have some means of logically setting any
bit to a 1 or a 0. Each bit position in the byte is assigned a number
or weight equal to a power of 2. (Remember that a byte represents
a binary number.) Each bit position n is weighted 2. The weight
of DO, 1, is equal to 2°. The weight of D7, 128, is equal to 2’. The
bit positions and their corresponding weights are shown in
Figure 2.11.

When we wish to set a particular data bit to alogical 1, the weight
of the bit is summed and used as the data in a POKE instruction.
For example, suppose the bits D0 and D2 were set to a logical 1.
The weights of these bits would be summed, giving the following
results:

D0=1,D2=4:SUM = 1+4 =15

The resulting value to be used in the POKE instruction as data
would be 5. The POKE instruction would appear as

POKE address,5
As we have seen, the address is set according to the specific /O

34 THE APPLE CONNECTION

/

APPLE COMPUTER

D7 D6 D5 D4 D3 D2 DI DO | «— I/OSIOT

0 0 0 o 0 1 0 1

7

Logical valve of the
data output lines

Diagram showing the logical conditions of the eight output lines that would
result if the POKE data were equal to 5.

LFigm'e 2.12

slot where data is to be sent.

If we were to look at the logical conditions of the data byte to be
output with the sum equal to 5, the result would appear as shown
in Figure 2.12. Notice, in this diagram, that all the data bits that
were used in the summation are set to a logical 1. All other data
bits are set to a logical 0.

In short, the smallest data byte is output when no weights are
summed; that is, when all the bits in the byte are set to a logical 0.
This weight is 0. The largest data byte is output when all the
weights are summed; when all the bits are set to logical 1. This
summationisequalto1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 = 255.
All possible valid weights are within the 0—255 range, and each
number represents a unique combination of weights.

Let us try some examples of setting the correct data bits to a
logical 1 by summing the appropriate weights. We wish to set
data bits DO, D4, and D7 to alogical 1. To do this the weights of the
bits we want are summed: D0O=1, D4=16, D7=128. The resulting

SOFTWARE FOR OUTPUT FROM THE APPLE 35

summation would be 1 + 16 + 128 = 145. A POKE instruction
would appear as follows:

POKE address, 145

One more example. Suppose we wish to set the data bits D2, D5,
and D6 to a logical 1. We would again sum the weights of the bits
we want: D2=4, D5=232, and D6=64. The resulting summation
would be 4 + 32 + 64 = 100. A POKE instruction would appear
thus:

POKE address, 100

By combining the proper choice of data and the correct address
we can set any bit at any output slot on the Apple to a logical 1 or
logical 0. Further, we can accomplish this using only software.
We will discuss the hardware in Chapter 4 of this text. At this
time you should simply assume the hardware will respond cor-
rectly if the software is correct.

Before starting experiments with the CMS 1/O board, let us
examine one more aspect of setting the correct data. A program
similar to the one that was written to input any address can be
written to allow any bit to be set to a logical 1 or a logical 0. A
flowchart for this program is shown in Figure 2.13.

Let us examine this flowchart in some detail. In Figure 2.13 the
first two steps, (a) and (b), will initialize the variables for the starting
sum, V1, and the starting weight, N1. The flowchart then enters a
loop starting with step (c). The loop variable will be 1. In step (d)
the program will ask the user for the logical value of each data bit.
If the bit is to be set to a logical 1, then the weight of the bit will be
added to a sum in step (g). The result of the sum is stored in the
variable V1. In step (h) the starting weight (N1) is multiplied by 2.
This will set the weight equal to the next bit to be tested. After V1
is computed, the POKE instruction will appear as:

POKE address, V1
A program to realize the flowchart of Figure 2.13 is given in

Figure 2.14.
2.5: EXPERIMENTS WITH THE CMS 1I/0 SYSTEM

In this section of the chapter we will actually write and execute
programs that will perform output using the POKE instruction.

36

THE APPLE CONNECTION

L

START

() LET STARTING SUM
Vi=0
(b) LET STARTING
WEIGHT N1 = 1
(c) LEFI =0
Y
PRINT
(d) “DO YOU WANT DATA
UINE (1) = 1 OR 0"
(e INPUT DATA
LINE (1)

)

DATA LINE
) =07

(@) LET SUM
VI =Vl + NI

—

{h) LETNI = NI * 2

() 1=1+1

V1 = TOTAL DATA
TO BE OUTPUT

Flowchart showing the sequence of events necessary to set any of the data
output lines to a logical 1 or a logical 0. The sequence begins with DO (the
lowest weight) and ends with D7 (the highest weight).

Figure 2.13

SOFTWARE FOR OUTPUT FROM THE APPLE

37

10 LETVI=0

20 LETNI =1

30 FORI=0TO7

40 PRINT “WHAT iS THE VALUE OF D”*;1;" 1 OR 0"
50 INPUT D(1)

60 IF D(I) = O THEN 80

70 LETVI = VI + NI

80 N1 = N1#2

90 NEXT|

BASIC program to realize the flowchart given in Figure 2.13.

Figure 2.14 —

These programs are designed to show exactly how to use the
POKE instruction with the Apple computer. All of the following
experiments assume that the user has installed the CMS 1/0
system into the Apple computer in one of the eight output slots in
the back of the machine, according to the procedure described at
the beginning of the chapter.

The CMS output board (AP2) is designed with eight light-
emitting diodes installed. These LEDs are labeled D0, D1, D2, D3,
D4, D5, D6, and D7. (See Figure 2.15.) When an LED is lit, it in-

WEIGHTS 128 64 32 16

8 4 2
O O O OJlJ0oO0 OO 1£0s

LABELS -—3»D7 D6 D5 D4 D3 D2 DI DO

The output section of the CMS 1/O board has eight LEDs. The weight and
data line label of each LED are also shown.

Figure 2.15 —

38

THE APPLE CONNECTION

LEDS LT

NN

128 64/32X 16 .\:
O @& @ Ofle

D7 Dé D5 D4 D3 D2 D1 DO
r~ L rv

(a)

(b)

a) LEDs D6, D5 and D3 are lit. All other LEDs are off. The number input to
produce this combination was 104.

b) Corresponding logical levels of the data lines needed to produce the LED
pattern in (a).

— Figure 2.16

dicates that the corresponding bit position in the data byte was
set to a logical 1. When an LED is not lit, the corresponding bit
position is a logical 0.

For example, Figure 2.16 (a) shows a diagram of three LEDs
that are lit. (The darkened LEDs are lit.) In this diagram bits D3,
D5, and D6 are set to a logical 1. The data byte would appear as
shown in Figure 2.16 (b).

2.6: EXAMPLE 1: LIGHTING A SINGLE LED

. In this first “hands-on” example of Apple output, we will write
a program that will turn on any of the eight LEDs located on the
CMS 1/O board. _

The program we are about to write will first ask you which I/O
slot the CMS system is installed into. Next, the program will ask

SOFTWARE FOR OUTPUT FROM THE APPLE

=

m ASK USER WHAT
110 SLOT
o INPUT $LOT (5) (S) = INPUT VARIABLE

0 0>

YEs
ERROR CHECK
NO
) print Vs
ERROR
(6) ASK USER WHAT
LED TO LIGHT
m [INPUT LED (L) (L) = INPUT VARIABLE
8 SETL1 = CORRECT
WEIGHT BASED ON L
®) SETS1 = CORRECT
ADDRESS BASED ON §
(0 OUTPUT L1 TO §1

y

Flowchart for inputting the I/O slot number and the LED to be turned on at
the external 1/0 device.

Figure 2.17 —
you which LED you want to light. Finally, the program will light
the selected LED on the CMS 1/0O board.

A flowchart for the program is shown in Figure 2.17. Let us
discuss the steps in the flowchart. After this discussion we will
show the actual program listing.

Step 1. The program will write a message asking the
user which I/O slot the CMS system is installed into.

39

40

THE APPLE CONNECTION

Step 2. The program will now input the slot number.

Steps 3 and 4. The program now checks for a valid slot
number between 0 and 7. If the slot number is not valid, the
program will jump to step 5. If the slot number is valid,
the program will go to step 6.

Step 5. In this step the program will print an error state-
ment to the user indicating that the slot number was not
valid. The program will then go back to step 1, and the
user will enter another number.

Step 6. At this point the program will write a message to
the user asking which LED the user wishes to light.

Step 7. The user will input the LED number.

Step 8. In this step the program will set the output byte
to the correct weight corresponding to the LED that the
user wants to light.

Step 9. In this step the program will set the variable S1 to
the correct address corresponding to the I/O slot that was
input in step 2.

Step 10. The software will now output the correct byte
to the I/O slot. In examining the program listed in Figure
2.18, note that if a valid LED number in the range from 0 to
7 is not input in step 7, all of the LEDs on the CMS I/O
board will light. This will be an error indication. As an
alternative, we could change the program to look for this
error condition in software. To do this, we would simply
write another loop like the one in steps 3 and 4 above. A
program to realize the flowchart of Figure 2.17 is presented
in Figure 2.18.

2.7: EXAMPLE 2: LIGHTING A COMBINATION OF LEDS

The second hands-on example will allow the user to light any

combination of the LEDs on the CMS I/O board. You are asked to
determine which LEDs you want on, and then calculate the output
variable weight necessary to accomplish this.

For example, suppose you wished to turn on LEDs 0, 5, and 7

on the CMS I/O board. The output weight to POKE would be

SOFTWARE FOR OUTPUT FROM THE APPLE

41

10

&3 8

8883

1
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330

REM: THIS PROGRAM WILL OUTPUT A BYTE TO THE CMS 17O BOARD
REM: THAT IS INSTALLED INTO AN APPLE COMPUTER. THE BOARD IS
REM: INSTALLED INTO ANY 1/0 SLOT 0—7.

REM

REM: START OF THE PROGRAM

PRINT “WHICH 170 SLOT IS THE CMS 170 BOARD INSTALLED INTO? 0—7 *;
INPUT S

IFS>=00RS<=7GOTO 110

PRINT “INPUT SLOT ERROR ;S

GOTO 60

PRINT “WHICH LED ON THE CMS 1/0 BOARD DO YOU WANT LIT? “;
INPUT L

LET L1=255

IFL=0THEN L1=1

IFL=1THENL1=2

IFL=2THEN L1 =4

IFL=3THEN L1=8

IFL=4THENL1=16

IFL=5THEN L1=32

IFL=6 THEN L1 =64

IFL=7 THEN L1=128

IF S=0 THEN S1=—16256

IF S=1 THEN S1=—16240

IF S=2 THEN S1 = —16224

IF S=3 THEN 51 = —16208

IF S=4 THEN S1=—16192

IFS=5THEN S1=—16176

IFS=6THEN S1=—16160

IFS=7THENS1=—16144

REM

POKE S1,L1

PRINT

GOTO 110

BASIC program to realize the flowchart given in Figure 2.17.

Figure 2.18 —

42

THE APPLE CONNECTION

equal to the weight of D0 plus the weight of D5 plus the weight of
D7. This equals DO=1 + D5=32 + D7=128 = 161. If the
number 161 were POKED to the correct address, LEDs D0, D5
and D7 would light. This is analogous to saying that the output
lines DO, D5, and D7 are set to a logical 1 in the output data byte.

A flowchart for the program to be written is shown in Figure
2.19. A program to realize this flowchart is given in Figure 2.20.

With the CMS 1/O system installed in the Apple computer, try
out the program given in Figure 2.20. This system is simply a
means of visually verifying the calculated results. Use the LED
patterns (a—g) shown and calculate the weight to be input. Verify
your answer by executing the program of Figure 2.20. The answers
to the patterns are given at the end of pattern (g).

LEDs D0, D4, D7 are lit.
LEDs Do, D3, D5, D6 are lit.
All LEDs are lit.
No LEDs are lit.
LED D6 is lit.
LEDs D1, D3, D5, D7 are lit.
g. LEDs D0, D2, D4, D6 are lit.
Answers to the LED patterns:
a=145,b = 105,c = 255,d = 0,e = 64,f = 170,g = 85

moo A0 Tow

2.8: EXAMPLE 3: A COUNTING PROGRAM

In this third hands-on example, we will write a program to light
up the LEDs on the CMS I/O board in a specified sequence. The
program will perform the following sequence. At first, all of the
LEDs will be turned off. Next, the number 1 will be output from
the computer to the I/O board. This will turn on the LED that cor-
responds to a weight of 1. Only the LED labeled D0 will be lit.

The program will delay long enough for the user to see that the
correct LED is lit. Next, the program will output the number 2
from the computer to the I/O board. This will turn on the LED that
corresponds to a weight of 2. The LED labeled D1 will be lit at this

SOFTWARE FOR OUTPUT FROM THE APPLE

43

Co
ﬁ

PRINT “INPUT YOUR
CALCULATED WEIGHT”

Y

INPUT W1

Y

POKE address, W1

y

Flowchart for inputting the weight to POKE at the output slot.

Figure 2,19—

20 REM: FIRST INPUT THE CALCULATED WEIGHT
30 PRINT “INPUT THE CALCULATED WEIGHT”
INPUT W1
50 POKE —16176,W1
REM: ASSUME I70 SLOT 5 WAS USED
70 GOTO 30

BASIC program to realize the flowchart given in Figure 2.19.

Figure 2.20 —

time. Again, the program will delay long enough for the user to
see the LED pattern on the I/O board.

The program now outputs the number 3. This will turn on the
LEDs corresponding to a weight of 3. LEDs D0 and D1 will be lit.
As before, the program will now delay to give the user time to see
the LED pattern.

This process is repeated, each time incrementing by 1 the number
to be output. The result will be the turning on and off of the LEDs

44

THE APPLE CONNECTION

in a manner that will show the output weight increasing by 1 for
each POKE statement.

The flowchart for this program is shown in Figure 2.21. A
BASIC program to realize this flowchart is given in Figure 2.22.

If you know a little more BASIC than we have tested so far, you
might try the following variations. After you have had a chance to
load and run the program of Figure 2.22, try to realize the program
using fewer BASIC statements. Next, try speeding up and slowing
down the wait time for the program. Note the effect on the output
display LEDs.

2.9: EXAMPLE 4: A TRAVELING LIGHT

In our final example a program will be written to make ‘the
LEDs turn on and off in a certain sequence different from that of
example 3. The sequence will give the visual illusion that the light
on the CMS I/O board is traveling. This is the same effect one en-
counters in a marquee sign, where it appears that the light is moving
around the outside of the sign.

This program will be very similar to the one presented in example
3. That is, we will output a byte to the CMS /O board and then
delay for a while before outputting another.

The program starts by outputting a byte that will light only LED
DO. An output number of 1 will accomplish this. Next, a byte
is output that will light D1. This is the number 2. The number 4 is
output next, as it will light only D2. The idea is to output a number
that corresponds to a single bit weight only. The remaining
numbers to be output will be 8, 16, 32, 64 and 128. A flowchart for
this program is shown in Figure 2.23. Figure 2.24 shows a BASIC
program to realize the flowchart.

Load this program and run it. Verify that the LEDs turn on and
off in the specified sequence. After the program has run correctly,
try these four variations:

a) Make the light travel backwards from the way it is now
going.

b) Make the light “bounce.” That is, when it gets to D7 make
it travel back to D0. When it gets to DO make it travel back
to D7.

SOFTWARE FOR OUTPUT FROM THE APPLE

45

=
!

LET POKE data
Wi=0

POKE address, W1

'

Delay to allow LED
to be lit.

!

Increment W1 by 1

Flowchart for a counting program.

Figure 2,21 —

30

&3838

888

1
110
120
130

REM: COUNTING PROGRAM FOR THE APPLE
REM: SET THE FIRST POKE DATA EQUALTO 0
LETW1=0

POKE —16176,W1

REM: ASSUME 170 SLOT 5 IS USED

FOR |=1TO 1000

NEXT |

REM: WE JUST DELAYED FOR A WHILE

LET W1 =W1+1

IF W1>>255 THEN W1 =0

GOTO 50

END

BASIC program to realize the flowchart given in Figure 2.21,

Figure 2.22 —

46 THE APPLE CONNECTION

=

LET POKE data
Wi=1

y
POKE address, W

DELAY to allow the
LEDs to siay lit.

LETWI = W1 * 2

e Figure 2.23

Flowchart for a traveling-light program.

20
30
40
50

60
70
80
90
100
110

120
130

REM: TRAVELING LIGHT PROGRAM
REM: SET FIRST POKE DATA =1
LETW1=1

POKE —16176,W1

REM: NOW TO DELAY

FOR |=1TO 1000

NEXT |

REM: NOW TO SHIFT THE DATA BIT LEFT
LET W1=W1%2

IF W1>128 THEN W1 =1

GOTO 50

END

Figure 2.24

BASIC program to realize the flowchart given in Figure 2.23.

SOFTWARE FOR OUTPUT FROM THE APPLE 47

c) Make the light travel from the center LEDs to each edge.
That is, start by turning on LEDs D3 and D4. Next, turn on
LEDs D2 and D5. Then, turn on LEDs D1 and D6. Finally,
turn on LEDs DO and D7.

d) Make the light bounce from the center to the edges and
back to the center again.

2.10: SUMMARY

In this chapter we have covered the basics of outputting infor-
mation with the Apple computer. We began by plugging a simple
output device into the Apple. The language we used for outputting
was BASIC. The POKE instruction was discussed in detail. We
covered how to calculate the address needed for the POKE. Data
to be output was shown and we discussed how to set any bit in the
output byte to a logical 1 or a logical 0. Finally, four hands-on ex-
amples were given to enable you to verify your understanding of
the main points of outputting information with the Apple computer.

When you have mastered the information presented in this
chapter, half of the Apple connection has been made. Chapter 3
will discuss the second half of this connection, how to input in-
formation to the Apple computer from an external source.

49

Chapter 3

Inputting Data to the
Apple Computer

IN THIS CHAPTER we will discuss how to input digital infor-
mation to the Apple computer from an external device, by means
of a BASIC program. After the information is input to the program,
we will show ways of interpreting it using software.

3.1: OVERVIEW OF INPUTTING DATA

To begin our discussion of inputting information to the Apple
computer, let us review exactly what our goal is, by referring to
the block diagram in Figure 3.1. We see in this diagram that an ex-
ternal device will be sending digital information (data) to the Apple
computer. In order to electrically input the data, the computer
must be able to accept the information and then interpret what
was accepted.

Asyoulook at Figure 3.1, certain questions may come to mind.
For example, “How does the Apple computer electrically know
that the external device is ready to send information?”’ The answer
to that question is covered in the broad topic called handshaking.
Handshaking refers to the process by which data is exchanged
between a computer and an external device in an organized

50

THE APPLE CONNECTION

APPLE COMPUTER
Data is sent to the Apple
computer from the external
\ device.

EXTERNAL

D D DEVICE

The object of inputting data is to send information from an external device to
the Apple computer. The information must be in an electrical form the com-
puter can understand.

— Figure 3.1

fashion. In general, when the external device has information or
data ready to send to the computer, another line connected to the
computer will electrically indicate that the data is ready. At that
time, the computer will input, or accept, the information. If the
computer is outputting data, another “handshake” line will elec-
trically inform the external device that data is ready to send.

There are other types of handshaking that may be performed,
including interrupts and Direct Memory Access (DMA). Those
types of handshaking systems are beyond the scope of this book,
but they are discussed elsewhere in the literature. However, in
Chapter 8 we discuss a handshaking system in detail. For our pur-
poses here, we can assume that the data from the external device
is always present when the computer requests it.

Using this assumption we may concentrate our efforts on how
to transfer the information into the Apple computer, using a
BASIC program. In review, our job in this chapter will be to
understand how data is input from an external source to a program
running in BASIC on the Apple computer. Once the data is input,
ways of processing it with software to make logical decisions will
be shown.

INPUTTING DATA TO THE-APPLE COMPUTER 51

CABLE to Apple computer

D7 D6 D5 D4 D3 D2 DI

-AAHRAER

128 64 32 6 8 4 2 1
\ S/
—~—

8 SWITCHES

Pictorial diagram showing the physical switches on the CMS I/O system input
section. Each switch is marked with a data line label and the corresponding
weight, and is either “ON”’ or “OFF".

Figure 3.2 <

3.2: THE CMS INPUT BOARD FOR THE APPLE
COMPUTER

The physical connection used for inputting the electrical data
to the Apple computer will be made via the CMS /O system. We
became familiar with the I/O board in Chapter 2, when we
discussed the mechanics of outputting data from the Apple com-
puter. Besides functioning as an output device, the CMS 1/O
system is also electrically capable of inputting data to the Apple
computer. Figure 3.2 shows a pictorial diagram of the input sec-
tion of the CMS 1/0 board hardware, located on board AP2. The
I/O system should be installed in the Apple exactly as described
in Section 2.1 of Chapter 2. The remainder of this discussion will
assume the reader has installed the CMS 1/O system correctly.

Notice, in Figure 3.2, that there are eight switches on the CMS
I/0 board input section. These switches will be set to an OFF or
ON position. When the switch is OFF it corresponds to a setting
of logical 0 on a particular input line. When the switch is ON it

52

THE APPLE CONNECTION

corresponds to a setting of logical 1 on a particular input line.

Each of the switches in Figure 3.2 is assigned a unique label:
Do, D1, D2, D3, D4, D5, D6, and D7. The label corresponds to the
physical signal line that will be input to the Apple computer.

It is important to know that the switches in the CMS 1/O system
input section operate in parallel. That is, any signal line, D0
through D7, can be set to a logical 1 or a logical 0. Each line is set
independently of any other signal line.

3.3: INPUT SOFTWARE

The CMS I/O system will allow us to physically set the input
lines to any desired logical state. Now we will turn our attention
to the problem of how the programmer can electrically request in-
formation from the external device. The programming language
is BASIC. The instruction used to accomplish the inputting of
information is PEEK. Like the POKE instruction we used in
Chapter 2, PEEK is explained fully in your user’s manual and
elsewhere, but we will briefly summarize its operation here. A
PEEK instruction will appear in a BASIC program like this:

LET A = PEEK(address)

Let us discuss exactly what each part of this instruction does.
The variable name “A” could be any BASIC numeric variable.
We used “A” here only as an arbitrary example; it could have
been replaced by T1, Z5, C(3) or any valid BASIC numeric variable
name. The important point is that when information is input using
the PEEK instruction, variable A will be set equal to it.

The (address) part of the PEEK instruction will electrically in-
form the Apple computer which I/O slot (0-7) the data will be input
from. The definition of this address is exactly the same as the
address definition used for the POKE instruction. This definition
was discussed in Chapter 2. Remember from that discussion that
the I/Oslots in the Apple computer each have a limited set of
addresses. In Chapter 2 we presented a list showing the I/O slot
number and the corresponding system address used in this book.
Refer to Figure 2.7 for that list. Using the list, we can input infor-
mation from any of the I/O slots simply by choosing the correct
address number. For example, suppose we wished to input infor-
mation from slot 4 in the Apple computer. In a BASIC program

INPUTTING DATA TO THE APPLE COMPUTER 53

10
20

8888

90
100
110
120

PRINT “INPUT THE SLOT NUMBER THE |/0O CARD IS INSTALLED INTO *;
INPUT 52

IF S2=0 THEN S3= —16256
IF 52=1 THEN S3= —16240
IF $2=2 THEN S3=—16224
IF $2=3 THEN S3= —16208
IF S2=4 THEN S3=—16192
IF $2=5THEN S3=—16176
IF $2=6 THEN S3=—16160
IF $2=7 THEN S3=—16144
LET A1 =PEEK(S3)

END

BASIC program to ask the user which 1/O slot is being used in the Apple computer. The 1/O slot
number(0-7) is input to the BASIC variable S2. Next the program performs a “look-up” of the correct
system address based on the 1/O slot number.

Figure 3.3 -j

an instruction that would allow this to cccur is:
LET A1 = PEEK(—16192)

After this instruction is executed, the variable A1 will be equal to
the information that was input from I/O slot 4.

Let us take another example. Suppose the I/O slot address is a
variable itself. That is, the BASIC program will prompt the user
and ask for the I/O slot number. The I/O slot address will be stored
in a BASIC variable. For this example we will assume that the I/O
slot address was stored in the variable S3. The form of the PEEK
instruction would be:

LET A1 = PEEK(S3)

This will let A1 be equal to the information read from the I/O slot
address S3. Figure 3.3 shows a BASIC program that will operate
in the way described for this example.

3.4: INTERPRETING THE INPUT INFORMATION

Up to this point in our discussion of inputting data, we have
shown the software required to get the input information into a

54

THE APPLE CONNECTION

e 8 DATA INPUT LINES
from external device.

APPLE
COMPUTER =

Eight separate signal lines are connected to an Apple computer 1/0 slot in
order to input external information.

— Figure 3.4

BASIC program. The information will reside in a valid BASIC
variable. This section will focus on ways to interpret the informa-
tion that was input to the BASIC variable. During this discussion
we will be building on the information that was presented in Sec-
tion 2.4 of Chapter 2.

When the Apple computer inputs data from an 1/O slot, it is
electrically inputting the logical voltage levels of eight separate
signal lines. These signal lines are labeled D0, D1, D2, D3, D4, D5,
D86, and D7. (See Figure 3.4.)

Each physical signal line is assigned a numerical weight by the
computer. Since each signal line corresponds to a bit position,
these weights are the same as those discussed in Chapter 2, and
listed in Figure 2.11. (Again, it should be remembered that these
weights are not arbitrarily assigned, but correspond to powers of
two, that is, to binary numbers. A few minutes spent familiarizing
yourself with the binary numbering system will be of great value
in understanding how your computer works.) When an input
signal line is a logical 1, its corresponding weight is summed.
When an input signal line is a logical 0, its corresponding weight
is not summed. The resulting sum is the value that will be stored
into the BASIC variable used in the PEEK instruction.

For example, suppose the external hardware was connected to
1/O slot 5. This would require an address of —16176 to be used
in the PEEK instruction. It is further assumed that the external

INPUTTING DATA TO THE APPLE COMPUTER 55

DO
EXTERNAL DEVICE
D1
02 This device will output
03 the logic levels of the
D4 dota lines.
APPLE 03
COMPUTER i
D7

Lines are set 1o a logical
1 or a logical 0 by the
externol device.

The external input device controls the logical voltage levels of the input lines
to the Apple computer.

Figure 3.5 —

hardware is sending data that has lines DO, D4, D5 and D7 set to
a logical 1. The remaining lines, D1, D2, D3 and D6, are set to a
logical 0. External input lines are set under control of the device
sending the data to the computer. (See Figure 3.5.)

When we wish to obtain the information from the external
device used in this example, the PEEK instruction will appear as:

LET A1 = PEEK(—16176)

After this instruction is executed, the BASIC variable A1 will be
equal to the summation of the weights of all data input lines,
D0-D7, to slot 5. The summation will include the weights of all
the input lines that were a logical 1 during the execution of the
PEEK instruction.

In our example the weights that will be summed are D7 = 128,
D5 = 32, D4 = 16 and B0 = 1. The resulting summation would
yield 128 + 32 + 16 + 1 = 177. Variable A1 would be equal to the
value 177 after the execution of the PEEK instruction.

We can expect the variable used in the PEEK instruction to be
greater than or equal to 0 and less than or equal to 255. A value of 0
is returned when no input lines are set to a logical 1 at the 1/O slot,
and a value of 255 is returned when all of the input lines are set to
a logical 1 at the [/O slot.

56 THE APPLE CONNECTION

APPLE COMPUTER

Data lines are setto a
logical 1 and o logical
0 by the external device.

Lines are connected to
170 slot 6.

Data input lines DO, D1, D4, D5, and D6 are set to alogical 1 by the external
device.

- Figure 3.6

To further illustrate this point, let us consider another example.
In this example it is assumed that the input device is setting data
lines D6, D5, D4 and D1 to alogical 1. All other data input lines are
set to a logical 0. (See Figure 3.6.) The input device is physically
connected to I/O slot 6. Input information is read using the PEEK
instruction. In BASIC the instruction for this example will
appear as:

LET R = PEEK(—16160)

The number — 16160 is derived from the address of 1/0 slot 6 in
the Apple computer.

What will be the value of R after the PEEK instruction is ex-
ecuted? Recall that R will be equal to the sum of the weights of all
input lines set to a logical 1 during the execution of the PEEK
instruction. These weights will be as follows: D6 = 64, D5 = 32,
D4 = 16, and D1 = 2. The resulting sum would be 64 + 32 + 16
+ 2 = 114. Variable R would equal 114 after execution of the
PEEK instruction. If we were to print the value of R at this time,
the number 114 would appear. By using the PEEK instruction, we
now have a means of inputting data from an external device. Fur-
ther, the data is stored in a BASIC variable. By using software, we
can then operate on the variable in exactly the same way as any
other BASIC variable.

INPUTTING DATA TO THE APPLE COMPUTER

57

3.5: CALCULATING THE BITS FROM THE INPUT
VARIABLE

In the preceding section we discussed how the user can
calculate the value of the input variable used in the PEEK instruc-
tion. That calculation was based on the assumption that we knew
the logical level of the data input lines at the selected 1/O slot.
However, in many applications of computer control, we do not
know which data input lines were a logical 1 and which data input
lines were a logical 0 at the time of the PEEK instruction, and we
need to know. The reason we need to know the logical state of the
input lines is that each line input by the external device may mean
something different. For example, DO may logically inform the
user that the temperature is too high, D1 may be used to indicate
that some lights in a home were left on, and so on. The main point
is that we need to examine the logical conditions (1 or 0) of each
data line input during the PEEK instruction. This can be
accomplished using software.

There are several ways of doing this in a BASIC program. We
will present only one method here. This technique is designed to
help you understand exactly what is needed and what is occurring,
rather than to operate as efficiently as possible. However, as a
BASIC program, it does work. As you become more familiar with
this type of processing, new and more efficient ways of performing
the transformation and testing will become apparent.

Here is one way to do it. We can start by applying our
knowledge of how the PEEK variable was originally formed to
the problem of “deciphering” it. Recall that the variable was
formed by summing the weights of the data input lines that werea
logical 1 during execution of the PEEK instruction. What we will
do is discover, by a process of subtraction, which individual
weights were used to obtain the sum. Once these weights are
known, the corresponding input lines that were set to a logical 1
are also known. All other input lines must have been a logical 0
during the execution of the PEEK instruction.

For example, suppose we executed this PEEK instruction:

LET A = PEEK(—16240)

After this instruction was executed, the variable A would be a
value between 0 and 255, inclusive. The value would depend on

58

THE APPLE CONNECTION

which of the eight data input lines, B0-D7, were set to alogical 1.
For purposes of illustration, we can assume that the variable A
was equal to 183 after the PEEK instruction. At the outset, we can
see that at least one of the data input lines was set to a logical 1,
because the value of A is not 0. We also know that at least one
of the data input lines is a logical 0, because the value of A is not
255. But we do not know which input lines were set to a logical 1
and which input lines were set to a logical 0 during the PEEK in-
struction. That is precisely the problem we are going to solve.

Our job now is to determine which of the data input lines was a
logical 1 during the input instruction. This can be done in the
following way. Subtract from the variable A the weight of each input
line, starting with the weight of D7. If the result of the subtraction
is less than 0, we know the weight subtracted was not used to ob-
tain the sum. Let's go through some examples to show exactly
what is meant.

Suppose a variable returned from the PEEK instruction was
equal to 125. Using our plan, the weight of D7 is subtracted from
125. This would yield a subtraction of 125 — 128, which is less
than 0. Therefore, we know that the weight of D7 was not used to
obtain the original sum, and that D7 is a logical 0.

We then proceed with the next weight in line. This is the weight
of D6. The weight of D6 is subtracted from 125. The result would
be 125 — 64 = 61. Note that the result of this subtraction is not
less than 0. Therefore, the weight of D6 was used in the original
summation. D6 is a logical 1.

When we find that a weight was used in the summation, its
value is subtracted from the starting number and the resulting
value is tested against the next weight in the line. In this case the
next weight in the line after D6 is D5. The weight of D5 is sub-
tracted from the new value, 61, not the original value, 125. This
will give 61 — 32 = 29, This value is notless than 0. Therefore, the
weight of D5 was used to obtain the original sum.

At this time we know that the weights of D6 and D5 were used
in obtaining the original sum of 125. Proceeding further in the
process, we test the next weight, D4, against the new value, 29.
The value 29 is equal to the original number, 125, minus the
known weights, D6 and D5.

Subtracting 16 from 29, we get a result of 13. This result is not
less than 0. Therefore, the weight of D4 was used in obtaining the

INPUTTING DATA TO THE APPLE COMPUTER 59

original sum. We continue the process by subtracting the next
weight from the new value, 13.

The next weight in line is D3. The subtraction 13 — 8 = 5 yields
a number greater than 0. From this we know that the weight of D3
was used in obtaining the original sum. The next weight, D2, is
tested against the new value, 5.

The resulting subtraction, 5 — 4 = 1, gives a number that is not
less than 0. Again, we know that the weight of D2 was used to ob-
tain the original sum. At this point we know that the weights of
D6, D5, D4, D3 and D2 were used to obtain the original sum.

We next test against the weight of D1. This subtraction would
yield 1 — 2 = —1. This result is less than 0. Because of this, we
know that the weight of D1 was not used to obtain the original
sum. Finally, we proceed to test against the weight of DO.

Since the subtraction of the weight of D1 yielded a negative
result, the testing value, 1, is not changed. Subtracting the weight
of DO would give 1 — 1 = 0. The result is not less than 0, so we
know that DO was used to obtain the original sum of 125. At the
conclusion of this process, we know that the weights of the data
lines D6, D5, D4, D3, D2 and DO were used to obtain the original
sum. Therefore, these input data lines were a logical 1 during the
execution of the PEEK instruction. Further, we know that the
data input lines D7 and D1 were a logical 0 during the execution
of the PEEK instruction.

The procedure described above is, essentially, how the weights
ofthe datalines are tested. If at any point in the testing the result is
0, then we can stop and test no further. All the remaining data
lines must be alogical 0. To further illustrate this procedure let us
consider another example, detailing the steps in outline form. We
will assume that the variable returned from the PEEK instruction
this time was 183. We need to know which data lines were a
logical 1 and which data lines were a logical 0. The procedure is
outlined below:

1. Subtract the weight of D7 from the original variable, 183.
This gives:
183 — 128 = 55

The result is greater than 0. Therefore the bit weight of D7
was used to obtain the original sum. D7 was a logical 1

60

THE APPLE CONNECTION

during the PEEK instruction. We set the variable A2 equal
to 55.

. We now subtract the bit weight of D6 from the new value

of variable A2.
55 — 64 = —9

The result is less than 0. This tells us that the bit weight of
D6 was not used to obtain the original sum of 183. D6 was
a logical 0 during the PEEK instruction.

. We next subtract the weight of D5 from the variable A2.

Note that A2 was not changed in step 2, because the result
was less than 0 during the subtraction.

55 — 32 =23

Since the result of the subtraction is not less than 0, we
know that this weight was used to obtain the original sum.
Therefore, D5 was a logical 1 during the PEEK instruc-
tion. The variable A2 is now set to 23 because the result of
the subtraction was not negative. Notice that as a weight
is used to obtain the sum, it is subtracted from the variable
A2

. Next we subtract the bit weight of D4 from the variable A2.

23—-16=7

The result is not less than 0. Therefore, the bit weight of
D4 was used to obtain the original sum. Data input line D4
was a logical 1 during the PEEK instruction. The variable
A2 is now equal to 7.

Let us stop at this point to examine what information
we have concerning the input data lines. From the
preceding steps 1-4 we know thatbit D7 = 1,06 = 0,D5 =
1 and D4 = 1. The checking is resumed starting with the
weight of D3.

. We subtract the bit weight of D3 from the new variable A2.

7—-8=—1

The result is a number less than 0. Therefore, we know
that the weight of D3 was not used in obtaining the
original sum of 183. This means D3 was a logical 0 during

INPUTTING DATA TO THE APPLE COMPUTER 61

the PEEK instruction.
6. Testing the next bit weight, D2, we obtain the result:
7—4=3
The result is a number that is not less than 0. Therefore, in-

put line D2 was a logical 1 during the PEEK instruction.
The variable A2 becomes 3.

7. Now test bit D1. The result of this subtraction is:
3—2=1

We see that the D1 input line was a logical 1 during the
PEEK instruction.

8. The final bit to test is DO. The result of this test is:
1—1=0

Since the result of the subtraction was not less than 0, the
weight of DO was used to obtain the original sum.

The results of the bit testing can be summarized thus:

D7 D6 D5 D4 D3 D2 D1 DO bitlabels
i 0 1 1 o0 1 1 1 logical values

These results are easy to check as we can simply sum the weights
of all the bits that are a logical 1. The result of this summation
should be the number we started with, 183.

128 = D7
+ 32=D5
+ 16 = D4
+ 4=D2
+ 2=D1
+ 1=D0
183 The result checks.

When we read through the steps required to make these tests by
hand, the procedure seems quite tedious. Fortunately, we have
the computer to make these checks for us. Since we know what
tasks the computer has to perform, the first step in writing a com-
puter program to perform these checks is to design a task
flowchart outlining the steps of the procedure. Such a flowchart
is shown in Figure 3.7.

62 THE APPLE CONNECTION

START
\
> D7 TESTED D3 TESTED
D6 TESTED > D2 TESTED
> D5 TESTED J D1 TESTED
DO TESTED
D4 TESTED
Flowchart for checking the logical value (1 or 0) of the external data input lines to the Apple com-
puter. The data was input by using a PEEK instruction.
_ Figure3.7

INPUTTING DATA TO THE APPLE COMPUTER

63

A BASIC program to realize this flowchart on the Apple com-

puter is given in Figure 3.8. Another example of a BASIC program
that will implement the flowchart of Figure 3.7 is given in Figure
3.9. The difference between the two programs is in the use of the
FOR/NEXT loops employed to do the testing of the individual
weights. In Figure 3.8 each weight is tested in a sequential fashion.
Figure 3.9, on the other hand, tests each weight by reducing the
variable A3 by half at each pass through the loop. In Figure 3.8 we
simply wrote a statement that set up the new test value.

10
20

35

3888

80

100
110
195
200
210
220
225
230
240
250
255
260
270
280
. 285

" LET Da=0

PRINT “INPUT THE ORIGINAL NUMBER BETWEEN 0—255 **;
INPUT Al

LET A2=A1

REM: SET ALL D VALUES EQUAL TO ZERO (LINES 40—110)
LET DO=0

LETD1=0

LET D2=0

LET D3=0

LET D5=0
LET D6=0

LET D7=0

REM: D7 TESTED (LINES 200 —220)
IF A2— 128 <0 THEN 230

LET A2=A2—128

LET D7=1

REM: D6 TESTED (LINES 230 —250)
IF A2 — 64 <O THEN 260

LET A2=A2—64

LET D6=1

REM: D5 TESTED (LINES 260 —280)
IF A2—32 <0 THEN 290

LET A2=A2—32

LET D5=1

REM: D4 TESTED (LINES 290 —310)

Figure 3.8 —

64 THE APPLE CONNECTION

290
300
310
315
320
330

345
350

370
375
380

IF A2—16 <0 THEN 320

LET A2=A2—-16

LET D4=1

REM: D3 TESTED (LINES 320—340)
IF A2—8 <0 THEN 350

LET A2=A2-8

LETD3=1

REM: D2 TESTED (LINES 350—370)
IF A2—4 <0 THEN 380

LET A2=A2—4

LET D2=1

REM: D1 TESTED (LINES 380 —400)
IF A2—2 <0 THEN 410
LETA2=A2-2

LET D1 =1

REM: DO TESTED (LINES 410—420)
IF A2—1 <0 THEN 430

LET DO=1

PRINT “ORIGINAL NUMBER WAS “;A1
PRINT

PRINT “BINARY VALUE IS **;D7;D6;D5;04;03;02;D1;D0
END

BASIC program to realize the flowchart of Figure 3.7.
L. Figure 3.8 (cont.)

10
20

— Figure 3.9

DIM D(8)

PRINT “INPUT THE ORIGINAL NUMBER BETWEEN 0—255";
INPUT Al

FORI=0TO7

LET D(1)=0

NEXT |

LET A2=A1

LET A3=128

FOR|=7TOOSTEP —1

INPUTTING DATA TO THE APPLE COMPUTER 65

100 IF A2— A3 <O THEN 130

110 LET A2=A2—A3

120 D()=1

130 A3=A3/2

140 NEXTI

150 PRINT “ORIGINAL NUMBER WAS “;Al
160 PRINT)
170 PRINT “THE BINARY VALUE IS EQUALTO **;
180 FORI=7TOOSTEP —1

190 PRINT D(I);

200 NEXTI

210 PRINT

220 END

A shorter BASIC program to realize the flowchart of Figure 3.7. In lines
90-130 the variable A3 is the weight of each data line. A3 will start at 128,
which is the weight of D7. This variable is then reduced by half each pass
through the FOR/NEXT loop.

Figure 3.9 (cont.) —

Using the testing technique described above, we will be able to
tell exactly which data input lines were a logical 1 and which data
input lines were logical 0 during the execution of a PEEK instruc-
tion. We are now ready to get some practice at inputting data to
the Apple.

3.6: HANDS-ON EXAMPLE 1: CALCULATING THE
WEIGHT OF THE INPUT WORD

In this first hands-on example of inputting data to the Apple
computer from the CMS 1/0 board, we will calculate the value of
the input weights by hand. The input weight will be calculated ac-
cording to the method described in this chapter. After the weight
is calculated, you should set the switches on the CMS I/O board to
the correct value and run the program.

The program will print out the weight calculated by the com-
puter. You may then verify whether the manual calculation was
correct. Let us go over an example of exactly what is meant. First,

THE APPLE CONNECTION

set the input switches on the CMS I/Oboard so that D0 and D4 are
alogical 1. All other switches are set to alogical 0. Remember that
when the switch is in the OFF position it is alogical 0, and when it
is in the ON position it is a logical 1.

Now calculate the input weight the Apple computer will see
when this data is read. In this example the computer will elec-
trically input D4 and DO as a logical 1. This will correspond to a
weight of D4=16 + D0=1=16 + 1 = 17.

After the computer has read this data it will print out the
number 17. At this point we can check our calculated results
against the actual computer results. In this way you can quickly
verify that you understand how the input lines are weighted.

Try the program shown in Figure 3.10, using the different
switch settings, a—f. The switches indicated will be a logical 1,
and all other switches will be set to alogical 0. The correct weight
for each switch setting is given after setting (f).

D1 and D7 are set to 1

D0 and D5 are set to 1

D4, D6, and D7 are set to 1

D1, D2, D3, D4, D6, D7 are set to 1
All switches are set to a logical 1

o o T p

f. All switches are set to a logical 0
Answers:; a = 130,b = 33,c = 208,d = 222,e = 255,f =0

3.7: EXAMPLE 2: READ A BYTE AND DETERMINE
WHICH BITS WERE A LOGICAL 1

In this example we will read an input word from the CMS 1/0O
board and let the computer print out which data lines were equal
to alogical 1 and which data lines were equal to a logical 0. This is
exactly the same type of operation we discussed in Section 3.5. A
general program to allow the Apple computer to perform this
function is shown in Figure 3.11. Run this program and verify
that the computer will print out the correct data lines that you
have set on the CMS I/O board switches. Use the same switch set-
tings given in Section 3.6.

INPUTTING DATA TO THE APPLE COMPUTER

67

10
20

3388

70
90
100
1o

120
121

PRINT “INPUT THE SLOT NUMBER THE I/0O CARD IS INSTALLED INTO *;

INPUT S2

IF S2=0 THEN S3= —16256
IF 52=1 THEN S3= —16240
IF S2=2 THEN S3= —16224
IF 52=3 THEN S3= — 16208
IF S2=4 THEN S3=—16192
IF S2=5 THEN S3= —16176
IF $2=6 THEN S3= —16160
IF S2=7 THEN S3= —16144
LET A) =PEEK(S3)

PRINT ““THE DATA READ FROM |70 SLOT # **;52;" IS **;S3

Sample program to read the external input ddta from the CMS 1/0 system. This program will print

out the total weight and the slot number the I/O system is connected to.

Figure 3.10—

10
20
30

3888

888

1
110
122
123
125
127
129
131
133
135
137

PRINT “INPUT THE SLOT NUMBER THE 170 CARD IS INSTALLED INTO “;

INPUT 52

IF 52=0 THEN S3= — 16256
IF 52=1 THEN S3= —16240
IF $2=2 THEN S3= —16224
IF 52=3 THEN S3=—16208
IF S2=4 THEN S3= — 16192
IF 52=5 THEN S3=—16176
IF S2=6 THEN S3= —16160
IF $2=7 THEN S3= —16144
LET A1 =PEEK(S3)

LET A2=S83

LET DO=0

LETD1=0

LET D2=0

LET D3=0

LET D4=0

LET D5=0

LET D6=0

LET D7=0

Figure 3,11 -

68

THE APPLE CONNECTION

200 IF A2—128 <O THEN 230
210 LETA2=A2—128

220 LETD7=1

230 IF A2—64 <0 THEN 260
240 LETA2=A2-64

250 LETD6=1

260 IF A2—32 <0 THEN 290
270 LETA2=A2-32

280 LETD5=1

290 IF A2—16<0THEN 320
300 LETA2=A2-16

310 LETD4=1

320 IF A2—8 <OTHEN 350
330 LETA2=A2-8

340 LETD3=1

350 IF A2—4<0THEN 380
360 LETA2=A2-4

370 LETD2=1

380 IF A2—2<OTHEN 410
390 LETA2=A2-2

400 LETDI=1

410 IFA2—1 <OTHEN 430
420 LETDO=1

430 PRINT

440 PRINT “THE BINARY VALUES OF THE INPUT WERE"
450 PRINT

460 PRINT “D7 ="; D7

470 PRINT “D6 ="; D6

480 PRINT “D5 =""; D5

490 PRINT “D4 ="; D4

500 PRINT “D3 ="; D3

510 PRINT “D2 ="; D2

520 PRINT “D1 ="; D1

530 PRINT “DO ="; DO

540 END

A BASIC program to read the external input data and print the logical value (1 or 0) of each input
data line.

- Figure 3.11 (cont.)

INPUTTING DATA TO THE APPLE COMPUTER 69

After you have run the program and verified that it works,
make certain you understand each part of it. Now write a similar
program using fewer BASIC statements. Use this new program
to print out only the input lines that are alogical 1. For example, if
D0 and D4 are set to a logical 1 position on the CMS 1/0 board,
have the computer print out D0, D4.

Now reverse the sense of the problem. Have the computer print
out the input lines that are set to a logical 0 instead of a logical 1.

3.8: EXAMPLE 3: READ A WORD AND PERFORM
AN ACTION

In this example we will input a byte from the CMS 1/0 board to
the Apple computer. If the byte we are inputting is equal to a certain
value, we will perform a particular action; we will print a
message. If the byte is not equal to that value, we will perform a
different action; we will print a different message.

This type of example is very similar in principle to monitoring
an input device with the Apple (or any other) computer. When the
input condition is true, the computer will automatically perform
some corrective action or simply perform some action based on
this input. Of course, in a real application, the input would come
from some piece of external hardware the computer was controlling
or monitoring.

In our example the inputs will be generated by the user from the
CMS 1/Oboard. When the word input is equal to 12, the computer
will print the message, “THE INPUT WORD IS EQUAL TO 12.”
If the input word is not equal to 12, then the computer will print
the message, “THE INPUT WORD IS NOT EQUAL TO 12 AT
THIS TIME.”

A flowchart for this problem is shown in Figure 3.12, and a
BASIC program to realize the flowchart is given in Figure 3.13.

Try this program out with your computer. Set the switches on
the CMS 1/0 board to a number other than 12. Insure that the
computer will print out the correct message. Now set the input
word equal to 12 (that is, set D3 and D2 to alogical 1), and check to
see if the computer will print out the correct message.

When you are able to get the program running, try the following

70 THE APPLE CONNECTION

INPUT THE
8-BIT CODE

\

A

PRINT PRINT “INPUT WORD
“INPUT WORD = 12" 1S NOT EQUAL TO 12
AT THIS TIME”

< STOP ’

A task flowchart for the solution to the problem given in Section 3.8.

\— Figure 3.12

variations:

a. Have the computer check for an even number of ones in
the input word. If the number of ones is even, the com-
puter will print, “THERE ARE AN EVEN NUMBER OF
ONES .” If the number of 1s in the input word is odd, the
computer will print, “THE NUMBER OF ONES IS
ODD.”

b. Input a number, and have the computer subtract 25 from
it; then print out the results. The output should be both
your original number and the new number. Remember
that it is possible to get a number that is less than 0 in this
program. If the result is less than 0 then print out the
message, “THE RESULT WAS LESS THAN 0.”

3.9: EXAMPLE 4: A COMBINATION LOCK

In this example we will make the Apple computer into a com-
bination lock. The lock will have three unique numbers that must

INPUTTING DATA TO THE APPLE COMPUTER

71

838888885

88 8&

1
10
120
130
140
200
210

PRINT “INPUT THE SLOT NUMBER THE 170 CARD IS INSTALLED INTO *;
INPUT S2

IF S2=0 THEN S3= — 16256

REM: SET ALL D VALUES EQUAL TO ZERO (LINES 40— 60)

IF S2=1 THEN S3= — 16240

IF S2=2 THEN S3= —16224

IF S2=3 THEN S3= —16208

IF S2=4 THEN S3=—16192

IF $2=5 THEN S3= —16176

REM: LOOP TO TEST ALL D VALUES (LINES 90— 140)

IF $2=6 THEN S3= —16160

IF S2=7 THEN S3= —16144

LET A1 =PEEK(S3)

IF S3=12 THEN 200

PRINT” THE INPUT WORD IS NOT EQUAL TO 12 AT THIS TIME”
sTOP

PRINT ““THE INPUT WORD IS EQUAL TO 12

END

A BASIC program that will PEEK the data from the I/O board, and print one of two responses, depend-
ing on the value of the input word.

Figure 3.13 =~

be entered in sequence. If any of the numbers (or their sequence)
is not correct, the lock will not open.

The three numbers will be 64, 128, and 7. Here is how the lock
will work. A BASIC computer program will ask you to enter the
first number by setting the switches corresponding to that weight
on the CMS /O board. When the number is set you will enter “L”
on the computer. This signals the computer that you have entered
the number and are ready for the computer to read the number.

If the computer detects a wrong number, then the message, I
WILL NEVER OPEN FOR YOU” will be printed. If the number is
correct, the computer will print the message, “SO FAR SO
GOOD.” When you enter the last number correctly, the computer
will print, “YOU OPENED THE LOCK.” If you enter an “R” you
will reset the combination lock. This will allow you to start over.

A flowchart of this problem is shown in Figure 3.14. Figure 3.15

72 THE APPLE CONNECTION

D

\

SET INTERNAL
COMBINATION
64 128 7

!

y

ASK USER TO ENTER
llLll OR 'IRII

NO

“’L”* ENTERED?

PEEK AT 1/0 SLOT
FOR NUMBER

NUMBER
CORRECT?

\

PRINT
I WILL NEVER OPEN
THE LOCK FOR YOU”

NO

LAST NUMBER?

PRINT
“YOU OPENED THE
LOCK"’

.

=

A task flowchart showing the general steps for controlling an imaginary
combination lock.

= Figure 3.14

INPUTTING DATA TO THE APPLE COMPUTER

73

10
20
30

288

8883

1
110
120
130
140
150
160
170
180
190

210
220
230
240
250
255
260
270

DIM N(3),L(3),A$(5)

REM: THESE ARE THE COMBINATION NUMBERS
N(1)=64

N(2)=128

N(@3)=7

REM: THESE ARE THE INPUT COMBINATION NUMBERS
L(1)=0

L(2)=0

L(3)=0

REM: START OF COMBINATION INPUTTING

1=1

PRINT ““PUT SETTING # “;1;"” ON CMS INPUT SWITCHES"
PRINT “INPUT ‘L’ WHEN READY, OR ‘R’ TO RESET"”
INPUT A$

IF A$="L" THEN 180

IF A$="R" THEN 70

GOTO 120

L(1)=PEEK(—16208)

IF L(1)=N(1) THEN 220

PRINT ““1 WILL NEVER OPEN THE LOCK FOR YOU t11”
GOTO 240

IF 1=3 THEN 260

PRINT “SO FAR, SO GOOD”

=141

GOTO 120

REM: THE LOCK WILL NOW OPEN

PRINT “YOU OPENED THE LOCK"

END

A BASIC program that will realize the computer control for the combination

lock.

Figure 3.15 -

74

THE APPLE CONNECTION

shows one BASIC program that will realize this flowchart. Try
this program out with your Apple computer. Once you have this
program running, try putting in the following variations:

a. Change the combination of the lock to 2, 4, 8.

b. Realize the program using fewer BASIC statements than
shown in the example.

3.10: SUMMARY

In this chapter we have discussed in detail how to input infor-
mation into a BASIC program from an external device. This
device will be monitored by the Apple computer.

Once the information was input into the BASIC program, we
discussed different methods of interpreting what the input
number meant. A technique was described that will enable you to
determine which input lines were a logical 1 and which input
lines were a logical 0.

At the end of this chapter we presented some hands-on ex-
amples. These examples were designed to allow you to practice
inputting information to a BASIC program, and to test your
understanding of the methods outlined.

If you understand the solution to these examples, then you
understand the principles of inputting data. In Chapters 4 and 5
we will present the hardware for this task and describe how the
software will interact with it. Now you are ready for the next step
along the path toward making the Apple Connection. That step is
to actually connect the hardware to allow the computer to input
and output data to and from an external device. How do we do
that? To answer that question, read on.

77

Chapter 4

Input and Output
Hardware
for the Apple

IN THIS CHAPTER we will discuss the hardware, internal
and external, necessary to input and output data to and from the
Apple computer. It should be noted that this discussion is meant
for the beginner in computer interfacing and/or computer control.
These discussions are centered around the Apple computer’s input
and output hardware architecture.

The designs shown in this chapter do work, but they are not
shown as the most elegant or efficient, “least-parts-count,” circuits.
Instead, their main function is to instruct. They are calculated to
enable a person who has little or no experience in digital hardware
to understand the major concepts involved in the input and output
of electrical information between the Apple and an external device.
In the chapters that follow we will make use of the information
presented here.

The author is fully aware that this may be your first exposure
to any digital hardware, and that you may feel apprehensive about
the difficulties of the subject. Furthermore, you may not want to
learn about the hardware of the computer in any great detail. But
if you can grasp the essential facts and concepts presented in this
chapter, understanding how other peripheral hardware is inter-
faced to the Apple computer will be much easier. That will be true
even if you never actually design a computer interface for the

78

THE APPLE CONNECTION

Apple computer. Using the information given in this chapter,
you will better understand other manufacturers’ interfaces to the
Apple computer. As we proceed through the discussion, relation-
ships will be pointed out between the hardware described here
and the software given in Chapters 2 and 3.

4.1: BEGINNING OUTPUT ELECTRONICS FOR THE
APPLE

There are four main digital electronic sections that are of concern
when discussing the output hardware for the Apple computer.
These are:

1. The enable circuit for the external device.
2. The READ/WRITE signal.

3. The output strobe signal.

4. The output storage latches.

The four sections operate together to perform the overall output
function. If any one of them fails to operate correctly, the physical
output operation will not work. Let us discuss the function each
section performs in an output operation. As each section is dis-
cussed, we will show how it can be realized with common digital
electronic circuits for the Apple computer.

4.2: THE ENABLE CIRCUIT

To start, we concentrate on the function of the enable circuit in
an output operation for the Apple computer. When an enable
circuit is active, it means the computer will be electrically com-
municating with that output circuit. The computer is capable of
electrically communicating with over 64,000 different circuits.
Therefore, it must have some way of electrically informing any
particular output circuit that it has been selected to communicate
with.

The Apple computer has a built-in enable signal on each of the
eight 50-pin I/O connectors, which were shown in Chapter 2.
Figure 4.1 shows the pinout of an I/O connector slot, with the
number and signal name of each of the 50 pins.

INPUT AND OUTPUT HARDWARE FOR THE APPLE 79

Back of Apple

GND 26 25 45V
DMAIN 27 24 DMA OUT
INTIN 28 23 INTOUT

M 29 22 DBMA
RQ 30 21 RDY
RES 3 20 {70 STROBE
NH 32 19 N.C

—12v 33 18 R/W

—5v 34 17 AIS

N.C. 35 16 A4
™M 36 15 A3

Q 37 14 A12
o1 38 13 AN
USER1 39 12 AI2
®0 40 1M A9
DEVICE SELECT 41 10 A8
D7 42 9 A7
D6 43 8 A6
D5 44 7 A5
D4 45 6 A4
D3 46 5 A3
D2 47 4 A2
D1 48 a3 Al
DO 49 2 A0
+12v 50 1 1/0 SELECT

Front of Apple

Pinout of the 50-pin I/O slot connector located at the rear of the Apple computer.
Redrawn from Apple II Reference Manual, by permission of Apple Com-
puter, Inc.

Figure 4.1~

80

THE APPLE CONNECTION

The enable signal we are interested in is called DEVICE
SELECT. It is output on pin 41 of the I/O connector shown in
Figure 4.1. The bar over the top of the signal name indicates that
when the signal is active, it is a logical 0. That is, when the signal
is doing its electrical job it will be in the logical O state. At all other
times this signal will be in the logical 1 state.

Whenever the computer selects a particular I/O slot to com-
municate with, the DEVICE SELECT line on that I/O connector
will be a logical 0. The DEVICE SELECT line can be activated
under software control, using the PEEK and POKE instructions.
Recall that these two BASIC instructions each include an address.
Thelogical state of the DEVICE SELECT output signal is dependent
on the address specified in the PEEK or POKE instruction. For
example, if we want the DEVICE SELECT line on I/O connector
slot 3 to go to alogical 0, we can PEEK or POKE address —16208.

The DEVICE SELECT line is generated totally by the Apple
computer. Let us assume our computer is operating correctly and
the PEEK or POKE address is correct to generate the DEVICE
SELECT signal. Further, let us assume that this line will go to a
logical 0 whenever we wish to output information from the com-
puter to the output circuit to which the active signal is applied.

4.3: THE READ/WRITE (R/W) LINE

Another hardware signal that we must make use of when per-
forming computer output is the READ/WRITE or R/W line. This
signal is output on pin 18 of the I/0 connector shown in Figure
4.1. The R/W signal is alogical 1 whenever the Apple computer is
reading information from the 1/0 slot, and a logical 0 whenever
the Apple computer is writing data to the 1/0 slot. During a PEEK
instruction, therefore, the R/W line is a logical 1, because the
computer is reading data. During a POKE instruction, the R/W
line is a logical 0 because the computer is writing data. Thisline is
constantly toggling (that is, switching back and forth) between a
logical 1 and a logical 0 even when the computer is not communi-
cating with the output circuit we are designing. This is because
every circuit in the computer makes use of the R/W signal.

The R/W line must be qualified in order for an output circuit to

INPUT AND OUTPUT HARDWARE FOR THE APPLE 81

QUALIFYING ELECTRONICS

SLOT WRITE

>
Yo
RIW This line is a logical 0
is line is a logica
>——f ——= only when the Apple
’ computer is outputting

data to the addressed 1/0
slot.

Signals from the Apple
computer 1/0 slot.

DEVICE SELECT

Block diagram showing how the R/W line must be qualified by the DEVICE
SELECT line to generate the /O SLOT WRITE signal.

Figure 4.2 ~

make use of it. By that, we mean that the hardware must not only
electrically examine the logical state of the R/W line to determine
whether our circuit will be read or written to, but the circuit must
also examine the logical state of the DEVICE SELECT line men-
tioned earlier. That is, the R/W line must be “qualified” by the
DEVICE SELECT line before we can use it in the external circuit.
Figure 4.2 shows a block diagram of exactly what we mean.
Figure 4.3 shows a hardware realization for the qualification of
the R/W line to be used by an output circuit. In Figure 4.3 we see
that the DEVICE SELECT signal is input to pin 1 of the 74LS32,
an OR gate. The 74LS00 family of integrated circuits is widely
available and will be used throughout this book. An OR gate is the
name given to a digital logic device that will produce alogical 1 at
its output only when input A OR input B is alogical 1. When both
inputs are alogical 0, the output is alogical 0. Input A and input B
are shown as pin 1 and pin 2 in Figure 4.3. The 74L.S32 integrated
circuit contains four individual OR gates. The R/W signal is input

82 THE APPLE CONNECTION

DEVICE SELECT

170 SLOT WRITE ENABLE

741532

Schematic diagram showing how to realize the block diagram of Figure 4.2.
Figure 4.3

to pin 2 of the same OR gate. The output line of the OR gate, pin 3,
will be a logical 0 only when both the R‘'W and the DEVICE
SELECT line are a logical 0. That is, we have now “qualified” the
R/W line. The output of the OR gate in Figure 4.3 is given the
name 1/O SLOT WRITE ENABLE. This line is a logical 0 only
when the Apple computer is outputting data to the external cir-
cuit installed in the selected I/O slot.

4.4: THE EXTERNAL OUTPUT STROBE SIGNAL

The next section of the output hardware we will discuss is the
external output strobe signal. Some confusion may arise here,
because there is a signal on the 50-pin I/O slot connector labeled
1/0 STROBE (pin 20 on the pinout shown in Figure 4.1). We are
not discussing that signal. The signal we are discussing is timed
by PHASE (or @) 0. Do not confuse the strobe signal we are
discussing with the I/O STROBE signal.

The external output strobe signal we are discussing informs
the hardware of the exact moment when the computer is present-
ing the data intended for the selected output circuit. In a home

INPUT AND OUTPUT HARDWARE FOR THE APPLE 83

DEVICE SELECT :
logical 1

-
Pin 41 voltage
U logical 0
- voltage

Pin 40

Timing diagram showing the relationship between the DEVICE SELEEZ?
line and the PHASE ($) 0 clock. DEVICE SELECT is in its active (logical 0}
state when PHASE 0 is in its logical 1 state.

Figure 4.4 -~

computer (and most other computer systems), the data to be
written to the output circuit is present for less than 2 millionths of
a second. During that period, the hardware for which the data is
intended must be electrically informed of the presence of data in
order to be “turned on” to accept it. In the Apple computer, the
PHASE 0 signal is used to time the output strobe function. When
the PHASE 0 signal goes to a logical 0 level, the data from the
computer will be present at the enabled output circuit.

Further, the output hardware must use this signal to strobe the
data. By strobing the data, we mean that the data must be electri-
cally stored temporarily in some hardware. The strobe signal is
the write signal that will perform the temporary storing of the
data into the actual hardware.

The Apple computer uses the PHASE 0 signal in the generation
of the DEVICE SELECT signal. (This feature makes the Apple
simpler to interface than many other microcomputers, which are
not designed this way.) Therefore, whenever the DEVICE
SELECT line s active, it is also timed properly to be used by many
I/0 devices to strobe data. Figure 4.4 is a timing diagram showing
the relationship between the DEVICE SELECT signal and the
PHASE 0 clock.

84

THE APPLE CONNECTION

170 SLOT WRITE STROBE

TEMPORARY STORAGE LATCH /

N 4 Do 0o)

—_— ———

48 D1 D1

—_—

47 D2 LD2

—— » —>
Data from the 46 D3 LD3 To external
Apple computer > 45 D4 > LD4 > device the

—_— computer
to the | /O slot. 24 05 —F et E:nfrol.

———— ——

43 Dé LDé

_——* 1 i__»

42 D7 [1s74

—_—

.// \J

All 170 slots use L = LATCHED
these data lines.

Block diagram showing how the data output lines from the Apple computer
will connect to the temporary storage latches located in the 1/0 slot output
circuit.

= Figure 4.5

4.5: THE OUTPUT LATCHES

The final section of the output hardware we will discuss com-
prises the output latches. Qutput latches have the very important
function of temporarily storing the data sent by the Apple computer
to an external circuit. Recall that the POKE instruction included
an address and data. The address will select the I/O slot and the
data specified will be sent to the external circuit. The output latches
will store this data.

The computer will present the data to the input pins of the output
latches. (See Figure 4.5.) At this time, the I/O SLOT WRITE
STROBE signal will strobe the latches. In our system, the 1/O
SLOT WRITE ENABLE and the I/O SLOT WRITE STROBE are

INPUT AND OUTPUT HARDWARE FOR THE APPLE 85

the same signal. After the data has been written into the latches, it
will remain stored there until the computer is again instructed to
write other data to the circuit. To put it another way, when data is
POKED into the storage latches, it will remain there until another
POKE instruction directs new data to the same address.

The data at the output of the latches can now be used to control
any hardware that we desire. At this point, you may not have a
clear picture of exactly what hardware can be controlled. Don’t
worry. We will introduce some examples in later chapters. The
main point to be stressed is that we now have a means of forcing
any single logical line to switch between alogical 0 and a logical 1
level under computer control. We have achieved an important
objective in the interfacing problem. When you understand how
this was done, a major step has been completed.

Now let us take a closer look at the hardware of the output latch
circuits. Figure 4.6 shows the latch devices we will use and the
pin numbers that incoming and outgoing data lines will connect
to. The latches used are 4-bit 74L.S175s. An Apple computer will
transfer eight bits of data during every output operation. For this
application we need two 4-bit latches in parallel to accommodate
the eight data lines. Each latch is strobed at the same time. Data
" from the computer is input to the latches from the Apple data bus
lines D7-D0.

Data from the Apple will be applied to the data input pins of the
741.5175s. Pin 9 of each 74LS175 is the strobe input. When this
line is active it goes from alogical 0 to alogical 1. The data present
at the input of the latch is “captured” and stored internally in the
latch. Recall that when the strobe line is activated, it is in a logical 0
state. When thisline returnstothelogical 1 state, the dataislatched.

We have followed the data, along with the DEVICE SELECT
and R/W signals, out from the pins of the Apple’s I/0O slot, and into
the latches of an I/O board. The data is now latched, and we are
ready to use this data to control an output device.

4.6: THE LIGHT-EMITTING DIODES

The output device that we will be controlling in this first example
will be a series of light-emitting diodes, or LEDs. Eight LEDs are
used, one for each data output line. By using LEDs, we can gain

86

THE APPLE CONNECTION

CARD WRITE ENABLE AND STROBE

APPLE CONNECTOR PINS
25 +5V TO PINS 14 OF 741532,
16 OF 7415175
26 GND TO PINS 7 OF 741532,
8 OF 7415175
741532
DEVICE SELECT
4 Y] N\
). 3
18 2/

OR GATE
DATA from Apple
dota bus. (ATH® LATCHED DATA 1o
9 external circuits.
DO 49 4 2 Do
D1 48 5 7 LD
D2 47 12 10 D2
D3 46 13 15 b3
ll
+5v ‘/\ 7415175
4.7KQYW LATCH
5% ! I‘?
D4 45 4+ 2 LD4
D5 44 5 7 Lbs
D6 43 12 10 D6
D7 42 13 15 LD7
APPLE zONNECTOR PINS

Complete schematic showing the hardware required to interface an output circuit to the Apple
computer.

L_ Figure 4.6

INPUT AND OUTPUT HARDWARE FOR THE APPLE 87

+5v

2y

—;/ LED

LED is forward-biased, and
emits light.

330Q i WATT
R,

\

Schematic diagram of a typical LED connected in the forward-biased mode. J
Figure 4.7

experience in turning on and off selected bits of the output device.
We did this in Chapters 2 and 3 by using the CMS I/O system for
the Apple computer. At this time, you may choose to construct
your own 1/O system using the schematics given in this chapter.

When we turn on and off selected LEDs, we are performing ex-
actly the same function as when we control most types of external
devices. We will now concentrate on how the hardware does its
part of the job.

Figure 4.7 shows a schematic diagram of how the LEDs are
electrically driven to light. We see in this diagram that the LED
has approximately the same electrical symbol as a standard
diode. The difference is that the LED symbol has some arrows
drawn out from it, an indication that the diode is emitting light.

The LED performs approximately the same electrical function
as a standard diode. The important major difference is that when

THE APPLE CONNECTION

+5

N

LED is reverse-biased
and will not emit light.

2 330Q 4 WATT
R)

Schematic diagram of an LED connected in the reverse-biased mode.

= Figure 4.8

the LED is forward-biased, it will emit light. The color of light is
determined by the materials used to fabricate the LED. Typical
LED colors are red, green and yellow. In Figure 4.7 we see that
the anode of the LED is connected to +5 volts. The anode is the
positive (+) side of the device. The cathode, or negative (—) side
of the LED, is connected to one end of a resistor. To turn on the
LED, the other side of the resistor must be connected to ground
potential, or approximately 0.0 volts.

If you have never used an LED before, it might be fun and instruc-
tive to construct the circuit shown in Figure 4.7 and manually
turn on and off the diode. This is done by connecting and discon-
necting the anode to +5 volts. When you do this, try reversing
the connection by interchanging the diode leads, and note what
happens. That is, connect the cathode (—) side of the LED to +5

INPUT AND OUTPUT HARDWARE FOR THE APPLE

volts and the anode (+) side of the LED to the resistor. Connect
the other side of the resistor to ground. (See Figure 4.8.) The LED
should not light under these conditions, because it is now con-
nected in a reverse-biased mode.

Here is how the circuit of Figure 4.7 works. With the anode of
the LED connected to +5 volts, the cathode must be connected
to ground potential to light the diode. There must not be a direct
connection of the cathode to ground. If there were, too much
current would be passed through the LED, and it would burn
up. Therefore, a current-limiting resistor, R1, is required. The
function of R1 is to limit the current to a safe value in the LED
when it is connected in the forward-biased mode. Typical LED
currents are around 10 milliamperes or .01 amperes. This amount
of current will usually give a nice degree of brightness.

Expanding the concept of a single LED to eight, we have the cir-
cuit shown in Figure 4.9. In this schematic diagram, the resistors
R1-R8 are connected at one end to the LEDs, and at the other end
to the outputs of a 7406 integrated circuit. The 7406 will act as a
switch to connect the resistors to ground potential. For example,
when the input pin 1 of the 7406 shown in Figure 4.9 is a logical 1,
the output pin 2 is connected to ground potential. Under these
conditions, the LED is turned on, or forward-biased.

When the input pin 1 of the 7406 is a logical 0, the output pin 2 is
not connected to ground. The output is essentially an open circuit;
that is, no current is passing through it. Under this condition the
LED is turned off. From these two conditions, we see that all we
need to do to turn the LED on and off is to place a logical 1 or a
logical 0 at the input of the 7406. As long as the input stays at a
logical 1 or a logical 0, the LED will remain either on or off.

What we have described and discussed in the preceding sections
is really the essential idea of output-hardware interfacing. The
problem we solved was how to get any amount of information
from a specific place or location to another specific place, with
every bit under precisely planned control in order to accomplish
a particular task. We place alogical 1 or alogical 0 on some digital
input line, and the result is an action taking place in the output
device. In the case just discussed, the action was simply turning
on and off an LED. Although this action is simple, it accurately
reflects the basic principles of output interfacing.

90 THE APPLE CONNECTION
R1 —R8 = 330Q %W
From 7415175 5%
latch outputs
(Figure 4.6) 7406
| I LEDS
|
LDO 1 ' 12 3302
| | R
| {
| |
01 3l 14 %m_m___
| i R2
| |
s ! }6 330Q
LD2
| 1,>G | Ra‘\l 'q
| I
' |
D3 9l 18 33002 mﬁ
l | R4N
| |
I | 330Q
104 N 110 A Iq
| | R5
| |
|
DS il 12 3302
I i R6 V Iq
7 ha
e e e o e Vee
r—F——-—-—-= —
3300
LD6 L

I
330Q
b7 3 I 4
| I RS

+5v

Schematic diagram of the driving circuits for eight LEDs.

— Figure 4.9

INPUT AND OUTPUT HARDWARE FOR THE APPLE

91

The inputs to the 7406 shown in Figure 4.9 will come from the
outputs of the 7415175 latches (shown in Figure 4.6) that we dis-
cussed earlier. Latched outputs, once set, will remain at a logical 1
or a logical 0 until we write another byte to the device using the
POKE instruction. In this way we can turn on and off the LEDs
under computer control. A BASIC program can be generated that
will write data to the output device, causing the hardware to
respond in the manner described. We discussed this type of soft-
ware in Chapter 2.

The overall result will be a turning on and off of different LEDs
under our control via the program written. Simple as it appears,
this experiment is an excellent place to begin addressing the
problem of interfacing different types of external hardware
because it embodies typical elements involved in all present-day
computer output transfers of information.

4.7: HARDWARE FOR INPUTTING DATA
TO THE APPLE

In the preceding discussion, we examined the hardware for
outputting data from the Apple computer. Now, we will turn our
attention to inputting data to the Apple from an outside source.
That is, some external device will output data; this data will be
input to the Apple. The Apple computer can make decisions based
on the input data, store the data, or alter the data in any manner
we desire. We discussed these operations in Chapter 3. Let us
now discuss how to design the hardware that will allow the input
of external data to the Apple computer.

The same general comments we made about the output hard-
ware at the beginning of this chapter apply here. This hardware is
presented mainly for its educational value, to illustrate the basic
concepts involved in computer interfacing. The hardware shown is
very simple and it does work. Like the output hardware discussed
earlier, it has been designed to use standard ‘‘off-the-shelf” inte-
grated circuits, so you can actually construct and experiment
with it. In fact, experimentation of this type is highly recom-
mended prior to designing any interface circuits.

To input data to a BASIC program, we will use the PEEK
instruction described in Chapter 3. The PEEK instruction will

92

THE APPLE CONNECTION

DEVICE SELECT 1
170 SLOT READ
3

2

R/W

Schematic diagram of the hardware necessary to qualify the R/W line during
an input read operation from the /O slot on the Apple computer.

——Figure 4.10

use an address to PEEK from. This address will be logically
decoded to enable the DEVICE SELECT line, which we discussed
in detail in the output section. That is, whenever the software is
performing a PEEK at the correct address for the 1/O slot, the
DEVICE SELECT line will be a logical 0 at the I/O slot connector.

The PEEK instruction will be performing a read function and
the R/'W output line on the I/O slot connector will, therefore, be a
logical 1. (Recall that alogical 0 was used for the write functionon
the same line.) Figure 4.10 shows how the DEVICE SELECT line
and the R/'W line are logically combined to generate an /O SLOT
READ signal. The /O SLOT READ signal shown in Figure 4.10
will be a logical 0 whenever the Apple computer is reading data
from the address of the selected I/O slot.

During the time the Apple is reading the data from the selected
I/O slot, data from the I/O slot is electrically enabled onto the
Apple data lines, as shown in Figure 4.11. In this diagram we see
that the data from the external device will be electrically placed
onthe Appledatalines when the /O SLOT READ signal of Figure
4.10 is active.

Figure 4.12 shows a complete schematic of a circuit that will
input data to the Apple computer from an external source. This
circuit will employ the circuits of Figures 4.10 and 4.11. As you
can see from this schematic, there is very little hardware required.

INPUT AND OUTPUT HARDWARE FOR THE APPLE 93

170 SLOT READ
(from Figure 4.10)

[- g? - (-
D2 >
. 4—05 — DATA oulput from
DATA to be input - = an external device,
to the Apple D4 < to be input to the
computer. DS Apple.
(Db_ -
i D7
DATA LINES used by - S~
all 170 slots. TRI-STATE BUFFERS

(switches) under_
control of the /0
SLOT READ line.

Block diagram indicating that external data is first input to a tri-state buffer.
The buffer outguts are connected to the data lines of the Apple computer.
The /O SLOT D line (shown in Figure 4.10) will enable the buffer outputs
onto the Apple data bus at the correct time.

Figure 4,11 w==

Further, the hardware is simple in its operation. Let us discuss
exactly how the hardware shown in Figure 4.12 operates.
Atthe center of Figure 4.12 is the 7415244 octal, tri-state buffer.
This buffer takes input on pins 2, 4, 6, 8, 11, 13, 15 and 17. These
inputs are labeled CD0-CD?7. (The CD is short for card data,
which is the logical state of the data lines to be input to the Apple
computer.) These inputs are held at either alogical 1 or alogical 0
level. The input pins can hold any digital information desired.
We are not now interested in what data might be input, but for
the purpose of discussion we will assume that these input lines
actually represent some digital information to be sent to the Apple

94

THE APPLE CONNECTION

computer. The objective of this discussion is to show how that in-
formation can be input to the Apple computer. You must be able
to master this hardware before proceeding on to the next step in
the interfacing process.

In our circuit the lines CD0-CD7 will be connected to a DIP
switch. DIP stands for Dual In-line Package. A schematic of this
type of switch is shown in Figure 4.13. We see in this diagram that
one side of the switch is connected to ground. The other side of
the switch is connected to the CD input lines of the 7415244 buffer
shown in Figure 4.12. When the switch is closed, the input to the
741.S244 is alogical 0. When it is open, the input to the 741.S244 is
alogical 1. We are making use of the fact that an open, or floating,
TTL (Transistor-Transistor Logic) input is a logical 1. TTL is a
family of digital electronic circuits. The Apple computer uses
TTL for some of its internal circuits.

By using the switch, we can force any of the eight inputs to a
logical 1 or a logical 0. This data will be sent to the Apple com-
puter. Note that this is exactly how the CMS I/O system we
described in Chapter 3 operated.

The outputs of the 7415244 shown in Figure 4.12 are connected
to the Apple computer data bus lines, D7-D0. The outputs of the
74L.S244 must not be enabled or turned on unless the Apple com-
puter is electrically requesting the data from the input slot. At all
other times, the data outputs from the buffer are set into a tri-state,
or off, mode. This mode will electrically remove the 741.5S244 out-
puts from the Apple data bus. The only time the outputs of the
latch will be placed on the Apple data bus is when the input pins 1
and 19 of the 741.5244 are set to a logical 0. These two pins are
connected to the OR gate, and thus to the Apple s R/W and
DEVICE SELECT lines.

4.8: ENABLING THE TRI-STATE BUFFER

The output of the 7415244 buffer will be electrically placed on
the data bus only when pins 1 and 19 (the enable pins) are a logical
0. When this occurs, it is because the Apple computer is elec-
trically requesting data from the selected I/O slot. This will cccur
during a PEEK instruction. Let us examine how the enable pins
are set to a logical 0 under control of the computer.

INPUT AND OUTPUT HARDWARE FOR THE APPLE

95

APPLE CONNECTOR PINS 741532

J ¥

CARD READ ENABLE

4 YE) l\l

12
OR GATE
8 3 4
R/W 741504
INVERTER
TRI-STATE BUFFER
7415244
1 19 /
o 2 18 2 CDo
oy 8 16 4 CD!1
p2 2 14 6 CcD2
p3 % 12 8 CD3
D4 45 9 n CD4
o5 M 7 13 CD5 -
ps 8 5 15 D6
o7 42 3 V7 cD7
DATA 10 Apple DATA from card, to
dota bus. 10 20 be sent back to the

GND

+5V

Apple.

Complete schematic of the hardware necessary to input an exterral data

byte to the Apple computer from an /O slot.

Figure 4.12 .

96

THE APPLE CONNECTION

When the computer sends out an address that is equal to the
address for the I/0 slot, the DEVICE SELECT line becomes active,
as we saw in our discussion of the mechanics of output. This line
isinput to pin 13 of the 74L.S32 of Figure 4.12. Remember that this
line is active during a write or POKE operation also. Therefore,
we must use the R/W line as a qualifier. When the R/W line is a
logical 1, the Apple computer is electrically expecting some exter-
nal device to send data to it. In Figure 4.12 the R/W line is inverted
via the 74L.S04. When the R/W line is a logical 1, the input pin 12
of the 74LS32 is alogical 0. With both pins 12 and 13 of the 74L.S32
a logical 0, pin 11, the output, is also a logical 0. This pin is con-
nected to the enable input pins 1 and 19 of the 74L.5244.

In review, the following will occur during a read or PEEK
operation from an /O slot:

1. The Apple computer will output the correct address that
will enable the proper DEVICE SELECT line.

2. The R/W line will go to a logical 1. This action will electri-
cally inform the system hardware that the Apple computer
is expecting an external device to place data on the system
data bus. When the R/W line goes to a logical 1, the enable
input pins 1 and 19 of the 74L.5244 are set to alogical 0. At
this time, the data at the inputs of the buffer are placed on
the Apple data bus.

3. During the time the external data is enabled onto the
system data bus, the Apple computer will automatically
read the data. In Chapter 3 we discussed how the software
will use the data that was read.

4. After a fixed period of time (approximately 1 millionth of
a second), the Apple computer will place another address
on the system address bus, and the DEVICE SELECT
signal will go to a logical 1. The address change is per-
formed automatically by the internal circuits of the Apple
computer. A user need not be concerned about forcing
this event to occur. When it does occur, the enable input
pins 1 and 19 of the 74L.5244 will be set to alogical 1. This
action will tri-state, or turn off, the 74LS244 buffer outputs,
which will electrically remove them from the Apple data
bus lines.

INPUT AND OUTPUT HARDWARE FOR THE APPLE 97

TO 7415244
INPUTS

CcDo

(@)

~

Ccb2

CcD3

Ch4a

CcD5

CDs

IATATATANAVA

Ccb7

% G WY W W S

16 PIN DIP SWITCH

This will be used to set
the input data shown in

Figure 4.12. v

Schematic diagram of eight switches used to set the logical level of each ex-
ternal input line at the 1/0 slot. _l

Figure 4.13

4.9: SUMMARY OF INPUT AND OUTPUT

In this chapter we have presented the essential details of input-
ting and outputting data with the Apple computer. The schematics
for the actual hardware were shown and discussed. You can

98

THE APPLE CONNECTION

build these circuits if you want to.

If you understand the information presented in this chapter,
you have taken an important step in the interfacing process. The
next step will be to connect the input and output lines to different
types of external hardware. This will allow the computer to control
other hardware besides the LEDs shown here.

In the next chapter we make use of the hardware and software
concepts we have explored to design a home security system. In
Chapter 6 we will discuss how to use the digital outputs to control
home appliances. We will show how to turn on and off home
lights, coffee pots, toasters and other appliances that plug directly
into the wall.

However, before you attempt to accomplish this, you must
have a good understanding of the information presented in this
chapter. It is recommended that the beginner in computer inter-
facing take the time to construct the circuits presented here. All
of the hardware components are readily available from many
suppliers (see Appendix D), and there are circuit boards available
for wiring up circuits that will plug directly into the Apple
computer’s I/O slots.

101

Chapter 5

An Application of
Computer Interfacing:
A Home Security System

IN THIS CHAPTER we will present the complete hardware
and software system for a possible home security system. The
controlling software for this application will be written in
BASIC. We will use information that was given in Chapters 1-4.
This chapter will help to bring together all of the important points
covered in the first four chapters of this text.

The system to be discussed does work, but like the simple circuits
presented earlier, its primary purpose is instruction. The inten-
tion is to show you one way such a system can be designed. Once
the problem has been solved in some manner, adapting the solution
to a particular case will be much easier. It is hoped that, after you
have been shown one way the Apple computer can be used to
monitor and secure a home, applying this information to your
own home will be straightforward, exciting, and fun. You canuse
this chapter as a starting point for designing other external
systems to be controlled by the Apple computer. By the conclusion
of the chapter, you will see that this is not too difficult a task, and
is a rather enjoyable challenge.

102 THE APPLE CONNECTION

5.1: DEFINITION OF THE PROBLEM

Let us start this overall design with a definition of the problem.
The first step in any design problem is to define exactly what the
system is to do. If the problem is clearly defined at the outset, then
we have a direct path to follow. If we do not know exactly what
we want from the beginning, it will be extremely difficult to
decide as we go along.

A first, general definition is this: The system to be designed and
realized will monitor the status of all doors and windows in a home.
Already we see a problem: there may be some windows that cannot
be opened. These windows will not be monitored. Also, there are
many doors in a home that do not directly lead to the outside. So
let us refine our definition thus: The system will monitor the status
of any door that leads to the outside of the home and any window
that can be opened. Unfortunately, the system definition is still
too vague. What exactly is meant by the term ‘““to monitor the
status” of something? In this case, the term means to indicate
whether the door or window is open or closed.

The security system will determine whether a window or door
is open or closed. If the system determines that a door or window
is open, what action will be taken? That is the next part of the
problem we must define. If a door or window is open, the system
will indicate visually on the CRT screen of the Apple computer
which door or window it is.

Here, now, is the complete definition of the system.

1. The system will monitor every door in the house that
opens directly to the outside.

2. The system will monitor every window in the house that
can be opened.

3. Ifthesystem detects an open window or door, it will visually
indicate this on the CRT screen of the Apple computer.

There are certainly more functions you could design into the
system. It depends on how complex you wish the system to become.
Some systems have been designed to incorporate a modem and a
voice synthesizer to call the police if one of the windows or doors
is tampered with. This example is given only as an illustration of
what can be done. The definition of the system that we have given

A HOME SECURITY SYSTEM 103

-—--1 1---1 1-===-- 1 lemceaa -—
! ! ! !
! ! ! !
! ! ! !
! ! ! ! !
.......... ! | -
1 Il eemmmmece——-
- '
- ! !
1 eescccccecccccmccamcaa- [}
! ! ! ! ! !
! ! ! ! ! !
! ! ! ! ! !
! ! ! ! ! !
! ! ! ! ! !
! ! ! ! ! !
! --1 1---1 1-=-1 1==== --
! !
! HOUSE PLAN
! W=WINDOW, D=DOOR
)
! '
-=1 [

Diagram of the outline of a house. This outline was drawn by the computer.

There are no labels for the doors and windows. These will be added later.

Figure 5.1~

will enable us to highlight the important details of interfacing and
computer control with the Apple, without making the task need-
lessly complex.

5.2: DRAWING THE HOUSE WITH THE COMPUTER

Part of the definition of the problem is to indicate on the screen
of the Apple computer if any of the doors or windows being
monitored are open. This can be done in any number of ways.
The technique we will use starts with an outline of the house,
similar to an architect’s blueprint. This outline will be displayed
on the screen of the computer. Each window or door being mon-
itored will be shown. Figure 5.1 shows exactly what we will draw
on the screen of the CRT.

104 THE APPLE CONNECTION

200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430

PRINT - - - -1 1---1
PRINT”!

PRINT"!

PRINT”|

PRINT''! !
PRINT - - - - - - — - ——
PRINT*! !
PRINT" -

PRINT”

PRINT" -

PRINT! ----

PRINT"! !
PRINT""! l
PRINT*! [
PRINT"| [
PRINT"! !
PRINT| !
PRINT”| -1
PRINT”| b
PRINT"|

PRINT"|

PRINT"’!

PRINT*! 1o
PRINT- _ | [P ”

1-=-=1 1--1 T—===

HOUSE PLAN‘’
W=WINDOW, D=DOOR"

— Figure 5.2

BASIC program for drawing Figure 5.1 on the Apple computer. This program consists of 24 print
stut«iments. Notice that each print statement has 39 characters (including blanks) between the quote
marks.

We see in Figure 5.1 that each room of the house is shown. This
program will be written using standard PRINT statements on the
Apple computer. We could make use of the graphics capability of
the Apple computer for this task, but we will not do that because
we also need text printed. The standard Apple computer will not
allow text to be mixed with graphics without a special software

package.

A HOME SECURITY SYSTEM 105

Also shown in Figure 5.1 is the location of each window and
door that is being monitored. Each deor and window is given a
label. When the system detects that a door or window is open, the
label associated with that door or window will blink in inverse
video. This gives a quick visual indication of the exact status of
any door or window in the house.

Another feature of the program we will write is that the user
will have the option of ignoring any window or door that is open.
For example, suppose it is very hot, and you are purposely leaving
a window in the bedroom open. The program will ask which
windows or doors you wish to ignore. The display on the screen
will show that the door or window is open by staying in inverse
video. However, the label will not blink.

Figure 5.2 is a BASIC program for drawing the layout of Figure
5.1 on the screen of the Apple computer.

5.3: PHYSICAL CONNECTIONS TO THE DOORS AND
WINDOWS

We have now drawn a layout of the house on the screen of the
computer. Next, let us discuss how the physical and electrical
connection to the windows and doors is made. We need a device
that will transform the motion or position of a window or door into
an electrical signal. A common switch will do this.

There are various types of switches that can be used. The type
we will use is installed so that the window or door position will
open or close the switch. Figure 5.3 shows a schematic diagram
of the type of switch to be used.

We see in Figure 5.3 that when a window or door is closed, its
switch will be closed. When that window or door is open, the
switch will be open. We now have a device that will transform a
physical event, a change in position, into an electrical event, the
signal to the computer. '

The electrical quantity the switch uses is resistance. When the
switch is closed, corresponding to a closed door or window, the re-
sistance of the switch is approximately zero ohms. When the switch
is open, corresponding to an open door or window, the resistance
is infinite ohms.

We will use the characteristics of a switch to generate a digital

106 THE APPLE CONNECTION

Window or door
pressure will keep
the switch closed.

Diagram showing one type of switch that can be used to monitor doors and
windows. The pressure of the door or window will keep the switch closed.

— Figure 5.3

voltage signal that can be input directly to the Apple computer.
Figure 5.4 shows how this will be accomplished. One side of the
switch will be connected to the ground of the computer. (We will
explain exactly how to do this later in the discussion.) The other
side of the switch is connected to an input circuit on the Apple
computer, exactly like the circuit described in Chapter 4.

When the switch in Figure 5.4 is open, there will be no electrical
path to ground through the switch. This will allow the input line
connected to the 4.7k-ohm resistor to be pulled up to +5 volts.
This voltage level corresponds to a logical 1 voltage level in the
Apple computer. When the window or door is closed, the switch
will close. This forces the input line connected to the resistor to
ground. Now there is an electrical path established through the
switch to ground. A voltage of ground potential is equal to a
logical 0in the Apple computer. Another way of saying this is that
when the door or window is open, the digital input line to the
Apple computer is equal to +5 volts, which is a logical 1. When
the door or window is closed, the digital input line to the Apple
computer will equal 0.0 volts, or a logical 0.

A HOME SECURITY SYSTEM 107

v

Schematic diagram showing how the switch will be wired. One side of the
switch will be connected to the Apple computer ground and the other side of
the switch will connect to a 4.7k-ohm resistor. It does not matter which side
of the switch is connected to ground.

DIGITAL INPUT CABLE or WIRE from the computer to
to the Apple the door or window.
_ computer. | /
N[y,
- 7
SWITCH on a
+5 volts = Door or window or door.
window is open. When swilch is open,
0.0 volts = Door or I door or window is
window is closed. | | open.
I &4

Figure 5.4~

Knowing this will enable us to examine the status of each door
or window under software control. We can do this using the PEEK
instruction and the software discussed in Chapter 3. Later, we
will give the complete program for controlling the system.

We have discussed in general terms how the switch will be
placed on the door or window to be either opened or closed by the
position of the door or window. Unfortunately, we cannot givean
exact, detailed description of how to install these switches in
your home, because everyone’s windows and doors, and the type
of switches used, may be slightly different.

However, there is a positive side to this. It gives you, the user,
complete freedom to decide exactly how you want to install the
system in your home. It has been the author’s experience that the
end user will usually improve on any method described in a text.
Therefore, this book will give general guidelines that will get you
started in the correct direction.

If you have a number of doors and windows that you wish to

108 THE APPLE CONNECTION

=

& WIRES L, 6 WIRES

Ol suen

AT 4 WIRES

64.- SWITCH

WINDOW —»

2 WIRES

“«€— SWITCH
WINDOW ~3»

APPLE COMPUTER

Pictorial diagram indicating that each switch to be monitored will require two
wires sent back to the Apple computer. There are three switches shown here.

~— Figure 5.5

monitor there will need to be quite a few electrical connections to
the Apple computer. The voltages and currents in the circuits are
very low, so you can use light-gauge wire in the connections.
What is sold as “‘speaker wire’’ has been used very successfully in
an application such as this.*

*A note of caution: Although these wires are insulated, they are not shielded. A sufficient length of un-
shielded wire can act as an antenna, and attract induced pulses, often of very high voltages that can
damage your computer. The chance of this happening in most installations is remote, but in areas
where thunderstorms are common it should be considered. Other sources of induced pulses can in-
clude static electricity, residential power surges and spikes, and local radio transmitters. Don’t! (or
How to Care for Your Computer) by Rodnay Zaks (Sybex, 1981), describes these risks and ways of
reducing them.

A HOME SECURITY SYSTEM 109

SWITCH 1
1 GND LINE to
computer. All
grounds are connected.
——

4 SWITCH LINES
to computer.

SWITCH 2

SWITCH 3

SWITCH 4

98 %

One method of reducing the number of wires that must be connected to the
Apple computer. In this scheme we use only a single ground wire for all of the

switches. Fi 5.6 -
gure 5.

Figure 5.5 shows a block diagram of exactly what is occurring
when one connects the switches to the doors and windows. We
see in this diagram that each switch will require two wires con-
nected to it. This means that for every switch installed, you will
have two wires running back to the computer. This could be a bit
cumbersome.

Figure 5.6 shows one way to reduce the number of wires that
need to be connected to the computer. The idea behind this
diagram is to connect the ground lines of each of the switches

110 THE APPLE CONNECTION

together. After the grounds are connected, a single ground wire
can be connected back to the computer. It should be noted that
it will make no electrical difference which side of the switch is
connected to ground.

5.4: CONNECTING THE HARDWARE TO THE COMPUTER

At this time we have a bundle of wires from the various door
and window switches ready to be input to the computer. The next
step would seem to be to electrically connect the wires to the Apple
computer. However, before we discuss how to do that, we should
examine how to verify that all the wiring to the switches is correct.
We want to insure that all of the switches will open and close, and
we want to determine if the wiring from the switches to the com-
puter is complete or not.

The procedure for checking this involves using an ohmmeter
or a continuity light. An ohmmeter is an instrument that will
allow measurement of resistance in a circuit. In this application,
a closed connection will be approximately zero ohms and an open
connection will be (theoretically) infinite ohms. A continuity light
is a light bulb that will turn on when the resistance is approximately
zero ohms, indicating a closed connection. The light will remain
off for an open connection. The test leads are placed across the
two wires that are connected to any of the switches just installed.
When the door or window is opened and then closed, the ohm-
meter or continuity light will indicate this. That is, the ohmmeter
or continuity light will visually inform you if the switch located at
the door or window is opening and closing at the correct time.
Figure 5.7 shows in pictorial form what we are accomplishing.

If the preceding verification is valid for every switch, we have
assurance that everything is operational up to the point where the
lines are connected to the computer. We will now show how these
lines are input to the Apple computer. Figure 5.8 shows the elec-
trical connections and the digital electronics necessary to input
the signal lines to the computer.

Let us discuss this schematic diagram in detail. On the right-
hand side of Figure 5.8 are the electrical input wires from all of
the switches, labels W1-9 (the windows) and D1-4 (the doors).
One side of each switch is connected to a particular input pin of

A HOME SECURITY SYSTEM 111

SWITCHES

OHMMETER or
CONTINUITY LIGHT

—

Connect meter to
switch leads.

CABLE of wires.))

5.6 5 b b

WIRES from switches.

The physical and electrical connections to the switches can be verified by
using an chmmeter or a continuity light.

Figure 5.7—‘

one of the two 741.5244 buffers, IC3 and IC4. Remember that this
line is also connected to a 4.7k-ohm resistor, as shown in Figure
5.4. The other side of each switch wire is connected to the Apple
computer ground.

Let us now concentrate on exactly how the “W” and “D” input
lines are read by the Apple computer. In Chapter 4 we discussed
the hardware necessary to allow data to be input to the Apple. We

112

THE APPLE CONNECTION

= 4.7KQ

S

ica [2010] 7415244 A»/w |
18 2
To Apple computer / 16 4 . W2
14 6 . W3
SO ? 12 8 . Wi
% 9 1 7 Wh
7 13 *TWs
R/W .
gy~ / 5 15 . W
741500 3 17 W8
741532 / 119 e
B §
@ E 20 10 7415244
IC1 ic2 IC4 N8 2]~ . W
16 4 *— 1
? 14 6 *—p2
Z 12 8 ° b3
s e n D4
7 13 *
741800 | 54550 Z 5 15
3 17
¥
(4 22 2 + /_ 119
IC2
(84—
DEVICE SELECT
Do /]
:: Dl /]
4 02 ;
% 53
45 -
“ 2 %
o X —/
DATA BUS to Apple.
-

+5v

One side of swilch
from windows.

One side of switch
from windows and
(doors.

J

Ground side of
switch from all
windows and
doors.

Complete schematic for the 1/O circuit to connect the Apple computer to the external switches on the
doors and windows.

— Figure 5.8

A HOME SECURITY SYSTEM 113

have essentially duplicated those circuits given in Chapter 4 twice
for this application.

The data will be read into the Apple computer with the PEEK
instruction. One main difference between this circuit and the
circuit discussed in Chapter 4 is that two lines, labeled A1 and A2,
have been added. The lines are input to 74LS00 NAND gates, IC1
of Figure 5.8. These two lines are called address lines. They allow
us to have several addresses associated with each I/O slot in the
Apple computer. In Chapter 4 these lines were not used, because
at that time we only used one address per I/O slot. Now we have
two buffers, and we need two addresses.

The new address for enabling IC3 of Figure 5.8 will be equal to:

PEEK address = 1/O slot address + 2

The 2 sets address line A1 to alogical 1. To enable IC4 of Figure
5.8, the PEEK address will be equal to:

PEEK address = I/O slot address + 4

The 4 sets address line A2 to alogical 1. For example, if we want
to read the logical level of the input lines connected to IC3 of
Figure 5.8, we could do it as follows. (We will assume the circuit
board is installed in I/O slot 5, so the I/O address is —16176.) In
BASIC the instruction would be:

LET B1 = PEEK(— 16176 + 2)

To read the logical levels of the input lines connected to IC4, we
would use the BASIC statement:

LET B2 = PEEK(—16176 + 4)

At the conclusion of these two instructions, the variables B1 and
B2 would be equal to the input weights associated with the open
and closed position of each door and window. What must be done
now is to write the BASIC language software that will examine
the position of each door and window individually.

5.5: SOFTWARE FOR INTERPRETATION OF THE
INPUT LINES

Now that we have an electrical means of entering the logical
conditions of the windows and doors into the program, what do

114 THE APPLE CONNECTION

=

READ PEEKS OF
m DOORS AND WINDOWS [€

(2 FILL DATA ARRAY

y

3) DRAW SCREEN

¥

DISPLAY OPEN DOORS
AND WINDOWS

(4)

GO BACK TO STEP 1

Task flowchart for the major jobs that must be accomplished with the control
software.

— Figure 5.9

we do next? We must pause here and realize exactly where we
stand. At this point in the design of our security system, we are
able to input into a BASIC variable the logical condition of each
switch in the home. That is, we are able to determine with soft-
ware whether a window or door is open or closed.

From this point on, what is done with that particular informa-
tion is totally dependent on the imagination. In our case we want
to inform the user whether any particular window or dooris open
or closed. The point to be stressed at this time is that you are free
to do with the data what you please. This fact leaves the territory
wide open for applying any of the software graphics and clever
tricks you may know how to do.

Figure 5.9 shows a block diagram flowchart of exactly what the
software to be written next will do. In this flowchart the tasks

A HOME SECURITY SYSTEM 115

shown are large ones, corresponding to the subroutines we will
write. In the first block, the PEEK instruction is used to get the
status of the digital signals connected to the windows and doors
into the Apple computer.

In the next block an array called “DATA ARRAY" will be filled.
Each element of this array will have a 1 or 0 in it, based on the
logical value of the corresponding window or door that is being
monitored. In our data array there will be 16 elements, D(1) to
D(16). Each element will correspond to the logical input value of
the signal line shown in Figure 5.8. For example, D(1) equals the
logical value of the W1 input from the external window monitor,
D(2) equals the logical value of the W2 input, D(3) equals the
logical value of the W3 input, and so on.

Notice, in Figure 5.8, that not all of the 16 possible input lines
are used. Therefore, not all of the D array values will be of use.
This is acceptable because it is not necessary to examine all of the
D array values.

Next in the flowchart of Figure 5.9, the software will draw the
outline of the house on the screen. Finally, the software will write
the status of each window and door to the screen.

These are the major software tasks that need to be accomplished
in order to complete the design of our system. In this section we
will discuss the software to implement the first two blocks of the
flowchart in Figure 5.9. These two blocks will read the data at the
/O slot and then fill the data array with the proper 1s and 0s.

We have already seen in Section 4.7 how to read the data into
the Apple computer from an external 1/0 slot. However, it might
be a good idea to summarize the important points of that discussion
here. The BASIC instruction used to input the data is PEEK.
There will be two PEEK instructions necessary to read the entire
16 data lines that were shown in Figure 5.8.

The data read into the Apple computer from the input slot will
be stored into an array. We will name the array “A,” in order to
allow for any future expansion of the number of input lines for
the system. Array A will have only two entries at this time, A(1)
and A(2).

A(1) will store the summed weight of the data lines from IC3 of
Figure 5.8, and A(2) will store the summed weight of the datalines
from IC4 of Figure 5.8.(These integrated circuits are 74L.5244s,

116 THE APPLE CONNECTION

octal buffers with eight output lines each.) Recall that the summed
weight can be any number from 0 to 255, inclusive.

You should also remember that the PEEK address is dependent
on the address of the I/O slot into which the external card is in-
stalled. These addresses were given in Chapter 2, in Figure 2.7. In
the program we are writing we will use the more general name
“I/O add” to mean the number that corresponds to the I/O address
of a particular slot in the Apple computer. For the program to
actually work, of course, you would need to use a real address,
such as —16192 for I/O slot 4, for example.

The two PEEK instructions used are:

LET A(1) = PEEK(/O add + 2)
and
LET A(2) = PEEK(I/O add + 4)

These two instructions will store the summed weight of the 16
data input lines into the array A.

Data is now stored into the BASIC program. The next step will
be to fill the data array D with the proper 1s and 0s. The list of the
corresponding D array elements and the window or door each
represents is shown in Figure 5.10.

The subroutine for filling the data array with the correct values
is shown in Figure 5.11. We will first show the entire routine and
then break each instruction down and provide further explanation
where it is required.

In lines 500 and 510 the variable R2 will be set equal to the
number of the A array element set by the value of T. This subroutine
will be called for each element of the A array. In our program this
subroutine will be called twice: once with T equal to 1, and
another time with T equal to 2.

The instruction:

520 FORI=FTOF +7

will be the start of the FOR/NEXT loop. The variable F will be set
prior to calling this subroutine, and will determine the starting
element of the data array. Each time the subroutine is called,
eight elements of the data array are filled. The first call or GOSUB
will be with F equal to 1, the next GOSUB will be with F equal to 9.

A HOME SECURITY SYSTEM 117

Data Array Value

D(1)
D(2)
D(3)
D(4)
D(S)
D(6)
D(7)
D(8)
D(9)
D(10)
D(11)
D(12)
D(13)
D(14)
D(15)
D(16)

Window or Door

Wi

w2

W3

w4

W5

W6é

w7

w8

w9

D1

D2

D3

D4
NOT USED
NOT USED
NOT USED

List of the “D” (data) array elements and the corresponding “W” or “D” input

line each one represents with software.

Figure 5.10 —

500
510
520
530
540
550
560
570
580

LETR1=128
LET R2=A(T)
FORI=FTOF+7
IF R2—R1 < O THEN 560
LET R2=R2—R1
LET D(I)=1
LET R1=R1/2
NEXT |
RETURN

This subroutine will fill the data array.

Figure 5.11 —

118 THE APPLE CONNECTION

530 IFR2 — R1 < O THEN 560
540 LETR2=R2 —RI
550 LETD()=1

The value of D(I) was originally set to zero. It will be changed by
the weight of any D array element tested if the weight was used
in the summation. This is exactly the same type of operation we
described in Section 3.5 of this text. A program similar to this was
shown in Figure 3.9.

560 LET Rl = R1/2
570 NEXT |
580 RETURN

Line 560 will compute a new value of R1, which will be the
weight of the next lower data input line to test. R1 will start at 128,
which is the weight of D7. R1 is set to 128 in line 500 of the
subroutine.

The way in which the subroutine just described will be called
by the main program is shown in Figure 5.12.

Atthistime the data has been input and the data array D is filled
with the corresponding 1s and 0s for the logical inputs of the win-
dows and doors being monitored by the computer.

5.6: SIMULATION OF ALL WINDOWS AND DOORS FOR
PROGRAM DEVELOPMENT

Now we are ready to start writing the software to display the
results on the screen. This type of software development is an
empirical, trial-and-error process. That is, we make a first pass at
what we think the output display should look like. Then, based on
what we see, we adjust the program to make the output more
visually pleasing.

When we are doing this type of program development, it would
be useful to be able to simulate the opening and closing of any
combination of doors and windows. Of course, we could simply
go into the room where the door or window is and open or close
it. However, the computer is usually located in a different spot
than the doors and windows being monitored. It would be tedious
and frustrating to have to get up from the computer each time we

A HOME SECURITY SYSTEM 119

95 REM: READ WINDOWS AND DOORS (LINES 100—110)
100 LET A(1)=PEEK(l/O add + 2)
110 LET A(2)=PEEK(I/O add + 4)
115 REM: SET D ARRAY EQUAL TO ZERO (LINES 120—140)
120 FORI=1TO16
130 LET D(1)=0
140 NEXT|
150 LETT=]
160 LETF=1
170 GOSUB 500 REM: CALL THE SUBROUTINE
180 LETT=2
190 LETF=9
200 GOSUB 500 REM: CALL THE SUBROUTINE AGAIN

A section of the main program with the subroutine calls.

Figure 5.12 —

wanted to try a different combination of doors and window settings.

There are two possible ways to remedy this situation. One way
involves hardware, and the other way involves software. The ob-
jective of each technique is to allow the data array, D, to be filled
with any combination of 1s or Os that we wish. This will simulate
any combination of windows or doors being open or closed.

The hardware technique involves building a switch box that
will connect to the I/O slot in place of the cable from the switches
located in the doors and windows. This is shown in Figure 5.13.
Using this technique, we can simply run the existing program
and flip a switch on the box to change the status of any door or
window being monitored.

The software technique for simulation can be as exotic as you
wish. However, it should be kept in mind that this is a short-term
effort. The program will not be used much, if at all, once the system
is developed. Let this fact guide you in the amount of time spent
on its creation.

The program we will show asks the user what the value of each
element of the D array is to be. The user will enter the value 1 or 0

120 THE APPLE CONNECTION

COMPUTER CABLE of wires from
actual window and
door switches.

000000
000000

This CABLE plugs into
slot where actual
cable was removed.

\
s

SIMULATION BOX (Box of switches
that will simulate the opening and
closing of different doors and
windows.)

The cable from the external window and door switches can be disconnected
from the Apple computer and a simulator 'switch” box can be connected in its
place. This type of simulating hardware can be used for software development,
and for system debugging.

~ Figure 5.13

for each element. In some cases the user will want to change only
one of the array values. This program has the ability to do this also.

After the D array values are set, the program will jump directly
to the section of the main program that will output the display.
This program is appended to the main program during the soft-
ware development stage. When the development is complete, the
program may be deleted. This program is shown in Figure 5.14.

At line 200, the final GOTQO, you would jump to the location in
the main program where the system is outputting the screen infor-
mation based on the values in the data array.

If you choose to perform the simulation using hardware, you
can follow the schematic shown in Figure 5.15. We see in this

A HOME SECURITY SYSTEM 121

10 DIMD(16)
20 PRINT DO YOU WANT TO CHANGE ALL OF THE VALUES”
30 INPUT G$
40 IFG$=""Y" THEN 100
50 PRINT “ENTER THE DATA ARRAY NUMBER TO TOGGLE”
60 INPUTY
70 IFD(Y)=1THEN 85
75 LETD(Y)=1
80 GOTO 200
85 LETD(Y)=0
90 GOTO 200
100 FORI=1TO 16
110 PRINT “DO YOU WANT D(*;1;”") = 1
120 INPUT G$
130 IFG$="Y" THEN 160
140 LET D(1)=0
150 GOTO 170
160 LET D()=1
170 NEXT |
200 REM: GOTO main program

This routine will simulate the opening and closing of various doors and win-
dows. When software development is completed, you can delete these lines.

Figure 5.14 -

diagram that each switch corresponds to one of the windows or
doors being examined in the system. This type of simulation also
has the advantage that it can be used as a debugging tool in the
event your system becomes defective. The simulation box can be
installed and used to verify that all of the interface hardware in
the /O slot is operational.

5.7: MASKING OFF THE ALARMS WITH SOFTWARE

Sometimes, you will not want the fact that a window or door is
open to be the cause of an alarm. For example, when it is very hot,
you may wish to leave a window or door open. It is possible to

122 THE APPLE CONNECTION

SWITCH BOX

wa | “¢ e
INPUT
LINES to < I LINES to
Apple. W5 l | Apple.
¥ oco—e¢oco——
I I

o————— > INPUT

GND to Apple.

Schematic diagram of a hardware switch box.
= Figure 5.15

mask off any window or door that you do not wish to alarm. (If
you design a more elaborate security system with a sound alarm,
or even a connection to the police, the masking capability will be
especially important.) In this section we will write the software to
do that.

The program will ask the user which window number or door

A HOME SECURITY SYSTEM 123

DIM M(16)
REM: INITIALIZE THE MASK ARRAY TO ZERO (UNMASK ALL ALARMS)
FORI=1TO 16
LET M(1)=0
NEXT |
FOR!=1TO 16
PRINT “DO YOU WANT TO MASK OFF M(“;1;")"
ENTER A$
IF A$="N" THEN 100
M()=1
NEXT |

888383888 nwa

1

This routine will mask off any alarm you choose.

Figure 5.16 -

number to mask off. The results of these questions will reside in
an array labeled M. This array will have as many elements as the
data array we discussed earlier. If an element of the mask, or M,
array is equal to alogical O (that is, if the user types “N”), then the
alarm is not masked. If the entry is equal to a logical 1, then the
alarm is masked. For example, if we wanted to mask the alarm on
door D1, then M(9) = 1. The program is shown in Figure 5.16.
At the end of this program, all of the masks will be set.
Remember that if the entry into the M array is a logical 1, then the
mask is set. If the entry is alogical 0, then the mask is cleared. This
array will be used when the computer generates the correct

display on the Apple screen.
5.8: THE COMPLETE SYSTEM

So far in this chapter, we have separately presented most of the
software and hardware pieces for the system. In this section we
will bring all of these pieces together and show the software for
the entire system. The software will be broken into functional
parts. Each part will be nearly the same as a previous section we
have presented. The new sections of the program will be explained
fully. The program shown in Figure 5.21 comprises the software

124 THE APPLE CONNECTION

necessary to complete the entire system. First, let us look at the
program so far, shown in Figure 5.17. Statements 10-620 will ask
for masked alarms to be input, and then draw the outline of the
house on the screen. Finally, the system will input the status of the
windows and doors. This will be the print section to fill in the
display outline for the screen.

5
10
20
25
30
40
50
60
70
80
90

100
110
120
130
140
150
195

210
220
230
240
250
260
270
280
290

200

L Figure 5.17

REM: LINES 10— 150 WERE DESCRIBED IN SECTION 5.8
DIM A(5), D(16), M(16), W$(32), P$(2)
HOME
REM: INITIALIZE THE MASK AND DATA ARRAYS (LINES 30— 60)
FORI=1TO 16

LET D(1)=0

LET M(1)=0
NEXT |
PRINT ‘DO YOU WANT TO MASK ANY WINDOWS OR DOORS 2"/
INPUT A$
IF A$=""N"’ THEN 200
FORI=1TO 16

PRINT ‘DO YOU WANT TO MASK M("*;1;"*)";

INPUT A$

IF A$="N" THEN 150

LET M(1)=1
NEXT |
REM: LINES 200 — 430 WERE DESCRIBED IN SECTION 5.3
PRINT - - - -1 b-—-1 | [P | I [P
PRINT"| ! !
PRINT""! ! !
PRINT*| I !
PRINT"’ ! ! !
PRINT - - - — - - - — - — ! !
PRINT"'! I e oo
PRINT" - !
PRINT”
PRINT'— !

A HOME SECURITY SYSTEM

125

300 PRINT"] = ——-emmmmm————— o=
310 PRINT! !
320 PRINT”! !
330 PRINT”! !
340 PRINT”! !
350 PRINT! 1
360 PRINT”! !
370 PRINT”! --1 V---1 1--1 1----
380 PRINT! [

390 PRINT”! HOUSE PLAN"

400 PRINT“! W=WINDOW, D=DOOR"
410 PRINT”|

420 PRINT”! 1

430 PRINT"- -1 | "

440 LET A(1)=PEEK(I/O add + 2) : REM GET THE STATUS (SECTION 5.6)
450 LET A(2)=PEEK (170 add + 4) : REM GET THE STATUS (SECTION 5.6)
460 LETT=1

470 LETF=1

480 GOSUB 530 : REM FILL DATA ARRAY (SECTION 5.6)

490 LETT=2

500 LETF=9

510 GOSUB 530 : REM FILL DATA ARRAY (SECTION 5.6)

520 GOTO 700 : REM END OF THIS FIRST SECTION OF CODE

525 REM: LINES 530—610 FILL THE DATA ARRAY (SECTION 5.6)

530 LETR1=128

540 LETR2=A(T)

550 FORI=FTOF+7

560 IF R2—R1<0 THEN 610

570 R2=R2—-R1

580 D()=1

590 R1=R1/2

610 NEXT!

620 RETURN

The program so far.

Figure 5.17 (cont.) ==

126 THE APPLE CONNECTION

The following will be a new section of code. This section will
compare the logical input data from the windows and doors
against the mask data and, based on this comparison, will write
different information to the screen. There are three possible con-
ditions to write to the display:

1. ALARM. The display will blink the window or door
number.

2. ALARM but MASKED. The display will show the number
in inverse video.

3. NO ALARM. The display will show the window or door
number without blinking or reverse video.

To set up this new section of code, several items of detail must
be taken care of. First, we have not yet labeled the various doors
and windows on our screen display of the outline of the house.
We must now assign the letters and numbers that will define the
label for each door or window. In our system we have used two
letters for this purpose: windows are labeled W1, W2, etc., and
doors are labeled D1, D2, etc. We need to incorporate these labels
into a string variable, labeled W$.

(It should be stressed here that this method, using a string
variable, is only one way to realize this function. Like many other
solutions to particular problems offered in this book, it is meant
to show guidelines for the reader who wants the simplest solu-
tion. After you have seen the problem solved one way, it will be
easy to modify the solution to suit a particular application.)

The string variable W$ was dimensioned in line 10 of this pro-
gram to a length of 32. This will give us room for 16 different
labels of two characters each. We will use only 13 of the possible
labels. Again, this may be expanded for any number of different
labels.

W$ will equal:

W$ =" WIW2W3W4W5WEW7WBW9ID1D2D3D4"

We can see from this variable that all of the labels are embedded
in the single string W$. The software will extract the two-letter
label as needed.

The next detail to be taken care of is the location of the various
labels on the Apple screen. Using the standard Apple PRINT

A HOME SECURITY SYSTEM 127

function, not graphics, the screen is composed of a grid 40
characters wide by 24 characters deep. This grid is shown in
Figure 5.18. We must decide where in the grid each label will
reside.

We stated earlier that this type of program development is
usually done empirically. That is, we take a best guess, and then,
based on how the display looks, we adjust the software according
to which numbers must move. Each position on the screen grid
will be defined by its x-y coordinates. Notice from Figure 5.18
how the grid is numbered.

After we decide what the x-y placement of the first character
will be for each label, the information is entered into the program
using data statements. For our program the data statement will
appear as:

DATA (x,y,x.Y.X, Y. %,Y)

Each x and y pair in the data statement will represent the x-y
coordinates of a label to be printed on the screen. The printing
starts with the label W1 and proceeds through all the labels
shown in W$.

With this introduction, let us write the next section of code,
shown in Figure 5.19. This section of code will examine the D and
M arrays and decide if an alarm is present. There are three possi-
bilities, as stated before. The variable shown as Q1 willbe setto a
1, 2, or 3 depending on the alarm. Q1 will be equal to 1 if there is
no alarm, to 2 if there is an alarm but it is masked, and to 3 if there
is an alarm. H1 and V1 are the horizontal and vertical positions.

The following section of code, shown in Figure 5.20, will be the
subroutine that will print the label of the door or window on the
screen in the correct video format. The subroutine will assume that
H1 and V1 are set to the correct horizontal and vertical positions
on the screen grid. O1 will be the variable that determines the
video format for the print. Finally, P$ will be set to the two letters
of W$ that will be printed.

At the end of this subroutine the screen will be updated and the
status of all windows will be shown. The program can then be run
as often as desired. If you do not want to enter the alarm masks or
draw the house outline each time the program is run, then start
execution from line 440. The complete system program is shown
in Figure 5.21.

128 THE APPLE CONNECTION

1 234567 8 91011121314151617 181920 2122 23 24 25 26 2728 29 30 31 32 33 34 35 36 37 38 39 40

D N> U hH W -~

0

o

~

o

=

o

&

3

3

8

~

N
[N

N
w

[N
&

Grid layout of the Apple screen. The screen on the Apple is 40 characters wide by 24 lines deep. (That
is why there are 24 print statements in Figure 5.2.}

l— Figure 5.18

700 DATA 6,1,14,1,24,1,37,7,27,17,20,17,14,17,2,22,2,9

710 DATA 9,22,35,7,34,1,32,9

720 RESTORE

730 LETT=1

740 FORI=1TO 13 : REM: 13 IS THE MAX NUMBER OF LINES TO CHECK
750 READHI W

760 IFD(1)=0THEN Q1 =1

770 IFD(1)=1 AND M(I)=0 THEN Q1 =3

780 IFD(1)=1 AND M(l)=1 THEN Q1 =2

790 P$=MID$(W$,T,T+1) : REM: P$ IS A TEMPORARY VARIABLE EQUAL TO

= Figure 5.19

A HOME SECURITY SYSTEM

129

795 REM: THE LABEL OF THE DOOR OR WINDOW EXTRACTED FROM W$
800 T=T+2

810 GOSUB 900

820 NEXTI

830 STOP : REM CONTROL IS COMPLETE

This routine examines the D and M arrays to decide if an alarm is present.

Figure 5.19 (cont.) —~

900 VTAB(V1)
910 HTAB(H1)
920 IF Q=1 THEN NORMAL: PRINT P$
930 IF Q1 =2 THEN INVERSE: PRINT P$
940 IF Q1 =3 THEN FLASH: PRINT P$
950 RETURN

2000 END

This section of code will print the labels of the doors and windows in the correct video format.

Figure 5.20 —

10 DIM A(5),D(16),M(16), W$(32), P$(2), A$(5)
15 W$ = “WIW2W3IWAW5SWEW7WBWOD1D2D03D4"’
20 HOME
30 FORI=1TO16
40 LETD() =0
LETM(I) =0
NEXT |
GOTO 1000
PRINT ““DO YOU WANT TO MASK ANY DOORS"
72 PRINT “OR WINDOWS*
80 INPUT A$
90 IFA$ = N’ THEN 200
100 FORI=1TO 16
110 PRINT DO YOU WANT TO MASK M("’;1;”)";
120 INPUT A$

3588

Figure 5.21 —

130 THE APPLE CONNECTION

130
140
150
200
205
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
3%0
400
410
420
430
440
450
460
470
480
490

M Figure 5.21 (cont.}

IF A$ = “N" THEN 150
LETM()) =1

NEXT |

HOME

PRINT - - - - 1 1---1

PRINT”

PRINT'|

PRINT"

PRINT" !

PRINT - - - - - -

PRINT"| !

PRINT" -

PRINT

PRINT" -

PRINT”| --

PRINT"| !

PRINT"| !

PRINT") !

PRINT*| !

PRINT'! !

PRINT” !

PRINT| -

PRINT| [

PRINT”|

PRINT"|

PRINT’|

PRINT"'! 1

PRINT" - - | ”

LET A(1)=PEEK(— 16176 + 2)

LET A(2)=PEEK(—16176 + 4)

LETT =1

LETF =1
GOSUB 530
LEYT =2

HOUSE PLAN"
W=WINDOW, D=DOOR"

: REM /0 ADDRESS = SLOT 5

A HOME SECURITY SYSTEM

131

500 LETF=9

510 GOSUB 530

520 GOTO 700

530 LETR1 =128

540 LETR2 = A(T)

550 FOR|I=FTOF 47

560 IFR2 — R1 < 0 THEN 610
570 R2 =R2 — R]

580 D() =1
590 RI=Rl1/2
610 NEXT|

620 RETURN

700 DATA7,1,15,1,26,1,37,9,29,18,23,18,15,18,4,22,2,10
710 DATA 9,21,36,18,35,2,30,10

720 RESTORE

730 LETT =1

740 FOR! =1TO13

750 READ H1,V1

760 IED(I) =OTHENQI =1

770 IFD() =1 ANDM() = OTHENQI = 3
780 IFD(I)=1ANDM(I) = 1 THENQI = 2
790 P$ = MID$ (W$,T,2)

800 T=T+2

810 GOSUB 900

820 NEXTI

830 GOTO 400 : REM FINISHED WITH A SINGLE PASS
900 VTAB (V1)

910 HTAB (H1)

920 IF Q1 = | THEN NORMAL : PRINT P$
930 IF Q! = 2 THEN INVERSE : PRINT P$
940 IF Q1 = 3 THEN FLASH : PRINT P$

950 NORMAL

960 RETURN

970 END

A complete software program for controlling the security system presented in this chapter.

Figure 5.21 (cont.)

J

132 THE APPLE CONNECTION

5.9: SUMMARY

In this chapter we have presented the complete design of a
home security system using the Apple computer as the system
controller. The chapter started with a clear definition of the de-
sign. From there we discussed the hardware necessary to realize
the interface, and after the hardware was shown, the software
was presented.

The details presented in this chapter are very typical of com-
puter-controlled systems. That is, once the hardware interface is
designed and connected, the problem becomes one of writing the
software to control it.

We have also presented some guidelines for program develop-
ment. This is useful when the external hardware is cumbersome
to use or is not complete. The system shown in this chapter was
designed to illustrate general principles, and its primary use is for
instruction. However, if you can understand the major parts of
this system, then construction of another, more elaborate system
will be a much easier task.

135

H

Chapter 6

Interfacing the Apple to
Home Appliances

WE HAVE LEARNED how to connect the Apple computer
so0 as to monitor a system of switches and display their output on its
screen. These switches were electrically connected directly to the
Apple, and needed no other power supply in order to operate. But
you may have imagined applications that require the Apple to
turn on and off some home appliance that draws power from a wall
socket. Can this be done? Yes. The Apple (or any other computer)
is certainly capable of performing this task. However, the task
cannot be performed directly. There must be some intermediate
hardware used that allows the computer to turn on and turn off
the appliance. The purpose of this chapter is to show how the
computer can be interfaced so as to accomplish this control. It
may come as a surprise to some that the job is not difficult. By using
the information given in this chapter, you will be able to turn on
and off most 120/220-volt AC appliances in the home.

Note—For the only time in this book, we are discussing systems
that involve connections to a standard 120/220-volt AC wall socket.
Working with AC line voltages requires care and prudence. Errors
made here can have much more serious consequences than
errors made in executing the other designs shown in this book.

136 THE APPLE CONNECTION

6.1: BLOCK DIAGRAM OF THE PROBLEM

We have stated that the computer can be used to turn on and off
home appliances by means of external hardware. The additional
hardware needed will be explained in block diagram form in this
section. We begin with ablock diagram so you may see the overall
outline of the problem before studying the details.

Figure 6.1 shows a block diagram of a system that allows the
computer to turn on and off the AC appliances in your home.
Notice, in this diagram, that the Apple computer will output a
logical 1 or a logical 0 voltage. We have already discussed what
was meant by these voltage levels, in Chapters 2 and 4 of this text.
In review, a logical 0 voltage for the Apple computer (and for
most home and personal computers) will be approximately 0.0
volts, and a logical 1 voltage will be approximately 5.0 volts.
These two voltages are what the Apple computer is capable of
outputting at the I1/O slots. For the Apple computer to directly
control any external piece of hardware, that device must electri-
cally ““accept” either 5.0 volts or 0.0 volts. That is, these voltages
must control the flow of the much higher voltages the appliances
actually use. To do this, another, intermediate hardware device is
necessary.

In Figure 6.1 the logical 1 or logical 0 output from the Apple
computer is input to a block labeled *solid state relay.” The solid-
state relay (SSR) transforms the +5 or 0.0 volts output from the
Apple computer in a manner that will control an appliance that
requires 120/220 volts.

This is not a new concept. It is very similar to the low current in
an automobile ignition system that closes a starter relay, allowing
many amperes of current to flow into the starter motor. The
starter switch controls the smaller current flowing into the starter
relay, and the starter relay controls the high current. This concept
isillustrated in Figure 6.2. We can think of the Apple computer as
the starter switch controlling the solid-state relay, which is
analogous to the starter relay.

In Figure 6.1 the Apple computer outputs alow control voltage,
alogical 1 or a logical 0 that allows the solid-state relay to control
the higher voltage required for home appliances. The solid-state
relay performs essentially the same function as a switch. When

INTERFACING THE APPLE TO HOME APPLIANCES 137

PLUG to wall socket

~\

APPLE COMPUTER
N
LOGICAL1 ORO
/ - +
SOLID-
STATE
RELAY
-] —
120V or 220V
AC APPLIANCE
—a

Block diagram showing the Apple computer controlling a solid-state relay,
which in turn controls the AC appliance. Therefore, the Apple computer
controls the AC appliance.

Figure 6.1

current is output from an Apple computer /O circuit to the solid-
state relay, the switch is closed, and when current is not output,
the switch is open. When the switch is open, no AC current will
flow, and the appliance is turned off. When the switch is closed,
the standard house current (120/220 volts) will flow, and the
appliance is turned on. In effect, when current flows from the

138 THE APPLE CONNECTION

STARTER
RELAY

LOW CURRENT x HIGH CURRENT

yn N2
7 -
v v v STARTER

© MOTOR

—e

[| I |

- +

; 7 12-VOLT
BATTERY

A common example of a low-current switch controlling a high-current
switch is the starter system in an automobile. The low-current switch is the
starter switch (or ignition); the high-current switch is the starter relay.

== Figure 6.2

Apple computer to the solid-state relay, the appliance is turned
on. When current does not flow from the Apple computer to the
solid-state relay, the appliance is turned off.

Ultimately, our software problem, after the hardware is all con-
nected, will be to generate a logical 1 or alogical 0 at an I/O slot in
the Apple computer. This is exactly the same problem we solved
in Chapter 2 of this text. First, let us examine the hardware,
beginning with the solid-state relay.

INTERFACING THE APPLE TO HOME APPLIANCES 139

ACLOAD
+
Computer signals to —
turn the AC switch on - AC
and off.
WALL
PLUG

Low voltage,

low current side. AC high voltage,

high current side.

Block diagram of the typical external connections on a solid-state relay. One
side of the relay is for the low-voltage control lines. The other side is for con-
necting the AC load.

Figure 6.3—

6.2: HOW THE SOLID-STATE RELAY OPERATES

Without going into more detail than necessary, we will explain
how the solid-state relay operates. This discussion is undertaken
so you will have a user’s knowledge of the operation of solid-state
relays. Figure 6.3 shows a block diagram of the solid-state relay.

We see in Figure 6.3 that one side of the solid-state relay is used
for the AC connection. This will be connected in the same way as
a switch: oneline to the AC source, the wall socket, and onelineto
the AC load, the appliance. The other side of the solid-state relay
is used for the low-voltage input control lines. A data sheet for a
typical solid-state relay is shown in Figure 6.4.

Let us focus our attention on the low-voltage side of the relay
diagram shown in Figure 6.3. Figure 6.5 shows a pictorial dia-
gram of what is internal to the solid-state relay on the low-voltage

140

THE APPLE CONNECTION

—— Figure 6.4

Electrical Specifications (25°C unless otherwise specified)

INPUT CHARACTERISTICS

DC INPUT MODELS (with “D"* Prefix)

Control Voltage Range 31032 VDC
Max. Reverse Voltage -32VDC
Max. Turn-On Voltage (- 30°C € TA < 80°C) 3ovDC
Min. Turn-Off Voltage (- 30°C € TA € 80°C) 1.0VDC
Min. Input Impedance 1500 Ohms
Max. Input Current 4mA (@5 VDC)

20mA (@28 VDC)

Max. Turn-On Time (60 Hz) 8.3 msec

Max. Turn-Off Time (60 Hz) 8.3 msec
OUTPUT CHARACTERISTICS 240 VAC
MODEL AC Control Az2402 A2410 A2425 A2440 - Uni
NUMBERS DC Control D2402 D2410 D2425 D2440 D2475 A
Operating Voltage Range 47-63 Hz 48-280 V(RMS)
Max. Load Current (See derating curves) .5 10 25 40 75 A(RMS)
Min. Load Current 50 mA(RMS)
Transient Overvoltage 500 V(peak)
Max. Surge Current (Non-Repetitive)

16.6 ms (See surge curves) 225 120 250 625 1000 Alpeak)
Max. Over Current (Non-Repetitive) 1 sec. 5 22 40 80 150 A[(RMS)
Max. On-State Voltage Drop @ Rated Current 3.5 1.6 1.6 1.6 1.8 V(peak)
Max. I2T for Fusing (8.3 ms) 21 60 260 1620 4150 Asec
Thermal Resistance, Junction-to-Case,

RG]'C lT; Max. = 115°C) 8.5 1.48 1.02 0.63 0.18 °*CIwW
Power Dissipation @ Max. Current

(See dissipation curves) 8.3 12 29 46 82 Watts
Max. Zero Voltage Turn-on 30 V(peak)
Max. Peak Repetitive Turn-on Voltage 12 V(peak)
Max. Off-State Leakage Current

@ Rated Voltage (- 30°C & TA < 80°C) 10 mARME)
Min. Off-State dv/dt [Static) 200 Vius

@ Max. Rated Voltage
GENERAL CHARACTERISTICS—ALL MODELS
Dielectric Strength 50/60 Hz: 2500 V(ps) All models are U.L. recognized and CSA certified
Insulation Resistance @ 500 VDC: 1010 Ohms except D2475, D4840 and D4875
Max. Capacitance Input/Output: 8pf which are pending.

Ambient Temperature Range: Operating: -30°C to B0°C

Storage:

-40°C to 120°C

Photograph of a typical solid-state relay, with relevant sections of the manufacturer’s data sheet.
(Courtesy of International Rectifier, Crydom Division of IR Corporation.)

INTERFACING THE APPLE TO HOME APPLIANCES 141

SOLID-STATE RELAY
- - - — — /7 /7 /7
alll A |
= — !
| N T ' -
N | LIGHT- | AC
| —— > | SENSITIVE | I
| LGHT | SWITCH |--I—<
- | EMITTING l_ _l |
R E— DIODE —_——_—— |
-
Low-voltage side of
SOLID-STATE RELAY
Diagram showing what is inside the solid-state relay package. The low-
voltage side is internally connected to an LED. The AC side is connected to a
light-sensitive switch.

Figure 6.5—

side. In Figure 6.5 the input terminals of the -SSR on the low-
voltage side are connected to a light-emitting diode (LED).

One side of the SSR input is labeled “+”, and is connected
internally to the anode of the LED. This side will be externally
connected to + 5 volts, a convenient voltage output from the Apple
computer. The specifications shown in Figure 6.4 give a ““control
voltage range” from 3 to 32 volts on the positive input terminal, so
the Apple’s output voltage is acceptable.

The negative (—) low-voltage input to the SSR shown in Figure
6.5 is connected internally to the cathode of the light-emitting
diode. When the negative terminal of the circuit is connected to
ground potential, the internal light-emitting diode shown in Figure
6.5 will light and emit photons. The photons will strike an internal
light-sensitive switch. This is the switch that will actually conduct
the AC current. While the photons are striking the light-sensitive

142 THE APPLE CONNECTION

+5v
+
3.3mA —>»
SSR
Data
from 1 2 _
output ”
latch 7406 \
SSR current = 3.3 mA when ON
1 =0N
0 = OFF
Logic circuit for turning the solid-state relay on and off.

Figure 6.6

switch within the SSR, the switch will stay closed. During this
time the AC current will flow through the SSR.

When the low current ceases to flow through the light-emitting
diode of the SSR, no more photons will be emitted, and the internal
light-sensitive switch will open. At this time there will be no AC
current flow.

From this brief discussion of how the SSR operates, it can be
seen that there is no direct electrical connection between the Apple
computer and the AC line voltage. In effect, the computer system
is “optically isolated” from the AC voltage. That is, the two are
electrically isolated, and optically coupled by the LED and light-
sensitive switch.

6.3: ELECTRICALLY CLOSING THE SOLID-STATE RELAY

We have stated previously that the low-voltage input to the SSR
is the controlling side of the relay. It will now be shown how to

INTERFACING THE APPLE TO HOME APPLIANCES 143

The output pin of a 7406
is the collector of a
transistor. The emitter is
connected to ground
internally.

Pictorial diagram showing what is meant by an “open collector’ integrated
circuit. The output pin of the device is simply the collector of a transistor. The
emitter of the transistor is connected to ground.

Figure 6.7 —

electrically turn the relay on and off under the control of a logical
1 voltage or a logical 0 voltage.

Figure 6.6 shows the circuit used to turn on and off the SSR. In
this diagram a logical 1 or logical 0 output from an I/O circuit (like
that described in Chapter 4) in the Apple computer is input to the
7406 inverter. The output of the 7406 will appear as shown in
Figure 6.7. When a logical 1 is input to pin 1 of the 7406, output
pin 2 will essentially connect to ground potential.

With the output of the 7406 at ground potential, there is a current
path established from the SSR’s positive terminal through the
internal light-emitting diode to ground. At this time the SSR will
turn on, for the reasons we discussed in Section 6.2. The current
required to turn on the AC switch is approximately 3.3 milliam-
peres, or .0033 amperes. This is calculated from the input voltage,
5 volts, divided by the input resistance, 1500 chms. The specifica-
tion for the input resistance is given in Figure 6.4.

During the time a logical 1 is input to the 7406 shown in Figure
6.6, the AC appliance will be powered by current from the wall

144 THE APPLE CONNECTION

socket through the SSR. When the input pin 1 of the 7406 shown
in Figure 6.6 is a logical 0, the output pin 2 will open and there will
be no physical connection to ground. The SSR will be off, causing
the appliance to turn off.

Our problem now is to output alogical 1 or alogical 0 to the input
pin 1 of the 7406 from the Apple computer. This can be accom-
plished with the circuit shown in Figure 6.8. Figure 6.8 is very
similar to the circuit discussed in Chapter 4, and can be compared
to Figure 4.6.

6.4: AN OUTPUT PORT

For review we will discuss how the circuit shown in Figure 6.8
will operate. In this diagram the temporary storage device is a
74L.S74 single-bit latch (or flip-flop), IC3. (This single-bit latch is
identical to the 74LS175 presented in Chapter 4, with the excep-
tion that only one bit of data can be stored at a time. The 74LS175
permitted four bits of data storage at the same time.) The data
input line to the latch is connected to the DO data line of the Apple
computer. This means that when we want the Q output of the
latch to be a logical 1, the DO line of the Apple computer will be a
logical 1 during the POKE instruction. (The Q output is a label
given to the signal line of the latch that represents the output pin.)
If we want the Q output to be a logical 0, the DO line will be a
logical 0 during the POKE.

The clock input to the 74LS74 flip-flop is generated by the
DEVICE SELECT line and the R/W output from the Apple. The
logical conditions that will enable data to be written to the flip-
flop are the following:

1. DEVICE SELECT = logical 0.
2. R/IW = logical 0.

The DEVICE SELECT line will go to a logical 0 when the cor-
rect address is specified in the POKE instruction. The R/W line
will go to alogical 0 during a POKE instruction, because the com-
puter is writing data.

When the Q output of the flip-flop is a logical 1, the output pin 2
of the 7406 will be on. If the Q output of the flip-flop is a logical 0,
the 7406 output will be off. The 7406 will operate as we discussed

INTERFACING THE APPLE TO HOME APPLIANCES 145

+5v

GND
26

DEVICE SELECT

RIW 741532

+5v +5v
4.7KQ

+ To
7415874 SOLID-

Cc STATE
/ IC4 RELAY
control
49 D Q %__'_
1 2

0o
IC3 7406

Schematic diagram of a complete I/O circuit for the Apple computer for controlling the solid-state
relay. The low-voltage side of the SSR will be connected to + 5 volts and the output pin 2 of the 7406.

Figure 6.8 —

in section 6.3.
From this discussion we see that the hardware will respond to

the following two POKE instructions:

POKE address, 1
POKE address, 0

where “address’ will equal the correct address number of the I/O

146 THE APPLE CONNECTION

DESK LAMP

LINE CORD from
desk lamp

SOCKET 1o allow
external connections.

+ 5V from
Apple
AN
/ +
\ -
/From (=)
output of b— WALL SOCKET J
Figure 6.8 SOLID

STATE
RELAY

Circuit diagram showing how to connect a desk lamp, line cord from the wall socket, and the SSR
together, for computer control of the lamp.

“— Figure 6.9

slot. A 1 in the POKE instruction will set the output of the 7406 to
alogical 0. A 0 in the POKE instruction will force the output pin 2
of the 7406 open.

6.5: SOFTWARE FOR CONTROL

Let us now discuss how to control the SSR with software. Once
the hardware is connected, the problem is reduced to one of
writing software. We will assume that a desk lamp with a standard
100-watt light bulb is connected to the SSR. This will be an easy
example to try in your own home. The circuit diagram for this
connection is shown in Figure 6.9.

INTERFACING THE APPLE TO HOME APPLIANCES 147

The maximum AC current the SSR can handle is specified in
Figure 6.4. For the SSR we are using, the maximum AC current is
10 amperes. In our example, the 100-watt light will require less
than one ampere. The current can be calculated as follows:

100 watts
120 volts

The solid-state relay can handle this current easily.

The software will blink the light on and off. More extensive
software could be written to turn on any of your lights at regular
time intervals if you were not at home. We give this software only
as an example.

It is assumed that the I/O slot used in the Apple computer is slot
5. This slot requires a system address of — 16176 for the POKE in-
struction. In the interface hardware shown in Figure 6.8, the data
bit D0 is the computer output dataline that controls the switching
of the SSR. When we wish the SSR to turn on, a 1 will be POKED
to address — 16176, and when we wish the SSR to turn off, a 0 is
POKED to address —16176.

An example of a program to turn the light on and off under con-
trol of the Apple computer is presented in Figure 6.10.

light current = = ,833 amperes

REM: TURN THE LAMP OFF
POKE —16176,0

REM: DELAY FOR A WHILE
FOR = 1TO 1000

NEXT |

REM: TURN THE LIGHT ON
POKE —16176,1

REM: DELAY FOR A WHILE
FOR |=1TO 1000

100 NEXT|

110 GOTO 20

883888885

This short program will turn a desk lamp on and off.

Figure 6.10—

In the preceding BASIC program, the lamp will be turned on
and off with a delay time set by the FOR/NEXT loops. If you wish

148 THE APPLE CONNECTION

to change the length of time the lights are on or off, then decrease
or increase the number 1000 in lines 40 and 90.

6.6: SUMMARY

In this chapter we have discussed how to connect the Apple
computer to control 120/220-volt AC appliances, using a solid-
state relay, or SSR. The problem was presented in block diagram
form. Next, an explanation of how the SSR operates was given. It
was then shown how to electrically connect the Apple to the SSR.
Finally, a sample BASIC program to turn on and off a desk lamp
was given.

Itis highly recommended that you try out the use of an SSRon a
small scale first. That is, try out the desk lamp example that was
given in this chapter. This will give you the opportunity to experi-
ment. After that initial experiment you will be able to use the SSR
in some larger-scale applications around the home. For instance,
you might try some of the following home applications, which
would use a solid-state relay interfaced to the computer:

1. Turnonthe stereo. You could let the Apple computer turn
on the stereo at different programmed times when you are
not at home.

2. Your television could be turned on at different times by
the computer when you are not at home.

3. Outside lights around your home could be turned on
when the computer detects dusk and turned off when the
computer detects morning light.

These are just a few of the many applications that can be ac-
complished using the computer and a solid-state relay. Virtually
any appliance that uses 120/220 volts AC can be controlled auto-
matically with the computer using the techniques described in
this chapter.

It should be pointed out that, besides the kind of system we
have described, there are also “off-the-shelf”’ AC control systems
available for the home computer. An SSR may or may not be used
in these systems. One very popular AC control system is the BSR

INTERFACING THE APPLE TO HOME APPLIANCES 149

X-10™, Anyone who wants to use a home computer to control AC
applicances should examine these systems as one possible solution.
Finally, you should remember to use caution and prudence
when working with AC line voltages around the home. Carefully
check all wiring and connections before turning on the power.

151

Chapter 7

Analog vs. Digital,
and Transducers

IN THIS CHAPTER we will examine two concepts: 1) the
difference between analog and digital events, and 2) the trans-
ducer. This discussion is intended to give readers not familiar
with these concepts a good understanding of them. If you are
already familiar with the difference between analog and digital
events, and the related concept of the transducer, you may want
to skip this chapter.

However, it is important for anyone who wishes to learn about
computer control to understand the difference between analog
and digital events and the importance of transducers. As we will
see, external devices are mostly analog in nature, and some con-
version is needed before they can operate under digital control.

7.1: ANALOG EVENTS

Briefly, an analog event is one whose output is variable. The
following examples will illustrate this idea and demonstrate that
we live in an analog world.

Nearly everyone is familiar with the common mercury ther-
mometer, which, of course, measures temperature. A typical

1532 THE APPLE CONNECTION

103°F

1029F

101eF

100°F

989F

97°F

(e fren i fin o)

Typical thermometer showing the temperature scale in degrees Fahrenheit.
The reading can be anywhere on the scale shown; there are an infinite
number of potential output values on this continuous scaole.

~= Figure 7.1

thermometer scale is shown in Figure 7.1. As we see, the tempera-
ture reading may vary anywhere on the scale: 98.6, 98.4, 98.2,
97.1, 100.3, 100.6, etc.

The thermometer is an analog device because its output (the
temperature reading) can have virtually any value. The range of
values is limited by the scale on the thermometer (97-103° F), but
within these limits there are an infinite number of possible
readings. That is, the range is continuous. The point is that the
temperature reading, like any analog output, can be anywhere
between these limits.

ANALQOG VS. DIGITAL, AND TRANSDUCERS 153

A point of confusion may arise at this time. The term “digital”
has been applied to thermometers that display numbers (digits)
and use digital electronics in their display circuitry. In that sense
(now the most common use of the term), they are indeed “digital”’
devices. As measuring instruments, however, these thermometers
are analog devices, just as mercury thermometers are, because
temperature is an analog phenomenon.

Sense perceptions may be thought of as analog events; consider
the feeling of hunger. There are varying degrees of hunger, which
seem to merge into each other. We can be full, almost full, a little
bit hungry, very hungry, famished, or any number of different
states in between, but we cannot tell where one state ends and
another begins. Because the range of sensations is apparently
continuous, hunger can be considered an analog event.

7.2: DIGITAL EVENTS

Digital events are not continuous but discrete. Their outputs
are not infinitely variable within a range, but instead are limited
to a finite number of predefined states. To illustrate this idea, let
us re-examine our examples of analog events and consider what
they would be like as digital events. In the two events we will
describe, the number of discrete output values will be limited to
two. We could have specified more values, but we have chosen
only two, because that is the number of states possible in the
binary logic used in digital electronics.

First, let's examine the thermometer. If this device were limited
in the way we have described, it would have only two temperature
output readings. The scale would appear as it does in Figure 7.2,
where the temperature reading is either 70° F or 80° F. These two
numbers were chosen at random to illustrate the point. A ther-
mometer such as this would be quite useless to us, because
temperature is an analog event. It cannot be measured using a
digital scale, because it varies. It would be a strange world indeed
if there were only two possible values for temperature.

Now let’s examine hunger as if it were a digital event, again
limited to the two possible output values we have specified. You
would either feel full or hungry. This might not seem so bad, but
the change from one to the other would be immediate, and it

154 THE APPLE CONNECTION

/‘\

— | 700F

—

A thermomaeter with a binary, digital scale. The temperature reading can only
be 70° For 80° F.

-—Figure 7.2

would be absolute. One second you would feel “‘stuffed,” the next
you would feel “famished.” Fortunately, hunger is an analog
event and actually varies in imperceptible stages.

The preceding examples were intended to show that a digital
event has discrete output values. The contrast between digital
and analog phenomena can also be illustrated by comparing a
staircase and a ramp. The staircase represents digital phenomena,
and the ramp represents analog. On a staircase we must ascend
or descend by fixed, predefined steps. On a ramp we can move
any amount we desire. The closer the stairs are to each other, the

ANALOG VS. DIGITAL, AND TRANSDUCERS 155

smaller the steps we proceed by, and the closer we can come to
some desired level. However, as the size of the steps decreases,
the number of steps required to reach the same level must increase.
If there were an infinite number of stairs in the staircase, we
would have an analog event again. We will return to this analogy
in Chapter 9 (see Figure 9.7).

We have tried to show readers who may be unfamiliar with the
concepts analog and digital what the difference between them is.
For these readers we will restate our definition of the terms. Inan
analog event, there are an infinite number of possibile output
values. In a digital event, there are a finite, limited number of pos-
sible output values. In our examples we used two possible output
values, but we could have used more.

7.3: TOTALLY DIGITAL EVENTS

Although most events in the real world are analog, some common
digital events occur. Let's examine some.

One of the most common digital events is the turning on and off
of alight. Thelight output has only two possible values: totally on,
or totally off. (Of course, if you have dimmer switches installed in
your home, the light output will vary, because you are using an
analog device, a rheostat.)

A home furnace fan in a forced-air heating system is another
digital event. Either the fan is on, running at a fixed, constant
RPM, or it is off, not spinning at all. With a thermostat (another
analog device) we can vary the temperature at which the fan will
turn on. However, when it does turn on it will always run at the
same speed. A further example of a digital, binary device is the
ON-OFF switch used in television sets and home computers. The
switch has two positions, ON or OFF. Television tuners and fans
with more than one speed are digital, but not binary. There are a
finite number of possible states, but more than two.

7.4: ANALOG AND DIGITAL ELECTRONICS

. So far in this chapter, we have tried to illustrate the difference
between analog and digital events with examples from everyday
life. Let us now examine what the terms analog and digital mean

156 THE APPLE CONNECTION

Voltage higher than logical 1 or 0
level required to power the digital

+iov circuit.
LOGICALO LOGICAL 0
OR INPUT OR
—_— e QUTPUT
LOGICA DIGITAL LOGICAL 1 o
L CIRCUIT

A block diagram showing that non-logical-level voitages may be required to
power the digital circuits. However, the digital circuit will only process input
and output at the logical 0 or logica!l 1 voltage levels.

— Figure 7.3

when applied to electronics. In electronics, the terms refer to elec-
trical quantities, such as resistance, current, and voltage. The
quantity that you may be most familiar with is voltage. For example,
the output of a car battery is an analog voltage. A battery rated at
12 volts may actually produce 12.02 V, 12.1V, 11.9V, 12.6 V or
any value near 12 volts. As the battery ages, the voltage output
may drop: 11.9V, 10.88 V, 10.73 V. The voltage output of the battery
is analog, not digital, because it varies. A digital voltage output
would have a finite number of possible values. A battery would
have to produce exactly 12.0 V, 12.5 V, or 12.75 V. A battery does
not meet these conditions; it is an analog device.

Home computers are called digital because there are a finite
number of possible voltage levels for the electrical information

ANALOG VS. DIGITAL, AND TRANSDUCERS 157

DIGITAL

COMPUTER
Not com-
pcnible ANALOG EVENT:

\\
§<}='\“ &

Heat output cannot be
input 10 the digital
computer.

DIGITAL INPUT

An analog event, such as temperature, is not directly compatible with a
digital computer; it cannot be measured or monitored without some in-
termediate device.

Figure 7.4 =

being processed within the system. We saw what these levels were
when discussing input and output in Chapters 2 and 3 of this text;
there were only two possible voltage levels in the system. All dig-
ital circuits used in computers have this characteristic, but they
may not use the same actual voltage levels to process information.
A power supply (battery) of different voltages may be used to run
the digital system, but the digital circuits will output and input
data at only two different voltages. (See Figure 7.3.)

In a digital electronic circuit, the two possible output levels are
called “logical 1” and “logical 0.” Because there are only two
states, digital circuits are designed to follow the logic of binary (or
Boolean) mathematics, a number system that has only two digits,
0 and 1. (We normally work in the decimal number system, which
has ten digits, 0-9.)

Home computers and personal computers are digital, binary
machines. They will operate on digital information only. Most of
the events that occur in nature are analog. If we wish to control
and monitor these analog events with a digital computer, there is
aconflict. For a graphic illustration of this conflict, see Figure 7.4.
If you can understand the difference between analog and digital

158 THE APPLE CONNECTION

events, you will learn to resolve the incompatibility between
them more easily.

7.5: TRANSDUCERS

In the remaining chapters of this text we will discuss how to
bridge the gap between the analog events typical of the real world
and the digital electronics used to control or monitor them. Before
we can begin to explore this problem, another piece of the puzzle
must be explained. That remaining piece is the transducer.

We introduced the transducer in Chapter 1 and mentioned it
again in Chapter 5. We return to it here to discuss this device in
the context of ADC. At this point you probably have a better
understanding of how the transducer fits into the computer control
problem, of what such a device should do.

It has been stated that most of the phenomena we wish to
monitor and control in the world are analog, or continuous. That
is, they can be measured anywhere on a continuous scale of values.
However, these values represent different physical characteristics.
For example, the various scales of temperature measure the phys-
ical form of energy, heat. There are an infinite number of different
temperature readings, but the form of energy they all represent is
heat. Pressure is another physical quality, another form of energy,
that we sometimes wish to monitor with the digital computer. It is
also an analog event, because there are an infinite number of
pressure outputs.

What we need is some way to transform the various physical
forms of energy into a form that can be used in an electronic envi-
ronment. That new form should be some electrical quantity:
voltage, current, resistance, capacitance, or inductance. After
the physical form of energy has been changed into electricity, it
can be further processed using electronic techniques. Finally, we
will need to input the form into a digital computer. The entire
process is shown in the block diagram of Figure 7.5.

The device that transforms the physical quantity into an elec-
trical quantity is called a transducer. Transducers are generally
classified according to the physical form of energy that they
transform into an electrical quantity. For example, a transducer
that will transform pressure into an electrical form is called a

ANALOG VS. DIGITAL, AND TRANSDUCERS 159

DIGITAL
ANALOG
COMPUTER EVENT:
ELECTRONIC FORM HEAT
RELATED TO HEAT 'l
W AN
NSRS
N
r(L_r_'____— < N
. ~~(W/
TEMPERATURE
ELECTRONSC TRANSDUCER

PROCESSING

The flow of information in the monitoring system is from the analog event,
heat, into the physical transducer. The transducer will transform the tem-
perature output into its electrical equivalent. The electrical signal can then
be processed electronically and, finally, input to the digital computer. J

Figure 7.5

pressure transducer. One that will transform temperature into an
equivalent electrical quantity is called a temperature transducer,
and so on. Often, however, the qualifying term, ‘‘pressure” or
“temperature,” is omitted in the literature, since it is generally
known what type of energy has to be measured. The reader must
infer the type of transducer from the surrounding text.

In Chapter 8 we will describe a temperature transducer and use
it to enable the Apple computer to measure an analog quantity,
temperature.

7.6: SUMMARY

In this chapter we have discussed the meaning of the terms
analog and digital, illustrating them with common events that occur

160 THE APPLE CONNECTION

in the world. After this introduction, we applied these concepts
to electronics, and discussed digital and analog electrical quan-
tities. Finally, we saw what a transducer is, and discussed how it
fits into an automatic computer control environment.

When we undertake the job of designing or using a computer-
controlled system, we will need to know the difference between
analog and digital quantities, and how each of the external devices
being controlled or monitored outputs information. Sometimes
the output is analog, and sometimes it is digital. If the external
device produces an analog output, some type of conversion will be
necessary. In the following chapter, we will discuss analog-to-
digital conversion, and show how to input a physical quantity,
temperature, to the Apple computer. In doing so, we will use
information presented in this chapter.

163

Chapter 8

Analog to Digital
Conversion
For the Apple

IN THIS CHAPTER we will show how to use the Apple com-
puter to monitor any external instrument which outputs an analog
voltage. The discussion starts off by showing a block diagram of
the overall concept involved in this type of computer monitoring.
From there the discussion focuses on how an analog-to-digital
converter operates. The discussion will be basic enough to enable
the beginner to understand the principles of analog-to-digital
conversion.)

After the analog-to-digital converter is presented, this chapter
will show how to electrically connect an analog-to-digital con-
verter to the Apple computer via the I/O slots. Finally, a complete
system for monitoring temperature will be explained. At the con-
clusion of this chapter, you will have a good understanding of
how devices that output analog voltages may be monitored using
a digital computer like the Apple.

164 THE APPLE CONNECTION

External device
outpuls an
analog voltage.

DIGITAL ANALOG
BUS VOLTAGE
DIGITAL ANALOG-TO- EXTERNAL
MONITORING DIGITAL INSTRUMENT
DEVICE CONVERTER BEING MONITORED

{Apple computer)

Block diagram showing an overall view of the concepts involved in monitoring an analog voltage
with a digital system.

— Figure 8.1

8.1: BLOCK DIAGRAM OF THE PROBLEM

Figure 8.1 shows a block diagram of the overall concept that we
must use. In this diagram there are three major blocks shown:

1. Block 1 is the digital monitoring device. In this case it will
be the Apple computer.

2. Block 2 will transform the analog voltage output from the
external device to an equivalent digital word.

3. Block 3 is the external device itself. This device is really a
transducer of some sort. The transducer will output a
voltage that has an amplitude dependent on the physical
event being monitored.

In the last chapter we discussed what was meant by an analog
event. In review, an analog event is one that can be measured at
an infinite number of possible output levels (within a given range).
An example is pressure. Pressure can be measured at any value

ANALOG-TO-DIGITAL CONVERSION FOR THE APPLE 165
PRESSURE
—————»{ TRANSDUCER >
PRESSURE INPUT ANALOG QUTPUT
= 10 psi VOLTAGE = 1.5
(@)
PRESSURE
—————>| TRANSDUCER »
PRESSURE INPUT ANALOG OUTPUT
= 10.2 psi VOLTAGE = 1.8
{b)
PRESSURE
—————>] TRANSDUCER —>
PRESSURE INPUT ANALOG OUTPUT
= 9.4 psi VOLTAGE = 1.1,
{c
a,b,c) Each of these block diagrams shows the analog voltage output from a
given pressure input. Note that as the pressure changes at the input of the
transducer, the analog voltage must change to reflect this.
Figure 8.2 —

from a few pounds per square inch (psi) to many hundreds of psi.
Further, the value can be any number of psi between these two

limits.

If the event to be monitored by the digital computer is analog, a
transducer capable of accurately reporting the analog changes is
necessary. For example, as the pressure being measured changes,
the transducer must reflect this change in its output. When the
pressure changes alittle, either increasing or decreasing, the voltage
output from the pressure transducer must increase or decrease in
the same proportion. (See Figure 8.2.)

166 THE APPLE CONNECTION

These changes are in contrast to a “digital” transducer. Such a
transducer was used in Chapter 5 for the home security system.
We needed these transducers to indicate whether the windows
and doors were open or closed. Although it is true that a window
or door can be wide open or just cracked open, in the example of
Chapter 5 we did not need to distinguish between the degrees of
openness; the event we were monitoring was “digital.” That is,
for our purposes, the door or window was either open or closed.
The transducers used in Chapter 5 were switches.

The transducers we are concerned with now are analog output
transducers. This means the transducer’s output will vary in
voltage anywhere from a low voltage, 0.0 volts, to a high voltage,
approximately 5.0 volts. We use this voltage range simply as an
example. Typically, the outputs of transducers are variable from
any negative voltage to any positive voltage. Voltage variations
depend on the type of transducer used. An actual, practical example
will be presented later in this chapter.

For the present time let us assume that an analog transducer
will output a certain range of voltage. This analog voltage will be
input to the block of Figure 8.1 labeled ‘‘analog-to-digital con-
verter.” The digital output of the analog-to-digital converter is
then input to the Apple computer block.

The Apple computer will electrically input digital information
being output from the analog-to-digital converter. As we will see,
this digital information will be equivalent to the analog voltage
that is input to the analog-to-digital converter.

8.2: THE ANALOG-TO-DIGITAL CONVERTER

Let us now define exactly what is meant by the term analog-to-
digital conversion, and discuss how we can make use of this prin-
ciple. In general terms, the function of analog-to-digital conversion
isto transform (or convert) an analog input voltage into the digital
output word that is its mathematical representation.

This function must be performed before a digital computer can
input the analog voltage. A device that performs this type of func-
tion is called an analog-to-digital converter, or simply ADC. The
remainder of this section will be devoted to explaining how a typical

ANALOG-TO-DIGITAL CONVERSION FOR THE APPLE 167

V+ V-
>
-—-———)
ANALOG INPUT ANALOG-TO-DIGITAL . DIGITAL
VOLTAGE CONVERTER : OUTPUTS
—_— —
—>
START CONVERSION END CONVERSION
—_—
DIGITAL CONTROL LINES
Block diagram of a typical analog-to-digital converter.
Figure 8.3 =

ADC operates. After this discussion, we will present some examples
of how the ADC device operates in a digital system environment.

We can begin the discussion by looking at Figure 8.3, a block
diagram of a typical ADC. This diagram shows general ADC inputs
and outputs. Let us concentrate on the function of each input and
output shown in Figure 8.3, beginning with the power outputs.
The ADC consists of electronic circuits, which require a source
of Direct Current (BDC) power. The power input lines are shown at
the top of Figure 8.3. Typical power connections will be + and
—12 or 15 volts, +5 volts, and ground.

The + and —12-to-15 volt DC supplies are used to power some
of the internal circuits, such as operational amplifiers and voltage

168 THE APPLE CONNECTION

comparators, located inside the ADC package. A +5 volt supply
will usually power the digital electronics inside the ADC package.
Data sheets on any particular ADC will specify any DC power re-
quired for proper electrical operation.

In Figure 8.3 we also see the input line labeled “ANALOG
VOLTAGE.” This is the analog voltage that will be transformed
into its equivalent digital word. Analog-to-digital converters have
a specified range of analog voltages they can accept as input. Typi-
cal ADC analog input voltage ranges are 0 to + 5 volts, —5to +15
volts, —10to + 10 volts, and 0 to + 10 volts. These are just a few of
the many different voltage ranges that are commonly available.
Refer to the manufacturer’s data sheet for exact specifications on
the analog input voltage range for a particular ADC.

Some of the input voltage ranges listed are negative (—) and
positive (+), while some are only positive. If the input voltage to
the ADC can be positive and negative, the ADC is said to be
bipolar, meaning that it has two electrical poles. If the input
voltage range is from zero to a positive value, the ADC is said to be
unipolar, meaning that it has only one pole. The ADC we will use
later in the chapter is unipolar.

The next section of Figure 8.3 to examine shows the eight digital
output lines. The number of digital output lines on an ADC will
vary. Typical numbers of output lines are 6, 8, 10, 12 and 16. In
general, the greater the number of output lines, the more expen-
sive the ADC.

The digital output lines on the ADC will be set to a logical 1 ora
logical 0, as determined by the analog input voltage. Later in the
discussion, it will be shown how to calculate which digital outputs
will be alogical 1 and which will be a logical 0. For now, think of
the digital output lines as the physical connections to the digital
monitoring system. In our case, the connections are to the Apple
computer.

Finally, in Figure 8.3, we see two digital control lines, labeled
“START CONVERSION” and “END CONVERSION.” Each line
has a unique function. The “START CONVERSION" input control
line is a digital signal that will electrically inform the ADC to start
converting the analog input to a digital output word. This signal
is generated by the digital monitoring device (in this case, the
Apple computer).

ANALOG-TO-DIGITAL CONVERSION FOR THE APPLE 169

When the Apple computer is electrically prepared to accept the
digital output word from the ADC, the “START CONVERSION"
input control line to the device is asserted; that is, the input signal
will be placed into the logical state that will start the action. Since
the logical state could be a 1 or a 0, the term “asserted” is used to
generalize.

The “END CONVERSION" output line shown in Figure 8.3
will be used to electrically inform the digital monitoring device
that an analog-to-digital conversion is complete. Notice that the
ADC is itself a small electronic system. It will take a short time for
the ADC to adjust the digital outputs to new values based on the
analog input voltage. The exact time required will vary from ADC
to ADC. Typical times are between 10 and 200 microseconds, or
.000010 and .000200 seconds.

When the Apple computer electrically requests an analog-to-
digital conversion, it must electrically monitor the “END OF
CONVERSION” output line during the conversion. This moni-
toring will electrically determine when the conversion is complete.
Figure 8.4 shows a flowchart of how the computer must elec-
trically communicate with the ADC.

In Figure 8.4 the analog-to-digital conversion will be started
when the Apple computer asserts the “START CONVERSION”
input line to the ADC. Once the hardware is connected, this will
be accomplished using software. After the conversion is started,
the Apple computer will electrically monitor the “END OF CON-
VERSION” line from the ADC. When this line is true, the Apple
will read (input) the digital output lines of the ADC. This
flowchart will be realized later in this chapter when the ADC is
electrically connected to the Apple.

You have probably noticed that the discussion thus far has not
gone into the details of how the ADC internally performs the

-analog-to-digital conversion. That topic is beyond the scope of
this text. We present the ADC at the user’s level, treating it as a
“black box” that will perform a certain function in a certain
prescribed manner. This is precisely the way ADCs are used. All
of the electronics that actually perform the conversion are usually
out of the user’s control or access. This chapter, therefore, simply
discusses how to make the ADC perform its prescibed function.
Understanding this introduction to the ADC inputs and outputs

170 THE APPLE CONNECTION

DIGITAL COMPUTER
(APPLE) ASSERTS THE
“START CONVERSION"

SIGNAL

END OF
CONVERSION
TRUE ?

YES

READ DIGITAL
CUTPUT WORD

C =

Flowchart showing the sequence of events required for electrical communi-
cation with an ADC.

— Figure 8.4

has been our first step toward using this type of device with the
Apple computer.

8.3: CALCULATING THE DIGITAL OUTPUTS OF THE ADC

In this section we will discuss how to determine the relation-
ship between the logical conditions of the digital outputs and
the voltage level of the analog input. For this discussion we will
use an ADC that is unipolar. The acceptable voltage input range
will be from 0.0 volts to +10.0 volts. There will be eight digital
output lines. A block diagram of this type of device was shown in
Figure 8.3.

The digital outputs will be labeled D0-D7, and will be assigned
the same numerical weights we have given to bit positions in data

ANALOG-TO-DIGITAL CONVERSION FOR THE APPLE 171

Digital
Output Line Weight
DO 1
DI 2
D2 4
D3 8
D4 16
D5 32
D6 64
D7 128
The ADC's output lines have the same numerical weights asthe Apple’s data
bus lines.

Figure 8.5 —

bytes elsewhere in this text. A table of the digital output lines and
the corresponding weights is shown in Figure 8.5.

As we have seen before, the minimum weight at the digital out-
puts will occur when all are a logical 0, and the maximum weight
at the digital outputs will occur when all are a logical 1. The
minimum and maximum weights are 0 and 255, respectively.

The minimum analog voltage input to the ADC is 0.0 volts. The
maximum analog input voltage to the ADC is 10.0 volts. If we
relate the maximum and minimum input voltage to the maximum
and minimum digital output weights, we have:

0.0 volts input = weight 0 output
10.0 volts input = weight 255 output

All input voltages between 0 and 10 volts will have a corresponding
digital weight between 0 and 255.

There are 256 different weights available for the input voltages,
because there are eight digital outputs. The number of different
weights available with a particular ADC is calculated by the
following equation:

number of digital weights = 2 raised to the power of
(number of digital output lines)

In our case we had eight digital output lines, so the number of
digital weights was equal to 2°, or 256. If we had an ADC with 10

172 THE APPLE CONNECTION

digital output lines, the number of digital weights would equal 2°,
or 1024.

Since we know how many unique digital weights are available
for the analog input voltage range, we can divide that range into
equal increments. In our example we have 255 available digital
weights. (One weight must be subtracted because of the 0 at the
start.) Therefore, the range between 0 and 10 volts will be divided
into 255 equal pieces by the following equation:

voltagerange _
555 = .03921569

Using this information, we can generate a list of input voltages
and their corresponding digital output weights. This list is shown
in Figure 8.6.

We see in Figure 8.6 that the equivalent input voltage increases
in discrete steps of approximately .04 volts. For example, suppose
an input voltage to the ADC is equal to 1.5 volts. There is no digital
output weight exactly equivalent to 1.5 volts. From the list of
Figure 8.6 we must choose an output weight that will yield the
voltage closest to 1.5 volts. We see that 1.5 volts is between 1.49
volts (a weight of 38) and 1.53 volts (a weight of 39). The weight of

Digital Weights ond Voltages

D v D v D v D v D v

0 0.00 1 0.04 2 008 3 012 4 016

5 020 6 024 7 027 8 031 9 035
10 0.39 1M 043 12 047 13 0.51 14 055
15 0.59 16 063 17 067 18 o7 19 075
20 078 21 0.82 22 086 23 0.9 24 094
25 098 26 1.02 27 1.06 28 110 29 114
30 118 3 12 32 125 33 1.9 34 1.33
s 1.7 % 1.4 37 145 38 .49 39 153
40 157 4 e 42 165 43 169 4 .73
45 176 4 1.8 a7 184 48 1.8 49 1.9
50 1.96 51 2.00 52 204 53 2.08 54 212
55 216 5 220 57 224 58 227 59 2.3
D = DIGITAL WEIGHT
V = VOLTAGE

— Figure 8.6

ANALOG-TO-DIGITAL CONVERSION FOR THE APPLE 173

Digital Weights and Voltages

D v D v D \' D \Y D v

60 2.35 61 2.39 62 2.43 63 2.47 64 2,51

65 2.55 66 2,59 67 2.63 68 2.67 69 271

70 2,75 71 2.78 72 2.82 73 2.86 74 2.90

75 2.94 76 2.98 77 3.02 78 3.06 79 3.10

80 3.14 81 3.18 82 3.22 83 3.25 84 3.29

85 3.33 86 3.37 87 3.4 a8 3.45 89 3.49

90 3.53 9N 3.57 92 3.61 93 3.65 94 3.69

95 3.73 96 3.76 97 3.80 98 3.84 99 3.88
100 3.9 101 3.96 102 4.00 103 4.04 104 4.08
105 4.12 106 4.16 107 4.20 108 4.24 109 4.27
110 4.31 m 4.35 n2 4.39 n3 4.43 114 4.47
1s 4,51 116 4.55 nz 4.59 18 4.63 19 4.67
120 4.7 21 4.75 122 4.78 123 4.82 124 4.86
125 4.90 126 4.94 127 4,98 128 5.02 129 5.06
130 5.10 131 5.14 132 5.18 133 5.22 134 5.25
135 5.29 136 5.33 137 5.37 138 5.4 139 5.45
140 5.49 141 5.53 142 557 143 5.61 144 5.65
145 5.69 146 5.73 147 5.76 148 5.80 149 5.84
150 5.88 151 5.92 152 5.96 153 6.00 154 6.04
155 6.08 156 6.12 157 6.16 158 6.20 159 6.24
160 6.27 161 6.31 162 6.35 163 6.39 164 6.43
165 6.47 166 6.51 167 6.55 168 6.59 169 6.63
170 6.67 171 6.71 172 6.75 173 6.78 174 6.82
175 6.86 176 6.90 177 6.94 178 6.98 179 7.02
180 7.06 181 7.10 182 7.4 183 7.18 184 7.22
185 7.25 186 7.29 187 7.33 188 7.37 189 7.41
190 7.45 19 7.49 192 7.53 193 7.57 194 7.6)
195 7.65 196 7.69 197 7.73 198 7.76 199 7.80
200 7.84 201 7.88 202 7.92 203 7.96 204 8.00
205 8.04 206 8.08 207 8.12 208 8.16 09 8.20
210 8.24 21 8.27 212 8.31 213 8.35 214 8.39
215 8.43 216 8.47 217 8.51 218 8.55 219 8.59
220 8.63 73 8.67 222 8.71 223 8.75 224 8.78
225 8.82 226 8.86 227 8.90 228 8.94 229 8.98
230 9.02 231 9.06 232 9.10 233 9.14 234 9.18
235 9.22 236 9.25 237 9.29 238 9.33 239 9.37
240 9.41 241 9.45 242 9.49 243 9.53 244 9.57
245 9.61 246 9.65 247 9.69 248 9.73 249 9.76
250 9.80 251 9.84 252 9.88 253 9.92 254 9.96
255 10.00
D = DIGITAL WEIGHT
V = VOLTAGE
List of digital output weights and the corresponding analog input voltages they represent.

Figure 8.6 {cont.) e

174 THE APPLE CONNECTION

the ADC digital outputs for an input voltage of 1.5 volts is closest
to 38, so we can use that number. However, it is not an exact
representation of the analog input voltage.

The point is that the ADC can only digitally represent analog
voltages between 0 and 10 volts to a resolution of approximately
.04 volts. This error is dependent on the number of digital output
lines and the analog voltage input range. If the value of .04 volts is
too great a range, then a different ADC, with more digital output
lines, must be chosen.

When using the ADC, we do not want to have to look up the equiv-
alent voltage each time a conversion takes place. It would be
much easier if the voltage could be calculated based on the digital
output word. This would lend itself well to computer control. These
calculations can be accomplished using the following equation:
The analog voltage is equal to the digital output weight multiplied
by the resolution of the ADC.

analog voltage = digital weight * (10/255)

For example, suppose the weight read from the ADC was equal to
125. This would equal an input voltage of:

125 * (10/255) = 4.80 volts

Remember that this voltage may actually equal 4.0 volts or
slightly less than 4.94 volts, because of the resolution of the ADC.

In its present form, our equation is dependent on the input
voltage range and the number of digital output lines on the ADC.
These values must be modified for the equation to fit a particular
application.

8.4: CONNECTING THE ADC TO THE APPLE COMPUTER

Figure 8.7 shows a complete schematic for connecting an actual
ADC, Analog Devices’ model AD570, to the Apple computer. In
this section we will discuss exactly how each part of Figure 8.7
operates. The AD570 is very similar in its operating characteris-
tics to the general example we gave in Figure 8.3. A data sheet for
this device is included in Appendix A.

The analog-to-digital converter is labeled IC6 in Figure 8.7. The
device is powered by the +12 volts, +5 volts and ground lines

ANALOG-TO-DIGITAL CONVERSION FOR THE APPLE 175

25 +5V —12v
33
26——|2v +5V
—‘5 7415240 |
D7 18 2 912 10 |16
D6 16 4 8 15 %7
D5 14 6 7 14
/ D4 12 s 6 , ANALOG
13 <{ INPUT
/ D3 ong, 5 0 — 10V
ﬁ2 7130 4
/ D1 515f 3
/DO 317 2 AD570
/ L] 17 : 16
I Y BLK and CONV
DATA Vee GND
o312 READY ICl = 741500 14 7
L/ 1 IC5 IC2=74532 14 7
IC3 = 741504 14 7
) Q IC4 = 741574 14 7
ICS = 7415125 14 7
I
- / c f;v ICé = AD570
2 b7 /] S IC7 =7415240 20 10
5 D6/ 4.7KQ
as 05/
APPLE a5 D4/
DATA BUS < a6 —D3__/
o _D2 /|
49 L/ -
.
Il -
r18 Rﬂ‘ 1 3 '(;'2
3 2 23
Al
::/gNNscroizs< i) Ic2
A2 .
y HDgwmiD
L DEVICE SELECT

Complete schematic for an ADG interface to the Apple computer via an I/O slot.

Figure 8.7 —

176 THE APPLE CONNECTION

output by the Apple computer. These power supply lines are spe-
cific pins on the 1/O slot connectors in the computer. (The pin
numbers for these connections are shown in Figure 8.7. Refer to
Figure 4.1 for a display of the pinout of the Apple I/O slots.)

On the right side of the ADC (IC6) is the analog input voltage to
be converted. This is the voltage input from an external source,
between 0 and 10 volts. The digital outputs of the ADC are input
to a tri-state buffer, a 74L5240, labeled IC7. We discussed how
this type of buffer operated in Chapter 4. A similar circuit was
also shown in Chapter 5.

The outputs of the buffer (IC7) are connected directly to the Apple
data bus lines, D0-D7. When the Apple computer electrically
reads the data at the ADC outputs, the buffer will become enabled.
The Apple will read the data using the PEEK instruction as
described in Chapter 3.

In order to start the analog-to-digital conversion, the input pin
11 of IC6 in Figure 8.7 must be set to a logical 1 and then resetto a
logical 0. This is the “START CONVERSION” input signal for
this particular ADC. When input pin 11 is reset to a logical 0, the
analog-to-digital conversion will start. This is graphically shown
by the wave form next to the signal line at IC6.

Input pin 11 of the ADC is connected to the Q output of a
74LS74 D flip-flop, IC4. This flip-flop is acting as a single-bit
latch. The data input to the flip-flop is connected to the DO data
line on the Apple computer. Whenever the user wishes to set the
Q output to a logical 1, the DO line will go to a logical 1. At the
same time, the flip-flop will be clocked.

We can perform all the steps necessary to start the conversion
by using the POKE instruction in BASIC. When we wish to set the
Q output of the flip-flop to alogical 1, the weight of D0 is used in
the POKE instruction. For example, the following instruction:

POKE address, 1

will set the Q output of the D flip-flop to a logical 1, and the in-
struction:

POKE address, 0

will set the Q output of the D flip-flop to a logical 0. Later in the
chapter, we will discuss how the address of these two instructions
is computed. The important point here is that we can control an

ANALOG-TO-DIGITAL CONVERSION FOR THE APPLE 177

individual hardware line via a software instruction. Specifically,
we can assume that the input pin 11 of IC6 can be set to alogical 1,
or a logical 0, under software control.

To know when the analog-to-digital conversion is complete, the
Apple computer must electrically monitor the output pin 17 of
IC6. This pin is the “END OF CONVERSION” signal for the
ADC. Output pin 17 of IC6 in Figure 8.7 is connected to input pin
2 of IC5. IC5 is a 74LS125 tri-state buffer. The data sheet for the
7418125 is given in Appendix A. Pin 17 of the ADC will be a
logical 0 when the analog-to-digital conversion is complete. At all
other times it will be a logical 1.

The 74LS125 will perform a function similar to that of the
74LS240 mentioned earlier. That is, when the Apple computer
executes a PEEK instruction to the correct address, the 74LS125
will become enabled. This will allow the logical state of the output
pin 17 of IC6 to be enabled onto the Apple data bus. At that time
the Apple computer will electrically input the logical level into a
BASIC program.

We have now seen how the “END OF CONVERSION" signal is
monitored by the computer. We have also seen how the computer
will set the input pin 11 of IC6 to a logical 1, or a logical 0, under
control of the software.

Each of these events will be accomplished using either a PEEK
or a POKE instruction. A major part of both of these instructions
is the address. We will now discuss how the address of the PEEK
or POKE instruction will be related to the schematic diagram
given in Figure 8.7.

To read the data from the ADC, the outputs of IC7 of Figure 8.7
must be enabled. This means pins 1 and 19 of IC7 mustbeheld ata
logical 0 voltage level. If we follow the connection from pins 1 and
19 of IC7, we can see that they are connected to the output pin 6 of
IC2. Output pin 6 will be a logical 0 when the DEVICE SELECT
lineis alogical 0 and pin 6 of IC1is alogical 0. Pin 6 of IC1 willbe a
logical 0 when the R/'W line and the A2 address line are both a
logical 1. Therefore, the logical conditions that will enable IC7
pins 1 and 19 are the following:

R/W = 1 (PEEK instruction)
A2 = 1 (DEVICE SELECT address + 4)
DEVICE SELECT = 0 (DEVICE SELECT address)

178 THE APPLE CONNECTION

Let us assume that our 1/O card is installed in I/O slot 4. The
DEVICE SELECT address for this slot is —16192. The PEEK in-
struction needed to read the data from the ADC will be:

LET A = PEEK (— 16192 + 4)

To read the logical conditions of output pin 17 of IC6, the address
line A1 (instead of address line A2) must be alogical 1. The PEEK
instruction to read this line will be:

LET A = PEEK (—16192 + 2)

The last signal we must control is the Q output of the flip-flop,
IC4 in Figure 8.7. To write a logical 1 or a logical 0 to the D flip-
flop, a POKE instruction is used. If we follow the clock (C) input
line from the D flip-flop, we can see that it will connect to the output
pin 4 of IC3. Whenever pin 4 of IC3 goes from alogical 0 to a logical
1, the information at the D input of the flip-flop will be latched at
the Q output.

Address decoding of the clock line for the flip-flop is shown in
the lower-right corner of Figure 8.7. Let us follow the logic of this
decoding. IC2 pin 8 will become active when pin 10 is set to a
logical 0. This is accomplished in the following way.

The R/W line from the Apple computer will be alogical 0 during
a POKE instruction. This logical 0 is inverted and input to pin 13
of IC1. Pin 12 of IC1 is connected to address line A1 from the Apple
computer. When address line A1 is alogical 1 and the R/W line is
a logical 0, output pin 11 of IC1 is a logical 0.

Output pin 11 of IC1 is connected to input pin 13 of IC2. Input
pin 12 of IC2 is connected to the DEVICE SELECT line output
from the Apple computer. When the DEVICE SELECT output is
a logical 0, the output pin 11 of IC2 is a logical 0. Output pin 11
will enable the following gate via pin 10. This output is inverted
by IC3. Finally, the inverted output is the clock input to the
74LS74, IC4.

In review, the logical conditions that will enable the clock line
to the flip-flop in Figure 8.7 are:

R/W = logical 0 (POKE instruction)
A1l = logical 1 (DEVICE SELECT address + 2)
DEVICE SELECT = 0 (DEVICE SELECT address)

ANALOG-TO-DIGITAL CONVERSION FOR THE APPLE 179

All of these hardware conditions will be true when the POKE in-
struction is used as follows:

POKE |/0 slot address, data

The data will be a 1 if we wish to set the Q output toalogical 1, and
a 0 if we wish to set the Q output to a logical 0.

We have discussed the hardware action taking place in the
schematic shown in Figure 8.7 in some detail, to relate hardware
events to software instructions. The discussion was meant for
those who wished to know exactly how the hardware of the inter-
face operates.

8.5: SOFTWARE FOR ANALOG-TO-DIGITAL CONVERSION

Now that we have the ADC connected to the Apple computer
I/0 slot, let’s control it with the software. We will show the BASIC
software required to input a digital value from the ADC. A flow-
chart for the steps of this program is shown in Figure 8.8.

The following discussion will realize the flowchart of Figure
8.8 with BASIC programming statements. It is assumed that the
ADC 1/O device is located in slot 3 of the Apple computer. This
will yield an I/O slot address of —16208. (Refer to Figure 2.7 for
the address numbers of the eight I/O slots in the Apple computer.)

Step 1:

The first step is to write a logical 1 to the flip-flop on the ADC
1/0 board. We can accomplish this using a POKE instruction and
setting address line A1 equal to a logical 1.

POKE —16208 + 2, 1

The value of 2 added to the I/O slot address will set address line
A1 to a logical 1.

Step 2:

In this step the Q output of the flip-flop is reset to a logical 0.
This can be accomplished in the same way as in step 1, except
that the data is now a 0 instead of a 1:

POKE —16208 + 2,0
The analog-to-digital conversion has now started.

180 THE APPLE CONNECTION

Step 3:

We must now read the logical level of pin 17 of IC6 to determine
if the conversion is complete. This can be accomplished using the
following instruction:

LET R1 = PEEK (—16208 + 2)

Notice that when we read R1, its weight will be the summation
of all the data lines, D0-D7. However, as we see in Figure 8.7, we
are physically controlling the logical level of only one input line
during this PEEK instruction. This input line is D7. The other
input lines can be either a logical 1 or a logical 0. Further, the
other input lines may not show the same value during each PEEK
instruction. The actual logical level will depend on many factors,
most of which are out of the user’s control.

Therefore, we would like to logically ignore data lines D0-D6
during the PEEK instruction. Although we cannot electrically do
this, it can be done using software. In the system software we can
ignore data lines DO-D6 by testing for a value greater than 127. (If
the value of R1 is at least 128, we know that D7 must have been a
logical 1.) It can be done as follows:

IF R1 > 127 THEN GOTO (line number of PEEK instruction above)

After this instruction is executed, the value of R1 will be 1 if the
D7 input line is a logical 1, or 0 if the D7 input line is a logical 0.
Here is the reason why:

When R1 was read into the computer, by means of the PEEK
instruction, it was made up of eight data input lines. Only one of
these lines is of importance, D7. The input data will logically
appear in one of two ways:

D7 Dé D5 D4 D3 D2 D1 Do
1 X X X X X X X
or
D7 De D5 D4 D3 D2 D1 Do
0 X X X X X X X

In these two cases the logical state of D7 was either a 1 or a 0.
The other data lines are shown as “X”. This means we do not care
what the logical state of these data input lines is. However, their

ANALOG-TO-DIGITAL CONVERSION FOR THE APPLE 181

‘ START ’
/

SET D FLIP-FLOP, 1
IC5 Q QUTPUT,
TO ALOGICAL 1

y

SET D FLIP-FLOP,
IC5 Q OUTPUT,
TO A LOGICAL 0

&>

YES

> Conversion has started.

READ DIGITAL
VALUE OF VOLTAGE

v

CONVERT INTO

VOLTAGE READING
V = DIGITAL VALUE
X .039

Flowchart showihg the sequence 6f-évents required to electrically communi-
cate with the circuit shown in Figure 8.7.

Figure 8.8 —

logical state is important, as it will affect the overall computed
weight of the input byte.

By testing whether R1 is greater than 127 or not, we can effec-
tively ignore all datalines DO-D6. If those lines were all alogical 1
and D7 was a logical 0, R1 would be equal to 127. Therefore, it will

182 THE APPLE CONNECTION

not matter if lines D0-D6 are a logical 1 for this test. f R1isa 1,
then the analog-to-digital conversion is not complete and the
program must loop, waiting until it is.

Step 4:

If the conversion is complete, the value of R1 will be less than
127. The digital outputs of the ADC can now be read by the com-
puter. This will be done by the following statement:

LET V1 = PEEK (—16208 + 4)

The variable V1 will be assigned the combined weight of the input
data lines.

Step 5:

The final operation is to compute the analog voltage that was
input. This is accomplished by multiplying the weight of V1 by
the constant (10/255). We discussed this procedure earlier in this
chapter. The instruction that will do this is the following:

LET V2 = V1 * (10/255)
PRINT “WEIGHT = “;V1;* VOLTAGE IN VOLTS = *;V2

If we now put the entire set of instructions together, they will
appear as shown in Figure 8.9. (It is assumed that the starting line
number for this routine is 100.) The RETURN statement in line 170
was used on the assumption that all of the statements, 100-170,
were contained in a BASIC subroutine. This would allow us to
access the ADC at any time during a program by executing a
GOSUB 100 statement.

8.6: TEMPERATURE MEASURING CIRCUIT (TRANSDUCERY)"

In this section we will discuss a circuit that can be used to sense
temperature. The circuit will produce an analog output voltage
that is a function of the temperature. To put it another way, the

This temperature-control application is based on the 8085 microprocessor version which appeared as
experiments 8-5 and 9-8 in The 8085/SDK-85 (Hands-on) Volume 2, 54 Control Experiments, by Howard
Boyet, New York: Micraprocessor Training Inc.

ANALOG-TO-DIGITAL CONVERSION FOR THE APPLE 183

100 POKE —16208 + 2, 1

110 POKE —16208 + 2,0

120 LETR1 = PEEK (—16208 + 2)

130 IFR1 > 127 THEN 120

140 LET V1 = PEEK (—16208 + 4)

150 LET V2 = V1 * (10/255)

160 PRINT “WEIGHT = “;V1;” VOLTAGE = ’*;V2
170 RETURN

A complete routine for analog-to-digital conversion. This routine implements
the flowchart shown in Figure 8.8.

- Figure 8.9 —

voltage produced by the temperature-sensing device will be math-
ematically related to the temperature measured.

The circuit we will use is shown in Figure 8.10 parts (a) and (b).
Part (a) shows the device pinout, and part (b) shows how to connect
the device as a temperature-sensing transducer. The device is a
National Semiconductor LM135, LM235, or LM335. Each device
will work; the difference is in the temperature range (and the
price) of each one.

The specified temperature ranges are:

LM135H -—55to +150°C
LM235H —40to +125°C
LM335H —10to +100°C

The “H” denotes that the device is packaged in metal. A model
number ending in “Z” would indicate that the device was packaged
in ceramic. Either of these packages will work equally well for
this application.

All of the circuit components shown in Figure 8.10(b), such as
the resistors R1 and R2, were located at a distance from the trans-
ducer, as shown in Figure 8.11. The reason for taking this pre-
caution is simply that resistors may change their value as a func-
tion of heat, which could affect the accuracy of the temperature
sensor’s reading if the two devices are placed too close together.

The voltage out (Vo in Figure 8.10(b)) is connected to the ADC
circuit we discussed in Section 8.4. The mathematical relationship

184 THE APPLE CONNECTION

LM135, 235, or, 335(H)

Bottom View

(a)

’ +15v

R,ébKQ

4 I V7 10 ADC
+
LMX35(H) 10K POT
X=1.23. ADJ. Ry

(b)

a) Pinout of the LM335.

b) Schematic diagram showing how the LM335 can be connected to act as a
temperature transducer.

— Figure 8.10

ANALOG-TO-DIGITAL CONVERSION FOR THE APPLE 185

+12v RESISTOR & POT
~
>
TRANSDUCER
ADJ
Vour Vour
- g LM335H
S l ,
P
GND SIGNALS to <|7
Apple computer TRANDUCER is
A-to-D board physically located
at temperature site.
Block diagram showing how the circuit components of Figure 8.10{b) are
located at a distance away from the actual temperature measuring site.

Figure 8,11 —

between Vg,;r and the temperature to be measured is:

T (indegrees Kelvin) vV
100 o Tour

where degrees Kelvin = 273.2 + degrees Centigrade. Using this
equation we can calculate the voltages of some known tempera-
tures, as shown in Figure 8.12. This table is presented to show you
the relationship that exists between the different units that we
must work with in this application. When the temperature is mea-
sured, converted, and input to the Apple, we will know the digital
weight. From this, the output voltage of the transducer can be
calculated as shown in the previous section of this chapter.
Once the voltage is calculated, the temperature can be calcu-
lated in degrees Centigrade, using the following set of equations:

a. 273.2 + degreesCentigrade v
100 - ouT

100 * Vg,; = 273.2 + degrees Centigrade
(100 * V1) —273.2 = degrees Centigrade
Vour = (digital word) * (10/256)

Degrees Centigrade = (100 * (digital word) * 10/256)
— 273.3

e oo o

186 THE APPLE CONNECTION

Temperature
Degrees Centigrade Degrees Kelvin Voltage Vg
0 273.2 2.73
25 298.2 2.98
50 323.2 3.23
75 348.2 3.48
100 373.2 3.73

This table illustrates the relationship between the temperature megsured,
and the voltage output, by the temperature transducer.

L Figure 8.12

This type of mathematics is very simple to perform using BASIC
on the Apple computer. In fact, as we will see, only the last equation
and a PRINT statement must be added to our subroutine to display
the temperature measured.

8.7: THE COMPLETE SYSTEM FOR TEMPERATURE
MEASUREMENT

We are now ready to connect the entire system together to per-
form the function of automatic temperature measurement. When
the system is connected via the hardware, the software will enable
you to measure and record any temperature in degrees Centigrade.
Some examples of temperature monitoring are given at the end of
this chapter.

Figure 8.13 shows the block diagram of the complete hardware
system. We have already discussed each major block of Figure
8.13. Using this block diagram let us write a complete BASIC pro-
gram that will accept the data from the ADC, and calculate and
finally print the temperature in degrees Centigrade.

It should be pointed out that no attempt has been made to mini-
mize the number of BASIC statements in the program. The program
is intended to instruct. In that light it is written in a very straight-

ANALOG-TO-DIGITAL CONVERSION FOR THE APPLE 187

APPLE
COMPUTER

ELECTRONICS for the
temperature sensor

{

ADC

TEMPERATURE
SENSOR

ANALOG VOLTAGE
ouTPUT

DIGITAL OUTPUTS to
the computer

Block diagram of the complete system required to automatically measure
temperature with the Apple computer.

- Figure 8.13

forward manner, and documented at each step with REM lines.
The program shown in Figure 8.14 assumes that the ADC hardware
is connected to I/O slot 3 of the Apple computer. The subroutine
at line 200 may be called whenever a temperature is needed.

8.8: SOME PRACTICAL ADC APPLICATIONS

One application for monitoring temperature in your home is to
chart a temperature profile of the house. This will allow you to
better determine where problem areas of heat escape are located.
To accomplish this you can connect one or more temperature
probes to the Apple computer. Each probe can be placed in a
certain area of the home. When the probes are in place you can
program the computer to monitor the temperature for 24 hours.

The temperature could be sampled at 10-minute intervals, with
the computer storing the resulting values on a disk. At the end of
the 24-hour period, the computer could be programmed to plot

188 THE APPLE CONNECTION

10 GOSUB 200
20 PRINT ““TEMPERATURE IN DEGREES CENTIGRADE = **;T1
30 STOP
40 REM: THE SUBROUTINE FOR TEMPERATURE MEASURING
200 POKE —16208+2,1
210 POKE —16208+2,0
215 REM: THE ABOVE WILL START THE A/D CONVERSION
220 LET R1=PEEK(—16208+2)
230 LETRI=RI1 AND1
240 IFR1=1 THEN 220
245 REM: THE ABOVE WILL WAIT UNTIL CONVERSION IS COMPLETE
250 LET V1=PEEK(— 16208+ 4)
255 REM: THE ABOVE WILL READ THE DIGITAL WEIGHT
260 LET V2=V * (10 / 255)
265 REM: THE ABOVE WILL CALCULATE THE VOLTAGE INPUT
270 LETT1= (100 % V2)—273.2
280 RETURN
290 REM: THE ABOVE CALCULATES THE TEMP IN DEGREES CENTIGRADE

This program will accept an input voltage from an ADC, and calculate and finally print the cor-
responding temperature in degrees Centigrade.

— Figure 8.14

the temperature against the time of day (or any other meaningful
axis). When all of the important rooms and areas in the home have
been profiled, you could then make whatever physical adjust-
ments are necessary to maintain the desired temperature.

A second application for a temperature probe would be to mon-
itor the temperature outside the home vs. the temperature inside
the home. If the desired inside temperature were cooler than the
outside temperature, the computer could be made to let the
warmer outside air heat up the home instead of the furnace.

Besides the temperature probe, there are many home computer
applications for using analog-to-digital conversion. Some of
these applications are listed below:

1. Sound detection. Sound could be converted into an analog
voltage by a microphone (another kind of transducer). If

ANALOG-TO-DIGITAL CONVERSION FOR THE APPLE 189

the sound reached a certain level, the computer could take
some action. This could be part of a security system that
detected the noise of an intruder.

2. Wind direction. You could make a transducer that would
produce an analog voltage directly proportional to the
direction of the wind. For example, 5.0 volts = north, 3.75
volts = east, 2.5 volts = south and 1.25 volts = west. All
other compass directions would be scaled accordingly.

3. A barometer. You could connect a transducer that would
produce an analog voltage proportional to the barometric
pressure.

4. Moisture measurement. Using the correct transducer, the
moisture of the soil could produce an equivalent analog
voltage. This would allow the computer to determine
when the sprinkler system should be turned on.

These are just a few of the many applications for temperature
measurement and analog-to-digital conversion that can be ac-
complished with the home computer.

8.9: SUMMARY

In this chapter we have discussed the details of analog-to-
digital conversion. The discussion started by explaining the need
for analog-to-digital conversion. Next we discussed conceptually
how it is accomplished. This discussion was at the user’s level.
We deliberately did not attempt to explain the details of how an
ADC operates internally.

Next we proceeded to connect a real analog-to-digital converter,
the AD570, to the Apple computer. Actual circuits were designed
and discussed. It was shown how to calculate the input voltage
based on the digital word or weight read from the ADC. A tem-
perature transducer was then connected to the ADC. A complete
temperature-monitoring system was presented, along with the
software for controlling the system. Finally, we suggested a few
practical applications for a system involving an ADC and an Apple.

The main focus of this chapter was to show how to perform
ADC using an Apple computer. The example of inputting a

190 THE APPLE CONNECTION

temperature was meant only as a single illustration of how ADC
may be employed in computer control. Whatever they measure,
all tranducers generate electricity, and whenever an analog
voltage needs to be monitored by a digital computer, it can be
done in a manner similar to that shown in this chapter.

There are several available “‘off-the-shelf”’ analog-to-digital con-
verters for the Apple computer. If you plan on using one of these,
the information given in this chapter will help in understanding
how to apply it to the Apple computer.

193

Chapter 9

Digital to Analog
Conversion
for the Apple

CERTAIN PERIPHERAL DEVICES that can be controlled by
a home computer require an analog input voltage in order to oper-
ate. (We discussed what is meant by an analog voltage in Chapter
7.) A home computer system is completely digital, which presents
us with an interfacing problem. What we need is a means of pro-
ducing an analog voltage from a digital source or controller. Such
a process is called digital-to-analog conversion, or more simply,
DAC. Figure 9.1 shows a block diagram of this concept.

One type of external device that might require an analog input
voltage would be a direct current (DC) motor. Most DC motors
have the operating characteristic of rotating faster when a higher
voltage is applied to the input. This type of external device, along
with its analog input, is shown in the block diagram of Figure 9.2.

We have shown only a single example of an external device that
would require an analog voltage, but there are many other applica-
tions using devices that require an analog voltage for control. For
instance, communications and recording systems utilize digital-
to-analog conversion and analog-to-digital conversion at their
input and output. Electronic music and waveform-generation

194 THE APPLE CONNECTION

Peripheral device requires
an onalog voltage input.

HOME COMPUTER
| |
| |
—Pp— -
pigra. | DTOA |
source | l
: [REMOTE DEVICE
)

Interface will transform the digital
outputs from the home computer into
an equivalent analog voltage.

Block diagram showing the interfacing problem that occurs when a com-
pletely digital source is to be used to control a peripheral device that requires
an analog voltage input. A DAC will solve this interfacing problem.

~ Figure 8.1

systems also use digital-to-analog conversion as a part of the
overall system. These systems are growing in popularity. In
short, any device whose output (speed, musical pitch, brightness,
etc.) is variable will need digital-to-analog conversion to be con-
trolled by digital electronics.

The intention of this chapter is to show how you can control and
set an analog output voltage from a digital source, such as the Apple
computer. Our discussions will cover the basics of digital-to-analog
conversion. We will design and discuss the hardware and soft-
ware necessary to allow the Apple computer to automatically
control an analog output voltage from any 1/0 slot. The circuits
shown are inexpensive and available from many suppliers. These
circuits will show one way to achieve digital-to-analog conversion.
Nothing in this chapter will be left up to the reader; no important
detail will be omitted. All pin numbers, connecting lines and
types of devices will be labeled.

DIGITAL-TO-ANALOG CONVERSION FOR THE APPLE 1935

DC MOTOR

—

DC ANALOG

VOLTAGE SOURCV gl

Diagram showing a DC motor being controlled by an analog voltage. When
the voltage increases, the motor will increase in speed. This is only one type
of peripheral device that can be controlled by an analog input voltage.

Figure 9.2 —

9.1: WHAT IS DIGITAL-TO-ANALOG CONVERSION?

Before we design and discuss a digital-to-analog conversion inter-
face in detail, let us examine the overall concept. In the introduction
to this chapter a very informal definition was given. This section
will bring that definition into sharper focus.

Figure 9.3 shows a general block diagram of a digital-to-analog
converter. In this diagram the block labeled “B1” is the electrical
interface to the digital source that will input data to, and control,
the converter. In our case the source will be the digital output
lines from one of the Apple computer I/O slots. Block B1 will control
the block labeled “B2” in Figure 9.3.

Block B2 is the precision scaling network. The job of the scaling
network is to electrically determine how much of the reference volt-
age or current will appear at the converter output. For example,
suppose the reference voltage is equal to 8.00 volts. The scaling
network is capable of setting the output voltage to an exact portion
of the reference, say 2.04 volts. The reference could also be a

196 THE APPLE CONNECTION

+V

— = —"l ——————————— 1

| (

' “B1” B2’ :

| AnaloG

: ,’ | VoiTace
picra. | - oureut
INPUTS | —>»
TODAC | - I

| |

I DIGITAL SCALING BUFFER l

| INTERFACE NETWORK AMPLIFIER |

e e e e e e — — . [

Block diagram of a general digital-to-analog converter. Most digital-to-
| analog converters will have a block diagram similar to this one.

Figure 9.3

smaller voltage than the output device requires, such as 1.5 volts. In
this case, the scaling network would select a portion of the 1.5 volts,
and this would be amplified before being output from the DAC.

Digital inputs from the computer will electrically control the
scaling network, determining how much of the reference will be
applied to the output. By setting the proper digital information on
the DAC inputs, we could force the DAC output voltage to be equal
to exactly half of the 8.00-volt reference, or 4.00 volts. We cannot
give a formal, general definition of what voltage will appear at the
output as a function of the digital inputs, because every digital-to-
analog converter may have different specifications.

Using what we know about digital-to-analog conversion, let us
take an example and show how to set the analog output voltage as

DIGITAL-TO-ANALOG CONVERSION FOR THE APPLE

197

(a)

DAC
—_— 1
All digital
inputs equal
a logical 0.
b DAC

E—

All digital
inputs equal
a logical 1.

[

Vour = 0.0 VOLTS

Vour = +10.0 VOLTS

equal 0.00 volts.

swing.

a) When all digital inputs to the DAC are a logical 0, the output voltage will

b) When all digital inputs to the DAC are a logical 1, the output voltage will
equal 10.00 volts. These are the extreme ranges of this DAC's output voltage

Figure 9.4—

a function of the digital inputs. Suppose we have a digital-to-analog
converter that will output 10.00 volts when all of its digital inputs
are set toalogical 1; that is, suppose we have a DAC whose reference
voltage is 10.00 volts. (We use this as an illustration only. Every
DAC has a unique set of specifications.) Let us further assume
that the DAC will output 0.0 volts when all of the digital inputs are
a logical 0. Figure 9.4 shows these two conditions. A DAC with
this type of voltage output specification is called unipolar. The

198 THE APPLE CONNECTION

10 Digital Inputs

Ve — N
DS D8 D7 D6 D5 D4 D3 D2 D2 D1 DO)
0 0000 0O 0 OO0 O
0 00 0O 0 OO0 O 01
0 00 0 O c.> 0 0 0 1 O 1024
. Different
. Combinations
[]
®
S TS TR IS NS RS NS NS NS B N

With 10 digital inputs to the DAC, there are 1024 different combinations that
may be applied. The number 1024 is derived from raising 2 to the tenth
power.

Figure 9.5

output voltage will swing in one direction (toward one electrical
pole) only. In this case the swing was from 0.0 volts to +10.00
volts. The term “unipolar” also describes an analog-to-digital
converter with the same voltage characteristics.

Next we need to know how many digital inputs the DAC has.
We will assume that our hypothetical converter has 10 digital
inputs. There are therefore 219, or 1024, different input combina-
tions that can be used. (See Figure 9.5.) From this number we can
calculate the minimum voltage swing, the increment by which
the voltage will change for each unique digital combination on
the input.

To calculate how much the DAC output voltage will change
when the digital input combination changes by only one least
significant bit, we can use the following formula:

1. Minimum output voltage change = maximum output
voltage change/maximum number of states — 1

2. Maximum output voltage change = Voyr max — Vg, r min

3. Vour min = 0.0 volts, Voyy max = 10.0 volts
Maximum output voltage change = 10.0 — 0.0 = 10.0

DIGITAL-TO-ANALOG CONVERSION FOR THE APPLE 199

4, Maximum number of unique digital combinations with
10 inputs = 1024. One of these combinations is used to
output 0.0 volts. Therefore, we have actually 1023 states
that produce a voltage.

5. Minimum voltage swing = 10.0 volts/1023 = .009775
volts, or 10 millivolts.

This means the output voltage will change 10 millivolts for each
digital input bit that changes. (See Figure 9.6.) This DAC would be
described as a unipolar, 10-bit, voltage DAC. (The term ‘‘voltage”
indicates that the output is a voltage and not a current.) Suppose
our hypothetical DAC had 12 inputs instead of 10. Using the for-
mulas given, the minimum voltage change at the output would be
equal to:

6. Minimum voltage change = 10.0 volts/4096—1 =
10/4095 = .0024 V
Let us now suppose that this same DAC had only 6 inputs. The
minimum voltage change at the output pin would be:

7. Minimum voltage change = 10.0 volts/64 — 1 = 10.0/63
=.,158 V

Notice that, for a given output voltage range, the greater the
number of digital inputs, the smaller the minimum voltage
change at the DAC output. (See Figure 9.7.) In general, the greater
the number of digital input lines, the better the output voltage
“resolution’’; that is, the DAC can resolve a smaller increment of
voltage. This means we can come closer to obtaining the
“smooth” staircase waveform shown at the top of Figure 9.7.

9.2: AN ACTUAL DIGITAL-TO-ANALOG CONVERTER

To illustrate the points we have covered about digital-to-analog
conversion, let us examine a real DAC that is available “off the
shelf.” The DAC chosen for this example is the AD558, manufac-
tured by Analog Devices. A complete data sheet for this device is
given in Appendix A. A block diagram of the AD558 is shown in
Figure 9.8; let us discuss it in detail.

In this figure we see the digital input block, labeled DBO-DB?7.
These digital inputs will connect to the data lines of an Apple

200 THE APPLE CONNECTION

VOLTAGE OUTPUT
10.00 V STAIRCASE —
WA M
9.99V VE FOR :
9.98 Vv \ |ll:
)_j' '
ot
0.05 V ! I
N
0.04V 'l| |: !
[
0.03 V : {, : : ::
|
0.02Vv I A T A
0.01 V t I [L
' [R B B P
0.00 vV R T T R { i
[[! | 1 I i
Dolo:lioillo“: prlogy
DIIO:0:1:1:0:0= tor1ll
5| b2lotorotolipal i
5 [U I B . I I
z Da,o|o|o|o|o,o: RERERN
o oa:o:o=0:0|o:o| =|.1;1|
Q |
- D5l0|0l0|0|0IOI |1||:|:
! I
2| Ds olo:o:ololo' prhnnd
g 151 I I I B
5 D7|0:0|0:0|0'0: |1|||1:
o |
petolototoloto] vy
0lo'o!o! I B [I I
101090309030, iyt

The relationship between the digital input value and the analog output
voltage for a DAC with 10 inputs and an output voltage swing between 0.00
L and +10.00 volts.

Figure 9.6

computer 1/O slot. This DAC has built-in latches that allow the
data output from the Apple computer to be strobed and electrically
stored without the use of an external latch. (See Figure 9.9.) This
is a very helpful feature of the AD558, because it reduces the total
number of parts necessary. We will show exactly how to connect
the data lines of the Apple computer to the DAC digital inputsina
later section of this chapter.

DIGITAL-TO-ANALOG CONVERSION FOR THE APPLE 201

IDEAL RAMP

DAC OUTPUT WITH
12 DIGITAL INPUTS

DAC QUTPUT WITH
10 DIGITAL INPUTS

DAC OUTPUT WITH
6 DIGITAL INPUTS

NN

Different “staircase” wave forms for the analog voltage output of the DAC. .
As the digital input word changes by a single count, the output will increase
by the minimum voltage change. Notice that as the number of digital inputs
to the DAC increases, the staircase more closely resembles the ideal ramp.

Figure 9.7 —

The next block shown in Figure 9.8 is the control logic. This
logic block will provide the strobe signal to the input storage latches
at the correct time. The Apple computer will output a strobe
pulse to the control logic block.

Another important block of Figure 9.8 is the band-gap reference.
This is the internal reference voltage for the DAC. With the refer-
ence voltage inside the package, we do not have to provide an

202 THE APPLE CONNECTION

CONTROL DIGITAL

INPUTS INPUTS

s o3 DBO DB7 (MSB)

CONTROL - LATCHES

LOGIC

1 OUTPUT AMP
8-8IT VOLTAGE

BAND-GAP = SWITCHING AND Vour
REFERENCE D-TO-A CONVERTER

Block diagram for the AD558 digital-to-analog converter. Compare this to
the general block diagram given in Figure 9.2.

— Figure 9.8

external precision reference for the DAC. This is useful because it
means that standard power supplies may be used to power the
device. Most digital electronic systems, such as the Apple com-
puter, have power supplies to suit this application.

A large block of Figure 9.8 is the 8-bit voltage switching and D-to-A
converter. This block is the scaling network that applies a portion
of the reference voltage to the output. In this device the voltage is
output to the outside world from an amplifier, labeled “output
amp” in Figure 9.8. At this point in the discussion you should
compare the block diagram of Figure 9.8 to the general block dia-
gram that was given in Figure 9.2.

There are two modes of operation for the AD558. One mode will
allow the output voltage to swing between 0.00 volts and +2.56
volts. The second mode allows the output voltage to swing between

DIGITAL-TO-ANALOG CONVERSION FOR THE APPLE 203

@ ADS58 DAC

———

DATA from

Apple computer j

—P
STROBE INPUT ————————

(b) EXTERNAL
8-Bit LATCH

DAC

DATA from

Apple computer LATCHED

DATA
> TO DAC

STROBE INPUT

a) The AD558 will connect directly to the Apple computer data lines. There is
an internal 8-bit storage latch on the device.

b) Other DACs may require an external storage latch to capture the logical
state of the Apple data lines at exactly the correct time.

Figure 8.9 —

0.00 volts and +10.24 volts. Figure 9.10 shows how to connect
the pins of the AD558 for an output voltage swing in each of the
two modes. The 10.24-volt mode requires the V. input voltage
pin to have a potential between 11.4 and 16.5 volts. The 2.56-volt
mode requires a minimum potential of 4.6 volts.

204 THE APPLE CONNECTION

+Vee > 45V
1
16
15 Vour = O— +2.56 VOLTS
(o) our = -
14
13 :
+Vee > 11.4V
11
16 -
15 '
(b) Vour = 0—+10.24 VOLTS
14
13 —
v
a) Wiring diagram for using the AD558 with a maximum output voltage of
2.56 volts.
b) Wiring diagram for using the AD558 with a maximum output voltage of
10.24 volts.

~— Figure 9.10

9.3: CONNECTING THE DAC TO THE APPLE

Let us now discuss how to connect the AD558 to the Apple
computer for automatic control. This discussion will describe
how to physically wire the AD558 to an Apple I/O slot. The infor-
mation presented can be applied to connecting the Apple to most
other DACs as well. Figure 9.11 shows the complete schematic

DIGITAL-TO-ANALOG CONVERSION FOR THE APPLE 205

+12v
+12v
(50)
Vee
! 11
49y —22 '8
2
(48) D1 -
(47) —22 5 I
(46) D3 4
D4 5 AD558 Vour = 0.0-+10.24V
(45) -
(ag) —22 4 .
7
(43) D¢
8
() 2 13—
cs 10
12—
9
CE
GND
(26)
DEVICE SELECT 7“:§37
(41)
R/W
(18)
e
Apple pin
number
Complete schematic for interfacing the AD558 to the Apple computer at any /O slot.

Figure 9.11—

206 THE APPLE CONNECTION

diagram for connecting the AD558 to an Apple I/O slot.

We see in Figure 9.11 that the data lines from the Apple com-
puter, DO— D7, are connected directly to the data input pins of the
device. We can do this because of the AD558’s built-in 8-bit latch,
which will store the logical conditions of the data lines at the
correct time. Other DACs may not have this feature. Digital-to-
analog converters without built-in storage latches require an
external 8-bit latch, used as shown in Figure 9.12.

To strobe the data into the DAC circuit shown in Figure 9.11 or
9.12, the Apple computer will execute a POKE instruction. The
use of the POKE instruction was described in Chapter 2. Timing
considerations for latching the data during a POKE instruction
were discussed in Chapter 4. When the POKE instruction is ex-
ecuted, the data specified by the instruction will be placed at the
ADS558 data inputs via the eight Apple data lines.

At thistimethe DEVICE SELECT line, as well as the R/W control
line, will go to alogical 0. When this accurs, the CS input pin 10 of
the AD558 will be set to a logical 0. After the POKE instruction is
complete, the CS input line to the AD558 will be set to a logical 1,
because the DEVICE SELECT line will go to a logical 1. The
operation of the DEVICE SELECT and R/W lines was discussed
in Chapter 4.

When the CS input line to the AD558 goes to alogical 1, the data
at the input pins will be strobed into the internal 8-bit latch. The
output voltage at pin 16 will depend on the data written to the
DAC during the execution of the POKE instruction. By using the
POKE instruction and the circuit shown in Figure 9.11, we can
set any digital input combination between 0 and 255 at the DAC
input pins. Now we need to know how to calculate exactly what
data should be written to the DAC.

9.4: SETTING ANY OUTPUT VOLTAGE ON THE DAC

We will assume that the Apple computer system can control
the digital inputs to the DAC as discussed in Section 9.3. The
DAC will be physically connected to the system as shown in
Figure 9.11. If the Apple computer can control the digital inputs
to the DAC, how can we calculate the digital byte needed to set

DIGITAL-TO-ANALOG CONVERSION FOR THE APPLE 207

(25)

(49)
{48)
{47)
(46)
(45)
(44)
(43)
(42)

(26)

41)

(18)

/

Apple pin
number

+5
7415374
Il
20
D0 3 2 LDO
DI 4 5 LD1
D2 7 6 LD2
03 8 9 LD3
D4 13 2] LD4
D5 45 LD5
D6 17 16 LD
D7 18 19 LD7
10
N l
GND
DEVICE SELECT
b3
2
iIc2
RW

>

LATCHED DATA
to DAC

Schematic diagram showing how an external latch could be connected to the Apple computer for use

with a DAC that, unlike the AD558, does not have an internal storage latch.

Figure 9.12 —

208 THE APPLE CONNECTION

the correct voltage output? That is the question we will answer in
this section.

In Section 9.1 we discussed briefly how to calculate the minimum
voltage change that will occur at the output of the DAC. That
discussion assumed there were 10 digital inputs to the device, but
the AD558 has only 8 inputs. Therefore, the equations given in
Section 9.1 will need to be modified slightly to handle the differ-
ences in the two examples. We could interface a 10-bit DAC to the
Apple computer, but it would require additional hardware,
because the Apple output data bus handles only 8 bits at a time. If
a 10-bit DAC were used, you would have to program the device
using two 8-bit words, or POKE instructions—eight bits from one
word and two bits from the other. Each 8-bit word would need to
be latched at the DAC inputs. Further, DACs or ADCs handling
any number of bits can be used with the Apple computer. We have
used 8-bit DACs and ADCs here to illustrate the concepts because
these devices interface directly to the Apple’s 8-bit data bus.

Our objective in this section is to calculate the total weight of
the digital inputs required to output a certain voltage from the
DAC. For example, suppose we wish the DAC's output voltage to
be equal to 4.8 volts. The computer will be programmed to output
a certain combination of logical 1s and 0s to obtain the correct
DAC output voltage. The digital output byte in this case would be
equal to 120. Let us go through the steps needed to perform this
calculation. We will be using the AD558 DAC as the example. How-
ever, you can easily modify the equations given to fit any DAC
with a different number of digital inputs and a different output
voltage swing.

The first step is to calculate the minimum voltage change at the
DAC output. This may be accomplished using the procedure
outlined in Section 9.1, and the appropriate specifications for
the AD558.

Maximum voltage swing

Total number of digital
input combinations — 1

Minimum voltage swing =

The maximum voltage swing on the AD558 will be equal to 10.24
volts. There are eight digital inputs to the AD558. (That is why it is
called an 8-bit DAC.) With eight digital inputs there are a total of

DIGITAL-TO-ANALOG CONVERSION FOR THE APPLE 209

256 different input combinations. One of these combinations is
used to set the DAC to its lowest value, so we use 255 (256 — 1)
combinations to generate the output voltage swing.

Minimum voltage swing = 10.24 /255 = .040 volts, or 40
millivolts.

This means that if the digital input byte to the DAC were
00000001, the output voltage would be 40 millivolts.

Given the digital input word, we can calculate the DAC output
voltage by the equation:

Vour = (Digital input word) X .040 volts

For example, let us suppose we have a digital input word equal to
65. The output voltage is calculated as 65 X .040 = 2.60 volts.

However, we are interested in the converse of the preceding
case: Given a voltage needed, what digital input word is required
by the DAC? To calculate this we use the relationship between the
voltage desired and the known voltage output change for each
digital input change. The analog output voltage for the DAC will
change .040 volts for each digital count. Therefore, we can divide
the voltage needed or desired at the DAC output by .040. The result
will be the digital value needed to produce the output voltage.

For example, suppose we wished the DAC output voltage to be
equal to 8.00 volts. To find out what digital word is needed by the
DAC we set up the relationship:

Vour wanted

Digital word = 540

In our example the equation would be:

. _8.00 _
Digital word = Sao — 200

If we input the digital weight of 200 to the DAC data input lines,
the DAC output voltage will be equal to 8.00 volts. This type of
calculation is quite easy to do with the Apple computer. We will
present a program in the next section that will perform this
calculation.

Let us suppose that we wished the DAC to output a voltage
equal to 5.25 volts. To calculate the digital word we would need to

210 THE APPLE CONNECTION

POSSIBLE DAC

5.28 OUTPUT VOLTAGE

VOLTAGE
DESIRED

5.25 - e ea eAas GNe aEE eoaEe S

5.24 POSSIBLE DAC
OUTPUT VOLTAGE

The desired output voltage is 5.25 volts. The DAC will output a voltage of
either 5.24 volts or 5.28 volts. We must choose which of these two output
voltages is the most desirable for the application.

— Figure 9.13

use the equation:

. 5.25
Digital word = B30 = 131.25
Notice that the digital word is not an integer, but a real number.
That is, the number has some digits that are not zero after the deci-
mal point. To control the DAC with the Apple, we must output
digital words as integers: 1, 2, 234, 179, etc. The exact voltage we
require at the output of the DAC cannot be obtained. We must
choose whether we wish the output voltage to be a little larger
than 5.25 or a little less than 5.25. (See Figure 9.13.)

The integer numbers that we must choose between are 131 and
132. Neither of these two numbers will give the exact output voltage
of 5.25 volts. The number 131 will give an output voltage equal to
131 X .040 = 5.24 volts. The number 132 will give an output
voltage equal to 132 X .040 = 5.28 volts. It is clear that the integer
131 gives an output voltage value closer to 5.25 volts than does 132.

As a general rule, we may round off to the closest whole number
and use the rounded-off value as the digital word to be output. If
the decimal part of the required digital word is less than but not

DIGITAL-TO-ANALOG CONVERSION FOR THE APPLE 211

equal to .5, use the smaller integer. If the decimal part of the
digital word is greater than or equal to .5, use the greater integer
as the output word.

To illustrate, let us suppose the required digital word was equal
to 156.34. The decimal part of this word is equal to .34 so we will
use the smaller integer, 156, as the output word. If the required dig-
ital word was equal to 156.67, we would use the greater integer,
157, as the output word. This process, testing the decimal value
and outputting the nearest integer, can be accomplished quite
easily with the Apple computer, using BASIC’s INT function.
The program given in the next section, which calculates the
digital value needed, uses this function.

The same type of calculations for the digital input word and the
rounding-off of the word to integer values may be applied toa DAC
with any number of input lines and any output voltage swing.

9.5: CONTROLLING THE DAC WITH A BASIC PROGRAM

In this section we will present a BASIC program that will allow
the AD558 to be programmed to any output voltage between 0.00
and 10.24 volts. The program will perform the calculations de-
scribed in Section 9.5, using the information presented there. The
program is shown in Figure 9.14.

10
20
30
40
50

70
80
90
100
1o
120

REM: THIS PROGRAM WILL INPUT A NUMBER FROM THE KEYBOARD
REM: AND POKE THE FORMATTED DATA TO THE 170 SLOT.

REM: WE ASSUME THE DAC BOARD OF FIGURE 9.11 IS CONNECTED
REM: TO 1/0 SLOT 4. THIS REQUIRES A POKE ADDRESS OF

REM: —16192.

REM

REM

PRINT’’INPUT THE VOLTAGE FOR THE DAC*”

PRINT’’IT MUST BE BETWEEN 0 AND 10.24 VOLTS”

PRINT

INPUT VI

REM

Figure 9.14 =i

212 THE APPLE CONNECTION

130 REM: NOW TO CHECK FOR A VALID INPUT VOLTAGE
140 REM
150 IFV1I<0ORVI> 10.24 GOTO 1000
160 REM
170 REM: NOW TO CALCULATE THE DIGITAL WORD FOR THE DAC
180 REM
190 LET X= V1/.040
200 REM
210 REM: NOW TO ROUND OFF THE NUMBER
220 REM
230 LET X=INT(X+.5)
240 REM
250 REM: NOW TO OUTPUT THE WORD TO THE DAC
260 REM
270 POKE —16192,X
280 REM
290 REM: THE DAC VOLTAGE IS NOW SET. LOOP BACK TO START
300 REM
310 GOTO 80
800 REM
810 REM: THIS SECTION PRINTS AN ERROR STATEMENT FOR A
820 REM: VOLTAGE THAT WAS NOT BETWEEN 0.00 AND +10.24
830 REM
1000 PRINT
1010 PRINTTHE VOLTAGE *"V1;”” WAS NOT BETWEEN 0.00 AND 10.24 v**
1020 PRINT
1030 GOTO 80
Th‘its program will calculate and output the digital value necessary for the DAC to produce a given
voltage.

™ Figure 8.14 (cont.)
9.6: INCREASING THE OUTPUT DRIVE CAPABILITY
OF THE DAC

If we want the DAC output voltage to drive a heavy current
load, the current required may be greater than the rated amount

DIGITAL-TO-ANALOG CONVERSION FOR THE APPLE =~ 213

ADS558

R, = Lood for DAC

é output to drive. It may
be larger than the

device can deliver.

<

In some cpplications the DAC output voltage will be required to drive a load
that needs more current than the DAC output pin can deliver. Usually, DACs
will output only a few milliamperes of current to a load.

\— Figure 9.15

of the device. (See Figure 9.15.) The AD558 can output 5 milli-
amperes to a load with no electrical problems. In this section we
will show how to increase the output current drive capability of
the DAC from 5 milliamperes to several hundred milliamperes. In
music applications the current required by the DAC is usually less
than 5 milliamperes. For motor control applications, the current
will be in the range from 100 to several hundred milliamperes.
One way to do this is by using the circuit shown in Figure 9.16.
In this circuit we take advantage of the current gain of a transistor,
the 2N2222, manufactured by many companies. A disadvantage
of this technique is that we do not know exactly what the output
voltage at the load will be, because some voltage will drop across
the base-emitter junction of the transistor (see Figure 9.17).
Another technique that can be used to increase the current
drive capability of the AD558 is shown in Figure 9.18. This circuit
makes use of an operational amplifier (or op amp) in addition to
the transistor to compensate for any voltage drop across the base-
emitter junction. At this point we should briefly describe the

214 THE APPLE CONNECTION

+12v
| LARGE CURRENT
ADS58 J
/
/
Vour l/ '
2N2222
M
SMALL \
CONTROL .o
CURRENT \ Vour
N » 10
LOAD
N\
'
\vg

One way to increase the output drive current of the DAC is by using the circuit
shown above. The heavy current is controlled by the smaller current in the
base of the transistor. This base current is ocutput by the DAC.

L Figure9.16

function of an operational amplifer. The output of the op amp
will automatically adjust itself so the two inputs are at the same
voltage. This will allow the emitter of the transistor to be at the
desired voltage potential, and let the transistor handle the heavy
current. This circuit is a current amplifier with a voltage gain of 1.
The voltage at the load in Figure 9.17 will be equal to the output
voltage of the DAC.

9.7: SUMMARY

In this chapter we began by explaining the nature of digital-to-
analog conversion (DAC). We showed that the number of unique
output voltages of a converter depends on the number of digital
input lines and the converter’s range of output voltage levels.
Also shown in this chapter was a general block diagram of a DAC.

DIGITAL-TO-ANALOG CONVERSION FOR THE APPLE 215

+12

Vour DAC l/
l\ 2N2222

\

Vollage __

drop —— Vour LOAD

=.6V

v

Vour LOAD 2 Vg ;; DAC — .6V

In the circuit of Figure 9.18, we do not know exactly what voltage will be
delivered to the load, because of the voltage drop across the base-emitter
junction of the transistor. The voltage drop is approximately .6 volts.

. Figure 9.17

When you encounter a DAC for the first time, it will be helpful to
keep in mind this general block diagram.

From this general discussion of the DAC, a formula was derived
for calculating the minimum voltage change for a DAC with any
number of digital inputs and any maximum output voltage swing.
We then discussed how to determine what digital word to POKE
to the DAC to set a desired output voltage.

The chapter finished by showing a sample program for control-
ling a DAC with the Apple computer and giving general schematics

216 THE APPLE CONNECTION

+12to +15

ADS58 ¢

—1210 —15V

Vour LOAD = Vg DAC

Schematic diagram of a circuit that will increase the output current drive of
the DAC and compensate for the base-emitter voltage drop.

'~ Figure 9.18

for increasing the output drive capability of the device. Digital-to-
analog converters are becoming quite popular in many home
computer peripheral devices. If you understand the information
given in this chapter, then using and controlling the peripheral
devices that use DACs will be a much easier task.

Now that you have finished this text, the prospect of controlling
external hardware with the Apple computer should seem a much
simpler problem than it did at first. We have presented and dis-
cussed many examples of interfacing the computer to peripheral
equipment. Important timing and control signals used by the Apple
computer were clearly outlined, and you learned exactly how to
use these signals. Throughout this text the two prevailing con-
cepts were those stated in Chapter 1. That is, computer control is

DIGITAL-TO-ANALOG CONVERSION FOR THE APPLE 217

made up of hardware and software that will:
1. Send electrical information to an external device, and
2. Receive electrical information from an external device.

At this point you know enough about controlling peripheral
equipment with the Apple computer to make your own Apple con-
nection. This will open the door to the applications described in
this text as well as many others you may be able to imagine. Good
luck and have fun making the Apple connection.

9.8: FURTHER STUDY

In this text we have covered the basic topics involved in com-
puter control with the Apple. If you are interested in going deeper
into this subject, there are other topics which are important. (A
good source to read for some of these topics is Microprocessor Inter-
facing Techniques, by R. Zaks and A. Lesea, Sybex, 3rd ed. 1979.)

One area we have not discussed which is used often in computer
interfacing is that of interrupts. Using interrupts, the peripheral
device can request service from the computer only when neces-
sary. At all other times, the computer will perform other tasks and
will not service the external device at all.

Direct memory access (DMA) is another area that may be useful
for further study. DMA is an electrical mode in which the com-
puter’s internal microprocessor is electrically removed from the
system, allowing the peripheral device to control the system. In
this way, the peripheral device can directly access the system’s
memory circuits without first going through the computer’s central
processing unit.

The last topic of study we should mention in the context of com-
puter control is the use of different standard interface buses with
external devices. Examples of these standard buses are IEEE-488
and RS-232. These buses will allow you to directly connect your
computer to a peripheral device with no hardware modifications
or special designs, which enables you to concentrate on software
development.

These are some of the main topics you may want to study now
that you are familiar with the essential elements of interfacing
and computer control.

Appendix A

221

Appendix A:

Manufacturers’ Data Sheets

¢ 741.500 series integrated circuits

e LM135/LM235/LM335 temperature sensor
* AD570 analog-to-digital converter
* AD558 digital-to-analog converter

222 THE APPLE CONNECTION

54/74 FAMILIES OF COMPATIBLE TTL CIRCUITS
PIN ASSIGNMENTS (TOP VIEWS)

QUADRUPLE 2-INPUT
POSITIVE-NAND GATES

positive logic:
Y u AB

Ses psge 6-2

A3
=)«

A 0 w L1y 8 1Y GND

SN5400 (J) SN7400 (J,N)
SN54K00 (J) SN74H00 (4, N}
SNS54LO0 () SN?74L00 (J, N)

SNSALS00 (J, Wi SN74LS00 {4, N}

SNS4S00 (J, W) SN74S00 (J,N)

SNS400 (W)
SNE4HO00 (W)
SNS4L00 (T)

HEX INVERTERS

04

pasitive logic:
Y=A

See page 6-2

Vi GA 6Y 5A SY 4A &y
Ml joju ni {wl s L)

A 6Y GND SY 3A 4Y
wijelinl /0wl

>
ol alice

1] L] ’
TA W 2A I A Jv GwD
SN5404 {J) SN7404 {J, N)
SN54AHO4 (J} SN74H04 (J, N}

SN54L04 () SN74L04 (4, N)
SN54LS04 (J, W) SN74LS04 (), N)
SN54S04 (J,W) SN74504 {J, N)

L e
SR
D

SNS404 (W)
SN54H04 (W)
SN54L04 (T)

HEX INVERTER BUFFERS/DRIVERS
WITH OPEN-COLLECTOR
HIGH-VOLTAGE QUTPUTS

positive logic:
YeA

See page 6-24

VA 1Y A 2¥ a3y GND

SN5406 (J, W) SN7406 {J, N)

From The TTL Data Book for Design Engineers

Copyright © 1881 Texas Instruments Incorporated.

APPENDIX A

223

54/74 FAMILIES OF COMPATIBLE TTL CIRCUITS

PIN ASSIGNMENTS (TOP VIEWS)

QUADRUPLE 2-INPUT
POSITIVE-OR GATES

32

positive logic:
Y=A+B

See psge 628

v, 43 4 4y 3B WM W
.Illlullllllnl » Ill]ll

NN

SN5432 (4, W)

g

2 L)
Wy

SN7432 {J. N}

SNB4LS32 {9, W) SN74L8532 (4, N}

SN54S32 (J, W)

SN74532 (, N)

DUAL D-TYPE POSITIVE-EDGE-TRIGGERED FLIP.FLOPS WiTH PRESET AND CLEAR

14.

FUNCTION TABLE

INPUTS CUTPUTS

PRESEY CLEAR CLOCK D [@ @
L H X X L

H L X X H

L L X X | e we

H H t H L

H H ! L H

H H L X {Qy &

Ses pages 6-46, 650, 6-54, and 8-56

Vi c:- 20 2cx 2#R 20 20 %A 10 8 owo 20 0 2PR
] fo) [u] [n] [wl [v] [o] ~ Julfo]lfe][c] fwlfe]fs]
o ™ o CIK] q o] |
P ex l !
I:ALR 3 LLA qea cLe| l-: cLn rup—
pox o €% S
® o "l =2 | %
o il j
A 2 ? 4 L) 13 7 1 2) 4 s 1] 1
v ID 1CK PR 10 10 GND 1€k 0 1 vec 2 0 ek
LR @R @n
SN5474 () SN7474 (J, N) SN5474 (W)
SNSAM74 () SN74H74 (J, N} SNSaH74 (W)
SN54L74 (J) SN74L74 (J, N) SN54L74 (T)

SNS4LS74A (J, W) SNT4LS74A (J, N}

SN54574 (J, W)

S$N74S74 {3, N)

QUADRUPLE BUS BUFFER GATES WITH THREE-STATE OUTPUTS

125

poslitive logic:
YuA

Output is off {disabled) when C is high.

Ses page 6-33

¥ OND

SNS4125 (4, W) SN74126 (J, N}
SNSALS125A(J, W) SN74LS125A W, N)

From The TTL Data Book for Dasign Engineers

Copyright © 1881 Texas Instruments Incorporated.

224 THE APPLE CONNECTION

54/74 FAMILIES OF COMPATIBLE TTL CIRCUITS

PIN ASSIGNMENTS (TOP VIEWS)
Ve L) 0 0 o] w0 20 CLOCK
w [1wl ful{u]fwlls
QUAD D-TYPE FLIP.FLOPS
e " een
175 compLementary cuTPUTS t
COMMON DIRECT CLEAR 3
aC e
o a o “o
)
HiEB iR OiEn;
ciean g "0 10 »] £ N
SN54175 (J, W) SN74175 (4, N)
SNS4LS175(J, W) SN74LS175 (4, N}
Seo page 7-253 SNB4S175 (J, W) SN745175 (J, N}

OCTAL BUFFERS/LINE DRIVERS/LINE RECEIVERS
Yer K W) lae v B v s e sar

S
AR A

280 nverTED 35TATE OUTPUTS

[] . L] [] LJ

cl o T R o T

Se0 poge 6-83 SNSALS240 () SN74LS240 (4, N)
SN54S240 (J) SN?745240 (3, N)

OCTAL BUFFERS/LINE DRIVERS/LINE RECEIVERS

244 NONINVERTED 3-STATE OUTPUTS

See page 883 SN54LS244 (3 SN74LS244 (4, N)

From The TTL Data Book for Design Engineers
Copyright © 1881 Texas Instruments Incorporated.

APPENDIX A

225

National
Semiconductor

November 1680

LM135/LM235/LM335, LM135A/LM235A/LM335A
Precision Temperature Sensors

General Description
The LM135 saries are pracision, easily-calibrated, inte-
grated circuit sensors. Op ing as a

2-terminal zener, the LM135 has a breakdown voltage
directly proportions! 10 gbsolute temperature at +10 mv/
°K. With less then 102 dynamic impedance the device
operates over 3 current range of 400 uA to 5 mA with
virtuslly no change in performance. When calibrated
at 25°C the LM135 has typically less than 1°C error

to +125°C temperature range. The LM335 operates
from —40°C to +100°C. The LM135/LM235/LM335
are available packaged in hermetic TO-46 transistor
packages white the LM335 is alsa available in plastic
TO-92 packages.

over a 100°C temparature range. Unlike other sensors Foatures
the LM135 has a linear output. ® Directly calibrated in *Kelvin
Py .

Applications for the LM135 include almost any type of ® 1°Cinitiel accuracy available
temperature sensing over a —55°C 10 +150°C temper- ® Operates from 400 tA to 5 mA
ature range. The low impedance and finear output # Less than 152 dynamic impedance
make interfacing to readout or contro! circuitry espe- ® Egasily ¢alibrated
cially easy. & Wide operating temperature range
The LM135 operates over a —56°C to +150°C temper- = 200°C overrange
sture range while the LM235 operates over a —40°C ® Lowcost
Schematic Diagram

b

W o "y n b4

™ I 1.-;»

»
o
an
m\1 Y
)
>
on Q1 b33
*b L 1Y
"
"} n

n "

Typical Applications
Basic Temperature Sensor Calibrated Sensor Wide Operating Supply
- v |v.lm
Y a" 8
1M
ourteut P SUIPUT 10 o¥/ K
Wayry -
Lt van Qutruy
9 Narre
- 7 rllm
® Catibrate for 2.882V a1 25°C -

Copyright © 1879 Nationel Semiconduct

THE APPLE CONNECTION

ANALOG
DEVICES

DACPORT™ Low Cost Complete

JP-Compatible 8-Bit DAC

FEATURES

Complete 8-Bit DAC

Voltage Output — 2 Calibrated Ranges
Internal Precision Band-Gap Reference
Singte-Supply Operation: +5V to +16V
Full Microprocassor Interface

Fast: 1us Voltage Sattling to +1/2LSB
Low Power: 76mW

No User Trims

Guaranteed Monotonic Over Temperature
All Errors Specified Ty t0 Trax

Small 16-Pin DIP Package

Single Laser-Wafor-Trimmed Chip for Hybrids
Low Cost

PRODUCT DESCRIPTION

The AD558 DACPORT is a complete voltage-output 8-bit
digital-to-analog converter, including output amplifier, full
microprocessor interface and precision voltage reference on a
single monolithic chip. No external components or trims are
required to interface, with full accuracy, an 8-bit data bus to
an analog system.

The performance and versatility of the DACPORT is a result of
several recently-developed monolithic bipolar technologies.
The complete microprocessor interface and control logic is
implemented with integrated injection logic (12L), an extreme-
ly dense and low-power logic structure that is process-compat-
ible with lincar bipolar fabrication. The internal precision
voltage reference is the patented low-voltage band-gap circuit
which permits full-accuracy performance on a single +5V to
+15V power supply. Thin-film silicon-chromium resistors
provide the stability required for guaranteed monotonic op-
cration over the entire operating temperature range (all grades),
while recent advances in laser-wafer-trimming of these thin-
film resistors permit absolute calibration at the factory to
within £1LSB: thus no user-trims for gain or offset are re-
quired. A new circuit design provides voltage settling to
£1/2LSB for a full-scale step in 800ns.

The ADS58 is available in four performance grades. The
ADS58] and K are specified for use over the 0 to +70°C tem-
perature range, while the AD558S and T grades are speci-
ficd for -55°C to +125°C operation. The hermetically-
scaled ceramic package is standard. Processing to MIL-STD-
883, Class B is optional on S and T grades.

PRODUCT HIGHLIGHTS

1. The 8-bit 12L input register and fully microprocessor-
compatibie control logic allow the ADS58 to be directly
connected to 8- or 16-bit data buses and opcrated with
standard controf signals. The latch may be disabled for
direct DAC interfacing.

~

™

73

o

AD358"

ADS558 FUNCTIONAL BLOCK DIAGRAM

ouTPut
L) Aue
nte
are 2 18 APt
e E 13 Kvoeyr Stose
Yovorsy
spt)
ey Gipiton 34 Kvour saciC?
e Yoratw
you
ary Anat0c
e [wicuis 12 | SeALOC racwor
Edn] S8 ncro
wy e
e 4] v
w1y “
L [j E ke
"
ol
g of

TO-116

. The laser-trimmed on-chip SiCr thin-film resistors are cali-

brated for absolute accuracy and linearity at the factory.
Therefore, no user trims are necessary for full rated ac-
curacy over the operating temperature range.

. The inclusion of a precision low-voltage band-gap reference

eliminates che need to specify and apply a separate refer-
ence source.

The voltage-switching structure of the AD558 DAC section
along with a high-speed output amplificr and laser-trimmed
resistors give the user a choice of OV 10 +2.56V or 0V to
+10V output ranges, selectable by pin-strapping. Circuitry
is internally compensated for minimum settling time on
both ranges; typically settling to £1/2LSB for a full-scale
2.55 volt step in 800ns.

. The ADS558 is designed and specified to operate from a

single +4.5V to +16.5V power supply.

. Low digital input currents, 1000A max, minimize bus

loading. Input thresholds are TTL/low voltage CMOS
compatible over the entire operating Ve range.

. The single-chip, low power 12L design of the AD558 is

inherenty more reliable than hybrid multi-chip or con-
ventional single-chip bipolar designs. The AD558S and T
grades, which are specified over the -55°C to +125°C
temperature range, arc available processed to MIL-STD-883,
Class B,

All AD558 grades are available in chip form with guar-
anteed specifications from +25°C 1o Tyax. MIL-STD-883,
Class B visual inspection is standard on Analog Devices
bipolar chips. Contact the factory for additional chip
information.

Reprintad with permission of Analog Devices, Inc., Norwoed MA 02082,

APPENDIX A

227

SPECIFlCATlous (typical @ Tp = +26°C, Vi = +5V to +15V unless otherwisa specifiad)

MODEL ADSs8) ADS5$8K ADSS8S! ADS5SST!
RESOLUTION 8 Bits * hd h
RELATIVE ACCURACY?
010 +70°C £1/2LSB max £1/4LSB max . oo
-55°C o +125°C - - +3/4LSB max +3/8LSB max
OUTPUT
Ranges OV 1o +2.56V . * *
0Vio +10vV? . . .
Current, Source +SmA . +SmA min bl
Sink Internal Passive . . d
Pull-Down to Ground*
OUTPUT SETTLING TIME®
0 to 2.56 volt range 0.8us (1.5us max) . . *
0 to 10 volt range 2.0us (3.0us max) . * *
FULL SCALE ACCURACY
@125°c +1.5LSB (£0.6%) max +0.5LSB (20.2%) max * o
Tmin t0 Tinax £2.5L.SB (21.0%) max +1LSB (£0.4%) max . i
ZERO ERROR
@25°C +1LSB max £1/2LSB max * -
Trin t0 Trax +2LSB max +1LSB max * **
MONOTONICITY®
Tenin 10 Trnax Guaranteed . d d
DIGITAL INPUTS
Tenin 10 Trmax
Input Current £100A max . d M
Data Inputs, Voltage
Bit On — Logic “1" 2.0V min . . *
Bit Off — Logic “0” 0.8V max . . .
Control Inputs, Voltage
On — Logic “1” 2.0V min . * *
Off — Logic 0" 0.8V max . ¢ *
Input Capacitance 4pF . . .
TIMING?
Tinin 10 Trax
tw (Strobe Pulse Width) 100ns min . . .
tpH (Data Hold Time) 10ns min . . .
tps {Data Sete-Up Time) 100ns min . . .
POWER SUPPLY
Operating Voltage Range (V)
2.56 Volt Range +4.5V to +16.5V . . .
10 Volt Range +11.4V to +16.5V * . .
Current (Icc) 15mA typ, 25mA max . . .
Rejection Ratio 0.03%/% max . . M
POWER DISSIPATION, Ve =5V 7SmW (125mW max) . . .
Vee =15V 225mW (375mW max) . . .
OPERATING TEMPERATURE
RANGE
Tmin o°c . -55°C ves
Tenax +70°C . +125°C ses

Reprinted with permission of Analog Devices, Inc., Norwood MA 02062,

228

THE APPLE CONNECTION

ABSOLUTE MAXIMUM RATINGS

®
T VectaGround. ... 0V to +18V s os0 [4 [vour
Digital Inputs (Pins 1410} 0to +7.0V o (]2 18 [vour sense
VOUT -+ v v et v me e ii e Indefinite Short to Ground o2 O 3 10) vour suneer
Momentary Short to V¢
Power Dissipation 450mw o] apsss P o
Storage Temperature Range om []s n [ovo
D (ceramic) Package. -55°Cto +150°C oos (1 v [ve
Lead Temperature (soldering, 10second). 300°C oss (] 2 to g a
Thermal Resistance e : N ‘P
Junction to Ambient/Junction to Case
D (ceramic) Package. 100/30°C/W Toe view
Figure 1. AD558 Pin Configuration
AD558 ORDERING GUIDE
Relative Accuracy Full-Scale
Error Max Error, Max Paucl
Model Package Temperature Tenin 80 Tenax Toin t0 Tmax Style
ADSS8)N Plastic 010 +70°C £1/2LSB $2.5LSB N16A?
AD558KN Plastic 010 +70°C 21/4LSB £1LSB N16A?
ADS558)D Ceramic 0 1o +70°C £1/2LSB +2.5LSB DI16A
ADS5S8KD Ceramic 010 +70°C 11/4LSB X1LSB DI16A
ADS558SD Ceramic -55°C to +125°C +3/4LSB £2.5LSB D16A
ADS58SD/8838B Ceramic -55°C 0 +125°C £3/4LSB $2.5LSB DI6A
ADSSSTD Ceramic ~55°C to +125°C +3/8L.SB t1LSB D16A
ADS558TD/883B Ceramic -55°C o +125°C *3/8LSB 2]1LSB D16A

' See Section 20 for packege outline information,
370 be availsble June, 1982,

CIRCUIT DESCRIPTION

The ADS558 consists of four major functional blocks, fabri-
cated on a single monolithic chip (see Figure 2). The main

D to A converter section uses ¢ight equally-weighted laser-trim
med current sources switched into a silicon-chromium thin-
fitm R/2R resistor ladder network to give a direct but unbuf-
fered OmV to 400mV output range. The transistors that form
the DAC switches are PNPs: this allows direct positive-voltage
logic interface and a zero-based output range.

CONTROL DICITAL INPUT DATA

-j"’u"_(:’:m 'T v
Y Y YYTYYYYYY ¥ g g

1L LATCHES

. ll' VOLTAGE SWITCMING

10 A CONVERTER Vou?

Vout SENSE

Vour SELECT

Figure 2. AD558 Functional Block Diagram

The high-speed output buffer amplifier is operared in the non-
inverting mode with gain determined by the user-connections
at the output range select pin. The gain-setting application
resistors are thin-film laser-trimmed to match and track the
DAC resistors and to assure precise initial calibration of the
two output ranges, OV 10 2.56V and OV to 10V. The amplifier
output stage is an NPN transistor with passive pull-down for
zero-based output capability with a single power supply.

The internal precision voltage reference is of the patented
band-gap type. This design produces a reference volugc of 1.2
volts and thus, unlike 6.3 volt temperatur d zeners,
may be operated from a single, low-voltage loglc power supply.
The microprocessor interface logic consists of an 8-bit dara
latch and control circuitry. Low-power, small geometry and
hlgh—spccd are advantages of the I2L design as applied to this
section. 12L is bipolar process compatible so that the perform-
ance of the analog sections need not be compromised to pro-
vide on-chip logic capabilitics. The control logic allows the
latches to be operated from a decoded microprocessor ad-
dress and write signal. §f the application does not involve 2

uP or data bus, wiring CS and CE to ground renders the latches
*“transparent” for direct DAC access.

d with per

of Analog Devices, Inc., Norwood MA 02082,

APPENDIX A

CONNECTING THE AD558

The AD558 has been configured for case of application. All
reference, output amplifier and logic connections are made
internally. In addition, all calibration trims are performed at
the factory assuring specified accuracy without user trims. The
only connection decision that must be made by the userisa
single jumper to selcct output voltage range. Clean circuit-
board layout is facilitated by isolating all digital bit inpucs on
one side of the package; analog outputs arc on the opposite side.

Figure 3 shows the two alternative output range connections.
The OV to 2.56V range may be selected for use with any
power supply between +4.5V and +16.5V. The OV to 10V
range requires a power supply of +11.4V 10 +16.5V.

Because of its precise factory calibration, the AD558 is in-
tended to be operated without user trims;for gain and offset;
therefore no provisions have been made for such user-trims.

If a small increase in scale is required, however, it may be ac-
complished by slightly altering the effective gain of the output
buffer. A resistor in series with Voyy SENSE will increase the
output range.

For example if a OV to 10.24V output range is desired (40mV
= 1LSB), a nominal resistance of 8508 is required. It must be
remembered that, although the internal resistors all ratio-
match and track, the absolute tolerance of these resistors is
typically 20% and the absolute TC is typically -SGppm/°C
(0 to -100ppm/°C). That must be considered when re-scaling
is performed. Figure 4 shows the recommended circuitry for a
full-scale output range of 10.24 volts. Internal resistance values
shown are nominal.

NOTE: Decreasing the scale by putting a resistor in series with
GND uill not work properly due to the code-dependent cur-
rents in GND. Adjusting offset by injecting dc at GND is not
recommended for the same reason.

5——

ouTPYT

Ay
16 Vout
18)< Vour SENSE
3

W) vour SELECT

3 anp

a. 0V to 2.56V Output Range

8] Vour

158 vour SENSE

T vour SELECT

3 GND

b. OV to 10V Output Range

Figure 3. Connection Diagrams

AD558 Applications

’ouvmv
AMP
18] Vour
sool 604!
1]
01 L]
A—{1¢]
L R TYH
i GND
AL

Figure 4, 10,24V Full-Scale Connection

GROUNDING AND BYPASSING*

All precision converter products require careful application of
good grounding practices to maintain full rated performance.
Because the ADS58 is intended for application in microcom-
puter systems where digital noise is prevalent, special care must
be taken 1o assure that its inherent precision is realized.

The AD558 has two ground (common) pins; this minimizes
ground drops and noise in the analog signal path. Figure §
shows how the ground connections should be made.

It is often advisable to maintain separate analog and digital
grounds throughout a complete system, tving them common
in one place only. If the common tic-point is remote and ac-
cidental disconnection of that one common tie-point occurs
due to card removal with power on, a large differential volr-
age between the two commons could develop. To protect de-
vices that interface 1o both digital and analog parts of the
system, such as the AD558. it is recommended that common
ground tie-points should be provided at each such device, If
only one system ground can be connected directly to the
ADS558, it is recommended that analog common be selected.

SouTPoT
anp
) Vout
Vour SENSE
D 4
' (SEE NERT
e v SELECT ? PAGE) R~
'
TSROND 4
TO SYSTEM AGND
12 ==X~ %= TOSYSTEM OGND
) 0w (SEE TEXT)
W YO SYSTEM Vec
J *Vee
.
Figure 5, R ded Gr ding and Bypassing

POWER SUPPLY CONSIDERATIONS

The AD558 is designed to operate from a single positive power
supply voltage. Specified performance is achieved for any sup-
ply voltage between +4.5V and +16.5V. This makes the
AD3558 ideal for battery-operated, portable, automotive or
digital main-frame applications.

The only consideration in sclecting a supply voltage is that, in
order to be able to use the 0V to 10V output range, the power
supply voltage must be between +11.4V ard +16.5V. If, how-
ever, the OV to 2.56V range is to be used, power consumption
will be minimized by utilizing the lowest available supply
voltage (above +4.5V).

Reprinted with permission of Analog Devices, Inc., Norwood MA 02062.

229

230

THE APPLE CONNECTION

TIMING AND CONTROL

The ADS58 has data input latches that simplify interface to

8- and 16-bit data buses. These latches are controlled by Chip
Enable (CE) and Chip Sclect (CS) inputs, pins 9 and 10 respec-
tively. CE and CS$ are internally “NORed" so that the latches
transmit input data to the DAC section when both CE and €S
are at Logic "0, If the application does not involve a data
bus, 2 *'00" condition allows for direct aperation of the DAC.
When cither CE or €S go to Logic “1", the input data is
latched inco the registers and held until both CE and CS return
to *0". (Unused CE or CS inputs should be tied to ground.)
The truth table is given in Table 1. The logic funcdion is also
shown in Figure 6,

Latch

Input Data CE cs DACData Condition

0 0 0 0 “transparent”’

1 0 0 1 “'transparent”

0 i) o 0 latching

1 i 0 1 latching

0 0 § 0 latching

1 0 f 1 latching

X 1 X previous data latched

X X 1 previous data latched
Notes: X = Does not matter

f = Logic Threshold st Positive-Going Transition

Table I. AD558 Control Logic Truth Table

INPUT DATA

Figura 6. AD558 Control Logic Function

Figure 7 shows the timing for the data and control signals;
CE and CS are identical in timing as well as in function.

\ vaup . i vauo |
1 DATA : + DATA
DATA
INPUTS
csonct
DpAC
voureut

ta ¢ $trobe putts wwdth

D * Dats haid time

1ps © Dats wetup bme

turar * DAC 0U1pUL bttling ime 1o 1/2188

Figure 7. AD558 Timing

USE OF Vgyr SENSE

Separate access to the feedback resistor of the output ampli-
fier allows additional application versatility. Figure 82 shows
how1 X R drops in long lines to remote loads may be cancelled
by putting the drops “inside the loop". Figure 8b shows how
the separate sense may be used to provide a higher output cur-
rent by feeding back around a simple current booster,

Vour
oV 10 «2.58v

b. Output Current Booster
Figurs 8. Use of VouT Sense

printed with permisst

of Analog Devices, Inc., Norwood MA 02082.

APPENDIX A

OPTIMIZING SETTLING TIME

In order to provide single-supply operation and zero-based
ourput voltage ranges, the AD558 output stage has a passive
“pull-down” to ground. As 2 result, settling time for negative-
going output steps may be longer than for positive-going out-
put steps. The relative difference depends on load resistance
and capacitance. If a negative power supply is available, the
negative-going settling time may be improved by adding a pull-
down resistor from the output to the negative supply as shown
in Figure 9. The value of the resistor should be such that, at
zero voltage out, current through that resistor is 0.5mA max.

Rog v 2a|vee |
(2N

NEGATIVE
SUMLY

Var

Figure 8. Improved Sattling Time

BIPOLAR OUTPUT RANGES

The AD558 was designed for operation from a single power
supply and is thus capable of providing only unipolar (OV to
+2.56 and OV to 10V) output ranges. If a negative supply is
available, bipolar output ranges may be achieved by suitable
output offsetting and scaling. Figure 10 shows how 2 £1.28
volt output range may be achicved when a -5 volt power sup-
ply is available. The offset is provided by the AD589 precision
1.2 volt reference which will operate from 2 +5 volt supply.
The AD544 output amplifier can provide the necessary £1.28
volt output swing from 15 volt supplics. Coding is complemen-
tary offset binary.

Vgur * 6V 10 +284v

INPUT CODE | Vour

00000000 | 128V
10000000
LARRRERRR] s v

Figure 10. Bipoler Operation of AD558 from 5V Supplies

INTERFACING THE AD558 TO MICROPROCESSOR DATA
BUSES*

The ADS58 is configured to act like a “write only"’ location

in memory that may be made to coincide with a read only
memory location or with a RAM focation. The latter case
allows data previously written into the DAC to be read back
later via the RAM. Address decoding is partially complete for
cither ROM or RAM. Figure 11 shows interfaces for three
popular microprocessor systems.

Applying the AD558

<‘ ADORESS S Y)
{} L L

a0 DECOOER
1
vMA _—LL_L— Uu Vour
“ KRS A0880 |em
am e
080 - D8?
Y- -
< OATA 8US
h S L4

A - CF
GATED DECODED ADDRESS - (T

a. 6800/AD558 Interface

)

ADORESS SELECT|
PULSE LOGIC
S080A
L €3 Vour
MEMW — e ADSSS | g
oBo . 087
:@ -
8
DATA BUS
HENW O
DECOOED ADDRESS SELECT PULSE - TT
b. 8080A/AD558 Interface
.
< ADDRESS 8US >
MAO-7 1 L s
s vyl el 4
Vour
1802 OECODE -
R U o
DBO - OB

&5t

COP 1202: MWR - T
DECODED AGDRESS SELECT PULSE - (¥

¢. 1802/AD558 interface

Figure 11. Interfacing the AD558 to Microprocessors

*The microprocessor-interface capabilities of the AD558 are exten-
sive. A co% hensive spplication note, “Interfacing the AD558
DACPORT to Microp ** is available from any Analog
Devices Sales Office upon request, free of charge.

Reprinted with per

of Analog D Inc., Norwood MA 02082,

231

232

THE APPLE CONNECTION

STROBE PULSE

DATA INPUT,
TTL LEVELS

Vour,
1LSB/DIV

HORIZONTAL: 200ns/DIV

Figure 15. AD558 Settling Characteristic Detai
0V to 2.56V Output Range Full-Scale Step

DATA INPUT,
TTL LEVELS

Vour.
1/2LSB/DIV

HORIZONTAL: 500ns/DIV

Figure 16. AD558 Settling Chracteristic Detail
0V to 10V Output Range Full-Scale Step

CS AND CE

DATA IN,
ALL BITS

Vour,
0V TO 2,56V
RANGE

HORIZONTAL: 100ns/DIV

Figure 17, AD558 Logic Timing

ADS558 Performance iypical @+25°c, Vg = +6V to +15V unless otherwise noted)
Lse |
1.75 4
1.50 4
1.25 ALL AD558
1.0¢ - ——— ADS558S, T
0.75
0.50 4
0.25 -
ey T 3 a
o ~ -
ERROR -0.504 ~—-
-0.75 1
21,00
—
55 -25 0 425 +50 +75 4100 #4126 °C
1158 = 0.39% OF FULL-SCALE
Figure 12. Full Scale Accuracy vs. Temperature
Performance of AD558
1.531
ALL ADS58
1/2 - === ADS5588, T
OFFSET
ZERO 1/4 A
foie 2o -
o o e i AP
665 -25 0 +25 +50 +75 +100 +125 “C
-1/4 1
-1/2 1
1LSB = 0.39% OF FULL-SCALE
Figure 13. Zero Drift vs. Temperature Performance
of AD558
mA’
16+
14
lcc
12
10 +
S s S e S
4 6 B 10 12 14 16 18 VOLTS
Vee
Figure 14, Quiescent Current vs. Power Supply
Voltage for AD558

Reprinted with permission of Analog Devices, Inc., Norwood MA 02062.

APPENDIX A

ANALOG
DEVICES

Low Cost, Complete IC
8-Bit A to D Converter

AD570*

FEATURES
Complete A/D C ter with Ref
Fast Successive A ion C
No Missing Codes Ovar Temperature

0 to +70°C — ADE70J

-55°C to +125°C ~ AD570S
Digital Multiplexing — 3 State Cutputs
18-Pin DIP
Low Cost Monolithic Construction

and Clock
- &m

PRODUCT DESCRIPTION

The AD570 is an 8-bit ive app A/D converter
consisting of a DAC, voltage reference, clock, comparator, suc-
cessive approximation register and output buffers — all fabri-
cated on a single chip. No external components are required
to perform a full accuracy 8-bit conversion in 25pus.

The AD570 incorporates the most advanced integrated cir-
cuit design and processing technology available today. I°L
(integrated injection logic) processing in the fabrication of the
SAR function along with laser trimming of the high stability
SiCr thin film resistor ladder network at the wafer stage (LWT)
anda ed, subsurface Zener reference
insures full 8-bit accuracy at low cost.

Operating on supplies of +5V and -15V, the AD570 will ac-
cept analog inputs of O to +10V unipolar or 5V bipolar,
externally sclectable. As the BLANK and CONVERT inputis
driven low, the three state outputs will be open and 2 conver-
sion will . Upon ¢ letion of the conversion, the
DATA READY line will go low and the data will appear at the
output. Pulling the BLANK and CONVERT input high blanks
the outputs and readies the device for the next conversion.
The AD570 executes a true 8-bit conversion with no missing
codes in approximately 25us.

The ADS70 is avulable in two versions; the AD570] is spec-
lfied for the 0 to 70°C temperature range, the AD570S for
-55°C 10 +125°C. Both guarantee full 8-bit accuracy and no
missing codes over their respective temperature ranges.

The AD$70] is also offered in an 18-pin plastic DIP.

*Proteceed by Patent Nos. 3940760, 4213806 and 4136349,

PRODUCT HIGHLIGHTS
1.

o

. The AD570 is a single chip device employing the most

. The AD570 accepts either unipolar (0 to +10V) or

. The device offers true 8-bit accuracy and exhibits no

. Operation is guaranteed with -15V and +5V supplies. The

. The AD570S is also available with processing to MIL-

AD570 FUNCTIONAL BLOCK DIAGRAM

panay aves,
117 i
W - o
nnosmly _‘ [)
-
] f
rewy s
=0 wer 1
retd 1 ET N
ot M e -
Lt N vtn
L™ .. .
i
1% 1
sy hotd | . 2@
o | 1] 7
| ,].
-T
e
2stam
wotrens
w10 o ans
cominoy
THMRRATURL COMP LA
u-om-umu-c- pre.
o
o I

18-PIN DUAL IN LINE PACKAGE

The AD570 is a complete 8-bit A/D converter. No
external components are required to perform a con-
version. Full scale calibration accuracy of £0.8% (2LSB
of 8 bits) is achieved without external trims.

advanced IC processing techniques. Thus, the user has at
his disposal a truly precision component with the relia-
bility and low cost inherent in monolithic construction.

bipolar (-5V to +5V) analog inputs by simply grounding
or opening a single pin.

missing codes over its entire operating temperature
range.

device will also operate with a =12V supply.

STD-883, Class B. The single chip construction and
functional completeness make the AD570 especnlly
attractive for high reliability applications.

inted with permission of Analog Devices, Inc., Norwood MA 02082.

233

234

THE APPLE CONNECTION

SPECIFICATIONS

{typical @ +25°C with V+ = +5V, V- = -15V, all voltages measured with respect to digital comman, unless otherwise indicated)

MODEL AD370) ADs70s!

RESOLUTION? 8 Bits .

RELATIVE ACCURACY ® 25°C234 +1/2LSB max .
£1/201.SB max .

Tmnin 0 Tmax

FULL SCALE CALIBRATION®*$
(With 158 Resistor In Series With

Anazlog Input $2L.SB (typ) *
UNIPOLAR OFFSET (max)* 11/2LSB °
BIPOLAR OFFSET (max)* £1/2LSB .
DIFFERENTIAL NONLINEARITY
(Resolution for Which no Missing

Codes are Guaranteed)

+25°C 8 Bits .

Tmin t© Tmax 8 Bits .
TEMPERATURE RANGE 0t +70°C -55°C10+125°C
TEMPERATURE COEFFICIENTS*

Guaranteed max Change

Tmin 10 Tmax

Unipolar Offset *1LSB (88ppm/°C) *1LSB (40ppm/°C)
Bipolar Offset +1LSB (88ppm/°C) +1LSB (40ppm/°C)

Full Scale Calibration®
(With 1552 Fixed Resistor or
20082 Trimmer)

+2LSB (176ppm/°C)

$2LSB (80ppm/°C)

POWER SUPPLY REJECTION*
Max Change In Full Scale Calibration
TTL Positive Supply

+4.5VEV+K45.5V $2L.SB max M
Negative Supply
-16.0VLV-<-13.5V *2LSB max *
ANALOG INPUT RESISTANCE 3k min d
5kS2 typ .
7k§2 max *
ANALOG INPUT RANGES
(Analog Input to Analog Common)
Unipolar 0to +10V d
Bipolar -5V 10 +5V .
OUTPUT CODING
Unipolar Positive True Binary °
Bipolar Positive True Offsct Binary *
LOGIC QUTPUT

Bit Outputs and Data Ready
Output Sink Current
Vour = 0.4V max, T 10 Tax)
Output Source Current (Bit Outpurts)’

3.2mA min
(2TTL Loads)

(VouT = 2.4V min, Ty to Trgax) 0.5mA min ¢
Output Leakage When Blanked 240uA max .
LOGIC INPUT
Blank and Convert Input
[1£40uA max *
Blank — Logic "1" 2.0V min °
Convert — Logic “0" 0.8V max °
CONVERSION TIME 15us min .
25us typ *
40us max .

Reprinted with permission of Analog Devices, Inc.. Norwood MA 02062,

APPENDIX A

235

ALL MODELS
POWER SUPPLY
Absolute Maximum
V+ +7V
V- -16.5V
Specified Operating ~ Rated Performance
Ve +5V
V- -15Vv
Opcrating Range
V+ +4.5V 10 +5.5V
V- -12.0V t0-16.5V
Operating Current
Blank Mode
V4= 45V 2mA typ (10mA max)
V== -15V 9mA typ (1SmA max)
Convert Mode
V=45V SmA
V-=-15V 10mA
*Specifications same as AD$70}
Specifications subject to change without notice.
NOTES
' The AD570S is availabl d and d to the of MIL-STD-883B, Class B.

When otdering, specify the ADS705D/883B.

#The AD570 is a selected version of the ADS71 10-bit A to D converter. As such, some devices may
exhibit 9 or 10 bits of relacive accuracy or resolution, but that is neither tested nor guaranteed.
Only TTL logic inputs should be connecied to pins 1 and 18 (or no connection made) or damage

may result.

? Relative accuracy is defined as the deviation of the code transition points from the ideal transfer
point on a straight linc from the zero to the full scale of the device.
*Specifications given in LSB's refer to the weight of a least significant bit at the 8-bit level, which is

0.39% of fullscale.

* Full scale calibration is guaranteed trimmable to zeto with an

1 20011 potenti in place

of the 150 fixed resistor. Full scale is defined as 10 volts minus 1 LSB, or 9.961 volts.

¢ Full Scale Calibration T Coefficient i

cffects of

offset drift as well as

¥

gain drifc.

g

" The Data ousput lines have active pull-ups to source 0.SmA. The DATA READY line is open coltector

with a nominal 6k§2 interna) pull-up resistor.

ABSOLUTE MAXIMUM RATINGS

V+twoDigitalCommon 0to +7V
V-toDigitalCommon 0 to -16.5V
Analog Common to Digital Common. v
Analog Input to Analog Common. 1514
Controldnputs Oto Vs
Digital Outputs (Blank Mode). e DOV
Power Dissipation., 800mW
AD570 ORDERING GUIDE

Temperature
Model Packzge Number' Range
ADS70JN 18-Pin Plastic DIP (N18A)* 0 to +70°C
AD570]JD 18-Pin Ceramic DIP (D28A) 0 to +70°C
ADS570SD 18-Pin Ceramic DIP (D18A) -55°Cto +125°C
AD570SD/883B 18-Pin Ceramic DIP (D18A) -55°C o +125°C

!See Section 20 for package outline infi

370 be availzble June 1982,

[P
PN 1
o |e| .
E IDENTIFIER
BITBl 2 17 Im AEADY
mnl 3 Ieluucn’m. com

enTsE ADS70 Ealwun OFF

8ITE E 14 | ANALOG COMm

aITe E E ANALOG IN
BIT3 E E] v-
Iz E B BLK & EORV.

MS8 BIT 1 E 10]v

*SEE NOTE 2, SPEC TABLE

Figure 1. AD570 Pin Connections

Reprinted with permission of Analog Devices, Inc., Norwood MA 02082,

236

THE APPLE CONNECTION

CONNECTING THE AD570 FOR STANDARD OPERATION
The AD570 contains all the active components required to
perform a complete A/D conversion. Thus, for most situa-
tions, all that is necessary is connection of the power sup-

ply (+5 and -15), the analog input, and the conversion

start pulse, But, there are some features and special con-
nections which should be considered for achieving optimum
performance. The functional pin-out is shown in Figure 1.

FULL SCALE CALIBRATION

The 5kS2 thin film input resistor is laser trimmed to produce
a current which matches the full scale current of the internal
DAC—plus about 0.3% ~when a full scale analog input voltage
of 9.961 volts (10 volts — 1LSB) is applied at the input. The
input resistor is trimmed in this way so that if a fine trimming
potentiometer is inscrted in series with the input signal, the
input current at the full scale input voltage can be trimmed
down to match the DAC full scale current as precisely as
desired. However, for many applications the nominal 9.961
volt full scale can be achieved to sufficient accuracy by simply
inserting a 1582 resistor in series with the analog input to pin
14, Typical full scale calibraton error will then be about
+2L.SB or £0.8%. If a more precise calibration is desired

a 20082 wrimmer should be used instead. Set the analog input
at 9.961 volts, and set the trimmer so that the output code

is just at the transition between 11111110 and 11111111,
Each LSB will then have a weight of 39.06mV. If 3 nominal
full scale of 10.24 volts is desired (which makes the LSB have
weight of exacdy 40.00mV), 2 5082 resistor in series with a
20092 trimmer (or a 50052 trimmer with good resolution)
should be used. Of course, larger full scale ranges can be ar
ranged by using a larger input resistor, but linearity and full
scale temperature coefficient may be compromised if the
external resistor becomes a sizcable percentage of 5kS2.

oo
E}—on«;-unm

E}_°w'“‘m' 10 CouMON JOR)
CONTACL UNIPOL AR OPIN FOR RwaLaR

10 01 TAL COMMON
Ew‘ ARALOG i
L
E—o " W1 FEK40 OR
20X) VARIASLE AELISTON
1561 fexn
E_onc
onE

Figure 2 Standard AD570 Connections

E—e Axat00 common 1O8SRIIS IO

46 MOTE 2 SPEC TABLE

BIPOLAR OPERATION

The standard unipolar U to +10V range is obrained by shorting
the bipolar offser control pin to digital common. If the pinis
left open, the bipolar offset current will be switched into the
comparator summing node, giving a -5V to +5V range with an
offset binary output code. (-5.00 volts in will give a 8-bit

code of 00000000; an input of 0.00 volts results in an out-
put code of 10000000 and 4.96 volts at the input yields the
11111111 code.)

ZERO OFFSET

The apparent zero point of the AD570 can be adjusted by
inserting an offset voltage between the Analog Common of the
device and the actual signal return or signal common. Figure 3
illustrates two methods of providing this offset. Figure 3A
shows how the converter zero may be offset by up to 3 bits
to correct the device initial offset and/or input signa! offsets.
As shown, the circuit gives approximately symmetrical ad-
justment in unipolar mode. In bipolar mode R2 should be
omitted to obtain a symmetrical range.

Figure 3B shows how to offsct the zero code by 1/2LSB

to provide a code transition between the nominal bit weights,

A

INPUT

SIGNAL ADS70

%
:v!ﬂll

-
SIGNAL COMMON

15V -15v

2ERO OFFSET ADY
+3 BIT RANGE

Figure 3A.

A

ADS70
nl
WA—{ Acom
100
OR 200
POT

SIGNAL COMMON

% 8IT ZERQ OFFSET
Figure 38,

CONTROL AND TIMING OF THE ADS70

There are several important timing and control features on
the AD570 which must be understood precisely to allow
optimal interfacing to microprocessor or other types of con-
trol systems, All of these features are shown in the timing
diagram in Figure 4,

The normal stand-by situation is shown at the left end of the
drawing. The BLANK and CONVERT (B & €) line is held
hégllg. the output lines will be ““open”, and the DATA READY
(DR) line will be high. This mode is the lowest power state

Reprinted with permission of Analog Devices, Inc., Norwood MA 02082,

APPENDIX A 237
of the device (1ypically 150mW). When the (B & C) line is PuLSt BLaNKS
brought low, the conversion cycle is initiated; but the DR cLantsoATA GuTRUTS 8‘:;.&'.##‘
and Data lines do not change state. When the conversion ¢ycle (M vitry
is complete (typically 25us), the DR line goes low, and within pr - 4’1
500ns, the Data lines become active with the new data. R85 convenson N i
About 1.5us after the B & C line is again brought high, the - TR st e ol
DR line will go high and the Data lines will go open. When the titicdi | =i comveRpon
B & C line is again brought low, 2 new conversion will begin. our s
The minimum pulse width for the B & line to blank previous <o
data and start a new conversion is 2us. If the B & € line is st "I " OATAALADY MW OATA KLASY
brought high during a ion, the sion will stop, and .. prA ot SR ont A
the DR ard Data lines will not change. If a 2us or longer pulse o Rty L) M‘""" ztro il KK

is applied to the B & € line during a conversion, the converter
will clear and start a new conversion cycle.

Figure 4. AD570 Timing and Control Sequence

Reprinted with permission ol Anslug Devices, Inc., Norwood MA 02062.

Appendix B

241

Appendix B:

Tips on Reading a
Schematic Diagram

In this text we use a number of schematic diagrams to illustrate
certain aspects of connecting the Apple computer to the outside
world. For those readers who are not familiar with electronic sche-
matics, the following tips are given to help you understand what
information is being presented.

To start, the symbols used in schematic diagrams represent
physical devices. They are not meant to resemble the components
they represent. Instead, they are standard, stylized symbols
meant to be understood by convention as standing for their
devices. The lines that interconnect the symbols represent actual
wires. In Figure B.1, the symbols shown represent a transistor
connected to a resistor. Each physical device is represented in the
diagram by a companion schematic symbol.

Indigital logic many different symbols are used to represent the
various components of a circuit. Since in this book we use only a
few of these components, we will discuss only those symbols that
will aid you in reading the schematics presented in this text.
However, if you understand these symbols it will be much easier
to read schematics presented elsewhere. (You will just have to
learn a few more symbols.) Let us discuss the schematic shown in
Figure B.2 and explain all of the important points.

242 THE APPLE CONNECTION

+5v
PHYSICAL WIRE "« RESISTOR
PHYSICAL CONNECTION

A

TRANSISTOR
SYMBOL

Schematic diagram of a transistor connected to a resistor. Each element is
identified.
— Figure B.1

The first point to notice in Figure B.2 is that the schematic
should be read from left to right, just like the words on a printed
page. That is, digital information, in the form of electricity, flows
from the components shown on the left to those on the right. This
is true of most schematics. On the left side of Figure B.2 are the in-
puts to the circuit. These inputs are given a signal name, such as
R/W or D7, so they may be identified wherever they are used in
the schematic.

Each signal input in Figure B.2 also has a point of origin, indi-
cating where the signal starts from. In this case, the inputs to the
schematic will start from the edge connector pins of an Apple I/O
slot. The edge connector pin number is shown in parentheses
next to the signal name. For example, the data lines, D0-D?7, orig-
inate from edge connector pin numbers 42-49. All the various
signals are listed in the Apple computer documentation.

Following the signals D0-D?7 farther to the right of the schematic,
we see that they will connect to a rectangle. This rectangle repre-
sents a single integrated circuit. In this case the integrated circuit
is alatch, labeled 74L.S374. Each dataline is shown connected to a
specific number on the rectangle. These numbers correspond to

APPENDIX B

243

+5 volt power supply connects
between here and ground.

~

- PHYSICAL CONNECTION

(25)
7415374 . |CLABEL
SIGNAL NAME 20 IC
/ A
(49) B0 Do|3 2] Qo L00_ ")
{48) D1 D1j4 51Q1 LD
47y D2 p2|7 s]q2 LD2
) D3 p3f8 9las LD3
INPUTS TO CIRCUIT “é) LATCHED
(4s) D4 p4]13 12] Qs LD4_) DATATODAC
(44) D5 D5]14 151 Q5 LD5
43 D6 06|17 16] Qe LD6
{42) D7 D7}18 191Q7 LD7
. 0 J
1
Signals that will go
111 to another circuit.
Edge connector pin
numbers {point of 4
origin for signal). {26) GND
DEVICE SELECT
@y — 3
i
(18) i1C2
P R/W
APPLE PIN #'s

A more complex schematic, with the elements identified.

Figure B,2 —

244 THE APPLE CONNECTION

7418374
—— 11 ourenasie vee 1.2
2] 1@ sq |19
31 o sp |8
4 D 70 | ¥4
5| = 7Q |6
_ %] 3 @ §1°
71 3 &D 14
81 o sp §13
9 4Q 5Q 12
Y loen cock !
The pins on this integrated circuit are shown in their correct numerical
order. In Figure B.2, the layout was altered to simplify the drawing and make
it more legible.
L Figure B.3

the pin numbers of the integrated circuit. The actual pinout of
this IC is shown in Figure B.3.

We see in Figure B.3 that the integrated circuit has pin numbers
that are labeled in a “U” arrangement. Pin 1 will always be located
at the upper left hand corner. Notice that Figure B.2 does not
show the pin numbers in the same numerical order as Figure B.3.
The pin numbers in Figure B.2 are obtained from Figure B.3, but
the placement of the numbers in Figure B.2 does not represent
numerical order. Instead, the numbers are arranged to allow the
schematic to be drawn easily.

Let us now discuss another input line to the schematic diagram
B.2. Thislineislabeled DEVICE SELECT. Notice the bar over the
signal name. This is an indication that this signal will perform its

APPENDIXB 245

741532

Vec 14
1 13
2 12
3 | 3]
4 ' 10
5

9
6 8
7 GND
All four OR gates are located in the same device package.

Figure B.4 —

specified function (in this case, to select the 1/O slot addressed)
when itis in the logical 0 state. When the DEVICE SELECT signal
is in the logical 1 state, the I/O slot is not selected for electrical
communication with the computer.

The DEVICE SELECT line originates from edge connector pin
41, It is then connected to the symbol for alogical OR gate, shown
in Figure B.2. Pin 1 of the OR gate represents the physical pin

246 THE APPLE CONNECTION

J TRI-STATE BUFFER

NAND GATE
IN out

| : CONTROL

INVERTER

>

OR GATE

Logicol 1 electrically
disconnects output
from circuit.

L PRESET (SET Q OUTPUT = 1)

CLOCK

a pb——

CLEAR (SET Q OUTPUT = 0)
LATCH

-The logic symbols used in this book.

. Figure B.5

APPENDIXB 247

number of the integrated circuit package. A single integrated
circuit package will contain up to four logical OR gates, as shown
in Figure B.4.

Output pin 3 of the OR gate is connected to pin 4 of another OR
gate. Both of these OR gates are contained in the same integrated-
circuit package. We know this because both of the OR gates are
labeled IC2. The “IC” stands for Integrated Circuit. Labeling of
this nature is often used to denote gates that reside in the same
physical package on the circuit board.

Output pin 6 of the OR gates is connected to input pin 11 of the
741.5374 integrated circuit we discussed previously. The outputs
of the 74L.S374 are not connected to anything shown in schematic
B.2. If they were, the lines would be connected to some other symbol
in the drawing. Instead, they lead off the page, sending latched
data to an unseen DAC, for example. Again, the flow of the sche-
matic is from left to right, input to output.

In the figures used in this text (as well as most schematics) the
power supplies are not shown. Power is necessary to allow the sys-
tem to function, but the connections to each individual IC and
component in the schematic are “assumed.” To find out where
the power connects to each IC, refer to the manufacturer’s data
sheets. These sheets will indicate what pins the power is con-
nected to and what voltage value is used. In general, most digital
ICs use +5 volts and ground, while most operational amplifiers
use + 12 volts. However, you should always refer to data sheets to
determine exact details.

Using the information presented here and throughout the book,
you should be able to read and comprehend the schematic dia-
grams shown in this text. All of the special symbols used, like the
symbol for a light-emitting diode, are discussed in the section of
the text where they are used. This text uses only a few of the many
logic symbols available. Those used are shown in Figure B.5. All
of the pinouts for each of the integrated circuits used in this text
are given in the data sheets contained in Appendix A.

Appendix C

251

Appendix C:

Glossary of Selected Terms

AC appliance Any appliance that operates on Alternating
Current, the type of electrical current that reverses direction
at regular intervals, and is normally supplied to homes and
businesses.

Analog event An event in nature that can have any value for its
output. Some common analog events are temperature,
pressure and brightness.

Analog-to-Digital Conversion (ADC) An electrical process by
which an analog voltage is converted into its digital
equivalent to be input to a home computer (or any type of
digital computer).

Analog voltage An analog voltage is a voltage output from any
source that can take on any numeric value. For example,
15.2345 V is an analog voltage.

BASIC (Beginner's All-purpose Symbolic Instruction Code) A
computer programming language used by the Apple com-
puter and most home computers.

252 THE APPLE CONNECTION

Binary A description given to a set of values that may have two
and only two possible outcomes. For example, the binary
number system uses only two digits, 1 and 0.

Bit A single binary digit in a computer word. The bit may have
the values 1 or 0.

Black box This colloquial term is used to describe any electronic
circuit that performs a certain function, but whose internal
operation need not be understood by the user, and usually
isn’t. A black box is inherently mysterious to its user.

Board An abbreviation for the term circuit board.

Byte A group of eight bits. An example of a byte would be
00101100. For an 8-bit computer like the Apple, byte and
(data) word are synonymous.

Card Another way of saying board.

Circuit A collection of electronic components wired together to
perform a certain function, or the electrical path between
them. A circuit may consist of resistors, capacitors, tran-
sistors, digital IC’s, or any other electronic elements.

Computer control The operation of a device or system under
the direction of a computer.

Data Information output from or input to the computer. It takes
the physical form of electrical pulses at one of two possible
voltage levels.

DEVICE SELECT line A single logical line that will become
active when a particular I/O slot on the Apple computer is
selected with the software.

Digital-to-Analog Conversion (DAC) An electrical process by
which an analog output voltage is produced by a specific
combination of binary inputs to a piece of hardware called a
digital-to-analog converter.

APPENDIXC 253

DIP An abbreviation for Dual In-line Package, an electronic
package used to mount integrated circuits. It is rectangular
and has leads (or “pins”’) extending from both long sidesin a
symmetrical pattern.

Flip-flop A group of digital electronic components that have
the characteristic of storing information. Flip-flops are
bistable; that is, they have two stable states, 1 and 0.

Flowchart A visual representation of the logical paths a com-
puter program will follow as the instructions are executed.

4.7 kQ An abbreviation for 4700 ohms, a resistance used in
some circuits in this book. The letter is the metric symbol for
1000. Omega is the symbol for ohm, the unit of resistance.

Ground The point in a system that has a voltage potential of 0.0
volts.

Ground potential A voltage potential of approximately 0.0
volts. Potential is the difference in voltage between two points.

I/0 Abbreviation for Input/Output.

I/0 address A logical memory address that is assigned to a
specific peripheral device.

I/0 slot One of the eight physical connectors in the back of the
Apple computer.

Input A signal sent to a computer or other device, or the act of
sending a signal. During an I/O operation the computer can
input, or take in, data.

Integrated Circuit (IC) An electronic component consisting of
one or more circuit elements fabricated on a single chip of
silicon, and usually packaged in a DIP.

Latch An electronic device capable of storing a single bit of
binary information when electrically instructed to do so. An
8-bit latch will store eight bits of binary information at the
same time.

254 THE APPLE CONNECTION

Light-Emitting Diode (LED) An electronic device that has the
physical property of emitting a certain wavelength of light
when current is passed through it in the forward direction.

Logical 0 One of the two possible binary states that a digital
logic circuit can reside in. For the Apple computer, a logical
0 is equivalent to a voltage level of less than or equal to .8 volts.

Logical 1 The second of the two possible binary states that a
digital logic circuit can reside in. In the Apple computer, a
logical 1 is equivalent to a voltage output greater than 2.0
volts.

Logic gate A digital hardware element that will perform one of
the Boolean logical functions, such as AND or OR.

Nibble A group of four bits. 0011 is an example of a nibble. A
byte consists of two nibbles.

Output Information sent from a computer to another device, or
the action of sending it. When the computer is sending data
to a peripheral device for control, it is outputting. Broadly, an
electrical quantity produced by a circuit or the physical action
that results. The output of a lamp is light; the output of a
loudspeaker is sound.

Output port Any output address that the computer can send
data to.
PEEK address The address used in a PEEK instruction.

PEEK instruction An instruction in BASIC that will allow data
to be input from a valid memory address.

Phase () 0 A free-running clock that can be used to time the
writing of data to the peripheral circuits connected to the Apple
computer.

POKE address The meniory address that is specified during the
execution of the POKE instruction.

APPENDIX C

255

POKE instruction An instruction in BASIC that allows data to
be output to a valid memory address.

Resistance An electrical property that impedes the flow of
electrons.

Resistor A physical element that has the electrical property of
resistance. It is usually tubular, with leads extending from
both ends.

R/Wline A signalline that is used to electrically inform the I/O
circuits whether the computer is reading or writing during
this memory cycle.

Schematic diagram A drawing using electronic symbols to
represent the component interconnections of a circuit.

74LS___ A numeric label given to a family of integrated circuits
used in this book. LS is an abbreviation for Low-power
Schottky, a type of design technology. The blank in the label
can be any 2- or 3-digit number. This number makes it possible
to look the integrated circuit up in a data book.

Solid-State Relay (SSR) An electronic device that will open and
close two electronic contacts without any mechanical parts.

Transducer An electronic device that will change a physical
action into an electrical equivalent. For example, a
temperature transducer will change the temperature it
senses into an equivalent electrical value.

Transistor An electronic component that can be made to amplify
electronic signals.

Transistor-Transistor Logic (TTL) Thetype oflogic family used
in the circuits of the Apple computer.

Appendix D

259

Appendix D:

List of Vendors

Information concerning the prices and availability of various
hardware devices described in this book can be obtained by writing
to the outlets listed below. The list is not meant to be exhaustive.

TTL components (logic gates, inverters, latches, etc.):

Jameco Electronics
1355 Shoreway Rd.
Belmont, CA 94002

Quest Electronics
PO Box 4430
Santa Clara, CA 95054

Analog-to-digital and digital-to-analog converters, along with
several different peripheral devices for microcomputer 1/O:

Microprocessor Training Inc.
14 East Eighth St.
New York, N.Y. 10003

CMS 1/O board for the Apple computer:

Creative Microprocessor Systems, Inc.
PO Box 1538
Los Gatos, CA 95030

261

A

ADS558 (Digital-to-analog converter), 199-204
ADS70 data sheet, 233
Analog
definition of, 11
examples of, 151-55
Analog electronics, 155-58
Analog events, 151-54
Analog-to-digital conversion, 164-80
application of, 182-87
definition of, 163, 164
resolution of, 171-74
software for, 179-82
Analog-to-digital converter
AD570, 174-79
applications, 187-89
block diagram of, 164-66
connecting to the Apple, 174-79
digital outputs, 170-74
function of, 166-69
system schematic, 175
Analog vs. Digital, 151-61

B
Binary digit (see also Bit), 13
Binary notation, example of, 12
Binary number system, 14
Bit, definition of, 12, 13
Byte, definition of, 13

C

CMS (Creative Microprocessor
Systems), 259

CMS input system, 51, 52
CMS /O system, 19, 20-24
CPU, definition of, 7
Central processing unit, 7
Computer control, 1-4

concept of, 2, 3

example of, 4-6

two main ideas behind, 3
Computer interfacing, application of, 101-32
Connecting AC appliances

block diagram of, 136-39

software for, 14648
Converter, analog-to-digital, 166-79, 182-89
Currents, induced, 108

Index

D

Data, definition of, 12
DEVICE SELECT line, 80, 92
Digit, definition of, 12
Digital
definition of, 9, 10
examples of, 151-60
Digital computer, definition of, 11
Digital electronics, 155-58
Digital events, 154, 155
Digital-to-analag conversion, 193-217
definition of, 193, 194
example of, 199-204
function of, 195-97
resolution of, 198
setting an output voltage in, 206-11
Digital-to-analog converter
applications of, 187-88
connection to the Apple, 204-06
control of, 206-11
increasing the output drive of, 212-14
software for controlling, 206-11
Doors and windows, connection to, 105-10

E
Electronics
analog and digital, 155-58
beginning I/0, 78-80
Enable circuit, 78-80
End conversion, analog-to-digital, 168,169

F
Further study, 217

G
Glossary, 251-55

H

Hardware connection to the computer, 110-13
Hardware simulation of doors
and windows, 18821

Home appliances, interfacing to, 13548
Home security system, 101-32

definition of, 102, 103

presentation of complete, 123-32
House, drawing an outline of, 103-05

262

I

/O, definition of, 7

1/O addressing, 26

1/O connector (50-pin), 79

1/0 SLOT READ, 92

1/0 SLOT WRITE line, 82

1/0 STROBE, 82

Induced currents, 108

Input, definition of, 7

Input hardware, 91-100

Input line, interpretation of, 113-18

Input/output hardware, 77-98
summary of, 97-100

Input software, 52

Inputting data, 49-74
overview of, 49-51

J

Jameco Electronics, 259

L
LED (light-emitting diode), 85-91
anode, 88
cathode, 88
drive currents for, 89
LM135, LM235, LM335, 183
LSB (least significant bit), 14
List of Vendors, 259
Logical 0, definition of, 32
Logical 1, definition of, 32

M
MSB (most significant bit), 14
Masking off alarms, 121-23
Microprocessor Training, Inc., 259

N
Nibble, definition of, 14

0]

Ohmmeter, use of, 110, 111
Outline of house, 103-05
Output, definition of, 7
Cutput device, definition of, 8
Output drive of DAC,

see digital-to-analog convertor
Output latches, 84, 85

Output software, 19-47

P

PEEK instruction, 52-65
address in, 527
data for, 57-83
experiments with, 65-74
program example of, 63-85

POKE instruction, 25-35
address in, 27-30
data for 30-35
experiments with, 35-47
setting bits in, 33

Phase 0, 82

Power of 2, 14

Q

Quest Electronics, 259

R
R/W line, 80, 81

S

Schematic diagram, tips on reading, 241-50
Security system, 123-32
Software
for anslog-to-digital conversion, 179-82
for control of solid-state relay, 14848
for controlling a digital-to-analog converter, 206-11
for interpretation of input lines, 113-18
simulation of doors and windows, 118-21
Solid-state relay (SSR), 136, 137
control of, 14446
hardware for, 139
operation of, 139-44
Start conversion, analog-to-digital, 168
Static electricity, effects of, 22

T

TTL (transistor-transistor logic), 12
Temperature-measuring circuit, 182-87
Temperature-measuring system, 186, 187
Tips on schematic reading, 241-50
Transducer

definition of, 8

example of, 158-63
Tri-state buffer, 74L5244, 94

263

enabling of, 94-97

\'

Vendors, list of, 259
Vocabulary, 6-14
summary of, 16

w

Windows and doors, connection to, 105-10

The SYBEX Library

YOUR FIRST COMPUTER

by Rodnay Zaks 264 pp., 150 illustr., Ref. 0-045

The most popular introduction to small computers and their peripherals: what they
do and how to buy one.

DON'T (or How to Care for Your Computer)

by Rodnay Zaks 222 pp., 100 illust., Ref. 0-065

The correct way to handle and care for all elements of a computer system, in-
cluding what to do when something doesn’t work.

INTERNATIONAL MICROCOMPUTER DICTIONARY

140 pp., Ref. 0-067

All the definitions and acronyms of microcomputer jargon defined in a handy
pocket-size edition. Includes translations of the most popular terms into ten
languages.

FROM CHIPS TO SYSTEMS:

AN INTRODUCTION TO MICROPROCESSORS

by Rodnay Zaks 558 pp., 400 illustr, Ref. 0-071

A simple and comprehensive introduction to microprocessors from both a hard-
ware and software standpoint: what they are, how they operate, how to assemble
them into a complete system,

INTRODUCTION TO WORD PROCESSING

by Hal Glatzer 216 pp., 140 illustr., Ref. 0-076

Explains in plain language what a word processor can do, how itimproves produc-
tivity, how to use a word processor and how to buy one wisely.

INTRODUCTION TO WORDSTAR™

by Arthur Naiman 208 pp., 30 illustr., Ref. 0-077

Makes it easy to learn how to use WordStar, a powerful word processing program
for personal computers.

DOING BUSINESS WITH VISICALC®

by Stanley R. Trost 200 pp., Ref. 0-086

Presents accounting and management planning applications—from financial
statements to master budgets; from pricing models to investment strategies.

EXECUTIVE PLANNING WITH BASIC

by X. T. Bui 192 pp., 19 illust., Ref. 0-083

An important collection of business management decision models in BASIC, in-
cluding Inventory Management (EOQ), Critical Path Analysis and PERT, Financial
Ratio Analysis, Portfolio Management, and much more.

BASIC FOR BUSINESS

by Douglas Hergert 250 pp., 15 illustr., Ref. 0-080

A logically organized, no-nonsense introduction to BASIC programming for
business applications. Includes many fully-explained accounting programs, and
shows you how to write them.

FIFTY BASIC EXERCISES

by). P. Lamoitier 236 pp., 90illustr., Ref. 0-056

Teaches BASIC by actual practice, using graduated exercises drawn from everyday
applications. All programs written in Microsoft BASIC.

BASIC EXERCISES FOR THE APPLE
by J. P. Lamoitier 230 pp., 90 illustr., Ref. 0-084
This book is an Apple version of Fifty BASIC Exercises.

BASIC EXERCISES FOR THE IBM PERSONAL COMPUTER
by). P. Lamoitier 232 pp., 90 illustr., Ref. 0-088
This book is an IBM version of Fifty BASIC Exercises.

INSIDE BASIC GAMES

by Richard Mateosian 352 pp., 120 illustr., Ref. 0-055

Teaches interactive BASIC programming through games. Games are written in
Microsoft BASIC and can run on the TRS-80, Apple Il and PET/CBM.

THE PASCAL HANDBOOK

by Jacques Tiberghien 492 pp., 270 illustr., Ref. 0-053

A dictionary of the Pascal language, defining every reserved word, operator, pro-
cedure and function found in all major versions of Pascal.

INTRODUCTION TO PASCAL (Including UCSD Pascal)

by Rodnay Zaks 422 pp., 130 illustr. Ref. 0-066

A step-by-step introduction for anyone wanting to learn the Pascal language.
Describes UCSD and Standard Pascals. No technical background is assumed.

APPLE PASCAL GAMES

by Douglas Hergert and Joseph T. Kalash 376 pp., 40 iliustr., Ref. 0-074

A collection of the most popular computer games in Pascal, challenging the reader
not only to play but to investigate how games are implemented on the computer.

CELESTIAL BASIC: Astronomy on Your Computer

by Eric Burgess 228 pp., 65 illustr., Ref. 0-087

A collection of BASIC programs that rapidly complete the chores of typical
astronomical computations. It's like having a planetarium in your own home!
Displays apparent movement of stars, planets and meteor showers.

PASCAL PROGRAMS FOR SCIENTISTS AND ENGINEERS

by Alan R. Miller 378 pp., 120 illustr., Ref. 0-058

A comprehensive collection of frequently used algorithms for scientific and
technical applications, programmed in Pascal. Includes such programs as curve-
fitting, integrals and statistical techniques.

BASIC PROGRAMS FOR SCIENTISTS AND ENGINEERS

by Alan R. Miller 326 pp., 120 illustr., Ref. 0-073

This second book in the ‘’Programs for Scientists and Engineers’’ series provides a
library of problem-solving programs while developing proficiency in BASIC.
FORTRAN PROGRAMS FOR SCIENTISTS AND

ENGINEERS

by Alan R. Miller 320 pp., 120 illustr., Ref. 0-082

Third in the *Programs for Scientists and Engineers'’ series. Specific scientific and
engineering application programs written in FORTRAN.

PROGRAMMING THE 6809

by Rodnay Zaks and William Labiak 520 pp., 150 illustr., Ref. 0-078

This book explains how to program the 6809 in assembly language. No prior
programming knowledge required.

PROGRAMMING THE 6502

by Rodnay Zaks 388 pp., 160 illustr., Ref. 0-046

Assembly language programming for the 6502, from basic concepts to advanced
data structures.

6502 APPLICATIONS
by Rodnay Zaks 286 pp., 200 illustr., Ref. 0-015
Real-life application techniques: the input/output book for the 6502.

ADVANCED 6502 PROGRAMMING

by Rodnay Zaks 292 pp., 140 illustr., Ref. 0-089

Third in the 6502 series. Teaches more advanced programming techniques, using
games as a framework for learning.

PROGRAMMING THE 780

by Rodnay Zaks 626 pp., 200 illustr., Ref. 0-069

A complete course in programming the Z80 microprocessor and a thorough
introduction to assembly language.

PROGRAMMING THE Z8000

by Richard Mateosian 300 pp., 124 illustr., Ref. 0-032

How to program the Z8000 16-bit microprocessor. Includes a description of the
architecture and function of the Z8000 and its family of support chips.

THE CP/M® HANDBOOK (with MP/M™)

by Rodnay Zaks 324 pp., 100 illustr., Ref. 0-048

An indispensable reference and guide to CP/M—the most widely-used operating
system for small computers.

MASTERING CP/M®

by Alan R. Miller 320 pp., Ref. 0-068

For advanced CP/M users or systems programmers who want maximum use of the
CP/M operating system . . . takes up where our CP/M Handbook leaves off.

INTRODUCTION TO THE UCSD p-SYSTEM™

by Charles W. Grant and Jon Butah 250 pp., 10illustr., Ref. 0-061

A simple, clear introduction to the UCSD Pascal Operating System; for beginners
through experienced programmers,

A MICROPROGRAMMED APL IMPLEMENTATION

by Rodnay Zaks 350 pp., Ref. 0-005

An expert-level text presenting the complete conceptual analysis and design of an
APL interpreter, and actual listing of the microcode.

THE APPLE CONNECTION

by James W. Coffron 228 pp., 120 illustr., Ref. 0-085

Teaches elementary interfacing and BASIC programming of the Apple for connec-
tion to external devices and household appliances.

MICROPROCESSOR INTERFACING TECHNIQUES

by Rodnay Zaks and Austin Lesea 458 pp., 400 illust., Ref. 0-029

Complete hardware and software interconnect techniques, including D to A con-
version, peripherals, standard buses and troubleshooting.

SELF STUDY COURSES

Recorded live at seminars given by recognized professionals in the microprocessor
field.

INTRODUCTORY SHORT COURSES:

Each includes two cassettes plus special coordinated workbook (2% hours).

S10—INTRODUCTION TO PERSONAL AND BUSINESS
COMPUTING

A comprehensive introduction to small computer systems for those planningto use
or buy one, including peripherals and pitfalls.

ST1—INTRODUCTION TO MICROPROCESSORS
How microprocessors work, including basic concepts, applications, advantages
and disadvantages.

$2—PROGRAMMING MICROPROCESSORS
The companion to 51. How to program any standard microprocessor, and how it
operates internally. Requires a basic understanding of microprocessors.

S3—DESIGNING A MICROPROCESSOR SYSTEM
Learn how to interconnect a complete system, wire by wire. Techniques discussed
are applicable to all standard microprocessors.

INTRODUCTORY COMPREHENSIVE

COURSES:

Each includes a 300-500 page seminar book and seven or eight C90 cassettes.
SB3—MICROPROCESSORS

This seminar teaches all aspects of microprocessors: from the operation of an MPU
to the complete interconnect of a system. The basic hardware course (12 hours).
SB2—MICROPROCESSOR PROGRAMMING

The basic software course: step by step through all the important aspects of micro-
computer programming (10 hours).

ADVANCED COURSES:

Each includes a 300-500 page workbook and three or four C90 cassettes.
SB3—SEVERE ENVIRONMENT/MILITARY

MICROPROCESSOR SYSTEMS

Complete discussion of constraints, techniques and systems for severe environ-
mental applications, including Hughes, Raytheon, Actron and other militarized
systems (6 hours).

SB5—BIT-SLICE

Learn how to build a complete system with bit slices. Also examines innovative
applications of bit slice techniques (6 hours).

SB6—INDUSTRIAL MICROPROCESSOR SYSTEMS

Seminar examines actual industrial hardware and software techniques, com-
ponents, programs and cost (472 hours).

SB7—MICROPROCESSOR INTERFACING

Explains how to assemble, interface and interconnect a system (6 hours).

SOFTWARE

BAS 65™ CROSS-ASSEMBLER IN BASIC
8” diskette, Ref. BAS 65

A complete assembler for the 6502, written in standard Microsoft BASIC under
CPIM®,

8080 SIMULATORS

Turns any 6502 into an 8080. Two versions are available for APPLE 1.

APPLE Il cassette, Ref, S6580-APL(T)

APPLE Il diskette, Ref. 56580-APL(D)

FOR A COMPLETE CATALOG
OF OUR PUBLICATIONS

U.S.A.

2344 Sixth Street
Berkeley,
California 94710
Tel: (415) 848-8233
Telex: 336311

SYBEX-EUROPE

4 Place Félix-Eboué
75583 Paris Cedex 12
France

Tel: 1/347-30-20
Telex: 211801

SYBEX-VERLAG
Heyestr. 22

4000 Diisseldorf 12
West Germany
Tel: (0211) 287066
Telex: 08 588 163

&

Connect your Apple to the real world!
#

Je e e e e e =]

... teaches you to program and connect your Apple computer
to real appliances and devices.

You will sharpen your BASIC programming skills as you learn
elementary interfacing techniques.

In particular, you will learn how to use
e PEEK and POKE instructions in BASIC
* Apple I/O slots
* Transducers and solid-state relays

and...

* How to perform digital-to-analog and analog-to-
digital conversions :

* How to build real applications, such as a home
security system, and a complete temperature
monitoring system

About the Author:

James W. Coffron is a computer systems engineer specializing
in the design and testing of microprocessor-based systems. He
has taught seminars in both academic and industrial settings,
and is the author of several books about microprocessors. He
holds an MSEE degree from Santa Clara University.

ISBNO-89588-085-7

